|
|
import logging |
|
|
import os.path |
|
|
import torch |
|
|
from utils.util import setup_logger |
|
|
from config.config_args import * |
|
|
import numpy as np |
|
|
from torch.backends import cudnn |
|
|
from src.config.config_setup import build_model, get_dataloader |
|
|
import time, random |
|
|
import torch.nn.functional as F |
|
|
from src.utils.util import _bbox_mask |
|
|
from src.utils import scribble, boundary_selection |
|
|
import torchio as tio |
|
|
import surface_distance |
|
|
from surface_distance import metrics |
|
|
|
|
|
def init_seeds(seed=0, cuda_deterministic=True): |
|
|
random.seed(seed) |
|
|
np.random.seed(seed) |
|
|
torch.manual_seed(seed) |
|
|
torch.cuda.manual_seed(seed) |
|
|
torch.cuda.manual_seed_all(seed) |
|
|
|
|
|
if cuda_deterministic: |
|
|
cudnn.deterministic = True |
|
|
cudnn.benchmark = False |
|
|
else: |
|
|
cudnn.deterministic = False |
|
|
cudnn.benchmark = True |
|
|
|
|
|
|
|
|
class Tester(object): |
|
|
def __init__(self, args, logger, ckpt): |
|
|
self.args = args |
|
|
self.logger = logger |
|
|
|
|
|
self.val_data = get_dataloader(args, split='test') |
|
|
|
|
|
a = time.time() |
|
|
print('loading models and setting up') |
|
|
self.sam = build_model(args, checkpoint=ckpt) |
|
|
|
|
|
self.image_encoder = self.sam.image_encoder |
|
|
self.prompt_encoder = self.sam.prompt_encoder |
|
|
self.mask_decoder = self.sam.mask_decoder |
|
|
|
|
|
|
|
|
|
|
|
def _load_pretrain_model(self, ckpt): |
|
|
model_dict = torch.load(ckpt, map_location=self.args.device) |
|
|
state_dict = model_dict |
|
|
self.sam.load_state_dict(state_dict['model_state_dict']) |
|
|
|
|
|
def validate(self, epoch_num): |
|
|
self.image_encoder.eval() |
|
|
self.prompt_encoder.eval() |
|
|
self.mask_decoder.eval() |
|
|
|
|
|
if self.args.data == 'lits': |
|
|
loss = self.validater_sliding_window(epoch_num) |
|
|
else: |
|
|
loss = self.validater(epoch_num) |
|
|
return loss |
|
|
|
|
|
|
|
|
def validater_sliding_window(self, epoch_num): |
|
|
with torch.no_grad(): |
|
|
dice_summary, nsd_summary = [], [] |
|
|
for idx, (subject_dict, image_path, subject_dict_save) in enumerate(self.val_data): |
|
|
if subject_dict['label']['data'][0].sum() <= 0: |
|
|
self.logger.info(image_path, 'label volume too small, and it has been skipped for validation') |
|
|
continue |
|
|
mean_dice = 0 |
|
|
subject = tio.Subject(image=tio.ScalarImage(tensor=subject_dict['image']['data'][0].float(), affine=subject_dict['image']['affine'][0]), |
|
|
label=tio.LabelMap(tensor=subject_dict['label']['data'][0].float(), affine=subject_dict['label']['affine'][0])) |
|
|
grid_sampler = tio.inference.GridSampler(subject, 128, 16) |
|
|
patch_loader = torch.utils.data.DataLoader(grid_sampler, batch_size=1) |
|
|
aggregator = tio.inference.GridAggregator(grid_sampler, overlap_mode='average') |
|
|
|
|
|
|
|
|
for idx_patch, patches_batch in enumerate(patch_loader): |
|
|
image, label = patches_batch['image'][tio.DATA].to(self.args.device), patches_batch['label'][tio.DATA].to(self.args.device) |
