Dataset Viewer
Auto-converted to Parquet Duplicate
peptide
string
HLA
string
CDR3
string
label
int64
HLA_sequence
string
FLKEQGGL
A*02:01
CASSLGQNYGYTF
0
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
AVFDRKSDAK
A*02:01
CSVEGSEDYGYTF
0
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
KLGGALQAK
A*02:01
CASTGPRSKTDTQYF
0
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
FRCPRRFCF
A*03:01
CASSSRSAYEQYF
0
YFAMYQENVAQTDVDTLYIIYRDYTWAELAYTWY
NLNCCSVPV
A*03:01
CSVTGGTYEQYF
0
YFAMYQENVAQTDVDTLYIIYRDYTWAELAYTWY
EAAGIGILTV
A*02:01
CASSQDELAASTDTQYF
1
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
GLCTLVAML
B*07:02
CASSLEGGKAFF
0
YYSEYRNIYAQTDESNLYLSYDYYTWAERAYEWY
KLGGALQAK
A*02:01
CAWGGVQGINEQYF
0
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
LLDFVRFMGV
B*07:02
CASSRSLNVNSNQPQHF
0
YYSEYRNIYAQTDESNLYLSYDYYTWAERAYEWY
KLGGALQAK
B*07:02
CASSNGDEQYF
0
YYSEYRNIYAQTDESNLYLSYDYYTWAERAYEWY
TQGYFPDWQNY
A*02:01
CASSLTGETQYF
0
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
KLGGALQAK
B*07:02
CASSLARTVNTEAFF
0
YYSEYRNIYAQTDESNLYLSYDYYTWAERAYEWY
LLWNGPMAV
A*02:01
CASSFGQGENYGYTF
0
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
KLGGALQAK
C*07:02
CASSLAGSSSYEQYF
0
YDSGYREKYRQADVSNLYLRSDSYTLAALAYTWY
GILGFVFTL
A*03:01
CASSDLRAGELFF
0
YFAMYQENVAQTDVDTLYIIYRDYTWAELAYTWY
FLCMKALLL
A*02:01
CASSFGGLGQPQHF
0
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
ATDALMTGY
A*02:01
CASSFRGETYEQYF
0
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
CRVLCCYVL
A*01:01
CASSQSETGDGYTF
0
YFAMYQENMAHTDANTLYIIYRDYTWVARVYRGY
GLCTLVAML
A*02:01
CASSSGGQSLYSNQPQHF
0
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
RLRAEAQVK
B*08:01
CASSLGTSFRTDTQYF
0
YDSEYRNIFTNTDESNLYLSYNYYTWAVDAYTWY
KLGGALQAK
A*11:01
CASSPSWLSGVTQYF
0
YYAMYQENVAQTDVDTLYIIYRDYTWAAQAYRWY
KRWIILGLNK
A*03:01
CASSPSGIYEQYF
0
YFAMYQENVAQTDVDTLYIIYRDYTWAELAYTWY
LLWNGPMAV
B*57:01
CASSPSPAGASTNEQFF
0
YYAMYGENMASTYENIAYIVYDSYTWAVLAYLWY
RPHERNGFTVL
A*02:01
CASNPGTGRYGYTF
0
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
LPRRSGAAGA
A*03:01
CASSWGQPTEAFF
0
YFAMYQENVAQTDVDTLYIIYRDYTWAELAYTWY
LPRRSGAAGA
A*11:01
CASSSPGENYNEQFF
0
YYAMYQENVAQTDVDTLYIIYRDYTWAAQAYRWY
YLLAIFSGL
B*07:02
CASSDSRGTEAFF
0
YYSEYRNIYAQTDESNLYLSYDYYTWAERAYEWY
AVFDRKSDAK
B*57:01
CASSSGVNEQFF
0
YYAMYGENMASTYENIAYIVYDSYTWAVLAYLWY
KLGGALQAK
B*15:01
CASSFSGTVRGGYTF
0
YYAMYREISTNTYESNLYLRYDSYTWAEWAYLWY
NLVPMVATV
A*03:01
CASSPGTFWNYGYTF
0
YFAMYQENVAQTDVDTLYIIYRDYTWAELAYTWY
KLGGALQAK
B*07:02
CAMRGDPGGTSYGKLTF
0
YYSEYRNIYAQTDESNLYLSYDYYTWAERAYEWY
YMDGTMSQV
A*02:01
CASSRPNEQYF
0
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
