|
|
import torch |
|
|
|
|
|
from typing import List |
|
|
from torch import Tensor |
|
|
|
|
|
|
|
|
def gaussian_kernel( |
|
|
sigma: List[float], |
|
|
truncate: int = 3, |
|
|
device: torch.device = None) -> Tensor: |
|
|
""" |
|
|
Generate a Gaussian kernel with the specified standard deviations. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
sigma : List[float] |
|
|
A list of standard deviations for each dimension. |
|
|
truncate : int, optional |
|
|
The number of standard deviations to extend the kernel before truncating. |
|
|
device : torch.device, optional |
|
|
The device on which to create the kernel. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
Tensor |
|
|
A kernel of shape `(2 * truncate * sigma + 1,) * ndim`. |
|
|
|
|
|
Notes |
|
|
----- |
|
|
The kernel is truncated when its values drop below `1e-5` of the maximum value. |
|
|
""" |
|
|
ndim = len(sigma) |
|
|
|
|
|
|
|
|
radii = [int(truncate * s + 0.5) for s in sigma] |
|
|
|
|
|
|
|
|
ranges = [torch.arange(-r, r + 1, device=device) for r in radii] |
|
|
|
|
|
|
|
|
coords = torch.stack(torch.meshgrid(*ranges, indexing='ij'), dim=-1) |
|
|
kernel_shape = coords.shape[:-1] |
|
|
|
|
|
|
|
|
sigma = torch.as_tensor(sigma, dtype=torch.float32, device=device) |
|
|
sigma2 = 1 / torch.clip(sigma, min=1e-5).pow(2) |
|
|
|
|
|
|
|
|
coords = coords.view(-1, ndim) |
|
|
pdf = torch.exp(-0.5 * (coords.pow(2) * sigma2).sum(-1)).view(kernel_shape) |
|
|
|
|
|
|
|
|
pdf /= pdf.sum() |
|
|
return pdf |
|
|
|
|
|
|
|
|
def gaussian_kernel_1d(sigma, truncate: int = 3, device=None, dtype=None): |
|
|
""" |
|
|
Generate a 1D Gaussian kernel with the specified standard deviations. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
sigma : float |
|
|
A list of standard deviations for each dimension. |
|
|
truncate : int, optional |
|
|
The number of standard deviations to extend the kernel before truncating. |
|
|
device : torch.device, optional |
|
|
The device on which to create the kernel. |
|
|
dtype : torch.dtype | None, optional |
|
|
Data type of the returned kernel. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
Tensor |
|
|
A kernel of shape `2 * truncate * sigma + 1`. |
|
|
|
|
|
Notes |
|
|
----- |
|
|
The kernel is truncated when its values drop below `1e-5` of the maximum value. |
|
|
""" |
|
|
r = int(truncate * sigma + 0.5) |
|
|
x = torch.arange(-r, r + 1, device=device, dtype=dtype) |
|
|
sigma2 = 1 / torch.clip(torch.as_tensor(sigma), min=1e-5).pow(2) |
|
|
pdf = torch.exp(-0.5 * (x.pow(2) * sigma2)) |
|
|
return pdf / pdf.sum() |
|
|
|
|
|
|
|
|
def gaussian_blur( |
|
|
image: Tensor, |
|
|
sigma: List[float], |
|
|
batched: bool = False, |
|
|
truncate: int = 3) -> Tensor: |
|
|
""" |
|
|
Apply Gaussian blurring to an image. |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
image : Tensor |
|
|
An input tensor of shape `(C, W, H[, D])` to blur. A batch dimension |
|
|
can be included by setting `batched` to `True`. |
|
|
sigma : float or List[float] |
|
|
Standard deviation(s) of the Gaussian filter along each dimension. |
|
|
batched : bool, optional |
|
|
Whether the input tensor includes a batch dimension. |
|
|
truncate : int, optional |
|
|
The number of standard deviations to extend the kernel before truncating. |
|
|
|
|
|
Returns |
|
|
------- |
|
|
Tensor |
|
|
The blurred tensor with the same shape as the input tensor. |
|
|
|
|
|
Notes |
|
|
----- |
|
|
The Gaussian filter is applied using convolution. The size of the filter kernel is |
|
|
determined by the standard deviation and the truncation factor. |
|
|
""" |
|
|
ndim = image.ndim - (2 if batched else 1) |
|
|
|
|
|
|
|
|
if ndim == 4 and not batched: |
|
|
raise ValueError(f'gaussian blur input has {image.ndim} dims, ' |
|
|
'but batched option is False') |
|
|
|
|
|
|
|
|
if torch.as_tensor(sigma).ndim == 0: |
|
|
sigma = [sigma] * ndim |
|
|
if len(sigma) != ndim: |
|
|
raise ValueError(f'sigma must be {ndim}D, but got length {len(sigma)}') |
|
|
|
|
|
blurred = image if batched else image.unsqueeze(0) |
|
|
|
|
|
if all(s == sigma[0] for s in sigma): |
|
|
|
|
|
|
|
|
|
|
|
kernel_vec = gaussian_kernel_1d( |
|
|
sigma[0], |
|
|
truncate, |
|
|
device=blurred.device, |
|
|
dtype=blurred.dtype, |
|
|
) |
|
|
kernel_vecs = [kernel_vec] * ndim |
|
|
else: |
|
|
|
|
|
kernel_vecs = [ |
|
|
gaussian_kernel_1d( |
|
|
s, |
|
|
truncate, |
|
|
device=blurred.device, |
|
|
dtype=blurred.dtype, |
|
|
) |
|
|
for s in sigma |
|
|
] |
|
|
|
|
|
for dim, kernel in enumerate(kernel_vecs): |
|
|
|
|
|
|
|
|
slices = [None] * (ndim + 2) |
|
|
slices[dim + 2] = slice(None) |
|
|
kernel_dim = kernel[slices] |
|
|
conv = getattr(torch.nn.functional, f'conv{ndim}d') |
|
|
blurred = conv(blurred, kernel_dim, groups=image.shape[0], padding="same") |
|
|
|
|
|
if not batched: |
|
|
blurred = blurred.squeeze(0) |
|
|
|
|
|
return blurred |
|
|
|