Process data from paperswithcode
See https://huggingface.co/datasets/pwc-archive/files/tree/main.
Download and unzip evaluation tables:
curl -L -O "https://huggingface.co/datasets/pwc-archive/files/resolve/main/jul-28-evaluation-tables.json.gz"
gunzip jul-28-evaluation-tables.json.gz
Install jq.
See https://jqlang.org/.
If on Debian/Ubuntu, install with sudo apt-get install jq.
Example jq to extract:
jq -r '
def process(parent):
.task as $current_task |
(if parent then parent + " > " + $current_task else $current_task end) as $full_path |
(.datasets[]? |
.dataset as $dataset |
.sota.rows[]? |
{
task_path: $full_path,
dataset: $dataset,
model_name: .model_name,
paper_url: .paper_url,
metrics: .metrics
}
),
(.subtasks[]? | process($full_path));
["task_path", "dataset", "model_name", "paper_url", "metric_name", "metric_value"],
(
[.[] | process(null)] |
.[] |
[.task_path, .dataset, .model_name, .paper_url] +
(.metrics | to_entries[] | [.key, .value]) |
flatten
) |
@csv
' jul-28-evaluation-tables.json > results.csv
Should get 326,393 rows in results.csv and looks like this:
~/paperswithcode-data> nu -c "open results.csv | length"
# 326393
~/paperswithcode-data> nu -c "open results.csv | skip 100 | take 10"
# โญโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโฎ
# โ # โ task_path โ dataset โ model_name โ paper_url โ metric_name โ metric_value โ
# โโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโค
# โ 0 โ Optical Character Recognition (OCR) > Handwritten Text Recognition โ LAM(line-level) โ HTR-VT โ https://arxiv.org/abs/2409.08573v1 โ Test CER โ 2.80 โ
# โ 1 โ Optical Character Recognition (OCR) > Handwritten Text Recognition โ LAM(line-level) โ HTR-VT โ https://arxiv.org/abs/2409.08573v1 โ Test WER โ 7.40 โ
# โ 2 โ Optical Character Recognition (OCR) > Handwritten Text Recognition โ LAM(line-level) โ OrigamiNet-24 โ https://arxiv.org/abs/2006.07491v1 โ Test CER โ 3.00 โ
# โ 3 โ Optical Character Recognition (OCR) > Handwritten Text Recognition โ LAM(line-level) โ OrigamiNet-24 โ https://arxiv.org/abs/2006.07491v1 โ Test WER โ 11.00 โ
# โ 4 โ Optical Character Recognition (OCR) > Handwritten Text Recognition โ LAM(line-level) โ OrigamiNet-18 โ https://arxiv.org/abs/2006.07491v1 โ Test CER โ 3.10 โ
# โ 5 โ Optical Character Recognition (OCR) > Handwritten Text Recognition โ LAM(line-level) โ OrigamiNet-18 โ https://arxiv.org/abs/2006.07491v1 โ Test WER โ 11.10 โ
# โ 6 โ Optical Character Recognition (OCR) > Handwritten Text Recognition โ LAM(line-level) โ OrigamiNet-12 โ https://arxiv.org/abs/2006.07491v1 โ Test CER โ 3.10 โ
# โ 7 โ Optical Character Recognition (OCR) > Handwritten Text Recognition โ LAM(line-level) โ OrigamiNet-12 โ https://arxiv.org/abs/2006.07491v1 โ Test WER โ 11.20 โ
# โ 8 โ Optical Character Recognition (OCR) > Handwritten Text Recognition โ LAM(line-level) โ TrOCR โ https://arxiv.org/abs/2109.10282v5 โ Test CER โ 3.60 โ
# โ 9 โ Optical Character Recognition (OCR) > Handwritten Text Recognition โ LAM(line-level) โ TrOCR โ https://arxiv.org/abs/2109.10282v5 โ Test WER โ 11.60 โ
# โฐโโโโดโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโฏ