|
|
from abc import abstractmethod |
|
|
import torch |
|
|
import numpy as np |
|
|
from torch.optim import AdamW, lr_scheduler |
|
|
from src.config.config_setup import build_model, get_dataloader |
|
|
from monai.losses import DiceCELoss, DiceLoss |
|
|
import torch.nn as nn |
|
|
from src.utils.util import save_checkpoint |
|
|
import time |
|
|
import os |
|
|
import torch.distributed as dist |
|
|
from torch.cuda import amp |
|
|
import torchio as tio |
|
|
|
|
|
|
|
|
class Trainer_basic(object): |
|
|
def __init__(self, args, logger): |
|
|
self.args = args |
|
|
self.logger = logger |
|
|
|
|
|
a = time.time() |
|
|
use_small = True if self.args.use_small_dataset else False |
|
|
self.train_data, self.val_data = get_dataloader(args, split='train', use_small=use_small), get_dataloader(args, split='val', use_small=use_small) |
|
|
if self.args.use_sam3d_turbo: |
|
|
self.sam = build_model(args, checkpoint='../src/ckpt/sam_med3d_turbo.pth') |
|
|
else: |
|
|
self.sam = build_model(args) |
|
|
if self.args.ddp: |
|
|
self.sam = self.sam.module |
|
|
|
|
|
self.best_dice, self.best_epoch, self.start_epoch = 0, 0, 0 |
|
|
self.pooling_layer = nn.AvgPool3d((self.args.boundary_kernel_size, self.args.boundary_kernel_size, 1), stride=1, |
|
|
padding=(int((self.args.boundary_kernel_size - 1) / 2), |
|
|
int((self.args.boundary_kernel_size - 1) / 2), |
|
|
0)).cuda() |
|
|
|
|
|
self.setup() |
|
|
print('dataloaders are created, models are loaded, and others are set, spent {} for rank {}' |
|
|
.format(round(time.time() - a, 2), self.args.rank)) |
|
|
|
|
|
|
|
|
def run(self): |
|
|
self.scaler = amp.GradScaler() |
|
|
for epoch_num in range(self.start_epoch, self.args.max_epoch): |
|
|
self.sam.train() |
|
|
if self.args.ddp: |
|
|
|
|
|
self.train_data.sampler.set_epoch(epoch_num) |
|
|
|
|
|
self.train(epoch_num) |
|
|
if self.args.ddp and self.args.rank == 0: |
|
|
print('doing validation on rank=0') |
|
|
current_mean_dice = self.validate(epoch_num) if self.args.data != 'lits' else self.validate_sliding_window(epoch_num) |
|
|
else: |
|
|
current_mean_dice = self.validate(epoch_num) if self.args.data != 'lits' else self.validate_sliding_window(epoch_num) |
|
|
|
|
|
|
|
|
|
|
|
self.save_model(current_mean_dice, epoch_num) |
|
|
|
|
|
@abstractmethod |
|
|
def forward(self, model, image, label, iter_nums, train, return_each_iter): |
|
|
pass |
|
|
|
|
|
def train(self, epoch_num): |
|
|
loss_summary = [] |
|
|
for idx, (image, label, image_path) in enumerate(self.train_data): |
|
|
self.optimizer.zero_grad() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
image, label = image.to(self.args.device), label.to(self.args.device) |
|
|
with amp.autocast(): |
|
|
loss, _ = self.forward(self.sam, image, label, iter_nums=self.args.iter_nums, train=True) |
|
|
|
|
|
loss_summary.append(loss.detach().cpu().numpy()) |
|
|
|
|
|
self.scaler.scale(loss).backward() |
|
|
self.scaler.unscale_(self.optimizer) |
|
|
torch.nn.utils.clip_grad_norm_(self.sam.parameters(), 1.0) |
|
|
self.scaler.step(self.optimizer) |
|
|
self.scaler.update() |
|
|
|
|
|
print('epoch: {}/{}, iter: {}/{}'.format(epoch_num, self.args.max_epoch, idx, len(self.train_data)) |
|
|
+ ": loss:" + str(round(loss_summary[-1].flatten()[0], 4)) |
|
|
+ ": rank:" + str(self.args.rank)) |
