repo
stringclasses 885
values | file
stringclasses 741
values | content
stringlengths 4
215k
|
|---|---|---|
https://github.com/pochangl/qiskit-experiment
|
pochangl
|
'''
This program sets up the Half Adder and the Full Adder and creates a .tex file
with the gate geometry. It also evaluates the result with a qasm quantum
simulator
'''
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, \
execute, result, Aer
import os
import shutil
import numpy as np
import lib.adder as adder
import lib.quantum_logic as logic
LaTex_folder_Adder_gates = str(os.getcwd())+'/Latex_quantum_gates/Adder-gates/'
if not os.path.exists(LaTex_folder_Adder_gates):
os.makedirs(LaTex_folder_Adder_gates)
else:
shutil.rmtree(LaTex_folder_Adder_gates)
os.makedirs(LaTex_folder_Adder_gates)
qubit_space = ['0','1']
## Half Adder (my version)
print("Test Half Adder (my version",'\n')
for add0 in qubit_space: # loop over all possible additions
for add1 in qubit_space:
q = QuantumRegister(3, name = 'q')
c = ClassicalRegister(2, name = 'c')
qc = QuantumCircuit(q,c)
for qubit in q:
qc.reset(qubit)
# initialisation
if(add0== '1'):
qc.x(q[0])
if(add1 == '1'):
qc.x(q[1])
adder.Half_Adder(qc, q[0],q[1],q[2])
qc.measure(q[0], c[0])
qc.measure(q[2], c[1])
backend = Aer.get_backend('qasm_simulator')
job = execute(qc, backend, shots=1000)
results = job.result()
count = results.get_counts()
print('|0', add0, '>', '+', '|0', add1, '>', '\t', count)
## Plot a sketch of the gate
q = QuantumRegister(3, name = 'q')
c = ClassicalRegister(2, name = 'c')
qc = QuantumCircuit(q,c)
qc.reset(q[2])
adder.Half_Adder(qc, q[0],q[1],q[2])
qc.measure(q[1], c[0])
qc.measure(q[2], c[1])
LaTex_code = qc.draw(output='latex_source',
justify=None) # draw the circuit
f_name = 'Half_Adder_gate_Benjamin.tex'
with open(LaTex_folder_Adder_gates+f_name, 'w') as f:
f.write(LaTex_code)
## Half Adder for two qubits (Beyond Classical book version)
print("Test Half Adder Beyond Classical")
for add0 in qubit_space: # loop over all possible additions
for add1 in qubit_space:
q = QuantumRegister(5, name = 'q')
c = ClassicalRegister(2, name = 'c')
qc = QuantumCircuit(q,c)
# initialisation
if(add0 == '1'):
qc.x(q[0])
if(add1 == '1'):
qc.x(q[1])
logic.XOR(qc, q[0],q[1],q[2])
qc.barrier(q)
logic.AND(qc, q[0], q[1], q[3])
qc.barrier(q)
qc.measure(q[2], c[0])
qc.measure(q[3], c[1])
backend = Aer.get_backend('qasm_simulator')
job = execute(qc, backend, shots=1000)
results = job.result()
count = results.get_counts()
print('|0', add0, '>', '+', '|0', add1, '>', '\t', count)
if(add0=='0' and add1=='1'):
LaTex_code = qc.draw(output='latex_source', justify=None) # draw the circuit
f_name = 'Half_Adder_gate_Beyond_Classical.tex'
with open(LaTex_folder_Adder_gates+f_name, 'w') as f:
f.write(LaTex_code)
## Full Adder for addition of two-qubits |q1>, |q2>, and a carry bit |qd>
# from another calculation using a anxiliary bit |q0> with a carry qubit |cq>
# which is initialised to |0>
# iteration over all possible values for |q1>, |q2>, and |qd>
print('\n',"Full Adder Test (my version)")
for qubit_2 in qubit_space:
for qubit_1 in qubit_space:
for qubit_d in qubit_space:
string_q1 = str(qubit_1)
string_q2 = str(qubit_2)
string_qd = str(qubit_d)
q1 = QuantumRegister(1, name ='q1')
q2 = QuantumRegister(1, name = 'q2')
qd = QuantumRegister(1, name = 'qd')
q0 = QuantumRegister(1, name = 'q0')
c = ClassicalRegister(2, name = 'c')
qc = QuantumCircuit(q1,q2,qd,q0,c)
for qubit in q1:
qc.reset(qubit)
for qubit in q2:
qc.reset(qubit)
for qubit in qd:
qc.reset(qubit)
for qubit in q0:
qc.reset(qubit)
# initialise qubits which should be added
for i, qubit in enumerate(q1):
if(string_q1[i] == '1'):
qc.x(qubit)
print(1,end="")
else:
print(0,end="")
print('\t',end="")
for i, qubit in enumerate(q2):
if(string_q2[i] == '1'):
qc.x(qubit)
print(1,end="")
else:
print(0,end="")
print('\t',end="")
for i, qubit in enumerate(qd):
if(string_qd[i] == '1'):
qc.x(qubit)
print(1,end="")
else:
print(0,end="")
print('\t',end="")
adder.Full_Adder(qc, q1, q2, qd, q0, c[0])
qc.measure(q0, c[1])
# check the results
backend = Aer.get_backend('qasm_simulator')
job = execute(qc, backend, shots=1000)
results = job.result()
count = results.get_counts()
print('|', qubit_1, '>', '+', '|', qubit_2, '>', '+', '|', qubit_d, '> = ' , '\t', count)
if(qubit_1 == '0' and qubit_2 == '0' and qubit_d == '0'):
LaTex_code = qc.draw(output='latex_source') # draw the circuit
f_name = 'Full_Adder_gate_Benjamin.tex'
with open(LaTex_folder_Adder_gates+f_name, 'w') as f:
f.write(LaTex_code)
## Test for adding two two-qubit numbers |q1> and |q2>
for qubit1_0 in qubit_space:
for qubit1_1 in qubit_space:
for qubit2_0 in qubit_space:
for qubit2_1 in qubit_space:
string_q1 = str(qubit1_1)+str(qubit1_0)
string_q2 = str(qubit2_1)+str(qubit2_0)
q1 = QuantumRegister(2, name ='q1')
q2 = QuantumRegister(2, name = 'q2')
# qubit to store carry over for significiant bit
q0 = QuantumRegister(1, name = 'q0')
c = ClassicalRegister(3, name = 'c')
qc = QuantumCircuit(q1,q2,q0,c)
for qubit in q1:
qc.reset(qubit)
qc.reset(q2)
qc.reset(q0)
# initialise qubits which should be added
for i, qubit in enumerate(q1):
if(string_q1[i] == '1'):
qc.x(qubit)
print(1,end="")
else:
print(0,end="")
print('\t',end="")
for i, qubit in enumerate(q2):
if(string_q2[i] == '1'):
qc.x(qubit)
print(1,end="")
else:
print(0,end="")
print('\t',end="")
adder.Half_Adder(qc,q1[-1],q2[-1],q0)
qc.measure(q2[-1],c[0])
adder.Full_Adder(qc, q1[-2],q2[-2], q0, q2[-1], c[1])
qc.measure(q2[-1], c[2])
# check the results
backend = Aer.get_backend('qasm_simulator')
job = execute(qc, backend, shots=1000)
results = job.result()
count = results.get_counts()
print('|', qubit1_1, qubit1_0, '>', '+', '|', qubit2_1,
qubit2_0, '> = ' , '\t', count)
if(qubit1_1 == '0' and qubit1_0 == '1'
and qubit2_1 == '0' and qubit2_0 == '0'):
LaTex_code = qc.draw(output='latex_source') # draw the circuit
# export QASM code
qc.qasm(filename="one_plus_one.qasm")
f_name = 'Adder_gate_for_two_two-qubit_numbers.tex'
with open(LaTex_folder_Adder_gates+f_name, 'w') as f:
f.write(LaTex_code)
## Adder for two arbitrary binary numbers
# randomly draw number of bits from the numbers to add
bit_number_q1 = int(np.ceil(10*np.random.rand()))+2
bit_number_q2 = int(np.ceil(10*np.random.rand()))+2
# prepare two random binary numbers
string_q1 = []
string_q2 = []
for i in range(bit_number_q1):
#string_q1.append(1)
string_q1.append(int(np.round(np.random.rand())))
for i in range(bit_number_q2):
string_q2.append(int(np.round(np.random.rand())))
while(len(string_q1)<len(string_q2)):
string_q1 = np.insert(string_q1, 0, 0, axis=0)
while(len(string_q1)>len(string_q2)):
string_q2 = np.insert(string_q2, 0, 1, axis=0)
string_q1 = np.array(string_q1)
string_q2 = np.array(string_q2)
q1 = QuantumRegister(len(string_q1), name = 'q1')
q2 = QuantumRegister(len(string_q2), name = 'q2')
# qubit to store carry over for initial half adder
q0 = QuantumRegister(1, name = 'q0')
c = ClassicalRegister(len(string_q1)+1, name = 'c')
qc = QuantumCircuit(q1,q2,q0,c)
for qubit in q1:
qc.reset(qubit)
for qubit in q2:
qc.reset(qubit)
qc.reset(q0)
# initialise qubits which should be added
for i, qubit in enumerate(q1):
if(string_q1[i] == 1):
qc.x(qubit)
print(1,end="")
else:
print(0,end="")
print('\n',end="")
for i, qubit in enumerate(q2):
if(string_q2[i] == 1):
qc.x(qubit)
print(1,end="")
else:
print(0,end="")
print('\n')
# initial addition of least significant bits and determining carry bit
adder.Half_Adder(qc, q1[-1], q2[-1], q0)
qc.measure(q2[-1], c[0])
# adding of next significant bits
adder.Full_Adder(qc, q1[-2], q2[-2], q0, q2[-1], c[1])
# adding of other digits by full adder cascade
for i in range(2, len(string_q1)):
adder.Full_Adder(qc,
q1[-i-1], # bit to add
q2[-i-1], # bit to add
#(and to measure as next significant bit)
q2[-i+1], # carry from last calculation
q2[-i], # carry for next calculation
c[i])
qc.measure(q2[-len(string_q1)+1], c[len(string_q1)])
# check the results
backend = Aer.get_backend('qasm_simulator')
job = execute(qc, backend, shots=10)
results = job.result()
count = results.get_counts()
print(count)
LaTex_code = qc.draw(output='latex_source') # draw the circuit
f_name = 'Adder_gate_for_'+str(string_q1)+'_and_'+str(string_q2)+'.tex'
print(f_name)
with open(LaTex_folder_Adder_gates+f_name, 'w') as f:
f.write(LaTex_code)
|
https://github.com/2lambda123/Qiskit-qiskit
|
2lambda123
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2020.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Test for the converter dag dependency to dag circuit and
dag circuit to dag dependency."""
import unittest
from qiskit.converters.circuit_to_dag import circuit_to_dag
from qiskit.converters.dag_to_dagdependency import dag_to_dagdependency
from qiskit.converters.dagdependency_to_dag import dagdependency_to_dag
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
from qiskit.test import QiskitTestCase
class TestCircuitToDagDependency(QiskitTestCase):
"""Test DAGCircuit to DAGDependency."""
def test_circuit_and_dag_dependency(self):
"""Check convert to dag dependency and back"""
qr = QuantumRegister(3)
cr = ClassicalRegister(3)
circuit_in = QuantumCircuit(qr, cr)
circuit_in.h(qr[0])
circuit_in.h(qr[1])
circuit_in.measure(qr[0], cr[0])
circuit_in.measure(qr[1], cr[1])
circuit_in.x(qr[0]).c_if(cr, 0x3)
circuit_in.measure(qr[0], cr[0])
circuit_in.measure(qr[1], cr[1])
circuit_in.measure(qr[2], cr[2])
dag_in = circuit_to_dag(circuit_in)
dag_dependency = dag_to_dagdependency(dag_in)
dag_out = dagdependency_to_dag(dag_dependency)
self.assertEqual(dag_out, dag_in)
def test_circuit_and_dag_dependency2(self):
"""Check convert to dag dependency and back
also when the option ``create_preds_and_succs`` is False."""
qr = QuantumRegister(3)
cr = ClassicalRegister(3)
circuit_in = QuantumCircuit(qr, cr)
circuit_in.h(qr[0])
circuit_in.h(qr[1])
circuit_in.measure(qr[0], cr[0])
circuit_in.measure(qr[1], cr[1])
circuit_in.x(qr[0]).c_if(cr, 0x3)
circuit_in.measure(qr[0], cr[0])
circuit_in.measure(qr[1], cr[1])
circuit_in.measure(qr[2], cr[2])
dag_in = circuit_to_dag(circuit_in)
dag_dependency = dag_to_dagdependency(dag_in, create_preds_and_succs=False)
dag_out = dagdependency_to_dag(dag_dependency)
self.assertEqual(dag_out, dag_in)
def test_metadata(self):
"""Test circuit metadata is preservered through conversion."""
meta_dict = {"experiment_id": "1234", "execution_number": 4}
qr = QuantumRegister(2)
circuit_in = QuantumCircuit(qr, metadata=meta_dict)
circuit_in.h(qr[0])
circuit_in.cx(qr[0], qr[1])
circuit_in.measure_all()
dag = circuit_to_dag(circuit_in)
self.assertEqual(dag.metadata, meta_dict)
dag_dependency = dag_to_dagdependency(dag)
self.assertEqual(dag_dependency.metadata, meta_dict)
dag_out = dagdependency_to_dag(dag_dependency)
self.assertEqual(dag_out.metadata, meta_dict)
if __name__ == "__main__":
unittest.main(verbosity=2)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit, execute
from qiskit.visualization import plot_error_map
from qiskit.providers.fake_provider import FakeVigoV2
backend = FakeVigoV2()
plot_error_map(backend)
|
https://github.com/GIRISHBELANI/QC_Benchmarks_using_dm-simulator
|
GIRISHBELANI
|
"""
Deutsch-Jozsa Benchmark Program - QSim
"""
import sys
import time
import numpy as np
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
sys.path[1:1] = [ "_common", "_common/qsim" ]
sys.path[1:1] = [ "../../_common", "../../_common/qsim" ]
import execute as ex
import metrics as metrics
from execute import BenchmarkResult
# Benchmark Name
benchmark_name = "Deutsch-Jozsa"
np.random.seed(0)
verbose = False
# saved circuits for display
QC_ = None
C_ORACLE_ = None
B_ORACLE_ = None
############### Circuit Definition
# Create a constant oracle, appending gates to given circuit
def constant_oracle (input_size, num_qubits):
#Initialize first n qubits and single ancilla qubit
qc = QuantumCircuit(num_qubits, name=f"Uf")
output = np.random.randint(2)
if output == 1:
qc.x(input_size)
global C_ORACLE_
if C_ORACLE_ == None or num_qubits <= 6:
if num_qubits < 9: C_ORACLE_ = qc
return qc
# Create a balanced oracle.
# Perform CNOTs with each input qubit as a control and the output bit as the target.
# Vary the input states that give 0 or 1 by wrapping some of the controls in X-gates.
def balanced_oracle (input_size, num_qubits):
#Initialize first n qubits and single ancilla qubit
qc = QuantumCircuit(num_qubits, name=f"Uf")
b_str = "10101010101010101010" # permit input_string up to 20 chars
for qubit in range(input_size):
if b_str[qubit] == '1':
qc.x(qubit)
qc.barrier()
for qubit in range(input_size):
qc.cx(qubit, input_size)
qc.barrier()
for qubit in range(input_size):
if b_str[qubit] == '1':
qc.x(qubit)
global B_ORACLE_
if B_ORACLE_ == None or num_qubits <= 6:
if num_qubits < 9: B_ORACLE_ = qc
return qc
# Create benchmark circuit
def DeutschJozsa (num_qubits, type):
# Size of input is one less than available qubits
input_size = num_qubits - 1
# allocate qubits
qr = QuantumRegister(num_qubits); cr = ClassicalRegister(input_size);
qc = QuantumCircuit(qr, cr, name=f"dj-{num_qubits}-{type}")
for qubit in range(input_size):
qc.h(qubit)
qc.x(input_size)
qc.h(input_size)
qc.barrier()
# Add a constant or balanced oracle function
if type == 0: Uf = constant_oracle(input_size, num_qubits)
else: Uf = balanced_oracle(input_size, num_qubits)
qc.append(Uf, qr)
qc.barrier()
for qubit in range(num_qubits):
qc.h(qubit)
# uncompute ancilla qubit, not necessary for algorithm
qc.x(input_size)
qc.barrier()
for i in range(input_size):
qc.measure(i, i) # to get the partial_probability
# save smaller circuit and oracle subcircuit example for display
global QC_
if QC_ == None or num_qubits <= 6:
if num_qubits < 9: QC_ = qc
# return a handle to the circuit
return qc
############### Result Data Analysis
# Analyze and print measured results
# Expected result is always the type, so fidelity calc is simple
def analyze_and_print_result (qc, result, num_qubits, type, num_shots):
# Size of input is one less than available qubits
input_size = num_qubits - 1
if result.backend_name == 'dm_simulator':
benchmark_result = BenchmarkResult(result, num_shots)
probs = benchmark_result.get_probs(num_shots) # get results as measured probability
else:
probs = result.get_counts(qc) # get results as measured counts
if verbose: print(f"For type {type} measured: {probs}")
# create the key that is expected to have all the measurements (for this circuit)
if type == 0: key = '0'*input_size
else: key = '1'*input_size
# correct distribution is measuring the key 100% of the time
correct_dist = {key: 1.0}
# use our polarization fidelity rescaling
fidelity = metrics.polarization_fidelity(probs, correct_dist)
return probs, fidelity
################ Benchmark Loop
# Execute program with default parameters
def run (min_qubits=3, max_qubits=8, skip_qubits=1, max_circuits=3, num_shots=100,
backend_id='dm_simulator', provider_backend=None,
#hub="ibm-q", group="open", project="main",
exec_options=None,
context=None):
print(f"{benchmark_name} Benchmark Program - QSim")
# validate parameters (smallest circuit is 3 qubits)
max_qubits = max(3, max_qubits)
min_qubits = min(max(3, min_qubits), max_qubits)
skip_qubits = max(1, skip_qubits)
#print(f"min, max qubits = {min_qubits} {max_qubits}")
# create context identifier
if context is None: context = f"{benchmark_name} Benchmark"
##########
# Initialize metrics module
metrics.init_metrics()
# Define custom result handler
def execution_handler (qc, result, num_qubits, type, num_shots):
# determine fidelity of result set
num_qubits = int(num_qubits)
probs, fidelity = analyze_and_print_result(qc, result, num_qubits, int(type), num_shots)
metrics.store_metric(num_qubits, type, 'fidelity', fidelity)
# Initialize execution module using the execution result handler above and specified backend_id
ex.init_execution(execution_handler)
ex.set_execution_target(backend_id, provider_backend=provider_backend,
#hub=hub, group=group, project=project,
exec_options=exec_options,
context=context)
##########
# Execute Benchmark Program N times for multiple circuit sizes
# Accumulate metrics asynchronously as circuits complete
for num_qubits in range(min_qubits, max_qubits + 1, skip_qubits):
input_size = num_qubits - 1
# determine number of circuits to execute for this group
num_circuits = min(2, max_circuits)
print(f"************\nExecuting [{num_circuits}] circuits with num_qubits = {num_qubits}")
# loop over only 2 circuits
for type in range( num_circuits ):
# create the circuit for given qubit size and secret string, store time metric
ts = time.time()
qc = DeutschJozsa(num_qubits, type).reverse_bits() # reverse_bits() is applying to handle the change in endianness
metrics.store_metric(num_qubits, type, 'create_time', time.time()-ts)
# collapse the sub-circuit levels used in this benchmark (for qiskit)
qc2 = qc.decompose()
# submit circuit for execution on target (simulator, cloud simulator, or hardware)
ex.submit_circuit(qc2, num_qubits, type, num_shots)
# Wait for some active circuits to complete; report metrics when groups complete
ex.throttle_execution(metrics.finalize_group)
# Wait for all active circuits to complete; report metrics when groups complete
ex.finalize_execution(metrics.finalize_group)
##########
# print a sample circuit
print("Sample Circuit:"); print(QC_ if QC_ != None else " ... too large!")
print("\nConstant Oracle 'Uf' ="); print(C_ORACLE_ if C_ORACLE_ != None else " ... too large or not used!")
print("\nBalanced Oracle 'Uf' ="); print(B_ORACLE_ if B_ORACLE_ != None else " ... too large or not used!")
# Plot metrics for all circuit sizes
metrics.plot_metrics(f"Benchmark Results - {benchmark_name} - QSim")
# if main, execute method
if __name__ == '__main__':
ex.local_args() # calling local_args() needed while taking noise parameters through command line arguments (for individual benchmarks)
run()
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
%run qlatvia.py
draw_qubit()
sqrttwo=2**0.5
draw_quantum_state(1,0,"")
draw_quantum_state(1/sqrttwo,1/sqrttwo,"|+>")
# drawing the angle with |0>-axis
from matplotlib.pyplot import gca, text
from matplotlib.patches import Arc
gca().add_patch( Arc((0,0),0.4,0.4,angle=0,theta1=0,theta2=45) )
text(0.08,0.05,'.',fontsize=30)
text(0.21,0.09,'\u03C0/4')
%run qlatvia.py
draw_qubit()
sqrttwo=2**0.5
draw_quantum_state(0,0,"")
draw_quantum_state(1/sqrttwo,1/sqrttwo,"|+>")
# line of reflection for Hadamard
from matplotlib.pyplot import arrow
arrow(-1.109,-0.459,2.218,0.918,linestyle='dotted',color='red')
# drawing the angle with |0>-axis
from matplotlib.pyplot import gca, text
from matplotlib.patches import Arc
gca().add_patch( Arc((0,0),0.4,0.4,angle=0,theta1=0,theta2=22.5) )
text(0.09,0.015,'.',fontsize=30)
text(0.25,0.03,'\u03C0/8')
gca().add_patch( Arc((0,0),0.4,0.4,angle=0,theta1=22.5,theta2=45) )
text(0.075,0.065,'.',fontsize=30)
text(0.21,0.16,'\u03C0/8')
%run qlatvia.py
draw_qubit()
# line of reflection for Hadamard
from matplotlib.pyplot import arrow
arrow(-1.109,-0.459,2.218,0.918,linestyle='dotted',color='red')
#
# your code is here
#
# visually draw the reflections
# second draw
sqrttwo=2**0.5
draw_quantum_state(0,1,"|1>")
draw_quantum_state(1/sqrttwo,-1/sqrttwo,"|->")
%run qlatvia.py
draw_qubit()
# line of reflection for Hadamard
from matplotlib.pyplot import arrow
arrow(-1.109,-0.459,2.218,0.918,linestyle='dotted',color='red')
#
# your code is here
#
sqrttwo=2**0.5
draw_quantum_state(-1,0,"-|0>")
draw_quantum_state(-1/sqrttwo,-1/sqrttwo,"-|+>")
%run qlatvia.py
draw_qubit()
# line of reflection for Hadamard
from matplotlib.pyplot import arrow
arrow(-1.109,-0.459,2.218,0.918,linestyle='dotted',color='red')
#
# your code is here
#
sqrttwo=2**0.5
draw_quantum_state(0,-1,"-|1>")
draw_quantum_state(-1/sqrttwo,1/sqrttwo,"-|->")
%run qlatvia.py
draw_qubit()
# line of reflection for Hadamard
from matplotlib.pyplot import arrow
arrow(-1.109,-0.459,2.218,0.918,linestyle='dotted',color='red')
#
# your code is here
#
# create a random quantum state
random_state = random_quantum_state2()
# draw random
draw_quantum_state(random_state[0],random_state[1],"randomState")
# apply hadamard
sqrttwo=2**0.5
next_state = [random_state[0] * (1/sqrttwo) + random_state[1] * (1/sqrttwo), random_state[0] * (1/sqrttwo) + random_state[1] * -(1/sqrttwo)]
# draw the state
draw_quantum_state(next_state[0],next_state[1],"refectState")
%run qlatvia.py
draw_qubit()
#
# your code is here
#
random_state = random_quantum_state2()
# draw random
draw_quantum_state(random_state[0],random_state[1],"randomState")
# find the reflection to x-axis
# apply hadamard
sqrttwo=2**0.5
next_state = [random_state[0] * (1/sqrttwo) + random_state[1] * (1/sqrttwo), random_state[0] * (1/sqrttwo) + random_state[1] * -(1/sqrttwo)]
# draw the state
draw_quantum_state(next_state[0],next_state[1],"refectState")
%run qlatvia.py
draw_qubit()
# the line y=x
from matplotlib.pyplot import arrow
arrow(-1,-1,2,2,linestyle='dotted',color='red')
#
# your code is here
#
random_state = random_quantum_state2()
# draw random
draw_quantum_state(random_state[0],random_state[1],"randomState")
# find the reflection to x-axis
# apply hadamard
sqrttwo=2**0.5
next_state = [random_state[0] * 0 + random_state[1] * 1, random_state[0] * 1 + random_state[1] * 0]
# draw the state
# not operator -> switches x and y
draw_quantum_state(next_state[0],next_state[1],"refectState")
%run qlatvia.py
draw_qubit()
#
# your code is here
#
# line of reflection
from matplotlib.pyplot import arrow
#arrow(x,y,dx,dy,linestyle='dotted',color='red')
#
#
# draw_quantum_state(x,y,"name")
import numpy as np
import math
# method for reflection matrix
def get_reflection_matrix(theta):
reflect_matrix = np.array([[math.cos(2 * theta), math.sin(2 * theta)],[math.sin(2 * theta), -math.cos(2 * theta)]])
return reflect_matrix
# obtain a random quantum state
random_quantum_state = np.array(random_quantum_state2())
draw_quantum_state(random_quantum_state[0],random_quantum_state[1],"q-state")
theta = math.pi/8
reflected_state = np.matmul(get_reflection_matrix(theta), random_quantum_state)
draw_quantum_state(reflected_state[0],reflected_state[1],"reflect-q-state")
arrow(0,0,math.cos(theta),math.sin(theta),linestyle='dotted',color='red')
|
https://github.com/2lambda123/Qiskit-qiskit
|
2lambda123
|
# -*- coding: utf-8 -*-
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
# pylint: disable=wrong-import-order
"""Main Qiskit public functionality."""
import pkgutil
# First, check for required Python and API version
from . import util
# qiskit errors operator
from .exceptions import QiskitError
# The main qiskit operators
from qiskit.circuit import ClassicalRegister
from qiskit.circuit import QuantumRegister
from qiskit.circuit import QuantumCircuit
# pylint: disable=redefined-builtin
from qiskit.tools.compiler import compile # TODO remove after 0.8
from qiskit.execute import execute
# The qiskit.extensions.x imports needs to be placed here due to the
# mechanism for adding gates dynamically.
import qiskit.extensions
import qiskit.circuit.measure
import qiskit.circuit.reset
# Allow extending this namespace. Please note that currently this line needs
# to be placed *before* the wrapper imports or any non-import code AND *before*
# importing the package you want to allow extensions for (in this case `backends`).
__path__ = pkgutil.extend_path(__path__, __name__)
# Please note these are global instances, not modules.
from qiskit.providers.basicaer import BasicAer
# Try to import the Aer provider if installed.
try:
from qiskit.providers.aer import Aer
except ImportError:
pass
# Try to import the IBMQ provider if installed.
try:
from qiskit.providers.ibmq import IBMQ
except ImportError:
pass
from .version import __version__
from .version import __qiskit_version__
|
https://github.com/Rishwi/Beyond-Classical-a-quantum-computing-crash-course-using-qiskit
|
Rishwi
|
# -*- coding: utf-8 -*-
"""Bernstein_Vazirani_forStrings.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/14Uww12SEbmiNPfWr5udfr3tL-393ge7N
"""
#pip install qiskit
# Commented out IPython magic to ensure Python compatibility.
from qiskit import *
from qiskit.tools.visualization import plot_histogram
stt="Hello world"
res = ''.join(format(ord(i), 'b') for i in stt)
print(res)
s = res
n = len(s)
circuit = QuantumCircuit(n+1,n)
circuit.x(n)
circuit.barrier()
circuit.h(range(n+1))
circuit.barrier()
for i, tf in enumerate(reversed(s)):
if tf == '1':
circuit.cx(i, n)
circuit.barrier()
circuit.h(range(n+1))
circuit.barrier()
circuit.measure(range(n), range(n))
# %matplotlib inline
circuit.draw(output='mpl')
simulator = Aer.get_backend('qasm_simulator')
result = execute(circuit, backend=simulator, shots=1).result()
plot_histogram(result.get_counts(circuit))
kk=result.get_counts()
kkk=list(kk.keys())
strrr=kkk[0]
print(strrr)
res=strrr #i'm changing res variable, so, now i don't know what's in res
i=0
mainstr=[]
while i<len(res):
if res[i:i+6] != '100000':
sk=res[i:i+7]
i=i+7
ssk=int(sk, base=2)
print(ssk)
mainstr.append(chr(ssk))
elif res[i:i+6] == '100000':
i=i+6
mainstr.append(" ")
print(''.join(mainstr))
|
https://github.com/Morcu/Qiskit_Hands-on-lab
|
Morcu
|
from qiskit import *
from qiskit.tools.visualization import plot_histogram
import numpy as np
def NOT(input1):
'''
NOT gate
This function takes a binary string input ('0' or '1') and returns the opposite binary output'.
'''
q = QuantumRegister(1) # a qubit in which to encode and manipulate the input
c = ClassicalRegister(1) # a bit to store the output
qc = QuantumCircuit(q, c) # this is where the quantum program goes
# We encode '0' as the qubit state |0⟩, and '1' as |1⟩
# Since the qubit is initially |0⟩, we don't need to do anything for an input of '0'
# For an input of '1', we do an x to rotate the |0⟩ to |1⟩
if input1=='1':
qc.x( q[0] )
# Now we've encoded the input, we can do a NOT on it using x
qc.x( q[0] )
# Finally, we extract the |0⟩/|1⟩ output of the qubit and encode it in the bit c[0]
qc.measure( q[0], c[0] )
# We'll run the program on a simulator
backend = Aer.get_backend('qasm_simulator')
# Since the output will be deterministic, we can use just a single shot to get it
job = execute(qc,backend,shots=1)
output = next(iter(job.result().get_counts()))
return output
print('\nResults for the NOT gate')
for input in ['0','1']:
print(' Input',input,'gives output',NOT(input))
def XOR(input1,input2):
'''
XOR gate
Takes two binary strings as input and gives one as output.
The output is '0' when the inputs are equal and '1' otherwise.
'''
q = QuantumRegister(2) # two qubits in which to encode and manipulate the input
c = ClassicalRegister(1) # a bit to store the output
qc = QuantumCircuit(q, c) # this is where the quantum program goes
# Input codification
if input1=='1':
qc.x( q[0] )
if input2=='1':
qc.x( q[1] )
# YOUR QUANTUM PROGRAM GOES HERE
qc.cx(q[0],q[1])
qc.measure(q[1],c[0]) # YOU CAN CHANGE THIS IF YOU WANT TO
# We'll run the program on a simulator
backend = Aer.get_backend('qasm_simulator')
# Since the output will be deterministic, we can use just a single shot to get it
job = execute(qc,backend,shots=1,memory=True)
output = job.result().get_memory()[0]
return output
# The output is '0' when the inputs are equal and '1' otherwise.
print('\nResults for the XOR gate')
for input1 in ['0','1']:
for input2 in ['0','1']:
print(' Inputs',input1,input2,'give output',XOR(input1,input2))
def AND(input1,input2):
'''
AND gate
Takes two binary strings as input and gives one as output.
The output is '1' only when both the inputs are '1'.
'''
q = QuantumRegister(3) # two qubits in which to encode the input, and one for the output
c = ClassicalRegister(1) # a bit to store the output
qc = QuantumCircuit(q, c) # this is where the quantum program goes
# Input codification
if input1=='1':
qc.x( q[0] )
if input2=='1':
qc.x( q[1] )
# YOUR QUANTUM PROGRAM GOES HERE
qc.ccx(q[0], q[1], q[2])
qc.measure(q[2],c[0]) # YOU CAN CHANGE THIS IF YOU WANT TO
# We'll run the program on a simulator
backend = Aer.get_backend('qasm_simulator')
# Since the output will be deterministic, we can use just a single shot to get it
job = execute(qc,backend,shots=1,memory=True)
output = job.result().get_memory()[0]
return output
# The output is '1' only when both the inputs are '1'.
print('\nResults for the AND gate')
for input1 in ['0','1']:
for input2 in ['0','1']:
print(' Inputs',input1,input2,'give output',AND(input1,input2))
def NAND(input1,input2):
'''
NAND gate
Takes two binary strings as input and gives one as output.
The output is '0' only when both the inputs are '1'.
'''
q = QuantumRegister(3) # two qubits in which to encode the input, and one for the output
c = ClassicalRegister(1) # a bit to store the output
qc = QuantumCircuit(q, c) # this is where the quantum program goes
# Input codification
if input1=='1':
qc.x( q[0] )
if input2=='1':
qc.x( q[1] )
qc.ccx(q[0], q[1], q[2])
qc.x( q[2] )
# YOUR QUANTUM PROGRAM GOES HERE
qc.measure(q[2],c[0]) # YOU CAN CHANGE THIS IF YOU WANT TO
# We'll run the program on a simulator
backend = Aer.get_backend('qasm_simulator')
# Since the output will be deterministic, we can use just a single shot to get it
job = execute(qc,backend,shots=1,memory=True)
output = job.result().get_memory()[0]
return output
# The output is '0' only when both the inputs are '1'.
print('\nResults for the NAND gate')
for input1 in ['0','1']:
for input2 in ['0','1']:
print(' Inputs',input1,input2,'give output',NAND(input1,input2))
def OR(input1,input2):
'''
OR gate
Takes two binary strings as input and gives one as output.
The output is '1' if either input is '1'.
'''
q = QuantumRegister(3) # two qubits in which to encode the input, and one for the output
c = ClassicalRegister(1) # a bit to store the output
qc = QuantumCircuit(q, c) # this is where the quantum program goes
# Input codification
if input1=='1':
qc.x( q[0] )
if input2=='1':
qc.x( q[1] )
qc.cx(q[0],q[1])
qc.cx(q[1],q[2])
qc.x( q[2] )
# YOUR QUANTUM PROGRAM GOES HERE
qc.measure(q[2],c[0]) # YOU CAN CHANGE THIS IF YOU WANT TO
# We'll run the program on a simulator
backend = Aer.get_backend('qasm_simulator')
# Since the output will be deterministic, we can use just a single shot to get it
job = execute(qc,backend,shots=1,memory=True)
output = job.result().get_memory()[0]
return output
# The output is '1' if either input is '1'.
print('\nResults for the OR gate')
for input1 in ['0','1']:
for input2 in ['0','1']:
print(' Inputs',input1,input2,'give output',OR(input1,input2))
print('\nResults for the NOT gate')
for input in ['0','1']:
print(' Input',input,'gives output',NOT(input))
print('\nResults for the XOR gate')
for input1 in ['0','1']:
for input2 in ['0','1']:
print(' Inputs',input1,input2,'give output',XOR(input1,input2))
print('\nResults for the AND gate')
for input1 in ['0','1']:
for input2 in ['0','1']:
print(' Inputs',input1,input2,'give output',AND(input1,input2))
print('\nResults for the NAND gate')
for input1 in ['0','1']:
for input2 in ['0','1']:
print(' Inputs',input1,input2,'give output',NAND(input1,input2))
print('\nResults for the OR gate')
for input1 in ['0','1']:
for input2 in ['0','1']:
print(' Inputs',input1,input2,'give output',OR(input1,input2))
|
https://github.com/LarianeMohceneMouad/Variation-Circuit-Based-Hybrid-Quantum-Classical-Binary-Algorithm
|
LarianeMohceneMouad
|
from sklearn import model_selection, datasets, svm
from qiskit import QuantumCircuit, Aer, IBMQ, QuantumRegister, ClassicalRegister
import numpy as np
import qiskit
import copy
import matplotlib.pyplot as plt
np.random.seed(42)
iris = datasets.load_iris()
X = iris.data[0:100]
Y = iris.target[0:100]
X_train, X_test, Y_train, Y_test = model_selection.train_test_split(X, Y, test_size=0.33, random_state=42)
N = 4
def feature_map(X, encoding_type):
q = QuantumRegister(N)
c = ClassicalRegister(1)
qc = QuantumCircuit(q, c)
if encoding_type == 'rx':
for i, x in enumerate(X):
qc.rx(x, i)
elif encoding_type == 'ry':
for i, x in enumerate(X):
qc.ry(x, i)
elif encoding_type == 'rz':
for i, x in enumerate(X):
qc.rz(x, i)
return qc, c
# feature map test
qc,c = feature_map(X[0], 'rx')
qc.draw('mpl')
def variational_circuit(qc, theta, rotation_type):
for i in range(N-1):
qc.cnot(i, i+1)
qc.cnot(N-1, 0)
if rotation_type == 'rx':
for i in range(N):
qc.rx(theta[i], i)
elif rotation_type == 'ry':
for i in range(N):
qc.ry(theta[i], i)
elif rotation_type == 'rz':
for i in range(N):
qc.rz(theta[i], i)
return qc
qc = variational_circuit(qc, np.ones(4), 'ry')
qc.draw('mpl')
def quantum_nn(X, theta, shots, encoding_type, rotation_type, simulator=True):
qc, c = feature_map(X, encoding_type)
qc = variational_circuit(qc, theta, rotation_type)
qc.measure(0, c)
backend = Aer.get_backend('qasm_simulator')
if simulator == False:
provider = IBMQ.load_account()
backend = provider.get_backend('ibm_oslo')
job = qiskit.execute(qc, backend, shots=shots)
result = job.result()
counts = result.get_counts(qc)
return counts['1']/shots
qc, c = feature_map(X[0], 'rz')
qc = variational_circuit(qc, np.ones(4), 'rz')
qc.measure(0, c)
backend = Aer.get_backend('qasm_simulator')
job = qiskit.execute(qc, backend, shots=5000)
result = job.result()
counts = result.get_counts(qc)
print(counts)
# quantum_nn test
quantum_nn(X[0], np.ones(4), 5000, 'rx', 'ry')
def loss(prediction, target):
return(prediction-target)**2
# loss test
loss(quantum_nn(X[0], [0.9, 0.9, 0.9, 0.9], 5000, 'rx', 'ry'), Y[0])
def gradient(X, Y, theta, delta, shots, encoding_type, rotation_type):
grad = []
for i in range(len(theta)):
dtheta = copy.copy(theta)
dtheta[i] += delta
prediction_1 = quantum_nn(X, dtheta, shots, encoding_type, rotation_type)
prediction_2 = quantum_nn(X, theta, shots, encoding_type, rotation_type)
grad.append((loss(prediction_1, Y) - loss(prediction_2, Y)) / delta)
return np.array(grad)
gradient(X[0], Y[0], np.ones(4), 0.01, 5000, 'rx', 'ry')
def accuracy(X, Y, theta, shots, encoding_type, rotation_type):
counter = 0
for X_i, Y_i, in zip(X, Y):
prediction = quantum_nn(X_i, theta, shots, encoding_type, rotation_type)
if prediction < 0.5 and Y_i == 0:
counter += 1
elif prediction >= 0.5 and Y_i == 1:
counter += 1
return counter/len(Y)
# Accuracy test
accuracy(X_test, Y_test, [-1.5, 1.2, 0.6, -0.2], 1000, 'rx', 'ry')
def get_best_weight(accuracies, weights):
return(weights[accuracies.index(max(accuracies))])
N = 4
def model(x_train, y_train, x_test, y_test, learning_rate, epochs, theta, shots, encoding_type, rotation_type, delta, optimizing_weights=False):
loss_list = []
acc_list = []
weights_list = []
print('Epoch \t Loss \t Training Accuracy \t theta')
for i in range(epochs):
loss_tmp = []
for X_i, Y_i in zip(x_train, y_train):
prediction = quantum_nn(X_i, theta, shots, encoding_type, rotation_type)
loss_tmp.append(loss(prediction, Y_i))
# update theta
new_theta = theta - learning_rate * gradient(X_i, Y_i, theta, delta, shots, encoding_type, rotation_type)
if loss(quantum_nn(X_i, new_theta, shots, encoding_type, rotation_type), Y_i) < loss(quantum_nn(X_i, theta, shots, encoding_type, rotation_type), Y_i):
theta = new_theta
loss_list.append(np.mean(loss_tmp))
acc_list.append(accuracy(X_train, Y_train, theta, shots, encoding_type, rotation_type))
weights_list.append(theta)
print(f'{i} \t {round(loss_list[-1], 3)} \t {round(acc_list[-1], 3)} \t {theta} \t {len(weights_list)}')
if optimizing_weights==True:
acc = accuracy(x_test, y_test, get_best_weight(acc_list, weights_list), shots, encoding_type=encoding_gate, rotation_type=rotation_gate)
return acc, get_best_weight(acc_list, weights_list), theta, loss_list, acc_list, weights_list
else:
acc = accuracy(x_test, y_test, theta, shots, encoding_type=encoding_gate, rotation_type=rotation_gate)
return acc, theta, loss_list, acc_list, weights_list
gates = ['rx', 'ry', 'rz']
results = {}
for encoding_gate in gates:
for rotation_gate in gates:
circuit_type = encoding_gate + '-' + rotation_gate
if circuit_type != 'rz-rz':
print(f'Circuit type : {circuit_type} -> encoding : {encoding_gate} rotation : {rotation_gate}')
acc, theta, loss_list, acc_list, weights_history = model(X_train, Y_train, X_test, Y_test, learning_rate=0.05, epochs=10, theta=np.ones(N), shots=5000, encoding_type=encoding_gate, rotation_type=rotation_gate, delta=0.01)
results.update({circuit_type: {'accuracy': acc, 'theta': theta, 'loss_list':loss_list, 'acc_list':acc_list, 'weights_history_list':weights_history}})
print(f" {circuit_type} accuracy : {results.get(circuit_type).get('accuracy')}")
gates = ['rx', 'ry', 'rz']
labels = []
accuracies = []
for encoding_gate in gates:
for rotation_gate in gates:
circuit_type = encoding_gate + '-' + rotation_gate
if circuit_type != 'rz-rz':
labels.append(circuit_type)
accuracies.append(results.get(circuit_type).get('accuracy'))
plt.bar(labels, accuracies)
plt.show()
gates = ['rx', 'ry', 'rz']
labels = []
accuracies = []
for encoding_gate in gates:
for rotation_gate in gates:
circuit_type = encoding_gate + '-' + rotation_gate
if circuit_type != 'rz-rz':
plt.plot([x for x in range(1, 11)], results.get(circuit_type).get('acc_list'), label=circuit_type)
plt.xticks([x for x in range(1, 11)])
plt.yticks(np.arange (0, 1.1, 0.1))
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.title('Circuit Type accuracy effect')
plt.legend()
plt.show()
N = 4
def model_1(x_train, y_train, x_test, y_test, learning_rate, epochs, theta, shots, encoding_type, rotation_type, delta, optimizing_weights=False):
loss_list = []
acc_list = []
weights_list = []
loss_val = 1
i = 0
print('Epoch \t Loss \t Training Accuracy \t theta')
while loss_val > 0.17:
loss_tmp = []
for X_i, Y_i in zip(x_train, y_train):
prediction = quantum_nn(X_i, theta, shots, encoding_type, rotation_type)
loss_tmp.append(loss(prediction, Y_i))
# update theta
new_theta = theta - learning_rate * gradient(X_i, Y_i, theta, delta, shots, encoding_type, rotation_type)
if loss(quantum_nn(X_i, new_theta, shots, encoding_type, rotation_type), Y_i) < loss(quantum_nn(X_i, theta, shots, encoding_type, rotation_type), Y_i):
theta = new_theta
loss_val = np.mean(loss_tmp)
loss_list.append(np.mean(loss_tmp))
acc_list.append(accuracy(X_train, Y_train, theta, shots, encoding_type, rotation_type))
weights_list.append(theta)
print(f'{i} \t {round(loss_list[-1], 3)} \t {round(acc_list[-1], 3)} \t {theta} \t {len(weights_list)}')
i = i + 1
return theta, loss_list, acc_list, weights_list
theta_b, loss_list_b, acc_list_b, weights_history_b = model_1(X_train, Y_train, X_test, Y_test, learning_rate=0.05, epochs=20, theta=np.ones(N), shots=5000, encoding_type='ry', rotation_type='ry', delta=0.01)
N = 4
def model_2(x_train, y_train, x_test, y_test, learning_rate, epochs, theta, shots, encoding_type, rotation_type, delta, optimizing_weights=False):
loss_list = []
acc_list = []
weights_list = []
print('Epoch \t Loss \t Training Accuracy \t theta')
for i in range(epochs):
loss_tmp = []
for X_i, Y_i in zip(x_train, y_train):
prediction = quantum_nn(X_i, theta, shots, encoding_type, rotation_type)
loss_tmp.append(loss(prediction, Y_i))
# update theta
new_theta = theta - learning_rate * gradient(X_i, Y_i, theta, delta, shots, encoding_type, rotation_type)
if loss(quantum_nn(X_i, new_theta, shots, encoding_type, rotation_type), Y_i) < loss(quantum_nn(X_i, theta, shots, encoding_type, rotation_type), Y_i):
theta = new_theta
loss_list.append(np.mean(loss_tmp))
acc_list.append(accuracy(X_train, Y_train, theta, shots, encoding_type, rotation_type))
weights_list.append(theta)
print(f'{i} \t {round(loss_list[-1], 3)} \t {round(acc_list[-1], 3)} \t {theta} \t {len(weights_list)}')
return theta, loss_list, acc_list, weights_list
for learning_rate in [0.001, 0.01, 0.05, 0.1]:
theta, loss_list, acc_list, weights_history = model_2(X_train, Y_train, X_test, Y_test, learning_rate=learning_rate, epochs=20, theta=np.ones(N), shots=5000, encoding_type='ry', rotation_type='ry', delta=0.01)
acc = accuracy(X_test, Y_test, theta, 5000, encoding_type='ry', rotation_type='ry')
results.update({learning_rate: {'accuracy': acc, 'theta': theta, 'loss_list':loss_list, 'acc_list':acc_list, 'weights_history_list':weights_history}})
print(f" Learning rate : {learning_rate} accuracy : {results.get(learning_rate).get('accuracy')}")
for learning_rate in [0.001, 0.01, 0.05, 0.1]:
plt.plot([x for x in range(1, 21)], results.get(learning_rate).get('acc_list'), label=learning_rate)
plt.xticks([x for x in range(1, 21)])
plt.yticks(np.arange (0, 1.1, 0.1))
plt.xlabel('eposhs')
plt.ylabel('Accuracy')
plt.title('learning rates - accuracy effect')
plt.legend()
plt.show()
n_shots_results = {}
for n_shots in [1000, 5000, 10000, 50000]:
theta, loss_list, acc_list, weights_history = model_2(X_train, Y_train, X_test, Y_test, learning_rate=0.05, epochs=20, theta=np.ones(N), shots=n_shots, encoding_type='ry', rotation_type='ry', delta=0.01)
acc = accuracy(X_test, Y_test, theta, n_shots, encoding_type='ry', rotation_type='ry')
n_shots_results.update({n_shots: {'accuracy': acc, 'theta': theta, 'loss_list':loss_list, 'acc_list':acc_list, 'weights_history_list':weights_history}})
print(f" Number of Shots : {n_shots} accuracy : {n_shots_results.get(n_shots).get('accuracy')}")
shots_list = [1000, 5000, 10000, 50000]
for n_shots in shots_list:
plt.plot([x for x in range(1, 21)], n_shots_results.get(n_shots).get('acc_list'), label=n_shots)
plt.xticks([x for x in range(1, 21)])
plt.yticks(np.arange (0, 1.1, 0.1))
plt.xlabel('n_shots')
plt.ylabel('Accuracy')
plt.title('number of shots - accuracy effecta')
plt.legend()
plt.show()
delta_results = {}
for delta in [0.01, 0.05, 0.1, 1]:
theta, loss_list, acc_list, weights_history = model_2(X_train, Y_train, X_test, Y_test, learning_rate=0.1, epochs=20, theta=np.ones(N), shots=1000, encoding_type='ry', rotation_type='ry', delta=delta)
acc = accuracy(X_test, Y_test, theta, 1000, encoding_type='ry', rotation_type='ry')
delta_results.update({delta: {'accuracy': acc, 'theta': theta, 'loss_list':loss_list, 'acc_list':acc_list, 'weights_history_list':weights_history}})
print(f" Delta : {delta} accuracy : {delta_results.get(delta).get('accuracy')}")
for delta in [0.01, 0.05, 0.1, 1]:
plt.plot([x for x in range(1, 21)], delta_results.get(delta).get('acc_list'), label=delta)
plt.xticks([x for x in range(1, 21)])
plt.yticks(np.arange (0, 1.1, 0.1))
plt.xlabel('eposhs')
plt.ylabel('Accuracy')
plt.title('Delta - accuracy effect')
plt.legend()
plt.show()
def feature_map_2(X, theta):
n = 4
qr = QuantumRegister(4)
c = ClassicalRegister(1)
qc = QuantumCircuit(qr,c )
for i, x in enumerate(X):
qc.ry(x, i)
for i in range(n-1):
qc.cx(i, i+1)
qc.barrier()
for i in range(4):
qc.rz(theta[i], i)
qc.barrier()
for i in reversed(range(n-1)):
qc.cx(i, i+1)
qc.h(0)
return qc, c
qc, c = feature_map_2(X[0], np.ones(4))
qc.draw('mpl')
def quantum_nn(X, theta, shots, encoding_type=None, rotation_type=None, simulator=True):
qc, c = feature_map_2(X, theta)
qc.measure(0, c)
backend = Aer.get_backend('qasm_simulator')
if simulator == False:
provider = IBMQ.load_account()
backend = provider.get_backend('ibm_oslo')
job = qiskit.execute(qc, backend, shots=shots)
result = job.result()
counts = result.get_counts(qc)
return counts['1']/shots
def accuracy(X, Y, theta, shots):
counter = 0
for X_i, Y_i, in zip(X, Y):
prediction = quantum_nn(X_i, theta, shots)
if prediction < 0.5 and Y_i == 0:
counter += 1
elif prediction >= 0.5 and Y_i == 1:
counter += 1
return counter/len(Y)
def gradient(X, Y, theta, delta, shots):
grad = []
for i in range(len(theta)):
dtheta = copy.copy(theta)
dtheta[i] += delta
prediction_1 = quantum_nn(X, dtheta, shots)
prediction_2 = quantum_nn(X, theta, shots)
grad.append((loss(prediction_1, Y) - loss(prediction_2, Y)) / delta)
return np.array(grad)
N = 4
def model_5(x_train, y_train, x_test, y_test, learning_rate, epochs, theta, shots, delta, optimizing_weights=False):
loss_list = []
acc_list = []
weights_list = []
print('Epoch \t Loss \t Training Accuracy \t theta')
for i in range(epochs):
loss_tmp = []
for X_i, Y_i in zip(x_train, y_train):
prediction = quantum_nn(X_i, theta, shots)
loss_tmp.append(loss(prediction, Y_i))
# update theta
new_theta = theta - learning_rate * gradient(X_i, Y_i, theta, delta, shots)
if loss(quantum_nn(X_i, new_theta, shots), Y_i) < loss(quantum_nn(X_i, theta, shots), Y_i):
theta = new_theta
loss_list.append(np.mean(loss_tmp))
acc_list.append(accuracy(X_train, Y_train, theta, shots))
weights_list.append(theta)
print(f'{i} \t {round(loss_list[-1], 3)} \t {round(acc_list[-1], 3)} \t {theta} \t {len(weights_list)}')
return theta, loss_list, acc_list, weights_list
theta, loss_list, acc_list, weights_list = model_5(X_train, Y_train, X_test, Y_test, 0.01, 30, [1, 1, 1, 1], 5000, 0.01)
accuracy(X_test, Y_test, theta, 5000)
plt.plot([x for x in range(1, 31)], acc_list)
plt.xticks([x for x in range(1, 31)])
plt.yticks(np.arange (0, 1.1, 0.1))
plt.xlabel('eposhs')
plt.ylabel('Accuracy')
plt.title('Accuracy')
plt.legend()
plt.show()
from qiskit.circuit.library import ZZFeatureMap
num_features = X_train.shape[1]
feature_map = ZZFeatureMap(feature_dimension=num_features, reps=1)
feature_map.decompose().draw(output="mpl", fold=20)
from qiskit.circuit.library import RealAmplitudes
ansatz = RealAmplitudes(num_qubits=num_features, reps=3)
ansatz.decompose().draw(output="mpl", fold=20)
from qiskit.algorithms.optimizers import COBYLA
optimizer = COBYLA(maxiter=100)
from qiskit.primitives import Sampler
sampler = Sampler()
from matplotlib import pyplot as plt
from IPython.display import clear_output
objective_func_vals = []
plt.rcParams["figure.figsize"] = (12, 6)
def callback_graph(weights, obj_func_eval):
clear_output(wait=True)
objective_func_vals.append(obj_func_eval)
plt.title("Objective function value against iteration")
plt.xlabel("Iteration")
plt.ylabel("Objective function value")
plt.plot(range(len(objective_func_vals)), objective_func_vals)
plt.show()
import time
from qiskit_machine_learning.algorithms.classifiers import VQC
vqc = VQC(
sampler=sampler,
feature_map=feature_map,
ansatz=ansatz,
optimizer=optimizer,
callback=callback_graph,
)
# clear objective value history
objective_func_vals = []
start = time.time()
vqc.fit(X_train, Y_train)
elapsed = time.time() - start
print(f"Training time: {round(elapsed)} seconds")
train_score_q4 = vqc.score(X_train, Y_train)
test_score_q4 = vqc.score(X_test, Y_test)
print(f"Quantum QNN on the training dataset: {accuracy(X_train, Y_train, theta, 5000):.2f}")
print(f"Quantum QNN on the test dataset: {accuracy(X_test, Y_test, theta, 5000):.2f}")
print(f"Quantum VQC on the training dataset: {train_score_q4:.2f}")
print(f"Quantum VQC on the test dataset: {test_score_q4:.2f}")
|
https://github.com/osamarais/qiskit_iterative_solver
|
osamarais
|
import qiskit
from qiskit import QuantumCircuit, QuantumRegister
from qiskit.extensions import UnitaryGate
import numpy as np
from scipy.linalg import fractional_matrix_power
from scipy.io import loadmat, savemat
from copy import deepcopy
# problems = ((1,4),(1,8),(1,16),(2,4),(2,8),(2,16),(3,4),(3,16),(4,4),(4,16),(5,6),(5,20),(6,4),(6,16),(7,6),(7,20))
problems = ((5,6),(5,20),(6,4),(6,16),(7,6),(7,20))
def CR_phi_d(phi, d, register_1, register_2):
circuit = QuantumCircuit(register_1,register_2,name = 'CR_( \\phi \\tilde {})'.format(d))
circuit.cnot(register_2,register_1,ctrl_state=0)
circuit.rz(phi*2, register_1)
circuit.cnot(register_2,register_1,ctrl_state=0)
return circuit
for problem in problems:
problem_number = problem[0]
size = problem[1]
iterations = int(np.floor(128/size -1))
# iterations = 7
K = np.array( loadmat('N_{}_problem_{}.mat'.format(size,problem_number)) ).item()['A']
R = np.array( loadmat('N_{}_problem_{}.mat'.format(size,problem_number)) ).item()['R']
B = np.array( loadmat('N_{}_problem_{}.mat'.format(size,problem_number)) ).item()['B']
f = np.array( loadmat('N_{}_problem_{}.mat'.format(size,problem_number)) ).item()['f']
f = f/np.linalg.norm(f)
print('|R|_2 = {}'.format(np.linalg.norm(R,2)))
A = np.eye((iterations+1)*size,(iterations+1)*size)
for block in range(iterations):
A[(block+1)*size:(block+2)*size,(block)*size:(block+1)*size] = -R
# A[(block+1)*size:(block+2)*size,(block)*size:(block+1)*size] = -np.eye(size)
A_orig = deepcopy(A)
# Normalize the matrix using the upper bound
A = A/2
np.linalg.norm(A,2)
RHS_provided = True
A_shape = np.shape(A_orig)
# Hermitian Dilation
# Only if A is not Hermitian
from copy import deepcopy
if np.any(A != A.conj().T):
A = np.block([
[np.zeros(np.shape(A)),A],
[A.conj().T,np.zeros(np.shape(A))]
])
HD = True
else:
HD = False
print(HD)
if RHS_provided:
b = np.zeros(((iterations+1)*size,1))
for block in range(iterations):
b[(block+1)*size:(block+2)*size,:] = f
b = b / np.linalg.norm(b,2)
b = b.flatten()
b_orig = deepcopy(b)
if HD:
b = np.concatenate([b,np.zeros(b.shape)])
print(b)
if np.size(A)>1:
A_num_qubits = int(np.ceil(np.log2(np.shape(A)[0])))
padding_size = 2**A_num_qubits - np.shape(A)[0]
if padding_size > 0:
A = np.block([
[A, np.zeros([np.shape(A)[0],padding_size])],
[np.zeros([padding_size,np.shape(A)[0]]), np.zeros([padding_size,padding_size])]
])
else:
A_num_qubits = 1
padding_size = 1
A = np.array([[A,0],[0,0]])
print(A_num_qubits)
print(padding_size)
print(A)
# If RHS is given, it also needs to be padded
if RHS_provided:
b = np.pad(b,(0,padding_size))
O = np.block([
[A , -fractional_matrix_power(np.eye(np.shape(A)[0]) - np.linalg.matrix_power(A,2),0.5)],
[fractional_matrix_power(np.eye(np.shape(A)[0]) - np.linalg.matrix_power(A,2),0.5) , A]
])
print(O)
# We also need to get the block-encoding size, i.e. m, used to encode A in U_A
m = int(np.log2(np.shape(O)[0]) - A_num_qubits)
O_A_num_qubits = int(np.log2(np.shape(O)[0]))
print('m = {} \nNumber of Qubits for O_A is {}'.format(m,O_A_num_qubits))
blockA = UnitaryGate(O,label='O_A')
register_1 = QuantumRegister(size = 1, name = '|0>')
register_2 = QuantumRegister(size = m, name = '|0^m>')
register_3 = QuantumRegister(size = O_A_num_qubits-m, name = '|\\phi>')
from scipy.io import loadmat
phi_angles = np.array( loadmat('phi_k_50_14.mat') ).item()['phi']
phi_tilde_angles = np.zeros(np.shape(phi_angles))
temp = np.zeros(np.shape(phi_angles))
# plot QSP angles
for d,phi in enumerate(phi_angles):
if d==0 or d==np.size(phi_angles)-1:
temp[d] = phi_angles[d] - np.pi/4
else:
temp[d] = phi_angles[d]
phase_angles = phi_angles.reshape(phi_angles.shape[0])
circuit = QuantumCircuit(register_1, register_2, register_3, name = 'QSP')
if RHS_provided:
circuit.initialize(b,list(reversed(register_3)))
# First thing is to Hadamard the ancilla qubit since we want Re(P(A))
circuit.h(register_1)
# Note: QSPPACK produces symmetric phase angles, so reversing phase angles is unnecessary
# for d, phi in enumerate(reversed(phase_angles)):
for d, phi in reversed(list(enumerate(phase_angles))):
circuit = circuit.compose(CR_phi_d(phi,d,register_1,register_2))
if d>0:
# The endianness of the bits matters. Need to change the order of the bits
circuit.append(blockA,list(reversed(register_3[:])) + register_2[:])
# Apply the final Hadamard gate
circuit.h(register_1)
circuit = circuit.reverse_bits()
circuit.size()
from qiskit import transpile
circuit = transpile(circuit)
from qiskit import QuantumRegister, ClassicalRegister
from qiskit import QuantumCircuit, execute
from qiskit import Aer
Aer.backends()
# solver = 'unitary'
solver = 'statevector'
machine = "CPU"
# machine = "GPU"
# precision = "single"
precision = "double"
if solver=='unitary':
# backend = Aer.get_backend('unitary_simulator',precision = 'double',device="GPU")
backend = Aer.get_backend('unitary_simulator',precision = precision,device=machine)
job = execute(circuit, backend, shots=0)
result = job.result()
QSP_unitary = result.get_unitary(circuit,100)
QSP_matrix = np.array(QSP_unitary.to_matrix())
print(QSP_matrix)
elif solver=='statevector':
backend = Aer.get_backend('statevector_simulator',precision = precision,device=machine)
# backend = Aer.get_backend('statevector_simulator',precision = 'double',device="GPU")
job = execute(circuit, backend, shots=0)
result = job.result()
QSP_statevector = result.get_statevector()
print(QSP_statevector)
if solver=='statevector':
# We can ignore the padding size and directly use the size of b (considering Hermitian dilation)
if HD:
P_A_b = np.real(QSP_statevector.data[int(b_orig.shape[0]):(2*b_orig.shape[0])])
else:
P_A_b = np.real(QSP_statevector.data[0:b.shape[0]])
P_A_b = P_A_b/np.linalg.norm(P_A_b)
if solver=='statevector':
expected_P_A_b = np.linalg.solve(A_orig,b_orig)
expected_P_A_b = expected_P_A_b/np.linalg.norm(expected_P_A_b)
exact_solution = np.linalg.solve(K,f)
x_exact_normalized = exact_solution
x_exact_normalized = x_exact_normalized/np.linalg.norm(x_exact_normalized)
error_actual = []
if solver=='statevector':
for iteration_number in range(1,iterations):
e = x_exact_normalized - (P_A_b[iteration_number*size:(iteration_number+1)*size]/np.linalg.norm(P_A_b[iteration_number*size:(iteration_number+1)*size])).reshape(np.shape(x_exact_normalized))
error_actual.append(np.linalg.norm(e))
error_expected = []
if solver=='statevector':
for iteration_number in range(1,iterations):
e = x_exact_normalized - (expected_P_A_b[iteration_number*size:(iteration_number+1)*size]/np.linalg.norm(expected_P_A_b[iteration_number*size:(iteration_number+1)*size])).reshape(np.shape(x_exact_normalized))
error_expected.append(np.linalg.norm(e))
mdic = {"classical":error_expected,"quantum":error_actual,"kappa":np.linalg.cond(A_orig)}
savemat("output_N_{}_problem_{}.mat".format(size,problem_number), mdic)
|
https://github.com/alvinli04/Quantum-Steganography
|
alvinli04
|
import qiskit
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister
from qiskit import execute
from qiskit import Aer
from qiskit import IBMQ
from qiskit.compiler import transpile
from time import perf_counter
from qiskit.tools.visualization import plot_histogram
import numpy as np
import math
'''
params
---------------
picture: square 2d array of integers representing grayscale values
assume the length (n) is some power of 2
return
---------------
a flattened representation of picture using bitstrings (boolean arrays)
'''
def convert_to_bits (picture):
n = len(picture)
ret = []
for i in range(n):
for j in range(n):
value = picture[i][j]
bitstring = bin(value)[2:]
ret.append([0 for i in range(8 - len(bitstring))] + [1 if c=='1' else 0 for c in bitstring])
return ret
'''
params
----------------
bitStr: a representation of an image using bitstrings to represent grayscale values
return
----------------
A quantum circuit containing the NEQR representation of the image
'''
def neqr(bitStr, quantumImage, idx, intensity):
newBitStr = bitStr
numOfQubits = quantumImage.num_qubits
quantumImage.draw()
print("Number of Qubits:", numOfQubits)
# -----------------------------------
# Drawing the Quantum Circuit
# -----------------------------------
lengthIntensity = intensity.size
lengthIdx = idx.size
quantumImage.i([intensity[lengthIntensity-1-i] for i in range(lengthIntensity)])
quantumImage.h([idx[lengthIdx-1-i] for i in range(lengthIdx)])
numOfPixels = len(newBitStr)
for i in range(numOfPixels):
bin_ind = bin(i)[2:]
bin_ind = (lengthIdx - len(bin_ind)) * '0' + bin_ind
bin_ind = bin_ind[::-1]
# X-gate (enabling zero-controlled nature)
for j in range(len(bin_ind)):
if bin_ind[j] == '0':
quantumImage.x(idx[j])
# Configuring CCNOT (ccx) gates with control and target qubits
for j in range(len(newBitStr[i])):
if newBitStr[i][j] == 1:
quantumImage.mcx(idx, intensity[lengthIntensity-1-j])
# X-gate (enabling zero-controlled nature)
for j in range(len(bin_ind)):
if bin_ind[j] == '0':
quantumImage.x(idx[j])
quantumImage.barrier()
|
https://github.com/usamisaori/quantum-expressibility-entangling-capability
|
usamisaori
|
import numpy as np
import qiskit
from qiskit import QuantumCircuit
import matplotlib.pyplot as plt
from qiskit.circuit import QuantumCircuit, Parameter
import warnings
warnings.filterwarnings('ignore')
theta = Parameter("θ")
phi = Parameter("φ")
lamb = Parameter("λ")
def sampleCircuitA(layer=1, qubits=4):
circuit = QuantumCircuit(qubits)
for i in range(layer):
for i in range(qubits - 1):
circuit.cx(i, i + 1)
circuit.cx(qubits - 1, 0)
for i in range(qubits - 1):
circuit.cx(i, i + 1)
circuit.cx(qubits - 1, 0)
circuit.barrier()
for i in range(qubits):
circuit.u3(theta, phi, lamb, i)
return circuit
circuitA = sampleCircuitA(qubits=4)
circuitA.draw(output='mpl')
def sampleCircuitB1(layer=1, qubits=4):
circuit = QuantumCircuit(qubits)
for i in range(qubits):
circuit.u1(theta, i)
for i in range(layer):
for j in range(qubits - 1):
circuit.cz(j, j + 1)
circuit.cz(qubits - 1, 0)
circuit.barrier()
for j in range(qubits):
circuit.u1(theta, j)
return circuit
def sampleCircuitB2(layer=1, qubits=4):
circuit = QuantumCircuit(qubits)
for i in range(qubits):
circuit.u2(phi, lamb, i)
for i in range(layer):
for j in range(qubits - 1):
circuit.cz(j, j + 1)
circuit.cz(qubits - 1, 0)
circuit.barrier()
for j in range(qubits):
circuit.u2(phi, lamb, j)
return circuit
def sampleCircuitB3(layer=1, qubits=4):
circuit = QuantumCircuit(qubits)
for i in range(qubits):
circuit.u3(theta, phi, lamb, i)
for i in range(layer):
for j in range(qubits - 1):
circuit.cz(j, j + 1)
circuit.cz(qubits - 1, 0)
circuit.barrier()
for j in range(qubits):
circuit.u3(theta, phi, lamb, j)
return circuit
circuitB1 = sampleCircuitB1(qubits=4)
circuitB1.draw(output='mpl')
circuitB2 = sampleCircuitB2(qubits=4)
circuitB2.draw(output='mpl')
circuitB3 = sampleCircuitB3(qubits=4)
circuitB3.draw(output='mpl')
def sampleCircuitC(layer=1, qubits=4):
circuit = QuantumCircuit(qubits)
for i in range(layer):
for j in range(qubits):
circuit.ry(theta, j)
circuit.crx(theta, qubits - 1, 0)
for j in range(qubits - 1, 0, -1):
circuit.crx(theta, j - 1, j)
circuit.barrier()
for j in range(qubits):
circuit.ry(theta, j)
circuit.crx(theta, 3, 2)
circuit.crx(theta, 0, 3)
circuit.crx(theta, 1, 0)
circuit.crx(theta, 2, 1)
return circuit
circuitC = sampleCircuitC(qubits=4)
circuitC.draw(output='mpl')
def sampleCircuitD(layer=1, qubits=4):
circuit = QuantumCircuit(qubits)
for i in range(layer):
for j in range(qubits):
circuit.rx(theta, j)
circuit.rz(theta, j)
for j in range(qubits - 1, -1, -1):
for k in range(qubits - 1, -1, -1):
if j != k:
circuit.crx(theta, j, k)
circuit.barrier()
for j in range(qubits):
circuit.rx(theta, j)
circuit.rz(theta, j)
return circuit
circuitD = sampleCircuitD(qubits=4)
circuitD.draw(output='mpl')
def sampleCircuitE(layer=1, qubits=4):
circuit = QuantumCircuit(qubits)
for i in range(layer):
for j in range(qubits):
circuit.rx(theta, j)
circuit.rz(theta, j)
for j in range(1, qubits, 2):
circuit.crx(theta, j, j - 1)
for j in range(qubits):
circuit.rx(theta, j)
circuit.rz(theta, j)
for j in range(2, qubits, 2):
circuit.crx(theta, j, j - 1)
return circuit
circuitE = sampleCircuitE(qubits=4)
circuitE.draw(output='mpl')
def sampleCircuitF(layer=1, qubits=4):
circuit = QuantumCircuit(qubits)
for i in range(layer):
for j in range(qubits):
circuit.rx(theta, j)
circuit.rz(theta, j)
circuit.crx(theta, qubits - 1, 0)
for j in range(qubits - 1, 0, -1):
circuit.crx(theta, j - 1, j)
return circuit
circuitF = sampleCircuitF(qubits=4)
circuitF.draw(output='mpl')
def sampleEncoding(qubits):
circuit = QuantumCircuit(qubits)
for i in range(qubits):
circuit.h(i)
circuit.ry(theta, i)
return circuit
circuit = sampleEncoding(4)
circuit.draw(output='mpl')
# demo:
circuit = sampleEncoding(5).compose(sampleCircuitB3(layer=2, qubits=5))
circuit.draw(output='mpl')
|
https://github.com/ShabaniLab/qiskit-hackaton-2019
|
ShabaniLab
|
import numpy as np
from qiskit.circuit import QuantumCircuit, QuantumRegister, ClassicalRegister
from ising_kitaev import initialize_chain, braid_chain, rotate_to_measurement_basis, add_measurement, initialize_coupler
zeeman_ferro = 0.01
zeeman_para = 10
initial_config = np.array([zeeman_ferro]*3 + [zeeman_para]*9)
qreg = QuantumRegister(13)
creg = ClassicalRegister(3)
qcirc = QuantumCircuit(qreg, creg)
initialize_chain(qcirc, qreg, initial_config, 'up')
initialize_coupler(qcirc, qreg)
qcirc.draw()
braid_chain(qcirc, qreg, np.pi, 40, initial_config, 1.4, 0.25, 0.25, 2, 40, method='both')
qcirc.depth()
add_measurement(qcirc, qreg, creg, [0, 1, 2])
from qiskit import Aer, execute
backend = Aer.get_backend('qasm_simulator')
job = execute(qcirc, backend, shots=2000)
job.status()
result = job.result()
print(result.get_counts())
