| import torch | |
| from model_segmamba.segmamba import SegMamba | |
| t1 = torch.rand(1, 4, 128, 128, 128).cuda() | |
| model = SegMamba(in_chans=4, | |
| out_chans=4, | |
| depths=[2,2,2,2], | |
| feat_size=[48, 96, 192, 384]).cuda() | |
| out = model(t1) | |
| print(out.shape) | |
| import torch | |
| from model_segmamba.segmamba import SegMamba | |
| t1 = torch.rand(1, 4, 128, 128, 128).cuda() | |
| model = SegMamba(in_chans=4, | |
| out_chans=4, | |
| depths=[2,2,2,2], | |
| feat_size=[48, 96, 192, 384]).cuda() | |
| out = model(t1) | |
| print(out.shape) | |