Convert dataset to Parquet

#2
by shriyaa44 - opened
Files changed (38) hide show
  1. README.md +291 -174
  2. biomimicry/test-00000-of-00001.parquet +3 -0
  3. biomimicry/train-00000-of-00001.parquet +3 -0
  4. cite_count/test-00000-of-00001.parquet +3 -0
  5. cite_count/train-00000-of-00001.parquet +3 -0
  6. drsm/test-00000-of-00001.parquet +3 -0
  7. drsm/train-00000-of-00001.parquet +3 -0
  8. fos/test-00000-of-00001.parquet +3 -0
  9. fos/train-00000-of-00001.parquet +3 -0
  10. hIndex/test-00000-of-00001.parquet +3 -0
  11. hIndex/train-00000-of-00001.parquet +3 -0
  12. high_influence_cite/test-00000-of-00001.parquet +3 -0
  13. mesh_descriptors/test-00000-of-00001.parquet +3 -0
  14. mesh_descriptors/train-00000-of-00001.parquet +3 -0
  15. nfcorpus/test-00000-of-00001.parquet +3 -0
  16. paper_reviewer_matching/test_hard-00000-of-00001.parquet +3 -0
  17. paper_reviewer_matching/test_soft-00000-of-00001.parquet +3 -0
  18. peer_review_score/test-00000-of-00001.parquet +3 -0
  19. peer_review_score/train-00000-of-00001.parquet +3 -0
  20. pub_year/test-00000-of-00001.parquet +3 -0
  21. pub_year/train-00000-of-00001.parquet +3 -0
  22. relish/test-00000-of-00001.parquet +3 -0
  23. reviewers/metadata-00000-of-00001.parquet +3 -0
  24. same_author/test-00000-of-00001.parquet +3 -0
  25. scidocs_cite/test-00000-of-00001.parquet +3 -0
  26. scidocs_cocite/test-00000-of-00001.parquet +3 -0
  27. scidocs_mag/test-00000-of-00001.parquet +3 -0
  28. scidocs_mag/train-00000-of-00001.parquet +3 -0
  29. scidocs_mesh/test-00000-of-00001.parquet +3 -0
  30. scidocs_mesh/train-00000-of-00001.parquet +3 -0
  31. scidocs_read/test-00000-of-00001.parquet +3 -0
  32. scidocs_view/test-00000-of-00001.parquet +3 -0
  33. scirepeval_test.py +0 -197
  34. scirepeval_test_configs.py +0 -99
  35. search/test-00000-of-00001.parquet +3 -0
  36. trec_covid/test-00000-of-00001.parquet +3 -0
  37. tweet_mentions/test-00000-of-00001.parquet +3 -0
  38. tweet_mentions/train-00000-of-00001.parquet +3 -0
README.md CHANGED
@@ -1,21 +1,6 @@
1
  ---
2
  dataset_info:
3
- - config_name: fos
4
- features:
5
- - name: paper_id
6
- dtype: string
7
- - name: label
8
- sequence: int32
9
- splits:
10
- - name: test
11
- num_bytes: 51276
12
- num_examples: 472
13
- - name: train
14
- num_bytes: 5873604
15
- num_examples: 54131
16
- download_size: 3194762
17
- dataset_size: 5924880
18
- - config_name: mesh_descriptors
19
  features:
20
  - name: paper_id
21
  dtype: string
@@ -23,13 +8,13 @@ dataset_info:
23
  dtype: int32
24
  splits:
25
  - name: test
26
- num_bytes: 820660
27
- num_examples: 51738
28
  - name: train
29
- num_bytes: 3283053
30
- num_examples: 206949
31
- download_size: 3203144
32
- dataset_size: 4103713
33
  - config_name: cite_count
34
  features:
35
  - name: paper_id
@@ -43,65 +28,8 @@ dataset_info:
43
  - name: train
44
  num_bytes: 483822
45
  num_examples: 24000
46
- download_size: 477603
47
  dataset_size: 605082
48
- - config_name: pub_year
49
- features:
50
- - name: paper_id
51
- dtype: string
52
- - name: label
53
- dtype: float64
54
- splits:
55
- - name: test
56
- num_bytes: 123284
57
- num_examples: 6000
58
- - name: train
59
- num_bytes: 493073
60
- num_examples: 24000
61
- download_size: 518506
62
- dataset_size: 616357
63
- - config_name: high_influence_cite
64
- features:
65
- - name: query_id
66
- dtype: string
67
- - name: cand_id
68
- dtype: string
69
- - name: score
70
- dtype: uint8
71
- splits:
72
- - name: test
73
- num_bytes: 1439013
74
- num_examples: 58255
75
- download_size: 3477938
76
- dataset_size: 1439013
77
- - config_name: same_author
78
- features:
79
- - name: query_id
80
- dtype: string
81
- - name: cand_id
82
- dtype: string
83
- - name: score
84
- dtype: uint8
85
- splits:
86
- - name: test
87
- num_bytes: 3144107
88
- num_examples: 123430
89
- download_size: 7464157
90
- dataset_size: 3144107
91
- - config_name: search
92
- features:
93
- - name: query_id
94
- dtype: string
95
- - name: cand_id
96
- dtype: string
97
- - name: score
98
- dtype: uint8
99
- splits:
100
- - name: test
101
- num_bytes: 1283980
102
- num_examples: 25850
103
- download_size: 2188731
104
- dataset_size: 1283980
105
  - config_name: drsm
106
  features:
107
  - name: paper_id
@@ -115,7 +43,7 @@ dataset_info:
115
  - name: train
116
  num_bytes: 119083
117
  num_examples: 7520
118
- download_size: 100492
119
  dataset_size: 134360
120
  - config_name: feeds_1
121
  features:
@@ -159,21 +87,21 @@ dataset_info:
159
  num_examples: 4233
160
  download_size: 358760
161
  dataset_size: 210605
162
- - config_name: peer_review_score
163
  features:
164
