Datasets:

Modalities:
Text
Formats:
csv
ArXiv:
Libraries:
Datasets
pandas
felixleungsc's picture
Upload folder using huggingface_hub
ec780b7 verified

Process data from paperswithcode

See https://huggingface.co/datasets/pwc-archive/files/tree/main.

Download and unzip evaluation tables:

curl -L -O "https://huggingface.co/datasets/pwc-archive/files/resolve/main/jul-28-evaluation-tables.json.gz"
gunzip jul-28-evaluation-tables.json.gz

Install jq. See https://jqlang.org/. If on Debian/Ubuntu, install with sudo apt-get install jq.

Example jq to extract:

jq -r '
  def process(parent):
    .task as $current_task |
    (if parent then parent + " > " + $current_task else $current_task end) as $full_path |
    (.datasets[]? |
      .dataset as $dataset |
      .sota.rows[]? |
      {
        task_path: $full_path,
        dataset: $dataset,
        model_name: .model_name,
        paper_url: .paper_url,
        metrics: .metrics
      }
    ),
    (.subtasks[]? | process($full_path));
  
  ["task_path", "dataset", "model_name", "paper_url", "metric_name", "metric_value"],
  (
    [.[] | process(null)] |
    .[] |
    [.task_path, .dataset, .model_name, .paper_url] + 
    (.metrics | to_entries[] | [.key, .value]) |
    flatten
  ) |
  @csv
' jul-28-evaluation-tables.json > results.csv

Should get 326,393 rows in results.csv and looks like this:

~/paperswithcode-data> nu -c "open results.csv | length"
# 326393
~/paperswithcode-data> nu -c "open results.csv | skip 100 | take 10"
# โ•ญโ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ฌโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฎ
# โ”‚ # โ”‚                             task_path                              โ”‚     dataset     โ”‚  model_name   โ”‚             paper_url              โ”‚ metric_name โ”‚ metric_value โ”‚
# โ”œโ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ผโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ค
# โ”‚ 0 โ”‚ Optical Character Recognition (OCR) > Handwritten Text Recognition โ”‚ LAM(line-level) โ”‚ HTR-VT        โ”‚ https://arxiv.org/abs/2409.08573v1 โ”‚ Test CER    โ”‚         2.80 โ”‚
# โ”‚ 1 โ”‚ Optical Character Recognition (OCR) > Handwritten Text Recognition โ”‚ LAM(line-level) โ”‚ HTR-VT        โ”‚ https://arxiv.org/abs/2409.08573v1 โ”‚ Test WER    โ”‚         7.40 โ”‚
# โ”‚ 2 โ”‚ Optical Character Recognition (OCR) > Handwritten Text Recognition โ”‚ LAM(line-level) โ”‚ OrigamiNet-24 โ”‚ https://arxiv.org/abs/2006.07491v1 โ”‚ Test CER    โ”‚         3.00 โ”‚
# โ”‚ 3 โ”‚ Optical Character Recognition (OCR) > Handwritten Text Recognition โ”‚ LAM(line-level) โ”‚ OrigamiNet-24 โ”‚ https://arxiv.org/abs/2006.07491v1 โ”‚ Test WER    โ”‚        11.00 โ”‚
# โ”‚ 4 โ”‚ Optical Character Recognition (OCR) > Handwritten Text Recognition โ”‚ LAM(line-level) โ”‚ OrigamiNet-18 โ”‚ https://arxiv.org/abs/2006.07491v1 โ”‚ Test CER    โ”‚         3.10 โ”‚
# โ”‚ 5 โ”‚ Optical Character Recognition (OCR) > Handwritten Text Recognition โ”‚ LAM(line-level) โ”‚ OrigamiNet-18 โ”‚ https://arxiv.org/abs/2006.07491v1 โ”‚ Test WER    โ”‚        11.10 โ”‚
# โ”‚ 6 โ”‚ Optical Character Recognition (OCR) > Handwritten Text Recognition โ”‚ LAM(line-level) โ”‚ OrigamiNet-12 โ”‚ https://arxiv.org/abs/2006.07491v1 โ”‚ Test CER    โ”‚         3.10 โ”‚
# โ”‚ 7 โ”‚ Optical Character Recognition (OCR) > Handwritten Text Recognition โ”‚ LAM(line-level) โ”‚ OrigamiNet-12 โ”‚ https://arxiv.org/abs/2006.07491v1 โ”‚ Test WER    โ”‚        11.20 โ”‚
# โ”‚ 8 โ”‚ Optical Character Recognition (OCR) > Handwritten Text Recognition โ”‚ LAM(line-level) โ”‚ TrOCR         โ”‚ https://arxiv.org/abs/2109.10282v5 โ”‚ Test CER    โ”‚         3.60 โ”‚
# โ”‚ 9 โ”‚ Optical Character Recognition (OCR) > Handwritten Text Recognition โ”‚ LAM(line-level) โ”‚ TrOCR         โ”‚ https://arxiv.org/abs/2109.10282v5 โ”‚ Test WER    โ”‚        11.60 โ”‚
# โ•ฐโ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”ดโ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ”€โ•ฏ