|
|
print(torch.count_nonzero(label)) |
|
|
print('how many voxels') |
|
|
locations = patches_batch[tio.LOCATION] |
|
|
|
|
|
if torch.count_nonzero(label) == 0: |
|
|
print('found empty patch') |
|
|
masks = torch.zeros([1, 1, 128, 128, 128]) |
|
|
else: |
|
|
|
|
|
_, masks = self._interaction(self.sam, image, label, iter_nums=self.args.iter_nums, train=False) |
|
|
|
|
|
aggregator.add_batch(masks, locations) |
|
|
masks_iter_final = aggregator.get_output_tensor() |
|
|
mean_dice_sub = self.get_dice_score(torch.sigmoid(masks_iter_final), subject.label.data) |
|
|
|
|
|
mean_dice += mean_dice_sub |
|
|
dice_summary.append(mean_dice) |
|
|
|
|
|
ssd = surface_distance.compute_surface_distances( |
|
|
(subject.label.data == 1)[0].cpu().numpy(), |
|
|
(torch.sigmoid(masks_iter_final) > 0.5)[0].cpu().numpy(), |
|
|
spacing_mm=(1,1,1) |
|
|
) |
|
|
nsd = metrics.compute_surface_dice_at_tolerance(ssd, 5) |
|
|
|
|
|
nsd_summary.append(nsd) |
|
|
print(mean_dice_sub) |
|
|
|
|
|
if self.args.save_predictions: |
|
|
save_test_dir = os.path.join(self.args.save_test_dir, 'prism_prediction', self.args.data, self.args.save_name, str(self.args.iter_nums)) |
|
|
if not os.path.exists(save_test_dir): |
|
|
os.makedirs(save_test_dir) |
|
|
a = torch.sigmoid(masks_iter_final) > 0.5 |
|
|
a = a[0].float().cpu().numpy() |
|
|
import SimpleITK as sitk |
|
|
prediction = sitk.GetImageFromArray(a) |
|
|
if self.args.data == 'lits': |
|
|
base_name = image_path[0].split('/')[-2] + '_' +image_path[0].split('/')[-1] |
|
|
if self.args.refine_test: |
|
|
pred_name = base_name.replace('.nii.gz', '._pred.nii.gz') |
|
|
else: |
|
|
pred_name = base_name.replace('.nii.gz', '._pred_no_refine.nii.gz') |
|
|
save_path = os.path.join(save_test_dir, pred_name) |
|
|
sitk.WriteImage(prediction, save_path) |
|
|
|
|
|
if self.args.iter_nums == 1: |
|
|
if self.args.refine_test: |
|
|
image_name = base_name.replace('.nii.gz', '._image.nii.gz') |
|
|
else: |
|
|
image_name = base_name.replace('.nii.gz', '._image_no_refine.nii.gz') |
|
|
b = subject_dict_save['image']['data'][0][0].float().cpu().numpy() |
|
|
image_save = sitk.GetImageFromArray(b) |
|
|
sitk.WriteImage(image_save, os.path.join(save_test_dir, image_name)) |
|
|
|
|
|
if self.args.refine_test: |
|
|
label_name = base_name.replace('.nii.gz', '._label.nii.gz') |
|
|
else: |
|
|
label_name = base_name.replace('.nii.gz', '._label_no_refine.nii.gz') |
|
|
c = subject_dict_save['label']['data'][0][0].float().cpu().numpy() |
|
|
label_save = sitk.GetImageFromArray(c) |
|
|
sitk.WriteImage(label_save, os.path.join(save_test_dir, label_name)) |
|
|
|
|
|
|
|
|
|
|
|
self.logger.info( |
|
|
'epoch: {}/{}, iter: {}/{}'.format(epoch_num, self.args.max_epoch, idx, len(self.val_data)) + |
|
|
' subject: ' + str(image_path) + ' mean nsd over clicks:' + str(nsd) + ' mean dice over clicks:' + str(mean_dice) + |
|
|
' stich left and right side (total size): ' + str(label.size(1))) |
|
|