  - name: paper_id
165
  dtype: string
166
  - name: label
167
- dtype: float64
168
  splits:
169
  - name: test
170
- num_bytes: 89892
171
- num_examples: 2043
172
  - name: train
173
- num_bytes: 359348
174
- num_examples: 8167
175
- download_size: 408432
176
- dataset_size: 449240
177
  - config_name: hIndex
178
  features:
179
  - name: paper_id
@@ -187,68 +115,99 @@ dataset_info:
187
  - name: train
188
  num_bytes: 382756
189
  num_examples: 8699
190
- download_size: 434232
191
  dataset_size: 477620
192
- - config_name: trec_covid
193
  features:
194
  - name: query_id
195
  dtype: string
196
  - name: cand_id
197
  dtype: string
198
  - name: score
199
- dtype: int8
200
  splits:
201
  - name: test
202
- num_bytes: 3396582
203
- num_examples: 69318
204
- download_size: 5822714
205
- dataset_size: 3396582
206
- - config_name: tweet_mentions
207
  features:
208
  - name: paper_id
209
  dtype: string
210
  - name: label
211
- dtype: float64
212
  splits:
213
  - name: test
214
- num_bytes: 111212
215
- num_examples: 5132
216
  - name: train
217
- num_bytes: 444784
218
- num_examples: 20523
219
- download_size: 454231
220
- dataset_size: 555996
221
- - config_name: scidocs_mag
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
222
  features:
223
  - name: paper_id
224
  dtype: string
225
  - name: label
226
- dtype: int32
227
  splits:
228
  - name: test
229
- num_bytes: 180048
230
- num_examples: 3751
231
  - name: train
232
- num_bytes: 840048
233
- num_examples: 17501
234
- download_size: 923863
235
- dataset_size: 1020096
236
- - config_name: scidocs_mesh
237
  features:
238
  - name: paper_id
239
  dtype: string
240
  - name: label
241
- dtype: int32
242
  splits:
243
  - name: test
244
- num_bytes: 169488
245
- num_examples: 3531
246
  - name: train
247
- num_bytes: 790944
248
- num_examples: 16478
249
- download_size: 862299
250
- dataset_size: 960432
251
- - config_name: scidocs_view
252
  features:
253
  - name: query_id
254
  dtype: string
@@ -258,10 +217,36 @@ dataset_info:
258
  dtype: uint8
259
  splits:
260
  - name: test
261
- num_bytes: 2668042
262
- num_examples: 29978
263
- download_size: 3717272
264
- dataset_size: 2668042
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
265
  - config_name: scidocs_cite
266
  features:
267
  - name: query_id
@@ -274,7 +259,7 @@ dataset_info:
274
  - name: test
275
  num_bytes: 2663592
276
  num_examples: 29928
277
- download_size: 3711072
278
  dataset_size: 2663592
279
  - config_name: scidocs_cocite
280
  features:
@@ -288,8 +273,38 @@ dataset_info:
288
  - name: test
289
  num_bytes: 2665461
290
  num_examples: 29949
291
- download_size: 3713676
292
  dataset_size: 2665461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
293
  - config_name: scidocs_read
294
  features:
295
  - name: query_id
@@ -302,21 +317,9 @@ dataset_info:
302
  - name: test
303
  num_bytes: 2667953
304
  num_examples: 29977
305
- download_size: 3717148
306
  dataset_size: 2667953
307
- - config_name: reviewers
308
- features:
309
- - name: r_id
310
- dtype: string
311
- - name: papers
312
- sequence: string
313
- splits:
314
- - name: metadata
315
- num_bytes: 3564977
316
- num_examples: 668
317
- download_size: 3576339
318
- dataset_size: 3564977
319
- - config_name: paper_reviewer_matching
320
  features:
321
  - name: query_id
322
  dtype: string
@@ -325,30 +328,12 @@ dataset_info:
325
  - name: score
326
  dtype: uint8
327
  splits:
328
- - name: test_hard
329
- num_bytes: 50603
330
- num_examples: 1729
331
- - name: test_soft
332
- num_bytes: 50603
333
- num_examples: 1729
334
- download_size: 222236
335
- dataset_size: 101206
336
- - config_name: biomimicry
337
- features:
338
- - name: paper_id
339
- dtype: string
340
- - name: label
341
- dtype: int32
342
- splits:
343
  - name: test
344
- num_bytes: 44513
345
- num_examples: 2748
346
- - name: train
347
- num_bytes: 133570
348
- num_examples: 8243
349
- download_size: 134151
350
- dataset_size: 178083
351
- - config_name: relish
352
  features:
353
  - name: query_id
354
  dtype: string
@@ -358,22 +343,154 @@ dataset_info:
358
  dtype: uint8
359
  splits:
360
  - name: test
361
- num_bytes: 4779565
362
- num_examples: 191245
363
- download_size: 11473140
364
- dataset_size: 4779565
365
- - config_name: nfcorpus
366
  features:
367
  - name: query_id
368
  dtype: string
369
  - name: cand_id
370
  dtype: string
371
  - name: score
372
- dtype: uint8
373
  splits:
374
  - name: test
375
- num_bytes: 1188859
376
- num_examples: 44634
377
- download_size: 2751049
378
- dataset_size: 1188859
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
379
  ---
 
