code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / """utils""")) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class _lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' snake_case : Union[str, Any] = mock.Mock() snake_case : Any = 500 snake_case : Optional[Any] = {} snake_case : int = HTTPError snake_case : Optional[int] = {} # Download this model to make sure it's in the cache. snake_case : List[str] = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=snake_case__ ) as mock_head: snake_case : Any = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' snake_case : Tuple = mock.Mock() snake_case : int = 500 snake_case : Dict = {} snake_case : List[Any] = HTTPError snake_case : Any = {} # Download this model to make sure it's in the cache. snake_case : Optional[Any] = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=snake_case__ ) as mock_head: snake_case : Any = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' try: snake_case : Optional[int] = tempfile.mktemp() with open(snake_case__ , "wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" , snake_case__ ) snake_case : Union[str, Any] = AlbertTokenizer.from_pretrained(snake_case__ ) finally: os.remove(snake_case__ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json" , "wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" , snake_case__ ) snake_case : int = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' snake_case : Tuple = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class _lowerCAmelCase ( unittest.TestCase ): __UpperCAmelCase : Any = ["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "bla", "blou"] @classmethod def lowerCamelCase ( cls ) -> List[str]: '''simple docstring''' snake_case : List[str] = TOKEN HfFolder.save_token(snake_case__ ) @classmethod def lowerCamelCase ( cls ) -> Tuple: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case : Optional[Any] = os.path.join(snake_case__ , "vocab.txt" ) with open(snake_case__ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case : Optional[Any] = BertTokenizer(snake_case__ ) tokenizer.push_to_hub("test-tokenizer" , use_auth_token=self._token ) snake_case : List[Any] = BertTokenizer.from_pretrained(F'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(snake_case__ , repo_id="test-tokenizer" , push_to_hub=snake_case__ , use_auth_token=self._token ) snake_case : Any = BertTokenizer.from_pretrained(F'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def lowerCamelCase ( self ) -> str: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: snake_case : str = os.path.join(snake_case__ , "vocab.txt" ) with open(snake_case__ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case : Tuple = BertTokenizer(snake_case__ ) tokenizer.push_to_hub("valid_org/test-tokenizer-org" , use_auth_token=self._token ) snake_case : Any = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( snake_case__ , repo_id="valid_org/test-tokenizer-org" , push_to_hub=snake_case__ , use_auth_token=self._token ) snake_case : Union[str, Any] = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case : List[str] = os.path.join(snake_case__ , "vocab.txt" ) with open(snake_case__ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case : Tuple = CustomTokenizer(snake_case__ ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token ) snake_case : Optional[Any] = AutoTokenizer.from_pretrained(F'{USER}/test-dynamic-tokenizer' , trust_remote_code=snake_case__ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: snake_case : List[Any] = os.path.join(snake_case__ , "vocab.txt" ) with open(snake_case__ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) snake_case : str = BertTokenizerFast.from_pretrained(snake_case__ ) bert_tokenizer.save_pretrained(snake_case__ ) snake_case : Optional[int] = CustomTokenizerFast.from_pretrained(snake_case__ ) tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token ) snake_case : Dict = AutoTokenizer.from_pretrained(F'{USER}/test-dynamic-tokenizer' , trust_remote_code=snake_case__ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizerFast" ) snake_case : Union[str, Any] = AutoTokenizer.from_pretrained( F'{USER}/test-dynamic-tokenizer' , use_fast=snake_case__ , trust_remote_code=snake_case__ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" ) class _lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : Optional[Any] = Trie() trie.add("Hello 友達" ) self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} ) def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' snake_case : int = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS]", " This is a ", "extra_id_100"] ) def lowerCamelCase ( self ) -> int: '''simple docstring''' snake_case : str = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ) , ["A", "BC"] ) self.assertEqual(trie.split("BCA" ) , ["BC", "A"] ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case : List[str] = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCamelCase ( self ) -> Any: '''simple docstring''' snake_case : Union[str, Any] = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] ) def lowerCamelCase ( self ) -> List[str]: '''simple docstring''' snake_case : Dict = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ) , ["AB", "C"] ) def lowerCamelCase ( self ) -> Dict: '''simple docstring''' snake_case : Tuple = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ) , ["ABC", "D"] ) def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' snake_case : Optional[int] = Trie() snake_case : Optional[int] = trie.cut_text("ABC" , [0, 0, 2, 1, 2, 3] ) self.assertEqual(snake_case__ , ["AB", "C"] )
203
"""simple docstring""" class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self , snake_case__ = "" , snake_case__ = False ): """simple docstring""" lowerCAmelCase : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word lowerCAmelCase : str = is_leaf lowerCAmelCase : str = prefix def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = 0 for q, w in zip(self.prefix , snake_case__ ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def lowercase__ ( self , snake_case__ ): """simple docstring""" for word in words: self.insert(snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" if self.prefix == word: lowerCAmelCase : Union[str, Any] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: lowerCAmelCase : Optional[Any] = RadixNode(prefix=snake_case__ , is_leaf=snake_case__ ) else: lowerCAmelCase : Tuple = self.nodes[word[0]] lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[Any] = incoming_node.match( snake_case__ ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(snake_case__ ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: lowerCAmelCase : Optional[Any] = remaining_prefix lowerCAmelCase : int = self.nodes[matching_string[0]] lowerCAmelCase : List[Any] = RadixNode(snake_case__ , snake_case__ ) lowerCAmelCase : Optional[int] = aux_node if remaining_word == "": lowerCAmelCase : Optional[int] = True else: self.nodes[matching_string[0]].insert(snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : str = self.nodes.get(word[0] , snake_case__ ) if not incoming_node: return False else: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : int = incoming_node.match( snake_case__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(snake_case__ ) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : int = self.nodes.get(word[0] , snake_case__ ) if not incoming_node: return False else: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Union[str, Any] = incoming_node.match( snake_case__ ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(snake_case__ ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: lowerCAmelCase : List[str] = list(self.nodes.values() )[0] lowerCAmelCase : List[str] = merging_node.is_leaf self.prefix += merging_node.prefix lowerCAmelCase : Optional[int] = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: lowerCAmelCase : Optional[int] = False # If there is 1 edge, we merge it with its child else: lowerCAmelCase : Optional[Any] = list(incoming_node.nodes.values() )[0] lowerCAmelCase : int = merging_node.is_leaf incoming_node.prefix += merging_node.prefix lowerCAmelCase : Tuple = merging_node.nodes return True def lowercase__ ( self , snake_case__ = 0 ): """simple docstring""" if self.prefix != "": print("-" * height , self.prefix , " (leaf)" if self.is_leaf else "" ) for value in self.nodes.values(): value.print_tree(height + 1 ) def a__ ( ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = "banana bananas bandana band apple all beast".split() lowerCAmelCase : List[str] = RadixNode() root.insert_many(SCREAMING_SNAKE_CASE ) assert all(root.find(SCREAMING_SNAKE_CASE ) for word in words ) assert not root.find("bandanas" ) assert not root.find("apps" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def a__ ( ): '''simple docstring''' assert test_trie() def a__ ( ): '''simple docstring''' lowerCAmelCase : Dict = RadixNode() lowerCAmelCase : Optional[Any] = "banana bananas bandanas bandana band apple all beast".split() root.insert_many(SCREAMING_SNAKE_CASE ) print("Words:" , SCREAMING_SNAKE_CASE ) print("Tree:" ) root.print_tree() if __name__ == "__main__": main()
108
0
"""simple docstring""" import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} # See all BART models at https://huggingface.co/models?filter=bart __snake_case = { """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, } __snake_case = { """facebook/bart-base""": 1024, """facebook/bart-large""": 1024, """facebook/bart-large-mnli""": 1024, """facebook/bart-large-cnn""": 1024, """facebook/bart-large-xsum""": 1024, """yjernite/bart_eli5""": 1024, } @lru_cache() def __lowerCAmelCase ( ) -> Dict: """simple docstring""" snake_case : Optional[int] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) snake_case : Optional[Any] = bs[:] snake_case : str = 0 for b in range(2**8 ): if b not in bs: bs.append(lowercase ) cs.append(2**8 + n ) n += 1 snake_case : Any = [chr(lowercase ) for n in cs] return dict(zip(lowercase , lowercase ) ) def __lowerCAmelCase ( lowercase : Union[str, Any] ) -> Tuple: """simple docstring""" snake_case : int = set() snake_case : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case : Dict = char return pairs class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : Any = VOCAB_FILES_NAMES __UpperCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Any = ['''input_ids''', '''attention_mask'''] def __init__( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__="replace" , UpperCamelCase__="<s>" , UpperCamelCase__="</s>" , UpperCamelCase__="</s>" , UpperCamelCase__="<s>" , UpperCamelCase__="<unk>" , UpperCamelCase__="<pad>" , UpperCamelCase__="<mask>" , UpperCamelCase__=False , **UpperCamelCase__ , ) -> Dict: '''simple docstring''' snake_case : Tuple = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else bos_token snake_case : Union[str, Any] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else eos_token snake_case : List[str] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else sep_token snake_case : List[Any] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else cls_token snake_case : Optional[int] = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else unk_token snake_case : int = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case : int = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__ ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else mask_token super().__init__( errors=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , **UpperCamelCase__ , ) with open(UpperCamelCase__ , encoding="utf-8" ) as vocab_handle: snake_case : str = json.load(UpperCamelCase__ ) snake_case : int = {v: k for k, v in self.encoder.items()} snake_case : Optional[Any] = errors # how to handle errors in decoding snake_case : List[Any] = bytes_to_unicode() snake_case : int = {v: k for k, v in self.byte_encoder.items()} with open(UpperCamelCase__ , encoding="utf-8" ) as merges_handle: snake_case : int = merges_handle.read().split("\n" )[1:-1] snake_case : Tuple = [tuple(merge.split() ) for merge in bpe_merges] snake_case : Dict = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) snake_case : Any = {} snake_case : Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case : Any = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' return len(self.encoder ) def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase ( self , UpperCamelCase__ ) -> Dict: '''simple docstring''' if token in self.cache: return self.cache[token] snake_case : List[str] = tuple(UpperCamelCase__ ) snake_case : Optional[Any] = get_pairs(UpperCamelCase__ ) if not pairs: return token while True: snake_case : List[Any] = min(UpperCamelCase__ , key=lambda UpperCamelCase__ : self.bpe_ranks.get(UpperCamelCase__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break snake_case : str = bigram snake_case : Tuple = [] snake_case : Any = 0 while i < len(UpperCamelCase__ ): try: snake_case : int = word.index(UpperCamelCase__ , UpperCamelCase__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case : List[str] = j if word[i] == first and i < len(UpperCamelCase__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case : Dict = tuple(UpperCamelCase__ ) snake_case : Optional[int] = new_word if len(UpperCamelCase__ ) == 1: break else: snake_case : Optional[int] = get_pairs(UpperCamelCase__ ) snake_case : Dict = " ".join(UpperCamelCase__ ) snake_case : List[str] = word return word def lowerCamelCase ( self , UpperCamelCase__ ) -> List[Any]: '''simple docstring''' snake_case : List[Any] = [] for token in re.findall(self.pat , UpperCamelCase__ ): snake_case : Any = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(UpperCamelCase__ ).split(" " ) ) return bpe_tokens def lowerCamelCase ( self , UpperCamelCase__ ) -> List[str]: '''simple docstring''' return self.encoder.get(UpperCamelCase__ , self.encoder.get(self.unk_token ) ) def lowerCamelCase ( self , UpperCamelCase__ ) -> Union[str, Any]: '''simple docstring''' return self.decoder.get(UpperCamelCase__ ) def lowerCamelCase ( self , UpperCamelCase__ ) -> str: '''simple docstring''' snake_case : int = "".join(UpperCamelCase__ ) snake_case : Optional[int] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(UpperCamelCase__ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return snake_case : Any = os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) snake_case : List[str] = os.path.join( UpperCamelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(UpperCamelCase__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCamelCase__ , ensure_ascii=UpperCamelCase__ ) + "\n" ) snake_case : Optional[Any] = 0 with open(UpperCamelCase__ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCamelCase__ : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' " Please check that the tokenizer is not corrupted!" ) snake_case : List[Any] = token_index writer.write(" ".join(UpperCamelCase__ ) + "\n" ) index += 1 return vocab_file, merge_file def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case : str = [self.cls_token_id] snake_case : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase__ , token_ids_a=UpperCamelCase__ , already_has_special_tokens=UpperCamelCase__ ) if token_ids_a is None: return [1] + ([0] * len(UpperCamelCase__ )) + [1] return [1] + ([0] * len(UpperCamelCase__ )) + [1, 1] + ([0] * len(UpperCamelCase__ )) + [1] def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ = None ) -> List[int]: '''simple docstring''' snake_case : Union[str, Any] = [self.sep_token_id] snake_case : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__=False , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' snake_case : Union[str, Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(UpperCamelCase__ ) > 0 and not text[0].isspace()): snake_case : Any = " " + text return (text, kwargs)
370
"""simple docstring""" import argparse import logging import pickle from collections import Counter logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""", datefmt="""%m/%d/%Y %H:%M:%S""", level=logging.INFO ) __snake_case = logging.getLogger(__name__) if __name__ == "__main__": __snake_case = argparse.ArgumentParser( description="""Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)""" ) parser.add_argument( """--data_file""", type=str, default="""data/dump.bert-base-uncased.pickle""", help="""The binarized dataset.""" ) parser.add_argument( """--token_counts_dump""", type=str, default="""data/token_counts.bert-base-uncased.pickle""", help="""The dump file.""" ) parser.add_argument("""--vocab_size""", default=30522, type=int) __snake_case = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, """rb""") as fp: __snake_case = pickle.load(fp) logger.info("""Counting occurrences for MLM.""") __snake_case = Counter() for tk_ids in data: counter.update(tk_ids) __snake_case = [0] * args.vocab_size for k, v in counter.items(): __snake_case = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, """wb""") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
112
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class A : def __init__(self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[int]=1_3 , __UpperCAmelCase : Optional[Any]=7 , __UpperCAmelCase : Tuple=True , __UpperCAmelCase : Optional[Any]=True , __UpperCAmelCase : List[Any]=True , __UpperCAmelCase : Optional[Any]=9_9 , __UpperCAmelCase : Tuple=3_2 , __UpperCAmelCase : List[Any]=5 , __UpperCAmelCase : Optional[int]=4 , __UpperCAmelCase : Tuple=3_7 , __UpperCAmelCase : List[str]="gelu" , __UpperCAmelCase : Dict=0.1 , __UpperCAmelCase : Optional[Any]=0.1 , __UpperCAmelCase : Tuple=5_1_2 , __UpperCAmelCase : Dict=1_6 , __UpperCAmelCase : Optional[int]=2 , __UpperCAmelCase : str=0.02 , __UpperCAmelCase : int=3 , __UpperCAmelCase : int=4 , __UpperCAmelCase : List[Any]=None , ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_token_type_ids UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = num_labels UpperCAmelCase__ = num_choices UpperCAmelCase__ = scope UpperCAmelCase__ = self.vocab_size - 1 def lowercase_ (self : List[Any] ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) UpperCAmelCase__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowercase_ (self : List[str] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Dict , *__UpperCAmelCase : int ) -> str: """simple docstring""" UpperCAmelCase__ = OpenAIGPTModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase__ = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase , head_mask=__UpperCAmelCase ) UpperCAmelCase__ = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ (self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : str , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , *__UpperCAmelCase : Optional[Any] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = OpenAIGPTLMHeadModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase__ = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ (self : int , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Dict , *__UpperCAmelCase : str ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = OpenAIGPTDoubleHeadsModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase__ = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ (self : List[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , *__UpperCAmelCase : Optional[Any] ) -> int: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = OpenAIGPTForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ (self : List[str] ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) = config_and_inputs UpperCAmelCase__ = { "input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask, } return config, inputs_dict @require_torch class A ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : Optional[Any] = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) __UpperCAmelCase : List[Any] = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly __UpperCAmelCase : Optional[Any] = ( { 'feature-extraction': OpenAIGPTModel, 'text-classification': OpenAIGPTForSequenceClassification, 'text-generation': OpenAIGPTLMHeadModel, 'zero-shot': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowercase_ (self : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : int , __UpperCAmelCase : int ) -> Tuple: """simple docstring""" if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowercase_ (self : Dict , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : str=False ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = super()._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": UpperCAmelCase__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=__UpperCAmelCase , ) UpperCAmelCase__ = inputs_dict["labels"] UpperCAmelCase__ = inputs_dict["labels"] UpperCAmelCase__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=__UpperCAmelCase , ) UpperCAmelCase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__UpperCAmelCase ) return inputs_dict def lowercase_ (self : Union[str, Any] ) -> Any: """simple docstring""" UpperCAmelCase__ = OpenAIGPTModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__UpperCAmelCase , n_embd=3_7 ) def lowercase_ (self : Union[str, Any] ) -> Any: """simple docstring""" self.config_tester.run_common_tests() def lowercase_ (self : List[str] ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*__UpperCAmelCase ) def lowercase_ (self : Union[str, Any] ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__UpperCAmelCase ) def lowercase_ (self : Union[str, Any] ) -> str: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*__UpperCAmelCase ) def lowercase_ (self : Tuple ) -> Any: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*__UpperCAmelCase ) @slow def lowercase_ (self : Optional[int] ) -> Union[str, Any]: """simple docstring""" for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ = OpenAIGPTModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @require_torch class A ( unittest.TestCase ): @slow def lowercase_ (self : List[Any] ) -> int: """simple docstring""" UpperCAmelCase__ = OpenAIGPTLMHeadModel.from_pretrained("openai-gpt" ) model.to(__UpperCAmelCase ) UpperCAmelCase__ = torch.tensor([[4_8_1, 4_7_3_5, 5_4_4]] , dtype=torch.long , device=__UpperCAmelCase ) # the president is UpperCAmelCase__ = [ 4_8_1, 4_7_3_5, 5_4_4, 2_4_6, 9_6_3, 8_7_0, 7_6_2, 2_3_9, 2_4_4, 4_0_4_7_7, 2_4_4, 2_4_9, 7_1_9, 8_8_1, 4_8_7, 5_4_4, 2_4_0, 2_4_4, 6_0_3, 4_8_1, ] # the president is a very good man. " \n " i\'m sure he is, " said the UpperCAmelCase__ = model.generate(__UpperCAmelCase , do_sample=__UpperCAmelCase ) self.assertListEqual(output_ids[0].tolist() , __UpperCAmelCase )
65
from __future__ import annotations from collections import deque class A : def __init__(self : Dict , __UpperCAmelCase : list[str] ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = [] self.adlist.append( {"value": "", "next_states": [], "fail_state": 0, "output": []} ) for keyword in keywords: self.add_keyword(__UpperCAmelCase ) self.set_fail_transitions() def lowercase_ (self : Tuple , __UpperCAmelCase : int , __UpperCAmelCase : str ) -> int | None: """simple docstring""" for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def lowercase_ (self : Dict , __UpperCAmelCase : str ) -> None: """simple docstring""" UpperCAmelCase__ = 0 for character in keyword: UpperCAmelCase__ = self.find_next_state(__UpperCAmelCase , __UpperCAmelCase ) if next_state is None: self.adlist.append( { "value": character, "next_states": [], "fail_state": 0, "output": [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) UpperCAmelCase__ = len(self.adlist ) - 1 else: UpperCAmelCase__ = next_state self.adlist[current_state]["output"].append(__UpperCAmelCase ) def lowercase_ (self : Optional[int] ) -> None: """simple docstring""" UpperCAmelCase__ = deque() for node in self.adlist[0]["next_states"]: q.append(__UpperCAmelCase ) UpperCAmelCase__ = 0 while q: UpperCAmelCase__ = q.popleft() for child in self.adlist[r]["next_states"]: q.append(__UpperCAmelCase ) UpperCAmelCase__ = self.adlist[r]["fail_state"] while ( self.find_next_state(__UpperCAmelCase , self.adlist[child]["value"] ) is None and state != 0 ): UpperCAmelCase__ = self.adlist[state]["fail_state"] UpperCAmelCase__ = self.find_next_state( __UpperCAmelCase , self.adlist[child]["value"] ) if self.adlist[child]["fail_state"] is None: UpperCAmelCase__ = 0 UpperCAmelCase__ = ( self.adlist[child]["output"] + self.adlist[self.adlist[child]["fail_state"]]["output"] ) def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : str ) -> dict[str, list[int]]: """simple docstring""" UpperCAmelCase__ = {} # returns a dict with keywords and list of its occurrences UpperCAmelCase__ = 0 for i in range(len(__UpperCAmelCase ) ): while ( self.find_next_state(__UpperCAmelCase , string[i] ) is None and current_state != 0 ): UpperCAmelCase__ = self.adlist[current_state]["fail_state"] UpperCAmelCase__ = self.find_next_state(__UpperCAmelCase , string[i] ) if next_state is None: UpperCAmelCase__ = 0 else: UpperCAmelCase__ = next_state for key in self.adlist[current_state]["output"]: if key not in result: UpperCAmelCase__ = [] result[key].append(i - len(__UpperCAmelCase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
65
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _snake_case = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['NllbTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['NllbTokenizerFast'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
368
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class UpperCAmelCase_ ( a , a , unittest.TestCase): lowerCamelCase__ = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowerCamelCase__ = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowerCamelCase__ = False lowerCamelCase__ = False def snake_case__ ( self, __a, __a, __a=False): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = super()._prepare_for_class(__a, __a, return_labels=__a) if return_labels: if model_class in get_values(__a): _lowerCAmelCase : Tuple = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa) return inputs_dict class UpperCAmelCase_ ( a): def __init__( self, __a, __a=13, __a=7, __a=True, __a=True, __a=True, __a=True, __a=99, __a=32, __a=32, __a=2, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=512, __a=16, __a=2, __a=0.02, __a=3, __a=4, __a=None, ): '''simple docstring''' _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : Dict = batch_size _lowerCAmelCase : str = seq_length _lowerCAmelCase : int = is_training _lowerCAmelCase : List[Any] = use_input_mask _lowerCAmelCase : Optional[Any] = use_token_type_ids _lowerCAmelCase : Union[str, Any] = use_labels _lowerCAmelCase : int = vocab_size _lowerCAmelCase : int = hidden_size _lowerCAmelCase : Optional[int] = num_hidden_layers _lowerCAmelCase : Tuple = num_attention_heads _lowerCAmelCase : Dict = intermediate_size _lowerCAmelCase : Tuple = hidden_act _lowerCAmelCase : Any = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : List[Any] = max_position_embeddings _lowerCAmelCase : Any = type_vocab_size _lowerCAmelCase : List[Any] = type_sequence_label_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : List[str] = num_labels _lowerCAmelCase : List[Any] = num_choices _lowerCAmelCase : str = scope _lowerCAmelCase : Union[str, Any] = embedding_size def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size) _lowerCAmelCase : str = None if self.use_input_mask: _lowerCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length]) _lowerCAmelCase : List[str] = None if self.use_token_type_ids: _lowerCAmelCase : Dict = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size) _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[int] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size], self.type_sequence_label_size) _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length], self.num_labels) _lowerCAmelCase : str = ids_tensor([self.batch_size], self.num_choices) _lowerCAmelCase : Optional[Any] = MobileBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, embedding_size=self.embedding_size, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertModel(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Any = model(__a) _lowerCAmelCase : Optional[Any] = [input_ids, input_mask] _lowerCAmelCase : List[Any] = model(__a) _lowerCAmelCase : Any = model(__a) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape, (self.batch_size, self.hidden_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForMaskedLM(config=__a) _lowerCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForNextSentencePrediction(config=__a) _lowerCAmelCase : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = TFMobileBertForPreTraining(config=__a) _lowerCAmelCase : Any = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual( result.prediction_logits.shape, (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape, (self.batch_size, 2)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Dict = self.num_labels _lowerCAmelCase : Optional[Any] = TFMobileBertForSequenceClassification(config=__a) _lowerCAmelCase : List[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Optional[Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.num_choices _lowerCAmelCase : List[Any] = TFMobileBertForMultipleChoice(config=__a) _lowerCAmelCase : Dict = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : List[str] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[int] = tf.tile(tf.expand_dims(__a, 1), (1, self.num_choices, 1)) _lowerCAmelCase : Optional[Any] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } _lowerCAmelCase : List[str] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = self.num_labels _lowerCAmelCase : Union[str, Any] = TFMobileBertForTokenClassification(config=__a) _lowerCAmelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels)) def snake_case__ ( self, __a, __a, __a, __a, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : int = TFMobileBertForQuestionAnswering(config=__a) _lowerCAmelCase : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length)) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Union[str, Any] = config_and_inputs _lowerCAmelCase : List[str] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = TFMobileBertModelTest.TFMobileBertModelTester(self) _lowerCAmelCase : List[Any] = ConfigTester(self, config_class=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__a) @slow def snake_case__ ( self): '''simple docstring''' for model_name in ["google/mobilebert-uncased"]: _lowerCAmelCase : List[Any] = TFMobileBertModel.from_pretrained(__a) self.assertIsNotNone(__a) @require_tf class UpperCAmelCase_ ( unittest.TestCase): @slow def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = TFMobileBertForPreTraining.from_pretrained("google/mobilebert-uncased") _lowerCAmelCase : Any = tf.constant([[0, 1, 2, 3, 4, 5]]) _lowerCAmelCase : Tuple = model(__a)[0] _lowerCAmelCase : Union[str, Any] = [1, 6, 3_0522] self.assertEqual(output.shape, __a) _lowerCAmelCase : Tuple = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ]) tf.debugging.assert_near(output[:, :3, :3], __a, atol=1E-4)
300
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __A : Optional[Any] = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase : Optional[Any] = DPTConfig(embedding_type='hybrid' ) if "large" in checkpoint_url: lowerCAmelCase : Optional[int] = 1_024 lowerCAmelCase : Tuple = 4_096 lowerCAmelCase : Optional[int] = 24 lowerCAmelCase : Optional[int] = 16 lowerCAmelCase : str = [5, 11, 17, 23] lowerCAmelCase : Tuple = [256, 512, 1_024, 1_024] lowerCAmelCase : Optional[int] = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: lowerCAmelCase : Optional[int] = 768 lowerCAmelCase : int = [1, 1, 1, 0.5] lowerCAmelCase : List[Any] = [256, 512, 768, 768] lowerCAmelCase : List[Any] = 150 lowerCAmelCase : Optional[Any] = 16 lowerCAmelCase : Union[str, Any] = (1, 384, 384) lowerCAmelCase : Tuple = False lowerCAmelCase : List[str] = 'project' if "ade" in checkpoint_url: lowerCAmelCase : Tuple = True lowerCAmelCase : str = 768 lowerCAmelCase : List[str] = [1, 1, 1, 0.5] lowerCAmelCase : Optional[Any] = 150 lowerCAmelCase : List[str] = 16 lowerCAmelCase : Dict = 'huggingface/label-files' lowerCAmelCase : Optional[Any] = 'ade20k-id2label.json' lowerCAmelCase : Tuple = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase, _UpperCAmelCase, repo_type='dataset' ) ), 'r' ) ) lowerCAmelCase : Optional[Any] = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} lowerCAmelCase : int = idalabel lowerCAmelCase : str = {v: k for k, v in idalabel.items()} lowerCAmelCase : int = [1, 150, 480, 480] return config, expected_shape def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> int: '''simple docstring''' lowerCAmelCase : List[str] = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(_UpperCAmelCase, _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Tuple: '''simple docstring''' if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): lowerCAmelCase : Optional[int] = name.replace('pretrained.model', 'dpt.encoder' ) if "pretrained.model" in name: lowerCAmelCase : Dict = name.replace('pretrained.model', 'dpt.embeddings' ) if "patch_embed" in name: lowerCAmelCase : int = name.replace('patch_embed', '' ) if "pos_embed" in name: lowerCAmelCase : Any = name.replace('pos_embed', 'position_embeddings' ) if "attn.proj" in name: lowerCAmelCase : str = name.replace('attn.proj', 'attention.output.dense' ) if "proj" in name and "project" not in name: lowerCAmelCase : Union[str, Any] = name.replace('proj', 'projection' ) if "blocks" in name: lowerCAmelCase : List[str] = name.replace('blocks', 'layer' ) if "mlp.fc1" in name: lowerCAmelCase : Optional[Any] = name.replace('mlp.fc1', 'intermediate.dense' ) if "mlp.fc2" in name: lowerCAmelCase : Any = name.replace('mlp.fc2', 'output.dense' ) if "norm1" in name and "backbone" not in name: lowerCAmelCase : List[str] = name.replace('norm1', 'layernorm_before' ) if "norm2" in name and "backbone" not in name: lowerCAmelCase : str = name.replace('norm2', 'layernorm_after' ) if "scratch.output_conv" in name: lowerCAmelCase : int = name.replace('scratch.output_conv', 'head' ) if "scratch" in name: lowerCAmelCase : Optional[int] = name.replace('scratch', 'neck' ) if "layer1_rn" in name: lowerCAmelCase : int = name.replace('layer1_rn', 'convs.0' ) if "layer2_rn" in name: lowerCAmelCase : Optional[Any] = name.replace('layer2_rn', 'convs.1' ) if "layer3_rn" in name: lowerCAmelCase : List[str] = name.replace('layer3_rn', 'convs.2' ) if "layer4_rn" in name: lowerCAmelCase : int = name.replace('layer4_rn', 'convs.3' ) if "refinenet" in name: lowerCAmelCase : Optional[int] = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 lowerCAmelCase : Any = name.replace(f"refinenet{layer_idx}", f"fusion_stage.layers.{abs(layer_idx-4 )}" ) if "out_conv" in name: lowerCAmelCase : Dict = name.replace('out_conv', 'projection' ) if "resConfUnit1" in name: lowerCAmelCase : Optional[int] = name.replace('resConfUnit1', 'residual_layer1' ) if "resConfUnit2" in name: lowerCAmelCase : List[str] = name.replace('resConfUnit2', 'residual_layer2' ) if "conv1" in name: lowerCAmelCase : List[Any] = name.replace('conv1', 'convolution1' ) if "conv2" in name: lowerCAmelCase : Optional[int] = name.replace('conv2', 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: lowerCAmelCase : Union[str, Any] = name.replace('pretrained.act_postprocess1.0.project.0', 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: lowerCAmelCase : Optional[Any] = name.replace('pretrained.act_postprocess2.0.project.0', 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: lowerCAmelCase : List[Any] = name.replace('pretrained.act_postprocess3.0.project.0', 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: lowerCAmelCase : Optional[Any] = name.replace('pretrained.act_postprocess4.0.project.0', 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: lowerCAmelCase : Tuple = name.replace('pretrained.act_postprocess1.3', 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: lowerCAmelCase : str = name.replace('pretrained.act_postprocess1.4', 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: lowerCAmelCase : int = name.replace('pretrained.act_postprocess2.3', 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: lowerCAmelCase : Optional[Any] = name.replace('pretrained.act_postprocess2.4', 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: lowerCAmelCase : List[str] = name.replace('pretrained.act_postprocess3.3', 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: lowerCAmelCase : List[str] = name.replace('pretrained.act_postprocess4.3', 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: lowerCAmelCase : List[str] = name.replace('pretrained.act_postprocess4.4', 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: lowerCAmelCase : int = name.replace('pretrained', 'dpt' ) if "bn" in name: lowerCAmelCase : List[str] = name.replace('bn', 'batch_norm' ) if "head" in name: lowerCAmelCase : Any = name.replace('head', 'head.head' ) if "encoder.norm" in name: lowerCAmelCase : Dict = name.replace('encoder.norm', 'layernorm' ) if "auxlayer" in name: lowerCAmelCase : Tuple = name.replace('auxlayer', 'auxiliary_head.head' ) if "backbone" in name: lowerCAmelCase : Tuple = name.replace('backbone', 'backbone.bit.encoder' ) if ".." in name: lowerCAmelCase : Optional[Any] = name.replace('..', '.' ) if "stem.conv" in name: lowerCAmelCase : List[str] = name.replace('stem.conv', 'bit.embedder.convolution' ) if "blocks" in name: lowerCAmelCase : Dict = name.replace('blocks', 'layers' ) if "convolution" in name and "backbone" in name: lowerCAmelCase : Dict = name.replace('convolution', 'conv' ) if "layer" in name and "backbone" in name: lowerCAmelCase : Dict = name.replace('layer', 'layers' ) if "backbone.bit.encoder.bit" in name: lowerCAmelCase : List[str] = name.replace('backbone.bit.encoder.bit', 'backbone.bit' ) if "embedder.conv" in name: lowerCAmelCase : Any = name.replace('embedder.conv', 'embedder.convolution' ) if "backbone.bit.encoder.stem.norm" in name: lowerCAmelCase : Optional[int] = name.replace('backbone.bit.encoder.stem.norm', 'backbone.bit.embedder.norm' ) return name def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase : List[Any] = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.weight" ) lowerCAmelCase : int = state_dict.pop(f"dpt.encoder.layer.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : Union[str, Any] = in_proj_weight[: config.hidden_size, :] lowerCAmelCase : Dict = in_proj_bias[: config.hidden_size] lowerCAmelCase : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase : str = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase : List[str] = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: '''simple docstring''' lowerCAmelCase : Optional[int] = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCAmelCase : Tuple = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase ).raw ) return im @torch.no_grad() def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowerCAmelCase , lowerCAmelCase : List[str] = get_dpt_config(_UpperCAmelCase ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") lowerCAmelCase : str = torch.load(_UpperCAmelCase, map_location='cpu' ) # remove certain keys remove_ignore_keys_(_UpperCAmelCase ) # rename keys for key in state_dict.copy().keys(): lowerCAmelCase : str = state_dict.pop(_UpperCAmelCase ) lowerCAmelCase : int = val # read in qkv matrices read_in_q_k_v(_UpperCAmelCase, _UpperCAmelCase ) # load HuggingFace model lowerCAmelCase : int = DPTForSemanticSegmentation(_UpperCAmelCase ) if 'ade' in checkpoint_url else DPTForDepthEstimation(_UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() # Check outputs on an image lowerCAmelCase : str = 480 if 'ade' in checkpoint_url else 384 lowerCAmelCase : Dict = DPTImageProcessor(size=_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = prepare_img() lowerCAmelCase : Union[str, Any] = image_processor(_UpperCAmelCase, return_tensors='pt' ) # forward pass lowerCAmelCase : Optional[Any] = model(**_UpperCAmelCase ).logits if 'ade' in checkpoint_url else model(**_UpperCAmelCase ).predicted_depth if show_prediction: lowerCAmelCase : str = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ), size=(image.size[1], image.size[0]), mode='bicubic', align_corners=_UpperCAmelCase, ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCAmelCase ) if push_to_hub: model.push_to_hub('ybelkada/dpt-hybrid-midas' ) image_processor.push_to_hub('ybelkada/dpt-hybrid-midas' ) if __name__ == "__main__": __A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) parser.add_argument( '''--show_prediction''', action='''store_true''', ) __A : Dict = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
138
from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar __A : Any = TypeVar('''T''') class __A ( Generic[T] ): def __init__( self : Dict , UpperCAmelCase_ : list[T] , UpperCAmelCase_ : Callable[[T, T], T] ): lowerCAmelCase : Any | T = None lowerCAmelCase : int = len(UpperCAmelCase_ ) lowerCAmelCase : list[T] = [any_type for _ in range(self.N )] + arr lowerCAmelCase : List[Any] = fnc self.build() def lowercase__ ( self : str ): for p in range(self.N - 1 , 0 , -1 ): lowerCAmelCase : Optional[Any] = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def lowercase__ ( self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : T ): p += self.N lowerCAmelCase : int = v while p > 1: lowerCAmelCase : List[Any] = p // 2 lowerCAmelCase : List[Any] = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def lowercase__ ( self : Optional[Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int ): # noqa: E741 lowerCAmelCase , lowerCAmelCase : str = l + self.N, r + self.N lowerCAmelCase : T | None = None while l <= r: if l % 2 == 1: lowerCAmelCase : Any = self.st[l] if res is None else self.fn(UpperCAmelCase_ , self.st[l] ) if r % 2 == 0: lowerCAmelCase : Optional[int] = self.st[r] if res is None else self.fn(UpperCAmelCase_ , self.st[r] ) lowerCAmelCase , lowerCAmelCase : Optional[Any] = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce __A : str = [1, 10, -2, 9, -3, 8, 4, -7, 5, 6, 11, -12] __A : List[Any] = { 0: 7, 1: 2, 2: 6, 3: -14, 4: 5, 5: 4, 6: 7, 7: -10, 8: 9, 9: 10, 10: 12, 11: 1, } __A : Optional[int] = SegmentTree(test_array, min) __A : Optional[int] = SegmentTree(test_array, max) __A : Dict = SegmentTree(test_array, lambda a, b: a + b) def SCREAMING_SNAKE_CASE__ ( ) -> None: '''simple docstring''' for i in range(len(_UpperCAmelCase ) ): for j in range(_UpperCAmelCase, len(_UpperCAmelCase ) ): lowerCAmelCase : str = reduce(_UpperCAmelCase, test_array[i : j + 1] ) lowerCAmelCase : Dict = reduce(_UpperCAmelCase, test_array[i : j + 1] ) lowerCAmelCase : str = reduce(lambda _UpperCAmelCase, _UpperCAmelCase : a + b, test_array[i : j + 1] ) assert min_range == min_segment_tree.query(_UpperCAmelCase, _UpperCAmelCase ) assert max_range == max_segment_tree.query(_UpperCAmelCase, _UpperCAmelCase ) assert sum_range == sum_segment_tree.query(_UpperCAmelCase, _UpperCAmelCase ) test_all_segments() for index, value in test_updates.items(): __A : int = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
138
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Union[str, Any] = logging.get_logger(__name__) __snake_case : Optional[int] = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = 'gpt_bigcode' __snake_case = ['past_key_values'] __snake_case = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Optional[Any] , lowerCAmelCase_ : List[str]=5_02_57 , lowerCAmelCase_ : str=10_24 , lowerCAmelCase_ : str=7_68 , lowerCAmelCase_ : str=12 , lowerCAmelCase_ : int=12 , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : List[Any]="gelu_pytorch_tanh" , lowerCAmelCase_ : Union[str, Any]=0.1 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : Dict=1e-5 , lowerCAmelCase_ : str=0.02 , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : str=5_02_56 , lowerCAmelCase_ : Dict=5_02_56 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[Any]=True , **lowerCAmelCase_ : Optional[Any] , ) -> Tuple: '''simple docstring''' A__ : Optional[Any] =vocab_size A__ : Optional[Any] =n_positions A__ : List[str] =n_embd A__ : str =n_layer A__ : Optional[int] =n_head A__ : Optional[int] =n_inner A__ : int =activation_function A__ : int =resid_pdrop A__ : int =embd_pdrop A__ : Dict =attn_pdrop A__ : Any =layer_norm_epsilon A__ : List[Any] =initializer_range A__ : Dict =scale_attn_weights A__ : Any =use_cache A__ : List[Any] =attention_softmax_in_fpaa A__ : Optional[int] =scale_attention_softmax_in_fpaa A__ : Dict =multi_query A__ : List[str] =bos_token_id A__ : Any =eos_token_id super().__init__(bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ )
363
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowercase__ ( self : Optional[int] ) -> int: '''simple docstring''' A__ : int =tempfile.mkdtemp() # fmt: off A__ : Optional[int] =["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on A__ : List[Any] =dict(zip(lowerCAmelCase_ , range(len(lowerCAmelCase_ ) ) ) ) A__ : Tuple =["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] A__ : int ={"""unk_token""": """<unk>"""} A__ : Optional[Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A__ : int =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCAmelCase_ ) ) A__ : Dict ={ """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } A__ : Dict =os.path.join(self.tmpdirname , lowerCAmelCase_ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] , **lowerCAmelCase_ : Union[str, Any] ) -> int: '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowercase__ ( self : Optional[Any] , **lowerCAmelCase_ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowercase__ ( self : Union[str, Any] , **lowerCAmelCase_ : str ) -> Union[str, Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowercase__ ( self : Dict ) -> str: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowercase__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' A__ : Dict =[np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] A__ : int =[Image.fromarray(np.moveaxis(lowerCAmelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' A__ : int =self.get_tokenizer() A__ : Optional[int] =self.get_rust_tokenizer() A__ : Any =self.get_image_processor() A__ : int =CLIPSegProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) A__ : Dict =CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCAmelCase_ ) A__ : int =CLIPSegProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) A__ : Optional[int] =CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCAmelCase_ ) self.assertIsInstance(processor_fast.tokenizer , lowerCAmelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCAmelCase_ ) self.assertIsInstance(processor_fast.image_processor , lowerCAmelCase_ ) def lowercase__ ( self : str ) -> List[str]: '''simple docstring''' A__ : List[str] =CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A__ : List[Any] =self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) A__ : Union[str, Any] =self.get_image_processor(do_normalize=lowerCAmelCase_ , padding_value=1.0 ) A__ : Optional[int] =CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCAmelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase_ ) def lowercase__ ( self : str ) -> str: '''simple docstring''' A__ : Optional[Any] =self.get_image_processor() A__ : int =self.get_tokenizer() A__ : Optional[int] =CLIPSegProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) A__ : Dict =self.prepare_image_inputs() A__ : List[Any] =image_processor(lowerCAmelCase_ , return_tensors="""np""" ) A__ : List[Any] =processor(images=lowerCAmelCase_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' A__ : Any =self.get_image_processor() A__ : Optional[Any] =self.get_tokenizer() A__ : int =CLIPSegProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) A__ : Any ="""lower newer""" A__ : Optional[int] =processor(text=lowerCAmelCase_ ) A__ : Optional[int] =tokenizer(lowerCAmelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase__ ( self : List[Any] ) -> List[str]: '''simple docstring''' A__ : Any =self.get_image_processor() A__ : Optional[Any] =self.get_tokenizer() A__ : Union[str, Any] =CLIPSegProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) A__ : Optional[Any] ="""lower newer""" A__ : List[str] =self.prepare_image_inputs() A__ : Optional[Any] =processor(text=lowerCAmelCase_ , images=lowerCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase_ ): processor() def lowercase__ ( self : Any ) -> Optional[Any]: '''simple docstring''' A__ : Optional[Any] =self.get_image_processor() A__ : List[str] =self.get_tokenizer() A__ : Optional[int] =CLIPSegProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) A__ : Tuple =self.prepare_image_inputs() A__ : str =self.prepare_image_inputs() A__ : int =processor(images=lowerCAmelCase_ , visual_prompt=lowerCAmelCase_ ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """conditional_pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase_ ): processor() def lowercase__ ( self : Optional[Any] ) -> str: '''simple docstring''' A__ : List[str] =self.get_image_processor() A__ : Optional[int] =self.get_tokenizer() A__ : Any =CLIPSegProcessor(tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) A__ : List[Any] =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A__ : Tuple =processor.batch_decode(lowerCAmelCase_ ) A__ : List[Any] =tokenizer.batch_decode(lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ )
136
0
from functools import lru_cache @lru_cache def __A ( __lowerCAmelCase )-> int: """simple docstring""" if num < 0: raise ValueError('Number should not be negative.' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
39
class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase = "" , UpperCAmelCase = False ): """simple docstring""" _UpperCAmelCase = {} # A node will be a leaf if the tree contains its word _UpperCAmelCase = is_leaf _UpperCAmelCase = prefix def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = 0 for q, w in zip(self.prefix , UpperCAmelCase ): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" for word in words: self.insert(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" if self.prefix == word: _UpperCAmelCase = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: _UpperCAmelCase = RadixNode(prefix=UpperCAmelCase , is_leaf=UpperCAmelCase ) else: _UpperCAmelCase = self.nodes[word[0]] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = incoming_node.match( UpperCAmelCase ) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(UpperCAmelCase ) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: _UpperCAmelCase = remaining_prefix _UpperCAmelCase = self.nodes[matching_string[0]] _UpperCAmelCase = RadixNode(UpperCAmelCase , UpperCAmelCase ) _UpperCAmelCase = aux_node if remaining_word == "": _UpperCAmelCase = True else: self.nodes[matching_string[0]].insert(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self.nodes.get(word[0] , UpperCAmelCase ) if not incoming_node: return False else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = incoming_node.match( UpperCAmelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(UpperCAmelCase ) def UpperCamelCase ( self , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = self.nodes.get(word[0] , UpperCAmelCase ) if not incoming_node: return False else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = incoming_node.match( UpperCAmelCase ) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(UpperCAmelCase ) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes ) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes ) == 1 and not self.is_leaf: _UpperCAmelCase = list(self.nodes.values() )[0] _UpperCAmelCase = merging_node.is_leaf self.prefix += merging_node.prefix _UpperCAmelCase = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes ) > 1: _UpperCAmelCase = False # If there is 1 edge, we merge it with its child else: _UpperCAmelCase = list(incoming_node.nodes.values() )[0] _UpperCAmelCase = merging_node.is_leaf incoming_node.prefix += merging_node.prefix _UpperCAmelCase = merging_node.nodes return True def UpperCamelCase ( self , UpperCAmelCase = 0 ): """simple docstring""" if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '' ) for value in self.nodes.values(): value.print_tree(height + 1 ) def __A ( )-> bool: """simple docstring""" _UpperCAmelCase = 'banana bananas bandana band apple all beast'.split() _UpperCAmelCase = RadixNode() root.insert_many(__lowerCAmelCase ) assert all(root.find(__lowerCAmelCase ) for word in words ) assert not root.find('bandanas' ) assert not root.find('apps' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def __A ( )-> None: """simple docstring""" assert test_trie() def __A ( )-> None: """simple docstring""" _UpperCAmelCase = RadixNode() _UpperCAmelCase = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(__lowerCAmelCase ) print('Words:' , __lowerCAmelCase ) print('Tree:' ) root.print_tree() if __name__ == "__main__": main()
39
1
import pytest _lowerCamelCase : Optional[int] = """__dummy_dataset1__""" _lowerCamelCase : Optional[Any] = """ import json import os import datasets REPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\" URLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { \"tokens\": datasets.Sequence(datasets.Value(\"string\")), \"ner_tags\": datasets.Sequence( datasets.features.ClassLabel( names=[ \"O\", \"B-PER\", \"I-PER\", \"B-ORG\", \"I-ORG\", \"B-LOC\", \"I-LOC\", ] ) ), \"langs\": datasets.Sequence(datasets.Value(\"string\")), \"spans\": datasets.Sequence(datasets.Value(\"string\")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}), ] def _generate_examples(self, filepath): with open(filepath, \"r\", encoding=\"utf-8\") as f: for i, line in enumerate(f): yield i, json.loads(line) """ @pytest.fixture def SCREAMING_SNAKE_CASE ( ) -> int: """simple docstring""" return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def SCREAMING_SNAKE_CASE ( ) -> Tuple: """simple docstring""" return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> Union[str, Any]: """simple docstring""" A__ = dataset_loading_script_name A__ = tmp_path / '''datasets''' / script_name script_dir.mkdir(parents=lowercase_ ) A__ = script_dir / f"""{script_name}.py""" with open(lowercase_ , '''w''' ) as f: f.write(lowercase_ ) return str(lowercase_ )
231
def SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: """simple docstring""" A__ = [] A__ = [] A__ = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator A__ = len(lowercase_ ) if (len(lowercase_ ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ) , '''Stack'''.center(lowercase_ ) , '''Postfix'''.center(lowercase_ ) , sep=''' | ''' , ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(lowercase_ ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(lowercase_ ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(lowercase_ ) == 0: stack.append(lowercase_ ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(lowercase_ ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(lowercase_ ) # push x to stack print( x.center(8 ) , (''''''.join(lowercase_ )).ljust(lowercase_ ) , (''''''.join(lowercase_ )).ljust(lowercase_ ) , sep=''' | ''' , ) # Output in tabular format while len(lowercase_ ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ) , (''''''.join(lowercase_ )).ljust(lowercase_ ) , (''''''.join(lowercase_ )).ljust(lowercase_ ) , sep=''' | ''' , ) # Output in tabular format return "".join(lowercase_ ) # return Postfix as str def SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[Any]: """simple docstring""" A__ = list(infix[::-1] ) # reverse the infix equation for i in range(len(lowercase_ ) ): if infix[i] == "(": A__ = ''')''' # change "(" to ")" elif infix[i] == ")": A__ = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(lowercase_ ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": _lowerCamelCase : List[str] = input("""\nEnter an Infix Equation = """) # Input an Infix equation _lowerCamelCase : Dict = """""".join(Infix.split()) # Remove spaces from the input print("""\n\t""", Infix, """(Infix) -> """, infix_2_prefix(Infix), """(Prefix)""")
231
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase : Union[str, Any] = logging.get_logger(__name__) lowercase : Union[str, Any] = { '''hustvl/yolos-small''': '''https://huggingface.co/hustvl/yolos-small/resolve/main/config.json''', # See all YOLOS models at https://huggingface.co/models?filter=yolos } class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' _A = '''yolos''' def __init__( self :str , a :List[str]=7_6_8 , a :Any=1_2 , a :Optional[int]=1_2 , a :Dict=3_0_7_2 , a :List[str]="gelu" , a :int=0.0 , a :str=0.0 , a :Optional[int]=0.02 , a :Any=1E-1_2 , a :Optional[int]=[5_1_2, 8_6_4] , a :List[str]=1_6 , a :List[Any]=3 , a :Optional[Any]=True , a :Tuple=1_0_0 , a :Optional[int]=True , a :List[str]=False , a :Any=1 , a :Dict=5 , a :int=2 , a :Optional[int]=5 , a :str=2 , a :Tuple=0.1 , **a :Dict , ) -> Any: super().__init__(**lowerCAmelCase__ ) __UpperCamelCase : str = hidden_size __UpperCamelCase : List[Any] = num_hidden_layers __UpperCamelCase : Dict = num_attention_heads __UpperCamelCase : List[Any] = intermediate_size __UpperCamelCase : Optional[int] = hidden_act __UpperCamelCase : str = hidden_dropout_prob __UpperCamelCase : str = attention_probs_dropout_prob __UpperCamelCase : Optional[Any] = initializer_range __UpperCamelCase : List[Any] = layer_norm_eps __UpperCamelCase : str = image_size __UpperCamelCase : List[Any] = patch_size __UpperCamelCase : List[str] = num_channels __UpperCamelCase : Union[str, Any] = qkv_bias __UpperCamelCase : Optional[int] = num_detection_tokens __UpperCamelCase : Tuple = use_mid_position_embeddings __UpperCamelCase : Any = auxiliary_loss # Hungarian matcher __UpperCamelCase : Tuple = class_cost __UpperCamelCase : Dict = bbox_cost __UpperCamelCase : List[Any] = giou_cost # Loss coefficients __UpperCamelCase : Tuple = bbox_loss_coefficient __UpperCamelCase : List[str] = giou_loss_coefficient __UpperCamelCase : Optional[Any] = eos_coefficient class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' _A = version.parse('1.11') @property def _lowerCamelCase ( self :int ) -> str: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _lowerCamelCase ( self :Any ) -> Union[str, Any]: return 1E-4 @property def _lowerCamelCase ( self :Dict ) -> Union[str, Any]: return 1_2
232
'''simple docstring''' import argparse import os import jax as jnp import numpy as onp import torch import torch.nn as nn from music_spectrogram_diffusion import inference from tax import checkpoints from diffusers import DDPMScheduler, OnnxRuntimeModel, SpectrogramDiffusionPipeline from diffusers.pipelines.spectrogram_diffusion import SpectrogramContEncoder, SpectrogramNotesEncoder, TaFilmDecoder UpperCamelCase__ : List[Any] = '''base_with_context''' def lowerCAmelCase_ ( _lowerCamelCase: Tuple , _lowerCamelCase: Dict ): __SCREAMING_SNAKE_CASE : str = nn.Parameter(torch.FloatTensor(weights["""token_embedder"""]["""embedding"""] ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=_lowerCamelCase ) for lyr_num, lyr in enumerate(model.encoders ): __SCREAMING_SNAKE_CASE : Tuple = weights[F"layers_{lyr_num}"] __SCREAMING_SNAKE_CASE : str = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) __SCREAMING_SNAKE_CASE : Optional[int] = ly_weight["""attention"""] __SCREAMING_SNAKE_CASE : int = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) __SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : str = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def lowerCAmelCase_ ( _lowerCamelCase: List[str] , _lowerCamelCase: List[str] ): __SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.FloatTensor(weights["""input_proj"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Tuple = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=_lowerCamelCase ) for lyr_num, lyr in enumerate(model.encoders ): __SCREAMING_SNAKE_CASE : Tuple = weights[F"layers_{lyr_num}"] __SCREAMING_SNAKE_CASE : Optional[int] = ly_weight["""attention"""] __SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : int = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : List[Any] = nn.Parameter( torch.FloatTensor(ly_weight["""pre_attention_layer_norm"""]["""scale"""] ) ) __SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : List[str] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) __SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(torch.FloatTensor(weights["""encoder_norm"""]["""scale"""] ) ) return model def lowerCAmelCase_ ( _lowerCamelCase: List[str] , _lowerCamelCase: Any ): __SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense0"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(weights["""time_emb_dense1"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter( torch.FloatTensor(weights["""Embed_0"""]["""embedding"""] ) , requires_grad=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter( torch.FloatTensor(weights["""continuous_inputs_projection"""]["""kernel"""].T ) ) for lyr_num, lyr in enumerate(model.decoders ): __SCREAMING_SNAKE_CASE : str = weights[F"layers_{lyr_num}"] __SCREAMING_SNAKE_CASE : int = nn.Parameter( torch.FloatTensor(ly_weight["""pre_self_attention_layer_norm"""]["""scale"""] ) ) __SCREAMING_SNAKE_CASE : Dict = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_0"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : List[Any] = ly_weight["""self_attention"""] __SCREAMING_SNAKE_CASE : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : List[str] = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : int = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Optional[int] = ly_weight["""MultiHeadDotProductAttention_0"""] __SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter(torch.FloatTensor(attention_weights["""query"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(attention_weights["""key"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : int = nn.Parameter(torch.FloatTensor(attention_weights["""value"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(attention_weights["""out"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : int = nn.Parameter( torch.FloatTensor(ly_weight["""pre_cross_attention_layer_norm"""]["""scale"""] ) ) __SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.FloatTensor(ly_weight["""pre_mlp_layer_norm"""]["""scale"""] ) ) __SCREAMING_SNAKE_CASE : Optional[int] = nn.Parameter( torch.FloatTensor(ly_weight["""FiLMLayer_1"""]["""DenseGeneral_0"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_0"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wi_1"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.FloatTensor(ly_weight["""mlp"""]["""wo"""]["""kernel"""].T ) ) __SCREAMING_SNAKE_CASE : Any = nn.Parameter(torch.FloatTensor(weights["""decoder_norm"""]["""scale"""] ) ) __SCREAMING_SNAKE_CASE : Tuple = nn.Parameter(torch.FloatTensor(weights["""spec_out_dense"""]["""kernel"""].T ) ) return model def lowerCAmelCase_ ( _lowerCamelCase: Any ): __SCREAMING_SNAKE_CASE : int = checkpoints.load_tax_checkpoint(args.checkpoint_path ) __SCREAMING_SNAKE_CASE : Optional[Any] = jnp.tree_util.tree_map(onp.array , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = [ """from __gin__ import dynamic_registration""", """from music_spectrogram_diffusion.models.diffusion import diffusion_utils""", """diffusion_utils.ClassifierFreeGuidanceConfig.eval_condition_weight = 2.0""", """diffusion_utils.DiffusionConfig.classifier_free_guidance = @diffusion_utils.ClassifierFreeGuidanceConfig()""", ] __SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(args.checkpoint_path , """..""" , """config.gin""" ) __SCREAMING_SNAKE_CASE : Any = inference.parse_training_gin_file(_lowerCamelCase , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = inference.InferenceModel(args.checkpoint_path , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" , variance_type="""fixed_large""" ) __SCREAMING_SNAKE_CASE : List[Any] = SpectrogramNotesEncoder( max_length=synth_model.sequence_length["""inputs"""] , vocab_size=synth_model.model.module.config.vocab_size , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) __SCREAMING_SNAKE_CASE : int = SpectrogramContEncoder( input_dims=synth_model.audio_codec.n_dims , targets_context_length=synth_model.sequence_length["""targets_context"""] , d_model=synth_model.model.module.config.emb_dim , dropout_rate=synth_model.model.module.config.dropout_rate , num_layers=synth_model.model.module.config.num_encoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , feed_forward_proj="""gated-gelu""" , ) __SCREAMING_SNAKE_CASE : Tuple = TaFilmDecoder( input_dims=synth_model.audio_codec.n_dims , targets_length=synth_model.sequence_length["""targets_context"""] , max_decoder_noise_time=synth_model.model.module.config.max_decoder_noise_time , d_model=synth_model.model.module.config.emb_dim , num_layers=synth_model.model.module.config.num_decoder_layers , num_heads=synth_model.model.module.config.num_heads , d_kv=synth_model.model.module.config.head_dim , d_ff=synth_model.model.module.config.mlp_dim , dropout_rate=synth_model.model.module.config.dropout_rate , ) __SCREAMING_SNAKE_CASE : int = load_notes_encoder(ta_checkpoint["""target"""]["""token_encoder"""] , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Dict = load_continuous_encoder(ta_checkpoint["""target"""]["""continuous_encoder"""] , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = load_decoder(ta_checkpoint["""target"""]["""decoder"""] , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = OnnxRuntimeModel.from_pretrained("""kashif/soundstream_mel_decoder""" ) __SCREAMING_SNAKE_CASE : Optional[Any] = SpectrogramDiffusionPipeline( notes_encoder=_lowerCamelCase , continuous_encoder=_lowerCamelCase , decoder=_lowerCamelCase , scheduler=_lowerCamelCase , melgan=_lowerCamelCase , ) if args.save: pipe.save_pretrained(args.output_path ) if __name__ == "__main__": UpperCamelCase__ : Tuple = argparse.ArgumentParser() parser.add_argument('''--output_path''', default=None, type=str, required=True, help='''Path to the converted model.''') parser.add_argument( '''--save''', default=True, type=bool, required=False, help='''Whether to save the converted model or not.''' ) parser.add_argument( '''--checkpoint_path''', default=f"{MODEL}/checkpoint_500000", type=str, required=False, help='''Path to the original jax model checkpoint.''', ) UpperCamelCase__ : List[str] = parser.parse_args() main(args)
112
0
from ....configuration_utils import PretrainedConfig from ....utils import logging _lowerCamelCase : Any = logging.get_logger(__name__) _lowerCamelCase : Optional[Any] = { "speechbrain/m-ctc-t-large": "https://huggingface.co/speechbrain/m-ctc-t-large/resolve/main/config.json", # See all M-CTC-T models at https://huggingface.co/models?filter=mctct } class __snake_case (_a ): lowerCAmelCase__ = "mctct" def __init__( self : List[str] , _UpperCAmelCase : Union[str, Any]=8065 , _UpperCAmelCase : Optional[int]=1536 , _UpperCAmelCase : Tuple=36 , _UpperCAmelCase : Optional[Any]=6144 , _UpperCAmelCase : Optional[int]=4 , _UpperCAmelCase : List[str]=384 , _UpperCAmelCase : Optional[int]=920 , _UpperCAmelCase : List[str]=1E-5 , _UpperCAmelCase : Optional[Any]=0.3 , _UpperCAmelCase : Union[str, Any]="relu" , _UpperCAmelCase : Tuple=0.02 , _UpperCAmelCase : Tuple=0.3 , _UpperCAmelCase : Dict=0.3 , _UpperCAmelCase : Tuple=1 , _UpperCAmelCase : Dict=0 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Any=1 , _UpperCAmelCase : str=0.3 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Union[str, Any]=(7,) , _UpperCAmelCase : Dict=(3,) , _UpperCAmelCase : Union[str, Any]=80 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Tuple="sum" , _UpperCAmelCase : Dict=False , **_UpperCAmelCase : int , ) -> int: '''simple docstring''' super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) _lowerCAmelCase : List[str] = vocab_size _lowerCAmelCase : str = hidden_size _lowerCAmelCase : Union[str, Any] = num_hidden_layers _lowerCAmelCase : Union[str, Any] = intermediate_size _lowerCAmelCase : Tuple = num_attention_heads _lowerCAmelCase : int = attention_head_dim _lowerCAmelCase : Optional[int] = max_position_embeddings _lowerCAmelCase : int = layer_norm_eps _lowerCAmelCase : Any = layerdrop _lowerCAmelCase : List[str] = hidden_act _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : Tuple = hidden_dropout_prob _lowerCAmelCase : Tuple = attention_probs_dropout_prob _lowerCAmelCase : Optional[Any] = pad_token_id _lowerCAmelCase : Any = bos_token_id _lowerCAmelCase : Optional[int] = eos_token_id _lowerCAmelCase : int = conv_glu_dim _lowerCAmelCase : Any = conv_dropout _lowerCAmelCase : str = num_conv_layers _lowerCAmelCase : Tuple = input_feat_per_channel _lowerCAmelCase : str = input_channels _lowerCAmelCase : Tuple = conv_channels _lowerCAmelCase : int = ctc_loss_reduction _lowerCAmelCase : List[Any] = ctc_zero_infinity # prevents config testing fail with exporting to json _lowerCAmelCase : str = list(_UpperCAmelCase ) _lowerCAmelCase : List[str] = list(_UpperCAmelCase ) if len(self.conv_kernel ) != self.num_conv_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.conv_kernel)` == `config.num_conv_layers` """ f"but is `len(config.conv_kernel) = {len(self.conv_kernel )}`, " f"`config.num_conv_layers = {self.num_conv_layers}`." )
159