KLGGALQAK
A*01:01
CASSLRDTDTGELFF
0
YFAMYQENMAHTDANTLYIIYRDYTWVARVYRGY
KLGGALQAK
B*08:01
CASGHGMGASTSGYT
0
YDSEYRNIFTNTDESNLYLSYNYYTWAVDAYTWY
EAAGIGILTV
A*03:01
CASSSGGGEKLFF
0
YFAMYQENVAQTDVDTLYIIYRDYTWAELAYTWY
RPHERNGFTVL
A*03:01
CASSTEDGNYGYTF
0
YFAMYQENVAQTDVDTLYIIYRDYTWAELAYTWY
CRVLCCYVL
A*03:01
CASSEEQSTDTQYF
0
YFAMYQENVAQTDVDTLYIIYRDYTWAELAYTWY
VVMSWAPPV
A*03:01
CASSYGAGEQPQHF
0
YFAMYQENVAQTDVDTLYIIYRDYTWAELAYTWY
KLGGALQAK
A*11:01
CASSQDSGEETQYF
0
YYAMYQENVAQTDVDTLYIIYRDYTWAAQAYRWY
EAAGIGILTV
A*03:01
CAWSRGAAEQFF
0
YFAMYQENVAQTDVDTLYIIYRDYTWAELAYTWY
GLCTLVAML
A*02:01
CASSLPRWGIRSNQPQHF
0
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
GILGFVFTL
A*03:01
CASSPSTGETAEAFF
0
YFAMYQENVAQTDVDTLYIIYRDYTWAELAYTWY
RPHERNGFTVL
A*03:01
CAERLQTGANNLFF
0
YFAMYQENVAQTDVDTLYIIYRDYTWAELAYTWY
KLGGALQAK
A*02:01
CSAIGGGREDTDTQYF
0
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
KLGGALQAK
A*03:01
CASSFGSGEEGYTF
0
YFAMYQENVAQTDVDTLYIIYRDYTWAELAYTWY
QIKVRVDMV
B*07:02
CASSPVTGGGSGANVLTF
0
YYSEYRNIYAQTDESNLYLSYDYYTWAERAYEWY
EPLPQGQLTAY
A*02:01
CASSLGPSQHF
0
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
KLGGALQAK
A*11:01
CASSPPQGAVVEQFF
0
YYAMYQENVAQTDVDTLYIIYRDYTWAAQAYRWY
KLGGALQAK
A*03:01
CASPGTGGPGANVLTF
1
YFAMYQENVAQTDVDTLYIIYRDYTWAELAYTWY
RLRAEAQVK
B*08:01
CSVISGTGAGANVLTF
0
YDSEYRNIFTNTDESNLYLSYNYYTWAVDAYTWY
LPRRSGAAGA
A*03:01
CASSEQGAYNEQFF
0
YFAMYQENVAQTDVDTLYIIYRDYTWAELAYTWY
GTSGSPIVNR
A*11:01
CASSQRSRGSYNEQFF
0
YYAMYQENVAQTDVDTLYIIYRDYTWAAQAYRWY
SFHSLHLLF
A*24:02
CASRPDRGHTQYF
1
YSAMYEEKVAHTDENIAYLMFHYYTWAVQAYTGY
RPRGEVRFL
A*02:01
CASSSGTGLNTEAFF
0
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
LPRRSGAAGA
A*11:01
CASRGTDYGYTF
0
YYAMYQENVAQTDVDTLYIIYRDYTWAAQAYRWY
RAKFKQLL
B*07:02
CASSLGLGGSGETQYF
0
YYSEYRNIYAQTDESNLYLSYDYYTWAERAYEWY
HPVGEADYFEY
B*08:01
CASIGGTGYNEQFF
0
YDSEYRNIFTNTDESNLYLSYNYYTWAVDAYTWY
ILTGLNYEV
A*02:01
CASYRSDRPTEAFF
0
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
NLVPMVATV
A*03:01
CASSYSTGNYGYTF
0
YFAMYQENVAQTDVDTLYIIYRDYTWAELAYTWY
ATDALMTGY
A*03:01
CASSWYGGTNYGYTF
0
YFAMYQENVAQTDVDTLYIIYRDYTWAELAYTWY
LPRRSGAAGA
A*11:01
CASSLFDQPQHF
0
YYAMYQENVAQTDVDTLYIIYRDYTWAAQAYRWY
AVFDRKSDAK
A*03:01
CASSKGQEGPNTEAFF
0
YFAMYQENVAQTDVDTLYIIYRDYTWAELAYTWY
KLGGALQAK
A*11:01
CASSTGTGQPQHF
0
YYAMYQENVAQTDVDTLYIIYRDYTWAAQAYRWY
KLGGALQAK
A*02:01
CASSLGLGGYTF
0
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
CRVLCCYVL
A*02:01
CASSYAISYNEQFF
0
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
GLCTLVAML
A*02:01
CASSIDGAAYEQYF
1
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
KLGGALQAK
A*02:01
CASSLGFSTLVDEQYF