1
  ---
2
  dataset_info:
3
+ - config_name: biomimicry
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  features:
5
  - name: paper_id
6
  dtype: string
 
8
  dtype: int32
9
  splits:
10
  - name: test
11
+ num_bytes: 44513
12
+ num_examples: 2748
13
  - name: train
14
+ num_bytes: 133570
15
+ num_examples: 8243
16
+ download_size: 117995
17
+ dataset_size: 178083
18
  - config_name: cite_count
19
  features:
20
  - name: paper_id
 
28
  - name: train
29
  num_bytes: 483822
30
  num_examples: 24000
31
+ download_size: 388769
32
  dataset_size: 605082
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  - config_name: drsm
34
  features:
35
  - name: paper_id
 
43
  - name: train
44
  num_bytes: 119083
45
  num_examples: 7520
46
+ download_size: 77531
47
  dataset_size: 134360
48
  - config_name: feeds_1
49
  features:
 
87
  num_examples: 4233
88
  download_size: 358760
89
  dataset_size: 210605
90
+ - config_name: fos
91
  features:
92
  - name: paper_id
93
  dtype: string
94
  - name: label
95
+ sequence: int32
96
  splits:
97
  - name: test
98
+ num_bytes: 51276
99
+ num_examples: 472
100
  - name: train
101
+ num_bytes: 5873604
102
+ num_examples: 54131
103
+ download_size: 716225
104
+ dataset_size: 5924880
105
  - config_name: hIndex
106
  features:
107
  - name: paper_id
 
115
  - name: train
116
  num_bytes: 382756
117
  num_examples: 8699
118
+ download_size: 397218
119
  dataset_size: 477620
120
+ - config_name: high_influence_cite
121
  features:
122
  - name: query_id
123
  dtype: string
124
  - name: cand_id
125
  dtype: string
126
  - name: score
127
+ dtype: uint8
128
  splits:
129
  - name: test
130
+ num_bytes: 1439013
131
+ num_examples: 58255
132
+ download_size: 638665
133
+ dataset_size: 1439013
134
+ - config_name: mesh_descriptors
135
  features:
136
  - name: paper_id
137
  dtype: string
138
  - name: label
139
+ dtype: int32
140
  splits:
141
  - name: test
142
+ num_bytes: 820660
143
+ num_examples: 51738
144
  - name: train
145
+ num_bytes: 3283053
146
+ num_examples: 206949
147
+ download_size: 2865225
148
+ dataset_size: 4103713
149
+ - config_name: nfcorpus
150
+ features:
151
+ - name: query_id
152
+ dtype: string
153
+ - name: cand_id
154
+ dtype: string
155
+ - name: score
156
+ dtype: uint8
157
+ splits:
158
+ - name: test
159
+ num_bytes: 1188859
160
+ num_examples: 44634
161
+ download_size: 288015
162
+ dataset_size: 1188859
163
+ - config_name: paper_reviewer_matching
164
+ features:
165
+ - name: query_id
166
+ dtype: string
167
+ - name: cand_id
168
+ dtype: string
169
+ - name: score
170
+ dtype: uint8
171
+ splits:
172
+ - name: test_hard
173
+ num_bytes: 50603
174
+ num_examples: 1729
175
+ - name: test_soft
176
+ num_bytes: 50603
177
+ num_examples: 1729
178
+ download_size: 19490
179
+ dataset_size: 101206
180
+ - config_name: peer_review_score
181
  features:
182
  - name: paper_id
183
  dtype: string
184
  - name: label
185
+ dtype: float64
186
  splits:
187
  - name: test
188
+ num_bytes: 89892
189
+ num_examples: 2043
190
  - name: train
191
+ num_bytes: 359348
192
+ num_examples: 8167
193
+ download_size: 370729
194
+ dataset_size: 449240
195
+ - config_name: pub_year
196
  features:
197
  - name: paper_id
198
  dtype: string
199
  - name: label
200
+ dtype: float64
201
  splits:
202
  - name: test
203
+ num_bytes: 123284
204
+ num_examples: 6000
205
  - name: train
206
+ num_bytes: 493073
207
+ num_examples: 24000
208
+ download_size: 343748
209
+ dataset_size: 616357
210
+ - config_name: relish
211
  features:
212
  - name: query_id
213
  dtype: string
 