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class __snake_case (_a ): def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = SMALL_MODEL_IDENTIFIER _lowerCAmelCase : str = """pt""" _lowerCAmelCase : List[Any] = """tf""" def SCREAMING_SNAKE_CASE ( self : Tuple , _UpperCAmelCase : Optional[Any] ) -> List[Any]: '''simple docstring''' _lowerCAmelCase : int = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , _UpperCAmelCase : Tuple ) -> Optional[int]: '''simple docstring''' _lowerCAmelCase : Optional[int] = TFAutoModel.from_pretrained(self.test_model , from_pt=_UpperCAmelCase ) model_tf.save_pretrained(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : str ) -> List[Any]: '''simple docstring''' _lowerCAmelCase : int = """mock_framework""" # Framework provided - return whatever the user provides _lowerCAmelCase : Optional[int] = FeaturesManager.determine_framework(self.test_model , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_UpperCAmelCase ) _lowerCAmelCase : Optional[Any] = FeaturesManager.determine_framework(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_UpperCAmelCase ) _lowerCAmelCase : Optional[Any] = FeaturesManager.determine_framework(_UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: '''simple docstring''' with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(_UpperCAmelCase ) _lowerCAmelCase : str = FeaturesManager.determine_framework(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(_UpperCAmelCase ) _lowerCAmelCase : Tuple = FeaturesManager.determine_framework(_UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(_UpperCAmelCase ): _lowerCAmelCase : Optional[int] = FeaturesManager.determine_framework(_UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Union[str, Any]: '''simple docstring''' _lowerCAmelCase : List[str] = MagicMock(return_value=_UpperCAmelCase ) with patch("""transformers.onnx.features.is_tf_available""" , _UpperCAmelCase ): _lowerCAmelCase : Optional[int] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_UpperCAmelCase , self.framework_pt ) # PyTorch not in environment -> use TensorFlow _lowerCAmelCase : str = MagicMock(return_value=_UpperCAmelCase ) with patch("""transformers.onnx.features.is_torch_available""" , _UpperCAmelCase ): _lowerCAmelCase : Dict = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_UpperCAmelCase , self.framework_tf ) # Both in environment -> use PyTorch _lowerCAmelCase : List[Any] = MagicMock(return_value=_UpperCAmelCase ) _lowerCAmelCase : Tuple = MagicMock(return_value=_UpperCAmelCase ) with patch("""transformers.onnx.features.is_tf_available""" , _UpperCAmelCase ), patch( """transformers.onnx.features.is_torch_available""" , _UpperCAmelCase ): _lowerCAmelCase : Optional[int] = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(_UpperCAmelCase , self.framework_pt ) # Both not in environment -> raise error _lowerCAmelCase : List[str] = MagicMock(return_value=_UpperCAmelCase ) _lowerCAmelCase : List[Any] = MagicMock(return_value=_UpperCAmelCase ) with patch("""transformers.onnx.features.is_tf_available""" , _UpperCAmelCase ), patch( """transformers.onnx.features.is_torch_available""" , _UpperCAmelCase ): with self.assertRaises(_UpperCAmelCase ): _lowerCAmelCase : Dict = FeaturesManager.determine_framework(self.test_model )
159
1
import random class A__ : """simple docstring""" @staticmethod def __lowercase ( lowercase) -> tuple[list[int], list[int]]: '''simple docstring''' a__ : Union[str, Any] = [ord(lowercase) for i in text] a__ : int = [] a__ : List[str] = [] for i in plain: a__ : Optional[Any] = random.randint(1 , 300) a__ : Optional[Any] = (i + k) * k cipher.append(lowercase) key.append(lowercase) return cipher, key @staticmethod def __lowercase ( lowercase , lowercase) -> str: '''simple docstring''' a__ : str = [] for i in range(len(lowercase)): a__ : Dict = int((cipher[i] - (key[i]) ** 2) / key[i]) plain.append(chr(lowercase)) return "".join(lowercase) if __name__ == "__main__": lowercase , lowercase : Optional[Any] = Onepad().encrypt("""Hello""") print(c, k) print(Onepad().decrypt(c, k))
99
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _lowerCAmelCase : int = '''\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } ''' _lowerCAmelCase : Tuple = '''\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. ''' _lowerCAmelCase : int = '''\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results["google_bleu"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results["google_bleu"], 2)) 0.4 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __magic_name__ ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :List[List[List[str]]] , snake_case :List[List[str]] , snake_case :int = 1 , snake_case :int = 4 , ): '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=snake_case , hypotheses=snake_case , min_len=snake_case , max_len=snake_case ) }
300
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class UpperCAmelCase ( A_ ): A__ : torch.FloatTensor class UpperCAmelCase ( A_ ,A_ ): @register_to_config def __init__(self : str , snake_case__ : int = 6_55_36 , snake_case__ : Optional[int] = None , snake_case__ : int = 2 , snake_case__ : int = 2 , snake_case__ : int = 0 , snake_case__ : str = "fourier" , snake_case__ : bool = True , snake_case__ : bool = False , snake_case__ : float = 0.0 , snake_case__ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , snake_case__ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , snake_case__ : Tuple[str] = "UNetMidBlock1D" , snake_case__ : str = None , snake_case__ : Tuple[int] = (32, 32, 64) , snake_case__ : str = None , snake_case__ : int = 8 , snake_case__ : int = 1 , snake_case__ : bool = False , ) -> Tuple: '''simple docstring''' super().__init__() snake_case : Any = sample_size # time if time_embedding_type == "fourier": snake_case : Tuple = GaussianFourierProjection( embedding_size=8 , set_W_to_weight=snake_case__ , log=snake_case__ , flip_sin_to_cos=snake_case__ ) snake_case : Union[str, Any] = 2 * block_out_channels[0] elif time_embedding_type == "positional": snake_case : Union[str, Any] = Timesteps( block_out_channels[0] , flip_sin_to_cos=snake_case__ , downscale_freq_shift=snake_case__ ) snake_case : Optional[int] = block_out_channels[0] if use_timestep_embedding: snake_case : Union[str, Any] = block_out_channels[0] * 4 snake_case : Dict = TimestepEmbedding( in_channels=snake_case__ , time_embed_dim=snake_case__ , act_fn=snake_case__ , out_dim=block_out_channels[0] , ) snake_case : Tuple = nn.ModuleList([] ) snake_case : Tuple = None snake_case : Union[str, Any] = nn.ModuleList([] ) snake_case : Optional[Any] = None # down snake_case : Optional[int] = in_channels for i, down_block_type in enumerate(snake_case__ ): snake_case : Optional[int] = output_channel snake_case : str = block_out_channels[i] if i == 0: input_channel += extra_in_channels snake_case : Optional[int] = i == len(snake_case__ ) - 1 snake_case : Union[str, Any] = get_down_block( snake_case__ , num_layers=snake_case__ , in_channels=snake_case__ , out_channels=snake_case__ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(snake_case__ ) # mid snake_case : Tuple = get_mid_block( snake_case__ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=snake_case__ , add_downsample=snake_case__ , ) # up snake_case : Optional[int] = list(reversed(snake_case__ ) ) snake_case : Optional[Any] = reversed_block_out_channels[0] if out_block_type is None: snake_case : str = out_channels else: snake_case : Any = block_out_channels[0] for i, up_block_type in enumerate(snake_case__ ): snake_case : int = output_channel snake_case : Union[str, Any] = ( reversed_block_out_channels[i + 1] if i < len(snake_case__ ) - 1 else final_upsample_channels ) snake_case : int = i == len(snake_case__ ) - 1 snake_case : Dict = get_up_block( snake_case__ , num_layers=snake_case__ , in_channels=snake_case__ , out_channels=snake_case__ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(snake_case__ ) snake_case : str = output_channel # out snake_case : List[Any] = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 ) snake_case : List[Any] = get_out_block( out_block_type=snake_case__ , num_groups_out=snake_case__ , embed_dim=block_out_channels[0] , out_channels=snake_case__ , act_fn=snake_case__ , fc_dim=block_out_channels[-1] // 4 , ) def _SCREAMING_SNAKE_CASE (self : Tuple , snake_case__ : torch.FloatTensor , snake_case__ : Union[torch.Tensor, float, int] , snake_case__ : bool = True , ) -> Union[UNetaDOutput, Tuple]: '''simple docstring''' snake_case : Optional[int] = timestep if not torch.is_tensor(snake_case__ ): snake_case : List[Any] = torch.tensor([timesteps] , dtype=torch.long , device=sample.device ) elif torch.is_tensor(snake_case__ ) and len(timesteps.shape ) == 0: snake_case : str = timesteps[None].to(sample.device ) snake_case : Any = self.time_proj(snake_case__ ) if self.config.use_timestep_embedding: snake_case : str = self.time_mlp(snake_case__ ) else: snake_case : List[Any] = timestep_embed[..., None] snake_case : int = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype ) snake_case : int = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) ) # 2. down snake_case : int = () for downsample_block in self.down_blocks: snake_case , snake_case : List[str] = downsample_block(hidden_states=snake_case__ , temb=snake_case__ ) down_block_res_samples += res_samples # 3. mid if self.mid_block: snake_case : Dict = self.mid_block(snake_case__ , snake_case__ ) # 4. up for i, upsample_block in enumerate(self.up_blocks ): snake_case : str = down_block_res_samples[-1:] snake_case : str = down_block_res_samples[:-1] snake_case : Optional[Any] = upsample_block(snake_case__ , res_hidden_states_tuple=snake_case__ , temb=snake_case__ ) # 5. post-process if self.out_block: snake_case : Optional[int] = self.out_block(snake_case__ , snake_case__ ) if not return_dict: return (sample,) return UNetaDOutput(sample=snake_case__ )
10
def UpperCamelCase ( __lowerCamelCase : str ): snake_case : Union[str, Any] = 0 # if input_string is "aba" than new_input_string become "a|b|a" snake_case : Tuple = "" snake_case : Optional[int] = "" # append each character + "|" in new_string for range(0, length-1) for i in input_string[: len(__lowerCamelCase ) - 1]: new_input_string += i + "|" # append last character new_input_string += input_string[-1] # we will store the starting and ending of previous furthest ending palindromic # substring snake_case , snake_case : Tuple = 0, 0 # length[i] shows the length of palindromic substring with center i snake_case : Any = [1 for i in range(len(__lowerCamelCase ) )] # for each character in new_string find corresponding palindromic string snake_case : int = 0 for j in range(len(__lowerCamelCase ) ): snake_case : Optional[Any] = 1 if j > r else min(length[l + r - j] // 2 , r - j + 1 ) while ( j - k >= 0 and j + k < len(__lowerCamelCase ) and new_input_string[k + j] == new_input_string[j - k] ): k += 1 snake_case : str = 2 * k - 1 # does this string is ending after the previously explored end (that is r) ? # if yes the update the new r to the last index of this if j + k - 1 > r: snake_case : List[str] = j - k + 1 # noqa: E741 snake_case : Dict = j + k - 1 # update max_length and start position if max_length < length[j]: snake_case : Optional[Any] = length[j] snake_case : int = j # create that string snake_case : Any = new_input_string[start - max_length // 2 : start + max_length // 2 + 1] for i in s: if i != "|": output_string += i return output_string if __name__ == "__main__": import doctest doctest.testmod()
10
1
'''simple docstring''' from __future__ import annotations import math def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[int], SCREAMING_SNAKE_CASE__ : Dict ) -> list: if len(__lowerCAmelCase ) != 2 or len(a[0] ) != 2 or len(__lowerCAmelCase ) != 2 or len(b[0] ) != 2: raise Exception('''Matrices are not 2x2''' ) UpperCAmelCase_ : str = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Optional[Any], SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Union[str, Any]: return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__lowerCAmelCase ) ) ] def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Dict, SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Union[str, Any]: return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__lowerCAmelCase ) ) ] def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : str ) -> tuple[list, list, list, list]: if len(__lowerCAmelCase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('''Odd matrices are not supported!''' ) UpperCAmelCase_ : Tuple = len(__lowerCAmelCase ) UpperCAmelCase_ : Optional[int] = matrix_length // 2 UpperCAmelCase_ : List[Any] = [[a[i][j] for j in range(__lowerCAmelCase, __lowerCAmelCase )] for i in range(__lowerCAmelCase )] UpperCAmelCase_ : List[str] = [ [a[i][j] for j in range(__lowerCAmelCase, __lowerCAmelCase )] for i in range(__lowerCAmelCase, __lowerCAmelCase ) ] UpperCAmelCase_ : Optional[int] = [[a[i][j] for j in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase )] UpperCAmelCase_ : Optional[Any] = [[a[i][j] for j in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase, __lowerCAmelCase )] return top_left, top_right, bot_left, bot_right def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Any ) -> tuple[int, int]: return len(__lowerCAmelCase ), len(matrix[0] ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> None: print('''\n'''.join(str(__lowerCAmelCase ) for line in matrix ) ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : Optional[int] ) -> list: if matrix_dimensions(__lowerCAmelCase ) == (2, 2): return default_matrix_multiplication(__lowerCAmelCase, __lowerCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : List[str] = split_matrix(__lowerCAmelCase ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Any = split_matrix(__lowerCAmelCase ) UpperCAmelCase_ : List[Any] = actual_strassen(__lowerCAmelCase, matrix_subtraction(__lowerCAmelCase, __lowerCAmelCase ) ) UpperCAmelCase_ : Dict = actual_strassen(matrix_addition(__lowerCAmelCase, __lowerCAmelCase ), __lowerCAmelCase ) UpperCAmelCase_ : Optional[int] = actual_strassen(matrix_addition(__lowerCAmelCase, __lowerCAmelCase ), __lowerCAmelCase ) UpperCAmelCase_ : List[Any] = actual_strassen(__lowerCAmelCase, matrix_subtraction(__lowerCAmelCase, __lowerCAmelCase ) ) UpperCAmelCase_ : Any = actual_strassen(matrix_addition(__lowerCAmelCase, __lowerCAmelCase ), matrix_addition(__lowerCAmelCase, __lowerCAmelCase ) ) UpperCAmelCase_ : str = actual_strassen(matrix_subtraction(__lowerCAmelCase, __lowerCAmelCase ), matrix_addition(__lowerCAmelCase, __lowerCAmelCase ) ) UpperCAmelCase_ : List[str] = actual_strassen(matrix_subtraction(__lowerCAmelCase, __lowerCAmelCase ), matrix_addition(__lowerCAmelCase, __lowerCAmelCase ) ) UpperCAmelCase_ : Any = matrix_addition(matrix_subtraction(matrix_addition(__lowerCAmelCase, __lowerCAmelCase ), __lowerCAmelCase ), __lowerCAmelCase ) UpperCAmelCase_ : List[Any] = matrix_addition(__lowerCAmelCase, __lowerCAmelCase ) UpperCAmelCase_ : List[Any] = matrix_addition(__lowerCAmelCase, __lowerCAmelCase ) UpperCAmelCase_ : List[str] = matrix_subtraction(matrix_subtraction(matrix_addition(__lowerCAmelCase, __lowerCAmelCase ), __lowerCAmelCase ), __lowerCAmelCase ) # construct the new matrix from our 4 quadrants UpperCAmelCase_ : Optional[int] = [] for i in range(len(__lowerCAmelCase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__lowerCAmelCase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : Union[str, Any], SCREAMING_SNAKE_CASE__ : Dict ) -> list: if matrix_dimensions(__lowerCAmelCase )[1] != matrix_dimensions(__lowerCAmelCase )[0]: UpperCAmelCase_ : Tuple = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(__lowerCAmelCase ) UpperCAmelCase_ : Optional[int] = matrix_dimensions(__lowerCAmelCase ) UpperCAmelCase_ : Optional[int] = matrix_dimensions(__lowerCAmelCase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] UpperCAmelCase_ : List[Any] = max(*__lowerCAmelCase, *__lowerCAmelCase ) UpperCAmelCase_ : Tuple = int(math.pow(2, math.ceil(math.loga(__lowerCAmelCase ) ) ) ) UpperCAmelCase_ : str = matrixa UpperCAmelCase_ : int = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0, __lowerCAmelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1], __lowerCAmelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1], __lowerCAmelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) UpperCAmelCase_ : Dict = actual_strassen(__lowerCAmelCase, __lowerCAmelCase ) # Removing the additional zeros for i in range(0, __lowerCAmelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1], __lowerCAmelCase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": snake_case_ : List[Any] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] snake_case_ : Optional[int] = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
125
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase : Tuple = {"configuration_plbart": ["PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "PLBartConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = ["PLBartTokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Dict = [ "PLBART_PRETRAINED_MODEL_ARCHIVE_LIST", "PLBartForCausalLM", "PLBartForConditionalGeneration", "PLBartForSequenceClassification", "PLBartModel", "PLBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure)
136
0
'''simple docstring''' import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class __magic_name__ ( unittest.TestCase ): def __init__( self , snake_case , snake_case=1_3 , snake_case=7 , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=9_9 , snake_case=3_2 , snake_case=5 , snake_case=4 , snake_case=3_7 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=5_1_2 , snake_case=1_6 , snake_case=2 , snake_case=0.02 , snake_case=4 , ) -> Dict: '''simple docstring''' _UpperCAmelCase : Dict =parent _UpperCAmelCase : Dict =batch_size _UpperCAmelCase : List[Any] =seq_length _UpperCAmelCase : List[str] =is_training _UpperCAmelCase : Optional[int] =use_attention_mask _UpperCAmelCase : Dict =use_token_type_ids _UpperCAmelCase : Dict =use_labels _UpperCAmelCase : Optional[Any] =vocab_size _UpperCAmelCase : str =hidden_size _UpperCAmelCase : Dict =num_hidden_layers _UpperCAmelCase : Tuple =num_attention_heads _UpperCAmelCase : List[str] =intermediate_size _UpperCAmelCase : List[str] =hidden_act _UpperCAmelCase : int =hidden_dropout_prob _UpperCAmelCase : Optional[int] =attention_probs_dropout_prob _UpperCAmelCase : Optional[Any] =max_position_embeddings _UpperCAmelCase : Union[str, Any] =type_vocab_size _UpperCAmelCase : Dict =type_sequence_label_size _UpperCAmelCase : Union[str, Any] =initializer_range _UpperCAmelCase : Any =num_choices def lowerCAmelCase ( self) -> Dict: '''simple docstring''' _UpperCAmelCase : Dict =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCAmelCase : str =None if self.use_attention_mask: _UpperCAmelCase : Dict =random_attention_mask([self.batch_size, self.seq_length]) _UpperCAmelCase : Optional[Any] =None if self.use_token_type_ids: _UpperCAmelCase : Tuple =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCAmelCase : Union[str, Any] =RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCAmelCase ( self) -> str: '''simple docstring''' _UpperCAmelCase : Dict =self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str =config_and_inputs _UpperCAmelCase : List[Any] ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def lowerCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase : Tuple =self.prepare_config_and_inputs() _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] =config_and_inputs _UpperCAmelCase : Tuple =True _UpperCAmelCase : Any =floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) _UpperCAmelCase : Optional[Any] =ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class __magic_name__ ( lowerCAmelCase ,unittest.TestCase ): UpperCAmelCase =True UpperCAmelCase =( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def lowerCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCAmelCase : int =FlaxRobertaPreLayerNormModelTester(self) @slow def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: _UpperCAmelCase : List[str] =model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=snake_case) _UpperCAmelCase : Dict =model(np.ones((1, 1))) self.assertIsNotNone(snake_case) @require_flax class __magic_name__ ( unittest.TestCase ): @slow def lowerCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCAmelCase : Tuple =FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=snake_case) _UpperCAmelCase : Optional[int] =np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa) _UpperCAmelCase : str =model(snake_case)[0] _UpperCAmelCase : int =[1, 1_1, 5_0_2_6_5] self.assertEqual(list(output.shape) , snake_case) # compare the actual values for a slice. _UpperCAmelCase : List[str] =np.array( [[[40.48_80, 18.01_99, -5.23_67], [-1.88_77, -4.08_85, 10.70_85], [-2.26_13, -5.61_10, 7.26_65]]] , dtype=np.floataa) self.assertTrue(np.allclose(output[:, :3, :3] , snake_case , atol=1E-4)) @slow def lowerCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCAmelCase : Dict =FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=snake_case) _UpperCAmelCase : List[str] =np.array([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] , dtype=jnp.intaa) _UpperCAmelCase : Tuple =model(snake_case)[0] # compare the actual values for a slice. _UpperCAmelCase : List[str] =np.array( [[[0.02_08, -0.03_56, 0.02_37], [-0.15_69, -0.04_11, -0.26_26], [0.18_79, 0.01_25, -0.00_89]]] , dtype=np.floataa) self.assertTrue(np.allclose(output[:, :3, :3] , snake_case , atol=1E-4))
242
'''simple docstring''' from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput lowercase =logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( lowerCAmelCase ,lowerCAmelCase ): @register_to_config def __init__( self , snake_case , snake_case = None , snake_case = None) -> Union[str, Any]: '''simple docstring''' super().__init__() _UpperCAmelCase : List[Any] =learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" _UpperCAmelCase : str =torch.zeros(snake_case , snake_case) else: _UpperCAmelCase : Tuple =None _UpperCAmelCase : int =torch.nn.Parameter(snake_case) class __magic_name__ ( lowerCAmelCase ): UpperCAmelCase =42 UpperCAmelCase =42 UpperCAmelCase =42 UpperCAmelCase =42 UpperCAmelCase =42 UpperCAmelCase =42 def __init__( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ) -> Tuple: '''simple docstring''' super().__init__() self.register_modules( vqvae=snake_case , transformer=snake_case , text_encoder=snake_case , tokenizer=snake_case , scheduler=snake_case , learned_classifier_free_sampling_embeddings=snake_case , ) def lowerCAmelCase ( self , snake_case , snake_case , snake_case) -> List[str]: '''simple docstring''' _UpperCAmelCase : int =len(snake_case) if isinstance(snake_case , snake_case) else 1 # get prompt text embeddings _UpperCAmelCase : Optional[Any] =self.tokenizer( snake_case , padding='max_length' , max_length=self.tokenizer.model_max_length , return_tensors='pt' , ) _UpperCAmelCase : Union[str, Any] =text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: _UpperCAmelCase : str =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :]) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f" {self.tokenizer.model_max_length} tokens: {removed_text}") _UpperCAmelCase : Union[str, Any] =text_input_ids[:, : self.tokenizer.model_max_length] _UpperCAmelCase : Optional[int] =self.text_encoder(text_input_ids.to(self.device))[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 _UpperCAmelCase : List[str] =prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=snake_case) # duplicate text embeddings for each generation per prompt _UpperCAmelCase : Optional[Any] =prompt_embeds.repeat_interleave(snake_case , dim=0) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: _UpperCAmelCase : Dict =self.learned_classifier_free_sampling_embeddings.embeddings _UpperCAmelCase : Any =negative_prompt_embeds.unsqueeze(0).repeat(snake_case , 1 , 1) else: _UpperCAmelCase : str =[''] * batch_size _UpperCAmelCase : Dict =text_input_ids.shape[-1] _UpperCAmelCase : str =self.tokenizer( snake_case , padding='max_length' , max_length=snake_case , truncation=snake_case , return_tensors='pt' , ) _UpperCAmelCase : str =self.text_encoder(uncond_input.input_ids.to(self.device))[0] # See comment for normalizing text embeddings _UpperCAmelCase : Tuple =negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=snake_case) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method _UpperCAmelCase : int =negative_prompt_embeds.shape[1] _UpperCAmelCase : List[str] =negative_prompt_embeds.repeat(1 , snake_case , 1) _UpperCAmelCase : Optional[int] =negative_prompt_embeds.view(batch_size * num_images_per_prompt , snake_case , -1) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes _UpperCAmelCase : str =torch.cat([negative_prompt_embeds, prompt_embeds]) return prompt_embeds @torch.no_grad() def __call__( self , snake_case , snake_case = 1_0_0 , snake_case = 5.0 , snake_case = 1.0 , snake_case = 1 , snake_case = None , snake_case = None , snake_case = "pil" , snake_case = True , snake_case = None , snake_case = 1 , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' if isinstance(snake_case , snake_case): _UpperCAmelCase : Tuple =1 elif isinstance(snake_case , snake_case): _UpperCAmelCase : int =len(snake_case) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(snake_case)}") _UpperCAmelCase : Optional[Any] =batch_size * num_images_per_prompt _UpperCAmelCase : Union[str, Any] =guidance_scale > 1.0 _UpperCAmelCase : Any =self._encode_prompt(snake_case , snake_case , snake_case) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(snake_case , snake_case) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(snake_case)}.") # get the initial completely masked latents unless the user supplied it _UpperCAmelCase : List[Any] =(batch_size, self.transformer.num_latent_pixels) if latents is None: _UpperCAmelCase : Optional[Any] =self.transformer.num_vector_embeds - 1 _UpperCAmelCase : Optional[int] =torch.full(snake_case , snake_case).to(self.device) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( 'Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,' f" {self.transformer.num_vector_embeds - 1} (inclusive).") _UpperCAmelCase : Optional[Any] =latents.to(self.device) # set timesteps self.scheduler.set_timesteps(snake_case , device=self.device) _UpperCAmelCase : int =self.scheduler.timesteps.to(self.device) _UpperCAmelCase : Dict =latents for i, t in enumerate(self.progress_bar(snake_case)): # expand the sample if we are doing classifier free guidance _UpperCAmelCase : Union[str, Any] =torch.cat([sample] * 2) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` _UpperCAmelCase : Optional[Any] =self.transformer(snake_case , encoder_hidden_states=snake_case , timestep=snake_case).sample if do_classifier_free_guidance: _UpperCAmelCase , _UpperCAmelCase : Dict =model_output.chunk(2) _UpperCAmelCase : Dict =model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(snake_case , dim=1 , keepdim=snake_case) _UpperCAmelCase : Any =self.truncate(snake_case , snake_case) # remove `log(0)`'s (`-inf`s) _UpperCAmelCase : int =model_output.clamp(-7_0) # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase : List[Any] =self.scheduler.step(snake_case , timestep=snake_case , sample=snake_case , generator=snake_case).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(snake_case , snake_case , snake_case) _UpperCAmelCase : List[str] =self.vqvae.config.vq_embed_dim _UpperCAmelCase : Optional[int] =(batch_size, self.transformer.height, self.transformer.width, embedding_channels) _UpperCAmelCase : int =self.vqvae.quantize.get_codebook_entry(snake_case , shape=snake_case) _UpperCAmelCase : str =self.vqvae.decode(snake_case , force_not_quantize=snake_case).sample _UpperCAmelCase : str =(image / 2 + 0.5).clamp(0 , 1) _UpperCAmelCase : Tuple =image.cpu().permute(0 , 2 , 3 , 1).numpy() if output_type == "pil": _UpperCAmelCase : Optional[int] =self.numpy_to_pil(snake_case) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case) def lowerCAmelCase ( self , snake_case , snake_case) -> torch.FloatTensor: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase : Dict =torch.sort(snake_case , 1 , descending=snake_case) _UpperCAmelCase : Dict =torch.exp(snake_case) _UpperCAmelCase : str =sorted_p_x_0.cumsum(dim=1) < truncation_rate # Ensure that at least the largest probability is not zeroed out _UpperCAmelCase : Optional[int] =torch.full_like(keep_mask[:, 0:1, :] , snake_case) _UpperCAmelCase : Any =torch.cat((all_true, keep_mask) , dim=1) _UpperCAmelCase : Dict =keep_mask[:, :-1, :] _UpperCAmelCase : Any =keep_mask.gather(1 , indices.argsort(1)) _UpperCAmelCase : str =log_p_x_0.clone() _UpperCAmelCase : Any =-torch.inf # -inf = log(0) return rv
242
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _A = logging.get_logger(__name__) def lowerCamelCase__ ( __lowerCAmelCase : Tuple ): """simple docstring""" if isinstance(__lowerCAmelCase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__lowerCAmelCase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__lowerCAmelCase ): return [[videos]] raise ValueError(F"""Could not make batched video from {videos}""" ) class _lowerCAmelCase ( __a ): _lowercase =['''pixel_values'''] def __init__( self , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = PILImageResampling.BILINEAR , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = 1 / 255 , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , **_UpperCamelCase , ) -> None: super().__init__(**_UpperCamelCase ) lowerCAmelCase_ = size if size is not None else {"shortest_edge": 224} lowerCAmelCase_ = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase ) lowerCAmelCase_ = crop_size if crop_size is not None else {"height": 224, "width": 224} lowerCAmelCase_ = get_size_dict(_UpperCamelCase , param_name="crop_size" ) lowerCAmelCase_ = do_resize lowerCAmelCase_ = size lowerCAmelCase_ = do_center_crop lowerCAmelCase_ = crop_size lowerCAmelCase_ = resample lowerCAmelCase_ = do_rescale lowerCAmelCase_ = rescale_factor lowerCAmelCase_ = do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase_ = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = PILImageResampling.BILINEAR , _UpperCamelCase = None , **_UpperCamelCase , ) -> np.ndarray: lowerCAmelCase_ = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase ) if "shortest_edge" in size: lowerCAmelCase_ = get_resize_output_image_size(_UpperCamelCase , size["shortest_edge"] , default_to_square=_UpperCamelCase ) elif "height" in size and "width" in size: lowerCAmelCase_ = (size["height"], size["width"]) else: raise ValueError(f"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ) -> np.ndarray: lowerCAmelCase_ = get_size_dict(_UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(f"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(_UpperCamelCase , size=(size["height"], size["width"]) , data_format=_UpperCamelCase , **_UpperCamelCase ) def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ) -> List[str]: return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ) -> np.ndarray: return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def __a ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. lowerCAmelCase_ = to_numpy_array(_UpperCamelCase ) if do_resize: lowerCAmelCase_ = self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) if do_center_crop: lowerCAmelCase_ = self.center_crop(_UpperCamelCase , size=_UpperCamelCase ) if do_rescale: lowerCAmelCase_ = self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) if do_normalize: lowerCAmelCase_ = self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) lowerCAmelCase_ = to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) return image def __a ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , **_UpperCamelCase , ) -> PIL.Image.Image: lowerCAmelCase_ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase_ = resample if resample is not None else self.resample lowerCAmelCase_ = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase_ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase_ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase_ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase_ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase_ = image_std if image_std is not None else self.image_std lowerCAmelCase_ = size if size is not None else self.size lowerCAmelCase_ = get_size_dict(_UpperCamelCase , default_to_square=_UpperCamelCase ) lowerCAmelCase_ = crop_size if crop_size is not None else self.crop_size lowerCAmelCase_ = get_size_dict(_UpperCamelCase , param_name="crop_size" ) if not valid_images(_UpperCamelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) lowerCAmelCase_ = make_batched(_UpperCamelCase ) lowerCAmelCase_ = [ [ self._preprocess_image( image=_UpperCamelCase , do_resize=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , do_center_crop=_UpperCamelCase , crop_size=_UpperCamelCase , do_rescale=_UpperCamelCase , rescale_factor=_UpperCamelCase , do_normalize=_UpperCamelCase , image_mean=_UpperCamelCase , image_std=_UpperCamelCase , data_format=_UpperCamelCase , ) for img in video ] for video in videos ] lowerCAmelCase_ = {"pixel_values": videos} return BatchFeature(data=_UpperCamelCase , tensor_type=_UpperCamelCase )
231
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowerCAmelCase : @staticmethod def __a ( *_UpperCamelCase , **_UpperCamelCase ) -> str: pass @is_pipeline_test @require_vision @require_timm @require_torch class _lowerCAmelCase ( unittest.TestCase ): _lowercase =MODEL_FOR_OBJECT_DETECTION_MAPPING def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> str: lowerCAmelCase_ = ObjectDetectionPipeline(model=_UpperCamelCase , image_processor=_UpperCamelCase ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __a ( self , _UpperCamelCase , _UpperCamelCase ) -> Any: lowerCAmelCase_ = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(_UpperCamelCase ) , 0 ) for detected_object in outputs: self.assertEqual( _UpperCamelCase , { "score": ANY(_UpperCamelCase ), "label": ANY(_UpperCamelCase ), "box": {"xmin": ANY(_UpperCamelCase ), "ymin": ANY(_UpperCamelCase ), "xmax": ANY(_UpperCamelCase ), "ymax": ANY(_UpperCamelCase )}, } , ) import datasets lowerCAmelCase_ = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) lowerCAmelCase_ = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] lowerCAmelCase_ = object_detector(_UpperCamelCase , threshold=0.0 ) self.assertEqual(len(_UpperCamelCase ) , len(_UpperCamelCase ) ) for outputs in batch_outputs: self.assertGreater(len(_UpperCamelCase ) , 0 ) for detected_object in outputs: self.assertEqual( _UpperCamelCase , { "score": ANY(_UpperCamelCase ), "label": ANY(_UpperCamelCase ), "box": {"xmin": ANY(_UpperCamelCase ), "ymin": ANY(_UpperCamelCase ), "xmax": ANY(_UpperCamelCase ), "ymax": ANY(_UpperCamelCase )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def __a ( self ) -> Optional[int]: pass @require_torch def __a ( self ) -> str: lowerCAmelCase_ = "hf-internal-testing/tiny-detr-mobilenetsv3" lowerCAmelCase_ = AutoModelForObjectDetection.from_pretrained(_UpperCamelCase ) lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained(_UpperCamelCase ) lowerCAmelCase_ = ObjectDetectionPipeline(model=_UpperCamelCase , feature_extractor=_UpperCamelCase ) lowerCAmelCase_ = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] , ) lowerCAmelCase_ = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.3376, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] , ) @require_torch @slow def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = "facebook/detr-resnet-50" lowerCAmelCase_ = AutoModelForObjectDetection.from_pretrained(_UpperCamelCase ) lowerCAmelCase_ = AutoFeatureExtractor.from_pretrained(_UpperCamelCase ) lowerCAmelCase_ = ObjectDetectionPipeline(model=_UpperCamelCase , feature_extractor=_UpperCamelCase ) lowerCAmelCase_ = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) lowerCAmelCase_ = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __a ( self ) -> str: lowerCAmelCase_ = "facebook/detr-resnet-50" lowerCAmelCase_ = pipeline("object-detection" , model=_UpperCamelCase ) lowerCAmelCase_ = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) lowerCAmelCase_ = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.9982, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.9960, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.9955, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = 0.9985 lowerCAmelCase_ = "facebook/detr-resnet-50" lowerCAmelCase_ = pipeline("object-detection" , model=_UpperCamelCase ) lowerCAmelCase_ = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=_UpperCamelCase ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {"score": 0.9988, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.9987, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) @require_torch @require_pytesseract @slow def __a ( self ) -> List[str]: lowerCAmelCase_ = "Narsil/layoutlmv3-finetuned-funsd" lowerCAmelCase_ = 0.9993 lowerCAmelCase_ = pipeline("object-detection" , model=_UpperCamelCase , threshold=_UpperCamelCase ) lowerCAmelCase_ = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.9993, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] , )
231
1
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class UpperCAmelCase__ ( a__ ): """simple docstring""" a = 42 a = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.26.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version('''>=''', '''0.0.12''') ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class UpperCAmelCase__ ( a__ ): """simple docstring""" a = 42 a = 42 from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
370
import warnings from .generation import TFGenerationMixin class UpperCAmelCase__ ( A__ ): """simple docstring""" warnings.warn( "Importing `TFGenerationMixin` from `src/transformers/generation_tf_utils.py` is deprecated and will " "be removed in Transformers v5. Import as `from transformers import TFGenerationMixin` instead." , A__ , )
218
0
def _lowerCAmelCase ( lowerCAmelCase_ :int )->bool: '''simple docstring''' snake_case_ = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def _lowerCAmelCase ( lowerCAmelCase_ :int = 5_000 )->int: '''simple docstring''' snake_case_ = [(i * (3 * i - 1)) // 2 for i in range(1 , lowerCAmelCase_ )] for i, pentagonal_i in enumerate(lowerCAmelCase_ ): for j in range(lowerCAmelCase_ , len(lowerCAmelCase_ ) ): snake_case_ = pentagonal_nums[j] snake_case_ = pentagonal_i + pentagonal_j snake_case_ = pentagonal_j - pentagonal_i if is_pentagonal(lowerCAmelCase_ ) and is_pentagonal(lowerCAmelCase_ ): return b return -1 if __name__ == "__main__": print(F'''{solution() = }''')
159
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class __lowerCAmelCase ( a ): """simple docstring""" _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = 42 class __lowerCAmelCase ( nn.Module ): """simple docstring""" _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = (16, 32, 96, 256) _SCREAMING_SNAKE_CASE = jnp.floataa def lowerCAmelCase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" snake_case_ = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) snake_case_ = [] for i in range(len(self.block_out_channels ) - 1 ): snake_case_ = self.block_out_channels[i] snake_case_ = self.block_out_channels[i + 1] snake_case_ = nn.Conv( _lowerCAmelCase , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_lowerCAmelCase ) snake_case_ = nn.Conv( _lowerCAmelCase , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(_lowerCAmelCase ) snake_case_ = blocks snake_case_ = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] ) -> Optional[int]: """simple docstring""" snake_case_ = self.conv_in(_lowerCAmelCase ) snake_case_ = nn.silu(_lowerCAmelCase ) for block in self.blocks: snake_case_ = block(_lowerCAmelCase ) snake_case_ = nn.silu(_lowerCAmelCase ) snake_case_ = self.conv_out(_lowerCAmelCase ) return embedding @flax_register_to_config class __lowerCAmelCase ( nn.Module , a , a ): """simple docstring""" _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = (320, 640, 1280, 1280) _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 8 _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = 1280 _SCREAMING_SNAKE_CASE = 0.0 _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = jnp.floataa _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = "rgb" _SCREAMING_SNAKE_CASE = (16, 32, 96, 256) def lowerCAmelCase__ ( self : str , _lowerCAmelCase : jax.random.KeyArray ) -> FrozenDict: """simple docstring""" # init input tensors snake_case_ = (1, self.in_channels, self.sample_size, self.sample_size) snake_case_ = jnp.zeros(_lowerCAmelCase , dtype=jnp.floataa ) snake_case_ = jnp.ones((1,) , dtype=jnp.intaa ) snake_case_ = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) snake_case_ = (1, 3, self.sample_size * 8, self.sample_size * 8) snake_case_ = jnp.zeros(_lowerCAmelCase , dtype=jnp.floataa ) snake_case_ , snake_case_ = jax.random.split(_lowerCAmelCase ) snake_case_ = {"params": params_rng, "dropout": dropout_rng} return self.init(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )["params"] def lowerCAmelCase__ ( self : List[Any] ) -> Any: """simple docstring""" snake_case_ = self.block_out_channels snake_case_ = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. snake_case_ = self.num_attention_heads or self.attention_head_dim # input snake_case_ = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time snake_case_ = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) snake_case_ = FlaxTimestepEmbedding(_lowerCAmelCase , dtype=self.dtype ) snake_case_ = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) snake_case_ = self.only_cross_attention if isinstance(_lowerCAmelCase , _lowerCAmelCase ): snake_case_ = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ): snake_case_ = (num_attention_heads,) * len(self.down_block_types ) # down snake_case_ = [] snake_case_ = [] snake_case_ = block_out_channels[0] snake_case_ = nn.Conv( _lowerCAmelCase , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_lowerCAmelCase ) for i, down_block_type in enumerate(self.down_block_types ): snake_case_ = output_channel snake_case_ = block_out_channels[i] snake_case_ = i == len(_lowerCAmelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": snake_case_ = FlaxCrossAttnDownBlockaD( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: snake_case_ = FlaxDownBlockaD( in_channels=_lowerCAmelCase , out_channels=_lowerCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_lowerCAmelCase ) for _ in range(self.layers_per_block ): snake_case_ = nn.Conv( _lowerCAmelCase , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_lowerCAmelCase ) if not is_final_block: snake_case_ = nn.Conv( _lowerCAmelCase , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(_lowerCAmelCase ) snake_case_ = down_blocks snake_case_ = controlnet_down_blocks # mid snake_case_ = block_out_channels[-1] snake_case_ = FlaxUNetMidBlockaDCrossAttn( in_channels=_lowerCAmelCase , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) snake_case_ = nn.Conv( _lowerCAmelCase , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : float = 1.0 , _lowerCAmelCase : bool = True , _lowerCAmelCase : bool = False , ) -> Union[FlaxControlNetOutput, Tuple]: """simple docstring""" snake_case_ = self.controlnet_conditioning_channel_order if channel_order == "bgr": snake_case_ = jnp.flip(_lowerCAmelCase , axis=1 ) # 1. time if not isinstance(_lowerCAmelCase , jnp.ndarray ): snake_case_ = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_lowerCAmelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: snake_case_ = timesteps.astype(dtype=jnp.floataa ) snake_case_ = jnp.expand_dims(_lowerCAmelCase , 0 ) snake_case_ = self.time_proj(_lowerCAmelCase ) snake_case_ = self.time_embedding(_lowerCAmelCase ) # 2. pre-process snake_case_ = jnp.transpose(_lowerCAmelCase , (0, 2, 3, 1) ) snake_case_ = self.conv_in(_lowerCAmelCase ) snake_case_ = jnp.transpose(_lowerCAmelCase , (0, 2, 3, 1) ) snake_case_ = self.controlnet_cond_embedding(_lowerCAmelCase ) sample += controlnet_cond # 3. down snake_case_ = (sample,) for down_block in self.down_blocks: if isinstance(_lowerCAmelCase , _lowerCAmelCase ): snake_case_ , snake_case_ = down_block(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , deterministic=not train ) else: snake_case_ , snake_case_ = down_block(_lowerCAmelCase , _lowerCAmelCase , deterministic=not train ) down_block_res_samples += res_samples # 4. mid snake_case_ = self.mid_block(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , deterministic=not train ) # 5. contronet blocks snake_case_ = () for down_block_res_sample, controlnet_block in zip(_lowerCAmelCase , self.controlnet_down_blocks ): snake_case_ = controlnet_block(_lowerCAmelCase ) controlnet_down_block_res_samples += (down_block_res_sample,) snake_case_ = controlnet_down_block_res_samples snake_case_ = self.controlnet_mid_block(_lowerCAmelCase ) # 6. scaling snake_case_ = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=_lowerCAmelCase , mid_block_res_sample=_lowerCAmelCase )
159
1
"""simple docstring""" from math import sqrt def _lowerCAmelCase ( lowercase_ = 1000000 ): UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(lowercase_ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f'''{solution() = }''')
359
"""simple docstring""" from collections import deque class A_ : """simple docstring""" def __init__( self :Any , lowercase_ :str , lowercase_ :int , lowercase_ :int ) -> None: UpperCAmelCase = process_name # process name UpperCAmelCase = arrival_time # arrival time of the process # completion time of finished process or last interrupted time UpperCAmelCase = arrival_time UpperCAmelCase = burst_time # remaining burst time UpperCAmelCase = 0 # total time of the process wait in ready queue UpperCAmelCase = 0 # time from arrival time to completion time class A_ : """simple docstring""" def __init__( self :Any , lowercase_ :int , lowercase_ :list[int] , lowercase_ :deque[Process] , lowercase_ :int , ) -> None: # total number of mlfq's queues UpperCAmelCase = number_of_queues # time slice of queues that round robin algorithm applied UpperCAmelCase = time_slices # unfinished process is in this ready_queue UpperCAmelCase = queue # current time UpperCAmelCase = current_time # finished process is in this sequence queue UpperCAmelCase = deque() def UpperCAmelCase__ ( self :Optional[int] ) -> list[str]: UpperCAmelCase = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def UpperCAmelCase__ ( self :List[str] , lowercase_ :list[Process] ) -> list[int]: UpperCAmelCase = [] for i in range(len(lowercase_ ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def UpperCAmelCase__ ( self :List[str] , lowercase_ :list[Process] ) -> list[int]: UpperCAmelCase = [] for i in range(len(lowercase_ ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def UpperCAmelCase__ ( self :Dict , lowercase_ :list[Process] ) -> list[int]: UpperCAmelCase = [] for i in range(len(lowercase_ ) ): completion_times.append(queue[i].stop_time ) return completion_times def UpperCAmelCase__ ( self :str , lowercase_ :deque[Process] ) -> list[int]: return [q.burst_time for q in queue] def UpperCAmelCase__ ( self :int , lowercase_ :Process ) -> int: process.waiting_time += self.current_time - process.stop_time return process.waiting_time def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :deque[Process] ) -> deque[Process]: UpperCAmelCase = deque() # sequence deque of finished process while len(lowercase_ ) != 0: UpperCAmelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(lowercase_ ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 UpperCAmelCase = 0 # set the process's turnaround time because it is finished UpperCAmelCase = self.current_time - cp.arrival_time # set the completion time UpperCAmelCase = self.current_time # add the process to queue that has finished queue finished.append(lowercase_ ) self.finish_queue.extend(lowercase_ ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def UpperCAmelCase__ ( self :Tuple , lowercase_ :deque[Process] , lowercase_ :int ) -> tuple[deque[Process], deque[Process]]: UpperCAmelCase = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(lowercase_ ) ): UpperCAmelCase = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(lowercase_ ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time UpperCAmelCase = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(lowercase_ ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished UpperCAmelCase = 0 # set the finish time UpperCAmelCase = self.current_time # update the process' turnaround time because it is finished UpperCAmelCase = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(lowercase_ ) self.finish_queue.extend(lowercase_ ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def UpperCAmelCase__ ( self :Optional[Any] ) -> deque[Process]: # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): UpperCAmelCase , UpperCAmelCase = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest snake_case_ = Process("""P1""", 0, 53) snake_case_ = Process("""P2""", 0, 17) snake_case_ = Process("""P3""", 0, 68) snake_case_ = Process("""P4""", 0, 24) snake_case_ = 3 snake_case_ = [17, 25] snake_case_ = deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={"""queue""": deque([Pa, Pa, Pa, Pa])}) snake_case_ = Process("""P1""", 0, 53) snake_case_ = Process("""P2""", 0, 17) snake_case_ = Process("""P3""", 0, 68) snake_case_ = Process("""P4""", 0, 24) snake_case_ = 3 snake_case_ = [17, 25] snake_case_ = deque([Pa, Pa, Pa, Pa]) snake_case_ = MLFQ(number_of_queues, time_slices, queue, 0) snake_case_ = mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( f'''waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print completion times of processes(P1, P2, P3, P4) print( f'''completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print total turnaround times of processes(P1, P2, P3, P4) print( f'''turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}''' ) # print sequence of finished processes print( f'''sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}''' )
181
0
from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block @dataclass class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = 42 class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' @register_to_config def __init__(self : str , UpperCAmelCase_ : int = 65_536 , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : str = "fourier" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : Tuple[str] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , UpperCAmelCase_ : Tuple[str] = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , UpperCAmelCase_ : Tuple[str] = "UNetMidBlock1D" , UpperCAmelCase_ : str = None , UpperCAmelCase_ : Tuple[int] = (32, 32, 64) , UpperCAmelCase_ : str = None , UpperCAmelCase_ : int = 8 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = False , ) ->Tuple: '''simple docstring''' super().__init__() lowerCamelCase__: Tuple =sample_size # time if time_embedding_type == "fourier": lowerCamelCase__: Optional[int] =GaussianFourierProjection( embedding_size=8 , set_W_to_weight=UpperCAmelCase_ , log=UpperCAmelCase_ , flip_sin_to_cos=UpperCAmelCase_) lowerCamelCase__: int =2 * block_out_channels[0] elif time_embedding_type == "positional": lowerCamelCase__: str =Timesteps( block_out_channels[0] , flip_sin_to_cos=UpperCAmelCase_ , downscale_freq_shift=UpperCAmelCase_) lowerCamelCase__: Union[str, Any] =block_out_channels[0] if use_timestep_embedding: lowerCamelCase__: List[Any] =block_out_channels[0] * 4 lowerCamelCase__: Tuple =TimestepEmbedding( in_channels=UpperCAmelCase_ , time_embed_dim=UpperCAmelCase_ , act_fn=UpperCAmelCase_ , out_dim=block_out_channels[0] , ) lowerCamelCase__: List[str] =nn.ModuleList([]) lowerCamelCase__: List[str] =None lowerCamelCase__: List[str] =nn.ModuleList([]) lowerCamelCase__: str =None # down lowerCamelCase__: Optional[Any] =in_channels for i, down_block_type in enumerate(UpperCAmelCase_): lowerCamelCase__: Optional[Any] =output_channel lowerCamelCase__: List[str] =block_out_channels[i] if i == 0: input_channel += extra_in_channels lowerCamelCase__: Optional[Any] =i == len(UpperCAmelCase_) - 1 lowerCamelCase__: int =get_down_block( UpperCAmelCase_ , num_layers=UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , ) self.down_blocks.append(UpperCAmelCase_) # mid lowerCamelCase__: Any =get_mid_block( UpperCAmelCase_ , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=UpperCAmelCase_ , add_downsample=UpperCAmelCase_ , ) # up lowerCamelCase__: Optional[Any] =list(reversed(UpperCAmelCase_)) lowerCamelCase__: Optional[Any] =reversed_block_out_channels[0] if out_block_type is None: lowerCamelCase__: Tuple =out_channels else: lowerCamelCase__: Optional[int] =block_out_channels[0] for i, up_block_type in enumerate(UpperCAmelCase_): lowerCamelCase__: int =output_channel lowerCamelCase__: str =( reversed_block_out_channels[i + 1] if i < len(UpperCAmelCase_) - 1 else final_upsample_channels ) lowerCamelCase__: Union[str, Any] =i == len(UpperCAmelCase_) - 1 lowerCamelCase__: Any =get_up_block( UpperCAmelCase_ , num_layers=UpperCAmelCase_ , in_channels=UpperCAmelCase_ , out_channels=UpperCAmelCase_ , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , ) self.up_blocks.append(UpperCAmelCase_) lowerCamelCase__: Optional[int] =output_channel # out lowerCamelCase__: Optional[Any] =norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32) lowerCamelCase__: Union[str, Any] =get_out_block( out_block_type=UpperCAmelCase_ , num_groups_out=UpperCAmelCase_ , embed_dim=block_out_channels[0] , out_channels=UpperCAmelCase_ , act_fn=UpperCAmelCase_ , fc_dim=block_out_channels[-1] // 4 , ) def SCREAMING_SNAKE_CASE_ (self : Dict , UpperCAmelCase_ : torch.FloatTensor , UpperCAmelCase_ : Union[torch.Tensor, float, int] , UpperCAmelCase_ : bool = True , ) ->Union[UNetaDOutput, Tuple]: '''simple docstring''' lowerCamelCase__: Union[str, Any] =timestep if not torch.is_tensor(UpperCAmelCase_): lowerCamelCase__: Any =torch.tensor([timesteps] , dtype=torch.long , device=sample.device) elif torch.is_tensor(UpperCAmelCase_) and len(timesteps.shape) == 0: lowerCamelCase__: Optional[Any] =timesteps[None].to(sample.device) lowerCamelCase__: Union[str, Any] =self.time_proj(UpperCAmelCase_) if self.config.use_timestep_embedding: lowerCamelCase__: Dict =self.time_mlp(UpperCAmelCase_) else: lowerCamelCase__: Optional[Any] =timestep_embed[..., None] lowerCamelCase__: Union[str, Any] =timestep_embed.repeat([1, 1, sample.shape[2]]).to(sample.dtype) lowerCamelCase__: List[str] =timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:])) # 2. down lowerCamelCase__: List[str] =() for downsample_block in self.down_blocks: lowerCamelCase__ , lowerCamelCase__: Any =downsample_block(hidden_states=UpperCAmelCase_ , temb=UpperCAmelCase_) down_block_res_samples += res_samples # 3. mid if self.mid_block: lowerCamelCase__: int =self.mid_block(UpperCAmelCase_ , UpperCAmelCase_) # 4. up for i, upsample_block in enumerate(self.up_blocks): lowerCamelCase__: Union[str, Any] =down_block_res_samples[-1:] lowerCamelCase__: Optional[int] =down_block_res_samples[:-1] lowerCamelCase__: List[str] =upsample_block(UpperCAmelCase_ , res_hidden_states_tuple=UpperCAmelCase_ , temb=UpperCAmelCase_) # 5. post-process if self.out_block: lowerCamelCase__: List[Any] =self.out_block(UpperCAmelCase_ , UpperCAmelCase_) if not return_dict: return (sample,) return UNetaDOutput(sample=UpperCAmelCase_)
10
import logging from transformers.configuration_utils import PretrainedConfig __A = logging.getLogger(__name__) class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "masked_bert" def __init__(self : Dict , UpperCAmelCase_ : Any=30_522 , UpperCAmelCase_ : List[Any]=768 , UpperCAmelCase_ : Optional[Any]=12 , UpperCAmelCase_ : str=12 , UpperCAmelCase_ : Tuple=3_072 , UpperCAmelCase_ : str="gelu" , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : Optional[Any]=512 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : str=1E-1_2 , UpperCAmelCase_ : Union[str, Any]=0 , UpperCAmelCase_ : str="topK" , UpperCAmelCase_ : List[str]="constant" , UpperCAmelCase_ : str=0.0 , **UpperCAmelCase_ : int , ) ->List[Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) lowerCamelCase__: Optional[int] =vocab_size lowerCamelCase__: Dict =hidden_size lowerCamelCase__: Optional[int] =num_hidden_layers lowerCamelCase__: Any =num_attention_heads lowerCamelCase__: List[Any] =hidden_act lowerCamelCase__: str =intermediate_size lowerCamelCase__: Dict =hidden_dropout_prob lowerCamelCase__: str =attention_probs_dropout_prob lowerCamelCase__: int =max_position_embeddings lowerCamelCase__: Tuple =type_vocab_size lowerCamelCase__: str =initializer_range lowerCamelCase__: List[Any] =layer_norm_eps lowerCamelCase__: str =pruning_method lowerCamelCase__: Union[str, Any] =mask_init lowerCamelCase__: Optional[Any] =mask_scale
10
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowercase : Dict ={ "configuration_layoutlmv2": ["LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "LayoutLMv2Config"], "processing_layoutlmv2": ["LayoutLMv2Processor"], "tokenization_layoutlmv2": ["LayoutLMv2Tokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Any =["LayoutLMv2TokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[Any] =["LayoutLMv2FeatureExtractor"] _lowercase : Union[str, Any] =["LayoutLMv2ImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] =[ "LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST", "LayoutLMv2ForQuestionAnswering", "LayoutLMv2ForSequenceClassification", "LayoutLMv2ForTokenClassification", "LayoutLMv2Layer", "LayoutLMv2Model", "LayoutLMv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys _lowercase : Optional[Any] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
371
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class snake_case__ (A__ ): """simple docstring""" def __init__( self , __lowercase , __lowercase ) -> int: """simple docstring""" a__ : Tuple = params a__ : str = np.array(__lowercase ) a__ : List[Any] = np.array([len(__lowercase ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , __lowercase ) -> Any: """simple docstring""" return (self.token_ids[index], self.lengths[index]) def __len__( self ) -> Dict: """simple docstring""" return len(self.lengths ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" a__ : int = self.params.max_model_input_size a__ : int = self.lengths > max_len logger.info(F'''Splitting {sum(__lowercase )} too long sequences.''' ) def divide_chunks(__lowercase , __lowercase ): return [l[i : i + n] for i in range(0 , len(__lowercase ) , __lowercase )] a__ : Any = [] a__ : Optional[int] = [] if self.params.mlm: a__ , a__ : Any = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""] else: a__ , a__ : Dict = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: a__ : int = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: a__ : str = np.insert(__lowercase , 0 , __lowercase ) if sub_s[-1] != sep_id: a__ : List[str] = np.insert(__lowercase , len(__lowercase ) , __lowercase ) assert len(__lowercase ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(__lowercase ) new_tok_ids.extend(__lowercase ) new_lengths.extend([len(__lowercase ) for l in sub_seqs] ) a__ : Optional[int] = np.array(__lowercase ) a__ : Any = np.array(__lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" a__ : Union[str, Any] = len(self ) a__ : List[str] = self.lengths > 1_1 a__ : Dict = self.token_ids[indices] a__ : List[str] = self.lengths[indices] a__ : int = len(self ) logger.info(F'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' ) def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" if "unk_token" not in self.params.special_tok_ids: return else: a__ : Union[str, Any] = self.params.special_tok_ids["""unk_token"""] a__ : List[Any] = len(self ) a__ : Optional[int] = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) a__ : Optional[Any] = (unk_occs / self.lengths) < 0.5 a__ : Tuple = self.token_ids[indices] a__ : Union[str, Any] = self.lengths[indices] a__ : Tuple = len(self ) logger.info(F'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' ) def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" if not self.params.is_master: return logger.info(F'''{len(self )} sequences''' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Optional[int]: """simple docstring""" a__ : Optional[int] = [t[0] for t in batch] a__ : Any = [t[1] for t in batch] assert len(__lowercase ) == len(__lowercase ) # Max for paddings a__ : List[Any] = max(__lowercase ) # Pad token ids if self.params.mlm: a__ : int = self.params.special_tok_ids["""pad_token"""] else: a__ : List[str] = self.params.special_tok_ids["""unk_token"""] a__ : int = [list(t.astype(__lowercase ) ) + [pad_idx] * (max_seq_len_ - len(__lowercase )) for t in token_ids] assert len(tk_ ) == len(__lowercase ) assert all(len(__lowercase ) == max_seq_len_ for t in tk_ ) a__ : List[Any] = torch.tensor(tk_ ) # (bs, max_seq_len_) a__ : Optional[int] = torch.tensor(__lowercase ) # (bs) return tk_t, lg_t
266
0
"""simple docstring""" def lowercase_ ( __UpperCAmelCase = 1000 ) -> int: lowerCAmelCase__ : Optional[int] = -1 lowerCAmelCase__ : str = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c lowerCAmelCase__ : List[Any] = (n * n - 2 * a * n) // (2 * n - 2 * a) lowerCAmelCase__ : Optional[int] = n - a - b if c * c == (a * a + b * b): lowerCAmelCase__ : List[Any] = a * b * c if candidate >= product: lowerCAmelCase__ : int = candidate return product if __name__ == "__main__": print(f"""{solution() = }""")
242
"""simple docstring""" import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _A = 1_6 _A = 3_2 def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase = 16 ) -> List[str]: lowerCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCAmelCase__ : List[str] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ : Union[str, Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__UpperCAmelCase , max_length=__UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase__ : str = datasets.map( __UpperCAmelCase , batched=__UpperCAmelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase__ : List[str] = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase__ : Union[str, Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase__ : Optional[Any] = 16 elif accelerator.mixed_precision != "no": lowerCAmelCase__ : Any = 8 else: lowerCAmelCase__ : Any = None return tokenizer.pad( __UpperCAmelCase , padding="""longest""" , max_length=__UpperCAmelCase , pad_to_multiple_of=__UpperCAmelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. lowerCAmelCase__ : Any = DataLoader( tokenized_datasets["""train"""] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = DataLoader( tokenized_datasets["""validation"""] , shuffle=__UpperCAmelCase , collate_fn=__UpperCAmelCase , batch_size=__UpperCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _A = mocked_dataloaders # noqa: F811 def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Dict: # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __UpperCAmelCase ) == "1": lowerCAmelCase__ : List[Any] = 2 # New Code # lowerCAmelCase__ : Tuple = int(args.gradient_accumulation_steps ) # Initialize accelerator lowerCAmelCase__ : Union[str, Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__UpperCAmelCase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( """Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase__ : Tuple = config["""lr"""] lowerCAmelCase__ : int = int(config["""num_epochs"""] ) lowerCAmelCase__ : List[Any] = int(config["""seed"""] ) lowerCAmelCase__ : Tuple = int(config["""batch_size"""] ) lowerCAmelCase__ : Optional[int] = evaluate.load("""glue""" , """mrpc""" ) set_seed(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = get_dataloaders(__UpperCAmelCase , __UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase__ : Tuple = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase__ : Optional[Any] = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase__ : Optional[int] = AdamW(params=model.parameters() , lr=__UpperCAmelCase ) # Instantiate scheduler lowerCAmelCase__ : Optional[Any] = get_linear_schedule_with_warmup( optimizer=__UpperCAmelCase , num_warmup_steps=100 , num_training_steps=(len(__UpperCAmelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : int = accelerator.prepare( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Now we train the model for epoch in range(__UpperCAmelCase ): model.train() for step, batch in enumerate(__UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__UpperCAmelCase ): lowerCAmelCase__ : str = model(**__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = output.loss accelerator.backward(__UpperCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(__UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase__ : int = model(**__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = outputs.logits.argmax(dim=-1 ) lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=__UpperCAmelCase , references=__UpperCAmelCase , ) lowerCAmelCase__ : Any = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , __UpperCAmelCase ) def lowercase_ ( ) -> Any: lowerCAmelCase__ : Union[str, Any] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__UpperCAmelCase , default=__UpperCAmelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=__UpperCAmelCase , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) lowerCAmelCase__ : List[str] = parser.parse_args() lowerCAmelCase__ : Any = {"""lr""": 2E-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__UpperCAmelCase , __UpperCAmelCase ) if __name__ == "__main__": main()
242
1
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a_ = logging.get_logger(__name__) a_ = {"""vocab_file""": """spiece.model"""} a_ = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", } } a_ = { """albert-base-v1""": 512, """albert-large-v1""": 512, """albert-xlarge-v1""": 512, """albert-xxlarge-v1""": 512, """albert-base-v2""": 512, """albert-large-v2""": 512, """albert-xlarge-v2""": 512, """albert-xxlarge-v2""": 512, } a_ = """▁""" class __snake_case ( __lowercase ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __lowerCamelCase , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase="[CLS]" , __lowerCamelCase="[SEP]" , __lowerCamelCase="<unk>" , __lowerCamelCase="[SEP]" , __lowerCamelCase="<pad>" , __lowerCamelCase="[CLS]" , __lowerCamelCase="[MASK]" , __lowerCamelCase = None , **__lowerCamelCase , ): '''simple docstring''' __A : int = ( AddedToken(UpperCAmelCase__ , lstrip=UpperCAmelCase__ , rstrip=UpperCAmelCase__ , normalized=UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) else mask_token ) __A : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=UpperCAmelCase__ , remove_space=UpperCAmelCase__ , keep_accents=UpperCAmelCase__ , bos_token=UpperCAmelCase__ , eos_token=UpperCAmelCase__ , unk_token=UpperCAmelCase__ , sep_token=UpperCAmelCase__ , pad_token=UpperCAmelCase__ , cls_token=UpperCAmelCase__ , mask_token=UpperCAmelCase__ , sp_model_kwargs=self.sp_model_kwargs , **UpperCAmelCase__ , ) __A : Tuple = do_lower_case __A : List[Any] = remove_space __A : List[Any] = keep_accents __A : int = vocab_file __A : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(UpperCAmelCase__ ) @property def UpperCamelCase__( self ): '''simple docstring''' return len(self.sp_model ) def UpperCamelCase__( self ): '''simple docstring''' __A : int = {self.convert_ids_to_tokens(UpperCAmelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): '''simple docstring''' __A : int = self.__dict__.copy() __A : Any = None return state def __setstate__( self , __lowerCamelCase ): '''simple docstring''' __A : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __A : str = {} __A : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' if self.remove_space: __A : Dict = ''' '''.join(inputs.strip().split() ) else: __A : List[Any] = inputs __A : Any = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: __A : Tuple = unicodedata.normalize('''NFKD''' , UpperCAmelCase__ ) __A : Union[str, Any] = ''''''.join([c for c in outputs if not unicodedata.combining(UpperCAmelCase__ )] ) if self.do_lower_case: __A : Union[str, Any] = outputs.lower() return outputs def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : Dict = self.preprocess_text(UpperCAmelCase__ ) __A : Optional[Any] = self.sp_model.encode(UpperCAmelCase__ , out_type=UpperCAmelCase__ ) __A : Optional[int] = [] for piece in pieces: if len(UpperCAmelCase__ ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): __A : int = self.sp_model.EncodeAsPieces(piece[:-1].replace(UpperCAmelCase__ , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __A : Optional[int] = cur_pieces[1:] else: __A : Tuple = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(UpperCAmelCase__ ) else: new_pieces.append(UpperCAmelCase__ ) return new_pieces def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' return self.sp_model.PieceToId(UpperCAmelCase__ ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' return self.sp_model.IdToPiece(UpperCAmelCase__ ) def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : Union[str, Any] = [] __A : List[Any] = '''''' __A : List[Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(UpperCAmelCase__ ) + token __A : Dict = True __A : List[Any] = [] else: current_sub_tokens.append(UpperCAmelCase__ ) __A : Optional[int] = False out_string += self.sp_model.decode(UpperCAmelCase__ ) return out_string.strip() def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = None ): '''simple docstring''' __A : Tuple = [self.sep_token_id] __A : Tuple = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = None , __lowerCamelCase = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCAmelCase__ , token_ids_a=UpperCAmelCase__ , already_has_special_tokens=UpperCAmelCase__ ) if token_ids_a is not None: return [1] + ([0] * len(UpperCAmelCase__ )) + [1] + ([0] * len(UpperCAmelCase__ )) + [1] return [1] + ([0] * len(UpperCAmelCase__ )) + [1] def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = None ): '''simple docstring''' __A : Tuple = [self.sep_token_id] __A : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = None ): '''simple docstring''' if not os.path.isdir(UpperCAmelCase__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __A : int = os.path.join( UpperCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCAmelCase__ ) elif not os.path.isfile(self.vocab_file ): with open(UpperCAmelCase__ , '''wb''' ) as fi: __A : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(UpperCAmelCase__ ) return (out_vocab_file,)