0
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
KLGGALQAK
A*02:01
CASSPTGSYGYTF
0
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
LPRRSGAAGA
A*03:01
CASNPTGVGDEKLFF
0
YFAMYQENVAQTDVDTLYIIYRDYTWAELAYTWY
CRVLCCYVL
A*02:01
CASSQGFTEAFF
0
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
KLGGALQAK
A*03:01
CASSLQGPHEQYF
0
YFAMYQENVAQTDVDTLYIIYRDYTWAELAYTWY
KLGGALQAK
A*03:01
CASIRTRDPKAQYF
0
YFAMYQENVAQTDVDTLYIIYRDYTWAELAYTWY
LPRRSGAAGA
A*02:01
CASSFNTGELF
0
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
FLCMKALLL
A*03:01
CASSLGVIAGGLNEQFF
0
YFAMYQENVAQTDVDTLYIIYRDYTWAELAYTWY
FLKEKGGL
A*03:01
CASSLEVAGGLGDEQFF
0
YFAMYQENVAQTDVDTLYIIYRDYTWAELAYTWY
LLYDANYFL
A*03:01
CASSQIQGQGAYEQYF
0
YFAMYQENVAQTDVDTLYIIYRDYTWAELAYTWY
CRVLCCYVL
A*02:01
CASKTPSRGPHTEAFF
0
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
FLRGRAYGL
A*02:01
CASSFQPGMGTEAFF
0
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
TPGPGVRYPL
B*42:01
CASSQYRATQETQYF
1
YYSEYRNIYAQTDESNLYLSYNYYTWAVDAYTWY
KLGGALQAK
A*03:01
CASSLAPGTTNEKLFF
0
YFAMYQENVAQTDVDTLYIIYRDYTWAELAYTWY
MLDLQPETT
A*03:01
CASSWTENYEQYV
0
YFAMYQENVAQTDVDTLYIIYRDYTWAELAYTWY
RAKFKQLL
A*03:01
CASSPPKGRGSYEQYF
0
YFAMYQENVAQTDVDTLYIIYRDYTWAELAYTWY
KLGGALQAK
B*08:01
CASSDAGFRTQYF
0
YDSEYRNIFTNTDESNLYLSYNYYTWAVDAYTWY
GILGFVFTL
B*07:02
CASSYRGSVYNSPLHF
0
YYSEYRNIYAQTDESNLYLSYDYYTWAERAYEWY
RPHERNGFTVL
B*07:02
CASSEDRFQETQYF
0
YYSEYRNIYAQTDESNLYLSYDYYTWAERAYEWY
KLGGALQAK
A*03:01
CSVEAGGSIYNEQF
0
YFAMYQENVAQTDVDTLYIIYRDYTWAELAYTWY
KLGGALQAK
A*02:01
CSVAGTSGRGPDTQYF
0
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
LPRRSGAAGA
A*02:01
CASSQDGSGGLGEQYF
0
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
CRVLCCYVL
A*02:01
CASSVQGYTEAF
0
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
KLGGALQAK
A*11:01
CASRPGTGDYEQYF
0
YYAMYQENVAQTDVDTLYIIYRDYTWAAQAYRWY
RSLFNTIATLY
A*02:01
CASSFDSEQYFGPGTRLTVTE
1
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
RLRAEAQVK
B*35:01
CATEQGMHEQYF
0
YYATYRNIFTNTYESNLYIRYDSYTWAVLAYLWY
NLVPMVATV
A*02:01
CASSYTGSSNSPLHF
0
YFAMYGEKVAHTHVDTLYVRYHYYTWAVLAYTWY
RAKFKQLL
B*08:01
CASSPREEAFF
0
YDSEYRNIFTNTDESNLYLSYNYYTWAVDAYTWY
KLGGALQAK
B*07:02
CAWSVQASGEQYV
0
YYSEYRNIYAQTDESNLYLSYDYYTWAERAYEWY
NLVPMVATV
A*03:01
CASSMGGNPEQYF
0
YFAMYQENVAQTDVDTLYIIYRDYTWAELAYTWY
LPRRSGAAGA
B*44:02
CASSQETYYGYTF
0
YYTKYREISTNTYENTAYIRYDDYTWAVDAYLSY
GLCTLVAML
B*07:02
CATSTGQGETGELFF
0
YYSEYRNIYAQTDESNLYLSYDYYTWAERAYEWY
EPLPQGQLTAY
A*03:01
CASSQFQGIGSTDTQYF
0
YFAMYQENVAQTDVDTLYIIYRDYTWAELAYTWY
LPRRSGAAGA
A*03:01
CASSIRSSTEAFF
0
YFAMYQENVAQTDVDTLYIIYRDYTWAELAYTWY
End of preview. Expand in Data Studio

