The Dataset Viewer has been disabled on this dataset.
ragwiki-corpusgraph
Description
A corpus graph for Wikipedia corpus (rag:nq_wiki), built using ragwiki-terrier sparse index.
The graph encodes semantic relationships between documents by connecting each document to its k=16 nearest neighbors based on bm25 retriever.
Usage
# Load the artifact
import pyterrier as pt
artifact = pt.Artifact.from_hf('astappiev/ragwiki-corpusgraph')
Usage with GAR
import pyterrier as pt
from pyterrier_adaptive import GAR, NpTopKCorpusGraph
from pyterrier_t5 import MonoT5ReRanker
sparse_index: pt.terrier.TerrierIndex = pt.Artifact.from_hf("pyterrier/ragwiki-terrier")
retriever = pt.rewrite.tokenise() >> sparse_index.bm25(include_fields=["docno", "text", "title"]) >> pt.rewrite.reset()
get_text = sparse_index.text_loader(["docno", "text", "title"])
prepare_text = pt.apply.generic(lambda df: df.assign(qid=df["qid"].map(str), docno=df["docno"].map(str))) >> get_text
scorer = prepare_text >> MonoT5ReRanker(verbose=False, batch_size=64)
graph: NpTopKCorpusGraph = pt.Artifact.from_hf("astappiev/ragwiki-corpusgraph").to_limit_k(8)
pipeline = retriever >> GAR(scorer, graph) >> get_text
pipeline.search("hello world")
Benchmarks
TODO: Provide benchmarks for the artifact.
Reproduction
This graph was constructed using PyTerrier Adaptive.
import pyterrier as pt
from pyterrier_adaptive import NpTopKCorpusGraph
dataset: pt.datasets.Dataset = pt.get_dataset("rag:nq_wiki")
sparse_index: pt.terrier.TerrierIndex = pt.Artifact.from_hf("pyterrier/ragwiki-terrier")
bm25 = pt.rewrite.tokenise() >> sparse_index.bm25(include_fields=["docno", "text", "title"], threads=slurm_cpus) >> pt.rewrite.reset()
graph = NpTopKCorpusGraph.from_retriever(
bm25 % (build_graph_k + 1),
dataset.get_corpus_iter(),
"../index/ragwiki-corpusgraph",
k=build_graph_k,
batch_size=65_536,
)
graph.to_hf('astappiev/ragwiki-corpusgraph')
However the code above will take 2 months to run on a single machine. The graph was built using modified version of from_retriever to enable parallel compute on the cluster.
It took around 14340 CPU-hours to build the graph on our cluster.
Metadata
{
"type": "corpus_graph",
"format": "np_topk",
"package_hint": "pyterrier-adaptive",
"doc_count": 21015324,
"k": 16
}
- Downloads last month
- 9