361
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a_ = logging.get_logger(__name__) a_ = { """shi-labs/dinat-mini-in1k-224""": """https://huggingface.co/shi-labs/dinat-mini-in1k-224/resolve/main/config.json""", # See all Dinat models at https://huggingface.co/models?filter=dinat } class __snake_case ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = """dinat""" _lowerCamelCase = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , __lowerCamelCase=4 , __lowerCamelCase=3 , __lowerCamelCase=64 , __lowerCamelCase=[3, 4, 6, 5] , __lowerCamelCase=[2, 4, 8, 16] , __lowerCamelCase=7 , __lowerCamelCase=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]] , __lowerCamelCase=3.0 , __lowerCamelCase=True , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.1 , __lowerCamelCase="gelu" , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-5 , __lowerCamelCase=0.0 , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase , ): '''simple docstring''' super().__init__(**__lowerCamelCase ) __A : Dict = patch_size __A : Union[str, Any] = num_channels __A : str = embed_dim __A : Optional[Any] = depths __A : int = len(__lowerCamelCase ) __A : Union[str, Any] = num_heads __A : Tuple = kernel_size __A : Optional[int] = dilations __A : Tuple = mlp_ratio __A : Optional[int] = qkv_bias __A : int = hidden_dropout_prob __A : Dict = attention_probs_dropout_prob __A : int = drop_path_rate __A : Dict = hidden_act __A : Any = layer_norm_eps __A : Tuple = initializer_range # we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __A : str = int(embed_dim * 2 ** (len(__lowerCamelCase ) - 1) ) __A : List[Any] = layer_scale_init_value __A : Any = ['''stem'''] + [F"""stage{idx}""" for idx in range(1 , len(__lowerCamelCase ) + 1 )] __A , __A : Union[str, Any] = get_aligned_output_features_output_indices( out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names )
291
0
from collections.abc import Callable def UpperCamelCase ( __lowerCamelCase : Callable[[float], float] , __lowerCamelCase : float , __lowerCamelCase : float ): snake_case : float = a snake_case : float = b if function(__lowerCamelCase ) == 0: # one of the a or b is a root for the function return a elif function(__lowerCamelCase ) == 0: return b elif ( function(__lowerCamelCase ) * function(__lowerCamelCase ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError("could not find root in given interval." ) else: snake_case : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(__lowerCamelCase ) == 0: return mid elif function(__lowerCamelCase ) * function(__lowerCamelCase ) < 0: snake_case : Optional[int] = mid else: snake_case : Optional[int] = mid snake_case : str = start + (end - start) / 2.0 return mid def UpperCamelCase ( __lowerCamelCase : float ): return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 10_00)) import doctest doctest.testmod()
59
import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def UpperCamelCase_( _snake_case : Dict , _snake_case : Optional[int] , _snake_case : str ): """simple docstring""" if openai_config_file == "": __a =OpenAIGPTConfig() else: __a =OpenAIGPTConfig.from_json_file(_snake_case ) __a =OpenAIGPTModel(_snake_case ) # Load weights from numpy load_tf_weights_in_openai_gpt(_snake_case , _snake_case , _snake_case ) # Save pytorch-model __a =pytorch_dump_folder_path + '/' + WEIGHTS_NAME __a =pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , _snake_case ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(_snake_case , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowerCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--openai_checkpoint_folder_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--openai_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) _lowerCAmelCase : int = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
218
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _a : List[Any] = logging.get_logger(__name__) class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = "maskformer-swin" _UpperCamelCase : Union[str, Any] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , a__=224 , a__=4 , a__=3 , a__=96 , a__=[2, 2, 6, 2] , a__=[3, 6, 12, 24] , a__=7 , a__=4.0 , a__=True , a__=0.0 , a__=0.0 , a__=0.1 , a__="gelu" , a__=False , a__=0.0_2 , a__=1e-5 , a__=None , a__=None , **a__ , ): super().__init__(**a__ ) _lowerCAmelCase : Dict = image_size _lowerCAmelCase : List[str] = patch_size _lowerCAmelCase : Any = num_channels _lowerCAmelCase : int = embed_dim _lowerCAmelCase : Optional[Any] = depths _lowerCAmelCase : List[str] = len(a__ ) _lowerCAmelCase : List[Any] = num_heads _lowerCAmelCase : Tuple = window_size _lowerCAmelCase : List[Any] = mlp_ratio _lowerCAmelCase : Optional[Any] = qkv_bias _lowerCAmelCase : int = hidden_dropout_prob _lowerCAmelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCAmelCase : Any = drop_path_rate _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : Tuple = use_absolute_embeddings _lowerCAmelCase : str = layer_norm_eps _lowerCAmelCase : Any = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase : Union[str, Any] = int(embed_dim * 2 ** (len(a__ ) - 1) ) _lowerCAmelCase : int = ["""stem"""] + [F"stage{idx}" for idx in range(1 , len(a__ ) + 1 )] _lowerCAmelCase , _lowerCAmelCase : int = get_aligned_output_features_output_indices( out_features=a__ , out_indices=a__ , stage_names=self.stage_names )
126
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class __A ( unittest.TestCase ): def __init__( self , a__ , a__=7 , a__=3 , a__=30 , a__=400 , a__=True , a__=None , a__=0.9 , a__=None , a__=True , a__=[0.5, 0.5, 0.5] , a__=[0.5, 0.5, 0.5] , ): _lowerCAmelCase : int = size if size is not None else {"""shortest_edge""": 30} _lowerCAmelCase : Dict = crop_size if crop_size is not None else {"""height""": 30, """width""": 30} _lowerCAmelCase : List[Any] = parent _lowerCAmelCase : Optional[int] = batch_size _lowerCAmelCase : Any = num_channels _lowerCAmelCase : str = min_resolution _lowerCAmelCase : Dict = max_resolution _lowerCAmelCase : str = do_resize_and_center_crop _lowerCAmelCase : List[str] = size _lowerCAmelCase : int = crop_pct _lowerCAmelCase : int = crop_size _lowerCAmelCase : Union[str, Any] = do_normalize _lowerCAmelCase : Tuple = image_mean _lowerCAmelCase : Optional[Any] = image_std def __A ( self ): return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : List[str] = PoolFormerImageProcessor if is_vision_available() else None def __A ( self ): _lowerCAmelCase : str = PoolFormerImageProcessingTester(self ) @property def __A ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ): _lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a__ , """do_resize_and_center_crop""" ) ) self.assertTrue(hasattr(a__ , """size""" ) ) self.assertTrue(hasattr(a__ , """crop_pct""" ) ) self.assertTrue(hasattr(a__ , """do_normalize""" ) ) self.assertTrue(hasattr(a__ , """image_mean""" ) ) self.assertTrue(hasattr(a__ , """image_std""" ) ) def __A ( self ): _lowerCAmelCase : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 30} ) self.assertEqual(image_processor.crop_size , {"""height""": 30, """width""": 30} ) _lowerCAmelCase : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def __A ( self ): pass def __A ( self ): # Initialize image_processing _lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ ) for image in image_inputs: self.assertIsInstance(a__ , Image.Image ) # Test not batched input _lowerCAmelCase : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase : List[str] = image_processing(a__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __A ( self ): # Initialize image_processing _lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , numpify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , np.ndarray ) # Test not batched input _lowerCAmelCase : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase : int = image_processing(a__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __A ( self ): # Initialize image_processing _lowerCAmelCase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , torchify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , torch.Tensor ) # Test not batched input _lowerCAmelCase : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _lowerCAmelCase : List[str] = image_processing(a__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
126
1
'''simple docstring''' import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer __A : Union[str, Any] = logging.get_logger(__name__) __A : List[str] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __A : List[Any] = { "vocab_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-ctx_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-ctx_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } __A : Union[str, Any] = { "vocab_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-question_encoder-single-nq-base": ( "https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-question_encoder-multiset-base": ( "https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json" ), }, } __A : List[Any] = { "vocab_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "facebook/dpr-reader-single-nq-base": ( "https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json" ), "facebook/dpr-reader-multiset-base": ( "https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json" ), }, } __A : str = { "facebook/dpr-ctx_encoder-single-nq-base": 512, "facebook/dpr-ctx_encoder-multiset-base": 512, } __A : Union[str, Any] = { "facebook/dpr-question_encoder-single-nq-base": 512, "facebook/dpr-question_encoder-multiset-base": 512, } __A : List[str] = { "facebook/dpr-reader-single-nq-base": 512, "facebook/dpr-reader-multiset-base": 512, } __A : str = { "facebook/dpr-ctx_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-ctx_encoder-multiset-base": {"do_lower_case": True}, } __A : List[Any] = { "facebook/dpr-question_encoder-single-nq-base": {"do_lower_case": True}, "facebook/dpr-question_encoder-multiset-base": {"do_lower_case": True}, } __A : Any = { "facebook/dpr-reader-single-nq-base": {"do_lower_case": True}, "facebook/dpr-reader-multiset-base": {"do_lower_case": True}, } class __snake_case ( __a): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION lowercase = DPRContextEncoderTokenizer class __snake_case ( __a): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP lowercase = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowercase = DPRQuestionEncoderTokenizer __A : Tuple = collections.namedtuple( "DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"] ) __A : Union[str, Any] = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"]) __A : Optional[int] = R"\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Return:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n " @add_start_docstrings(__a) class __snake_case : """simple docstring""" def __call__( self : Any , lowerCamelCase : List[str] , lowerCamelCase : Optional[str] = None , lowerCamelCase : Optional[str] = None , lowerCamelCase : Union[bool, str] = False , lowerCamelCase : Union[bool, str] = False , lowerCamelCase : Optional[int] = None , lowerCamelCase : Optional[Union[str, TensorType]] = None , lowerCamelCase : Optional[bool] = None , **lowerCamelCase : Optional[Any] , ) -> Any: if titles is None and texts is None: return super().__call__( _A , padding=_A , truncation=_A , max_length=_A , return_tensors=_A , return_attention_mask=_A , **_A , ) elif titles is None or texts is None: lowerCAmelCase_ : Any = titles if texts is None else texts return super().__call__( _A , _A , padding=_A , truncation=_A , max_length=_A , return_tensors=_A , return_attention_mask=_A , **_A , ) lowerCAmelCase_ : Optional[int] = titles if not isinstance(_A , _A ) else [titles] lowerCAmelCase_ : Optional[int] = texts if not isinstance(_A , _A ) else [texts] lowerCAmelCase_ : List[Any] = len(_A ) lowerCAmelCase_ : Dict = questions if not isinstance(_A , _A ) else [questions] * n_passages assert len(_A ) == len( _A ), F'There should be as many titles than texts but got {len(_A )} titles and {len(_A )} texts.' lowerCAmelCase_ : Dict = super().__call__(_A , _A , padding=_A , truncation=_A )['''input_ids'''] lowerCAmelCase_ : List[str] = super().__call__(_A , add_special_tokens=_A , padding=_A , truncation=_A )['''input_ids'''] lowerCAmelCase_ : List[str] = { '''input_ids''': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(_A , _A ) ] } if return_attention_mask is not False: lowerCAmelCase_ : Optional[Any] = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowerCAmelCase_ : List[str] = attention_mask return self.pad(_A , padding=_A , max_length=_A , return_tensors=_A ) def __lowercase ( self : Dict , lowerCamelCase : BatchEncoding , lowerCamelCase : DPRReaderOutput , lowerCamelCase : int = 16 , lowerCamelCase : int = 64 , lowerCamelCase : int = 4 , ) -> int: lowerCAmelCase_ : str = reader_input['''input_ids'''] lowerCAmelCase_ : List[Any] = reader_output[:3] lowerCAmelCase_ : Tuple = len(_A ) lowerCAmelCase_ : Any = sorted(range(_A ) , reverse=_A , key=relevance_logits.__getitem__ ) lowerCAmelCase_ : List[DPRReaderOutput] = [] for doc_id in sorted_docs: lowerCAmelCase_ : Any = list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowerCAmelCase_ : Dict = sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowerCAmelCase_ : Optional[Any] = sequence_ids.index(self.pad_token_id ) else: lowerCAmelCase_ : Dict = len(_A ) lowerCAmelCase_ : List[Any] = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=_A , top_spans=_A , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=_A , start_index=_A , end_index=_A , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(_A ) >= num_spans: break return nbest_spans_predictions[:num_spans] def __lowercase ( self : Tuple , lowerCamelCase : List[int] , lowerCamelCase : List[int] , lowerCamelCase : int , lowerCamelCase : int , ) -> Any: lowerCAmelCase_ : Optional[int] = [] for start_index, start_score in enumerate(_A ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowerCAmelCase_ : Tuple = sorted(_A , key=lambda lowerCamelCase : x[1] , reverse=_A ) lowerCAmelCase_ : int = [] for (start_index, end_index), score in scores: assert start_index <= end_index, F'Wrong span indices: [{start_index}:{end_index}]' lowerCAmelCase_ : int = end_index - start_index + 1 assert length <= max_answer_length, F'Span is too long: {length} > {max_answer_length}' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(_A ) == top_spans: break return chosen_span_intervals @add_end_docstrings(__a) class __snake_case ( __a ,__a): """simple docstring""" lowercase = VOCAB_FILES_NAMES lowercase = READER_PRETRAINED_VOCAB_FILES_MAP lowercase = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = READER_PRETRAINED_INIT_CONFIGURATION lowercase = ['input_ids', 'attention_mask'] lowercase = DPRReaderTokenizer
120
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCamelCase__ = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ ) -> Optional[Any]: UpperCAmelCase__ : str = R'''\w+[.]\d+''' UpperCAmelCase__ : List[Any] = re.findall(lowerCAmelCase__ , lowerCAmelCase__ ) for pat in pats: UpperCAmelCase__ : Union[str, Any] = key.replace(lowerCAmelCase__ , '''_'''.join(pat.split('''.''' ) ) ) return key def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Union[str, Any]: UpperCAmelCase__ : Optional[Any] = pt_tuple_key[:-1] + ('''scale''',) if ( any('''norm''' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): UpperCAmelCase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: UpperCAmelCase__ : Optional[int] = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: UpperCAmelCase__ : str = pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer UpperCAmelCase__ : Optional[Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: UpperCAmelCase__ : List[Any] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer UpperCAmelCase__ : int = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": UpperCAmelCase__ : Optional[Any] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight UpperCAmelCase__ : Union[str, Any] = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias UpperCAmelCase__ : Optional[Any] = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=42 ) -> Tuple: # Step 1: Convert pytorch tensor to numpy UpperCAmelCase__ : int = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params UpperCAmelCase__ : Tuple = flax_model.init_weights(PRNGKey(lowerCAmelCase__ ) ) UpperCAmelCase__ : Optional[Any] = flatten_dict(lowerCAmelCase__ ) UpperCAmelCase__ : List[str] = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): UpperCAmelCase__ : Optional[int] = rename_key(lowerCAmelCase__ ) UpperCAmelCase__ : str = tuple(renamed_pt_key.split('''.''' ) ) # Correctly rename weight parameters UpperCAmelCase__ , UpperCAmelCase__ : Optional[int] = rename_key_and_reshape_tensor(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown UpperCAmelCase__ : List[str] = jnp.asarray(lowerCAmelCase__ ) return unflatten_dict(lowerCAmelCase__ )
181
0
import numpy as np class lowerCamelCase : '''simple docstring''' def __init__( self ) -> str: UpperCAmelCase_ : str = (0, 0) UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : Optional[Any] = 0 def __eq__( self , _UpperCamelCase ) -> Optional[int]: return self.position == cell.position def __UpperCAmelCase ( self ) -> List[Any]: print(self.position ) class lowerCamelCase : '''simple docstring''' def __init__( self , _UpperCamelCase=(5, 5) ) -> int: UpperCAmelCase_ : Tuple = np.zeros(_UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = world_size[0] UpperCAmelCase_ : List[Any] = world_size[1] def __UpperCAmelCase ( self ) -> Dict: print(self.w ) def __UpperCAmelCase ( self , _UpperCamelCase ) -> str: UpperCAmelCase_ : Dict = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] UpperCAmelCase_ : Any = cell.position[0] UpperCAmelCase_ : Union[str, Any] = cell.position[1] UpperCAmelCase_ : int = [] for n in neughbour_cord: UpperCAmelCase_ : List[str] = current_x + n[0] UpperCAmelCase_ : int = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: UpperCAmelCase_ : Union[str, Any] = Cell() UpperCAmelCase_ : Union[str, Any] = (x, y) UpperCAmelCase_ : Any = cell neighbours.append(_UpperCamelCase ) return neighbours def lowercase__ ( __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : List[str] ): '''simple docstring''' UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : List[Any] = [] _open.append(__snake_case ) while _open: UpperCAmelCase_ : Dict = np.argmin([n.f for n in _open] ) UpperCAmelCase_ : Union[str, Any] = _open[min_f] _closed.append(_open.pop(__snake_case ) ) if current == goal: break for n in world.get_neigbours(__snake_case ): for c in _closed: if c == n: continue UpperCAmelCase_ : Tuple = current.g + 1 UpperCAmelCase_ : List[Any] = n.position UpperCAmelCase_ : str = goal.position UpperCAmelCase_ : Tuple = (ya - ya) ** 2 + (xa - xa) ** 2 UpperCAmelCase_ : List[str] = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(__snake_case ) UpperCAmelCase_ : List[Any] = [] while current.parent is not None: path.append(current.position ) UpperCAmelCase_ : Union[str, Any] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": __UpperCAmelCase = Gridworld() # Start position and goal __UpperCAmelCase = Cell() __UpperCAmelCase = (0, 0) __UpperCAmelCase = Cell() __UpperCAmelCase = (4, 4) print(F'path from {start.position} to {goal.position}') __UpperCAmelCase = astar(world, start, goal) # Just for visual reasons. for i in s: __UpperCAmelCase = 1 print(world.w)
362
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap __UpperCAmelCase = 'Usage of script: script_name <size_of_canvas:int>' __UpperCAmelCase = [0] * 100 + [1] * 10 random.shuffle(choice) def lowercase__ ( __snake_case : int ): '''simple docstring''' UpperCAmelCase_ : Any = [[False for i in range(__snake_case )] for j in range(__snake_case )] return canvas def lowercase__ ( __snake_case : list[list[bool]] ): '''simple docstring''' for i, row in enumerate(__snake_case ): for j, _ in enumerate(__snake_case ): UpperCAmelCase_ : Tuple = bool(random.getrandbits(1 ) ) def lowercase__ ( __snake_case : list[list[bool]] ): '''simple docstring''' UpperCAmelCase_ : List[Any] = np.array(__snake_case ) UpperCAmelCase_ : Any = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__snake_case ): for c, pt in enumerate(__snake_case ): UpperCAmelCase_ : Optional[int] = __judge_point( __snake_case , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) UpperCAmelCase_ : List[Any] = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. UpperCAmelCase_ : list[list[bool]] = current_canvas.tolist() return return_canvas def lowercase__ ( __snake_case : bool , __snake_case : list[list[bool]] ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = 0 UpperCAmelCase_ : List[Any] = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. UpperCAmelCase_ : List[Any] = pt if pt: if alive < 2: UpperCAmelCase_ : str = False elif alive == 2 or alive == 3: UpperCAmelCase_ : int = True elif alive > 3: UpperCAmelCase_ : List[Any] = False else: if alive == 3: UpperCAmelCase_ : int = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) __UpperCAmelCase = int(sys.argv[1]) # main working structure of this module. __UpperCAmelCase = create_canvas(canvas_size) seed(c) __UpperCAmelCase , __UpperCAmelCase = plt.subplots() fig.show() __UpperCAmelCase = ListedColormap(['w', 'k']) try: while True: __UpperCAmelCase = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
145
0
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowerCamelCase : Optional[int] = logging.get_logger(__name__) lowerCamelCase : str = Dict[str, Any] lowerCamelCase : Dict = List[Prediction] @add_end_docstrings(_lowerCAmelCase ) class __lowerCAmelCase (_lowerCAmelCase ): '''simple docstring''' def __init__(self : Dict , *UpperCamelCase : Any , **UpperCamelCase : List[Any] ): '''simple docstring''' super().__init__(*_lowerCamelCase , **_lowerCamelCase ) if self.framework == "tf": raise ValueError(f"The {self.__class__} is only available in PyTorch." ) requires_backends(self , '''vision''' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def UpperCamelCase__ (self : Optional[Any] , **UpperCamelCase : str ): '''simple docstring''' lowercase__ = {} if "threshold" in kwargs: lowercase__ = kwargs['''threshold'''] return {}, {}, postprocess_kwargs def __call__(self : List[str] , *UpperCamelCase : List[str] , **UpperCamelCase : Optional[int] ): '''simple docstring''' return super().__call__(*_lowerCamelCase , **_lowerCamelCase ) def UpperCamelCase__ (self : Any , UpperCamelCase : Dict ): '''simple docstring''' lowercase__ = load_image(_lowerCamelCase ) lowercase__ = torch.IntTensor([[image.height, image.width]] ) lowercase__ = self.image_processor(images=[image] , return_tensors='''pt''' ) if self.tokenizer is not None: lowercase__ = self.tokenizer(text=inputs['''words'''] , boxes=inputs['''boxes'''] , return_tensors='''pt''' ) lowercase__ = target_size return inputs def UpperCamelCase__ (self : int , UpperCamelCase : str ): '''simple docstring''' lowercase__ = model_inputs.pop('''target_size''' ) lowercase__ = self.model(**_lowerCamelCase ) lowercase__ = outputs.__class__({'''target_size''': target_size, **outputs} ) if self.tokenizer is not None: lowercase__ = model_inputs['''bbox'''] return model_outputs def UpperCamelCase__ (self : int , UpperCamelCase : str , UpperCamelCase : Optional[Any]=0.9 ): '''simple docstring''' lowercase__ = model_outputs['''target_size'''] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. lowercase__ ,lowercase__ = target_size[0].tolist() def unnormalize(UpperCamelCase : Tuple ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) lowercase__ ,lowercase__ = model_outputs['''logits'''].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) lowercase__ = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] lowercase__ = [unnormalize(_lowerCamelCase ) for bbox in model_outputs['''bbox'''].squeeze(0 )] lowercase__ = ['''score''', '''label''', '''box'''] lowercase__ = [dict(zip(_lowerCamelCase , _lowerCamelCase ) ) for vals in zip(scores.tolist() , _lowerCamelCase , _lowerCamelCase ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel lowercase__ = self.image_processor.post_process_object_detection(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowercase__ = raw_annotations[0] lowercase__ = raw_annotation['''scores'''] lowercase__ = raw_annotation['''labels'''] lowercase__ = raw_annotation['''boxes'''] lowercase__ = scores.tolist() lowercase__ = [self.model.config.idalabel[label.item()] for label in labels] lowercase__ = [self._get_bounding_box(_lowerCamelCase ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] lowercase__ = ['''score''', '''label''', '''box'''] lowercase__ = [ dict(zip(_lowerCamelCase , _lowerCamelCase ) ) for vals in zip(raw_annotation['''scores'''] , raw_annotation['''labels'''] , raw_annotation['''boxes'''] ) ] return annotation def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : "torch.Tensor" ): '''simple docstring''' if self.framework != "pt": raise ValueError('''The ObjectDetectionPipeline is only available in PyTorch.''' ) lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ = box.int().tolist() lowercase__ = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
2
"""simple docstring""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets lowercase_ = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' lowercase_ = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' lowercase_ = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case ( datasets.Metric ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, homepage='''https://github.com/krishnap25/mauve''', inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { '''predictions''': datasets.Value('''string''', id='''sequence''' ), '''references''': datasets.Value('''string''', id='''sequence''' ), } ), codebase_urls=['''https://github.com/krishnap25/mauve'''], reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ], ) def _SCREAMING_SNAKE_CASE ( self : int, _lowerCamelCase : str, _lowerCamelCase : Optional[Any], _lowerCamelCase : Any=None, _lowerCamelCase : Tuple=None, _lowerCamelCase : Optional[Any]=None, _lowerCamelCase : Union[str, Any]=None, _lowerCamelCase : str="auto", _lowerCamelCase : Union[str, Any]=-1, _lowerCamelCase : List[str]=0.9, _lowerCamelCase : int=5, _lowerCamelCase : Tuple=5_00, _lowerCamelCase : Union[str, Any]="gpt2-large", _lowerCamelCase : int=-1, _lowerCamelCase : Union[str, Any]=10_24, _lowerCamelCase : Union[str, Any]=25, _lowerCamelCase : str=5, _lowerCamelCase : Any=True, _lowerCamelCase : Union[str, Any]=25, ): '''simple docstring''' __A = compute_mauve( p_text=_lowerCamelCase, q_text=_lowerCamelCase, p_features=_lowerCamelCase, q_features=_lowerCamelCase, p_tokens=_lowerCamelCase, q_tokens=_lowerCamelCase, num_buckets=_lowerCamelCase, pca_max_data=_lowerCamelCase, kmeans_explained_var=_lowerCamelCase, kmeans_num_redo=_lowerCamelCase, kmeans_max_iter=_lowerCamelCase, featurize_model_name=_lowerCamelCase, device_id=_lowerCamelCase, max_text_length=_lowerCamelCase, divergence_curve_discretization_size=_lowerCamelCase, mauve_scaling_factor=_lowerCamelCase, verbose=_lowerCamelCase, seed=_lowerCamelCase, ) return out
266
0
from __future__ import annotations import math def UpperCamelCase ( __magic_name__ : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__magic_name__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def UpperCamelCase ( __magic_name__ : int ) -> list[int]: """simple docstring""" lowercase__ = str(__magic_name__ ) lowercase__ = [n] for i in range(1 , len(__magic_name__ ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def UpperCamelCase ( __magic_name__ : int ) -> bool: """simple docstring""" if len(str(__magic_name__ ) ) > 3: if not is_prime(int(str(__magic_name__ )[-3:] ) ) or not is_prime(int(str(__magic_name__ )[:3] ) ): return False return True def UpperCamelCase ( __magic_name__ : int = 11 ) -> list[int]: """simple docstring""" lowercase__ = [] lowercase__ = 13 while len(__magic_name__ ) != count: if validate(__magic_name__ ): lowercase__ = list_truncated_nums(__magic_name__ ) if all(is_prime(__magic_name__ ) for i in list_nums ): list_truncated_primes.append(__magic_name__ ) num += 2 return list_truncated_primes def UpperCamelCase ( ) -> int: """simple docstring""" return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(F'{sum(compute_truncated_primes(1_1)) = }')
146
def UpperCamelCase ( __magic_name__ : str ) -> List[str]: # noqa: E741 """simple docstring""" lowercase__ = len(__magic_name__ ) lowercase__ = 0 lowercase__ = [0] * n lowercase__ = [False] * n lowercase__ = [False] * n def dfs(__magic_name__ : str , __magic_name__ : List[str] , __magic_name__ : str , __magic_name__ : Any ): if parent == root: out_edge_count += 1 lowercase__ = True lowercase__ = at for to in l[at]: if to == parent: pass elif not visited[to]: lowercase__ = dfs(__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) lowercase__ = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: lowercase__ = True # AP found via cycle if at == low[to]: lowercase__ = True else: lowercase__ = min(low[at] , __magic_name__ ) return out_edge_count for i in range(__magic_name__ ): if not visited[i]: lowercase__ = 0 lowercase__ = dfs(__magic_name__ , __magic_name__ , -1 , __magic_name__ ) lowercase__ = out_edge_count > 1 for x in range(len(__magic_name__ ) ): if is_art[x] is True: print(__magic_name__ ) # Adjacency list of graph A : List[str] = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
146
1
from __future__ import annotations from math import pi, sqrt def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> tuple: if inductance <= 0: raise ValueError("Inductance cannot be 0 or negative" ) elif capacitance <= 0: raise ValueError("Capacitance cannot be 0 or negative" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
48
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : int = logging.get_logger(__name__) lowerCAmelCase : List[str] = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "sew-d" def __init__( self , _a=32 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a=2 , _a=512 , _a=256 , _a=True , _a=True , _a=("p2c", "c2p") , _a="layer_norm" , _a="gelu_python" , _a=0.1 , _a=0.1 , _a=0.1 , _a=0.0 , _a=0.1 , _a=0.02 , _a=1e-7 , _a=1e-5 , _a="group" , _a="gelu" , _a=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , _a=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , _a=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , _a=False , _a=128 , _a=16 , _a=True , _a=0.05 , _a=10 , _a=2 , _a=0.0 , _a=10 , _a=0 , _a="mean" , _a=False , _a=False , _a=256 , _a=0 , _a=1 , _a=2 , **_a , ): """simple docstring""" super().__init__(**_a , pad_token_id=_a , bos_token_id=_a , eos_token_id=_a ) lowerCamelCase = hidden_size lowerCamelCase = feat_extract_norm lowerCamelCase = feat_extract_activation lowerCamelCase = list(_a ) lowerCamelCase = list(_a ) lowerCamelCase = list(_a ) lowerCamelCase = conv_bias lowerCamelCase = num_conv_pos_embeddings lowerCamelCase = num_conv_pos_embedding_groups lowerCamelCase = len(self.conv_dim ) lowerCamelCase = num_hidden_layers lowerCamelCase = intermediate_size lowerCamelCase = squeeze_factor lowerCamelCase = max_position_embeddings lowerCamelCase = position_buckets lowerCamelCase = share_att_key lowerCamelCase = relative_attention lowerCamelCase = norm_rel_ebd lowerCamelCase = list(_a ) lowerCamelCase = hidden_act lowerCamelCase = num_attention_heads lowerCamelCase = hidden_dropout lowerCamelCase = attention_dropout lowerCamelCase = activation_dropout lowerCamelCase = feat_proj_dropout lowerCamelCase = final_dropout lowerCamelCase = layer_norm_eps lowerCamelCase = feature_layer_norm_eps lowerCamelCase = initializer_range lowerCamelCase = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect.""" """It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,""" f'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)' f'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase = apply_spec_augment lowerCamelCase = mask_time_prob lowerCamelCase = mask_time_length lowerCamelCase = mask_time_min_masks lowerCamelCase = mask_feature_prob lowerCamelCase = mask_feature_length lowerCamelCase = mask_feature_min_masks # ctc loss lowerCamelCase = ctc_loss_reduction lowerCamelCase = ctc_zero_infinity # sequence classification lowerCamelCase = use_weighted_layer_sum lowerCamelCase = classifier_proj_size @property def _lowerCAmelCase ( self ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
291
0
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed lowerCAmelCase__ : Optional[Any] ={ 'distilbert': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), 'roberta': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), 'bert': (BertConfig, BertForMaskedLM, BertTokenizer), 'gpt2': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def a__ ( A__ ): assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def a__ ( A__, A__ ): if args.student_type == "roberta": SCREAMING_SNAKE_CASE_ : List[str] = False elif args.student_type == "gpt2": SCREAMING_SNAKE_CASE_ : int = False def a__ ( A__, A__ ): if args.student_type == "roberta": SCREAMING_SNAKE_CASE_ : Optional[Any] = False def a__ ( ): SCREAMING_SNAKE_CASE_ : List[Any] = argparse.ArgumentParser(description='Training' ) parser.add_argument('--force', action='store_true', help='Overwrite dump_path if it already exists.' ) parser.add_argument( '--dump_path', type=A__, required=A__, help='The output directory (log, checkpoints, parameters, etc.)' ) parser.add_argument( '--data_file', type=A__, required=A__, help='The binarized file (tokenized + tokens_to_ids) and grouped by sequence.', ) parser.add_argument( '--student_type', type=A__, choices=['distilbert', 'roberta', 'gpt2'], required=A__, help='The student type (DistilBERT, RoBERTa).', ) parser.add_argument('--student_config', type=A__, required=A__, help='Path to the student configuration.' ) parser.add_argument( '--student_pretrained_weights', default=A__, type=A__, help='Load student initialization checkpoint.' ) parser.add_argument( '--teacher_type', choices=['bert', 'roberta', 'gpt2'], required=A__, help='Teacher type (BERT, RoBERTa).' ) parser.add_argument('--teacher_name', type=A__, required=A__, help='The teacher model.' ) parser.add_argument('--temperature', default=2.0, type=A__, help='Temperature for the softmax temperature.' ) parser.add_argument( '--alpha_ce', default=0.5, type=A__, help='Linear weight for the distillation loss. Must be >=0.' ) parser.add_argument( '--alpha_mlm', default=0.0, type=A__, help='Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.', ) parser.add_argument('--alpha_clm', default=0.5, type=A__, help='Linear weight for the CLM loss. Must be >=0.' ) parser.add_argument('--alpha_mse', default=0.0, type=A__, help='Linear weight of the MSE loss. Must be >=0.' ) parser.add_argument( '--alpha_cos', default=0.0, type=A__, help='Linear weight of the cosine embedding loss. Must be >=0.' ) parser.add_argument( '--mlm', action='store_true', help='The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.' ) parser.add_argument( '--mlm_mask_prop', default=0.15, type=A__, help='Proportion of tokens for which we need to make a prediction.', ) parser.add_argument('--word_mask', default=0.8, type=A__, help='Proportion of tokens to mask out.' ) parser.add_argument('--word_keep', default=0.1, type=A__, help='Proportion of tokens to keep.' ) parser.add_argument('--word_rand', default=0.1, type=A__, help='Proportion of tokens to randomly replace.' ) parser.add_argument( '--mlm_smoothing', default=0.7, type=A__, help='Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).', ) parser.add_argument('--token_counts', type=A__, help='The token counts in the data_file for MLM.' ) parser.add_argument( '--restrict_ce_to_mask', action='store_true', help='If true, compute the distillation loss only the [MLM] prediction distribution.', ) parser.add_argument( '--freeze_pos_embs', action='store_true', help='Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.', ) parser.add_argument( '--freeze_token_type_embds', action='store_true', help='Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.', ) parser.add_argument('--n_epoch', type=A__, default=3, help='Number of pass on the whole dataset.' ) parser.add_argument('--batch_size', type=A__, default=5, help='Batch size (for each process).' ) parser.add_argument( '--group_by_size', action='store_false', help='If true, group sequences that have similar length into the same batch. Default is true.', ) parser.add_argument( '--gradient_accumulation_steps', type=A__, default=5_0, help='Gradient accumulation for larger training batches.', ) parser.add_argument('--warmup_prop', default=0.05, type=A__, help='Linear warmup proportion.' ) parser.add_argument('--weight_decay', default=0.0, type=A__, help='Weight decay if we apply some.' ) parser.add_argument('--learning_rate', default=5E-4, type=A__, help='The initial learning rate for Adam.' ) parser.add_argument('--adam_epsilon', default=1E-6, type=A__, help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm', default=5.0, type=A__, help='Max gradient norm.' ) parser.add_argument('--initializer_range', default=0.02, type=A__, help='Random initialization range.' ) parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit', ) parser.add_argument( '--fp16_opt_level', type=A__, default='O1', help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ), ) parser.add_argument('--n_gpu', type=A__, default=1, help='Number of GPUs in the node.' ) parser.add_argument('--local_rank', type=A__, default=-1, help='Distributed training - Local rank' ) parser.add_argument('--seed', type=A__, default=5_6, help='Random seed' ) parser.add_argument('--log_interval', type=A__, default=5_0_0, help='Tensorboard logging interval.' ) parser.add_argument('--checkpoint_interval', type=A__, default=4_0_0_0, help='Checkpoint interval.' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = parser.parse_args() sanity_checks(A__ ) # ARGS # init_gpu_params(A__ ) set_seed(A__ ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ' itUse `--force` if you want to overwrite it' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path, 'parameters.json' ), 'w' ) as f: json.dump(vars(A__ ), A__, indent=4 ) git_log(args.dump_path ) SCREAMING_SNAKE_CASE_ : str = MODEL_CLASSES[args.student_type] SCREAMING_SNAKE_CASE_ : Optional[int] = MODEL_CLASSES[args.teacher_type] # TOKENIZER # SCREAMING_SNAKE_CASE_ : List[str] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) SCREAMING_SNAKE_CASE_ : int = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer.all_special_tokens.index(A__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) SCREAMING_SNAKE_CASE_ : int = special_tok_ids SCREAMING_SNAKE_CASE_ : str = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file, 'rb' ) as fp: SCREAMING_SNAKE_CASE_ : Tuple = pickle.load(A__ ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts, 'rb' ) as fp: SCREAMING_SNAKE_CASE_ : int = pickle.load(A__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.maximum(A__, 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): SCREAMING_SNAKE_CASE_ : int = 0.0 # do not predict special tokens SCREAMING_SNAKE_CASE_ : List[str] = torch.from_numpy(A__ ) else: SCREAMING_SNAKE_CASE_ : Optional[int] = None SCREAMING_SNAKE_CASE_ : Optional[int] = LmSeqsDataset(params=A__, data=A__ ) logger.info('Data loader created.' ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) SCREAMING_SNAKE_CASE_ : Any = student_config_class.from_pretrained(args.student_config ) SCREAMING_SNAKE_CASE_ : List[str] = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) SCREAMING_SNAKE_CASE_ : Dict = student_model_class.from_pretrained(args.student_pretrained_weights, config=A__ ) else: SCREAMING_SNAKE_CASE_ : List[Any] = student_model_class(A__ ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info('Student loaded.' ) # TEACHER # SCREAMING_SNAKE_CASE_ : Tuple = teacher_model_class.from_pretrained(args.teacher_name, output_hidden_states=A__ ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(A__, A__ ) if args.freeze_token_type_embds: freeze_token_type_embeddings(A__, A__ ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() SCREAMING_SNAKE_CASE_ : Union[str, Any] = Distiller( params=A__, dataset=A__, token_probs=A__, student=A__, teacher=A__ ) distiller.train() logger.info('Let\'s go get some drinks.' ) if __name__ == "__main__": main()
363
import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def a__ ( ): raise RuntimeError('CUDA out of memory.' ) class __lowercase (nn.Module ): """simple docstring""" def __init__( self ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE_ : int = nn.Linear(3 , 4 ) SCREAMING_SNAKE_CASE_ : Tuple = nn.BatchNormad(4 ) SCREAMING_SNAKE_CASE_ : str = nn.Linear(4 , 5 ) def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" return self.lineara(self.batchnorm(self.lineara(lowerCAmelCase__ ) ) ) class __lowercase (unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(lowerCAmelCase__ ): nonlocal batch_sizes batch_sizes.append(lowerCAmelCase__ ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(lowerCAmelCase__ , [1_2_8, 6_4, 3_2, 1_6, 8] ) def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [] @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(lowerCAmelCase__ , lowerCAmelCase__ ): nonlocal batch_sizes batch_sizes.append(lowerCAmelCase__ ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = mock_training_loop_function('hello' ) self.assertListEqual(lowerCAmelCase__ , [1_2_8, 6_4, 3_2, 1_6, 8] ) self.assertListEqual([bs, arga] , [8, 'hello'] ) def UpperCamelCase__ ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(lowerCAmelCase__ ): pass with self.assertRaises(lowerCAmelCase__ ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def UpperCamelCase__ ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(lowerCAmelCase__ ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(lowerCAmelCase__ ) as cm: mock_training_loop_function() self.assertIn('No executable batch size found, reached zero.' , cm.exception.args[0] ) def UpperCamelCase__ ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=1_2_8 ) def mock_training_loop_function(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(lowerCAmelCase__ ) as cm: mock_training_loop_function(1_2_8 , 'hello' , 'world' ) self.assertIn('Batch size was passed into `f`' , cm.exception.args[0] ) self.assertIn('`f(arg1=\'hello\', arg2=\'world\')' , cm.exception.args[0] ) def UpperCamelCase__ ( self ): """simple docstring""" @find_executable_batch_size(starting_batch_size=1_6 ) def mock_training_loop_function(lowerCAmelCase__ ): raise ValueError('Oops, we had an error!' ) with self.assertRaises(lowerCAmelCase__ ) as cm: mock_training_loop_function() self.assertIn('Oops, we had an error!' , cm.exception.args[0] ) @require_cuda def UpperCamelCase__ ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.cuda.memory_allocated() SCREAMING_SNAKE_CASE_ : Optional[int] = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = release_memory(lowerCAmelCase__ ) self.assertEqual(torch.cuda.memory_allocated() , lowerCAmelCase__ )
162
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class A_ ( metaclass=A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""sentencepiece"""] def __init__( self :List[str] , *lowerCamelCase_ :Optional[Any] , **lowerCamelCase_ :Union[str, Any] ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""sentencepiece"""] def __init__( self :Optional[Any] , *lowerCamelCase_ :Union[str, Any] , **lowerCamelCase_ :Tuple ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""sentencepiece"""] def __init__( self :Optional[int] , *lowerCamelCase_ :List[Any] , **lowerCamelCase_ :Dict ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""sentencepiece"""] def __init__( self :Tuple , *lowerCamelCase_ :List[str] , **lowerCamelCase_ :List[Any] ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""sentencepiece"""] def __init__( self :Union[str, Any] , *lowerCamelCase_ :str , **lowerCamelCase_ :Tuple ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""sentencepiece"""] def __init__( self :List[Any] , *lowerCamelCase_ :Union[str, Any] , **lowerCamelCase_ :Union[str, Any] ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""sentencepiece"""] def __init__( self :List[Any] , *lowerCamelCase_ :Any , **lowerCamelCase_ :Dict ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""sentencepiece"""] def __init__( self :Any , *lowerCamelCase_ :Tuple , **lowerCamelCase_ :Optional[Any] ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""sentencepiece"""] def __init__( self :Optional[Any] , *lowerCamelCase_ :Dict , **lowerCamelCase_ :List[str] ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""sentencepiece"""] def __init__( self :Optional[int] , *lowerCamelCase_ :int , **lowerCamelCase_ :int ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""sentencepiece"""] def __init__( self :Tuple , *lowerCamelCase_ :List[str] , **lowerCamelCase_ :str ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""sentencepiece"""] def __init__( self :Optional[int] , *lowerCamelCase_ :Dict , **lowerCamelCase_ :List[Any] ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""sentencepiece"""] def __init__( self :List[str] , *lowerCamelCase_ :List[Any] , **lowerCamelCase_ :Optional[int] ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""sentencepiece"""] def __init__( self :str , *lowerCamelCase_ :Any , **lowerCamelCase_ :Dict ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""sentencepiece"""] def __init__( self :Optional[int] , *lowerCamelCase_ :List[Any] , **lowerCamelCase_ :List[str] ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""sentencepiece"""] def __init__( self :Any , *lowerCamelCase_ :List[str] , **lowerCamelCase_ :str ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""sentencepiece"""] def __init__( self :List[str] , *lowerCamelCase_ :List[Any] , **lowerCamelCase_ :Tuple ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""sentencepiece"""] def __init__( self :Dict , *lowerCamelCase_ :List[Any] , **lowerCamelCase_ :Tuple ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""sentencepiece"""] def __init__( self :List[Any] , *lowerCamelCase_ :int , **lowerCamelCase_ :Any ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""sentencepiece"""] def __init__( self :Any , *lowerCamelCase_ :str , **lowerCamelCase_ :Optional[Any] ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""sentencepiece"""] def __init__( self :Optional[int] , *lowerCamelCase_ :Any , **lowerCamelCase_ :Any ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""sentencepiece"""] def __init__( self :Tuple , *lowerCamelCase_ :Any , **lowerCamelCase_ :int ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""sentencepiece"""] def __init__( self :Tuple , *lowerCamelCase_ :Optional[int] , **lowerCamelCase_ :Optional[Any] ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""sentencepiece"""] def __init__( self :List[Any] , *lowerCamelCase_ :Any , **lowerCamelCase_ :Tuple ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""sentencepiece"""] def __init__( self :str , *lowerCamelCase_ :Any , **lowerCamelCase_ :Tuple ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""sentencepiece"""] def __init__( self :int , *lowerCamelCase_ :str , **lowerCamelCase_ :Dict ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""sentencepiece"""] def __init__( self :Optional[int] , *lowerCamelCase_ :List[Any] , **lowerCamelCase_ :List[str] ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""sentencepiece"""] def __init__( self :int , *lowerCamelCase_ :int , **lowerCamelCase_ :Any ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""sentencepiece"""] def __init__( self :str , *lowerCamelCase_ :Union[str, Any] , **lowerCamelCase_ :Optional[int] ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""sentencepiece"""] def __init__( self :Tuple , *lowerCamelCase_ :Optional[Any] , **lowerCamelCase_ :Dict ): """simple docstring""" requires_backends(self , ['sentencepiece'] ) class A_ ( metaclass=A__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["""sentencepiece"""] def __init__( self :Union[str, Any] , *lowerCamelCase_ :Tuple , **lowerCamelCase_ :Optional[int] ): """simple docstring""" requires_backends(self , ['sentencepiece'] )
126
"""simple docstring""" import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed lowerCAmelCase = """true""" def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : int=8_2 , snake_case_ : Optional[Any]=1_6 ) ->Dict: set_seed(4_2 ) lowerCamelCase__ : List[Any] =RegressionModel() lowerCamelCase__ : List[Any] =deepcopy(snake_case_ ) lowerCamelCase__ : List[str] =RegressionDataset(length=snake_case_ ) lowerCamelCase__ : Any =DataLoader(snake_case_ , batch_size=snake_case_ ) model.to(accelerator.device ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] =accelerator.prepare(snake_case_ , snake_case_ ) return model, ddp_model, dataloader def lowerCAmelCase_ ( snake_case_ : Accelerator , snake_case_ : str=False ) ->List[str]: lowerCamelCase__ : int =AutoTokenizer.from_pretrained('hf-internal-testing/mrpc-bert-base-cased' ) lowerCamelCase__ : List[Any] =load_dataset('glue' , 'mrpc' , split='validation' ) def tokenize_function(snake_case_ : Optional[Any] ): lowerCamelCase__ : Optional[int] =tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=snake_case_ , max_length=snake_case_ ) return outputs with accelerator.main_process_first(): lowerCamelCase__ : Tuple =dataset.map( snake_case_ , batched=snake_case_ , remove_columns=['idx', 'sentence1', 'sentence2'] , ) lowerCamelCase__ : List[Any] =tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(snake_case_ : Union[str, Any] ): if use_longest: return tokenizer.pad(snake_case_ , padding='longest' , return_tensors='pt' ) return tokenizer.pad(snake_case_ , padding='max_length' , max_length=1_2_8 , return_tensors='pt' ) return DataLoader(snake_case_ , shuffle=snake_case_ , collate_fn=snake_case_ , batch_size=1_6 ) def lowerCAmelCase_ ( snake_case_ : List[str] , snake_case_ : Tuple ) ->Any: lowerCamelCase__ : Optional[int] =Accelerator(dispatch_batches=snake_case_ , split_batches=snake_case_ ) lowerCamelCase__ : List[Any] =get_dataloader(snake_case_ , not dispatch_batches ) lowerCamelCase__ : Union[str, Any] =AutoModelForSequenceClassification.from_pretrained( 'hf-internal-testing/mrpc-bert-base-cased' , return_dict=snake_case_ ) lowerCamelCase__ , lowerCamelCase__ : Dict =accelerator.prepare(snake_case_ , snake_case_ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def lowerCAmelCase_ ( snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : List[str] ) ->Dict: lowerCamelCase__ : Optional[Any] =[] for batch in dataloader: lowerCamelCase__ , lowerCamelCase__ : int =batch.values() with torch.no_grad(): lowerCamelCase__ : Optional[Any] =model(snake_case_ ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] =accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] =[], [] for logit, targ in logits_and_targets: logits.append(snake_case_ ) targs.append(snake_case_ ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] =torch.cat(snake_case_ ), torch.cat(snake_case_ ) return logits, targs def lowerCAmelCase_ ( snake_case_ : Accelerator , snake_case_ : Optional[int]=8_2 , snake_case_ : Any=False , snake_case_ : List[Any]=False , snake_case_ : Optional[int]=1_6 ) ->List[str]: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict =get_basic_setup(snake_case_ , snake_case_ , snake_case_ ) lowerCamelCase__ , lowerCamelCase__ : Any =generate_predictions(snake_case_ , snake_case_ , snake_case_ ) assert ( len(snake_case_ ) == num_samples ), f"""Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(snake_case_ )}""" def lowerCAmelCase_ ( snake_case_ : bool = False , snake_case_ : bool = False ) ->str: lowerCamelCase__ : Dict =evaluate.load('glue' , 'mrpc' ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] =get_mrpc_setup(snake_case_ , snake_case_ ) # First do baseline lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict =setup['no'] model.to(snake_case_ ) model.eval() for batch in dataloader: batch.to(snake_case_ ) with torch.inference_mode(): lowerCamelCase__ : Any =model(**snake_case_ ) lowerCamelCase__ : List[str] =outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=snake_case_ , references=batch['labels'] ) lowerCamelCase__ : Optional[Any] =metric.compute() # Then do distributed lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Optional[int] =setup['ddp'] model.eval() for batch in dataloader: with torch.inference_mode(): lowerCamelCase__ : List[Any] =model(**snake_case_ ) lowerCamelCase__ : str =outputs.logits.argmax(dim=-1 ) lowerCamelCase__ : int =batch['labels'] lowerCamelCase__ , lowerCamelCase__ : List[Any] =accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=snake_case_ , references=snake_case_ ) lowerCamelCase__ : List[str] =metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), f"""Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n""" def lowerCAmelCase_ ( ) ->str: lowerCamelCase__ : List[str] =Accelerator(split_batches=snake_case_ , dispatch_batches=snake_case_ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print('**Testing gather_for_metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`""" ) test_mrpc(snake_case_ , snake_case_ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test torch metrics**' ) for split_batches in [True, False]: for dispatch_batches in [True, False]: lowerCamelCase__ : Dict =Accelerator(split_batches=snake_case_ , dispatch_batches=snake_case_ ) if accelerator.is_local_main_process: print(f"""With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99""" ) test_torch_metrics(snake_case_ , 9_9 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print('**Test last batch is not dropped when perfectly divisible**' ) lowerCamelCase__ : List[Any] =Accelerator() test_torch_metrics(snake_case_ , 5_1_2 ) accelerator.state._reset_state() def lowerCAmelCase_ ( snake_case_ : List[Any] ) ->Dict: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
126
1
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __a ( nn.Module ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0.0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "geglu" , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = "layer_norm" , _SCREAMING_SNAKE_CASE = False , ) -> Optional[Any]: """simple docstring""" super().__init__() _UpperCAmelCase = only_cross_attention _UpperCAmelCase = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm_zero' _UpperCAmelCase = (num_embeds_ada_norm is not None) and norm_type == 'ada_norm' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' f''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: _UpperCAmelCase = AdaLayerNorm(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif self.use_ada_layer_norm_zero: _UpperCAmelCase = AdaLayerNormZero(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: _UpperCAmelCase = nn.LayerNorm(_SCREAMING_SNAKE_CASE , elementwise_affine=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = Attention( query_dim=_SCREAMING_SNAKE_CASE , heads=_SCREAMING_SNAKE_CASE , dim_head=_SCREAMING_SNAKE_CASE , dropout=_SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=_SCREAMING_SNAKE_CASE , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. _UpperCAmelCase = ( AdaLayerNorm(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if self.use_ada_layer_norm else nn.LayerNorm(_SCREAMING_SNAKE_CASE , elementwise_affine=_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = Attention( query_dim=_SCREAMING_SNAKE_CASE , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=_SCREAMING_SNAKE_CASE , dim_head=_SCREAMING_SNAKE_CASE , dropout=_SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE , upcast_attention=_SCREAMING_SNAKE_CASE , ) # is self-attn if encoder_hidden_states is none else: _UpperCAmelCase = None _UpperCAmelCase = None # 3. Feed-forward _UpperCAmelCase = nn.LayerNorm(_SCREAMING_SNAKE_CASE , elementwise_affine=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = FeedForward(_SCREAMING_SNAKE_CASE , dropout=_SCREAMING_SNAKE_CASE , activation_fn=_SCREAMING_SNAKE_CASE , final_dropout=_SCREAMING_SNAKE_CASE ) # let chunk size default to None _UpperCAmelCase = None _UpperCAmelCase = 0 def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" _UpperCAmelCase = chunk_size _UpperCAmelCase = dim def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , ) -> Dict: """simple docstring""" if self.use_ada_layer_norm: _UpperCAmelCase = self.norma(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif self.use_ada_layer_norm_zero: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = self.norma( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , hidden_dtype=hidden_states.dtype ) else: _UpperCAmelCase = self.norma(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = cross_attention_kwargs if cross_attention_kwargs is not None else {} _UpperCAmelCase = self.attna( _SCREAMING_SNAKE_CASE , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) if self.use_ada_layer_norm_zero: _UpperCAmelCase = gate_msa.unsqueeze(1 ) * attn_output _UpperCAmelCase = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: _UpperCAmelCase = ( self.norma(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if self.use_ada_layer_norm else self.norma(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = self.attna( _SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) _UpperCAmelCase = attn_output + hidden_states # 3. Feed-forward _UpperCAmelCase = self.norma(_SCREAMING_SNAKE_CASE ) if self.use_ada_layer_norm_zero: _UpperCAmelCase = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) _UpperCAmelCase = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size _UpperCAmelCase = torch.cat( [self.ff(_SCREAMING_SNAKE_CASE ) for hid_slice in norm_hidden_states.chunk(_SCREAMING_SNAKE_CASE , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: _UpperCAmelCase = self.ff(_SCREAMING_SNAKE_CASE ) if self.use_ada_layer_norm_zero: _UpperCAmelCase = gate_mlp.unsqueeze(1 ) * ff_output _UpperCAmelCase = ff_output + hidden_states return hidden_states class __a ( nn.Module ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 4 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = "geglu" , _SCREAMING_SNAKE_CASE = False , ) -> Any: """simple docstring""" super().__init__() _UpperCAmelCase = int(dim * mult ) _UpperCAmelCase = dim_out if dim_out is not None else dim if activation_fn == "gelu": _UpperCAmelCase = GELU(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if activation_fn == "gelu-approximate": _UpperCAmelCase = GELU(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , approximate='tanh' ) elif activation_fn == "geglu": _UpperCAmelCase = GEGLU(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif activation_fn == "geglu-approximate": _UpperCAmelCase = ApproximateGELU(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = nn.ModuleList([] ) # project in self.net.append(_SCREAMING_SNAKE_CASE ) # project dropout self.net.append(nn.Dropout(_SCREAMING_SNAKE_CASE ) ) # project out self.net.append(nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(_SCREAMING_SNAKE_CASE ) ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" for module in self.net: _UpperCAmelCase = module(_SCREAMING_SNAKE_CASE ) return hidden_states class __a ( nn.Module ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = "none" ) -> List[Any]: """simple docstring""" super().__init__() _UpperCAmelCase = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = approximate def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" if gate.device.type != "mps": return F.gelu(_SCREAMING_SNAKE_CASE , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" _UpperCAmelCase = self.proj(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.gelu(_SCREAMING_SNAKE_CASE ) return hidden_states class __a ( nn.Module ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" super().__init__() _UpperCAmelCase = nn.Linear(_SCREAMING_SNAKE_CASE , dim_out * 2 ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" if gate.device.type != "mps": return F.gelu(_SCREAMING_SNAKE_CASE ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.proj(_SCREAMING_SNAKE_CASE ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(_SCREAMING_SNAKE_CASE ) class __a ( nn.Module ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" super().__init__() _UpperCAmelCase = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" _UpperCAmelCase = self.proj(_SCREAMING_SNAKE_CASE ) return x * torch.sigmoid(1.702 * x ) class __a ( nn.Module ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" super().__init__() _UpperCAmelCase = nn.Embedding(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = nn.SiLU() _UpperCAmelCase = nn.Linear(_SCREAMING_SNAKE_CASE , embedding_dim * 2 ) _UpperCAmelCase = nn.LayerNorm(_SCREAMING_SNAKE_CASE , elementwise_affine=_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _UpperCAmelCase = self.linear(self.silu(self.emb(_SCREAMING_SNAKE_CASE ) ) ) _UpperCAmelCase , _UpperCAmelCase = torch.chunk(_SCREAMING_SNAKE_CASE , 2 ) _UpperCAmelCase = self.norm(_SCREAMING_SNAKE_CASE ) * (1 + scale) + shift return x class __a ( nn.Module ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" super().__init__() _UpperCAmelCase = CombinedTimestepLabelEmbeddings(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = nn.SiLU() _UpperCAmelCase = nn.Linear(_SCREAMING_SNAKE_CASE , 6 * embedding_dim , bias=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = nn.LayerNorm(_SCREAMING_SNAKE_CASE , elementwise_affine=_SCREAMING_SNAKE_CASE , eps=1e-6 ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> int: """simple docstring""" _UpperCAmelCase = self.linear(self.silu(self.emb(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , hidden_dtype=_SCREAMING_SNAKE_CASE ) ) ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = emb.chunk(6 , dim=1 ) _UpperCAmelCase = self.norm(_SCREAMING_SNAKE_CASE ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __a ( nn.Module ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 1e-5 ) -> str: """simple docstring""" super().__init__() _UpperCAmelCase = num_groups _UpperCAmelCase = eps if act_fn is None: _UpperCAmelCase = None else: _UpperCAmelCase = get_activation(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = nn.Linear(_SCREAMING_SNAKE_CASE , out_dim * 2 ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" if self.act: _UpperCAmelCase = self.act(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.linear(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = emb[:, :, None, None] _UpperCAmelCase , _UpperCAmelCase = emb.chunk(2 , dim=1 ) _UpperCAmelCase = F.group_norm(_SCREAMING_SNAKE_CASE , self.num_groups , eps=self.eps ) _UpperCAmelCase = x * (1 + scale) + shift return x
353
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file lowerCAmelCase__ :Dict = '''Run commands across TPU VMs for initial setup before running `accelerate launch`.''' def lowerCAmelCase__ ( a__: Optional[Any]=None ) -> List[Any]: '''simple docstring''' if subparsers is not None: _UpperCAmelCase = subparsers.add_parser('tpu-config' , description=_description ) else: _UpperCAmelCase = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments _UpperCAmelCase = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=a__ , default=a__ , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=a__ , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=a__ , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) _UpperCAmelCase = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=a__ , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=a__ ) return parser def lowerCAmelCase__ ( a__: str ) -> Any: '''simple docstring''' _UpperCAmelCase = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(a__ ): _UpperCAmelCase = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: _UpperCAmelCase = defaults.command_file if not args.command and defaults.commands is not None: _UpperCAmelCase = defaults.commands if not args.tpu_name: _UpperCAmelCase = defaults.tpu_name if not args.tpu_zone: _UpperCAmelCase = defaults.tpu_zone if args.accelerate_version == "dev": _UpperCAmelCase = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": _UpperCAmelCase = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , a__ ): _UpperCAmelCase = F'''accelerate=={args.accelerate_version}''' if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: _UpperCAmelCase = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , a__ ): _UpperCAmelCase = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate _UpperCAmelCase = ['cd /usr/share'] if args.install_accelerate: new_cmd += [F'''pip install {args.accelerate_version}'''] new_cmd += args.command _UpperCAmelCase = '; '.join(a__ ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess _UpperCAmelCase = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(F'''Running {" ".join(a__ )}''' ) return subprocess.run(a__ ) print('Successfully setup pod.' ) def lowerCAmelCase__ ( ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = tpu_command_parser() _UpperCAmelCase = parser.parse_args() tpu_command_launcher(a__ )
185
0
import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() a_ = logging.get_logger(__name__) def _a ( UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ = WavaVecaForSequenceClassification.from_pretrained(a_ , config=a_ ) lowerCAmelCase__ = downstream_dict["projector.weight"] lowerCAmelCase__ = downstream_dict["projector.bias"] lowerCAmelCase__ = downstream_dict["model.post_net.linear.weight"] lowerCAmelCase__ = downstream_dict["model.post_net.linear.bias"] return model def _a ( UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple , UpperCamelCase_ : Union[str, Any] ) -> Dict: """simple docstring""" lowerCAmelCase__ = WavaVecaForAudioFrameClassification.from_pretrained(a_ , config=a_ ) lowerCAmelCase__ = downstream_dict["model.linear.weight"] lowerCAmelCase__ = downstream_dict["model.linear.bias"] return model def _a ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ = WavaVecaForXVector.from_pretrained(a_ , config=a_ ) lowerCAmelCase__ = downstream_dict["connector.weight"] lowerCAmelCase__ = downstream_dict["connector.bias"] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): lowerCAmelCase__ = downstream_dict[ F"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] lowerCAmelCase__ = downstream_dict[F"model.framelevel_feature_extractor.module.{i}.kernel.bias"] lowerCAmelCase__ = downstream_dict["model.utterancelevel_feature_extractor.linear1.weight"] lowerCAmelCase__ = downstream_dict["model.utterancelevel_feature_extractor.linear1.bias"] lowerCAmelCase__ = downstream_dict["model.utterancelevel_feature_extractor.linear2.weight"] lowerCAmelCase__ = downstream_dict["model.utterancelevel_feature_extractor.linear2.bias"] lowerCAmelCase__ = downstream_dict["objective.W"] return model @torch.no_grad() def _a ( UpperCamelCase_ : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict ) -> Any: """simple docstring""" lowerCAmelCase__ = torch.load(a_ , map_location="cpu" ) lowerCAmelCase__ = checkpoint["Downstream"] lowerCAmelCase__ = WavaVecaConfig.from_pretrained(a_ ) lowerCAmelCase__ = WavaVecaFeatureExtractor.from_pretrained( a_ , return_attention_mask=a_ , do_normalize=a_ ) lowerCAmelCase__ = hf_config.architectures[0] if arch.endswith("ForSequenceClassification" ): lowerCAmelCase__ = convert_classification(a_ , a_ , a_ ) elif arch.endswith("ForAudioFrameClassification" ): lowerCAmelCase__ = convert_diarization(a_ , a_ , a_ ) elif arch.endswith("ForXVector" ): lowerCAmelCase__ = convert_xvector(a_ , a_ , a_ ) else: raise NotImplementedError(F"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: lowerCAmelCase__ = checkpoint["Featurizer"]["weights"] hf_feature_extractor.save_pretrained(a_ ) hf_model.save_pretrained(a_ ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') a_ = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
340
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __a = logging.get_logger(__name__) class A__ ( UpperCamelCase ): """simple docstring""" def __init__( self : Dict , *lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : Tuple ) -> None: """simple docstring""" warnings.warn( "The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use OwlViTImageProcessor instead." , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
145
0
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": lowerCamelCase_ = input('''Enter image url: ''').strip() print(f"""Downloading image from {url} ...""") lowerCamelCase_ = BeautifulSoup(requests.get(url).content, '''html.parser''') # The image URL is in the content field of the first meta tag with property og:image lowerCamelCase_ = soup.find('''meta''', {'''property''': '''og:image'''})['''content'''] lowerCamelCase_ = requests.get(image_url).content lowerCamelCase_ = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, '''wb''') as fp: fp.write(image_data) print(f"""Done. Image saved to disk as {file_name}.""")