self.logger.info("- Val metrics mean dice: " + str(np.mean(dice_summary)) + "- Val metrics nsd: " + str(np.mean(nsd_summary))) |
|
|
|
|
|
from scipy import stats |
|
|
data = dice_summary |
|
|
|
|
|
mean = np.mean(data) |
|
|
|
|
|
sem = stats.sem(data) |
|
|
|
|
|
|
|
|
df = len(data) - 1 |
|
|
|
|
|
t_value = stats.t.ppf(0.975, df) |
|
|
|
|
|
margin_of_error = sem * t_value |
|
|
|
|
|
ci_lower = mean - margin_of_error |
|
|
ci_upper = mean + margin_of_error |
|
|
self.logger.info("- ci_lower dice: " + str(ci_lower) + "- ci_lower dice: " + str(ci_upper)) |
|
|
|
|
|
return dice_summary |
|
|
|
|
|
def validater(self, epoch_num): |
|
|
device = self.args.device |
|
|
with torch.no_grad(): |
|
|
loss_summary, nsd_summary = [], [] |
|
|
|
|
|
|
|
|
for idx, (image, label, image_path, subject_dict_save) in enumerate(self.val_data): |
|
|
|
|
|
image, label = image.to(device), label.to(device) |
|
|
|
|
|
if self.args.data == 'kits' and image.size(1) > 1: |
|
|
label_final, masks_final = torch.zeros([1, 1, int(image.size(2) * 2), image.size(3), image.size(4)]), torch.zeros([self.args.iter_nums, 1, int(image.size(2) * 2), image.size(3), image.size(4)]) |
|
|
|
|
|
for channel_num in range(image.size(1)): |
|
|
masks = self.interaction(self.sam, image[:, channel_num, :].unsqueeze(1), label[:, channel_num, :].unsqueeze(1)) |
|
|
start_point, end_pont = 0 + channel_num * image.size(2), image.size(2) + channel_num * image.size(2) |
|
|
|
|
|
masks_final[:, 0, start_point: end_pont, :] = masks[:, 0, :] |
|
|
label_final[0, 0, start_point: end_pont, :] = label[0, channel_num, :] |
|
|
|
|
|
masks, label = masks_final, label_final |
|
|
else: |
|
|
masks = self.interaction(self.sam, image, label) |
|
|
|
|
|
|
|
|
|
|
|
dice = self.get_dice_score(torch.sigmoid(masks), label) |
|
|
loss_summary.append(dice) |
|
|
|
|
|
ssd = surface_distance.compute_surface_distances( |
|
|
(label == 1)[0][0].cpu().numpy(), |
|
|
(torch.sigmoid(masks) > 0.5)[0][0].cpu().numpy(), |
|
|
spacing_mm=(1, 1, 1) |
|
|
) |
|
|
nsd = metrics.compute_surface_dice_at_tolerance(ssd, 5) |
|
|
|
|
|
nsd_summary.append(nsd) |
|
|
|
|
|
if self.args.save_predictions: |
|
|
save_test_dir = os.path.join(self.args.save_test_dir, 'prism_prediction', self.args.data, |
|
|
self.args.save_name, str(self.args.iter_nums)) |
|
|
if not os.path.exists(save_test_dir): |
|
|
os.makedirs(save_test_dir) |
|
|
a = torch.sigmoid(masks) > 0.5 |
|
|
a = a.float().cpu().numpy() |
|
|
import SimpleITK as sitk |
|
|
prediction = sitk.GetImageFromArray(a) |
|
|
if self.args.data == 'colon': |
|
|
base_name = image_path[0].split('/')[-1] |
|
|
else: |
|
|
base_name = image_path[0].split('/')[-2] + '_' + image_path[0].split('/')[-1] |
|
|
if self.args.refine_test: |
|
|
pred_name = base_name.replace('.nii.gz', '._pred.nii.gz') |
|
|
else: |
|
|
pred_name = base_name.replace('.nii.gz', '._pred_no_refine.nii.gz') |
|
|
save_path = os.path.join(save_test_dir, pred_name) |
|
|
sitk.WriteImage(prediction, save_path) |
|
|
|
|
|