|
https://github.com/C2QA/bosonic-qiskit
|
C2QA
|
# To use the package locally, add the C2QA repository's root folder to the path prior to importing c2qa.
import os
import sys
module_path = os.path.abspath(os.path.join("../.."))
if module_path not in sys.path:
sys.path.append(module_path)
# Cheat to get MS Visual Studio Code Jupyter server to recognize Python venv
module_path = os.path.abspath(os.path.join("../../venv/Lib/site-packages"))
if module_path not in sys.path:
sys.path.append(module_path)
import c2qa
import qiskit
import numpy as np
import c2qa.util as util
import matplotlib.pyplot as plt
import matplotlib
numberofmodes=5
numberofqubits=numberofmodes
numberofqubitspermode=3
cutoff=2**numberofqubitspermode
qmr = c2qa.QumodeRegister(num_qumodes=numberofmodes, num_qubits_per_qumode=numberofqubitspermode)
qbr = qiskit.QuantumRegister(size=numberofqubits)
cbr = qiskit.ClassicalRegister(size=1)
circuit = c2qa.CVCircuit(qmr, qbr, cbr)
sm = [0,0,1,0,0]
for i in range(qmr.num_qumodes):
circuit.cv_initialize(sm[i], qmr[i])
def bch(circuit, qm, qb, U, dt):
arg = np.sqrt((U/4)*dt)
circuit.cv_c_rx(arg, qm, qb)
circuit.cv_c_r(arg, qm, qb)
circuit.cv_c_rx(-arg, qm, qb)
circuit.cv_c_r(-arg, qm, qb)
def eiht(circuit, qma, qmb, qba, qbb, J, U, mu, dt):
circuit.cv_bs(-J*dt, qmb, qma)
circuit.cv_r(-((U/2)+mu)*dt, qma)
circuit.cv_r(-((U/2)+mu)*dt, qmb)
bch(circuit, qma, qba, U/2, dt)
bch(circuit, qmb, qbb, U/2, dt)
return circuit
def trotterise_BH(circuit, numberofmodes, numberofqubits, qmr, qbr, cutoff, N, J, U, mu, dt):
occs=[np.zeros((N,numberofmodes)),np.zeros((N,numberofqubits))]
# Trotterise. i*dt corresponds to the timestep i, of length from the previous timestep dt.
for i in range(N):
print("dt+1", i*dt)
# Trotterise according to the brickwork format to make depth of circuit 2 and not number of timesteps (because each site needs to be part of a gate with the site to the left and a gate with the site to the right.
for j in range(0,numberofmodes-1,2):
eiht(circuit, qmr[j+1], qmr[j], qbr[j], qbr[j+1], J, U, mu, dt)
for j in range(1,numberofmodes-1,2):
eiht(circuit, qmr[j+1], qmr[j], qbr[j], qbr[j+1], J, U, mu, dt)
stateop, result, fock_counts = c2qa.util.simulate(circuit)
occupation = util.stateread(stateop, qbr.size, numberofmodes, 4,verbose=False)
occs[0][i]=np.array(list(occupation[0][0]))
occs[1][i]=np.array(list(occupation[0][1]))
return occs
dt=0.1
N=10
J=1
U=0.1
mu=1
occupations = trotterise_BH(circuit, numberofmodes, numberofqubits, qmr, qbr, cutoff, N, J, U, mu, dt)
plt.pcolormesh(np.arange(numberofmodes+1)-numberofmodes//2-0.5,np.arange(N+1)*dt,occupations[0],cmap=matplotlib.cm.Blues,linewidth=0,rasterized=True)
plt.title("$J=1$, $U=0.1$, $\mu=1$")
plt.xlabel("Modes")
plt.ylabel("Time")
cbar = plt.colorbar()
cbar.ax.get_yaxis().labelpad = 15
cbar.set_label("Mode occupation", rotation=270)
plt.rcParams["figure.figsize"] = (6,3)
plt.tight_layout()
plt.savefig("BH.pdf")
|
https://github.com/Praween-em/QiskitBasics
|
Praween-em
|
#!/usr/bin/env python
# coding: utf-8
# In[1]:
from qiskit import *
# In[2]:
qr = QuantumRegister(2)
# In[3]:
cr = ClassicalRegister(2)
# In[4]:
circuit = QuantumCircuit(qr,cr)
# In[5]:
get_ipython().run_line_magic('matplotlib', 'inline')
# In[6]:
circuit.draw()
# In[7]:
circuit.h(qr[0])
# In[8]:
circuit.draw(output='mpl')
# In[9]:
circuit.cx(qr[0], qr[1])
# In[10]:
circuit.draw(output='mpl')
# In[11]:
circuit.measure(qr,cr)
# In[12]:
circuit.draw(output='mpl')
# In[15]:
simulator = Aer.get_backend('qasm_simulator')
# In[17]:
result = execute(circuit, backend=simulator).result()
# In[18]:
from qiskit.tools.visualization import plot_histogram
# In[19]:
plot_histogram(result.get_counts(circuit))
# In[20]:
IBMQ.load_account()
# In[21]:
provider = IBMQ.get_provider('ibm-q')
# In[26]:
qcomp = provider.get_backend('ibm_brisbane')
# In[27]:
job = execute(circuit, backend=qcomp)
# In[28]:
from qiskit.tools.monitor import job_monitor
# In[32]:
job_monitor(job)
# In[33]:
result=job.result()
# In[34]:
plot_histogram(result.get_counts(circuit))
# In[ ]:
|
https://github.com/swe-bench/Qiskit__qiskit
|
swe-bench
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2018, 2022.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Test Grover's algorithm."""
import itertools
import unittest
from test.python.algorithms import QiskitAlgorithmsTestCase
import numpy as np
from ddt import data, ddt, idata, unpack
from qiskit import BasicAer, QuantumCircuit
from qiskit_algorithms import AmplificationProblem, Grover
from qiskit.circuit.library import GroverOperator, PhaseOracle
from qiskit.primitives import Sampler
from qiskit.quantum_info import Operator, Statevector
from qiskit.utils import QuantumInstance, algorithm_globals
from qiskit.utils.optionals import HAS_TWEEDLEDUM
@ddt
class TestAmplificationProblem(QiskitAlgorithmsTestCase):
"""Test the amplification problem."""
def setUp(self):
super().setUp()
oracle = QuantumCircuit(2)
oracle.cz(0, 1)
self._expected_grover_op = GroverOperator(oracle=oracle)
@data("oracle_only", "oracle_and_stateprep")
def test_groverop_getter(self, kind):
"""Test the default construction of the Grover operator."""
oracle = QuantumCircuit(2)
oracle.cz(0, 1)
if kind == "oracle_only":
problem = AmplificationProblem(oracle, is_good_state=["11"])
expected = GroverOperator(oracle)
else:
stateprep = QuantumCircuit(2)
stateprep.ry(0.2, [0, 1])
problem = AmplificationProblem(
oracle, state_preparation=stateprep, is_good_state=["11"]
)
expected = GroverOperator(oracle, stateprep)
self.assertEqual(Operator(expected), Operator(problem.grover_operator))
@data("list_str", "list_int", "statevector", "callable")
def test_is_good_state(self, kind):
"""Test is_good_state works on different input types."""
if kind == "list_str":
is_good_state = ["01", "11"]
elif kind == "list_int":
is_good_state = [1] # means bitstr[1] == '1'
elif kind == "statevector":
is_good_state = Statevector(np.array([0, 1, 0, 1]) / np.sqrt(2))
else:
def is_good_state(bitstr):
# same as ``bitstr in ['01', '11']``
return bitstr[1] == "1"
possible_states = [
"".join(list(map(str, item))) for item in itertools.product([0, 1], repeat=2)
]
oracle = QuantumCircuit(2)
problem = AmplificationProblem(oracle, is_good_state=is_good_state)
expected = [state in ["01", "11"] for state in possible_states]
actual = [problem.is_good_state(state) for state in possible_states]
self.assertListEqual(expected, actual)
@ddt
class TestGrover(QiskitAlgorithmsTestCase):
"""Test for the functionality of Grover"""
def setUp(self):
super().setUp()
with self.assertWarns(DeprecationWarning):
self.statevector = QuantumInstance(
BasicAer.get_backend("statevector_simulator"), seed_simulator=12, seed_transpiler=32
)
self.qasm = QuantumInstance(
BasicAer.get_backend("qasm_simulator"), seed_simulator=12, seed_transpiler=32
)
self._sampler = Sampler()
self._sampler_with_shots = Sampler(options={"shots": 1024, "seed": 123})
algorithm_globals.random_seed = 123
@unittest.skipUnless(HAS_TWEEDLEDUM, "tweedledum required for this test")
@data("ideal", "shots", False)
def test_implicit_phase_oracle_is_good_state(self, use_sampler):
"""Test implicit default for is_good_state with PhaseOracle."""
grover = self._prepare_grover(use_sampler)
oracle = PhaseOracle("x & y")
problem = AmplificationProblem(oracle)
if not use_sampler:
with self.assertWarns(DeprecationWarning):
result = grover.amplify(problem)
else:
result = grover.amplify(problem)
self.assertEqual(result.top_measurement, "11")
@idata(itertools.product(["ideal", "shots", False], [[1, 2, 3], None, 2]))
@unpack
def test_iterations_with_good_state(self, use_sampler, iterations):
"""Test the algorithm with different iteration types and with good state"""
grover = self._prepare_grover(use_sampler, iterations)
problem = AmplificationProblem(Statevector.from_label("111"), is_good_state=["111"])
if not use_sampler:
with self.assertWarns(DeprecationWarning):
result = grover.amplify(problem)
else:
result = grover.amplify(problem)
self.assertEqual(result.top_measurement, "111")
@idata(itertools.product(["shots", False], [[1, 2, 3], None, 2]))
@unpack
def test_iterations_with_good_state_sample_from_iterations(self, use_sampler, iterations):
"""Test the algorithm with different iteration types and with good state"""
grover = self._prepare_grover(use_sampler, iterations, sample_from_iterations=True)
problem = AmplificationProblem(Statevector.from_label("111"), is_good_state=["111"])
if not use_sampler:
with self.assertWarns(DeprecationWarning):
result = grover.amplify(problem)
else:
result = grover.amplify(problem)
self.assertEqual(result.top_measurement, "111")
@data("ideal", "shots", False)
def test_fixed_iterations_without_good_state(self, use_sampler):
"""Test the algorithm with iterations as an int and without good state"""
grover = self._prepare_grover(use_sampler, iterations=2)
problem = AmplificationProblem(Statevector.from_label("111"))
if not use_sampler:
with self.assertWarns(DeprecationWarning):
result = grover.amplify(problem)
else:
result = grover.amplify(problem)
self.assertEqual(result.top_measurement, "111")
@idata(itertools.product(["ideal", "shots", False], [[1, 2, 3], None]))
@unpack
def test_iterations_without_good_state(self, use_sampler, iterations):
"""Test the correct error is thrown for none/list of iterations and without good state"""
grover = self._prepare_grover(use_sampler, iterations=iterations)
problem = AmplificationProblem(Statevector.from_label("111"))
with self.assertRaisesRegex(
TypeError, "An is_good_state function is required with the provided oracle"
):
if not use_sampler:
with self.assertWarns(DeprecationWarning):
grover.amplify(problem)
else:
grover.amplify(problem)
@data("ideal", "shots", False)
def test_iterator(self, use_sampler):
"""Test running the algorithm on an iterator."""
# step-function iterator
def iterator():
wait, value, count = 3, 1, 0
while True:
yield value
count += 1
if count % wait == 0:
value += 1
grover = self._prepare_grover(use_sampler, iterations=iterator())
problem = AmplificationProblem(Statevector.from_label("111"), is_good_state=["111"])
if not use_sampler:
with self.assertWarns(DeprecationWarning):
result = grover.amplify(problem)
else:
result = grover.amplify(problem)
self.assertEqual(result.top_measurement, "111")
@data("ideal", "shots", False)
def test_growth_rate(self, use_sampler):
"""Test running the algorithm on a growth rate"""
grover = self._prepare_grover(use_sampler, growth_rate=8 / 7)
problem = AmplificationProblem(Statevector.from_label("111"), is_good_state=["111"])
if not use_sampler:
with self.assertWarns(DeprecationWarning):
result = grover.amplify(problem)
else:
result = grover.amplify(problem)
self.assertEqual(result.top_measurement, "111")
@data("ideal", "shots", False)
def test_max_num_iterations(self, use_sampler):
"""Test the iteration stops when the maximum number of iterations is reached."""
def zero():
while True:
yield 0
grover = self._prepare_grover(use_sampler, iterations=zero())
n = 5
problem = AmplificationProblem(Statevector.from_label("1" * n), is_good_state=["1" * n])
if not use_sampler:
with self.assertWarns(DeprecationWarning):
result = grover.amplify(problem)
else:
result = grover.amplify(problem)
self.assertEqual(len(result.iterations), 2**n)
@data("ideal", "shots", False)
def test_max_power(self, use_sampler):
"""Test the iteration stops when the maximum power is reached."""
lam = 10.0
grover = self._prepare_grover(use_sampler, growth_rate=lam)
problem = AmplificationProblem(Statevector.from_label("111"), is_good_state=["111"])
result = grover.amplify(problem)
self.assertEqual(len(result.iterations), 0)
@data("ideal", "shots", False)
def test_run_circuit_oracle(self, use_sampler):
"""Test execution with a quantum circuit oracle"""
oracle = QuantumCircuit(2)
oracle.cz(0, 1)
problem = AmplificationProblem(oracle, is_good_state=["11"])
grover = self._prepare_grover(use_sampler)
if not use_sampler:
with self.assertWarns(DeprecationWarning):
result = grover.amplify(problem)
else:
result = grover.amplify(problem)
self.assertIn(result.top_measurement, ["11"])
@data("ideal", "shots", False)
def test_run_state_vector_oracle(self, use_sampler):
"""Test execution with a state vector oracle"""
mark_state = Statevector.from_label("11")
problem = AmplificationProblem(mark_state, is_good_state=["11"])
grover = self._prepare_grover(use_sampler)
if not use_sampler:
with self.assertWarns(DeprecationWarning):
result = grover.amplify(problem)
else:
result = grover.amplify(problem)
self.assertIn(result.top_measurement, ["11"])
@data("ideal", "shots", False)
def test_run_custom_grover_operator(self, use_sampler):
"""Test execution with a grover operator oracle"""
oracle = QuantumCircuit(2)
oracle.cz(0, 1)
grover_op = GroverOperator(oracle)
problem = AmplificationProblem(
oracle=oracle, grover_operator=grover_op, is_good_state=["11"]
)
grover = self._prepare_grover(use_sampler)
if not use_sampler:
with self.assertWarns(DeprecationWarning):
result = grover.amplify(problem)
else:
result = grover.amplify(problem)
self.assertIn(result.top_measurement, ["11"])
def test_optimal_num_iterations(self):
"""Test optimal_num_iterations"""
num_qubits = 7
for num_solutions in range(1, 2**num_qubits):
amplitude = np.sqrt(num_solutions / 2**num_qubits)
expected = round(np.arccos(amplitude) / (2 * np.arcsin(amplitude)))
actual = Grover.optimal_num_iterations(num_solutions, num_qubits)
self.assertEqual(actual, expected)
def test_construct_circuit(self):
"""Test construct_circuit"""
oracle = QuantumCircuit(2)
oracle.cz(0, 1)
problem = AmplificationProblem(oracle, is_good_state=["11"])
grover = Grover()
constructed = grover.construct_circuit(problem, 2, measurement=False)
grover_op = GroverOperator(oracle)
expected = QuantumCircuit(2)
expected.h([0, 1])
expected.compose(grover_op.power(2), inplace=True)
self.assertTrue(Operator(constructed).equiv(Operator(expected)))
@data("ideal", "shots", False)
def test_circuit_result(self, use_sampler):
"""Test circuit_result"""
oracle = QuantumCircuit(2)
oracle.cz(0, 1)
# is_good_state=['00'] is intentionally selected to obtain a list of results
problem = AmplificationProblem(oracle, is_good_state=["00"])
grover = self._prepare_grover(use_sampler, iterations=[1, 2, 3, 4])
if not use_sampler:
with self.assertWarns(DeprecationWarning):
result = grover.amplify(problem)
else:
result = grover.amplify(problem)
if use_sampler:
for i, dist in enumerate(result.circuit_results):
keys, values = zip(*sorted(dist.items()))
if i in (0, 3):
self.assertTupleEqual(keys, ("11",))
np.testing.assert_allclose(values, [1], atol=0.2)
else:
self.assertTupleEqual(keys, ("00", "01", "10", "11"))
np.testing.assert_allclose(values, [0.25, 0.25, 0.25, 0.25], atol=0.2)
else:
expected_results = [
{"11": 1024},
{"00": 238, "01": 253, "10": 263, "11": 270},
{"00": 238, "01": 253, "10": 263, "11": 270},
{"11": 1024},
]
self.assertEqual(result.circuit_results, expected_results)
@data("ideal", "shots", False)
def test_max_probability(self, use_sampler):
"""Test max_probability"""
oracle = QuantumCircuit(2)
oracle.cz(0, 1)
problem = AmplificationProblem(oracle, is_good_state=["11"])
grover = self._prepare_grover(use_sampler)
if not use_sampler:
with self.assertWarns(DeprecationWarning):
result = grover.amplify(problem)
else:
result = grover.amplify(problem)
self.assertAlmostEqual(result.max_probability, 1.0)
@unittest.skipUnless(HAS_TWEEDLEDUM, "tweedledum required for this test")
@data("ideal", "shots", False)
def test_oracle_evaluation(self, use_sampler):
"""Test oracle_evaluation for PhaseOracle"""
oracle = PhaseOracle("x1 & x2 & (not x3)")
problem = AmplificationProblem(oracle, is_good_state=oracle.evaluate_bitstring)
grover = self._prepare_grover(use_sampler)
if not use_sampler:
with self.assertWarns(DeprecationWarning):
result = grover.amplify(problem)
else:
result = grover.amplify(problem)
self.assertTrue(result.oracle_evaluation)
self.assertEqual("011", result.top_measurement)
def test_sampler_setter(self):
"""Test sampler setter"""
grover = Grover()
grover.sampler = self._sampler
self.assertEqual(grover.sampler, self._sampler)
def _prepare_grover(
self, use_sampler, iterations=None, growth_rate=None, sample_from_iterations=False
):
"""Prepare Grover instance for test"""
if use_sampler == "ideal":
grover = Grover(
sampler=self._sampler,
iterations=iterations,
growth_rate=growth_rate,
sample_from_iterations=sample_from_iterations,
)
elif use_sampler == "shots":
grover = Grover(
sampler=self._sampler_with_shots,
iterations=iterations,
growth_rate=growth_rate,
sample_from_iterations=sample_from_iterations,
)
else:
with self.assertWarns(DeprecationWarning):
grover = Grover(
quantum_instance=self.qasm,
iterations=iterations,
growth_rate=growth_rate,
sample_from_iterations=sample_from_iterations,
)
return grover
if __name__ == "__main__":
unittest.main()
|
https://github.com/dcavar/q
|
dcavar
|
!pip install -U --user qiskit
!pip install -U --user qiskit_ibm_runtime
!pip install -U --user qiskit_aer
!pip install -U --user matplotlib
!pip install -U --user pylatexenc
import qiskit
import secret
qc = qiskit.QuantumCircuit(2)
qc.h(0)
qc.cx(0, 1)
x = qc.draw(output='mpl')
x
from qiskit.quantum_info import Pauli
ZZ = Pauli('ZZ')
ZI = Pauli('ZI')
IZ = Pauli('IZ')
XX = Pauli('XX')
XI = Pauli('XI')
IX = Pauli('IX')
observables = [ZZ, ZI, IZ, XX, XI, IX]
from qiskit_aer.primitives import Estimator
estimator = Estimator()
job = estimator.run([qc] * len(observables), observables)
job.result()
import matplotlib.pyplot as plt
data = ["ZZ", "ZI", "IZ", "XX", "XI", "IX"]
values = job.result().values
plt.plot(data, values, '-o')
plt.xlabel('Observables')
plt.ylabel('Expectation value')
plt.show()
|
https://github.com/ohadlev77/sat-circuits-engine
|
ohadlev77
|
# Copyright 2022-2023 Ohad Lev.
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0,
# or in the root directory of this package("LICENSE.txt").
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
GroverConstraintsOperator class.
"""
from itertools import chain
from typing import Optional
from qiskit import QuantumCircuit, QuantumRegister
from qiskit.transpiler.passes import RemoveBarriers
from sat_circuits_engine.constraints_parse import ParsedConstraints
from sat_circuits_engine.circuit.single_constraint import SingleConstraintBlock
class GroverConstraintsOperator(QuantumCircuit):
"""
A quantum circuit implementation of Grover's operator constructed
for a specific combination of constraints defined by a user.
"""
def __init__(
self,
parsed_constraints: ParsedConstraints,
num_input_qubits: int,
insert_barriers: Optional[bool] = True,
) -> None:
"""
Args:
parsed_constraints (ParsedConstraints): a dict-like object that associates every (single)
constraint string (the keys) with its `SingleConstraintParsed` object (the values).
num_input_qubits (int): number of qubits in the input register.
insert_barriers (Optional[bool] = True): if True, barriers will be inserted
to separate between constraints.
"""
self.num_input_qubits = num_input_qubits
self.parsed_constraints = parsed_constraints
self.insert_barriers = insert_barriers
# Construction a `SingleConstraintBlock` object for every constraint. A few more
# attributes defined within self.constraints_blocks_build(), see its docstrings for details.
self.constraints_blocks_build()
# Initializing the quantum circuit that implements the Grover operator we seek for
self.input_reg = QuantumRegister(self.num_input_qubits, "input_reg")
self.comparison_aux_reg = QuantumRegister(self.comparison_aux_width, "comparison_aux_reg")
self.left_aux_reg = QuantumRegister(self.left_aux_width, "left_aux_reg")
self.right_aux_reg = QuantumRegister(self.right_aux_width, "right_aux_reg")
self.out_reg = QuantumRegister(self.out_qubits_amount, "out_reg")
self.ancilla = QuantumRegister(1, "ancilla")
super().__init__(
self.input_reg,
self.left_aux_reg,
self.right_aux_reg,
self.comparison_aux_reg,
self.out_reg,
self.ancilla,
name="Operator",
)
# Assembling `self` to a complete Grover operator
self.assemble()
def __repr__(self) -> str:
if self.parsed_constraints.high_level_constraints_string is not None:
repr_string = self.parsed_constraints.high_level_constraints_string
else:
repr_string = self.parsed_constraints.constraints_string
return f"{self.__class__.__name__}('{repr_string}')"
def constraints_blocks_build(self) -> None:
"""
Parses the `self.parsed_constraints` attribute and defines the attributes:
- `self.single_constraints_objects` (List[SingleConstraintBlock]): a list of
`SingleConstraintBlock` objects, each built from a single constraint string.
- `self.comparison_aux_qubits_needed` (List[int]): a list of auxiliary qubits needed
for implementing the comparison between the two sides of the constraint's equation.
- `self.left_aux_qubits_needed` (List[int]): a list of auxiliary qubits needed
for implementing arithmetics on the left side of the constraint's equation.
- `self.right_aux_qubits_needed` (List[int]): a list of auxiliary qubits needed
for implementing arithmetics on the right side of the constraint's equation.
- `self.comparison_aux_width` (int): Total number of comparison aux qubits.
- `self.left_aux_width` (int): Total number of left aux qubits.
- `self.right_aux_width` (int): Total number of right aux qubits.
- `self.out_qubits_amount` (int): the number of "out qubits" needed, while each "out qubit"
is used to write the result of applying a single constraint into (|1> if the constraint is
satisfied, |0> otherwise).
"""
# For each constraint we build a `SingleConstraintBlock` object
self.single_constraints_objects = list(
map(SingleConstraintBlock, self.parsed_constraints.values())
)
# Sorting the constraints such that the most costly ones will be the first and last
# (First and last constraint are not uncomputed - only when the whole operator is uncomputed).
self.single_constraints_objects.sort(key=lambda x: x.transpiled.count_ops()["cx"], reverse=True)
self.single_constraints_objects.append(self.single_constraints_objects[0])
self.single_constraints_objects.pop(0)
self.comparison_aux_qubits_needed = []
self.left_aux_qubits_needed = []
self.right_aux_qubits_needed = []
# For each we count which and how many aux qubits are needed
for constraint_block in self.single_constraints_objects:
if "comparison_aux" in constraint_block.regs.keys():
self.comparison_aux_qubits_needed.append(len(constraint_block.regs["comparison_aux"][0]))
else:
self.comparison_aux_qubits_needed.append(0)
self.left_aux_qubits_needed.append(len(constraint_block.regs["sides_aux"][0]))
self.right_aux_qubits_needed.append(len(constraint_block.regs["sides_aux"][1]))
# Total number of qubits for each type
self.comparison_aux_width = sum(self.comparison_aux_qubits_needed)
self.left_aux_width = sum(self.left_aux_qubits_needed)
self.right_aux_width = sum(self.right_aux_qubits_needed)
self.out_qubits_amount = len(self.single_constraints_objects)
def assemble(self) -> None:
"""
Assembles a whole Grover operator (`self`) by performing the following steps:
(1) Allocating qubits for each `SingleConstraintBlock` object
(from `self.single_constraints_objects`) - for input qubits, auxiliary qubits of
all kinds and a single "out" qubit for each constraint.
(2) Appending all the `SingleConstraintBlock` objects.
(3) Applying a "marking" operation by applying some controlled-not gate to the
ancilla qubit.
(4) Appending an uncomputation of the entire operation assembled in (1) + (2).
"""
# Iterating over constraints, appending one `SingleConstraintBlock` object in each iteration
for count, constraint_block in enumerate(self.single_constraints_objects):
# Defining the `qargs` paramater for the `constraint_block` to be appended to `self`
qargs = []
# Appending the input bits indexes from both sides of the constraint's equation to `qargs`
left_input_qubits = list(chain(*constraint_block.parsed_data.sides_bit_indexes[0]))
if left_input_qubits:
qargs += self.input_reg[left_input_qubits]
right_input_qubits = list(chain(*constraint_block.parsed_data.sides_bit_indexes[1]))
if right_input_qubits:
qargs += self.input_reg[right_input_qubits]
# Appending the various aux bits indexes to `qargs`
for aux_tuple in [
(self.left_aux_qubits_needed, self.left_aux_reg),
(self.right_aux_qubits_needed, self.right_aux_reg),
(self.comparison_aux_qubits_needed, self.comparison_aux_reg),
]:
if aux_tuple[0][count] != 0:
aux_bottom_index = sum(aux_tuple[0][0:count])
aux_top_index = aux_bottom_index + aux_tuple[0][count]
qargs += aux_tuple[1][aux_bottom_index:aux_top_index][::-1]
# Appending blocks of constraints to `self`
# First constraint
if count == 0:
qargs.append(self.out_reg[count])
self.append(instruction=constraint_block, qargs=qargs)
# If there is only one constraint
if self.out_qubits_amount == 1:
# Saving inverse for future uncomputation
qc_dagger = self.inverse()
qc_dagger.name = "Uncomputation"
# "Marking" states by writing to ancilla
self.cx(self.out_reg[count], self.ancilla)
# Last constraint
elif count == len(self.single_constraints_objects) - 1:
qargs.append(self.out_reg[count])
self.append(instruction=constraint_block, qargs=qargs)
# Barriers are used for visualization purposes and should be removed before transpiling
if self.insert_barriers:
self.barrier()
# Saving inverse for future uncomputation
qc_dagger = RemoveBarriers()(self.inverse())
qc_dagger.name = "Uncomputation"
# "Marking" states by writing to ancilla
self.ccx(self.out_reg[count - 1], self.out_reg[count], self.ancilla)
# Intermidate constraints
else:
qargs.append(self.out_reg[count + 1])
# Chaining constraints with RCCX gates, to avoid costly MCX gate all over the out qubits
self.append(instruction=constraint_block, qargs=qargs)
self.rccx(self.out_reg[count + 1], self.out_reg[count - 1], self.out_reg[count])
self.append(instruction=constraint_block.inverse(), qargs=qargs)
# Barriers are used for visualization purposes and should be removed before transpiling
if self.insert_barriers:
self.barrier()
# Applying uncomputation
self.append(instruction=qc_dagger, qargs=self.qubits)
|
https://github.com/robinsonvs/tcc-information-systems
|
robinsonvs
|
from qiskit import QuantumCircuit as qc
from qiskit import QuantumRegister as qr
from qiskit import transpile
from qiskit.providers import Backend
from qiskit.result import Counts
from qiskit_ibm_runtime import QiskitRuntimeService
from matplotlib.pyplot import show, subplots, xticks, yticks
from matplotlib.backend_bases import MouseEvent
from math import pi, sqrt
from heapq import nlargest
from qiskit_aer import AerSimulator
"""Feel free to modify the following constants."""
N: int = 5 # Number of qubits
SEARCH_VALUES: set[int] = { 11, 9, 0, 3 } # Set of m nonnegative integers to search for using Grover's algorithm (i.e. TARGETS in base 10)
SHOTS: int = 10000 # Amount of times the algorithm is simulated
FONTSIZE: int = 10 # Histogram's font size
"""Unless you know what you are doing, please do not modify the following constants, otherwise you risk breaking the program."""
TARGETS: set[str] = { f"{s:0{N}b}" for s in SEARCH_VALUES } # Set of m N-qubit binary strings representing target state(s) (i.e. SEARCH_VALUES in base 2)
QUBITS: qr = qr(N, "qubit") # N-qubit quantum register
#BACKEND_NAME: str = "ibmq_qasm_simulator" # Name of backend to run the algorithm on
#BACKEND: Backend = QiskitRuntimeService().backend(BACKEND_NAME) # Backend to run the algorithm on
BACKEND: Backend = AerSimulator()
def print_circuit(circuit: qc, name: str = "") -> None:
"""Print quantum circuit.
Args:
circuit (qc): Quantum circuit to print.
name (str, optional): Quantum circuit's name. Defaults to None.
"""
print(f"\n{name}:" if name else "")
print(f"{circuit}")
def oracle(targets: set[str] = TARGETS, name: str = "Oracle", display_oracle: bool = True) -> qc:
"""Mark target state(s) with negative phase.
Args:
targets (set[str]): N-qubit binary string(s) representing target state(s). Defaults to TARGETS.
name (str, optional): Quantum circuit's name. Defaults to "Oracle".
display_oracle (bool, optional): Whether or not to display oracle. Defaults to True.
Returns:
qc: Quantum circuit representation of oracle.
"""
# Create N-qubit quantum circuit for oracle
oracle = qc(QUBITS, name = name)
for target in targets:
# Reverse target state since Qiskit uses little-endian for qubit ordering
target = target[::-1]
# Flip zero qubits in target
for i in range(N):
if target[i] == "0":
oracle.x(i) # Pauli-X gate
# Simulate (N - 1)-control Z gate
oracle.h(N - 1) # Hadamard gate
oracle.mcx(list(range(N - 1)), N - 1) # (N - 1)-control Toffoli gate
oracle.h(N - 1) # Hadamard gate
# Flip back to original state
for i in range(N):
if target[i] == "0":
oracle.x(i) # Pauli-X gate
# Display oracle, if applicable
if display_oracle: print_circuit(oracle, "ORACLE")
return oracle
def diffuser(name: str = "Diffuser", display_diffuser: bool = True) -> qc:
"""Amplify target state(s) amplitude, which decreases the amplitudes of other states
and increases the probability of getting the correct solution (i.e. target state(s)).
Args:
name (str, optional): Quantum circuit's name. Defaults to "Diffuser".
display_diffuser (bool, optional): Whether or not to display diffuser. Defaults to True.
Returns:
qc: Quantum circuit representation of diffuser (i.e. Grover's diffusion operator).
"""
# Create N-qubit quantum circuit for diffuser
diffuser = qc(QUBITS, name = name)
diffuser.h(QUBITS) # Hadamard gate
diffuser.append(oracle({"0" * N}), list(range(N))) # Oracle with all zero target state
diffuser.h(QUBITS) # Hadamard gate
# Display diffuser, if applicable
if display_diffuser: print_circuit(diffuser, "DIFFUSER")
return diffuser
def grover(oracle: qc = oracle(), diffuser: qc = diffuser(), name: str = "Grover Circuit", display_grover: bool = True) -> qc:
"""Create quantum circuit representation of Grover's algorithm,
which consists of 4 parts: (1) state preparation/initialization,
(2) oracle, (3) diffuser, and (4) measurement of resulting state.
Steps 2-3 are repeated an optimal number of times (i.e. Grover's
iterate) in order to maximize probability of success of Grover's algorithm.
Args:
oracle (qc, optional): Quantum circuit representation of oracle. Defaults to oracle().
diffuser (qc, optional): Quantum circuit representation of diffuser. Defaults to diffuser().
name (str, optional): Quantum circuit's name. Defaults to "Grover Circuit".
display_grover (bool, optional): Whether or not to display grover circuit. Defaults to True.
Returns:
qc: Quantum circuit representation of Grover's algorithm.
"""
# Create N-qubit quantum circuit for Grover's algorithm
grover = qc(QUBITS, name = name)
# Intialize qubits with Hadamard gate (i.e. uniform superposition)
grover.h(QUBITS)
# # Apply barrier to separate steps
grover.barrier()
# Apply oracle and diffuser (i.e. Grover operator) optimal number of times
for _ in range(int((pi / 4) * sqrt((2 ** N) / len(TARGETS)))):
grover.append(oracle, list(range(N)))
grover.append(diffuser, list(range(N)))
# Measure all qubits once finished
grover.measure_all()
# Display grover circuit, if applicable
if display_grover: print_circuit(grover, "GROVER CIRCUIT")
return grover
def outcome(winners: list[str], counts: Counts) -> None:
"""Print top measurement(s) (state(s) with highest frequency)
and target state(s) in binary and decimal form, determine
if top measurement(s) equals target state(s), then print result.
Args:
winners (list[str]): State(s) (N-qubit binary string(s))
with highest probability of being measured.
counts (Counts): Each state and its respective frequency.
"""
print("WINNER(S):")
print(f"Binary = {winners}\nDecimal = {[ int(key, 2) for key in winners ]}\n")
print("TARGET(S):")
print(f"Binary = {TARGETS}\nDecimal = {SEARCH_VALUES}\n")
if not all(key in TARGETS for key in winners): print("Target(s) not found...")
else:
winners_frequency, total = 0, 0
for value, frequency in counts.items():
if value in winners:
winners_frequency += frequency
total += frequency
print(f"Target(s) found with {winners_frequency / total:.2%} accuracy!")
def display_results(results: Counts, combine_other_states: bool = True) -> None:
"""Print outcome and display histogram of simulation results.
Args:
results (Counts): Each state and its respective frequency.
combine_other_states (bool, optional): Whether to combine all non-winning states into 1 bar
labeled "Others" or not. Defaults to True.
"""
# State(s) with highest count and their frequencies
winners = { winner : results.get(winner) for winner in nlargest(len(TARGETS), results, key = results.get) }
# Print outcome
outcome(list(winners.keys()), results)
# X-axis and y-axis value(s) for winners, respectively
winners_x_axis = [ str(winner) for winner in [*winners] ]
winners_y_axis = [ *winners.values() ]
# All other states (i.e. non-winners) and their frequencies
others = {state : frequency for state, frequency in results.items() if state not in winners}
# X-axis and y-axis value(s) for all other states, respectively
other_states_x_axis = "Others" if combine_other_states else [*others]
other_states_y_axis = [ sum([*others.values()]) ] if combine_other_states else [ *others.values() ]
# Create histogram for simulation results
figure, axes = subplots(num = "Grover's Algorithm — Results", layout = "constrained")
axes.bar(winners_x_axis, winners_y_axis, color = "green", label = "Target")
axes.bar(other_states_x_axis, other_states_y_axis, color = "red", label = "Non-target")
axes.legend(fontsize = FONTSIZE)
axes.grid(axis = "y", ls = "dashed")
axes.set_axisbelow(True)
# Set histogram title, x-axis title, and y-axis title respectively
axes.set_title(f"Outcome of {SHOTS} Simulations", fontsize = int(FONTSIZE * 1.45))
axes.set_xlabel("States (Qubits)", fontsize = int(FONTSIZE * 1.3))
axes.set_ylabel("Frequency", fontsize = int(FONTSIZE * 1.3))
# Set font properties for x-axis and y-axis labels respectively
xticks(fontsize = FONTSIZE, family = "monospace", rotation = 0 if combine_other_states else 70)
yticks(fontsize = FONTSIZE, family = "monospace")
# Set properties for annotations displaying frequency above each bar
annotation = axes.annotate("",
xy = (0, 0),
xytext = (5, 5),
xycoords = "data",
textcoords = "offset pixels",
ha = "center",
va = "bottom",
family = "monospace",
weight = "bold",
fontsize = FONTSIZE,
bbox = dict(facecolor = "white", alpha = 0.4, edgecolor = "None", pad = 0)
)
def hover(event: MouseEvent) -> None:
"""Display frequency above each bar upon hovering over it.
Args:
event (MouseEvent): Matplotlib mouse event.
"""
visibility = annotation.get_visible()
if event.inaxes == axes:
for bars in axes.containers:
for bar in bars:
cont, _ = bar.contains(event)
if cont:
x, y = bar.get_x() + bar.get_width() / 2, bar.get_y() + bar.get_height()
annotation.xy = (x, y)
annotation.set_text(y)
annotation.set_visible(True)
figure.canvas.draw_idle()
return
if visibility:
annotation.set_visible(False)
figure.canvas.draw_idle()
# Display histogram
id = figure.canvas.mpl_connect("motion_notify_event", hover)
show()
figure.canvas.mpl_disconnect(id)
if __name__ == "__main__":
# Generate quantum circuit for Grover's algorithm
grover_circuit = grover()
# Simulate Grover's algorithm with a Qiskit backend and get results
#with BACKEND.open_session() as session:
# results = BACKEND.run(transpile(grover_circuit, BACKEND, optimization_level = 2), shots = SHOTS).result()
new_circuit = transpile(grover_circuit, BACKEND)
result = BACKEND.run(new_circuit).result()
results = result.get_counts(grover_circuit)
# Get each state's frequency and display simulation results
display_results(results, False)
|
https://github.com/jdanielescanez/quantum-solver
|
jdanielescanez
|
#!/usr/bin/env python3
# Author: Daniel Escanez-Exposito
from qiskit import QuantumCircuit
from random import vonmisesvariate as random_angle
from qiskit.circuit.library import UGate
from crypto.elgamal.sender import Sender
from crypto.elgamal.receiver import Receiver
from qiskit.quantum_info import Statevector
import qiskit.quantum_info as qi
import numpy as np
ELGAMAL_SIMULATOR = 'ElGamal SIMULATOR'
## An implementation of the ElGamal protocol
## @see https://qiskit.org/textbook/ch-algorithms/quantum-key-distribution.html
class ElGamalAlgorithm:
## Run the implementation of ElGamal protocol
def run(self, message):
msg_qc = QuantumCircuit(1, name='message')
msg_sv = Statevector([complex(x) for x in message.split(',')])
msg_qc.initialize(msg_sv)
u1, u2 = self.public_keys_generation()
# Receiver Bob
bob = Receiver('Bob', u1, u2)
bob.generate_keys()
# Sender Alice
alice = Sender('Alice', u1, u2)
alice.set_message(msg_qc)
alice.generate_keys()
alice.compute_shared_secret(bob.public_key)
# Encryption
c1 = alice.public_key
c2 = alice.get_encripted_message()
# Decryption
bob.compute_shared_secret(c1)
decrypted_message = bob.decrypt_message(c2)
encrypted_message = c2
shared_secret = alice.shared_secret
decrypted_message_sv = qi.Statevector.from_instruction(decrypted_message)
encrypted_message_sv = qi.Statevector.from_instruction(encrypted_message)
return msg_sv, encrypted_message, decrypted_message, encrypted_message_sv, decrypted_message_sv, alice, bob
## Gets random public matrices
def public_keys_generation(self):
u1 = QuantumCircuit(1, name='U1')
u1.append(UGate(random_angle(0, 0), random_angle(0, 0), random_angle(0, 0)), [0])
u2 = QuantumCircuit(1, name='U2')
u2.append(UGate(random_angle(0, 0), random_angle(0, 0), random_angle(0, 0)), [0])
return (u1, u2)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
from qiskit.tools.visualization import circuit_drawer
q = QuantumRegister(1)
c = ClassicalRegister(1)
qc = QuantumCircuit(q, c)
qc.h(q)
qc.measure(q, c)
circuit_drawer(qc, output='mpl', style={'backgroundcolor': '#EEEEEE'})
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit
top = QuantumCircuit(1)
top.x(0);
bottom = QuantumCircuit(2)
bottom.cry(0.2, 0, 1);
tensored = bottom.tensor(top)
tensored.draw('mpl')
|
https://github.com/arian-code/nptel_quantum_assignments
|
arian-code
|
import numpy as np
# Import Qiskit
from qiskit import QuantumCircuit
from qiskit import Aer, transpile
from qiskit.tools.visualization import plot_histogram, plot_state_city
from qiskit import *
from qiskit.tools.monitor import job_monitor
import qiskit.quantum_info as qi
Aer.backends()
simulator = Aer.get_backend('aer_simulator')
# Set initial state to generated statevector
circ = QuantumCircuit(7, 6)
circ.x(6)
circ.barrier()
circ.h(0)
circ.h(1)
circ.h(2)
circ.h(3)
circ.h(4)
circ.h(5)
circ.h(6)
circ.barrier()
circ.x(2)
circ.cx(3,6)
circ.cx(0,6)
circ.cx(5,6)
circ.x(3)
circ.cx(3,6)
circ.x(0)
circ.barrier()
circ.h(0)
circ.h(1)
circ.h(2)
circ.h(3)
circ.h(4)
circ.h(5)
circ.h(6)
circ.barrier()
circ.measure(range(6), range(6))
circ.draw()
# execute the quantum circuit
backend = BasicAer.get_backend('qasm_simulator') # the device to run on
result = backend.run(transpile(circ, backend), shots=1000).result()
counts = result.get_counts(circ)
print(counts)
plot_histogram(counts)
|
https://github.com/qiskit-community/community.qiskit.org
|
qiskit-community
|
from qiskit import *
qc = QuantumCircuit()
qr = QuantumRegister(2,'qreg')
qc.add_register( qr )
qc.qregs
qc.draw(output='mpl')
qc.h()
qc.h( qr[0] )
qc.cx( qr[0], qr[1] );
qc.draw(output='mpl')
vector_sim = Aer.get_backend('statevector_simulator')
Aer.backends()
job = execute( qc, vector_sim )
ket = job.result().get_statevector()
for amplitude in ket:
print(amplitude)
new_qc = QuantumCircuit( qr )
new_qc.initialize( ket, qr )
new_qc.draw(output='mpl')
cr = ClassicalRegister(2,'creg')
qc.add_register(cr)
qc.measure(qr[0],cr[0])
qc.measure(qr[1],cr[1])
qc.draw(output='mpl')
emulator = Aer.get_backend('qasm_simulator')
job = execute( qc, emulator, shots=8192 )
hist = job.result().get_counts()
print(hist)
from qiskit.tools.visualization import plot_histogram
plot_histogram( hist )
job = execute( qc, emulator, shots=10, memory=True )
samples = job.result().get_memory()
print(samples)
qubit = QuantumRegister(8)
bit = ClassicalRegister(8)
circuit = QuantumCircuit(qubit,bit)
circuit.x(qubit[7])
circuit.measure(qubit,bit) # this is a way to do all the qc.measure(qr8[j],cr8[j]) at once
execute( circuit, emulator, shots=8192 ).result().get_counts()
qc = QuantumCircuit(3)
qc.h(1)
qc.draw(output='mpl')
qc = QuantumCircuit(2,1)
qc.h(0)
qc.cx(0,1)
qc.measure(1,0)
qc.draw(output='mpl')
sub_circuit = QuantumCircuit(3, name='toggle_cx')
sub_circuit.cx(0,1)
sub_circuit.cx(1,2)
sub_circuit.cx(0,1)
sub_circuit.cx(1,2)
sub_circuit.draw(output='mpl')
toggle_cx = sub_circuit.to_instruction()
qr = QuantumRegister(4)
new_qc = QuantumCircuit(qr)
new_qc.append(toggle_cx, [qr[1],qr[2],qr[3]])
new_qc.draw(output='mpl')
IBMQ.load_account()
provider = IBMQ.get_provider(hub='ibm-q')
provider.backends()
for backend in provider.backends():
print( backend.status() )
real_device = provider.get_backend('ibmq_16_melbourne')
properties = real_device.properties()
coupling_map = real_device.configuration().coupling_map
from qiskit.providers.aer import noise
noise_model = noise.device.basic_device_noise_model(properties)
qc = QuantumCircuit(2,2)
qc.x(1)
qc.measure(0,0)
qc.measure(1,1)
job = execute(qc, emulator, shots=1024, noise_model=noise_model,
coupling_map=coupling_map,
basis_gates=noise_model.basis_gates)
job.result().get_counts()
|
https://github.com/Naphann/Solving-TSP-Grover
|
Naphann
|
import qiskit
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit import Aer
import numpy as np
from math import floor, ceil
%matplotlib inline
def max_number(arr_size):
return (2 ** arr_size)-1
def check_min_circuit(a, threshold):
max = max_number(a)
foo = max - threshold
binary = format(foo, 'b')[::-1]
print(binary)
extra = a - len(binary)
for i in range(extra):
binary = "0" + binary
print(binary)
for i in range(a):
if int(binary[i])==1:
qc1.x(_q[i])
_q = QuantumRegister(5)
qc1 = QuantumCircuit(_q)
check_min_circuit(5, 20)
qc1.draw()
|
https://github.com/1chooo/Quantum-Oracle
|
1chooo
|
# %% [markdown]
# # 第六章原始程式碼
# %%
#program 6.1a Define classical oracle f1 for unstructured search
def f1(x):
if x=='01':
return '1'
else:
return '0'
print(f1('00'),f1('01'),f1('10'),f1('11'))
# %%
#program 6.1b Define classical oracle f2 for unstructured search
def f2(x):
if x=='001':
return '1'
else:
return '0'
print(f2('000'),f2('001'),f2('010'),f2('011'),f2('100'),f2('101'),f2('110'),f2('111'))
# %%
#program 6.1c Define classical oracle f3 for unstructured search
def f3(x):
if x=='101':
return '1'
else:
return '0'
print(f3('000'),f3('001'),f3('010'),f3('011'),f3('100'),f3('101'),f3('110'),f3('111'))
# %%
#Program 6.1d Solve unstructured search prob. with classical code
import itertools
def unstructured_search(f,n):
iter = itertools.product([0,1], repeat=n)
lst = [''.join(map(str, item)) for item in iter]
for s in lst:
if f(s)=='1':
return s
print(unstructured_search(f1,2))
print(unstructured_search(f2,3))
print(unstructured_search(f3,3))
# %%
#Program 6.2 Define quantum oracle for input solution='00'
from qiskit import QuantumRegister,QuantumCircuit
qrx = QuantumRegister(2,'x')
qc = QuantumCircuit(qrx)
qc.x([0,1])
qc.cz(0,1)
qc.x([0,1])
print("The quantum circuit of phase oracle for input solution='00':")
qc.draw('mpl')
# %%
#Program 6.3 Define quantum oracle for input solution='01'
from qiskit import QuantumRegister,QuantumCircuit
qrx = QuantumRegister(2,'x')
qc = QuantumCircuit(qrx)
qc.x(1)
qc.cz(0,1)
qc.x(1)
print("The quantum circuit of phase oracle for input solution='01':")
qc.draw('mpl')
# %%
#Program 6.4 Define quantum oracle for input solution='10'
from qiskit import QuantumRegister,QuantumCircuit
qrx = QuantumRegister(2,'x')
qc = QuantumCircuit(qrx)
qc.x(0)
qc.cz(1,0)
qc.x(0)
print("The quantum circuit of phase oracle for input solution='10':")
qc.draw('mpl')
# %%
#Program 6.5 Define quantum oracle for input solution='11'
from qiskit import QuantumRegister,QuantumCircuit
qrx = QuantumRegister(2,'x')
qc = QuantumCircuit(qrx)
qc.cz(1,0)
print("The quantum circuit of phase oracle for input solution='11':")
qc.draw('mpl')
# %%
#Program 6.6 Grover alg. with oracle for input solution='10'
from qiskit import QuantumCircuit,execute
from qiskit.providers.aer import AerSimulator
from qiskit.visualization import plot_histogram
qc = QuantumCircuit(2,2)
qc.h([0,1])
qc.barrier()
qc.x(0)
qc.cz(1,0)
qc.x(0)
qc.barrier()
qc.h([0,1])
qc.x([0,1])
qc.cz(0,1)
qc.x([0,1])
qc.h([0,1])
qc.barrier()
qc.measure([0,1],[0,1])
print("The quantum circuit of Grover's algorithm for input solution='10':")
display(qc.draw('mpl'))
sim = AerSimulator()
job=execute(qc, backend=sim, shots=1000)
result = job.result()
counts = result.get_counts(qc)
print("Total counts for qubit states are:",counts)
display(plot_histogram(counts))
# %%
#Program 6.7 Grover alg. with oracle for input solution='101'
from qiskit import QuantumCircuit,execute
from qiskit.providers.aer import AerSimulator
from qiskit.visualization import plot_histogram
from math import pi
qc = QuantumCircuit(3,3)
qc.h([0,1,2])
qc.barrier()
for repeat in range(2):
qc.x(1)
qc.mcp(pi,[0,1],2)
qc.x(1)
qc.barrier()
qc.h([0,1,2])
qc.x([0,1,2])
qc.mcp(pi,[0,1],2)
qc.x([0,1,2])
qc.h([0,1,2])
qc.barrier()
qc.measure([0,1,2],[0,1,2])
print("The quantum circuit of Grover's algorithm for input solution='101':")
display(qc.draw('mpl'))
sim = AerSimulator()
job=execute(qc, backend=sim, shots=1000)
result = job.result()
counts = result.get_counts(qc)
print("Total counts for qubit states are:",counts)
display(plot_histogram(counts))
# %%
#Program 6.8 Solve Hamiltonian cycle prob. for clique-4 with Grover alg.
from qiskit import QuantumCircuit,execute
from qiskit.providers.aer import AerSimulator
from qiskit.visualization import plot_histogram
from math import pi
qc = QuantumCircuit(6,6)
qc.h(range(6))
qc.barrier()
for repeat in range(3):
qc.x([4,5])
qc.mcp(pi,list(range(5)),5)
qc.x([4,5])
qc.barrier()
qc.x([1,3])
qc.mcp(pi,list(range(5)),5)
qc.x([1,3])
qc.barrier()
qc.x([0,2])
qc.mcp(pi,list(range(5)),5)
qc.x([0,2])
qc.barrier()
qc.h(range(6))
qc.x(range(6))
qc.mcp(pi,list(range(5)),5)
qc.x(range(6))
qc.h(range(6))
qc.barrier()
qc.measure(range(6),range(6))
print("The quantum circuit of Grover's algorithm:")
display(qc.draw('mpl'))
sim = AerSimulator()
job=execute(qc, backend=sim, shots=1000)
result = job.result()
counts = result.get_counts(qc)
display(plot_histogram(counts))
print("Total counts for qubit states are:",counts)
sorted_counts=sorted(counts.items(),key=lambda x:x[1], reverse=True)
print("The solutions to the Hamiltonian cycle problem are:")
#find_all_ones=lambda s:[x for x in range(s.find('1'), len(s)) if s[x]=='1']
find_all_ones=lambda s:[x for x in range(len(s)) if s[x]=='1']
for i in range(3): #It is konw there are (4-1)!/2=3 solutions
scstr=sorted_counts[i][0] #scstr: string in sorted_counts
print(scstr,end=' (')
reverse_scstr=scstr[::-1] #reverse scstr for LSB at the right
all_ones=find_all_ones(reverse_scstr)
for one in all_ones[0:-1]:
print('e'+str(one)+'->',end='')
print('e'+str(all_ones[-1])+')')
|
https://github.com/TRSasasusu/qiskit-quantum-zoo
|
TRSasasusu
|
"""Python implementation of Grovers algorithm through use of the Qiskit library to find the value 3 (|11>)
out of four possible values."""