362
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase_ = { '''configuration_graphormer''': ['''GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GraphormerConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ = [ '''GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GraphormerForGraphClassification''', '''GraphormerModel''', '''GraphormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
34
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : str = {"configuration_mmbt": ["MMBTConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
146
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __UpperCamelCase : Dict = trt.Logger(trt.Logger.WARNING) __UpperCamelCase : Union[str, Any] = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __UpperCamelCase : int = logging.getLogger(__name__) __UpperCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--onnx_model_path", default=None, type=str, required=True, help="Path to ONNX model: ", ) parser.add_argument( "--output_dir", default=None, type=str, required=True, help="The output directory where the model checkpoints and predictions will be written.", ) # Other parameters parser.add_argument( "--tokenizer_name", default="", type=str, required=True, help="Pretrained tokenizer name or path if not the same as model_name", ) parser.add_argument( "--version_2_with_negative", action="store_true", help="If true, the SQuAD examples contain some that do not have an answer.", ) parser.add_argument( "--null_score_diff_threshold", type=float, default=0.0, help="If null_score - best_non_null is greater than the threshold predict null.", ) parser.add_argument( "--max_seq_length", default=384, type=int, help=( "The maximum total input sequence length after WordPiece tokenization. Sequences " "longer than this will be truncated, and sequences shorter than this will be padded." ), ) parser.add_argument( "--doc_stride", default=128, type=int, help="When splitting up a long document into chunks, how much stride to take between chunks.", ) parser.add_argument("--per_device_eval_batch_size", default=8, type=int, help="Batch size per GPU/CPU for evaluation.") parser.add_argument( "--n_best_size", default=20, type=int, help="The total number of n-best predictions to generate in the nbest_predictions.json output file.", ) parser.add_argument( "--max_answer_length", default=30, type=int, help=( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ), ) parser.add_argument("--seed", type=int, default=42, help="random seed for initialization") parser.add_argument( "--dataset_name", type=str, default=None, required=True, help="The name of the dataset to use (via the datasets library).", ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The configuration name of the dataset to use (via the datasets library).", ) parser.add_argument( "--preprocessing_num_workers", type=int, default=4, help="A csv or a json file containing the training data." ) parser.add_argument("--overwrite_cache", action="store_true", help="Overwrite the cached training and evaluation sets") parser.add_argument( "--fp16", action="store_true", help="Whether to use 16-bit (mixed) precision instead of 32-bit", ) parser.add_argument( "--int8", action="store_true", help="Whether to use INT8", ) __UpperCamelCase : Dict = parser.parse_args() if args.tokenizer_name: __UpperCamelCase : Optional[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported by this script." "You can do it from another script, save it, and load it from here, using --tokenizer_name." ) logger.info("Training/evaluation parameters %s", args) __UpperCamelCase : Union[str, Any] = args.per_device_eval_batch_size __UpperCamelCase : List[str] = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __UpperCamelCase : Tuple = True __UpperCamelCase : Union[str, Any] = "temp_engine/bert-fp32.engine" if args.fpaa: __UpperCamelCase : str = "temp_engine/bert-fp16.engine" if args.inta: __UpperCamelCase : int = "temp_engine/bert-int8.engine" # import ONNX file if not os.path.exists("temp_engine"): os.makedirs("temp_engine") __UpperCamelCase : List[str] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, "rb") as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __UpperCamelCase : Optional[Any] = [network.get_input(i) for i in range(network.num_inputs)] __UpperCamelCase : Optional[int] = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __UpperCamelCase : List[Any] = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __UpperCamelCase : Dict = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __UpperCamelCase : int = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, "wb") as f: f.write(engine.serialize()) def _a ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" UpperCamelCase__ : Optional[int] = np.asarray(inputs['''input_ids'''] , dtype=np.intaa ) UpperCamelCase__ : str = np.asarray(inputs['''attention_mask'''] , dtype=np.intaa ) UpperCamelCase__ : Optional[Any] = np.asarray(inputs['''token_type_ids'''] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , SCREAMING_SNAKE_CASE ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , SCREAMING_SNAKE_CASE ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , SCREAMING_SNAKE_CASE ) # start time UpperCamelCase__ : Union[str, Any] = time.time() # Run inference context.execute_async( bindings=[int(SCREAMING_SNAKE_CASE ) for d_inp in d_inputs] + [int(SCREAMING_SNAKE_CASE ), int(SCREAMING_SNAKE_CASE )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) cuda.memcpy_dtoh_async(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Synchronize the stream and take time stream.synchronize() # end time UpperCamelCase__ : List[Any] = time.time() UpperCamelCase__ : int = end_time - start_time UpperCamelCase__ : Optional[int] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __UpperCamelCase : Optional[int] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __UpperCamelCase : List[str] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError("Evaluation requires a dataset name") # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __UpperCamelCase : str = raw_datasets["validation"].column_names __UpperCamelCase : List[Any] = "question" if "question" in column_names else column_names[0] __UpperCamelCase : Dict = "context" if "context" in column_names else column_names[1] __UpperCamelCase : str = "answers" if "answers" in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __UpperCamelCase : List[Any] = tokenizer.padding_side == "right" if args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) __UpperCamelCase : List[str] = min(args.max_seq_length, tokenizer.model_max_length) def _a ( SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" UpperCamelCase__ : Dict = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. UpperCamelCase__ : List[Any] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation='''only_second''' if pad_on_right else '''only_first''' , max_length=SCREAMING_SNAKE_CASE , stride=args.doc_stride , return_overflowing_tokens=SCREAMING_SNAKE_CASE , return_offsets_mapping=SCREAMING_SNAKE_CASE , padding='''max_length''' , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. UpperCamelCase__ : int = tokenized_examples.pop('''overflow_to_sample_mapping''' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. UpperCamelCase__ : List[Any] = [] for i in range(len(tokenized_examples['''input_ids'''] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). UpperCamelCase__ : Dict = tokenized_examples.sequence_ids(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. UpperCamelCase__ : Optional[Any] = sample_mapping[i] tokenized_examples["example_id"].append(examples['''id'''][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. UpperCamelCase__ : Any = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['''offset_mapping'''][i] ) ] return tokenized_examples __UpperCamelCase : str = raw_datasets["validation"] # Validation Feature Creation __UpperCamelCase : Optional[int] = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc="Running tokenizer on validation dataset", ) __UpperCamelCase : Union[str, Any] = default_data_collator __UpperCamelCase : List[str] = eval_dataset.remove_columns(["example_id", "offset_mapping"]) __UpperCamelCase : Optional[int] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def _a ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any]="eval" ): """simple docstring""" UpperCamelCase__ : List[str] = postprocess_qa_predictions( examples=SCREAMING_SNAKE_CASE , features=SCREAMING_SNAKE_CASE , predictions=SCREAMING_SNAKE_CASE , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=SCREAMING_SNAKE_CASE , ) # Format the result to the format the metric expects. if args.version_2_with_negative: UpperCamelCase__ : List[str] = [ {'''id''': k, '''prediction_text''': v, '''no_answer_probability''': 0.0} for k, v in predictions.items() ] else: UpperCamelCase__ : Optional[Any] = [{'''id''': k, '''prediction_text''': v} for k, v in predictions.items()] UpperCamelCase__ : int = [{'''id''': ex['''id'''], '''answers''': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=SCREAMING_SNAKE_CASE , label_ids=SCREAMING_SNAKE_CASE ) __UpperCamelCase : int = load_metric("squad_v2" if args.version_2_with_negative else "squad") # Evaluation! logger.info("Loading ONNX model %s for evaluation", args.onnx_model_path) with open(engine_name, "rb") as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def _a ( SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" return trt.volume(engine.get_binding_shape(SCREAMING_SNAKE_CASE ) ) * engine.get_binding_dtype(SCREAMING_SNAKE_CASE ).itemsize # Allocate device memory for inputs and outputs. __UpperCamelCase : Any = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __UpperCamelCase : List[Any] = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __UpperCamelCase : Dict = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __UpperCamelCase : Any = cuda.mem_alloc(h_outputa.nbytes) __UpperCamelCase : List[Any] = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __UpperCamelCase : Union[str, Any] = cuda.Stream() # Evaluation logger.info("***** Running Evaluation *****") logger.info(f" Num examples = {len(eval_dataset)}") logger.info(f" Batch size = {args.per_device_eval_batch_size}") __UpperCamelCase : str = 0.0 __UpperCamelCase : int = 0 __UpperCamelCase : List[Any] = timeit.default_timer() __UpperCamelCase : List[str] = None for step, batch in enumerate(eval_dataloader): __UpperCamelCase , __UpperCamelCase : Optional[Any] = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __UpperCamelCase , __UpperCamelCase : Optional[Any] = outputs __UpperCamelCase : List[str] = torch.tensor(start_logits) __UpperCamelCase : Optional[Any] = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __UpperCamelCase : int = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __UpperCamelCase : List[Any] = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __UpperCamelCase : Union[str, Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __UpperCamelCase : Optional[Any] = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __UpperCamelCase : int = nested_truncate(all_preds, len(eval_dataset)) __UpperCamelCase : Dict = timeit.default_timer() - start_time logger.info(" Evaluation done in total %f secs (%f sec per example)", evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info("Average Inference Time = {:.3f} ms".format(total_time * 1000 / niter)) logger.info("Total Inference Time = {:.3f} ms".format(total_time * 1000)) logger.info("Total Number of Inference = %d", niter) __UpperCamelCase : int = post_processing_function(eval_examples, eval_dataset, all_preds) __UpperCamelCase : Union[str, Any] = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f"Evaluation metrics: {eval_metric}")
146
1
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a_ : '''simple docstring''' def __init__( self : List[str] , lowercase__ : Tuple , lowercase__ : str=13 , lowercase__ : Dict=30 , lowercase__ : int=2 , lowercase__ : Tuple=3 , lowercase__ : Optional[int]=True , lowercase__ : List[str]=True , lowercase__ : int=32 , lowercase__ : Tuple=5 , lowercase__ : int=4 , lowercase__ : Any=37 , lowercase__ : Dict="gelu" , lowercase__ : Any=0.1 , lowercase__ : Optional[int]=0.1 , lowercase__ : Dict=10 , lowercase__ : Any=0.02 , lowercase__ : List[Any]=3 , lowercase__ : Any=None , lowercase__ : str=2 , ): '''simple docstring''' lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = is_training lowerCAmelCase__ = use_labels lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = scope lowerCAmelCase__ = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowerCAmelCase__ = (image_size // patch_size) ** 2 lowerCAmelCase__ = num_patches + 2 def __snake_case ( self : List[str]): '''simple docstring''' lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowerCAmelCase__ = self.get_config() return config, pixel_values, labels def __snake_case ( self : List[Any]): '''simple docstring''' return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __snake_case ( self : List[Any] , lowercase__ : Optional[Any] , lowercase__ : Union[str, Any] , lowercase__ : List[str]): '''simple docstring''' lowerCAmelCase__ = DeiTModel(config=lowercase__) model.to(lowercase__) model.eval() lowerCAmelCase__ = model(lowercase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __snake_case ( self : str , lowercase__ : Any , lowercase__ : Tuple , lowercase__ : List[Any]): '''simple docstring''' lowerCAmelCase__ = DeiTForMaskedImageModeling(config=lowercase__) model.to(lowercase__) model.eval() lowerCAmelCase__ = model(lowercase__) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = DeiTForMaskedImageModeling(lowercase__) model.to(lowercase__) model.eval() lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) lowerCAmelCase__ = model(lowercase__) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def __snake_case ( self : Any , lowercase__ : Optional[int] , lowercase__ : Optional[Any] , lowercase__ : Union[str, Any]): '''simple docstring''' lowerCAmelCase__ = self.type_sequence_label_size lowerCAmelCase__ = DeiTForImageClassification(lowercase__) model.to(lowercase__) model.eval() lowerCAmelCase__ = model(lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images lowerCAmelCase__ = 1 lowerCAmelCase__ = DeiTForImageClassification(lowercase__) model.to(lowercase__) model.eval() lowerCAmelCase__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) lowerCAmelCase__ = model(lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def __snake_case ( self : List[str]): '''simple docstring''' lowerCAmelCase__ = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) = config_and_inputs lowerCAmelCase__ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class a_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) UpperCAmelCase_ = ( { 'feature-extraction': DeiTModel, 'image-classification': (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False def __snake_case ( self : Any): '''simple docstring''' lowerCAmelCase__ = DeiTModelTester(self) lowerCAmelCase__ = ConfigTester(self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=37) def __snake_case ( self : int): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds') def __snake_case ( self : str): '''simple docstring''' pass def __snake_case ( self : Dict): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(lowercase__) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) lowerCAmelCase__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase__ , nn.Linear)) def __snake_case ( self : Union[str, Any]): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(lowercase__) lowerCAmelCase__ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase__) def __snake_case ( self : List[str]): '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__) def __snake_case ( self : List[Any]): '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowercase__) def __snake_case ( self : Dict): '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__) def __snake_case ( self : Tuple , lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : int=False): '''simple docstring''' lowerCAmelCase__ = super()._prepare_for_class(lowercase__ , lowercase__ , return_labels=lowercase__) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __snake_case ( self : Optional[Any]): '''simple docstring''' if not self.model_tester.is_training: return lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(lowercase__) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue lowerCAmelCase__ = model_class(lowercase__) model.to(lowercase__) model.train() lowerCAmelCase__ = self._prepare_for_class(lowercase__ , lowercase__ , return_labels=lowercase__) lowerCAmelCase__ = model(**lowercase__).loss loss.backward() def __snake_case ( self : Any): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowerCAmelCase__ = False lowerCAmelCase__ = True for model_class in self.all_model_classes: if model_class in get_values(lowercase__) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue lowerCAmelCase__ = model_class(lowercase__) model.gradient_checkpointing_enable() model.to(lowercase__) model.train() lowerCAmelCase__ = self._prepare_for_class(lowercase__ , lowercase__ , return_labels=lowercase__) lowerCAmelCase__ = model(**lowercase__).loss loss.backward() def __snake_case ( self : str): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase__ = [ {'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float}, {'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long}, {'title': 'regression', 'num_labels': 1, 'dtype': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(lowercase__), *get_values(lowercase__), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=F"""Testing {model_class} with {problem_type['title']}"""): lowerCAmelCase__ = problem_type['title'] lowerCAmelCase__ = problem_type['num_labels'] lowerCAmelCase__ = model_class(lowercase__) model.to(lowercase__) model.train() lowerCAmelCase__ = self._prepare_for_class(lowercase__ , lowercase__ , return_labels=lowercase__) if problem_type["num_labels"] > 1: lowerCAmelCase__ = inputs['labels'].unsqueeze(1).repeat(1 , problem_type['num_labels']) lowerCAmelCase__ = inputs['labels'].to(problem_type['dtype']) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=lowercase__) as warning_list: lowerCAmelCase__ = model(**lowercase__).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message): raise ValueError( F"""Something is going wrong in the regression problem: intercepted {w.message}""") loss.backward() @slow def __snake_case ( self : Dict): '''simple docstring''' for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = DeiTModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) def __lowerCamelCase ( ): lowerCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def __snake_case ( self : Optional[int]): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224') if is_vision_available() else None ) @slow def __snake_case ( self : str): '''simple docstring''' lowerCAmelCase__ = DeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224').to( lowercase__) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=lowercase__ , return_tensors='pt').to(lowercase__) # forward pass with torch.no_grad(): lowerCAmelCase__ = model(**lowercase__) # verify the logits lowerCAmelCase__ = torch.Size((1, 1_000)) self.assertEqual(outputs.logits.shape , lowercase__) lowerCAmelCase__ = torch.tensor([-1.0_266, 0.1_912, -1.2_861]).to(lowercase__) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1e-4)) @slow @require_accelerate @require_torch_gpu def __snake_case ( self : Optional[int]): '''simple docstring''' lowerCAmelCase__ = DeiTModel.from_pretrained( 'facebook/deit-base-distilled-patch16-224' , torch_dtype=torch.floataa , device_map='auto') lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(images=lowercase__ , return_tensors='pt') lowerCAmelCase__ = inputs.pixel_values.to(lowercase__) # forward pass to make sure inference works in fp16 with torch.no_grad(): lowerCAmelCase__ = model(lowercase__)
119
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase__ = logging.get_logger(__name__) class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = ['pixel_values'] def __init__( self : Tuple , lowercase__ : bool = True , lowercase__ : Dict[str, int] = None , lowercase__ : PILImageResampling = PILImageResampling.BICUBIC , lowercase__ : bool = True , lowercase__ : Union[int, float] = 1 / 255 , lowercase__ : bool = True , lowercase__ : Optional[Union[float, List[float]]] = None , lowercase__ : Optional[Union[float, List[float]]] = None , lowercase__ : bool = True , **lowercase__ : List[Any] , ): '''simple docstring''' super().__init__(**lowercase__) lowerCAmelCase__ = size if size is not None else {'height': 384, 'width': 384} lowerCAmelCase__ = get_size_dict(lowercase__ , default_to_square=lowercase__) lowerCAmelCase__ = do_resize lowerCAmelCase__ = size lowerCAmelCase__ = resample lowerCAmelCase__ = do_rescale lowerCAmelCase__ = rescale_factor lowerCAmelCase__ = do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN lowerCAmelCase__ = image_std if image_std is not None else OPENAI_CLIP_STD lowerCAmelCase__ = do_convert_rgb def __snake_case ( self : List[str] , lowercase__ : np.ndarray , lowercase__ : Dict[str, int] , lowercase__ : PILImageResampling = PILImageResampling.BICUBIC , lowercase__ : Optional[Union[str, ChannelDimension]] = None , **lowercase__ : Dict , ): '''simple docstring''' lowerCAmelCase__ = get_size_dict(lowercase__ , default_to_square=lowercase__) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""") lowerCAmelCase__ = (size['height'], size['width']) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__) def __snake_case ( self : List[str] , lowercase__ : np.ndarray , lowercase__ : Union[int, float] , lowercase__ : Optional[Union[str, ChannelDimension]] = None , **lowercase__ : Union[str, Any] , ): '''simple docstring''' return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__) def __snake_case ( self : Optional[Any] , lowercase__ : np.ndarray , lowercase__ : Union[float, List[float]] , lowercase__ : Union[float, List[float]] , lowercase__ : Optional[Union[str, ChannelDimension]] = None , **lowercase__ : Any , ): '''simple docstring''' return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__) def __snake_case ( self : Any , lowercase__ : ImageInput , lowercase__ : Optional[bool] = None , lowercase__ : Optional[Dict[str, int]] = None , lowercase__ : PILImageResampling = None , lowercase__ : Optional[bool] = None , lowercase__ : Optional[float] = None , lowercase__ : Optional[bool] = None , lowercase__ : Optional[Union[float, List[float]]] = None , lowercase__ : Optional[Union[float, List[float]]] = None , lowercase__ : Optional[Union[str, TensorType]] = None , lowercase__ : bool = None , lowercase__ : ChannelDimension = ChannelDimension.FIRST , **lowercase__ : Dict , ): '''simple docstring''' lowerCAmelCase__ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ = resample if resample is not None else self.resample lowerCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase__ = image_mean if image_mean is not None else self.image_mean lowerCAmelCase__ = image_std if image_std is not None else self.image_std lowerCAmelCase__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb lowerCAmelCase__ = size if size is not None else self.size lowerCAmelCase__ = get_size_dict(lowercase__ , default_to_square=lowercase__) lowerCAmelCase__ = make_list_of_images(lowercase__) if not valid_images(lowercase__): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.') if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.') if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.') # PIL RGBA images are converted to RGB if do_convert_rgb: lowerCAmelCase__ = [convert_to_rgb(lowercase__) for image in images] # All transformations expect numpy arrays. lowerCAmelCase__ = [to_numpy_array(lowercase__) for image in images] if do_resize: lowerCAmelCase__ = [self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__) for image in images] if do_rescale: lowerCAmelCase__ = [self.rescale(image=lowercase__ , scale=lowercase__) for image in images] if do_normalize: lowerCAmelCase__ = [self.normalize(image=lowercase__ , mean=lowercase__ , std=lowercase__) for image in images] lowerCAmelCase__ = [to_channel_dimension_format(lowercase__ , lowercase__) for image in images] lowerCAmelCase__ = BatchFeature(data={'pixel_values': images} , tensor_type=lowercase__) return encoded_outputs
119
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''Salesforce/blip-vqa-base''': '''https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json''', '''Salesforce/blip-vqa-capfit-large''': ( '''https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json''' ), '''Salesforce/blip-image-captioning-base''': ( '''https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json''' ), '''Salesforce/blip-image-captioning-large''': ( '''https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json''' ), '''Salesforce/blip-itm-base-coco''': '''https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json''', '''Salesforce/blip-itm-large-coco''': '''https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json''', '''Salesforce/blip-itm-base-flikr''': '''https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json''', '''Salesforce/blip-itm-large-flikr''': ( '''https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json''' ), } class __lowerCamelCase (_snake_case ): _lowercase = """blip_text_model""" def __init__( self: Union[str, Any],A_: Union[str, Any]=3_0524,A_: List[Any]=768,A_: Dict=768,A_: int=3072,A_: List[str]=768,A_: int=12,A_: str=8,A_: str=512,A_: Optional[int]="gelu",A_: Optional[int]=1E-12,A_: Optional[int]=0.0,A_: Union[str, Any]=0.0,A_: Dict=0.0_2,A_: List[str]=3_0522,A_: str=2,A_: Any=0,A_: Optional[int]=102,A_: Optional[int]=True,A_: List[Any]=True,**A_: Optional[int],): '''simple docstring''' super().__init__( pad_token_id=UpperCamelCase__,bos_token_id=UpperCamelCase__,eos_token_id=UpperCamelCase__,sep_token_id=UpperCamelCase__,**UpperCamelCase__,) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = encoder_hidden_size __UpperCamelCase = intermediate_size __UpperCamelCase = projection_dim __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = max_position_embeddings __UpperCamelCase = layer_norm_eps __UpperCamelCase = hidden_act __UpperCamelCase = initializer_range __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = is_decoder __UpperCamelCase = use_cache @classmethod def snake_case_ ( cls: Optional[Any],A_: List[str],**A_: Dict ): '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase__ ) __UpperCamelCase, __UpperCamelCase = cls.get_config_dict(UpperCamelCase__,**UpperCamelCase__ ) # get the text config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": __UpperCamelCase = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase__,**UpperCamelCase__ ) class __lowerCamelCase (_snake_case ): _lowercase = """blip_vision_model""" def __init__( self: List[str],A_: Tuple=768,A_: List[Any]=3072,A_: str=512,A_: Optional[Any]=12,A_: Any=12,A_: Optional[Any]=384,A_: str=16,A_: Optional[int]="gelu",A_: Union[str, Any]=1E-5,A_: str=0.0,A_: Any=1E-10,**A_: str,): '''simple docstring''' super().__init__(**UpperCamelCase__ ) __UpperCamelCase = hidden_size __UpperCamelCase = intermediate_size __UpperCamelCase = projection_dim __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = patch_size __UpperCamelCase = image_size __UpperCamelCase = initializer_range __UpperCamelCase = attention_dropout __UpperCamelCase = layer_norm_eps __UpperCamelCase = hidden_act @classmethod def snake_case_ ( cls: Optional[Any],A_: List[str],**A_: Any ): '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase__ ) __UpperCamelCase, __UpperCamelCase = cls.get_config_dict(UpperCamelCase__,**UpperCamelCase__ ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": __UpperCamelCase = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCamelCase__,**UpperCamelCase__ ) class __lowerCamelCase (_snake_case ): _lowercase = """blip""" _lowercase = True def __init__( self: str,A_: int=None,A_: Tuple=None,A_: int=512,A_: List[Any]=2.6_5_9_2,A_: str=256,**A_: List[Any],): '''simple docstring''' super().__init__(**UpperCamelCase__ ) if text_config is None: __UpperCamelCase = {} logger.info('`text_config` is `None`. Initializing the `BlipTextConfig` with default values.' ) if vision_config is None: __UpperCamelCase = {} logger.info('`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.' ) __UpperCamelCase = BlipTextConfig(**UpperCamelCase__ ) __UpperCamelCase = BlipVisionConfig(**UpperCamelCase__ ) __UpperCamelCase = self.vision_config.hidden_size __UpperCamelCase = projection_dim __UpperCamelCase = logit_scale_init_value __UpperCamelCase = 1.0 __UpperCamelCase = 0.0_2 __UpperCamelCase = image_text_hidden_size @classmethod def snake_case_ ( cls: Optional[Any],A_: Tuple,A_: str,**A_: Any ): '''simple docstring''' return cls(text_config=text_config.to_dict(),vision_config=vision_config.to_dict(),**UpperCamelCase__ ) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = copy.deepcopy(self.__dict__ ) __UpperCamelCase = self.text_config.to_dict() __UpperCamelCase = self.vision_config.to_dict() __UpperCamelCase = self.__class__.model_type return output
310
'''simple docstring''' from __future__ import annotations def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: A_ = len(UpperCAmelCase__ ) # We need to create solution object to save path. A_ = [[0 for _ in range(UpperCAmelCase__ )] for _ in range(UpperCAmelCase__ )] A_ = run_maze(UpperCAmelCase__, 0, 0, UpperCAmelCase__ ) if solved: print("""\n""".join(str(UpperCAmelCase__ ) for row in solutions ) ) else: print("""No solution exists!""" ) return solved def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) -> bool: A_ = len(UpperCAmelCase__ ) # Final check point. if i == j == (size - 1): A_ = 1 return True A_ = (not i < 0) and (not j < 0) # Check lower bounds A_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. A_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited A_ = 1 # check for directions if ( run_maze(UpperCAmelCase__, i + 1, UpperCAmelCase__, UpperCAmelCase__ ) or run_maze(UpperCAmelCase__, UpperCAmelCase__, j + 1, UpperCAmelCase__ ) or run_maze(UpperCAmelCase__, i - 1, UpperCAmelCase__, UpperCAmelCase__ ) or run_maze(UpperCAmelCase__, UpperCAmelCase__, j - 1, UpperCAmelCase__ ) ): return True A_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
162
0
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) lowercase = FileLock(str(tmpdir / '''foo.lock''' ) ) lowercase = 0.01 with locka.acquire(): with pytest.raises(__a ): lowercase = time.time() locka.acquire(__a ) assert time.time() - _start > timeout def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = 'a' * 1000 + '.lock' lowercase = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith('''.lock''' ) assert not locka._lock_file.endswith(__a ) assert len(os.path.basename(locka._lock_file ) ) <= 255 lowercase = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__a ): locka.acquire(0 )
355
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): @slow def A__ ( self): lowercase = TFXLMRobertaModel.from_pretrained('''jplu/tf-xlm-roberta-base''') lowercase = { '''input_ids''': tf.convert_to_tensor([[0, 2_6_4_6, 1_0_2_6_9, 8_3, 9_9_9_4_2, 2]] ,dtype=tf.intaa), # "My dog is cute" '''attention_mask''': tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] ,dtype=tf.intaa), } lowercase = model(A__)['''last_hidden_state'''] lowercase = tf.TensorShape((1, 6, 7_6_8)) self.assertEqual(output.shape ,A__) # compare the actual values for a slice. lowercase = tf.convert_to_tensor( [ [ [0.0681762, 0.10894451, 0.06772504], [-0.06423668, 0.02366615, 0.04329344], [-0.06057295, 0.09974135, -0.00070584], ] ] ,dtype=tf.floataa ,) self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1E-4))
97
0
from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional from packaging import version if TYPE_CHECKING: from ... import PreTrainedTokenizer, TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import is_torch_available, logging _snake_case : Tuple = logging.get_logger(__name__) _snake_case : Union[str, Any] = { """bigscience/bloom""": """https://huggingface.co/bigscience/bloom/resolve/main/config.json""", """bigscience/bloom-560m""": """https://huggingface.co/bigscience/bloom-560m/blob/main/config.json""", """bigscience/bloom-1b1""": """https://huggingface.co/bigscience/bloom-1b1/blob/main/config.json""", """bigscience/bloom-1b7""": """https://huggingface.co/bigscience/bloom-1b7/blob/main/config.json""", """bigscience/bloom-3b""": """https://huggingface.co/bigscience/bloom-3b/blob/main/config.json""", """bigscience/bloom-7b1""": """https://huggingface.co/bigscience/bloom-7b1/blob/main/config.json""", } class _UpperCAmelCase ( _UpperCAmelCase ): """simple docstring""" a_ = 'bloom' a_ = ['past_key_values'] a_ = { 'num_hidden_layers': 'n_layer', 'num_attention_heads': 'n_head', } def __init__( self : List[Any] , lowerCAmelCase_ : int=2_5_0_8_8_0 , lowerCAmelCase_ : Union[str, Any]=6_4 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : List[Any]=8 , lowerCAmelCase_ : Any=1e-5 , lowerCAmelCase_ : int=0.02 , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Optional[int]=1 , lowerCAmelCase_ : List[Any]=2 , lowerCAmelCase_ : str=False , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : Tuple=1 , lowerCAmelCase_ : Any=False , **lowerCAmelCase_ : Union[str, Any] , ) -> Any: __lowerCAmelCase = vocab_size # Backward compatibility with n_embed kwarg __lowerCAmelCase = kwargs.pop('n_embed' , SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = hidden_size if n_embed is None else n_embed __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = use_cache __lowerCAmelCase = pretraining_tp __lowerCAmelCase = apply_residual_connection_post_layernorm __lowerCAmelCase = hidden_dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id __lowerCAmelCase = slow_but_exact super().__init__(bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) class _UpperCAmelCase ( _UpperCAmelCase ): """simple docstring""" a_ = version.parse("""1.12""" ) def __init__( self : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple = "default" , lowerCAmelCase_ : Optional[Any] = None , lowerCAmelCase_ : Dict = False , ) -> int: super().__init__(SCREAMING_SNAKE_CASE_ , task=SCREAMING_SNAKE_CASE_ , patching_specs=SCREAMING_SNAKE_CASE_ , use_past=SCREAMING_SNAKE_CASE_ ) if not getattr(self._config , 'pad_token_id' , SCREAMING_SNAKE_CASE_ ): # TODO: how to do that better? __lowerCAmelCase = 0 @property def lowercase ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: __lowerCAmelCase = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 self.fill_with_past_key_values_(SCREAMING_SNAKE_CASE_ , direction='inputs' , inverted_values_shape=SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = {0: 'batch', 1: 'past_sequence + sequence'} else: __lowerCAmelCase = {0: 'batch', 1: 'sequence'} return common_inputs @property def lowercase ( self : Any ) -> int: return self._config.n_layer @property def lowercase ( self : Any ) -> int: return self._config.n_head @property def lowercase ( self : str ) -> float: return 1e-3 def lowercase ( self : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : Optional[Any] = -1 , lowerCAmelCase_ : str = False , lowerCAmelCase_ : Union[str, Any] = None , ) -> Mapping[str, Any]: __lowerCAmelCase = super(SCREAMING_SNAKE_CASE_ , self ).generate_dummy_inputs( SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , seq_length=SCREAMING_SNAKE_CASE_ , is_pair=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ ) # We need to order the input in the way they appears in the forward() __lowerCAmelCase = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __lowerCAmelCase = common_inputs['input_ids'].shape # Not using the same length for past_key_values __lowerCAmelCase = seqlen + 2 __lowerCAmelCase = self._config.hidden_size // self.num_attention_heads __lowerCAmelCase = ( batch * self.num_attention_heads, head_dim, past_key_values_length, ) __lowerCAmelCase = ( batch * self.num_attention_heads, past_key_values_length, head_dim, ) __lowerCAmelCase = [ (torch.zeros(SCREAMING_SNAKE_CASE_ ), torch.zeros(SCREAMING_SNAKE_CASE_ )) for _ in range(self.num_layers ) ] __lowerCAmelCase = common_inputs['attention_mask'] if self.use_past: __lowerCAmelCase = ordered_inputs['attention_mask'].dtype __lowerCAmelCase = torch.cat( [ordered_inputs['attention_mask'], torch.ones(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ )] , dim=1 ) return ordered_inputs @property def lowercase ( self : List[Any] ) -> int: return 1_3
284
'''simple docstring''' from . import ( albert, align, altclip, audio_spectrogram_transformer, auto, autoformer, bark, bart, barthez, bartpho, beit, bert, bert_generation, bert_japanese, bertweet, big_bird, bigbird_pegasus, biogpt, bit, blenderbot, blenderbot_small, blip, blip_a, bloom, bridgetower, byta, camembert, canine, chinese_clip, clap, clip, clipseg, codegen, conditional_detr, convbert, convnext, convnextva, cpm, cpmant, ctrl, cvt, dataavec, deberta, deberta_va, decision_transformer, deformable_detr, deit, deprecated, deta, detr, dialogpt, dinat, distilbert, dit, donut, dpr, dpt, efficientformer, efficientnet, electra, encodec, encoder_decoder, ernie, ernie_m, esm, falcon, flaubert, flava, fnet, focalnet, fsmt, funnel, git, glpn, gpta, gpt_bigcode, gpt_neo, gpt_neox, gpt_neox_japanese, gpt_swa, gptj, gptsan_japanese, graphormer, groupvit, herbert, hubert, ibert, imagegpt, informer, instructblip, jukebox, layoutlm, layoutlmva, layoutlmva, layoutxlm, led, levit, lilt, llama, longformer, longta, luke, lxmert, mam_aaa, marian, markuplm, maskaformer, maskformer, mbart, mbartaa, mega, megatron_bert, megatron_gpta, mgp_str, mluke, mobilebert, mobilenet_va, mobilenet_va, mobilevit, mobilevitva, mpnet, mra, mta, musicgen, mvp, nat, nezha, nllb, nllb_moe, nystromformer, oneformer, open_llama, openai, opt, owlvit, pegasus, pegasus_x, perceiver, phobert, pixastruct, plbart, poolformer, prophetnet, qdqbert, rag, realm, reformer, regnet, rembert, resnet, roberta, roberta_prelayernorm, roc_bert, roformer, rwkv, sam, segformer, sew, sew_d, speech_encoder_decoder, speech_to_text, speech_to_text_a, speechta, splinter, squeezebert, swiftformer, swin, swinasr, swinva, switch_transformers, ta, table_transformer, tapas, time_series_transformer, timesformer, timm_backbone, transfo_xl, trocr, tvlt, umta, unispeech, unispeech_sat, upernet, videomae, vilt, vision_encoder_decoder, vision_text_dual_encoder, visual_bert, vit, vit_hybrid, vit_mae, vit_msn, vivit, wavaveca, wavaveca_conformer, wavaveca_phoneme, wavaveca_with_lm, wavlm, whisper, x_clip, xglm, xlm, xlm_prophetnet, xlm_roberta, xlm_roberta_xl, xlnet, xmod, yolos, yoso, )
185
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCamelCase : Dict = logging.get_logger(__name__) __UpperCamelCase : List[str] = { '''facebook/xmod-base''': '''https://huggingface.co/facebook/xmod-base/resolve/main/config.json''', '''facebook/xmod-large-prenorm''': '''https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json''', '''facebook/xmod-base-13-125k''': '''https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json''', '''facebook/xmod-base-30-125k''': '''https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json''', '''facebook/xmod-base-30-195k''': '''https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json''', '''facebook/xmod-base-60-125k''': '''https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json''', '''facebook/xmod-base-60-265k''': '''https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json''', '''facebook/xmod-base-75-125k''': '''https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json''', '''facebook/xmod-base-75-269k''': '''https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" lowercase__ = "xmod" def __init__( self : Tuple ,lowercase_ : int=3_0_5_2_2 ,lowercase_ : Optional[int]=7_6_8 ,lowercase_ : Optional[Any]=1_2 ,lowercase_ : Any=1_2 ,lowercase_ : Union[str, Any]=3_0_7_2 ,lowercase_ : List[Any]="gelu" ,lowercase_ : List[Any]=0.1 ,lowercase_ : Optional[Any]=0.1 ,lowercase_ : Dict=5_1_2 ,lowercase_ : List[Any]=2 ,lowercase_ : Optional[int]=0.02 ,lowercase_ : Any=1E-12 ,lowercase_ : int=1 ,lowercase_ : Union[str, Any]=0 ,lowercase_ : Any=2 ,lowercase_ : List[str]="absolute" ,lowercase_ : str=True ,lowercase_ : int=None ,lowercase_ : Optional[Any]=False ,lowercase_ : Union[str, Any]=2 ,lowercase_ : Union[str, Any]=False ,lowercase_ : Tuple=True ,lowercase_ : Optional[Any]=True ,lowercase_ : str=("en_XX",) ,lowercase_ : List[str]=None ,**lowercase_ : Dict ,): super().__init__(pad_token_id=_a ,bos_token_id=_a ,eos_token_id=_a ,**_a ) lowerCAmelCase__ : Union[str, Any] = vocab_size lowerCAmelCase__ : Any = hidden_size lowerCAmelCase__ : Union[str, Any] = num_hidden_layers lowerCAmelCase__ : Any = num_attention_heads lowerCAmelCase__ : Tuple = hidden_act lowerCAmelCase__ : str = intermediate_size lowerCAmelCase__ : Tuple = hidden_dropout_prob lowerCAmelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCAmelCase__ : Dict = max_position_embeddings lowerCAmelCase__ : Dict = type_vocab_size lowerCAmelCase__ : Optional[int] = initializer_range lowerCAmelCase__ : Dict = layer_norm_eps lowerCAmelCase__ : Optional[int] = position_embedding_type lowerCAmelCase__ : int = use_cache lowerCAmelCase__ : Optional[Any] = classifier_dropout lowerCAmelCase__ : List[Any] = pre_norm lowerCAmelCase__ : List[str] = adapter_reduction_factor lowerCAmelCase__ : int = adapter_layer_norm lowerCAmelCase__ : List[Any] = adapter_reuse_layer_norm lowerCAmelCase__ : Tuple = ln_before_adapter lowerCAmelCase__ : Union[str, Any] = list(_a ) lowerCAmelCase__ : Any = default_language class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" @property def __lowerCAmelCase ( self : str ): if self.task == "multiple-choice": lowerCAmelCase__ : str = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCAmelCase__ : List[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
370
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict __UpperCamelCase : Union[str, Any] = namedtuple( '''_TestCommandArgs''', [ '''dataset''', '''name''', '''cache_dir''', '''data_dir''', '''all_configs''', '''save_infos''', '''ignore_verifications''', '''force_redownload''', '''clear_cache''', ], defaults=[None, None, None, False, False, False, False, False], ) def __SCREAMING_SNAKE_CASE ( A_ , A_ ): return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : Dict = _TestCommandArgs(dataset=A_ , all_configs=A_ , save_infos=A_ ) lowerCAmelCase__ : Optional[int] = TestCommand(*A_ ) test_command.run() lowerCAmelCase__ : int = os.path.join(A_ , '''README.md''' ) assert os.path.exists(A_ ) lowerCAmelCase__ : List[Any] = DatasetInfosDict.from_directory(A_ ) lowerCAmelCase__ : List[str] = DatasetInfosDict( { '''default''': DatasetInfo( features=Features( { '''tokens''': Sequence(Value('''string''' ) ), '''ner_tags''': Sequence( ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ), '''langs''': Sequence(Value('''string''' ) ), '''spans''': Sequence(Value('''string''' ) ), } ) , splits=[ { '''name''': '''train''', '''num_bytes''': 2_35_15_63, '''num_examples''': 1_00_00, }, { '''name''': '''validation''', '''num_bytes''': 23_84_18, '''num_examples''': 10_00, }, ] , download_size=3_94_06_80 , dataset_size=2_58_99_81 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = getattr(dataset_infos['''default'''] , A_ ), getattr(expected_dataset_infos['''default'''] , A_ ) if key == "num_bytes": assert is_apercent_close(A_ , A_ ) elif key == "splits": assert list(A_ ) == list(A_ ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
74
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : Tuple = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[int] = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Any = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys A : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
184
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging A =logging.get_logger(__name__) A ={ 'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json', 'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json', } class _a ( __a ): __a : Union[str, Any] = """encodec""" def __init__( self : Tuple , lowercase : List[str]=[1.5, 3.0, 6.0, 12.0, 24.0] , lowercase : Any=24_000 , lowercase : str=1 , lowercase : Optional[int]=False , lowercase : Optional[Any]=None , lowercase : str=None , lowercase : Tuple=128 , lowercase : Union[str, Any]=32 , lowercase : Union[str, Any]=1 , lowercase : Optional[Any]=[8, 5, 4, 2] , lowercase : Any="weight_norm" , lowercase : Tuple=7 , lowercase : int=7 , lowercase : Dict=3 , lowercase : List[Any]=2 , lowercase : str=True , lowercase : List[str]="reflect" , lowercase : List[Any]=2 , lowercase : Optional[Any]=2 , lowercase : int=1.0 , lowercase : Dict=1_024 , lowercase : str=None , lowercase : Union[str, Any]=True , **lowercase : Optional[int] , ): '''simple docstring''' UpperCAmelCase = target_bandwidths UpperCAmelCase = sampling_rate UpperCAmelCase = audio_channels UpperCAmelCase = normalize UpperCAmelCase = chunk_length_s UpperCAmelCase = overlap UpperCAmelCase = hidden_size UpperCAmelCase = num_filters UpperCAmelCase = num_residual_layers UpperCAmelCase = upsampling_ratios UpperCAmelCase = norm_type UpperCAmelCase = kernel_size UpperCAmelCase = last_kernel_size UpperCAmelCase = residual_kernel_size UpperCAmelCase = dilation_growth_rate UpperCAmelCase = use_causal_conv UpperCAmelCase = pad_mode UpperCAmelCase = compress UpperCAmelCase = num_lstm_layers UpperCAmelCase = trim_right_ratio UpperCAmelCase = codebook_size UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size UpperCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}" ) super().__init__(**lowercase ) @property def A ( self : Dict ): '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def A ( self : Union[str, Any] ): '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def A ( self : Any ): '''simple docstring''' UpperCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def A ( self : Optional[int] ): '''simple docstring''' return int(1_000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
34
0
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCamelCase : List[Any] = logging.get_logger(__name__) @add_end_docstrings(__a ) class lowerCAmelCase ( __a ): '''simple docstring''' def __init__( self : Any , **__a : Tuple ) -> Any: """simple docstring""" super().__init__(**__a ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == """tf""" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : List[str] , __a : Union[str, List[str], "Image", List["Image"]] , **__a : Optional[Any] ) -> Optional[Any]: """simple docstring""" return super().__call__(__a , **__a ) def lowerCAmelCase ( self : Optional[Any] , **__a : Optional[int] ) -> List[str]: """simple docstring""" __lowercase : List[Any] = {} if "candidate_labels" in kwargs: __lowercase : Optional[Any] = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: __lowercase : Union[str, Any] = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def lowerCAmelCase ( self : Optional[Any] , __a : Optional[Any] , __a : Tuple=None , __a : List[Any]="This is a photo of {}." ) -> Optional[Any]: """simple docstring""" __lowercase : Union[str, Any] = load_image(__a ) __lowercase : Tuple = self.image_processor(images=[image] , return_tensors=self.framework ) __lowercase : Optional[int] = candidate_labels __lowercase : Tuple = [hypothesis_template.format(__a ) for x in candidate_labels] __lowercase : int = self.tokenizer(__a , return_tensors=self.framework , padding=__a ) __lowercase : List[Any] = [text_inputs] return inputs def lowerCAmelCase ( self : Dict , __a : Tuple ) -> Optional[int]: """simple docstring""" __lowercase : Optional[int] = model_inputs.pop("""candidate_labels""" ) __lowercase : Optional[int] = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , __a ): __lowercase : Any = text_inputs[0] else: # Batching case. __lowercase : int = text_inputs[0][0] __lowercase : Dict = self.model(**__a , **__a ) __lowercase : List[Any] = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_image, } return model_outputs def lowerCAmelCase ( self : str , __a : Dict ) -> List[Any]: """simple docstring""" __lowercase : List[Any] = model_outputs.pop("""candidate_labels""" ) __lowercase : Union[str, Any] = model_outputs["""logits"""][0] if self.framework == "pt": __lowercase : Union[str, Any] = logits.softmax(dim=-1 ).squeeze(-1 ) __lowercase : Optional[Any] = probs.tolist() if not isinstance(__a , __a ): __lowercase : List[str] = [scores] elif self.framework == "tf": __lowercase : Union[str, Any] = stable_softmax(__a , axis=-1 ) __lowercase : Tuple = probs.numpy().tolist() else: raise ValueError(F"Unsupported framework: {self.framework}" ) __lowercase : List[str] = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(__a , __a ) , key=lambda __a : -x[0] ) ] return result
306
from __future__ import annotations def snake_case_ ( lowerCAmelCase_ : int ): __lowercase : List[str] = 2 __lowercase : Union[str, Any] = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(lowerCAmelCase_ ) if n > 1: factors.append(lowerCAmelCase_ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
306
1
__UpperCAmelCase = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} __UpperCAmelCase = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def UpperCamelCase ( snake_case__ : dict[int, list[int]] , snake_case__ : int , snake_case__ : list[bool] ) -> list[int]: UpperCamelCase : Dict = True UpperCamelCase : Tuple = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(snake_case__ , snake_case__ , snake_case__ ) order.append(snake_case__ ) return order def UpperCamelCase ( snake_case__ : dict[int, list[int]] , snake_case__ : int , snake_case__ : list[bool] ) -> list[int]: UpperCamelCase : Optional[Any] = True UpperCamelCase : str = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(snake_case__ , snake_case__ , snake_case__ ) return component def UpperCamelCase ( snake_case__ : dict[int, list[int]] ) -> list[list[int]]: UpperCamelCase : Optional[int] = len(snake_case__ ) * [False] UpperCamelCase : dict[int, list[int]] = {vert: [] for vert in range(len(snake_case__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(snake_case__ ) UpperCamelCase : List[str] = [] for i, was_visited in enumerate(snake_case__ ): if not was_visited: order += topology_sort(snake_case__ , snake_case__ , snake_case__ ) UpperCamelCase : Any = [] UpperCamelCase : int = len(snake_case__ ) * [False] for i in range(len(snake_case__ ) ): UpperCamelCase : List[Any] = order[len(snake_case__ ) - i - 1] if not visited[vert]: UpperCamelCase : Optional[int] = find_components(snake_case__ , snake_case__ , snake_case__ ) components_list.append(snake_case__ ) return components_list
119
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging __UpperCAmelCase = ['''bart.large''', '''bart.large.mnli''', '''bart.large.cnn''', '''bart_xsum/model.pt'''] __UpperCAmelCase = {'''bart.large''': BartModel, '''bart.large.mnli''': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('''0.9.0'''): raise Exception('''requires fairseq >= 0.9.0''') logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = ''' Hello world! cécé herlolip''' __UpperCAmelCase = [ ('''model.classification_heads.mnli.dense.weight''', '''classification_head.dense.weight'''), ('''model.classification_heads.mnli.dense.bias''', '''classification_head.dense.bias'''), ('''model.classification_heads.mnli.out_proj.weight''', '''classification_head.out_proj.weight'''), ('''model.classification_heads.mnli.out_proj.bias''', '''classification_head.out_proj.bias'''), ] def UpperCamelCase ( snake_case__ : Union[str, Any] ) -> List[str]: UpperCamelCase : int = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', ] for k in ignore_keys: state_dict.pop(snake_case__ , snake_case__ ) def UpperCamelCase ( snake_case__ : int , snake_case__ : List[str] , snake_case__ : int ) -> Any: UpperCamelCase : Dict = dct.pop(snake_case__ ) UpperCamelCase : Optional[Any] = val def UpperCamelCase ( snake_case__ : Dict ) -> Tuple: UpperCamelCase : int = torch.load(snake_case__ , map_location='cpu' ) UpperCamelCase : Dict = torch.hub.load('pytorch/fairseq' , 'bart.large.cnn' ).eval() hub_interface.model.load_state_dict(sd['model'] ) return hub_interface def UpperCamelCase ( snake_case__ : List[str] ) -> Dict: UpperCamelCase , UpperCamelCase : str = emb.weight.shape UpperCamelCase : Optional[int] = nn.Linear(snake_case__ , snake_case__ , bias=snake_case__ ) UpperCamelCase : List[str] = emb.weight.data return lin_layer @torch.no_grad() def UpperCamelCase ( snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : str=None ) -> Optional[Any]: if not os.path.exists(snake_case__ ): UpperCamelCase : List[str] = torch.hub.load('pytorch/fairseq' , snake_case__ ).eval() else: UpperCamelCase : int = load_xsum_checkpoint(snake_case__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: UpperCamelCase : Tuple = checkpoint_path.replace('.' , '-' ) UpperCamelCase : Optional[int] = BartConfig.from_pretrained(snake_case__ ) UpperCamelCase : Optional[Any] = bart.encode(snake_case__ ).unsqueeze(0 ) UpperCamelCase : Any = BartTokenizer.from_pretrained(snake_case__ ).encode(snake_case__ , return_tensors='pt' ).unsqueeze(0 ) if not torch.eq(snake_case__ , snake_case__ ).all(): raise ValueError( F"""converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}""" ) if checkpoint_path == "bart.large.mnli": UpperCamelCase : Union[str, Any] = bart.state_dict() remove_ignore_keys_(snake_case__ ) UpperCamelCase : int = state_dict['model.decoder.embed_tokens.weight'] for src, dest in mnli_rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) UpperCamelCase : Any = BartForSequenceClassification(snake_case__ ).eval() model.load_state_dict(snake_case__ ) UpperCamelCase : Any = bart.predict('mnli' , snake_case__ , return_logits=snake_case__ ) UpperCamelCase : Tuple = model(snake_case__ )[0] # logits else: # no classification heads to worry about UpperCamelCase : List[str] = bart.model.state_dict() remove_ignore_keys_(snake_case__ ) UpperCamelCase : List[str] = state_dict['decoder.embed_tokens.weight'] UpperCamelCase : Union[str, Any] = bart.extract_features(snake_case__ ) if hf_checkpoint_name == "facebook/bart-large": UpperCamelCase : List[str] = BartModel(snake_case__ ).eval() model.load_state_dict(snake_case__ ) UpperCamelCase : Optional[int] = model(snake_case__ ).model[0] else: UpperCamelCase : Union[str, Any] = BartForConditionalGeneration(snake_case__ ).eval() # an existing summarization ckpt model.model.load_state_dict(snake_case__ ) if hasattr(snake_case__ , 'lm_head' ): UpperCamelCase : Optional[int] = make_linear_from_emb(model.model.shared ) UpperCamelCase : Dict = model.model(snake_case__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F"""`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}""" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError('Some values in `fairseq_output` are different from `new_model_outputs`' ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) model.save_pretrained(snake_case__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''fairseq_path''', type=str, help='''bart.large, bart.large.cnn or a path to a model.pt on local filesystem.''' ) parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--hf_config''', default=None, type=str, help='''Which huggingface architecture to use: bart-large-xsum''' ) __UpperCAmelCase = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
119
1
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class __SCREAMING_SNAKE_CASE ( __a ): '''simple docstring''' def snake_case ( self : Dict, lowerCamelCase : str )-> Union[str, Any]: with open(UpperCamelCase__, encoding='''utf-8''' ) as input_file: lowerCamelCase__ : Union[str, Any] =re.compile(r'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' ) lowerCamelCase__ : Optional[Any] =input_file.read() lowerCamelCase__ : Union[str, Any] =regexp.search(UpperCamelCase__ ) return match def snake_case ( self : Optional[int], lowerCamelCase : str )-> int: with open(UpperCamelCase__, encoding='''utf-8''' ) as input_file: lowerCamelCase__ : Optional[Any] =re.compile(r'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''', re.DOTALL ) lowerCamelCase__ : Optional[int] =input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` lowerCamelCase__ : str =regexp.finditer(UpperCamelCase__ ) lowerCamelCase__ : str =[match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def snake_case ( self : Any )-> Optional[int]: lowerCamelCase__ : Union[str, Any] =Path('''./datasets''' ) lowerCamelCase__ : Any =list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(UpperCamelCase__ ) ): raise AssertionError(F'''open(...) must use utf-8 encoding in {dataset}''' ) def snake_case ( self : Tuple )-> Any: lowerCamelCase__ : Tuple =Path('''./datasets''' ) lowerCamelCase__ : str =list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_print_statements(str(UpperCamelCase__ ) ): raise AssertionError(F'''print statement found in {dataset}. Use datasets.logger/logging instead.''' )
369
"""simple docstring""" import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def snake_case ( self : Union[str, Any] )-> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case ( self : str )-> Any: lowerCamelCase__ , lowerCamelCase__ : Optional[Any] =FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-canny''', from_pt=lowerCamelCase, dtype=jnp.bfloataa ) lowerCamelCase__ , lowerCamelCase__ : Optional[int] =FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''', controlnet=lowerCamelCase, from_pt=lowerCamelCase, dtype=jnp.bfloataa ) lowerCamelCase__ : Optional[int] =controlnet_params lowerCamelCase__ : Dict ='''bird''' lowerCamelCase__ : List[str] =jax.device_count() lowerCamelCase__ : Optional[Any] =pipe.prepare_text_inputs([prompts] * num_samples ) lowerCamelCase__ : Dict =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ) lowerCamelCase__ : List[Any] =pipe.prepare_image_inputs([canny_image] * num_samples ) lowerCamelCase__ : Optional[int] =jax.random.PRNGKey(0 ) lowerCamelCase__ : Dict =jax.random.split(lowerCamelCase, jax.device_count() ) lowerCamelCase__ : Tuple =replicate(lowerCamelCase ) lowerCamelCase__ : Tuple =shard(lowerCamelCase ) lowerCamelCase__ : Optional[int] =shard(lowerCamelCase ) lowerCamelCase__ : Tuple =pipe( prompt_ids=lowerCamelCase, image=lowerCamelCase, params=lowerCamelCase, prng_seed=lowerCamelCase, num_inference_steps=50, jit=lowerCamelCase, ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowerCamelCase__ : Dict =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCamelCase__ : Any =images[0, 253:256, 253:256, -1] lowerCamelCase__ : Optional[Any] =jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCamelCase__ : Dict =jnp.array( [0.167_969, 0.116_699, 0.081_543, 0.154_297, 0.132_812, 0.108_887, 0.169_922, 0.169_922, 0.205_078] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def snake_case ( self : Optional[int] )-> Optional[int]: lowerCamelCase__ , lowerCamelCase__ : Dict =FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-openpose''', from_pt=lowerCamelCase, dtype=jnp.bfloataa ) lowerCamelCase__ , lowerCamelCase__ : List[Any] =FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''', controlnet=lowerCamelCase, from_pt=lowerCamelCase, dtype=jnp.bfloataa ) lowerCamelCase__ : Optional[Any] =controlnet_params lowerCamelCase__ : int ='''Chef in the kitchen''' lowerCamelCase__ : Optional[Any] =jax.device_count() lowerCamelCase__ : Any =pipe.prepare_text_inputs([prompts] * num_samples ) lowerCamelCase__ : Any =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png''' ) lowerCamelCase__ : List[Any] =pipe.prepare_image_inputs([pose_image] * num_samples ) lowerCamelCase__ : Tuple =jax.random.PRNGKey(0 ) lowerCamelCase__ : Optional[Any] =jax.random.split(lowerCamelCase, jax.device_count() ) lowerCamelCase__ : int =replicate(lowerCamelCase ) lowerCamelCase__ : List[Any] =shard(lowerCamelCase ) lowerCamelCase__ : int =shard(lowerCamelCase ) lowerCamelCase__ : Tuple =pipe( prompt_ids=lowerCamelCase, image=lowerCamelCase, params=lowerCamelCase, prng_seed=lowerCamelCase, num_inference_steps=50, jit=lowerCamelCase, ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) lowerCamelCase__ : Dict =images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCamelCase__ : List[str] =images[0, 253:256, 253:256, -1] lowerCamelCase__ : int =jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCamelCase__ : Any =jnp.array( [[0.271_484, 0.261_719, 0.275_391, 0.277_344, 0.279_297, 0.291_016, 0.294_922, 0.302_734, 0.302_734]] ) print(F'''output_slice: {output_slice}''' ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
272
0
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowercase : str = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class A ( unittest.TestCase ): def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=7 , SCREAMING_SNAKE_CASE=3 , SCREAMING_SNAKE_CASE=18 , SCREAMING_SNAKE_CASE=30 , SCREAMING_SNAKE_CASE=400 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , ) -> List[str]: """simple docstring""" A : Any = size if size is not None else {'''height''': 20, '''width''': 20} A : List[Any] = parent A : Dict = batch_size A : Optional[Any] = num_channels A : str = image_size A : List[Any] = min_resolution A : Optional[int] = max_resolution A : Union[str, Any] = size A : Tuple = do_normalize A : Tuple = do_convert_rgb A : Union[str, Any] = [512, 1024, 2048, 4096] A : Optional[int] = patch_size if patch_size is not None else {'''height''': 16, '''width''': 16} def __lowerCAmelCase ( self ) -> str: """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def __lowerCAmelCase ( self ) -> int: """simple docstring""" A : str = '''https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg''' A : List[str] = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ).convert('''RGB''' ) return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A ( __snake_case , unittest.TestCase ): __magic_name__ = PixaStructImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : Optional[int] = PixaStructImageProcessingTester(self ) @property def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" A : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , '''do_normalize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , '''do_convert_rgb''' ) ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : Dict = self.image_processor_tester.prepare_dummy_image() A : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) A : int = 2048 A : Tuple = image_processor(SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.0_606 ) , atol=1e-3 , rtol=1e-3 ) ) def __lowerCAmelCase ( self ) -> List[Any]: """simple docstring""" A : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input A : str = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input A : Optional[int] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched A : Union[str, Any] = image_processor( SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input A : List[Any] = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 A : Optional[int] = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(SCREAMING_SNAKE_CASE ): A : Any = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ).flattened_patches A : Any = '''Hello''' A : Any = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE , header_text=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched A : Optional[int] = image_processor( SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE , header_text=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" A : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE , numpify=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , np.ndarray ) A : Tuple = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input A : List[Any] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched A : str = image_processor( SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE , torchify=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input A : int = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input A : Optional[Any] = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched A : Dict = image_processor( SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason='''`Pix2StructImageProcessor` requires `torch>=1.11.0`.''' , ) @require_torch @require_vision class A ( __snake_case , unittest.TestCase ): __magic_name__ = PixaStructImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self ) -> str: """simple docstring""" A : Union[str, Any] = PixaStructImageProcessingTester(self , num_channels=4 ) A : Optional[Any] = 3 @property def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ) -> Union[str, Any]: """simple docstring""" A : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , '''do_normalize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , '''do_convert_rgb''' ) ) def __lowerCAmelCase ( self ) -> Optional[Any]: """simple docstring""" A : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input A : int = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input A : Any = image_processor( image_inputs[0] , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched A : int = image_processor( SCREAMING_SNAKE_CASE , return_tensors='''pt''' , max_patches=SCREAMING_SNAKE_CASE ).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
3
'''simple docstring''' from PIL import Image def a ( __a , __a ) -> Image: '''simple docstring''' def brightness(__a ) -> float: return 128 + level + (c - 128) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(__a ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 __snake_case = change_brightness(img, 100) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
97
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer a__ : Dict = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast a__ : Any = TaTokenizerFast a__ : Tuple = {'''configuration_mt5''': ['''MT5Config''', '''MT5OnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : int = [ '''MT5EncoderModel''', '''MT5ForConditionalGeneration''', '''MT5ForQuestionAnswering''', '''MT5Model''', '''MT5PreTrainedModel''', '''MT5Stack''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : str = ['''TFMT5EncoderModel''', '''TFMT5ForConditionalGeneration''', '''TFMT5Model'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = ['''FlaxMT5EncoderModel''', '''FlaxMT5ForConditionalGeneration''', '''FlaxMT5Model'''] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys a__ : str = _LazyModule( __name__, globals()['''__file__'''], _import_structure, extra_objects={'''MT5Tokenizer''': MTaTokenizer, '''MT5TokenizerFast''': MTaTokenizerFast}, module_spec=__spec__, )
195
"""simple docstring""" def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' if digit_amount > 0: return round(number - int(lowerCAmelCase_ ) , lowerCAmelCase_ ) return number - int(lowerCAmelCase_ ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.3_45, 1)) print(decimal_isolate(35.3_45, 2)) print(decimal_isolate(35.3_45, 3)) print(decimal_isolate(-14.7_89, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.1_23, 1)) print(decimal_isolate(-14.1_23, 2)) print(decimal_isolate(-14.1_23, 3))
195
1
"""simple docstring""" __lowercase = { "joule": 1.0, "kilojoule": 1000, "megajoule": 1000000, "gigajoule": 1000000000, "wattsecond": 1.0, "watthour": 3600, "kilowatthour": 3600000, "newtonmeter": 1.0, "calorie_nutr": 4186.8, "kilocalorie_nutr": 4186800.00, "electronvolt": 1.602176634e-19, "britishthermalunit_it": 1055.05585, "footpound": 1.35_58_18, } def lowercase ( A_ , A_ , A_ )-> float: '''simple docstring''' if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: a : Optional[int] = ( F'''Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n''' F'''Valid values are: {", ".join(A_ )}''' ) raise ValueError(A_ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
40
"""simple docstring""" from string import ascii_uppercase _lowercase = {char: i for i, char in enumerate(ascii_uppercase)} _lowercase = dict(enumerate(ascii_uppercase)) def _snake_case ( snake_case__ : str , snake_case__ : str ): A = len(snake_case__ ) A = 0 while True: if x == i: A = 0 if len(snake_case__ ) == len(snake_case__ ): break key += key[i] i += 1 return key def _snake_case ( snake_case__ : str , snake_case__ : str ): A = '' A = 0 for letter in message: if letter == " ": cipher_text += " " else: A = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def _snake_case ( snake_case__ : str , snake_case__ : str ): A = '' A = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: A = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def _snake_case ( ): A = 'THE GERMAN ATTACK' A = 'SECRET' A = generate_key(snake_case__ , snake_case__ ) A = cipher_text(snake_case__ , snake_case__ ) print(F'Encrypted Text = {s}' ) print(F'Original Text = {original_text(snake_case__ , snake_case__ )}' ) if __name__ == "__main__": import doctest doctest.testmod() main()
74
0
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class a ( _lowerCamelCase ): def __init__( self : Dict ): # test for the above condition self.test() def A_ ( self : int ): snake_case_ = 0 snake_case_ = False while not completed: if counter == 1: self.reset() snake_case_ = self.advance() if not self.does_advance(lowercase_ ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) snake_case_ ,snake_case_ ,snake_case_ = self.update(lowercase_ ) counter += 1 if counter > 1_0000: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def A_ ( self : Optional[Any] ): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def A_ ( self : Tuple , lowercase_ : int ): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def A_ ( self : str , lowercase_ : int ): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def A_ ( self : Any ): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def A_ ( self : Tuple ): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) @abstractmethod def A_ ( self : Tuple , lowercase_ : int=False ): raise NotImplementedError( F"{self.__class__} is an abstract class. Only classes inheriting this class can be called." ) class a ( _lowerCamelCase ): def __init__( self : Optional[int] , lowercase_ : List[int] ): super(lowercase_ , self ).__init__() if not isinstance(lowercase_ , lowercase_ ) or len(lowercase_ ) == 0: raise ValueError(F"`token_ids` has to be a non-empty list, but is {token_ids}." ) if any((not isinstance(lowercase_ , lowercase_ ) or token_id < 0) for token_id in token_ids ): raise ValueError(F"Each list in `token_ids` has to be a list of positive integers, but is {token_ids}." ) snake_case_ = token_ids snake_case_ = len(self.token_ids ) snake_case_ = -1 # the index of the currently fulfilled step snake_case_ = False def A_ ( self : Optional[int] ): if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def A_ ( self : Optional[int] , lowercase_ : int ): if not isinstance(lowercase_ , lowercase_ ): raise ValueError(F"`token_id` has to be an `int`, but is {token_id} of type {type(lowercase_ )}" ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def A_ ( self : List[str] , lowercase_ : int ): if not isinstance(lowercase_ , lowercase_ ): raise ValueError(F"`token_id` has to be an `int`, but is {token_id} of type {type(lowercase_ )}" ) snake_case_ = False snake_case_ = False snake_case_ = False if self.does_advance(lowercase_ ): self.fulfilled_idx += 1 snake_case_ = True if self.fulfilled_idx == (self.seqlen - 1): snake_case_ = True snake_case_ = completed else: # failed to make progress. snake_case_ = True self.reset() return stepped, completed, reset def A_ ( self : Optional[Any] ): snake_case_ = False snake_case_ = 0 def A_ ( self : List[str] ): return self.seqlen - (self.fulfilled_idx + 1) def A_ ( self : int , lowercase_ : str=False ): snake_case_ = PhrasalConstraint(self.token_ids ) if stateful: snake_case_ = self.seqlen snake_case_ = self.fulfilled_idx snake_case_ = self.completed return new_constraint class a : def __init__( self : Tuple , lowercase_ : List[List[int]] , lowercase_ : str=True ): snake_case_ = max([len(lowercase_ ) for one in nested_token_ids] ) snake_case_ = {} for token_ids in nested_token_ids: snake_case_ = root for tidx, token_id in enumerate(lowercase_ ): if token_id not in level: snake_case_ = {} snake_case_ = level[token_id] if no_subsets and self.has_subsets(lowercase_ , lowercase_ ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' F" {nested_token_ids}." ) snake_case_ = root def A_ ( self : Optional[int] , lowercase_ : List[Any] ): snake_case_ = self.trie for current_token in current_seq: snake_case_ = start[current_token] snake_case_ = list(start.keys() ) return next_tokens def A_ ( self : Optional[Any] , lowercase_ : Tuple ): snake_case_ = self.next_tokens(lowercase_ ) return len(lowercase_ ) == 0 def A_ ( self : str , lowercase_ : List[str] ): snake_case_ = list(root.values() ) if len(lowercase_ ) == 0: return 1 else: return sum([self.count_leaves(lowercase_ ) for nn in next_nodes] ) def A_ ( self : Dict , lowercase_ : Optional[int] , lowercase_ : List[str] ): snake_case_ = self.count_leaves(lowercase_ ) return len(lowercase_ ) != leaf_count class a ( _lowerCamelCase ): def __init__( self : Tuple , lowercase_ : List[List[int]] ): super(lowercase_ , self ).__init__() if not isinstance(lowercase_ , lowercase_ ) or len(lowercase_ ) == 0: raise ValueError(F"`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}." ) if any(not isinstance(lowercase_ , lowercase_ ) for token_ids in nested_token_ids ): raise ValueError(F"`nested_token_ids` has to be a list of lists, but is {nested_token_ids}." ) if any( any((not isinstance(lowercase_ , lowercase_ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F"Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}." ) snake_case_ = DisjunctiveTrie(lowercase_ ) snake_case_ = nested_token_ids snake_case_ = self.trie.max_height snake_case_ = [] snake_case_ = False def A_ ( self : str ): snake_case_ = self.trie.next_tokens(self.current_seq ) if len(lowercase_ ) == 0: return None else: return token_list def A_ ( self : str , lowercase_ : int ): if not isinstance(lowercase_ , lowercase_ ): raise ValueError(F"`token_id` is supposed to be type `int`, but is {token_id} of type {type(lowercase_ )}" ) snake_case_ = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def A_ ( self : List[Any] , lowercase_ : int ): if not isinstance(lowercase_ , lowercase_ ): raise ValueError(F"`token_id` is supposed to be type `int`, but is {token_id} of type {type(lowercase_ )}" ) snake_case_ = False snake_case_ = False snake_case_ = False if self.does_advance(lowercase_ ): self.current_seq.append(lowercase_ ) snake_case_ = True else: snake_case_ = True self.reset() snake_case_ = self.trie.reached_leaf(self.current_seq ) snake_case_ = completed return stepped, completed, reset def A_ ( self : Optional[Any] ): snake_case_ = False snake_case_ = [] def A_ ( self : str ): if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def A_ ( self : Optional[Any] , lowercase_ : Tuple=False ): snake_case_ = DisjunctiveConstraint(self.token_ids ) if stateful: snake_case_ = self.seqlen snake_case_ = self.current_seq snake_case_ = self.completed return new_constraint class a : def __init__( self : List[Any] , lowercase_ : List[Constraint] ): snake_case_ = constraints # max # of steps required to fulfill a given constraint snake_case_ = max([c.seqlen for c in constraints] ) snake_case_ = len(lowercase_ ) snake_case_ = False self.init_state() def A_ ( self : Optional[int] ): snake_case_ = [] snake_case_ = None snake_case_ = [constraint.copy(stateful=lowercase_ ) for constraint in self.constraints] def A_ ( self : Optional[Any] ): snake_case_ = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def A_ ( self : Any ): snake_case_ = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" snake_case_ = constraint.advance() if isinstance(lowercase_ , lowercase_ ): token_list.append(lowercase_ ) elif isinstance(lowercase_ , lowercase_ ): token_list.extend(lowercase_ ) else: snake_case_ = self.inprogress_constraint.advance() if isinstance(lowercase_ , lowercase_ ): token_list.append(lowercase_ ) elif isinstance(lowercase_ , lowercase_ ): token_list.extend(lowercase_ ) if len(lowercase_ ) == 0: return None else: return token_list def A_ ( self : int , lowercase_ : Optional[List[int]] ): self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint snake_case_ ,snake_case_ = self.add(lowercase_ ) # the entire list of constraints are fulfilled if self.completed: break def A_ ( self : Dict , lowercase_ : int ): if not isinstance(lowercase_ , lowercase_ ): raise ValueError(F"`token_id` should be an `int`, but is `{token_id}`." ) snake_case_ ,snake_case_ = False, False if self.completed: snake_case_ = True snake_case_ = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state snake_case_ ,snake_case_ ,snake_case_ = self.inprogress_constraint.update(lowercase_ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=lowercase_ ) ) snake_case_ = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) snake_case_ = None if len(self.pending_constraints ) == 0: # we're done! snake_case_ = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(lowercase_ ): snake_case_ ,snake_case_ ,snake_case_ = pending_constraint.update(lowercase_ ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(lowercase_ ) snake_case_ = None if not complete and stepped: snake_case_ = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". snake_case_ = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. snake_case_ = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def A_ ( self : Union[str, Any] , lowercase_ : str=True ): snake_case_ = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: snake_case_ = [ constraint.copy(stateful=lowercase_ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: snake_case_ = self.inprogress_constraint.copy(stateful=lowercase_ ) snake_case_ = [constraint.copy() for constraint in self.pending_constraints] return new_state
72
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a : Optional[int] = logging.get_logger(__name__) a : Optional[Any] = {'vocab_file': 'spiece.model'} a : Tuple = { 'vocab_file': { 'bert_for_seq_generation': ( 'https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model' ), } } a : Dict = {'bert_for_seq_generation': 512} class a ( _lowerCamelCase ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = [] snake_case_ = ["input_ids", "attention_mask"] def __init__( self : Any , lowercase_ : str , lowercase_ : Optional[Any]="<s>" , lowercase_ : Any="</s>" , lowercase_ : Optional[Any]="<unk>" , lowercase_ : List[Any]="<pad>" , lowercase_ : List[str]="<::::>" , lowercase_ : Optional[Dict[str, Any]] = None , **lowercase_ : Optional[int] , ): snake_case_ = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , pad_token=lowercase_ , sep_token=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) snake_case_ = vocab_file snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase_ ) @property def A_ ( self : int ): return self.sp_model.get_piece_size() def A_ ( self : Union[str, Any] ): snake_case_ = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[int] ): snake_case_ = self.__dict__.copy() snake_case_ = None return state def __setstate__( self : Any , lowercase_ : Optional[int] ): snake_case_ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case_ = {} snake_case_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def A_ ( self : Any , lowercase_ : str ): return self.sp_model.encode(lowercase_ , out_type=lowercase_ ) def A_ ( self : Optional[int] , lowercase_ : Union[str, Any] ): return self.sp_model.piece_to_id(lowercase_ ) def A_ ( self : Dict , lowercase_ : str ): snake_case_ = self.sp_model.IdToPiece(lowercase_ ) return token def A_ ( self : Optional[int] , lowercase_ : List[Any] ): snake_case_ = [] snake_case_ = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowercase_ ) + token snake_case_ = [] else: current_sub_tokens.append(lowercase_ ) out_string += self.sp_model.decode(lowercase_ ) return out_string.strip() def A_ ( self : List[str] , lowercase_ : str , lowercase_ : Optional[str] = None ): if not os.path.isdir(lowercase_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return snake_case_ = os.path.join( lowercase_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ , '''wb''' ) as fi: snake_case_ = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,)
72
1
def __lowerCamelCase ( snake_case__ ,snake_case__ = False ) -> str: """simple docstring""" if not isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = F'Expected string as input, found {type(snake_case__ )}' raise ValueError(snake_case__ ) if not isinstance(snake_case__ ,snake_case__ ): _SCREAMING_SNAKE_CASE = F'Expected boolean as use_pascal parameter, found {type(snake_case__ )}' raise ValueError(snake_case__ ) _SCREAMING_SNAKE_CASE = input_str.split("""_""" ) _SCREAMING_SNAKE_CASE = 0 if use_pascal else 1 _SCREAMING_SNAKE_CASE = words[start_index:] _SCREAMING_SNAKE_CASE = [word[0].upper() + word[1:] for word in words_to_capitalize] _SCREAMING_SNAKE_CASE = """""" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
306