217
  dtype: uint8
218
  splits:
219
  - name: test
220
+ num_bytes: 4779565
221
+ num_examples: 191245
222
+ download_size: 1829597
223
+ dataset_size: 4779565
224
+ - config_name: reviewers
225
+ features:
226
+ - name: r_id
227
+ dtype: string
228
+ - name: papers
229
+ sequence: string
230
+ splits:
231
+ - name: metadata
232
+ num_bytes: 3564977
233
+ num_examples: 668
234
+ download_size: 3257358
235
+ dataset_size: 3564977
236
+ - config_name: same_author
237
+ features:
238
+ - name: query_id
239
+ dtype: string
240
+ - name: cand_id
241
+ dtype: string
242
+ - name: score
243
+ dtype: uint8
244
+ splits:
245
+ - name: test
246
+ num_bytes: 3144107
247
+ num_examples: 123430
248
+ download_size: 610057
249
+ dataset_size: 3144107
250
  - config_name: scidocs_cite
251
  features:
252
  - name: query_id
 
259
  - name: test
260
  num_bytes: 2663592
261
  num_examples: 29928
262
+ download_size: 1327711
263
  dataset_size: 2663592
264
  - config_name: scidocs_cocite
265
  features:
 
273
  - name: test
274
  num_bytes: 2665461
275
  num_examples: 29949
276
+ download_size: 1327238
277
  dataset_size: 2665461
278
+ - config_name: scidocs_mag
279
+ features:
280
+ - name: paper_id
281
+ dtype: string
282
+ - name: label
283
+ dtype: int32
284
+ splits:
285
+ - name: test
286
+ num_bytes: 180048
287
+ num_examples: 3751
288
+ - name: train
289
+ num_bytes: 840048
290
+ num_examples: 17501
291
+ download_size: 922313
292
+ dataset_size: 1020096
293
+ - config_name: scidocs_mesh
294
+ features:
295
+ - name: paper_id
296
+ dtype: string
297
+ - name: label
298
+ dtype: int32
299
+ splits:
300
+ - name: test
301
+ num_bytes: 169488
302
+ num_examples: 3531
303
+ - name: train
304
+ num_bytes: 790944
305
+ num_examples: 16478
306
+ download_size: 865286
307
+ dataset_size: 960432
308
  - config_name: scidocs_read
309
  features:
310
  - name: query_id
 
317
  - name: test
318
  num_bytes: 2667953
319
  num_examples: 29977
320
+ download_size: 1317665
321
  dataset_size: 2667953
322
+ - config_name: scidocs_view
 
 
 
 
 
 
 
 
 
 
 
 
323
  features:
324
  - name: query_id
325
  dtype: string
 
328
  - name: score
329
  dtype: uint8
330
  splits:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
331
  - name: test
332
+ num_bytes: 2668042
333
+ num_examples: 29978
334
+ download_size: 1332855
335
+ dataset_size: 2668042
336
+ - config_name: search
 
 
 