PMT Benchmark Dataset

Dataset Description

The PMT (Peptide-MHC-TCR) benchmark dataset for training and evaluating TCR-pMHC binding prediction models. This dataset contains TCR CDR3 sequences, peptide antigens, HLA alleles, and binary binding labels.

Dataset Summary

This is the official PMT training and in-distribution (ID) test set from the SPRINT framework. The data has been cleaned, deduplicated, and standardized for reproducibility.

  • Training Set: 474,881 samples
  • ID Test Set: 4,564 samples
  • Task: Binary classification (TCR-pMHC binding prediction)
  • Modality: TCR CDR3 + Peptide + MHC (PMT task)

Dataset Structure

Data Files

  • train.csv: Training data (474,881 samples)
  • id_test.csv: In-distribution test data (4,564 samples)

Data Format

CSV files with the following columns:

Column Type Description
CDR3 string TCR CDR3beta amino acid sequence
peptide string Peptide antigen sequence (8-15 aa)
HLA string HLA allele (standardized format: A*02:01)
label int Binding label (1=binder, 0=non-binder)
HLA_sequence string HLA pseudo-sequence (optional)

Dataset Statistics

Training Set

  • Total Samples: 474,881
  • Positive Samples: 33,129 (7.0%)
  • Negative Samples: 441,752 (93.0%)
  • Unique HLAs: 78
  • Unique Peptides: 638
  • Unique TCRs: 32,853

ID Test Set

  • Total Samples: 4,564
  • Positive Samples: 321 (7.0%)
  • Negative Samples: 4,243 (93.0%)
  • Unique HLAs: 12
  • Unique Peptides: 190
  • Unique TCRs: 1,283

Usage

Load with Hugging Face Datasets

from datasets import load_dataset

# Load training data
dataset = load_dataset("YYJMAY/pmt-interaction", split="train")
train_df = dataset.to_pandas()

# Load test data
dataset = load_dataset("YYJMAY/pmt-interaction", split="test")
test_df = dataset.to_pandas()

Load with Pandas

import pandas as pd
from huggingface_hub import hf_hub_download

# Download training file
train_path = hf_hub_download(
    repo_id="YYJMAY/pmt-interaction",
    filename="train.csv",
    repo_type="dataset"
)
train_df = pd.read_csv(train_path)

# Download test file
test_path = hf_hub_download(
    repo_id="YYJMAY/pmt-interaction",
    filename="id_test.csv",
    repo_type="dataset"
)
test_df = pd.read_csv(test_path)

Use with SPRINT Framework

The SPRINT framework automatically downloads and uses this dataset:

python scripts/run_benchmark.py --method METHOD --dataset pmt --mode train
python scripts/run_benchmark.py --method METHOD --dataset pmt --mode eval

Data Quality

Preprocessing

  • Deduplication: All duplicate entries removed based on (CDR3, peptide, HLA, label)
  • HLA Standardization: All HLA alleles normalized to standard format (e.g., A*02:01)
  • Missing Values: No missing values in required columns
  • Label Validation: All labels are binary (0 or 1)

Peptide Length Distribution

Training set peptide lengths: 8-15 amino acids Test set peptide lengths: 8-15 amino acids

Construction

This dataset was curated and cleaned as part of the SPRINT benchmarking framework:

  1. Collected from multiple public TCR-pMHC datasets
  2. Standardized HLA allele naming conventions
  3. Removed duplicates and incomplete entries
  4. Split into training and in-distribution test sets
  5. Validated for data quality and consistency

Tasks

This dataset is designed for:

  • PMT (Peptide-MHC-TCR) Task: Predict TCR-pMHC binding using all three components
  • Binary Classification: Classify as binder (1) or non-binder (0)
  • Model Benchmarking: Evaluate model performance on standardized data

Limitations

  • Only includes class I MHC (HLA-A, HLA-B, HLA-C)
  • Limited to TCR CDR3beta sequences
  • Binary labels (no binding affinity values)
  • Peptide length range: 8-15 amino acids

Citation

If you use this dataset, please cite:

@dataset{pmt_benchmark_2024,
  title={PMT Benchmark Dataset for TCR-pMHC Binding Prediction},
  author={SPRINT Framework Contributors},
  year={2024},
  url={https://huggingface.co/datasets/YYJMAY/pmt-interaction}
}

License

MIT License

Contact

For questions or issues, please open an issue in the SPRINT repository.

Related Datasets

  • Allelic OOD: YYJMAY/allelic-ood
  • Temporal OOD: YYJMAY/temporal-ood
  • Modality OOD: YYJMAY/modality-ood
Downloads last month
20