|
|
|
|
|
"""Verifies the math answers in the dataset against the model outputs. |
|
|
The dataset is a single row with the answer and predictions path is a jsonl file with single row of model output. |
|
|
|
|
|
Example: |
|
|
|
|
|
``` |
|
|
python notebooks/math_final_answer_verifier.py \ |
|
|
--dataset-path.jsonl \ |
|
|
--predictions-path model_output.json \ |
|
|
--prediction-column model_output |
|
|
``` |
|
|
|
|
|
Supported input formats: ``.jsonl``/``.ndjson``, ``.json``, ``.csv``, |
|
|
``.tsv`` and ``.parquet`` (requires pandas). |
|
|
""" |
|
|
|
|
|
from __future__ import annotations |
|
|
|
|
|
import argparse |
|
|
import csv |
|
|
import json |
|
|
import math |
|
|
import numbers |
|
|
import re |
|
|
import sys |
|
|
import unicodedata |
|
|
from dataclasses import dataclass |
|
|
from pathlib import Path |
|
|
from typing import Any, Iterable, Sequence |
|
|
|
|
|
|
|
|
MODEL_OUTPUT_COL = "__model_output" |
|
|
ROW_ID_COL = "__row_id" |
|
|
|
|
|
|
|
|
BOXED_PATTERN = re.compile(r"\\boxed\s*\{([^}]*)\}") |
|
|
HASH_PATTERN = re.compile(r"####\s*(.+)") |
|
|
FINAL_ANSWER_PATTERNS = [ |
|
|
re.compile(r"(?i)final answer(?: is)?\s*[:=\-]?\s*(.+)"), |
|
|
re.compile(r"(?i)final result(?: is)?\s*[:=\-]?\s*(.+)"), |
|
|
re.compile(r"(?i)the answer is\s*(.+)"), |
|
|
re.compile(r"(?i)answer(?: is)?\s*[:=\-]?\s*(.+)"), |
|
|
re.compile(r"(?i)ans(?: is)?\s*[:=\-]?\s*(.+)"), |
|
|
re.compile(r"(?i)result(?: is)?\s*[:=\-]?\s*(.+)"), |
|
|
] |
|
|
|
|
|
|
|
|
LATEX_TEXT_REPLACEMENTS = { |
|
|
"\\leq": "<=", |
|
|
"\\le": "<=", |
|
|
"\\geq": ">=", |
|
|
"\\ge": ">=", |
|
|
"\\neq": "!=", |
|
|
"\\times": "*", |
|
|
"\\cdot": "*", |
|
|
"\\div": "/", |
|
|
"\\pm": "+-", |
|
|
"\\pi": "pi", |
|
|
"\\Pi": "pi", |
|
|
"\\infty": "inf", |
|
|
"\\sqrt": "sqrt", |
|
|
"\\Gamma": "gamma", |
|
|
"\\Omega": "omega", |
|
|
"\\alpha": "alpha", |
|
|
"\\beta": "beta", |
|
|
"\\gamma": "gamma", |
|
|
"\\delta": "delta", |
|
|
"\\int": "integral", |
|
|
"\\log": "log", |
|
|
"\\ln": "ln", |
|
|
} |
|
|
|
|
|
|
|
|
SYMBOL_REPLACEMENTS = { |
|
|
"−": "-", |
|
|
"–": "-", |
|
|
"—": "-", |
|
|
"·": "*", |
|
|
"×": "*", |
|
|
"÷": "/", |
|
|
"π": "pi", |
|
|
"Π": "pi", |
|
|
"∞": "inf", |
|
|
"√": "sqrt", |
|
|
"≤": "<=", |
|
|
"≥": ">=", |
|
|
"≠": "!=", |
|
|
"∈": "in", |
|
|
"∉": "notin", |
|
|
"∪": "union", |
|
|
"∩": "intersect", |
|
|
"′": "'", |
|
|
} |
|
|
|
|
|
|
|
|
OUTPUT_KEYWORDS = {"final_answer", "answer", "prediction", "output", "result"} |
|
|
|
|
|
|
|
|
@dataclass |
|
|
class ComparisonResult: |
|
|
is_match: bool |
|
|
matched_candidate: str | None |
|
|
match_type: str | None |
|
|
normalized_gold: str | None |
|
|
normalized_candidate: str | None |
|
|
candidates: Sequence[str] |
|
|
|
|
|
|
|
|
def parse_args() -> argparse.Namespace: |
|
|
parser = argparse.ArgumentParser(description="Verify math final answers against model outputs") |
|
|
parser.add_argument("--dataset-path", required=True, help="Path to the JSONL/CSV/TSV/parquet dataset") |
|
|
parser.add_argument("--predictions-path", required=True, help="Path to the predictions file") |
|
|
parser.add_argument( |
|
|
"--final-answer-column", |
|
|
default="final_answer", |
|
|
help="Name of the column that holds the ground-truth final answer", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--prediction-column", |
|
|
default="model_output", |
|
|
help="Name of the column that holds the model response", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--id-column", |
