Datasets:

ArXiv:
PRISM / src /voxynth /filter.py
emad2001's picture
Upload folder using huggingface_hub
36fdbcf verified
import torch
from typing import List
from torch import Tensor
def gaussian_kernel(
sigma: List[float],
truncate: int = 3,
device: torch.device = None) -> Tensor:
"""
Generate a Gaussian kernel with the specified standard deviations.
Parameters
----------
sigma : List[float]
A list of standard deviations for each dimension.
truncate : int, optional
The number of standard deviations to extend the kernel before truncating.
device : torch.device, optional
The device on which to create the kernel.
Returns
-------
Tensor
A kernel of shape `(2 * truncate * sigma + 1,) * ndim`.
Notes
-----
The kernel is truncated when its values drop below `1e-5` of the maximum value.
"""
ndim = len(sigma)
# compute the radii of the kernel for each dimension
radii = [int(truncate * s + 0.5) for s in sigma]
# generate a range of indices for each dimension
ranges = [torch.arange(-r, r + 1, device=device) for r in radii]
# create a meshgrid of indices for all dimensions and determine shape of the kernel
coords = torch.stack(torch.meshgrid(*ranges, indexing='ij'), dim=-1)
kernel_shape = coords.shape[:-1]
# convert the standard deviations to a tensor and compute the inverse squares
sigma = torch.as_tensor(sigma, dtype=torch.float32, device=device)
sigma2 = 1 / torch.clip(sigma, min=1e-5).pow(2)
# reshape the coordinates and compute the pdf
coords = coords.view(-1, ndim)
pdf = torch.exp(-0.5 * (coords.pow(2) * sigma2).sum(-1)).view(kernel_shape)
# normalize the kernel
pdf /= pdf.sum()
return pdf
def gaussian_kernel_1d(sigma, truncate: int = 3, device=None, dtype=None):
"""
Generate a 1D Gaussian kernel with the specified standard deviations.
Parameters
----------
sigma : float
A list of standard deviations for each dimension.
truncate : int, optional
The number of standard deviations to extend the kernel before truncating.
device : torch.device, optional
The device on which to create the kernel.
dtype : torch.dtype | None, optional
Data type of the returned kernel.
Returns
-------
Tensor
A kernel of shape `2 * truncate * sigma + 1`.
Notes
-----
The kernel is truncated when its values drop below `1e-5` of the maximum value.
"""
r = int(truncate * sigma + 0.5)
x = torch.arange(-r, r + 1, device=device, dtype=dtype)
sigma2 = 1 / torch.clip(torch.as_tensor(sigma), min=1e-5).pow(2)
pdf = torch.exp(-0.5 * (x.pow(2) * sigma2))
return pdf / pdf.sum()
def gaussian_blur(
image: Tensor,
sigma: List[float],
batched: bool = False,
truncate: int = 3) -> Tensor:
"""
Apply Gaussian blurring to an image.
Parameters
----------
image : Tensor
An input tensor of shape `(C, W, H[, D])` to blur. A batch dimension
can be included by setting `batched` to `True`.
sigma : float or List[float]
Standard deviation(s) of the Gaussian filter along each dimension.
batched : bool, optional
Whether the input tensor includes a batch dimension.
truncate : int, optional
The number of standard deviations to extend the kernel before truncating.
Returns
-------
Tensor
The blurred tensor with the same shape as the input tensor.
Notes
-----
The Gaussian filter is applied using convolution. The size of the filter kernel is
determined by the standard deviation and the truncation factor.
"""
ndim = image.ndim - (2 if batched else 1)
# sanity check for common mistake
if ndim == 4 and not batched:
raise ValueError(f'gaussian blur input has {image.ndim} dims, '
'but batched option is False')
# normalize sigmas
if torch.as_tensor(sigma).ndim == 0:
sigma = [sigma] * ndim
if len(sigma) != ndim:
raise ValueError(f'sigma must be {ndim}D, but got length {len(sigma)}')
blurred = image if batched else image.unsqueeze(0)
if all(s == sigma[0] for s in sigma):
# Isotropic, can use the same vector in all directions cases. Since
# creating the kernel is actually one of the most time intensive steps
# this is an efficiency gain worth exploiting
kernel_vec = gaussian_kernel_1d(
sigma[0],
truncate,
device=blurred.device,
dtype=blurred.dtype,
)
kernel_vecs = [kernel_vec] * ndim
else:
# Three different kernels, one for each direction
kernel_vecs = [
gaussian_kernel_1d(
s,
truncate,
device=blurred.device,
dtype=blurred.dtype,
)
for s in sigma
]
for dim, kernel in enumerate(kernel_vecs):
# apply the convolution
slices = [None] * (ndim + 2)
slices[dim + 2] = slice(None)
kernel_dim = kernel[slices]
conv = getattr(torch.nn.functional, f'conv{ndim}d')
blurred = conv(blurred, kernel_dim, groups=image.shape[0], padding="same")
if not batched:
blurred = blurred.squeeze(0)
return blurred