import random def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" _SCREAMING_SNAKE_CASE = num - 1 _SCREAMING_SNAKE_CASE = 0 while s % 2 == 0: _SCREAMING_SNAKE_CASE = s // 2 t += 1 for _ in range(5 ): _SCREAMING_SNAKE_CASE = random.randrange(2 ,num - 1 ) _SCREAMING_SNAKE_CASE = pow(snake_case__ ,snake_case__ ,snake_case__ ) if v != 1: _SCREAMING_SNAKE_CASE = 0 while v != (num - 1): if i == t - 1: return False else: _SCREAMING_SNAKE_CASE = i + 1 _SCREAMING_SNAKE_CASE = (v**2) % num return True def __lowerCamelCase ( snake_case__ ) -> bool: """simple docstring""" if num < 2: return False _SCREAMING_SNAKE_CASE = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 1_01, 1_03, 1_07, 1_09, 1_13, 1_27, 1_31, 1_37, 1_39, 1_49, 1_51, 1_57, 1_63, 1_67, 1_73, 1_79, 1_81, 1_91, 1_93, 1_97, 1_99, 2_11, 2_23, 2_27, 2_29, 2_33, 2_39, 2_41, 2_51, 2_57, 2_63, 2_69, 2_71, 2_77, 2_81, 2_83, 2_93, 3_07, 3_11, 3_13, 3_17, 3_31, 3_37, 3_47, 3_49, 3_53, 3_59, 3_67, 3_73, 3_79, 3_83, 3_89, 3_97, 4_01, 4_09, 4_19, 4_21, 4_31, 4_33, 4_39, 4_43, 4_49, 4_57, 4_61, 4_63, 4_67, 4_79, 4_87, 4_91, 4_99, 5_03, 5_09, 5_21, 5_23, 5_41, 5_47, 5_57, 5_63, 5_69, 5_71, 5_77, 5_87, 5_93, 5_99, 6_01, 6_07, 6_13, 6_17, 6_19, 6_31, 6_41, 6_43, 6_47, 6_53, 6_59, 6_61, 6_73, 6_77, 6_83, 6_91, 7_01, 7_09, 7_19, 7_27, 7_33, 7_39, 7_43, 7_51, 7_57, 7_61, 7_69, 7_73, 7_87, 7_97, 8_09, 8_11, 8_21, 8_23, 8_27, 8_29, 8_39, 8_53, 8_57, 8_59, 8_63, 8_77, 8_81, 8_83, 8_87, 9_07, 9_11, 9_19, 9_29, 9_37, 9_41, 9_47, 9_53, 9_67, 9_71, 9_77, 9_83, 9_91, 9_97, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(snake_case__ ) def __lowerCamelCase ( snake_case__ = 10_24 ) -> int: """simple docstring""" while True: _SCREAMING_SNAKE_CASE = random.randrange(2 ** (keysize - 1) ,2 ** (keysize) ) if is_prime_low_num(snake_case__ ): return num if __name__ == "__main__": UpperCamelCase = generate_large_prime() print(('''Prime number:''', num)) print(('''is_prime_low_num:''', is_prime_low_num(num)))
306
1
"""simple docstring""" import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class UpperCamelCase__ ( lowercase_, lowercase_, lowercase_, unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = StableUnCLIPPipeline _SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_PARAMS _SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_BATCH_PARAMS _SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS _SCREAMING_SNAKE_CASE = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _SCREAMING_SNAKE_CASE = False def SCREAMING_SNAKE_CASE__ ( self : List[str] ): lowerCAmelCase_ : Tuple = 3_2 lowerCAmelCase_ : List[Any] = embedder_hidden_size # prior components torch.manual_seed(0 ) lowerCAmelCase_ : Dict = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) lowerCAmelCase_ : Optional[int] = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=SCREAMING_SNAKE_CASE_ , projection_dim=SCREAMING_SNAKE_CASE_ , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) ) torch.manual_seed(0 ) lowerCAmelCase_ : Any = PriorTransformer( num_attention_heads=2 , attention_head_dim=1_2 , embedding_dim=SCREAMING_SNAKE_CASE_ , num_layers=1 , ) torch.manual_seed(0 ) lowerCAmelCase_ : int = DDPMScheduler( variance_type='fixed_small_log' , prediction_type='sample' , num_train_timesteps=1_0_0_0 , clip_sample=SCREAMING_SNAKE_CASE_ , clip_sample_range=5.0 , beta_schedule='squaredcos_cap_v2' , ) # regular denoising components torch.manual_seed(0 ) lowerCAmelCase_ : Any = StableUnCLIPImageNormalizer(embedding_dim=SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Union[str, Any] = DDPMScheduler(beta_schedule='squaredcos_cap_v2' ) torch.manual_seed(0 ) lowerCAmelCase_ : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) torch.manual_seed(0 ) lowerCAmelCase_ : Dict = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=SCREAMING_SNAKE_CASE_ , projection_dim=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) ) torch.manual_seed(0 ) lowerCAmelCase_ : Dict = UNetaDConditionModel( sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock2D', 'DownBlock2D') , up_block_types=('UpBlock2D', 'CrossAttnUpBlock2D') , block_out_channels=(3_2, 6_4) , attention_head_dim=(2, 4) , class_embed_type='projection' , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=SCREAMING_SNAKE_CASE_ , layers_per_block=1 , upcast_attention=SCREAMING_SNAKE_CASE_ , use_linear_projection=SCREAMING_SNAKE_CASE_ , ) torch.manual_seed(0 ) lowerCAmelCase_ : str = DDIMScheduler( beta_schedule='scaled_linear' , beta_start=0.0_00_85 , beta_end=0.0_12 , prediction_type='v_prediction' , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , steps_offset=1 , ) torch.manual_seed(0 ) lowerCAmelCase_ : str = AutoencoderKL() lowerCAmelCase_ : Union[str, Any] = { # prior components 'prior_tokenizer': prior_tokenizer, 'prior_text_encoder': prior_text_encoder, 'prior': prior, 'prior_scheduler': prior_scheduler, # image noising components 'image_normalizer': image_normalizer, 'image_noising_scheduler': image_noising_scheduler, # regular denoising components 'tokenizer': tokenizer, 'text_encoder': text_encoder, 'unet': unet, 'scheduler': scheduler, 'vae': vae, } return components def SCREAMING_SNAKE_CASE__ ( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : List[Any]=0 ): if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): lowerCAmelCase_ : Optional[int] = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: lowerCAmelCase_ : str = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'prior_num_inference_steps': 2, 'output_type': 'numpy', } return inputs def SCREAMING_SNAKE_CASE__ ( self : Tuple ): lowerCAmelCase_ : List[Any] = torch_device == 'cpu' self._test_attention_slicing_forward_pass(test_max_difference=SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): lowerCAmelCase_ : Union[str, Any] = torch_device in ['cpu', 'mps'] self._test_inference_batch_single_identical(test_max_difference=SCREAMING_SNAKE_CASE_ ) @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : str ): lowerCAmelCase_ : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy' ) lowerCAmelCase_ : Union[str, Any] = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase_ : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase_ : Optional[Any] = pipe('anime turle' , generator=SCREAMING_SNAKE_CASE_ , output_type='np' ) lowerCAmelCase_ : Any = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : int ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCAmelCase_ : List[str] = StableUnCLIPPipeline.from_pretrained('fusing/stable-unclip-2-1-l' , torch_dtype=torch.floataa ) lowerCAmelCase_ : List[str] = pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() lowerCAmelCase_ : str = pipe( 'anime turtle' , prior_num_inference_steps=2 , num_inference_steps=2 , output_type='np' , ) lowerCAmelCase_ : Optional[Any] = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 1_0**9
366
"""simple docstring""" import re def UpperCamelCase_ ( lowerCAmelCase__ : str ) -> bool: """simple docstring""" lowerCAmelCase_ : str = re.compile( R'^(?:0|94|\+94|0{2}94)' R'7(0|1|2|4|5|6|7|8)' R'(-| |)' R'\d{7}$' ) return bool(re.search(lowerCAmelCase__ , lowerCAmelCase__ ) ) if __name__ == "__main__": lowercase__ : Optional[int] = """0094702343221""" print(is_sri_lankan_phone_number(phone))
289
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = {"""openai-gpt""": """https://huggingface.co/openai-gpt/resolve/main/config.json"""} class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = """openai-gpt""" __UpperCamelCase = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self :Optional[int] , lowercase_ :Optional[int]=4_04_78 , lowercase_ :List[Any]=5_12 , lowercase_ :List[str]=7_68 , lowercase_ :int=12 , lowercase_ :Dict=12 , lowercase_ :Union[str, Any]="gelu" , lowercase_ :Union[str, Any]=0.1 , lowercase_ :str=0.1 , lowercase_ :List[str]=0.1 , lowercase_ :Optional[Any]=1E-5 , lowercase_ :Optional[int]=0.02 , lowercase_ :Optional[Any]="cls_index" , lowercase_ :List[str]=True , lowercase_ :List[str]=None , lowercase_ :str=True , lowercase_ :int=0.1 , **lowercase_ :List[Any] , ) -> str: UpperCAmelCase = vocab_size UpperCAmelCase = n_positions UpperCAmelCase = n_embd UpperCAmelCase = n_layer UpperCAmelCase = n_head UpperCAmelCase = afn UpperCAmelCase = resid_pdrop UpperCAmelCase = embd_pdrop UpperCAmelCase = attn_pdrop UpperCAmelCase = layer_norm_epsilon UpperCAmelCase = initializer_range UpperCAmelCase = summary_type UpperCAmelCase = summary_use_proj UpperCAmelCase = summary_activation UpperCAmelCase = summary_first_dropout UpperCAmelCase = summary_proj_to_labels super().__init__(**lowercase_ )
78
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowercase = { '''configuration_resnet''': ['''RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ResNetConfig''', '''ResNetOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ResNetForImageClassification''', '''ResNetModel''', '''ResNetPreTrainedModel''', '''ResNetBackbone''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFResNetForImageClassification''', '''TFResNetModel''', '''TFResNetPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''FlaxResNetForImageClassification''', '''FlaxResNetModel''', '''FlaxResNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
272
0
"""simple docstring""" import argparse from collections import defaultdict import yaml _snake_case = 'docs/source/en/_toctree.yml' def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = defaultdict(UpperCamelCase__ ) _a : Optional[Any] = [] _a : str = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"""local""": doc["""local"""], """title""": doc["""title"""]} ) else: new_doc_list.append(UpperCamelCase__ ) _a : List[Any] = new_doc_list _a : Dict = [key for key, value in counts.items() if value > 1] _a : Any = [] for duplicate_key in duplicates: _a : Optional[int] = list({doc["""title"""] for doc in doc_list if doc["""local"""] == duplicate_key} ) if len(UpperCamelCase__ ) > 1: raise ValueError( F"""{duplicate_key} is present several times in the documentation table of content at """ """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if """local""" not in counts or counts[doc["""local"""]] == 1] ) _a : Optional[Any] = sorted(UpperCamelCase__ , key=lambda UpperCamelCase__ : s["title"].lower() ) # "overview" gets special treatment and is always first if len(UpperCamelCase__ ) > 1: raise ValueError("""{doc_list} has two 'overview' docs which is not allowed.""" ) overview_doc.extend(UpperCamelCase__ ) # Sort return overview_doc def lowerCAmelCase__ ( UpperCamelCase__=False ): '''simple docstring''' with open(UpperCamelCase__ , encoding="""utf-8""" ) as f: _a : Dict = yaml.safe_load(f.read() ) # Get to the API doc _a : Optional[Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 _a : Optional[Any] = content[api_idx]["""sections"""] # Then to the model doc _a : str = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 _a : List[Any] = api_doc[scheduler_idx]["""sections"""] _a : List[str] = clean_doc_toc(UpperCamelCase__ ) _a : Optional[int] = False if new_scheduler_doc != scheduler_doc: _a : List[str] = True if overwrite: _a : Tuple = new_scheduler_doc if diff: if overwrite: _a : Optional[int] = api_doc with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(UpperCamelCase__ , allow_unicode=UpperCamelCase__ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) def lowerCAmelCase__ ( UpperCamelCase__=False ): '''simple docstring''' with open(UpperCamelCase__ , encoding="""utf-8""" ) as f: _a : Optional[int] = yaml.safe_load(f.read() ) # Get to the API doc _a : Union[str, Any] = 0 while content[api_idx]["title"] != "API": api_idx += 1 _a : Any = content[api_idx]["""sections"""] # Then to the model doc _a : Tuple = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 _a : Optional[int] = False _a : Dict = api_doc[pipeline_idx]["""sections"""] _a : List[str] = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: _a : Any = pipeline_doc["""section"""] _a : Tuple = clean_doc_toc(UpperCamelCase__ ) if overwrite: _a : Optional[int] = new_sub_pipeline_doc new_pipeline_docs.append(UpperCamelCase__ ) # sort overall pipeline doc _a : Optional[Any] = clean_doc_toc(UpperCamelCase__ ) if new_pipeline_docs != pipeline_docs: _a : Optional[int] = True if overwrite: _a : Optional[Any] = new_pipeline_docs if diff: if overwrite: _a : Any = api_doc with open(UpperCamelCase__ , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(UpperCamelCase__ , allow_unicode=UpperCamelCase__ ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') _snake_case = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
361
"""simple docstring""" import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class UpperCamelCase ( snake_case_ ): def __init__( self : Union[str, Any] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : int=None , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : List[str]=None , **UpperCAmelCase__ : str ) -> int: _a : str = parent _a : Union[str, Any] = config_class _a : List[Any] = has_text_modality _a : List[Any] = kwargs _a : List[Any] = common_properties def _lowercase ( self : int ) -> Tuple: _a : List[str] = self.config_class(**self.inputs_dict ) _a : Dict = ( ["""hidden_size""", """num_attention_heads""", """num_hidden_layers"""] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["""vocab_size"""] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(UpperCAmelCase__ , UpperCAmelCase__ ) , msg=f"""`{prop}` does not exist""" ) # Test that config has the common properties as setter for idx, name in enumerate(UpperCAmelCase__ ): try: setattr(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) self.parent.assertEqual( getattr(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ , msg=f"""`{name} value {idx} expected, but was {getattr(UpperCAmelCase__ , UpperCAmelCase__ )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(UpperCAmelCase__ ): try: _a : Optional[int] = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(UpperCAmelCase__ , UpperCAmelCase__ ) , UpperCAmelCase__ , msg=f"""`{name} value {idx} expected, but was {getattr(UpperCAmelCase__ , UpperCAmelCase__ )}""" ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def _lowercase ( self : Optional[int] ) -> Optional[Any]: _a : Optional[Any] = self.config_class(**self.inputs_dict ) _a : List[str] = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , UpperCAmelCase__ ) def _lowercase ( self : int ) -> List[str]: _a : Optional[Any] = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a : Tuple = os.path.join(UpperCAmelCase__ , """config.json""" ) config_first.to_json_file(UpperCAmelCase__ ) _a : List[str] = self.config_class.from_json_file(UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : Union[str, Any] ) -> Dict: _a : Dict = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(UpperCAmelCase__ ) _a : Dict = self.config_class.from_pretrained(UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : Dict ) -> Tuple: _a : List[Any] = self.config_class(**self.inputs_dict ) _a : Any = """test""" with tempfile.TemporaryDirectory() as tmpdirname: _a : List[Any] = os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) config_first.save_pretrained(UpperCAmelCase__ ) _a : List[Any] = self.config_class.from_pretrained(UpperCAmelCase__ , subfolder=UpperCAmelCase__ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def _lowercase ( self : List[str] ) -> Union[str, Any]: _a : Tuple = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) _a : Union[str, Any] = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def _lowercase ( self : Tuple ) -> List[str]: if self.config_class.is_composition: return _a : str = self.config_class() self.parent.assertIsNotNone(UpperCAmelCase__ ) def _lowercase ( self : List[Any] ) -> Optional[Any]: _a : Dict = copy.deepcopy(UpperCAmelCase__ ) _a : Any = self.config_class(**UpperCAmelCase__ ) _a : str = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("""torch_dtype""", config.torch_dtype, torch.floataa) ) elif getattr(UpperCAmelCase__ , UpperCAmelCase__ ) != value: wrong_values.append((key, getattr(UpperCAmelCase__ , UpperCAmelCase__ ), value) ) if len(UpperCAmelCase__ ) > 0: _a : List[Any] = """\n""".join([f"""- {v[0]}: got {v[1]} instead of {v[2]}""" for v in wrong_values] ) raise ValueError(f"""The following keys were not properly set in the config:\n{errors}""" ) def _lowercase ( self : int ) -> Union[str, Any]: self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
324
0
import functools from typing import Any def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # Validation if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or len(__SCREAMING_SNAKE_CASE ) == 0: raise ValueError('the string should be not empty string' ) if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) or not all( isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) > 0 for item in words ): raise ValueError('the words should be a list of non-empty strings' ) # Build trie lowercase = {} lowercase = 'WORD_KEEPER' for word in words: lowercase = trie for c in word: if c not in trie_node: lowercase = {} lowercase = trie_node[c] lowercase = True lowercase = len(__SCREAMING_SNAKE_CASE ) # Dynamic programming method @functools.cache def is_breakable(__SCREAMING_SNAKE_CASE ) -> bool: if index == len_string: return True lowercase = trie for i in range(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = trie_node.get(string[i] , __SCREAMING_SNAKE_CASE ) if trie_node is None: return False if trie_node.get(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
195
def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise TypeError('Input value must be an \'int\' type' ) lowercase = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
195
1
"""simple docstring""" def A_ ( _lowerCAmelCase : Any ): """simple docstring""" if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(_lowerCAmelCase, _lowerCAmelCase ): raise TypeError('''Input value must be a \'int\' type''' ) return bin(_lowerCAmelCase ).count('''1''' ) if __name__ == "__main__": import doctest doctest.testmod()
367
"""simple docstring""" class __lowerCamelCase : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: _a = name _a = val def __str__( self ) -> List[Any]: return F'{self.__class__.__name__}({self.name}, {self.val})' def __lt__( self , __UpperCAmelCase ) -> Optional[Any]: return self.val < other.val class __lowerCamelCase : '''simple docstring''' def __init__( self , __UpperCAmelCase ) -> Tuple: _a = {} _a = {} _a = self.build_heap(__UpperCAmelCase ) def __getitem__( self , __UpperCAmelCase ) -> Optional[Any]: return self.get_value(__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> List[str]: return (idx - 1) // 2 def _UpperCAmelCase ( self , __UpperCAmelCase ) -> List[str]: return idx * 2 + 1 def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]: return idx * 2 + 2 def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Tuple: return self.heap_dict[key] def _UpperCAmelCase ( self , __UpperCAmelCase ) -> List[Any]: _a = len(__UpperCAmelCase ) - 1 _a = self.get_parent_idx(__UpperCAmelCase ) for idx, i in enumerate(__UpperCAmelCase ): _a = idx _a = i.val for i in range(__UpperCAmelCase , -1 , -1 ): self.sift_down(__UpperCAmelCase , __UpperCAmelCase ) return array def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: while True: _a = self.get_left_child_idx(__UpperCAmelCase ) # noqa: E741 _a = self.get_right_child_idx(__UpperCAmelCase ) _a = idx if l < len(__UpperCAmelCase ) and array[l] < array[idx]: _a = l if r < len(__UpperCAmelCase ) and array[r] < array[smallest]: _a = r if smallest != idx: _a , _a = array[smallest], array[idx] ( ( _a ) , ( _a ) , ) = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) _a = smallest else: break def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Union[str, Any]: _a = self.get_parent_idx(__UpperCAmelCase ) while p >= 0 and self.heap[p] > self.heap[idx]: _a , _a = self.heap[idx], self.heap[p] _a , _a = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) _a = p _a = self.get_parent_idx(__UpperCAmelCase ) def _UpperCAmelCase ( self ) -> int: return self.heap[0] def _UpperCAmelCase ( self ) -> Any: _a , _a = self.heap[-1], self.heap[0] _a , _a = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) _a = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Dict: self.heap.append(__UpperCAmelCase ) _a = len(self.heap ) - 1 _a = node.val self.sift_up(len(self.heap ) - 1 ) def _UpperCAmelCase ( self ) -> str: return len(self.heap ) == 0 def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" _a = new_value _a = new_value self.sift_up(self.idx_of_element[node] ) __snake_case = Node('''R''', -1) __snake_case = Node('''B''', 6) __snake_case = Node('''A''', 3) __snake_case = Node('''X''', 1) __snake_case = Node('''E''', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array __snake_case = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('''Min Heap - before decrease key''') for i in my_min_heap.heap: print(i) print('''Min Heap - After decrease key of node [B -> -17]''') my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
153
0
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowerCAmelCase__ = 250004 lowerCAmelCase__ = 250020 @require_sentencepiece @require_tokenizers class __snake_case ( _lowercase , unittest.TestCase): snake_case__ : List[str] = MBartaaTokenizer snake_case__ : Tuple = MBartaaTokenizerFast snake_case__ : Any = True snake_case__ : Optional[Any] = True def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _lowerCamelCase : str = MBartaaTokenizer(__lowerCAmelCase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=__lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Optional[Any] = '''<s>''' _lowerCamelCase : Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(__lowerCAmelCase ) , 1_0_5_4 ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_5_4 ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : str = MBartaaTokenizer(__lowerCAmelCase , src_lang='''en_XX''' , tgt_lang='''ro_RO''' , keep_accents=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__lowerCAmelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) _lowerCamelCase : Tuple = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __lowerCAmelCase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.'''] , ) _lowerCamelCase : Union[str, Any] = tokenizer.convert_tokens_to_ids(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] ] , ) _lowerCamelCase : Optional[Any] = tokenizer.convert_ids_to_tokens(__lowerCAmelCase ) self.assertListEqual( __lowerCAmelCase , [SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.'''] , ) @slow def SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" _lowerCamelCase : Any = {'''input_ids''': [[2_5_0_0_0_4, 1_1_0_6_2, 8_2_7_7_2, 7, 1_5, 8_2_7_7_2, 5_3_8, 5_1_5_2_9, 2_3_7, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 2_1_5_1_7_5, 1_3_1_4, 1_3_6, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 5_6_3_5_9, 4_2, 1_2_2_0_0_9, 9, 1_6_4_6_6, 1_6, 8_7_3_4_4, 4_5_3_7, 9, 4_7_1_7, 7_8_3_8_1, 6, 1_5_9_9_5_8, 7, 1_5, 2_4_4_8_0, 6_1_8, 4, 5_2_7, 2_2_6_9_3, 5_4_2_8, 4, 2_7_7_7, 2_4_4_8_0, 9_8_7_4, 4, 4_3_5_2_3, 5_9_4, 4, 8_0_3, 1_8_3_9_2, 3_3_1_8_9, 1_8, 4, 4_3_5_2_3, 2_4_4_4_7, 1_2_3_9_9, 1_0_0, 2_4_9_5_5, 8_3_6_5_8, 9_6_2_6, 1_4_4_0_5_7, 1_5, 8_3_9, 2_2_3_3_5, 1_6, 1_3_6, 2_4_9_5_5, 8_3_6_5_8, 8_3_4_7_9, 1_5, 3_9_1_0_2, 7_2_4, 1_6, 6_7_8, 6_4_5, 2_7_8_9, 1_3_2_8, 4_5_8_9, 4_2, 1_2_2_0_0_9, 1_1_5_7_7_4, 2_3, 8_0_5, 1_3_2_8, 4_6_8_7_6, 7, 1_3_6, 5_3_8_9_4, 1_9_4_0, 4_2_2_2_7, 4_1_1_5_9, 1_7_7_2_1, 8_2_3, 4_2_5, 4, 2_7_5_1_2, 9_8_7_2_2, 2_0_6, 1_3_6, 5_5_3_1, 4_9_7_0, 9_1_9, 1_7_3_3_6, 5, 2], [2_5_0_0_0_4, 2_0_0_8_0, 6_1_8, 8_3, 8_2_7_7_5, 4_7, 4_7_9, 9, 1_5_1_7, 7_3, 5_3_8_9_4, 3_3_3, 8_0_5_8_1, 1_1_0_1_1_7, 1_8_8_1_1, 5_2_5_6, 1_2_9_5, 5_1, 1_5_2_5_2_6, 2_9_7, 7_9_8_6, 3_9_0, 1_2_4_4_1_6, 5_3_8, 3_5_4_3_1, 2_1_4, 9_8, 1_5_0_4_4, 2_5_7_3_7, 1_3_6, 7_1_0_8, 4_3_7_0_1, 2_3, 7_5_6, 1_3_5_3_5_5, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [2_5_0_0_0_4, 5_8_1, 6_3_7_7_3, 1_1_9_4_5_5, 6, 1_4_7_7_9_7, 8_8_2_0_3, 7, 6_4_5, 7_0, 2_1, 3_2_8_5, 1_0_2_6_9, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase , model_name='''facebook/mbart-large-50''' , revision='''d3913889c59cd5c9e456b269c376325eabad57e2''' , ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _lowerCamelCase : Dict = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart50''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _lowerCamelCase : Tuple = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) _lowerCamelCase : Dict = self.tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) _lowerCamelCase : int = tempfile.mkdtemp() _lowerCamelCase : Union[str, Any] = tokenizer_r.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = tokenizer_p.save_pretrained(__lowerCAmelCase ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) _lowerCamelCase : List[str] = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(__lowerCAmelCase , __lowerCAmelCase ) # Checks everything loads correctly in the same way _lowerCamelCase : int = tokenizer_r.from_pretrained(__lowerCAmelCase ) _lowerCamelCase : Tuple = tokenizer_p.from_pretrained(__lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(__lowerCAmelCase ) # Save tokenizer rust, legacy_format=True _lowerCamelCase : int = tempfile.mkdtemp() _lowerCamelCase : List[str] = tokenizer_r.save_pretrained(__lowerCAmelCase , legacy_format=__lowerCAmelCase ) _lowerCamelCase : Tuple = tokenizer_p.save_pretrained(__lowerCAmelCase ) # Checks it save with the same files self.assertSequenceEqual(__lowerCAmelCase , __lowerCAmelCase ) # Checks everything loads correctly in the same way _lowerCamelCase : List[Any] = tokenizer_r.from_pretrained(__lowerCAmelCase ) _lowerCamelCase : Any = tokenizer_p.from_pretrained(__lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase ) ) shutil.rmtree(__lowerCAmelCase ) # Save tokenizer rust, legacy_format=False _lowerCamelCase : Union[str, Any] = tempfile.mkdtemp() _lowerCamelCase : Optional[Any] = tokenizer_r.save_pretrained(__lowerCAmelCase , legacy_format=__lowerCAmelCase ) _lowerCamelCase : Optional[Any] = tokenizer_p.save_pretrained(__lowerCAmelCase ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _lowerCamelCase : Dict = tokenizer_r.from_pretrained(__lowerCAmelCase ) _lowerCamelCase : Dict = tokenizer_p.from_pretrained(__lowerCAmelCase ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__lowerCAmelCase , __lowerCAmelCase ) ) shutil.rmtree(__lowerCAmelCase ) @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase): snake_case__ : int = "facebook/mbart-large-50-one-to-many-mmt" snake_case__ : Optional[int] = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] snake_case__ : Optional[Any] = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] snake_case__ : int = [EN_CODE, 8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2] @classmethod def SCREAMING_SNAKE_CASE ( cls : Dict ): """simple docstring""" _lowerCamelCase : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) _lowerCamelCase : Any = 1 return cls def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 2_5_0_0_0_1 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 2_5_0_0_0_4 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 2_5_0_0_2_0 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''mr_IN'''] , 2_5_0_0_3_8 ) def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" _lowerCamelCase : Optional[int] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" self.assertIn(__lowerCAmelCase , self.tokenizer.all_special_ids ) _lowerCamelCase : Optional[Any] = [RO_CODE, 8_8_4, 9_0_1_9, 9_6, 9, 9_1_6, 8_6_7_9_2, 3_6, 1_8_7_4_3, 1_5_5_9_6, 5, 2] _lowerCamelCase : Optional[Any] = self.tokenizer.decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase ) _lowerCamelCase : Any = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__lowerCAmelCase ) self.assertEqual(__lowerCAmelCase , __lowerCAmelCase ) self.assertNotIn(self.tokenizer.eos_token , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Optional[Any] = ['''this is gunna be a long sentence ''' * 2_0] assert isinstance(src_text[0] , __lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = 1_0 _lowerCamelCase : Any = self.tokenizer(__lowerCAmelCase , max_length=__lowerCAmelCase , truncation=__lowerCAmelCase ).input_ids[0] self.assertEqual(ids[0] , __lowerCAmelCase ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(__lowerCAmelCase ) , __lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [2_5_0_0_5_3, 2_5_0_0_0_1] ) def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase : str = tempfile.mkdtemp() _lowerCamelCase : Tuple = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__lowerCAmelCase ) _lowerCamelCase : Any = MBartaaTokenizer.from_pretrained(__lowerCAmelCase ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __lowerCAmelCase ) @require_torch def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase : Tuple = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=__lowerCAmelCase , return_tensors='''pt''' ) _lowerCamelCase : Optional[Any] = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Tuple = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) _lowerCamelCase : Any = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(__lowerCAmelCase , __lowerCAmelCase ) self.assertEqual((2, 1_4) , batch.input_ids.shape ) self.assertEqual((2, 1_4) , batch.attention_mask.shape ) _lowerCamelCase : str = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __lowerCAmelCase ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : List[Any] = self.tokenizer(self.src_text , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=3 , return_tensors='''pt''' ) _lowerCamelCase : Optional[Any] = self.tokenizer( text_target=self.tgt_text , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=1_0 , return_tensors='''pt''' ) _lowerCamelCase : List[Any] = targets['''input_ids'''] _lowerCamelCase : int = shift_tokens_right(__lowerCAmelCase , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 1_0 ) @require_torch def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(__lowerCAmelCase ) , { # en_XX, A, test, EOS '''input_ids''': [[2_5_0_0_0_4, 6_2, 3_0_3_4, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 2_5_0_0_0_1, } , )
72
"""simple docstring""" import math def snake_case_ ( A_ : int ): '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5, int(math.sqrt(A_ ) + 1 ), 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def snake_case_ ( A_ : float = 0.1 ): '''simple docstring''' _lowerCamelCase : Optional[int] = 3 _lowerCamelCase : List[str] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1, (j + 2) * (j + 2), j + 1 ): primes += is_prime(A_ ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
72
1
'''simple docstring''' class _a : def __init__( self ,_SCREAMING_SNAKE_CASE ) -> str: _snake_case = val _snake_case = None _snake_case = None def _lowercase ( self ,_SCREAMING_SNAKE_CASE ) -> int: if self.val: if val < self.val: if self.left is None: _snake_case = Node(_a ) else: self.left.insert(_a ) elif val > self.val: if self.right is None: _snake_case = Node(_a ) else: self.right.insert(_a ) else: _snake_case = val def __a ( _UpperCamelCase: Tuple , _UpperCamelCase: int ) -> Tuple: """simple docstring""" if root: inorder(root.left , _UpperCamelCase ) res.append(root.val ) inorder(root.right , _UpperCamelCase ) def __a ( _UpperCamelCase: Any ) -> List[Any]: """simple docstring""" if len(_UpperCamelCase ) == 0: return arr _snake_case = Node(arr[0] ) for i in range(1 , len(_UpperCamelCase ) ): root.insert(arr[i] ) # Traverse BST in order. _snake_case = [] inorder(_UpperCamelCase , _UpperCamelCase ) return res if __name__ == "__main__": print(tree_sort([10, 1, 3, 2, 9, 14, 13]))
370
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint UpperCamelCase_ : int = { '''169M''': 12, '''430M''': 24, '''1B5''': 24, '''3B''': 32, '''7B''': 32, '''14B''': 40, } UpperCamelCase_ : str = { '''169M''': 768, '''430M''': 1024, '''1B5''': 2048, '''3B''': 2560, '''7B''': 4096, '''14B''': 5120, } def __a ( _UpperCamelCase: str ) -> Any: """simple docstring""" _snake_case = list(state_dict.keys() ) for name in state_dict_keys: _snake_case = state_dict.pop(_UpperCamelCase ) # emb -> embedding if name.startswith("emb." ): _snake_case = name.replace("emb." , "embeddings." ) # ln_0 -> pre_ln (only present at block 0) if name.startswith("blocks.0.ln0" ): _snake_case = name.replace("blocks.0.ln0" , "blocks.0.pre_ln" ) # att -> attention _snake_case = re.sub(r"blocks\.(\d+)\.att" , r"blocks.\1.attention" , _UpperCamelCase ) # ffn -> feed_forward _snake_case = re.sub(r"blocks\.(\d+)\.ffn" , r"blocks.\1.feed_forward" , _UpperCamelCase ) # time_mix_k -> time_mix_key and reshape if name.endswith(".time_mix_k" ): _snake_case = name.replace(".time_mix_k" , ".time_mix_key" ) # time_mix_v -> time_mix_value and reshape if name.endswith(".time_mix_v" ): _snake_case = name.replace(".time_mix_v" , ".time_mix_value" ) # time_mix_r -> time_mix_key and reshape if name.endswith(".time_mix_r" ): _snake_case = name.replace(".time_mix_r" , ".time_mix_receptance" ) if name != "head.weight": _snake_case = "rwkv." + name _snake_case = weight return state_dict def __a ( _UpperCamelCase: Any , _UpperCamelCase: List[Any] , _UpperCamelCase: List[Any] , _UpperCamelCase: str=None , _UpperCamelCase: Optional[Any]=None , _UpperCamelCase: List[str]=False , _UpperCamelCase: Dict=None ) -> Dict: """simple docstring""" if tokenizer_file is None: print("No `--tokenizer_file` provided, we will use the default tokenizer." ) _snake_case = 50_277 _snake_case = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b" ) else: _snake_case = PreTrainedTokenizerFast(tokenizer_file=_UpperCamelCase ) _snake_case = len(_UpperCamelCase ) tokenizer.save_pretrained(_UpperCamelCase ) # 2. Build the config _snake_case = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: _snake_case = candidate break if size is None: raise ValueError("Could not infer the size, please provide it with the `--size` argument." ) if size not in possible_sizes: raise ValueError(F"""`size` should be one of {possible_sizes}, got {size}.""" ) _snake_case = RwkvConfig( vocab_size=_UpperCamelCase , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(_UpperCamelCase ) # 3. Download model file then convert state_dict _snake_case = hf_hub_download(_UpperCamelCase , _UpperCamelCase ) _snake_case = torch.load(_UpperCamelCase , map_location="cpu" ) _snake_case = convert_state_dict(_UpperCamelCase ) # 4. Split in shards and save _snake_case , _snake_case = shard_checkpoint(_UpperCamelCase ) for shard_file, shard in shards.items(): torch.save(_UpperCamelCase , os.path.join(_UpperCamelCase , _UpperCamelCase ) ) if index is not None: _snake_case = os.path.join(_UpperCamelCase , _UpperCamelCase ) # Save the index as well with open(_UpperCamelCase , "w" , encoding="utf-8" ) as f: _snake_case = json.dumps(_UpperCamelCase , indent=2 , sort_keys=_UpperCamelCase ) + "\n" f.write(_UpperCamelCase ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( "Cleaning up shards. This may error with an OOM error, it this is the case don't worry you still have converted the model." ) _snake_case = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: _snake_case = torch.load(os.path.join(_UpperCamelCase , _UpperCamelCase ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(_UpperCamelCase , _UpperCamelCase ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError("Please provide a `model_name` to push the model to the Hub." ) _snake_case = AutoModelForCausalLM.from_pretrained(_UpperCamelCase ) model.push_to_hub(_UpperCamelCase , max_shard_size="2GB" ) tokenizer.push_to_hub(_UpperCamelCase ) if __name__ == "__main__": UpperCamelCase_ : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--repo_id''', default=None, type=str, required=True, help='''Repo ID from which to pull the checkpoint.''' ) parser.add_argument( '''--checkpoint_file''', default=None, type=str, required=True, help='''Name of the checkpoint file in the repo.''' ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''Where to save the converted model.''' ) parser.add_argument( '''--tokenizer_file''', default=None, type=str, help='''Path to the tokenizer file to use (if not provided, only the model is converted).''', ) parser.add_argument( '''--size''', default=None, type=str, help='''Size of the model. Will be inferred from the `checkpoint_file` if not passed.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Push to the Hub the converted model.''', ) parser.add_argument( '''--model_name''', default=None, type=str, help='''Name of the pushed model on the Hub, including the username / organization.''', ) UpperCamelCase_ : int = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
142
0
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py _a = '''src/diffusers''' _a = '''.''' # This is to make sure the diffusers module imported is the one in the repo. _a = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) _a = spec.loader.load_module() def _a ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]: """simple docstring""" return line.startswith(SCREAMING_SNAKE_CASE ) or len(SCREAMING_SNAKE_CASE ) <= 1 or re.search(R'^\s*\)(\s*->.*:|:)\s*$' , SCREAMING_SNAKE_CASE ) is not None def _a ( SCREAMING_SNAKE_CASE : Dict ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase: Tuple = object_name.split('.' ) __lowerCAmelCase: Tuple = 0 # First let's find the module where our object lives. __lowerCAmelCase: int = parts[i] while i < len(SCREAMING_SNAKE_CASE ) and not os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE , f'''{module}.py''' ) ): i += 1 if i < len(SCREAMING_SNAKE_CASE ): __lowerCAmelCase: List[Any] = os.path.join(SCREAMING_SNAKE_CASE , parts[i] ) if i >= len(SCREAMING_SNAKE_CASE ): raise ValueError(f'''`object_name` should begin with the name of a module of diffusers but got {object_name}.''' ) with open(os.path.join(SCREAMING_SNAKE_CASE , f'''{module}.py''' ) , 'r' , encoding='utf-8' , newline='\n' ) as f: __lowerCAmelCase: int = f.readlines() # Now let's find the class / func in the code! __lowerCAmelCase: int = '' __lowerCAmelCase: Tuple = 0 for name in parts[i + 1 :]: while ( line_index < len(SCREAMING_SNAKE_CASE ) and re.search(Rf'''^{indent}(class|def)\s+{name}(\(|\:)''' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(SCREAMING_SNAKE_CASE ): raise ValueError(f''' {object_name} does not match any function or class in {module}.''' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). __lowerCAmelCase: Any = line_index while line_index < len(SCREAMING_SNAKE_CASE ) and _should_continue(lines[line_index] , SCREAMING_SNAKE_CASE ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __lowerCAmelCase: Optional[int] = lines[start_index:line_index] return "".join(SCREAMING_SNAKE_CASE ) _a = re.compile(R'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') _a = re.compile(R'''^\s*(\S+)->(\S+)(\s+.*|$)''') _a = re.compile(R'''<FILL\s+[^>]*>''') def _a ( SCREAMING_SNAKE_CASE : Tuple ) -> List[str]: """simple docstring""" __lowerCAmelCase: int = code.split('\n' ) __lowerCAmelCase: Tuple = 0 while idx < len(SCREAMING_SNAKE_CASE ) and len(lines[idx] ) == 0: idx += 1 if idx < len(SCREAMING_SNAKE_CASE ): return re.search(R'^(\s*)\S' , lines[idx] ).groups()[0] return "" def _a ( SCREAMING_SNAKE_CASE : Dict ) -> Tuple: """simple docstring""" __lowerCAmelCase: List[str] = len(get_indent(SCREAMING_SNAKE_CASE ) ) > 0 if has_indent: __lowerCAmelCase: List[Any] = f'''class Bla:\n{code}''' __lowerCAmelCase: Union[str, Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 , preview=SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Dict = black.format_str(SCREAMING_SNAKE_CASE , mode=SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase: Any = style_docstrings_in_code(SCREAMING_SNAKE_CASE ) return result[len('class Bla:\n' ) :] if has_indent else result def _a ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : int=False ) -> Tuple: """simple docstring""" with open(SCREAMING_SNAKE_CASE , 'r' , encoding='utf-8' , newline='\n' ) as f: __lowerCAmelCase: str = f.readlines() __lowerCAmelCase: Any = [] __lowerCAmelCase: Optional[Any] = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(SCREAMING_SNAKE_CASE ): __lowerCAmelCase: Any = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: str = search.groups() __lowerCAmelCase: Optional[Any] = find_code_in_diffusers(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Tuple = get_indent(SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Any = line_index + 1 if indent == theoretical_indent else line_index + 2 __lowerCAmelCase: Optional[int] = theoretical_indent __lowerCAmelCase: int = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. __lowerCAmelCase: Optional[Any] = True while line_index < len(SCREAMING_SNAKE_CASE ) and should_continue: line_index += 1 if line_index >= len(SCREAMING_SNAKE_CASE ): break __lowerCAmelCase: Dict = lines[line_index] __lowerCAmelCase: Union[str, Any] = _should_continue(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and re.search(f'''^{indent}# End copy''' , SCREAMING_SNAKE_CASE ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 __lowerCAmelCase: int = lines[start_index:line_index] __lowerCAmelCase: Optional[int] = ''.join(SCREAMING_SNAKE_CASE ) # Remove any nested `Copied from` comments to avoid circular copies __lowerCAmelCase: Optional[int] = [line for line in theoretical_code.split('\n' ) if _re_copy_warning.search(SCREAMING_SNAKE_CASE ) is None] __lowerCAmelCase: int = '\n'.join(SCREAMING_SNAKE_CASE ) # Before comparing, use the `replace_pattern` on the original code. if len(SCREAMING_SNAKE_CASE ) > 0: __lowerCAmelCase: Optional[int] = replace_pattern.replace('with' , '' ).split(',' ) __lowerCAmelCase: Union[str, Any] = [_re_replace_pattern.search(SCREAMING_SNAKE_CASE ) for p in patterns] for pattern in patterns: if pattern is None: continue __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase: str = pattern.groups() __lowerCAmelCase: Dict = re.sub(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if option.strip() == "all-casing": __lowerCAmelCase: Optional[int] = re.sub(obja.lower() , obja.lower() , SCREAMING_SNAKE_CASE ) __lowerCAmelCase: Optional[int] = re.sub(obja.upper() , obja.upper() , SCREAMING_SNAKE_CASE ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line __lowerCAmelCase: List[Any] = blackify(lines[start_index - 1] + theoretical_code ) __lowerCAmelCase: List[str] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: __lowerCAmelCase: str = lines[:start_index] + [theoretical_code] + lines[line_index:] __lowerCAmelCase: Optional[Any] = start_index + 1 if overwrite and len(SCREAMING_SNAKE_CASE ) > 0: # Warn the user a file has been modified. print(f'''Detected changes, rewriting {filename}.''' ) with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(SCREAMING_SNAKE_CASE ) return diffs def _a ( SCREAMING_SNAKE_CASE : List[Any] = False ) -> List[Any]: """simple docstring""" __lowerCAmelCase: Tuple = glob.glob(os.path.join(SCREAMING_SNAKE_CASE , '**/*.py' ) , recursive=SCREAMING_SNAKE_CASE ) __lowerCAmelCase: List[str] = [] for filename in all_files: __lowerCAmelCase: Union[str, Any] = is_copy_consistent(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) diffs += [f'''- {filename}: copy does not match {d[0]} at line {d[1]}''' for d in new_diffs] if not overwrite and len(SCREAMING_SNAKE_CASE ) > 0: __lowerCAmelCase: Optional[Any] = '\n'.join(SCREAMING_SNAKE_CASE ) raise Exception( 'Found the following copy inconsistencies:\n' + diff + '\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.' ) if __name__ == "__main__": _a = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') _a = parser.parse_args() check_copies(args.fix_and_overwrite)
322
"""simple docstring""" import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ,lowercase ,lowercase ): """simple docstring""" # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file _UpperCAmelCase = TapasConfig.from_json_file(lowercase ) # set absolute/relative position embeddings parameter _UpperCAmelCase = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": _UpperCAmelCase = TapasForQuestionAnswering(config=lowercase ) elif task == "WTQ": # run_task_main.py hparams _UpperCAmelCase = 4 _UpperCAmelCase = True # hparam_utils.py hparams _UpperCAmelCase = 0.66_46_94 _UpperCAmelCase = 0.20_79_51 _UpperCAmelCase = 0.12_11_94 _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = False _UpperCAmelCase = 0.0_35_25_13 _UpperCAmelCase = TapasForQuestionAnswering(config=lowercase ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams _UpperCAmelCase = 4 _UpperCAmelCase = False # hparam_utils.py hparams _UpperCAmelCase = 36.45_19 _UpperCAmelCase = 0.90_34_21 _UpperCAmelCase = 2_22.0_88 _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = 0.76_31_41 _UpperCAmelCase = TapasForQuestionAnswering(config=lowercase ) elif task == "TABFACT": _UpperCAmelCase = TapasForSequenceClassification(config=lowercase ) elif task == "MLM": _UpperCAmelCase = TapasForMaskedLM(config=lowercase ) elif task == "INTERMEDIATE_PRETRAINING": _UpperCAmelCase = TapasModel(config=lowercase ) else: raise ValueError(f'''Task {task} not supported.''' ) print(f'''Building PyTorch model from configuration: {config}''' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowercase ,lowercase ,lowercase ) # Save pytorch-model (weights and configuration) print(f'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(lowercase ) # Save tokenizer files print(f'''Save tokenizer files to {pytorch_dump_path}''' ) _UpperCAmelCase = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""" ,model_max_length=5_12 ) tokenizer.save_pretrained(lowercase ) print("""Used relative position embeddings:""" ,model.config.reset_position_index_per_cell ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--task""", default="""SQA""", type=str, help="""Model task for which to convert a checkpoint. Defaults to SQA.""" ) parser.add_argument( """--reset_position_index_per_cell""", default=False, action="""store_true""", help="""Whether to use relative position embeddings or not. Defaults to True.""", ) parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--tapas_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained TAPAS model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase__ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
289
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { """microsoft/focalnet-tiny""": """https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json""", } class UpperCAmelCase__ ( lowercase__ , lowercase__ ): """simple docstring""" __UpperCAmelCase : Dict = '''focalnet''' def __init__( self : List[Any] ,_a : Optional[Any]=224 ,_a : int=4 ,_a : Union[str, Any]=3 ,_a : List[str]=96 ,_a : Union[str, Any]=False ,_a : str=[192, 384, 768, 768] ,_a : Dict=[2, 2, 6, 2] ,_a : Any=[2, 2, 2, 2] ,_a : str=[3, 3, 3, 3] ,_a : Optional[int]="gelu" ,_a : Tuple=4.0 ,_a : str=0.0 ,_a : Union[str, Any]=0.1 ,_a : str=False ,_a : int=1E-4 ,_a : Dict=False ,_a : Optional[Any]=False ,_a : Optional[int]=False ,_a : str=0.02 ,_a : Optional[Any]=1E-5 ,_a : List[str]=32 ,_a : Tuple=None ,_a : Any=None ,**_a : Optional[Any] ,): '''simple docstring''' super().__init__(**_a ) _a : List[str] = image_size _a : Optional[Any] = patch_size _a : List[str] = num_channels _a : List[str] = embed_dim _a : Optional[int] = use_conv_embed _a : Optional[Any] = hidden_sizes _a : Dict = depths _a : int = focal_levels _a : Optional[int] = focal_windows _a : List[str] = hidden_act _a : List[Any] = mlp_ratio _a : Optional[int] = hidden_dropout_prob _a : Optional[int] = drop_path_rate _a : str = use_layerscale _a : Any = layerscale_value _a : Tuple = use_post_layernorm _a : List[str] = use_post_layernorm_in_modulation _a : Optional[int] = normalize_modulator _a : Optional[int] = initializer_range _a : Any = layer_norm_eps _a : Optional[int] = encoder_stride _a : List[Any] = ['stem'] + [F"""stage{idx}""" for idx in range(1 ,len(self.depths ) + 1 )] _a : Dict = get_aligned_output_features_output_indices( out_features=_a ,out_indices=_a ,stage_names=self.stage_names )
355
'''simple docstring''' def UpperCAmelCase_ (__a : int = 1_0**1_2 ): """simple docstring""" _a : List[str] = 1 _a : Optional[int] = 0 _a : Any = 1 _a : List[str] = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f'''{solution() = }''')
5
0
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def a__ ( ): '''simple docstring''' print("Making key files..." ) make_key_files("rsa" , 1_0_2_4 ) print("Key files generation successful." ) def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' print("Generating prime p..." ) lowerCAmelCase : int = rabinMiller.generate_large_prime(SCREAMING_SNAKE_CASE ) print("Generating prime q..." ) lowerCAmelCase : Tuple = rabinMiller.generate_large_prime(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Tuple = p * q print("Generating e that is relatively prime to (p - 1) * (q - 1)..." ) while True: lowerCAmelCase : Dict = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(SCREAMING_SNAKE_CASE , (p - 1) * (q - 1) ) == 1: break print("Calculating d that is mod inverse of e..." ) lowerCAmelCase : Tuple = cryptoMath.find_mod_inverse(SCREAMING_SNAKE_CASE , (p - 1) * (q - 1) ) lowerCAmelCase : str = (n, e) lowerCAmelCase : int = (n, d) return (public_key, private_key) def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print("\nWARNING:" ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" "Use a different name or delete these files and re-run this program." ) sys.exit() lowerCAmelCase , lowerCAmelCase : Dict = generate_key(SCREAMING_SNAKE_CASE ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" , "w" ) as out_file: out_file.write(f"""{key_size},{public_key[0]},{public_key[1]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" , "w" ) as out_file: out_file.write(f"""{key_size},{private_key[0]},{private_key[1]}""" ) if __name__ == "__main__": main()
108
'''simple docstring''' import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) lowercase__ : Optional[Any] = logging.getLogger() def a__ ( ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''-f''' ) _UpperCamelCase = parser.parse_args() return args.f def a__ ( lowercase : Dict ) -> int: """simple docstring""" _UpperCamelCase = {} _UpperCamelCase = os.path.join(lowercase, '''all_results.json''' ) if os.path.exists(lowercase ): with open(lowercase, '''r''' ) as f: _UpperCamelCase = json.load(lowercase ) else: raise ValueError(F"""can't find {path}""" ) return results def a__ ( ) -> Optional[Any]: """simple docstring""" _UpperCamelCase = torch.cuda.is_available() and torch_device == '''cuda''' return is_using_cuda and is_apex_available() lowercase__ : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" @classmethod def snake_case__ ( cls : Optional[int] ) -> List[Any]: '''simple docstring''' _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = os.path.join(cls.tmpdir , '''default_config.yml''' ) write_basic_config(save_location=cls.configPath ) _UpperCamelCase = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath] @classmethod def snake_case__ ( cls : Tuple ) -> int: '''simple docstring''' shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Any ) -> Dict: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --seed=42 --checkpointing_steps epoch --with_tracking """.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''glue_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Union[str, Any] ) -> int: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --block_size 128 --per_device_train_batch_size 5 --per_device_eval_batch_size 5 --num_train_epochs 2 --output_dir {tmp_dir} --checkpointing_steps epoch --with_tracking """.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertLess(result['''perplexity'''] , 100 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''clm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --num_train_epochs=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertLess(result['''perplexity'''] , 42 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''mlm_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' _UpperCamelCase = 7 if get_gpu_count() > 1 else 2 _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertLess(result['''train_loss'''] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''ner_no_trainer''' ) ) ) @unittest.skip(reason='''Fix me @muellerzr''' ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : int ) -> int: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --seed=42 --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result['''eval_f1'''] , 28 ) self.assertGreaterEqual(result['''eval_exact'''] , 28 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''qa_no_trainer''' ) ) ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/swag/sample.json --validation_file tests/fixtures/tests_samples/swag/sample.json --output_dir {tmp_dir} --max_train_steps=20 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''swag_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : List[str] ) -> int: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_rouge1'''] , 10 ) self.assertGreaterEqual(result['''eval_rouge2'''] , 2 ) self.assertGreaterEqual(result['''eval_rougeL'''] , 7 ) self.assertGreaterEqual(result['''eval_rougeLsum'''] , 7 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''summarization_no_trainer''' ) ) ) @slow @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : str ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py --model_name_or_path sshleifer/student_marian_en_ro_6_1 --source_lang en --target_lang ro --train_file tests/fixtures/tests_samples/wmt16/sample.json --validation_file tests/fixtures/tests_samples/wmt16/sample.json --output_dir {tmp_dir} --max_train_steps=50 --num_warmup_steps=8 --num_beams=6 --learning_rate=3e-3 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --source_lang en_XX --target_lang ro_RO --checkpointing_steps epoch --with_tracking """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_bleu'''] , 30 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''epoch_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''translation_no_trainer''' ) ) ) @slow def snake_case__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = logging.StreamHandler(sys.stdout ) logger.addHandler(lowerCAmelCase__ ) _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py --dataset_name huggingface/semantic-segmentation-test-sample --output_dir {tmp_dir} --max_train_steps=10 --num_warmup_steps=2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --checkpointing_steps epoch """.split() run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result['''eval_overall_accuracy'''] , 0.10 ) @mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} ) def snake_case__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.get_auto_remove_tmp_dir() _UpperCamelCase = f""" {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py --model_name_or_path google/vit-base-patch16-224-in21k --dataset_name hf-internal-testing/cats_vs_dogs_sample --learning_rate 1e-4 --per_device_train_batch_size 2 --per_device_eval_batch_size 1 --max_train_steps 2 --train_val_split 0.1 --seed 42 --output_dir {tmp_dir} --with_tracking --checkpointing_steps 1 """.split() if is_cuda_and_apex_available(): testargs.append('''--fp16''' ) run_command(self._launch_args + testargs ) _UpperCamelCase = get_results(lowerCAmelCase__ ) # The base model scores a 25% self.assertGreaterEqual(result['''eval_accuracy'''] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''step_1''' ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , '''image_classification_no_trainer''' ) ) )
324
0
from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class snake_case__ : """simple docstring""" def __init__( self , __lowercase , ) -> Any: """simple docstring""" a__ : Optional[Any] = parent a__ : Union[str, Any] = 1_3 a__ : Tuple = 7 a__ : Dict = 3_0 a__ : List[Any] = self.seq_length + self.mem_len a__ : Tuple = 1_5 a__ : Tuple = True a__ : Any = True a__ : str = 9_9 a__ : Tuple = [1_0, 5_0, 8_0] a__ : Tuple = 3_2 a__ : Tuple = 3_2 a__ : int = 4 a__ : str = 8 a__ : Any = 1_2_8 a__ : Union[str, Any] = 2 a__ : Any = 2 a__ : int = None a__ : List[str] = 1 a__ : Optional[Any] = 0 a__ : int = 3 a__ : int = self.vocab_size - 1 a__ : Optional[int] = 0.0_1 def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" a__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a__ : Any = None if self.use_labels: a__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a__ : Any = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def SCREAMING_SNAKE_CASE__( self ) -> int: """simple docstring""" random.seed(self.seed ) tf.random.set_seed(self.seed ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase , __lowercase ) -> Any: """simple docstring""" a__ : str = TFTransfoXLModel(__lowercase ) a__ , a__ : Optional[Any] = model(__lowercase ).to_tuple() a__ : Any = {"""input_ids""": input_ids_a, """mems""": mems_a} a__ , a__ : List[str] = model(__lowercase ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase , __lowercase ) -> Union[str, Any]: """simple docstring""" a__ : str = TFTransfoXLLMHeadModel(__lowercase ) a__ , a__ : List[Any] = model(__lowercase ).to_tuple() a__ : str = {"""input_ids""": input_ids_a, """labels""": lm_labels} a__ , a__ : List[str] = model(__lowercase ).to_tuple() a__ , a__ : Dict = model([input_ids_a, mems_a] ).to_tuple() a__ : Tuple = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} a__ , a__ : Tuple = model(__lowercase ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase , __lowercase ) -> str: """simple docstring""" a__ : List[str] = TFTransfoXLForSequenceClassification(__lowercase ) a__ : Optional[int] = model(__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" a__ : Optional[Any] = self.prepare_config_and_inputs() ((a__) , (a__) , (a__) , (a__)) : Union[str, Any] = config_and_inputs a__ : Dict = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class snake_case__ (A__ , A__ , unittest.TestCase ): """simple docstring""" __lowerCAmelCase :List[Any] = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) __lowerCAmelCase :Any = () if is_tf_available() else () __lowerCAmelCase :List[str] = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented __lowerCAmelCase :Optional[Any] = False __lowerCAmelCase :Tuple = False __lowerCAmelCase :int = False __lowerCAmelCase :Tuple = False def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> str: """simple docstring""" if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" a__ : Optional[int] = TFTransfoXLModelTester(self ) a__ : Dict = ConfigTester(self , config_class=__lowercase , d_embed=3_7 ) def SCREAMING_SNAKE_CASE__( self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__( self ) -> Any: """simple docstring""" self.model_tester.set_seed() a__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*__lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" self.model_tester.set_seed() a__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*__lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> List[str]: """simple docstring""" a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*__lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> Tuple: """simple docstring""" a__ , a__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() a__ : str = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: a__ : List[Any] = model_class(__lowercase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: a__ : List[str] = model.get_output_embeddings() assert isinstance(__lowercase , tf.keras.layers.Layer ) a__ : Any = model.get_bias() assert name is None else: a__ : Any = model.get_output_embeddings() assert x is None a__ : Dict = model.get_bias() assert name is None def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" pass @slow def SCREAMING_SNAKE_CASE__( self ) -> Optional[Any]: """simple docstring""" for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : str = TFTransfoXLModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) @unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" ) def SCREAMING_SNAKE_CASE__( self ) -> Dict: """simple docstring""" pass @require_tf class snake_case__ (unittest.TestCase ): """simple docstring""" @unittest.skip("""Skip test until #12651 is resolved.""" ) @slow def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]: """simple docstring""" a__ : int = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" ) # fmt: off a__ : Union[str, Any] = tf.convert_to_tensor([[3_3,1_2_9_7,2,1,1_0_0_9,4,1_1_0_9,1_1_7_3_9,4_7_6_2,3_5_8,5,2_5,2_4_5,2_2,1_7_0_6,1_7,2_0_0_9_8,5,3_2_1_5,2_1,3_7,1_1_1_0,3,1_3,1_0_4_1,4,2_4,6_0_3,4_9_0,2,7_1_4_7_7,2_0_0_9_8,1_0_4_4_4_7,2,2_0_9_6_1,1,2_6_0_4,4,1,3_2_9,3,6_2_2_4,8_3_1,1_6_0_0_2,2,8,6_0_3,7_8_9_6_7,2_9_5_4_6,2_3,8_0_3,2_0,2_5,4_1_6,5,8,2_3_2,4,2_7_7,6,1_8_5_5,4_6_0_1,3,2_9_5_4_6,5_4,8,3_6_0_9,5,5_7_2_1_1,4_9,4,1,2_7_7,1_8,8,1_7_5_5,1_5_6_9_1,3,3_4_1,2_5,4_1_6,6_9_3,4_2_5_7_3,7_1,1_7,4_0_1,9_4,3_1,1_7_9_1_9,2,2_9_5_4_6,7_8_7_3,1_8,1,4_3_5,2_3,1_1_0_1_1,7_5_5,5,5_1_6_7,3,7_9_8_3,9_8,8_4,2,2_9_5_4_6,3_2_6_7,8,3_6_0_9,4,1,4_8_6_5,1_0_7_5,2,6_0_8_7,7_1,6,3_4_6,8,5_8_5_4,3,2_9_5_4_6,8_2_4,1_4_0_0,1_8_6_8,2,1_9,1_6_0,2,3_1_1,8,5_4_9_6,2,2_0_9_2_0,1_7,2_5,1_5_0_9_7,3,2_4,2_4,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off a__ : Optional[int] = [3_3,1_2_9_7,2,1,1_0_0_9,4,1_1_0_9,1_1_7_3_9,4_7_6_2,3_5_8,5,2_5,2_4_5,2_2,1_7_0_6,1_7,2_0_0_9_8,5,3_2_1_5,2_1,3_7,1_1_1_0,3,1_3,1_0_4_1,4,2_4,6_0_3,4_9_0,2,7_1_4_7_7,2_0_0_9_8,1_0_4_4_4_7,2,2_0_9_6_1,1,2_6_0_4,4,1,3_2_9,3,6_2_2_4,8_3_1,1_6_0_0_2,2,8,6_0_3,7_8_9_6_7,2_9_5_4_6,2_3,8_0_3,2_0,2_5,4_1_6,5,8,2_3_2,4,2_7_7,6,1_8_5_5,4_6_0_1,3,2_9_5_4_6,5_4,8,3_6_0_9,5,5_7_2_1_1,4_9,4,1,2_7_7,1_8,8,1_7_5_5,1_5_6_9_1,3,3_4_1,2_5,4_1_6,6_9_3,4_2_5_7_3,7_1,1_7,4_0_1,9_4,3_1,1_7_9_1_9,2,2_9_5_4_6,7_8_7_3,1_8,1,4_3_5,2_3,1_1_0_1_1,7_5_5,5,5_1_6_7,3,7_9_8_3,9_8,8_4,2,2_9_5_4_6,3_2_6_7,8,3_6_0_9,4,1,4_8_6_5,1_0_7_5,2,6_0_8_7,7_1,6,3_4_6,8,5_8_5_4,3,2_9_5_4_6,8_2_4,1_4_0_0,1_8_6_8,2,1_9,1_6_0,2,3_1_1,8,5_4_9_6,2,2_0_9_2_0,1_7,2_5,1_5_0_9_7,3,2_4,2_4,0,3_3,1,1_8_5_7,2,1,1_0_0_9,4,1_1_0_9,1_1_7_3_9,4_7_6_2,3_5_8,5,2_5,2_4_5,2_8,1_1_1_0,3,1_3,1_0_4_1,4,2_4,6_0_3,4_9_0,2,7_1_4_7_7,2_0_0_9_8,1_0_4_4_4_7,2,2_0_9_6_1,1,2_6_0_4,4,1,3_2_9,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> a__ : Any = model.generate(__lowercase , max_length=2_0_0 , do_sample=__lowercase ) self.assertListEqual(output_ids[0].numpy().tolist() , __lowercase )
266
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowercase : List[str] =logging.get_logger(__name__) _lowercase : List[str] ={ "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } _lowercase : Optional[Any] ={ "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } _lowercase : int ={"facebook/blenderbot-3B": 128} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowerCAmelCase_ ( ) -> Optional[int]: """simple docstring""" a__ : List[str] = ( list(range(ord("""!""") , ord("""~""") + 1)) + list(range(ord("""¡""") , ord("""¬""") + 1)) + list(range(ord("""®""") , ord("""ÿ""") + 1)) ) a__ : Optional[Any] = bs[:] a__ : List[Any] = 0 for b in range(2**8): if b not in bs: bs.append(_lowercase) cs.append(2**8 + n) n += 1 a__ : Tuple = [chr(_lowercase) for n in cs] return dict(zip(_lowercase , _lowercase)) def lowerCAmelCase_ ( _lowercase : Tuple) -> List[str]: """simple docstring""" a__ : int = set() a__ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char)) a__ : Any = char return pairs class snake_case__ (A__ ): """simple docstring""" __lowerCAmelCase :str = VOCAB_FILES_NAMES __lowerCAmelCase :int = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase :int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase :Optional[Any] = ["input_ids", "attention_mask"] def __init__( self , __lowercase , __lowercase , __lowercase="replace" , __lowercase="<s>" , __lowercase="</s>" , __lowercase="</s>" , __lowercase="<s>" , __lowercase="<unk>" , __lowercase="<pad>" , __lowercase="<mask>" , __lowercase=False , **__lowercase , ) -> List[Any]: """simple docstring""" a__ : Any = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else bos_token a__ : Optional[Any] = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else eos_token a__ : Tuple = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else sep_token a__ : Any = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else cls_token a__ : List[Any] = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else unk_token a__ : str = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it a__ : List[str] = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token super().__init__( errors=__lowercase , bos_token=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , add_prefix_space=__lowercase , **__lowercase , ) with open(__lowercase , encoding="""utf-8""" ) as vocab_handle: a__ : str = json.load(__lowercase ) a__ : Dict = {v: k for k, v in self.encoder.items()} a__ : Any = errors # how to handle errors in decoding a__ : Union[str, Any] = bytes_to_unicode() a__ : Optional[Any] = {v: k for k, v in self.byte_encoder.items()} with open(__lowercase , encoding="""utf-8""" ) as merges_handle: a__ : List[Any] = merges_handle.read().split("""\n""" )[1:-1] a__ : Union[str, Any] = [tuple(merge.split() ) for merge in bpe_merges] a__ : str = dict(zip(__lowercase , range(len(__lowercase ) ) ) ) a__ : Optional[Any] = {} a__ : Optional[Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions a__ : Union[str, Any] = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def SCREAMING_SNAKE_CASE__( self ) -> Any: """simple docstring""" return len(self.encoder ) def SCREAMING_SNAKE_CASE__( self ) -> Dict: """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Tuple: """simple docstring""" if token in self.cache: return self.cache[token] a__ : List[Any] = tuple(__lowercase ) a__ : Optional[int] = get_pairs(__lowercase ) if not pairs: return token while True: a__ : List[Any] = min(__lowercase , key=lambda __lowercase : self.bpe_ranks.get(__lowercase , float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break a__ , a__ : Dict = bigram a__ : List[Any] = [] a__ : int = 0 while i < len(__lowercase ): try: a__ : str = word.index(__lowercase , __lowercase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) a__ : Optional[int] = j if word[i] == first and i < len(__lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 a__ : List[Any] = tuple(__lowercase ) a__ : Any = new_word if len(__lowercase ) == 1: break else: a__ : List[Any] = get_pairs(__lowercase ) a__ : Optional[Any] = """ """.join(__lowercase ) a__ : Tuple = word return word def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Union[str, Any]: """simple docstring""" a__ : int = [] for token in re.findall(self.pat , __lowercase ): a__ : List[Any] = """""".join( self.byte_encoder[b] for b in token.encode("""utf-8""" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(__lowercase ).split(""" """ ) ) return bpe_tokens def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> List[Any]: """simple docstring""" return self.encoder.get(__lowercase , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Tuple: """simple docstring""" return self.decoder.get(__lowercase ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> int: """simple docstring""" a__ : Union[str, Any] = """""".join(__lowercase ) a__ : Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode("""utf-8""" , errors=self.errors ) return text def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__lowercase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return a__ : int = os.path.join( __lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) a__ : Optional[Any] = os.path.join( __lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) with open(__lowercase , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowercase , ensure_ascii=__lowercase ) + """\n""" ) a__ : str = 0 with open(__lowercase , """w""" , encoding="""utf-8""" ) as writer: writer.write("""#version: 0.2\n""" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowercase : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' """ Please check that the tokenizer is not corrupted!""" ) a__ : Tuple = token_index writer.write(""" """.join(__lowercase ) + """\n""" ) index += 1 return vocab_file, merge_file def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None , __lowercase = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase ) if token_ids_a is None: return [1] + ([0] * len(__lowercase )) + [1] return [1] + ([0] * len(__lowercase )) + [1, 1] + ([0] * len(__lowercase )) + [1] def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None ) -> List[int]: """simple docstring""" a__ : Any = [self.sep_token_id] a__ : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase=False , **__lowercase ) -> int: """simple docstring""" a__ : Tuple = kwargs.pop("""add_prefix_space""" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(__lowercase ) > 0 and not text[0].isspace()): a__ : Union[str, Any] = """ """ + text return (text, kwargs) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None ) -> List[str]: """simple docstring""" return token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> List[int]: """simple docstring""" a__ : List[Any] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(""" """ + text ) else: # Generated responses should contain them already. inputs.append(__lowercase ) a__ : Optional[int] = """ """.join(__lowercase ) a__ : Any = self.encode(__lowercase ) if len(__lowercase ) > self.model_max_length: a__ : List[str] = input_ids[-self.model_max_length :] logger.warning(F'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
266
1
"""simple docstring""" import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib SCREAMING_SNAKE_CASE : List[Any] = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } SCREAMING_SNAKE_CASE : int = logging.WARNING def lowercase ( ) ->Tuple: """simple docstring""" __snake_case : Dict = os.getenv('''DATASETS_VERBOSITY''' , _snake_case ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option DATASETS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def lowercase ( ) ->str: """simple docstring""" return __name__.split('''.''' )[0] def lowercase ( ) ->logging.Logger: """simple docstring""" return logging.getLogger(_get_library_name() ) def lowercase ( ) ->None: """simple docstring""" __snake_case : Any = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def lowercase ( ) ->None: """simple docstring""" __snake_case : Optional[int] = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def lowercase ( _snake_case : Optional[str] = None ) ->logging.Logger: """simple docstring""" if name is None: __snake_case : Optional[int] = _get_library_name() return logging.getLogger(_snake_case ) def lowercase ( ) ->int: """simple docstring""" return _get_library_root_logger().getEffectiveLevel() def lowercase ( _snake_case : int ) ->None: """simple docstring""" _get_library_root_logger().setLevel(_snake_case ) def lowercase ( ) ->str: """simple docstring""" return set_verbosity(_snake_case ) def lowercase ( ) ->str: """simple docstring""" return set_verbosity(_snake_case ) def lowercase ( ) ->Any: """simple docstring""" return set_verbosity(_snake_case ) def lowercase ( ) ->Tuple: """simple docstring""" return set_verbosity(_snake_case ) def lowercase ( ) ->None: """simple docstring""" __snake_case : List[str] = False def lowercase ( ) ->None: """simple docstring""" __snake_case : Any = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class _UpperCAmelCase : '''simple docstring''' def __init__(self , *a_ , **a_ ): # pylint: disable=unused-argument '''simple docstring''' __snake_case : Dict = args[0] if args else None def __iter__(self ): '''simple docstring''' return iter(self._iterator ) def __getattr__(self , a_ ): '''simple docstring''' def empty_fn(*a_ , **a_ ): # pylint: disable=unused-argument return return empty_fn def __enter__(self ): '''simple docstring''' return self def __exit__(self , a_ , a_ , a_ ): '''simple docstring''' return SCREAMING_SNAKE_CASE : Optional[Any] = True class _UpperCAmelCase : '''simple docstring''' def __call__(self , *a_ , a_=False , **a_ ): '''simple docstring''' if _tqdm_active and not disable: return tqdm_lib.tqdm(*a_ , **a_ ) else: return EmptyTqdm(*a_ , **a_ ) def SCREAMING_SNAKE_CASE (self , *a_ , **a_ ): '''simple docstring''' __snake_case : int = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*a_ , **a_ ) def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' if _tqdm_active: return tqdm_lib.tqdm.get_lock() SCREAMING_SNAKE_CASE : Union[str, Any] = _tqdm_cls() def lowercase ( ) ->bool: """simple docstring""" global _tqdm_active return bool(_tqdm_active ) def lowercase ( ) ->Optional[Any]: """simple docstring""" global _tqdm_active __snake_case : Optional[Any] = True def lowercase ( ) ->Tuple: """simple docstring""" global _tqdm_active __snake_case : Optional[int] = False
102
"""simple docstring""" import re def a__ ( _SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase = re.compile(r"^(\+91[\-\s]?)?[0]?(91)?[789]\d{9}$" ) if match := re.search(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return match.string == phone return False if __name__ == "__main__": print(indian_phone_validator('''+918827897895'''))
153
0
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs lowercase__ = imread(R"""digital_image_processing/image_data/lena_small.jpg""") lowercase__ = cvtColor(img, COLOR_BGR2GRAY) def _snake_case ( ): _lowerCamelCase : List[str] = cn.convert_to_negative(lowercase__ ) # assert negative_img array for at least one True assert negative_img.any() def _snake_case ( ): with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(lowercase__ , 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def _snake_case ( ): _lowerCamelCase : int = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def _snake_case ( ): _lowerCamelCase : int = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() _lowerCamelCase : List[Any] = canny.canny(lowercase__ ) # assert canny array for at least one True assert canny_array.any() def _snake_case ( ): assert gg.gaussian_filter(lowercase__ , 5 , sigma=0.9 ).all() def _snake_case ( ): # laplace diagonals _lowerCamelCase : Any = array([[0.2_5, 0.5, 0.2_5], [0.5, -3, 0.5], [0.2_5, 0.5, 0.2_5]] ) _lowerCamelCase : int = conv.img_convolve(lowercase__ , lowercase__ ).astype(lowercase__ ) assert res.any() def _snake_case ( ): assert med.median_filter(lowercase__ , 3 ).any() def _snake_case ( ): _lowerCamelCase, _lowerCamelCase : List[Any] = sob.sobel_filter(lowercase__ ) assert grad.any() and theta.any() def _snake_case ( ): _lowerCamelCase : Dict = sp.make_sepia(lowercase__ , 20 ) assert sepia.all() def _snake_case ( lowercase__ = "digital_image_processing/image_data/lena_small.jpg" ): _lowerCamelCase : Any = bs.Burkes(imread(lowercase__ , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def _snake_case ( lowercase__ = "digital_image_processing/image_data/lena_small.jpg" , ): _lowerCamelCase : Optional[Any] = rs.NearestNeighbour(imread(lowercase__ , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def _snake_case ( ): _lowerCamelCase : str = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. _lowerCamelCase : List[str] = imread(lowercase__ , 0 ) # Test for get_neighbors_pixel function() return not None _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : int = 0 _lowerCamelCase : Union[str, Any] = image[x_coordinate][y_coordinate] _lowerCamelCase : Optional[int] = lbp.get_neighbors_pixel( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image _lowerCamelCase : Dict = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): _lowerCamelCase : Optional[Any] = lbp.local_binary_value(lowercase__ , lowercase__ , lowercase__ ) assert lbp_image.any()
12
"""simple docstring""" import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert.""" ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( """--original_config_file""", default=None, type=str, help="""The YAML config file corresponding to the original architecture.""", ) parser.add_argument( """--num_in_channels""", default=None, type=int, help="""The number of input channels. If `None` number of input channels will be automatically inferred.""", ) parser.add_argument( """--scheduler_type""", default="""pndm""", type=str, help="""Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']""", ) parser.add_argument( """--pipeline_type""", default=None, type=str, help=( """The pipeline type. One of 'FrozenOpenCLIPEmbedder', 'FrozenCLIPEmbedder', 'PaintByExample'""" """. If `None` pipeline will be automatically inferred.""" ), ) parser.add_argument( """--image_size""", default=None, type=int, help=( """The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2""" """ Base. Use 768 for Stable Diffusion v2.""" ), ) parser.add_argument( """--prediction_type""", default=None, type=str, help=( """The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable""" """ Diffusion v2 Base. Use 'v_prediction' for Stable Diffusion v2.""" ), ) parser.add_argument( """--extract_ema""", action="""store_true""", help=( """Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights""" """ or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield""" """ higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.""" ), ) parser.add_argument( """--upcast_attention""", action="""store_true""", help=( """Whether the attention computation should always be upcasted. This is necessary when running stable""" """ diffusion 2.1.""" ), ) parser.add_argument( """--from_safetensors""", action="""store_true""", help="""If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.""", ) parser.add_argument( """--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""") parser.add_argument( """--stable_unclip""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP model. One of 'txt2img' or 'img2img'.""", ) parser.add_argument( """--stable_unclip_prior""", type=str, default=None, required=False, help="""Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.""", ) parser.add_argument( """--clip_stats_path""", type=str, help="""Path to the clip stats file. Only required if the stable unclip model's config specifies `model.params.noise_aug_config.params.clip_stats_path`.""", required=False, ) parser.add_argument( """--controlnet""", action="""store_true""", default=None, help="""Set flag if this is a controlnet checkpoint.""" ) parser.add_argument("""--half""", action="""store_true""", help="""Save weights in half precision.""") parser.add_argument( """--vae_path""", type=str, default=None, required=False, help="""Set to a path, hub id to an already converted vae to not convert it again.""", ) lowercase__ = parser.parse_args() lowercase__ = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
12
1
import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) _a = logging.getLogger(__name__) if __name__ == "__main__": _a = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=30522, type=int) _a = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: _a = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') _a = Counter() for tk_ids in data: counter.update(tk_ids) _a = [0] * args.vocab_size for k, v in counter.items(): _a = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
39