|
|
default=None, |
|
|
help="Optional column used to align dataset rows with predictions (defaults to row order)", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--dump-results", |
|
|
default=None, |
|
|
help="Optional path to write the per-row evaluation as JSONL", |
|
|
) |
|
|
parser.add_argument( |
|
|
"--dump-mismatches", |
|
|
default=None, |
|
|
help="Optional path to write only the mismatched rows as JSONL", |
|
|
) |
|
|
return parser.parse_args() |
|
|
|
|
|
|
|
|
def load_records(path: Path) -> list[dict[str, Any]]: |
|
|
if not path.exists(): |
|
|
raise FileNotFoundError(f"Missing file: {path}") |
|
|
ext = path.suffix.lower() |
|
|
if ext in {".jsonl", ".ndjson"}: |
|
|
rows: list[dict[str, Any]] = [] |
|
|
with path.open(encoding="utf-8") as handle: |
|
|
for line in handle: |
|
|
line = line.strip() |
|
|
if not line: |
|
|
continue |
|
|
obj = json.loads(line) |
|
|
if isinstance(obj, dict): |
|
|
rows.append(obj) |
|
|
else: |
|
|
rows.append({"value": obj}) |
|
|
return rows |
|
|
if ext == ".json": |
|
|
content = json.loads(path.read_text(encoding="utf-8")) |
|
|
if isinstance(content, list): |
|
|
return [dict(row) if isinstance(row, dict) else {"value": row} for row in content] |
|
|
if isinstance(content, dict): |
|
|
return [content] |
|
|
raise ValueError(f"Unsupported JSON structure in {path}") |
|
|
if ext in {".csv", ".tsv"}: |
|
|
delimiter = "\t" if ext == ".tsv" else "," |
|
|
with path.open(encoding="utf-8", newline="") as handle: |
|
|
reader = csv.DictReader(handle, delimiter=delimiter) |
|
|
return [dict(row) for row in reader] |
|
|
if ext == ".parquet": |
|
|
try: |
|
|
import pandas as pd |
|
|
except ImportError as exc: |
|
|
raise ImportError("Reading parquet files requires pandas and pyarrow.") from exc |
|
|
return pd.read_parquet(path).to_dict(orient="records") |
|
|
raise ValueError(f"Unsupported file format: {path}") |
|
|
|
|
|
|
|
|
def align_tables( |
|
|
dataset_rows: Sequence[dict[str, Any]], |
|
|
prediction_rows: Sequence[dict[str, Any]], |
|
|
*, |
|
|
id_column: str | None, |
|
|
prediction_column: str, |
|
|
) -> tuple[list[dict[str, Any]], str]: |
|
|
if not prediction_rows: |
|
|
raise ValueError("Predictions file has no rows") |
|
|
|
|
|
if not any(prediction_column in row for row in prediction_rows): |
|
|
raise KeyError(f"Prediction column '{prediction_column}' not found in predictions") |
|
|
|
|
|
key_column = ROW_ID_COL |
|
|
|
|
|
if id_column: |
|
|
missing_ids = [idx for idx, row in enumerate(dataset_rows) if row.get(id_column) is None] |
|
|
if missing_ids: |
|
|
raise KeyError( |
|
|
f"Dataset rows missing '{id_column}' (first few indices: {missing_ids[:5]})" |
|
|
) |
|
|
prediction_index: dict[Any, dict[str, Any]] = {} |
|
|
for pred in prediction_rows: |
|
|
key = pred.get(id_column) |
|
|
if key is None: |
|
|
continue |
|
|
prediction_index[key] = pred |
|
|
|
|
|
aligned: list[dict[str, Any]] = [] |
|
|
missing = 0 |
|
|
for idx, row in enumerate(dataset_rows): |
|
|
merged = dict(row) |
|
|
merged[ROW_ID_COL] = idx |
|
|
pred_row = prediction_index.get(row[id_column]) |
|
|
if pred_row is not None and prediction_column in pred_row: |
|
|
merged[MODEL_OUTPUT_COL] = pred_row.get(prediction_column) |
|
|
else: |
|
|
merged[MODEL_OUTPUT_COL] = None |
|
|
missing += 1 |
|
|
aligned.append(merged) |
|
|
|
|
|
if missing: |
|
|
print( |
|
|