if self.args.iter_nums == 1: |
|
|
if self.args.refine_test: |
|
|
image_name = base_name.replace('.nii.gz', '._image.nii.gz') |
|
|
else: |
|
|
image_name = base_name.replace('.nii.gz', '._image_no_refine.nii.gz') |
|
|
b = subject_dict_save['image']['data'][0][0].float().cpu().numpy() |
|
|
image_save = sitk.GetImageFromArray(b) |
|
|
sitk.WriteImage(image_save, os.path.join(save_test_dir, image_name)) |
|
|
|
|
|
if self.args.refine_test: |
|
|
label_name = base_name.replace('.nii.gz', '._label.nii.gz') |
|
|
else: |
|
|
label_name = base_name.replace('.nii.gz', '._label_no_refine.nii.gz') |
|
|
c = subject_dict_save['label']['data'][0][0].float().cpu().numpy() |
|
|
label_save = sitk.GetImageFromArray(c) |
|
|
sitk.WriteImage(label_save, os.path.join(save_test_dir, label_name)) |
|
|
|
|
|
self.logger.info( |
|
|
'epoch: {}/{}, iter: {}/{}'.format(epoch_num, self.args.max_epoch, idx, len(self.val_data)) + |
|
|
' subject: ' + str(image_path) + ' mean nsd over clicks:' + str(nsd) + ' mean dice over clicks:' + str(dice) + |
|
|
' stich left and right side (total size): ' + str(label.size(1))) |
|
|
|
|
|
self.logger.info("- Val metrics mean dice: " + str(np.mean(loss_summary)) + "- Val metrics nsd: " + str(np.mean(nsd_summary))) |
|
|
from scipy import stats |
|
|
data = loss_summary |
|
|
|
|
|
mean = np.mean(data) |
|
|
|
|
|
sem = stats.sem(data) |
|
|
|
|
|
|
|
|
df = len(data) - 1 |
|
|
|
|
|
t_value = stats.t.ppf(0.975, df) |
|
|
|
|
|
margin_of_error = sem * t_value |
|
|
|
|
|
ci_lower = mean - margin_of_error |
|
|
ci_upper = mean + margin_of_error |
|
|
self.logger.info("- ci_lower dice: " + str(ci_lower) + "- ci_lower dice: " + str(ci_upper)) |
|
|
|
|
|
return loss_summary |
|
|
|
|
|
def get_next_click3D_torch_2(self, prev_seg, gt_semantic_seg): |
|
|
|
|
|
mask_threshold = 0.5 |
|
|
|
|
|
batch_points = [] |
|
|
batch_labels = [] |
|
|
|
|
|
|
|
|
pred_masks = (prev_seg > mask_threshold) |
|
|
true_masks = (gt_semantic_seg > 0) |
|
|
fn_masks = torch.logical_and(true_masks, torch.logical_not(pred_masks)) |
|
|
fp_masks = torch.logical_and(torch.logical_not(true_masks), pred_masks) |
|
|
print('fn: {}, fp: {}'.format(torch.count_nonzero(fn_masks) / torch.count_nonzero(true_masks), |
|
|
torch.count_nonzero(fp_masks) / torch.count_nonzero(true_masks))) |
|
|
to_point_mask = torch.logical_or(fn_masks, fp_masks) |
|
|
|
|
|
for i in range(gt_semantic_seg.shape[0]): |
|
|
bp_list, bl_list = [], [] |
|
|
points = torch.argwhere(to_point_mask[i]) |
|
|
if self.args.num_clicks > len(points): |
|
|
click_size = len(points) |
|
|
else: |
|
|
click_size = self.args.num_clicks |
|
|
|
|
|
dynamic_size = random.randint(1, click_size) if self.args.dynamic else click_size |
|
|
|
|
|
point_index = np.random.choice(len(points), size=dynamic_size, replace=False) |
|
|
points_select = points[point_index] |
|
|
|
|
|
for click_index in range(dynamic_size): |
|
|
point = points_select[click_index] |
|
|
if fn_masks[i, 0, point[1], point[2], point[3]]: |
|
|
is_positive = True |
