|
|
import nibabel as nib |
|
|
import numpy as np |
|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
import surface_distance |
|
|
from surface_distance import metrics |
|
|
from src.utils.util import save_predict, save_csv |
|
|
|
|
|
|
|
|
|
|
|
def model_predict(args, img, prompt, img_encoder, prompt_encoder, mask_decoder): |
|
|
patch_size = args.rand_crop_size[0] |
|
|
device = args.device |
|
|
out = F.interpolate(img.float(), scale_factor=512 / patch_size, mode='trilinear') |
|
|
input_batch = out[0].transpose(0, 1) |
|
|
batch_features, feature_list = img_encoder(input_batch) |
|
|
feature_list.append(batch_features) |
|
|
|
|
|
points_torch = prompt.transpose(0, 1) |
|
|
new_feature = [] |
|
|
for i, (feature, feature_decoder) in enumerate(zip(feature_list, prompt_encoder)): |
|
|
if i == 3: |
|
|
new_feature.append( |
|
|
feature_decoder(feature.to(device), points_torch.clone(), [patch_size, patch_size, patch_size]) |
|
|
) |
|
|
else: |
|
|
new_feature.append(feature.to(device)) |
|
|
img_resize = F.interpolate(img[0, 0].permute(1, 2, 0).unsqueeze(0).unsqueeze(0).to(device), scale_factor=64/patch_size, |
|
|
mode="trilinear") |
|
|
new_feature.append(img_resize) |
|
|
masks = mask_decoder(new_feature, 2, patch_size//64) |
|
|
masks = masks.permute(0, 1, 4, 2, 3) |
|
|
return masks |
|
|
|
|
|
def get_points_prompt(args, points_dict, cumulative=False): |
|
|
""" |
|
|
get prompt tensor (input) with given point-locations |
|
|
""" |
|
|
patch_size = args.rand_crop_size[0] |
|
|
|
|
|
|
|
|
|
|
|
x, y, z = points_dict['x_location'], points_dict['y_location'], points_dict['z_location'] |
|
|
|
|
|
x_m = (torch.max(x) + torch.min(x)) // 2 |
|
|
y_m = (torch.max(y) + torch.min(y)) // 2 |
|
|
z_m = (torch.max(z) + torch.min(z)) // 2 |
|
|
|
|
|
|
|
|
d_min = x_m - patch_size // 2 |
|
|
d_max = x_m + patch_size // 2 |
|
|
h_min = z_m - patch_size // 2 |
|
|
h_max = z_m + patch_size // 2 |
|
|
w_min = y_m - patch_size // 2 |
|
|
w_max = y_m + patch_size // 2 |
|
|
|
|
|
|
|
|
|
|
|
points = torch.cat([z - d_min, x - w_min, y - h_min], dim=1).unsqueeze(1).float() |
|
|
points_torch = points.to(args.device) |
|
|
|
|
|
patch_dict = {'w_min': w_min, 'w_max': w_max, 'h_min': h_min, 'h_max': h_max, 'd_min': d_min, 'd_max': d_max} |
|
|
|
|
|
return points_torch, patch_dict |
|
|
|
|
|
|
|
|
|
|
|
def get_final_prediction(args, img, seg_dict, points_dict, img_encoder, prompt_encoder_list, mask_decoder): |
|
|
seg = seg_dict['seg'] |
|
|
|
|
|
device = args.device |
|
|
patch_size = args.rand_crop_size[0] |
|
|
|
|
|
points_torch, patch_dict = get_points_prompt(args, points_dict) |
|
|
|
|
|
|
|
|
w_min, w_max = patch_dict['w_min'], patch_dict['w_max'] |
|
|
h_min, h_max = patch_dict['h_min'], patch_dict['h_max'] |
|
|
d_min, d_max = patch_dict['d_min'], patch_dict['d_max'] |
|
|
|
|
|
|
|
|
|
|
|
w_l = max(0, -w_min) |
|
|
w_r = max(0, w_max - points_dict['z_dimension']) |
|
|
h_l = max(0, -h_min) |
|
|
