Datasets:
Modalities:
Text
Formats:
json
Sub-tasks:
language-modeling
Languages:
Estonian
Size:
10K - 100K
License:
File size: 3,962 Bytes
3c076b8 f417dba 3c076b8 0fa9ef4 c0c1ba3 0fa9ef4 c0c1ba3 0fa9ef4 3c076b8 9dc5037 3c076b8 f417dba 9dc5037 f417dba 9dc5037 f417dba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 |
---
language: et
license: other
tags:
- translation
- legal-text
- estonian
- english
- helsinki-nlp
- transformers
size_categories: n<10K
source_datasets:
- paulpall/legalese-sentences_estonian
task_ids:
- language-modeling
---
# 📚 Estonian → English Legal Sentence Translation Dataset
### @ajsbsd | Non-commercial Use Only
This dataset contains **Estonian legal sentences translated into English**, derived from the original [paulpall/legalese-sentences_estonian](https://huggingface.co/datasets/paulpall/legalese-sentences_estonian ) dataset.
Translations were generated using the [`Helsinki-NLP/opus-mt-et-en`](https://huggingface.co/Helsinki-NLP/opus-mt-et-en ) model.
---
## 🛥️ Dedication
---
This dataset is dedicated to the pursuit of truth, transparency, and informed discourse in a world shaped by complex global threats.
Inspired by the work of Malcolm Nance and his commitment to delivering timely, actionable intelligence and geopolitical insight,
this collection stands as a resource for those who seek clarity in uncertainty and vigilance in the face of evolving dangers.
[Malcolm Nance](https://malcolmnance.substack.com/ )
2025-05-23 - Florida, USA, Substack Subscriber...
---
## 📄 Dataset Description
- **Original Source**: [paulpall/legalese-sentences_estonian](https://huggingface.co/datasets/paulpall/legalese-sentences_estonian )
- **Translation Model**: Helsinki-NLP/opus-mt-et-en
- **Language Pair**: Estonian → English
- **Domain**: Legal (Trademark and procedural law)
- **Format**: JSON list of input-output sentence pairs
- **License**: Free for non-commercial use only
---
https://mindly.social/@ajsbsd
## 📦 Example Entry
```json
{
"input": "Kehtestada kauba- ja teenindusmärgi registreerimise taotluse dokumentide vorminõuded...",
"output": "Establish formal requirements and procedures for the submission of documents..."
}
```
---
## 📝 Intended Uses
Legal NLP research
Machine translation benchmarking
Multilingual legal corpus building
Training domain-specific MT models
---
## ⚠️ Limitations & Biases
Machine-generated translations : Not reviewed by humans.
Legal nuance : May not reflect precise legal terminology in all cases.
Limited scope : Focused on trademark registration procedures.
---
## 🔐 License
Free for non-commercial use.
You may use the dataset for research, educational, or personal purposes.
You may NOT use this dataset in any commercial application without explicit permission from the rights holder.
Please also respect the license of the original dataset.
---
## 📁 Citation
If you use this dataset, please cite the original source:
```bibtex
@misc{paulpall_legalese_sentences_estonian,
author = {Paul Pall},
title = {Legalese Sentences in Estonian},
year = {2023},
url = {https://huggingface.co/datasets/paulpall/legalese-sentences_estonian }
}
```
Also include a note if you used the Helsinki-NLP model:
```bibtex
@inproceedings{www2019mt,
title = {{OPUS-MT} — Training Many-to-Many Bitext Neural Machine Translation Models}},
author = {Jörg Tiedemann and Santhosh Thottingal},
booktitle = {Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)},
year = {2020}
}
```
---
## 🛠️ How to Use This Dataset
```python
from datasets import load_dataset
dataset = load_dataset("ajsbsd/legalese-sentences_estonian-english")
for entry in dataset["train"][:5]:
print("ESTONIAN:", entry["input"])
print("ENGLISH: ", entry["output"])
print()
```
---
## 📢 Acknowledgments
Thanks to the creators of the original dataset and the Helsinki-NLP team for their excellent multilingual translation models.
---
## 📬 Contact
For questions or improvements, feel free to reach out via GitHub or Mastodon:
🧠 [https://mindly.social/@ajsbsd ](https://mindly.social/ @ajsbsd)
🌐 ajsbsd.net
|