|
|
self.logger.info( |
|
|
'epoch: {}/{}, iter: {}/{}'.format(epoch_num, self.args.max_epoch, idx, len(self.train_data)) |
|
|
+ ": loss:" + str(round(loss_summary[-1].flatten()[0], 4)) |
|
|
+ ": rank:" + str(self.args.rank)) |
|
|
print('current lr: {}'.format(self.optimizer.param_groups[0]["lr"])) |
|
|
|
|
|
|
|
|
self.update_lr(epoch_num, warm_up=self.args.warm_up) |
|
|
self.logger.info("- Train metrics: " + str(np.mean(loss_summary))) |
|
|
|
|
|
def validate_sliding_window(self, epoch_num): |
|
|
self.sam.eval() |
|
|
with torch.no_grad(): |
|
|
dice_list = [] |
|
|
for idx, batch in enumerate(self.val_data): |
|
|
if isinstance(batch, (list, tuple)) and len(batch) >= 2: |
|
|
subject_dict, image_path = batch[0], batch[1] |
|
|
else: |
|
|
raise ValueError("Unexpected validation batch format for lits dataset") |
|
|
if subject_dict['label']['data'][0].sum() <= 0: |
|
|
self.logger.info(image_path, 'label volume too small, and it has been skipped for validation') |
|
|
continue |
|
|
mean_dice = 0 |
|
|
subject = tio.Subject(image=tio.ScalarImage(tensor=subject_dict['image']['data'][0].float(), affine=subject_dict['image']['affine'][0]), |
|
|
label=tio.LabelMap(tensor=subject_dict['label']['data'][0].float(), affine=subject_dict['label']['affine'][0])) |
|
|
grid_sampler = tio.inference.GridSampler(subject, 128, 16) |
|
|
patch_loader = torch.utils.data.DataLoader(grid_sampler, batch_size=1) |
|
|
aggregator = tio.inference.GridAggregator(grid_sampler) |
|
|
|
|
|
masks_final = torch.zeros([self.args.iter_nums, len(patch_loader), 128, 128, 128]) |
|
|
location_list = [] |
|
|
for idx_patch, patches_batch in enumerate(patch_loader): |
|
|
image, label = patches_batch['image'][tio.DATA].to(self.args.device), patches_batch['label'][tio.DATA].to(self.args.device) |
|
|
locations = patches_batch[tio.LOCATION] |
|
|
|
|
|
if torch.count_nonzero(label) == 0: |
|
|
print('found empty patch') |
|
|
masks = torch.zeros([self.args.iter_nums, 1, 128, 128, 128]) |
|
|
else: |
|
|
_, masks = self.forward(self.sam, image, label, iter_nums=self.args.iter_nums, train=False, return_each_iter=True) |
|
|
print(masks.shape) |
|
|
masks_final[:, idx_patch, :] = masks.squeeze(1) |
|
|
location_list.append(locations) |
|
|
|
|
|
mean_dice_sub_list = [] |
|
|
for iter_num in range(self.args.iter_nums): |
|
|
for l_i in range(0, len(location_list)): |
|
|
location = location_list[l_i] |
|
|
a = masks_final[iter_num, l_i, :].unsqueeze(0).unsqueeze(0) |
|
|
mask = a |
|
|
aggregator.add_batch(mask, location) |
|
|
masks_iter_final = aggregator.get_output_tensor() |
|
|
mean_dice_sub_list.append(self.get_dice_score(torch.sigmoid(masks_iter_final), subject.label.data)) |
|
|
|
|
|
mean_dice_sub = np.mean(mean_dice_sub_list) |
|
|
mean_dice += mean_dice_sub |
|
|
dice_list.append(mean_dice) |
|
|
print(mean_dice_sub) |
|
|
self.logger.info( |
|
|
'epoch: {}/{}, iter: {}/{}'.format(epoch_num, self.args.max_epoch, idx, len(self.val_data)) + |
|
|
' subject: ' + str(image_path) + ' mean dice over clicks:' + str(mean_dice) + |
|
|
' stich left and right side (total size): ' + str(label.size(1))) |
|
|
self.logger.info("- Val metrics mean dice: " + str(np.mean(dice_list))) |
|
|
return dice_list |
|
|
|
|
|
def validate(self, epoch_num): |
|
|
self.sam.eval() |