337
  features:
338
  - name: query_id
339
  dtype: string
 
343
  dtype: uint8
344
  splits:
345
  - name: test
346
+ num_bytes: 1283980
347
+ num_examples: 25850
348
+ download_size: 387127
349
+ dataset_size: 1283980
350
+ - config_name: trec_covid
351
  features:
352
  - name: query_id
353
  dtype: string
354
  - name: cand_id
355
  dtype: string
356
  - name: score
357
+ dtype: int8
358
  splits:
359
  - name: test
360
+ num_bytes: 3396582
361
+ num_examples: 69318
362
+ download_size: 842282
363
+ dataset_size: 3396582
364
+ - config_name: tweet_mentions
365
+ features:
366
+ - name: paper_id
367
+ dtype: string
368
+ - name: label
369
+ dtype: float64
370
+ splits:
371
+ - name: test
372
+ num_bytes: 111212
373
+ num_examples: 5132
374
+ - name: train
375
+ num_bytes: 444784
376
+ num_examples: 20523
377
+ download_size: 270138
378
+ dataset_size: 555996
379
+ configs:
380
+ - config_name: biomimicry
381
+ data_files:
382
+ - split: test
383
+ path: biomimicry/test-*
384
+ - split: train
385
+ path: biomimicry/train-*
386
+ - config_name: cite_count
387
+ data_files:
388
+ - split: test
389
+ path: cite_count/test-*
390
+ - split: train
391
+ path: cite_count/train-*
392
+ - config_name: drsm
393
+ data_files:
394
+ - split: test
395
+ path: drsm/test-*
396
+ - split: train
397
+ path: drsm/train-*
398
+ - config_name: fos
399
+ data_files:
400
+ - split: test
401
+ path: fos/test-*
402
+ - split: train
403
+ path: fos/train-*
404
+ - config_name: hIndex
405
+ data_files:
406
+ - split: test
407
+ path: hIndex/test-*
408
+ - split: train
409
+ path: hIndex/train-*
410
+ - config_name: high_influence_cite
411
+ data_files:
412
+ - split: test
413
+ path: high_influence_cite/test-*
414
+ - config_name: mesh_descriptors
415
+ data_files:
416
+ - split: test
417
+ path: mesh_descriptors/test-*
418
+ - split: train
419
+ path: mesh_descriptors/train-*
420
+ - config_name: nfcorpus
421
+ data_files:
422
+ - split: test
423
+ path: nfcorpus/test-*
424
+ - config_name: paper_reviewer_matching
425
+ data_files:
426
+ - split: test_hard
427
+ path: paper_reviewer_matching/test_hard-*
428
+ - split: test_soft
429
+ path: paper_reviewer_matching/test_soft-*
430
+ - config_name: peer_review_score
431
+ data_files:
432
+ - split: test
433
+ path: peer_review_score/test-*
434
+ - split: train
435
+ path: peer_review_score/train-*
436
+ - config_name: pub_year
437
+ data_files:
438
+ - split: test
439
+ path: pub_year/test-*
440
+ - split: train
441
+ path: pub_year/train-*
442
+ - config_name: relish
443
+ data_files:
444
+ - split: test
445
+ path: relish/test-*
446
+ - config_name: reviewers
447
+ data_files:
448
+ - split: metadata
449
+ path: reviewers/metadata-*
450
+ - config_name: same_author
451
+ data_files:
452
+ - split: test
453
+ path: same_author/test-*
454
+ - config_name: scidocs_cite
455
+ data_files:
456
+ - split: test
457
+ path: scidocs_cite/test-*
458
+ - config_name: scidocs_cocite
459
+ data_files:
460
+ - split: test
461
+ path: scidocs_cocite/test-*
462
+ - config_name: scidocs_mag
463
+ data_files:
464
+ - split: test
465
+ path: scidocs_mag/test-*
466
+ - split: train
467
+ path: scidocs_mag/train-*
468
+ - config_name: scidocs_mesh
469
+ data_files:
470
+ - split: test
471
+ path: scidocs_mesh/test-*
472
+ - split: train
473
+ path: scidocs_mesh/train-*
474
+ - config_name: scidocs_read
475
+ data_files:
476
+ - split: test
477
+ path: scidocs_read/test-*
478
+ - config_name: scidocs_view
479
+ data_files:
480
+ - split: test
481
+ path: scidocs_view/test-*
482
+ - config_name: search
483
+ data_files:
484
+ - split: test
485
+ path: search/test-*
486
+ - config_name: trec_covid
487
+ data_files:
488
+ - split: test
489
+ path: trec_covid/test-*
490
+ - config_name: tweet_mentions
491
+ data_files:
492
+ - split: test
493
+ path: tweet_mentions/test-*
494
+ - split: train
495
+ path: tweet_mentions/train-*
496
  ---
biomimicry/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:25e8054bd0eef905b7dd5e541f8ff93ccbb6371e87b3b927e029fa2cc080b9df
3
+ size 29915
biomimicry/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c7fde2d5e0c38dac92b27153e54b1fb778e4860c872f62d90953eec9e5820fc
3
+ size 88080
cite_count/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c7988102649aa79e6fea05e778b485ddcf8830b2e74a50f6cf9e00bbf484a91c
3
+ size 78127
cite_count/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe6c27acfb4bc7a7f5517dc870ba5591d3ccf9df85ed807a7cef794e83fc929a
3
+ size 310642
drsm/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6058ecf861a53c8a3cc0a5153ad55c8b1da45fef93a571c52483a1471564a13
3
+ size 9803
drsm/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fdc7bc533e3685ad605d58f971de7eb4f0de197add2033cbb5d5d30e30e60b1b
3
+ size 67728
fos/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a616865b719a2dcaa628bf25c002fe2f0ffff9985568fa5078a840dd1a102a2f
3
+ size 7221
fos/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:758509a8c404c4c794b636168588a0c74fe2d378d08fcac0e1ced9067319f0df
3
+ size 709004
hIndex/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f379a7d7e7da4afc4274bd8adc074b12ede781aca42515269328ec4a63cff7f2
3
+ size 79982
hIndex/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:421bfa359c39a62c5cee7d1d7c46a85d409d0ea16772881cba60d79c633058fe
3
+ size 317236
