|
|
import numpy as np |
|
|
from light_training.dataloading.dataset import get_train_val_test_loader_from_train |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
from monai.inferers import SlidingWindowInferer |
|
|
from light_training.evaluation.metric import dice |
|
|
from light_training.trainer import Trainer |
|
|
from monai.utils import set_determinism |
|
|
from light_training.evaluation.metric import dice |
|
|
set_determinism(123) |
|
|
import os |
|
|
from light_training.prediction import Predictor |
|
|
|
|
|
data_dir = "./data/fullres/train" |
|
|
env = "pytorch" |
|
|
max_epoch = 1000 |
|
|
batch_size = 2 |
|
|
val_every = 2 |
|
|
num_gpus = 1 |
|
|
device = "cuda:0" |
|
|
patch_size = [128, 128, 128] |
|
|
|
|
|
class BraTSTrainer(Trainer): |
|
|
def __init__(self, env_type, max_epochs, batch_size, device="cpu", val_every=1, num_gpus=1, logdir="./logs/", master_ip='localhost', master_port=17750, training_script="train.py"): |
|
|
super().__init__(env_type, max_epochs, batch_size, device, val_every, num_gpus, logdir, master_ip, master_port, training_script) |
|
|
|
|
|
self.patch_size = patch_size |
|
|
self.augmentation = False |
|
|
|
|
|
def convert_labels(self, labels): |
|
|
|
|
|
result = [(labels == 1) | (labels == 3), (labels == 1) | (labels == 3) | (labels == 2), labels == 3] |
|
|
|
|
|
return torch.cat(result, dim=1).float() |
|
|
|
|
|
def get_input(self, batch): |
|
|
image = batch["data"] |
|
|
label = batch["seg"] |
|
|
properties = batch["properties"] |
|
|
label = self.convert_labels(label) |
|
|
|
|
|
return image, label, properties |
|
|
|
|
|
def define_model_segmamba(self): |
|
|
from model_segmamba.segmamba import SegMamba |
|
|
model = SegMamba(in_chans=4, |
|
|
out_chans=4, |
|
|
depths=[2,2,2,2], |
|
|
feat_size=[48, 96, 192, 384]) |
|
|
|
|
|
model_path = "/home/xingzhaohu/dev/jiuding_code/brats23/logs/segmamba/model/final_model_0.9038.pt" |
|
|
new_sd = self.filte_state_dict(torch.load(model_path, map_location="cpu")) |
|
|
model.load_state_dict(new_sd) |
|
|
model.eval() |
|
|
window_infer = SlidingWindowInferer(roi_size=patch_size, |
|
|
sw_batch_size=2, |
|
|
overlap=0.5, |
|
|
progress=True, |
|
|
mode="gaussian") |
|
|
|
|
|
predictor = Predictor(window_infer=window_infer, |
|
|
mirror_axes=[0,1,2]) |
|
|
|
|
|
save_path = "./prediction_results/segmamba" |
|
|
os.makedirs(save_path, exist_ok=True) |
|
|
|
|
|
return model, predictor, save_path |
|
|
|
|
|
def validation_step(self, batch): |
|
|
image, label, properties = self.get_input(batch) |
|
|
ddim = False |
|
|
|
|
|
model, predictor, save_path = self.define_model_segmamba() |
|
|
|
|
|
model_output = predictor.maybe_mirror_and_predict(image, model, device=device) |
|
|
|
|
|
model_output = predictor.predict_raw_probability(model_output, |
|
|
properties=properties) |
|
|
|
|
|
|
|
|
model_output = model_output.argmax(dim=0)[None] |
|
|
model_output = self.convert_labels_dim0(model_output) |
|
|
|
|
|
label = label[0] |
|
|
c = 3 |
|
|
dices = [] |
|
|
for i in range(0, c): |
|
|
output_i = model_output[i].cpu().numpy() |
|
|
label_i = label[i].cpu().numpy() |
|
|
d = dice(output_i, label_i) |
|
|
dices.append(d) |
|
|
|
|
|
print(dices) |
|
|
|
|
|
model_output = predictor.predict_noncrop_probability(model_output, properties) |
|
|
predictor.save_to_nii(model_output, |
|
|
raw_spacing=[1,1,1], |
|
|
case_name = properties['name'][0], |
|
|
save_dir=save_path) |
|
|
|
|
|
return 0 |
|
|
|
|
|
def convert_labels_dim0(self, labels): |
|
|
|
|
|
result = [(labels == 1) | (labels == 3), (labels == 1) | (labels == 3) | (labels == 2), labels == 3] |
|
|
|
|
|
return torch.cat(result, dim=0).float() |
|
|
|
|
|
|
|
|
def filte_state_dict(self, sd): |
|
|
if "module" in sd : |
|
|
sd = sd["module"] |
|
|
new_sd = {} |
|
|
for k, v in sd.items(): |
|
|
k = str(k) |
|
|
new_k = k[7:] if k.startswith("module") else k |
|
|
new_sd[new_k] = v |
|
|
del sd |
|
|
return new_sd |
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
trainer = BraTSTrainer(env_type=env, |
|
|
max_epochs=max_epoch, |
|
|
batch_size=batch_size, |
|
|
device=device, |
|
|
logdir="", |
|
|
val_every=val_every, |
|
|
num_gpus=num_gpus, |
|
|
master_port=17751, |
|
|
training_script=__file__) |
|
|
|
|
|
train_ds, val_ds, test_ds = get_train_val_test_loader_from_train(data_dir) |
|
|
|
|
|
trainer.validation_single_gpu(test_ds) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|