|
|
else: |
|
|
is_positive = False |
|
|
|
|
|
bp = point[1:].clone().detach().reshape(1, 1, 3) |
|
|
bl = torch.tensor([int(is_positive), ]).reshape(1, 1) |
|
|
bp_list.append(bp) |
|
|
bl_list.append(bl) |
|
|
|
|
|
if self.args.use_scribble: |
|
|
|
|
|
sample_method = 'center' |
|
|
scribble_types = { |
|
|
'line': 'LineScribble', |
|
|
'center': 'CenterlineScribble', |
|
|
'default': 'ContourScribble' |
|
|
} |
|
|
|
|
|
def create_scribble_mask(scribble_type, data): |
|
|
scribble_object = getattr(scribble, scribble_type)() |
|
|
scribble_mask = scribble_object.batch_scribble(data).permute(1, 2, 3, 0) |
|
|
return scribble_mask > 0 |
|
|
|
|
|
|
|
|
|
|
|
fg, bg = fn_masks[0].permute(3, 0, 1, 2).float(), fp_masks[0].permute(3, 0, 1, 2).float() |
|
|
|
|
|
scribble_type = scribble_types.get(sample_method, scribble_types['default']) |
|
|
|
|
|
scribble_mask_fg = create_scribble_mask(scribble_type, fg) |
|
|
|
|
|
fg_coors = torch.argwhere(scribble_mask_fg)[:, 1:].unsqueeze(0) |
|
|
if self.args.efficient_scribble: |
|
|
fg_coors = fg_coors[:, 0: 10000, :] |
|
|
fg_coors_label = torch.ones(1, fg_coors.size(1)) |
|
|
bp_list.append(fg_coors) |
|
|
bl_list.append(fg_coors_label) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if torch.count_nonzero(fp_masks) > 0: |
|
|
scribble_mask_bg = create_scribble_mask(scribble_type, bg) |
|
|
bg_coors = torch.argwhere(scribble_mask_bg)[:, 1:].unsqueeze(0) |
|
|
if self.args.efficient_scribble: |
|
|
bg_coors = bg_coors[:, 0: 10000, :] |
|
|
bg_coors_label = torch.zeros(1, bg_coors.size(1)) |
|
|
bp_list.append(bg_coors) |
|
|
bl_list.append(bg_coors_label) |
|
|
|
|
|
batch_points.append(torch.cat(bp_list, dim=1)) |
|
|
batch_labels.append(torch.cat(bl_list, dim=1)) |
|
|
|
|
|
smallest_n = min(tensor.size(1) for tensor in batch_labels) |
|
|
batch_points = [tensor[:, :smallest_n] if tensor.size(1) > smallest_n else tensor for tensor in |
|
|
batch_points] |
|
|
batch_labels = [tensor[:, :smallest_n] if tensor.size(1) > smallest_n else tensor for tensor in |
|
|
batch_labels] |
|
|
|
|
|
|
|
|
for i, tensor in enumerate(batch_points): |
|
|
print(f"Tensor {i + 1} shape: {tensor.shape}") |
|
|
|
|
|
|
|
|
return batch_points, batch_labels |
|
|
|
|
|
def get_points(self, prev_masks, label): |
|
|
batch_points, batch_labels = self.get_next_click3D_torch_2(prev_masks, label) |
|
|
|
|
|
points_co = torch.cat(batch_points, dim=0).to(self.args.device) |
|
|
points_la = torch.cat(batch_labels, dim=0).to(self.args.device) |
|
|
|
|
|
self.click_points.append(points_co) |
|
|
self.click_labels.append(points_la) |
|
|
|
|
|
points_input = points_co |
|
|
labels_input = points_la |
|
|
|
|
|
bbox_coords = _bbox_mask(label[:, 0, :]).to(self.args.device) if self.args.use_box else None |
|
|
return points_input, labels_input, bbox_coords |
|
|
|
|
|
|
|
|
def batch_forward(self, sam_model, features, image_embedding, image, prev_masks, points=None, boxes=None): |
|
|
prev_masks = F.interpolate(prev_masks, scale_factor=0.25) |