f"[warn] {missing} dataset rows did not have matching predictions by '{id_column}'", |
|
|
file=sys.stderr, |
|
|
) |
|
|
return aligned, id_column |
|
|
|
|
|
|
|
|
align_len = min(len(dataset_rows), len(prediction_rows)) |
|
|
if align_len == 0: |
|
|
raise ValueError("No overlapping rows between dataset and predictions") |
|
|
if len(dataset_rows) != len(prediction_rows): |
|
|
shorter = "predictions" if len(prediction_rows) < len(dataset_rows) else "dataset" |
|
|
print( |
|
|
f"[warn] {shorter} has fewer rows (evaluating on {align_len} aligned samples)", |
|
|
file=sys.stderr, |
|
|
) |
|
|
trimmed: list[dict[str, Any]] = [] |
|
|
for idx in range(align_len): |
|
|
merged = dict(dataset_rows[idx]) |
|
|
merged[ROW_ID_COL] = idx |
|
|
merged[MODEL_OUTPUT_COL] = prediction_rows[idx].get(prediction_column) |
|
|
trimmed.append(merged) |
|
|
return trimmed, ROW_ID_COL |
|
|
|
|
|
|
|
|
def normalize_answer_text(value: Any) -> str | None: |
|
|
if value is None: |
|
|
return None |
|
|
if isinstance(value, float) and math.isnan(value): |
|
|
return None |
|
|
text = str(value).strip() |
|
|
if not text: |
|
|
return None |
|
|
|
|
|
text = unicodedata.normalize("NFKC", text) |
|
|
text = strip_leading_label(text) |
|
|
for src, dst in SYMBOL_REPLACEMENTS.items(): |
|
|
text = text.replace(src, dst) |
|
|
for src, dst in LATEX_TEXT_REPLACEMENTS.items(): |
|
|
text = text.replace(src, dst) |
|
|
|
|
|
text = re.sub(r"\\text\s*\{([^}]*)\}", r"\1", text) |
|
|
text = re.sub(r"\\boxed\s*\{([^}]*)\}", r"\1", text) |
|
|
text = text.replace("\\", "") |
|
|
text = text.replace("{", "").replace("}", "") |
|
|
text = text.replace("\r", "\n") |
|
|
text = text.replace("\t", " ") |
|
|
text = re.sub(r"\s+", " ", text).strip() |
|
|
if not text: |
|
|
return None |
|
|
text = text.lower() |
|
|
text = text.replace(" ", "") |
|
|
return text |
|
|
|
|
|
|
|
|
def strip_leading_label(text: str) -> str: |
|
|
candidate = text |
|
|
patterns = [ |
|
|
re.compile(r"(?i)^\s*(?:the\s+)?final\s+answer\s*(?:is)?\s*[:=\-]?\s*"), |
|
|
re.compile(r"(?i)^\s*(?:the\s+)?answer\s*(?:is)?\s*[:=\-]?\s*"), |
|
|
re.compile(r"(?i)^\s*ans\s*(?:is)?\s*[:=\-]?\s*"), |
|
|
re.compile(r"(?i)^\s*(?:final\s+result|result)\s*(?:is)?\s*[:=\-]?\s*"), |
|
|
] |
|
|
for pattern in patterns: |
|
|
stripped = pattern.sub("", candidate, count=1) |
|
|
if stripped != candidate: |
|
|
return stripped.strip() |
|
|
return candidate |
|
|
|
|
|
|
|
|
def extract_candidate_answers(value: Any) -> list[str]: |
|
|
if value is None: |
|
|
return [] |
|
|
if isinstance(value, (dict, list)): |
|
|
text = json.dumps(value, ensure_ascii=False) |
|
|
else: |
|
|
text = str(value) |
|
|
text = text.strip() |
|
|
if not text: |
|
|
return [] |
|
|
|
|
|
candidates: list[str] = [] |
|
|
|
|
|
candidates.extend(_maybe_extract_from_json(text)) |
|
|
|
|
|
boxed_matches = BOXED_PATTERN.findall(text) |
|
|
for match in reversed(boxed_matches): |
|
|
stripped = match.strip() |
|
|
if stripped: |
|
|
candidates.append(stripped) |
|
|
|
|
|
hash_matches = HASH_PATTERN.findall(text) |
|
|
if hash_matches: |
|
|
candidates.append(hash_matches[-1].strip()) |
|
|
|
|
|
for pattern in FINAL_ANSWER_PATTERNS: |
|
|
for match in pattern.finditer(text): |
|
|
snippet = match.group(1).strip() |
|
|
if snippet: |
|
|
candidates.append(snippet) |
|
|
|
|
|
equals_match = re.search(r"=\s*([^=\n]+)$", text) |
|
|
if equals_match: |
|
|
candidates.append(equals_match.group(1).strip()) |
|
|
|
|
|
