|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
import random |
|
|
import numpy as np |
|
|
from src.utils.util import _bbox_mask |
|
|
from src.utils import scribble, boundary_selection |
|
|
from .trainer_basic import Trainer_basic |
|
|
|
|
|
class Trainer(Trainer_basic): |
|
|
def __init__(self, args, logger): |
|
|
super().__init__(args, logger) |
|
|
|
|
|
def forward(self, sam_model, image, label, iter_nums, train=False, return_each_iter=False): |
|
|
if return_each_iter: |
|
|
return_mask_total_iter = torch.zeros([iter_nums, 1, image.size(2), image.size(3), image.size(4)]) |
|
|
|
|
|
image_embedding, feature_list = self.sam.image_encoder(image) |
|
|
self.click_points = [] |
|
|
self.click_labels = [] |
|
|
return_loss = 0 |
|
|
prev_masks = torch.zeros_like(label, dtype=torch.float).to(label.device) |
|
|
for iter_num in range(iter_nums): |
|
|
loss = 0 |
|
|
prev_masks_sigmoid = torch.sigmoid(prev_masks) if iter_num > 0 else prev_masks |
|
|
|
|
|
points_input, labels_input, box_input = self.get_points(prev_masks_sigmoid, label, train_mode=train) |
|
|
mask, dice_pred = self.iteration_forward(sam_model, feature_list, image_embedding, prev_masks, |
|
|
points=[points_input, labels_input], boxes=box_input) |
|
|
|
|
|
|
|
|
if self.args.multiple_outputs: |
|
|
dice_pred_best, max_label_index = torch.max(dice_pred, dim=1) |
|
|
mask_list = [mask[i, max_label_index[i], :].unsqueeze(0) for i in range(mask.size(0))] |
|
|
mask_best = torch.stack(mask_list, dim=0) |
|
|
else: |
|
|
mask_best = mask |
|
|
|
|
|
|
|
|
if train: |
|
|
if self.args.multiple_outputs: |
|
|
for i in range(mask.size(1)): |
|
|
single_mask, single_dice = mask[:, i, :].unsqueeze(1), dice_pred[:, i] |
|
|
loss += self.calculate_loss(single_mask, prev_masks, single_dice, label, labels_input, iter_num) |
|
|
else: |
|
|
loss = self.calculate_loss(mask, prev_masks, dice_pred[:, 0], label, labels_input, iter_num) |
|
|
|
|
|
|
|
|
if self.args.refine: |
|
|
if self.args.no_detach: |
|
|
mask_refine, error_map = self.sam.mask_decoder.refine(image, mask_best, |
|
|
[self.click_points, self.click_labels], |
|
|
mask_best) |
|
|
else: |
|
|
mask_refine, error_map = self.sam.mask_decoder.refine(image, mask_best, [self.click_points, self.click_labels], mask_best.detach()) |
|
|
print('dice before refine {} and after {}'.format( |
|
|
self.get_dice_score(torch.sigmoid(mask_best), label), |
|
|
self.get_dice_score(torch.sigmoid(mask_refine), label))) |
|
|
|
|
|
|
|
|
loss += self.loss_segmentation(mask_refine, label) * 1 |
|
|
|
|
|
mask_best = mask_refine |
|
|
|
|
|
|
|
|
else: |
|
|
if self.args.refine: |
|
|
if self.args.no_detach: |
|
|
mask_refine, error_map = self.sam.mask_decoder.refine(image, mask_best, |
|
|
[self.click_points, self.click_labels], |
|
|
mask_best) |
|
|
else: |
|
|
mask_refine, error_map = self.sam.mask_decoder.refine(image, mask_best, |
|
|
[self.click_points, self.click_labels], |
|
|
mask_best.detach()) |
|
|
if iter_num == iter_nums - 1 or iter_num == 0: |
|
|
self.logger.info('dice before refine {} and after {}, label 0: {}, label 1: {}'.format( |
|
|
self.get_dice_score(torch.sigmoid(mask_best), label), self.get_dice_score(torch.sigmoid(mask_refine), label), |
|
|
str(labels_input.numel() - torch.count_nonzero(labels_input)), str(torch.count_nonzero(labels_input)) ) ) |
|
|
mask_best = mask_refine |
|
|
loss = self.get_dice_score(torch.sigmoid(mask_best), label) |
|
|
|
|
|
return_loss += loss |
|
|
prev_masks = mask_best |
|
|
|
|
|
if return_each_iter: |
|
|