|
|
device = self.args.device |
|
|
with torch.no_grad(): |
|
|
dice_list = [] |
|
|
for idx, (image, label, image_path, _) in enumerate(self.val_data): |
|
|
mean_dice = 0 |
|
|
image, label = image.to(device), label.to(device) |
|
|
|
|
|
|
|
|
if self.args.data == 'kits' and image.size(1) > 1: |
|
|
label_final, masks_final = torch.zeros([1, 1, int(image.size(2) * 2), image.size(3), image.size(4)]), torch.zeros([self.args.iter_nums, 1, int(image.size(2) * 2), image.size(3), image.size(4)]) |
|
|
|
|
|
for channel_num in range(image.size(1)): |
|
|
_, masks = self.forward(self.sam, image[:, channel_num, :].unsqueeze(1), label[:, channel_num, :].unsqueeze(1), iter_nums=self.args.iter_nums, train=False, return_each_iter=True) |
|
|
start_point, end_pont = 0 + channel_num * image.size(2), image.size(2) + channel_num * image.size(2) |
|
|
|
|
|
masks_final[:, 0, start_point: end_pont, :] = masks[:, 0, :] |
|
|
label_final[0, 0, start_point: end_pont, :] = label[0, channel_num, :] |
|
|
|
|
|
mean_dice_sub_list = [] |
|
|
for iter_num in range(self.args.iter_nums): |
|
|
mean_dice_sub_list.append(self.get_dice_score(torch.sigmoid(masks_final[iter_num]), label_final[0])) |
|
|
mean_dice_sub = np.mean(mean_dice_sub_list) |
|
|
else: |
|
|
mean_dice_sub, masks = self.forward(self.sam, image, label, iter_nums=self.args.iter_nums, train=False) |
|
|
|
|
|
mean_dice += mean_dice_sub |
|
|
dice_list.append(mean_dice) |
|
|
print(mean_dice_sub) |
|
|
self.logger.info( |
|
|
'epoch: {}/{}, iter: {}/{}'.format(epoch_num, self.args.max_epoch, idx, len(self.val_data)) + |
|
|
' subject: ' + str(image_path) + ' mean dice over clicks:' + str(mean_dice) + |
|
|
' stich left and right side (total size): ' + str(label.size(1))) |
|
|
self.logger.info("- Val metrics mean dice: " + str(np.mean(dice_list))) |
|
|
return dice_list |
|
|
|
|
|
|
|
|
def calculate_loss(self, mask, prev_masks, pred_dice, label, labels_input, iter_num, inter=False): |
|
|
mask_probs, prev_masks_prob = torch.sigmoid(mask), torch.sigmoid(prev_masks) |
|
|
|
|
|
seg_edge = abs(label - self.pooling_layer(label)) |
|
|
mask_edge = abs(mask_probs - self.pooling_layer(mask_probs)) |
|
|
edge_number = torch.count_nonzero(mask_edge) + 1 |
|
|
|
|
|
pred_dice_score_loss = 0 |
|
|
for batch_index in range(mask.size(0)): |
|
|
target_dice = 1 - self.loss_validation(mask[batch_index].unsqueeze(0), label[batch_index].unsqueeze(0))[0,0,0,0,0] |
|
|
|
|
|
target_dice = torch.tensor([target_dice])[0].to(self.args.device) |
|
|
pred_dice_score_loss += self.loss_boundary(pred_dice[batch_index], target_dice) * 1 |
|
|
|
|
|
loss = self.loss_segmentation(mask, label) + self.loss_boundary(mask_edge, seg_edge) * 10 |
|
|
loss = loss + pred_dice_score_loss |
|
|
return loss |
|
|
|
|
|
def get_dice_score(self, prev_masks, label, batch=False): |
|
|
def compute_dice(mask_pred, mask_gt): |
|
|
mask_threshold = 0.5 |
|
|
|
|
|
mask_pred = (mask_pred > mask_threshold) |
|
|
mask_gt = (mask_gt > 0) |
|
|
|
|
|
volume_sum = mask_gt.sum() + mask_pred.sum() |
|
|
if volume_sum == 0: |
|
|
return np.NaN |
|
|
volume_intersect = (mask_gt & mask_pred).sum() |
|
|
return 2 * volume_intersect / volume_sum |
|
|
|
|
|
pred_masks = (prev_masks > 0.5) |
|
|
true_masks = (label > 0) |
|
|
dice_list = [] |
|
|