lines = [ln.strip() for ln in text.splitlines() if ln.strip()] |
|
|
if lines: |
|
|
candidates.append(lines[-1]) |
|
|
|
|
|
candidates.append(text) |
|
|
|
|
|
return _dedupe_preserving_order(candidates) |
|
|
|
|
|
|
|
|
def _maybe_extract_from_json(text: str) -> list[str]: |
|
|
stripped = text.strip() |
|
|
if not stripped or stripped[0] not in "[{": |
|
|
return [] |
|
|
try: |
|
|
payload = json.loads(stripped) |
|
|
except json.JSONDecodeError: |
|
|
return [] |
|
|
|
|
|
values: list[str] = [] |
|
|
|
|
|
def _collect(obj: Any) -> None: |
|
|
if isinstance(obj, dict): |
|
|
for key, val in obj.items(): |
|
|
if isinstance(val, (str, int, float)) and key.lower() in OUTPUT_KEYWORDS: |
|
|
values.append(str(val)) |
|
|
elif isinstance(val, (dict, list)): |
|
|
_collect(val) |
|
|
elif isinstance(obj, list): |
|
|
for item in obj: |
|
|
_collect(item) |
|
|
|
|
|
_collect(payload) |
|
|
return values |
|
|
|
|
|
|
|
|
def _dedupe_preserving_order(items: Iterable[str]) -> list[str]: |
|
|
seen: set[str] = set() |
|
|
deduped: list[str] = [] |
|
|
for item in items: |
|
|
if not item: |
|
|
continue |
|
|
if item in seen: |
|
|
continue |
|
|
seen.add(item) |
|
|
deduped.append(item) |
|
|
return deduped |
|
|
|
|
|
|
|
|
def compare_answers(gold: str, prediction: str) -> ComparisonResult: |
|
|
normalized_gold = normalize_answer_text(gold) |
|
|
candidates = extract_candidate_answers(prediction) |
|
|
if not normalized_gold: |
|
|
return ComparisonResult(False, None, None, normalized_gold, None, candidates) |
|
|
|
|
|
for candidate in candidates: |
|
|
normalized_candidate = normalize_answer_text(candidate) |
|
|
if not normalized_candidate: |
|
|
continue |
|
|
if normalized_candidate == normalized_gold: |
|
|
return ComparisonResult(True, candidate.strip(), "exact", normalized_gold, normalized_candidate, candidates) |
|
|
if normalized_gold in normalized_candidate: |
|
|
return ComparisonResult(True, candidate.strip(), "substring_match", normalized_gold, normalized_candidate, candidates) |
|
|
|
|
|
return ComparisonResult(False, None, None, normalized_gold, None, candidates) |
|
|
|
|
|
|
|
|
def evaluate_rows( |
|
|
records: Sequence[dict[str, Any]], *, final_answer_column: str, key_column: str |
|
|
) -> list[dict[str, Any]]: |
|
|
rows: list[dict[str, Any]] = [] |
|
|
for idx, row in enumerate(records): |
|
|
gold = row.get(final_answer_column) |
|
|
prediction = row.get(MODEL_OUTPUT_COL) |
|
|
key = row.get(key_column, row.get(ROW_ID_COL, idx)) |
|
|
|
|
|
gold_text = str(gold) |
|
|
has_prediction = not _is_missing(prediction) |
|
|
|
|
|
if has_prediction: |
|
|
comp = compare_answers(gold_text, str(prediction)) |
|
|
else: |
|
|
comp = ComparisonResult(False, None, None, normalize_answer_text(gold_text), None, []) |
|
|
|
|
|
key_value: Any = key |
|
|
if isinstance(key_value, numbers.Integral): |
|
|
key_value = int(key_value) |
|
|
elif isinstance(key_value, numbers.Real) and float(key_value).is_integer(): |
|
|
key_value = int(key_value) |
|
|
|
|
|
record = { |
|
|
"row_key_column": key_column, |
|
|
"row_key": key_value, |
|
|
"final_answer": gold_text, |
|
|
"model_output": str(prediction) if has_prediction else None, |
|
|
"has_prediction": has_prediction, |
|
|
"is_correct": has_prediction and comp.is_match, |
|
|
"match_type": comp.match_type if has_prediction else None, |
|
|
"matched_candidate": comp.matched_candidate, |
|
|
"first_candidate": comp.candidates[0] if comp.candidates else None, |
|
|
"candidate_count": len(comp.candidates), |
|
|
"normalized_final_answer": comp.normalized_gold, |
|
|
"normalized_candidate": comp.normalized_candidate, |
|
|
} |
|
|
|
|
|
if not has_prediction: |
|
|
record["failure_reason"] = "no_prediction" |
|
|
elif not comp.candidates: |
|
|
record["failure_reason"] = "no_candidate" |
|
|
elif not comp.is_match: |
|
|
record["failure_reason"] = "mismatch" |
|
|
else: |
|
|
record["failure_reason"] = None |
|
|
|
|
|
rows.append(record) |
|
|
return rows |
|
|
|
|
|
|
|
|
def _is_missing(value: Any) -> bool: |
|
|
if value is None: |
|
|
return True |
|
|
if isinstance(value, float) and math.isnan(value): |
|
|
return True |
|
|
if isinstance(value, str) and not value.strip(): |
|
|
return True |
|
|
return False |
|
|
|
|
|
|
|
|
def write_jsonl(path: Path, rows: Sequence[dict[str, Any]]) -> None: |
|
|
path.parent.mkdir(parents=True, exist_ok=True) |
|
|
with path.open("w", encoding="utf-8") as handle: |
|
|
for row in rows: |
|
|
handle.write(json.dumps(row, ensure_ascii=False) + "\n") |
|
|
|
|
|
|
|
|
def main() -> None: |
|
|
args = parse_args() |
|
|
dataset_rows = load_records(Path(args.dataset_path)) |
|
|
if not dataset_rows: |
|
|
raise ValueError("Dataset file is empty") |
|
|
if not any(args.final_answer_column in row for row in dataset_rows): |
|
|
raise KeyError( |
|
|
f"'{args.final_answer_column}' not found in dataset columns" |
|
|
) |
|
|
filtered_dataset = [ |
|
|
row for row in dataset_rows if not _is_missing(row.get(args.final_answer_column)) |
|
|
] |
|
|
if not filtered_dataset: |
|
|
raise ValueError("Dataset does not contain rows with non-empty final answers") |
|
|
|
|
|
prediction_rows = load_records(Path(args.predictions_path)) |
|
|
aligned_rows, key_column = align_tables( |
|
|
filtered_dataset, |
|
|
prediction_rows, |
|
|
id_column=args.id_column, |
|
|
prediction_column=args.prediction_column, |
|
|
) |
|
|
|
|
|
evaluation_rows = evaluate_rows(aligned_rows, final_answer_column=args.final_answer_column, key_column=key_column) |
|
|
|
|
|
total_rows = len(evaluation_rows) |
|
|
with_prediction = sum(1 for row in evaluation_rows if row["has_prediction"]) |
|
|
matches = sum(1 for row in evaluation_rows if row["is_correct"]) |
|
|
no_candidate = sum(1 for row in evaluation_rows if row["failure_reason"] == "no_candidate") |
|
|
no_prediction = sum(1 for row in evaluation_rows if row["failure_reason"] == "no_prediction") |
|
|
|
|
|
accuracy = matches / with_prediction if with_prediction else 0.0 |
|
|
|
|
|
print(f"Evaluated rows: {total_rows}") |
|
|
print(f"Rows with predictions: {with_prediction}") |
|
|
print(f"Matches: {matches}") |
|
|
print(f"Accuracy: {accuracy:.2%}") |
|
|
if no_prediction: |
|
|
print(f"Rows without predictions: {no_prediction}") |
|
|
if no_candidate: |
|
|
print(f"Rows where no final answer was extractable: {no_candidate}") |
|
|
|
|
|
mismatches = [row for row in evaluation_rows if not row["is_correct"]] |
|
|
|
|
|
if args.dump_results: |
|
|
write_jsonl(Path(args.dump_results), evaluation_rows) |
|
|
print(f"Wrote detailed results to {args.dump_results}") |
|
|
if args.dump_mismatches: |
|
|
write_jsonl(Path(args.dump_mismatches), mismatches) |
|
|
print(f"Wrote mismatches to {args.dump_mismatches}") |
|
|
|
|
|
reward = "pass" if total_rows and matches == total_rows else "fail" |
|
|
print(f"Reward: {reward}") |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |
|
|
|