return_mask_total_iter[iter_num, :] = mask_best |
|
|
|
|
|
if return_each_iter: |
|
|
return return_loss / iter_nums, return_mask_total_iter |
|
|
else: |
|
|
return return_loss / iter_nums, prev_masks |
|
|
|
|
|
def get_points(self, prev_masks, label, train_mode=True): |
|
|
mode = 'train' if train_mode else 'validation' |
|
|
|
|
|
batch_points, batch_labels = self.get_next_point(prev_masks, label, mode=mode) |
|
|
|
|
|
points_co = torch.cat(batch_points, dim=0).to(self.args.device) |
|
|
points_la = torch.cat(batch_labels, dim=0).to(self.args.device) |
|
|
|
|
|
self.click_points.append(points_co) |
|
|
self.click_labels.append(points_la) |
|
|
|
|
|
points_input = points_co |
|
|
labels_input = points_la |
|
|
|
|
|
bbox_coords = _bbox_mask(label[:, 0, :], mode=mode, dynamic=self.args.dynamic_box).to(self.args.device) if self.args.use_box else None |
|
|
|
|
|
return points_input, labels_input, bbox_coords |
|
|
|
|
|
def get_next_point(self, prev_seg, label, mode='train'): |
|
|
batch_points = [] |
|
|
batch_labels = [] |
|
|
|
|
|
pred_masks = (prev_seg > 0.5) |
|
|
true_masks = (label > 0) |
|
|
fn_masks = torch.logical_and(true_masks, torch.logical_not(pred_masks)) |
|
|
fp_masks = torch.logical_and(torch.logical_not(true_masks), pred_masks) |
|
|
|
|
|
to_point_mask = torch.logical_or(fn_masks, fp_masks) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
sample_method = 'center' |
|
|
scribble_types = { |
|
|
'line': 'LineScribble', |
|
|
'center': 'CenterlineScribble', |
|
|
'default': 'ContourScribble' |
|
|
} |
|
|
|
|
|
def create_scribble_mask(scribble_type, data): |
|
|
scribble_object = getattr(scribble, scribble_type)() |
|
|
scribble_mask = scribble_object.batch_scribble(data).permute(1, 2, 3, 0) |
|
|
return scribble_mask > 0 |
|
|
|
|
|
|
|
|
points_list = [len(torch.argwhere(to_point_mask[i])) for i in range(to_point_mask.size(0))] |
|
|
points_min = min(points_list) |
|
|
num_clicks = self.args.num_clicks if mode == 'train' else self.args.num_clicks_validation |
|
|
click_size = points_min if num_clicks > points_min else num_clicks |
|
|
dynamic_size = random.randint(1, click_size) if self.args.dynamic and mode == 'train' else click_size |
|
|
print(f"num_clicks {num_clicks} points_length: {points_min} dynamic_size: {dynamic_size}") |
|
|
|
|
|
for i in range(label.shape[0]): |
|
|
bp_list, bl_list = [], [] |
|
|
points = torch.argwhere(to_point_mask[i]) |
|
|
|
|
|
point_index = np.random.choice(len(points), size=dynamic_size, replace=False) |
|
|
points_select = points[point_index] |
|
|
|
|
|
for click_index in range(dynamic_size): |
|
|
point = points_select[click_index] |
|
|
if fn_masks[i, 0, point[1], point[2], point[3]]: |
|
|
is_positive = True |
|
|
else: |
|
|
is_positive = False |
|
|
|
|
|
bp = point[1:].clone().detach().reshape(1, 1, 3) |
|
|
bl = torch.tensor([int(is_positive), ]).reshape(1, 1) |
|
|
bp_list.append(bp) |
|
|
bl_list.append(bl) |
|
|
|
|
|
if self.args.use_scribble: |
|
|
fg, bg_orig = fn_masks[i].permute(3, 0, 1, 2).float(), fp_masks[i].permute(3, 0, 1, 2).float() |
|
|
|
|
|
|
|
|
bbx = _bbox_mask(label[i, 0, :].unsqueeze(0)) |
|
|
diff_ = 15 |
|
|
i_min, i_max = bbx[:, :, 0], bbx[:, :, 3] |
|
|
j_min, j_max = bbx[:, :, 1], bbx[:, :, 4] |
|
|
k_min, k_max = bbx[:, :, 2], bbx[:, :, 5] |
|
|
if max(0, i_min - diff_) < min(i_max + diff_, 126): |
|
|
i_min, i_max = max(0, i_min - diff_), min(i_max + diff_, 126) |
|
|
if max(0, j_min - diff_) < min(j_max + diff_, 126): |
|
|
j_min, j_max = max(0, j_min - diff_), min(j_max + diff_, 126) |