|
|
features = [features[i].to(self.args.device) for i in range(0, len(features))] |
|
|
|
|
|
|
|
|
|
|
|
new_point_embedding, new_image_embedding = sam_model.prompt_encoder( |
|
|
points=points, |
|
|
boxes=boxes, |
|
|
masks=prev_masks, |
|
|
image_embeddings=image_embedding.to(self.args.device) |
|
|
) |
|
|
|
|
|
mask, pred_dice = sam_model.mask_decoder( |
|
|
prompt_embeddings=new_point_embedding, |
|
|
image_embeddings=new_image_embedding, |
|
|
feature_list=features, |
|
|
) |
|
|
|
|
|
return mask, pred_dice |
|
|
|
|
|
def interaction(self, sam_model, image, label): |
|
|
image_embedding, feature_list = self.sam.image_encoder(image) |
|
|
|
|
|
self.click_points = [] |
|
|
self.click_labels = [] |
|
|
prev_masks = torch.zeros_like(label).to(label.device) |
|
|
for iter_num in range(self.args.iter_nums): |
|
|
prev_masks_sigmoid = torch.sigmoid(prev_masks) if iter_num > 0 else prev_masks |
|
|
|
|
|
points_input, labels_input, bbox_input = self.get_points(prev_masks_sigmoid, label) |
|
|
mask, pred_dice = self.batch_forward(sam_model, feature_list, image_embedding, image, prev_masks, points=[points_input, labels_input], boxes=bbox_input) |
|
|
|
|
|
if self.args.multiple_outputs: |
|
|
pred_best_dice, pred_dice_max_index = torch.max(pred_dice, dim=1) |
|
|
mask_best = mask[:, pred_dice_max_index, :] |
|
|
else: |
|
|
mask_best, pred_best_dice = mask, pred_dice |
|
|
|
|
|
if self.args.refine and self.args.refine_test: |
|
|
mask_refine, error_map = self.sam.mask_decoder.refine(image, mask_best, [self.click_points, self.click_labels], mask_best.detach()) |
|
|
print('dice before refine {} and after {}'.format( |
|
|
self.get_dice_score(torch.sigmoid(mask_best), label), |
|
|
self.get_dice_score(torch.sigmoid(mask_refine), label)) |
|
|
) |
|
|
mask_best = mask_refine |
|
|
|
|
|
prev_masks = mask_best |
|
|
dice = self.get_dice_score(torch.sigmoid(prev_masks).cpu().numpy(), label.cpu().numpy()) |
|
|
print('---') |
|
|
print(f'Dice: {dice:.4f}, pred_dice: {pred_best_dice}, label: {labels_input}') |
|
|
|
|
|
return prev_masks |
|
|
|
|
|
|
|
|
|
|
|
def _interaction(self, sam_model, image, label, iter_nums, train=False, return_each_iter=False): |
|
|
if return_each_iter: |
|
|
return_mask_total_iter = torch.zeros([iter_nums, 1, image.size(2), image.size(3), image.size(4)]) |
|
|
|
|
|
image_embedding, feature_list = self.sam.image_encoder(image) |
|
|
self.click_points = [] |
|
|
self.click_labels = [] |
|
|
return_loss = 0 |
|
|
prev_masks = torch.zeros_like(label, dtype=torch.float).to(label.device) |
|
|
for iter_num in range(iter_nums): |
|
|
prev_masks_sigmoid = torch.sigmoid(prev_masks) if iter_num > 0 else prev_masks |
|
|
|
|
|
if self.args.init_learning and iter_num == 0: |
|
|
boundary, margin, content = boundary_selection.find_boundary_map(label) |
|
|
use_content = True |
|
|
for batch_index in range(label.size(0)): |
|
|
if torch.count_nonzero(content[batch_index]) < self.args.num_clicks: |
|
|
use_content = False |
