Datasets:

ArXiv:
PRISM / SegMamba /3_train.py
emad2001's picture
Upload folder using huggingface_hub
b4d7ac8 verified
import numpy as np
from light_training.dataloading.dataset import get_train_val_test_loader_from_train
import torch
import torch.nn as nn
from monai.inferers import SlidingWindowInferer
from light_training.evaluation.metric import dice
from light_training.trainer import Trainer
from monai.utils import set_determinism
from light_training.utils.files_helper import save_new_model_and_delete_last
from monai.losses.dice import DiceLoss
set_determinism(123)
import os
data_dir = "./data/fullres/train"
logdir = f"./logs/segmamba"
model_save_path = os.path.join(logdir, "model")
# augmentation = "nomirror"
augmentation = True
env = "pytorch"
max_epoch = 1000
batch_size = 2
val_every = 2
num_gpus = 1
device = "cuda:0"
roi_size = [128, 128, 128]
def func(m, epochs):
return np.exp(-10*(1- m / epochs)**2)
class BraTSTrainer(Trainer):
def __init__(self, env_type, max_epochs, batch_size, device="cpu", val_every=1, num_gpus=1, logdir="./logs/", master_ip='localhost', master_port=17750, training_script="train.py"):
super().__init__(env_type, max_epochs, batch_size, device, val_every, num_gpus, logdir, master_ip, master_port, training_script)
self.window_infer = SlidingWindowInferer(roi_size=roi_size,
sw_batch_size=1,
overlap=0.5)
self.augmentation = augmentation
from model_segmamba.segmamba import SegMamba
self.model = SegMamba(in_chans=4,
out_chans=4,
depths=[2,2,2,2],
feat_size=[48, 96, 192, 384])
self.patch_size = roi_size
self.best_mean_dice = 0.0
self.ce = nn.CrossEntropyLoss()
self.mse = nn.MSELoss()
self.train_process = 18
self.optimizer = torch.optim.SGD(self.model.parameters(), lr=1e-2, weight_decay=3e-5,
momentum=0.99, nesterov=True)
self.scheduler_type = "poly"
self.cross = nn.CrossEntropyLoss()
def training_step(self, batch):
image, label = self.get_input(batch)
pred = self.model(image)
loss = self.cross(pred, label)
self.log("training_loss", loss, step=self.global_step)
return loss
def convert_labels(self, labels):
## TC, WT and ET
result = [(labels == 1) | (labels == 3), (labels == 1) | (labels == 3) | (labels == 2), labels == 3]
return torch.cat(result, dim=1).float()
def get_input(self, batch):
image = batch["data"]
label = batch["seg"]
label = label[:, 0].long()
return image, label
def cal_metric(self, gt, pred, voxel_spacing=[1.0, 1.0, 1.0]):
if pred.sum() > 0 and gt.sum() > 0:
d = dice(pred, gt)
return np.array([d, 50])
elif gt.sum() == 0 and pred.sum() == 0:
return np.array([1.0, 50])
else:
return np.array([0.0, 50])
def validation_step(self, batch):
image, label = self.get_input(batch)
output = self.model(image)
output = output.argmax(dim=1)
output = output[:, None]
output = self.convert_labels(output)
label = label[:, None]
label = self.convert_labels(label)
output = output.cpu().numpy()
target = label.cpu().numpy()
dices = []
c = 3
for i in range(0, c):
pred_c = output[:, i]
target_c = target[:, i]
cal_dice, _ = self.cal_metric(target_c, pred_c)
dices.append(cal_dice)
return dices
def validation_end(self, val_outputs):
dices = val_outputs
tc, wt, et = dices[0].mean(), dices[1].mean(), dices[2].mean()
print(f"dices is {tc, wt, et}")
mean_dice = (tc + wt + et) / 3
self.log("tc", tc, step=self.epoch)
self.log("wt", wt, step=self.epoch)
self.log("et", et, step=self.epoch)
self.log("mean_dice", mean_dice, step=self.epoch)
if mean_dice > self.best_mean_dice:
self.best_mean_dice = mean_dice
save_new_model_and_delete_last(self.model,
os.path.join(model_save_path,
f"best_model_{mean_dice:.4f}.pt"),
delete_symbol="best_model")
save_new_model_and_delete_last(self.model,
os.path.join(model_save_path,
f"final_model_{mean_dice:.4f}.pt"),
delete_symbol="final_model")
if (self.epoch + 1) % 100 == 0:
torch.save(self.model.state_dict(), os.path.join(model_save_path, f"tmp_model_ep{self.epoch}_{mean_dice:.4f}.pt"))
print(f"mean_dice is {mean_dice}")
if __name__ == "__main__":
trainer = BraTSTrainer(env_type=env,
max_epochs=max_epoch,
batch_size=batch_size,
device=device,
logdir=logdir,
val_every=val_every,
num_gpus=num_gpus,
master_port=17759,
training_script=__file__)
train_ds, val_ds, test_ds = get_train_val_test_loader_from_train(data_dir)
trainer.train(train_dataset=train_ds, val_dataset=val_ds)