import inspect import unittest import numpy as np from transformers import BeitConfig from transformers.testing_utils import require_flax, require_vision, slow from transformers.utils import cached_property, is_flax_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor if is_flax_available(): import jax from transformers import FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel if is_vision_available(): from PIL import Image from transformers import BeitImageProcessor class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self : Tuple , A : str , A : List[str]=1_0_0 , A : List[str]=1_3 , A : Union[str, Any]=3_0 , A : Union[str, Any]=2 , A : List[Any]=3 , A : Any=True , A : Tuple=True , A : Tuple=3_2 , A : str=5 , A : Any=4 , A : List[str]=3_7 , A : Tuple="gelu" , A : Union[str, Any]=0.1 , A : Tuple=0.1 , A : Union[str, Any]=1_0 , A : List[str]=0.02 , A : Dict=3 , ) ->int: lowerCamelCase__ : int = parent lowerCamelCase__ : Tuple = vocab_size lowerCamelCase__ : Dict = batch_size lowerCamelCase__ : str = image_size lowerCamelCase__ : Any = patch_size lowerCamelCase__ : str = num_channels lowerCamelCase__ : List[Any] = is_training lowerCamelCase__ : Tuple = use_labels lowerCamelCase__ : Dict = hidden_size lowerCamelCase__ : Optional[int] = num_hidden_layers lowerCamelCase__ : str = num_attention_heads lowerCamelCase__ : Tuple = intermediate_size lowerCamelCase__ : str = hidden_act lowerCamelCase__ : str = hidden_dropout_prob lowerCamelCase__ : Any = attention_probs_dropout_prob lowerCamelCase__ : Tuple = type_sequence_label_size lowerCamelCase__ : List[Any] = initializer_range # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCamelCase__ : List[Any] = (image_size // patch_size) ** 2 lowerCamelCase__ : Tuple = num_patches + 1 def __lowerCamelCase ( self : Optional[int] ) ->List[Any]: lowerCamelCase__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : List[str] = None if self.use_labels: lowerCamelCase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Any = BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , ) return config, pixel_values, labels def __lowerCamelCase ( self : List[Any] , A : str , A : List[Any] , A : Any ) ->Tuple: lowerCamelCase__ : Union[str, Any] = FlaxBeitModel(config=A ) lowerCamelCase__ : int = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self : Union[str, Any] , A : List[str] , A : Optional[int] , A : Dict ) ->Optional[int]: lowerCamelCase__ : Dict = FlaxBeitForMaskedImageModeling(config=A ) lowerCamelCase__ : Optional[Any] = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def __lowerCamelCase ( self : Union[str, Any] , A : Optional[Any] , A : Optional[int] , A : List[Any] ) ->Any: lowerCamelCase__ : Tuple = self.type_sequence_label_size lowerCamelCase__ : Tuple = FlaxBeitForImageClassification(config=A ) lowerCamelCase__ : Any = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase__ : Union[str, Any] = 1 lowerCamelCase__ : Optional[int] = FlaxBeitForImageClassification(A ) lowerCamelCase__ : str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : List[str] = model(A ) def __lowerCamelCase ( self : Optional[Any] ) ->List[str]: lowerCamelCase__ : List[Any] = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : str = config_and_inputs lowerCamelCase__ : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ,unittest.TestCase ): _UpperCAmelCase : int = ( (FlaxBeitModel, FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling) if is_flax_available() else () ) def __lowerCamelCase ( self : str ) ->None: lowerCamelCase__ : Dict = FlaxBeitModelTester(self ) lowerCamelCase__ : Union[str, Any] = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=3_7 ) def __lowerCamelCase ( self : List[str] ) ->Any: self.config_tester.run_common_tests() def __lowerCamelCase ( self : str ) ->List[Any]: lowerCamelCase__ , lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : List[str] = model_class(A ) lowerCamelCase__ : int = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : str = [*signature.parameters.keys()] lowerCamelCase__ : Union[str, Any] = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A ) def __lowerCamelCase ( self : int ) ->List[Any]: lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): lowerCamelCase__ : Union[str, Any] = self._prepare_for_class(A , A ) lowerCamelCase__ : Optional[int] = model_class(A ) @jax.jit def model_jitted(A : str , **A : Optional[int] ): return model(pixel_values=A , **A ) with self.subTest('''JIT Enabled''' ): lowerCamelCase__ : str = model_jitted(**A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): lowerCamelCase__ : Dict = model_jitted(**A ).to_tuple() self.assertEqual(len(A ) , len(A ) ) for jitted_output, output in zip(A , A ): self.assertEqual(jitted_output.shape , output.shape ) def __lowerCamelCase ( self : Tuple ) ->Tuple: lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def __lowerCamelCase ( self : Dict ) ->Any: lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A ) def __lowerCamelCase ( self : Any ) ->str: lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) @slow def __lowerCamelCase ( self : Optional[int] ) ->Tuple: for model_class_name in self.all_model_classes: lowerCamelCase__ : List[str] = model_class_name.from_pretrained('''microsoft/beit-base-patch16-224''' ) lowerCamelCase__ : Union[str, Any] = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(A ) def _a ( ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__ : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_vision @require_flax class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self : List[Any] ) ->Dict: return BeitImageProcessor.from_pretrained('''microsoft/beit-base-patch16-224''' ) if is_vision_available() else None @slow def __lowerCamelCase ( self : str ) ->str: lowerCamelCase__ : List[str] = FlaxBeitForMaskedImageModeling.from_pretrained('''microsoft/beit-base-patch16-224-pt22k''' ) lowerCamelCase__ : Optional[Any] = self.default_image_processor lowerCamelCase__ : str = prepare_img() lowerCamelCase__ : Optional[int] = image_processor(images=A , return_tensors='''np''' ).pixel_values # prepare bool_masked_pos lowerCamelCase__ : List[str] = np.ones((1, 1_9_6) , dtype=A ) # forward pass lowerCamelCase__ : Optional[int] = model(pixel_values=A , bool_masked_pos=A ) lowerCamelCase__ : Optional[Any] = outputs.logits # verify the logits lowerCamelCase__ : str = (1, 1_9_6, 8_1_9_2) self.assertEqual(logits.shape , A ) lowerCamelCase__ : Any = np.array( [[-3.24_37, 0.50_72, -13.91_74], [-3.24_56, 0.49_48, -13.94_01], [-3.20_33, 0.51_21, -13.85_50]] ) self.assertTrue(np.allclose(logits[bool_masked_pos][:3, :3] , A , atol=1e-2 ) ) @slow def __lowerCamelCase ( self : Dict ) ->List[Any]: lowerCamelCase__ : Any = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-base-patch16-224''' ) lowerCamelCase__ : Dict = self.default_image_processor lowerCamelCase__ : List[str] = prepare_img() lowerCamelCase__ : int = image_processor(images=A , return_tensors='''np''' ) # forward pass lowerCamelCase__ : List[str] = model(**A ) lowerCamelCase__ : Optional[int] = outputs.logits # verify the logits lowerCamelCase__ : Union[str, Any] = (1, 1_0_0_0) self.assertEqual(logits.shape , A ) lowerCamelCase__ : Any = np.array([-1.23_85, -1.09_87, -1.01_08] ) self.assertTrue(np.allclose(logits[0, :3] , A , atol=1e-4 ) ) lowerCamelCase__ : Union[str, Any] = 2_8_1 self.assertEqual(logits.argmax(-1 ).item() , A ) @slow def __lowerCamelCase ( self : int ) ->Tuple: lowerCamelCase__ : List[Any] = FlaxBeitForImageClassification.from_pretrained('''microsoft/beit-large-patch16-224-pt22k-ft22k''' ) lowerCamelCase__ : Any = self.default_image_processor lowerCamelCase__ : Union[str, Any] = prepare_img() lowerCamelCase__ : Optional[Any] = image_processor(images=A , return_tensors='''np''' ) # forward pass lowerCamelCase__ : Union[str, Any] = model(**A ) lowerCamelCase__ : Any = outputs.logits # verify the logits lowerCamelCase__ : List[str] = (1, 2_1_8_4_1) self.assertEqual(logits.shape , A ) lowerCamelCase__ : str = np.array([1.68_81, -0.27_87, 0.59_01] ) self.assertTrue(np.allclose(logits[0, :3] , A , atol=1e-4 ) ) lowerCamelCase__ : List[Any] = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item() , A )
142
0
from statistics import mean import numpy as np def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _snake_case = 0 # Number of processes finished _snake_case = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. _snake_case = [0] * no_of_process # List to include calculation results _snake_case = [0] * no_of_process # Sort by arrival time. _snake_case = [burst_time[i] for i in np.argsort(_UpperCamelCase )] _snake_case = [process_name[i] for i in np.argsort(_UpperCamelCase )] arrival_time.sort() while no_of_process > finished_process_count: _snake_case = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: _snake_case = arrival_time[i] _snake_case = 0 # Index showing the location of the process being performed _snake_case = 0 # Saves the current response ratio. _snake_case = 0 for i in range(0 , _UpperCamelCase ): if finished_process[i] == 0 and arrival_time[i] <= current_time: _snake_case = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: _snake_case = temp _snake_case = i # Calculate the turn around time _snake_case = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. _snake_case = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" _snake_case = [0] * no_of_process for i in range(0 , _UpperCamelCase ): _snake_case = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": __A = 5 __A = ['''A''', '''B''', '''C''', '''D''', '''E'''] __A = [1, 2, 3, 4, 5] __A = [1, 2, 3, 4, 5] __A = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) __A = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print('''Process name \tArrival time \tBurst time \tTurn around time \tWaiting time''') for i in range(0, no_of_process): print( f'''{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t''' f'''{turn_around_time[i]}\t\t\t{waiting_time[i]}''' ) print(f'''average waiting time : {mean(waiting_time):.5f}''') print(f'''average turn around time : {mean(turn_around_time):.5f}''')
356
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowercase_ : def __init__( self : Optional[Any] , A__ : str , A__ : Any=13 , A__ : str=[30, 30] , A__ : int=2 , A__ : Dict=3 , A__ : str=True , A__ : Union[str, Any]=True , A__ : Any=32 , A__ : int=5 , A__ : str=4 , A__ : List[Any]=37 , A__ : Union[str, Any]="gelu" , A__ : Dict=0.1 , A__ : Dict=0.1 , A__ : Tuple=10 , A__ : Dict=0.02 , A__ : Any=3 , A__ : Union[str, Any]=None , A__ : Optional[Any]=8 , A__ : Dict=10 , ) -> Optional[Any]: _snake_case = parent _snake_case = batch_size _snake_case = image_size _snake_case = patch_size _snake_case = num_channels _snake_case = is_training _snake_case = use_labels _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = num_labels _snake_case = scope _snake_case = n_targets _snake_case = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens _snake_case = (image_size[1] // patch_size) * (image_size[0] // patch_size) _snake_case = num_patches + 1 + self.num_detection_tokens def UpperCamelCase_ ( self : List[str] ) -> str: _snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) _snake_case = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) _snake_case = [] for i in range(self.batch_size ): _snake_case = {} _snake_case = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=A__ ) _snake_case = torch.rand(self.n_targets , 4 , device=A__ ) labels.append(A__ ) _snake_case = self.get_config() return config, pixel_values, labels def UpperCamelCase_ ( self : Dict ) -> List[Any]: return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A__ , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def UpperCamelCase_ ( self : Any , A__ : Any , A__ : str , A__ : Tuple ) -> Dict: _snake_case = YolosModel(config=A__ ) model.to(A__ ) model.eval() _snake_case = model(A__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def UpperCamelCase_ ( self : Dict , A__ : List[str] , A__ : Optional[Any] , A__ : str ) -> int: _snake_case = YolosForObjectDetection(A__ ) model.to(A__ ) model.eval() _snake_case = model(pixel_values=A__ ) _snake_case = model(A__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) _snake_case = model(pixel_values=A__ , labels=A__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def UpperCamelCase_ ( self : Optional[Any] ) -> Tuple: _snake_case = self.prepare_config_and_inputs() _snake_case, _snake_case, _snake_case = config_and_inputs _snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase_ ( __lowercase , __lowercase , unittest.TestCase ): UpperCamelCase_ : Optional[int] = (YolosModel, YolosForObjectDetection) if is_torch_available() else () UpperCamelCase_ : int = ( {"feature-extraction": YolosModel, "object-detection": YolosForObjectDetection} if is_torch_available() else {} ) UpperCamelCase_ : List[str] = False UpperCamelCase_ : List[Any] = False UpperCamelCase_ : List[Any] = False UpperCamelCase_ : Tuple = False def UpperCamelCase_ ( self : Dict , A__ : List[Any] , A__ : List[str] , A__ : Optional[int]=False ) -> Optional[int]: _snake_case = super()._prepare_for_class(A__ , A__ , return_labels=A__ ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": _snake_case = [] for i in range(self.model_tester.batch_size ): _snake_case = {} _snake_case = torch.ones( size=(self.model_tester.n_targets,) , device=A__ , dtype=torch.long ) _snake_case = torch.ones( self.model_tester.n_targets , 4 , device=A__ , dtype=torch.float ) labels.append(A__ ) _snake_case = labels return inputs_dict def UpperCamelCase_ ( self : List[Any] ) -> List[str]: _snake_case = YolosModelTester(self ) _snake_case = ConfigTester(self , config_class=A__ , has_text_modality=A__ , hidden_size=37 ) def UpperCamelCase_ ( self : Optional[int] ) -> Dict: self.config_tester.run_common_tests() def UpperCamelCase_ ( self : List[Any] ) -> str: # YOLOS does not use inputs_embeds pass def UpperCamelCase_ ( self : Union[str, Any] ) -> List[str]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(A__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _snake_case = model.get_output_embeddings() self.assertTrue(x is None or isinstance(A__ , nn.Linear ) ) def UpperCamelCase_ ( self : List[Any] ) -> Optional[Any]: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = model_class(A__ ) _snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case = [*signature.parameters.keys()] _snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A__ ) def UpperCamelCase_ ( self : List[str] ) -> List[Any]: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A__ ) def UpperCamelCase_ ( self : Union[str, Any] ) -> int: _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() _snake_case = True # in YOLOS, the seq_len is different _snake_case = self.model_tester.expected_seq_len for model_class in self.all_model_classes: _snake_case = True _snake_case = False _snake_case = True _snake_case = model_class(A__ ) model.to(A__ ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(A__ , A__ ) ) _snake_case = outputs.attentions self.assertEqual(len(A__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _snake_case = True _snake_case = model_class(A__ ) model.to(A__ ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(A__ , A__ ) ) _snake_case = outputs.attentions self.assertEqual(len(A__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) _snake_case = len(A__ ) # Check attention is always last and order is fine _snake_case = True _snake_case = True _snake_case = model_class(A__ ) model.to(A__ ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(A__ , A__ ) ) _snake_case = 1 self.assertEqual(out_len + added_hidden_states , len(A__ ) ) _snake_case = outputs.attentions self.assertEqual(len(A__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def UpperCamelCase_ ( self : int ) -> Dict: def check_hidden_states_output(A__ : Optional[int] , A__ : Union[str, Any] , A__ : int ): _snake_case = model_class(A__ ) model.to(A__ ) model.eval() with torch.no_grad(): _snake_case = model(**self._prepare_for_class(A__ , A__ ) ) _snake_case = outputs.hidden_states _snake_case = getattr( self.model_tester , '''expected_num_hidden_layers''' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(A__ ) , A__ ) # YOLOS has a different seq_length _snake_case = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) _snake_case, _snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case = True check_hidden_states_output(A__ , A__ , A__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _snake_case = True check_hidden_states_output(A__ , A__ , A__ ) def UpperCamelCase_ ( self : Optional[Any] ) -> str: _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*A__ ) @slow def UpperCamelCase_ ( self : List[str] ) -> Dict: for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = YolosModel.from_pretrained(A__ ) self.assertIsNotNone(A__ ) def snake_case_() -> str: """simple docstring""" _snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowercase_ ( unittest.TestCase ): @cached_property def UpperCamelCase_ ( self : Any ) -> str: return AutoImageProcessor.from_pretrained('''hustvl/yolos-small''' ) if is_vision_available() else None @slow def UpperCamelCase_ ( self : Tuple ) -> str: _snake_case = YolosForObjectDetection.from_pretrained('''hustvl/yolos-small''' ).to(A__ ) _snake_case = self.default_image_processor _snake_case = prepare_img() _snake_case = image_processor(images=A__ , return_tensors='''pt''' ).to(A__ ) # forward pass with torch.no_grad(): _snake_case = model(inputs.pixel_values ) # verify outputs _snake_case = torch.Size((1, 100, 92) ) self.assertEqual(outputs.logits.shape , A__ ) _snake_case = torch.tensor( [[-24.0248, -10.3024, -14.8290], [-42.0392, -16.8200, -27.4334], [-27.2743, -11.8154, -18.7148]] , device=A__ , ) _snake_case = torch.tensor( [[0.2559, 0.5455, 0.4706], [0.2989, 0.7279, 0.1875], [0.7732, 0.4017, 0.4462]] , device=A__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , A__ , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , A__ , atol=1e-4 ) ) # verify postprocessing _snake_case = image_processor.post_process_object_detection( A__ , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] _snake_case = torch.tensor([0.9994, 0.9790, 0.9964, 0.9972, 0.9861] ).to(A__ ) _snake_case = [75, 75, 17, 63, 17] _snake_case = torch.tensor([335.0609, 79.3848, 375.4216, 187.2495] ).to(A__ ) self.assertEqual(len(results['''scores'''] ) , 5 ) self.assertTrue(torch.allclose(results['''scores'''] , A__ , atol=1e-4 ) ) self.assertSequenceEqual(results['''labels'''].tolist() , A__ ) self.assertTrue(torch.allclose(results['''boxes'''][0, :] , A__ ) )
278
0
import logging from transformers import PretrainedConfig a =logging.getLogger(__name__) a ={ """bertabs-finetuned-cnndm""": """https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json""", } class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : List[Any] = '''bertabs''' def __init__( self : Tuple ,SCREAMING_SNAKE_CASE__ : Dict=3_0_5_2_2 ,SCREAMING_SNAKE_CASE__ : List[str]=5_1_2 ,SCREAMING_SNAKE_CASE__ : int=6 ,SCREAMING_SNAKE_CASE__ : Tuple=5_1_2 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=8 ,SCREAMING_SNAKE_CASE__ : Dict=5_1_2 ,SCREAMING_SNAKE_CASE__ : Union[str, Any]=0.2 ,SCREAMING_SNAKE_CASE__ : List[Any]=6 ,SCREAMING_SNAKE_CASE__ : List[Any]=7_6_8 ,SCREAMING_SNAKE_CASE__ : str=8 ,SCREAMING_SNAKE_CASE__ : List[Any]=2_0_4_8 ,SCREAMING_SNAKE_CASE__ : List[Any]=0.2 ,**SCREAMING_SNAKE_CASE__ : str ,): super().__init__(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[int] = vocab_size __lowerCamelCase : List[str] = max_pos __lowerCamelCase : str = enc_layers __lowerCamelCase : Dict = enc_hidden_size __lowerCamelCase : Tuple = enc_heads __lowerCamelCase : Any = enc_ff_size __lowerCamelCase : Optional[int] = enc_dropout __lowerCamelCase : str = dec_layers __lowerCamelCase : List[Any] = dec_hidden_size __lowerCamelCase : Optional[int] = dec_heads __lowerCamelCase : int = dec_ff_size __lowerCamelCase : Union[str, Any] = dec_dropout
73
UpperCAmelCase__ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase__ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCAmelCase_ ( ) -> None: """simple docstring""" _lowercase ='''Morse code here!''' print(__snake_case ) _lowercase =encrypt(__snake_case ) print(__snake_case ) _lowercase =decrypt(__snake_case ) print(__snake_case ) if __name__ == "__main__": main()
5
0
"""simple docstring""" from math import isclose, sqrt def snake_case (A_ :float , A_ :float , A_ :float ): '''simple docstring''' a : Dict = point_y / 4 / point_x a : Optional[Any] = 2 * normal_gradient / (1 + normal_gradient * normal_gradient) a : Dict = (1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) a : List[Any] = (sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 a : Optional[Any] = outgoing_gradient**2 + 4 a : List[Any] = 2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) a : List[Any] = (point_y - outgoing_gradient * point_x) ** 2 - 1_0_0 a : Tuple = ( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) a : Union[str, Any] = ( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point a : List[Any] = x_minus if isclose(A_ , A_ ) else x_plus a : Optional[Any] = point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def snake_case (A_ :float = 1.4 , A_ :float = -9.6 ): '''simple docstring''' a : int = 0 a : float = first_x_coord a : float = first_y_coord a : float = (10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): a : Union[str, Any] = next_point(A_ , A_ , A_ ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f'''{solution() = }''')
354
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings _UpperCamelCase : Dict = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class snake_case ( UpperCAmelCase ): __magic_name__ = field(default=UpperCAmelCase , metadata={'''help''': '''Whether to use SortishSampler or not.'''} ) __magic_name__ = field( default=UpperCAmelCase , metadata={'''help''': '''Whether to use generate to calculate generative metrics (ROUGE, BLEU).'''} ) __magic_name__ = field( default=UpperCAmelCase , metadata={ '''help''': ( '''The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `max_length` value of the model configuration.''' ) } , ) __magic_name__ = field( default=UpperCAmelCase , metadata={ '''help''': ( '''The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ''' '''to the `num_beams` value of the model configuration.''' ) } , ) __magic_name__ = field( default=UpperCAmelCase , metadata={ '''help''': '''Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.''' } , ) def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' a : List[Any] = super().to_dict() for k, v in d.items(): if isinstance(A , A ): a : str = v.to_dict() return d
186
0
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class snake_case : '''simple docstring''' def __init__( self : int, _lowerCamelCase : int, _lowerCamelCase : str=None, _lowerCamelCase : str=None, _lowerCamelCase : Tuple=None, _lowerCamelCase : int="resnet50", _lowerCamelCase : Tuple=3, _lowerCamelCase : List[str]=32, _lowerCamelCase : int=3, _lowerCamelCase : Optional[int]=True, _lowerCamelCase : Tuple=True, ): '''simple docstring''' __A = parent __A = out_indices if out_indices is not None else [4] __A = stage_names __A = out_features __A = backbone __A = batch_size __A = image_size __A = num_channels __A = use_pretrained_backbone __A = is_training def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = self.get_config() return config, pixel_values def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' return TimmBackboneConfig( image_size=self.image_size, num_channels=self.num_channels, out_features=self.out_features, out_indices=self.out_indices, stage_names=self.stage_names, use_pretrained_backbone=self.use_pretrained_backbone, backbone=self.backbone, ) def _SCREAMING_SNAKE_CASE ( self : Any, _lowerCamelCase : Any, _lowerCamelCase : Optional[Any] ): '''simple docstring''' __A = TimmBackbone(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() with torch.no_grad(): __A = model(_lowerCamelCase ) self.parent.assertEqual( result.feature_map[-1].shape, (self.batch_size, model.channels[-1], 14, 14), ) def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' __A = self.prepare_config_and_inputs() __A , __A = config_and_inputs __A = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch @require_timm class snake_case ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' A_ : List[str] = (TimmBackbone,) if is_torch_available() else () A_ : Tuple = {"feature-extraction": TimmBackbone} if is_torch_available() else {} A_ : int = False A_ : Tuple = False A_ : Optional[int] = False A_ : int = False def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' __A = TimmBackboneModelTester(self ) __A = ConfigTester(self, config_class=_lowerCamelCase, has_text_modality=_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' __A = '''resnet18''' __A = '''microsoft/resnet-18''' __A = AutoBackbone.from_pretrained(_lowerCamelCase, use_timm_backbone=_lowerCamelCase ) __A = AutoBackbone.from_pretrained(_lowerCamelCase ) self.assertEqual(len(timm_model.out_features ), len(transformers_model.out_features ) ) self.assertEqual(len(timm_model.stage_names ), len(transformers_model.stage_names ) ) self.assertEqual(timm_model.channels, transformers_model.channels ) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices, (-1,) ) self.assertEqual(transformers_model.out_indices, [len(timm_model.stage_names ) - 1] ) __A = AutoBackbone.from_pretrained(_lowerCamelCase, use_timm_backbone=_lowerCamelCase, out_indices=[1, 2, 3] ) __A = AutoBackbone.from_pretrained(_lowerCamelCase, out_indices=[1, 2, 3] ) self.assertEqual(timm_model.out_indices, transformers_model.out_indices ) self.assertEqual(len(timm_model.out_features ), len(transformers_model.out_features ) ) self.assertEqual(timm_model.channels, transformers_model.channels ) @unittest.skip('''TimmBackbone doesn\'t support feed forward chunking''' ) def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' pass @unittest.skip('''TimmBackbone doesn\'t have num_hidden_layers attribute''' ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' pass @unittest.skip('''TimmBackbone initialization is managed on the timm side''' ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def _SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' pass @unittest.skip('''TimmBackbone models doesn\'t have inputs_embeds''' ) def _SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' pass @unittest.skip('''TimmBackbone model cannot be created without specifying a backbone checkpoint''' ) def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' pass @unittest.skip('''model weights aren\'t tied in TimmBackbone.''' ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): '''simple docstring''' pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip('''Only checkpoints on timm can be loaded into TimmBackbone''' ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip('''TimmBackbone doesn\'t have hidden size info in its configuration.''' ) def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' pass @unittest.skip('''TimmBackbone doesn\'t support output_attentions.''' ) def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' pass @unittest.skip('''Safetensors is not supported by timm.''' ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(_lowerCamelCase ) __A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __A = [*signature.parameters.keys()] __A = ['''pixel_values'''] self.assertListEqual(arg_names[:1], _lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' __A , __A = self.model_tester.prepare_config_and_inputs_for_common() __A = True __A = self.has_attentions # no need to test all models as different heads yield the same functionality __A = self.all_model_classes[0] __A = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) __A = self._prepare_for_class(_lowerCamelCase, _lowerCamelCase ) __A = model(**_lowerCamelCase ) __A = outputs[0][-1] # Encoder-/Decoder-only models __A = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: __A = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=_lowerCamelCase ) self.assertIsNotNone(hidden_states.grad ) if self.has_attentions: self.assertIsNotNone(attentions.grad ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' __A , __A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __A = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __A = model(**_lowerCamelCase ) self.assertEqual(len(result.feature_maps ), len(config.out_indices ) ) self.assertEqual(len(model.channels ), len(config.out_indices ) ) # Check output of last stage is taken if out_features=None, out_indices=None __A = copy.deepcopy(_lowerCamelCase ) __A = None __A = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __A = model(**_lowerCamelCase ) self.assertEqual(len(result.feature_maps ), 1 ) self.assertEqual(len(model.channels ), 1 ) # Check backbone can be initialized with fresh weights __A = copy.deepcopy(_lowerCamelCase ) __A = False __A = model_class(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __A = model(**_lowerCamelCase )
266
"""simple docstring""" from __future__ import annotations class snake_case : '''simple docstring''' def __init__( self : int, _lowerCamelCase : List[Any]=None ): '''simple docstring''' __A = data __A = None def __repr__( self : Union[str, Any] ): '''simple docstring''' __A = [] __A = self while temp: string_rep.append(f'{temp.data}' ) __A = temp.next return "->".join(_lowerCamelCase ) def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" if not elements_list: raise Exception('''The Elements List is empty''' ) __A = __A = Node(elements_list[0] ) for i in range(1 , len(__UpperCamelCase ) ): __A = Node(elements_list[i] ) __A = current.next return head def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" if head_node is not None and isinstance(__UpperCamelCase , __UpperCamelCase ): print_reverse(head_node.next ) print(head_node.data ) def lowerCAmelCase ( ): """simple docstring""" from doctest import testmod testmod() __A = make_linked_list([1_4, 5_2, 1_4, 1_2, 4_3] ) print('''Linked List:''' ) print(__UpperCamelCase ) print('''Elements in Reverse:''' ) print_reverse(__UpperCamelCase ) if __name__ == "__main__": main()
266
1
from __future__ import annotations def A__ ( lowerCamelCase , lowerCamelCase ) -> int: UpperCamelCase_: List[str] = position UpperCamelCase_: Tuple = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] UpperCamelCase_: Tuple = [] for position in positions: UpperCamelCase_: Dict = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(lowerCamelCase ) return permissible_positions def A__ ( lowerCamelCase ) -> List[str]: return not any(elem == 0 for row in board for elem in row ) def A__ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> Optional[int]: if is_complete(lowerCamelCase ): return True for position in get_valid_pos(lowerCamelCase , len(lowerCamelCase ) ): UpperCamelCase_: str = position if board[y][x] == 0: UpperCamelCase_: Optional[Any] = curr + 1 if open_knight_tour_helper(lowerCamelCase , lowerCamelCase , curr + 1 ): return True UpperCamelCase_: List[str] = 0 return False def A__ ( lowerCamelCase ) -> Optional[int]: UpperCamelCase_: Any = [[0 for i in range(lowerCamelCase )] for j in range(lowerCamelCase )] for i in range(lowerCamelCase ): for j in range(lowerCamelCase ): UpperCamelCase_: int = 1 if open_knight_tour_helper(lowerCamelCase , (i, j) , 1 ): return board UpperCamelCase_: Optional[int] = 0 UpperCamelCase_: str = F'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
356
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline lowerCamelCase_ : Optional[Any] = datasets.utils.logging.get_logger(__name__) @dataclass class _UpperCamelCase ( datasets.BuilderConfig ): '''simple docstring''' __UpperCamelCase : Optional[datasets.Features] = None __UpperCamelCase : str = "utf-8" __UpperCamelCase : Optional[str] = None __UpperCamelCase : Optional[str] = None __UpperCamelCase : bool = True # deprecated __UpperCamelCase : Optional[int] = None # deprecated __UpperCamelCase : int = 10 << 20 # 10MB __UpperCamelCase : Optional[bool] = None class _UpperCamelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' __UpperCamelCase : Tuple = JsonConfig def lowerCAmelCase__ ( self : int ): if self.config.block_size is not None: logger.warning("""The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead""" ) UpperCamelCase_: List[str] = self.config.block_size if self.config.use_threads is not True: logger.warning( """The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore.""" ) if self.config.newlines_in_values is not None: raise ValueError("""The JSON loader parameter `newlines_in_values` is no longer supported""" ) return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase__ ( self : Dict , snake_case_ : str ): if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) UpperCamelCase_: Dict = dl_manager.download_and_extract(self.config.data_files ) if isinstance(snake_case_ , (str, list, tuple) ): UpperCamelCase_: List[Any] = data_files if isinstance(snake_case_ , snake_case_ ): UpperCamelCase_: str = [files] UpperCamelCase_: Any = [dl_manager.iter_files(snake_case_ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files} )] UpperCamelCase_: Dict = [] for split_name, files in data_files.items(): if isinstance(snake_case_ , snake_case_ ): UpperCamelCase_: Tuple = [files] UpperCamelCase_: Optional[int] = [dl_manager.iter_files(snake_case_ ) for file in files] splits.append(datasets.SplitGenerator(name=snake_case_ , gen_kwargs={"""files""": files} ) ) return splits def lowerCAmelCase__ ( self : str , snake_case_ : pa.Table ): if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): UpperCamelCase_: Union[str, Any] = self.config.features.arrow_schema.field(snake_case_ ).type UpperCamelCase_: Tuple = pa_table.append_column(snake_case_ , pa.array([None] * len(snake_case_ ) , type=snake_case_ ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example UpperCamelCase_: int = table_cast(snake_case_ , self.config.features.arrow_schema ) return pa_table def lowerCAmelCase__ ( self : Dict , snake_case_ : Optional[Any] ): for file_idx, file in enumerate(itertools.chain.from_iterable(snake_case_ ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(snake_case_ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: UpperCamelCase_: Dict = json.load(snake_case_ ) # We keep only the field we are interested in UpperCamelCase_: Optional[int] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(snake_case_ , (list, tuple) ): UpperCamelCase_: Optional[int] = set().union(*[row.keys() for row in dataset] ) UpperCamelCase_: int = {col: [row.get(snake_case_ ) for row in dataset] for col in keys} else: UpperCamelCase_: Optional[int] = dataset UpperCamelCase_: List[str] = pa.Table.from_pydict(snake_case_ ) yield file_idx, self._cast_table(snake_case_ ) # If the file has one json object per line else: with open(snake_case_ , """rb""" ) as f: UpperCamelCase_: Optional[int] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small UpperCamelCase_: Optional[int] = max(self.config.chunksize // 32 , 16 << 10 ) UpperCamelCase_: Tuple = ( self.config.encoding_errors if self.config.encoding_errors is not None else """strict""" ) while True: UpperCamelCase_: int = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(snake_case_ ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": UpperCamelCase_: Tuple = batch.decode(self.config.encoding , errors=snake_case_ ).encode("""utf-8""" ) try: while True: try: UpperCamelCase_: Tuple = paj.read_json( io.BytesIO(snake_case_ ) , read_options=paj.ReadOptions(block_size=snake_case_ ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(snake_case_ , pa.ArrowInvalid ) and "straddling" not in str(snake_case_ ) or block_size > len(snake_case_ ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( f'''Batch of {len(snake_case_ )} bytes couldn\'t be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.''' ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( snake_case_ , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: UpperCamelCase_: Optional[Any] = json.load(snake_case_ ) except json.JSONDecodeError: logger.error(f'''Failed to read file \'{file}\' with error {type(snake_case_ )}: {e}''' ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(snake_case_ , snake_case_ ): # list is the only sequence type supported in JSON try: UpperCamelCase_: Any = set().union(*[row.keys() for row in dataset] ) UpperCamelCase_: List[str] = {col: [row.get(snake_case_ ) for row in dataset] for col in keys} UpperCamelCase_: int = pa.Table.from_pydict(snake_case_ ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(f'''Failed to read file \'{file}\' with error {type(snake_case_ )}: {e}''' ) raise ValueError(f'''Not able to read records in the JSON file at {file}.''' ) from None yield file_idx, self._cast_table(snake_case_ ) break else: logger.error(f'''Failed to read file \'{file}\' with error {type(snake_case_ )}: {e}''' ) raise ValueError( f'''Not able to read records in the JSON file at {file}. ''' f'''You should probably indicate the field of the JSON file containing your records. ''' f'''This JSON file contain the following fields: {str(list(dataset.keys() ) )}. ''' f'''Select the correct one and provide it as `field=\'XXX\'` to the dataset loading method. ''' ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(snake_case_ ) batch_idx += 1
223
0
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs UpperCAmelCase_ = imread(r'digital_image_processing/image_data/lena_small.jpg') UpperCAmelCase_ = cvtColor(img, COLOR_BGR2GRAY) def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = cn.convert_to_negative(A__ ) # assert negative_img array for at least one True assert negative_img.any() def lowerCamelCase__ ( ): '''simple docstring''' with Image.open("""digital_image_processing/image_data/lena_small.jpg""" ) as img: # Work around assertion for response assert str(cc.change_contrast(A__ , 110 ) ).startswith( """<PIL.Image.Image image mode=RGB size=100x100 at""" ) def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = imread("""digital_image_processing/image_data/lena_small.jpg""" , 0 ) # assert ambiguous array for all == True assert canny_img.all() __lowerCamelCase = canny.canny(A__ ) # assert canny array for at least one True assert canny_array.any() def lowerCamelCase__ ( ): '''simple docstring''' assert gg.gaussian_filter(A__ , 5 , sigma=0.9 ).all() def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) __lowerCamelCase = conv.img_convolve(A__ , A__ ).astype(A__ ) assert res.any() def lowerCamelCase__ ( ): '''simple docstring''' assert med.median_filter(A__ , 3 ).any() def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase, __lowerCamelCase = sob.sobel_filter(A__ ) assert grad.any() and theta.any() def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = sp.make_sepia(A__ , 20 ) assert sepia.all() def lowerCamelCase__ ( A__ : str = "digital_image_processing/image_data/lena_small.jpg" ): '''simple docstring''' __lowerCamelCase = bs.Burkes(imread(A__ , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def lowerCamelCase__ ( A__ : str = "digital_image_processing/image_data/lena_small.jpg" , ): '''simple docstring''' __lowerCamelCase = rs.NearestNeighbour(imread(A__ , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = """digital_image_processing/image_data/lena.jpg""" # Reading the image and converting it to grayscale. __lowerCamelCase = imread(A__ , 0 ) # Test for get_neighbors_pixel function() return not None __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = image[x_coordinate][y_coordinate] __lowerCamelCase = lbp.get_neighbors_pixel( A__ , A__ , A__ , A__ ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __lowerCamelCase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): __lowerCamelCase = lbp.local_binary_value(A__ , A__ , A__ ) assert lbp_image.any()
12
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowerCamelCase__( __lowerCamelCase , unittest.TestCase): UpperCAmelCase__ : Tuple = ShapEImgaImgPipeline UpperCAmelCase__ : Optional[Any] = ['image'] UpperCAmelCase__ : int = ['image'] UpperCAmelCase__ : Any = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] UpperCAmelCase__ : int = False @property def lowerCAmelCase__ ( self: int ): return 32 @property def lowerCAmelCase__ ( self: List[str] ): return 32 @property def lowerCAmelCase__ ( self: Any ): return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self: Dict ): return 8 @property def lowerCAmelCase__ ( self: int ): torch.manual_seed(0 ) __lowerCamelCase = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) __lowerCamelCase = CLIPVisionModel(UpperCamelCase_ ) return model @property def lowerCAmelCase__ ( self: Dict ): __lowerCamelCase = CLIPImageProcessor( crop_size=2_24 , do_center_crop=UpperCamelCase_ , do_normalize=UpperCamelCase_ , do_resize=UpperCamelCase_ , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=2_24 , ) return image_processor @property def lowerCAmelCase__ ( self: Tuple ): torch.manual_seed(0 ) __lowerCamelCase = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } __lowerCamelCase = PriorTransformer(**UpperCamelCase_ ) return model @property def lowerCAmelCase__ ( self: List[Any] ): torch.manual_seed(0 ) __lowerCamelCase = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } __lowerCamelCase = ShapERenderer(**UpperCamelCase_ ) return model def lowerCAmelCase__ ( self: List[str] ): __lowerCamelCase = self.dummy_prior __lowerCamelCase = self.dummy_image_encoder __lowerCamelCase = self.dummy_image_processor __lowerCamelCase = self.dummy_renderer __lowerCamelCase = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=10_24 , prediction_type="""sample""" , use_karras_sigmas=UpperCamelCase_ , clip_sample=UpperCamelCase_ , clip_sample_range=1.0 , ) __lowerCamelCase = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCAmelCase__ ( self: int , UpperCamelCase_: List[Any] , UpperCamelCase_: Dict=0 ): __lowerCamelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCamelCase_ ) ).to(UpperCamelCase_ ) if str(UpperCamelCase_ ).startswith("""mps""" ): __lowerCamelCase = torch.manual_seed(UpperCamelCase_ ) else: __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __lowerCamelCase = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCAmelCase__ ( self: Tuple ): __lowerCamelCase = """cpu""" __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**UpperCamelCase_ ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = pipe(**self.get_dummy_inputs(UpperCamelCase_ ) ) __lowerCamelCase = output.images[0] __lowerCamelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowerCamelCase = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase__ ( self: List[str] ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = torch_device == """cpu""" __lowerCamelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=UpperCamelCase_ , relax_max_difference=UpperCamelCase_ , ) def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = self.pipeline_class(**UpperCamelCase_ ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = 1 __lowerCamelCase = 2 __lowerCamelCase = self.get_dummy_inputs(UpperCamelCase_ ) for key in inputs.keys(): if key in self.batch_params: __lowerCamelCase = batch_size * [inputs[key]] __lowerCamelCase = pipe(**UpperCamelCase_ , num_images_per_prompt=UpperCamelCase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowerCamelCase__( unittest.TestCase): def lowerCAmelCase__ ( self: Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase__ ( self: Any ): __lowerCamelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) __lowerCamelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) __lowerCamelCase = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) __lowerCamelCase = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __lowerCamelCase = torch.Generator(device=UpperCamelCase_ ).manual_seed(0 ) __lowerCamelCase = pipe( UpperCamelCase_ , generator=UpperCamelCase_ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(UpperCamelCase_ , UpperCamelCase_ )
12
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _lowerCamelCase( _a ): lowercase_ : List[str] = ["""image_processor""", """tokenizer"""] lowercase_ : Dict = """ChineseCLIPImageProcessor""" lowercase_ : List[Any] = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self, lowerCamelCase=None, lowerCamelCase=None, **lowerCamelCase) -> str: """simple docstring""" _lowercase : str = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', _a, ) _lowercase : str = kwargs.pop('feature_extractor') _lowercase : Any = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') super().__init__(_a, _a) _lowercase : Tuple = self.image_processor def __call__( self, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=None, **lowerCamelCase) -> Any: """simple docstring""" if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.') if text is not None: _lowercase : Optional[int] = self.tokenizer(_a, return_tensors=_a, **_a) if images is not None: _lowercase : Any = self.image_processor(_a, return_tensors=_a, **_a) if text is not None and images is not None: _lowercase : Any = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_a), tensor_type=_a) def UpperCamelCase ( self, *lowerCamelCase, **lowerCamelCase) -> Optional[int]: """simple docstring""" return self.tokenizer.batch_decode(*_a, **_a) def UpperCamelCase ( self, *lowerCamelCase, **lowerCamelCase) -> Tuple: """simple docstring""" return self.tokenizer.decode(*_a, **_a) @property def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : int = self.tokenizer.model_input_names _lowercase : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def UpperCamelCase ( self) -> Dict: """simple docstring""" warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.', _a, ) return self.image_processor_class
370
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class _lowerCamelCase( _a ): lowercase_ : Union[str, Any] = """char""" lowercase_ : Any = """bpe""" lowercase_ : Optional[int] = """wp""" SCREAMING_SNAKE_CASE : Optional[int] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class _lowerCamelCase( _a ): lowercase_ : Any = ["""image_processor""", """char_tokenizer"""] lowercase_ : Tuple = """ViTImageProcessor""" lowercase_ : List[str] = """MgpstrTokenizer""" def __init__( self, lowerCamelCase=None, lowerCamelCase=None, **lowerCamelCase) -> List[str]: """simple docstring""" _lowercase : Any = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', lowerCamelCase, ) _lowercase : str = kwargs.pop('feature_extractor') _lowercase : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.') if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.') _lowercase : List[Any] = tokenizer _lowercase : Tuple = AutoTokenizer.from_pretrained('gpt2') _lowercase : Tuple = AutoTokenizer.from_pretrained('bert-base-uncased') super().__init__(lowerCamelCase, lowerCamelCase) def __call__( self, lowerCamelCase=None, lowerCamelCase=None, lowerCamelCase=None, **lowerCamelCase) -> Any: """simple docstring""" if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.') if images is not None: _lowercase : Optional[Any] = self.image_processor(lowerCamelCase, return_tensors=lowerCamelCase, **lowerCamelCase) if text is not None: _lowercase : Optional[int] = self.char_tokenizer(lowerCamelCase, return_tensors=lowerCamelCase, **lowerCamelCase) if text is None: return inputs elif images is None: return encodings else: _lowercase : Optional[int] = encodings['input_ids'] return inputs def UpperCamelCase ( self, lowerCamelCase) -> Any: """simple docstring""" _lowercase , _lowercase , _lowercase : Optional[int] = sequences _lowercase : str = char_preds.size(0) _lowercase , _lowercase : List[Any] = self._decode_helper(lowerCamelCase, 'char') _lowercase , _lowercase : str = self._decode_helper(lowerCamelCase, 'bpe') _lowercase , _lowercase : str = self._decode_helper(lowerCamelCase, 'wp') _lowercase : Dict = [] _lowercase : Any = [] for i in range(lowerCamelCase): _lowercase : Optional[int] = [char_scores[i], bpe_scores[i], wp_scores[i]] _lowercase : List[Any] = [char_strs[i], bpe_strs[i], wp_strs[i]] _lowercase : Union[str, Any] = scores.index(max(lowerCamelCase)) final_strs.append(strs[max_score_index]) final_scores.append(scores[max_score_index]) _lowercase : str = {} _lowercase : int = final_strs _lowercase : Optional[Any] = final_scores _lowercase : Tuple = char_strs _lowercase : Dict = bpe_strs _lowercase : Tuple = wp_strs return out def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase) -> str: """simple docstring""" if format == DecodeType.CHARACTER: _lowercase : Optional[Any] = self.char_decode _lowercase : int = 1 _lowercase : int = '[s]' elif format == DecodeType.BPE: _lowercase : List[Any] = self.bpe_decode _lowercase : Union[str, Any] = 2 _lowercase : Any = '#' elif format == DecodeType.WORDPIECE: _lowercase : int = self.wp_decode _lowercase : Optional[Any] = 1_02 _lowercase : List[Any] = '[SEP]' else: raise ValueError(F'''Format {format} is not supported.''') _lowercase , _lowercase : Tuple = [], [] _lowercase : str = pred_logits.size(0) _lowercase : Tuple = pred_logits.size(1) _lowercase , _lowercase : Dict = pred_logits.topk(1, dim=-1, largest=lowerCamelCase, sorted=lowerCamelCase) _lowercase : List[str] = preds_index.view(-1, lowerCamelCase)[:, 1:] _lowercase : int = decoder(lowerCamelCase) _lowercase , _lowercase : Optional[Any] = torch.nn.functional.softmax(lowerCamelCase, dim=2).max(dim=2) _lowercase : Optional[Any] = preds_max_prob[:, 1:] for index in range(lowerCamelCase): _lowercase : List[str] = preds_str[index].find(lowerCamelCase) _lowercase : int = preds_str[index][:pred_eos] _lowercase : List[str] = preds_index[index].cpu().tolist() _lowercase : Optional[int] = pred_index.index(lowerCamelCase) if eos_token in pred_index else -1 _lowercase : int = preds_max_prob[index][: pred_eos_index + 1] _lowercase : Tuple = pred_max_prob.cumprod(dim=0)[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(lowerCamelCase) conf_scores.append(lowerCamelCase) return dec_strs, conf_scores def UpperCamelCase ( self, lowerCamelCase) -> Any: """simple docstring""" _lowercase : Dict = [seq.replace(' ', '') for seq in self.char_tokenizer.batch_decode(lowerCamelCase)] return decode_strs def UpperCamelCase ( self, lowerCamelCase) -> Union[str, Any]: """simple docstring""" return self.bpe_tokenizer.batch_decode(lowerCamelCase) def UpperCamelCase ( self, lowerCamelCase) -> Optional[Any]: """simple docstring""" _lowercase : List[Any] = [seq.replace(' ', '') for seq in self.wp_tokenizer.batch_decode(lowerCamelCase)] return decode_strs
84
0
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class UpperCAmelCase_ ( __UpperCAmelCase ): lowerCamelCase : List[Any] = '''Wav2Vec2FeatureExtractor''' lowerCamelCase : List[str] = '''AutoTokenizer''' def __init__( self : Optional[int] , UpperCAmelCase__ : int , UpperCAmelCase__ : Dict ) -> Dict: super().__init__(UpperCamelCase__ , UpperCamelCase__ ) lowerCAmelCase = self.feature_extractor lowerCAmelCase = False @classmethod def __UpperCAmelCase ( cls : Any , UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : int ) -> Dict: try: return super().from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) except OSError: warnings.warn( F'''Loading a tokenizer inside {cls.__name__} from a config that does not''' ' include a `tokenizer_class` attribute is deprecated and will be ' 'removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`' ' attribute to either your `config.json` or `tokenizer_config.json` ' 'file to suppress this warning: ' , UpperCamelCase__ , ) lowerCAmelCase = WavaVecaFeatureExtractor.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) lowerCAmelCase = WavaVecaCTCTokenizer.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) return cls(feature_extractor=UpperCamelCase__ , tokenizer=UpperCamelCase__ ) def __call__( self : List[str] , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : Optional[int] ) -> Dict: if self._in_target_context_manager: return self.current_processor(*UpperCamelCase__ , **UpperCamelCase__ ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) lowerCAmelCase = kwargs.pop('raw_speech' ) else: lowerCAmelCase = kwargs.pop('audio' , UpperCamelCase__ ) lowerCAmelCase = kwargs.pop('sampling_rate' , UpperCamelCase__ ) lowerCAmelCase = kwargs.pop('text' , UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: lowerCAmelCase = args[0] lowerCAmelCase = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: lowerCAmelCase = self.feature_extractor(UpperCamelCase__ , *UpperCamelCase__ , sampling_rate=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None: lowerCAmelCase = self.tokenizer(UpperCamelCase__ , **UpperCamelCase__ ) if text is None: return inputs elif audio is None: return encodings else: lowerCAmelCase = encodings['input_ids'] return inputs def __UpperCAmelCase ( self : List[Any] , *UpperCAmelCase__ : int , **UpperCAmelCase__ : List[Any] ) -> Optional[Any]: if self._in_target_context_manager: return self.current_processor.pad(*UpperCamelCase__ , **UpperCamelCase__ ) lowerCAmelCase = kwargs.pop('input_features' , UpperCamelCase__ ) lowerCAmelCase = kwargs.pop('labels' , UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: lowerCAmelCase = args[0] lowerCAmelCase = args[1:] if input_features is not None: lowerCAmelCase = self.feature_extractor.pad(UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ) if labels is not None: lowerCAmelCase = self.tokenizer.pad(UpperCamelCase__ , **UpperCamelCase__ ) if labels is None: return input_features elif input_features is None: return labels else: lowerCAmelCase = labels['input_ids'] return input_features def __UpperCAmelCase ( self : Optional[Any] , *UpperCAmelCase__ : int , **UpperCAmelCase__ : str ) -> Dict: return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def __UpperCAmelCase ( self : Optional[Any] , *UpperCAmelCase__ : int , **UpperCAmelCase__ : Optional[Any] ) -> Optional[int]: return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @contextmanager def __UpperCAmelCase ( self : int ) -> Optional[Any]: warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) lowerCAmelCase = True lowerCAmelCase = self.tokenizer yield lowerCAmelCase = self.feature_extractor lowerCAmelCase = False
4
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _A = logging.get_logger(__name__) _A = torch.device('''cpu''') def __UpperCamelCase ( ): lowerCAmelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase_ = Image.open(requests.get(_A , stream=_A ).raw ) return im def __UpperCamelCase ( _A ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_7_0_3E0_0, 2.1_1_0_7E0_0, -2.0_8_1_1E0_0, 8.8_6_8_5E-0_1, 2.4_3_6_0E-0_1] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_6_3_6E-0_1, 2.3_4_7_8E-0_1, -1.6_9_6_3E0_0, -1.7_3_8_1E0_0, -8.6_3_3_7E-0_1] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_7_6_8E-0_1, -4.7_4_2_9E-0_1, -1.0_8_9_7E0_0, -1.0_2_4_8E0_0, 3.5_5_2_3E-0_2] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_3_3_0E-0_1, 2.4_2_1_1E-0_1, -6.0_1_8_5E-0_1, -8.2_7_8_9E-0_1, -6.0_4_4_6E-0_2] ) def __UpperCamelCase ( _A , _A , _A ): lowerCAmelCase_ = dct.pop(_A ) lowerCAmelCase_ = val def __UpperCamelCase ( _A ): lowerCAmelCase_ = [] for k in state_dict.keys(): lowerCAmelCase_ = k if ".pwconv" in k: lowerCAmelCase_ = k_new.replace('''.pwconv''' , '''.point_wise_conv''' ) if ".dwconv" in k: lowerCAmelCase_ = k_new.replace('''.dwconv''' , '''.depth_wise_conv''' ) if ".Proj." in k: lowerCAmelCase_ = k_new.replace('''.Proj.''' , '''.proj.''' ) if "patch_embed" in k_new: lowerCAmelCase_ = k_new.replace('''patch_embed''' , '''swiftformer.patch_embed.patch_embedding''' ) if "network" in k_new: lowerCAmelCase_ = k_new.split('''.''' ) if ls[2].isdigit(): lowerCAmelCase_ = '''swiftformer.encoder.network.''' + ls[1] + '''.blocks.''' + ls[2] + '''.''' + '''.'''.join(ls[3:] ) else: lowerCAmelCase_ = k_new.replace('''network''' , '''swiftformer.encoder.network''' ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def __UpperCamelCase ( _A , _A , _A ): lowerCAmelCase_ = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size lowerCAmelCase_ = 1000 lowerCAmelCase_ = '''huggingface/label-files''' lowerCAmelCase_ = '''imagenet-1k-id2label.json''' lowerCAmelCase_ = json.load(open(hf_hub_download(_A , _A , repo_type='''dataset''' ) , '''r''' ) ) lowerCAmelCase_ = {int(_A ): v for k, v in idalabel.items()} lowerCAmelCase_ = idalabel lowerCAmelCase_ = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": lowerCAmelCase_ = [3, 3, 6, 4] lowerCAmelCase_ = [48, 56, 112, 220] elif swiftformer_name == "swiftformer_s": lowerCAmelCase_ = [3, 3, 9, 6] lowerCAmelCase_ = [48, 64, 168, 224] elif swiftformer_name == "swiftformer_l1": lowerCAmelCase_ = [4, 3, 10, 5] lowerCAmelCase_ = [48, 96, 192, 384] elif swiftformer_name == "swiftformer_l3": lowerCAmelCase_ = [4, 4, 12, 6] lowerCAmelCase_ = [64, 128, 320, 512] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith('''https''' ): lowerCAmelCase_ = torch.hub.load_state_dict_from_url(_A , map_location='''cpu''' , check_hash=_A ) else: lowerCAmelCase_ = torch.load(_A , map_location='''cpu''' ) lowerCAmelCase_ = checkpoint lowerCAmelCase_ = create_rename_keys(_A ) for rename_key_src, rename_key_dest in rename_keys: rename_key(_A , _A , _A ) # load HuggingFace model lowerCAmelCase_ = SwiftFormerForImageClassification(_A ).eval() hf_model.load_state_dict(_A ) # prepare test inputs lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = ViTImageProcessor.from_pretrained('''preprocessor_config''' ) lowerCAmelCase_ = processor(images=_A , return_tensors='''pt''' ) # compare outputs from both models lowerCAmelCase_ = get_expected_output(_A ) lowerCAmelCase_ = hf_model(inputs['''pixel_values'''] ).logits assert hf_logits.shape == torch.Size([1, 1000] ) assert torch.allclose(hf_logits[0, 0:5] , _A , atol=1E-3 ) Path(_A ).mkdir(exist_ok=_A ) print(f"Saving model {swiftformer_name} to {pytorch_dump_folder_path}" ) hf_model.save_pretrained(_A ) if __name__ == "__main__": _A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') _A = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
278
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase : int = { "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = [ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
66
import math import tensorflow as tf from packaging import version def __lowerCamelCase ( lowerCamelCase__ : Optional[Any] ): '''simple docstring''' lowerCamelCase = tf.convert_to_tensor(lowerCamelCase__ ) lowerCamelCase = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def __lowerCamelCase ( lowerCamelCase__ : Dict ): '''simple docstring''' lowerCamelCase = tf.convert_to_tensor(lowerCamelCase__ ) lowerCamelCase = tf.cast(math.pi , x.dtype ) lowerCamelCase = tf.cast(0.0_4_4_7_1_5 , x.dtype ) lowerCamelCase = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowerCamelCase__ , 3 )) )) return x * cdf def __lowerCamelCase ( lowerCamelCase__ : Any ): '''simple docstring''' lowerCamelCase = tf.convert_to_tensor(lowerCamelCase__ ) return x * tf.tanh(tf.math.softplus(lowerCamelCase__ ) ) def __lowerCamelCase ( lowerCamelCase__ : List[Any] ): '''simple docstring''' lowerCamelCase = tf.convert_to_tensor(lowerCamelCase__ ) lowerCamelCase = tf.cast(0.0_4_4_7_1_5 , x.dtype ) lowerCamelCase = tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def __lowerCamelCase ( lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = tf.convert_to_tensor(lowerCamelCase__ ) lowerCamelCase = tf.cast(1.7_0_2 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def __lowerCamelCase ( lowerCamelCase__ : List[str] ): '''simple docstring''' return tf.clip_by_value(_gelu(lowerCamelCase__ ) , -10 , 10 ) def __lowerCamelCase ( lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int]=-1 ): '''simple docstring''' lowerCamelCase , lowerCamelCase = tf.split(lowerCamelCase__ , 2 , axis=lowerCamelCase__ ) return a * tf.math.sigmoid(lowerCamelCase__ ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def __lowerCamelCase ( lowerCamelCase__ : List[str] ): '''simple docstring''' return tf.keras.activations.gelu(lowerCamelCase__ , approximate=lowerCamelCase__ ) UpperCAmelCase : Union[str, Any] = tf.keras.activations.gelu UpperCAmelCase : Optional[Any] = approximate_gelu_wrap else: UpperCAmelCase : List[Any] = _gelu UpperCAmelCase : str = _gelu_new UpperCAmelCase : Union[str, Any] = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def __lowerCamelCase ( lowerCamelCase__ : List[Any] ): '''simple docstring''' if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
66
1
"""simple docstring""" from __future__ import annotations from random import choice def a__ ( SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' return choice(SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' lowerCAmelCase : List[Any] = random_pivot(SCREAMING_SNAKE_CASE ) # partition based on pivot # linear time lowerCAmelCase : Any = [e for e in lst if e < pivot] lowerCAmelCase : Any = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(SCREAMING_SNAKE_CASE ) == k - 1: return pivot # pivot is in elements bigger than k elif len(SCREAMING_SNAKE_CASE ) < k - 1: return kth_number(SCREAMING_SNAKE_CASE , k - len(SCREAMING_SNAKE_CASE ) - 1 ) # pivot is in elements smaller than k else: return kth_number(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
108
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""1.0.0a"""): raise Exception("""requires fairseq >= 1.0.0a""") logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = """Hello world! cécé herlolip""" def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : List[Any] = FairseqRobertaModel.from_pretrained(SCREAMING_SNAKE_CASE ) roberta.eval() # disable dropout A_ : Dict = roberta.model.encoder.sentence_encoder A_ : Optional[Any] = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: A_ : Optional[int] = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our RoBERTa config:''' , SCREAMING_SNAKE_CASE ) A_ : List[str] = XLMRobertaXLForSequenceClassification(SCREAMING_SNAKE_CASE ) if classification_head else XLMRobertaXLForMaskedLM(SCREAMING_SNAKE_CASE ) model.eval() # Now let's copy all the weights. # Embeddings A_ : str = roberta_sent_encoder.embed_tokens.weight A_ : int = roberta_sent_encoder.embed_positions.weight A_ : Union[str, Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. A_ : Union[str, Any] = roberta_sent_encoder.layer_norm.weight A_ : int = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer A_ : BertLayer = model.roberta.encoder.layer[i] A_ : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] A_ : RobertaAttention = layer.attention A_ : Dict = roberta_layer.self_attn_layer_norm.weight A_ : str = roberta_layer.self_attn_layer_norm.bias # self attention A_ : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) A_ : str = roberta_layer.self_attn.q_proj.weight A_ : List[str] = roberta_layer.self_attn.q_proj.bias A_ : int = roberta_layer.self_attn.k_proj.weight A_ : List[Any] = roberta_layer.self_attn.k_proj.bias A_ : Dict = roberta_layer.self_attn.v_proj.weight A_ : int = roberta_layer.self_attn.v_proj.bias # self-attention output A_ : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape A_ : Any = roberta_layer.self_attn.out_proj.weight A_ : Optional[Any] = roberta_layer.self_attn.out_proj.bias # this one is final layer norm A_ : Any = roberta_layer.final_layer_norm.weight A_ : int = roberta_layer.final_layer_norm.bias # intermediate A_ : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape A_ : int = roberta_layer.fca.weight A_ : List[str] = roberta_layer.fca.bias # output A_ : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape A_ : Optional[int] = roberta_layer.fca.weight A_ : List[Any] = roberta_layer.fca.bias # end of layer if classification_head: A_ : str = roberta.model.classification_heads['''mnli'''].dense.weight A_ : int = roberta.model.classification_heads['''mnli'''].dense.bias A_ : str = roberta.model.classification_heads['''mnli'''].out_proj.weight A_ : Dict = roberta.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head A_ : int = roberta.model.encoder.lm_head.dense.weight A_ : List[str] = roberta.model.encoder.lm_head.dense.bias A_ : Optional[Any] = roberta.model.encoder.lm_head.layer_norm.weight A_ : int = roberta.model.encoder.lm_head.layer_norm.bias A_ : Optional[int] = roberta.model.encoder.lm_head.weight A_ : Dict = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. A_ : torch.Tensor = roberta.encode(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) # batch of size 1 A_ : Union[str, Any] = model(SCREAMING_SNAKE_CASE )[0] if classification_head: A_ : str = roberta.model.classification_heads['''mnli'''](roberta.extract_features(SCREAMING_SNAKE_CASE ) ) else: A_ : int = roberta.model(SCREAMING_SNAKE_CASE )[0] print(our_output.shape , their_output.shape ) A_ : Any = torch.max(torch.abs(our_output - their_output ) ).item() print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 A_ : Tuple = torch.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1e-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) pathlib.Path(SCREAMING_SNAKE_CASE ).mkdir(parents=SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--roberta_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) UpperCamelCase = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
186
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=['''stage2''', '''stage3''', '''stage4'''] , ) UpperCAmelCase_ : List[str] = DetaConfig( backbone_config=_lowercase , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=_lowercase , with_box_refine=_lowercase , two_stage=_lowercase , ) # set labels UpperCAmelCase_ : Union[str, Any] = '''huggingface/label-files''' if "o365" in model_name: UpperCAmelCase_ : Union[str, Any] = 366 UpperCAmelCase_ : List[str] = '''object365-id2label.json''' else: UpperCAmelCase_ : List[str] = 91 UpperCAmelCase_ : Optional[Any] = '''coco-detection-id2label.json''' UpperCAmelCase_ : int = num_labels UpperCAmelCase_ : str = json.load(open(cached_download(hf_hub_url(_lowercase , _lowercase , repo_type='''dataset''' ) ) , '''r''' ) ) UpperCAmelCase_ : Dict = {int(_lowercase ): v for k, v in idalabel.items()} UpperCAmelCase_ : str = idalabel UpperCAmelCase_ : Optional[Any] = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( _lowercase ): '''simple docstring''' UpperCAmelCase_ : List[str] = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.patch_embed.proj.weight''', '''model.backbone.model.embeddings.patch_embeddings.projection.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.proj.bias''', '''model.backbone.model.embeddings.patch_embeddings.projection.bias''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.weight''', '''model.backbone.model.embeddings.norm.weight''') ) rename_keys.append(('''backbone.0.body.patch_embed.norm.bias''', '''model.backbone.model.embeddings.norm.bias''') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.norm2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias''', f'''model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.reduction.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.weight''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.0.body.layers.{i}.downsample.norm.bias''', f'''model.backbone.model.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append(('''backbone.0.body.norm1.weight''', '''model.backbone.model.hidden_states_norms.stage2.weight''') ) rename_keys.append(('''backbone.0.body.norm1.bias''', '''model.backbone.model.hidden_states_norms.stage2.bias''') ) rename_keys.append(('''backbone.0.body.norm2.weight''', '''model.backbone.model.hidden_states_norms.stage3.weight''') ) rename_keys.append(('''backbone.0.body.norm2.bias''', '''model.backbone.model.hidden_states_norms.stage3.bias''') ) rename_keys.append(('''backbone.0.body.norm3.weight''', '''model.backbone.model.hidden_states_norms.stage4.weight''') ) rename_keys.append(('''backbone.0.body.norm3.bias''', '''model.backbone.model.hidden_states_norms.stage4.bias''') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias''', f'''model.encoder.layers.{i}.self_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.weight''', f'''model.encoder.layers.{i}.self_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.attention_weights.bias''', f'''model.encoder.layers.{i}.self_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.weight''', f'''model.encoder.layers.{i}.self_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.value_proj.bias''', f'''model.encoder.layers.{i}.self_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.weight''', f'''model.encoder.layers.{i}.self_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.self_attn.output_proj.bias''', f'''model.encoder.layers.{i}.self_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.weight''', f'''model.encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''model.encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''model.encoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''model.encoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''model.encoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''model.encoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''model.encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''model.encoder.layers.{i}.final_layer_norm.bias''') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias''', f'''model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.weight''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.attention_weights.bias''', f'''model.decoder.layers.{i}.encoder_attn.attention_weights.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.value_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.value_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.weight''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.cross_attn.output_proj.bias''', f'''model.decoder.layers.{i}.encoder_attn.output_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.weight''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''model.decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''model.decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''model.decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.weight''', f'''model.decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm2.bias''', f'''model.decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''model.decoder.layers.{i}.fc1.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''model.decoder.layers.{i}.fc1.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''model.decoder.layers.{i}.fc2.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''model.decoder.layers.{i}.fc2.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''model.decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''model.decoder.layers.{i}.final_layer_norm.bias''') ) # fmt: on return rename_keys def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = dct.pop(_lowercase ) UpperCAmelCase_ : Union[str, Any] = val def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Tuple = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCAmelCase_ : Tuple = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCAmelCase_ : List[Any] = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight''' ) UpperCAmelCase_ : Optional[int] = state_dict.pop(f'''backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Optional[Any] = in_proj_weight[:dim, :] UpperCAmelCase_ : List[Any] = in_proj_bias[: dim] UpperCAmelCase_ : Union[str, Any] = in_proj_weight[ dim : dim * 2, : ] UpperCAmelCase_ : int = in_proj_bias[ dim : dim * 2 ] UpperCAmelCase_ : List[Any] = in_proj_weight[ -dim :, : ] UpperCAmelCase_ : Tuple = in_proj_bias[-dim :] # fmt: on def lowerCamelCase__ ( _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention UpperCAmelCase_ : List[Any] = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) UpperCAmelCase_ : Optional[Any] = state_dict.pop(f'''transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ : Optional[int] = in_proj_weight[:hidden_size, :] UpperCAmelCase_ : List[Any] = in_proj_bias[:hidden_size] UpperCAmelCase_ : Optional[int] = in_proj_weight[ hidden_size : hidden_size * 2, : ] UpperCAmelCase_ : List[Any] = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ : Tuple = in_proj_weight[-hidden_size:, :] UpperCAmelCase_ : Optional[Any] = in_proj_bias[-hidden_size:] def lowerCamelCase__ ( ): '''simple docstring''' UpperCAmelCase_ : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase_ : List[Any] = Image.open(requests.get(_lowercase , stream=_lowercase ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( _lowercase , _lowercase , _lowercase ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = get_deta_config(_lowercase ) # load original state dict if model_name == "deta-swin-large": UpperCAmelCase_ : Union[str, Any] = hf_hub_download(repo_id='''nielsr/deta-checkpoints''' , filename='''adet_swin_ft.pth''' ) elif model_name == "deta-swin-large-o365": UpperCAmelCase_ : Union[str, Any] = hf_hub_download(repo_id='''jozhang97/deta-swin-l-o365''' , filename='''deta_swin_pt_o365.pth''' ) else: raise ValueError(f'''Model name {model_name} not supported''' ) UpperCAmelCase_ : Union[str, Any] = torch.load(_lowercase , map_location='''cpu''' )['''model'''] # original state dict for name, param in state_dict.items(): print(_lowercase , param.shape ) # rename keys UpperCAmelCase_ : Union[str, Any] = create_rename_keys(_lowercase ) for src, dest in rename_keys: rename_key(_lowercase , _lowercase , _lowercase ) read_in_swin_q_k_v(_lowercase , config.backbone_config ) read_in_decoder_q_k_v(_lowercase , _lowercase ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: UpperCAmelCase_ : Dict = state_dict.pop(_lowercase ) UpperCAmelCase_ : Optional[Any] = val if "input_proj" in key: UpperCAmelCase_ : List[str] = state_dict.pop(_lowercase ) UpperCAmelCase_ : Tuple = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: UpperCAmelCase_ : Union[str, Any] = state_dict.pop(_lowercase ) UpperCAmelCase_ : Dict = val # finally, create HuggingFace model and load state dict UpperCAmelCase_ : Optional[int] = DetaForObjectDetection(_lowercase ) model.load_state_dict(_lowercase ) model.eval() UpperCAmelCase_ : Dict = '''cuda''' if torch.cuda.is_available() else '''cpu''' model.to(_lowercase ) # load image processor UpperCAmelCase_ : Optional[int] = DetaImageProcessor(format='''coco_detection''' ) # verify our conversion on image UpperCAmelCase_ : Any = prepare_img() UpperCAmelCase_ : List[str] = processor(images=_lowercase , return_tensors='''pt''' ) UpperCAmelCase_ : str = encoding['''pixel_values'''] UpperCAmelCase_ : Tuple = model(pixel_values.to(_lowercase ) ) # verify logits print('''Logits:''' , outputs.logits[0, :3, :3] ) print('''Boxes:''' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": UpperCAmelCase_ : int = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) UpperCAmelCase_ : Any = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": UpperCAmelCase_ : List[Any] = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) UpperCAmelCase_ : Optional[int] = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(_lowercase ) , atol=1E-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(_lowercase ) , atol=1E-4 ) print('''Everything ok!''' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'''Saving PyTorch model and processor to {pytorch_dump_folder_path}...''' ) Path(_lowercase ).mkdir(exist_ok=_lowercase ) model.save_pretrained(_lowercase ) processor.save_pretrained(_lowercase ) # Push to hub if push_to_hub: print('''Pushing model and processor to hub...''' ) model.push_to_hub(f'''jozhang97/{model_name}''' ) processor.push_to_hub(f'''jozhang97/{model_name}''' ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '--model_name', type=str, default='deta-swin-large', choices=['deta-swin-large', 'deta-swin-large-o365'], help='Name of the model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __a = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
235
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class __a: """simple docstring""" def __init__( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE=13 ,_SCREAMING_SNAKE_CASE=7 ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=True ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE=19 ,_SCREAMING_SNAKE_CASE=32 ,_SCREAMING_SNAKE_CASE=5 ,_SCREAMING_SNAKE_CASE=4 ,_SCREAMING_SNAKE_CASE=37 ,_SCREAMING_SNAKE_CASE="gelu" ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=512 ,_SCREAMING_SNAKE_CASE=16 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=0.02 ,_SCREAMING_SNAKE_CASE=3 ,_SCREAMING_SNAKE_CASE=4 ,_SCREAMING_SNAKE_CASE=None ,) -> Dict: UpperCAmelCase_ : Optional[Any] = parent UpperCAmelCase_ : Dict = batch_size UpperCAmelCase_ : Optional[int] = seq_length UpperCAmelCase_ : Union[str, Any] = is_training UpperCAmelCase_ : Any = use_input_mask UpperCAmelCase_ : Tuple = use_token_type_ids UpperCAmelCase_ : Optional[int] = use_labels UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : List[Any] = hidden_size UpperCAmelCase_ : str = num_hidden_layers UpperCAmelCase_ : Dict = num_attention_heads UpperCAmelCase_ : Optional[Any] = intermediate_size UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : int = hidden_dropout_prob UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob UpperCAmelCase_ : Optional[int] = max_position_embeddings UpperCAmelCase_ : Optional[int] = type_vocab_size UpperCAmelCase_ : Any = type_sequence_label_size UpperCAmelCase_ : int = initializer_range UpperCAmelCase_ : Any = num_labels UpperCAmelCase_ : Optional[Any] = num_choices UpperCAmelCase_ : List[str] = scope def a__ ( self ) -> Optional[Any]: UpperCAmelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase_ : str = None if self.use_input_mask: UpperCAmelCase_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Optional[Any] = None if self.use_labels: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size] ,self.num_choices ) UpperCAmelCase_ : Optional[Any] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self ) -> List[str]: UpperCAmelCase_ : Union[str, Any] = EsmConfig( vocab_size=33 ,hidden_size=self.hidden_size ,pad_token_id=1 ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,is_folding_model=_SCREAMING_SNAKE_CASE ,esmfold_config={'''trunk''': {'''num_blocks''': 2}, '''fp16_esm''': False} ,) return config def a__ ( self ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> int: UpperCAmelCase_ : Optional[int] = EsmForProteinFolding(config=_SCREAMING_SNAKE_CASE ).float() model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase_ : Union[str, Any] = model(_SCREAMING_SNAKE_CASE ,attention_mask=_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[str] = model(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : Any = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.positions.shape ,(8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape ,(8, self.batch_size, self.seq_length, 7, 2) ) def a__ ( self ) -> Optional[Any]: UpperCAmelCase_ : int = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ( UpperCAmelCase_ ), ) : Optional[Any] = config_and_inputs UpperCAmelCase_ : int = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __a( _a , _a , unittest.TestCase ): """simple docstring""" lowerCAmelCase = False lowerCAmelCase = (EsmForProteinFolding,) if is_torch_available() else () lowerCAmelCase = () lowerCAmelCase = {} if is_torch_available() else {} lowerCAmelCase = False def a__ ( self ) -> List[str]: UpperCAmelCase_ : Optional[int] = EsmFoldModelTester(self ) UpperCAmelCase_ : int = ConfigTester(self ,config_class=_SCREAMING_SNAKE_CASE ,hidden_size=37 ) def a__ ( self ) -> Tuple: self.config_tester.run_common_tests() def a__ ( self ) -> Dict: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) @unittest.skip('''Does not support attention outputs''' ) def a__ ( self ) -> Optional[int]: pass @unittest.skip def a__ ( self ) -> Dict: pass @unittest.skip('''Esm does not support embedding resizing''' ) def a__ ( self ) -> Union[str, Any]: pass @unittest.skip('''Esm does not support embedding resizing''' ) def a__ ( self ) -> List[Any]: pass @unittest.skip('''ESMFold does not support passing input embeds!''' ) def a__ ( self ) -> Any: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def a__ ( self ) -> Optional[Any]: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def a__ ( self ) -> Optional[Any]: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def a__ ( self ) -> Optional[int]: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def a__ ( self ) -> Optional[int]: pass @unittest.skip('''ESMFold does not support head pruning.''' ) def a__ ( self ) -> Dict: pass @unittest.skip('''ESMFold does not output hidden states in the normal way.''' ) def a__ ( self ) -> str: pass @unittest.skip('''ESMfold does not output hidden states in the normal way.''' ) def a__ ( self ) -> Optional[Any]: pass @unittest.skip('''ESMFold only has one output format.''' ) def a__ ( self ) -> Optional[int]: pass @unittest.skip('''This test doesn\'t work for ESMFold and doesn\'t test core functionality''' ) def a__ ( self ) -> int: pass @unittest.skip('''ESMFold does not support input chunking.''' ) def a__ ( self ) -> List[Any]: pass @unittest.skip('''ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.''' ) def a__ ( self ) -> Tuple: pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def a__ ( self ) -> Optional[int]: pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def a__ ( self ) -> List[str]: pass @unittest.skip('''ESMFold doesn\'t support torchscript compilation.''' ) def a__ ( self ) -> Tuple: pass @unittest.skip('''ESMFold doesn\'t support data parallel.''' ) def a__ ( self ) -> Dict: pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def a__ ( self ) -> List[Any]: pass @require_torch class __a( _a ): """simple docstring""" @slow def a__ ( self ) -> List[Any]: UpperCAmelCase_ : List[str] = EsmForProteinFolding.from_pretrained('''facebook/esmfold_v1''' ).float() model.eval() UpperCAmelCase_ : str = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) UpperCAmelCase_ : Optional[int] = model(_SCREAMING_SNAKE_CASE )['''positions'''] UpperCAmelCase_ : List[str] = torch.tensor([2.58_28, 0.79_93, -10.93_34] ,dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0] ,_SCREAMING_SNAKE_CASE ,atol=1e-4 ) )
235
1
"""simple docstring""" import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : str = BioGptTokenizer __UpperCAmelCase : List[Any] = False def __UpperCAmelCase ( self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt __a = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] __a = dict(zip(_a , range(len(_a ) ) ) ) __a = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) __a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(_a ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(_a ) ) def __UpperCAmelCase ( self , _a ): __a = '''lower newer''' __a = '''lower newer''' return input_text, output_text def __UpperCAmelCase ( self ): __a = BioGptTokenizer(self.vocab_file , self.merges_file ) __a = '''lower''' __a = ['''low''', '''er</w>'''] __a = tokenizer.tokenize(_a ) self.assertListEqual(_a , _a ) __a = tokens + ['''<unk>'''] __a = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_a ) , _a ) @slow def __UpperCAmelCase ( self ): __a = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) __a = tokenizer.encode('''sequence builders''' , add_special_tokens=_a ) __a = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_a ) __a = tokenizer.build_inputs_with_special_tokens(_a ) __a = tokenizer.build_inputs_with_special_tokens(_a , _a ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