|
|
if use_content: |
|
|
label_sample = content |
|
|
else: |
|
|
label_sample = label |
|
|
else: |
|
|
label_sample = label |
|
|
|
|
|
points_input, labels_input, box_input = self.get_points(prev_masks_sigmoid, label_sample, label) |
|
|
mask, dice_pred = self.batch_forward(sam_model, feature_list, image_embedding, image, prev_masks, points=[points_input, labels_input], boxes=box_input) |
|
|
|
|
|
|
|
|
if self.args.multiple_outputs: |
|
|
dice_pred_best, max_label_index = torch.max(dice_pred, dim=1) |
|
|
mask_list = [mask[i, max_label_index[i], :].unsqueeze(0) for i in range(mask.size(0))] |
|
|
mask_best = torch.stack(mask_list, dim=0) |
|
|
else: |
|
|
mask_best = mask |
|
|
|
|
|
|
|
|
|
|
|
if self.args.refine and self.args.refine_test: |
|
|
mask_refine, error_map = self.sam.mask_decoder.refine(image, mask_best, [self.click_points, self.click_labels], mask_best.detach()) |
|
|
self.logger.info('dice before refine {} and after {}, label 0: {}, label 1: {}'.format( |
|
|
self.get_dice_score(torch.sigmoid(mask_best), label), self.get_dice_score(torch.sigmoid(mask_refine), label), |
|
|
str(labels_input.numel() - torch.count_nonzero(labels_input)), str(torch.count_nonzero(labels_input)) ) ) |
|
|
mask_best = mask_refine |
|
|
|
|
|
loss = self.get_dice_score(torch.sigmoid(mask_best), label) |
|
|
|
|
|
return_loss += loss |
|
|
prev_masks = mask_best |
|
|
|
|
|
if return_each_iter: |
|
|
return_mask_total_iter[iter_num, :] = mask_best |
|
|
if return_each_iter: |
|
|
print(return_mask_total_iter.shape) |
|
|
return return_loss / iter_nums, return_mask_total_iter |
|
|
else: |
|
|
return return_loss / iter_nums, prev_masks |
|
|
|
|
|
def get_dice_score(self, prev_masks, label): |
|
|
def compute_dice(mask_pred, mask_gt): |
|
|
mask_threshold = 0.5 |
|
|
|
|
|
mask_pred = (mask_pred > mask_threshold) |
|
|
mask_gt = (mask_gt > 0) |
|
|
|
|
|
volume_sum = mask_gt.sum() + mask_pred.sum() |
|
|
if volume_sum == 0: |
|
|
return np.NaN |
|
|
volume_intersect = (mask_gt & mask_pred).sum() |
|
|
return 2 * volume_intersect / volume_sum |
|
|
|
|
|
pred_masks = (prev_masks > 0.5) |
|
|
true_masks = (label > 0) |
|
|
dice_list = [] |
|
|
for i in range(true_masks.shape[0]): |
|
|
dice_list.append(compute_dice(pred_masks[i], true_masks[i])) |
|
|
return (sum(dice_list) / len(dice_list)).item() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def main(): |
|
|
init_seeds() |
|
|
args = parser.parse_args() |
|
|
check_and_setup_parser(args) |
|
|
|
|
|
log_name = 'test_' + args.save_name |
|
|
setup_logger(logger_name=log_name, root=args.save_dir, screen=True, tofile=True) |
|
|
logger = logging.getLogger(log_name) |
|
|
logger.info(str(args)) |
|
|
|
|
|
|
|
|
ckpt = os.path.join(args.save_dir, args.checkpoint + '.pth.tar') |
|
|
with torch.no_grad(): |
|
|
tester = Tester(args, logger, ckpt) |
|
|
loss = tester.validate(epoch_num=0) |
|
|
|
|
|
print(loss) |
|
|
|
|
|
logger.info("- Test done") |
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |