Dataset Viewer
Auto-converted to Parquet Duplicate
time
stringdate
2019-01-01 00:00:00
2019-12-31 23:45:00
Outdoor Air Temperature (C)
float64
-13.9
42
Heating Setpoint (C)
float64
12.8
21.1
Cooling Setpoint (C)
float64
23.9
40
Room Air Temperature (C)
float64
8.82
32.4
Outdoor Humidity (%)
float64
3
100
Wind Speed (m/s)
float64
0
17.5
Direct Solar Radiation (W/m^2)
float64
0
1.03k
HVAC Power Consumption (W)
float64
20
717k
series_id
int64
1
29
is_default
bool
1 class
2019-01-01 00:00:00
3.15
12.8
40
18.945633
93
0.65
0
96.85838
1
true
2019-01-01 00:15:00
4.075
12.8
40
18.855467
93.5
0.325
0
127.47386
1
true
2019-01-01 00:30:00
5
12.8
40
18.773378
94
0
0
156.1336
1
true
2019-01-01 00:45:00
5.125
12.8
40
18.69623
93.75
0
0
183.73726
1
true
2019-01-01 01:00:00
5.25
12.8
40
18.624104
93.5
0
0
209.07198
1
true
2019-01-01 01:15:00
5.375
12.8
40
18.557585
93.25
0
0
232.19963
1
true
2019-01-01 01:30:00
5.5
12.8
40
18.49672
93
0
0
253.11432
1
true
2019-01-01 01:45:00
5.625
12.8
40
18.44141
93.5
0
0
272.01675
1
true
2019-01-01 02:00:00
5.75
12.8
40
18.390991
94
0
0
289.03534
1
true
2019-01-01 02:15:00
5.875
12.8
40
18.345003
94.5
0
0
304.4274
1
true
2019-01-01 02:30:00
6
12.8
40
18.303108
95
0
0
318.37735
1
true
2019-01-01 02:45:00
6.125
12.8
40
18.265
94.5
0
0
331.03082
1
true
2019-01-01 03:00:00
6.25
12.8
40
18.230371
94
0
0
342.5208
1
true
2019-01-01 03:15:00
6.375
12.8
40
18.198927
93.5
0
0
352.96277
1
true
2019-01-01 03:30:00
6.5
12.8
40
18.170658
93
0
0
362.45117
1
true
2019-01-01 03:45:00
6.625
12.8
40
18.14507
93
0
0
371.00098
1
true
2019-01-01 04:00:00
6.75
12.8
40
18.121944
93
0
0
378.42584
1
true
2019-01-01 04:15:00
6.875
12.8
40
18.101124
93
0
0
385.20135
1
true
2019-01-01 04:30:00
7
12.8
40
18.082827
93
0
0
391.35052
1
true
2019-01-01 04:45:00
6.75
12.8
40
18.061968
94.75
0.65
0
396.8069
1
true
2019-01-01 05:00:00
6.5
12.8
40
18.038364
96.5
1.3
0
401.86243
1
true
2019-01-01 05:15:00
6.25
12.8
40
18.01295
98.25
1.95
0
406.6963
1
true
2019-01-01 05:30:00
6
12.8
40
17.985691
100
2.6
0
411.37622
1
true
2019-01-01 05:45:00
6
12.8
40
17.96402
96.75
2.6
0
920.3171
1
true
2019-01-01 06:00:00
6
12.8
40
17.943827
93.5
2.6
0
909.60345
1
true
2019-01-01 06:15:00
6
12.8
40
17.924822
90.25
2.6
0
912.0151
1
true
2019-01-01 06:30:00
6
12.8
40
17.90695
87
2.6
0
914.22974
1
true
2019-01-01 06:45:00
5.75
21.1
23.9
18.716099
88.5
2.6
0
12,753.002
1
true
2019-01-01 07:00:00
5.5
21.1
23.9
19.280523
90
2.6
0
12,754.665
1
true
2019-01-01 07:15:00
5.25
21.1
23.9
19.64331
91.5
2.6
0
12,292.305
1
true
2019-01-01 07:30:00
5
21.1
23.9
19.930365
93
2.6
0
10,328.4795
1
true
2019-01-01 07:45:00
4.75
21.1
23.9
21.189993
93
2.6
151.5
3,145.9268
1
true
2019-01-01 08:00:00
4.5
21.1
23.9
21.815123
93
2.6
202
2,050.5535
1
true
2019-01-01 08:15:00
4.25
21.1
23.9
22.330204
93
2.6
274
1,262.1376
1
true
2019-01-01 08:30:00
4
21.1
23.9
22.75681
93
2.6
346
1,318.3138
1
true
2019-01-01 08:45:00