high_influence_cite/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07e06d3d2fc3947672b5ccc029a732e2a4522eb97f530bd804af0e87b0790eea
3
+ size 638665
mesh_descriptors/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fc5bf15e5ee7c82e6ef2694de46df61d6edadd5ca7dde7226e6eccb046608f43
3
+ size 573311
mesh_descriptors/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7ec689097d5f82d5c8a617612d4ce0494e7f6b6f870c9f8de76823af6bcf976e
3
+ size 2291914
nfcorpus/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81607fd98c977510d0e9200c89bf7914ff93b093997b8ef63f411a9349766392
3
+ size 288015
paper_reviewer_matching/test_hard-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e153468e3c2fdd0fb47efa0584a31a4fe0f321a77d6035e7f2fd77f4a59c223
3
+ size 9753
paper_reviewer_matching/test_soft-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec3e15c47bf6d0ba25e9a8fea42da818508016b1b585864e6ba92a5dc3e86630
3
+ size 9737
peer_review_score/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1027b07a178399e3b66e2a812f44d3fdb7a008e194b63f954ce185dc04d545e
3
+ size 74881
peer_review_score/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8629904f10af39a88195358ea549fc688960ffeb232a119ed08b7c28db9af3e6
3
+ size 295848
pub_year/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de49cd114f8c7c48e4290db0a6549e113d5b4b7f384b9e88128828a63b867358
3
+ size 69226
pub_year/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8482b2cb34208555099e9cb751cb5f06790477b13e2ecf0772c39e4f009fcaad
3
+ size 274522
relish/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b5f43b94c090110350ab7b3134a54fcf2d417c4039776e1e2b057aa74cbfbd9
3
+ size 1829597
reviewers/metadata-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a84256c59b34ec0e163235cbd053900ce04acb73999a70c4125078f57effa59
3
+ size 3257358
same_author/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aca174b2e6d09c0b6fc4a09880511afbb49c3ff565e9895ac9ca043fe998bac1
3
+ size 610057
scidocs_cite/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:71c4215430eb8c021aec7a1dd75610d2ed6ad85a39e99677fc602f264e6ae5e2
3
+ size 1327711
scidocs_cocite/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98b9cb8f8f51f3ec412a327395f90e5156175930ce1e6e98555b812b9427d848
3
+ size 1327238
scidocs_mag/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e8753c0c675f9fff00d4caaee6b8ff22b001d50879b6f1fdaae20a1c8334ebd
3
+ size 163596
scidocs_mag/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:238e6986e4fbce4612826e27d39488e6bb1aab79cb2fa2f4e6e6f34eb9e96c0c
3
+ size 758717
scidocs_mesh/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bda01f39fe10fff4d12d57817349474ca973a60efd016eb58633d882cb996090
3
+ size 153584
scidocs_mesh/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5efeca2562dfb45c21ea2f179d689e8d2d9ef68333bd5c4d375744c29df653a1
3
+ size 711702
scidocs_read/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:456d48a7101f055b10b6a621bd036e8391d0db3c70dc22438c76aad56ac9cbee
3
+ size 1317665
scidocs_view/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ff01b22d59ea4b11d9f5646446b3eb57115eeb636dcaef559117a5afa35a7a3
3
+ size 1332855
scirepeval_test.py DELETED
@@ -1,197 +0,0 @@
1
- # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
- # TODO: Address all TODOs and remove all explanatory comments
15
- """TODO: Add a description here."""
16
-
17
-
18
- import csv
19
- import json
20
- import os
21
- import glob
22
-
23
- import datasets
24
- from datasets.data_files import DataFilesDict
25
- from .scirepeval_test_configs import SCIREPEVAL_CONFIGS
26
- #from datasets.packaged_modules.json import json
27
-
28
-
29
- # TODO: Add BibTeX citation
30
- # Find for instance the citation on arxiv or on the dataset repo/website
31
- _CITATION = """\
32
- @InProceedings{huggingface:dataset,
33
- title = {A great new dataset},
34
- author={huggingface, Inc.
35
- },
36
- year={2021}
37
- }
38
- """
39
-
40
- # TODO: Add description of the dataset here
41
- # You can copy an official description
42
- _DESCRIPTION = """\
43
- This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
44
- """
45
-
46
- # TODO: Add a link to an official homepage for the dataset here
47
- _HOMEPAGE = ""
48
-
49
- # TODO: Add the licence for the dataset here if you can find it
50
- _LICENSE = ""
51
-
52
- # TODO: Add link to the official dataset URLs here
53
- # The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
54
- # This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
55
- _URLS = {
56
- "first_domain": "https://huggingface.co/great-new-dataset-first_domain.zip",
57
- "second_domain": "https://huggingface.co/great-new-dataset-second_domain.zip",
58
- }
59
-
60
-
61
-
62
- # TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
63
- class Scirepeval(datasets.GeneratorBasedBuilder):
64
- """TODO: Short description of my dataset."""
65
-
66
- VERSION = datasets.Version("1.1.0")
67
-
68
- # This is an example of a dataset with multiple configurations.
69
- # If you don't want/need to define several sub-sets in your dataset,
70
- # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
71
-
72
- # If you need to make complex sub-parts in the datasets with configurable options
73
- # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
74
- # BUILDER_CONFIG_CLASS = MyBuilderConfig
75
-
76
- # You will be able to load one or the other configurations in the following list with
77