#import numpy and plot library
import matplotlib.pyplot as plt
import numpy as np
# importing Qiskit
from qiskit import IBMQ, Aer, QuantumCircuit, ClassicalRegister, QuantumRegister, execute
from qiskit.providers.ibmq import least_busy
from qiskit.quantum_info import Statevector
# import basic plot tools
from qiskit.visualization import plot_histogram
# define variables, 1) initialize qubits to zero
n = 2
grover_circuit = QuantumCircuit(n)
#define initialization function
def initialize_s(qc, qubits):
'''Apply a H-gate to 'qubits' in qc'''
for q in qubits:
qc.h(q)
return qc
### begin grovers circuit ###
#2) Put qubits in equal state of superposition
grover_circuit = initialize_s(grover_circuit, [0,1])
# 3) Apply oracle reflection to marked instance x_0 = 3, (|11>)
grover_circuit.cz(0,1)
statevec = job_sim.result().get_statevector()
from qiskit_textbook.tools import vector2latex
vector2latex(statevec, pretext="|\\psi\\rangle =")
# 4) apply additional reflection (diffusion operator)
grover_circuit.h([0,1])
grover_circuit.z([0,1])
grover_circuit.cz(0,1)
grover_circuit.h([0,1])
# 5) measure the qubits
grover_circuit.measure_all()
# Load IBM Q account and get the least busy backend device
provider = IBMQ.load_account()
device = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and
not x.configuration().simulator and x.status().operational==True))
print("Running on current least busy device: ", device)
from qiskit.tools.monitor import job_monitor
job = execute(grover_circuit, backend=device, shots=1024, optimization_level=3)
job_monitor(job, interval = 2)
results = job.result()
answer = results.get_counts(grover_circuit)
plot_histogram(answer)
#highest amplitude should correspond with marked value x_0 (|11>)
|
https://github.com/zeynepCankara/Introduction-Quantum-Programming
|
zeynepCankara
|
#
# your code is here
# (you may find the values by hand (in mind) as well)
#
import numpy as np
v = np.array([0, -0.1, 0.3, 0.4, 0.5])
v_square = v ** 2
print(v_square)
a = 1 - np.sum(v_square[1:])
a = np.sqrt(a)
print("a: "+ str(a))
u = np.array([1/np.sqrt(2), -1/np.sqrt(3)])
u_square = u ** 2
print(u_square)
b0 = 1/(1 - np.sum(u_square))
print("b: " + str(b0))
#%%writefile FILENAME.py
# for storing the content of this cell,
# comment out the the first line (by modifying the FILENAME)
# and then execute the cell
#
# later, you can execute your saved content by using %run FILENAME.py
#
#
# you may define your first function in a separate cell
# and then save it to a file for using it later
#
from random import randrange
def random_quantum_state():
# quantum state
quantum_state=[0,0]
r = randrange(101)
r = r / 100
r = np.sqrt(r)
if randrange(2) == 0: # randomly make the value negative
r = -1 * r
quantum_state[0] = r
# second entry
quantum_state[1] = np.sqrt(1 - r**2)
return quantum_state
#
# your code is here
#
quantum_state = random_quantum_state()
print(quantum_state)
hadamard_matrix = np.array([[(1/(np.sqrt(2))), (1/(np.sqrt(2)))],[(1/(np.sqrt(2))), (-1/(np.sqrt(2)))]])
new_quantum_state = np.matmul(hadamard_matrix, np.array(quantum_state))
print(new_quantum_state)
def verify_quantum_state(quantum_state):
square_of_state = np.power(quantum_state, 2)
summation = np.sum(square_of_state)
return np.sqrt(summation)
print(verify_quantum_state(quantum_state))
print("should be close to 1: " + str(verify_quantum_state(new_quantum_state)))
results = []
for test in range(100):
quantum_state = random_quantum_state()
sums = verify_quantum_state(quantum_state)
results.append(sums)
summation = np.sum(np.array(sums))
print(summation)
|
https://github.com/jdanielescanez/quantum-solver
|
jdanielescanez
|
import sys, os
sys.path.append(os.path.dirname(os.path.realpath(__file__)) + '/../../')
from composer.qs_circuit import QSCircuit
from qiskit import execute, BasicAer
SIZE = 3
SIZE_OUTPUT = 2 ** SIZE
for i in range(0, 2 ** SIZE):
a = format(i, '0' + str(SIZE) + 'b')
a_indexes = list(range(0, SIZE))
flipped_a_indexes = list(range(SIZE, 2 * SIZE))
output_indexes = list(range(2 * SIZE, 2 * SIZE + SIZE_OUTPUT))
aux_index = 2 * SIZE + SIZE_OUTPUT
CIRCUIT_SIZE = 2 * SIZE + SIZE_OUTPUT + 1
qc = QSCircuit(CIRCUIT_SIZE)
qc.set_reg(a[::-1], a_indexes)
qc.decoder(a_indexes, output_indexes, flipped_a_indexes, aux_index)
qc.measure(output_indexes, range(len(output_indexes)))
# print(qc)
backend = BasicAer.get_backend('qasm_simulator')
job = execute(qc, backend, shots=1)
counts = job.result().get_counts(qc)
print(a, '-', list(counts.keys())[0][-SIZE_OUTPUT:])
|
https://github.com/wyqian1027/Qiskit-Fall-Fest-USC-2022
|
wyqian1027
|
import numpy as np
from qiskit import QuantumCircuit, Aer, execute
from qiskit.visualization import plot_bloch_multivector, array_to_latex
from grader import *
language(False)
phi_plus = QuantumCircuit(2)
phi_plus.h(0)
phi_plus.cnot(0, 1)
phi_plus.draw('mpl')
# Let's see the result
backend = Aer.get_backend('statevector_simulator')
result = execute(phi_plus, backend).result().get_statevector()
array_to_latex(result)
phi_minus = QuantumCircuit(2)
##### ==================================
# Write your solution in here.
phi_minus.h(0)
phi_minus.z(0)
phi_minus.cnot(0, 1)
##### ==================================
phi_minus.draw('mpl')
# This cell will tell you if what you did gives the correct result.
# Just take it as an indication, the tests do not take into consideration every possible option
# If you think that your answer is (in)correct and the grader says different, just ask me please
# Don't try to tamper with the code, please :)
ex1_grader(phi_minus)
psi_plus = QuantumCircuit(2)
##### ==================================
# Write your solution in here.
psi_plus.h(0)
psi_plus.x(1)
psi_plus.cnot(0, 1)
##### ==================================
psi_plus.draw('mpl')
ex2_grader(psi_plus)
psi_minus = QuantumCircuit(2)
##### ==================================
# Write your solution in here.
psi_minus.h(0)
psi_minus.x(1)
psi_minus.z(0)
psi_minus.cnot(0, 1)
##### ==================================
psi_minus.draw('mpl')
ex3_grader(psi_minus)
GHZ = QuantumCircuit(3)
##### ==================================
# Write your solution in here.
GHZ.h(0)
GHZ.cnot(0, 1)
GHZ.cnot(0, 2)
##### ==================================
GHZ.draw('mpl')
ex4_grader(GHZ)
Even = QuantumCircuit(3)
##### ==================================
# Write your solution in here.
Even.h(0)
Even.h(1)
Even.cnot(0, 2)
Even.cnot(1, 2)
##### ==================================
Even.draw('mpl')
ex5_grader(Even)
Odd = QuantumCircuit(3)
##### ==================================
# Write your solution in here.
Odd.h(0)
Odd.h(1)
Odd.x(2)
Odd.cnot(0, 2)
Odd.cnot(1, 2)
##### ==================================
Odd.draw('mpl')
ex6_grader(Odd)
def measure_z_axis(qc, qubit, cbit): #Measurements have to be saved in classical bits
qc.measure(qubit, cbit)
def measure_x_axis(qc, qubit, cbit):
##### ==================================
# Write your solution in here.
qc.h(qubit)
qc.measure(qubit, cbit)
##### ==================================
ex7_grader(measure_x_axis)
def expectation_value_single_qubit(qc, nshots=8092):
# Run the given circuit that is already measuring the selected basis
backend_shots = Aer.get_backend('qasm_simulator')
counts = execute(qc, backend_shots, shots=nshots).result().get_counts() #Counts is a dictionary that contains the number of zeros and the number of ones measured
# This is just to make things easier in your solution
if '1' not in counts.keys():
counts['1'] = 0
if '0' not in counts.keys():
counts['0'] = 0
# Get the number of times that 0 and 1 were measured
n_zeros = counts['0']
n_ones = counts['1']
# Compute the probabilities
p_0 = n_zeros/nshots
p_1 = n_ones/nshots #OR 1-p_0
expectation_value = 1*p_0+(-1)*p_1
return expectation_value
# Measure <Z> over a state that you like
qc_z = QuantumCircuit(1,1)
measure_z_axis(qc_z, 0, 0)
print('<Z>=', expectation_value_single_qubit(qc_z))
qc_z.draw('mpl')
# Measure <X> over a state that you like
qc_x = QuantumCircuit(1,1)
measure_x_axis(qc_x, 0, 0)
print('<X>=', expectation_value_single_qubit(qc_x))
qc_x.draw('mpl')
##### ==================================
# Write your solution in here.
measure_strings = ['ZZ', 'ZX', 'XZ', 'XX']
# Create bell state circuit
qc = QuantumCircuit(2,2)
qc.h(0)
qc.cnot(0, 1)
# For each of the operators that we want to measure (ZZ, ZX, XZ and XX) create a new circuit (maybe using qc.copy())
# that measures along that axis.
chsh_circuits = []
for string in measure_strings:
qc1 = qc.copy()
if string[0] == 'Z':
measure_z_axis(qc1, 0, 0)
if string[0] == 'X':
measure_x_axis(qc1, 0, 0)
if string[1] == 'Z':
measure_z_axis(qc1, 1, 1)
if string[1] == 'X':
measure_x_axis(qc1, 1, 1)
chsh_circuits.append(qc1)
##### ==================================
chsh_circuits[0].draw('mpl')
chsh_circuits[1].draw('mpl')
chsh_circuits[2].draw('mpl')
chsh_circuits[3].draw('mpl')
# I couldn't come up with tests that would not give the answer away if you looked at the code so you are on your own here!
# We can run all the circuits at the same time and then post process the data
nshots = 8092 # The more shots, the less error
backend_shots = Aer.get_backend('qasm_simulator')
counts_list = execute(chsh_circuits, backend_shots, shots=nshots).result().get_counts()
counts_list
##### ==================================
# Write your solution in here.
exp_dict = {}
# For each of the circuits, take the counts that you got from that circuit, compute the probability
# of each state and combine them together being very careful of which sign goes with which term
for i in range(len(chsh_circuits)):
string = measure_strings[i] #ZZ, ZX, XZ and XX
counts = counts_list[i]
exp = 0.
for element in counts:
parity = (-1)**(int(element[0])+int(element[1]))
#print(element, parity)
exp += counts[element]*parity
exp_dict[string] = exp/nshots
# You might want to take some inspiration from the function expectation_value_single_qubit
# If you are completely lost and don't know how to solve this, just ask
##### ==================================
# If you don't know if your answer is correct you can compute the results by hand
# (it's probably easier than doing this) and check if everything is working
##### ==================================
# Write your solution in here.
exp_AB = np.sqrt(1/2)*(exp_dict['ZZ']-exp_dict['XZ'])
exp_Ab = np.sqrt(1/2)*(exp_dict['ZX']-exp_dict['XX'])
exp_aB = np.sqrt(1/2)*(exp_dict['ZZ']+exp_dict['XZ'])
exp_ab = np.sqrt(1/2)*(exp_dict['ZX']+exp_dict['XX'])
CHSH = exp_AB - exp_Ab + exp_aB + exp_ab
##### ==================================
print('Your result is <CHSH>=', CHSH)
print('The correct result is <CHSH>=', 2*np.sqrt(2))
##### ==================================
# Write your solution in here.
Can_entanglement_be_teleported = True #Write True or False :D
##### ==================================
# There is no grader for this question hehe
##### ==================================
# Write your solution in here.
Where_did_the_bell_pair_go = 'To the last two qubits'
##### ==================================
# There is no grader for this question hehe
##### ==================================
# Write your solution in here.
##### ==================================
import qiskit.tools.jupyter
%qiskit_version_table
|
https://github.com/C2QA/bosonic-qiskit
|
C2QA
|
# To use the package locally, add the C2QA repository's root folder to the path prior to importing c2qa.
import os
import sys
module_path = os.path.abspath(os.path.join("../.."))
if module_path not in sys.path:
sys.path.append(module_path)
# Cheat to get MS Visual Studio Code Jupyter server to recognize Python venv
module_path = os.path.abspath(os.path.join("../../venv/Lib/site-packages"))
if module_path not in sys.path:
sys.path.append(module_path)
import c2qa
import qiskit
from qiskit import QuantumCircuit
from qiskit.circuit import Gate
from math import pi
qc = QuantumCircuit(2)
qmr0 = c2qa.QumodeRegister(num_qumodes=1, num_qubits_per_qumode=2)
qr0 = qiskit.QuantumRegister(size=1)
circuit0 = c2qa.CVCircuit(qmr0, qr0)
# Initialize your qubit (should have no effect on Fock state Wigner function)
circuit0.initialize([1,0], qr0[0])
# circuit0.initialize([0,1], qr0[0])
# Initialize the qumode to a zero Fock sate
circuit0.cv_initialize(0, qmr0[0])
# ... Your circtuit here ...
state0, _, _ = c2qa.util.simulate(circuit0)
print(state0)
# c2qa.wigner.plot_wigner_function() will perform a partial trace to separate the qumode from the qubit state for you, the call below is to log its output as an example.
print(c2qa.util.trace_out_qubits(circuit0, state0))
c2qa.wigner.plot_wigner(circuit0, state0)
qmr1 = c2qa.QumodeRegister(num_qumodes=1, num_qubits_per_qumode=2)
qr1 = qiskit.QuantumRegister(size=1)
circuit1 = c2qa.CVCircuit(qmr1, qr1)
# Initialize your qubit (should have no effect on Fock state Wigner function)
circuit1.initialize([1,0], qr1[0])
# circuit1.initialize([0,1], qr1[0])
# Initialize the qumode to a one Fock sate
circuit1.cv_initialize(1, qmr1[0])
# ... Your circtuit here ...
state1, _, _ = c2qa.util.simulate(circuit1)
print(state1)
# c2qa.wigner.plot_wigner_function() will perform a partial trace to separate the qumode from the qubit state for you, the call below is to log its output as an example.
print(c2qa.util.trace_out_qubits(circuit1, state1))
c2qa.wigner.plot_wigner(circuit1, state1)
import numpy
qmr2 = c2qa.QumodeRegister(num_qumodes=1, num_qubits_per_qumode=2)
qr2 = qiskit.QuantumRegister(size=1)
circuit2 = c2qa.CVCircuit(qmr2, qr2)
# Initialize your qubit (should have no effect on Fock state Wigner function)
circuit2.initialize([1,0], qr2[0])
# circuit1.initialize([0,1], qr1[0])
# Initialize the qumode to a zero Fock sate (ie. the vaccuum)
circuit2.cv_initialize(0, qmr2[0])
# Displace the vaccuum using the displacement gate
# Displace the quasi-probability distribution along the position axis x with a real number
# circuit2.cv_d(numpy.pi/2,qmr1[0])
# Displace the quasi-probability distribution along the momentum axis with an imaginary number
circuit2.cv_d(numpy.pi/2*1j,qmr2[0])
state2, _, _ = c2qa.util.simulate(circuit2)
print(state2)
# c2qa.wigner.plot_wigner_function() will perform a partial trace to separate the qumode from the qubit state for you, the call below is to log its output as an example.
print(c2qa.util.trace_out_qubits(circuit2, state2))
c2qa.wigner.plot_wigner(circuit2, state2)
# Not the expected behavior of displacing the vaccuum, which should simply shift the quasi-probability distribution without distorting it.
# Augment the number of qubits per mode
qmr3 = c2qa.QumodeRegister(num_qumodes=1, num_qubits_per_qumode=6)
qr3 = qiskit.QuantumRegister(size=1)
circuit3 = c2qa.CVCircuit(qmr3, qr3)
# Initialize your qubit (should have no effect on Fock state Wigner function)
circuit3.initialize([1,0], qr3[0])
# circuit1.initialize([0,1], qr1[0])
# Initialize the qumode to a zero Fock sate (ie. the vaccuum)
circuit3.cv_initialize(0, qmr3[0])
# Displace the vaccuum using the displacement gate
# Displace the quasi-probability distribution along the position axis x with a real number
# circuit2.cv_d(numpy.pi/2,qmr1[0])
# Displace the quasi-probability distribution along the momentum axis with an imaginary number
circuit3.cv_d(numpy.pi/2*1j,qmr3[0])
state3, _, _ = c2qa.util.simulate(circuit3)
occ =c2qa. util.stateread(state3, 1, 1, 6)
print(state3)
# c2qa.wigner.plot_wigner_function() will perform a partial trace to separate the qumode from the qubit state for you, the call below is to log its output as an example.
print(c2qa.util.trace_out_qubits(circuit3, state3))
c2qa.wigner.plot_wigner(circuit3, state3)
# This is the expected behavior of displacing the vaccuum:
# a simple shift the quasi-probability distribution without distorting it, creating a coherent state.
def cv_ecdX(qc, qbr, qmr, qm, alpha):
qc.ry(-np.pi / 2, qbr[0])
qc.cv_ecd(alpha/2, qmr[qm], qbr[0])
qc.ry(np.pi / 2, qbr[0])
return qc
def cv_ecdY(qc, qbr, qmr, qm, alpha):
qc.rx(-np.pi / 2, qbr[0])
qc.cv_ecd(alpha/2, qmr[qm], qbr[0])
qc.rx(np.pi / 2, qbr[0])
return qc
import numpy as np
# Augment the number of qubits per mode
qmr = c2qa.QumodeRegister(num_qumodes=2, num_qubits_per_qumode=6)
qbr = qiskit.QuantumRegister(size=1)
qc = c2qa.CVCircuit(qmr, qbr)
# Initialize your qubit (should have no effect on Fock state Wigner function)
qc.initialize([1,0], qbr[0])
# initialise in x (just h) or y eigenstate
qc.h(qbr[0])
qc.rz(np.pi/2,qbr[0])
# Initialize the qumode to a zero Fock sate (ie. the vaccuum)
qc.cv_initialize(0, qmr[0])
qc.cv_initialize(0, qmr[1])
alpha = 1j/2
qc = cv_ecdX(qc, qbr, qmr, 0, alpha)
qc = cv_ecdY(qc, qbr, qmr, 1, alpha)
qc = cv_ecdX(qc, qbr, qmr, 0, -alpha)
qc = cv_ecdY(qc, qbr, qmr, 1, -alpha)
alpha = 1/2
qc = cv_ecdX(qc, qbr, qmr, 0, alpha)
qc = cv_ecdY(qc, qbr, qmr, 1, alpha)
qc = cv_ecdX(qc, qbr, qmr, 0, -alpha)
qc = cv_ecdY(qc, qbr, qmr, 1, -alpha)
state, _, _ = c2qa.util.simulate(qc)
# # c2qa.wigner.plot_wigner_function() will perform a partial trace to separate the qumode from the qubit state for you, the call below is to log its output as an example.
# print(c2qa.util.trace_out_qubits(qc, state))
c2qa.wigner.plot_wigner(qc, state, method="iterative")
|
https://github.com/soultanis/Quantum-Database-Search
|
soultanis
|
operation DatabaseOracleFromInts(
markedElement : Int,
markedQubit: Qubit,
databaseRegister: Qubit[]
) : Unit {
body (...) {
(ControlledOnInt(markedElement, X))(databaseRegister, markedQubit);
}
adjoint auto;
controlled auto;
adjoint controlled auto;
}
ControlledOnInt?
operation PrepareDatabaseRegister(
markedElement : Int,
idxMarkedQubit: Int,
startQubits: Qubit[]
) : Unit {
body (...) {
let flagQubit = startQubits[idxMarkedQubit];
let databaseRegister = Exclude([idxMarkedQubit], startQubits);
// Apply 𝑈.
ApplyToEachCA(H, databaseRegister);
// Apply 𝐷.
DatabaseOracleFromInts(markedElement, flagQubit, databaseRegister);
}
adjoint auto;
controlled auto;
adjoint controlled auto;
}
function GroverStatePrepOracle(markedElement : Int) : StateOracle {
return StateOracle(PrepareDatabaseRegister(markedElement, _, _));
}
function GroverSearch(
markedElement: Int,
nIterations: Int,
idxMarkedQubit: Int
) : (Qubit[] => Unit : Adjoint, Controlled) {
return AmpAmpByOracle(nIterations, GroverStatePrepOracle(markedElement), idxMarkedQubit);
}
operation ApplyQuantumSearch() : (Result, Int) {
let nIterations = 6;
let nDatabaseQubits = 6;
let markedElement = 3;
// Allocate variables to store measurement results.
mutable resultSuccess = Zero;
mutable numberElement = 0;
using ((markedQubit, databaseRegister) = (Qubit(), Qubit[nDatabaseQubits])) {
// Implement the quantum search algorithm.
(GroverSearch(markedElement, nIterations, 0))([markedQubit] + databaseRegister);
// Measure the marked qubit. On success, this should be One.
set resultSuccess = MResetZ(markedQubit);
// Measure the state of the database register post-selected on
// the state of the marked qubit.
let resultElement = MultiM(databaseRegister);
set numberElement = PositiveIntFromResultArr(resultElement);
// These reset all qubits to the |0〉 state, which is required
// before deallocation.
ResetAll(databaseRegister);
}
// Returns the measurement results of the algorithm.
return (resultSuccess, numberElement);
}
%simulate ApplyQuantumSearch
%version
|
https://github.com/indian-institute-of-science-qc/qiskit-aakash
|
indian-institute-of-science-qc
|
# -*- coding: utf-8 -*-
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2018.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Utils for using with Qiskit unit tests."""
import logging
import os
import unittest
from enum import Enum
from qiskit import __path__ as qiskit_path
class Path(Enum):
"""Helper with paths commonly used during the tests."""
# Main SDK path: qiskit/
SDK = qiskit_path[0]
# test.python path: qiskit/test/python/
TEST = os.path.normpath(os.path.join(SDK, '..', 'test', 'python'))
# Examples path: examples/
EXAMPLES = os.path.normpath(os.path.join(SDK, '..', 'examples'))
# Schemas path: qiskit/schemas
SCHEMAS = os.path.normpath(os.path.join(SDK, 'schemas'))
# VCR cassettes path: qiskit/test/cassettes/
CASSETTES = os.path.normpath(os.path.join(TEST, '..', 'cassettes'))
# Sample QASMs path: qiskit/test/python/qasm
QASMS = os.path.normpath(os.path.join(TEST, 'qasm'))
def setup_test_logging(logger, log_level, filename):
"""Set logging to file and stdout for a logger.
Args:
logger (Logger): logger object to be updated.
log_level (str): logging level.
filename (str): name of the output file.
"""
# Set up formatter.
log_fmt = ('{}.%(funcName)s:%(levelname)s:%(asctime)s:'
' %(message)s'.format(logger.name))
formatter = logging.Formatter(log_fmt)
# Set up the file handler.
file_handler = logging.FileHandler(filename)
file_handler.setFormatter(formatter)
logger.addHandler(file_handler)
# Set the logging level from the environment variable, defaulting
# to INFO if it is not a valid level.
level = logging._nameToLevel.get(log_level, logging.INFO)
logger.setLevel(level)
class _AssertNoLogsContext(unittest.case._AssertLogsContext):
"""A context manager used to implement TestCase.assertNoLogs()."""
# pylint: disable=inconsistent-return-statements
def __exit__(self, exc_type, exc_value, tb):
"""
This is a modified version of TestCase._AssertLogsContext.__exit__(...)
"""
self.logger.handlers = self.old_handlers
self.logger.propagate = self.old_propagate
self.logger.setLevel(self.old_level)
if exc_type is not None:
# let unexpected exceptions pass through
return False
if self.watcher.records:
msg = 'logs of level {} or higher triggered on {}:\n'.format(
logging.getLevelName(self.level), self.logger.name)
for record in self.watcher.records:
msg += 'logger %s %s:%i: %s\n' % (record.name, record.pathname,
record.lineno,
record.getMessage())
self._raiseFailure(msg)
|
https://github.com/BoschSamuel/QizGloria
|
BoschSamuel
|
from qiskit import *
import torch
from torch.autograd import Function
class myExp(Function):
@staticmethod
def forward(ctx, i):
result = i.exp()
ctx.save_for_backward(result)
return result
@staticmethod
def backward(ctx, grad_output):
result, = ctx.saved_tensors
return grad_output * result
x = torch.tensor([[1., -1.], [1., 1.]], requires_grad=True)
myexp = myExp.apply
y1 = x**2
y2 = myexp(y1).sum().backward()
x.grad
np.ones(1)
import numpy as np
import qiskit
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
import matplotlib.pyplot as plt
%matplotlib inline
parameters = np.random.rand(3)
shots = 1000
circuit = QuantumCircuit(2, 2)
def add_measurements(circuit):
nr_qubits = circuit.n_qubits
circuit.measure(range(nr_qubits), range(nr_qubits))
return circuit
def add_x_rotation(circuit):
nr_qubits = circuit.n_qubits
for i in range(nr_qubits):
circuit.rx(np.pi/2, i)
return circuit
def add_y_rotation(circuit):
nr_qubits = circuit.n_qubits
for i in range(nr_qubits):
circuit.ry(np.pi/2, i)
return circuit
def execute_job(circuit, shots):
simulator = Aer.get_backend('qasm_simulator')
job = execute(circuit, simulator, shots=shots)
result = job.result()
counts = result.get_counts(circuit)
return counts
def N_qubit_expectation(circuit, shots, measurement='Z'):
if measurement=='Z':
print("Measure in Z")
nr_qubits = circuit.n_qubits
circuit = add_measurements(circuit)
counts = execute_job(circuit, shots)
return N_qubit_expectation_Z(counts, shots, nr_qubits)
if measurement=='X':
print("Measure in X")
nr_qubits = circuit.n_qubits
circuit = add_x_rotation(circuit)
#circuit.h(0)
circuit = add_measurements(circuit)
counts = execute_job(circuit, shots)
return N_qubit_expectation_Z(counts, shots, nr_qubits), circuit
if measurement=='Y':
nr_qubits = circuit.n_qubits
circuit = add_y_rotation(circuit)
circuit = add_measurements(circuit)
counts = execute_job(circuit, shots)
return N_qubit_expectation_Z(counts, shots, nr_qubits)
else:
print("Measurement type not yet defined")
def N_qubit_expectation_Z(counts, shots, nr_qubits):
expects = np.zeros(nr_qubits)
for key in counts.keys():
perc = counts[key]/shots
check = np.array([(float(key[i])-1/2)*2*perc for i in range(nr_qubits)])
expects += check
return expects
def one_qubit_expectation_Z(counts, shots):
probs = sorted([(i, c/shots) for i, c in counts.items()])
P = np.float64(np.array(probs)[:, 1])
print(P[0], P[1])
return P[0]*1 + P[1]*-1
def one_qubit_error(counts, shots, Z_traget):
return (one_qubit_expectation_Z(counts, shots)- Z_target)**2
def N_qubit_error(counts, shots, nr_qubits, target_array):
return ((N_qubit_expectation_Z(counts, shots, nr_qubits)-target_array)**2).sum()
#circuit = add_measurements(circuit)
#counts = execute_job(circuit, 1000)
expects, circuit = N_qubit_expectation(circuit, shots, measurement="X")
circuit.draw()
print(expects, circuit)
circuit.n_qubits
class QiskitCircuit():
def __init__(self,shots):
self.theta = Parameter('Theta')
self.phi = Parameter('Phi')
self.lam = Parameter('Lambda')
self.shots = shots
def create_circuit():
qr = QuantumRegister(1,'q')
cr = ClassicalRegister(1,'c')
ckt = QuantumCircuit(qr,cr)
ckt.h(qr[0])
ckt.barrier()
ckt.u3(self.theta,self.phi,self.lam,qr[0])
ckt.barrier()
ckt.measure(qr,cr)
return ckt
self.circuit = create_circuit()
def N_qubit_expectation_Z(self,counts, shots, nr_qubits):
expects = np.zeros(nr_qubits)
for key in counts.keys():
perc = counts[key]/shots
check = np.array([(float(key[i])-1/2)*2*perc for i in range(nr_qubits)])
expects += check
return expects
def bind(self,parameters):
[self.theta,self.phi,self.lam] = parameters
self.circuit.data[2][0]._params = parameters
return self.circuit
def run(self):
backend = Aer.get_backend('qasm_simulator')
job_sim = execute(self.circuit,backend,shots=self.shots)
result_sim = job_sim.result()
counts = result_sim.get_counts(self.circuit)
return self.N_qubit_expectation_Z(counts,self.shots,1)
class TorchCircuit(Function):
@staticmethod
def forward(ctx, i):
if not hasattr(ctx, 'QiskitCirc'):
ctx.QiskitCirc = QiskitCircuit(shots=100000)
ckt = ctx.QiskitCirc.bind([i[0][0].item(), i[0][1].item(), i[0][2].item()])
exp_value = ctx.QiskitCirc.run()
result = torch.tensor([[exp_value]])
ctx.save_for_backward(result, i)
print(result)
return result
@staticmethod
def backward(ctx, grad_output):
eps = 0.01
forward_tensor, i = ctx.saved_tensors
input_numbers = [i[0][0].item(), i[0][1].item(), i[0][2].item()]
gradient = [0,0,0]
for k in range(len(input_numbers)):
input_eps = input_numbers
input_eps[k] = input_numbers[k] + eps
_ckt = ctx.QiskitCirc.bind(input_eps)
exp_value = ctx.QiskitCirc.run()[0]
result_eps = torch.tensor([[exp_value]])
gradient_result = (exp_value - forward_tensor[0][0].item())
gradient[k] = gradient_result
result = torch.tensor([gradient])
return result.float() * grad_output.float()
# useful additional packages
import matplotlib.pyplot as plt
import matplotlib.axes as axes
%matplotlib inline
import numpy as np
import networkx as nx
from qiskit import BasicAer
from qiskit.tools.visualization import plot_histogram
from qiskit.aqua import run_algorithm
from qiskit.aqua.input import EnergyInput
from qiskit.aqua.translators.ising import max_cut, tsp
from qiskit.aqua.algorithms import VQE, ExactEigensolver
from qiskit.aqua.components.optimizers import SPSA
from qiskit.aqua.components.variational_forms import RY
from qiskit.aqua import QuantumInstance
# setup aqua logging
import logging
from qiskit.aqua import set_qiskit_aqua_logging
# Generating a graph of 4 nodes
n=4 # Number of nodes in graph
G=nx.Graph()
G.add_nodes_from(np.arange(0,n,1))
elist=[(0,1,1.0),(0,2,1.0),(0,3,1.0),(1,2,1.0),(2,3,1.0)]
# tuple is (i,j,weight) where (i,j) is the edge
G.add_weighted_edges_from(elist)
colors = ['r' for node in G.nodes()]
pos = nx.spring_layout(G)
default_axes = plt.axes(frameon=True)
nx.draw_networkx(G, node_color=colors, node_size=600, alpha=.8, ax=default_axes, pos=pos)
from docplex.mp.model import Model
from qiskit.aqua.translators.ising import docplex
n=4
w = np.zeros([n,n])
for i in range(n):
for j in range(n):
temp = G.get_edge_data(i,j,default=0)
if temp != 0:
w[i,j] = temp['weight']
print(w)
qubitOp, offset = max_cut.get_max_cut_qubitops(w)
algo_input = EnergyInput(qubitOp)
mdl = Model(name='max_cut')
x = {i: mdl.binary_var(name='x_{0}'.format(i)) for i in range(n)}
# Object function
max_cut_func = mdl.sum(w[i,j]* x[i] * ( 1 - x[j] ) for i in range(n) for j in range(n))
mdl.maximize(max_cut_func)
# No constraints for Max-Cut problems.
qubitOp_docplex, offset_docplex = docplex.get_qubitops(mdl)
seed = 10598
spsa = SPSA(max_trials=300)
ry = RY(qubitOp.num_qubits, depth=1, entanglement='linear')
vqe = VQE(qubitOp, ry, spsa)
print(vqe.setting)
backend = BasicAer.get_backend('statevector_simulator')
quantum_instance = QuantumInstance(backend, seed_simulator=seed, seed_transpiler=seed)
parameters = np.random.rand(8)
circuits = vqe.construct_circuit(parameters)
print(circuits[0])
algorithm_cfg = {'name': 'VQE'}
dictio = {'problem': {'name': 'ising'},'algorithm': algorithm_cfg}
vqe.energy_evaluation(parameters)
import torch
import numpy as np
from torchvision import datasets, transforms
batch_size_train = 64
batch_size_test = 1000
learning_rate = 0.01
momentum = 0.5
log_interval = 10
torch.backends.cudnn.enabled = False
transform=torchvision.transforms.Compose([
torchvision.transforms.ToTensor()])
mnist_trainset = datasets.MNIST(root='./data', train=True, download=True, transform=transform)
labels = mnist_trainset.targets #get labels
labels = labels.numpy()
idx1 = np.where(labels == 0) #search all zeros
idx2 = np.where(labels == 1) # search all ones
idx = np.concatenate((idx1[0],idx2[0])) # concatenate their indices
mnist_trainset.targets = labels[idx]
mnist_trainset.data = mnist_trainset.data[idx]
print(mnist_trainset)
train_loader = torch.utils.data.DataLoader(mnist_trainset, batch_size=batch_size_train, shuffle=True)
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
self.conv2 = nn.Conv2d(10, 20, kernel_size=5)
self.conv2_drop = nn.Dropout2d()
self.fc1 = nn.Linear(320, 50)
self.fc2 = nn.Linear(50, 2)
def forward(self, x):
x = F.relu(F.max_pool2d(self.conv1(x), 2))
x = F.relu(F.max_pool2d(self.conv2_drop(self.conv2(x)), 2))
x = x.view(-1, 320)
x = F.relu(self.fc1(x))
x = F.dropout(x, training=self.training)
x = self.fc2(x)
return F.softmax(x)
network = Net()
optimizer = optim.SGD(network.parameters(), lr=learning_rate,
momentum=momentum)
epochs = 3
for epoch in range(epochs):
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.zero_grad()
output = network(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
print(loss)
length = target.shape[0]
print(length)
for i in range(length):
print(target[i], output[i][1])
|
https://github.com/abbarreto/qiskit2
|
abbarreto
|
%run init.ipynb
from qiskit import *
nshots = 8192
qiskit.IBMQ.load_account()
provider = qiskit.IBMQ.get_provider(hub = 'ibm-q-research-2', group = 'federal-uni-sant-1', project = 'main')
simulator = Aer.get_backend('qasm_simulator')
device = provider.get_backend('ibmq_lima')
from qiskit.tools.visualization import plot_histogram
from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter
from qiskit.tools.monitor import job_monitor, backend_overview, backend_monitor
def qc_ent_dist():
qc = QuantumCircuit(2, name = 'E dist')
qc.h([0]); qc.cx(0, 1)
return qc
qc_ent_dist_ = qc_ent_dist(); qc_ent_dist_.draw(output = 'mpl')
def qc_bb_cb():
qc = QuantumCircuit(2, name = 'BB->CB')
qc.cx(0,1); qc.h(0)
return qc
qc_bb_cb_ = qc_bb_cb(); qc_bb_cb_.draw(output = 'mpl')
def qc_teleport(th, ph, lb):
qc = QuantumCircuit(3)
qc_ent_dist_ = qc_ent_dist(); qc.append(qc_ent_dist_, [1, 2]) # distribuição de emaranhamento
qc.barrier()
qc.u(th, ph, lb, [0]) # Preparação do estado a ser teletransportado
qc.barrier()
qc_bb_cb_ = qc_bb_cb(); qc.append(qc_bb_cb_, [0, 1]) # Base de Bell para base computacional
qc.barrier()
qc.cx(1, 2); qc.cz(0, 2) # infor clássica + unitária de Bob
return qc
qc_teleport_ = qc_teleport(0.1, 0.5, 0); qc_teleport_.decompose().draw(output = 'mpl')
import numpy as np
import math
th, ph, lb = 0, 0, 0;
rho_teo = np.array([[math.cos(th/2)**2, (math.cos(ph)+1j*math.sin(ph))*math.sin(th/2)*math.cos(th/2)],
[(math.cos(ph)+1j*math.sin(ph))*math.sin(th/2)*math.cos(th/2), math.sin(th/2)**2]])
qc_teleport_ = qc_teleport(0.1, 0.5, 0)
qstc = state_tomography_circuits(qc_teleport_, [2])
# simulação
job = qiskit.execute(qstc, Aer.get_backend('qasm_simulator'), shots = nshots)
qstf = StateTomographyFitter(job.result(), qstc)
rho_sim = qstf.fit(method='lstsq')
print('rho_teo = ', rho_teo)
print('rho_sim = ', rho_sim)
# experimento
job = qiskit.execute(qstc, backend = device, shots = nshots)
job_monitor(job)
qstf = StateTomographyFitter(job.result(), qstc)
rho_exp = qstf.fit(method = 'lstsq')
print('rho_exp = ', rho_exp)
F = qiskit.quantum_info.state_fidelity(rho_teo, rho_exp); print('F = ', F)
# variar th em cos(th/2)|0>+exp(i*ph)sin(th/2)|1>
|
https://github.com/jatin-47/QGSS-2021
|
jatin-47
|
# General tools
import numpy as np
import matplotlib.pyplot as plt
# Qiskit Circuit Functions
from qiskit import execute,QuantumCircuit, QuantumRegister, ClassicalRegister, Aer, transpile
import qiskit.quantum_info as qi
# Tomography functions
from qiskit.ignis.verification.tomography import process_tomography_circuits, ProcessTomographyFitter
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
import warnings
warnings.filterwarnings('ignore')
target = QuantumCircuit(2)
#target = # YOUR CODE HERE
target.h(0)
target.h(1)
target.rx(np.pi/2,0)
target.rx(np.pi/2,1)
target.cx(0,1)
target.p(np.pi,1)
target.cx(0,1)
target_unitary = qi.Operator(target)
target.draw('mpl')
from qc_grader import grade_lab5_ex1
# Note that the grading function is expecting a quantum circuit with no measurements
grade_lab5_ex1(target)
simulator = Aer.get_backend('qasm_simulator')
qpt_circs = process_tomography_circuits(target,measured_qubits=[0,1])# YOUR CODE HERE
qpt_job = execute(qpt_circs,simulator,seed_simulator=3145,seed_transpiler=3145,shots=8192)
qpt_result = qpt_job.result()
# YOUR CODE HERE
qpt_tomo= ProcessTomographyFitter(qpt_result,qpt_circs)
Choi_qpt= qpt_tomo.fit(method='lstsq')
fidelity = qi.average_gate_fidelity(Choi_qpt,target_unitary)
from qc_grader import grade_lab5_ex2
# Note that the grading function is expecting a floating point number
grade_lab5_ex2(fidelity)
# T1 and T2 values for qubits 0-3
T1s = [15000, 19000, 22000, 14000]
T2s = [30000, 25000, 18000, 28000]
# Instruction times (in nanoseconds)
time_u1 = 0 # virtual gate
time_u2 = 50 # (single X90 pulse)
time_u3 = 100 # (two X90 pulses)
time_cx = 300
time_reset = 1000 # 1 microsecond
time_measure = 1000 # 1 microsecond
from qiskit.providers.aer.noise import thermal_relaxation_error
from qiskit.providers.aer.noise import NoiseModel
# QuantumError objects
errors_reset = [thermal_relaxation_error(t1, t2, time_reset)
for t1, t2 in zip(T1s, T2s)]
errors_measure = [thermal_relaxation_error(t1, t2, time_measure)
for t1, t2 in zip(T1s, T2s)]
errors_u1 = [thermal_relaxation_error(t1, t2, time_u1)
for t1, t2 in zip(T1s, T2s)]
errors_u2 = [thermal_relaxation_error(t1, t2, time_u2)
for t1, t2 in zip(T1s, T2s)]
errors_u3 = [thermal_relaxation_error(t1, t2, time_u3)
for t1, t2 in zip(T1s, T2s)]
errors_cx = [[thermal_relaxation_error(t1a, t2a, time_cx).expand(
thermal_relaxation_error(t1b, t2b, time_cx))
for t1a, t2a in zip(T1s, T2s)]
for t1b, t2b in zip(T1s, T2s)]
# Add errors to noise model
noise_thermal = NoiseModel()
for j in range(4):
noise_thermal.add_quantum_error(errors_measure[j],'measure',[j])
noise_thermal.add_quantum_error(errors_reset[j],'reset',[j])
noise_thermal.add_quantum_error(errors_u3[j],'u3',[j])
noise_thermal.add_quantum_error(errors_u2[j],'u2',[j])
noise_thermal.add_quantum_error(errors_u1[j],'u1',[j])
for k in range(4):
noise_thermal.add_quantum_error(errors_cx[j][k],'cx',[j,k])
# YOUR CODE HERE
from qc_grader import grade_lab5_ex3
# Note that the grading function is expecting a NoiseModel
grade_lab5_ex3(noise_thermal)
np.random.seed(0)
noise_qpt_circs = process_tomography_circuits(target,measured_qubits=[0,1])# YOUR CODE HERE
noise_qpt_job = execute(noise_qpt_circs,simulator,seed_simulator=3145,seed_transpiler=3145,shots=8192,noise_model=noise_thermal)
noise_qpt_result = noise_qpt_job.result()
# YOUR CODE HERE
noise_qpt_tomo= ProcessTomographyFitter(noise_qpt_result,noise_qpt_circs)
noise_Choi_qpt= noise_qpt_tomo.fit(method='lstsq')
fidelity = qi.average_gate_fidelity(noise_Choi_qpt,target_unitary)
from qc_grader import grade_lab5_ex4
# Note that the grading function is expecting a floating point number
grade_lab5_ex4(fidelity)
np.random.seed(0)
# YOUR CODE HERE
#qr = QuantumRegister(2)
qubit_list = [0,1]
meas_calibs, state_labels = complete_meas_cal(qubit_list=qubit_list)
meas_calibs_job = execute(meas_calibs,simulator,seed_simulator=3145,seed_transpiler=3145,shots=8192,noise_model=noise_thermal)
cal_results = meas_calibs_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, qubit_list=qubit_list)
Cal_result = meas_fitter.filter.apply(noise_qpt_result)
# YOUR CODE HERE
Cal_qpt_tomo= ProcessTomographyFitter(Cal_result,noise_qpt_circs)
Cal_Choi_qpt= Cal_qpt_tomo.fit(method='lstsq')
fidelity = qi.average_gate_fidelity(Cal_Choi_qpt,target_unitary)
from qc_grader import grade_lab5_ex5
# Note that the grading function is expecting a floating point number
grade_lab5_ex5(fidelity)
|
https://github.com/vm6502q/qiskit-qrack-provider
|
vm6502q
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2018, 2019.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Test circuits and reference outputs for non-Clifford gate instructions.
"""
import numpy as np
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
# ==========================================================================
# T-gate
# ==========================================================================
def t_gate_circuits_deterministic(final_measure=True):
"""T-gate test circuits with deterministic counts."""
circuits = []
qr = QuantumRegister(1)
if final_measure:
cr = ClassicalRegister(1)
regs = (qr, cr)
else:
regs = (qr, )
# T
circuit = QuantumCircuit(*regs)
circuit.t(qr)
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
# T.X
circuit = QuantumCircuit(*regs)
circuit.x(qr)
circuit.barrier(qr)
circuit.t(qr)
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
return circuits
def t_gate_counts_deterministic(shots, hex_counts=True):
"""T-gate circuits reference counts."""
targets = []
if hex_counts:
# T
targets.append({'0x0': shots})
# T.X
targets.append({'0x1': shots})
else:
# T
targets.append({'0': shots})
# T.X
targets.append({'1': shots})
return targets
def t_gate_statevector_deterministic():
"""T-gate circuits reference statevectors."""
targets = []
# T
targets.append(np.array([1, 0]))
# T.X
targets.append(np.array([0, 1 + 1j]) / np.sqrt(2))
return targets
def t_gate_unitary_deterministic():
"""T-gate circuits reference unitaries."""
targets = []
# T
targets.append(np.diag([1, (1 + 1j) / np.sqrt(2)]))
# T.X
targets.append(np.array([[0, 1], [(1 + 1j) / np.sqrt(2), 0]]))
return targets
def t_gate_circuits_nondeterministic(final_measure=True):
"""T-gate test circuits with non-deterministic counts."""
circuits = []
qr = QuantumRegister(1)
if final_measure:
cr = ClassicalRegister(1)
regs = (qr, cr)
else:
regs = (qr, )
# T.H
circuit = QuantumCircuit(*regs)
circuit.h(qr)
circuit.barrier(qr)
circuit.t(qr)
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
# X.T.H
circuit = QuantumCircuit(*regs)
circuit.h(qr)
circuit.barrier(qr)
circuit.t(qr)
circuit.barrier(qr)
circuit.x(qr)
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
# H.T.T.H = H.S.H
circuit = QuantumCircuit(*regs)
circuit.h(qr)
circuit.barrier(qr)
circuit.t(qr)
circuit.barrier(qr)
circuit.t(qr)
circuit.barrier(qr)
circuit.h(qr)
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
return circuits
def t_gate_counts_nondeterministic(shots, hex_counts=True):
"""T-gate circuits reference counts."""
targets = []
if hex_counts:
# T.H
targets.append({'0x0': shots / 2, '0x1': shots / 2})
# X.T.H
targets.append({'0x0': shots / 2, '0x1': shots / 2})
# H.T.T.H = H.S.H
targets.append({'0x0': shots / 2, '0x1': shots / 2})
else:
# T.H
targets.append({'0': shots / 2, '1': shots / 2})
# X.T.H
targets.append({'0': shots / 2, '1': shots / 2})
# H.T.T.H = H.S.H
targets.append({'0': shots / 2, '1': shots / 2})
return targets
def t_gate_statevector_nondeterministic():
"""T-gate circuits reference statevectors."""
targets = []
# T.H
targets.append(np.array([1 / np.sqrt(2), 0.5 + 0.5j]))
# X.T.H
targets.append(np.array([0.5 + 0.5j, 1 / np.sqrt(2)]))
# H.T.T.H = H.S.H
targets.append(np.array([1 + 1j, 1 - 1j]) / 2)
return targets
def t_gate_unitary_nondeterministic():
"""T-gate circuits reference unitaries."""
targets = []
# T.H
targets.append(
np.array([[1 / np.sqrt(2), 1 / np.sqrt(2)], [0.5 + 0.5j,
-0.5 - 0.5j]]))
# X.T.H
targets.append(
np.array([[0.5 + 0.5j, -0.5 - 0.5j], [1 / np.sqrt(2),
1 / np.sqrt(2)]]))
# H.T.T.H = H.S.H
targets.append(np.array([[1 + 1j, 1 - 1j], [1 - 1j, 1 + 1j]]) / 2)
return targets
# ==========================================================================
# T^dagger-gate
# ==========================================================================
def tdg_gate_circuits_deterministic(final_measure=True):
"""Tdg-gate test circuits with deterministic counts."""
circuits = []
qr = QuantumRegister(1)
if final_measure:
cr = ClassicalRegister(1)
regs = (qr, cr)
else:
regs = (qr, )
# Tdg
circuit = QuantumCircuit(*regs)
circuit.tdg(qr)
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
# H.Tdg.T.H = I
circuit = QuantumCircuit(*regs)
circuit.h(qr)
circuit.barrier(qr)
circuit.t(qr)
circuit.barrier(qr)
circuit.tdg(qr)
circuit.barrier(qr)
circuit.h(qr)
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
return circuits
def tdg_gate_counts_deterministic(shots, hex_counts=True):
"""Sdg-gate circuits reference counts."""
targets = []
if hex_counts:
# Tdg
targets.append({'0x0': shots})
# H.Tdg.T.H = I
targets.append({'0x0': shots})
else:
# Tdg
targets.append({'0': shots})
# H.Tdg.T.H = I
targets.append({'0': shots})
return targets
def tdg_gate_statevector_deterministic():
"""Sdg-gate circuits reference statevectors."""
targets = []
# Tdg
targets.append(np.array([1, 0]))
# H.Tdg.T.H = I
targets.append(np.array([1, 0]))
return targets
def tdg_gate_unitary_deterministic():
"""Tdg-gate circuits reference unitaries."""
targets = []
# Tdg
targets.append(np.diag([1, (1 - 1j) / np.sqrt(2)]))
# H.Tdg.T.H = I
targets.append(np.eye(2))
return targets
def tdg_gate_circuits_nondeterministic(final_measure=True):
"""Tdg-gate test circuits with non-deterministic counts."""
circuits = []
qr = QuantumRegister(1)
if final_measure:
cr = ClassicalRegister(1)
regs = (qr, cr)
else:
regs = (qr, )
# Tdg.H
circuit = QuantumCircuit(*regs)
circuit.h(qr)
circuit.barrier(qr)
circuit.tdg(qr)
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
# X.Tdg.H
circuit = QuantumCircuit(*regs)
circuit.h(qr)
circuit.barrier(qr)
circuit.tdg(qr)
circuit.barrier(qr)
circuit.x(qr)
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
# H.Tdg.Tdg.H = H.Sdg.H
circuit = QuantumCircuit(*regs)
circuit.h(qr)
circuit.barrier(qr)
circuit.tdg(qr)
circuit.barrier(qr)
circuit.tdg(qr)
circuit.barrier(qr)
circuit.h(qr)
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
return circuits
def tdg_gate_counts_nondeterministic(shots, hex_counts=True):
"""Tdg-gate circuits reference counts."""
targets = []
if hex_counts:
# Tdg.H
targets.append({'0x0': shots / 2, '0x1': shots / 2})
# X.Tdg.H
targets.append({'0x0': shots / 2, '0x1': shots / 2})
# H.Tdg.Tdg.H = H.Sdg.H
targets.append({'0x0': shots / 2, '0x1': shots / 2})
else:
# Tdg.H
targets.append({'0': shots / 2, '1': shots / 2})
# X.Tdg.H
targets.append({'0': shots / 2, '1': shots / 2})
# H.Tdg.Tdg.H = H.Sdg.H
targets.append({'0': shots / 2, '1': shots / 2})
return targets
def tdg_gate_statevector_nondeterministic():
"""Tdg-gate circuits reference statevectors."""
targets = []
# Tdg.H
targets.append(np.array([1 / np.sqrt(2), 0.5 - 0.5j]))
# X.Tdg.H
targets.append(np.array([0.5 - 0.5j, 1 / np.sqrt(2)]))
# H.Tdg.Tdg.H = H.Sdg.H
targets.append(np.array([1 - 1j, 1 + 1j]) / 2)
return targets
def tdg_gate_unitary_nondeterministic():
"""Tdg-gate circuits reference unitaries."""
targets = []
# Tdg.H
targets.append(
np.array([[1 / np.sqrt(2), 1 / np.sqrt(2)], [0.5 - 0.5j,
-0.5 + 0.5j]]))
# X.Tdg.H
targets.append(
np.array([[0.5 - 0.5j, -0.5 + 0.5j], [1 / np.sqrt(2),
1 / np.sqrt(2)]]))
# H.Tdg.Tdg.H = H.Sdg.H
targets.append(np.array([[1 - 1j, 1 + 1j], [1 + 1j, 1 - 1j]]) / 2)
return targets
# ==========================================================================
# CCX-gate
# ==========================================================================
def ccx_gate_circuits_deterministic(final_measure=True):
"""CCX-gate test circuits with deterministic counts."""
circuits = []
qr = QuantumRegister(3)
if final_measure:
cr = ClassicalRegister(3)
regs = (qr, cr)
else:
regs = (qr, )
# CCX(0,1,2)
circuit = QuantumCircuit(*regs)
circuit.ccx(qr[0], qr[1], qr[2])
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
# (I^X^X).CCX(0,1,2).(I^X^X) -> |100>
circuit = QuantumCircuit(*regs)
circuit.x(qr[0])
circuit.barrier(qr)
circuit.x(qr[1])
circuit.barrier(qr)
circuit.ccx(qr[0], qr[1], qr[2])
circuit.barrier(qr)
circuit.x(qr[0])
circuit.barrier(qr)
circuit.x(qr[1])
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
# CCX(2,1,0)
circuit = QuantumCircuit(*regs)
circuit.ccx(qr[2], qr[1], qr[0])
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
# (X^X^I).CCX(2,1,0).(X^X^I) -> |001>
circuit = QuantumCircuit(*regs)
circuit.x(qr[1])
circuit.barrier(qr)
circuit.x(qr[2])
circuit.barrier(qr)
circuit.ccx(qr[2], qr[1], qr[0])
circuit.barrier(qr)
circuit.x(qr[1])
circuit.barrier(qr)
circuit.x(qr[2])
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
return circuits
def ccx_gate_counts_deterministic(shots, hex_counts=True):
"""CCX-gate circuits reference counts."""
targets = []
if hex_counts:
# CCX(0,1,2)
targets.append({'0x0': shots})
# (I^X^X).CCX(0,1,2).(I^X^X) -> |100>
targets.append({'0x4': shots})
# CCX(2,1,0)
targets.append({'0x0': shots})
# (X^X^I).CCX(2,1,0).(X^X^I) -> |001>
targets.append({'0x1': shots})
else:
# CCX(0,1,2)
targets.append({'000': shots})
# (I^X^X).CCX(0,1,2).(I^X^X) -> |100>
targets.append({'000': shots})
# CCX(2,1,0)
targets.append({'000': shots})
# (X^X^I).CCX(2,1,0).(X^X^I) -> |001>
targets.append({'001': shots})
return targets
def ccx_gate_statevector_deterministic():
"""CCX-gate circuits reference statevectors."""
targets = []
zero_state = np.array([1, 0, 0, 0, 0, 0, 0, 0])
# CCX(0,1,2)
targets.append(zero_state)
# (I^X^X).CCX(0,1,2).(I^X^X) -> |100>
targets.append(np.array([0, 0, 0, 0, 1, 0, 0, 0]))
# CCX(2,1,0)
targets.append(zero_state)
# (X^X^I).CCX(2,1,0).(X^X^I) -> |001>
targets.append(np.array([0, 1, 0, 0, 0, 0, 0, 0]))
return targets
def ccx_gate_unitary_deterministic():
"""CCX-gate circuits reference unitaries."""
targets = []
# CCX(0,1,2)
targets.append(
np.array([[1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 1, 0, 0, 0, 0]]))
# (I^X^X).CCX(0,1,2).(I^X^X) -> |100>
targets.append(
np.array([[0, 0, 0, 0, 1, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 1]]))
# CCX(2,1,0)
targets.append(
np.array([[1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 1, 0]]))
# (X^X^I).CCX(2,1,0).(X^X^I) -> |001>
targets.append(
np.array([[0, 1, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 1]]))
return targets
def ccx_gate_circuits_nondeterministic(final_measure=True):
"""CCX-gate test circuits with non-deterministic counts."""
circuits = []
qr = QuantumRegister(3)
if final_measure:
cr = ClassicalRegister(3)
regs = (qr, cr)
else:
regs = (qr, )
# (I^X^I).CCX(0,1,2).(I^X^H) -> |000> + |101>
circuit = QuantumCircuit(*regs)
circuit.h(qr[0])
circuit.barrier(qr)
circuit.x(qr[1])
circuit.barrier(qr)
circuit.ccx(qr[0], qr[1], qr[2])
circuit.barrier(qr)
circuit.x(qr[1])
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
# (X^I^I).CCX(2,1,0).(X^H^I) -> |000> + |011>
circuit = QuantumCircuit(*regs)
circuit.h(qr[1])
circuit.barrier(qr)
circuit.x(qr[2])
circuit.barrier(qr)
circuit.ccx(qr[2], qr[1], qr[0])
circuit.barrier(qr)
circuit.x(qr[2])
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
return circuits
def ccx_gate_counts_nondeterministic(shots, hex_counts=True):
"""CCX-gate circuits reference counts."""
targets = []
if hex_counts:
# (I^X^I).CCX(0,1,2).(I^X^H) -> |000> + |101>
targets.append({'0x0': shots / 2, '0x5': shots / 2})
# (X^I^I).CCX(2,1,0).(X^H^I) -> |000> + |011>
targets.append({'0x0': shots / 2, '0x3': shots / 2})
else:
# (I^X^I).CCX(0,1,2).(I^X^H) -> |000> + |101>
targets.append({'000': shots / 2, '101': shots / 2})
# (X^I^I).CCX(2,1,0).(X^H^I) -> |000> + |011>
targets.append({'000': shots / 2, '011': shots / 2})
return targets
def ccx_gate_statevector_nondeterministic():
"""CCX-gate circuits reference statevectors."""
targets = []
# (I^X^I).CCX(0,1,2).(I^X^H) -> |000> + |101>
targets.append(np.array([1, 0, 0, 0, 0, 1, 0, 0]) / np.sqrt(2))
# (X^I^I).CCX(2,1,0).(X^H^I) -> |000> + |011>
targets.append(np.array([1, 0, 0, 1, 0, 0, 0, 0]) / np.sqrt(2))
return targets
def ccx_gate_unitary_nondeterministic():
"""CCX-gate circuits reference unitaries."""
targets = []
# (I^X^I).CCX(0,1,2).(I^X^H) -> |000> + |101>
targets.append(
np.array([[1, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, -1, 0, 0],
[0, 0, 1, 1, 0, 0, 0, 0], [0, 0, 1, -1, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 1, 0, 0], [1, -1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 1], [0, 0, 0, 0, 0, 0, 1, -1]]) /
np.sqrt(2))
# (X^I^I).CCX(2,1,0).(X^H^I) -> |000> + |011>
targets.append(
np.array([[1, 0, 1, 0, 0, 0, 0, 0], [0, 1, 0, 1, 0, 0, 0, 0],
[0, 1, 0, -1, 0, 0, 0, 0], [1, 0, -1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 1, 0], [0, 0, 0, 0, 0, 1, 0, 1],
[0, 0, 0, 0, 1, 0, -1, 0], [0, 0, 0, 0, 0, 1, 0, -1]]) /
np.sqrt(2))
return targets
# ==========================================================================
# CSWAP-gate (Fredkin)
# ==========================================================================
def cswap_gate_circuits_deterministic(final_measure):
"""cswap-gate test circuits with deterministic counts."""
