|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
|
|
|
import numpy as np |
|
|
|
|
|
|
|
|
def validater(args, val_data, logger, epoch_num, sam, |
|
|
loss_validation): |
|
|
patch_size = args.rand_crop_size[0] |
|
|
device = args.device |
|
|
with torch.no_grad(): |
|
|
loss_summary = [] |
|
|
|
|
|
|
|
|
for idx, (image, label, _) in enumerate(val_data): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
image, label = image.to(device), label.to(device) |
|
|
|
|
|
image_embedding = sam.image_encoder(image) |
|
|
prev_masks = interaction(args, sam, image_embedding, label, num_clicks=11) |
|
|
|
|
|
masks = prev_masks |
|
|
loss = loss_validation(masks, label) |
|
|
loss_summary.append(loss.detach().cpu().numpy()) |
|
|
logger.info( |
|
|
'epoch: {}/{}, iter: {}/{}'.format(epoch_num, args.max_epoch, idx, len(val_data)) + ": loss:" + str( |
|
|
loss_summary[-1].flatten()[0])) |
|
|
logger.info("- Val metrics: " + str(np.mean(loss_summary))) |
|
|
return loss_summary |
|
|
|
|
|
|
|
|
def get_next_click3D_torch_2(prev_seg, gt_semantic_seg): |
|
|
|
|
|
mask_threshold = 0.5 |
|
|
|
|
|
batch_points = [] |
|
|
batch_labels = [] |
|
|
|
|
|
|
|
|
pred_masks = (prev_seg > mask_threshold) |
|
|
true_masks = (gt_semantic_seg > 0) |
|
|
fn_masks = torch.logical_and(true_masks, torch.logical_not(pred_masks)) |
|
|
fp_masks = torch.logical_and(torch.logical_not(true_masks), pred_masks) |
|
|
|
|
|
to_point_mask = torch.logical_or(fn_masks, fp_masks) |
|
|
|
|
|
for i in range(gt_semantic_seg.shape[0]): |
|
|
|
|
|
points = torch.argwhere(to_point_mask[i]) |
|
|
point = points[np.random.randint(len(points))] |
|
|
|
|
|
if fn_masks[i, 0, point[1], point[2], point[3]]: |
|
|
is_positive = True |
|
|
else: |
|
|
is_positive = False |
|
|
|
|
|
bp = point[1:].clone().detach().reshape(1, 1, 3) |
|
|
bl = torch.tensor([int(is_positive), ]).reshape(1, 1) |
|
|
batch_points.append(bp) |
|
|
batch_labels.append(bl) |
|
|
|
|
|
return batch_points, batch_labels |
|
|
def get_points(args, prev_masks, gt3D, click_points, click_labels): |
|
|
batch_points, batch_labels = get_next_click3D_torch_2(prev_masks, gt3D) |
|
|
|
|
|
points_co = torch.cat(batch_points, dim=0).to(args.device) |
|
|
points_la = torch.cat(batch_labels, dim=0).to(args.device) |
|
|
|
|
|
click_points.append(points_co) |
|
|
click_labels.append(points_la) |
|
|
|
|
|
points_multi = torch.cat(click_points, dim=1).to(args.device) |
|
|
labels_multi = torch.cat(click_labels, dim=1).to(args.device) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
points_input = points_co |
|
|
labels_input = points_la |
|
|
return points_input, labels_input, click_points, click_labels |
|
|
|
|
|
def batch_forward(args, sam_model, image_embedding, gt3D, low_res_masks, points=None): |
|
|
|
|
|
sparse_embeddings, dense_embeddings = sam_model.prompt_encoder( |
|
|
points=points, |
|
|
boxes=None, |
|
|
masks=low_res_masks, |
|
|
) |
|
|
low_res_masks, iou_predictions = sam_model.mask_decoder( |
|
|
image_embeddings=image_embedding.to(args.device), |
|
|
image_pe=sam_model.prompt_encoder.get_dense_pe(), |
|
|
sparse_prompt_embeddings=sparse_embeddings, |
|
|
dense_prompt_embeddings=dense_embeddings, |
|
|
multimask_output=False, |
|
|
) |
|
|
prev_masks = F.interpolate(low_res_masks, size=gt3D.shape[-3:], mode='trilinear', align_corners=False) |
|
|
return low_res_masks, prev_masks |
|
|
|
|
|
def interaction(args, sam_model, image_embedding, gt3D, num_clicks): |
|
|
|
|
|
prev_masks = torch.zeros_like(gt3D).to(gt3D.device) |
|
|
random_insert = np.random.randint(2, 9) |
|
|
|
|
|
click_points, click_labels = [], [] |
|
|
for num_click in range(num_clicks): |
|
|
points_input, labels_input, click_points, click_labels = get_points(args, prev_masks, gt3D, click_points, click_labels) |
|
|
|
|
|
if num_click == random_insert or num_click == num_clicks - 1: |
|
|
prev_masks = batch_forward(args, sam_model, image_embedding, gt3D, prev_masks, points=None) |
|
|
else: |
|
|
prev_masks = batch_forward(args, sam_model, image_embedding, gt3D, prev_masks, points=[points_input, labels_input]) |
|
|
|
|
|
|
|
|
|
|
|
return prev_masks |