4
21.1
23.9
23.560417
93
2.6
418
335.85345
1
true
2019-01-01 09:00:00
4
21.1
23.9
23.899504
93
2.6
490
71.64491
1
true
2019-01-01 09:15:00
4
21.1
23.9
23.899332
93
2.6
497
71.64491
1
true
2019-01-01 09:30:00
4
21.1
23.9
23.89919
93
2.6
504
87.30448
1
true
2019-01-01 09:45:00
4
21.1
23.9
23.89878
91.5
2.6
511
126.35662
1
true
2019-01-01 10:00:00
4
21.1
23.9
23.898693
90
2.6
518
157.33376
1
true
2019-01-01 10:15:00
4
21.1
23.9
23.89839
88.5
2.6
511.25
183.61783
1
true
2019-01-01 10:30:00
4
21.1
23.9
23.898314
87
2.6
504.5
217.63326
1
true
2019-01-01 10:45:00
3.75
21.1
23.9
23.898886
88.5
2.6
497.75
724.0713
1
true
2019-01-01 11:00:00
3.5
21.1
23.9
23.898897
90
2.6
491
793.2132
1
true
2019-01-01 11:15:00
3.25
21.1
23.9
23.898428
91.5
2.6
454.75
813.4544
1
true
2019-01-01 11:30:00
3
21.1
23.9
23.898914
93
2.6
418.5
864.0884
1
true
2019-01-01 11:45:00
3
21.1
23.9
23.899145
91.5
2.85
382.25
744.33203
1
true
2019-01-01 12:00:00
3
21.1
23.9
23.899221
90
3.1
346
709.43097
1
true
2019-01-01 12:15:00
3
21.1
23.9
23.898966
88.5
3.35
330.25
497.35455
1
true
2019-01-01 12:30:00
3
21.1
23.9
23.89899
87
3.6
314.5
499.89212
1
true
2019-01-01 12:45:00
3
21.1
23.9
23.898865
87
3.35
298.75
727.58246
1
true
2019-01-01 13:00:00
3
21.1
23.9
23.898846
87
3.1
283
757.80975
1
true
2019-01-01 13:15:00
3
21.1
23.9
23.898811
87
2.85
283.75
796.2606
1
true
2019-01-01 13:30:00
3
21.1
23.9
23.898783
87
2.6
284.5
836.792
1
true
2019-01-01 13:45:00
3
21.1
23.9
23.898706
87
2.975
285.25
889.9014
1
true
2019-01-01 14:00:00
3
21.1
23.9
23.898642
87
3.35
286
896.3534
1
true
2019-01-01 14:15:00
3
21.1
23.9
23.898582
87
3.725
271.75
899.80865
1
true
2019-01-01 14:30:00
3
21.1
23.9
23.898554
87
4.1
257.5
901.9502
1
true
2019-01-01 14:45:00
3.25
21.1
23.9
23.898546
82.5
3.85
243.25
888.05676
1
true
2019-01-01 15:00:00
3.5
21.1
23.9
23.898468
78
3.6
229
912.09454
1
true
2019-01-01 15:15:00
3.75
21.1
23.9
23.898392
73.5
3.35
171.75
880.36
1
true
2019-01-01 15:30:00
4
21.1
23.9
23.89813
69
3.1
114.5
359.35916
1
true
2019-01-01 15:45:00
3.75
21.1
23.9
23.898632
70.25
3.35
57.25
2,040.4888
1
true
2019-01-01 16:00:00
3.5
21.1
23.9
23.898888
71.5
3.6
0
1,536.5146
1
true
2019-01-01 16:15:00
3.25
21.1
23.9
23.899035
72.75
3.85
0
1,519.4249
1
true
2019-01-01 16:30:00
3
21.1
23.9
23.899107
74
4.1
0
1,463.6941
1
true
2019-01-01 16:45:00
3
21.1
23.9
23.899145
74
3.975
0
1,403.9542
1
true
2019-01-01 17:00:00
3
21.1
23.9
23.899181
74
3.85
0
1,355.6655
1
true
2019-01-01 17:15:00
3
21.1
23.9
23.899214
74
3.725
0
1,320.4274
1
true
2019-01-01 17:30:00
3
21.1
23.9
23.899235
74
3.6
0
1,289.829
1
true
2019-01-01 17:45:00
2.85
12.8
40
24.106281
76.25
3.6
0
477.3326
1
true
2019-01-01 18:00:00
2.7
12.8
40
24.259684
78.5
3.6
0
467.06302
1
true
2019-01-01 18:15:00
2.55
12.8
40
24.249086
80.75
3.6
0
462.35687
1
true
2019-01-01 18:30:00
2.4
12.8
40
24.192734
83
3.6
0
456.55695
1
true
2019-01-01 18:45:00