circuits = []
qr = QuantumRegister(3)
if final_measure:
cr = ClassicalRegister(3)
regs = (qr, cr)
else:
regs = (qr, )
# CSWAP(0,1,2) # -> |000>
circuit = QuantumCircuit(*regs)
circuit.cswap(qr[0], qr[1], qr[2])
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
# CSWAP(0,1,2).(X^I^I) -> |100>
circuit = QuantumCircuit(*regs)
circuit.x(qr[2])
circuit.barrier(qr)
circuit.cswap(qr[0], qr[1], qr[2])
circuit.barrier(qr)
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
# CSWAP(0,1,2).(I^X^I) -> |010>
circuit = QuantumCircuit(*regs)
circuit.x(qr[1])
circuit.barrier(qr)
circuit.cswap(qr[0], qr[1], qr[2])
circuit.barrier(qr)
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
# CSWAP(0,1,2).(X^X^I) -> |110>
circuit = QuantumCircuit(*regs)
circuit.x(qr[1])
circuit.x(qr[2])
circuit.barrier(qr)
circuit.cswap(qr[0], qr[1], qr[2])
circuit.barrier(qr)
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
# CSWAP(0,1,2).(I^I^X) -> |001>
circuit = QuantumCircuit(*regs)
circuit.x(qr[0])
circuit.barrier(qr)
circuit.cswap(qr[0], qr[1], qr[2])
circuit.barrier(qr)
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
# CSWAP(0,1,2).(I^X^X -> |101>
circuit = QuantumCircuit(*regs)
circuit.x(qr[0])
circuit.x(qr[1])
circuit.barrier(qr)
circuit.cswap(qr[0], qr[1], qr[2])
circuit.barrier(qr)
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
# CSWAP(0,1,2).(X^I^X) -> |011>
circuit = QuantumCircuit(*regs)
circuit.x(qr[0])
circuit.x(qr[2])
circuit.barrier(qr)
circuit.cswap(qr[0], qr[1], qr[2])
circuit.barrier(qr)
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
# CSWAP(0,1,2).(X^X^X) -> |111>
circuit = QuantumCircuit(*regs)
circuit.x(qr[0])
circuit.x(qr[1])
circuit.x(qr[2])
circuit.barrier(qr)
circuit.cswap(qr[0], qr[1], qr[2])
circuit.barrier(qr)
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
# CSWAP(1,0,2).(I^X^X) -> |110>
circuit = QuantumCircuit(*regs)
circuit.x(qr[0])
circuit.x(qr[1])
circuit.barrier(qr)
circuit.cswap(qr[1], qr[0], qr[2])
circuit.barrier(qr)
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
# CSWAP(2,1,0).(X^I^X) -> |110>
circuit = QuantumCircuit(*regs)
circuit.x(qr[0])
circuit.x(qr[2])
circuit.barrier(qr)
circuit.cswap(qr[2], qr[1], qr[0])
circuit.barrier(qr)
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
return circuits
def cswap_gate_counts_deterministic(shots, hex_counts=True):
""""cswap-gate circuits reference counts."""
targets = []
if hex_counts:
# CSWAP(0,1,2) # -> |000>
targets.append({'0x0': shots})
# CSWAP(0,1,2).(X^I^I) -> |100>
targets.append({'0x4': shots})
# CSWAP(0,1,2).(I^X^I) -> |010>
targets.append({'0x2': shots})
# CSWAP(0,1,2).(X^X^I) -> |110>
targets.append({'0x6': shots})
# CSWAP(0,1,2).(I^I^X). -> |001>
targets.append({'0x1': shots})
# CSWAP(0,1,2).(I^X^X) -> |101>
targets.append({'0x5': shots})
# CSWAP(0,1,2).(X^I^X) -> |011>
targets.append({'0x3': shots})
# CSWAP(0,1,2).(X^X^X) -> |111>
targets.append({'0x7': shots})
# CSWAP(1,0,2).(I^X^X) -> |110>
targets.append({'0x6': shots})
# CSWAP(2,1,0).(X^I^X) -> |110>
targets.append({'0x6': shots})
else:
# CSWAP(0,1,2) # -> |000>
targets.append({'000': shots})
# CSWAP(0,1,2).(X^I^I) -> |100>
targets.append({'100': shots})
# CSWAP(0,1,2).(I^X^I) -> |010>
targets.append({'010': shots})
# CSWAP(0,1,2).(X^X^I) -> |110>
targets.append({'110': shots})
# CSWAP(0,1,2).(I^I^X) -> |001>
targets.append({'001': shots})
# CSWAP(0,1,2).(I^X^X) -> |101>
targets.append({'101': shots})
# CSWAP(0,1,2).(X^I^X) -> |011>
targets.append({'011': shots})
# CSWAP(0,1,2).(X^X^X) -> |111>
targets.append({'111': shots})
# CSWAP(1,0,2).(I^X^X) -> |110>
targets.append({'110': shots})
# CSWAP(2,1,0).(X^I^X) -> |110>
targets.append({'110': shots})
return targets
def cswap_gate_circuits_nondeterministic(final_measure=True):
"""cswap-gate test circuits with deterministic counts."""
circuits = []
qr = QuantumRegister(3)
if final_measure:
cr = ClassicalRegister(3)
regs = (qr, cr)
else:
regs = (qr, )
# CSWAP(0,1,2).(H^H^H)
circuit = QuantumCircuit(*regs)
circuit.h(qr[0])
circuit.h(qr[1])
circuit.h(qr[2])
circuit.cswap(qr[0], qr[1], qr[2])
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
# CSWAP(0,1,2).(X^I^H). -> |100> + |011>
circuit = QuantumCircuit(*regs)
circuit.h(qr[0])
circuit.x(qr[2])
circuit.cswap(qr[0], qr[1], qr[2])
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
# CSWAP(0,1,2).(I^X^H). -> |010> + |101>
circuit = QuantumCircuit(*regs)
circuit.h(qr[0])
circuit.x(qr[1])
circuit.cswap(qr[0], qr[1], qr[2])
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
# CSWAP(0,1,2).(I^H^I) -> |010>+|000>
circuit = QuantumCircuit(*regs)
circuit.h(qr[1])
circuit.cswap(qr[0], qr[1], qr[2])
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
# CSWAP(0,1,2).(H^I^I) -> |100>+|000>
circuit = QuantumCircuit(*regs)
circuit.h(qr[2])
circuit.cswap(qr[0], qr[1], qr[2])
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
# CSWAP(0,1,2).(I^I^H) -> |001>+|000>
circuit = QuantumCircuit(*regs)
circuit.h(qr[0])
circuit.cswap(qr[0], qr[1], qr[2])
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
# CSWAP(0,1,2).(X^X^H) -> |110> + |111>
circuit = QuantumCircuit(*regs)
circuit.h(qr[0])
circuit.x(qr[1])
circuit.x(qr[2])
circuit.cswap(qr[0], qr[1], qr[2])
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
return circuits
def cswap_gate_counts_nondeterministic(shots, hex_counts=True):
targets = []
if hex_counts:
# CSWAP(0,1,2).(H^H^H) -> |--->
targets.append({
'0x0': shots / 8,
'0x1': shots / 8,
'0x2': shots / 8,
'0x3': shots / 8,
'0x4': shots / 8,
'0x5': shots / 8,
'0x6': shots / 8,
'0x7': shots / 8,
})
# CSWAP(0,1,2).(X^I^H). -> |100> + |011>
targets.append({'0x3': shots / 2, '0x4': shots / 2})
# CSWAP(0,1,2).(I^X^H). -> |010> + |101>
targets.append({'0x2': shots / 2, '0x5': shots / 2})
# CSWAP(0,1,2).(I^H^I) -> |0-0>
targets.append({'0x2': shots / 2, '0x0': shots / 2})
# CSWAP(0,1,2).(H^I^I) -> |-00>
targets.append({'0x4': shots / 2, '0x0': shots / 2})
# CSWAP(0,1,2).(I^I^H) -> |00->
targets.append({'0x0': shots / 2, '0x1': shots / 2})
# CSWAP(0,1,2).(X^X^H) -> |110> + |111>
targets.append({'0x6': shots / 2, '0x7': shots / 2})
else:
# CSWAP(0,1,2).(H^H^H) -> |--->
targets.append({
'000': shots / 8,
'001': shots / 8,
'010': shots / 8,
'011': shots / 8,
'100': shots / 8,
'101': shots / 8,
'110': shots / 8,
'111': shots / 8,
})
# CSWAP(0,1,2).(X^I^H). -> |100> + |011>
targets.append({'011': shots / 2, '100': shots / 2})
# CSWAP(0,1,2).(I^X^H). -> |010> + |101>
targets.append({'010': shots / 2, '101': shots / 2})
# CSWAP(0,1,2).(I^H^I) -> |0-0>
targets.append({'010': shots / 2, '000': shots / 2})
# CSWAP(0,1,2).(H^I^I) -> |-00>
targets.append({'100': shots / 2, '000': shots / 2})
# CSWAP(0,1,2).(I^I^H) -> |00->
targets.append({'001': shots / 2, '000': shots / 2})
# CSWAP(0,1,2).(X^X^H) -> |110> + |111>
targets.append({'110': shots / 2, '111': shots / 2})
return targets
def cswap_gate_statevector_deterministic():
targets = []
# CSWAP(0,1,2) # -> |000>
targets.append(np.array([1, 0, 0, 0, 0, 0, 0, 0]))
# CSWAP(0,1,2).(X^I^I) -> |100>
targets.append(np.array([0, 0, 0, 0, 1, 0, 0, 0]))
# CSWAP(0,1,2).(I^X^I) -> |010>
targets.append(np.array([0, 0, 1, 0, 0, 0, 0, 0]))
# CSWAP(0,1,2).(X^X^I) -> |110>
targets.append(np.array([0, 0, 0, 0, 0, 0, 1, 0]))
# CSWAP(0,1,2).(I^I^X) -> |001>
targets.append(np.array([0, 1, 0, 0, 0, 0, 0, 0]))
# CSWAP(0,1,2).(I^X^X) -> |101>
targets.append(np.array([0, 0, 0, 0, 0, 1, 0, 0]))
# CSWAP(0,1,2).(X^I^X) -> |011>
targets.append(np.array([0, 0, 0, 1, 0, 0, 0, 0]))
# CSWAP(0,1,2).(X^X^X) -> |111>
targets.append(np.array([0, 0, 0, 0, 0, 0, 0, 1]))
# CSWAP(1,0,2).(I^X^X) -> |110>
targets.append(np.array([0, 0, 0, 0, 0, 0, 1, 0]))
# CSWAP(2,1,0).(X^I^X) -> |110>
targets.append(np.array([0, 0, 0, 0, 0, 0, 1, 0]))
return targets
def cswap_gate_statevector_nondeterministic():
targets = []
# CSWAP(0,1,2).(H^H^H) -> |--->
targets.append(np.array([1, 1, 1, 1, 1, 1, 1, 1]) / np.sqrt(8))
# CSWAP(0,1,2).(X^I^H). -> |100> + |011>
targets.append(np.array([0, 0, 0, 1, 1, 0, 0, 0]) / np.sqrt(2))
# CSWAP(0,1,2).(I^X^H). -> |010> + |101>
targets.append(np.array([0, 0, 1, 0, 0, 1, 0, 0]) / np.sqrt(2))
# CSWAP(0,1,2).(I^H^I) -> |0-0>
targets.append(np.array([1, 0, 1, 0, 0, 0, 0, 0]) / np.sqrt(2))
# CSWAP(0,1,2).(H^I^I) -> |-00>
targets.append(np.array([1, 0, 0, 0, 1, 0, 0, 0]) / np.sqrt(2))
# CSWAP(0,1,2).(I^I^H) -> |00->
targets.append(np.array([1, 1, 0, 0, 0, 0, 0, 0]) / np.sqrt(2))
# CSWAP(0,1,2).(X^X^H) -> |110> + |111>
targets.append(np.array([0, 0, 0, 0, 0, 0, 1, 1]) / np.sqrt(2))
return targets
def cswap_gate_unitary_deterministic():
"""cswap-gate circuits reference unitaries."""
targets = []
# CSWAP(0,1,2) # -> |000>
targets.append(
np.array([[1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 1]]))
# CSWAP(0,1,2).(X^I^I) -> |100>
targets.append(
np.array([[0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 1, 0], [0, 1, 0, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0]]))
# CSWAP(0,1,2).(I^X^I) -> |010>
targets.append(
np.array([[0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 0, 0, 1, 0], [0, 1, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0]]))
# CSWAP(0,1,2).(X^X^I) -> |110>
targets.append(
np.array([[0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 1],
[0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0]]))
# CSWAP(0,1,2).(I^I^X) -> |001>
targets.append(
np.array([[0, 1, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 1, 0]]))
# CSWAP(0,1,2).(I^X^X) -> |101>
targets.append(
np.array([[0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0]]))
# CSWAP(0,1,2).(X^I^X) -> |011>
targets.append(
np.array([[0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0]]))
# CSWAP(0,1,2).(X^X^X) -> |111>
targets.append(
np.array([[0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 1, 0],
[0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0],
[0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0]]))
# CSWAP(1,0,2).(I^X^X) -> |110>
targets.append(
np.array([[0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 1, 0],
[1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0]]))
# CSWAP(2,1,0).(X^I^X) -> |110>
targets.append(
np.array([[0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 1, 0],
[0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0]]))
return targets
def cswap_gate_unitary_nondeterministic():
"""cswap-gate circuits reference unitaries."""
targets = []
targets.append(
np.array([[
0.35355339, 0.35355339, 0.35355339, 0.35355339, 0.35355339,
0.35355339, 0.35355339, 0.35355339
],
[
0.35355339, -0.35355339, 0.35355339, -0.35355339,
0.35355339, -0.35355339, 0.35355339, -0.35355339
],
[
0.35355339, 0.35355339, -0.35355339, -0.35355339,
0.35355339, 0.35355339, -0.35355339, -0.35355339
],
[
0.35355339, -0.35355339, 0.35355339, -0.35355339,
-0.35355339, 0.35355339, -0.35355339, 0.35355339
],
[
0.35355339, 0.35355339, 0.35355339, 0.35355339,
-0.35355339, -0.35355339, -0.35355339, -0.35355339
],
[
0.35355339, -0.35355339, -0.35355339, 0.35355339,
0.35355339, -0.35355339, -0.35355339, 0.35355339
],
[
0.35355339, 0.35355339, -0.35355339, -0.35355339,
-0.35355339, -0.35355339, 0.35355339, 0.35355339
],
[
0.35355339, -0.35355339, -0.35355339, 0.35355339,
-0.35355339, 0.35355339, 0.35355339, -0.35355339
]]))
targets.append(
np.array([[0, 0, 0, 0, 0.70710678, 0.70710678, 0, 0],
[0, 0, 0, 0, 0.70710678, -0.70710678, 0, 0],
[0, 0, 0, 0, 0, 0, 0.70710678, 0.70710678],
[0.70710678, -0.70710678, 0, 0, 0, 0, 0, 0],
[0.70710678, 0.70710678, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0.70710678, -0.70710678],
[0, 0, 0.70710678, 0.70710678, 0, 0, 0, 0],
[0, 0, 0.70710678, -0.70710678, 0, 0, 0, 0]]))
targets.append(
np.array([[0, 0, 0.70710678, 0.70710678, 0, 0, 0, 0],
[0, 0, 0.70710678, -0.70710678, 0, 0, 0, 0],
[0.70710678, 0.70710678, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0.70710678, -0.70710678],
[0, 0, 0, 0, 0, 0, 0.70710678, 0.70710678],
[0.70710678, -0.70710678, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0.70710678, 0.70710678, 0, 0],
[0, 0, 0, 0, 0.70710678, -0.70710678, 0, 0]]))
targets.append(
np.array([[0.70710678, 0, 0.70710678, 0, 0, 0, 0, 0],
[0, 0.70710678, 0, 0.70710678, 0, 0, 0, 0],
[0.70710678, 0, -0.70710678, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0.70710678, 0, 0.70710678],
[0, 0, 0, 0, 0.70710678, 0, 0.70710678, 0],
[0, 0.70710678, 0, -0.70710678, 0, 0, 0, 0],
[0, 0, 0, 0, 0.70710678, 0, -0.70710678, 0],
[0, 0, 0, 0, 0, 0.70710678, 0, -0.70710678]]))
targets.append(
np.array([[0.70710678, 0, 0, 0, 0.70710678, 0, 0, 0],
[0, 0.70710678, 0, 0, 0, 0.70710678, 0, 0],
[0, 0, 0.70710678, 0, 0, 0, 0.70710678, 0],
[0, 0.70710678, 0, 0, 0, -0.70710678, 0, 0],
[0.70710678, 0, 0, 0, -0.70710678, 0, 0, 0],
[0, 0, 0, 0.70710678, 0, 0, 0, 0.70710678],
[0, 0, 0.70710678, 0, 0, 0, -0.70710678, 0],
[0, 0, 0, 0.70710678, 0, 0, 0, -0.70710678]]))
targets.append(
np.array([[0.70710678, 0.70710678, 0, 0, 0, 0, 0, 0],
[0.70710678, -0.70710678, 0, 0, 0, 0, 0, 0],
[0, 0, 0.70710678, 0.70710678, 0, 0, 0, 0],
[0, 0, 0, 0, 0.70710678, -0.70710678, 0, 0],
[0, 0, 0, 0, 0.70710678, 0.70710678, 0, 0],
[0, 0, 0.70710678, -0.70710678, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0.70710678, 0.70710678],
[0, 0, 0, 0, 0, 0, 0.70710678, -0.70710678]]))
targets.append(
np.array([[0, 0, 0, 0, 0, 0, 0.70710678, 0.70710678],
[0, 0, 0, 0, 0, 0, 0.70710678, -0.70710678],
[0, 0, 0, 0, 0.70710678, 0.70710678, 0, 0],
[0, 0, 0.70710678, -0.70710678, 0, 0, 0, 0],
[0, 0, 0.70710678, 0.70710678, 0, 0, 0, 0],
[0, 0, 0, 0, 0.70710678, -0.70710678, 0, 0],
[0.70710678, 0.70710678, 0, 0, 0, 0, 0, 0],
[0.70710678, -0.70710678, 0, 0, 0, 0, 0, 0]]))
return targets
# ==========================================================================
# CU1
# ==========================================================================
def cu1_gate_circuits_nondeterministic(final_measure):
circuits = []
qr = QuantumRegister(2)
if final_measure:
cr = ClassicalRegister(2)
regs = (qr, cr)
else:
regs = (qr, )
# H^X.CU1(0,0,1).H^X
circuit = QuantumCircuit(*regs)
circuit.h(qr[1])
circuit.x(qr[0])
circuit.cp(0, qr[0], qr[1])
circuit.x(qr[0])
circuit.h(qr[1])
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
# H^I.CU1(pi,0,1).H^I
circuit = QuantumCircuit(*regs)
circuit.h(qr[1])
circuit.cp(np.pi, qr[0], qr[1])
circuit.h(qr[1])
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
# H^X.CU1(pi/4,0,1).H^X
circuit = QuantumCircuit(*regs)
circuit.h(qr[1])
circuit.x(qr[0])
circuit.cp(np.pi / 4, qr[0], qr[1])
circuit.x(qr[0])
circuit.h(qr[1])
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
# H^X.CU1(pi/2,0,1).H^X
circuit = QuantumCircuit(*regs)
circuit.h(qr[1])
circuit.x(qr[0])
circuit.cp(np.pi / 2, qr[0], qr[1])
circuit.x(qr[0])
circuit.h(qr[1])
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
# H^X.CU1(pi,0,1).H^X
circuit = QuantumCircuit(*regs)
circuit.h(qr[1])
circuit.x(qr[0])
circuit.cp(np.pi, qr[0], qr[1])
circuit.x(qr[0])
circuit.h(qr[1])
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
# H^H.CU1(0,0,1).H^H
circuit = QuantumCircuit(*regs)
circuit.h(qr[1])
circuit.h(qr[0])
circuit.cp(0, qr[0], qr[1])
circuit.h(qr[0])
circuit.h(qr[1])
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
# H^H.CU1(pi/2,0,1).H^H
circuit = QuantumCircuit(*regs)
circuit.h(qr[1])
circuit.h(qr[0])
circuit.cp(np.pi / 2, qr[0], qr[1])
circuit.h(qr[0])
circuit.h(qr[1])
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
# H^H.CU1(pi,0,1).H^H
circuit = QuantumCircuit(*regs)
circuit.h(qr[1])
circuit.h(qr[0])
circuit.cp(np.pi, qr[0], qr[1])
circuit.h(qr[0])
circuit.h(qr[1])
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
return circuits
def cu1_gate_counts_nondeterministic(shots, hex_counts=True):
"""CU1-gate circuits reference counts."""
targets = []
if hex_counts:
# H^X.CU1(0,0,1).H^X
targets.append({'0x0': shots})
# H^I.CU1(pi,0,1).H^I
targets.append({'0x0': shots})
# H^X.CU1(pi/4,0,1).H^X
targets.append({
'0x0': shots * (0.25 * (2 + np.sqrt(2))),
'0x2': shots * (0.25 * (2 - np.sqrt(2)))
})
# H^X.CU1(pi/2,0,1).H^X
targets.append({'0x0': shots * 0.5, '0x2': shots * 0.5})
# H^X.CU1(pi,0,1).H^X
targets.append({'0x2': shots})
# H^H.CU1(0,0,1).H^H
targets.append({'0x0': shots})
# H^H.CU1(pi/2,0,1).H^H
targets.append({
'0x0': shots * 0.625,
'0x1': shots * 0.125,
'0x2': shots * 0.125,
'0x3': shots * 0.125
})
# H^H.CU1(pi,0,1).H^H
targets.append({
'0x0': shots * 0.25,
'0x1': shots * 0.25,
'0x2': shots * 0.25,
'0x3': shots * 0.25
})
else:
# H^X.CU1(0,0,1).H^X
targets.append({'00': shots})
# H^I.CU1(pi,0,1).H^I
targets.append({'00': shots})
# H^X.CU1(pi/4,0,1).H^X
targets.append({'00': shots * 0.85, '10': shots * 0.15})
# H^X.CU1(pi/2,0,1).H^X
targets.append({'00': shots * 0.5, '10': shots * 0.5})
# H^X.CU1(pi,0,1).H^X
targets.append({'10': shots})
# H^H.CU1(0,0,1).H^H
targets.append({'00': shots})
# H^H.CU1(pi/2,0,1).H^H
targets.append({
'00': shots * 0.5125,
'01': shots * 0.125,
'10': shots * 0.125,
'11': shots * 0.125
})
# H^H.CU1(pi,0,1).H^H
targets.append({
'00': shots * 0.25,
'01': shots * 0.25,
'10': shots * 0.25,
'11': shots * 0.25
})
return targets
def cu1_gate_statevector_nondeterministic():
targets = []
# H^X.CU1(0,0,1).H^X
targets.append(np.array([1, 0, 0, 0]))
# H^I.CU1(pi,0,1).H^I
targets.append(np.array([1, 0, 0, 0]))
# H^X.CU1(pi/4,0,1).H^X
targets.append(
np.array([(0.25 * (2 + np.sqrt(2))) + (1 / (2 * np.sqrt(2))) * 1j, 0,
(0.25 * (2 - np.sqrt(2))) - (1 / (2 * np.sqrt(2))) * 1j, 0]))
# H^X.CU1(pi/2,0,1).H^X
targets.append(np.array([0.5 + 0.5j, 0, 0.5 - 0.5j, 0]))
# H^X.CU1(pi,0,1).H^X
targets.append(np.array([0, 0, 1, 0]))
# H^H.CU1(0,0,1).H^H
targets.append(np.array([1, 0, 0, 0]))
# H^H.CU1(pi/2,0,1).H^H
targets.append(
np.array([0.75 + 0.25j, 0.25 - 0.25j, 0.25 - 0.25j, -0.25 + 0.25j]))
# H^H.CU1(pi,0,1).H^H
targets.append(np.array([0.5, 0.5, 0.5, -0.5]))
return targets
def cu1_gate_unitary_nondeterministic():
targets = []
# H^X.CU1(0,0,1).H^X
targets.append(np.eye(4))
# H^I.CU1(pi,0,1).H^I
targets.append(
np.array([[1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0]]))
# H^X.CU1(pi/4,0,1).H^X
targets.append(
np.array([[(0.25 * (2 + np.sqrt(2))) + (1 / (2 * np.sqrt(2))) * 1j, 0,
(0.25 * (2 - np.sqrt(2))) - (1 / (2 * np.sqrt(2))) * 1j, 0],
[0, 1, 0, 0],
[(0.25 * (2 - np.sqrt(2))) - (1 / (2 * np.sqrt(2))) * 1j, 0,
(0.25 * (2 + np.sqrt(2))) + (1 / (2 * np.sqrt(2))) * 1j, 0],
[0, 0, 0, 1]]))
# H^X.CU1(pi/2,0,1).H^X
targets.append(
np.array([[0.5 + 0.5j, 0, 0.5 - 0.5j, 0], [0, 1, 0, 0],
[0.5 - 0.5j, 0, 0.5 + 0.5j, 0], [0, 0, 0, 1]]))
# H^X.CU1(pi,0,1).H^X
targets.append(
np.array([[0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 1]]))
# H^H.CU1(0,0,1).H^H
targets.append(np.eye(4))
# H^H.CU1(pi/2,0,1).H^H
targets.append(
(0.75 + 0.25j) * np.eye(4) + (0.25 - 0.25j) *
np.array([[0, 1, 1, -1], [1, 0, -1, 1], [1, -1, 0, 1], [-1, 1, 1, 0]]))
# H^H.CU1(pi,0,1).H^H
targets.append(
0.5 *
np.array([[1, 1, 1, -1], [1, 1, -1, 1], [1, -1, 1, 1], [-1, 1, 1, 1]]))
return targets
# ==========================================================================
# CU3
# ==========================================================================
def cu3_gate_circuits_deterministic(final_measure):
circuits = []
qr = QuantumRegister(2)
if final_measure:
cr = ClassicalRegister(2)
regs = (qr, cr)
else:
regs = (qr, )
# I^X.CI.I^X
circuit = QuantumCircuit(*regs)
circuit.x(qr[0])
circuit.cu(0, 0, 0, 0, qr[0], qr[1])
circuit.x(qr[0])
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
# CX
circuit = QuantumCircuit(*regs)
circuit.cu(np.pi, 0, np.pi, 0, qr[0], qr[1])
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
# I^X.CX.I^X
circuit = QuantumCircuit(*regs)
circuit.x(qr[0])
circuit.cu(np.pi, 0, np.pi, 0, qr[0], qr[1])
circuit.x(qr[0])
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
# H^X.CH.I^X
circuit = QuantumCircuit(*regs)
circuit.x(qr[0])
circuit.cu(np.pi / 2, 0, np.pi, 0, qr[0], qr[1])
circuit.x(qr[0])
circuit.h(qr[1])
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
# I^X.CRX(pi).I^X
circuit = QuantumCircuit(*regs)
circuit.x(qr[0])
circuit.cu(np.pi, -np.pi / 2, np.pi / 2, 0, qr[0], qr[1])
circuit.x(qr[0])
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
# I^X.CRY(pi).I^X
circuit = QuantumCircuit(*regs)
circuit.x(qr[0])
circuit.cu(np.pi, 0, 0, 0, qr[0], qr[1])
circuit.x(qr[0])
if final_measure:
circuit.barrier(qr)
circuit.measure(qr, cr)
circuits.append(circuit)
return circuits
def cu3_gate_unitary_deterministic():
targets = []
# I^X.CI.I^X
targets.append(np.eye(4))
# CX
targets.append(
np.array([[1, 0, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0]]))
# I^X.CX.I^X
targets.append(
np.array([[0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 1]]))
# H^X.CH.I^X
targets.append(
np.array([[1, 0, 0, 0], [0, 1 / np.sqrt(2), 0, 1 / np.sqrt(2)],
[0, 0, 1, 0], [0, 1 / np.sqrt(2), 0, -1 / np.sqrt(2)]]))
# I^X.CRX(pi).I^X
targets.append(
np.array([[0, 0, -1j, 0], [0, 1, 0, 0], [-1j, 0, 0, 0], [0, 0, 0, 1]]))
# I^X.CRY(pi).I^X
targets.append(
np.array([[0, 0, -1, 0], [0, 1, 0, 0], [1, 0, 0, 0], [0, 0, 0, 1]]))
return targets
def cu3_gate_statevector_deterministic():
init_state = np.array([1, 0, 0, 0])
targets = [mat.dot(init_state) for mat in cu3_gate_unitary_deterministic()]
return targets
def cu3_gate_counts_deterministic(shots, hex_counts=True):
"""CU2-gate circuits reference counts."""
probs = [np.abs(vec)**2 for vec in cu3_gate_statevector_deterministic()]
targets = []
for prob in probs:
if hex_counts:
targets.append({hex(i): shots * p for i, p in enumerate(prob)})
else:
counts = {}
for i, p in enumerate(prob):
key = bin(i)[2:]
key = (2 - len(key)) * '0' + key
counts[key] = shots * p
targets.append(counts)
return targets
|
https://github.com/1chooo/Quantum-Oracle
|
1chooo
|
from qiskit import execute
from qiskit.providers.aer import AerSimulator
from qiskit.visualization import plot_histogram
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
qrx = QuantumRegister(3, 'x')
qry = QuantumRegister(1, 'y')
cr = ClassicalRegister(3, 'c')
qc = QuantumCircuit(qrx, qry, cr)
qc.h(qrx)
qc.x(qry)
qc.h(qry)
qc.barrier()
qc.x(qry)
qc.barrier()
qc.h(qrx)
qc.h(qry)
qc.measure(qrx, cr)
qc.draw("mpl")
sim = AerSimulator()
job = execute(qc, backend = sim, shots = 1000)
result = job.result()
counts = result.get_counts(qc)
print("Counts: ", counts)
plot_histogram(counts)
|
https://github.com/benkoehlL/Qiskit_Playground
|
benkoehlL
|
'''
This program performs the Berstein-Vazirani algorithm to guess a secret code
'''
from qiskit import *
from qiskit.visualization import plot_histogram
from matplotlib.pyplot import plot, draw, show
import numpy as np
import os, shutil
LaTex_folder_Berstein_Vazirani = str(os.getcwd())+'/Latex_quantum_gates/Berstein_Vazarani/'
if not os.path.exists(LaTex_folder_Berstein_Vazirani):
os.makedirs(LaTex_folder_Berstein_Vazirani)
else:
shutil.rmtree(LaTex_folder_Berstein_Vazirani)
os.makedirs(LaTex_folder_Berstein_Vazirani)
## guess a secret binary number
s = '110101' #secret number/code
n = len(s)
qc = QuantumCircuit(n+1,n)
qc.x(n)
qc.barrier()
qc.h(range(n+1))
qc.barrier()
# to separate steps
for i, tf in enumerate(reversed(s)):
if(tf == '1'):
qc.cx(i,n)
qc.barrier()
qc.h(range(n+1))
qc.barrier()
qc.measure(range(n), range(n))
# create a LaTex file for the algorithm
LaTex_code = qc.draw(output='latex_source', initial_state=True, justify=None) # draw the circuit
f_name = 'Berstein_Vazirani.tex'
with open(LaTex_folder_Berstein_Vazirani+f_name, 'w') as f:
f.write(LaTex_code)
# simulate the algorithm
simulator = Aer.get_backend('qasm_simulator')
job = execute(qc, simulator, shots=1)
results = job.result()
count = results.get_counts()
plot_histogram(results.get_counts(qc))
print(count)
draw()
show(block=True)
## guess a secret string
string = 'Thank you for the nice book'
bit_string = []
# convert string to bit-string
for c in string:
bits_letter = format(ord(c), 'b')
for bit in bits_letter:
bit_string.append(bit)
n = len(bit_string)
qc = QuantumCircuit(n+1,n)
qc.x(n)
qc.barrier()
qc.h(range(n+1))
qc.barrier()
# to separate steps
for i, tf in enumerate(reversed(bit_string)):
if(tf == '1'):
qc.cx(i,n)
qc.barrier()
qc.h(range(n+1))
qc.barrier()
qc.measure(range(n), range(n))
simulator = Aer.get_backend('qasm_simulator')
job = execute(qc, simulator, shots=1)
results = job.result()
count = results.get_counts()
plot_histogram(results.get_counts(qc))
print(len(bit_string),'\n', count)
draw()
show(block=True)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit, execute
from qiskit.visualization import plot_error_map
from qiskit.providers.fake_provider import FakeVigoV2
backend = FakeVigoV2()
plot_error_map(backend)
|
https://github.com/Gopal-Dahale/qiskit-qulacs
|
Gopal-Dahale
|
"""QulacsBackend class."""
import copy
import time
import uuid
from collections import Counter
from typing import List, Union
import numpy as np
from qiskit import QuantumCircuit
from qiskit.providers import BackendV1 as Backend
from qiskit.providers import JobStatus, Options
from qiskit.providers.models import QasmBackendConfiguration
from qiskit.result import Result
from qiskit.result.models import ExperimentResult, ExperimentResultData
import qulacs
from qulacs.circuit import QuantumCircuitOptimizer
from .adapter import MAX_QUBITS, qiskit_to_qulacs
from .backend_utils import BASIS_GATES, available_devices, generate_config
from .qulacs_job import QulacsJob
from .version import __version__
class QulacsBackend(Backend):
"""QulacsBackend class."""
_BASIS_GATES = BASIS_GATES
_DEFAULT_CONFIGURATION = {
"backend_name": "qulacs_simulator",
"backend_version": __version__,
"n_qubits": MAX_QUBITS,
"url": "https://github.com/Gopal-Dahale/qiskit-qulacs",
"simulator": True,
"local": True,
"conditional": True,
"open_pulse": False,
"memory": True,
"max_shots": int(1e6),
"description": "A Qulacs fast quantum circuit simulator",
"coupling_map": None,
"basis_gates": _BASIS_GATES,
"gates": [],
}
_SIMULATION_DEVICES = ("CPU", "GPU")
_AVAILABLE_DEVICES = None
def __init__(
self, configuration=None, properties=None, provider=None, **backend_options
):
# Update available devices for class
if QulacsBackend._AVAILABLE_DEVICES is None:
QulacsBackend._AVAILABLE_DEVICES = available_devices(
QulacsBackend._SIMULATION_DEVICES
)
# Default configuration
if configuration is None:
configuration = QasmBackendConfiguration.from_dict(
QulacsBackend._DEFAULT_CONFIGURATION
)
super().__init__(
configuration,
provider=provider,
)
# Initialize backend properties
self._properties = properties
# Set options from backend_options dictionary
if backend_options is not None:
self.set_options(**backend_options)
# Quantum circuit optimizer (if needed)
self.qc_opt = QuantumCircuitOptimizer()
self.class_suffix = {
"GPU": "Gpu",
"CPU": "",
}
@classmethod
def _default_options(cls):
return Options(
# Global options
shots=0,
device="CPU",
seed_simulator=None,
# Quantum Circuit Optimizer options
qco_enable=False,
qco_method="light",
qco_max_block_size=2,
)
def __repr__(self):
"""String representation of an QulacsBackend."""
name = self.__class__.__name__
display = f"'{self.name()}'"
return f"{name}({display})"
def available_devices(self):
"""Return the available simulation methods."""
return copy.copy(self._AVAILABLE_DEVICES)
def _execute_circuits_job(self, circuits, states, run_options, job_id=""):
"""Run a job"""
shots = run_options.shots
seed = (
run_options.seed_simulator
if run_options.seed_simulator
else np.random.randint(1000)
)
# Start timer
start = time.time()
expt_results = []
if shots:
for state, circuit in zip(states, circuits):
circuit.update_quantum_state(state)
n = circuit.get_qubit_count()
samples = state.sampling(shots, seed)
bitstrings = [format(x, f"0{n}b") for x in samples]
counts = dict(Counter(bitstrings))
expt_results.append(
ExperimentResult(
shots=shots,
success=True,
status=JobStatus.DONE,
data=ExperimentResultData(counts=counts, memory=bitstrings),
)
)
else:
for state, circuit in zip(states, circuits):
circuit.update_quantum_state(state)
# Statevector
expt_results.append(
ExperimentResult(
shots=shots,
success=True,
status=JobStatus.DONE,
data=ExperimentResultData(
statevector=state.get_vector(),
),
)
)
return Result(
backend_name=self.name(),
backend_version=self.configuration().backend_version,
job_id=job_id,
qobj_id=0,
success=True,
results=expt_results,
status=JobStatus.DONE,
time_taken=time.time() - start,
)
def run(
self,
run_input: Union[QuantumCircuit, List[QuantumCircuit]],
**run_options,
) -> QulacsJob:
run_input = [run_input] if isinstance(run_input, QuantumCircuit) else run_input
run_input = list(qiskit_to_qulacs(run_input))
config = (
generate_config(self.options, run_options) if run_options else self.options
)
# Use GPU if available
if config.device not in self.available_devices():
if config.device == "GPU":
raise ValueError("GPU support not installed. Install qulacs-gpu.")
raise ValueError(f"Device {config.device} not found.")
class_name = f'QuantumState{self.class_suffix.get(config.device, "")}'
state_class = getattr(qulacs, class_name)
# Use Quantum Circuit Optimizer
if config.qco_enable:
if config.qco_method == "light":
for circuit in run_input:
self.qc_opt.optimize_light(circuit)
elif config.qco_method == "greedy":
for circuit in run_input:
self.qc_opt.optimize(circuit, config.qco_max_block_size)
# Create quantum states
states = [state_class(circuit.get_qubit_count()) for circuit in run_input]
# Submit job
job_id = str(uuid.uuid4())
qulacs_job = QulacsJob(
self,
job_id,
self._execute_circuits_job,
circuits=run_input,
states=states,
run_options=config,
)
qulacs_job.submit()
return qulacs_job
|
https://github.com/bertolinocastro/quantum-computing-algorithms
|
bertolinocastro
|
# A Quantum Circuit to Construct All Maximal Cliques Using Grover’s Search Algorithm
## Chu Ryang Wie
### DOI: https://arxiv.org/abs/1711.06146v2
import matplotlib
#matplotlib.use('Agg')
import matplotlib.pyplot as plt
from qiskit import *
# IBMQ.load_account()
from qiskit.visualization import *
n = 3 # size of network
psi = QuantumRegister(n, name='psi') # cliques states
data = QuantumRegister(n**2, name='data') # data A+I states
ancl = QuantumRegister(n**2, name='ancl') # ancilla states
cpsi = ClassicalRegister(n, name='cpsi') # classical register for measurement
cdata = ClassicalRegister(n**2, name='cdata') # classical register for measurement
cancl = ClassicalRegister(n**2, name='cancl') # classical register for measurement
#extra_ancl = QuantumRegister(n**2, name='extra_ancl')
qc = QuantumCircuit(psi, data, ancl, cpsi, cdata, cancl, name='maximal cliques')
import numpy as np
A = np.array([ # creating adjacency matrix
[0,1,0],
[1,0,1],
[0,1,0]
], dtype=np.int)
AI = A+ np.eye(n, dtype=np.int)
# setting network structure on data qubits
for ij, cij in enumerate(AI.flatten()):
if cij:
qc.x(data[ij])
# putting cliques on uniform superposition
for j in range(n):
qc.h(psi[j])
def V():
for j in range(n):
for i in range(n):
# applying 'intersect operator' as defined in paper
qc.barrier()
# standard toffoli
qc.ccx(psi[j], data[j*n+i], ancl[j*n+i])
# toffoli variant - 1st ctrl qbit works when 0
qc.x(psi[j])
qc.ccx(psi[j], data[j*n+i], ancl[j*n+i])
# toffoli variant - 1st & 2nd ctrl qbit work when 0
qc.x(data[j*n+i])
qc.ccx(psi[j], data[j*n+i], ancl[j*n+i])
# undoing NOT operations
qc.x(psi[j])
qc.x(data[j*n+i])
def W():
for j in range(n):
# trying to use multi-controlled toffoli gate available in qiskit (not sure if it works)
#qc.mct(ancl[j::n], psi[j], extra_ancl)
#QuantumCircuit.mct(q_controls, q_target, q_ancilla, mode='basic')
qc.barrier()
qc.mct(ancl[j::n], psi[j], None, mode='noancilla')
def flip_ket_0():
for j in range(n):
qc.x(psi[j])
qc.h(psi[n-1])
qc.barrier()
qc.mct(psi[:-1], psi[-1], None, mode='noancilla')
qc.barrier()
qc.h(psi[n-1])
for j in range(n):
qc.x(psi[j])
def O():
qc.barrier()
V()
qc.barrier()
W()
qc.barrier()
flip_ket_0()
qc.barrier()
W()
qc.barrier()
V()
def G():
qc.barrier()
for j in range(n):
qc.h(psi[j])
qc.barrier()
for j in range(n):
qc.x(psi[j])
qc.barrier()
qc.h(psi[-1])
qc.barrier()
qc.mct(psi[:-1],psi[-1],None,mode='noancilla')
qc.barrier()
qc.h(psi[-1])
qc.barrier()
for j in range(n):
qc.x(psi[j])
qc.barrier()
for j in range(n):
qc.h(psi[j])
O()
G()
qc.barrier()
qc.measure(psi, cpsi)
qc.measure(data, cdata)
qc.measure(ancl, cancl)
fig = circuit_drawer(qc, output='mpl', filename='circuit.pdf', fold=300)
#fig
res = execute(qc, Aer.get_backend('qasm_simulator'), shots=4096).result()
print(res)
print(res.get_counts())
plot_histogram(res.get_counts())
# Running on IBMQ Experience
# saving account credentials first
#IBMQ.save_account('MY_TOKEN_ID')
# loading IBMQ session
provider = IBMQ.load_account()
backend = provider.backends(simulator=True,operational=True)[0]
res = execute(qc, backend, shots=8192).result()
plot_histogram(res.get_counts())
# TODO: create circuit for n=2 network and test it on melbourne qpu.
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit_nature.problems.second_quantization.lattice.lattices import LineLattice
from qiskit_nature.problems.second_quantization.lattice.models import FermiHubbardModel
line = LineLattice(2)
fermi = FermiHubbardModel.uniform_parameters(line, 2.0, 4.0, 3.0)
print(fermi.second_q_ops()) # Note: the trailing `s`
from qiskit_nature.second_q.hamiltonians.lattices import LineLattice
from qiskit_nature.second_q.hamiltonians import FermiHubbardModel
line = LineLattice(2)
fermi = FermiHubbardModel(line.uniform_parameters(2.0, 4.0), 3.0)
print(fermi.second_q_op()) # Note: NO trailing `s`
import numpy as np
from qiskit_nature.problems.second_quantization.lattice.models import FermiHubbardModel
interaction = np.array([[4.0, 2.0], [2.0, 4.0]])
fermi = FermiHubbardModel.from_parameters(interaction, 3.0)
print(fermi.second_q_ops()) # Note: the trailing `s`
import numpy as np
from qiskit_nature.second_q.hamiltonians.lattices import Lattice
from qiskit_nature.second_q.hamiltonians import FermiHubbardModel
interaction = np.array([[4.0, 2.0], [2.0, 4.0]])
lattice = Lattice.from_adjacency_matrix(interaction)
fermi = FermiHubbardModel(lattice, 3.0)
print(fermi.second_q_op()) # Note: NO trailing `s`
from qiskit_nature.problems.second_quantization.lattice.lattices import LineLattice
from qiskit_nature.problems.second_quantization.lattice.models import IsingModel
line = LineLattice(2)
ising = IsingModel.uniform_parameters(line, 2.0, 4.0)
print(ising.second_q_ops()) # Note: the trailing `s`
from qiskit_nature.second_q.hamiltonians.lattices import LineLattice
from qiskit_nature.second_q.hamiltonians import IsingModel
line = LineLattice(2)
ising = IsingModel(line.uniform_parameters(2.0, 4.0))
print(ising.second_q_op()) # Note: NO trailing `s`
import numpy as np
from qiskit_nature.problems.second_quantization.lattice.models import IsingModel
interaction = np.array([[4.0, 2.0], [2.0, 4.0]])
ising = IsingModel.from_parameters(interaction)
print(ising.second_q_ops()) # Note: the trailing `s`
import numpy as np
from qiskit_nature.second_q.hamiltonians.lattices import Lattice
from qiskit_nature.second_q.hamiltonians import IsingModel
interaction = np.array([[4.0, 2.0], [2.0, 4.0]])
lattice = Lattice.from_adjacency_matrix(interaction)
ising = IsingModel(lattice)
print(ising.second_q_op()) # Note: NO trailing `s`
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/TRSasasusu/qiskit-quantum-zoo
|
TRSasasusu
|
from typing import Optional
import math
import numpy as np
import matplotlib.pyplot as plt
from sympy import gcdex
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, Aer, transpile, assemble
from qiskit.visualization import plot_histogram
from sympy import Rational, gcdex
from sympy.ntheory.continued_fraction import continued_fraction, continued_fraction_convergents
from qft import qft
from elementary import ax_modM
from order_finding import order_finding
from classical_utils import decode_bin
def discrete_log(a: int, b: int, p: int, show_hist: Optional[bool] = False, coef_t: Optional[int] = 1) -> int:
"""Shor's discrete log algorithm: given $a,b,p\in\mathbb{Z}$, it finds $s$ such that $a^s\equiv b\pmod p$.
Args:
a (int): $a$
b (int): $b$
p (int): $p$
"""
r = order_finding(x=a, N=p, show_hist=False)
t = coef_t * int(np.ceil(np.log2(p)))
first_register = QuantumRegister(t)
second_register = QuantumRegister(t)
third_register = QuantumRegister(2 * t)
auxiliary_register_mid = QuantumRegister(t)
auxiliary_register_end = QuantumRegister(6 * t - 2)
classical_register = ClassicalRegister(2 * t)
qc = QuantumCircuit(
first_register,
second_register,
third_register,
auxiliary_register_mid,
auxiliary_register_end,
classical_register,
)
qc.h(first_register)
qc.h(second_register)
qc.append(ax_modM(a=b, M=p, N_len=t), list(first_register) + list(auxiliary_register_mid) + list(third_register) + list(auxiliary_register_end))
qc.append(ax_modM(a=a, M=p, N_len=t, x_0_at_first=False), list(second_register) + list(auxiliary_register_mid) + list(third_register) + list(auxiliary_register_end))
qc.append(qft(n=t).inverse(), first_register)
qc.append(qft(n=t).inverse(), second_register)
qc.measure(list(first_register) + list(second_register), classical_register)
#qc.measure(third_register, classical_register)
backend = Aer.get_backend('aer_simulator_matrix_product_state')#('aer_simulator')
qc = transpile(qc, backend)
job = backend.run(qc, shots=10000)
hist = job.result().get_counts()
if show_hist:
figsize_x = max(7 * (len(hist) // 8), 7)
plot_histogram(hist, figsize=(figsize_x, 5))
plt.savefig(f'img/discrete_log_a{a}_b{b}_p{p}_r{r}_t{t}.png', bbox_inches='tight')
for measured_key, _ in sorted(hist.items(), key=lambda x: x[1], reverse=True):
tilde_l_per_r = Rational(decode_bin(measured_key[:t]), 2 ** t) # decoded from second register: $\widetilde{l/r}$
if tilde_l_per_r == 0:
continue
l = None
for fraction in continued_fraction_convergents(continued_fraction(tilde_l_per_r)):
if fraction.denominator == r:
l = fraction.numerator # get correct $l$
break
if l is None:
continue
tilde_beta_per_r = Rational(decode_bin(measured_key[-t:]), 2 ** t) # decoded from first register: $\widetilde{\beta/r}$
if tilde_beta_per_r == 0:
if pow(a, 0, p) == b: # the case where b == 1
return r # returning 0 is also ok
continue
beta = None
for fraction in continued_fraction_convergents(continued_fraction(tilde_beta_per_r)):
if fraction.denominator == r:
beta = fraction.numerator # get correct $\beta$
break
if beta is None:
continue
s, alpha, _ = gcdex(l, -r)
s = int(s * beta)
if pow(a, s, p) == b:
return s
raise Exception('s is NOT found!')
if __name__ == '__main__':
#print(discrete_log(a=2, b=4, p=7, show_hist=True))
#print(discrete_log(a=3, b=5, p=11, show_hist=True, coef_t=2))
print(discrete_log(a=2, b=1, p=3, show_hist=True, coef_t=1))
|
https://github.com/PavanCyborg/Quantum-Algorithms-Benchmarking
|
PavanCyborg
|
import matplotlib.pyplot as plt
import numpy as np
from qiskit import QuantumCircuit, Aer, execute, transpile, assemble, QuantumRegister, ClassicalRegister
from qiskit.visualization import plot_histogram
def binary(num,length): #converts an integer to a binary number with defined length
b = bin(num)[2:]
return "0"*(length-len(b))+str(b)
ncon = 4
controlreg = QuantumRegister(ncon,"control")
hreg = QuantumRegister(1,"y")
cc = ClassicalRegister(ncon,"cc")
#xi = np.random.randint(0,2**ncon-1) #xi as in the greek letter
xi = 7
R = int(np.pi/4*np.sqrt(2**ncon))
qc = QuantumCircuit(controlreg,hreg,cc)
def Uf(controlreg,hreg,xi,ncon): #the oracle gate, a multi=controlled x gate which is one iff the input = xi
hcirc = QuantumCircuit(hreg)
circ = QuantumCircuit(controlreg,hreg)
xiBin = binary(xi,ncon)
zerolist = [i for i in range(ncon) if (xiBin[i] == "0")]
circ.x(zerolist)
circ.mct(list(range(ncon)),ncon)
circ.x(zerolist)
circ.name = "Uf"
return circ
def ccz(controls=2): #multi controlled Z gate (decomposed here as a multi controlled X with H gates placed either side)
circ = QuantumCircuit(controls+1)
circ.h(controls)
circ.mct(list(range(controls)),[controls])
circ.h(controls)
circ.name = "c"*controls+"z"
return circ
def diffusion(ncon): #https://rdcu.be/cLzsq
circ = QuantumCircuit(ncon)
circ.h(range(ncon))
circ.x(range(ncon))
circ.append(ccz(ncon-1),list(range(ncon)))
circ.barrier()
circ.x(range(ncon))
circ.h(range(ncon))
circ.name = "Diffusion"
return circ
Ufgate = Uf(controlreg,hreg,xi,ncon)
qc.x(hreg[0])
qc.h(hreg[0])
qc.h(range(ncon))
for e in range(R):
qc.barrier()
qc.append(Ufgate,controlreg[:]+hreg[:])
qc.barrier()
qc.append(diffusion(ncon).decompose(),controlreg[:ncon])
qc.barrier()
qc.measure([controlreg[i] for i in range(ncon-1,-1,-1)],cc,)
print(xi)
qc.draw(plot_barriers=False,fold = -1,output = "latex")
?aersim
aersim = Aer.get_backend('aer_simulator') #set memory=True to see measurements
tqc = transpile(qc,aersim)
results = aersim.run(tqc,shots=10000).result()
plot_histogram(results.get_counts())
aersim = Aer.get_backend('aer_simulator') #set memory=True to see measurements
tqc = transpile(qc,aersim)
results = aersim.run(tqc,shots=10000).result()
d = results.get_counts()
oldkeys = list(d.keys())
for key in oldkeys:
d[str(int(key,2))] = d[key]
del d[key]
x = np.arange(0,2**ncon-1,1)
y = np.zeros(len(x))
for i,xi in enumerate(x):
if str(xi) in d.keys():
y[i] = d[str(xi)]
plt.xlim(-1,2**ncon)
plt.bar(x,y,color=(0.4,0.6,1))
controlreg,hreg = QuantumRegister(4,"control"),QuantumRegister(1,"y")
xi = 7
hcirc = QuantumCircuit(hreg)
circ = QuantumCircuit(controlreg,hreg)
xiBin = binary(xi,ncon)
zerolist = [i for i in range(ncon) if (xiBin[i] == "0")]
circ.x(zerolist)
circ.mct(list(range(ncon)),ncon)
circ.x(zerolist)
circ.name = "Uf"
circ.draw(output="latex")
circ = QuantumCircuit(ncon)
circ.h(range(ncon))
circ.x(range(ncon))
circ.h(ncon-1)
circ.mct(list(range(ncon-1)),[ncon-1])
circ.h(ncon-1)
circ.barrier()
circ.x(range(ncon))
circ.h(range(ncon))
circ.name = "Diffusion"
circ.draw(output="latex",plot_barriers=False)
from qiskit import IBMQ
IBMQ.enable_account("")
provider = IBMQ.get_provider(hub='ibm-q')
provider.backends()
backend = provider.get_backend("ibmq_quito")
res = backend.retrieve_job("622a012c9e029c54a90deedc").result()
plot_histogram(res.get_counts())
nbits = 4
d = res.get_counts()
oldkeys = list(d.keys())
for key in oldkeys:
d[str(int(key,2))] = d[key]
del d[key]
x = list(range(0,7))+list(range(8,16))
xi, yi = 7,d["7"]/10000
del d["7"]
y = [d[str(xi)]/10000 for xi in x]
plt.xlim(-1,15.9)
plt.bar(x,y,color=(0.4,0.6,1))
plt.bar(xi,yi,color=(1,0,0))
plt.ylabel("Probability")
plt.xlabel("x")
|
https://github.com/henotrix/quantum-practice
|
henotrix
|
from qiskit import *
from oracle_generation import generate_oracle
get_bin = lambda x, n: format(x, 'b').zfill(n)
def gen_circuits(min,max,size):
circuits = []
secrets = []
ORACLE_SIZE = size
for i in range(min,max+1):
cur_str = get_bin(i,ORACLE_SIZE-1)
(circuit, secret) = generate_oracle(ORACLE_SIZE,False,3,cur_str)
circuits.append(circuit)
secrets.append(secret)
return (circuits, secrets)
|
https://github.com/shantomborah/Quantum-Algorithms
|
shantomborah
|
import numpy as np
import hhl_components as cmp
import matplotlib.pyplot as plt
from qiskit import QuantumCircuit
from qiskit import Aer, execute
from qiskit.visualization import plot_histogram
# Initialize parameters
t0 = 2 * np.pi
r = 6
A = [[3.75, 2.25, 1.25, -0.75],
[2.25, 3.75, 0.75, -1.25],
[1.25, 0.75, 3.75, -2.25],
[-0.75, -1.25, -2.25, 3.75]]
b = [0.5, 0.5, 0.5, 0.5]
x = [-0.0312, 0.2188, 0.3437, 0.4062]
p = [i ** 2 for i in x]
basis = ['00', '01', '10', '11']
# Build circuit
circ = QuantumCircuit(7, 3)
circ.initialize(b, range(2))
circ.append(cmp.ad_hoc_hhl(A, t0, r), range(7))
circ.measure(6, 2)
circ.measure([0, 1], [0, 1])
# Get simulators
qasm = Aer.get_backend('qasm_simulator')
svsm = Aer.get_backend('statevector_simulator')
# QASM simulation
job = execute(circ, qasm, shots=1024)
counts = job.result().get_counts()
measured_data = {}
expected_data = {basis[i]: np.floor(p[i] * 1024) for i in range(4)}
for key in counts.keys():
if key[0] == '1':
measured_data[key[1::]] = counts[key]
plot_histogram([expected_data, measured_data], title='HHL QASM Simulation', legend=['expected', 'measured'])
plt.subplots_adjust(left=0.15, right=0.72, top=0.9, bottom=0.15)
plt.show()
|
https://github.com/qiskit-community/qiskit-hackathon-korea-22
|
qiskit-community
|
from qiskit_nature.problems.sampling.protein_folding.interactions.random_interaction import (
RandomInteraction,
)
from qiskit_nature.problems.sampling.protein_folding.interactions.miyazawa_jernigan_interaction import (
MiyazawaJerniganInteraction,
)
from qiskit_nature.problems.sampling.protein_folding.peptide.peptide import Peptide
from qiskit_nature.problems.sampling.protein_folding.protein_folding_problem import (
ProteinFoldingProblem,
)
from qiskit_nature.problems.sampling.protein_folding.penalty_parameters import PenaltyParameters
from qiskit.utils import algorithm_globals, QuantumInstance
algorithm_globals.random_seed = 23
main_chain = "APRLRFY"
side_chains = [""] * 7
random_interaction = RandomInteraction()
mj_interaction = MiyazawaJerniganInteraction()
penalty_back = 10
penalty_chiral = 10
penalty_1 = 10
penalty_terms = PenaltyParameters(penalty_chiral, penalty_back, penalty_1)
peptide = Peptide(main_chain, side_chains)
protein_folding_problem = ProteinFoldingProblem(peptide, mj_interaction, penalty_terms)
qubit_op = protein_folding_problem.qubit_op()
from qiskit.circuit.library import RealAmplitudes
from qiskit.algorithms.optimizers import COBYLA
from qiskit.algorithms import NumPyMinimumEigensolver, VQE
from qiskit.opflow import PauliExpectation, CVaRExpectation
from qiskit import execute, Aer
# set classical optimizer
optimizer = COBYLA(maxiter=50)
# set variational ansatz
ansatz = RealAmplitudes(reps=1)
# set the backend
backend_name = "aer_simulator"
backend = QuantumInstance(
Aer.get_backend(backend_name),
shots=8192,
seed_transpiler=algorithm_globals.random_seed,
seed_simulator=algorithm_globals.random_seed,
)
counts = []
values = []
def store_intermediate_result(eval_count, parameters, mean, std):
counts.append(eval_count)
values.append(mean)
# initialize CVaR_alpha objective with alpha = 0.1
cvar_exp = CVaRExpectation(0.1, PauliExpectation())
# initialize VQE using CVaR
vqe = VQE(
expectation=cvar_exp,
optimizer=optimizer,
ansatz=ansatz,
quantum_instance=backend,
callback=store_intermediate_result,
)
result = vqe.compute_minimum_eigenvalue(qubit_op)
print(result)
import matplotlib.pyplot as plt
fig = plt.figure()
plt.plot(counts, values)
plt.ylabel("Conformation Energy")
plt.xlabel("VQE Iterations")
fig.add_axes([0.44, 0.51, 0.44, 0.32])
plt.plot(counts[40:], values[40:])
plt.ylabel("Conformation Energy")
plt.xlabel("VQE Iterations")
plt.show()
main_chain = "APRLRFDR"
side_chains = [""] * 8
random_interaction = RandomInteraction()
mj_interaction = MiyazawaJerniganInteraction()
penalty_back = 10
penalty_chiral = 10
penalty_1 = 10
penalty_terms = PenaltyParameters(penalty_chiral, penalty_back, penalty_1)
peptide = Peptide(main_chain, side_chains)
protein_folding_problem = ProteinFoldingProblem(peptide, mj_interaction, penalty_terms)
qubit_op = protein_folding_problem.qubit_op()
"from qiskit.circuit.library import [INSERT YOUR OWN ANSATZ]"
from qiskit.circuit.library import RealAmplitudes
"from qiskit.algorithms.optimizers import [INSERT YOUR OWN OPTIMIZER]"
from qiskit.algorithms.optimizers import COBYLA
from qiskit.algorithms import NumPyMinimumEigensolver, VQE
from qiskit.opflow import PauliExpectation, CVaRExpectation
from qiskit import execute, Aer
# set classical optimizer start
"""
1. Choose your optimizer
Note that you have to import optimizer.
"""
"optimizer = [INSERT YOUR OWN OPTIMIZER]"
optimizer = COBYLA(maxiter=100)
# set classical optimizer end
# set variational ansatz start
"""
2. Choose your ansatz
Note that you have to import ansatz.