45
'''simple docstring''' import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a_ ( _lowerCAmelCase , unittest.TestCase ): __A = RobertaTokenizer __A = RobertaTokenizerFast __A = True __A = {"cls_token": "<s>"} def lowercase__ ( self : Dict ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowercase_ :List[Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] lowercase_ :List[Any] = dict(zip(lowercase , range(len(lowercase ) ) ) ) lowercase_ :Optional[Any] = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] lowercase_ :Union[str, Any] = {"unk_token": "<unk>"} lowercase_ :Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowercase_ :Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowercase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowercase ) ) def lowercase__ ( self : str , **lowercase : List[str] ): """simple docstring""" kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase ) def lowercase__ ( self : int , **lowercase : int ): """simple docstring""" kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **lowercase ) def lowercase__ ( self : Optional[int] , lowercase : List[Any] ): """simple docstring""" lowercase_ :List[str] = "lower newer" lowercase_ :Any = "lower newer" return input_text, output_text def lowercase__ ( self : int ): """simple docstring""" lowercase_ :List[Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowercase_ :Dict = "lower newer" lowercase_ :Dict = ["l", "o", "w", "er", "\u0120", "n", "e", "w", "er"] lowercase_ :int = tokenizer.tokenize(lowercase ) # , add_prefix_space=True) self.assertListEqual(lowercase , lowercase ) lowercase_ :Optional[Any] = tokens + [tokenizer.unk_token] lowercase_ :Any = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase ) , lowercase ) def lowercase__ ( self : Dict ): """simple docstring""" lowercase_ :Dict = self.get_tokenizer() self.assertListEqual(tokenizer.encode("Hello world!" , add_special_tokens=lowercase ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode("Hello world! cécé herlolip 418" , add_special_tokens=lowercase ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def lowercase__ ( self : List[str] ): """simple docstring""" lowercase_ :Optional[Any] = self.tokenizer_class.from_pretrained("roberta-base" ) lowercase_ :Any = tokenizer.encode("sequence builders" , add_special_tokens=lowercase ) lowercase_ :str = tokenizer.encode("multi-sequence build" , add_special_tokens=lowercase ) lowercase_ :int = tokenizer.encode( "sequence builders" , add_special_tokens=lowercase , add_prefix_space=lowercase ) lowercase_ :Optional[int] = tokenizer.encode( "sequence builders" , "multi-sequence build" , add_special_tokens=lowercase , add_prefix_space=lowercase ) lowercase_ :str = tokenizer.build_inputs_with_special_tokens(lowercase ) lowercase_ :Optional[int] = tokenizer.build_inputs_with_special_tokens(lowercase , lowercase ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def lowercase__ ( self : Optional[int] ): """simple docstring""" lowercase_ :Optional[int] = self.get_tokenizer() lowercase_ :str = "Encode this sequence." lowercase_ :Tuple = tokenizer.byte_encoder[" ".encode("utf-8" )[0]] # Testing encoder arguments lowercase_ :List[str] = tokenizer.encode(lowercase , add_special_tokens=lowercase , add_prefix_space=lowercase ) lowercase_ :List[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowercase , lowercase ) lowercase_ :List[str] = tokenizer.encode(lowercase , add_special_tokens=lowercase , add_prefix_space=lowercase ) lowercase_ :List[Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowercase , lowercase ) tokenizer.add_special_tokens({"bos_token": "<s>"} ) lowercase_ :List[str] = tokenizer.encode(lowercase , add_special_tokens=lowercase ) lowercase_ :Optional[int] = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowercase , lowercase ) # Testing spaces after special tokens lowercase_ :Union[str, Any] = "<mask>" tokenizer.add_special_tokens( {"mask_token": AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase )} ) # mask token has a left space lowercase_ :Any = tokenizer.convert_tokens_to_ids(lowercase ) lowercase_ :Tuple = "Encode <mask> sequence" lowercase_ :int = "Encode <mask>sequence" lowercase_ :str = tokenizer.encode(lowercase ) lowercase_ :Any = encoded.index(lowercase ) lowercase_ :Dict = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowercase , lowercase ) lowercase_ :str = tokenizer.encode(lowercase ) lowercase_ :int = encoded.index(lowercase ) lowercase_ :Optional[int] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowercase , lowercase ) def lowercase__ ( self : Optional[Any] ): """simple docstring""" pass def lowercase__ ( self : Dict ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowercase_ :List[Any] = self.rust_tokenizer_class.from_pretrained(lowercase , **lowercase ) lowercase_ :Dict = self.tokenizer_class.from_pretrained(lowercase , **lowercase ) lowercase_ :str = "A, <mask> AllenNLP sentence." lowercase_ :Tuple = tokenizer_r.encode_plus(lowercase , add_special_tokens=lowercase , return_token_type_ids=lowercase ) lowercase_ :str = tokenizer_p.encode_plus(lowercase , add_special_tokens=lowercase , return_token_type_ids=lowercase ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) lowercase_ :Any = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) lowercase_ :Union[str, Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( lowercase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( lowercase , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) def lowercase__ ( self : Dict ): """simple docstring""" for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): lowercase_ :List[Any] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) lowercase_ :int = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) lowercase_ :Any = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["add_prefix_space"] , lowercase ) self.assertEqual(post_processor_state["add_prefix_space"] , lowercase ) self.assertEqual(post_processor_state["trim_offsets"] , lowercase ) def lowercase__ ( self : Optional[Any] ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): lowercase_ :Tuple = "hello" # `hello` is a token in the vocabulary of `pretrained_name` lowercase_ :Optional[Any] = F'{text_of_1_token} {text_of_1_token}' lowercase_ :int = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) lowercase_ :Optional[int] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ) + 1, len(lowercase ) + 1 + len(lowercase )) , ) lowercase_ :Dict = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) lowercase_ :List[Any] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ) + 1, len(lowercase ) + 1 + len(lowercase )) , ) lowercase_ :Any = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) lowercase_ :Optional[Any] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ), len(lowercase ) + 1 + len(lowercase )) , ) lowercase_ :List[str] = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) lowercase_ :List[Any] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowercase ), len(lowercase ) + 1 + len(lowercase )) , ) lowercase_ :Dict = F' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) lowercase_ :Optional[Any] = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) lowercase_ :Optional[Any] = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase ) + 1, 1 + len(lowercase ) + 1 + len(lowercase )) , ) lowercase_ :Union[str, Any] = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) lowercase_ :Dict = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase ), 1 + len(lowercase ) + 1 + len(lowercase )) , ) lowercase_ :Optional[int] = self.rust_tokenizer_class.from_pretrained( lowercase , use_fast=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase ) lowercase_ :Dict = tokenizer_r(lowercase , return_offsets_mapping=lowercase , add_special_tokens=lowercase ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowercase )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowercase ), 1 + len(lowercase ) + 1 + len(lowercase )) , )
223
0
from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : Optional[Any] , __A : int ): snake_case__ : Optional[Any] = num_of_nodes snake_case__ : list[list[int]] = [] snake_case__ : dict[int, int] = {} def _lowercase ( self : Optional[int] , __A : int , __A : int , __A : int ): self.m_edges.append([u_node, v_node, weight] ) def _lowercase ( self : int , __A : int ): if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _lowercase ( self : Dict , __A : int ): if self.m_component[u_node] != u_node: for k in self.m_component: snake_case__ : Any = self.find_component(__A ) def _lowercase ( self : Tuple , __A : list[int] , __A : int , __A : int ): if component_size[u_node] <= component_size[v_node]: snake_case__ : int = v_node component_size[v_node] += component_size[u_node] self.set_component(__A ) elif component_size[u_node] >= component_size[v_node]: snake_case__ : Optional[Any] = self.find_component(__A ) component_size[u_node] += component_size[v_node] self.set_component(__A ) def _lowercase ( self : str ): snake_case__ : Tuple = [] snake_case__ : Union[str, Any] = 0 snake_case__ : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) snake_case__ : List[Any] = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: snake_case__, snake_case__, snake_case__ : str = edge snake_case__ : Any = self.m_component[u] snake_case__ : Any = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): snake_case__ : Optional[Any] = [u, v, w] for edge in minimum_weight_edge: if isinstance(__A , __A ): snake_case__, snake_case__, snake_case__ : List[str] = edge snake_case__ : List[Any] = self.m_component[u] snake_case__ : str = self.m_component[v] if u_component != v_component: mst_weight += w self.union(__A , __A , __A ) print(f'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' ) num_of_components -= 1 snake_case__ : Union[str, Any] = [-1] * self.m_num_of_nodes print(f'''The total weight of the minimal spanning tree is: {mst_weight}''' ) def SCREAMING_SNAKE_CASE ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
286
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( """pipelines_utils""", """0.22.0""", """Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""", standard_warn=False, stacklevel=3, )
286
1
"""simple docstring""" import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _A ( unittest.TestCase ): """simple docstring""" UpperCAmelCase : str = MODEL_FOR_MASKED_LM_MAPPING UpperCAmelCase : Any = TF_MODEL_FOR_MASKED_LM_MAPPING def __snake_case ( self : Tuple): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def __snake_case ( self : Optional[int]): a : Any = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="tf") a : Any = unmasker("My name is <mask>") self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6) , [ {"sequence": "My name is grouped", "score": 2.1e-05, "token": 38015, "token_str": " grouped"}, {"sequence": "My name is accuser", "score": 2.1e-05, "token": 25506, "token_str": " accuser"}, ] , ) a : Any = unmasker("The largest city in France is <mask>") self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6) , [ { "sequence": "The largest city in France is grouped", "score": 2.1e-05, "token": 38015, "token_str": " grouped", }, { "sequence": "The largest city in France is accuser", "score": 2.1e-05, "token": 25506, "token_str": " accuser", }, ] , ) a : Dict = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6) , [ {"sequence": "My name is Clara", "score": 2e-05, "token": 13606, "token_str": " Clara"}, {"sequence": "My name is Patrick", "score": 2e-05, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 1.9e-05, "token": 2941, "token_str": " Te"}, ] , ) @require_torch def __snake_case ( self : Optional[int]): a : str = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="pt") a : Optional[Any] = unmasker("My name is <mask>") self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6) , [ {"sequence": "My name is Maul", "score": 2.2e-05, "token": 35676, "token_str": " Maul"}, {"sequence": "My name isELS", "score": 2.2e-05, "token": 16416, "token_str": "ELS"}, ] , ) a : Dict = unmasker("The largest city in France is <mask>") self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6) , [ { "sequence": "The largest city in France is Maul", "score": 2.2e-05, "token": 35676, "token_str": " Maul", }, {"sequence": "The largest city in France isELS", "score": 2.2e-05, "token": 16416, "token_str": "ELS"}, ] , ) a : Optional[Any] = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6) , [ {"sequence": "My name is Patrick", "score": 2.1e-05, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 2e-05, "token": 2941, "token_str": " Te"}, {"sequence": "My name is Clara", "score": 2e-05, "token": 13606, "token_str": " Clara"}, ] , ) a : Optional[int] = unmasker("My name is <mask> <mask>" , top_k=2) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=6) , [ [ { "score": 2.2e-05, "token": 35676, "token_str": " Maul", "sequence": "<s>My name is Maul<mask></s>", }, {"score": 2.2e-05, "token": 16416, "token_str": "ELS", "sequence": "<s>My name isELS<mask></s>"}, ], [ { "score": 2.2e-05, "token": 35676, "token_str": " Maul", "sequence": "<s>My name is<mask> Maul</s>", }, {"score": 2.2e-05, "token": 16416, "token_str": "ELS", "sequence": "<s>My name is<mask>ELS</s>"}, ], ] , ) @require_torch_gpu def __snake_case ( self : int): a : int = pipeline("fill-mask" , model="hf-internal-testing/tiny-random-distilbert" , device=0 , framework="pt") # convert model to fp16 pipe.model.half() a : Tuple = pipe("Paris is the [MASK] of France.") # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(__UpperCAmelCase , __UpperCAmelCase) @slow @require_torch def __snake_case ( self : Dict): a : Any = pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="pt") self.run_large_test(__UpperCAmelCase) @slow @require_tf def __snake_case ( self : Optional[int]): a : List[Any] = pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="tf") self.run_large_test(__UpperCAmelCase) def __snake_case ( self : int , __UpperCAmelCase : Optional[int]): a : Tuple = unmasker("My name is <mask>") self.assertEqual( nested_simplify(__UpperCAmelCase) , [ {"sequence": "My name is John", "score": 0.008, "token": 610, "token_str": " John"}, {"sequence": "My name is Chris", "score": 0.007, "token": 1573, "token_str": " Chris"}, ] , ) a : List[str] = unmasker("The largest city in France is <mask>") self.assertEqual( nested_simplify(__UpperCAmelCase) , [ { "sequence": "The largest city in France is Paris", "score": 0.251, "token": 2201, "token_str": " Paris", }, { "sequence": "The largest city in France is Lyon", "score": 0.214, "token": 12790, "token_str": " Lyon", }, ] , ) a : int = unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3) self.assertEqual( nested_simplify(__UpperCAmelCase) , [ {"sequence": "My name is Patrick", "score": 0.005, "token": 3499, "token_str": " Patrick"}, {"sequence": "My name is Clara", "score": 0.000, "token": 13606, "token_str": " Clara"}, {"sequence": "My name is Te", "score": 0.000, "token": 2941, "token_str": " Te"}, ] , ) @require_torch def __snake_case ( self : Union[str, Any]): a : Any = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="pt") a : Dict = None a : str = None self.run_pipeline_test(__UpperCAmelCase , []) @require_tf def __snake_case ( self : Tuple): a : Optional[int] = pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="tf") a : Tuple = None a : Optional[Any] = None self.run_pipeline_test(__UpperCAmelCase , []) def __snake_case ( self : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any]): if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("The provided tokenizer has no mask token, (probably reformer or wav2vec2)") a : Optional[Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase) a : Dict = [ f'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def __snake_case ( self : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any]): a : Union[str, Any] = fill_masker.tokenizer a : Union[str, Any] = fill_masker.model a : Union[str, Any] = fill_masker( f'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( __UpperCAmelCase , [ {"sequence": ANY(__UpperCAmelCase), "score": ANY(__UpperCAmelCase), "token": ANY(__UpperCAmelCase), "token_str": ANY(__UpperCAmelCase)}, {"sequence": ANY(__UpperCAmelCase), "score": ANY(__UpperCAmelCase), "token": ANY(__UpperCAmelCase), "token_str": ANY(__UpperCAmelCase)}, {"sequence": ANY(__UpperCAmelCase), "score": ANY(__UpperCAmelCase), "token": ANY(__UpperCAmelCase), "token_str": ANY(__UpperCAmelCase)}, {"sequence": ANY(__UpperCAmelCase), "score": ANY(__UpperCAmelCase), "token": ANY(__UpperCAmelCase), "token_str": ANY(__UpperCAmelCase)}, {"sequence": ANY(__UpperCAmelCase), "score": ANY(__UpperCAmelCase), "token": ANY(__UpperCAmelCase), "token_str": ANY(__UpperCAmelCase)}, ] , ) a : List[Any] = fill_masker([f'''This is a {tokenizer.mask_token}''']) self.assertEqual( __UpperCAmelCase , [ {"sequence": ANY(__UpperCAmelCase), "score": ANY(__UpperCAmelCase), "token": ANY(__UpperCAmelCase), "token_str": ANY(__UpperCAmelCase)}, {"sequence": ANY(__UpperCAmelCase), "score": ANY(__UpperCAmelCase), "token": ANY(__UpperCAmelCase), "token_str": ANY(__UpperCAmelCase)}, {"sequence": ANY(__UpperCAmelCase), "score": ANY(__UpperCAmelCase), "token": ANY(__UpperCAmelCase), "token_str": ANY(__UpperCAmelCase)}, {"sequence": ANY(__UpperCAmelCase), "score": ANY(__UpperCAmelCase), "token": ANY(__UpperCAmelCase), "token_str": ANY(__UpperCAmelCase)}, {"sequence": ANY(__UpperCAmelCase), "score": ANY(__UpperCAmelCase), "token": ANY(__UpperCAmelCase), "token_str": ANY(__UpperCAmelCase)}, ] , ) a : List[str] = fill_masker([f'''This is a {tokenizer.mask_token}''', f'''Another {tokenizer.mask_token} great test.''']) self.assertEqual( __UpperCAmelCase , [ [ {"sequence": ANY(__UpperCAmelCase), "score": ANY(__UpperCAmelCase), "token": ANY(__UpperCAmelCase), "token_str": ANY(__UpperCAmelCase)}, {"sequence": ANY(__UpperCAmelCase), "score": ANY(__UpperCAmelCase), "token": ANY(__UpperCAmelCase), "token_str": ANY(__UpperCAmelCase)}, {"sequence": ANY(__UpperCAmelCase), "score": ANY(__UpperCAmelCase), "token": ANY(__UpperCAmelCase), "token_str": ANY(__UpperCAmelCase)}, {"sequence": ANY(__UpperCAmelCase), "score": ANY(__UpperCAmelCase), "token": ANY(__UpperCAmelCase), "token_str": ANY(__UpperCAmelCase)}, {"sequence": ANY(__UpperCAmelCase), "score": ANY(__UpperCAmelCase), "token": ANY(__UpperCAmelCase), "token_str": ANY(__UpperCAmelCase)}, ], [ {"sequence": ANY(__UpperCAmelCase), "score": ANY(__UpperCAmelCase), "token": ANY(__UpperCAmelCase), "token_str": ANY(__UpperCAmelCase)}, {"sequence": ANY(__UpperCAmelCase), "score": ANY(__UpperCAmelCase), "token": ANY(__UpperCAmelCase), "token_str": ANY(__UpperCAmelCase)}, {"sequence": ANY(__UpperCAmelCase), "score": ANY(__UpperCAmelCase), "token": ANY(__UpperCAmelCase), "token_str": ANY(__UpperCAmelCase)}, {"sequence": ANY(__UpperCAmelCase), "score": ANY(__UpperCAmelCase), "token": ANY(__UpperCAmelCase), "token_str": ANY(__UpperCAmelCase)}, {"sequence": ANY(__UpperCAmelCase), "score": ANY(__UpperCAmelCase), "token": ANY(__UpperCAmelCase), "token_str": ANY(__UpperCAmelCase)}, ], ] , ) with self.assertRaises(__UpperCAmelCase): fill_masker([None]) # No mask_token is not supported with self.assertRaises(__UpperCAmelCase): fill_masker("This is") self.run_test_top_k(__UpperCAmelCase , __UpperCAmelCase) self.run_test_targets(__UpperCAmelCase , __UpperCAmelCase) self.run_test_top_k_targets(__UpperCAmelCase , __UpperCAmelCase) self.fill_mask_with_duplicate_targets_and_top_k(__UpperCAmelCase , __UpperCAmelCase) self.fill_mask_with_multiple_masks(__UpperCAmelCase , __UpperCAmelCase) def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : int): a : str = tokenizer.get_vocab() a : Any = sorted(vocab.keys())[:2] # Pipeline argument a : List[str] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , targets=__UpperCAmelCase) a : Optional[int] = fill_masker(f'''This is a {tokenizer.mask_token}''') self.assertEqual( __UpperCAmelCase , [ {"sequence": ANY(__UpperCAmelCase), "score": ANY(__UpperCAmelCase), "token": ANY(__UpperCAmelCase), "token_str": ANY(__UpperCAmelCase)}, {"sequence": ANY(__UpperCAmelCase), "score": ANY(__UpperCAmelCase), "token": ANY(__UpperCAmelCase), "token_str": ANY(__UpperCAmelCase)}, ] , ) a : int = {vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , __UpperCAmelCase) a : Tuple = [tokenizer.decode([x]) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(__UpperCAmelCase)) # Call argument a : Union[str, Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase) a : str = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=__UpperCAmelCase) self.assertEqual( __UpperCAmelCase , [ {"sequence": ANY(__UpperCAmelCase), "score": ANY(__UpperCAmelCase), "token": ANY(__UpperCAmelCase), "token_str": ANY(__UpperCAmelCase)}, {"sequence": ANY(__UpperCAmelCase), "score": ANY(__UpperCAmelCase), "token": ANY(__UpperCAmelCase), "token_str": ANY(__UpperCAmelCase)}, ] , ) a : Any = {vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , __UpperCAmelCase) a : List[Any] = [tokenizer.decode([x]) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(__UpperCAmelCase)) # Score equivalence a : Any = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=__UpperCAmelCase) a : Optional[Any] = [top_mask["token_str"] for top_mask in outputs] a : List[Any] = [top_mask["score"] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__UpperCAmelCase) == set(__UpperCAmelCase): a : int = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=__UpperCAmelCase) a : List[str] = [top_mask["score"] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(__UpperCAmelCase) , nested_simplify(__UpperCAmelCase)) # Raises with invalid with self.assertRaises(__UpperCAmelCase): a : int = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[]) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(__UpperCAmelCase): a : List[Any] = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets=[""]) with self.assertRaises(__UpperCAmelCase): a : Union[str, Any] = fill_masker(f'''This is a {tokenizer.mask_token}''' , targets="") def __snake_case ( self : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str): a : List[str] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase , top_k=2) a : str = fill_masker(f'''This is a {tokenizer.mask_token}''') self.assertEqual( __UpperCAmelCase , [ {"sequence": ANY(__UpperCAmelCase), "score": ANY(__UpperCAmelCase), "token": ANY(__UpperCAmelCase), "token_str": ANY(__UpperCAmelCase)}, {"sequence": ANY(__UpperCAmelCase), "score": ANY(__UpperCAmelCase), "token": ANY(__UpperCAmelCase), "token_str": ANY(__UpperCAmelCase)}, ] , ) a : Union[str, Any] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase) a : Optional[int] = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2) self.assertEqual( __UpperCAmelCase , [ {"sequence": ANY(__UpperCAmelCase), "score": ANY(__UpperCAmelCase), "token": ANY(__UpperCAmelCase), "token_str": ANY(__UpperCAmelCase)}, {"sequence": ANY(__UpperCAmelCase), "score": ANY(__UpperCAmelCase), "token": ANY(__UpperCAmelCase), "token_str": ANY(__UpperCAmelCase)}, ] , ) self.assertEqual(nested_simplify(__UpperCAmelCase) , nested_simplify(__UpperCAmelCase)) def __snake_case ( self : Any , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : str): a : Tuple = tokenizer.get_vocab() a : List[str] = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase) # top_k=2, ntargets=3 a : Dict = sorted(vocab.keys())[:3] a : int = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=__UpperCAmelCase) # If we use the most probably targets, and filter differently, we should still # have the same results a : Union[str, Any] = [el["token_str"] for el in sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase: x["score"] , reverse=__UpperCAmelCase)] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(__UpperCAmelCase).issubset(__UpperCAmelCase): a : Tuple = fill_masker(f'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=__UpperCAmelCase) # They should yield exactly the same result self.assertEqual(nested_simplify(__UpperCAmelCase) , nested_simplify(__UpperCAmelCase)) def __snake_case ( self : int , __UpperCAmelCase : Any , __UpperCAmelCase : Any): a : str = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase) a : str = tokenizer.get_vocab() # String duplicates + id duplicates a : List[Any] = sorted(vocab.keys())[:3] a : Dict = [targets[0], targets[1], targets[0], targets[2], targets[1]] a : Union[str, Any] = fill_masker(f'''My name is {tokenizer.mask_token}''' , targets=__UpperCAmelCase , top_k=10) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(__UpperCAmelCase) , 3) def __snake_case ( self : Optional[int] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any]): a : Dict = FillMaskPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase) a : Tuple = fill_masker( f'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2) self.assertEqual( __UpperCAmelCase , [ [ {"sequence": ANY(__UpperCAmelCase), "score": ANY(__UpperCAmelCase), "token": ANY(__UpperCAmelCase), "token_str": ANY(__UpperCAmelCase)}, {"sequence": ANY(__UpperCAmelCase), "score": ANY(__UpperCAmelCase), "token": ANY(__UpperCAmelCase), "token_str": ANY(__UpperCAmelCase)}, ], [ {"sequence": ANY(__UpperCAmelCase), "score": ANY(__UpperCAmelCase), "token": ANY(__UpperCAmelCase), "token_str": ANY(__UpperCAmelCase)}, {"sequence": ANY(__UpperCAmelCase), "score": ANY(__UpperCAmelCase), "token": ANY(__UpperCAmelCase), "token_str": ANY(__UpperCAmelCase)}, ], [ {"sequence": ANY(__UpperCAmelCase), "score": ANY(__UpperCAmelCase), "token": ANY(__UpperCAmelCase), "token_str": ANY(__UpperCAmelCase)}, {"sequence": ANY(__UpperCAmelCase), "score": ANY(__UpperCAmelCase), "token": ANY(__UpperCAmelCase), "token_str": ANY(__UpperCAmelCase)}, ], ] , )
40
"""simple docstring""" from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function __UpperCAmelCase = 1.054571817e-34 # unit of ℏ : J * s __UpperCAmelCase = 3e8 # unit of c : m * s^-1 def _snake_case ( lowercase__ : float , lowercase__ : float , lowercase__ : float ) -> dict[str, float]: '''simple docstring''' if (force, area, distance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if force < 0: raise ValueError("""Magnitude of force can not be negative""" ) if distance < 0: raise ValueError("""Distance can not be negative""" ) if area < 0: raise ValueError("""Area can not be negative""" ) if force == 0: lowerCAmelCase_ :Union[str, Any] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 2_4_0 * (distance) ** 4 ) return {"force": force} elif area == 0: lowerCAmelCase_ :Optional[Any] = (2_4_0 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: lowerCAmelCase_ :Any = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_4_0 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError("""One and only one argument must be 0""" ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
84
0
'''simple docstring''' def _A ( A__ ): """simple docstring""" __lowercase = '''''' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def _A ( A__ ): """simple docstring""" __lowercase = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __lowercase = remove_duplicates(key.upper() ) __lowercase = len(A__ ) # First fill cipher with key characters __lowercase = {alphabet[i]: char for i, char in enumerate(A__ )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(A__ ) , 26 ): __lowercase = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __lowercase = alphabet[i - offset] __lowercase = char return cipher_alphabet def _A ( A__ , A__ ): """simple docstring""" return "".join(cipher_map.get(A__ , A__ ) for ch in message.upper() ) def _A ( A__ , A__ ): """simple docstring""" __lowercase = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(A__ , A__ ) for ch in message.upper() ) def _A ( ): """simple docstring""" __lowercase = input('''Enter message to encode or decode: ''' ).strip() __lowercase = input('''Enter keyword: ''' ).strip() __lowercase = input('''Encipher or decipher? E/D:''' ).strip()[0].lower() try: __lowercase = {'''e''': encipher, '''d''': decipher}[option] except KeyError: raise KeyError('''invalid input option''' ) __lowercase = create_cipher_map(A__ ) print(func(A__ , A__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
52
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''EleutherAI/gpt-neo-1.3B''': '''https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json''', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = 'gpt_neo' SCREAMING_SNAKE_CASE : Any = ['past_key_values'] SCREAMING_SNAKE_CASE : Union[str, Any] = {'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'} def __init__( self : Any ,lowercase__ : Tuple=5_0_2_5_7 ,lowercase__ : Union[str, Any]=2_0_4_8 ,lowercase__ : List[Any]=2_0_4_8 ,lowercase__ : Optional[Any]=2_4 ,lowercase__ : Union[str, Any]=[[["global", "local"], 1_2]] ,lowercase__ : List[Any]=1_6 ,lowercase__ : Optional[Any]=None ,lowercase__ : Optional[int]=2_5_6 ,lowercase__ : Union[str, Any]="gelu_new" ,lowercase__ : Tuple=0.0 ,lowercase__ : List[str]=0.0 ,lowercase__ : Dict=0.0 ,lowercase__ : Union[str, Any]=0.1 ,lowercase__ : List[str]=1e-5 ,lowercase__ : Dict=0.0_2 ,lowercase__ : str=True ,lowercase__ : int=5_0_2_5_6 ,lowercase__ : Any=5_0_2_5_6 ,**lowercase__ : Optional[Any] ,): __lowercase = vocab_size __lowercase = max_position_embeddings __lowercase = hidden_size __lowercase = num_layers __lowercase = num_heads __lowercase = intermediate_size __lowercase = window_size __lowercase = activation_function __lowercase = resid_dropout __lowercase = embed_dropout __lowercase = attention_dropout __lowercase = classifier_dropout __lowercase = layer_norm_epsilon __lowercase = initializer_range __lowercase = use_cache __lowercase = bos_token_id __lowercase = eos_token_id __lowercase = attention_types __lowercase = self.expand_attention_types_params(lowercase__ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( '''Configuration for convolutional module is incorrect. ''' '''It is required that `len(config.attention_layers)` == `config.num_layers` ''' F"but is `len(config.attention_layers) = {len(self.attention_layers )}`, " F"`config.num_layers = {self.num_layers}`. " '''`config.attention_layers` is prepared using `config.attention_types`. ''' '''Please verify the value of `config.attention_types` argument.''' ) super().__init__(bos_token_id=lowercase__ ,eos_token_id=lowercase__ ,**lowercase__ ) @staticmethod def SCREAMING_SNAKE_CASE ( lowercase__ : Tuple ): __lowercase = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def _A ( A__ , A__ , A__ , A__ ): """simple docstring""" import torch __lowercase = input.size() __lowercase = len(A__ ) __lowercase = shape[dimension] __lowercase = torch.arange(0 , A__ , A__ ) __lowercase = torch.div(sizedim - size , A__ , rounding_mode='''floor''' ) + 1 __lowercase = torch.arange(A__ ) + low_indices[:min_length][:, None] __lowercase = [slice(A__ )] * rank __lowercase = indices __lowercase = input[s] __lowercase = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(A__ ) def _A ( A__ , A__ ): """simple docstring""" import torch __lowercase = torch.arange(1 , A__ ) __lowercase = torch.remainder(A__ , A__ ) __lowercase = remainders == 0 __lowercase = candidates[divisor_indices] __lowercase = torch.max(A__ ) return largest_divisor, torch.div(A__ , A__ , rounding_mode='''floor''' ) class lowercase_ (lowerCamelCase__ ): """simple docstring""" @property def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(lowercase__ ,direction='''inputs''' ) __lowercase = {0: '''batch''', 1: '''past_sequence + sequence'''} else: __lowercase = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def SCREAMING_SNAKE_CASE ( self : List[str] ): return self._config.num_heads def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : PreTrainedTokenizer ,lowercase__ : int = -1 ,lowercase__ : int = -1 ,lowercase__ : bool = False ,lowercase__ : Optional[TensorType] = None ,): __lowercase = super(lowercase__ ,self ).generate_dummy_inputs( lowercase__ ,batch_size=lowercase__ ,seq_length=lowercase__ ,is_pair=lowercase__ ,framework=lowercase__ ) # We need to order the input in the way they appears in the forward() __lowercase = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowercase , __lowercase = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __lowercase = seqlen + 2 __lowercase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowercase = [ (torch.zeros(lowercase__ ), torch.zeros(lowercase__ )) for _ in range(self.num_layers ) ] __lowercase = common_inputs['''attention_mask'''] if self.use_past: __lowercase = ordered_inputs['''attention_mask'''].dtype __lowercase = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(lowercase__ ,lowercase__ ,dtype=lowercase__ )] ,dim=1 ) return ordered_inputs @property def SCREAMING_SNAKE_CASE ( self : Any ): return 1_3
52
1
"""simple docstring""" import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __a = logging.get_logger(__name__) __a = "▁" __a = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", } __a = { "vocab_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json" ), }, "spm_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model" ) }, } __a = { "facebook/s2t-small-librispeech-asr": 10_24, } __a = ["pt", "fr", "ru", "nl", "ro", "it", "es", "de"] __a = {"mustc": MUSTC_LANGS} class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' _A : int = VOCAB_FILES_NAMES _A : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _A : int = MAX_MODEL_INPUT_SIZES _A : Dict = ["""input_ids""", """attention_mask"""] _A : List[int] = [] def __init__( self: Dict , snake_case: List[str] , snake_case: Tuple , snake_case: List[Any]="<s>" , snake_case: List[Any]="</s>" , snake_case: Optional[int]="<pad>" , snake_case: Any="<unk>" , snake_case: Tuple=False , snake_case: List[Any]=False , snake_case: int=None , snake_case: Optional[Any]=None , snake_case: Optional[Dict[str, Any]] = None , **snake_case: Tuple , ) -> None: snake_case_ :Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , pad_token=snake_case , do_upper_case=snake_case , do_lower_case=snake_case , tgt_lang=snake_case , lang_codes=snake_case , sp_model_kwargs=self.sp_model_kwargs , **snake_case , ) snake_case_ :Union[str, Any] = do_upper_case snake_case_ :int = do_lower_case snake_case_ :List[str] = load_json(snake_case ) snake_case_ :Union[str, Any] = {v: k for k, v in self.encoder.items()} snake_case_ :Optional[int] = spm_file snake_case_ :List[str] = load_spm(snake_case , self.sp_model_kwargs ) if lang_codes is not None: snake_case_ :Tuple = lang_codes snake_case_ :List[Any] = LANGUAGES[lang_codes] snake_case_ :Union[str, Any] = [f"""<lang:{lang}>""" for lang in self.langs] snake_case_ :str = {lang: self.sp_model.PieceToId(f"""<lang:{lang}>""" ) for lang in self.langs} snake_case_ :Optional[int] = self.lang_tokens snake_case_ :Dict = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: snake_case_ :int = {} @property def lowerCAmelCase_ ( self: List[str] ) -> int: return len(self.encoder ) @property def lowerCAmelCase_ ( self: Dict ) -> str: return self._tgt_lang @tgt_lang.setter def lowerCAmelCase_ ( self: str , snake_case: str ) -> None: snake_case_ :Any = new_tgt_lang self.set_tgt_lang_special_tokens(snake_case ) def lowerCAmelCase_ ( self: Dict , snake_case: str ) -> None: snake_case_ :str = self.lang_code_to_id[tgt_lang] snake_case_ :List[Any] = [lang_code_id] def lowerCAmelCase_ ( self: int , snake_case: str ) -> List[str]: return self.sp_model.encode(snake_case , out_type=snake_case ) def lowerCAmelCase_ ( self: Optional[Any] , snake_case: Optional[int] ) -> List[str]: return self.encoder.get(snake_case , self.encoder[self.unk_token] ) def lowerCAmelCase_ ( self: Union[str, Any] , snake_case: int ) -> str: return self.decoder.get(snake_case , self.unk_token ) def lowerCAmelCase_ ( self: Dict , snake_case: List[str] ) -> str: snake_case_ :Optional[int] = [] snake_case_ :Union[str, Any] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: snake_case_ :Any = self.sp_model.decode(snake_case ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " snake_case_ :List[str] = [] else: current_sub_tokens.append(snake_case ) snake_case_ :Any = self.sp_model.decode(snake_case ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def lowerCAmelCase_ ( self: Union[str, Any] , snake_case: str , snake_case: Any=None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def lowerCAmelCase_ ( self: Tuple , snake_case: List[int] , snake_case: Optional[List[int]] = None , snake_case: bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case , token_ids_a=snake_case , already_has_special_tokens=snake_case ) snake_case_ :Union[str, Any] = [1] * len(self.prefix_tokens ) snake_case_ :Any = [1] if token_ids_a is None: return prefix_ones + ([0] * len(snake_case )) + suffix_ones return prefix_ones + ([0] * len(snake_case )) + ([0] * len(snake_case )) + suffix_ones def lowerCAmelCase_ ( self: Any ) -> Dict: snake_case_ :List[str] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self: Dict ) -> Dict: snake_case_ :Union[str, Any] = self.__dict__.copy() snake_case_ :List[Any] = None return state def __setstate__( self: Union[str, Any] , snake_case: Dict ) -> None: snake_case_ :List[Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case_ :int = {} snake_case_ :Optional[Any] = load_spm(self.spm_file , self.sp_model_kwargs ) def lowerCAmelCase_ ( self: Union[str, Any] , snake_case: str , snake_case: Optional[str] = None ) -> Tuple[str]: snake_case_ :Optional[Any] = Path(snake_case ) assert save_dir.is_dir(), f"""{save_directory} should be a directory""" snake_case_ :int = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) snake_case_ :Union[str, Any] = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , snake_case ) if os.path.abspath(self.spm_file ) != os.path.abspath(snake_case ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , snake_case ) elif not os.path.isfile(self.spm_file ): with open(snake_case , """wb""" ) as fi: snake_case_ :Optional[int] = self.sp_model.serialized_model_proto() fi.write(snake_case ) return (str(snake_case ), str(snake_case )) def A_ ( _lowercase, _lowercase ): '''simple docstring''' snake_case_ :Any = sentencepiece.SentencePieceProcessor(**_lowercase ) spm.Load(str(_lowercase ) ) return spm def A_ ( _lowercase ): '''simple docstring''' with open(_lowercase, """r""" ) as f: return json.load(_lowercase ) def A_ ( _lowercase, _lowercase ): '''simple docstring''' with open(_lowercase, """w""" ) as f: json.dump(_lowercase, _lowercase, indent=2 )
66
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class lowerCamelCase : '''simple docstring''' def __init__( self: Dict , snake_case: Optional[Any] , snake_case: Tuple=13 , snake_case: Any=32 , snake_case: Union[str, Any]=2 , snake_case: Tuple=3 , snake_case: Union[str, Any]=16 , snake_case: Union[str, Any]=[1, 2, 1] , snake_case: Optional[Any]=[2, 2, 4] , snake_case: str=2 , snake_case: List[str]=2.0 , snake_case: Optional[int]=True , snake_case: Union[str, Any]=0.0 , snake_case: Optional[int]=0.0 , snake_case: Optional[Any]=0.1 , snake_case: List[str]="gelu" , snake_case: Any=False , snake_case: Optional[Any]=True , snake_case: Optional[int]=0.0_2 , snake_case: Any=1E-5 , snake_case: Optional[int]=True , snake_case: int=None , snake_case: Any=True , snake_case: str=10 , snake_case: Optional[Any]=8 , snake_case: Union[str, Any]=["stage1", "stage2", "stage3"] , snake_case: Tuple=[1, 2, 3] , ) -> Dict: snake_case_ :Dict = parent snake_case_ :List[Any] = batch_size snake_case_ :Dict = image_size snake_case_ :Dict = patch_size snake_case_ :Tuple = num_channels snake_case_ :List[Any] = embed_dim snake_case_ :List[str] = depths snake_case_ :str = num_heads snake_case_ :Tuple = window_size snake_case_ :Tuple = mlp_ratio snake_case_ :int = qkv_bias snake_case_ :Tuple = hidden_dropout_prob snake_case_ :Optional[Any] = attention_probs_dropout_prob snake_case_ :Dict = drop_path_rate snake_case_ :Any = hidden_act snake_case_ :Any = use_absolute_embeddings snake_case_ :int = patch_norm snake_case_ :List[Any] = layer_norm_eps snake_case_ :Tuple = initializer_range snake_case_ :str = is_training snake_case_ :int = scope snake_case_ :Tuple = use_labels snake_case_ :Tuple = type_sequence_label_size snake_case_ :str = encoder_stride snake_case_ :List[Any] = out_features snake_case_ :str = out_indices def lowerCAmelCase_ ( self: Tuple ) -> Dict: snake_case_ :Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ :str = None if self.use_labels: snake_case_ :Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ :Union[str, Any] = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self: int ) -> Optional[Any]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowerCAmelCase_ ( self: List[Any] , snake_case: str , snake_case: int , snake_case: List[str] ) -> Any: snake_case_ :Dict = MaskFormerSwinModel(config=snake_case ) model.to(snake_case ) model.eval() snake_case_ :Tuple = model(snake_case ) snake_case_ :Dict = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) snake_case_ :Any = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowerCAmelCase_ ( self: Optional[Any] , snake_case: int , snake_case: List[str] , snake_case: Tuple ) -> Union[str, Any]: snake_case_ :Any = MaskFormerSwinBackbone(config=snake_case ) model.to(snake_case ) model.eval() snake_case_ :Optional[Any] = model(snake_case ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(snake_case ): snake_case_ :Optional[Any] = ["""stem"""] snake_case_ :str = MaskFormerSwinBackbone(config=snake_case ) def lowerCAmelCase_ ( self: List[str] ) -> Optional[Any]: snake_case_ :Optional[int] = self.prepare_config_and_inputs() snake_case_, snake_case_, snake_case_ :str = config_and_inputs snake_case_ :Tuple = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _A : Union[str, Any] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) _A : str = {"""feature-extraction""": MaskFormerSwinModel} if is_torch_available() else {} _A : List[str] = False _A : Any = False _A : Dict = False _A : List[Any] = False _A : Optional[int] = False def lowerCAmelCase_ ( self: Dict ) -> Any: snake_case_ :str = MaskFormerSwinModelTester(self ) snake_case_ :Optional[Any] = ConfigTester(self , config_class=snake_case , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( """`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with""" """ `nn.DataParallel`""" ) ) def lowerCAmelCase_ ( self: List[str] ) -> Optional[int]: pass def lowerCAmelCase_ ( self: Union[str, Any] ) -> Dict: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase_ ( self: Any ) -> Tuple: return def lowerCAmelCase_ ( self: Any ) -> Any: snake_case_ :List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def lowerCAmelCase_ ( self: Union[str, Any] ) -> int: snake_case_ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*snake_case ) @unittest.skip("""Swin does not use inputs_embeds""" ) def lowerCAmelCase_ ( self: str ) -> List[str]: pass @unittest.skip("""Swin does not support feedforward chunking""" ) def lowerCAmelCase_ ( self: int ) -> Optional[int]: pass def lowerCAmelCase_ ( self: List[str] ) -> List[Any]: snake_case_, snake_case_ :List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ :str = model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) snake_case_ :Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case , nn.Linear ) ) def lowerCAmelCase_ ( self: Tuple ) -> Dict: snake_case_, snake_case_ :int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ :Optional[int] = model_class(snake_case ) snake_case_ :str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ :str = [*signature.parameters.keys()] snake_case_ :str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , snake_case ) @unittest.skip(reason="""MaskFormerSwin is only used as backbone and doesn't support output_attentions""" ) def lowerCAmelCase_ ( self: List[Any] ) -> List[Any]: pass @unittest.skip(reason="""MaskFormerSwin is only used as an internal backbone""" ) def lowerCAmelCase_ ( self: Dict ) -> List[Any]: pass def lowerCAmelCase_ ( self: Union[str, Any] , snake_case: Union[str, Any] , snake_case: int , snake_case: Any , snake_case: List[str] ) -> str: snake_case_ :List[str] = model_class(snake_case ) model.to(snake_case ) model.eval() with torch.no_grad(): snake_case_ :List[Any] = model(**self._prepare_for_class(snake_case , snake_case ) ) snake_case_ :Any = outputs.hidden_states snake_case_ :Optional[int] = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(snake_case ) , snake_case ) # Swin has a different seq_length snake_case_ :str = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case_ :int = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowerCAmelCase_ ( self: List[Any] ) -> Optional[int]: snake_case_, snake_case_ :Any = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ :List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: snake_case_ :Tuple = True self.check_hidden_states_output(snake_case , snake_case , snake_case , snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ :List[Any] = True self.check_hidden_states_output(snake_case , snake_case , snake_case , snake_case ) def lowerCAmelCase_ ( self: Optional[Any] ) -> Tuple: snake_case_, snake_case_ :int = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ :List[Any] = 3 snake_case_ :List[Any] = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) snake_case_ :Any = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) snake_case_ :Tuple = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) snake_case_ :List[str] = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: snake_case_ :str = True self.check_hidden_states_output(snake_case , snake_case , snake_case , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ :Any = True self.check_hidden_states_output(snake_case , snake_case , snake_case , (padded_height, padded_width) ) @unittest.skip(reason="""MaskFormerSwin doesn't have pretrained checkpoints""" ) def lowerCAmelCase_ ( self: Union[str, Any] ) -> List[str]: pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def lowerCAmelCase_ ( self: List[str] ) -> str: pass @unittest.skip(reason="""This will be fixed once MaskFormerSwin is replaced by native Swin""" ) def lowerCAmelCase_ ( self: str ) -> List[Any]: pass def lowerCAmelCase_ ( self: Union[str, Any] ) -> Optional[Any]: snake_case_, snake_case_ :Dict = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(snake_case: str ): snake_case_ :Optional[int] = 0 return t def check_equivalence(snake_case: List[Any] , snake_case: Union[str, Any] , snake_case: int , snake_case: Tuple={} ): with torch.no_grad(): snake_case_ :List[Any] = model(**snake_case , return_dict=snake_case , **snake_case ) snake_case_ :Any = model(**snake_case , return_dict=snake_case , **snake_case ).to_tuple() def recursive_check(snake_case: List[Any] , snake_case: int ): if isinstance(snake_case , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(snake_case , snake_case ): recursive_check(snake_case , snake_case ) elif isinstance(snake_case , snake_case ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(snake_case , snake_case ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(snake_case ) , set_nan_tensor_to_zero(snake_case ) , atol=1E-5 ) , msg=( """Tuple and dict output are not equal. Difference:""" f""" {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:""" f""" {torch.isnan(snake_case ).any()} and `inf`: {torch.isinf(snake_case )}. Dict has""" f""" `nan`: {torch.isnan(snake_case ).any()} and `inf`: {torch.isinf(snake_case )}.""" ) , ) recursive_check(snake_case , snake_case ) for model_class in self.all_model_classes: snake_case_ :int = model_class(snake_case ) model.to(snake_case ) model.eval() snake_case_ :Any = self._prepare_for_class(snake_case , snake_case ) snake_case_ :List[Any] = self._prepare_for_class(snake_case , snake_case ) check_equivalence(snake_case , snake_case , snake_case ) snake_case_ :Tuple = self._prepare_for_class(snake_case , snake_case , return_labels=snake_case ) snake_case_ :Dict = self._prepare_for_class(snake_case , snake_case , return_labels=snake_case ) check_equivalence(snake_case , snake_case , snake_case ) snake_case_ :Tuple = self._prepare_for_class(snake_case , snake_case ) snake_case_ :Any = self._prepare_for_class(snake_case , snake_case ) check_equivalence(snake_case , snake_case , snake_case , {"""output_hidden_states""": True} ) snake_case_ :Dict = self._prepare_for_class(snake_case , snake_case , return_labels=snake_case ) snake_case_ :List[str] = self._prepare_for_class(snake_case , snake_case , return_labels=snake_case ) check_equivalence(snake_case , snake_case , snake_case , {"""output_hidden_states""": True} ) @require_torch class lowerCamelCase ( unittest.TestCase , _lowerCAmelCase ): '''simple docstring''' _A : int = (MaskFormerSwinBackbone,) if is_torch_available() else () _A : Tuple = MaskFormerSwinConfig def lowerCAmelCase_ ( self: List[str] ) -> Optional[int]: snake_case_ :Optional[Any] = MaskFormerSwinModelTester(self ) def lowerCAmelCase_ ( self: int ) -> Optional[int]: snake_case_, snake_case_ :Any = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ :Tuple = inputs_dict["""pixel_values"""].shape[0] for backbone_class in self.all_model_classes: snake_case_ :List[str] = backbone_class(snake_case ) backbone.to(snake_case ) backbone.eval() snake_case_ :List[Any] = backbone(**snake_case ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , snake_case ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True snake_case_ :Union[str, Any] = backbone(**snake_case , output_hidden_states=snake_case ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) snake_case_, snake_case_, snake_case_ :List[Any] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: snake_case_ :List[Any] = backbone(**snake_case , output_attentions=snake_case ) self.assertIsNotNone(outputs.attentions )
66
1
import math from collections.abc import Iterator from itertools import takewhile def SCREAMING_SNAKE_CASE_ ( __A : int ) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE_ ( ) -> Iterator[int]: """simple docstring""" a_ : Optional[int] = 2 while True: if is_prime(__A ): yield num num += 1 def SCREAMING_SNAKE_CASE_ ( __A : int = 2_00_00_00 ) -> int: """simple docstring""" return sum(takewhile(lambda __A : x < n , prime_generator() ) ) if __name__ == "__main__": print(F'{solution() = }')
120
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : Union[str, Any] = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Optional[Any] = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys UpperCAmelCase_ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
120
1
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
235
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys a__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
235
1
'''simple docstring''' import inspect import unittest import warnings from math import ceil, floor from transformers import LevitConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_MAPPING, LevitForImageClassification, LevitForImageClassificationWithTeacher, LevitModel, ) from transformers.models.levit.modeling_levit import LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LevitImageProcessor class _UpperCAmelCase ( __lowerCamelCase ): """simple docstring""" def lowerCAmelCase ( self : List[str] ): '''simple docstring''' _A = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__lowercase , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(__lowercase , "num_attention_heads" ) ) class _UpperCAmelCase : """simple docstring""" def __init__( self : Any , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any]=13 , __UpperCAmelCase : Optional[Any]=64 , __UpperCAmelCase : Tuple=3 , __UpperCAmelCase : Optional[Any]=3 , __UpperCAmelCase : Dict=2 , __UpperCAmelCase : Any=1 , __UpperCAmelCase : Optional[Any]=16 , __UpperCAmelCase : int=[128, 256, 384] , __UpperCAmelCase : Union[str, Any]=[4, 6, 8] , __UpperCAmelCase : Any=[2, 3, 4] , __UpperCAmelCase : str=[16, 16, 16] , __UpperCAmelCase : Dict=0 , __UpperCAmelCase : int=[2, 2, 2] , __UpperCAmelCase : Dict=[2, 2, 2] , __UpperCAmelCase : Any=0.02 , __UpperCAmelCase : Any=True , __UpperCAmelCase : Union[str, Any]=True , __UpperCAmelCase : Union[str, Any]=2 , ): '''simple docstring''' _A = parent _A = batch_size _A = image_size _A = num_channels _A = kernel_size _A = stride _A = padding _A = hidden_sizes _A = num_attention_heads _A = depths _A = key_dim _A = drop_path_rate _A = patch_size _A = attention_ratio _A = mlp_ratio _A = initializer_range _A = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] _A = is_training _A = use_labels _A = num_labels _A = initializer_range def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' _A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.num_labels ) _A = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self : Dict ): '''simple docstring''' return LevitConfig( image_size=self.image_size , num_channels=self.num_channels , kernel_size=self.kernel_size , stride=self.stride , padding=self.padding , patch_size=self.patch_size , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , depths=self.depths , key_dim=self.key_dim , drop_path_rate=self.drop_path_rate , mlp_ratio=self.mlp_ratio , attention_ratio=self.attention_ratio , initializer_range=self.initializer_range , down_ops=self.down_ops , ) def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Any , __UpperCAmelCase : str , __UpperCAmelCase : int ): '''simple docstring''' _A = LevitModel(config=__lowercase ) model.to(__lowercase ) model.eval() _A = model(__lowercase ) _A = (self.image_size, self.image_size) _A = image_size[0], image_size[1] for _ in range(4 ): _A = floor(((height + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) _A = floor(((width + 2 * self.padding - self.kernel_size) / self.stride) + 1 ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, ceil(height / 4 ) * ceil(width / 4 ), self.hidden_sizes[-1]) , ) def lowerCAmelCase ( self : Dict , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict ): '''simple docstring''' _A = self.num_labels _A = LevitForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() _A = model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _A = self.prepare_config_and_inputs() _A = config_and_inputs _A = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" snake_case = ( (LevitModel, LevitForImageClassification, LevitForImageClassificationWithTeacher) if is_torch_available() else () ) snake_case = ( { """feature-extraction""": LevitModel, """image-classification""": (LevitForImageClassification, LevitForImageClassificationWithTeacher), } if is_torch_available() else {} ) snake_case = False snake_case = False snake_case = False snake_case = False snake_case = False def lowerCAmelCase ( self : List[str] ): '''simple docstring''' _A = LevitModelTester(self ) _A = ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase , hidden_size=37 ) def lowerCAmelCase ( self : str ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' return @unittest.skip(reason="Levit does not use inputs_embeds" ) def lowerCAmelCase ( self : int ): '''simple docstring''' pass @unittest.skip(reason="Levit does not support input and output embeddings" ) def lowerCAmelCase ( self : Any ): '''simple docstring''' pass @unittest.skip(reason="Levit does not output attentions" ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' pass def lowerCAmelCase ( self : Any ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(__lowercase ) _A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __lowercase ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' def check_hidden_states_output(__UpperCAmelCase : Tuple , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] ): _A = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): _A = model(**self._prepare_for_class(__lowercase , __lowercase ) ) _A = outputs.hidden_states _A = len(self.model_tester.depths ) + 1 self.assertEqual(len(__lowercase ) , __lowercase ) _A = (self.model_tester.image_size, self.model_tester.image_size) _A = image_size[0], image_size[1] for _ in range(4 ): _A = floor( ( (height + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) _A = floor( ( (width + 2 * self.model_tester.padding - self.model_tester.kernel_size) / self.model_tester.stride ) + 1 ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [ height * width, self.model_tester.hidden_sizes[0], ] , ) _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' pass def lowerCAmelCase ( self : Tuple , __UpperCAmelCase : Dict , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any]=False ): '''simple docstring''' _A = super()._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) if return_labels: if model_class.__name__ == "LevitForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def lowerCAmelCase ( self : Tuple ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) def lowerCAmelCase ( self : Union[str, Any] ): '''simple docstring''' if not self.model_tester.is_training: return _A = self.model_tester.prepare_config_and_inputs_for_common() _A = True for model_class in self.all_model_classes: # LevitForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(__lowercase ) or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue _A = model_class(__lowercase ) model.to(__lowercase ) model.train() _A = self._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) _A = model(**__lowercase ).loss loss.backward() def lowerCAmelCase ( self : List[str] ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _A = False _A = True for model_class in self.all_model_classes: if model_class in get_values(__lowercase ) or not model_class.supports_gradient_checkpointing: continue # LevitForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "LevitForImageClassificationWithTeacher": continue _A = model_class(__lowercase ) model.gradient_checkpointing_enable() model.to(__lowercase ) model.train() _A = self._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) _A = model(**__lowercase ).loss loss.backward() def lowerCAmelCase ( self : List[Any] ): '''simple docstring''' _A = self.model_tester.prepare_config_and_inputs_for_common() _A = [ {'''title''': '''multi_label_classification''', '''num_labels''': 2, '''dtype''': torch.float}, {'''title''': '''single_label_classification''', '''num_labels''': 1, '''dtype''': torch.long}, {'''title''': '''regression''', '''num_labels''': 1, '''dtype''': torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(__lowercase ), ] or model_class.__name__ == "LevitForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f'''Testing {model_class} with {problem_type['title']}''' ): _A = problem_type['''title'''] _A = problem_type['''num_labels'''] _A = model_class(__lowercase ) model.to(__lowercase ) model.train() _A = self._prepare_for_class(__lowercase , __lowercase , return_labels=__lowercase ) if problem_type["num_labels"] > 1: _A = inputs['''labels'''].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) _A = inputs['''labels'''].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=__lowercase ) as warning_list: _A = model(**__lowercase ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f'''Something is going wrong in the regression problem: intercepted {w.message}''' ) loss.backward() @slow def lowerCAmelCase ( self : int ): '''simple docstring''' for model_name in LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = LevitModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def __lowercase ( ) -> Dict: '''simple docstring''' _A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @cached_property def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return LevitImageProcessor.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowerCAmelCase ( self : List[str] ): '''simple docstring''' _A = LevitForImageClassificationWithTeacher.from_pretrained(LEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( __lowercase ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(images=__lowercase , return_tensors="pt" ).to(__lowercase ) # forward pass with torch.no_grad(): _A = model(**__lowercase ) # verify the logits _A = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __lowercase ) _A = torch.tensor([1.0448, -0.3745, -1.8317] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) )
350
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
174
0
"""simple docstring""" # We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings('ignore', category=UserWarning, module='torch.optim.lr_scheduler') class _UpperCAmelCase : '''simple docstring''' def __init__( self , snake_case_ , snake_case_ , snake_case_ = True , snake_case_ = False ): """simple docstring""" A_ : List[str] = scheduler A_ : str = optimizers if isinstance(snake_case_ , (list, tuple) ) else [optimizers] A_ : Optional[Any] = split_batches A_ : Union[str, Any] = step_with_optimizer A_ : Dict = GradientState() def lowerCamelCase_ ( self , *snake_case_ , **snake_case_ ): """simple docstring""" if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*snake_case_ , **snake_case_ ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*snake_case_ , **snake_case_ ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step A_ : Union[str, Any] = AcceleratorState().num_processes for _ in range(snake_case_ ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , 'total_steps' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*snake_case_ , **snake_case_ ) else: self.scheduler.step(*snake_case_ , **snake_case_ ) def lowerCamelCase_ ( self ): """simple docstring""" return self.scheduler.get_last_lr() def lowerCamelCase_ ( self ): """simple docstring""" return self.scheduler.state_dict() def lowerCamelCase_ ( self , snake_case_ ): """simple docstring""" self.scheduler.load_state_dict(snake_case_ ) def lowerCamelCase_ ( self ): """simple docstring""" return self.scheduler.get_lr() def lowerCamelCase_ ( self , *snake_case_ , **snake_case_ ): """simple docstring""" return self.scheduler.print_lr(*snake_case_ , **snake_case_ )
286
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCamelCase_ : int = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase_ : Tuple = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys lowerCamelCase_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
286
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __snake_case =logging.get_logger(__name__) def a_ ( lowerCamelCase : List[str] ): if isinstance(__snake_case , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__snake_case , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__snake_case ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class SCREAMING_SNAKE_CASE_ ( __SCREAMING_SNAKE_CASE ): lowerCamelCase : List[Any] = ['''pixel_values'''] def __init__( self : str , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Union[int, float] = 1 / 2_5_5 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , **UpperCAmelCase__ : Any , ) -> None: super().__init__(**_SCREAMING_SNAKE_CASE ) lowerCAmelCase = size if size is not None else {"shortest_edge": 2_2_4} lowerCAmelCase = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = crop_size if crop_size is not None else {"height": 2_2_4, "width": 2_2_4} lowerCAmelCase = get_size_dict(_SCREAMING_SNAKE_CASE , param_name='crop_size' ) lowerCAmelCase = do_resize lowerCAmelCase = size lowerCAmelCase = do_center_crop lowerCAmelCase = crop_size lowerCAmelCase = resample lowerCAmelCase = do_rescale lowerCAmelCase = rescale_factor lowerCAmelCase = do_normalize lowerCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def __UpperCAmelCase ( self : int , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Dict[str, int] , UpperCAmelCase__ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : int , ) -> np.ndarray: lowerCAmelCase = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) if "shortest_edge" in size: lowerCAmelCase = get_resize_output_image_size(_SCREAMING_SNAKE_CASE , size['shortest_edge'] , default_to_square=_SCREAMING_SNAKE_CASE ) elif "height" in size and "width" in size: lowerCAmelCase = (size["height"], size["width"]) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Dict[str, int] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Optional[int] , ) -> np.ndarray: lowerCAmelCase = get_size_dict(_SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(_SCREAMING_SNAKE_CASE , size=(size['height'], size['width']) , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Union[int, float] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Dict , ) -> int: return rescale(_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : np.ndarray , UpperCAmelCase__ : Union[float, List[float]] , UpperCAmelCase__ : Union[float, List[float]] , UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase__ : Union[str, Any] , ) -> np.ndarray: return normalize(_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : ImageInput , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : PILImageResampling = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : float = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[ChannelDimension] = ChannelDimension.FIRST , ) -> np.ndarray: if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowerCAmelCase = to_numpy_array(_SCREAMING_SNAKE_CASE ) if do_resize: lowerCAmelCase = self.resize(image=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE ) if do_center_crop: lowerCAmelCase = self.center_crop(_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE ) if do_rescale: lowerCAmelCase = self.rescale(image=_SCREAMING_SNAKE_CASE , scale=_SCREAMING_SNAKE_CASE ) if do_normalize: lowerCAmelCase = self.normalize(image=_SCREAMING_SNAKE_CASE , mean=_SCREAMING_SNAKE_CASE , std=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = to_channel_dimension_format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return image def __UpperCAmelCase ( self : Tuple , UpperCAmelCase__ : ImageInput , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : PILImageResampling = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Dict[str, int] = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : float = None , UpperCAmelCase__ : bool = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[float, List[float]]] = None , UpperCAmelCase__ : Optional[Union[str, TensorType]] = None , UpperCAmelCase__ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase__ : str , ) -> PIL.Image.Image: lowerCAmelCase = do_resize if do_resize is not None else self.do_resize lowerCAmelCase = resample if resample is not None else self.resample lowerCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase = image_mean if image_mean is not None else self.image_mean lowerCAmelCase = image_std if image_std is not None else self.image_std lowerCAmelCase = size if size is not None else self.size lowerCAmelCase = get_size_dict(_SCREAMING_SNAKE_CASE , default_to_square=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = crop_size if crop_size is not None else self.crop_size lowerCAmelCase = get_size_dict(_SCREAMING_SNAKE_CASE , param_name='crop_size' ) if not valid_images(_SCREAMING_SNAKE_CASE ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) lowerCAmelCase = make_batched(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = [ [ self._preprocess_image( image=_SCREAMING_SNAKE_CASE , do_resize=_SCREAMING_SNAKE_CASE , size=_SCREAMING_SNAKE_CASE , resample=_SCREAMING_SNAKE_CASE , do_center_crop=_SCREAMING_SNAKE_CASE , crop_size=_SCREAMING_SNAKE_CASE , do_rescale=_SCREAMING_SNAKE_CASE , rescale_factor=_SCREAMING_SNAKE_CASE , do_normalize=_SCREAMING_SNAKE_CASE , image_mean=_SCREAMING_SNAKE_CASE , image_std=_SCREAMING_SNAKE_CASE , data_format=_SCREAMING_SNAKE_CASE , ) for img in video ] for video in videos ] lowerCAmelCase = {"pixel_values": videos} return BatchFeature(data=_SCREAMING_SNAKE_CASE , tensor_type=_SCREAMING_SNAKE_CASE )
363
'''simple docstring''' from abc import ABC, abstractmethod from typing import List, Optional class UpperCAmelCase_ ( __lowercase ): def __init__( self : Tuple ) -> Tuple: # test for the above condition self.test() def __UpperCAmelCase ( self : Any ) -> Tuple: lowerCAmelCase = 0 lowerCAmelCase = False while not completed: if counter == 1: self.reset() lowerCAmelCase = self.advance() if not self.does_advance(UpperCAmelCase__ ): raise Exception( 'Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.' ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.update(UpperCAmelCase__ ) counter += 1 if counter > 1_0_0_0_0: raise Exception('update() does not fulfill the constraint.' ) if self.remaining() != 0: raise Exception('Custom Constraint is not defined correctly.' ) @abstractmethod def __UpperCAmelCase ( self : Dict ) -> Dict: raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : int ) -> Dict: raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : int ) -> Tuple: raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCAmelCase ( self : List[str] ) -> Tuple: raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCAmelCase ( self : Any ) -> Tuple: raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : Optional[Any]=False ) -> Union[str, Any]: raise NotImplementedError( F'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class UpperCAmelCase_ ( __lowercase ): def __init__( self : str , UpperCAmelCase__ : List[int] ) -> Union[str, Any]: super(UpperCAmelCase__ , self ).__init__() if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or len(UpperCAmelCase__ ) == 0: raise ValueError(F'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or token_id < 0) for token_id in token_ids ): raise ValueError(F'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) lowerCAmelCase = token_ids lowerCAmelCase = len(self.token_ids ) lowerCAmelCase = -1 # the index of the currently fulfilled step lowerCAmelCase = False def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : int ) -> int: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(UpperCAmelCase__ )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : int ) -> List[str]: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError(F'''`token_id` has to be an `int`, but is {token_id} of type {type(UpperCAmelCase__ )}''' ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False if self.does_advance(UpperCAmelCase__ ): self.fulfilled_idx += 1 lowerCAmelCase = True if self.fulfilled_idx == (self.seqlen - 1): lowerCAmelCase = True lowerCAmelCase = completed else: # failed to make progress. lowerCAmelCase = True self.reset() return stepped, completed, reset def __UpperCAmelCase ( self : int ) -> List[str]: lowerCAmelCase = False lowerCAmelCase = 0 def __UpperCAmelCase ( self : Dict ) -> List[str]: return self.seqlen - (self.fulfilled_idx + 1) def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : List[str]=False ) -> Optional[int]: lowerCAmelCase = PhrasalConstraint(self.token_ids ) if stateful: lowerCAmelCase = self.seqlen lowerCAmelCase = self.fulfilled_idx lowerCAmelCase = self.completed return new_constraint class UpperCAmelCase_ : def __init__( self : str , UpperCAmelCase__ : List[List[int]] , UpperCAmelCase__ : str=True ) -> str: lowerCAmelCase = max([len(UpperCAmelCase__ ) for one in nested_token_ids] ) lowerCAmelCase = {} for token_ids in nested_token_ids: lowerCAmelCase = root for tidx, token_id in enumerate(UpperCAmelCase__ ): if token_id not in level: lowerCAmelCase = {} lowerCAmelCase = level[token_id] if no_subsets and self.has_subsets(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError( 'Each list in `nested_token_ids` can\'t be a complete subset of another list, but is' F''' {nested_token_ids}.''' ) lowerCAmelCase = root def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] ) -> Union[str, Any]: lowerCAmelCase = self.trie for current_token in current_seq: lowerCAmelCase = start[current_token] lowerCAmelCase = list(start.keys() ) return next_tokens def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : List[Any] ) -> Dict: lowerCAmelCase = self.next_tokens(UpperCAmelCase__ ) return len(UpperCAmelCase__ ) == 0 def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Optional[Any] ) -> Union[str, Any]: lowerCAmelCase = list(root.values() ) if len(UpperCAmelCase__ ) == 0: return 1 else: return sum([self.count_leaves(UpperCAmelCase__ ) for nn in next_nodes] ) def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[Any] ) -> List[Any]: lowerCAmelCase = self.count_leaves(UpperCAmelCase__ ) return len(UpperCAmelCase__ ) != leaf_count class UpperCAmelCase_ ( __lowercase ): def __init__( self : Tuple , UpperCAmelCase__ : List[List[int]] ) -> List[Any]: super(UpperCAmelCase__ , self ).__init__() if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or len(UpperCAmelCase__ ) == 0: raise ValueError(F'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) for token_ids in nested_token_ids ): raise ValueError(F'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( F'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) lowerCAmelCase = DisjunctiveTrie(UpperCAmelCase__ ) lowerCAmelCase = nested_token_ids lowerCAmelCase = self.trie.max_height lowerCAmelCase = [] lowerCAmelCase = False def __UpperCAmelCase ( self : Dict ) -> Optional[int]: lowerCAmelCase = self.trie.next_tokens(self.current_seq ) if len(UpperCAmelCase__ ) == 0: return None else: return token_list def __UpperCAmelCase ( self : List[str] , UpperCAmelCase__ : int ) -> Any: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCAmelCase__ )}''' ) lowerCAmelCase = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : int ) -> Tuple: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError(F'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(UpperCAmelCase__ )}''' ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False if self.does_advance(UpperCAmelCase__ ): self.current_seq.append(UpperCAmelCase__ ) lowerCAmelCase = True else: lowerCAmelCase = True self.reset() lowerCAmelCase = self.trie.reached_leaf(self.current_seq ) lowerCAmelCase = completed return stepped, completed, reset def __UpperCAmelCase ( self : Optional[int] ) -> int: lowerCAmelCase = False lowerCAmelCase = [] def __UpperCAmelCase ( self : Any ) -> Optional[Any]: if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Optional[Any]=False ) -> List[Any]: lowerCAmelCase = DisjunctiveConstraint(self.token_ids ) if stateful: lowerCAmelCase = self.seqlen lowerCAmelCase = self.current_seq lowerCAmelCase = self.completed return new_constraint class UpperCAmelCase_ : def __init__( self : Tuple , UpperCAmelCase__ : List[Constraint] ) -> str: lowerCAmelCase = constraints # max # of steps required to fulfill a given constraint lowerCAmelCase = max([c.seqlen for c in constraints] ) lowerCAmelCase = len(UpperCAmelCase__ ) lowerCAmelCase = False self.init_state() def __UpperCAmelCase ( self : List[str] ) -> List[str]: lowerCAmelCase = [] lowerCAmelCase = None lowerCAmelCase = [constraint.copy(stateful=UpperCAmelCase__ ) for constraint in self.constraints] def __UpperCAmelCase ( self : List[str] ) -> Any: lowerCAmelCase = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def __UpperCAmelCase ( self : Optional[Any] ) -> int: lowerCAmelCase = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" lowerCAmelCase = constraint.advance() if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): token_list.append(UpperCAmelCase__ ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): token_list.extend(UpperCAmelCase__ ) else: lowerCAmelCase = self.inprogress_constraint.advance() if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): token_list.append(UpperCAmelCase__ ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): token_list.extend(UpperCAmelCase__ ) if len(UpperCAmelCase__ ) == 0: return None else: return token_list def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Optional[List[int]] ) -> Dict: self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint lowerCAmelCase , lowerCAmelCase = self.add(UpperCAmelCase__ ) # the entire list of constraints are fulfilled if self.completed: break def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : int ) -> Optional[Any]: if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise ValueError(F'''`token_id` should be an `int`, but is `{token_id}`.''' ) lowerCAmelCase , lowerCAmelCase = False, False if self.completed: lowerCAmelCase = True lowerCAmelCase = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.inprogress_constraint.update(UpperCAmelCase__ ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=UpperCAmelCase__ ) ) lowerCAmelCase = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) lowerCAmelCase = None if len(self.pending_constraints ) == 0: # we're done! lowerCAmelCase = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(UpperCAmelCase__ ): lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = pending_constraint.update(UpperCAmelCase__ ) if not stepped: raise Exception( '`constraint.update(token_id)` is not yielding incremental progress, ' 'even though `constraint.does_advance(token_id)` is true.' ) if complete: self.complete_constraints.append(UpperCAmelCase__ ) lowerCAmelCase = None if not complete and stepped: lowerCAmelCase = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". lowerCAmelCase = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. lowerCAmelCase = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def __UpperCAmelCase ( self : List[Any] , UpperCAmelCase__ : Union[str, Any]=True ) -> Optional[int]: lowerCAmelCase = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: lowerCAmelCase = [ constraint.copy(stateful=UpperCAmelCase__ ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: lowerCAmelCase = self.inprogress_constraint.copy(stateful=UpperCAmelCase__ ) lowerCAmelCase = [constraint.copy() for constraint in self.pending_constraints] return new_state
55
0
def A_ ( _lowerCAmelCase = 1000 ) -> int: UpperCamelCase , UpperCamelCase : Any = 1, 1 UpperCamelCase : Dict = [] for i in range(1 , n + 1 ): UpperCamelCase : Union[str, Any] = prev_numerator + 2 * prev_denominator UpperCamelCase : List[Any] = prev_numerator + prev_denominator if len(str(_lowerCAmelCase ) ) > len(str(_lowerCAmelCase ) ): result.append(_lowerCAmelCase ) UpperCamelCase : Dict = numerator UpperCamelCase : Dict = denominator return len(_lowerCAmelCase ) if __name__ == "__main__": print(f"""{solution() = }""")
52
