Dataset Viewer
The dataset could not be loaded because the splits use different data file formats, which is not supported. Read more about the splits configuration. Click for more details.
Couldn't infer the same data file format for all splits. Got {NamedSplit('train'): ('parquet', {}), NamedSplit('validation'): ('videofolder', {}), NamedSplit('test'): ('videofolder', {})}
Error code: FileFormatMismatchBetweenSplitsError
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
Information
- Language: English
- The dataset contains both RGB (frontal and side view) and keypoints (only frontal view) data. However, the translation text is only available for frontal-view RGB data. Therefore, this repo only support this type of data.
- Gloss is not currently available.
- Storage
- RGB
- Train: 30.7 GB
- Validation: 1.65 GB
- Test: 2.24 GB
- RGB
Structure
Each sample will have a structure as follows:
{
'VIDEO_ID': Value(dtype='string', id=None),
'VIDEO_NAME': Value(dtype='string', id=None),
'SENTENCE_ID': Value(dtype='string', id=None),
'SENTENCE_NAME': Value(dtype='string', id=None),
'START_REALIGNED': Value(dtype='float64', id=None),
'END_REALIGNED': Value(dtype='float64', id=None),
'SENTENCE': Value(dtype='string', id=None),
'VIDEO': Value(dtype='large_binary', id=None)
}
{
'VIDEO_ID': '--7E2sU6zP4',
'VIDEO_NAME': '--7E2sU6zP4-5-rgb_front',
'SENTENCE_ID': '--7E2sU6zP4_10',
'SENTENCE_NAME': '--7E2sU6zP4_10-5-rgb_front',
'START_REALIGNED': 129.06,
'END_REALIGNED': 142.48,
'SENTENCE': "And I call them decorative elements because basically all they're meant to do is to enrich and color the page.",
'VIDEO': <video-bytes>
}
How To Use
Because the returned video will be in bytes, here is a way to extract frames and fps:
# pip install av
import av
import io
import numpy as np
import os
from datasets import load_dataset
def extract_frames(video_bytes):
# Create a memory-mapped file from the bytes
container = av.open(io.BytesIO(video_bytes))
# Find the video stream
visual_stream = next(iter(container.streams.video), None)
# Extract video properties
video_fps = visual_stream.average_rate
# Initialize arrays to store frames
frames_array = []
# Extract frames
for packet in container.demux([visual_stream]):
for frame in packet.decode():
img_array = np.array(frame.to_image())
frames_array.append(img_array)
return frames_array, video_fps
dataset = load_dataset("VieSignLang/how2sign-clips", split="test", streaming=True)
sample = next(iter(dataset))["video"]
frames, video_fps = extract_frames(sample)
print(f"Number of frames: {frames.shape[0]}")
print(f"Video FPS: {video_fps}")
- Downloads last month
- 423