"""
"ansatz = [INSERT YOUR OWN ANSATZ]"
ansatz = RealAmplitudes(reps=1)
# set variational ansatz end
# set the backend
backend_name = "aer_simulator"
backend = QuantumInstance(
Aer.get_backend(backend_name),
shots=8192,
seed_transpiler=algorithm_globals.random_seed,
seed_simulator=algorithm_globals.random_seed,
)
counts = []
values = []
def store_intermediate_result(eval_count, parameters, mean, std):
counts.append(eval_count)
values.append(mean)
# initialize CVaR_alpha objective with alpha = 0.1
cvar_exp = CVaRExpectation(0.1, PauliExpectation())
# initialize VQE using CVaR
vqe = VQE(
expectation=cvar_exp,
optimizer=optimizer,
ansatz=ansatz,
quantum_instance=backend,
callback=store_intermediate_result,
)
result = vqe.compute_minimum_eigenvalue(qubit_op)
print(result)
import matplotlib.pyplot as plt
fig = plt.figure()
plt.plot(counts, values)
plt.ylabel("Conformation Energy")
plt.xlabel("VQE Iterations")
fig.add_axes([0.44, 0.51, 0.44, 0.32])
plt.plot(counts[40:], values[40:])
plt.ylabel("Conformation Energy")
plt.xlabel("VQE Iterations")
plt.show()
print( "Result:", values[-1] )
|
https://github.com/daimurat/qiskit-implementation
|
daimurat
|
import numpy as np
import matplotlib.pyplot as plt
%matplotlib notebook
from qiskit import QuantumCircuit
from qiskit.circuit import Parameter
def generate_2qubit_qnn(label):
circuit = QuantumCircuit(2)
circuit.ry(np.pi / 4.0, 0)
circuit.ry(np.pi / 4.0, 1)
circuit.barrier()
for i in range(2):
if label[i] == 'x':
circuit.rx(Parameter('theta'+str(i)), i)
elif label[i] == 'y':
circuit.ry(Parameter('theta'+str(i)), i)
elif label[i] == 'z':
circuit.rz(Parameter('theta'+str(i)), i)
circuit.barrier()
# Add CZ ladder.
circuit.cz(0, 1)
return circuit
qc_test = generate_2qubit_qnn('xy')
qc_test.draw('mpl')
# 期待値の計算
from qiskit import Aer
from qiskit.utils import QuantumInstance
from qiskit.opflow import CircuitSampler, StateFn, PauliSumOp
from qiskit.opflow.expectations import PauliExpectation
hamiltonian = PauliSumOp.from_list([('X', 1.0)])
expectation = StateFn(hamiltonian, is_measurement=True) @ StateFn(qc_test)
aerpauli_basis = PauliExpectation().convert(expectation)
quantum_instance = QuantumInstance(Aer.get_backend('qasm_simulator'),
shots = 32768)
sampler = CircuitSampler(quantum_instance)
# 期待値の評価
def calculate_exp_val(params):
value_dict = dict(zip(qc_test.parameters, params))
result = sampler.convert(aerpauli_basis, params=value_dict).eval()
return np.real(result)
X = np.linspace(0, 2*np.pi, 30)
Y = np.linspace(0, 2*np.pi, 30)
Z = np.array([[calculate_exp_val([x, y]) for x in X] for y in Y]).reshape(len(Y), len(X))
xx, yy = np.meshgrid(X, Y)
fig = plt.figure()
ax = fig.add_subplot(projection="3d")
ax.plot_surface(xx, yy, Z, cmap=plt.cm.jet)
ax.set_xlabel('theta_1')
ax.set_ylabel('theta_2')
ax.set_zlabel('loss')
plt.show()
from qiskit.opflow import Gradient
gradient = Gradient().convert(expectation)
gradient_in_pauli_basis = PauliExpectation().convert(gradient)
# 勾配の評価
def calculate_gradient(params):
value_dict = dict(zip(qc_test.parameters, params))
result = sampler.convert(gradient_in_pauli_basis, params=value_dict).eval()
return np.real(result)
from qiskit.opflow import NaturalGradient
ng = NaturalGradient().convert(expectation)
ng_in_pauli_basis = PauliExpectation().convert(ng)
def calculate_natural_gradient(params):
value_dict = dict(zip(qc_test.parameters, params))
result = sampler.convert(ng_in_pauli_basis, params=value_dict).eval()
return np.real(result)
initial_point = np.array([np.pi, np.pi])
from qiskit.algorithms.optimizers import GradientDescent
gd_loss= []
xx_op= []
yy_op= []
def gd_callback(nfevs, x, fx, stepsize):
gd_loss.append(fx)
xx_op.append(x[0])
yy_op.append(x[1])
gd = GradientDescent(maxiter=50,learning_rate=0.1, callback=gd_callback)
x_opt, fx_opt, nfevs = (
gd.optimize(initial_point.size,
calculate_exp_val,
gradient_function=calculate_gradient,
initial_point=initial_point)
)
ngd_loss= []
xx_op_ng= []
yy_op_ng= []
def ngd_callback(nfevs, x, fx, stepsize):
ngd_loss.append(fx)
xx_op_ng.append(x[0])
yy_op_ng.append(x[1])
qng = GradientDescent(maxiter=50,learning_rate=0.1, callback=ngd_callback)
x_opt_ng, fx_opt_ng, nfevs_ng = (
qng.optimize(initial_point.size,
calculate_exp_val,
gradient_function=calculate_natural_gradient,
initial_point=initial_point)
)
from matplotlib.animation import FuncAnimation
fig = plt.figure()
ax = fig.add_subplot(projection="3d")
ax.plot_surface(xx, yy, Z, cmap=plt.cm.jet, alpha=0.6)
gd, = ax.plot([], [], [], '.-k', label='vanilla gradient descent')
ngd, = ax.plot([], [], [], '.-r', label='natural gradient descent')
ax.set_xlabel('theta_1')
ax.set_ylabel('theta_2')
ax.set_zlabel('loss')
def update(f):
gd.set_data(xx_op[:f], yy_op[:f])
gd.set_3d_properties(gd_loss[:f])
ngd.set_data(xx_op_ng[:f], yy_op_ng[:f])
ngd.set_3d_properties(ngd_loss[:f])
anim = FuncAnimation(fig, update, interval=200)
plt.legend(loc='upper left')
plt.show()
anim.save("ngd.gif")
import qiskit.tools.jupyter
%qiskit_version_table
|
https://github.com/Cryoris/surfer
|
Cryoris
|
"""The QFI interface.
Avoids using the plain name QFI since that exists in Qiskit and I want to avoid conflicts.
"""
from typing import List, Optional
from abc import ABC, abstractmethod
import qiskit
import numpy as np
class QFICalculator(ABC):
"""The QFI interface."""
def __init__(self, do_checks: bool = True):
"""
Args:
do_checks: Do some sanity checks on the inputs. Can be disabled for performance.
"""
self.do_checks = do_checks
@abstractmethod
def compute(
self,
circuit: qiskit.QuantumCircuit,
values: np.ndarray,
parameters: Optional[List[qiskit.circuit.Parameter]] = None,
) -> np.ndarray:
"""Compute the QFI for the given circuit.
The initial state is assumed to be the all-zero state.
Args:
circuit: A parameterized unitary circuit preparing the quantum state of which we compute
the QFI.
values: The parameter values.
"""
raise NotImplementedError
@staticmethod
def check_inputs(
circuit: qiskit.QuantumCircuit,
values: np.ndarray,
) -> None:
"""Check the circuit and values.
Args:
circuit: A parameterized unitary circuit preparing the quantum state of which we compute
the QFI.
values: The parameter values.
Raises:
ValueError: If the circuit is invalid (non unitary or gates with more than 1 parameter).
ValueError: If the number of values doesn't match the parameters.
NotImplementedError: If the circuit has repeated parameters.
"""
_check_circuit_is_unitay(circuit)
# _check_1_parameter_per_gate(circuit)
# check the number of parameters
if circuit.num_parameters != values.size:
raise ValueError(
f"Mismatching number of parameters ({circuit.num_parameters}) "
f"and values ({values.size})."
)
# _check_no_duplicate_params(circuit)
def _check_circuit_is_unitay(circuit):
try:
_ = circuit.to_gate()
except qiskit.circuit.exceptions.CircuitError:
# pylint: disable=raise-missing-from
raise ValueError("The circuit is not unitary.")
def _check_1_parameter_per_gate(circuit):
for inst, _, _ in circuit.data:
params = inst.params
if (
any(
isinstance(param, qiskit.circuit.ParameterExpression)
for param in params
)
and len(params) > 1
):
raise ValueError(
"If a gate is parameterized, it can only have 1 parameter."
)
def _check_no_duplicate_params(circuit):
# pylint: disable=protected-access
for _, gates in circuit._parameter_table.items():
if len(gates) > 1:
raise NotImplementedError(
"The product rule is currently not implemented, parameters must be unique."
)
|
https://github.com/2lambda123/Qiskit-qiskit
|
2lambda123
|
# -*- coding: utf-8 -*-
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
# pylint: disable=wrong-import-order
"""Main Qiskit public functionality."""
import pkgutil
# First, check for required Python and API version
from . import util
# qiskit errors operator
from .exceptions import QiskitError
# The main qiskit operators
from qiskit.circuit import ClassicalRegister
from qiskit.circuit import QuantumRegister
from qiskit.circuit import QuantumCircuit
# pylint: disable=redefined-builtin
from qiskit.tools.compiler import compile # TODO remove after 0.8
from qiskit.execute import execute
# The qiskit.extensions.x imports needs to be placed here due to the
# mechanism for adding gates dynamically.
import qiskit.extensions
import qiskit.circuit.measure
import qiskit.circuit.reset
# Allow extending this namespace. Please note that currently this line needs
# to be placed *before* the wrapper imports or any non-import code AND *before*
# importing the package you want to allow extensions for (in this case `backends`).
__path__ = pkgutil.extend_path(__path__, __name__)
# Please note these are global instances, not modules.
from qiskit.providers.basicaer import BasicAer
# Try to import the Aer provider if installed.
try:
from qiskit.providers.aer import Aer
except ImportError:
pass
# Try to import the IBMQ provider if installed.
try:
from qiskit.providers.ibmq import IBMQ
except ImportError:
pass
from .version import __version__
from .version import __qiskit_version__
|
https://github.com/quantum-kittens/quantum-computing-basics
|
quantum-kittens
|
import numpy as np
# Importing standard Qiskit libraries
from qiskit import QuantumCircuit, transpile, Aer, IBMQ
from qiskit.tools.jupyter import *
from qiskit.visualization import *
from ibm_quantum_widgets import *
from qiskit.providers.aer import QasmSimulator
# Additional libraries
from qiskit import QuantumRegister, ClassicalRegister
from qiskit.providers.ibmq import least_busy
from qiskit.tools import job_monitor
from qiskit import execute
# Loading your IBM Quantum account(s)
provider = IBMQ.load_account()
#code taken from https://qiskit.org/documentation/intro_tutorial1.html
# Identify backend: Use Aer's qasm_simulator
simulator = QasmSimulator()
# Create a quantum circuit with 2 qubits and 2 classical bits
circuit = QuantumCircuit(2, 2)
# Add a H gate on qubit 0
circuit.h(0)
# Add a CX (CNOT) gate on control qubit 0 and target qubit 1
circuit.cx(0, 1)
# Map the quantum measurements to the classical bits
circuit.measure([0,1], [0,1])
# compile the circuit down to low-level QASM instructions
# supported by the backend (not needed for simple circuits)
compiled_circuit = transpile(circuit, simulator)
# Execute the circuit on the qasm simulator
job = simulator.run(compiled_circuit, shots=1000)
# Grab results from the job
result = job.result()
# Returns counts
counts = result.get_counts(compiled_circuit)
print("\nTotal count for 00 and 11 are:",counts)
# Draw the circuit
circuit.draw()
# See what providers are available to you
IBMQ.providers()
# Get your provider and see which backends are available to you
provider = IBMQ.get_provider('ibm-q-internal') # comment this if you don't have access to internal systems
#provider = IBMQ.get_provider('ibm-q') # publically accessible provider, open-access
for backend in provider.backends():
print(backend)
# Find which real devices are eligible to run your circuit
eligible_devices = provider.backends(filters=lambda x:x.configuration().n_qubits>1 and not x.configuration().simulator)
for backend in eligible_devices:
print(backend)
# Select the least busy backend
chosen_backend = least_busy(eligible_devices)
print(chosen_backend.name())
# Run and monitor the job
compiled_circuit = transpile(circuit, chosen_backend)
job = chosen_backend.run(compiled_circuit, shots = 1000)
job_monitor(job)
# Check the results
job_id = job.job_id()
retrieved_job = chosen_backend.retrieve_job(job_id)
result = retrieved_job.result()
counts_real = result.get_counts()
# If currently unable to run, can use the following result from real devices
# counts_real = {'00': 476, '01': 15, '10': 18, '11': 491} # example result from a real quantum computer
# Print both real and sim results
print("Your backend is:")
print(chosen_backend)
print("Your job ID is:")
print(job_id)
print()
print("The counts from the real device are:")
print(counts_real)
print()
print("The counts from the simulator are:")
print(counts)
# Plot the results
title = 'Real vs. Simulated'
legend = ['Real Counts', 'Sim Counts']
plot_histogram([counts_real, counts], legend = legend, title = title, color = ['teal', 'purple'], bar_labels = False)
# NOT operation using the simulator
simulator = QasmSimulator()
for i in ['0','1']:
# Prepare circuit
qreg = QuantumRegister(1, name = 'q_reg')
creg = ClassicalRegister(1, name = 'c_reg')
not_circ = QuantumCircuit(qreg,creg)
# Initialize qubit state
if i == '1':
not_circ.x(0)
not_circ.barrier()
# Apply NOT operation
not_circ.x(qreg[0]) # this is where you replace 'which'
not_circ.barrier()
# Measure
not_circ.measure(qreg[0],creg[0])
display(not_circ.draw('mpl'))
job = simulator.run(not_circ, shots=1000)
# Grab results from the job
result = job.result()
# Returns counts
counts = result.get_counts(not_circ)
print('The result when the qubit is initialized in state ', i,' is:', max(counts))
|
https://github.com/xtophe388/QISKIT
|
xtophe388
|
import qiskit
qiskit.__qiskit_version__
# useful additional packages
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
# importing Qiskit
from qiskit import BasicAer, IBMQ
from qiskit import QuantumCircuit, ClassicalRegister, QuantumRegister, execute
from qiskit.compiler import transpile
from qiskit.tools.monitor import job_monitor
# import basic plot tools
from qiskit.tools.visualization import plot_histogram
# Load our saved IBMQ accounts
IBMQ.load_account()
n = 13 # the length of the first register for querying the oracle
# Choose a type of oracle at random. With probability half it is constant,
# and with the same probability it is balanced
oracleType, oracleValue = np.random.randint(2), np.random.randint(2)
if oracleType == 0:
print("The oracle returns a constant value ", oracleValue)
else:
print("The oracle returns a balanced function")
a = np.random.randint(1,2**n) # this is a hidden parameter for balanced oracle.
# Creating registers
# n qubits for querying the oracle and one qubit for storing the answer
qr = QuantumRegister(n+1) #all qubits are initialized to zero
# for recording the measurement on the first register
cr = ClassicalRegister(n)
circuitName = "DeutschJozsa"
djCircuit = QuantumCircuit(qr, cr)
# Create the superposition of all input queries in the first register by applying the Hadamard gate to each qubit.
for i in range(n):
djCircuit.h(qr[i])
# Flip the second register and apply the Hadamard gate.
djCircuit.x(qr[n])
djCircuit.h(qr[n])
# Apply barrier to mark the beginning of the oracle
djCircuit.barrier()
if oracleType == 0:#If the oracleType is "0", the oracle returns oracleValue for all input.
if oracleValue == 1:
djCircuit.x(qr[n])
else:
djCircuit.iden(qr[n])
else: # Otherwise, it returns the inner product of the input with a (non-zero bitstring)
for i in range(n):
if (a & (1 << i)):
djCircuit.cx(qr[i], qr[n])
# Apply barrier to mark the end of the oracle
djCircuit.barrier()
# Apply Hadamard gates after querying the oracle
for i in range(n):
djCircuit.h(qr[i])
# Measurement
djCircuit.barrier()
for i in range(n):
djCircuit.measure(qr[i], cr[i])
#draw the circuit
djCircuit.draw(output='mpl',scale=0.5)
backend = BasicAer.get_backend('qasm_simulator')
shots = 1000
job = execute(djCircuit, backend=backend, shots=shots)
results = job.result()
answer = results.get_counts()
plot_histogram(answer)
backend = IBMQ.get_backend('ibmq_16_melbourne')
djCompiled = transpile(djCircuit, backend=backend, optimization_level=1)
djCompiled.draw(output='mpl',scale=0.5)
job = execute(djCompiled, backend=backend, shots=1024)
job_monitor(job)
results = job.result()
answer = results.get_counts()
threshold = int(0.01 * shots) # the threshold of plotting significant measurements
filteredAnswer = {k: v for k,v in answer.items() if v >= threshold} # filter the answer for better view of plots
removedCounts = np.sum([ v for k,v in answer.items() if v < threshold ]) # number of counts removed
filteredAnswer['other_bitstrings'] = removedCounts # the removed counts are assigned to a new index
plot_histogram(filteredAnswer)
print(filteredAnswer)
|
https://github.com/sayana25/IQCQ-UPES-2023
|
sayana25
|
pip install qiskit
pip install qiskit-ibm-runtime
pip install pylatexenc
import qiskit
from qiskit import QuantumCircuit,QuantumRegister,ClassicalRegister,execute,IBMQ, assemble, Aer
from qiskit.visualization import plot_histogram, plot_bloch_vector
from math import sqrt, pi
#qc = QuantumCircuit(1) # Create a quantum circuit with one qubit
qc = QuantumCircuit(1) # Create a quantum circuit with one qubit
initial_state = [0,1] # Define initial_state as |1>
qc.initialize(initial_state, 0) # Apply initialisation operation to the 0th qubit
qc.draw() # Let's view our circuit
qc = QuantumCircuit(3,3) # Create a quantum circuit with 3 qubits, like in python
qc.h(0) #hadamard gate
qc.x(1) #Pauli-X gate
qc.y(2) #Pauli-Y gate
qc.draw() # Let's view our circuit
|
https://github.com/nahumsa/volta
|
nahumsa
|
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
import qiskit
from qiskit import QuantumCircuit, execute
from qiskit.utils import QuantumInstance
from qiskit.providers import BaseBackend
from typing import Union
import textwrap
def swap_test_circuit(qc1: QuantumCircuit, qc2: QuantumCircuit) -> QuantumCircuit:
"""Construct the SWAP test circuit given two circuits.
Args:
qc1(qiskit.QuantumCircuit): Quantum circuit for the
first state.
qc2(qiskit.QuantumCircuit): Quantum circuit for the
second state.
Output:
(qiskit.QuantumCircuit): swap test circuit.
"""
# Helper variables
n_total = qc1.num_qubits + qc2.num_qubits
range_qc1 = [i + 1 for i in range(qc1.num_qubits)]
range_qc2 = [i + qc1.num_qubits + 1 for i in range(qc2.num_qubits)]
# Constructing the SWAP test circuit
qc_swap = QuantumCircuit(n_total + 1, 1)
qc_swap.append(qc1, range_qc1)
qc_swap.append(qc2, range_qc2)
# Swap Test
qc_swap.h(0)
for index, qubit in enumerate(range_qc1):
qc_swap.cswap(0, qubit, range_qc2[index])
qc_swap.h(0)
# Measurement on the auxiliary qubit
qc_swap.measure(0, 0)
return qc_swap
def measure_swap_test(
qc1: QuantumCircuit,
qc2: QuantumCircuit,
backend: Union[BaseBackend, QuantumInstance],
num_shots: int = 10000,
) -> float:
"""Returns the fidelity from a SWAP test.
Args:
qc1 (QuantumCircuit): Quantum Circuit for the first state.
qc2 (QuantumCircuit): Quantum Circuit for the second state.
backend (Union[BaseBackend,QuantumInstance]): Backend.
num_shots (int, optional): Number of shots. Defaults to 10000.
Returns:
float: result of the overlap betweeen the first and second state.
"""
swap_circuit = swap_test_circuit(qc1, qc2)
# Check if the backend is a quantum instance.
if qiskit.utils.quantum_instance.QuantumInstance == type(backend):
count = backend.execute(swap_circuit).get_counts()
else:
count = (
execute(swap_circuit, backend=backend, shots=num_shots)
.result()
.get_counts()
)
if "0" not in count:
count["0"] = 0
if "1" not in count:
count["1"] = 0
total_counts = count["0"] + count["1"]
fid_meas = count["0"]
p_0 = fid_meas / total_counts
return 2 * (p_0 - 1 / 2)
def dswap_test_circuit(qc1: QuantumCircuit, qc2: QuantumCircuit) -> QuantumCircuit:
"""Construct the destructive SWAP test circuit given two circuits.
Args:
qc1(qiskit.QuantumCircuit): Quantum circuit for the
first state.
qc2(qiskit.QuantumCircuit): Quantum circuit for the
second state.
Output:
(qiskit.QuantumCircuit): swap test circuit.
"""
# Helper variables
n_total = qc1.num_qubits + qc2.num_qubits
range_qc1 = [i for i in range(qc1.num_qubits)]
range_qc2 = [i + qc1.num_qubits for i in range(qc2.num_qubits)]
# Constructing the SWAP test circuit
qc_swap = QuantumCircuit(n_total, n_total)
qc_swap.append(qc1, range_qc1)
qc_swap.append(qc2, range_qc2)
for index, qubit in enumerate(range_qc1):
qc_swap.cx(qubit, range_qc2[index])
qc_swap.h(qubit)
for index, qubit in enumerate(range_qc1):
qc_swap.measure(qubit, 2 * index)
for index, qubit in enumerate(range_qc2):
qc_swap.measure(range_qc2[index], 2 * index + 1)
return qc_swap
def measure_dswap_test(
qc1: QuantumCircuit,
qc2: QuantumCircuit,
backend: Union[BaseBackend, QuantumInstance],
num_shots: int = 10000,
) -> float:
"""Returns the fidelity from a destructive SWAP test.
Args:
qc1 (QuantumCircuit): Quantum Circuit for the first state.
qc2 (QuantumCircuit): Quantum Circuit for the second state.
backend (Union[BaseBackend,QuantumInstance]): Backend.
num_shots (int, optional): Number of shots. Defaults to 10000.
Returns:
float: result of the overlap betweeen the first and second state.
"""
n = qc1.num_qubits
swap_circuit = dswap_test_circuit(qc1, qc2)
# Check if the backend is a quantum instance.
if qiskit.utils.quantum_instance.QuantumInstance == type(backend):
count = backend.execute(swap_circuit).get_counts()
else:
count = (
execute(swap_circuit, backend=backend, shots=num_shots)
.result()
.get_counts()
)
result = 0
for meas, counts in count.items():
split_meas = textwrap.wrap(meas, 2)
for m in split_meas:
if m == "11":
result -= counts
else:
result += counts
total = sum(count.values())
return result / (n * total)
def amplitude_transition_test_circuit(
qc1: QuantumCircuit, qc2: QuantumCircuit
) -> QuantumCircuit:
"""Construct the SWAP test circuit given two circuits using amplitude transition.
Args:
qc1(qiskit.QuantumCircuit): Quantum circuit for the
first state.
qc2(qiskit.QuantumCircuit): Quantum circuit for the
second state.
Output:
(qiskit.QuantumCircuit): swap test circuit.
"""
# Constructing the SWAP test circuit
n_qubits = qc1.num_qubits
qc_swap = QuantumCircuit(n_qubits)
qc_swap.append(qc1, range(n_qubits))
qc_swap.append(qc2.inverse(), range(n_qubits))
# Measurement on the auxiliary qubit
qc_swap.measure_all()
return qc_swap
def measure_amplitude_transition_test(
qc1: QuantumCircuit,
qc2: QuantumCircuit,
backend,
num_shots: int = 10000,
) -> float:
"""Returns the fidelity from a SWAP test using amplitude transition.
Args:
qc1 (QuantumCircuit): Quantum Circuit for the first state.
qc2 (QuantumCircuit): Quantum Circuit for the second state.
backend (Union[BaseBackend,QuantumInstance]): Backend.
num_shots (int, optional): Number of shots. Defaults to 10000.
Returns:
float: result of the overlap betweeen the first and second state.
"""
swap_circuit = amplitude_transition_test_circuit(qc1, qc2)
# Check if the backend is a quantum instance.
if qiskit.utils.quantum_instance.QuantumInstance == type(backend):
count = backend.execute(swap_circuit).get_counts()
else:
count = (
execute(swap_circuit, backend=backend, shots=num_shots)
.result()
.get_counts()
)
if "0" * qc1.num_qubits not in count:
count["0" * qc1.num_qubits] = 0
total_counts = sum(count.values())
fid_meas = count["0" * qc1.num_qubits]
p_0 = fid_meas / total_counts
return p_0
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit, transpile
from qiskit_aer import AerSimulator
from qiskit.tools.visualization import plot_histogram
import random
circ = QuantumCircuit(40, 40)
# Initialize with a Hadamard layer
circ.h(range(40))
# Apply some random CNOT and T gates
qubit_indices = [i for i in range(40)]
for i in range(10):
control, target, t = random.sample(qubit_indices, 3)
circ.cx(control, target)
circ.t(t)
circ.measure(range(40), range(40))
# Create statevector method simulator
statevector_simulator = AerSimulator(method='statevector')
# Transpile circuit for backend
tcirc = transpile(circ, statevector_simulator)
# Try and run circuit
statevector_result = statevector_simulator.run(tcirc, shots=1).result()
print('This succeeded?: {}'.format(statevector_result.success))
print('Why not? {}'.format(statevector_result.status))
# Create extended stabilizer method simulator
extended_stabilizer_simulator = AerSimulator(method='extended_stabilizer')
# Transpile circuit for backend
tcirc = transpile(circ, extended_stabilizer_simulator)
extended_stabilizer_result = extended_stabilizer_simulator.run(tcirc, shots=1).result()
print('This succeeded?: {}'.format(extended_stabilizer_result.success))
small_circ = QuantumCircuit(2, 2)
small_circ.h(0)
small_circ.cx(0, 1)
small_circ.t(0)
small_circ.measure([0, 1], [0, 1])
# This circuit should give 00 or 11 with equal probability...
expected_results ={'00': 50, '11': 50}
tsmall_circ = transpile(small_circ, extended_stabilizer_simulator)
result = extended_stabilizer_simulator.run(
tsmall_circ, shots=100).result()
counts = result.get_counts(0)
print('100 shots in {}s'.format(result.time_taken))
plot_histogram([expected_results, counts],
legend=['Expected', 'Extended Stabilizer'])
# Add runtime options for extended stabilizer simulator
opts = {'extended_stabilizer_approximation_error': 0.03}
reduced_error = extended_stabilizer_simulator.run(
tsmall_circ, shots=100, **opts).result()
reduced_error_counts = reduced_error.get_counts(0)
print('100 shots in {}s'.format(reduced_error.time_taken))
plot_histogram([expected_results, reduced_error_counts],
legend=['Expected', 'Extended Stabilizer'])
print("The circuit above, with 100 shots at precision 0.03 "
"and default mixing time, needed {}s".format(int(reduced_error.time_taken)))
opts = {
'extended_stabilizer_approximation_error': 0.03,
'extended_stabilizer_mixing_time': 100
}
optimized = extended_stabilizer_simulator.run(
tsmall_circ, shots=100, **opts).result()
print('Dialing down the mixing time, we completed in just {}s'.format(optimized.time_taken))
# We set these options here only to make the example run more quickly.
opts = {'extended_stabilizer_mixing_time': 100}
multishot = extended_stabilizer_simulator.run(
tcirc, shots=100, **opts).result()
print("100 shots took {} s".format(multishot.time_taken))
opts = {
'extended_stabilizer_measure_sampling': True,
'extended_stabilizer_mixing_time': 100
}
measure_sampling = extended_stabilizer_simulator.run(
circ, shots=100, **opts).result()
print("With the optimization, 100 shots took {} s".format(result.time_taken))
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/anpaschool/qiskit-toolkit
|
anpaschool
|
import numpy as np
import IPython
import ipywidgets as widgets
import colorsys
import matplotlib.pyplot as plt
from qiskit import QuantumCircuit,QuantumRegister,ClassicalRegister
from qiskit import execute, Aer, BasicAer
from qiskit.visualization import plot_bloch_multivector
from qiskit.tools.jupyter import *
from qiskit.visualization import *
import os
import glob
import moviepy.editor as mpy
import seaborn as sns
sns.set()
'''========State Vector======='''
def getStateVector(qc):
'''get state vector in row matrix form'''
backend = BasicAer.get_backend('statevector_simulator')
job = execute(qc,backend).result()
vec = job.get_statevector(qc)
return vec
def vec_in_braket(vec: np.ndarray) -> str:
'''get bra-ket notation of vector'''
nqubits = int(np.log2(len(vec)))
state = ''
for i in range(len(vec)):
rounded = round(vec[i], 3)
if rounded != 0:
basis = format(i, 'b').zfill(nqubits)
state += np.str(rounded).replace('-0j', '+0j')
state += '|' + basis + '\\rangle + '
state = state.replace("j", "i")
return state[0:-2].strip()
def vec_in_text_braket(vec):
return '$$\\text{{State:\n $|\\Psi\\rangle = $}}{}$$'\
.format(vec_in_braket(vec))
def writeStateVector(vec):
return widgets.HTMLMath(vec_in_text_braket(vec))
'''==========Bloch Sphere ========='''
def getBlochSphere(qc):
'''plot multi qubit bloch sphere'''
vec = getStateVector(qc)
return plot_bloch_multivector(vec)
def getBlochSequence(path,figs):
'''plot block sphere sequence and save it
to a folder for gif movie creation'''
try:
os.mkdir(path)
except:
print('Directory already exist')
for i,fig in enumerate(figs):
fig.savefig(path+"/rot_"+str(i)+".png")
return
def getBlochGif(figs,path,fname,fps,remove = True):
'''create gif movie from provided images'''
file_list = glob.glob(path + "/*.png")
list.sort(file_list, key=lambda x: int(x.split('_')[1].split('.png')[0]))
clip = mpy.ImageSequenceClip(file_list, fps=fps)
clip.write_gif('{}.gif'.format(fname), fps=fps)
'''remove all image files after gif creation'''
if remove:
for file in file_list:
os.remove(file)
return
'''=========Matrix================='''
def getMatrix(qc):
'''get numpy matrix representing a circuit'''
backend = BasicAer.get_backend('unitary_simulator')
job = execute(qc, backend)
ndArray = job.result().get_unitary(qc, decimals=3)
Matrix = np.matrix(ndArray)
return Matrix
def plotMatrix(M):
'''visualize a matrix using seaborn heatmap'''
MD = [["0" for i in range(M.shape[0])] for j in range(M.shape[1])]
for i in range(M.shape[0]):
for j in range(M.shape[1]):
r = M[i,j].real
im = M[i,j].imag
MD[i][j] = str(r)[0:4]+ " , " +str(im)[0:4]
plt.figure(figsize = [2*M.shape[1],M.shape[0]])
sns.heatmap(np.abs(M),\
annot = np.array(MD),\
fmt = '',linewidths=.5,\
cmap='Blues')
return
'''=========Measurement========'''
def getCount(qc):
backend= Aer.get_backend('qasm_simulator')
result = execute(qc,backend).result()
counts = result.get_counts(qc)
return counts
def plotCount(counts,figsize):
plot_histogram(counts)
'''========Phase============'''
def getPhaseCircle(vec):
'''get phase color, angle and radious of phase circir'''
Phase = []
for i in range(len(vec)):
angles = (np.angle(vec[i]) + (np.pi * 4)) % (np.pi * 2)
rgb = colorsys.hls_to_rgb(angles / (np.pi * 2), 0.5, 0.5)
mag = np.abs(vec[i])
Phase.append({"rgb":rgb,"mag": mag,"ang":angles})
return Phase
def getPhaseDict(QCs):
'''get a dictionary of state vector phase circles for
each quantum circuit and populate phaseDict list'''
phaseDict = []
for qc in QCs:
vec = getStateVector(qc)
Phase = getPhaseCircle(vec)
phaseDict.append(Phase)
return phaseDict
def plotiPhaseCircle(phaseDict,depth,path,show=False,save=False):
'''plot any quantum circuit phase circle diagram
from provided phase Dictionary'''
r = 0.30
dx = 1.0
nqubit = len(phaseDict[0])
fig = plt.figure(figsize = [depth,nqubit])
for i in range(depth):
x0 = i
for j in range(nqubit):
y0 = j+1
try:
mag = phaseDict[i][j]['mag']
ang = phaseDict[i][j]['ang']
rgb = phaseDict[i][j]['rgb']
ax=plt.gca()
circle1= plt.Circle((dx+x0,y0), radius = r, color = 'white')
ax.add_patch(circle1)
circle2= plt.Circle((dx+x0,y0), radius= r*mag, color = rgb)
ax.add_patch(circle2)
line = plt.plot((dx+x0,dx+x0+(r*mag*np.cos(ang))),\
(y0,y0+(r*mag*np.sin(ang))),color = "black")
except:
ax=plt.gca()
circle1= plt.Circle((dx+x0,y0), radius = r, color = 'white')
ax.add_patch(circle1)
plt.ylim(nqubit+1,0)
plt.yticks([y+1 for y in range(nqubit)])
plt.xticks([x for x in range(depth+2)])
plt.xlabel("Circuit Depth")
plt.ylabel("Basis States")
if show:
plt.show()
plt.savefig(path+".png")
plt.close(fig)
if save:
plt.savefig(path +".png")
plt.close(fig)
return
def plotiPhaseCircle_rotated(phaseDict,depth,path,show=False,save=False):
'''plot any quantum circuit phase circle diagram
from provided phase Dictionary'''
r = 0.30
dy = 1.0
nqubit = len(phaseDict[0])
fig = plt.figure(figsize = [nqubit,depth])
for i in range(depth):
y0 = i
for j in range(nqubit):
x0 = j+1
try:
mag = phaseDict[i][j]['mag']
ang = phaseDict[i][j]['ang']
rgb = phaseDict[i][j]['rgb']
ax=plt.gca()
circle1= plt.Circle((x0,dy+y0), radius = r, color = 'white')
ax.add_patch(circle1)
circle2= plt.Circle((x0,dy+y0), radius= r*mag, color = rgb)
ax.add_patch(circle2)
line = plt.plot((x0,x0+(r*mag*np.cos(ang))),\
(dy+y0,dy+y0+(r*mag*np.sin(ang))),color = "black")
except:
ax=plt.gca()
circle1= plt.Circle((x0,dy+y0), radius = r, color = 'white')
ax.add_patch(circle1)
plt.ylim(0,depth+1)
plt.yticks([x+1 for x in range(depth)])
plt.xticks([y for y in range(nqubit+2)])
plt.ylabel("Circuit Depth")
plt.xlabel("Basis States")
if show:
plt.show()
plt.savefig(path+".png")
plt.close(fig)
if save:
plt.savefig(path +".png")
plt.close(fig)
return
def getPhaseSequence(QCs,path,rotated=False):
'''plot a sequence of phase circle diagram for a given
sequence of quantum circuits'''
try:
os.mkdir(path)
except:
print("Directory already exist")
depth = len(QCs)
phaseDict =[]
for i,qc in enumerate(QCs):
vec = getStateVector(qc)
Phase = getPhaseCircle(vec)
phaseDict.append(Phase)
ipath = path + "phase_" + str(i)
if rotated:
plotiPhaseCircle_rotated(phaseDict,depth,ipath,save=True,show=False)
else:
plotiPhaseCircle(phaseDict,depth,ipath,save=True,show=False)
return
def getPhaseGif(path,fname,fps,remove = True):
'''create a gif movie file from phase circle figures'''
file_list = glob.glob(path+ "/*.png")
list.sort(file_list, key=lambda x: int(x.split('_')[1].split('.png')[0]))
clip = mpy.ImageSequenceClip(file_list, fps=fps)
clip.write_gif('{}.gif'.format(fname), fps=fps)
'''remove all image files after gif creation'''
if remove:
for file in file_list:
os.remove(file)
return
|
https://github.com/MonitSharma/Learn-Quantum-Computing-with-Qiskit
|
MonitSharma
|
from qiskit import QuantumCircuit
from qiskit.primitives import Sampler, Estimator
from qiskit.visualization import plot_histogram, plot_bloch_multivector
qc = QuantumCircuit(3)
# Apply H-gate to each qubit:
for i in range(3):
qc.h(i)
# See the circuit:
qc.draw('mpl')
# Let's see the result
from qiskit.quantum_info import Statevector
state = Statevector.from_instruction(qc)
plot_bloch_multivector(state)
qc.draw('mpl')
from qiskit.visualization import array_to_latex
array_to_latex(state, prefix="\\text{Statevector} = ")
qc = QuantumCircuit(2)
qc.h(0)
qc.x(1)
qc.draw('mpl')
# You can similar get a unitary matrix representing the circuit as an operator by passing it to the Operator default constructor
from qiskit.quantum_info import Operator
operator = Operator(qc)
print(operator.data)
# In Jupyter Notebooks we can display this nicely using Latex.
# If not using Jupyter Notebooks you may need to remove the
# array_to_latex function and use print(unitary) instead.
from qiskit.visualization import array_to_latex
array_to_latex(operator.data, prefix="\\text{Circuit = }\n")
qc = QuantumCircuit(2)
qc.x(1)
qc.draw('mpl')
# Simulate the unitary
unitary = Operator(qc).data
# Display the results:
array_to_latex(unitary, prefix="\\text{Circuit = } ")
qc = QuantumCircuit(2)
# appkt the cnot gate
qc.cx(0,1) # the first number represent the control qubit and the second qubit represent the target qubit
# draw it
qc.draw('mpl')
# Simulate the unitary
unitary = Operator(qc).data
# Display the results:
array_to_latex(unitary, prefix="\\text{Circuit = } ")
qc = QuantumCircuit(2)
# appkt the cnot gate
qc.cx(1,0) # the first number represent the control qubit and the second qubit represent the target qubit
# draw it
qc.draw('mpl')
# Simulate the unitary
unitary = Operator(qc).data
# Display the results:
array_to_latex(unitary, prefix="\\text{Circuit = } ")
qc = QuantumCircuit(2)
# Apply H-gate to the first:
qc.h(0)
qc.draw('mpl')
# Let's see the result:
final_state = Statevector.from_instruction(qc)
# Print the statevector neatly:
array_to_latex(final_state, prefix="\\text{Statevector = }")
qc = QuantumCircuit(2)
# Apply H-gate to the first:
qc.h(0)
# Apply a CNOT:
qc.cx(0,1)
qc.draw('mpl')
# Let's get the result:f
final_state = Statevector.from_instruction(qc)
array_to_latex(final_state, prefix="\\text{Statevector = }")
qc.measure_all()
qc.draw('mpl')
result = sampler.run(qc).result()
counts = result.quasi_dists[0]
plot_histogram(counts)
plot_bloch_multivector(final_state)
from qiskit.visualization import plot_state_qsphere
plot_state_qsphere(final_state)
|
https://github.com/qiskit-community/qiskit-device-benchmarking
|
qiskit-community
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2024.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""
Analyze the fast_count results
"""
import argparse
import numpy as np
import qiskit_device_benchmarking.utilities.file_utils as fu
import matplotlib.pyplot as plt
def generate_plot(out_data, degree_data, args):
"""Generate a bar plot of the qubit numbers of each backend
Generates a plot of the name count_plot_<XXX>.pdf where XXX is the
current date and time
Args:
out_data: data from the run (count data)
degree_data: average degree
args: arguments passed to the parser
Returns:
None
"""
count_data = np.array([out_data[i] for i in out_data])
degree_data = np.array([degree_data[i] for i in out_data])
backend_lbls = np.array([i for i in out_data])
sortinds = np.argsort(count_data)
plt.bar(backend_lbls[sortinds], count_data[sortinds])
plt.xticks(rotation=45, ha='right')
ax1 = plt.gca()
ax2 = ax1.twinx()
ax2.plot(range(len(sortinds)),degree_data[sortinds],marker='x', color='black')
plt.xlabel('Backend')
plt.grid(axis='y')
ax1.set_ylabel('Largest Connected Region')
ax2.set_ylabel('Average Degree')
plt.title('CHSH Test on Each Edge to Determine Qubit Count')
plt.savefig('count_plot_%s.pdf'%fu.timestamp_name(),bbox_inches='tight')
plt.close()
return
if __name__ == '__main__':
"""Analyze a benchmarking run from `fast_bench.py`
Args:
Call -h for arguments
"""
parser = argparse.ArgumentParser(description = 'Analyze the results of a '
+ 'benchmarking run.')
parser.add_argument('-f', '--files', help='Comma separated list of files')
parser.add_argument('-b', '--backends', help='Comma separated list of '
+ 'backends to plot. If empty plot all.')
parser.add_argument('--plot', help='Generate a plot', action='store_true')
args = parser.parse_args()
#import from results files and concatenate into a larger results
results_dict = {}
for file in args.files.split(','):
results_dict_new = fu.import_yaml(file)
for backend in results_dict_new:
if backend not in results_dict:
results_dict[backend] = results_dict_new[backend]
elif backend!='config':
#backend in the results dict but maybe not that depth
err_str = 'Backend %s already exists, duplicate results'%(backend)
raise ValueError(err_str)
if args.backends is not None:
backends_filt = args.backends.split(',')
else:
backends_filt = []
count_data = {}
degree_data = {}
for backend in results_dict:
if len(backends_filt)>0:
if backend not in backends_filt:
continue
if backend=='config':
continue
count_data[backend] = results_dict[backend]['largest_region']
degree_data[backend] = results_dict[backend]['average_degree']
print('Backend %s, Largest Connected Region: %d'%(backend,count_data[backend]))
print('Backend %s, Average Degree: %f'%(backend,degree_data[backend]))
if args.plot:
generate_plot(count_data, degree_data, args)
elif args.plot:
print('Need to run mean/max also')
|
https://github.com/2lambda123/Qiskit-qiskit
|
2lambda123
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2017, 2018.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
# This file is part of QuTiP: Quantum Toolbox in Python.
#
# Copyright (c) 2011 and later, Paul D. Nation and Robert J. Johansson.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# 3. Neither the name of the QuTiP: Quantum Toolbox in Python nor the names
# of its contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
# PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
###############################################################################
"""
Routines for running Python functions in parallel using process pools
from the multiprocessing library.
"""
import os
from concurrent.futures import ProcessPoolExecutor
import sys
from qiskit.exceptions import QiskitError
from qiskit.utils.multiprocessing import local_hardware_info
from qiskit.tools.events.pubsub import Publisher
from qiskit import user_config
def get_platform_parallel_default():
"""
Returns the default parallelism flag value for the current platform.
Returns:
parallel_default: The default parallelism flag value for the
current platform.
"""
# Default False on Windows
if sys.platform == "win32":
parallel_default = False
# On macOS default false on Python >=3.8
elif sys.platform == "darwin":
parallel_default = False
# On linux (and other OSes) default to True
else:
parallel_default = True
return parallel_default
CONFIG = user_config.get_config()
if os.getenv("QISKIT_PARALLEL", None) is not None:
PARALLEL_DEFAULT = os.getenv("QISKIT_PARALLEL", None).lower() == "true"
else:
PARALLEL_DEFAULT = get_platform_parallel_default()
# Set parallel flag
if os.getenv("QISKIT_IN_PARALLEL") is None:
os.environ["QISKIT_IN_PARALLEL"] = "FALSE"
if os.getenv("QISKIT_NUM_PROCS") is not None:
CPU_COUNT = int(os.getenv("QISKIT_NUM_PROCS"))
else:
CPU_COUNT = CONFIG.get("num_process", local_hardware_info()["cpus"])
def _task_wrapper(param):
(task, value, task_args, task_kwargs) = param
return task(value, *task_args, **task_kwargs)
def parallel_map( # pylint: disable=dangerous-default-value
task, values, task_args=(), task_kwargs={}, num_processes=CPU_COUNT
):
"""
Parallel execution of a mapping of `values` to the function `task`. This
is functionally equivalent to::
result = [task(value, *task_args, **task_kwargs) for value in values]
On Windows this function defaults to a serial implementation to avoid the
overhead from spawning processes in Windows.
Args:
task (func): Function that is to be called for each value in ``values``.
values (array_like): List or array of values for which the ``task``
function is to be evaluated.
task_args (list): Optional additional arguments to the ``task`` function.
task_kwargs (dict): Optional additional keyword argument to the ``task`` function.
num_processes (int): Number of processes to spawn.
Returns:
result: The result list contains the value of
``task(value, *task_args, **task_kwargs)`` for
each value in ``values``.
Raises:
QiskitError: If user interrupts via keyboard.
Events:
terra.parallel.start: The collection of parallel tasks are about to start.
terra.parallel.update: One of the parallel task has finished.
terra.parallel.finish: All the parallel tasks have finished.
Examples:
.. code-block:: python
import time
from qiskit.tools.parallel import parallel_map
def func(_):
time.sleep(0.1)
return 0
parallel_map(func, list(range(10)));
"""
if len(values) == 0:
return []
if len(values) == 1:
return [task(values[0], *task_args, **task_kwargs)]
Publisher().publish("terra.parallel.start", len(values))
nfinished = [0]
def _callback(_):
nfinished[0] += 1
Publisher().publish("terra.parallel.done", nfinished[0])
# Run in parallel if not Win and not in parallel already
if (
num_processes > 1
and os.getenv("QISKIT_IN_PARALLEL") == "FALSE"
and CONFIG.get("parallel_enabled", PARALLEL_DEFAULT)
):
os.environ["QISKIT_IN_PARALLEL"] = "TRUE"
try:
results = []
with ProcessPoolExecutor(max_workers=num_processes) as executor:
param = ((task, value, task_args, task_kwargs) for value in values)
future = executor.map(_task_wrapper, param)
results = list(future)
Publisher().publish("terra.parallel.done", len(results))
except (KeyboardInterrupt, Exception) as error:
if isinstance(error, KeyboardInterrupt):
Publisher().publish("terra.parallel.finish")
os.environ["QISKIT_IN_PARALLEL"] = "FALSE"
raise QiskitError("Keyboard interrupt in parallel_map.") from error
# Otherwise just reset parallel flag and error
os.environ["QISKIT_IN_PARALLEL"] = "FALSE"
raise error
Publisher().publish("terra.parallel.finish")
os.environ["QISKIT_IN_PARALLEL"] = "FALSE"
return results
# Cannot do parallel on Windows , if another parallel_map is running in parallel,
# or len(values) == 1.
results = []
for _, value in enumerate(values):
result = task(value, *task_args, **task_kwargs)
results.append(result)
_callback(0)
Publisher().publish("terra.parallel.finish")
return results
|
https://github.com/Qiskit/feedback
|
Qiskit
|
from qiskit.circuit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit.compiler import transpile
from qiskit.circuit.random import random_circuit
from qiskit_aer import AerSimulator
qc = random_circuit(16, 3, measure=True)
backend = AerSimulator()
t_qc = transpile(qc, backend, optimization_level=3, init_method='qubit_reuse')
t_qc_original = transpile(qc, backend, optimization_level=3) # For comparison later
qc.draw('mpl', fold=-1)
t_qc.draw('mpl', fold=-1)
from qiskit.quantum_info import hellinger_fidelity
counts_normal = backend.run(t_qc_original, shots=2**12).result().get_counts()
counts_reduced = backend.run(t_qc, shots=2**12).result().get_counts()
hellinger_fidelity(counts_normal, counts_reduced)
def build_bv_circuit(secret_string):
input_size = len(secret_string)
num_qubits = input_size + 1
qr = QuantumRegister(num_qubits)
cr = ClassicalRegister(input_size)
qc = QuantumCircuit(qr, cr, name="main")
qc.x(qr[input_size])
qc.h(qr)
qc.barrier()
for i_qubit in range(input_size):
if secret_string[input_size - 1 - i_qubit] == "1":
qc.cx(qr[i_qubit], qr[input_size])
qc.barrier()
qc.h(qr)
qc.x(qr[input_size])
qc.barrier()
qc.measure(qr[:-1], cr)
return qc
secret = 5871
secret_string = format(secret, f"0b")
qc = build_bv_circuit(secret_string=secret_string)
qc.draw('mpl', fold=-1)
t_qc = transpile(qc, backend, optimization_level=3, init_method='qubit_reuse')
t_qc_original = transpile(qc, backend, optimization_level=3) # For comparison later
t_qc.draw('mpl', fold=-1)
counts_normal = backend.run(t_qc_original, shots=2**12).result().get_counts()
counts_reduced = backend.run(t_qc, shots=2**12).result().get_counts()
print(counts_normal, counts_reduced)
hellinger_fidelity(counts_normal, counts_reduced)
# Matrix Product State generator
from qiskit.circuit.library import RealAmplitudes
def MPS(num_qubits, **kwargs):
"""
Constructs a Matrix Product State (MPS) quantum circuit.
Args:
num_qubits (int): The number of qubits in the circuit.
**kwargs: Additional keyword arguments to be passed to the
RealAmplitudes.
Returns:
QuantumCircuit: The constructed MPS quantum circuit.
"""
qc = QuantumCircuit(num_qubits)
qubits = range(num_qubits)
print(len(list(zip(qubits[:-1], qubits[1:]))))
# Iterate over adjacent qubit pairs
for i, j in zip(qubits[:-1], qubits[1:]):
qc.compose(RealAmplitudes(num_qubits=2,
parameter_prefix=f'θ_{i},{j}',
**kwargs), [i, j],
inplace=True)
qc.barrier(
) # Add a barrier after each block for clarity and separation
return qc
# Tree tuples generator
def _generate_tree_tuples(n):
"""
Generate a list of tuples representing the tree structure
of consecutive numbers up to n.
Args:
n (int): The number up to which the tuples are generated.
Returns:
list: A list of tuples representing the tree structure.
"""
tuples_list = []
indices = []
# Generate initial tuples with consecutive numbers up to n
for i in range(0, n, 2):
tuples_list.append((i, i + 1))
indices += [tuples_list]
# Perform iterations until we reach a single tuple
while len(tuples_list) > 1:
new_tuples = []
# Generate new tuples by combining adjacent larger numbers
for i in range(0, len(tuples_list), 2):
new_tuples.append((tuples_list[i][1], tuples_list[i + 1][1]))
tuples_list = new_tuples
indices += [tuples_list]
return indices
# Tree Tensor Network Generator
def TTN(num_qubits, **kwargs):
"""
Constructs a Tree Tensor Network (TTN) quantum circuit.
Args:
num_qubits (int): The number of qubits in the circuit.
**kwargs: Additional keyword arguments to be passed to the
RealAmplitudes.
Returns:
QuantumCircuit: The constructed TTN quantum circuit.
Raises:
AssertionError: If the number of qubits is not a power of 2
or zero.
"""
qc = QuantumCircuit(num_qubits)
qubits = range(num_qubits)
# Compute qubit indices
assert num_qubits & (
num_qubits -
1) == 0 and num_qubits != 0, "Number of qubits must be a power of 2"
indices = _generate_tree_tuples(num_qubits)
# Iterate over each layer of TTN indices
for layer_indices in indices:
for i, j in layer_indices:
qc.compose(RealAmplitudes(num_qubits=2,
parameter_prefix=f'θ_{i},{j}',
**kwargs), [i, j],
inplace=True)
qc.barrier(
) # Add a barrier after each layer for clarity and separation
return qc
import numpy as np
qc = TTN(2**3)
qc.measure_all()
params = {param: np.pi/(2**((index%3)+1)) for index, param in enumerate(qc.parameters)}
qc = qc.bind_parameters(params)
qc.draw('mpl', fold=-1)
t_qc = transpile(qc, backend, optimization_level=3, init_method='qubit_reuse')
t_qc_original = transpile(qc, backend, optimization_level=3) # For comparison later
t_qc = transpile(qc, backend, optimization_level=3, init_method='qubit_reuse')
t_qc_original = transpile(qc, backend, optimization_level=3) # For comparison later
t_qc.draw('mpl', fold=-1)
counts_normal = backend.run(t_qc_original, shots=2**12).result().get_counts()
counts_reduced = backend.run(t_qc, shots=2**12).result().get_counts()
# print(counts_normal, counts_reduced)
hellinger_fidelity(counts_normal, counts_reduced)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
import matplotlib.pyplot as plt
from qiskit import QuantumCircuit, transpile
from qiskit.providers.fake_provider import FakeAuckland
backend = FakeAuckland()
ghz = QuantumCircuit(15)
ghz.h(0)
ghz.cx(0, range(1, 15))
depths = []
gate_counts = []
non_local_gate_counts = []
levels = [str(x) for x in range(4)]
for level in range(4):
circ = transpile(ghz, backend, optimization_level=level)
depths.append(circ.depth())
gate_counts.append(sum(circ.count_ops().values()))
non_local_gate_counts.append(circ.num_nonlocal_gates())
fig, (ax1, ax2) = plt.subplots(2, 1)
ax1.bar(levels, depths, label='Depth')
ax1.set_xlabel("Optimization Level")
ax1.set_ylabel("Depth")
ax1.set_title("Output Circuit Depth")
ax2.bar(levels, gate_counts, label='Number of Circuit Operations')
ax2.bar(levels, non_local_gate_counts, label='Number of non-local gates')
ax2.set_xlabel("Optimization Level")
ax2.set_ylabel("Number of gates")
ax2.legend()
ax2.set_title("Number of output circuit gates")
fig.tight_layout()
plt.show()
|
https://github.com/Victor1128/shor-qiskit
|
Victor1128
|
from qiskit import QuantumCircuit, Aer, execute, IBMQ
from qiskit.utils import QuantumInstance
import numpy as np
from qiskit.algorithms import Shor
IBMQ.enable_account('ENTER API TOKEN HERE') # Enter your API token here
provider = IBMQ.get_provider(hub='ibm-q')
backend = Aer.get_backend('qasm_simulator')
quantum_instance = QuantumInstance(backend, shots=1000)
my_shor = Shor(quantum_instance)
result_dict = my_shor.factor(15)
print(result_dict)
|
https://github.com/dimple12M/Qiskit-Certification-Guide
|
dimple12M
|
from qiskit import *
from qiskit.quantum_info import Statevector
from math import pi
from qiskit.visualization import *
qc=QuantumCircuit(1)
qc.x(0)
qc.draw(output="mpl")
backend = Aer.get_backend('unitary_simulator')
job = execute(qc, backend)
result = job.result()
#Obtain the unitary matrix for Pauli-X gate
print(result.get_unitary(qc, decimals=3))
qc=QuantumCircuit(1)
qc.x(0)
qc.x(0)
qc.draw(output="mpl")
backend = Aer.get_backend('unitary_simulator')
job = execute(qc, backend)
result = job.result()
#Obtain the unitary matrix for Pauli-X gate
print(result.get_unitary(qc, decimals=3))
qc=QuantumCircuit(1)
qc.y(0)
qc.draw(output="mpl")
backend = Aer.get_backend('unitary_simulator')
job = execute(qc, backend)
result = job.result()
#Obtain the unitary matrix for Pauli-Y gate
print(result.get_unitary(qc, decimals=3))
qc=QuantumCircuit(1)
qc.x(0)
qc.y(0)
qc.draw(output="mpl")
backend = Aer.get_backend('unitary_simulator')
job = execute(qc, backend)
result = job.result()
#Obtain the unitary matrix for Pauli-Y gate
print(result.get_unitary(qc, decimals=3))
state = Statevector.from_instruction(qc)
state.draw(output='latex')
qc=QuantumCircuit(1)
qc.z(0)
qc.draw(output="mpl")
backend = Aer.get_backend('unitary_simulator')
job = execute(qc, backend)
result = job.result()
#Obtain the unitary matrix for Pauli-Z gate
print(result.get_unitary(qc, decimals=3))
state = Statevector.from_instruction(qc)
state.draw(output='latex')
qc=QuantumCircuit(1)
qc.z(0)
qc.draw(output="mpl")
qc=QuantumCircuit(1)
qc.x(0)
qc.z(0)
qc.draw(output="mpl")
backend = Aer.get_backend('unitary_simulator')
job = execute(qc, backend)
result = job.result()
#Obtain the unitary matrix for Pauli-Z gate
print(result.get_unitary(qc, decimals=3))
state = Statevector.from_instruction(qc)
state.draw(output='latex')
qc=QuantumCircuit(1)
qc.h(0)
qc.draw(output="mpl")
backend = Aer.get_backend('unitary_simulator')
job = execute(qc, backend)
result = job.result()
#Obtain the unitary matrix for Hadamard gate
print(result.get_unitary(qc, decimals=3))
state = Statevector.from_instruction(qc)
state.draw(output='latex')
qc=QuantumCircuit(1)
qc.x(0)
qc.h(0)
qc.draw(output="mpl")
backend = Aer.get_backend('unitary_simulator')
job = execute(qc, backend)
result = job.result()
#Obtain the unitary matrix for Hadamard gate
print(result.get_unitary(qc, decimals=3))
qc=QuantumCircuit(1)
qc.s(0)
qc.draw(output="mpl")
backend = Aer.get_backend('unitary_simulator')
job = execute(qc, backend)
result = job.result()
#Obtain the unitary matrix for S gate
print(result.get_unitary(qc, decimals=3))
qc=QuantumCircuit(1)
qc.x(0)
qc.s(0)
qc.draw(output="mpl")
backend = Aer.get_backend('unitary_simulator')
job = execute(qc, backend)
result = job.result()
#Obtain the unitary matrix for S gate
print(result.get_unitary(qc, decimals=3))
qc=QuantumCircuit(1)
qc.s(0)
qc.s(0)
qc.draw(output="mpl")
backend = Aer.get_backend('unitary_simulator')
job = execute(qc, backend)
result = job.result()
#Obtain the unitary matrix for S dagger gate
print(result.get_unitary(qc, decimals=3))
qc=QuantumCircuit(1)
qc.sdg(0)
qc.draw(output="mpl")
backend = Aer.get_backend('unitary_simulator')
job = execute(qc, backend)
result = job.result()
#Obtain the unitary matrix for Sdg gate
print(result.get_unitary(qc, decimals=3))
qc=QuantumCircuit(1)
qc.x(0)
qc.sdg(0)
qc.draw(output="mpl")
backend = Aer.get_backend('unitary_simulator')
job = execute(qc, backend)
result = job.result()
#Obtain the unitary matrix for Sdg gate
print(result.get_unitary(qc, decimals=3))
qc=QuantumCircuit(1)
qc.sdg(0)
qc.sdg(0)
qc.draw(output="mpl")
backend = Aer.get_backend('unitary_simulator')
job = execute(qc, backend)
result = job.result()
#Obtain the unitary matrix for Sdg gate
print(result.get_unitary(qc, decimals=3))
qc=QuantumCircuit(1)
qc.t(0)
qc.draw(output="mpl")
backend = Aer.get_backend('unitary_simulator')
job = execute(qc, backend)
result = job.result()
#Obtain the unitary matrix for T gate
print(result.get_unitary(qc, decimals=3))
qc=QuantumCircuit(1)
qc.x(0)
qc.t(0)
qc.draw(output="mpl")
backend = Aer.get_backend('unitary_simulator')
job = execute(qc, backend)
result = job.result()
#Obtain the unitary matrix for T gate
print(result.get_unitary(qc, decimals=3))
qc=QuantumCircuit(1)
qc.tdg(0)
qc.draw(output="mpl")
backend = Aer.get_backend('unitary_simulator')
job = execute(qc, backend)
result = job.result()
#Obtain the unitary matrix for Tdg gate
print(result.get_unitary(qc, decimals=3))
qc=QuantumCircuit(1)
qc.x(0)
qc.tdg(0)
qc.draw(output="mpl")
backend = Aer.get_backend('unitary_simulator')
job = execute(qc, backend)
result = job.result()
#Obtain the unitary matrix for Tdg gate
print(result.get_unitary(qc, decimals=3))
qc=QuantumCircuit(1)
qc.tdg(0)
qc.tdg(0)
qc.tdg(0)
qc.tdg(0)
qc.draw(output="mpl")
backend = Aer.get_backend('unitary_simulator')
job = execute(qc, backend)
result = job.result()
#Obtain the unitary matrix for Tdg gate
print(result.get_unitary(qc, decimals=3))
qc=QuantumCircuit(1)
qc.z(0)
backend = Aer.get_backend('unitary_simulator')
job = execute(qc, backend)
result = job.result()
#Obtain the unitary matrix for Tdg gate
print(result.get_unitary(qc, decimals=3))
qc=QuantumCircuit(1)
qc.p(pi,0)
qc.draw(output="mpl")
backend = Aer.get_backend('unitary_simulator')
job = execute(qc, backend)
result = job.result()
#Obtain the unitary matrix for P gate
print(result.get_unitary(qc, decimals=3))
qc=QuantumCircuit(1)
qc.p(pi/2,0)
qc.draw(output="mpl")
backend = Aer.get_backend('unitary_simulator')
job = execute(qc, backend)
result = job.result()
#Obtain the unitary matrix for P gate
print(result.get_unitary(qc, decimals=3))
qc=QuantumCircuit(1)
qc.p(pi/4,0)
qc.draw(output="mpl")
backend = Aer.get_backend('unitary_simulator')
job = execute(qc, backend)
result = job.result()
#Obtain the unitary matrix for P gate
print(result.get_unitary(qc, decimals=3))
qc=QuantumCircuit(1)
qc.x(0)
qc.p(pi,0)
qc.draw(output="mpl")
backend = Aer.get_backend('unitary_simulator')
job = execute(qc, backend)
result = job.result()
#Obtain the unitary matrix for P gate
print(result.get_unitary(qc, decimals=3))
qc=QuantumCircuit(1)
qc.x(0)
qc.p(pi/2,0)
qc.draw(output="mpl")
qc=QuantumCircuit(1)
qc.x(0)
qc.p(pi/4,0)
qc.draw(output="mpl")
qc=QuantumCircuit(1)
qc.p(0,0)
qc.draw(output="mpl")
backend = Aer.get_backend('unitary_simulator')
job = execute(qc, backend)
result = job.result()
#Obtain the unitary matrix for P gate
print(result.get_unitary(qc, decimals=3))
I=result.get_unitary(qc, decimals=3)
array_to_latex(I)
|
https://github.com/shesha-raghunathan/DATE2019-qiskit-tutorial
|
shesha-raghunathan
|
import math
# importing Qiskit
from qiskit import Aer, IBMQ
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit, execute
from qiskit.backends.ibmq import least_busy
# useful additional packages
from qiskit.wrapper.jupyter import *
from qiskit.tools.visualization import plot_histogram
IBMQ.load_accounts()
def input_state(circ, q, n):
"""n-qubit input state for QFT that produces output 1."""