- # data = datasets.load_dataset('my_dataset', 'first_domain')
78
- # data = datasets.load_dataset('my_dataset', 'second_domain')
79
- BUILDER_CONFIGS = SCIREPEVAL_CONFIGS
80
-
81
- def _info(self):
82
- return datasets.DatasetInfo(
83
- # This is the description that will appear on the datasets page.
84
- description=_DESCRIPTION,
85
- # This defines the different columns of the dataset and their types
86
- features=datasets.Features(self.config.features), # Here we define them above because they are different between the two configurations
87
- # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
88
- # specify them. They'll be used if as_supervised=True in builder.as_dataset.
89
- # supervised_keys=("sentence", "label"),
90
- # Homepage of the dataset for documentation
91
- homepage=_HOMEPAGE,
92
- # License for the dataset if available
93
- license=_LICENSE,
94
- # Citation for the dataset
95
- citation=_CITATION,
96
- )
97
-
98
- def _split_generators(self, dl_manager):
99
- # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
100
- # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
101
- base_url = "https://ai2-s2-research-public.s3.us-west-2.amazonaws.com/scirepeval"
102
- data_urls = dict()
103
- data_dir = self.config.url if self.config.url else self.config.name
104
-
105
- if self.config.task_type in set(["classification", "regression"]):
106
- data_urls.update({"train": f"{base_url}/test/{data_dir}/train.csv"})
107
- data_urls.update({"test": f"{base_url}/test/{data_dir}/test.csv"})
108
- elif self.config.task_type == "metadata":
109
- data_urls.update({"metadata": f"{base_url}/test/{data_dir}/reviewer_metadata.jsonl"})
110
- elif "reviewer_matching" in self.config.name:
111
- data_urls.update({"test_hard": f"{base_url}/test/{data_dir}/test_hard_qrel.jsonl",
112
- "test_soft": f"{base_url}/test/{data_dir}/test_soft_qrel.jsonl"})
113
- else:
114
- data_urls.update({"test": f"{base_url}/test/{data_dir}/test_qrel.jsonl"})
115
-
116
- downloaded_files = dl_manager.download_and_extract(data_urls)
117
- splits = []
118
- if self.config.task_type == "metadata":
119
- splits = [datasets.SplitGenerator(
120
- name=datasets.Split("metadata"),
121
- # These kwargs will be passed to _generate_examples
122
- gen_kwargs={
123
- "filepath": downloaded_files["metadata"],
124
- "split": "metadata"
125
- },
126
- ),
127
- ]
128
- elif "reviewer_matching" in self.config.name:
129
- splits = [datasets.SplitGenerator(
130
- name=datasets.Split("test_hard"),
131
- # These kwargs will be passed to _generate_examples
132
- gen_kwargs={
133
- "filepath": downloaded_files["test_hard"],
134
- "split": "test"
135
- },
136
- ),
137
- datasets.SplitGenerator(
138
- name=datasets.Split("test_soft"),
139
- # These kwargs will be passed to _generate_examples
140
- gen_kwargs={
141
- "filepath": downloaded_files["test_soft"],
142
- "split": "test"
143
- },
144
- )
145
- ]
146
- else:
147
- splits = [datasets.SplitGenerator(
148
- name=datasets.Split.TEST,
149
- # These kwargs will be passed to _generate_examples
150
- gen_kwargs={
151
- "filepath": downloaded_files["test"],
152
- "split": "test"
153
- },
154
- ),
155
- ]
156
-
157
- if "train" in downloaded_files:
158
- splits += [
159
- datasets.SplitGenerator(
160
- name=datasets.Split.TRAIN,
161
- # These kwargs will be passed to _generate_examples
162
- gen_kwargs={
163
- "filepath": downloaded_files["train"],
164
- "split": "train",
165
- },
166
- )]
167
- return splits
168
-
169
-
170
- # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
171
- def _generate_examples(self, filepath, split):
172
- # TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
173
- # The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
174
- # data = read_data(filepath)
175
- if self.config.task_type in set(["classification", "regression"]):
176
- import csv
177
- import ast
178
- with open(filepath, encoding="utf-8") as f:
179
- reader = csv.reader(f)
180
- for id_, row in enumerate(reader):
181
- if id_ == 0:
182
- continue
183
- yield id_, {
184
- "paper_id": row[0],
185
- "label": ast.literal_eval(",".join(row[1:])) if self.config.name=="fos" else row[1]
186
- }
187
- elif self.config.task_type == "metadata":
188
- with open(filepath, encoding="utf-8") as f:
189
- for line in f:
190
- d = json.loads(line)
191
- yield d["r_id"], d
192
- else:
193
- with open(filepath, encoding="utf-8") as f:
194
- for i, line in enumerate(f):
195
- d = json.loads(line)
196
- yield i, d
197
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
scirepeval_test_configs.py DELETED
@@ -1,99 +0,0 @@
1
- from typing import Dict, Any, List
2
-
3
- import datasets
4
-
5
-
6
- class ScirepevalConfig(datasets.BuilderConfig):
7
- """BuilderConfig for SuperGLUE."""
8
-
9
- def __init__(self, task_type: str, features: Dict[str, Any]=None, url="", **kwargs):
10
- """BuilderConfig for SuperGLUE.
11
-
12
- Args:
13
- features: *list[string]*, list of the features that will appear in the
14
- feature dict. Should not include "label".
15
- data_url: *string*, url to download the zip file from.
16
- citation: *string*, citation for the data set.
17
- url: *string*, url for information about the data set.
18
- label_classes: *list[string]*, the list of classes for the label if the
19
- label is present as a string. Non-string labels will be cast to either
20
- 'False' or 'True'.
21