h_r = max(0, h_max - points_dict['y_dimension']) |
|
|
d_l = max(0, -d_min) |
|
|
d_r = max(0, d_max - points_dict['x_dimension']) |
|
|
|
|
|
d_min = max(0, d_min) |
|
|
h_min = max(0, h_min) |
|
|
w_min = max(0, w_min) |
|
|
|
|
|
img_patch = img[:, :, d_min:d_max, h_min:h_max, w_min:w_max].clone() |
|
|
prompt_patch = seg_dict['prompt'][:, :, d_min:d_max, h_min:h_max, w_min:w_max].clone() |
|
|
print(torch.unique(prompt_patch)) |
|
|
print(prompt_patch.sum()) |
|
|
|
|
|
l = len(torch.where(prompt_patch == 1)[0][10:]) |
|
|
sample = np.random.choice(np.arange(l), l, replace=True) |
|
|
x_negative, y_negative, z_negative = get_points(seg_dict['prompt'], sample, positive=True) |
|
|
points_negative = torch.cat([z_negative - d_min, x_negative - w_min, y_negative - h_min], dim=1).unsqueeze(1).float().to(args.device) |
|
|
points_torch = torch.cat([points_torch, points_negative], dim=0) |
|
|
|
|
|
print(points_torch.size()) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
img_patch = F.pad(img_patch, (w_l, w_r, h_l, h_r, d_l, d_r)) |
|
|
|
|
|
pred = model_predict(args, |
|
|
img_patch, |
|
|
points_torch, |
|
|
img_encoder, |
|
|
prompt_encoder_list, |
|
|
mask_decoder) |
|
|
pred = pred[:, :, d_l:patch_size - d_r, h_l:patch_size - h_r, w_l:patch_size - w_r] |
|
|
pred = F.softmax(pred, dim=1)[:, 1] |
|
|
|
|
|
|
|
|
|
|
|
seg_pred = torch.zeros_like(img).to(device)[:, 0, :].unsqueeze(0) |
|
|
seg_pred[:, :, d_min:d_max, h_min:h_max, w_min:w_max] += pred |
|
|
|
|
|
final_pred = F.interpolate(seg_pred, size=seg.shape[2:], mode="trilinear") |
|
|
img_orig = F.interpolate(img, size=seg.shape[2:], mode="trilinear") |
|
|
|
|
|
|
|
|
return final_pred, img_orig |
|
|
|
|
|
|
|
|
def get_points(prompt, sample, positive=True): |
|
|
value = 1 if positive else 0 |
|
|
z = torch.where(prompt == value)[3][sample].unsqueeze(1) |
|
|
x = torch.where(prompt == value)[2][sample].unsqueeze(1) |
|
|
y = torch.where(prompt == value)[4][sample].unsqueeze(1) |
|
|
|
|
|
|
|
|
|
|
|
return x, y, z |
|
|
def get_points_location(args, prompt, negative=False): |
|
|
""" |
|
|
use this to get anchor points |
|
|
""" |
|
|
np.random.seed(args.seed) |
|
|
l = len(torch.where(prompt == 1)[0]) |
|
|
sample = np.random.choice(np.arange(l), args.num_prompts, replace=True) |
|
|
x, y, z = get_points(prompt, sample) |
|
|
if negative: |
|
|
l = len(torch.where(prompt == 0)[0]) |
|
|
sample = np.random.choice(np.arange(l), args.num_prompts, replace=True) |
|
|
x_negative, y_negative, z_negative = get_points(prompt, sample, positive=False) |
|
|
x = torch.cat([x, x_negative], dim=0) |
|
|
y = torch.cat([y, y_negative], dim=0) |
|
|
z = torch.cat([z, z_negative], dim=0) |
|
|
|
|
|
|
|
|
points_dict = {'x_location': x, 'y_location': y, 'z_location': z, |
|
|
'x_dimension': prompt.shape[2], 'y_dimension': prompt.shape[3], 'z_dimension': prompt.shape[4]} |
|
|
return points_dict |
|
|
def get_input(args, img, seg, negative=False): |
|
|
seg = seg.float().unsqueeze(0) |
|
|