for i in range(true_masks.shape[0]): |
|
|
dice_list.append(compute_dice(pred_masks[i], true_masks[i])) |
|
|
if batch: |
|
|
return dice_list |
|
|
else: |
|
|
return (sum(dice_list) / len(dice_list)).item() |
|
|
|
|
|
def save_model(self, current_dice, epoch_num): |
|
|
is_best = False |
|
|
if np.mean(current_dice) > self.best_dice: |
|
|
self.best_dice = np.mean(current_dice) |
|
|
self.best_epoch = epoch_num |
|
|
is_best = True |
|
|
|
|
|
if not self.args.ddp or (self.args.ddp and self.args.rank == 0): |
|
|
save_checkpoint({"epoch": epoch_num + 1, |
|
|
"best_val_loss": self.best_dice, |
|
|
"model_state_dict": self.sam.state_dict(), |
|
|
"optimizer": self.optimizer.state_dict(), |
|
|
"lr_scheduler": self.lr_scheduler.state_dict(), |
|
|
}, |
|
|
is_best=is_best, |
|
|
checkpoint=self.args.save_dir) |
|
|
self.logger.info("- Val metrics best mean dice: {} at epoch {} " .format(self.best_dice, self.best_epoch)) |
|
|
|
|
|
def setup(self): |
|
|
self.setup_loss() |
|
|
self.setup_optimizier() |
|
|
self.setup_scheduler() |
|
|
|
|
|
if self.args.resume: |
|
|
if self.args.ddp: |
|
|
dist.barrier() |
|
|
checkpoint = 'best.pth.tar' if self.args.resume_best else 'last.pth.tar' |
|
|
ckpt = torch.load(os.path.join(self.args.save_dir, checkpoint)) |
|
|
|
|
|
self.start_epoch = ckpt["epoch"] |
|
|
self.best_epoch = self.start_epoch |
|
|
self.best_dice = ckpt["best_val_loss"] |
|
|
self.sam.load_state_dict(ckpt["model_state_dict"], strict=True) |
|
|
self.optimizer.load_state_dict(ckpt["optimizer"]) |
|
|
|
|
|
self.lr_scheduler_regular.load_state_dict(ckpt['lr_scheduler']) |
|
|
|
|
|
|
|
|
self.logger.info(f"Resume training from epoch {self.start_epoch}!") |
|
|
del ckpt |
|
|
torch.cuda.empty_cache() |
|
|
|
|
|
def setup_loss(self): |
|
|
self.loss_boundary = nn.MSELoss() |
|
|
self.mse_none = nn.MSELoss(reduction='none') |
|
|
|
|
|
self.loss_segmentation = DiceCELoss(sigmoid=True, squared_pred=True, reduction='mean') |
|
|
self.loss_Dice = DiceLoss(sigmoid=True) |
|
|
self.loss_validation = DiceLoss(sigmoid=True, reduction='none') |
|
|
|
|
|
self.l1 = nn.L1Loss() |
|
|
self.inter_loss = DiceCELoss(sigmoid=True, squared_pred=True, reduction='mean') |
|
|
|
|
|
def setup_optimizier(self): |
|
|
self.optimizer = AdamW([ |
|
|
{'params': self.sam.image_encoder.parameters()}, |
|
|
{'params': self.sam.prompt_encoder.parameters()}, |
|
|
{'params': self.sam.mask_decoder.parameters()}, |
|
|
], lr=self.args.lr) |
|
|
|
|
|
def setup_scheduler(self): |
|
|
if self.args.lr_scheduler == 'linear': |
|
|
self.lr_scheduler_regular = lr_scheduler.LinearLR(self.optimizer, start_factor=1.0, end_factor=0.01, total_iters=500) |
|
|
else: |
|
|
self.lr_scheduler_regular = lr_scheduler.ExponentialLR(self.optimizer, gamma=0.98) |
|
|
if self.args.warm_up: |
|
|
self.linear_warmup_scheduler = lr_scheduler.LinearLR(self.optimizer, start_factor=0.01, end_factor=1.0, total_iters=10) |
|
|
|
|
|
def update_lr(self, epoch, warmup_epoch=10, warm_up=False): |
|
|
if warm_up: |
|
|
if epoch < warmup_epoch: |
|
|
self.lr_scheduler = self.linear_warmup_scheduler |
|
|
else: |
|
|
self.lr_scheduler = self.lr_scheduler_regular |
|
|
else: |
|
|
self.lr_scheduler = self.lr_scheduler_regular |
|
|
self.lr_scheduler.step() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|