for j in range(n):
circ.h(q[j])
circ.u1(math.pi/float(2**(j)), q[j]).inverse()
def qft(circ, q, n):
"""n-qubit QFT on q in circ."""
for j in range(n):
for k in range(j):
circ.cu1(math.pi/float(2**(j-k)), q[j], q[k])
circ.h(q[j])
q = QuantumRegister(3)
c = ClassicalRegister(3)
qft3 = QuantumCircuit(q, c)
input_state(qft3, q, 3)
qft(qft3, q, 3)
for i in range(3):
qft3.measure(q[i], c[i])
print(qft3.qasm())
# run on local simulator
backend = Aer.get_backend("qasm_simulator")
simulate = execute(qft3, backend=backend, shots=1024).result()
simulate.get_counts()
%%qiskit_job_status
# Use the IBM Quantum Experience
backend = least_busy(IBMQ.backends(simulator=False))
shots = 1024
job_exp = execute(qft3, backend=backend, shots=shots)
results = job_exp.result()
plot_histogram(results.get_counts())
|
https://github.com/conradhaupt/Qiskit-Bayesian-Inference-Module-QCA19-
|
conradhaupt
|
# Import major packages
import qiskit as qk
import qinfer as qf
import numpy as np
import matplotlib as mpl
# Qiskit imports for IQPE
from qiskit import IBMQ
from qiskit.aqua.algorithms.single_sample import IQPE,QPE
from qiskit.aqua.components import iqfts
from qiskit.aqua.operators import WeightedPauliOperator
from qiskit.aqua.algorithms import ExactEigensolver
from qiskit.aqua.components.initial_states import Custom
from qiskit import Aer,execute
from qiskit.aqua import QuantumInstance
from qiskit.providers.aer import noise
# QInfer imports for modelling the IQPE algorithm
from qinfer import distributions
from qinfer.smc import SMCUpdater # The QInfer Sequantial Monte-Carlo Sampler
from qinfer import FiniteOutcomeModel
# Tertiary imports
import matplotlib.pyplot as plt
import time
# Intial setup
IBMQ.load_account()
ibmqx_provider = IBMQ.get_provider(hub='ibm-q-wits', group='internal', project='default')
mpl.rc('text', usetex=True)
# Function definitions for the entire notebook
EPS = 1e-15
def chop(value):
if np.abs(value) <= EPS:
return 0
else:
return value
def radiandiff(a,b):
FULL_ROTATION = 2 * np.pi
return np.min(np.abs([a - b, b - a, a - b + FULL_ROTATION, b - a + FULL_ROTATION]))
def complexfromangle(angle):
real = chop(np.real(np.exp(1.j * angle)))
imag = chop(np.imag(np.exp(1.j * angle)))
return real,imag
# Set-up unitary with specified phase
angle = 4 * np.pi / 5
real,imag = complexfromangle(angle)
PAULI_DICT_ZZ = {
'paulis': [
{"coeff": {"imag": imag, "real": real}, "label": "ZZ"}
]
}
QUBIT_OP_ZZ = WeightedPauliOperator.from_dict(PAULI_DICT_ZZ)
eigen_results = ExactEigensolver(QUBIT_OP_ZZ,4).run()
eigen_value = eigen_results['eigvals'][0]
eigen_vector = eigen_results['eigvecs'][0]
print('Eigenvalues',eigen_results['eigvals'])
print('Phase is %.4f radians' %(angle))
# Setup initial state as eigenvector
state_in = Custom(QUBIT_OP_ZZ.num_qubits, state_vector=eigen_vector)
# Use QASM Simulator for testing
simulator = Aer.get_backend('qasm_simulator')
# Construct IQPE circuit and simulate
iqpe_builder = IQPE(
QUBIT_OP_ZZ,
state_in,
num_iterations=1,
num_time_slices=1,
expansion_mode='suzuki',
expansion_order=1,
shallow_circuit_concat=True)
# This is required to setup iqpe_builder so we can call construct_circuit() later on
iqpe_results = iqpe_circ = iqpe_builder.run(simulator,shots=1)
# Extend the QInfer FiniteOutcomeModel as IQPE has only one bit per measure
class IQPEModel(FiniteOutcomeModel):
def __init__(self):
super(IQPEModel, self).__init__()
# Number of parameters overwhich to conduct the Bayesian Inference
@property
def n_modelparams(self):
# phi
return 1
# Number of parameters that are needed for the simulation but are known.
# i.e. do not need to be inferred
@property
def expparams_dtype(self):
return [('theta','float64'), ('m','int64')]
@property
def is_n_outcomes_constant(self):
return True
# This function will verify whether the new inferred model parameters are valid for our model.
@staticmethod
def are_models_valid(modelparams):
# NOTE: If T2 is included as a model parameter, restrict it to positive
return np.logical_and(modelparams[:] >= -2*np.pi, modelparams[:]<=2*np.pi, modelparams[:] > 0).all(axis=1)
def n_outcomes(self, expparams):
return 2
# This function implements our probability for reading a 0 or 1 on our IQPE circuit.
# These equations are taken from [1] and are used by the updater/sampler to modify the posterior
def likelihood(self, outcomes, modelparams, expparams):
super(IQPEModel, self).likelihood(outcomes, modelparams, expparams)
# Probability of getting 0 for IQPE is
# P(0) = (1 + cos(M(theta - phi)))/2
# P(1) = (1 - cos(M(theta - phi)))/2
# This is the probability of getting a 0 with T2 depolarisation noise from [1].
# Not currently used.
# pr0 = np.exp(-expparams['m'] / expparams['T2']) * (1 + np.cos(expparams['m'] * (expparams['theta'] - modelparams[:]))) / 2 + (1 - np.exp(-expparams['m'] / expparams['T2']))/2
pr0 = (1 + np.cos(expparams['m'] * (expparams['theta'] - modelparams[:]))) / 2
return FiniteOutcomeModel.pr0_to_likelihood_array(outcomes, pr0)
# As our model parameter is an angle, ensure we have the circular mean for the distribution so we allow
# for wraparound. This is done by converting angles to x,y points on a unit circle, averaging over
# x and y independently, and then combining the resulting average x and y values to create a new
# vector. If the resulting magnitude is 0, there is no circular average as all points are equi-distant.
# The resulting angle is approximately the circular average of the collection of angles/phases.
class PhaseSMCUpdater(SMCUpdater):
@staticmethod
def particle_mean(weights,locations):
locs = [complexfromangle(a) for a in locations.flatten()]
loc_x = []
loc_y = []
for x,y in locs:
loc_x.append(x)
loc_y.append(y)
avg_x = np.average(loc_x,weights=weights)
avg_y = np.average(loc_y,weights=weights)
avg_angle = np.angle(avg_x + 1.j*avg_y)
avg_mag = np.sqrt(avg_x**2 + avg_y**2)
return avg_angle
# Bayesien Inference Parameters
N_PARTICLES = 5000 # number of samples for PhaseSMCUpdater
N_EXP = 25 # Number of times to choose a new theta
USE_QISKIT_QASM_SIMULATOR = True # Toggle parameter if we don't want to run any circuit simulations
SIM_N_SHOTS=1024 # number of shots for the circuit execution
# DType list for experiment metric logging
performance_dtype = [
('outcome', 'i1'),
('est_mean', 'f8'), ('est_cov_mat', 'f8'),
('true_err', 'f8'), ('resample_count', 'i8'),
('elapsed_time', 'f8'),
('like_count', 'i8'), ('sim_count', 'i8'),
('bme', 'f8'),
('var', 'f8'),
('bme_err', 'f8')
]
performance = np.empty((N_EXP), dtype=performance_dtype)
# Set-up initial prior and QInfer model
# prior = distributions.UniformDistribution([0, 2 * np.pi])
prior = distributions.NormalDistribution(angle,np.pi/4)
model = IQPEModel()
# Use IBMQX Rochester as the base device for the partially ideal noise-model. We
backend_device = ibmqx_provider.get_backend('ibmq_rochester')
partially_ideal_model = noise.device.basic_device_noise_model(
backend_device.properties(),gate_error=False,readout_error=False,
thermal_relaxation=False,standard_gates=True)
data_backend = Aer.get_backend('qasm_simulator')
# Create a Bayesian Inference Updater
updater = PhaseSMCUpdater(model, N_PARTICLES, prior,zero_weight_policy='skip')
# Set-up initial experimental parameters
THETA = prior.sample()[0][0]
M = 1
T2 = 100
posterior_marginal = []
memory_list = []
theta_list = []
##############################################
# Run for each experiment we defined earlier #
##############################################
for idx_exp in range(N_EXP):
# Define experimental parameters
expparams = np.array([(M,THETA)], dtype=model.expparams_dtype)
# Simulate IQPE circuit and get results for inference
circuit = iqpe_builder.construct_circuit(k=M,omega=THETA,measurement=True)
results = execute(circuit,simulator,shots=SIM_N_SHOTS,memory=True,noise_model=ideal_model)
counts = results.result().get_counts()
memory = results.result().get_memory()
memory_list.append(memory)
theta_list.append(THETA.flatten())
# Start by simulating and recording the data. #
# Retrieve the outcome of the simulation either from the circuit simulation or a model simulation
if USE_QISKIT_QASM_SIMULATOR:
outcomes = np.array([[int(m) for m in memory]])
else:
outcomes = model.simulate_experiment(np.array([[angle]]),expparams,repeat=SIM_N_SHOTS)
outcomes = outcomes.reshape((1,outcomes.shape[0]))
model._sim_count = 0
model._call_count = 0
# Time the update process
# tic = toc = None
# tic = time.time()
# Update the posterior particles using the result of the circuit simulation
updater.batch_update(outcomes, expparams)
# performance[idx_exp]['elapsed_time'] = time.time() - tic
# Record the performance of this updater.
est_mean = updater.est_mean()
performance[idx_exp]['est_mean'] = est_mean
performance[idx_exp]['true_err'] = radiandiff(est_mean,angle) ** 2
performance[idx_exp]['est_cov_mat'] = updater.est_covariance_mtx()
performance[idx_exp]['resample_count'] = updater.resample_count
performance[idx_exp]['like_count'] = model.call_count
performance[idx_exp]['sim_count'] = model.sim_count
# Log
print(idx_exp,'/',N_EXP,'[',M,THETA,est_mean,']')
# Re-evaluate experiment parameters
uniform_draw_01 = np.random.uniform(low=0.05,high=0.95)
# uniform_draw_01 = np.random.uniform()
cumsum_particles = np.cumsum(updater.particle_weights)
draw_index = (cumsum_particles<= uniform_draw_01).argmin()
THETA = updater.particle_locations[draw_index]
# current_variance = updater.est_covariance_mtx()[0][0]
# M=idx_exp % 6 + 1
posterior_marginal.append((updater.posterior_marginal()))
print('Inference completed')
# Plot for each iteration
print(angle)
fig_iter = plt.figure()
ax_iter = plt.subplot(111)
for x in posterior_marginal:
# print(x[0],x[1])
_ = ax_iter.plot(x[0],x[1])
ax_iter.vlines(angle,ymin=0,ymax=2)
_ = ax_iter.legend(['Iter ' + str(x) for x in range(len(posterior_marginal[0:10]))])
_ = plt.grid()
_ = plt.ylabel('Posterior')
_ = plt.xlabel(r'$\phi$')
_ = plt.title('Posterior Marginal for some iterations')
plt.savefig('iterative_posterior.png',dpi=300)
ax_qinfer = updater.plot_posterior_marginal(smoothing=0)
plt.vlines(angle,ymin=0,ymax=3)
plt.grid()
_ = plt.ylabel('Posterior')
_ = plt.xlabel(r'$\phi$')
_ = plt.title('IQPE Posterior')
plt.savefig('final_posterior.png',dpi=300)
fig_true_err = plt.figure()
ax_true_err = plt.subplot(111)
ax_true_err.semilogy(performance['true_err'])
ax_true_err.grid()
_ = plt.xlabel('Iteration count')
_ = plt.ylabel('True Error')
_ = plt.title('True Error over each Iteration')
plt.savefig('true_error.png',dpi=300)
fig_est_mean = plt.figure()
ax_est_mean = plt.subplot(111)
ax_est_mean.plot(performance['est_mean'])
ax_est_mean.grid()
ax_est_mean.hlines(angle,xmin=0,xmax=N_EXP)
_ = plt.xlabel('Iteration count')
_ = plt.ylabel('Estimated $\phi$ (mean)')
_ = plt.title('Estimated Mean for each Iteration')
plt.savefig('mean.png',dpi=300)
# Calculate the naive prediction of the IQPE phase, phi
E_i = memory_list
# Convert to integers
theta_i = theta_list
phi_i = []
for i,E in enumerate(E_i):
# print(i,E)
e = [int(v) for v in E]
# Naive sum
sum = 0
for v in e:
sum += v
p_i = sum / len(E)
# Inverse naive phi approximation using expected value from experimental results
phi = theta_i[i][0] - (np.arccos(1 - (2 * p_i))) / M
phi_i.append(phi)
# Plot the naive phi estimate
plt.plot(phi_i)
plt.grid()
plt.hlines(angle,xmin=0,xmax=25)
_ = plt.xlabel('Iteration Count')
_ = plt.ylabel(r'$\phi$')
_ = plt.title('Naive $\phi$ estimation using expectation values of experimental runs')
plt.savefig('naive.png',dpi=300)
# Disable TeX text rendering
mpl.rc('text', usetex=False)
# Render the IQPE circuit for M=1 and the last Theta used
circuit = iqpe_builder.construct_circuit(k=1,omega=THETA,measurement=True)
circ_fig = circuit.draw(output='mpl')
circ_fig.savefig('iqpe_1.png',dpi=300)
# Render the IQPE circuit for M=2 and the last Theta used
circuit = iqpe_builder.construct_circuit(k=2,omega=THETA,measurement=True)
circ_fig = circuit.draw(output='mpl')
circ_fig.savefig('iqpe_2.png',dpi=300)
|
https://github.com/qiskit-community/prototype-qrao
|
qiskit-community
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2022.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Test QRAO steps on various hardware and simulator backends"""
import pytest
from docplex.mp.model import Model
from qiskit.utils import QuantumInstance
from qiskit.algorithms.minimum_eigen_solvers import VQE
from qiskit.circuit.library import RealAmplitudes
from qiskit.algorithms.optimizers import SPSA
from qiskit import BasicAer
from qiskit_aer import Aer
from qiskit_optimization.algorithms import OptimizationResultStatus
from qiskit_optimization.translators import from_docplex_mp
from qiskit_ibm_provider import IBMProvider, least_busy, IBMAccountError
from qrao import (
QuantumRandomAccessOptimizer,
QuantumRandomAccessEncoding,
MagicRounding,
)
# pylint: disable=redefined-outer-name
# TODO:
# - update these tests to include solution checking once behavior can be made
# - deterministic.
# - This might just require us to set seeds in the QuantumInstance and
# - remove that as an argument altogether.
backends = [
(BasicAer.get_backend, "qasm_simulator"),
(Aer.get_backend, "qasm_simulator"),
(Aer.get_backend, "statevector_simulator"),
(Aer.get_backend, "aer_simulator"),
(Aer.get_backend, "aer_simulator_statevector"),
(Aer.get_backend, "aer_simulator_density_matrix"),
(Aer.get_backend, "aer_simulator_matrix_product_state"),
# The following takes forever, haven't yet waited long enough to know the
# real timescale
# (Aer.get_backend, "aer_simulator_extended_stabilizer"),
]
@pytest.fixture(scope="module")
def my_encoding():
"""Fixture to construct ``my_encoding`` for use in this file"""
# Load small reference problem
elist = [(0, 1), (0, 4), (0, 3), (1, 2), (1, 5), (2, 3), (2, 4), (4, 5), (5, 3)]
num_nodes = 6
mod = Model("maxcut")
nodes = list(range(num_nodes))
var = [mod.binary_var(name="x" + str(i)) for i in nodes]
mod.maximize(mod.sum((var[i] + var[j] - 2 * var[i] * var[j]) for i, j in elist))
problem = from_docplex_mp(mod)
encoding = QuantumRandomAccessEncoding(max_vars_per_qubit=3)
encoding.encode(problem)
return encoding
@pytest.fixture(scope="module")
def my_ansatz(my_encoding):
"""Fixture to construct ``my_ansatz`` for use in this file"""
return RealAmplitudes(my_encoding.num_qubits)
@pytest.mark.parametrize("relaxed_backend", backends)
@pytest.mark.parametrize("rounding_backend", backends)
@pytest.mark.filterwarnings("ignore::PendingDeprecationWarning")
@pytest.mark.filterwarnings(
"ignore:.*statevector_simulator.*:UserWarning"
) # ignore magic rounding's UserWarning when using statevector_simulator
@pytest.mark.backend
def test_backend(relaxed_backend, rounding_backend, my_encoding, my_ansatz, shots=3):
"""Smoke test of each backend combination"""
def cb(f, *args):
"Construct backend"
return f(*args)
relaxed_qi = QuantumInstance(backend=cb(*relaxed_backend), shots=shots)
rounding_qi = QuantumInstance(backend=cb(*rounding_backend), shots=shots)
vqe = VQE(
ansatz=my_ansatz,
optimizer=SPSA(maxiter=1, learning_rate=0.01, perturbation=0.1),
quantum_instance=relaxed_qi,
)
rounding_scheme = MagicRounding(rounding_qi)
qrao = QuantumRandomAccessOptimizer(
encoding=my_encoding, min_eigen_solver=vqe, rounding_scheme=rounding_scheme
)
result = qrao.solve()
assert result.status == OptimizationResultStatus.SUCCESS
@pytest.mark.backend
def test_magic_rounding_on_hardware_backend(my_encoding, my_ansatz):
"""Test *magic rounding* on a hardware backend, if available."""
try:
provider = IBMProvider()
except IBMAccountError:
pytest.skip("No hardware backend available")
print(f"Encoding requires {my_encoding.num_qubits} qubits")
backend = least_busy(
provider.backends(
min_num_qubits=my_encoding.num_qubits,
simulator=False,
operational=True,
)
)
print(f"Using backend: {backend}")
relaxed_qi = QuantumInstance(backend=Aer.get_backend("aer_simulator"), shots=100)
rounding_qi = QuantumInstance(backend=backend, shots=32)
vqe = VQE(
ansatz=my_ansatz,
optimizer=SPSA(maxiter=1, learning_rate=0.01, perturbation=0.1),
quantum_instance=relaxed_qi,
)
rounding_scheme = MagicRounding(quantum_instance=rounding_qi)
qrao = QuantumRandomAccessOptimizer(
encoding=my_encoding, min_eigen_solver=vqe, rounding_scheme=rounding_scheme
)
result = qrao.solve()
assert result.status == OptimizationResultStatus.SUCCESS
|
https://github.com/shesha-raghunathan/DATE2019-qiskit-tutorial
|
shesha-raghunathan
|
import numpy as np
import json
from qiskit import Aer
from qiskit_aqua import run_algorithm
from qiskit_aqua.input import EnergyInput
from qiskit_aqua.translators.ising import setpacking
from qiskit_aqua.algorithms import ExactEigensolver
input_file = 'sample.setpacking'
with open(input_file) as f:
list_of_subsets = json.load(f)
print(list_of_subsets)
qubitOp, offset = setpacking.get_setpacking_qubitops(list_of_subsets)
algo_input = EnergyInput(qubitOp)
def brute_force():
# brute-force way: try every possible assignment!
def bitfield(n, L):
result = np.binary_repr(n, L)
return [int(digit) for digit in result] # [2:] to chop off the "0b" part
L = len(list_of_subsets)
max = 2**L
max_v = -np.inf
for i in range(max):
cur = bitfield(i, L)
cur_v = setpacking.check_disjoint(cur, list_of_subsets)
if cur_v:
if np.count_nonzero(cur) > max_v:
max_v = np.count_nonzero(cur)
return max_v
size = brute_force()
print("size of set packing", size)
params = {
'problem': {'name': 'ising'},
'algorithm': {'name': 'ExactEigensolver'}
}
result = run_algorithm(params, algo_input)
x = setpacking.sample_most_likely(len(list_of_subsets), result['eigvecs'][0])
ising_sol = setpacking.get_solution(x)
np.testing.assert_array_equal(ising_sol, [0, 1, 1])
print("size of set packing", np.count_nonzero(ising_sol))
algo = ExactEigensolver(algo_input.qubit_op, k=1, aux_operators=[])
result = algo.run()
x = setpacking.sample_most_likely(len(list_of_subsets), result['eigvecs'][0])
ising_sol = setpacking.get_solution(x)
np.testing.assert_array_equal(ising_sol, [0, 1, 1])
oracle = brute_force()
print("size of set packing", np.count_nonzero(ising_sol))
algorithm_cfg = {
'name': 'VQE',
'operator_mode': 'paulis'
}
optimizer_cfg = {
'name': 'SPSA',
'max_trials': 200
}
var_form_cfg = {
'name': 'RY',
'depth': 5,
'entanglement': 'linear'
}
params = {
'problem': {'name': 'ising', 'random_seed': 100},
'algorithm': algorithm_cfg,
'optimizer': optimizer_cfg,
'variational_form': var_form_cfg
}
backend = Aer.get_backend('qasm_simulator')
result = run_algorithm(params, algo_input, backend=backend)
x = setpacking.sample_most_likely(len(list_of_subsets), result['eigvecs'][0])
ising_sol = setpacking.get_solution(x)
print("size of set packing", np.count_nonzero(ising_sol))
|
https://github.com/ionq-samples/qiskit-getting-started
|
ionq-samples
|
# general imports
import math
import time
import pickle
import random
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import minimize
from datetime import datetime
# Noisy optimization package — you could also use scipy's optimization functions,
# but this is a little better suited to the noisy output of NISQ devices.
%pip install noisyopt
import noisyopt
# magic invocation for producing visualizations in notebook
%matplotlib inline
# Qiskit imports
from qiskit import Aer
from qiskit_ionq import IonQProvider
#Call provider and set token value
provider = IonQProvider(token='My token')
provider.backends()
# fix random seed for reproducibility — this allows us to re-run the process and get the same results
seed = 42
np.random.seed(seed)
random.seed(a=seed)
#Generate BAS, only one bar or stripe allowed
def generate_target_distribution(rows, columns):
#Stripes
states=[]
for i in range(rows):
s=['0']*rows*columns
for j in range(columns):
s[j+columns*i]='1'
states.append(''.join(s))
#Bars
for j in range(columns):
s=['0']*rows*columns
for i in range(rows):
s[j+columns*i]='1'
states.append(''.join(s))
return states
#Parameters for driver
def generate_beta(ansatz_type,random_init):
if ansatz_type[0]==0: #No driver
beta=[]
elif ansatz_type[0]==1: #Rz(t1)Rx(t2)Rz(t3), angles different for each qubit
beta=(
[random.uniform(0.0,2.*math.pi) for i in range(3*n*(layers-1))]
if random_init
else [0]*3*n*(layers-1)
)
elif ansatz_type[0]==2: #Rz(t1)Rx(t2)Rz(t3), angles same for all qubits
beta=(
[random.uniform(0.0,2.*math.pi) for i in range(3*(layers-1))]
if random_init
else [0]*3*(layers-1)
)
elif ansatz_type[0]==3: #Rz(t1), angles different for each qubit
beta=(
[random.uniform(0.0,2.*math.pi) for i in range(n*(layers-1))]
if random_init
else [0]*n*(layers-1)
)
else:
raise Exception("Undefined driver type")
return beta
#Parameters for entangler
def generate_gamma(ansatz_type,random_init, n, conn):
length_gamma=int(n*conn-conn*(conn+1)/2.)
if ansatz_type[1]==0: #No entangler
gamma=[]
elif ansatz_type[1]==1: #XX(t1), angles different for each qubit
gamma=(
[random.uniform(0.0,2.*math.pi) for i in range(length_gamma*layers)]
if random_init
else [0]*length_gamma*layers
)
elif ansatz_type[1]==2: #XX(t1), angles same for all qubits
gamma=(
[random.uniform(0.0,2.*math.pi) for i in range(layers)]
if random_init
else gamma[0]*layers
)
else:
raise Exception("Undefined entangler type")
return gamma
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit.circuit import Gate
def driver(circ,qr,beta,n,ansatz_type):
#qr=QuantumRegister(n)
#circ = QuantumCircuit(qr)
if ansatz_type==0:
pass
elif ansatz_type==1:
for i_q in range(n):
circ.rz(beta[3*i_q], qr[i_q])
circ.rx(beta[3*i_q+1], qr[i_q])
circ.rz(beta[3*i_q+2], qr[i_q])
elif ansatz_type==2:
for i_q in range(n):
circ.rz(beta[0], qr[i_q])
circ.rx(beta[1], qr[i_q])
circ.rz(beta[2], qr[i_q])
elif ansatz_type==3:
for i_q in range(n):
circ.rz(beta[i_q], qr[i_q])
return
def entangler(circ,qr,gamma,n,conn,ansatz_type):
#qr=QuantumRegister(n)
#cr=ClassicalRegister(n)
#circ = QuantumCircuit(qr)
if ansatz_type==0:
pass
elif ansatz_type==1:
i_gamma=0
for i_conn in range(1,conn+1):
for i_q in range(0,n-i_conn):
circ.cx(qr[i_q],qr[i_q+i_conn])
circ.rx(gamma[i_gamma],qr[i_q])
circ.cx(qr[i_q],qr[i_q+i_conn])
#circ.rxx(gamma[i_gamma], qr[i_q], qr[i_q+i_conn])
i_gamma+=1
elif ansatz_type==2:
for i_conn in range(1,conn+1):
for i_q in range(0,n-i_conn):
circ.cx(qr[i_q],qr[i_q+i_conn])
circ.rx(gamma[0],qr[i_q])
circ.cx(qr[i_q],qr[i_q+i_conn]) #circ.rxx(gamma[0], qr[i_q], qr[i_q+i_conn])
#circ.measure(qr,cr)
return
#Define circuit ansatz
def circuit_ansatz(n,params,conn=1, layers=1, ansatz_type=[1,1]):
qr=QuantumRegister(n)
cr=ClassicalRegister(n)
circ = QuantumCircuit(qr,cr)
if ansatz_type[0]==0:
length_beta=0
elif ansatz_type[0]==1:
length_beta=3*n
elif ansatz_type[0]==2:
length_beta=3
elif ansatz_type[0]==3:
length_beta=n
if ansatz_type[1]==0:
length_gamma=0
elif ansatz_type[1]==1:
length_gamma=int(n*conn-conn*(conn+1)/2.)
elif ansatz_type[1]==2:
length_gamma=1
for i_layer in range(layers-1):
beta=params[(length_beta+length_gamma)*i_layer:(length_beta+length_gamma)*i_layer+length_beta]
gamma=params[(length_beta+length_gamma)*i_layer+length_beta:(length_beta+length_gamma)*(i_layer+1)]
entangler(circ,qr,gamma,n,conn,ansatz_type[1])
driver(circ,qr,beta,n,ansatz_type[0])
gamma=params[(length_beta+length_gamma)*(layers-1):]
entangler(circ,qr,gamma,n,conn,ansatz_type[1])
circ.measure(qr, cr)
return circ
def cost(counts, shots, target_states,tol=0.0001):
cost=0
for state in target_states:
if state in counts:
cost-=1./len(target_states)*np.log2(max(tol,counts[state]/shots))
else:
cost-=1./len(target_states)*np.log2(tol)
return cost
from qiskit.providers.jobstatus import JobStatus
def run_iteration(circ, num_qubits, shots=100):
# submit task: define task (asynchronous)
task_status=''
while task_status != JobStatus.DONE:
task = backend.run(circ, shots=shots)
#print("Job submitted")
# Get ID of submitted task
task_id = task.job_id()
#print('Task ID :', task_id)
while (task_status == JobStatus.INITIALIZING) or (task_status == JobStatus.QUEUED) or (task_status == JobStatus.VALIDATING) or (task_status == JobStatus.RUNNING) or (task_status==''):
time.sleep(1)
try:
task_status=task.status()
except:
print("Error querying status. Trying again.")
pass
#print('Task status is', task_status)
# get result
counts = task.result().get_counts()
return counts
#Run an iteration of the circuit and calculate its cost
def run_circuit_and_calc_cost(params, *args):
n, conn, layers, ansatz_type, target_states, shots = args
circ=circuit_ansatz(n, params, conn, layers,ansatz_type)
counts=run_iteration(circ, n, shots=shots)
iter_cost=cost(counts, shots, target_states)
cost_history.append(iter_cost)
print("Current cost:", iter_cost)
return iter_cost
backend = provider.get_backend("ionq_simulator")
#Set problem parameters
r=2 #Number of rows — make sure r*c is less than qubit count
c=2 #Number of columns — make sure r*c is less than qubit count
n=r*c #Qubits needed
conn=2 #Connectivity of the entangler.
#Check on qubit count
if n>backend.configuration().n_qubits:
raise Exception("Too many qubits")
#Check on conn
if conn>(n-1):
raise Exception("Connectivity is too large")
target_states=generate_target_distribution(r,c)
# Check expected output
print('Bitstrings that should be generated by trained circuit are', target_states, 'corresponding to the following BAS patterns:\n')
for state in target_states:
for i in range(r):
print(state[c*i:][:c].replace('0','□ ').replace('1','■ '))
print('')
# Choose entangler and driver type
layers=1 # Number of layers in each circuit
shots=100 # Number of shots per iteration
ansatz_type=[1,1]
random_init=False # Set to true for random initialization; will be slower to converge
# Set up args
beta=generate_beta(ansatz_type, random_init)
gamma=generate_gamma(ansatz_type, random_init, n, conn)
params=beta+gamma
base_bounds=(0,2.*math.pi)
bnds=((base_bounds , ) * len(params))
#Set up list to track cost history
cost_history=[]
max_iter=100 # max number of optimizer iterations
args=(n, conn, layers, ansatz_type, target_states, shots)
opts = {'disp': True, 'maxiter': max_iter, 'maxfev': max_iter, 'return_all': True}
#Visualize the circuit
circ=circuit_ansatz(n, params, conn,layers,ansatz_type)
circ.draw()
from qiskit.visualization import plot_histogram
#Train Circuit
result=noisyopt.minimizeSPSA(run_circuit_and_calc_cost, params, args=args, bounds=bnds, niter=max_iter, disp=False, paired=False)
print("Success: ", result.success)
print(result.message)
print("Final cost function is ", result.fun)
print("Min possible cost function is ", np.log2(len(target_states)))
print("Number of iterations is ", result.nit)
print("Number of function evaluations is ", result.nfev)
print("Number of parameters was ", len(params))
print("Approximate cost on hardware: $", 0.01*len(cost_history)*shots)
#Plot the evolution of the cost function
plt.figure()
plt.plot(cost_history)
plt.ylabel('Cost')
plt.xlabel('Iteration')
#Visualize the result
result_final=run_iteration(circuit_ansatz(n, result.x, conn,layers,ansatz_type), shots)
plot_histogram(result_final)
#Train Circuit
backend = provider.get_backend("ionq_qpu")
result=noisyopt.minimizeSPSA(run_circuit_and_calc_cost, params, args=args, bounds=bnds, niter=max_iter, disp=False, paired=False)
print("Success: ", result.success)
print(result.message)
print("Final cost function is ", result.fun)
print("Min possible cost function is ", np.log2(len(target_states)))
print("Number of iterations is ", result.nit)
print("Number of function evaluations is ", result.nfev)
print("Number of parameters was ", len(params))
print("Approximate cost on hardware: $", 0.01*len(cost_history)*shots)
#Plot the evolution of the cost function
plt.figure()
plt.plot(cost_history)
plt.ylabel('Cost')
plt.xlabel('Iteration')
#Visualize the result
result_final=run_iteration(circuit_ansatz(n, result.x, conn,layers,ansatz_type), shots)
plot_histogram(result_final)
|
https://github.com/swe-bench/Qiskit__qiskit
|
swe-bench
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2022.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
r"""
===================
Overview of Sampler
===================
Sampler class calculates probabilities or quasi-probabilities of bitstrings from quantum circuits.
A sampler is initialized with an empty parameter set. The sampler is used to
create a :class:`~qiskit.providers.JobV1`, via the :meth:`qiskit.primitives.Sampler.run()`
method. This method is called with the following parameters
* quantum circuits (:math:`\psi_i(\theta)`): list of (parameterized) quantum circuits.
(a list of :class:`~qiskit.circuit.QuantumCircuit` objects)
* parameter values (:math:`\theta_k`): list of sets of parameter values
to be bound to the parameters of the quantum circuits.
(list of list of float)
The method returns a :class:`~qiskit.providers.JobV1` object, calling
:meth:`qiskit.providers.JobV1.result()` yields a :class:`~qiskit.primitives.SamplerResult`
object, which contains probabilities or quasi-probabilities of bitstrings,
plus optional metadata like error bars in the samples.
Here is an example of how sampler is used.
.. code-block:: python
from qiskit.primitives import Sampler
from qiskit import QuantumCircuit
from qiskit.circuit.library import RealAmplitudes
# a Bell circuit
bell = QuantumCircuit(2)
bell.h(0)
bell.cx(0, 1)
bell.measure_all()
# two parameterized circuits
pqc = RealAmplitudes(num_qubits=2, reps=2)
pqc.measure_all()
pqc2 = RealAmplitudes(num_qubits=2, reps=3)
pqc2.measure_all()
theta1 = [0, 1, 1, 2, 3, 5]
theta2 = [0, 1, 2, 3, 4, 5, 6, 7]
# initialization of the sampler
sampler = Sampler()
# Sampler runs a job on the Bell circuit
job = sampler.run(circuits=[bell], parameter_values=[[]], parameters=[[]])
job_result = job.result()
print([q.binary_probabilities() for q in job_result.quasi_dists])
# Sampler runs a job on the parameterized circuits
job2 = sampler.run(
circuits=[pqc, pqc2],
parameter_values=[theta1, theta2],
parameters=[pqc.parameters, pqc2.parameters])
job_result = job2.result()
print([q.binary_probabilities() for q in job_result.quasi_dists])
"""
from __future__ import annotations
from abc import abstractmethod
from collections.abc import Sequence
from copy import copy
from typing import Generic, TypeVar
from qiskit.circuit import QuantumCircuit
from qiskit.circuit.parametertable import ParameterView
from qiskit.providers import JobV1 as Job
from .base_primitive import BasePrimitive
T = TypeVar("T", bound=Job)
class BaseSampler(BasePrimitive, Generic[T]):
"""Sampler base class
Base class of Sampler that calculates quasi-probabilities of bitstrings from quantum circuits.
"""
__hash__ = None
def __init__(
self,
*,
options: dict | None = None,
):
"""
Args:
options: Default options.
"""
self._circuits = []
self._parameters = []
super().__init__(options)
def run(
self,
circuits: QuantumCircuit | Sequence[QuantumCircuit],
parameter_values: Sequence[float] | Sequence[Sequence[float]] | None = None,
**run_options,
) -> T:
"""Run the job of the sampling of bitstrings.
Args:
circuits: One of more circuit objects.
parameter_values: Parameters to be bound to the circuit.
run_options: Backend runtime options used for circuit execution.
Returns:
The job object of the result of the sampler. The i-th result corresponds to
``circuits[i]`` evaluated with parameters bound as ``parameter_values[i]``.
Raises:
ValueError: Invalid arguments are given.
"""
# Singular validation
circuits = self._validate_circuits(circuits)
parameter_values = self._validate_parameter_values(
parameter_values,
default=[()] * len(circuits),
)
# Cross-validation
self._cross_validate_circuits_parameter_values(circuits, parameter_values)
# Options
run_opts = copy(self.options)
run_opts.update_options(**run_options)
return self._run(
circuits,
parameter_values,
**run_opts.__dict__,
)
@abstractmethod
def _run(
self,
circuits: tuple[QuantumCircuit, ...],
parameter_values: tuple[tuple[float, ...], ...],
**run_options,
) -> T:
raise NotImplementedError("The subclass of BaseSampler must implment `_run` method.")
# TODO: validate measurement gates are present
@classmethod
def _validate_circuits(
cls,
circuits: Sequence[QuantumCircuit] | QuantumCircuit,
) -> tuple[QuantumCircuit, ...]:
circuits = super()._validate_circuits(circuits)
for i, circuit in enumerate(circuits):
if circuit.num_clbits == 0:
raise ValueError(
f"The {i}-th circuit does not have any classical bit. "
"Sampler requires classical bits, plus measurements "
"on the desired qubits."
)
return circuits
@property
def circuits(self) -> tuple[QuantumCircuit, ...]:
"""Quantum circuits to be sampled.
Returns:
The quantum circuits to be sampled.
"""
return tuple(self._circuits)
@property
def parameters(self) -> tuple[ParameterView, ...]:
"""Parameters of quantum circuits.
Returns:
List of the parameters in each quantum circuit.
"""
return tuple(self._parameters)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit_nature.second_q.drivers import GaussianForcesDriver
# if you ran Gaussian elsewhere and already have the output file
driver = GaussianForcesDriver(logfile="aux_files/CO2_freq_B3LYP_631g.log")
# if you want to run the Gaussian job from Qiskit
# driver = GaussianForcesDriver(
# ['#p B3LYP/6-31g Freq=(Anharm) Int=Ultrafine SCF=VeryTight',
# '',
# 'CO2 geometry optimization B3LYP/6-31g',
# '',
# '0 1',
# 'C -0.848629 2.067624 0.160992',
# 'O 0.098816 2.655801 -0.159738',
# 'O -1.796073 1.479446 0.481721',
# '',
# ''
from qiskit_nature.second_q.problems import HarmonicBasis
basis = HarmonicBasis([2, 2, 2, 2])
from qiskit_nature.second_q.problems import VibrationalStructureProblem
from qiskit_nature.second_q.mappers import DirectMapper
vibrational_problem = driver.run(basis=basis)
vibrational_problem.hamiltonian.truncation_order = 2
main_op, aux_ops = vibrational_problem.second_q_ops()
print(main_op)
qubit_mapper = DirectMapper()
qubit_op = qubit_mapper.map(main_op)
print(qubit_op)
basis = HarmonicBasis([3, 3, 3, 3])
vibrational_problem = driver.run(basis=basis)
vibrational_problem.hamiltonian.truncation_order = 2
main_op, aux_ops = vibrational_problem.second_q_ops()
qubit_mapper = DirectMapper()
qubit_op = qubit_mapper.map(main_op)
print(qubit_op)
# for simplicity, we will use the smaller basis again
vibrational_problem = driver.run(basis=HarmonicBasis([2, 2, 2, 2]))
vibrational_problem.hamiltonian.truncation_order = 2
from qiskit.algorithms.minimum_eigensolvers import NumPyMinimumEigensolver
from qiskit_nature.second_q.algorithms import GroundStateEigensolver
solver = GroundStateEigensolver(
qubit_mapper,
NumPyMinimumEigensolver(filter_criterion=vibrational_problem.get_default_filter_criterion()),
)
result = solver.solve(vibrational_problem)
print(result)
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/jonasmaziero/computacao_quantica_qiskit
|
jonasmaziero
|
from qiskit import *
import numpy as np
import math
import qiskit
nshots = 8192
IBMQ.load_account()
#provider= qiskit.IBMQ.get_provider(hub='ibm-q-research-2',group='federal-uni-sant-1',project='main')
provider = qiskit.IBMQ.get_provider(hub='ibm-q', group='open', project='main')
device = provider.get_backend('ibmq_belem')
simulator = Aer.get_backend('qasm_simulator')
from qiskit.tools.monitor import job_monitor
from qiskit.ignis.verification.tomography import state_tomography_circuits, StateTomographyFitter
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
dth = math.pi/10
th = np.arange(0,math.pi+dth,dth)
ph = 0; lb = 0
N = len(th)
F_the = np.zeros(N); F_sim = np.zeros(N); F_exp = np.zeros(N)
for j in range(0,N):
F_the[j] = math.cos(th[j]/2)**2
qr = QuantumRegister(3)
cr = ClassicalRegister(1)
qc = QuantumCircuit(qr,cr)
qc.u(th[j],ph,lb,qr[2])
qc.h(qr[0])
qc.cswap(qr[0],qr[1],qr[2])
qc.h(qr[0])
qc.measure(qr[0],cr[0])
job_sim = execute(qc, backend=simulator, shots=nshots)
counts = job_sim.result().get_counts(qc)
if '0' in counts:
F_sim[j] = 2*counts['0']/nshots - 1
job_exp = execute(qc, backend=device, shots=nshots)
print(job_exp.job_id())
job_monitor(job_exp)
counts = job_exp.result().get_counts(qc)
if '0' in counts:
F_exp[j] = 2*counts['0']/nshots - 1
qc.draw('mpl')
qc.decompose().decompose().draw('mpl') # o circuito é "profundo" por causa da swap controlada
F_the, F_sim, F_exp
from matplotlib import pyplot as plt
plt.plot(th, F_the, label=r'$F_{the}$')
plt.plot(th, F_sim, '*', label=r'$F_{sim}$')
plt.plot(th, F_exp, 'o', label=r'$F_{exp}$')
plt.xlabel(r'$\theta$')
plt.legend()
plt.show()
|
https://github.com/daimurat/qiskit-implementation
|
daimurat
|
import matplotlib.pyplot as plt
import numpy as np
# ランダムシードの指定
np.random.seed(1)
# 標準正規分布に従う乱数の生成
X_xor = np.random.randn(200, 2)
y_xor = np.logical_xor(X_xor[:, 0] > 0, X_xor[:, 1] > 0)
# 真の場合は1、偽の場合は-1
y_xor = np.where(y_xor, 1, -1)
#データのプロット
plt.scatter(X_xor[y_xor==1, 0], X_xor[y_xor==1, 1], c='b', marker='x', label='1')
plt.scatter(X_xor[y_xor==-1, 0], X_xor[y_xor==-1, 1], c='r', marker='s', label='-1')
plt.xlim([-3, 3])
plt.ylim([-3, 3])
plt.legend(loc='best')
plt.tight_layout()
plt.show()
from qiskit.circuit.library import ZZFeatureMap
map_zz = ZZFeatureMap(feature_dimension=2, reps=2)
## カーネルの定義(手組)
from qiskit import BasicAer
from qiskit_machine_learning.kernels import QuantumKernel
from sklearn.svm import SVC
# Create the quantum feature map
map_zz = ZZFeatureMap(feature_dimension=2,
reps=2,
entanglement='linear')
# Create the quantum kernel
adhoc_kernel = QuantumKernel(feature_map=map_zz,
quantum_instance=BasicAer.get_backend('statevector_simulator'))
# Set the SVC algorithm to use our custom kernel
model = SVC(kernel=adhoc_kernel.evaluate)
model.fit(X_xor, y_xor)
# 決定境界の可視化
from matplotlib.colors import ListedColormap
def plot_decision_regisons(X, y, classifier, resolution=0.2):
markers = ('s', 'x', 'o', '^', 'v')
colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
cmap = ListedColormap(colors[:len(np.unique(y))])
# 決定境界のプロット
x1_min, x1_max = X[:, 0].min() - 1 , X[:, 0].max() + 1
x2_min, x2_max = X[:, 1].min() - 1 , X[:, 1].max() + 1
xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution), np.arange(x2_min, x2_max, resolution))
# 各特徴量を1次元配列に変換して予測を実行
Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
Z = Z.reshape(xx1.shape)
# グリッドポイントの等高線プロット
plt.contourf(xx1, xx2, Z, alpha=0.3, cmap=cmap)
plt.xlim(xx1.min(), xx1.max())
plt.ylim(xx2.min(), xx2.max())
for idx, cl in enumerate(np.unique(y)):
plt.scatter(x=X[y==cl, 0], y=X[y==cl, 1], alpha=0.8, c=colors[idx], marker=markers[idx], label=cl, edgecolors='black')
plot_decision_regisons(X_xor, y_xor, classifier=model)
plt.legend(loc='upper left')
plt.tight_layout()
plt.show()
|
https://github.com/AnshDabkara/Qiskit_Algorithm
|
AnshDabkara
|
from qiskit import IBMQ, Aer
from qiskit.providers.ibmq import least_busy
from qiskit import QuantumCircuit, transpile, assemble
from qiskit.tools.monitor import job_monitor
import matplotlib as mpl
# import basic plot tools
from qiskit.visualization import plot_histogram
bv_circuit=QuantumCircuit(4,3)
#bv_circuit.clear()
bit_string=('111')
bv_circuit.x(3)
bv_circuit.h([0,1,2,3])
bv_circuit.barrier()
bv_circuit.cx(0,3)
bv_circuit.cx(1,3)
bv_circuit.cx(2,3)
bv_circuit.barrier()
bv_circuit.h([0,1,2,3])
bv_circuit.measure([0,1,2],[0,1,2])
bv_circuit.draw('mpl')
aer_sim = Aer.get_backend('aer_simulator') #Local Simulator
shots = 1024 #No. of times the circuit is running
qobj = assemble(bv_circuit, shots = shots)
results = aer_sim.run(qobj).result()
counts = results.get_counts()
plot_histogram(counts) #Plotting the result
bit_string=('1010')
bv_circuit=QuantumCircuit(len(bit_string)+1,len(bit_string))
bv_circuit.clear()
#bv_circuit.x(len(bit_string))
bv_circuit.h(range(len(bit_string)))
bv_circuit.x(len(bit_string))
bv_circuit.h(len(bit_string))
bv_circuit.barrier()
for i, yes in enumerate(reversed(bit_string)):
if yes=='1':
bv_circuit.cx(i,len(bit_string))
bv_circuit.barrier()
bv_circuit.h(range(len(bit_string)))
bv_circuit.h(len(bit_string))
bv_circuit.measure(range(len(bit_string)),range(len(bit_string)))
bv_circuit.draw('mpl')
aer_sim = Aer.get_backend('aer_simulator') #Local Simulator
shots = 1024 #No. of times the circuit is running
qobj = assemble(bv_circuit, shots = shots)
results = aer_sim.run(qobj).result()
counts = results.get_counts()
plot_histogram(counts) #Plotting the result
|
https://github.com/swe-bench/Qiskit__qiskit
|
swe-bench
|
# This code is part of Qiskit.
#
# (C) Copyright IBM 2022.
#
# This code is licensed under the Apache License, Version 2.0. You may
# obtain a copy of this license in the LICENSE.txt file in the root directory
# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.
#
# Any modifications or derivative works of this code must retain this
# copyright notice, and modified files need to carry a notice indicating
# that they have been altered from the originals.
"""Test functionality to collect, split and consolidate blocks from DAGCircuits."""
import unittest
from qiskit import QuantumRegister, ClassicalRegister
from qiskit.converters import (
circuit_to_dag,
circuit_to_dagdependency,
circuit_to_instruction,
dag_to_circuit,
dagdependency_to_circuit,
)
from qiskit.test import QiskitTestCase
from qiskit.circuit import QuantumCircuit, Measure, Clbit
from qiskit.dagcircuit.collect_blocks import BlockCollector, BlockSplitter, BlockCollapser
class TestCollectBlocks(QiskitTestCase):
"""Tests to verify correctness of collecting, splitting, and consolidating blocks
from DAGCircuit and DAGDependency. Additional tests appear as a part of
CollectLinearFunctions and CollectCliffords passes.
"""
def test_collect_gates_from_dagcircuit_1(self):
"""Test collecting CX gates from DAGCircuits."""
qc = QuantumCircuit(5)
qc.cx(0, 1)
qc.cx(0, 2)
qc.z(0)
qc.cx(0, 3)
qc.cx(0, 4)
block_collector = BlockCollector(circuit_to_dag(qc))
blocks = block_collector.collect_all_matching_blocks(
lambda node: node.op.name == "cx",
split_blocks=False,
min_block_size=2,
)
# The middle z-gate leads to two blocks of size 2 each
self.assertEqual(len(blocks), 2)
self.assertEqual(len(blocks[0]), 2)
self.assertEqual(len(blocks[1]), 2)
def test_collect_gates_from_dagcircuit_2(self):
"""Test collecting both CX and Z gates from DAGCircuits."""
qc = QuantumCircuit(5)
qc.cx(0, 1)
qc.cx(0, 2)
qc.z(0)
qc.cx(0, 3)
qc.cx(0, 4)
block_collector = BlockCollector(circuit_to_dag(qc))
blocks = block_collector.collect_all_matching_blocks(
lambda node: node.op.name in ["cx", "z"],
split_blocks=False,
min_block_size=1,
)
# All of the gates are part of a single block
self.assertEqual(len(blocks), 1)
self.assertEqual(len(blocks[0]), 5)
def test_collect_gates_from_dagcircuit_3(self):
"""Test collecting CX gates from DAGCircuits."""
qc = QuantumCircuit(5)
qc.cx(0, 1)
qc.cx(0, 2)
qc.z(0)
qc.cx(1, 3)
qc.cx(0, 3)
qc.cx(0, 4)
block_collector = BlockCollector(circuit_to_dag(qc))
blocks = block_collector.collect_all_matching_blocks(
lambda node: node.op.name in ["cx"],
split_blocks=False,
min_block_size=1,
)
# We should end up with two CX blocks: even though there is "a path
# around z(0)", without commutativity analysis z(0) prevents from
# including all CX-gates into the same block
self.assertEqual(len(blocks), 2)
def test_collect_gates_from_dagdependency_1(self):
"""Test collecting CX gates from DAGDependency."""
qc = QuantumCircuit(5)
qc.cx(0, 1)
qc.cx(0, 2)
qc.z(0)
qc.cx(0, 3)
qc.cx(0, 4)
block_collector = BlockCollector(circuit_to_dagdependency(qc))
blocks = block_collector.collect_all_matching_blocks(
lambda node: node.op.name == "cx",
split_blocks=False,
min_block_size=1,
)
# The middle z-gate commutes with CX-gates, which leads to a single block of length 4
self.assertEqual(len(blocks), 1)
self.assertEqual(len(blocks[0]), 4)
def test_collect_gates_from_dagdependency_2(self):
"""Test collecting both CX and Z gates from DAGDependency."""
qc = QuantumCircuit(5)
qc.cx(0, 1)
qc.cx(0, 2)
qc.z(0)
qc.cx(0, 3)
qc.cx(0, 4)
block_collector = BlockCollector(circuit_to_dagdependency(qc))
blocks = block_collector.collect_all_matching_blocks(
lambda node: node.op.name in ["cx", "z"],
split_blocks=False,
min_block_size=1,
)
# All the gates are part of a single block
self.assertEqual(len(blocks), 1)
self.assertEqual(len(blocks[0]), 5)
def test_collect_and_split_gates_from_dagcircuit(self):
"""Test collecting and splitting blocks from DAGCircuit."""
qc = QuantumCircuit(6)
qc.cx(0, 1)
qc.cx(3, 5)
qc.cx(2, 4)
qc.swap(1, 0)
qc.cz(5, 3)
block_collector = BlockCollector(circuit_to_dag(qc))
blocks = block_collector.collect_all_matching_blocks(
lambda node: True,
split_blocks=False,
min_block_size=1,
)
# All the gates are part of a single block
self.assertEqual(len(blocks), 1)
self.assertEqual(len(blocks[0]), 5)
# Split the first block into sub-blocks over disjoint qubit sets
# We should get 3 sub-blocks
split_blocks = BlockSplitter().run(blocks[0])
self.assertEqual(len(split_blocks), 3)
def test_collect_and_split_gates_from_dagdependency(self):
"""Test collecting and splitting blocks from DAGDependecy."""
qc = QuantumCircuit(6)
qc.cx(0, 1)
qc.cx(3, 5)
qc.cx(2, 4)
qc.swap(1, 0)
qc.cz(5, 3)
block_collector = BlockCollector(circuit_to_dagdependency(qc))
blocks = block_collector.collect_all_matching_blocks(
lambda node: True,
split_blocks=False,
min_block_size=1,
)
# All the gates are part of a single block
self.assertEqual(len(blocks), 1)
self.assertEqual(len(blocks[0]), 5)
# Split the first block into sub-blocks over disjoint qubit sets
# We should get 3 sub-blocks
split_blocks = BlockSplitter().run(blocks[0])
self.assertEqual(len(split_blocks), 3)
def test_circuit_has_measure(self):
"""Test that block collection works properly when there is a measure in the
middle of the circuit."""
qc = QuantumCircuit(2, 1)
qc.cx(1, 0)
qc.x(0)
qc.x(1)
qc.measure(0, 0)
qc.x(0)
qc.cx(1, 0)
block_collector = BlockCollector(circuit_to_dag(qc))
blocks = block_collector.collect_all_matching_blocks(
lambda node: node.op.name in ["x", "cx"],
split_blocks=False,
min_block_size=1,
)
# measure prevents combining the two blocks
self.assertEqual(len(blocks), 2)
self.assertEqual(len(blocks[0]), 3)
self.assertEqual(len(blocks[1]), 2)
def test_circuit_has_measure_dagdependency(self):
"""Test that block collection works properly when there is a measure in the
middle of the circuit."""
qc = QuantumCircuit(2, 1)
qc.cx(1, 0)
qc.x(0)
qc.x(1)
qc.measure(0, 0)
qc.x(0)
qc.cx(1, 0)
block_collector = BlockCollector(circuit_to_dagdependency(qc))
blocks = block_collector.collect_all_matching_blocks(
lambda node: node.op.name in ["x", "cx"],
split_blocks=False,
min_block_size=1,
)
# measure prevents combining the two blocks
self.assertEqual(len(blocks), 2)
self.assertEqual(len(blocks[0]), 3)
self.assertEqual(len(blocks[1]), 2)
def test_circuit_has_conditional_gates(self):
"""Test that block collection works properly when there the circuit
contains conditional gates."""
qc = QuantumCircuit(2, 1)
qc.x(0)
qc.x(1)
qc.cx(1, 0)
qc.x(1).c_if(0, 1)
qc.x(0)
qc.x(1)
qc.cx(0, 1)
# If the filter_function does not look at conditions, we should collect all
# gates into the block.
block_collector = BlockCollector(circuit_to_dag(qc))
blocks = block_collector.collect_all_matching_blocks(
lambda node: node.op.name in ["x", "cx"],
split_blocks=False,
min_block_size=1,
)
self.assertEqual(len(blocks), 1)
self.assertEqual(len(blocks[0]), 7)
# If the filter_function does look at conditions, we should not collect the middle
# conditional gate (note that x(1) following the measure is collected into the first
# block).
block_collector = BlockCollector(circuit_to_dag(qc))
blocks = block_collector.collect_all_matching_blocks(
lambda node: node.op.name in ["x", "cx"] and not getattr(node.op, "condition", None),
split_blocks=False,
min_block_size=1,
)
self.assertEqual(len(blocks), 2)
self.assertEqual(len(blocks[0]), 4)
self.assertEqual(len(blocks[1]), 2)
def test_circuit_has_conditional_gates_dagdependency(self):
"""Test that block collection works properly when there the circuit
contains conditional gates."""
qc = QuantumCircuit(2, 1)
qc.x(0)
qc.x(1)
qc.cx(1, 0)
qc.x(1).c_if(0, 1)
qc.x(0)
qc.x(1)
qc.cx(0, 1)
# If the filter_function does not look at conditions, we should collect all
# gates into the block.
block_collector = BlockCollector(circuit_to_dagdependency(qc))
blocks = block_collector.collect_all_matching_blocks(
lambda node: node.op.name in ["x", "cx"],
split_blocks=False,
min_block_size=1,
)
self.assertEqual(len(blocks), 1)
self.assertEqual(len(blocks[0]), 7)
# If the filter_function does look at conditions, we should not collect the middle
# conditional gate (note that x(1) following the measure is collected into the first
# block).
block_collector = BlockCollector(circuit_to_dag(qc))
blocks = block_collector.collect_all_matching_blocks(
lambda node: node.op.name in ["x", "cx"] and not getattr(node.op, "condition", None),
split_blocks=False,
min_block_size=1,
)
self.assertEqual(len(blocks), 2)
self.assertEqual(len(blocks[0]), 4)
self.assertEqual(len(blocks[1]), 2)
def test_multiple_collection_methods(self):
"""Test that block collection allows to collect blocks using several different
filter functions."""
qc = QuantumCircuit(5)
qc.cx(0, 1)
qc.cx(0, 2)
qc.swap(1, 4)
qc.swap(4, 3)
qc.z(0)
qc.z(1)
qc.z(2)
qc.z(3)
qc.z(4)
qc.swap(3, 4)
qc.cx(0, 3)
qc.cx(0, 4)
block_collector = BlockCollector(circuit_to_dag(qc))
linear_blocks = block_collector.collect_all_matching_blocks(
lambda node: node.op.name in ["cx", "swap"],
split_blocks=False,
min_block_size=1,
)
cx_blocks = block_collector.collect_all_matching_blocks(
lambda node: node.op.name in ["cx"],
split_blocks=False,
min_block_size=1,
)
swapz_blocks = block_collector.collect_all_matching_blocks(
lambda node: node.op.name in ["swap", "z"],
split_blocks=False,
min_block_size=1,
)
# We should end up with two linear blocks
self.assertEqual(len(linear_blocks), 2)
self.assertEqual(len(linear_blocks[0]), 4)
self.assertEqual(len(linear_blocks[1]), 3)
# We should end up with two cx blocks
self.assertEqual(len(cx_blocks), 2)
self.assertEqual(len(cx_blocks[0]), 2)
self.assertEqual(len(cx_blocks[1]), 2)
# We should end up with one swap,z blocks
self.assertEqual(len(swapz_blocks), 1)
self.assertEqual(len(swapz_blocks[0]), 8)
def test_min_block_size(self):
"""Test that the option min_block_size for collecting blocks works correctly."""
# original circuit
circuit = QuantumCircuit(2)
circuit.cx(0, 1)
circuit.h(0)
circuit.cx(0, 1)
circuit.cx(1, 0)
circuit.h(0)
circuit.cx(0, 1)
circuit.cx(1, 0)
circuit.cx(0, 1)
block_collector = BlockCollector(circuit_to_dag(circuit))
# When min_block_size = 1, we should obtain 3 linear blocks
blocks = block_collector.collect_all_matching_blocks(
lambda node: node.op.name in ["cx", "swap"],
split_blocks=False,
min_block_size=1,
)
self.assertEqual(len(blocks), 3)
# When min_block_size = 2, we should obtain 2 linear blocks
blocks = block_collector.collect_all_matching_blocks(
lambda node: node.op.name in ["cx", "swap"],
split_blocks=False,
min_block_size=2,
)
self.assertEqual(len(blocks), 2)
# When min_block_size = 3, we should obtain 1 linear block
blocks = block_collector.collect_all_matching_blocks(
lambda node: node.op.name in ["cx", "swap"],
split_blocks=False,
min_block_size=3,
)
self.assertEqual(len(blocks), 1)
# When min_block_size = 4, we should obtain no linear blocks
blocks = block_collector.collect_all_matching_blocks(
lambda node: node.op.name in ["cx", "swap"],
split_blocks=False,
min_block_size=4,
)
self.assertEqual(len(blocks), 0)
def test_split_blocks(self):
"""Test that splitting blocks of nodes into sub-blocks works correctly."""