seg = seg.to(args.device) |
|
|
img = img.to(args.device) |
|
|
prompt = F.interpolate(seg, img.shape[2:], mode="nearest") |
|
|
points_dict = get_points_location(args, prompt, negative=negative) |
|
|
seg_dict = {'seg': seg, 'prompt': prompt} |
|
|
return img, seg_dict, points_dict |
|
|
|
|
|
|
|
|
def calculate_cost(args, |
|
|
prediction, ground_truth, |
|
|
loss_function, spacing, |
|
|
loss_list, loss_nsd_list): |
|
|
|
|
|
loss = 1 - loss_function(prediction, ground_truth) |
|
|
loss_value = loss.squeeze(0).squeeze(0).squeeze(0).squeeze(0).squeeze(0).detach().cpu().numpy() |
|
|
|
|
|
ssd = surface_distance.compute_surface_distances( |
|
|
(ground_truth == 1)[0, 0].cpu().numpy(), |
|
|
(prediction == 1)[0, 0].cpu().numpy(), |
|
|
spacing_mm=spacing[0].numpy() |
|
|
) |
|
|
nsd = metrics.compute_surface_dice_at_tolerance(ssd, args.tolerance) |
|
|
|
|
|
loss_list.append(loss_value) |
|
|
loss_nsd_list.append(nsd) |
|
|
|
|
|
return loss_list, loss_nsd_list, loss_value, nsd |
|
|
|
|
|
|
|
|
def tester(args, logger, |
|
|
model_dict, test_data, loss_list, loss_nsd_list, |
|
|
loss_function): |
|
|
img_encoder, prompt_encoder_list, mask_decoder = model_dict['img_encoder'], model_dict['prompt_encoder_list'], \ |
|
|
model_dict['mask_decoder'] |
|
|
|
|
|
patient_list = [] |
|
|
|
|
|
for idx, (img, seg, spacing) in enumerate(test_data): |
|
|
print( 'current / total subjects: {} / {}' |
|
|
.format(idx + 1, len(test_data.dataset.img_dict))) |
|
|
image_path = test_data.dataset.img_dict[idx] |
|
|
image_data = nib.load(image_path) |
|
|
|
|
|
if args.data == 'pancreas': |
|
|
patient_name = test_data.dataset.img_dict[idx].split('/')[-2] + '.nii.gz' |
|
|
else: |
|
|
patient_name = test_data.dataset.img_dict[idx].split('/')[-1] |
|
|
|
|
|
patient_list.append(patient_name) |
|
|
|
|
|
img, seg_dict, points_dict = get_input(args, img, seg, negative=False) |
|
|
|
|
|
|
|
|
final_pred, img_orig_space = get_final_prediction(args, img, seg_dict, points_dict, img_encoder, |
|
|
prompt_encoder_list, mask_decoder) |
|
|
|
|
|
masks = final_pred > 0.5 |
|
|
loss_list, loss_nsd_list, loss, nsd = calculate_cost(args, |
|
|
masks, seg_dict['seg'], |
|
|
loss_function, spacing, |
|
|
loss_list, loss_nsd_list) |
|
|
|
|
|
logger.info( |
|
|
" Case {}/{} {} - Dice {:.6f} | NSD {:.6f}".format( |
|
|
idx + 1, len(test_data.dataset.img_dict), test_data.dataset.img_dict[idx], loss.item(), nsd)) |
|
|
|
|
|
if args.save_predictions: |
|
|
save_predict(args, logger, final_pred, seg_dict['seg'], masks, points_dict, idx, test_data, image_data, patient_name) |
|
|
|
|
|
|
|
|
|
|
|
mean_dice, mean_nsd = np.mean(loss_list), np.mean(loss_nsd_list) |
|
|
logger.info("- Test metrics Dice: " + str(mean_dice)) |
|
|
logger.info("- Test metrics NSD: " + str(mean_nsd)) |
|
|
logger.info("----------------------") |
|
|
|
|
|
if args.save_csv: |
|
|
save_csv(args, logger, patient_list, loss_list, loss_nsd_list) |
|
|
|
|
|
return loss_list, loss_nsd_list, patient_list |
|
|
|