|
|
if max(0, k_min - diff_) < min(k_max + diff_, 126): |
|
|
k_min, k_max = max(0, k_min - diff_), min(k_max + diff_, 126) |
|
|
|
|
|
bg_mask = torch.zeros_like(bg_orig).permute(1, 2, 3, 0) |
|
|
bg_mask[:, i_min:i_max, j_min:j_max, k_min:k_max] = 1 |
|
|
bg = bg_orig * bg_mask.permute(3, 0, 1, 2) |
|
|
print('filter out voxels: {}'.format(torch.count_nonzero(bg_orig) - torch.count_nonzero(bg))) |
|
|
|
|
|
scribble_type = scribble_types.get(sample_method, scribble_types['default']) |
|
|
scribble_mask_fg = create_scribble_mask(scribble_type, fg) |
|
|
|
|
|
limit_num = 500 |
|
|
if torch.count_nonzero(scribble_mask_fg) >= limit_num + 50: |
|
|
a = torch.argwhere(scribble_mask_fg).size(0) - limit_num |
|
|
random_number = random.randint(0, a) |
|
|
fg_coors = torch.argwhere(scribble_mask_fg)[:, 1:].unsqueeze(0)[:, random_number: random_number + limit_num, :] |
|
|
else: |
|
|
fg_coors = torch.argwhere(scribble_mask_fg)[:, 1:].unsqueeze(0) |
|
|
|
|
|
fg_coors_label = torch.ones(1, fg_coors.size(1)) |
|
|
bp_list.append(fg_coors) |
|
|
bl_list.append(fg_coors_label) |
|
|
|
|
|
|
|
|
scribble_mask_bg = create_scribble_mask(scribble_type, bg) |
|
|
if torch.count_nonzero(scribble_mask_bg) >= limit_num + 50: |
|
|
a = torch.argwhere(scribble_mask_bg).size(0) - limit_num |
|
|
random_number = random.randint(0, a) |
|
|
bg_coors = torch.argwhere(scribble_mask_bg)[:, 1:].unsqueeze(0)[:, random_number: random_number + limit_num, :] |
|
|
else: |
|
|
bg_coors = torch.argwhere(scribble_mask_bg)[:, 1:].unsqueeze(0) |
|
|
|
|
|
bg_coors_label = torch.zeros(1, bg_coors.size(1)) |
|
|
bp_list.append(bg_coors) |
|
|
bl_list.append(bg_coors_label) |
|
|
|
|
|
batch_points.append(torch.cat(bp_list, dim=1)) |
|
|
batch_labels.append(torch.cat(bl_list, dim=1)) |
|
|
|
|
|
|
|
|
if self.args.use_scribble: |
|
|
smallest_n = min(tensor.size(1) for tensor in batch_labels) |
|
|
batch_points = [tensor[:, :smallest_n] if tensor.size(1) > smallest_n else tensor for tensor in batch_points] |
|
|
batch_labels = [tensor[:, :smallest_n] if tensor.size(1) > smallest_n else tensor for tensor in batch_labels] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
print('First batch: fn: {:.4f}, fp: {:.4f}, label 0: {}, label 1: {}'.format( |
|
|
torch.count_nonzero(fn_masks[0]) / torch.count_nonzero(true_masks[0]), |
|
|
torch.count_nonzero(fp_masks[0]) / torch.count_nonzero(true_masks[0]), |
|
|
str(batch_labels[0].numel() - torch.count_nonzero(batch_labels[0])), |
|
|
str(torch.count_nonzero(batch_labels[0])) |
|
|
) |
|
|
) |
|
|
print('--- ===================================== ---') |
|
|
print('--- above before model, below after model ---') |
|
|
print('--- ===================================== ---') |
|
|
return batch_points, batch_labels |
|
|
|
|
|
def iteration_forward(self, sam_model, features, image_embedding, prev_masks, points=None, boxes=None): |
|
|
prev_masks = F.interpolate(prev_masks, scale_factor=0.25) |
|
|
features = [features[i].to(self.args.device) for i in range(0, len(features))] |
|
|
|
|
|
new_point_embedding, new_image_embedding = sam_model.prompt_encoder( |
|
|
points=points, |
|
|
boxes=boxes, |
|
|
masks=prev_masks, |
|
|
image_embeddings=image_embedding.to(self.args.device) |
|
|
) |
|
|
|
|
|
mask, dice_pred = sam_model.mask_decoder( |
|
|
prompt_embeddings=new_point_embedding, |
|
|
image_embeddings=new_image_embedding, |
|
|
feature_list=features, |
|
|
) |
|
|
return mask, dice_pred |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|