2.3
12.8
40
23.751898
85.5
3.6
0
365.1354
1
true
2019-01-01 19:00:00
2.2
12.8
40
23.376877
88
3.6
0
349.01608
1
true
2019-01-01 19:15:00
2.1
12.8
40
23.083319
90.5
3.6
0
334.96362
1
true
2019-01-01 19:30:00
2
12.8
40
22.818445
93
3.6
0
320.89325
1
true
2019-01-01 19:45:00
1.75
12.8
40
22.350374
91.25
2.7
0
347.5073
1
true
2019-01-01 20:00:00
1.5
12.8
40
21.951775
89.5
1.8
0
374.1716
1
true
2019-01-01 20:15:00
1.25
12.8
40
21.667957
87.75
0.9
0
401.80237
1
true
2019-01-01 20:30:00
1
12.8
40
21.494053
86
0
0
439.5447
1
true
2019-01-01 20:45:00
1
12.8
40
21.132217
87.75
0.525
0
406.21857
1
true
2019-01-01 21:00:00
1
12.8
40
20.78174
89.5
1.05
0
392.10254
1
true
2019-01-01 21:15:00
1
12.8
40
20.561472
91.25
1.575
0
387.606
1
true
2019-01-01 21:30:00
1
12.8
40
20.327772
93
2.1
0
376.7731
1
true
2019-01-01 21:45:00
1
12.8
40
20.150366
93
1.95
0
364.568
1
true
2019-01-01 22:00:00
1
12.8
40
19.972057
93
1.8
0
352.56647
1
true
2019-01-01 22:15:00
1
12.8
40
19.814013
93
1.65
0
340.42557
1
true
2019-01-01 22:30:00
1
12.8
40
19.667925
93
1.5
0
328.65356
1
true
2019-01-01 22:45:00
1.075
12.8
40
19.52856
92.75
1.45
0
302.75876
1
true
2019-01-01 23:00:00
1.15
12.8
40
19.395695
92.5
1.4
0
276.77557
1
true
2019-01-01 23:15:00
1.225
12.8
40
19.269901
92.25
1.35
0
250.70247
1
true
2019-01-01 23:30:00
1.3
12.8
40
19.151215
92
1.3
0
224.58292
1
true
2019-01-01 23:45:00
1.35
12.8
40
19.040329
91.75
1.225
0
201.64491
1
true
2019-01-02 00:00:00
1.4
12.8
40
18.935324
91.5
1.15
0
219.50099
1
true
2019-01-02 00:15:00
1.45
12.8
40
18.836378
91.25
1.075
0
241.85873
1
true
2019-01-02 00:30:00
1.5
12.8
40
18.743382
91
1
0
262.84323
1
true
2019-01-02 00:45:00
1.475
12.8
40
18.655632
91.25
0.95
0
297.59042
1
true
End of preview. Expand in Data Studio

TTM4HVAC – Training dataset (source-default)

This dataset contains HVAC and weather time-series data collected under default building control schedules for the source domain.

It is used to train the gft/ttm4hvac-source-default model.

Check out the paper arXiv:XXXX.XXXXX (to be released) and visit the main repository ttm4hvac for further details.

Columns

  • time
  • Outdoor Air Temperature (C)
  • Heating Setpoint (C)
  • Cooling Setpoint (C)
  • Room Air Temperature (C)
  • Outdoor Humidity (%)
  • Wind Speed (m/s)
  • Direct Solar Radiation (W/m^2)
  • HVAC Power Consumption (W)
  • series_id
  • is_default

Usage

from datasets import load_dataset

ds = load_dataset("gft/ttm4hvac-source-default-train")
df = ds["train"].to_pandas()
df.head()

✒️ Citation

If you use this model or datasets, please cite:

**F. Aran**,  
*Transfer learning of building dynamics digital twin for HVAC control with Time-series Foundation Model*,  
arXiv:XXXX.XXXXX, 2025.  
https://arxiv.org/abs/XXXX.XXXXX
Downloads last month
11

Models trained or fine-tuned on gft/ttm4hvac-source-default-train

Collection including gft/ttm4hvac-source-default-train