# original circuit is linear
circuit = QuantumCircuit(5)
circuit.cx(0, 2)
circuit.cx(1, 4)
circuit.cx(2, 0)
circuit.cx(0, 3)
circuit.swap(3, 2)
circuit.swap(4, 1)
block_collector = BlockCollector(circuit_to_dag(circuit))
# If we do not split block into sub-blocks, we expect a single linear block.
blocks = block_collector.collect_all_matching_blocks(
lambda node: node.op.name in ["cx", "swap"],
split_blocks=False,
min_block_size=2,
)
self.assertEqual(len(blocks), 1)
# If we do split block into sub-blocks, we expect two linear blocks:
# one over qubits {0, 2, 3}, and another over qubits {1, 4}.
blocks = block_collector.collect_all_matching_blocks(
lambda node: node.op.name in ["cx", "swap"],
split_blocks=True,
min_block_size=2,
)
self.assertEqual(len(blocks), 2)
def test_do_not_split_blocks(self):
"""Test that splitting blocks of nodes into sub-blocks works correctly."""
# original circuit is linear
circuit = QuantumCircuit(5)
circuit.cx(0, 3)
circuit.cx(0, 2)
circuit.cx(1, 4)
circuit.swap(4, 2)
block_collector = BlockCollector(circuit_to_dagdependency(circuit))
# Check that we have a single linear block
blocks = block_collector.collect_all_matching_blocks(
lambda node: node.op.name in ["cx", "swap"],
split_blocks=True,
min_block_size=1,
)
self.assertEqual(len(blocks), 1)
def test_collect_blocks_with_cargs(self):
"""Test collecting and collapsing blocks with classical bits appearing as cargs."""
qc = QuantumCircuit(3)
qc.h(0)
qc.h(1)
qc.h(2)
qc.measure_all()
dag = circuit_to_dag(qc)
# Collect all measure instructions
blocks = BlockCollector(dag).collect_all_matching_blocks(
lambda node: isinstance(node.op, Measure), split_blocks=False, min_block_size=1
)
# We should have a single block consisting of 3 measures
self.assertEqual(len(blocks), 1)
self.assertEqual(len(blocks[0]), 3)
self.assertEqual(blocks[0][0].op, Measure())
self.assertEqual(blocks[0][1].op, Measure())
self.assertEqual(blocks[0][2].op, Measure())
def _collapse_fn(circuit):
op = circuit_to_instruction(circuit)
op.name = "COLLAPSED"
return op
# Collapse block with measures into a single "COLLAPSED" block
dag = BlockCollapser(dag).collapse_to_operation(blocks, _collapse_fn)
collapsed_qc = dag_to_circuit(dag)
self.assertEqual(len(collapsed_qc.data), 5)
self.assertEqual(collapsed_qc.data[0].operation.name, "h")
self.assertEqual(collapsed_qc.data[1].operation.name, "h")
self.assertEqual(collapsed_qc.data[2].operation.name, "h")
self.assertEqual(collapsed_qc.data[3].operation.name, "barrier")
self.assertEqual(collapsed_qc.data[4].operation.name, "COLLAPSED")
self.assertEqual(collapsed_qc.data[4].operation.definition.num_qubits, 3)
self.assertEqual(collapsed_qc.data[4].operation.definition.num_clbits, 3)
def test_collect_blocks_with_cargs_dagdependency(self):
"""Test collecting and collapsing blocks with classical bits appearing as cargs,
using DAGDependency."""
qc = QuantumCircuit(3)
qc.h(0)
qc.h(1)
qc.h(2)
qc.measure_all()
dag = circuit_to_dagdependency(qc)
# Collect all measure instructions
blocks = BlockCollector(dag).collect_all_matching_blocks(
lambda node: isinstance(node.op, Measure), split_blocks=False, min_block_size=1
)
# We should have a single block consisting of 3 measures
self.assertEqual(len(blocks), 1)
self.assertEqual(len(blocks[0]), 3)
self.assertEqual(blocks[0][0].op, Measure())
self.assertEqual(blocks[0][1].op, Measure())
self.assertEqual(blocks[0][2].op, Measure())
def _collapse_fn(circuit):
op = circuit_to_instruction(circuit)
op.name = "COLLAPSED"
return op
# Collapse block with measures into a single "COLLAPSED" block
dag = BlockCollapser(dag).collapse_to_operation(blocks, _collapse_fn)
collapsed_qc = dagdependency_to_circuit(dag)
self.assertEqual(len(collapsed_qc.data), 5)
self.assertEqual(collapsed_qc.data[0].operation.name, "h")
self.assertEqual(collapsed_qc.data[1].operation.name, "h")
self.assertEqual(collapsed_qc.data[2].operation.name, "h")
self.assertEqual(collapsed_qc.data[3].operation.name, "barrier")
self.assertEqual(collapsed_qc.data[4].operation.name, "COLLAPSED")
self.assertEqual(collapsed_qc.data[4].operation.definition.num_qubits, 3)
self.assertEqual(collapsed_qc.data[4].operation.definition.num_clbits, 3)
def test_collect_blocks_with_clbits(self):
"""Test collecting and collapsing blocks with classical bits appearing under
condition."""
qc = QuantumCircuit(4, 3)
qc.cx(0, 1).c_if(0, 1)
qc.cx(2, 3)
qc.cx(1, 2)
qc.cx(0, 1)
qc.cx(2, 3).c_if(1, 0)
dag = circuit_to_dag(qc)
# Collect all cx gates (including the conditional ones)
blocks = BlockCollector(dag).collect_all_matching_blocks(
lambda node: node.op.name == "cx", split_blocks=False, min_block_size=1
)
# We should have a single block consisting of all CX nodes
self.assertEqual(len(blocks), 1)
self.assertEqual(len(blocks[0]), 5)
def _collapse_fn(circuit):
op = circuit_to_instruction(circuit)
op.name = "COLLAPSED"
return op
# Collapse block with measures into a single "COLLAPSED" block
dag = BlockCollapser(dag).collapse_to_operation(blocks, _collapse_fn)
collapsed_qc = dag_to_circuit(dag)
self.assertEqual(len(collapsed_qc.data), 1)
self.assertEqual(collapsed_qc.data[0].operation.name, "COLLAPSED")
self.assertEqual(collapsed_qc.data[0].operation.definition.num_qubits, 4)
self.assertEqual(collapsed_qc.data[0].operation.definition.num_clbits, 2)
def test_collect_blocks_with_clbits_dagdependency(self):
"""Test collecting and collapsing blocks with classical bits appearing
under conditions, using DAGDependency."""
qc = QuantumCircuit(4, 3)
qc.cx(0, 1).c_if(0, 1)
qc.cx(2, 3)
qc.cx(1, 2)
qc.cx(0, 1)
qc.cx(2, 3).c_if(1, 0)
dag = circuit_to_dagdependency(qc)
# Collect all cx gates (including the conditional ones)
blocks = BlockCollector(dag).collect_all_matching_blocks(
lambda node: node.op.name == "cx", split_blocks=False, min_block_size=1
)
# We should have a single block consisting of all CX nodes
self.assertEqual(len(blocks), 1)
self.assertEqual(len(blocks[0]), 5)
def _collapse_fn(circuit):
op = circuit_to_instruction(circuit)
op.name = "COLLAPSED"
return op
# Collapse block with measures into a single "COLLAPSED" block
dag = BlockCollapser(dag).collapse_to_operation(blocks, _collapse_fn)
collapsed_qc = dagdependency_to_circuit(dag)
self.assertEqual(len(collapsed_qc.data), 1)
self.assertEqual(collapsed_qc.data[0].operation.name, "COLLAPSED")
self.assertEqual(collapsed_qc.data[0].operation.definition.num_qubits, 4)
self.assertEqual(collapsed_qc.data[0].operation.definition.num_clbits, 2)
def test_collect_blocks_with_clbits2(self):
"""Test collecting and collapsing blocks with classical bits appearing under
condition."""
qreg = QuantumRegister(4, "qr")
creg = ClassicalRegister(3, "cr")
cbit = Clbit()
qc = QuantumCircuit(qreg, creg, [cbit])
qc.cx(0, 1).c_if(creg[1], 1)
qc.cx(2, 3).c_if(cbit, 0)
qc.cx(1, 2)
qc.cx(0, 1).c_if(creg[2], 1)
dag = circuit_to_dag(qc)
# Collect all cx gates (including the conditional ones)
blocks = BlockCollector(dag).collect_all_matching_blocks(
lambda node: node.op.name == "cx", split_blocks=False, min_block_size=1
)
# We should have a single block consisting of all CX nodes
self.assertEqual(len(blocks), 1)
self.assertEqual(len(blocks[0]), 4)
def _collapse_fn(circuit):
op = circuit_to_instruction(circuit)
op.name = "COLLAPSED"
return op
# Collapse block with measures into a single "COLLAPSED" block
dag = BlockCollapser(dag).collapse_to_operation(blocks, _collapse_fn)
collapsed_qc = dag_to_circuit(dag)
self.assertEqual(len(collapsed_qc.data), 1)
self.assertEqual(collapsed_qc.data[0].operation.name, "COLLAPSED")
self.assertEqual(collapsed_qc.data[0].operation.definition.num_qubits, 4)
self.assertEqual(collapsed_qc.data[0].operation.definition.num_clbits, 3)
def test_collect_blocks_with_clbits2_dagdependency(self):
"""Test collecting and collapsing blocks with classical bits appearing under
condition, using DAGDependency."""
qreg = QuantumRegister(4, "qr")
creg = ClassicalRegister(3, "cr")
cbit = Clbit()
qc = QuantumCircuit(qreg, creg, [cbit])
qc.cx(0, 1).c_if(creg[1], 1)
qc.cx(2, 3).c_if(cbit, 0)
qc.cx(1, 2)
qc.cx(0, 1).c_if(creg[2], 1)
dag = circuit_to_dag(qc)
# Collect all cx gates (including the conditional ones)
blocks = BlockCollector(dag).collect_all_matching_blocks(
lambda node: node.op.name == "cx", split_blocks=False, min_block_size=1
)
# We should have a single block consisting of all CX nodes
self.assertEqual(len(blocks), 1)
self.assertEqual(len(blocks[0]), 4)
def _collapse_fn(circuit):
op = circuit_to_instruction(circuit)
op.name = "COLLAPSED"
return op
# Collapse block with measures into a single "COLLAPSED" block
dag = BlockCollapser(dag).collapse_to_operation(blocks, _collapse_fn)
collapsed_qc = dag_to_circuit(dag)
self.assertEqual(len(collapsed_qc.data), 1)
self.assertEqual(collapsed_qc.data[0].operation.name, "COLLAPSED")
self.assertEqual(collapsed_qc.data[0].operation.definition.num_qubits, 4)
self.assertEqual(collapsed_qc.data[0].operation.definition.num_clbits, 3)
def test_collect_blocks_with_cregs(self):
"""Test collecting and collapsing blocks with classical registers appearing under
condition."""
qreg = QuantumRegister(4, "qr")
creg = ClassicalRegister(3, "cr")
creg2 = ClassicalRegister(2, "cr2")
qc = QuantumCircuit(qreg, creg, creg2)
qc.cx(0, 1).c_if(creg, 3)
qc.cx(1, 2)
qc.cx(0, 1).c_if(creg[2], 1)
dag = circuit_to_dag(qc)
# Collect all cx gates (including the conditional ones)
blocks = BlockCollector(dag).collect_all_matching_blocks(
lambda node: node.op.name == "cx", split_blocks=False, min_block_size=1
)
# We should have a single block consisting of all CX nodes
self.assertEqual(len(blocks), 1)
self.assertEqual(len(blocks[0]), 3)
def _collapse_fn(circuit):
op = circuit_to_instruction(circuit)
op.name = "COLLAPSED"
return op
# Collapse block with measures into a single "COLLAPSED" block
dag = BlockCollapser(dag).collapse_to_operation(blocks, _collapse_fn)
collapsed_qc = dag_to_circuit(dag)
self.assertEqual(len(collapsed_qc.data), 1)
self.assertEqual(collapsed_qc.data[0].operation.name, "COLLAPSED")
self.assertEqual(len(collapsed_qc.data[0].operation.definition.cregs), 1)
self.assertEqual(collapsed_qc.data[0].operation.definition.num_qubits, 3)
self.assertEqual(collapsed_qc.data[0].operation.definition.num_clbits, 3)
def test_collect_blocks_with_cregs_dagdependency(self):
"""Test collecting and collapsing blocks with classical registers appearing under
condition, using DAGDependency."""
qreg = QuantumRegister(4, "qr")
creg = ClassicalRegister(3, "cr")
creg2 = ClassicalRegister(2, "cr2")
qc = QuantumCircuit(qreg, creg, creg2)
qc.cx(0, 1).c_if(creg, 3)
qc.cx(1, 2)
qc.cx(0, 1).c_if(creg[2], 1)
dag = circuit_to_dagdependency(qc)
# Collect all cx gates (including the conditional ones)
blocks = BlockCollector(dag).collect_all_matching_blocks(
lambda node: node.op.name == "cx", split_blocks=False, min_block_size=1
)
# We should have a single block consisting of all CX nodes
self.assertEqual(len(blocks), 1)
self.assertEqual(len(blocks[0]), 3)
def _collapse_fn(circuit):
op = circuit_to_instruction(circuit)
op.name = "COLLAPSED"
return op
# Collapse block with measures into a single "COLLAPSED" block
dag = BlockCollapser(dag).collapse_to_operation(blocks, _collapse_fn)
collapsed_qc = dagdependency_to_circuit(dag)
self.assertEqual(len(collapsed_qc.data), 1)
self.assertEqual(collapsed_qc.data[0].operation.name, "COLLAPSED")
self.assertEqual(len(collapsed_qc.data[0].operation.definition.cregs), 1)
self.assertEqual(collapsed_qc.data[0].operation.definition.num_qubits, 3)
self.assertEqual(collapsed_qc.data[0].operation.definition.num_clbits, 3)
def test_collect_blocks_backwards_dagcircuit(self):
"""Test collecting H gates from DAGCircuit in the forward vs. the reverse
directions."""
qc = QuantumCircuit(4)
qc.h(0)
qc.h(1)
qc.h(2)
qc.h(3)
qc.cx(1, 2)
qc.z(0)
qc.z(1)
qc.z(2)
qc.z(3)
block_collector = BlockCollector(circuit_to_dag(qc))
# When collecting in the forward direction, there are two blocks of
# single-qubit gates: the first of size 6, and the second of size 2.
blocks = block_collector.collect_all_matching_blocks(
lambda node: node.op.name in ["h", "z"],
split_blocks=False,
min_block_size=1,
collect_from_back=False,
)
self.assertEqual(len(blocks), 2)
self.assertEqual(len(blocks[0]), 6)
self.assertEqual(len(blocks[1]), 2)
# When collecting in the backward direction, there are also two blocks of
# single-qubit ates: but now the first is of size 2, and the second is of size 6.
blocks = block_collector.collect_all_matching_blocks(
lambda node: node.op.name in ["h", "z"],
split_blocks=False,
min_block_size=1,
collect_from_back=True,
)
self.assertEqual(len(blocks), 2)
self.assertEqual(len(blocks[0]), 2)
self.assertEqual(len(blocks[1]), 6)
def test_collect_blocks_backwards_dagdependency(self):
"""Test collecting H gates from DAGDependency in the forward vs. the reverse
directions."""
qc = QuantumCircuit(4)
qc.z(0)
qc.z(1)
qc.z(2)
qc.z(3)
qc.cx(1, 2)
qc.h(0)
qc.h(1)
qc.h(2)
qc.h(3)
block_collector = BlockCollector(circuit_to_dagdependency(qc))
# When collecting in the forward direction, there are two blocks of
# single-qubit gates: the first of size 6, and the second of size 2.
blocks = block_collector.collect_all_matching_blocks(
lambda node: node.op.name in ["h", "z"],
split_blocks=False,
min_block_size=1,
collect_from_back=False,
)
self.assertEqual(len(blocks), 2)
self.assertEqual(len(blocks[0]), 6)
self.assertEqual(len(blocks[1]), 2)
# When collecting in the backward direction, there are also two blocks of
# single-qubit ates: but now the first is of size 1, and the second is of size 7
# (note that z(1) and CX(1, 2) commute).
blocks = block_collector.collect_all_matching_blocks(
lambda node: node.op.name in ["h", "z"],
split_blocks=False,
min_block_size=1,
collect_from_back=True,
)
self.assertEqual(len(blocks), 2)
self.assertEqual(len(blocks[0]), 1)
self.assertEqual(len(blocks[1]), 7)
def test_split_layers_dagcircuit(self):
"""Test that splitting blocks of nodes into layers works correctly."""
# original circuit is linear
circuit = QuantumCircuit(5)
circuit.cx(0, 2)
circuit.cx(1, 4)
circuit.cx(2, 0)
circuit.cx(0, 3)
circuit.swap(3, 2)
circuit.swap(4, 1)
block_collector = BlockCollector(circuit_to_dag(circuit))
# If we split the gates into depth-1 layers, we expect four linear blocks:
# CX(0, 2), CX(1, 4)
# CX(2, 0), CX(4, 1)
# CX(0, 3)
# CX(3, 2)
blocks = block_collector.collect_all_matching_blocks(
lambda node: node.op.name in ["cx", "swap"],
split_blocks=False,
min_block_size=1,
split_layers=True,
)
self.assertEqual(len(blocks), 4)
self.assertEqual(len(blocks[0]), 2)
self.assertEqual(len(blocks[1]), 2)
self.assertEqual(len(blocks[2]), 1)
self.assertEqual(len(blocks[3]), 1)
def test_split_layers_dagdependency(self):
"""Test that splitting blocks of nodes into layers works correctly."""
# original circuit is linear
circuit = QuantumCircuit(5)
circuit.cx(0, 2)
circuit.cx(1, 4)
circuit.cx(2, 0)
circuit.cx(0, 3)
circuit.swap(3, 2)
circuit.swap(4, 1)
block_collector = BlockCollector(circuit_to_dagdependency(circuit))
# If we split the gates into depth-1 layers, we expect four linear blocks:
# CX(0, 2), CX(1, 4)
# CX(2, 0), CX(4, 1)
# CX(0, 3)
# CX(3, 2)
blocks = block_collector.collect_all_matching_blocks(
lambda node: node.op.name in ["cx", "swap"],
split_blocks=False,
min_block_size=1,
split_layers=True,
)
self.assertEqual(len(blocks), 4)
self.assertEqual(len(blocks[0]), 2)
self.assertEqual(len(blocks[1]), 2)
self.assertEqual(len(blocks[2]), 1)
self.assertEqual(len(blocks[3]), 1)
if __name__ == "__main__":
unittest.main()
|
https://github.com/MuhammadMiqdadKhan/Solution-of-IBM-s-Global-Quantum-Challenge-2020
|
MuhammadMiqdadKhan
|
#initialization
%matplotlib inline
# Importing standard Qiskit libraries and configuring account
from qiskit import IBMQ
from qiskit.compiler import transpile, assemble
from qiskit.providers.ibmq import least_busy
from qiskit.tools.jupyter import *
from qiskit.tools.monitor import job_monitor
from qiskit.visualization import *
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
provider = IBMQ.load_account() # load your IBM Quantum Experience account
# If you are a member of the IBM Q Network, fill your hub, group, and project information to
# get access to your premium devices.
# provider = IBMQ.get_provider(hub='', group='', project='')
from may4_challenge.ex2 import get_counts, show_final_answer
num_qubits = 5
meas_calibs, state_labels = complete_meas_cal(range(num_qubits), circlabel='mcal')
# find the least busy device that has at least 5 qubits
backend = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= num_qubits and
not x.configuration().simulator and x.status().operational==True))
backend
# run experiments on a real device
shots = 8192
experiments = transpile(meas_calibs, backend=backend, optimization_level=3)
job = backend.run(assemble(experiments, shots=shots))
print(job.job_id())
%qiskit_job_watcher
# get measurement filter
cal_results = job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
meas_filter = meas_fitter.filter
#print(meas_fitter.cal_matrix)
meas_fitter.plot_calibration()
# get noisy counts
noisy_counts = get_counts(backend)
plot_histogram(noisy_counts[0])
# apply measurement error mitigation and plot the mitigated counts
mitigated_counts_0 = meas_filter.apply(noisy_counts[0])
plot_histogram([mitigated_counts_0, noisy_counts[0]])
# uncomment whatever answer you think is correct
#answer1 = 'a'
#answer1 = 'b'
answer1 = 'c'
#answer1 = 'd'
# plot noisy counts
plot_histogram(noisy_counts[1])
# apply measurement error mitigation
# insert your code here to do measurement error mitigation on noisy_counts[1]
plot_histogram([mitigated_counts_1, noisy_counts[1]])
# uncomment whatever answer you think is correct
#answer2 = 'a'
#answer2 = 'b'
#answer2 = 'c'
answer2 = 'd'
# plot noisy counts
plot_histogram(noisy_counts[2])
# apply measurement error mitigation
# insert your code here to do measurement error mitigation on noisy_counts[2]
plot_histogram([mitigated_counts_2, noisy_counts[2]])
# uncomment whatever answer you think is correct
#answer3 = 'a'
answer3 = 'b'
#answer3 = 'c'
#answer3 = 'd'
# plot noisy counts
plot_histogram(noisy_counts[3])
# apply measurement error mitigation
# insert your code here to do measurement error mitigation on noisy_counts[3]
plot_histogram([mitigated_counts_3, noisy_counts[3]])
# uncomment whatever answer you think is correct
#answer4 = 'a'
answer4 = 'b'
#answer4 = 'c'
#answer4 = 'd'
# answer string
show_final_answer(answer1, answer2, answer3, answer4)
|
https://github.com/quantumyatra/quantum_computing
|
quantumyatra
|
from jupyter_widget_engine import jupyter_widget_engine
def start(engine):
# set text under screen
engine.screen['text'].description = 'Press any button to begin...'
# set some parameters
engine.started = False
engine.pos = (8,8)
engine.f = 0
def next_frame (engine):
if not engine.started:
# record that the game has started
engine.started = True
# change text under screen
engine.screen['text'].description = 'The game is afoot!'
# set initial player position
(x,y) = engine.pos
engine.screen[x,y].button_style = 'info'
else:
# display frame number in top left corner
engine.f += 1
engine.screen[0,0].description = str(engine.f)
# get current position
(x,y) = engine.pos
# removed player from current position
engine.screen[x,y].button_style = ''
# update based on controller input
if engine.controller['up'].value:
y -= 1
if engine.controller['down'].value:
y += 1
if engine.controller['left'].value:
x -= 1
if engine.controller['right'].value:
x += 1
# put player at new position
engine.screen[x,y].button_style = 'info'
# store new position
engine.pos = (x,y)
engine = jupyter_widget_engine(start,next_frame,L=16)
|
https://github.com/shesha-raghunathan/DATE2019-qiskit-tutorial
|
shesha-raghunathan
|
# import common packages
import itertools
import logging
import numpy as np
from qiskit import Aer
from qiskit_aqua import Operator, set_aqua_logging, QuantumInstance
from qiskit_aqua.algorithms.adaptive import VQE
from qiskit_aqua.algorithms.classical import ExactEigensolver
from qiskit_aqua.components.optimizers import COBYLA
from qiskit_chemistry.drivers import PySCFDriver, UnitsType
from qiskit_chemistry.core import Hamiltonian, TransformationType, QubitMappingType
from qiskit_chemistry.aqua_extensions.components.variational_forms import UCCSD
from qiskit_chemistry.aqua_extensions.components.initial_states import HartreeFock
# set_aqua_logging(logging.INFO)
# using driver to get fermionic Hamiltonian
driver = PySCFDriver(atom='Li .0 .0 .0; H .0 .0 1.6', unit=UnitsType.ANGSTROM,
charge=0, spin=0, basis='sto3g')
molecule = driver.run()
core = Hamiltonian(transformation=TransformationType.FULL, qubit_mapping=QubitMappingType.PARITY,
two_qubit_reduction=True, freeze_core=True)
algo_input = core.run(molecule)
qubit_op = algo_input.qubit_op
print("Originally requires {} qubits".format(qubit_op.num_qubits))
print(qubit_op)
[symmetries, sq_paulis, cliffords, sq_list] = qubit_op.find_Z2_symmetries()
print('Z2 symmetries found:')
for symm in symmetries:
print(symm.to_label())
print('single qubit operators found:')
for sq in sq_paulis:
print(sq.to_label())
print('cliffords found:')
for clifford in cliffords:
print(clifford.print_operators())
print('single-qubit list: {}'.format(sq_list))
tapered_ops = []
for coeff in itertools.product([1, -1], repeat=len(sq_list)):
tapered_op = Operator.qubit_tapering(qubit_op, cliffords, sq_list, list(coeff))
tapered_ops.append((list(coeff), tapered_op))
print("Number of qubits of tapered qubit operator: {}".format(tapered_op.num_qubits))
ee = ExactEigensolver(qubit_op, k=1)
result = core.process_algorithm_result(ee.run())
for line in result[0]:
print(line)
smallest_eig_value = 99999999999999
smallest_idx = -1
for idx in range(len(tapered_ops)):
ee = ExactEigensolver(tapered_ops[idx][1], k=1)
curr_value = ee.run()['energy']
if curr_value < smallest_eig_value:
smallest_eig_value = curr_value
smallest_idx = idx
print("Lowest eigenvalue of the {}-th tapered operator (computed part) is {:.12f}".format(idx, curr_value))
the_tapered_op = tapered_ops[smallest_idx][1]
the_coeff = tapered_ops[smallest_idx][0]
print("The {}-th tapered operator matches original ground state energy, with corresponding symmetry sector of {}".format(smallest_idx, the_coeff))
# setup initial state
init_state = HartreeFock(num_qubits=the_tapered_op.num_qubits, num_orbitals=core._molecule_info['num_orbitals'],
qubit_mapping=core._qubit_mapping, two_qubit_reduction=core._two_qubit_reduction,
num_particles=core._molecule_info['num_particles'], sq_list=sq_list)
# setup variationl form
var_form = UCCSD(num_qubits=the_tapered_op.num_qubits, depth=1,
num_orbitals=core._molecule_info['num_orbitals'],
num_particles=core._molecule_info['num_particles'],
active_occupied=None, active_unoccupied=None, initial_state=init_state,
qubit_mapping=core._qubit_mapping, two_qubit_reduction=core._two_qubit_reduction,
num_time_slices=1,
cliffords=cliffords, sq_list=sq_list, tapering_values=the_coeff, symmetries=symmetries)
# setup optimizer
optimizer = COBYLA(maxiter=1000)
# set vqe
algo = VQE(the_tapered_op, var_form, optimizer, 'matrix')
# setup backend
backend = Aer.get_backend('statevector_simulator')
quantum_instance = QuantumInstance(backend=backend)
algo_result = algo.run(quantum_instance)
result = core.process_algorithm_result(algo_result)
for line in result[0]:
print(line)
print("The parameters for UCCSD are:\n{}".format(algo_result['opt_params']))
|
https://github.com/ctuning/ck-qiskit
|
ctuning
|
import numpy as np
import IPython
import ipywidgets as widgets
import colorsys
import matplotlib.pyplot as plt
from qiskit import QuantumCircuit,QuantumRegister,ClassicalRegister
from qiskit import execute, Aer, BasicAer
from qiskit.visualization import plot_bloch_multivector
from qiskit.tools.jupyter import *
from qiskit.visualization import *
import os
import glob
import moviepy.editor as mpy
import seaborn as sns
sns.set()
'''========State Vector======='''
def getStateVector(qc):
'''get state vector in row matrix form'''
backend = BasicAer.get_backend('statevector_simulator')
job = execute(qc,backend).result()
vec = job.get_statevector(qc)
return vec
def vec_in_braket(vec: np.ndarray) -> str:
'''get bra-ket notation of vector'''
nqubits = int(np.log2(len(vec)))
state = ''
for i in range(len(vec)):
rounded = round(vec[i], 3)
if rounded != 0:
basis = format(i, 'b').zfill(nqubits)
state += np.str(rounded).replace('-0j', '+0j')
state += '|' + basis + '\\rangle + '
state = state.replace("j", "i")
return state[0:-2].strip()
def vec_in_text_braket(vec):
return '$$\\text{{State:\n $|\\Psi\\rangle = $}}{}$$'\
.format(vec_in_braket(vec))
def writeStateVector(vec):
return widgets.HTMLMath(vec_in_text_braket(vec))
'''==========Bloch Sphere ========='''
def getBlochSphere(qc):
'''plot multi qubit bloch sphere'''
vec = getStateVector(qc)
return plot_bloch_multivector(vec)
def getBlochSequence(path,figs):
'''plot block sphere sequence and save it
to a folder for gif movie creation'''
try:
os.mkdir(path)
except:
print('Directory already exist')
for i,fig in enumerate(figs):
fig.savefig(path+"/rot_"+str(i)+".png")
return
def getBlochGif(figs,path,fname,fps,remove = True):
'''create gif movie from provided images'''
file_list = glob.glob(path + "/*.png")
list.sort(file_list, key=lambda x: int(x.split('_')[1].split('.png')[0]))
clip = mpy.ImageSequenceClip(file_list, fps=fps)
clip.write_gif('{}.gif'.format(fname), fps=fps)
'''remove all image files after gif creation'''
if remove:
for file in file_list:
os.remove(file)
return
'''=========Matrix================='''
def getMatrix(qc):
'''get numpy matrix representing a circuit'''
backend = BasicAer.get_backend('unitary_simulator')
job = execute(qc, backend)
ndArray = job.result().get_unitary(qc, decimals=3)
Matrix = np.matrix(ndArray)
return Matrix
def plotMatrix(M):
'''visualize a matrix using seaborn heatmap'''
MD = [["0" for i in range(M.shape[0])] for j in range(M.shape[1])]
for i in range(M.shape[0]):
for j in range(M.shape[1]):
r = M[i,j].real
im = M[i,j].imag
MD[i][j] = str(r)[0:4]+ " , " +str(im)[0:4]
plt.figure(figsize = [2*M.shape[1],M.shape[0]])
sns.heatmap(np.abs(M),\
annot = np.array(MD),\
fmt = '',linewidths=.5,\
cmap='Blues')
return
'''=========Measurement========'''
def getCount(qc):
backend= Aer.get_backend('qasm_simulator')
result = execute(qc,backend).result()
counts = result.get_counts(qc)
return counts
def plotCount(counts,figsize):
plot_histogram(counts)
'''========Phase============'''
def getPhaseCircle(vec):
'''get phase color, angle and radious of phase circir'''
Phase = []
for i in range(len(vec)):
angles = (np.angle(vec[i]) + (np.pi * 4)) % (np.pi * 2)
rgb = colorsys.hls_to_rgb(angles / (np.pi * 2), 0.5, 0.5)
mag = np.abs(vec[i])
Phase.append({"rgb":rgb,"mag": mag,"ang":angles})
return Phase
def getPhaseDict(QCs):
'''get a dictionary of state vector phase circles for
each quantum circuit and populate phaseDict list'''
phaseDict = []
for qc in QCs:
vec = getStateVector(qc)
Phase = getPhaseCircle(vec)
phaseDict.append(Phase)
return phaseDict
def plotiPhaseCircle(phaseDict,depth,path,show=False,save=False):
'''plot any quantum circuit phase circle diagram
from provided phase Dictionary'''
r = 0.30
dx = 1.0
nqubit = len(phaseDict[0])
fig = plt.figure(figsize = [depth,nqubit])
for i in range(depth):
x0 = i
for j in range(nqubit):
y0 = j+1
try:
mag = phaseDict[i][j]['mag']
ang = phaseDict[i][j]['ang']
rgb = phaseDict[i][j]['rgb']
ax=plt.gca()
circle1= plt.Circle((dx+x0,y0), radius = r, color = 'white')
ax.add_patch(circle1)
circle2= plt.Circle((dx+x0,y0), radius= r*mag, color = rgb)
ax.add_patch(circle2)
line = plt.plot((dx+x0,dx+x0+(r*mag*np.cos(ang))),\
(y0,y0+(r*mag*np.sin(ang))),color = "black")
except:
ax=plt.gca()
circle1= plt.Circle((dx+x0,y0), radius = r, color = 'white')
ax.add_patch(circle1)
plt.ylim(nqubit+1,0)
plt.yticks([y+1 for y in range(nqubit)])
plt.xticks([x for x in range(depth+2)])
plt.xlabel("Circuit Depth")
plt.ylabel("Basis States")
if show:
plt.show()
plt.savefig(path+".png")
plt.close(fig)
if save:
plt.savefig(path +".png")
plt.close(fig)
return
def plotiPhaseCircle_rotated(phaseDict,depth,path,show=False,save=False):
'''plot any quantum circuit phase circle diagram
from provided phase Dictionary'''
r = 0.30
dy = 1.0
nqubit = len(phaseDict[0])
fig = plt.figure(figsize = [nqubit,depth])
for i in range(depth):
y0 = i
for j in range(nqubit):
x0 = j+1
try:
mag = phaseDict[i][j]['mag']
ang = phaseDict[i][j]['ang']
rgb = phaseDict[i][j]['rgb']
ax=plt.gca()
circle1= plt.Circle((x0,dy+y0), radius = r, color = 'white')
ax.add_patch(circle1)
circle2= plt.Circle((x0,dy+y0), radius= r*mag, color = rgb)
ax.add_patch(circle2)
line = plt.plot((x0,x0+(r*mag*np.cos(ang))),\
(dy+y0,dy+y0+(r*mag*np.sin(ang))),color = "black")
except:
ax=plt.gca()
circle1= plt.Circle((x0,dy+y0), radius = r, color = 'white')
ax.add_patch(circle1)
plt.ylim(0,depth+1)
plt.yticks([x+1 for x in range(depth)])
plt.xticks([y for y in range(nqubit+2)])
plt.ylabel("Circuit Depth")
plt.xlabel("Basis States")
if show:
plt.show()
plt.savefig(path+".png")
plt.close(fig)
if save:
plt.savefig(path +".png")
plt.close(fig)
return
def getPhaseSequence(QCs,path,rotated=False):
'''plot a sequence of phase circle diagram for a given
sequence of quantum circuits'''
try:
os.mkdir(path)
except:
print("Directory already exist")
depth = len(QCs)
phaseDict =[]
for i,qc in enumerate(QCs):
vec = getStateVector(qc)
Phase = getPhaseCircle(vec)
phaseDict.append(Phase)
ipath = path + "phase_" + str(i)
if rotated:
plotiPhaseCircle_rotated(phaseDict,depth,ipath,save=True,show=False)
else:
plotiPhaseCircle(phaseDict,depth,ipath,save=True,show=False)
return
def getPhaseGif(path,fname,fps,remove = True):
'''create a gif movie file from phase circle figures'''
file_list = glob.glob(path+ "/*.png")
list.sort(file_list, key=lambda x: int(x.split('_')[1].split('.png')[0]))
clip = mpy.ImageSequenceClip(file_list, fps=fps)
clip.write_gif('{}.gif'.format(fname), fps=fps)
'''remove all image files after gif creation'''
if remove:
for file in file_list:
os.remove(file)
return
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import pulse
d0 = pulse.DriveChannel(0)
d1 = pulse.DriveChannel(1)
with pulse.build() as pulse_prog:
with pulse.align_right():
# this pulse will start at t=0
pulse.play(pulse.Constant(100, 1.0), d0)
# this pulse will start at t=80
pulse.play(pulse.Constant(20, 1.0), d1)
pulse_prog.draw()
|
https://github.com/JanLahmann/RasQberry
|
JanLahmann
|
import numpy as np
import networkx as nx
import qiskit
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer, assemble
from qiskit.quantum_info import Statevector
from qiskit.aqua.algorithms import NumPyEigensolver
from qiskit.quantum_info import Pauli
from qiskit.aqua.operators import op_converter
from qiskit.aqua.operators import WeightedPauliOperator
from qiskit.visualization import plot_histogram
from qiskit.providers.aer.extensions.snapshot_statevector import *
from thirdParty.classical import rand_graph, classical, bitstring_to_path, calc_cost
from utils import mapeo_grafo
from collections import defaultdict
from operator import itemgetter
from scipy.optimize import minimize
import matplotlib.pyplot as plt
LAMBDA = 10
SEED = 10
SHOTS = 10000
# returns the bit index for an alpha and j
def bit(i_city, l_time, num_cities):
return i_city * num_cities + l_time
# e^(cZZ)
def append_zz_term(qc, q_i, q_j, gamma, constant_term):
qc.cx(q_i, q_j)
qc.rz(2*gamma*constant_term,q_j)
qc.cx(q_i, q_j)
# e^(cZ)
def append_z_term(qc, q_i, gamma, constant_term):
qc.rz(2*gamma*constant_term, q_i)
# e^(cX)
def append_x_term(qc,qi,beta):
qc.rx(-2*beta, qi)
def get_not_edge_in(G):
N = G.number_of_nodes()
not_edge = []
for i in range(N):
for j in range(N):
if i != j:
buffer_tupla = (i,j)
in_edges = False
for edge_i, edge_j in G.edges():
if ( buffer_tupla == (edge_i, edge_j) or buffer_tupla == (edge_j, edge_i)):
in_edges = True
if in_edges == False:
not_edge.append((i, j))
return not_edge
def get_classical_simplified_z_term(G, _lambda):
# recorrer la formula Z con datos grafo se va guardando en diccionario que acumula si coinciden los terminos
N = G.number_of_nodes()
E = G.edges()
# z term #
z_classic_term = [0] * N**2
# first term
for l in range(N):
for i in range(N):
z_il_index = bit(i, l, N)
z_classic_term[z_il_index] += -1 * _lambda
# second term
for l in range(N):
for j in range(N):
for i in range(N):
if i < j:
# z_il
z_il_index = bit(i, l, N)
z_classic_term[z_il_index] += _lambda / 2
# z_jl
z_jl_index = bit(j, l, N)
z_classic_term[z_jl_index] += _lambda / 2
# third term
for i in range(N):
for l in range(N):
for j in range(N):
if l < j:
# z_il
z_il_index = bit(i, l, N)
z_classic_term[z_il_index] += _lambda / 2
# z_ij
z_ij_index = bit(i, j, N)
z_classic_term[z_ij_index] += _lambda / 2
# fourth term
not_edge = get_not_edge_in(G) # include order tuples ej = (1,0), (0,1)
for edge in not_edge:
for l in range(N):
i = edge[0]
j = edge[1]
# z_il
z_il_index = bit(i, l, N)
z_classic_term[z_il_index] += _lambda / 4
# z_j(l+1)
l_plus = (l+1) % N
z_jlplus_index = bit(j, l_plus, N)
z_classic_term[z_jlplus_index] += _lambda / 4
# fifthy term
weights = nx.get_edge_attributes(G,'weight')
for edge_i, edge_j in G.edges():
weight_ij = weights.get((edge_i,edge_j))
weight_ji = weight_ij
for l in range(N):
# z_il
z_il_index = bit(edge_i, l, N)
z_classic_term[z_il_index] += weight_ij / 4
# z_jlplus
l_plus = (l+1) % N
z_jlplus_index = bit(edge_j, l_plus, N)
z_classic_term[z_jlplus_index] += weight_ij / 4
# add order term because G.edges() do not include order tuples #
# z_i'l
z_il_index = bit(edge_j, l, N)
z_classic_term[z_il_index] += weight_ji / 4
# z_j'lplus
l_plus = (l+1) % N
z_jlplus_index = bit(edge_i, l_plus, N)
z_classic_term[z_jlplus_index] += weight_ji / 4
return z_classic_term
def tsp_obj_2(x, G,_lambda):
# obtenemos el valor evaluado en f(x_1, x_2,... x_n)
not_edge = get_not_edge_in(G)
N = G.number_of_nodes()
tsp_cost=0
#Distancia
weights = nx.get_edge_attributes(G,'weight')
for edge_i, edge_j in G.edges():
weight_ij = weights.get((edge_i,edge_j))
weight_ji = weight_ij
for l in range(N):
# x_il
x_il_index = bit(edge_i, l, N)
# x_jlplus
l_plus = (l+1) % N
x_jlplus_index = bit(edge_j, l_plus, N)
tsp_cost+= int(x[x_il_index]) * int(x[x_jlplus_index]) * weight_ij
# add order term because G.edges() do not include order tuples #
# x_i'l
x_il_index = bit(edge_j, l, N)
# x_j'lplus
x_jlplus_index = bit(edge_i, l_plus, N)
tsp_cost += int(x[x_il_index]) * int(x[x_jlplus_index]) * weight_ji
#Constraint 1
for l in range(N):
penal1 = 1
for i in range(N):
x_il_index = bit(i, l, N)
penal1 -= int(x[x_il_index])
tsp_cost += _lambda * penal1**2
#Contstraint 2
for i in range(N):
penal2 = 1
for l in range(N):
x_il_index = bit(i, l, N)
penal2 -= int(x[x_il_index])
tsp_cost += _lambda*penal2**2
#Constraint 3
for edge in not_edge:
for l in range(N):
i = edge[0]
j = edge[1]
# x_il
x_il_index = bit(i, l, N)
# x_j(l+1)
l_plus = (l+1) % N
x_jlplus_index = bit(j, l_plus, N)
tsp_cost += int(x[x_il_index]) * int(x[x_jlplus_index]) * _lambda
return tsp_cost
def get_classical_simplified_zz_term(G, _lambda):
# recorrer la formula Z con datos grafo se va guardando en diccionario que acumula si coinciden los terminos
N = G.number_of_nodes()
E = G.edges()
# zz term #
zz_classic_term = [[0] * N**2 for i in range(N**2) ]
# first term
for l in range(N):
for j in range(N):
for i in range(N):
if i < j:
# z_il
z_il_index = bit(i, l, N)
# z_jl
z_jl_index = bit(j, l, N)
zz_classic_term[z_il_index][z_jl_index] += _lambda / 2
# second term
for i in range(N):
for l in range(N):
for j in range(N):
if l < j:
# z_il
z_il_index = bit(i, l, N)
# z_ij
z_ij_index = bit(i, j, N)
zz_classic_term[z_il_index][z_ij_index] += _lambda / 2
# third term
not_edge = get_not_edge_in(G)
for edge in not_edge:
for l in range(N):
i = edge[0]
j = edge[1]
# z_il
z_il_index = bit(i, l, N)
# z_j(l+1)
l_plus = (l+1) % N
z_jlplus_index = bit(j, l_plus, N)
zz_classic_term[z_il_index][z_jlplus_index] += _lambda / 4
# fourth term
weights = nx.get_edge_attributes(G,'weight')
for edge_i, edge_j in G.edges():
weight_ij = weights.get((edge_i,edge_j))
weight_ji = weight_ij
for l in range(N):
# z_il
z_il_index = bit(edge_i, l, N)
# z_jlplus
l_plus = (l+1) % N
z_jlplus_index = bit(edge_j, l_plus, N)
zz_classic_term[z_il_index][z_jlplus_index] += weight_ij / 4
# add order term because G.edges() do not include order tuples #
# z_i'l
z_il_index = bit(edge_j, l, N)
# z_j'lplus
l_plus = (l+1) % N
z_jlplus_index = bit(edge_i, l_plus, N)
zz_classic_term[z_il_index][z_jlplus_index] += weight_ji / 4
return zz_classic_term
def get_classical_simplified_hamiltonian(G, _lambda):
# z term #
z_classic_term = get_classical_simplified_z_term(G, _lambda)
# zz term #
zz_classic_term = get_classical_simplified_zz_term(G, _lambda)
return z_classic_term, zz_classic_term
def get_cost_circuit(G, gamma, _lambda):
N = G.number_of_nodes()
N_square = N**2
qc = QuantumCircuit(N_square,N_square)
z_classic_term, zz_classic_term = get_classical_simplified_hamiltonian(G, _lambda)
# z term
for i in range(N_square):
if z_classic_term[i] != 0:
append_z_term(qc, i, gamma, z_classic_term[i])
# zz term
for i in range(N_square):
for j in range(N_square):
if zz_classic_term[i][j] != 0:
append_zz_term(qc, i, j, gamma, zz_classic_term[i][j])
return qc
def get_mixer_operator(G,beta):
N = G.number_of_nodes()
qc = QuantumCircuit(N**2,N**2)
for n in range(N**2):
append_x_term(qc, n, beta)
return qc
def get_QAOA_circuit(G, beta, gamma, _lambda):
assert(len(beta)==len(gamma))
N = G.number_of_nodes()
qc = QuantumCircuit(N**2,N**2)
# init min mix state
qc.h(range(N**2))
p = len(beta)
for i in range(p):
qc = qc.compose(get_cost_circuit(G, gamma[i], _lambda))
qc = qc.compose(get_mixer_operator(G, beta[i]))
qc.barrier(range(N**2))
qc.snapshot_statevector("final_state")
qc.measure(range(N**2),range(N**2))
return qc
def invert_counts(counts):
return {k[::-1] :v for k,v in counts.items()}
# Sample expectation value
def compute_tsp_energy_2(counts, G):
energy = 0
get_counts = 0
total_counts = 0
for meas, meas_count in counts.items():
obj_for_meas = tsp_obj_2(meas, G, LAMBDA)
energy += obj_for_meas*meas_count
total_counts += meas_count
mean = energy/total_counts
return mean
def get_black_box_objective_2(G,p):
backend = Aer.get_backend('qasm_simulator')
sim = Aer.get_backend('aer_simulator')
# function f costo
def f(theta):
beta = theta[:p]
gamma = theta[p:]
# Anzats
qc = get_QAOA_circuit(G, beta, gamma, LAMBDA)
result = execute(qc, backend, seed_simulator=SEED, shots= SHOTS).result()
final_state_vector = result.data()["snapshots"]["statevector"]["final_state"][0]
state_vector = Statevector(final_state_vector)
probabilities = state_vector.probabilities()
probabilities_states = invert_counts(state_vector.probabilities_dict())
expected_value = 0
for state,probability in probabilities_states.items():
cost = tsp_obj_2(state, G, LAMBDA)
expected_value += cost*probability
counts = result.get_counts()
mean = compute_tsp_energy_2(invert_counts(counts),G)
return mean
return f
def crear_grafo(cantidad_ciudades):
pesos, conexiones = None, None
mejor_camino = None
while not mejor_camino:
pesos, conexiones = rand_graph(cantidad_ciudades)
mejor_costo, mejor_camino = classical(pesos, conexiones, loop=False)
G = mapeo_grafo(conexiones, pesos)
return G, mejor_costo, mejor_camino
def run_QAOA(p,ciudades, grafo):
if grafo == None:
G, mejor_costo, mejor_camino = crear_grafo(ciudades)
print("Mejor Costo")
print(mejor_costo)
print("Mejor Camino")
print(mejor_camino)
print("Bordes del grafo")
print(G.edges())
print("Nodos")
print(G.nodes())
print("Pesos")
labels = nx.get_edge_attributes(G,'weight')
print(labels)
else:
G = grafo
intial_random = []
# beta, mixer Hammiltonian
for i in range(p):
intial_random.append(np.random.uniform(0,np.pi))
# gamma, cost Hammiltonian
for i in range(p):
intial_random.append(np.random.uniform(0,2*np.pi))
init_point = np.array(intial_random)
obj = get_black_box_objective_2(G,p)
res_sample = minimize(obj, init_point,method="COBYLA",options={"maxiter":2500,"disp":True})
print(res_sample)
if __name__ == '__main__':
# Run QAOA parametros: profundidad p, numero d ciudades,
run_QAOA(5, 3, None)
|
https://github.com/andre-juan/dicke_states_preparation
|
andre-juan
|
import numpy as np
import matplotlib.pyplot as plt
import scipy
# main classes and functions
from qiskit import QuantumRegister, QuantumCircuit, Aer, execute
# gates
from qiskit.circuit.library import RYGate
# visualization stuff
from qiskit.visualization import plot_histogram
##################################################################
##################################################################
# auxiliary functions
##################################################################
##################################################################
def show_figure(fig):
'''
auxiliar function to display plot
even if it's not the last command of the cell
from: https://github.com/Qiskit/qiskit-terra/issues/1682
'''
new_fig = plt.figure()
new_mngr = new_fig.canvas.manager
new_mngr.canvas.figure = fig
fig.set_canvas(new_mngr.canvas)
plt.show(fig)
# ===============================================
def test_circuit_qasm(qc, figsize=(12, 4)):
'''
auxiliar function to simulate the execution of a quantum circuit
using the qasm simulator.
the quantum circuit to be simulates (qc) must
have no measurements or classical registers.
'''
# meausring
qc.measure_all()
#################################
backend = Aer.get_backend("qasm_simulator")
job = execute(qc, backend, shots=1e5, seed_simulator=42)
results = job.result()
counts = results.get_counts()
print(f"\nNumber of elements in result superposition: {len(counts)}\n")
return plot_histogram(counts, title="Results", figsize=figsize)
# ===============================================
def test_circuit_sv(qc, print_stuff=False, figsize=(12, 4)):
'''
auxiliar function to simulate the execution of a quantum circuit
using the state vector simulator.
optionally, prints the statevector components as well as the probabilities.
'''
backend = Aer.get_backend("statevector_simulator")
job = execute(qc, backend, seed_simulator=42)
results = job.result()
counts = results.get_counts()
if print_stuff:
sv = results.data(0)['statevector']
probs = sv**2
print(f"Statevector:\t{sv}\n")
print(f"Probabilities:\t{probs}")
print(f"\nNumber of elements in result superposition: {len(counts)}\n")
return plot_histogram(counts, title="Results", figsize=figsize)
##################################################################
##################################################################
# quantum circuit
##################################################################
##################################################################
def gate_i(n, draw=False):
'''
returns the 2-qubit gate (i), introduced in Sec. 2.2
this gate is simply a cR_y between 2 CNOTs, with
rotation angle given by 2*np.arccos(np.sqrt(1/n))
args:
- `n`: int, defining the rotation angle;
- `draw` : bool, determines if the circuit is drawn.
'''
qc_i = QuantumCircuit(2)
qc_i.cnot(0, 1)
theta = 2*np.arccos(np.sqrt(1/n))
cry = RYGate(theta).control(ctrl_state="1")
qc_i.append(cry, [1, 0])
qc_i.cnot(0, 1)
####################################
gate_i = qc_i.to_gate()
gate_i.name = "$(i)$"
####################################
if draw:
show_figure(qc_i.draw("mpl"))
return gate_i
# ===============================================
def gate_ii_l(l, n, draw=False):
'''
returns the 2-qubit gate (ii)_l, introduced in Sec. 2.2
this gate is simply a ccR_y between 2 CNOTs, with
rotation angle given by 2*np.arccos(np.sqrt(l/n))
args:
- `l`: int, defining the rotation angle;
- `n`: int, defining the rotation angle;
- `draw` : bool, determines if the circuit is drawn.
'''
qc_ii = QuantumCircuit(3)
qc_ii.cnot(0, 2)
theta = 2*np.arccos(np.sqrt(l/n))
ccry = RYGate(theta).control(num_ctrl_qubits = 2, ctrl_state="11")
qc_ii.append(ccry, [2, 1, 0])
qc_ii.cnot(0, 2)
####################################
gate_ii = qc_ii.to_gate()
gate_ii.name = f"$(ii)_{l}$"
####################################
if draw:
show_figure(qc_ii.draw("mpl"))
return gate_ii
# ===============================================
def gate_scs_nk(n, k, draw=False):
'''
returns the SCS_{n,k} gate, which is introduced in Definition 3 and
if built of one 2-qubits (i) gate and k+1 3-qubits gates (ii)_l
args:
- `n`: int, used as argument of `gate_i()` and `gate_ii_l()`;
- `k`: int, defines the size of the gate, as well as its topology;
- `draw` : bool, determines if the circuit is drawn.
'''
qc_scs = QuantumCircuit(k+1)
qc_scs.append(gate_i(n), [k-1, k])
for l in range(2, k+1):
qc_scs.append(gate_ii_l(l, n), [k-l, k-l+1, k])
####################################
gate_scs = qc_scs.to_gate()
gate_scs.name = "SCS$_{" + f"{n},{k}" + "}$"
####################################
if draw:
show_figure(qc_scs.decompose().draw("mpl"))
return gate_scs
# ===============================================
def first_block(n, k, l, draw=False):
'''
returns the first block of unitaries products in Lemma 2.
args:
- `n`: int, used to calculate indices and as argument of `gate_scs_nk()`;
- `k`: int, used to calculate indices and as argument of `gate_scs_nk()`;
- `l`: int, used to calculate indices and as argument of `gate_scs_nk()`;
- `draw` : bool, determines if the circuit is drawn.
'''
qr = QuantumRegister(n)
qc_first_block = QuantumCircuit(qr)
# indices of qubits to which we append identities.
n_first = l-k-1
n_last = n-l
# this will be a list with the qubits indices to which
# we append the SCS_{n,k} gate.
idxs_scs = list(range(n))
# only if ther is an identity to append to first registers
if n_first != 0:
# correcting the qubits indices to which we apply SCS_{n, k}
idxs_scs = idxs_scs[n_first:]
# applying identity to first qubits
qc_first_block.i(qr[:n_first])
if n_last !=0:
idxs_scs = idxs_scs[:-n_last]
# appending SCS_{n, k} to appropriate indices
qc_first_block.append(gate_scs_nk(l, k), idxs_scs)
# applying identity to last qubits
qc_first_block.i(qr[-n_last:])
else:
# appending SCS_{n, k} to appropriate indices
qc_first_block.append(gate_scs_nk(l, k), idxs_scs)
# string with the operator, to be used as gate label
str_operator = "$1^{\otimes " + f'{n_first}' + "} \otimes$ SCS$_{" + f"{l},{k}" + "} \otimes 1^{\otimes " + f"{n_last}" + "}$"
####################################
gate_first_block = qc_first_block.to_gate()
gate_first_block.name = str_operator
####################################
if draw:
show_figure(qc_first_block.decompose().draw("mpl"))
return gate_first_block
# ===============================================
def second_block(n, k, l, draw=False):
'''
returns the second block of unitaries products in Lemma 2.
args:
- `n`: int, used to calculate indices and as argument of `gate_scs_nk()`;
- `k`: int, used to calculate indices and as argument of `gate_scs_nk()`;
- `l`: int, used to calculate indices and as argument of `gate_scs_nk()`;
- `draw` : bool, determines if the circuit is drawn.
'''
qr = QuantumRegister(n)
qc_second_block = QuantumCircuit(qr)
# here we only have identities added to last registers, so it's a bit simpler
n_last = n-l
idxs_scs = list(range(n))
if n_last !=0:
idxs_scs = idxs_scs[:-n_last]
# appending SCS_{n, k} to appropriate indices
qc_second_block.append(gate_scs_nk(l, l-1), idxs_scs)
qc_second_block.i(qr[-n_last:])
else:
# appending SCS_{n, k} to appropriate indices
qc_second_block.append(gate_scs_nk(l, l-1), idxs_scs)
str_operator = "SCS$_{" + f"{l},{l-1}" + "} \otimes 1^{\otimes " + f"{n_last}" + "}$"
####################################
gate_second_block = qc_second_block.to_gate()
gate_second_block.name = str_operator
####################################
if draw:
show_figure(qc_second_block.decompose().draw("mpl"))
return gate_second_block
# ===============================================
def dicke_state(n, k, draw=False, barrier=False, only_decomposed=False):
'''
returns a quantum circuit with to prepare a Dicke state with arbitrary n, k
this function essentially calls previous functions, wrapping the products in Lemma 2
within the appropriate for loops for the construction of U_{n, k}, which is
applied to the initial state as prescribed.
args:
- `n`: int, number of qubits for the Dicke state;
- `k`: int, hamming weight of states to be included in the superposition;
- `draw` : bool, determines if the circuit is drawn;
- `barrier` : bool, determines if barriers are added to the circuit;
- `only_decomposed` : bool, determines if only the 3-fold decomposed circuit is drawn.
'''
qr = QuantumRegister(n)
qc = QuantumCircuit(qr)
########################################
# initial state
qc.x(qr[-k:])
if barrier:
qc.barrier()
########################################
# applying U_{n, k}
# I didn't create a function to generate a U_{n, k} gate
# because I wanted to keep the possibility of adding barriers,
# which are quite nice for visualizing the circuit and its elements.
# apply first term in Lemma 2
# notice how this range captures exactly the product bounds.
# also, it's very important to invert the range, for the gates
# to be applied in the correct order!!
for l in range(k+1, n+1)[::-1]:
qc.append(first_block(n, k, l), range(n))
if barrier:
qc.barrier()
# apply second term in Lemma 2
for l in range(2, k+1)[::-1]:
qc.append(second_block(n, k, l), range(n))
if barrier:
qc.barrier()
########################################
# drawing
if draw:
# draws only the 3-fold decomposed circuit.
# this opens up to (i) and (ii)_l into its components.
if only_decomposed:
show_figure(qc.decompose().decompose().decompose().draw("mpl"))
else:
show_figure(qc.draw("mpl"))
print()
show_figure(qc.decompose().draw("mpl"))
print()
show_figure(qc.decompose().decompose().draw("mpl"))
print()
show_figure(qc.decompose().decompose().decompose().draw("mpl"))
return qc
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit
from qiskit.compiler import transpile
from qiskit.transpiler import PassManager
circ = QuantumCircuit(3)
circ.ccx(0, 1, 2)
circ.draw(output='mpl')
from qiskit.transpiler.passes import Unroller
pass_ = Unroller(['u1', 'u2', 'u3', 'cx'])
pm = PassManager(pass_)
new_circ = pm.run(circ)
new_circ.draw(output='mpl')
from qiskit.transpiler import passes
[pass_ for pass_ in dir(passes) if pass_[0].isupper()]
from qiskit.transpiler import CouplingMap, Layout
from qiskit.transpiler.passes import BasicSwap, LookaheadSwap, StochasticSwap
coupling = [[0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 6]]
circuit = QuantumCircuit(7)
circuit.h(3)
circuit.cx(0, 6)
circuit.cx(6, 0)
circuit.cx(0, 1)
circuit.cx(3, 1)
circuit.cx(3, 0)
coupling_map = CouplingMap(couplinglist=coupling)
bs = BasicSwap(coupling_map=coupling_map)
pass_manager = PassManager(bs)
basic_circ = pass_manager.run(circuit)
ls = LookaheadSwap(coupling_map=coupling_map)
pass_manager = PassManager(ls)
lookahead_circ = pass_manager.run(circuit)
ss = StochasticSwap(coupling_map=coupling_map)
pass_manager = PassManager(ss)
stochastic_circ = pass_manager.run(circuit)
circuit.draw(output='mpl')
basic_circ.draw(output='mpl')
lookahead_circ.draw(output='mpl')
stochastic_circ.draw(output='mpl')
import math
from qiskit.providers.fake_provider import FakeTokyo
backend = FakeTokyo() # mimics the tokyo device in terms of coupling map and basis gates
qc = QuantumCircuit(10)
random_state = [
1 / math.sqrt(4) * complex(0, 1),
1 / math.sqrt(8) * complex(1, 0),
0,
0,
0,
0,
0,
0,
1 / math.sqrt(8) * complex(1, 0),
1 / math.sqrt(8) * complex(0, 1),
0,
0,
0,
0,
1 / math.sqrt(4) * complex(1, 0),
1 / math.sqrt(8) * complex(1, 0)]
qc.initialize(random_state, range(4))
qc.draw()
optimized_0 = transpile(qc, backend=backend, seed_transpiler=11, optimization_level=0)
print('gates = ', optimized_0.count_ops())
print('depth = ', optimized_0.depth())
optimized_1 = transpile(qc, backend=backend, seed_transpiler=11, optimization_level=1)
print('gates = ', optimized_1.count_ops())
print('depth = ', optimized_1.depth())
optimized_2 = transpile(qc, backend=backend, seed_transpiler=11, optimization_level=2)
print('gates = ', optimized_2.count_ops())
print('depth = ', optimized_2.depth())
optimized_3 = transpile(qc, backend=backend, seed_transpiler=11, optimization_level=3)
print('gates = ', optimized_3.count_ops())
print('depth = ', optimized_3.depth())
from qiskit import QuantumRegister, ClassicalRegister, QuantumCircuit
from qiskit.dagcircuit import DAGCircuit
q = QuantumRegister(3, 'q')
c = ClassicalRegister(3, 'c')
circ = QuantumCircuit(q, c)
circ.h(q[0])
circ.cx(q[0], q[1])
circ.measure(q[0], c[0])
circ.rz(0.5, q[1]).c_if(c, 2)
circ.draw(output='mpl')
from qiskit.converters import circuit_to_dag
from qiskit.tools.visualization import dag_drawer
dag = circuit_to_dag(circ)
dag_drawer(dag)
dag.op_nodes()
node = dag.op_nodes()[3]
print("node name: ", node.name)
print("node op: ", node.op)
print("node qargs: ", node.qargs)
print("node cargs: ", node.cargs)
print("node condition: ", node.op.condition)
from qiskit.circuit.library import HGate
dag.apply_operation_back(HGate(), qargs=[q[0]])
dag_drawer(dag)
from qiskit.circuit.library import CCXGate
dag.apply_operation_front(CCXGate(), qargs=[q[0], q[1], q[2]], cargs=[])
dag_drawer(dag)
from qiskit.circuit.library import CHGate, U2Gate, CXGate
mini_dag = DAGCircuit()
p = QuantumRegister(2, "p")
mini_dag.add_qreg(p)
mini_dag.apply_operation_back(CHGate(), qargs=[p[1], p[0]])
mini_dag.apply_operation_back(U2Gate(0.1, 0.2), qargs=[p[1]])
# substitute the cx node with the above mini-dag
cx_node = dag.op_nodes(op=CXGate).pop()
dag.substitute_node_with_dag(node=cx_node, input_dag=mini_dag, wires=[p[0], p[1]])
dag_drawer(dag)
from qiskit.converters import dag_to_circuit
circuit = dag_to_circuit(dag)
circuit.draw(output='mpl')
from copy import copy
from qiskit.transpiler.basepasses import TransformationPass
from qiskit.transpiler import Layout
from qiskit.circuit.library import SwapGate
class BasicSwap(TransformationPass):
"""Maps (with minimum effort) a DAGCircuit onto a `coupling_map` adding swap gates."""
def __init__(self,
coupling_map,
initial_layout=None):
"""Maps a DAGCircuit onto a `coupling_map` using swap gates.
Args:
coupling_map (CouplingMap): Directed graph represented a coupling map.
initial_layout (Layout): initial layout of qubits in mapping
"""
super().__init__()
self.coupling_map = coupling_map
self.initial_layout = initial_layout
def run(self, dag):
"""Runs the BasicSwap pass on `dag`.
Args:
dag (DAGCircuit): DAG to map.
Returns:
DAGCircuit: A mapped DAG.
Raises:
TranspilerError: if the coupling map or the layout are not
compatible with the DAG.
"""
new_dag = DAGCircuit()
for qreg in dag.qregs.values():
new_dag.add_qreg(qreg)
for creg in dag.cregs.values():
new_dag.add_creg(creg)
if self.initial_layout is None:
if self.property_set["layout"]:
self.initial_layout = self.property_set["layout"]
else:
self.initial_layout = Layout.generate_trivial_layout(*dag.qregs.values())
if len(dag.qubits) != len(self.initial_layout):
raise TranspilerError('The layout does not match the amount of qubits in the DAG')
if len(self.coupling_map.physical_qubits) != len(self.initial_layout):
raise TranspilerError(
"Mappers require to have the layout to be the same size as the coupling map")
canonical_register = dag.qregs['q']
trivial_layout = Layout.generate_trivial_layout(canonical_register)
current_layout = trivial_layout.copy()
for layer in dag.serial_layers():
subdag = layer['graph']
for gate in subdag.two_qubit_ops():
physical_q0 = current_layout[gate.qargs[0]]
physical_q1 = current_layout[gate.qargs[1]]
if self.coupling_map.distance(physical_q0, physical_q1) != 1:
# Insert a new layer with the SWAP(s).
swap_layer = DAGCircuit()
swap_layer.add_qreg(canonical_register)
path = self.coupling_map.shortest_undirected_path(physical_q0, physical_q1)
for swap in range(len(path) - 2):
connected_wire_1 = path[swap]
connected_wire_2 = path[swap + 1]
qubit_1 = current_layout[connected_wire_1]
qubit_2 = current_layout[connected_wire_2]
# create the swap operation
swap_layer.apply_operation_back(SwapGate(),
qargs=[qubit_1, qubit_2],
cargs=[])
# layer insertion
order = current_layout.reorder_bits(new_dag.qubits)
new_dag.compose(swap_layer, qubits=order)
# update current_layout
for swap in range(len(path) - 2):
current_layout.swap(path[swap], path[swap + 1])
order = current_layout.reorder_bits(new_dag.qubits)
new_dag.compose(subdag, qubits=order)
return new_dag
q = QuantumRegister(7, 'q')
in_circ = QuantumCircuit(q)
in_circ.h(q[0])
in_circ.cx(q[0], q[4])
in_circ.cx(q[2], q[3])
in_circ.cx(q[6], q[1])
in_circ.cx(q[5], q[0])
in_circ.rz(0.1, q[2])
in_circ.cx(q[5], q[0])
from qiskit.transpiler import PassManager
from qiskit.transpiler import CouplingMap
from qiskit import BasicAer
pm = PassManager()
coupling = [[0, 1], [1, 2], [2, 3], [3, 4], [4, 5], [5, 6]]
coupling_map = CouplingMap(couplinglist=coupling)
pm.append([BasicSwap(coupling_map)])
out_circ = pm.run(in_circ)
in_circ.draw(output='mpl')
out_circ.draw(output='mpl')
import logging
logging.basicConfig(level='DEBUG')
from qiskit.providers.fake_provider import FakeTenerife
log_circ = QuantumCircuit(2, 2)
log_circ.h(0)
log_circ.h(1)
log_circ.h(1)
log_circ.x(1)
log_circ.cx(0, 1)
log_circ.measure([0,1], [0,1])
backend = FakeTenerife()
transpile(log_circ, backend);
logging.getLogger('qiskit.transpiler').setLevel('INFO')
transpile(log_circ, backend);
# Change log level back to DEBUG
logging.getLogger('qiskit.transpiler').setLevel('DEBUG')
# Transpile multiple circuits
circuits = [log_circ, log_circ]
transpile(circuits, backend);
formatter = logging.Formatter('%(name)s - %(processName)-10s - %(levelname)s: %(message)s')
handler = logging.getLogger().handlers[0]
handler.setFormatter(formatter)
transpile(circuits, backend);
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
https://github.com/arnavdas88/QuGlassyIsing
|
arnavdas88
|
!pip install qiskit
J = 4.0
B_x = 2.0
B_z = 0.0
import numpy as np
from qiskit.providers.aer import AerSimulator, QasmSimulator
from qiskit.algorithms.optimizers import COBYLA
from qiskit.circuit.library import TwoLocal
from qiskit.aqua.operators import *
from qiskit.aqua import set_qiskit_aqua_logging, QuantumInstance
from qiskit.aqua.algorithms import NumPyMinimumEigensolver, VQE, NumPyEigensolver
from qiskit.circuit import QuantumCircuit, ParameterVector
from qiskit.visualization import plot_histogram
Hamiltonian = J * (Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z^I)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^I^I^I^I^I^Z)+(I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^I^Z^Z)
- B_z * (( Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ Z )
) - B_x * ( ( X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ^ I ) + ( I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ I ^ X ))
ansatz = TwoLocal(num_qubits=36, rotation_blocks=['ry', 'rz'], entanglement_blocks=None, entanglement='full', reps=1, skip_unentangled_qubits=False, skip_final_rotation_layer=True)
print(ansatz)
backend = AerSimulator(method='matrix_product_state')
quantum_instance = QuantumInstance(backend,
shots = 8192,
initial_layout = None,
optimization_level = 3)
optimizer = COBYLA(maxiter=10000, tol=0.000000001)
vqe = VQE(Hamiltonian, ansatz, optimizer, include_custom = False)
print('We are using:', quantum_instance.backend)
vqe_result = vqe.run(quantum_instance)
print(vqe['result'])
plot_histogram(vqe_result['eigenstate'])
import pickle
filename = "2D_Ising_Model_CountsDIS1.pkl"
a = {'vqe_result': vqe_result}
#This saves the data
with open(filename, 'wb') as handle:
pickle.dump(a, handle, protocol=pickle.HIGHEST_PROTOCOL)
# This loads the data
with open(filename, 'rb') as handle:
b = pickle.load(handle)
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
import itertools
from pprint import pprint
import pickle
# plt.rcParams.update({'font.size': 16}) # enlarge matplotlib fonts
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, I, X, Y, Z
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("./")
import circuit_utils, zne_utils, tomography_utils, sgs_algorithm
importlib.reload(circuit_utils)
importlib.reload(zne_utils)
importlib.reload(tomography_utils)
importlib.reload(sgs_algorithm)
from circuit_utils import *
from zne_utils import *
from tomography_utils import *
from sgs_algorithm import *
# Combine subcircuits into a single multiqubit gate representing a single trotter step
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps = 100
print("trotter step: ", num_steps)
scale_factors = [1.0, 2.0, 3.0]
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="lq")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder_init110(qc, targets=[0, 1, 2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / num_steps})
print("created qc")
# Generate state tomography circuits to evaluate fidelity of simulation
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
print("created st_qcs (length:", len(st_qcs), ")")
# remove barriers
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
print("removed barriers from st_qcs")
# optimize circuit
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
print("created t3_st_qcs (length:", len(t3_st_qcs), ")")
# zne wrapping
zne_qcs = zne_wrapper(t3_st_qcs, scale_factors=scale_factors)
print("created zne_qcs (length:", len(zne_qcs), ")")
t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")")
t3_zne_qcs[-3].draw("mpl")
from qiskit.test.mock import FakeJakarta
backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
# IBMQ.load_account()
# provider = IBMQ.get_provider(hub='ibm-q-utokyo', group='internal', project='hirashi-jst')
# provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22')
# print("provider:", provider)
# backend = provider.get_backend("ibmq_jakarta")
shots = 1 << 13
reps = 1 # unused
# Number of trotter steps
print("trotter step: ", num_steps)
# execute: reps = 1
job = execute(t3_zne_qcs, backend, shots=shots) # 毎回チェック: ここちゃんと変えた?
print('Job ID', job.job_id())
# QREM
qr = QuantumRegister(num_qubits)
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
cal_results = cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
mit_results = meas_fitter.filter.apply(job.result())
zne_expvals = zne_decoder(num_qubits, mit_results)
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
rho = expvals_to_valid_rho(num_qubits, zne_expvals)
fidelity = state_fidelity(rho, target_state)
print(fidelity)
|
https://github.com/MonitSharma/Qiskit-Summer-School-and-Quantum-Challenges
|
MonitSharma
|
# Import helper module from local folder
import sys
import os
sys.path.append(os.getcwd())
from resources import helper
# Numerical and plotting tools
import numpy as np
import matplotlib.pyplot as plt
# Import SI unit conversion factors
from resources.helper import GHz, MHz, kHz, us, ns
# Importing standard Qiskit libraries
from qiskit import IBMQ
from qiskit.tools.jupyter import *
# Loading your IBM Quantum account
IBMQ.load_account()
# IBMQ.providers() # see a list of providers you have access to
# Get the special provider assigned to you using information from the output above
hub_name = 'iqc2021-1' # e.g. 'iqc2021-1'
group_name = 'challenge-159' # e.g. 'challenge-1'
project_name = 'ex4' # Your project name should be 'ex4'
provider = IBMQ.get_provider(hub=hub_name, group=group_name, project=project_name)
# Get `ibmq_jakarta` backend from the provider
backend_name = 'ibmq_jakarta'
backend = provider.get_backend(backend_name)
backend # See details of the `ibmq_jakarta` quantum system
from qiskit import pulse
from qiskit.pulse import Play, Schedule, DriveChannel
# Please use qubit 0 throughout the notebook
qubit = 0
backend_config = backend.configuration()
exc_chans = helper.get_exc_chans(globals())
dt = backend_config.dt
print(f"Sampling time: {dt*1e9} ns")
backend_defaults = backend.defaults()
center_frequency = backend_defaults.qubit_freq_est
inst_sched_map = backend_defaults.instruction_schedule_map
inst_sched_map.instructions
# Retrieve calibrated measurement pulse from backend
meas = inst_sched_map.get('measure', qubits=[qubit])
meas.exclude(channels=exc_chans).draw(time_range=[0,1000])
from qiskit.pulse import DriveChannel, Gaussian
# The same spec pulse for both 01 and 12 spec
drive_amp = 0.25
drive_duration = inst_sched_map.get('x', qubits=[qubit]).duration
# Calibrated backend pulse use advanced DRAG pulse to reduce leakage to the |2> state.
# Here we will use simple Gaussian pulse
drive_sigma = drive_duration // 4 # DRAG pulses typically 4*sigma long.
spec_pulse = Gaussian(duration=drive_duration, amp=drive_amp,
sigma=drive_sigma, name=f"Spec drive amplitude = {drive_amp}")
# Construct an np array of the frequencies for our experiment
spec_freqs_GHz = helper.get_spec01_freqs(center_frequency, qubit)
# Create the base schedule
# Start with drive pulse acting on the drive channel
spec01_scheds = []
for freq in spec_freqs_GHz:
with pulse.build(name="Spec Pulse at %.3f GHz" % freq) as spec01_sched:
with pulse.align_sequential():
# Pay close attention to this part to solve the problem at the end
pulse.set_frequency(freq*GHz, DriveChannel(qubit))
pulse.play(spec_pulse, DriveChannel(qubit))
pulse.call(meas)
spec01_scheds.append(spec01_sched)
# Draw spec01 schedule
spec01_scheds[-1].exclude(channels=exc_chans).draw(time_range=[0,1000])
from qiskit.tools.monitor import job_monitor
# Run the job on a real backend
spec01_job = backend.run(spec01_scheds, job_name="Spec 01", **helper.job_params)
print(spec01_job.job_id())
job_monitor(spec01_job)
# If the queuing time is too long, you can save the job id
# And retrieve the job after it's done
# Replace 'JOB_ID' with the the your job id and uncomment to line below
#spec01_job = backend.retrieve_job('JOB_ID')
from resources.helper import SpecFitter
amp_guess = 5e6
f01_guess = 5
B = 1
C = 0
fit_guess = [amp_guess, f01_guess, B, C]
fit = SpecFitter(spec01_job.result(), spec_freqs_GHz, qubits=[qubit], fit_p0=fit_guess)
fit.plot(0, series='z')
f01 = fit.spec_freq(0, series='z')
print("Spec01 frequency is %.6f GHz" % f01)
# Retrieve qubit frequency from backend properties
f01_calibrated = backend.properties().frequency(qubit) / GHz
f01_error = abs(f01-f01_calibrated) * 1000 # error in MHz
print("Qubit frequency error is %.6f MHz" % f01_error)
max_rabi_amp = 0.75
rabi_amps = helper.get_rabi_amps(max_rabi_amp)
rabi_scheds = []
for ridx, amp in enumerate(rabi_amps):
with pulse.build(name="rabisched_%d_0" % ridx) as sched: # '0' corresponds to Rabi
with pulse.align_sequential():
pulse.set_frequency(f01*GHz, DriveChannel(qubit))
rabi_pulse = Gaussian(duration=drive_duration, amp=amp, \
sigma=drive_sigma, name=f"Rabi drive amplitude = {amp}")
pulse.play(rabi_pulse, DriveChannel(qubit))
pulse.call(meas)
rabi_scheds.append(sched)
# Draw rabi schedule
rabi_scheds[-1].exclude(channels=exc_chans).draw(time_range=[0,1000])
# Run the job on a real device
rabi_job = backend.run(rabi_scheds, job_name="Rabi", **helper.job_params)
print(rabi_job.job_id())
job_monitor(rabi_job)
# If the queuing time is too long, you can save the job id
# And retrieve the job after it's done
# Replace 'JOB_ID' with the the your job id and uncomment to line below
#rabi_job = backend.retrieve_job('JOB_ID')
from qiskit.ignis.characterization.calibrations.fitters import RabiFitter
amp_guess = 5e7
fRabi_guess = 2
phi_guess = 0.5
c_guess = 0
fit_guess = [amp_guess, fRabi_guess, phi_guess, c_guess]
fit = RabiFitter(rabi_job.result(), rabi_amps, qubits=[qubit], fit_p0=fit_guess)
fit.plot(qind=0, series='0')
x180_amp = fit.pi_amplitude()
print("Pi amplitude is %.3f" % x180_amp)
# Define pi pulse
x_pulse = Gaussian(duration=drive_duration,
amp=x180_amp,
sigma=drive_sigma,
name='x_pulse')
def build_spec12_pulse_schedule(freq, anharm_guess_GHz):
with pulse.build(name="Spec Pulse at %.3f GHz" % (freq+anharm_guess_GHz)) as spec12_schedule:
with pulse.align_sequential():
# WRITE YOUR CODE BETWEEN THESE LINES - START
# X Pulse
pulse.set_frequency(f01*GHz, DriveChannel(qubit))
pulse.play(x_pulse, DriveChannel(qubit))
# 0-2 Spec Pulse
pulse.set_frequency((freq+anharm_guess_GHz)*GHz, DriveChannel(qubit))
pulse.play(spec_pulse, DriveChannel(qubit))
pulse.call(meas)
# WRITE YOUR CODE BETWEEN THESE LINES - END
return spec12_schedule
anharmonicity_guess_GHz = -0.3 # your anharmonicity guess
freqs_GHz = helper.get_spec12_freqs(f01, qubit)
# Now vary the sideband frequency for each spec pulse
spec12_scheds = []
for freq in freqs_GHz:
spec12_scheds.append(build_spec12_pulse_schedule(freq, anharmonicity_guess_GHz))
# Draw spec12 schedule
spec12_scheds[-1].exclude(channels=exc_chans).draw(time_range=[0,1000])
spec12_scheds[1].exclude(channels=exc_chans).draw(time_range=[0,1000])
# Run the job on a real device
spec12_job = backend.run(spec12_scheds, job_name="Spec 12", **helper.job_params)
print(spec12_job.job_id())
job_monitor(spec12_job)
# If the queuing time is too long, you can save the job id
# And retrieve the job after it's done
# Replace 'JOB_ID' with the the your job id and uncomment to line below
#spec12_job = backend.retrieve_job('JOB_ID')
amp_guess = 2e7
f12_guess = f01 - 0.3
B = .1
C = 0
fit_guess = [amp_guess, f12_guess, B, C]
fit = SpecFitter(spec12_job.result(), freqs_GHz+anharmonicity_guess_GHz, qubits=[qubit], fit_p0=fit_guess)
fit.plot(0, series='z')
f12 = fit.spec_freq(0, series='z')
print("Spec12 frequency is %.6f GHz" % f12)
# Check your answer using following code
from qc_grader import grade_ex4
grade_ex4(f12,qubit,backend_name)
# Submit your answer. You can re-submit at any time.
from qc_grader import submit_ex4
submit_ex4(f12,qubit,backend_name)
Ec = f01 - f12
Ej = (2*f01-f12)**2/(8*(f01-f12))
print(f"Ej/Ec: {Ej/Ec:.2f}") # This value is typically ~ 30
|
https://github.com/dukeskardashian/encryptedConnQ
|
dukeskardashian
|
from qiskit import QuantumCircuit, Aer, execute
# Erstellen eines Quanten-Schaltkreises
qc = QuantumCircuit(2, 2)
qc.h(0)
qc.cx(0, 1)
# Simulation der Quantenverschlüsselung
simulator = Aer.get_backend('qasm_simulator')
job = execute(qc, simulator, shots=1)
result = job.result()
counts = result.get_counts(qc)
# Ausgabe der verschlüsselten Bits
print('Ergebnis:', counts)
#Allgemeines Beispiel für den Aufbau einer verschlüsselten Verbindung mit einer
#simulierten Quantenverschlüsselung unter Verwendung des Qiskit-Frameworks von IBM Quantum.
|
https://github.com/FilipeChagasDev/register-by-constant-qft-adder
|
FilipeChagasDev
|
import qiskit
from qiskit_reg_by_const_qft_adder import reg_by_const_qft_adder
from numeric_systems import *
from typing import *
from test_tools import *
for a in range(-4, 3):
for c in range(-4, 3):
#Create the quantum circuit
my_circuit = qiskit.QuantumCircuit(4)
#Initialize register with $a$
a_binary = integer_to_binary(a, 4)
for i in range(4):
if a_binary[i] == True:
my_circuit.x(i)
#Create gate
g = reg_by_const_qft_adder(4, c)
#Append gate to the circuit
my_circuit.append(g, list(range(4)))
#Append measurements
my_circuit.measure_all()
#Simulation
result_binary = one_shot_simulation(my_circuit)
result_integer = binary_to_integer(result_binary)
print(f'a={a}, c={c}, result={result_integer}')
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import QuantumCircuit, transpile, schedule
from qiskit.visualization.timeline import draw, IQXSimple
from qiskit.providers.fake_provider import FakeBoeblingen
qc = QuantumCircuit(2)
qc.h(0)
qc.cx(0,1)
qc = transpile(qc, FakeBoeblingen(), scheduling_method='alap', layout_method='trivial')
draw(qc, style=IQXSimple())
|
https://github.com/yaelbh/qiskit-sympy-provider
|
yaelbh
|
# -*- coding: utf-8 -*-
# Copyright 2018, IBM.
#
# This source code is licensed under the Apache License, Version 2.0 found in
# the LICENSE.txt file in the root directory of this source tree.
"""
Exception for errors raised by Sympy simulators.
"""
from qiskit import QISKitError
class SympySimulatorError(QISKitError):
"""Class for errors raised by the Sympy simulators."""
def __init__(self, *message):
"""Set the error message."""
super().__init__(*message)
self.message = ' '.join(message)
def __str__(self):
"""Return the message."""
return repr(self.message)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
# load necessary Runtime libraries
from qiskit_ibm_runtime import QiskitRuntimeService, Sampler, Session
backend = "ibmq_qasm_simulator" # use the simulator
from qiskit.circuit import Parameter
from qiskit.opflow import I, X, Z
mu = Parameter('$\\mu$')
ham_pauli = mu * X
cc = Parameter('$c$')
ww = Parameter('$\\omega$')
ham_res = -(1/2)*ww*(I^Z) + cc*(X^X) + (ham_pauli^I)
tt = Parameter('$t$')
U_ham = (tt*ham_res).exp_i()
from qiskit import transpile
from qiskit.circuit import ClassicalRegister
from qiskit.opflow import PauliTrotterEvolution, Suzuki
import numpy as np
num_trot_steps = 5
total_time = 10
cr = ClassicalRegister(1, 'c')
spec_op = PauliTrotterEvolution(trotter_mode=Suzuki(order=2, reps=num_trot_steps)).convert(U_ham)
spec_circ = spec_op.to_circuit()
spec_circ_t = transpile(spec_circ, basis_gates=['sx', 'rz', 'cx'])
spec_circ_t.add_register(cr)
spec_circ_t.measure(0, cr[0])
spec_circ_t.draw('mpl')
# fixed Parameters
fixed_params = {
cc: 0.3,
mu: 0.7,
tt: total_time
}
# Parameter value for single circuit
param_keys = list(spec_circ_t.parameters)
# run through all the ww values to create a List of Lists of Parameter value
num_pts = 101
wvals = np.linspace(-2, 2, num_pts)
param_vals = []
for wval in wvals:
all_params = {**fixed_params, **{ww: wval}}
param_vals.append([all_params[key] for key in param_keys])
with Session(backend=backend):
sampler = Sampler()
job = sampler.run(
circuits=[spec_circ_t]*num_pts,
parameter_values=param_vals,
shots=1e5
)
result = job.result()
Zexps = []
for dist in result.quasi_dists:
if 1 in dist:
Zexps.append(1 - 2*dist[1])
else:
Zexps.append(1)
from qiskit.opflow import PauliExpectation, Zero
param_bind = {
cc: 0.3,
mu: 0.7,
tt: total_time
}
init_state = Zero^2
obsv = I^Z
Zexp_exact = (U_ham @ init_state).adjoint() @ obsv @ (U_ham @ init_state)
diag_meas_op = PauliExpectation().convert(Zexp_exact)
Zexact_values = []
for w_set in wvals:
param_bind[ww] = w_set
Zexact_values.append(np.real(diag_meas_op.bind_parameters(param_bind).eval()))
import matplotlib.pyplot as plt
plt.style.use('dark_background')
fig, ax = plt.subplots(dpi=100)
ax.plot([-param_bind[mu], -param_bind[mu]], [0, 1], ls='--', color='purple')
ax.plot([param_bind[mu], param_bind[mu]], [0, 1], ls='--', color='purple')
ax.plot(wvals, Zexact_values, label='Exact')
ax.plot(wvals, Zexps, label=f"{backend}")
ax.set_xlabel(r'$\omega$ (arb)')
ax.set_ylabel(r'$\langle Z \rangle$ Expectation')
ax.legend()
import qiskit_ibm_runtime
qiskit_ibm_runtime.version.get_version_info()
from qiskit.tools.jupyter import *
%qiskit_version_table
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
from qiskit import pulse
d0 = pulse.DriveChannel(0)
d1 = pulse.DriveChannel(1)
with pulse.build() as pulse_prog:
with pulse.align_right():
# this pulse will start at t=0
pulse.play(pulse.Constant(100, 1.0), d0)
# this pulse will start at t=80
pulse.play(pulse.Constant(20, 1.0), d1)
pulse_prog.draw()
|
https://github.com/arian-code/nptel_quantum_assignments
|
arian-code
|
from sympy import *
import numpy as np
from sympy.physics.quantum import TensorProduct
from sympy import Matrix, I
from sympy.physics.quantum.dagger import Dagger
init_printing(use_unicode=True)
H=Matrix([[1/sqrt(2), 1/sqrt(2)],[1/sqrt(2), -1/sqrt(2)]])
lhs=H
lhs
bra_0=Matrix([[1],[0]])
ket_0=Dagger(bra_0)
bra_1=Matrix([[0],[1]])
ket_1=Dagger(bra_1)
bra_plus=(1/sqrt(2))*Matrix([[1],[1]])
ket_plus=Dagger(bra_plus)
bra_minus=(1/sqrt(2))*Matrix([[1],[-1]])
ket_minus=Dagger(bra_minus)
bra_0, ket_0, bra_1, ket_1, bra_plus, bra_minus, ket_plus, ket_minus
#Test
1/sqrt(2)*(TensorProduct(bra_0, ket_0)+TensorProduct(bra_1, ket_1))
#option A
rhs=1/sqrt(2)*(TensorProduct(bra_0, ket_0)+TensorProduct(bra_1, ket_1))
print (lhs)
print (rhs)
if (lhs==rhs):
print ("It is true")
else:
print ("It is false")
#option B
rhs=(TensorProduct(bra_0, ket_plus)+TensorProduct(bra_1, ket_minus))
print (lhs)
print (rhs)
if (lhs==rhs):
print ("It is true")
else:
print ("It is false")
#option C
rhs=1/sqrt(2)*(TensorProduct(bra_0, ket_0)+
TensorProduct(bra_0, ket_1)+
TensorProduct(bra_1, ket_0)-
TensorProduct(bra_1, ket_1))
print (lhs)
print (rhs)
if (lhs==rhs):
print ("It is true")
else:
print ("It is false")
#option C
rhs=1/sqrt(2)*(TensorProduct(bra_plus, ket_0)+
TensorProduct(bra_minus, ket_1))
print (lhs)
print (rhs)
if (lhs==rhs):
print ("It is true")
else:
print ("It is false")
|
https://github.com/noamsgl/IBMAscolaChallenge
|
noamsgl
|
from qiskit import Aer
from qiskit import execute
from qiskit.test.mock import FakeVigo
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import OneHotEncoder
class QuantumNoiseEstimator:
def __init__(self, dataset=None, classifier=RandomForestClassifier()):
"""
Initialize the class
:param dataset: the dataset (QuantumNoiseDataset)
:param classifier: the classifier to use
todo: generalize classifier to an estimator (regression etc.)
"""
self.dataset = dataset
assert self.dataset is not None, "dataset is empty"
self.classifier = classifier
self.encoder_decoder = QuantumDatasetEncoder(classifier)
encoded_features = self.encoder_decoder.encode_features(self.dataset)
encoded_labels = self.encoder_decoder.encode_labels(self.dataset)
self.X_train, self.X_test, self.Y_train, self.Y_test = train_test_split(encoded_features, encoded_labels,
test_size=0.33)
def fit(self):
"""
Fit the model to the dataset
:return:
"""
self.classifier.fit(self.X_train, self.Y_train)
def predict(self, feature):
encoded_feature = self.encoder_decoder.encode_feature(feature)
encoded_label = self.classifier.predict(encoded_feature)
decoded_label = self.encoder_decoder.decode_label(encoded_label)
return decoded_label
def __repr__(self):
return "I am a Quantum Noise Estimator"
class DatasetGenerator:
def __init__(self, shots=1000):
"""
Initialize this class
:param shots: number of times to measure each circuit
"""
self.shots = shots
self.observations = []
self.features = []
self.labels = []
self.dataset = QuantumNoiseDataset()
# Device Model
self.device_backend = FakeVigo()
self.coupling_map = self.device_backend.configuration().coupling_map
self.simulator = Aer.get_backend('qasm simulator')
def add_observation(self, circuit, noise_model):
"""
Add a new data point - (feature, label) -to the dataset. Blocking method (until counts are calculated)
:param circuit:
:param noise_model:
:return: none
"""
feature = (circuit, noise_model)
label = self.get_counts(circuit, noise_model)
self.dataset.add_data_point(feature, label)
def get_counts(self, circuit, noise_model):
"""
Simulate a circuit with a noise_model and return measurement counts
:param circuit:
:param noise_model:
:return: measurement counts (dict)
"""
result = execute(circuit, self.simulator, noise_model=noise_model, coupling_map=self.coupling_map,
basis_gates=noise_model.basis_gates, shots=self.shots).result()
counts = result.get_counts()
return counts
def get_dataset(self):
"""
:return: the dataset (QuantumNoiseDataset)
"""
return self.dataset
def __repr__(self):
return "I am a dataset generator for quantum noise estimation"
def mock_dataset(self):
"""
Generate a mock dataset
:return: the dataset (QuantumNoiseDataset)
"""
raise NotImplementedError
class QuantumNoiseDataset:
def __init__(self):
self.data_points = []
def add_data_point(self, feature, label):
dp = (feature, label)
self.data_points.append(dp)
class QuantumDatasetEncoder:
def __init__(self, classifier):
"""
Initialize the class
:param classifier: the classifier (might be useful later)
Encodes and Decodes dataset for sklearn classifier
"""
self.classifier = classifier
self.features_encoder = OneHotEncoder()
self.labels_encoder = None
def encode_features(self, dataset):
raise NotImplementedError
def encode_labels(self, dataset):
raise NotImplementedError
def decode_labels(self, labels):
raise NotImplementedError
def decode_label(self, encoded_label):
raise NotImplementedError
def encode_feature(self, feature):
raise NotImplementedError
|
https://github.com/dnnagy/qintro
|
dnnagy
|
import math
import numpy as np
import matplotlib as mpl
from matplotlib import pyplot as plt
import qiskit
from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister
from qiskit import Aer, execute
from qiskit.visualization import plot_bloch_multivector
from qiskit.visualization import plot_bloch_vector
from qiskit.visualization import plot_histogram
qbackend = Aer.get_backend('qasm_simulator')
sbackend = Aer.get_backend('statevector_simulator')
ubackend = Aer.get_backend('unitary_simulator')
qiskit.__version__
import torch
torch.__version__
import strawberryfields as sf
sf.__version__
help(sf)
import cirq
cirq.__version__
|
https://github.com/conradhaupt/Qiskit-Bayesian-Inference-Module-QCA19-
|
conradhaupt
|
import qiskit as qk
import qinfer as qf
from qiskit.aqua.algorithms.single_sample import IQPE,QPE
from qiskit.aqua.components import iqfts
from qiskit.aqua.operators import WeightedPauliOperator
from qiskit.aqua.algorithms import ExactEigensolver
from qiskit.aqua.components.initial_states import Custom
import numpy as np
from qiskit import Aer,execute
from qiskit.aqua import QuantumInstance
# We need distributions to model priors.
from qinfer import distributions
# The noisy coin model has already been implmented, so let's import it here.
from qinfer.test_models import NoisyCoinModel
# Next, we need to import the sequential Monte Carlo updater class.
from qinfer.smc import SMCUpdater
# We'll be demonstrating approximate likelihood evaluation (ALE) as well.
from qinfer import ale
from qinfer import FiniteOutcomeModel
import matplotlib.pyplot as plt
from scipy.stats import circmean
import time
EPS = 1e-15
def chop(value):
if np.abs(value) <= EPS:
return 0
else:
return value
def radiandiff(a,b):
FULL_ROTATION = 2 * np.pi
return np.min(np.abs([a - b, b - a, a - b + FULL_ROTATION, b - a + FULL_ROTATION]))
# Set-up unitary with specified phase
angle = np.pi / 3
real = chop(np.real(np.exp(1.j * angle)))
imag = chop(np.imag(np.exp(1.j * angle)))
PAULI_DICT_ZZ = {
'paulis': [
{"coeff": {"imag": imag, "real": real}, "label": "ZZ"}
]
}
QUBIT_OP_ZZ = WeightedPauliOperator.from_dict(PAULI_DICT_ZZ)
eigen_results = ExactEigensolver(QUBIT_OP_ZZ,4).run()
eigen_value = eigen_results['eigvals'][0]
eigen_vector = eigen_results['eigvecs'][0]
print('Eigenvalues',eigen_results['eigvals'])
print('Phase is %.4f radians' %(angle))
# Setup initial state as eigenvector
state_in = Custom(QUBIT_OP_ZZ.num_qubits, state_vector=eigen_vector)
# Use QASM Simulator for testing
simulator = Aer.get_backend('qasm_simulator')
# Construct IQPE circuit and simulate
iqpe_builder = IQPE(
QUBIT_OP_ZZ,
state_in,
num_iterations=1,
num_time_slices=1,
expansion_mode='suzuki',
expansion_order=1,
shallow_circuit_concat=True)
# This is required to setup iqpe_builder so we can call construct_circuit() later on
iqpe_results = iqpe_circ = iqpe_builder.run(simulator,shots=1)
class IQPEModel(FiniteOutcomeModel):
def __init__(self):
super(IQPEModel, self).__init__()
## PROPERTIES ##
@property
def n_modelparams(self):
# phi
return 1 # one for just phi, two for phi and T2
@property
def expparams_dtype(self):
return [('theta','float64'), ('m','int64')]
@property
def is_n_outcomes_constant(self):
return True
## METHODS ##
@staticmethod
def are_models_valid(modelparams):
# NOTE: If T2 is included as a model parameter, restrict it to positive
return np.logical_and(modelparams[:] >= 0, modelparams[:]<=2*np.pi).all(axis=1)
def n_outcomes(self, expparams):
return 2
def likelihood(self, outcomes, modelparams, expparams):
# We first call the superclass method, which basically
# just makes sure that call count diagnostics are properly
# logged.
super(IQPEModel, self).likelihood(outcomes, modelparams, expparams)
# Probability of getting 0 for IQPE is
# P(0) = (1 + cos(M(theta - phi)))/2
# pr0 = np.exp(-expparams['m'] / expparams['T2']) * (1 + np.cos(expparams['m'] * (expparams['theta'] - modelparams[:]))) / 2 + (1 - np.exp(-expparams['m'] / expparams['T2']))/2
pr0 = (1 + np.cos(expparams['m'] * (expparams['theta'] - modelparams[:]))) / 2
# Concatenate over outcomes.
return FiniteOutcomeModel.pr0_to_likelihood_array(outcomes, pr0)
class PhaseSMCUpdater(SMCUpdater):
@staticmethod
def particle_mean(weights,locations):
weighted_values = np.multiply(weights, locations)
return circmean(weighted_values)
N_PARTICLES = 5000
N_EXP = 20
USE_QISKIT_QASM_SIMULATOR = False
SIM_N_SHOTS=4096
performance_dtype = [
('outcome', 'i1'),
('est_mean', 'f8'), ('est_cov_mat', 'f8'),
('true_err', 'f8'), ('resample_count', 'i8'),
('elapsed_time', 'f8'),
('like_count', 'i8'), ('sim_count', 'i8'),
('bme', 'f8'),
('var', 'f8'),
('bme_err', 'f8')
]
performance = np.empty((N_EXP), dtype=performance_dtype)
# Set-up initial prior and QInfer model
prior = distributions.UniformDistribution([0, 2 * np.pi])
# prior = distributions.NormalDistribution(np.pi,0.5)
model = IQPEModel()
# Set-up initial experimental parameters
THETA = prior.sample()[0][0]
M = 3
data_backend = Aer.get_backend('qasm_simulator')
# Create a Bayesian Inference Updater
updater = PhaseSMCUpdater(model, N_PARTICLES, prior)
# For each experiment we defined earlier
for idx_exp in range(N_EXP):
# Define experimental parameters
expparams = np.array([(M,THETA)], dtype=model.expparams_dtype)
# Simulate IQPE circuit and get results for inference
circuit = iqpe_builder.construct_circuit(k=M,omega=THETA,measurement=True)
results = execute(circuit,simulator,shots=SIM_N_SHOTS,memory=True)
counts = results.result().get_counts()
memory = results.result().get_memory()
# Start by simulating and recording the data.
# Retrieve the outcome of the simulation either from the circuit simulation or a model simulation
if USE_QISKIT_QASM_SIMULATOR:
outcomes = np.array([[int(m) for m in memory]])
else:
outcomes = model.simulate_experiment(np.array([[angle]]),expparams,repeat=SIM_N_SHOTS)
outcomes = outcomes.reshape((1,outcomes.shape[0]))
# performance['outcome'][idx_exp] = [outcomes]
# Reset the like_count and sim_count
# properties so that we can count how many were used
# by this update. Note that this is a hack;
# an appropriate method should be added to
# Simulatable.
model._sim_count = 0
model._call_count = 0
# Time the update process
# tic = toc = None
# tic = time.time()
# Update the posterior particles using the result of the circuit simulation
updater.batch_update(outcomes, expparams)
# performance[idx_exp]['elapsed_time'] = time.time() - tic
# Record the performance of this updater.
est_mean = updater.est_mean()
performance[idx_exp]['est_mean'] = est_mean
performance[idx_exp]['true_err'] = radiandiff(est_mean,angle) ** 2
performance[idx_exp]['est_cov_mat'] = updater.est_covariance_mtx()
performance[idx_exp]['resample_count'] = updater.resample_count
performance[idx_exp]['like_count'] = model.call_count
performance[idx_exp]['sim_count'] = model.sim_count
# Re-evaluate experiment parameters
uniform_draw_01 = np.random.uniform()
cumsum_particles = np.cumsum(updater.particle_weights)
draw_index = (cumsum_particles<= uniform_draw_01).argmin()
THETA = updater.particle_locations[draw_index]
current_variance = updater.est_covariance_mtx()[0][0]
# M modification scheme
min_M = 8 - int(np.mod(idx_exp,10)/2)
# min_M = 4
M = int(np.max([min_M,np.ceil(1.25/np.sqrt(current_variance))]))
print(min_M,M,THETA)
print('Inference completed')
plot = updater.plot_posterior_marginal()
|
https://github.com/Pitt-JonesLab/slam_decomposition
|
Pitt-JonesLab
|
from __future__ import annotations
import logging
from typing import TYPE_CHECKING
# using this to avoid a circular import
if TYPE_CHECKING:
from slam.basis import CircuitTemplate
from fractions import Fraction
from sys import stdout
from typing import List
import numpy as np
from monodromy.coordinates import unitary_to_monodromy_coordinate
from monodromy.coverage import (
CircuitPolytope,
build_coverage_set,
deduce_qlr_consequences,
print_coverage_set,
)
from monodromy.haar import expected_cost
from monodromy.polytopes import ConvexPolytope
from monodromy.static.examples import everything_polytope, exactly, identity_polytope
from qiskit.converters import circuit_to_dag
from qiskit.quantum_info import Operator
from slam.utils.gates.custom_gates import CustomCostGate
MAX_ITERS = 10
"""Helper function for monodromy polytope package."""
# NOTE I'm not sure the best way to do this or if there is a more direct way already in the monodromy package somewhere
# references:
# https://github.com/Qiskit/qiskit-terra/blob/main/qiskit/quantum_info/synthesis/xx_decompose/decomposer.py
# https://github.com/evmckinney9/monodromy/blob/main/scripts/single_circuit.py
def monodromy_range_from_target(basis: CircuitTemplate, target_u) -> range:
# NOTE, depending on whether using precomputed coverages,
# both return a range element, because this is value is used by the optimizer to call build
# in order to bind the precomputed circuit polytope, we use a set method on basis
if basis.n_qubits != 2:
raise ValueError("monodromy only for 2Q templates")
target_coords = unitary_to_monodromy_coordinate(target_u)
# XXX if the code was working everywhere this extra case would not be needed
# for some reason in the custom built circuit polytope sets we built using parallel_drive_volume.py
# the base case identity polytope has some broken attributes
# e.g. basis.coverage[0].has_element(target_coords) throws error
# so we need to check for this case and return a range of 0 manually
if target_coords == [0.0, 0.0, 0.0, 0.0]:
return range(0, 1)
# old method when polytopes not precomputed
# NOTE possible deprecated not sure when this would ever be none
if basis.coverage is None:
raise ValueError("Deprecated method, use precomputed coverages")
iters = 0
while (
iters == 0 or not circuit_polytope.has_element(target_coords)
) and iters < MAX_ITERS:
iters += 1
basis.build(iters)
circuit_polytope = get_polytope_from_circuit(basis)
if iters == MAX_ITERS and not circuit_polytope.has_element(target_coords):
raise ValueError(
"Monodromy did not find a polytope containing U, may need better gate or adjust MAX_ITERS"
)
logging.info(f"Monodromy found needs {iters} basis applications")
return range(iters, iters + 1)
else:
# new method, now we can iterate over precomputed polytopes
# we want to find the first polytoped (when sorted by cost) that contains target
# this sorting might be redundant but we will do it just in case
found_cover = -1
sorted_polytopes = sorted(basis.coverage, key=lambda k: k.cost)
for i, circuit_polytope in enumerate(sorted_polytopes):
# XXX skip the identity polytope, see above
if circuit_polytope.cost == 0:
continue
if circuit_polytope.has_element(target_coords):
# set polytope
basis.set_polytope(circuit_polytope)
# return a default range
found_cover = i
break
if found_cover == -1:
raise ValueError("Monodromy did not find a polytope containing U")
return range(found_cover, found_cover + 1)
def get_polytope_from_circuit(basis: CircuitTemplate) -> ConvexPolytope:
from qiskit import QuantumCircuit
if isinstance(basis, QuantumCircuit):
if basis.num_qubits != 2:
raise ValueError("monodromy only for 2Q templates")
dag = circuit_to_dag(basis)
else: # if isinstance(basis, CircuitTemplate): #XXX not imported for preventing circular import
if basis.n_qubits != 2:
raise ValueError("monodromy only for 2Q templates")
dag = circuit_to_dag(basis.circuit)
circuit_polytope = identity_polytope
for gate in dag.two_qubit_ops():
gd = Operator(gate.op).data
b_polytope = exactly(
*(
Fraction(x).limit_denominator(10_000)
for x in unitary_to_monodromy_coordinate(gd)[:-1]
)
)
circuit_polytope = deduce_qlr_consequences(
target="c",
a_polytope=circuit_polytope,
b_polytope=b_polytope,
c_polytope=everything_polytope,
)
return circuit_polytope
# reference: monodromy/demo.py
def gate_set_to_haar_expectation(*basis_gates: List[CustomCostGate], chatty=True):
coverage_set, basis_gate_hash_dict = gate_set_to_coverage(
*basis_gates, chatty=chatty
)
return coverage_to_haar_expectation(coverage_set, chatty=chatty)
def gate_set_to_coverage(
*basis_gates: List[CustomCostGate], chatty=True, cost_1q=0, bare_cost=False
):
# first converts all individal gates to circuitpolytope objeect
operations = []
basis_gate_hash_dict = {}
for gate in basis_gates:
# this is an ugly solution, but not sure a more direct way
# when we see the circuit polytope later in the basis build method,
# we need to reconstruct it as a variational circuit, and need a reference to the gates
# the circuitpolytopes need a hashable object so we use string
# this dict looks up string->gate object
if str(gate) in basis_gate_hash_dict.keys():
raise ValueError("need unique gate strings for hashing to work")
basis_gate_hash_dict[str(gate)] = gate
circuit_polytope = identity_polytope
b_polytope = exactly(
*(
Fraction(x).limit_denominator(10_000)
for x in unitary_to_monodromy_coordinate(
np.matrix(gate, dtype=complex)
)[:-1]
)
)
circuit_polytope = deduce_qlr_consequences(
target="c",
a_polytope=circuit_polytope,
b_polytope=b_polytope,
c_polytope=everything_polytope,
)
# use bare_cost to get cost in terms of number of gates - will be scaled by costs later
# idea is we don't need to recompute everytime we change costs for speed limits or 2Q gates
# this idea can't be used if using mixed basis gate sets because we need to know relative costs
if bare_cost and len(basis_gates) != 1:
raise ValueError("bare_cost only works for single 2Q gate sets")
if hasattr(gate, "cost"):
op_cost = gate.cost() + cost_1q
elif bare_cost:
op_cost = 1
else:
op_cost = 1
operations.append(
CircuitPolytope(
operations=[str(gate)],
cost=op_cost,
convex_subpolytopes=circuit_polytope.convex_subpolytopes,
)
)
# second build coverage set which finds the necessary permutations to do a complete span
if chatty:
logging.info("==== Working to build a set of covering polytopes ====")
coverage_set = build_coverage_set(operations, chatty=chatty)
# TODO: add some warning or fail condition if the coverage set fails to coverage
# one way, (but there may be a more direct way) is to check if expected haar == 0
if chatty:
logging.info("==== Done. Here's what we found: ====")
logging.info(print_coverage_set(coverage_set))
# return circuit_polytope
# return operations
return coverage_set, basis_gate_hash_dict
def coverage_to_haar_expectation(coverage_set, chatty=True):
# finally, return the expected haar coverage
if chatty:
logging.info("==== Haar volumes ====")
cost = expected_cost(coverage_set, chatty=chatty)
stdout.flush() # fix out of order logging
if chatty:
logging.info(f"Haar-expectation cost: {cost}")
return cost
# In-house rendering, also see utils.visualize.py
"""
import matplotlib.pyplot as plt
plt.close()
fig = plt.figure()
ax = fig.add_subplot(111, projection="3d")
from weylchamber import WeylChamber
w = WeylChamber();
total_coord_list = []
for subpoly in reduced_vertices:
subpoly_coords = [[float(x) for x in coord] for coord in subpoly]
total_coord_list += subpoly_coords
w.scatter(*zip(*subpoly_coords))
from scipy.spatial import ConvexHull
pts = np.array(total_coord_list)
hull = ConvexHull(pts)
for s in hull.simplices:
s = np.append(s, s[0]) # Here we cycle back to the first coordinate
ax.plot(pts[s, 0], pts[s, 1], pts[s, 2], "r-")
w.render(ax)
"""
|
https://github.com/BOBO1997/osp_solutions
|
BOBO1997
|
import numpy as np
import matplotlib.pyplot as plt
import itertools
from pprint import pprint
# plt.rcParams.update({'font.size': 16}) # enlarge matplotlib fonts
import pickle
import time
import datetime
# Import qubit states Zero (|0>) and One (|1>), and Pauli operators (X, Y, Z)
from qiskit.opflow import Zero, One, I, X, Y, Z
from qiskit import QuantumCircuit, QuantumRegister, IBMQ, execute, transpile, Aer
from qiskit.tools.monitor import job_monitor
from qiskit.circuit import Parameter
from qiskit.transpiler.passes import RemoveBarriers
# Import QREM package
from qiskit.ignis.mitigation.measurement import complete_meas_cal, CompleteMeasFitter
from qiskit.ignis.mitigation import expectation_value
# Import mitiq for zne
import mitiq
# Import state tomography modules
from qiskit.ignis.verification.tomography import state_tomography_circuits
from qiskit.quantum_info import state_fidelity
import sys
import importlib
sys.path.append("./")
import circuit_utils, zne_utils, tomography_utils, sgs_algorithm
importlib.reload(circuit_utils)
importlib.reload(zne_utils)
importlib.reload(tomography_utils)
importlib.reload(sgs_algorithm)
from circuit_utils import *
from zne_utils import *
from tomography_utils import *
from sgs_algorithm import *
# Combine subcircuits into a single multiqubit gate representing a single trotter step
num_qubits = 3
# The final time of the state evolution
target_time = np.pi
# Parameterize variable t to be evaluated at t=pi later
dt = Parameter('t')
# Convert custom quantum circuit into a gate
trot_gate = trotter_gate(dt)
# initial layout
initial_layout = [5,3,1]
# Number of trotter steps
num_steps = 100
print("trotter step: ", num_steps)
# Initialize quantum circuit for 3 qubits
qr = QuantumRegister(num_qubits, name="lq")
qc = QuantumCircuit(qr)
# Prepare initial state (remember we are only evolving 3 of the 7 qubits on jakarta qubits (q_5, q_3, q_1) corresponding to the state |110>)
make_initial_state(qc, "110") # DO NOT MODIFY (|q_5,q_3,q_1> = |110>)
subspace_encoder_init110(qc, targets=[0, 1, 2]) # encode
trotterize(qc, trot_gate, num_steps, targets=[1, 2]) # Simulate time evolution under H_heis3 Hamiltonian
subspace_decoder(qc, targets=[0,1,2]) # decode
# Evaluate simulation at target_time (t=pi) meaning each trotter step evolves pi/trotter_steps in time
qc = qc.bind_parameters({dt: target_time / num_steps})
print("created qc")
# Generate state tomography circuits to evaluate fidelity of simulation
st_qcs = state_tomography_circuits(qc, [0, 1, 2][::-1]) #! state tomography requires === BIG ENDIAN ===
print("created st_qcs (length:", len(st_qcs), ")")
# remove barriers
st_qcs = [RemoveBarriers()(qc) for qc in st_qcs]
print("removed barriers from st_qcs")
# optimize circuit
t3_st_qcs = transpile(st_qcs, optimization_level=3, basis_gates=["sx", "cx", "rz"])
print("created t3_st_qcs (length:", len(t3_st_qcs), ")")
# zne wrapping
zne_qcs = zne_wrapper(t3_st_qcs)
print("created zne_qcs (length:", len(zne_qcs), ")")
t3_zne_qcs = transpile(zne_qcs, optimization_level=0, basis_gates=["sx", "cx", "rz"], initial_layout=initial_layout)
print("created t3_zne_qcs (length:", len(t3_zne_qcs), ")")
t3_zne_qcs[-3].draw("mpl")
from qiskit.test.mock import FakeJakarta
# backend = FakeJakarta()
# backend = Aer.get_backend("qasm_simulator")
IBMQ.load_account()
# provider = IBMQ.get_provider(hub='ibm-q-utokyo', group='internal', project='hirashi-jst')
provider = IBMQ.get_provider(hub='ibm-q-community', group='ibmquantumawards', project='open-science-22')
print("provider:", provider)
backend = provider.get_backend("ibmq_jakarta")
# QREM
shots = 1 << 13
qr = QuantumRegister(num_qubits)
meas_calibs, state_labels = complete_meas_cal(qr=qr, circlabel='mcal')
cal_job = execute(meas_calibs, backend=backend, shots=shots, optimization_level=3, initial_layout = initial_layout)
print('Job ID', cal_job.job_id())
shots = 1 << 13
reps = 8 # unused
jobs = []
for _ in range(reps):
job = execute(t3_zne_qcs, backend, shots=shots) # 毎回チェック: ここちゃんと変えた?
print('Job ID', job.job_id())
jobs.append(job)
dt_now = datetime.datetime.now()
import pickle
with open("jobs_jakarta_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
pickle.dump({"jobs": jobs, "cal_job": cal_job}, f)
with open("job_ids_jakarta_100step_" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
pickle.dump({"job_ids": [job.job_id() for job in jobs], "cal_job_id": cal_job.job_id()}, f)
with open("properties_jakarta" + dt_now.strftime('%Y%m%d_%H%M%S') + "_.pkl", "wb") as f:
pickle.dump(backend.properties(), f)
cal_results = cal_job.result()
meas_fitter = CompleteMeasFitter(cal_results, state_labels, circlabel='mcal')
mit_results = meas_fitter.filter.apply(job.result())
zne_expvals = zne_decoder(num_qubits, mit_results)
target_state = (One^One^Zero).to_matrix() # DO NOT CHANGE!!!
rho = expvals_to_valid_rho(num_qubits, zne_expvals)
fidelity = state_fidelity(rho, target_state)
# Compute tomography fidelities for each repetition
raw_fids = []
for result in results:
fid = state_tomo(result, st_qcs)
raw_fids.append(fid)
# print('state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(fids), np.std(fids)))
# Compute tomography fidelities for each repetition
fids = []
for result in mit_results:
fid = state_tomo(result, st_qcs)
fids.append(fid)
# print('state tomography fidelity = {:.4f} \u00B1 {:.4f}'.format(np.mean(fids), np.std(fids)))
plt.clf()
plt.style.use('ggplot')
plt.figure(dpi=200)
plt.title("state fidelity from Trotter step 1 to "+str(trotter_steps))
plt.plot(trotter_steps, raw_fids, label="raw fidelity")
plt.plot(trotter_steps, fids, label="fidelity after QREM")
plt.xlabel("number of trotter steps")
plt.ylabel("fidelity")
plt.grid(linestyle='dotted')
for step, fid in zip(trotter_steps, raw_fids):
print(step, fid)
for step, fid in zip(trotter_steps, fids):
print(step, fid)
|
https://github.com/hamburgerguy/Quantum-Algorithm-Implementations
|
hamburgerguy
|
"""Python implementation of Grovers algorithm through use of the Qiskit library to find the value 3 (|11>)
out of four possible values."""
#import numpy and plot library
import matplotlib.pyplot as plt
import numpy as np
# importing Qiskit
from qiskit import IBMQ, Aer, QuantumCircuit, ClassicalRegister, QuantumRegister, execute
from qiskit.providers.ibmq import least_busy
from qiskit.quantum_info import Statevector
# import basic plot tools
from qiskit.visualization import plot_histogram
# define variables, 1) initialize qubits to zero
n = 2
grover_circuit = QuantumCircuit(n)
#define initialization function
def initialize_s(qc, qubits):
'''Apply a H-gate to 'qubits' in qc'''
for q in qubits:
qc.h(q)
return qc
### begin grovers circuit ###
#2) Put qubits in equal state of superposition
grover_circuit = initialize_s(grover_circuit, [0,1])
# 3) Apply oracle reflection to marked instance x_0 = 3, (|11>)
grover_circuit.cz(0,1)
statevec = job_sim.result().get_statevector()
from qiskit_textbook.tools import vector2latex
vector2latex(statevec, pretext="|\\psi\\rangle =")
# 4) apply additional reflection (diffusion operator)
grover_circuit.h([0,1])
grover_circuit.z([0,1])
grover_circuit.cz(0,1)
grover_circuit.h([0,1])
# 5) measure the qubits
grover_circuit.measure_all()
# Load IBM Q account and get the least busy backend device
provider = IBMQ.load_account()
device = least_busy(provider.backends(filters=lambda x: x.configuration().n_qubits >= 3 and
not x.configuration().simulator and x.status().operational==True))
print("Running on current least busy device: ", device)
from qiskit.tools.monitor import job_monitor
job = execute(grover_circuit, backend=device, shots=1024, optimization_level=3)
job_monitor(job, interval = 2)
results = job.result()
answer = results.get_counts(grover_circuit)
plot_histogram(answer)
#highest amplitude should correspond with marked value x_0 (|11>)
|
https://github.com/qiskit-community/qiskit-translations-staging
|
qiskit-community
|
%matplotlib inline
from qiskit_finance import QiskitFinanceError
from qiskit_finance.data_providers import *
import datetime
import matplotlib.pyplot as plt
from pandas.plotting import register_matplotlib_converters
register_matplotlib_converters()
data = RandomDataProvider(
tickers=["TICKER1", "TICKER2"],
start=datetime.datetime(2016, 1, 1),
end=datetime.datetime(2016, 1, 30),
seed=1,
)
data.run()
means = data.get_mean_vector()
print("Means:")
print(means)
rho = data.get_similarity_matrix()
print("A time-series similarity measure:")
print(rho)
plt.imshow(rho)
plt.show()
cov = data.get_covariance_matrix()
print("A covariance matrix:")
print(cov)
plt.imshow(cov)
plt.show()
print("The underlying evolution of stock prices:")
for (cnt, s) in enumerate(data._tickers):
plt.plot(data._data[cnt], label=s)
plt.legend()
plt.xticks(rotation=90)
plt.show()
for (cnt, s) in enumerate(data._tickers):
print(s)
print(data._data[cnt])
data = RandomDataProvider(
tickers=["CompanyA", "CompanyB", "CompanyC"],
start=datetime.datetime(2015, 1, 1),
end=datetime.datetime(2016, 1, 30),
seed=1,
)
data.run()
for (cnt, s) in enumerate(data._tickers):
plt.plot(data._data[cnt], label=s)
plt.legend()
plt.xticks(rotation=90)
plt.show()
stocks = ["GOOG", "AAPL"]
token = "REPLACE-ME"
if token != "REPLACE-ME":
try:
wiki = WikipediaDataProvider(
token=token,
tickers=stocks,
start=datetime.datetime(2016, 1, 1),
end=datetime.datetime(2016, 1, 30),
)
wiki.run()
except QiskitFinanceError as ex:
print(ex)
print("Error retrieving data.")
if token != "REPLACE-ME":
if wiki._data:
if wiki._n <= 1:
print(
"Not enough wiki data to plot covariance or time-series similarity. Please use at least two tickers."
)
else:
rho = wiki.get_similarity_matrix()
print("A time-series similarity measure:")
print(rho)
plt.imshow(rho)
plt.show()
cov = wiki.get_covariance_matrix()
print("A covariance matrix:")
print(cov)
plt.imshow(cov)
plt.show()
else:
print("No wiki data loaded.")
if token != "REPLACE-ME":
if wiki._data:
print("The underlying evolution of stock prices:")
for (cnt, s) in enumerate(stocks):
plt.plot(wiki._data[cnt], label=s)
plt.legend()
plt.xticks(rotation=90)
plt.show()
for (cnt, s) in enumerate(stocks):
print(s)
print(wiki._data[cnt])
else:
print("No wiki data loaded.")
token = "REPLACE-ME"
if token != "REPLACE-ME":
try:
nasdaq = DataOnDemandProvider(
token=token,
tickers=["GOOG", "AAPL"],
start=datetime.datetime(2016, 1, 1),
end=datetime.datetime(2016, 1, 2),
)
nasdaq.run()
for (cnt, s) in enumerate(nasdaq._tickers):
plt.plot(nasdaq._data[cnt], label=s)
plt.legend()
plt.xticks(rotation=90)
plt.show()
except QiskitFinanceError as ex:
print(ex)
print("Error retrieving data.")
token = "REPLACE-ME"
if token != "REPLACE-ME":
try:
lse = ExchangeDataProvider(
token=token,
tickers=["AEO", "ABBY", "ADIG", "ABF", "AEP", "AAL", "AGK", "AFN", "AAS", "AEFS"],
stockmarket=StockMarket.LONDON,
start=datetime.datetime(2018, 1, 1),
end=datetime.datetime(2018, 12, 31),
)
lse.run()
for (cnt, s) in enumerate(lse._tickers):
plt.plot(lse._data[cnt], label=s)
plt.legend()
plt.xticks(rotation=90)
plt.show()
except QiskitFinanceError as ex:
print(ex)
print("Error retrieving data.")
try:
data = YahooDataProvider(
tickers=["MSFT", "AAPL", "GOOG"],
start=datetime.datetime(2021, 1, 1),
end=datetime.datetime(2021, 12, 31),
)
data.run()
for (cnt, s) in enumerate(data._tickers):
plt.plot(data._data[cnt], label=s)
plt.legend(loc="upper center", bbox_to_anchor=(0.5, 1.1), ncol=3)
plt.xticks(rotation=90)
plt.show()
except QiskitFinanceError as ex:
data = None
print(ex)
import qiskit.tools.jupyter
%qiskit_version_table
%qiskit_copyright
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.