- **kwargs: keyword arguments forwarded to super.
22
- """
23
- super().__init__(version=datasets.Version("1.1.0"), **kwargs)
24
- self.features = features
25
- self.task_type = task_type
26
- self.url = url
27
-
28
-
29
- SCIREPEVAL_CONFIGS = [
30
- ScirepevalConfig(name="fos", features={"paper_id": datasets.Value("string"),
31
- "label": datasets.Sequence(datasets.Value("int32"))}, task_type="classification"),
32
-
33
- ScirepevalConfig(name="mesh_descriptors", features={"paper_id": datasets.Value("string"),
34
- "label": datasets.Value("int32")}, task_type="classification"),
35
-
36
- ScirepevalConfig(name="biomimicry", features={"paper_id": datasets.Value("string"),
37
- "label": datasets.Value("int32")}, task_type="classification"),
38
-
39
- ScirepevalConfig(name="cite_count", features={"paper_id": datasets.Value("string"),
40
- "label": datasets.Value("float64")}, task_type="regression"),
41
-
42
- ScirepevalConfig(name="pub_year", features={"paper_id": datasets.Value("string"),
43
- "label": datasets.Value("float64")}, task_type="regression"),
44
-
45
- ScirepevalConfig(name="high_influence_cite", features={"query_id": datasets.Value("string"),
46
- "cand_id": datasets.Value("string"), "score": datasets.Value("uint8")}, task_type="proximity"),
47
-
48
- ScirepevalConfig(name="same_author", features={"query_id": datasets.Value("string"),
49
- "cand_id": datasets.Value("string"), "score": datasets.Value("uint8")}, task_type="proximity"),
50
-
51
- ScirepevalConfig(name="search", features={"query_id": datasets.Value("string"),
52
- "cand_id": datasets.Value("string"), "score": datasets.Value("uint8")}, task_type="search"),
53
-
54
- ScirepevalConfig(name="drsm", task_type="classification", features={"paper_id": datasets.Value("string"),
55
- "label": datasets.Value("int32")}),
56
-
57
- ScirepevalConfig(name="relish", features={"query_id": datasets.Value("string"),
58
- "cand_id": datasets.Value("string"), "score": datasets.Value("uint8")}, task_type="proximity"),
59
-
60
- ScirepevalConfig(name="nfcorpus", features={"query_id": datasets.Value("string"),
61
- "cand_id": datasets.Value("string"), "score": datasets.Value("uint8")}, task_type="search"),
62
-
63
- ScirepevalConfig(name="peer_review_score", task_type="regression", url="peer_review_score_hIndex/peer_review_score", features={"paper_id": datasets.Value("string"),
64
- "label": datasets.Value("float64")}),
65
-
66
- ScirepevalConfig(name="hIndex", task_type="regression", url="peer_review_score_hIndex/hIndex", features={"paper_id": datasets.Value("string"),
67
- "label": datasets.Value("float64")}),
68
-
69
- ScirepevalConfig(name="trec_covid", features={"query_id": datasets.Value("string"),
70
- "cand_id": datasets.Value("string"), "score": datasets.Value("int8")}, task_type="search"),
71
-
72
- ScirepevalConfig(name="tweet_mentions", task_type="regression", features={"paper_id": datasets.Value("string"),
73
- "label": datasets.Value("float64")}),
74
-
75
- ScirepevalConfig(name="scidocs_mag", task_type="classification", url="scidocs/mag_mesh/mag", features={"paper_id": datasets.Value("string"),
76
- "label": datasets.Value("int32")}),
77
-
78
- ScirepevalConfig(name="scidocs_mesh", task_type="classification", url="scidocs/mag_mesh/mesh", features={"paper_id": datasets.Value("string"),
79
- "label": datasets.Value("int32")}),
80
-
81
- ScirepevalConfig(name="scidocs_view", features={"query_id": datasets.Value("string"),
82
- "cand_id": datasets.Value("string"), "score": datasets.Value("uint8")}, task_type="proximity", url="scidocs/view_cite_read/coview"),
83
-
84
- ScirepevalConfig(name="scidocs_cite", features={"query_id": datasets.Value("string"),
85
- "cand_id": datasets.Value("string"), "score": datasets.Value("uint8")}, task_type="proximity", url="scidocs/view_cite_read/cite"),
86
-
87
- ScirepevalConfig(name="scidocs_cocite", features={"query_id": datasets.Value("string"),
88
- "cand_id": datasets.Value("string"), "score": datasets.Value("uint8")}, task_type="proximity", url="scidocs/view_cite_read/cocite"),
89
-
90
- ScirepevalConfig(name="scidocs_read", features={"query_id": datasets.Value("string"),
91
- "cand_id": datasets.Value("string"), "score": datasets.Value("uint8")}, task_type="proximity", url="scidocs/view_cite_read/coread"),
92
-
93
- ScirepevalConfig(name="reviewers", task_type="metadata", url="paper_reviewer_matching", features={"r_id": datasets.Value("string"),
94
- "papers": datasets.Sequence(datasets.Value("string"))}),
95
-
96
- ScirepevalConfig(name="paper_reviewer_matching", features={"query_id": datasets.Value("string"),
97
- "cand_id": datasets.Value("string"), "score": datasets.Value("uint8")}, task_type="proximity"),
98
-
99
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
search/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6ca525d8ffa2063f44bcd5496752f6e247bc671257bcb2ba5bd6f2972d06808b
3
+ size 387127
trec_covid/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4e86c25f3d24a56536f8f2c70e9ed809c638ce35c315a2c2b4d7829893ebec49
3
+ size 842282
tweet_mentions/test-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2fa86de866ea5608468edf0e6f78f069afd2f4fec5ae961b37acf2f9a2f7fe9a
3
+ size 54089
tweet_mentions/train-00000-of-00001.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d87ac6219e654ce7f4d44b7671d7da81eeffa74be14c2e8b5efaac3ad5914dd6
3
+ size 216049