import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __lowerCamelCase : Union[str, Any] = pytest.mark.integration @require_faiss class A__ ( __snake_case ): def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Union[str, Any] = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(A_ ) for x in np.arange(30 ).tolist()]} ) return dset def __UpperCamelCase( self ): '''simple docstring''' import faiss UpperCamelCase : Dataset = self._create_dummy_dataset() UpperCamelCase : List[Any] = dset.map( lambda A_ , A_ : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=A_ , keep_in_memory=A_ ) UpperCamelCase : List[str] = dset.add_faiss_index("vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) UpperCamelCase , UpperCamelCase : Tuple = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) dset.drop_index("vecs" ) def __UpperCamelCase( self ): '''simple docstring''' import faiss UpperCamelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) UpperCamelCase , UpperCamelCase : int = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def __UpperCamelCase( self ): '''simple docstring''' import faiss UpperCamelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=A_ ) as tmp_file: dset.save_faiss_index("vecs" , tmp_file.name ) dset.load_faiss_index("vecs2" , tmp_file.name ) os.unlink(tmp_file.name ) UpperCamelCase , UpperCamelCase : List[str] = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(A_ , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) ) def __UpperCamelCase( self ): '''simple docstring''' from elasticsearch import Elasticsearch UpperCamelCase : Dataset = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: UpperCamelCase : List[str] = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) UpperCamelCase : List[Any] = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} UpperCamelCase : Optional[Any] = Elasticsearch() dset.add_elasticsearch_index("filename" , es_client=A_ ) UpperCamelCase , UpperCamelCase : List[str] = dset.get_nearest_examples("filename" , "my_name-train_29" ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) @require_faiss class A__ ( __snake_case ): def __UpperCamelCase( self ): '''simple docstring''' import faiss UpperCamelCase : Optional[int] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query UpperCamelCase : Any = np.zeros(5 , dtype=np.floataa ) UpperCamelCase : Optional[Any] = 1 UpperCamelCase , UpperCamelCase : Optional[Any] = index.search(A_ ) self.assertRaises(A_ , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries UpperCamelCase : Optional[int] = np.eye(5 , dtype=np.floataa )[::-1] UpperCamelCase , UpperCamelCase : Tuple = index.search_batch(A_ ) self.assertRaises(A_ , index.search_batch , queries[0] ) UpperCamelCase : Optional[int] = [scores[0] for scores in total_scores] UpperCamelCase : Tuple = [indices[0] for indices in total_indices] self.assertGreater(np.min(A_ ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , A_ ) def __UpperCamelCase( self ): '''simple docstring''' import faiss UpperCamelCase : List[str] = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) UpperCamelCase : List[str] = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(A_ ): UpperCamelCase : List[str] = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) ) def __UpperCamelCase( self ): '''simple docstring''' import faiss UpperCamelCase : Dict = faiss.IndexFlat(5 ) UpperCamelCase : Union[str, Any] = FaissIndex(custom_index=A_ ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def __UpperCamelCase( self ): '''simple docstring''' import faiss UpperCamelCase : str = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=A_ ) as tmp_file: index.save(tmp_file.name ) UpperCamelCase : int = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) UpperCamelCase : str = np.zeros(5 , dtype=np.floataa ) UpperCamelCase : int = 1 UpperCamelCase , UpperCamelCase : Dict = index.search(A_ ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def A_ ( _lowerCAmelCase ) -> Optional[int]: import faiss UpperCamelCase : Union[str, Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) UpperCamelCase : List[Any] = "index.faiss" UpperCamelCase : List[str] = F"""mock://{index_name}""" index.save(_lowerCAmelCase , storage_options=mockfs.storage_options ) UpperCamelCase : List[str] = FaissIndex.load(_lowerCAmelCase , storage_options=mockfs.storage_options ) UpperCamelCase : List[str] = np.zeros(5 , dtype=np.floataa ) UpperCamelCase : Optional[int] = 1 UpperCamelCase , UpperCamelCase : List[str] = index.search(_lowerCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class A__ ( __snake_case ): def __UpperCamelCase( self ): '''simple docstring''' from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: UpperCamelCase : List[str] = Elasticsearch() UpperCamelCase : Union[str, Any] = {"acknowledged": True} UpperCamelCase : Union[str, Any] = ElasticSearchIndex(es_client=A_ ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query UpperCamelCase : str = "foo" UpperCamelCase : Dict = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} UpperCamelCase , UpperCamelCase : Tuple = index.search(A_ ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout UpperCamelCase : Dict = "foo" UpperCamelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} UpperCamelCase , UpperCamelCase : str = index.search(A_ , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries UpperCamelCase : Dict = ["foo", "bar", "foobar"] UpperCamelCase : List[Any] = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} UpperCamelCase , UpperCamelCase : Optional[int] = index.search_batch(A_ ) UpperCamelCase : str = [scores[0] for scores in total_scores] UpperCamelCase : Optional[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(A_ ) , 0 ) self.assertListEqual([1, 1, 1] , A_ ) # batched queries with timeout UpperCamelCase : int = ["foo", "bar", "foobar"] UpperCamelCase : List[Any] = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} UpperCamelCase , UpperCamelCase : Union[str, Any] = index.search_batch(A_ , request_timeout=30 ) UpperCamelCase : Union[str, Any] = [scores[0] for scores in total_scores] UpperCamelCase : Dict = [indices[0] for indices in total_indices] self.assertGreater(np.min(A_ ) , 0 ) self.assertListEqual([1, 1, 1] , A_ )
52
1
"""simple docstring""" import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class __A : def __init__( self , a__ , a__=2 , a__=8 , a__=True , a__=True , a__=True , a__=True , a__=99 , a__=16 , a__=5 , a__=2 , a__=36 , a__="gelu" , a__=0.0 , a__=0.0 , a__=512 , a__=16 , a__=2 , a__=0.0_2 , a__=3 , a__=4 , a__=None , ): _lowerCAmelCase : List[str] = parent _lowerCAmelCase : int = batch_size _lowerCAmelCase : Optional[int] = seq_length _lowerCAmelCase : Any = is_training _lowerCAmelCase : List[Any] = use_input_mask _lowerCAmelCase : Union[str, Any] = use_token_type_ids _lowerCAmelCase : Optional[int] = use_labels _lowerCAmelCase : Dict = vocab_size _lowerCAmelCase : Optional[int] = hidden_size _lowerCAmelCase : List[Any] = num_hidden_layers _lowerCAmelCase : Tuple = num_attention_heads _lowerCAmelCase : Dict = intermediate_size _lowerCAmelCase : int = hidden_act _lowerCAmelCase : List[str] = hidden_dropout_prob _lowerCAmelCase : Any = attention_probs_dropout_prob _lowerCAmelCase : List[str] = max_position_embeddings _lowerCAmelCase : List[Any] = type_vocab_size _lowerCAmelCase : int = type_sequence_label_size _lowerCAmelCase : int = initializer_range _lowerCAmelCase : str = num_labels _lowerCAmelCase : List[Any] = num_choices _lowerCAmelCase : Optional[int] = scope def __A ( self ): _lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Union[str, Any] = None if self.use_input_mask: _lowerCAmelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase : Dict = None if self.use_token_type_ids: _lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Optional[Any] = None _lowerCAmelCase : Optional[Any] = None if self.use_labels: _lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ): return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a__ , initializer_range=self.initializer_range , ) def __A ( self ): _lowerCAmelCase : Optional[int] = self.get_config() _lowerCAmelCase : str = 300 return config def __A ( self ): ( _lowerCAmelCase ) : int = self.prepare_config_and_inputs() _lowerCAmelCase : Dict = True _lowerCAmelCase : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : int = MraModel(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Tuple = model(a__ , attention_mask=a__ , token_type_ids=a__ ) _lowerCAmelCase : str = model(a__ , token_type_ids=a__ ) _lowerCAmelCase : Tuple = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , a__ , ): _lowerCAmelCase : List[Any] = True _lowerCAmelCase : List[str] = MraModel(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : int = model( a__ , attention_mask=a__ , token_type_ids=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , ) _lowerCAmelCase : Union[str, Any] = model( a__ , attention_mask=a__ , token_type_ids=a__ , encoder_hidden_states=a__ , ) _lowerCAmelCase : List[Any] = model(a__ , attention_mask=a__ , token_type_ids=a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Optional[Any] = MraForMaskedLM(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Tuple = model(a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : int = MraForQuestionAnswering(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Optional[int] = model( a__ , attention_mask=a__ , token_type_ids=a__ , start_positions=a__ , end_positions=a__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : List[Any] = self.num_labels _lowerCAmelCase : Optional[int] = MraForSequenceClassification(a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Optional[Any] = model(a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Optional[Any] = self.num_labels _lowerCAmelCase : Optional[int] = MraForTokenClassification(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : Optional[int] = model(a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , a__ , a__ , a__ , a__ , a__ , a__ , a__ ): _lowerCAmelCase : List[Any] = self.num_choices _lowerCAmelCase : Tuple = MraForMultipleChoice(config=a__ ) model.to(a__ ) model.eval() _lowerCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase : Tuple = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase : Union[str, Any] = model( a__ , attention_mask=a__ , token_type_ids=a__ , labels=a__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self ): _lowerCAmelCase : Tuple = self.prepare_config_and_inputs() ( _lowerCAmelCase ) : Union[str, Any] = config_and_inputs _lowerCAmelCase : str = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class __A ( SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : int = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) _UpperCamelCase : Optional[Any] = False _UpperCamelCase : Any = False _UpperCamelCase : Any = False _UpperCamelCase : Optional[Any] = False _UpperCamelCase : Optional[Any] = () def __A ( self ): _lowerCAmelCase : List[str] = MraModelTester(self ) _lowerCAmelCase : List[Any] = ConfigTester(self , config_class=a__ , hidden_size=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def __A ( self ): _lowerCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase : str = type self.model_tester.create_and_check_model(*a__ ) def __A ( self ): _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*a__ ) def __A ( self ): _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*a__ ) def __A ( self ): _lowerCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*a__ ) def __A ( self ): _lowerCAmelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*a__ ) def __A ( self ): _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*a__ ) @slow def __A ( self ): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : List[str] = MraModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @unittest.skip(reason="""MRA does not output attentions""" ) def __A ( self ): return @require_torch class __A ( unittest.TestCase ): @slow def __A ( self ): _lowerCAmelCase : Dict = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) _lowerCAmelCase : str = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase : List[Any] = model(a__ )[0] _lowerCAmelCase : Any = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , a__ ) _lowerCAmelCase : str = torch.tensor( [[[-0.0_1_4_0, 0.0_8_3_0, -0.0_3_8_1], [0.1_5_4_6, 0.1_4_0_2, 0.0_2_2_0], [0.1_1_6_2, 0.0_8_5_1, 0.0_1_6_5]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , a__ , atol=1e-4 ) ) @slow def __A ( self ): _lowerCAmelCase : Any = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) _lowerCAmelCase : int = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase : Optional[Any] = model(a__ )[0] _lowerCAmelCase : str = 50265 _lowerCAmelCase : Optional[int] = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , a__ ) _lowerCAmelCase : int = torch.tensor( [[[9.2_5_9_5, -3.6_0_3_8, 11.8819], [9.3_8_6_9, -3.2_6_9_3, 11.0956], [11.8524, -3.4_9_3_8, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , a__ , atol=1e-4 ) ) @slow def __A ( self ): _lowerCAmelCase : Dict = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) _lowerCAmelCase : str = torch.arange(4096 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase : Any = model(a__ )[0] _lowerCAmelCase : List[Any] = 50265 _lowerCAmelCase : Tuple = torch.Size((1, 4096, vocab_size) ) self.assertEqual(output.shape , a__ ) _lowerCAmelCase : List[str] = torch.tensor( [[[5.4_7_8_9, -2.3_5_6_4, 7.5_0_6_4], [7.9_0_6_7, -1.3_3_6_9, 9.9_6_6_8], [9.0_7_1_2, -1.8_1_0_6, 7.0_3_8_0]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , a__ , atol=1e-4 ) )
370
"""simple docstring""" from ..utils import DummyObject, requires_backends class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : int = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : str = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[int] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : str = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Union[str, Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[int] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[str] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Any = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : str = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : str = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : str = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : str = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Dict = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Dict = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Union[str, Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Tuple = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[int] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Optional[Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[Any] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : int = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Dict = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : List[str] = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] ) class __A ( metaclass=SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : int = ["sentencepiece"] def __init__( self , *a__ , **a__ ): requires_backends(self , ["""sentencepiece"""] )
126
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class __snake_case ( unittest.TestCase): """simple docstring""" def __lowercase ( self : Union[str, Any] ) -> Any: lowerCAmelCase_ : Optional[Any] = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00] ) lowerCAmelCase_ : str = get_activation("""gelu""" ) self.assertTrue(torch.allclose(gelu_python(lowerCamelCase ) , torch_builtin(lowerCamelCase ) ) ) self.assertFalse(torch.allclose(gelu_python(lowerCamelCase ) , gelu_new(lowerCamelCase ) ) ) def __lowercase ( self : Optional[int] ) -> Dict: lowerCAmelCase_ : Tuple = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00] ) lowerCAmelCase_ : List[Any] = get_activation("""gelu""" ) lowerCAmelCase_ : Optional[Any] = get_activation("""gelu_10""" ) lowerCAmelCase_ : Tuple = torch_builtin(lowerCamelCase ) lowerCAmelCase_ : Tuple = geluaa(lowerCamelCase ) lowerCAmelCase_ : List[str] = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(lowerCamelCase ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def __lowercase ( self : Any ) -> Union[str, Any]: get_activation("""gelu""" ) get_activation("""gelu_10""" ) get_activation("""gelu_fast""" ) get_activation("""gelu_new""" ) get_activation("""gelu_python""" ) get_activation("""gelu_pytorch_tanh""" ) get_activation("""linear""" ) get_activation("""mish""" ) get_activation("""quick_gelu""" ) get_activation("""relu""" ) get_activation("""sigmoid""" ) get_activation("""silu""" ) get_activation("""swish""" ) get_activation("""tanh""" ) with self.assertRaises(lowerCamelCase ): get_activation("""bogus""" ) with self.assertRaises(lowerCamelCase ): get_activation(lowerCamelCase ) def __lowercase ( self : Optional[int] ) -> str: lowerCAmelCase_ : Optional[int] = get_activation("""gelu""" ) lowerCAmelCase_ : Optional[Any] = 1 lowerCAmelCase_ : Union[str, Any] = get_activation("""gelu""" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(lowerCamelCase ): lowerCAmelCase_ : Tuple = acta.a
120
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig __A : Optional[int] = [ "openmmlab/upernet-convnext-tiny", # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring __A : int = "UperNetConfig" class __snake_case ( nn.Module): """simple docstring""" def __init__( self : Tuple , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : Union[int, Tuple[int, int]] , lowerCamelCase : Union[int, Tuple[int, int], str] = 0 , lowerCamelCase : bool = False , lowerCamelCase : Union[int, Tuple[int, int]] = 1 , ) -> None: super().__init__() lowerCAmelCase_ : int = nn.Convad( in_channels=lowerCamelCase , out_channels=lowerCamelCase , kernel_size=lowerCamelCase , padding=lowerCamelCase , bias=lowerCamelCase , dilation=lowerCamelCase , ) lowerCAmelCase_ : Dict = nn.BatchNormad(lowerCamelCase ) lowerCAmelCase_ : Dict = nn.ReLU() def __lowercase ( self : Tuple , lowerCamelCase : torch.Tensor ) -> torch.Tensor: lowerCAmelCase_ : Optional[Any] = self.conv(lowerCamelCase ) lowerCAmelCase_ : Tuple = self.batch_norm(lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = self.activation(lowerCamelCase ) return output class __snake_case ( nn.Module): """simple docstring""" def __init__( self : List[str] , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int ) -> None: super().__init__() lowerCAmelCase_ : str = [ nn.AdaptiveAvgPoolad(lowerCamelCase ), UperNetConvModule(lowerCamelCase , lowerCamelCase , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(lowerCamelCase ) , lowerCamelCase ) def __lowercase ( self : List[str] , lowerCamelCase : torch.Tensor ) -> torch.Tensor: lowerCAmelCase_ : List[Any] = input for layer in self.layers: lowerCAmelCase_ : Tuple = layer(lowerCamelCase ) return hidden_state class __snake_case ( nn.Module): """simple docstring""" def __init__( self : Optional[int] , lowerCamelCase : Tuple[int, ...] , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : bool ) -> None: super().__init__() lowerCAmelCase_ : List[str] = pool_scales lowerCAmelCase_ : Union[str, Any] = align_corners lowerCAmelCase_ : Tuple = in_channels lowerCAmelCase_ : List[str] = channels lowerCAmelCase_ : Tuple = [] for i, pool_scale in enumerate(lowerCamelCase ): lowerCAmelCase_ : Optional[int] = UperNetPyramidPoolingBlock(pool_scale=lowerCamelCase , in_channels=lowerCamelCase , channels=lowerCamelCase ) self.blocks.append(lowerCamelCase ) self.add_module(str(lowerCamelCase ) , lowerCamelCase ) def __lowercase ( self : Optional[Any] , lowerCamelCase : torch.Tensor ) -> List[torch.Tensor]: lowerCAmelCase_ : Any = [] for ppm in self.blocks: lowerCAmelCase_ : Any = ppm(lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = nn.functional.interpolate( lowerCamelCase , size=x.size()[2:] , mode="""bilinear""" , align_corners=self.align_corners ) ppm_outs.append(lowerCamelCase ) return ppm_outs class __snake_case ( nn.Module): """simple docstring""" def __init__( self : int , lowerCamelCase : List[str] , lowerCamelCase : List[Any] ) -> Dict: super().__init__() lowerCAmelCase_ : List[Any] = config lowerCAmelCase_ : Any = config.pool_scales # e.g. (1, 2, 3, 6) lowerCAmelCase_ : Dict = in_channels lowerCAmelCase_ : Any = config.hidden_size lowerCAmelCase_ : List[Any] = False lowerCAmelCase_ : Optional[Any] = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module lowerCAmelCase_ : Dict = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) lowerCAmelCase_ : Union[str, Any] = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module lowerCAmelCase_ : Dict = nn.ModuleList() lowerCAmelCase_ : Union[str, Any] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer lowerCAmelCase_ : List[str] = UperNetConvModule(lowerCamelCase , self.channels , kernel_size=1 ) lowerCAmelCase_ : Optional[int] = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(lowerCamelCase ) self.fpn_convs.append(lowerCamelCase ) lowerCAmelCase_ : List[Any] = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def __lowercase ( self : List[Any] ) -> Any: self.apply(self._init_weights ) def __lowercase ( self : Optional[int] , lowerCamelCase : str ) -> List[Any]: if isinstance(lowerCamelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def __lowercase ( self : List[str] , lowerCamelCase : Optional[Any] ) -> Any: lowerCAmelCase_ : Union[str, Any] = inputs[-1] lowerCAmelCase_ : List[str] = [x] psp_outs.extend(self.psp_modules(lowerCamelCase ) ) lowerCAmelCase_ : str = torch.cat(lowerCamelCase , dim=1 ) lowerCAmelCase_ : str = self.bottleneck(lowerCamelCase ) return output def __lowercase ( self : Dict , lowerCamelCase : torch.Tensor ) -> torch.Tensor: # build laterals lowerCAmelCase_ : Optional[int] = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(lowerCamelCase ) ) # build top-down path lowerCAmelCase_ : Tuple = len(lowerCamelCase ) for i in range(used_backbone_levels - 1 , 0 , -1 ): lowerCAmelCase_ : Union[str, Any] = laterals[i - 1].shape[2:] lowerCAmelCase_ : Optional[Any] = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=lowerCamelCase , mode="""bilinear""" , align_corners=self.align_corners ) # build outputs lowerCAmelCase_ : Optional[Any] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): lowerCAmelCase_ : Union[str, Any] = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode="""bilinear""" , align_corners=self.align_corners ) lowerCAmelCase_ : Dict = torch.cat(lowerCamelCase , dim=1 ) lowerCAmelCase_ : Any = self.fpn_bottleneck(lowerCamelCase ) lowerCAmelCase_ : str = self.classifier(lowerCamelCase ) return output class __snake_case ( nn.Module): """simple docstring""" def __init__( self : List[str] , lowerCamelCase : Dict , lowerCamelCase : int = 2 , lowerCamelCase : int = 3 , lowerCamelCase : Union[int, Tuple[int, int]] = 1 ) -> None: super().__init__() lowerCAmelCase_ : List[Any] = config lowerCAmelCase_ : Dict = config.auxiliary_in_channels lowerCAmelCase_ : Optional[Any] = config.auxiliary_channels lowerCAmelCase_ : Dict = config.auxiliary_num_convs lowerCAmelCase_ : int = config.auxiliary_concat_input lowerCAmelCase_ : List[Any] = in_index lowerCAmelCase_ : List[Any] = (kernel_size // 2) * dilation lowerCAmelCase_ : Tuple = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=lowerCamelCase , padding=lowerCamelCase , dilation=lowerCamelCase ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=lowerCamelCase , padding=lowerCamelCase , dilation=lowerCamelCase ) ) if self.num_convs == 0: lowerCAmelCase_ : Optional[Any] = nn.Identity() else: lowerCAmelCase_ : List[str] = nn.Sequential(*lowerCamelCase ) if self.concat_input: lowerCAmelCase_ : Union[str, Any] = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=lowerCamelCase , padding=kernel_size // 2 ) lowerCAmelCase_ : Any = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def __lowercase ( self : int ) -> List[Any]: self.apply(self._init_weights ) def __lowercase ( self : Union[str, Any] , lowerCamelCase : Optional[Any] ) -> Optional[Any]: if isinstance(lowerCamelCase , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def __lowercase ( self : Any , lowerCamelCase : torch.Tensor ) -> torch.Tensor: # just take the relevant feature maps lowerCAmelCase_ : Dict = encoder_hidden_states[self.in_index] lowerCAmelCase_ : List[str] = self.convs(lowerCamelCase ) if self.concat_input: lowerCAmelCase_ : int = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) lowerCAmelCase_ : Union[str, Any] = self.classifier(lowerCamelCase ) return output class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = UperNetConfig lowercase = 'pixel_values' lowercase = True def __lowercase ( self : List[str] , lowerCamelCase : Dict ) -> Optional[Any]: if isinstance(lowerCamelCase , lowerCamelCase ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def __lowercase ( self : Optional[int] ) -> int: self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def __lowercase ( self : Union[str, Any] , lowerCamelCase : List[str] , lowerCamelCase : Any=False ) -> Optional[int]: if isinstance(lowerCamelCase , lowerCamelCase ): lowerCAmelCase_ : str = value __A : Union[str, Any] = R"\n Parameters:\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use\n it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n config ([`UperNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" __A : str = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using\n [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details.\n output_attentions (`bool`, *optional*):\n Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See\n `attentions` under returned tensors for more detail.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under\n returned tensors for more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( 'UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.' ,_SCREAMING_SNAKE_CASE ,) class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" def __init__( self : Any , lowerCamelCase : List[Any] ) -> Union[str, Any]: super().__init__(lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) lowerCAmelCase_ : Optional[Any] = UperNetHead(lowerCamelCase , in_channels=self.backbone.channels ) lowerCAmelCase_ : List[Any] = UperNetFCNHead(lowerCamelCase ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format("""batch_size, sequence_length""" ) ) @replace_return_docstrings(output_type=lowerCamelCase , config_class=_CONFIG_FOR_DOC ) def __lowercase ( self : Any , lowerCamelCase : Optional[torch.Tensor] = None , lowerCamelCase : Optional[bool] = None , lowerCamelCase : Optional[bool] = None , lowerCamelCase : Optional[torch.Tensor] = None , lowerCamelCase : Optional[bool] = None , ) -> Union[tuple, SemanticSegmenterOutput]: lowerCAmelCase_ : int = return_dict if return_dict is not None else self.config.use_return_dict lowerCAmelCase_ : Any = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCAmelCase_ : Tuple = output_attentions if output_attentions is not None else self.config.output_attentions lowerCAmelCase_ : Dict = self.backbone.forward_with_filtered_kwargs( lowerCamelCase , output_hidden_states=lowerCamelCase , output_attentions=lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = outputs.feature_maps lowerCAmelCase_ : Dict = self.decode_head(lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = nn.functional.interpolate(lowerCamelCase , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=lowerCamelCase ) lowerCAmelCase_ : Tuple = None if self.auxiliary_head is not None: lowerCAmelCase_ : Optional[int] = self.auxiliary_head(lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = nn.functional.interpolate( lowerCamelCase , size=pixel_values.shape[2:] , mode="""bilinear""" , align_corners=lowerCamelCase ) lowerCAmelCase_ : str = None if labels is not None: if self.config.num_labels == 1: raise ValueError("""The number of labels should be greater than one""" ) else: # compute weighted loss lowerCAmelCase_ : str = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) lowerCAmelCase_ : int = loss_fct(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : List[str] = loss_fct(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : str = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: lowerCAmelCase_ : int = (logits,) + outputs[1:] else: lowerCAmelCase_ : List[str] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=lowerCamelCase , logits=lowerCamelCase , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
120
1
"""simple docstring""" import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=3_0, lowerCamelCase_=2, lowerCamelCase_=3, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=3_2, lowerCamelCase_=5, lowerCamelCase_=4, lowerCamelCase_=3_7, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=1_0, lowerCamelCase_=0.02, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Dict = parent lowerCamelCase__ : Optional[Any] = batch_size lowerCamelCase__ : Union[str, Any] = image_size lowerCamelCase__ : List[str] = patch_size lowerCamelCase__ : Tuple = num_channels lowerCamelCase__ : Union[str, Any] = is_training lowerCamelCase__ : Optional[int] = use_labels lowerCamelCase__ : Optional[int] = hidden_size lowerCamelCase__ : Union[str, Any] = num_hidden_layers lowerCamelCase__ : List[str] = num_attention_heads lowerCamelCase__ : str = intermediate_size lowerCamelCase__ : List[Any] = hidden_act lowerCamelCase__ : Optional[Any] = hidden_dropout_prob lowerCamelCase__ : Tuple = attention_probs_dropout_prob lowerCamelCase__ : Optional[Any] = type_sequence_label_size lowerCamelCase__ : int = initializer_range lowerCamelCase__ : Dict = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCamelCase__ : Any = (image_size // patch_size) ** 2 lowerCamelCase__ : int = num_patches + 1 def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Optional[int] = None if self.use_labels: lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase__ : Dict = self.get_config() return config, pixel_values, labels def a__ (self ): '''simple docstring''' return ViTMSNConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, initializer_range=self.initializer_range, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ViTMSNModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = self.type_sequence_label_size lowerCamelCase__ : Dict = ViTMSNForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int = model(lowerCamelCase_, labels=lowerCamelCase_ ) print('Pixel and labels shape: {pixel_values.shape}, {labels.shape}' ) print('Labels: {labels}' ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase__ : str = 1 lowerCamelCase__ : Tuple = ViTMSNForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.prepare_config_and_inputs() lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[str] = config_and_inputs lowerCamelCase__ : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class a_ ( snake_case_ , snake_case_ , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Optional[int] = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () lowerCamelCase__ : Optional[int] = ( {'feature-extraction': ViTMSNModel, 'image-classification': ViTMSNForImageClassification} if is_torch_available() else {} ) lowerCamelCase__ : List[Any] = False lowerCamelCase__ : Any = False lowerCamelCase__ : Dict = False lowerCamelCase__ : List[str] = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = ViTMSNModelTester(self ) lowerCamelCase__ : Any = ConfigTester(self, config_class=lowerCamelCase_, has_text_modality=lowerCamelCase_, hidden_size=3_7 ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViTMSN does not use inputs_embeds' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Dict = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) lowerCamelCase__ : List[str] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_, nn.Linear ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ , lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Any = model_class(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : List[Any] = [*signature.parameters.keys()] lowerCamelCase__ : Tuple = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def a__ (self ): '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Any = ViTMSNModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowerCamelCase_ ( ): lowerCamelCase__ : List[str] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def a__ (self ): '''simple docstring''' return ViTImageProcessor.from_pretrained('facebook/vit-msn-small' ) if is_vision_available() else None @slow def a__ (self ): '''simple docstring''' torch.manual_seed(2 ) lowerCamelCase__ : Any = ViTMSNForImageClassification.from_pretrained('facebook/vit-msn-small' ).to(lowerCamelCase_ ) lowerCamelCase__ : str = self.default_image_processor lowerCamelCase__ : int = prepare_img() lowerCamelCase__ : Dict = image_processor(images=lowerCamelCase_, return_tensors='pt' ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): lowerCamelCase__ : Optional[Any] = model(**lowerCamelCase_ ) # verify the logits lowerCamelCase__ : Dict = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape, lowerCamelCase_ ) lowerCamelCase__ : List[Any] = torch.tensor([-0.0_803, -0.4_454, -0.2_375] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], lowerCamelCase_, atol=1e-4 ) )
316
"""simple docstring""" import cva import numpy as np class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' if k in (0.04, 0.06): lowerCamelCase__ : Tuple = k lowerCamelCase__ : Optional[Any] = window_size else: raise ValueError('invalid k value' ) def __str__(self ): '''simple docstring''' return str(self.k ) def a__ (self, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = cva.imread(lowerCamelCase_, 0 ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = img.shape lowerCamelCase__ : list[list[int]] = [] lowerCamelCase__ : Optional[Any] = img.copy() lowerCamelCase__ : Optional[Any] = cva.cvtColor(lowerCamelCase_, cva.COLOR_GRAY2RGB ) lowerCamelCase__ , lowerCamelCase__ : Any = np.gradient(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = dx**2 lowerCamelCase__ : List[Any] = dy**2 lowerCamelCase__ : List[str] = dx * dy lowerCamelCase__ : Tuple = 0.04 lowerCamelCase__ : List[Any] = self.window_size // 2 for y in range(lowerCamelCase_, h - offset ): for x in range(lowerCamelCase_, w - offset ): lowerCamelCase__ : Union[str, Any] = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : Optional[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : List[Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() lowerCamelCase__ : str = (wxx * wyy) - (wxy**2) lowerCamelCase__ : Dict = wxx + wyy lowerCamelCase__ : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0), 0 ) color_img.itemset((y, x, 1), 0 ) color_img.itemset((y, x, 2), 2_5_5 ) return color_img, corner_list if __name__ == "__main__": A_ : Optional[Any] = HarrisCorner(0.04, 3) A_, A_ : List[Any] = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
316
1
'''simple docstring''' import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _A : str =logging.get_logger(__name__) _A : str ={ '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } _A : Dict =[ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> List[Any]: for attribute in key.split(""".""" ): lowerCamelCase__ : Union[str, Any] = getattr(UpperCamelCase , UpperCamelCase ) if weight_type is not None: lowerCamelCase__ : Optional[int] = getattr(UpperCamelCase , UpperCamelCase ).shape else: lowerCamelCase__ : Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( f'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": lowerCamelCase__ : Optional[Any] = value elif weight_type == "weight_g": lowerCamelCase__ : str = value elif weight_type == "weight_v": lowerCamelCase__ : Any = value elif weight_type == "bias": lowerCamelCase__ : str = value else: lowerCamelCase__ : Any = value logger.info(f'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> int: lowerCamelCase__ : int = [] lowerCamelCase__ : Optional[Any] = fairseq_model.state_dict() lowerCamelCase__ : Dict = hf_model.feature_extractor lowerCamelCase__ : List[str] = hf_model.adapter for name, value in fairseq_dict.items(): lowerCamelCase__ : Optional[int] = False if "conv_layers" in name: load_conv_layer( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , hf_model.config.feat_extract_norm == """group""" , ) lowerCamelCase__ : Tuple = True elif any(x in name for x in ["""adaptor""", """w2v_encoder.proj.""", """w2v_proj_ln."""] ): load_adapter(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : List[Any] = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowerCamelCase__ : Dict = True if "*" in mapped_key: lowerCamelCase__ : Dict = name.split(UpperCamelCase )[0].split(""".""" )[-2] lowerCamelCase__ : Any = mapped_key.replace("""*""" , UpperCamelCase ) if "weight_g" in name: lowerCamelCase__ : Optional[int] = """weight_g""" elif "weight_v" in name: lowerCamelCase__ : Any = """weight_v""" elif "bias" in name: lowerCamelCase__ : List[str] = """bias""" elif "weight" in name: lowerCamelCase__ : int = """weight""" else: lowerCamelCase__ : Optional[Any] = None set_recursively(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) continue if not is_used: unused_weights.append(UpperCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> List[str]: lowerCamelCase__ : Any = full_name.split("""conv_layers.""" )[-1] lowerCamelCase__ : int = name.split(""".""" ) lowerCamelCase__ : List[Any] = int(items[0] ) lowerCamelCase__ : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) lowerCamelCase__ : Union[str, Any] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) lowerCamelCase__ : List[Any] = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) lowerCamelCase__ : List[Any] = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) lowerCamelCase__ : Dict = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(UpperCamelCase ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> List[str]: lowerCamelCase__ : Union[str, Any] = full_name.split("""adaptor.""" )[-1] lowerCamelCase__ : Optional[int] = name.split(""".""" ) if items[1].isdigit(): lowerCamelCase__ : Dict = int(items[1] ) else: lowerCamelCase__ : str = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.''' lowerCamelCase__ : List[Any] = value logger.info(f'''Adapter proj layer norm bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.''' lowerCamelCase__ : Dict = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.''' lowerCamelCase__ : Tuple = value logger.info(f'''Adapter proj layer bias was initialized from {full_name}.''' ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.''' lowerCamelCase__ : Union[str, Any] = value logger.info(f'''Adapter proj layer weight was initialized from {full_name}.''' ) elif isinstance(UpperCamelCase , UpperCamelCase ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.''' lowerCamelCase__ : Any = value logger.info(f'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f'''{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.''' lowerCamelCase__ : str = value logger.info(f'''Adapter layer {layer_id} bias was initialized from {full_name}.''' ) else: unused_weights.append(UpperCamelCase ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> int: lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = emb.weight.shape lowerCamelCase__ : int = nn.Linear(UpperCamelCase , UpperCamelCase , bias=UpperCamelCase ) lowerCamelCase__ : str = emb.weight.data return lin_layer @torch.no_grad() def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ) -> Union[str, Any]: lowerCamelCase__ : Optional[Any] = WavaVecaConfig.from_pretrained( UpperCamelCase , add_adapter=UpperCamelCase , adapter_stride=UpperCamelCase , adapter_kernel_size=UpperCamelCase , use_auth_token=UpperCamelCase , output_hidden_size=UpperCamelCase , ) lowerCamelCase__ : Dict = MBartConfig.from_pretrained(UpperCamelCase ) # load model lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ """config_yaml""": config_yaml_path, """data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path, """load_pretrained_decoder_from""": None, } , ) lowerCamelCase__ : Union[str, Any] = model[0].eval() # load feature extractor lowerCamelCase__ : Any = WavaVecaFeatureExtractor.from_pretrained(UpperCamelCase , use_auth_token=UpperCamelCase ) # set weights for wav2vec2 encoder lowerCamelCase__ : int = WavaVecaModel(UpperCamelCase ) recursively_load_weights_wavaveca(model.encoder , UpperCamelCase ) # load decoder weights lowerCamelCase__ : int = MBartForCausalLM(UpperCamelCase ) lowerCamelCase__ , lowerCamelCase__ : Dict = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCamelCase ) logger.warning(f'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(f'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) lowerCamelCase__ : List[str] = SpeechEncoderDecoderModel(encoder=UpperCamelCase , decoder=UpperCamelCase ) lowerCamelCase__ : Any = False lowerCamelCase__ : Any = MBartaaTokenizer(UpperCamelCase ) tokenizer.save_pretrained(UpperCamelCase ) lowerCamelCase__ : List[str] = hf_wavavec.config.to_dict() lowerCamelCase__ : Union[str, Any] = tokenizer.pad_token_id lowerCamelCase__ : Dict = tokenizer.bos_token_id lowerCamelCase__ : List[str] = tokenizer.eos_token_id lowerCamelCase__ : Tuple = """mbart50""" lowerCamelCase__ : int = """wav2vec2""" lowerCamelCase__ : Any = tokenizer.eos_token_id lowerCamelCase__ : List[Any] = 250004 lowerCamelCase__ : Dict = tokenizer.eos_token_id lowerCamelCase__ : Tuple = SpeechEncoderDecoderConfig.from_dict(UpperCamelCase ) hf_wavavec.save_pretrained(UpperCamelCase ) feature_extractor.save_pretrained(UpperCamelCase ) if __name__ == "__main__": _A : Optional[Any] =argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_yaml_path''', default=None, type=str, help='''Path to yaml file of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-xls-r-1b''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/mbart-large-50-one-to-many-mmt''', type=str, help='''Path to hf decoder checkpoint config''', ) parser.add_argument('''--add_adapter''', default=True, type=bool, help='''whethere to add model adapter layers''') parser.add_argument('''--adapter_stride''', default=2, type=int, help='''stride of adapter layers''') parser.add_argument('''--adapter_kernel_size''', default=3, type=int, help='''kernel size of adapter layers''') parser.add_argument('''--encoder_output_dim''', default=1_024, type=int, help='''encoder output dim''') parser.add_argument('''--start_token_id''', default=250_004, type=int, help='''`decoder_start_token_id` of model config''') _A : Optional[Any] =parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
41
'''simple docstring''' def __magic_name__( lowerCamelCase, lowerCamelCase): assert x is not None assert y is not None __lowerCAmelCase = len(lowerCamelCase) __lowerCAmelCase = len(lowerCamelCase) # declaring the array for storing the dp values __lowerCAmelCase = [[0] * (n + 1) for _ in range(m + 1)] # noqa: E741 for i in range(1, m + 1): for j in range(1, n + 1): __lowerCAmelCase = 1 if x[i - 1] == y[j - 1] else 0 __lowerCAmelCase = max(l[i - 1][j], l[i][j - 1], l[i - 1][j - 1] + match) __lowerCAmelCase = '''''' __lowerCAmelCase , __lowerCAmelCase = m, n while i > 0 and j > 0: __lowerCAmelCase = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: __lowerCAmelCase = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": _UpperCAmelCase : List[Any] = """AGGTAB""" _UpperCAmelCase : int = """GXTXAYB""" _UpperCAmelCase : Any = 4 _UpperCAmelCase : List[Any] = """GTAB""" _UpperCAmelCase ,_UpperCAmelCase : Optional[int] = longest_common_subsequence(a, b) print("""len =""", ln, """, sub-sequence =""", subseq) import doctest doctest.testmod()
174
0
"""simple docstring""" import numpy as np from PIL import Image def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = np.array(lowerCAmelCase_ ) if arr.shape[0] != arr.shape[1]: raise ValueError("The input array is not a square matrix" ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 # compute the shape of the output matrix __SCREAMING_SNAKE_CASE = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape __SCREAMING_SNAKE_CASE = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix __SCREAMING_SNAKE_CASE = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 return updated_arr def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = np.array(lowerCAmelCase_ ) if arr.shape[0] != arr.shape[1]: raise ValueError("The input array is not a square matrix" ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 # compute the shape of the output matrix __SCREAMING_SNAKE_CASE = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape __SCREAMING_SNAKE_CASE = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix __SCREAMING_SNAKE_CASE = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name='''avgpooling''', verbose=True) # Loading the image a__ : Optional[int] = Image.open('''path_to_image''') # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
195
"""simple docstring""" import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging a__ : Union[str, Any] = logging.get_logger(__name__) def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = R"\w+[.]\d+" __SCREAMING_SNAKE_CASE = re.findall(lowerCAmelCase_ , lowerCAmelCase_ ) for pat in pats: __SCREAMING_SNAKE_CASE = key.replace(lowerCAmelCase_ , "_".join(pat.split("." ) ) ) return key def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ("scale",) if ( any("norm" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): __SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: __SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ("scale",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: __SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ("embedding",) return renamed_pt_tuple_key, pt_tensor # conv layer __SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: __SCREAMING_SNAKE_CASE = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer __SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ("kernel",) if pt_tuple_key[-1] == "weight": __SCREAMING_SNAKE_CASE = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight __SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ("weight",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias __SCREAMING_SNAKE_CASE = pt_tuple_key[:-1] + ("bias",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=42 ): '''simple docstring''' __SCREAMING_SNAKE_CASE = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params __SCREAMING_SNAKE_CASE = flax_model.init_weights(PRNGKey(lowerCAmelCase_ ) ) __SCREAMING_SNAKE_CASE = flatten_dict(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): __SCREAMING_SNAKE_CASE = rename_key(lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = tuple(renamed_pt_key.split("." ) ) # Correctly rename weight parameters __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = rename_key_and_reshape_tensor(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( f"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ f"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) # also add unexpected weight so that warning is thrown __SCREAMING_SNAKE_CASE = jnp.asarray(lowerCAmelCase_ ) return unflatten_dict(lowerCAmelCase_ )
195
1
'''simple docstring''' import math def __magic_name__ ( __UpperCAmelCase ) -> list[int]: '''simple docstring''' snake_case_ = [] snake_case_ = 2 snake_case_ = int(math.sqrt(__UpperCAmelCase ) ) # Size of every segment snake_case_ = [True] * (end + 1) snake_case_ = [] while start <= end: if temp[start] is True: in_prime.append(__UpperCAmelCase ) for i in range(start * start, end + 1, __UpperCAmelCase ): snake_case_ = False start += 1 prime += in_prime snake_case_ = end + 1 snake_case_ = min(2 * end, __UpperCAmelCase ) while low <= n: snake_case_ = [True] * (high - low + 1) for each in in_prime: snake_case_ = math.floor(low / each ) * each if t < low: t += each for j in range(__UpperCAmelCase, high + 1, __UpperCAmelCase ): snake_case_ = False for j in range(len(__UpperCAmelCase ) ): if temp[j] is True: prime.append(j + low ) snake_case_ = high + 1 snake_case_ = min(high + end, __UpperCAmelCase ) return prime print(sieve(10**6))
56
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed a_ : Dict = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f'''{bindir}/../../examples/pytorch/translation'''): from run_translation import main # noqa set_seed(42) a_ : int = """sshleifer/student_marian_en_ro_6_1""" a_ : str = """sshleifer/tiny-mbart""" @require_torch class snake_case ( lowercase ): """simple docstring""" def snake_case ( self , UpperCamelCase=False , UpperCamelCase=None , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=True , ): """simple docstring""" lowerCamelCase_ = self.run_trainer( eval_steps=1 , max_len=12 , model_name=UpperCamelCase , num_train_epochs=1 , distributed=UpperCamelCase , extra_args_str=UpperCamelCase , predict_with_generate=UpperCamelCase , do_train=UpperCamelCase , do_eval=UpperCamelCase , do_predict=UpperCamelCase , ) lowerCamelCase_ = TrainerState.load_from_json(os.path.join(UpperCamelCase , "trainer_state.json" ) ).log_history if not do_eval: return lowerCamelCase_ = [log for log in logs if "eval_loss" in log.keys()] lowerCamelCase_ = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats lowerCamelCase_ = eval_metrics[-1] assert isinstance(last_step_stats["eval_bleu"] , UpperCamelCase ) assert not math.isnan(float(last_step_stats["eval_loss"] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def snake_case ( self ): """simple docstring""" self.run_seqaseq_quick() @require_torch_multi_gpu def snake_case ( self ): """simple docstring""" self.run_seqaseq_quick(distributed=UpperCamelCase ) @require_torch_multi_gpu def snake_case ( self ): """simple docstring""" self.run_seqaseq_quick(distributed=UpperCamelCase ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def snake_case ( self ): """simple docstring""" self.run_seqaseq_quick(distributed=UpperCamelCase , extra_args_str="--sharded_ddp simple" ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def snake_case ( self ): """simple docstring""" self.run_seqaseq_quick(distributed=UpperCamelCase , extra_args_str="--sharded_ddp simple --fp16" ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def snake_case ( self ): """simple docstring""" self.run_seqaseq_quick(distributed=UpperCamelCase , extra_args_str="--sharded_ddp zero_dp_2" , predict_with_generate=UpperCamelCase ) @unittest.skip("Requires an update of the env running those tests" ) @require_torch_multi_gpu @require_fairscale def snake_case ( self ): """simple docstring""" self.run_seqaseq_quick( distributed=UpperCamelCase , extra_args_str="--sharded_ddp zero_dp_2 --fp16" , predict_with_generate=UpperCamelCase ) @require_apex @require_torch_gpu def snake_case ( self ): """simple docstring""" # XXX: apex breaks the trainer if it's run twice e.g. run_seq2seq.main() from the same # program and it breaks other tests that run from the same pytest worker, therefore until this is # sorted out it must be run only in an external program, that is distributed=True in this # test and only under one or more gpus - if we want cpu will need to make a special test # # specifically to the problem traced it to self.optimizer.step() - if it's run 2nd time via # 2nd main() call it botches the future eval. # self.run_seqaseq_quick(distributed=UpperCamelCase , extra_args_str="--fp16 --fp16_backend=apex" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=UpperCamelCase , extra_args_str="--fp16 --fp16_backend=apex" ) @parameterized.expand(["base", "low", "high", "mixed"] ) @require_torch_multi_gpu def snake_case ( self , UpperCamelCase ): """simple docstring""" # as each sub-test is slow-ish split into multiple sub-tests to avoid CI timeout lowerCamelCase_ = { # test with the default log_level - should be info and thus log info once "base": {"extra_args_str": "", "n_matches": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes "low": {"extra_args_str": "--log_level debug --log_level_replica debug", "n_matches": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica "high": {"extra_args_str": "--log_level error --log_level_replica debug", "n_matches": 1}, # test with high log_level and log_level_replica - should be quiet on all processes "mixed": {"extra_args_str": "--log_level error --log_level_replica error", "n_matches": 0}, } lowerCamelCase_ = experiments[experiment_id] lowerCamelCase_ = {"distributed": True, "predict_with_generate": False, "do_eval": False, "do_predict": False} lowerCamelCase_ = "Running training" with CaptureStderr() as cl: self.run_seqaseq_quick(**UpperCamelCase , extra_args_str=data["extra_args_str"] ) lowerCamelCase_ = len(re.findall(UpperCamelCase , cl.err ) ) self.assertEqual(UpperCamelCase , data["n_matches"] ) @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.run_trainer( eval_steps=2 , max_len=128 , model_name=UpperCamelCase , learning_rate=3e-4 , num_train_epochs=10 , distributed=UpperCamelCase , ) # Check metrics lowerCamelCase_ = TrainerState.load_from_json(os.path.join(UpperCamelCase , "trainer_state.json" ) ).log_history lowerCamelCase_ = [log for log in logs if "eval_loss" in log.keys()] lowerCamelCase_ = eval_metrics[0] lowerCamelCase_ = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["eval_bleu"] , UpperCamelCase ) # test if do_predict saves generations and metrics lowerCamelCase_ = os.listdir(UpperCamelCase ) lowerCamelCase_ = {os.path.basename(UpperCamelCase ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def snake_case ( self ): """simple docstring""" from transformers.training_args import OptimizerNames def train_and_return_metrics(UpperCamelCase ) -> Tuple[int, float]: lowerCamelCase_ = "--skip_memory_metrics 0" lowerCamelCase_ = self.run_trainer( max_len=128 , model_name=UpperCamelCase , learning_rate=3e-4 , num_train_epochs=1 , optim=UpperCamelCase , distributed=UpperCamelCase , extra_args_str=UpperCamelCase , do_eval=UpperCamelCase , do_predict=UpperCamelCase , n_gpus_to_use=1 , ) # Check metrics lowerCamelCase_ = TrainerState.load_from_json(Path(UpperCamelCase , "trainer_state.json" ) ).log_history lowerCamelCase_ = int(logs[0]["train_mem_gpu_peaked_delta"] / 2**20 ) lowerCamelCase_ = int(logs[0]["train_mem_gpu_alloc_delta"] / 2**20 ) lowerCamelCase_ = logs[0]["train_loss"] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) lowerCamelCase_ = gpu_alloc_mem_orig - gpu_alloc_mem_bnb lowerCamelCase_ = gpu_peak_mem_orig + gpu_alloc_mem_orig lowerCamelCase_ = gpu_peak_mem_bnb + gpu_alloc_mem_bnb lowerCamelCase_ = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings lowerCamelCase_ = 120 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( UpperCamelCase , UpperCamelCase , "should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got" f''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and''' f''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' , ) self.assertGreater( UpperCamelCase , UpperCamelCase , "should use ~150MB less total gpu memory with BNB, compared to without it for this model but got" f''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and''' f''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' , ) self.assertEqual( UpperCamelCase , UpperCamelCase , f'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = 3e-3 , UpperCamelCase = "adafactor" , UpperCamelCase = False , UpperCamelCase = None , UpperCamelCase = 0 , UpperCamelCase = True , UpperCamelCase = True , UpperCamelCase = True , UpperCamelCase = True , UpperCamelCase = None , ): """simple docstring""" lowerCamelCase_ = self.test_file_dir / "../fixtures/tests_samples/wmt_en_ro" lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = f''' --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(UpperCamelCase )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(UpperCamelCase )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX '''.split() lowerCamelCase_ = f''' --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(UpperCamelCase )} '''.split() lowerCamelCase_ = "\n --do_predict\n ".split() lowerCamelCase_ = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += f'''--optim {optim}'''.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: lowerCamelCase_ = get_gpu_count() lowerCamelCase_ = get_torch_dist_unique_port() lowerCamelCase_ = f''' -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py '''.split() lowerCamelCase_ = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(UpperCamelCase , env=self.get_env() ) else: lowerCamelCase_ = ["run_translation.py"] + args with patch.object(UpperCamelCase , "argv" , UpperCamelCase ): main() return output_dir
55
0
_snake_case : List[Any] = '\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _snake_case : Dict = [{'type': 'code', 'content': INSTALL_CONTENT}] _snake_case : str = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
207
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean _snake_case : Dict = 0 _snake_case : Dict = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _snake_case : List[str] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right _snake_case : Tuple = tuple[int, int] class _UpperCAmelCase : """simple docstring""" def __init__( self : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Node | None , ) -> None: __lowerCAmelCase = pos_x __lowerCAmelCase = pos_y __lowerCAmelCase = (pos_y, pos_x) __lowerCAmelCase = goal_x __lowerCAmelCase = goal_y __lowerCAmelCase = g_cost __lowerCAmelCase = parent __lowerCAmelCase = self.calculate_heuristic() __lowerCAmelCase = self.g_cost + self.h_cost def lowercase ( self : Any ) -> float: __lowerCAmelCase = self.pos_x - self.goal_x __lowerCAmelCase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(lowerCAmelCase_ ) + abs(lowerCAmelCase_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : Union[str, Any] , lowerCAmelCase_ : Node ) -> bool: return self.f_cost < other.f_cost class _UpperCAmelCase : """simple docstring""" def __init__( self : List[str] , lowerCAmelCase_ : TPosition , lowerCAmelCase_ : TPosition ) -> Tuple: __lowerCAmelCase = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowerCAmelCase_ ) __lowerCAmelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9_9_9_9 , lowerCAmelCase_ ) __lowerCAmelCase = [self.start] __lowerCAmelCase = [] __lowerCAmelCase = False def lowercase ( self : str ) -> list[TPosition]: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __lowerCAmelCase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(lowerCAmelCase_ ) self.closed_nodes.append(lowerCAmelCase_ ) __lowerCAmelCase = self.get_successors(lowerCAmelCase_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowerCAmelCase_ ) else: # retrieve the best current path __lowerCAmelCase = self.open_nodes.pop(self.open_nodes.index(lowerCAmelCase_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowerCAmelCase_ ) else: self.open_nodes.append(lowerCAmelCase_ ) return [self.start.pos] def lowercase ( self : Optional[Any] , lowerCAmelCase_ : Node ) -> list[Node]: __lowerCAmelCase = [] for action in delta: __lowerCAmelCase = parent.pos_x + action[1] __lowerCAmelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(lowerCAmelCase_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowerCAmelCase_ , lowerCAmelCase_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowerCAmelCase_ , ) ) return successors def lowercase ( self : Tuple , lowerCAmelCase_ : Node | None ) -> list[TPosition]: __lowerCAmelCase = node __lowerCAmelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __lowerCAmelCase = current_node.parent path.reverse() return path class _UpperCAmelCase : """simple docstring""" def __init__( self : int , lowerCAmelCase_ : TPosition , lowerCAmelCase_ : TPosition ) -> None: __lowerCAmelCase = AStar(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = AStar(lowerCAmelCase_ , lowerCAmelCase_ ) __lowerCAmelCase = False def lowercase ( self : Dict ) -> list[TPosition]: while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __lowerCAmelCase = self.fwd_astar.open_nodes.pop(0 ) __lowerCAmelCase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( lowerCAmelCase_ , lowerCAmelCase_ ) self.fwd_astar.closed_nodes.append(lowerCAmelCase_ ) self.bwd_astar.closed_nodes.append(lowerCAmelCase_ ) __lowerCAmelCase = current_bwd_node __lowerCAmelCase = current_fwd_node __lowerCAmelCase = { self.fwd_astar: self.fwd_astar.get_successors(lowerCAmelCase_ ), self.bwd_astar: self.bwd_astar.get_successors(lowerCAmelCase_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(lowerCAmelCase_ ) else: # retrieve the best current path __lowerCAmelCase = astar.open_nodes.pop( astar.open_nodes.index(lowerCAmelCase_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(lowerCAmelCase_ ) else: astar.open_nodes.append(lowerCAmelCase_ ) return [self.fwd_astar.start.pos] def lowercase ( self : Dict , lowerCAmelCase_ : Node , lowerCAmelCase_ : Node ) -> list[TPosition]: __lowerCAmelCase = self.fwd_astar.retrace_path(lowerCAmelCase_ ) __lowerCAmelCase = self.bwd_astar.retrace_path(lowerCAmelCase_ ) bwd_path.pop() bwd_path.reverse() __lowerCAmelCase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] _snake_case : List[Any] = (0, 0) _snake_case : Union[str, Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) _snake_case : int = time.time() _snake_case : Optional[int] = AStar(init, goal) _snake_case : int = a_star.search() _snake_case : Union[str, Any] = time.time() - start_time print(F"""AStar execution time = {end_time:f} seconds""") _snake_case : Any = time.time() _snake_case : Dict = BidirectionalAStar(init, goal) _snake_case : Optional[int] = time.time() - bd_start_time print(F"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
207
1
'''simple docstring''' def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> List[str]: # "extended trapezoidal rule" # int(f) = dx/2 * (f1 + 2f2 + ... + fn) lowerCamelCase__ : int = (boundary[1] - boundary[0]) / steps lowerCamelCase__ : Optional[int] = boundary[0] lowerCamelCase__ : Union[str, Any] = boundary[1] lowerCamelCase__ : Optional[Any] = make_points(snake_case_ , snake_case_ , snake_case_ ) lowerCamelCase__ : str = 0.0 y += (h / 2.0) * f(snake_case_ ) for i in x_i: # print(i) y += h * f(snake_case_ ) y += (h / 2.0) * f(snake_case_ ) return y def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Optional[Any]: lowerCamelCase__ : int = a + h while x < (b - h): yield x lowerCamelCase__ : int = x + h def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Dict: # enter your function here lowerCamelCase__ : List[str] = (x - 0) * (x - 0) return y def SCREAMING_SNAKE_CASE_ () -> Optional[Any]: lowerCamelCase__ : Optional[int] = 0.0 # Lower bound of integration lowerCamelCase__ : Optional[int] = 1.0 # Upper bound of integration lowerCamelCase__ : List[str] = 10.0 # define number of steps or resolution lowerCamelCase__ : int = [a, b] # define boundary of integration lowerCamelCase__ : List[Any] = method_a(snake_case_ , snake_case_ ) print(f'''y = {y}''' ) if __name__ == "__main__": main()
41
"""simple docstring""" import argparse import os import re import numpy as np import PIL import torch from timm import create_model from torch.optim.lr_scheduler import OneCycleLR from torch.utils.data import DataLoader, Dataset from torchvision.transforms import Compose, RandomResizedCrop, Resize, ToTensor from accelerate import Accelerator def lowerCAmelCase_ ( snake_case_ : Dict ) ->Tuple: lowerCamelCase__ : List[str] =fname.split(os.path.sep )[-1] return re.search(R'^(.*)_\d+\.jpg$' , snake_case_ ).groups()[0] class A_ ( A__ ): """simple docstring""" def __init__( self :int , lowerCamelCase_ :int , lowerCamelCase_ :Any=None , lowerCamelCase_ :Any=None ): """simple docstring""" lowerCamelCase__ : Tuple =file_names lowerCamelCase__ : str =image_transform lowerCamelCase__ : str =label_to_id def __len__( self :Optional[int] ): """simple docstring""" return len(self.file_names ) def __getitem__( self :Optional[Any] , lowerCamelCase_ :Optional[int] ): """simple docstring""" lowerCamelCase__ : Tuple =self.file_names[idx] lowerCamelCase__ : Dict =PIL.Image.open(lowerCamelCase_ ) lowerCamelCase__ : Dict =raw_image.convert('RGB' ) if self.image_transform is not None: lowerCamelCase__ : int =self.image_transform(lowerCamelCase_ ) lowerCamelCase__ : List[str] =extract_label(lowerCamelCase_ ) if self.label_to_id is not None: lowerCamelCase__ : Optional[int] =self.label_to_id[label] return {"image": image, "label": label} def lowerCAmelCase_ ( snake_case_ : Dict , snake_case_ : Any ) ->Dict: # Initialize accelerator if args.with_tracking: lowerCamelCase__ : List[str] =Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='all' , project_dir=args.project_dir ) else: lowerCamelCase__ : Tuple =Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCamelCase__ : Optional[Any] =config['lr'] lowerCamelCase__ : List[str] =int(config['num_epochs'] ) lowerCamelCase__ : List[str] =int(config['seed'] ) lowerCamelCase__ : Dict =int(config['batch_size'] ) lowerCamelCase__ : Optional[int] =config['image_size'] if not isinstance(snake_case_ , (list, tuple) ): lowerCamelCase__ : Optional[int] =(image_size, image_size) # Parse out whether we are saving every epoch or after a certain number of batches if hasattr(args.checkpointing_steps , 'isdigit' ): if args.checkpointing_steps == "epoch": lowerCamelCase__ : Optional[Any] =args.checkpointing_steps elif args.checkpointing_steps.isdigit(): lowerCamelCase__ : Union[str, Any] =int(args.checkpointing_steps ) else: raise ValueError( f"""Argument `checkpointing_steps` must be either a number or `epoch`. `{args.checkpointing_steps}` passed.""" ) else: lowerCamelCase__ : int =None # We need to initialize the trackers we use, and also store our configuration if args.with_tracking: lowerCamelCase__ : Tuple =os.path.split(snake_case_ )[-1].split('.' )[0] accelerator.init_trackers(snake_case_ , snake_case_ ) # Grab all the image filenames lowerCamelCase__ : List[str] =[os.path.join(args.data_dir , snake_case_ ) for fname in os.listdir(args.data_dir ) if fname.endswith('.jpg' )] # Build the label correspondences lowerCamelCase__ : str =[extract_label(snake_case_ ) for fname in file_names] lowerCamelCase__ : Any =list(set(snake_case_ ) ) id_to_label.sort() lowerCamelCase__ : List[Any] ={lbl: i for i, lbl in enumerate(snake_case_ )} # Set the seed before splitting the data. np.random.seed(snake_case_ ) torch.manual_seed(snake_case_ ) torch.cuda.manual_seed_all(snake_case_ ) # Split our filenames between train and validation lowerCamelCase__ : int =np.random.permutation(len(snake_case_ ) ) lowerCamelCase__ : Tuple =int(0.8 * len(snake_case_ ) ) lowerCamelCase__ : str =random_perm[:cut] lowerCamelCase__ : Dict =random_perm[cut:] # For training we use a simple RandomResizedCrop lowerCamelCase__ : str =Compose([RandomResizedCrop(snake_case_ , scale=(0.5, 1.0) ), ToTensor()] ) lowerCamelCase__ : Any =PetsDataset( [file_names[i] for i in train_split] , image_transform=snake_case_ , label_to_id=snake_case_ ) # For evaluation, we use a deterministic Resize lowerCamelCase__ : Optional[int] =Compose([Resize(snake_case_ ), ToTensor()] ) lowerCamelCase__ : Dict =PetsDataset([file_names[i] for i in eval_split] , image_transform=snake_case_ , label_to_id=snake_case_ ) # Instantiate dataloaders. lowerCamelCase__ : Optional[Any] =DataLoader(snake_case_ , shuffle=snake_case_ , batch_size=snake_case_ , num_workers=4 ) lowerCamelCase__ : int =DataLoader(snake_case_ , shuffle=snake_case_ , batch_size=snake_case_ , num_workers=4 ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCamelCase__ : Dict =create_model('resnet50d' , pretrained=snake_case_ , num_classes=len(snake_case_ ) ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCamelCase__ : str =model.to(accelerator.device ) # Freezing the base model for param in model.parameters(): lowerCamelCase__ : Dict =False for param in model.get_classifier().parameters(): lowerCamelCase__ : List[str] =True # We normalize the batches of images to be a bit faster. lowerCamelCase__ : Any =torch.tensor(model.default_cfg['mean'] )[None, :, None, None].to(accelerator.device ) lowerCamelCase__ : Dict =torch.tensor(model.default_cfg['std'] )[None, :, None, None].to(accelerator.device ) # Instantiate optimizer lowerCamelCase__ : int =torch.optim.Adam(params=model.parameters() , lr=lr / 2_5 ) # Instantiate learning rate scheduler lowerCamelCase__ : Dict =OneCycleLR(optimizer=snake_case_ , max_lr=snake_case_ , epochs=snake_case_ , steps_per_epoch=len(snake_case_ ) ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Any =accelerator.prepare( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) # We need to keep track of how many total steps we have iterated over lowerCamelCase__ : int =0 # We also need to keep track of the starting epoch so files are named properly lowerCamelCase__ : Optional[int] =0 # Potentially load in the weights and states from a previous save if args.resume_from_checkpoint: if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "": accelerator.print(f"""Resumed from checkpoint: {args.resume_from_checkpoint}""" ) accelerator.load_state(args.resume_from_checkpoint ) lowerCamelCase__ : int =os.path.basename(args.resume_from_checkpoint ) else: # Get the most recent checkpoint lowerCamelCase__ : int =[f.name for f in os.scandir(os.getcwd() ) if f.is_dir()] dirs.sort(key=os.path.getctime ) lowerCamelCase__ : Optional[int] =dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last # Extract `epoch_{i}` or `step_{i}` lowerCamelCase__ : Tuple =os.path.splitext(snake_case_ )[0] if "epoch" in training_difference: lowerCamelCase__ : Union[str, Any] =int(training_difference.replace('epoch_' , '' ) ) + 1 lowerCamelCase__ : Optional[int] =None else: lowerCamelCase__ : List[Any] =int(training_difference.replace('step_' , '' ) ) lowerCamelCase__ : int =resume_step // len(snake_case_ ) resume_step -= starting_epoch * len(snake_case_ ) # Now we train the model for epoch in range(snake_case_ , snake_case_ ): model.train() if args.with_tracking: lowerCamelCase__ : str =0 if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None: # We need to skip steps until we reach the resumed step lowerCamelCase__ : Tuple =accelerator.skip_first_batches(snake_case_ , snake_case_ ) overall_step += resume_step else: # After the first iteration though, we need to go back to the original dataloader lowerCamelCase__ : str =train_dataloader for batch in active_dataloader: # We could avoid this line since we set the accelerator with `device_placement=True`. lowerCamelCase__ : int ={k: v.to(accelerator.device ) for k, v in batch.items()} lowerCamelCase__ : List[str] =(batch['image'] - mean) / std lowerCamelCase__ : Any =model(snake_case_ ) lowerCamelCase__ : List[Any] =torch.nn.functional.cross_entropy(snake_case_ , batch['label'] ) # We keep track of the loss at each epoch if args.with_tracking: total_loss += loss.detach().float() accelerator.backward(snake_case_ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 if isinstance(snake_case_ , snake_case_ ): lowerCamelCase__ : int =f"""step_{overall_step}""" if overall_step % checkpointing_steps == 0: if args.output_dir is not None: lowerCamelCase__ : List[Any] =os.path.join(args.output_dir , snake_case_ ) accelerator.save_state(snake_case_ ) model.eval() lowerCamelCase__ : int =0 lowerCamelCase__ : Optional[Any] =0 for step, batch in enumerate(snake_case_ ): # We could avoid this line since we set the accelerator with `device_placement=True`. lowerCamelCase__ : Union[str, Any] ={k: v.to(accelerator.device ) for k, v in batch.items()} lowerCamelCase__ : int =(batch['image'] - mean) / std with torch.no_grad(): lowerCamelCase__ : List[str] =model(snake_case_ ) lowerCamelCase__ : Optional[int] =outputs.argmax(dim=-1 ) lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] =accelerator.gather_for_metrics((predictions, batch['label']) ) lowerCamelCase__ : Union[str, Any] =predictions == references num_elems += accurate_preds.shape[0] accurate += accurate_preds.long().sum() lowerCamelCase__ : List[str] =accurate.item() / num_elems # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}: {1_0_0 * eval_metric:.2f}""" ) if args.with_tracking: accelerator.log( { 'accuracy': 1_0_0 * eval_metric, 'train_loss': total_loss.item() / len(snake_case_ ), 'epoch': epoch, } , step=snake_case_ , ) if checkpointing_steps == "epoch": lowerCamelCase__ : Tuple =f"""epoch_{epoch}""" if args.output_dir is not None: lowerCamelCase__ : Tuple =os.path.join(args.output_dir , snake_case_ ) accelerator.save_state(snake_case_ ) if args.with_tracking: accelerator.end_training() def lowerCAmelCase_ ( ) ->int: lowerCamelCase__ : Any =argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument('--data_dir' , required=snake_case_ , help='The data folder on disk.' ) parser.add_argument('--fp16' , action='store_true' , help='If passed, will use FP16 training.' ) parser.add_argument( '--mixed_precision' , type=snake_case_ , default=snake_case_ , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) parser.add_argument( '--checkpointing_steps' , type=snake_case_ , default=snake_case_ , help='Whether the various states should be saved at the end of every n steps, or \'epoch\' for each epoch.' , ) parser.add_argument( '--output_dir' , type=snake_case_ , default='.' , help='Optional save directory where all checkpoint folders will be stored. Default is the current working directory.' , ) parser.add_argument( '--resume_from_checkpoint' , type=snake_case_ , default=snake_case_ , help='If the training should continue from a checkpoint folder.' , ) parser.add_argument( '--with_tracking' , action='store_true' , help='Whether to load in all available experiment trackers from the environment and use them for logging.' , ) parser.add_argument( '--project_dir' , type=snake_case_ , default='logs' , help='Location on where to store experiment tracking logs` and relevent project information' , ) lowerCamelCase__ : Dict =parser.parse_args() lowerCamelCase__ : List[str] ={'lr': 3E-2, 'num_epochs': 3, 'seed': 4_2, 'batch_size': 6_4, 'image_size': 2_2_4} training_function(snake_case_ , snake_case_ ) if __name__ == "__main__": main()
126
0
import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class _lowercase ( unittest.TestCase ): """simple docstring""" def UpperCamelCase_ (self ): """simple docstring""" a = 10 def UpperCamelCase_ (self ): """simple docstring""" a = [1, 2, 3, 4] a = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(lowerCamelCase_ , self.block_size , 0 ) , lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowerCamelCase_ , self.block_size , 0 ) , lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(lowerCamelCase_ , self.block_size , 0 ) , lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = "It was the year of Our Lord one thousand seven hundred and\n seventy-five.\n\nSpiritual revelations were conceded to England at that\n favoured period, as at this." a , a = process_story(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , [] ) def UpperCamelCase_ (self ): """simple docstring""" a = "" a , a = process_story(lowerCamelCase_ ) self.assertEqual(lowerCamelCase_ , [] ) self.assertEqual(lowerCamelCase_ , [] ) def UpperCamelCase_ (self ): """simple docstring""" a = ( "It was the year of Our Lord one thousand seven hundred and " "seventy-five\n\nSpiritual revelations were conceded to England " "at that favoured period, as at this.\n@highlight\n\nIt was the best of times" ) a , a = process_story(lowerCamelCase_ ) a = [ "It was the year of Our Lord one thousand seven hundred and seventy-five.", "Spiritual revelations were conceded to England at that favoured period, as at this.", ] self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) a = ["It was the best of times."] self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = torch.tensor([1, 2, 3, 4] ) a = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(lowerCamelCase_ , 0 ).numpy() , expected.numpy() ) def UpperCamelCase_ (self ): """simple docstring""" a = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) a = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowerCamelCase_ , 23 ).numpy() , expected.numpy() ) def UpperCamelCase_ (self ): """simple docstring""" a = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) a = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(lowerCamelCase_ , 1 ).numpy() , expected.numpy() ) def UpperCamelCase_ (self ): """simple docstring""" a = 101 a = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) a = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) a = compute_token_type_ids(lowerCamelCase_ , lowerCamelCase_ ) np.testing.assert_array_equal(lowerCamelCase_ , lowerCamelCase_ )
71
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class _lowercase ( lowerCAmelCase ): """simple docstring""" def UpperCamelCase_ (self ): """simple docstring""" a = tempfile.mkdtemp() a = 8 # DPR tok a = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] a = os.path.join(self.tmpdirname , "dpr_tokenizer" ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) a = os.path.join(lowerCamelCase_ , DPR_VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) # BART tok a = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] a = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) a = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] a = {"unk_token": "<unk>"} a = os.path.join(self.tmpdirname , "bart_tokenizer" ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) a = os.path.join(lowerCamelCase_ , BART_VOCAB_FILES_NAMES["vocab_file"] ) a = os.path.join(lowerCamelCase_ , BART_VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCamelCase_ ) ) def UpperCamelCase_ (self ): """simple docstring""" return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , "dpr_tokenizer" ) ) def UpperCamelCase_ (self ): """simple docstring""" return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , "bart_tokenizer" ) ) def UpperCamelCase_ (self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) @require_tokenizers def UpperCamelCase_ (self ): """simple docstring""" a = os.path.join(self.tmpdirname , "rag_tokenizer" ) a = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) a = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(lowerCamelCase_ ) rag_tokenizer.save_pretrained(lowerCamelCase_ ) a = RagTokenizer.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) self.assertIsInstance(new_rag_tokenizer.question_encoder , lowerCamelCase_ ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , lowerCamelCase_ ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def UpperCamelCase_ (self ): """simple docstring""" a = RagTokenizer.from_pretrained("facebook/rag-token-nq" ) a = [ "who got the first nobel prize in physics", "when is the next deadpool movie being released", "which mode is used for short wave broadcast service", "who is the owner of reading football club", "when is the next scandal episode coming out", "when is the last time the philadelphia won the superbowl", "what is the most current adobe flash player version", "how many episodes are there in dragon ball z", "what is the first step in the evolution of the eye", "where is gall bladder situated in human body", "what is the main mineral in lithium batteries", "who is the president of usa right now", "where do the greasers live in the outsiders", "panda is a national animal of which country", "what is the name of manchester united stadium", ] a = tokenizer(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) @slow def UpperCamelCase_ (self ): """simple docstring""" a = RagTokenizer.from_pretrained("facebook/rag-sequence-nq" ) a = [ "who got the first nobel prize in physics", "when is the next deadpool movie being released", "which mode is used for short wave broadcast service", "who is the owner of reading football club", "when is the next scandal episode coming out", "when is the last time the philadelphia won the superbowl", "what is the most current adobe flash player version", "how many episodes are there in dragon ball z", "what is the first step in the evolution of the eye", "where is gall bladder situated in human body", "what is the main mineral in lithium batteries", "who is the president of usa right now", "where do the greasers live in the outsiders", "panda is a national animal of which country", "what is the name of manchester united stadium", ] a = tokenizer(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ )
71
1
"""simple docstring""" import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL UpperCamelCase : Union[str, Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def A ( snake_case :str , snake_case :tuple , snake_case :Path , snake_case :Dict , snake_case :int , snake_case :List[str] , snake_case :Union[str, Any] , snake_case :Union[str, Any]=False , ) -> str: output_path.parent.mkdir(parents=snake_case , exist_ok=snake_case ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , use_external_data_format=snake_case , enable_onnx_checker=snake_case , opset_version=snake_case , ) else: export( snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , opset_version=snake_case , ) @torch.no_grad() def A ( snake_case :str , snake_case :str , snake_case :int , snake_case :bool = False ) -> List[str]: __UpperCamelCase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __UpperCamelCase = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: __UpperCamelCase = 'cpu' __UpperCamelCase = Path(snake_case ) # VAE DECODER __UpperCamelCase = AutoencoderKL.from_pretrained(model_path + '/vae' ) __UpperCamelCase = vae_decoder.config.latent_channels # forward only through the decoder part __UpperCamelCase = vae_decoder.decode onnx_export( snake_case , model_args=( torch.randn(1 , snake_case , 2_5 , 2_5 ).to(device=snake_case , dtype=snake_case ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=snake_case , ) del vae_decoder if __name__ == "__main__": UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=1_4, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCamelCase : List[Any] = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
316
"""simple docstring""" def A ( snake_case :list[int] , snake_case :list[int] ) -> None: __UpperCamelCase = len(snake_case ) print('The following activities are selected:' ) # The first activity is always selected __UpperCamelCase = 0 print(snake_case , end=',' ) # Consider rest of the activities for j in range(snake_case ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(snake_case , end=',' ) __UpperCamelCase = j if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase : int = [1, 3, 0, 5, 8, 5] UpperCamelCase : str = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
316
1
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean snake_case : Tuple = 0 snake_case : str = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] snake_case : int = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right snake_case : Dict = tuple[int, int] class _snake_case : def __init__( self , _a , _a , _a , _a , _a , _a , ): __magic_name__ : Any = pos_x __magic_name__ : Dict = pos_y __magic_name__ : Any = (pos_y, pos_x) __magic_name__ : List[Any] = goal_x __magic_name__ : Optional[int] = goal_y __magic_name__ : str = g_cost __magic_name__ : Union[str, Any] = parent __magic_name__ : Optional[int] = self.calculate_heuristic() __magic_name__ : int = self.g_cost + self.h_cost def SCREAMING_SNAKE_CASE ( self ): __magic_name__ : Union[str, Any] = self.pos_x - self.goal_x __magic_name__ : str = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(_a ) + abs(_a ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , _a ): return self.f_cost < other.f_cost class _snake_case : def __init__( self , _a , _a ): __magic_name__ : List[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _a ) __magic_name__ : List[str] = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , _a ) __magic_name__ : str = [self.start] __magic_name__ : list[Node] = [] __magic_name__ : Dict = False def SCREAMING_SNAKE_CASE ( self ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __magic_name__ : Union[str, Any] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(_a ) self.closed_nodes.append(_a ) __magic_name__ : str = self.get_successors(_a ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_a ) else: # retrieve the best current path __magic_name__ : List[Any] = self.open_nodes.pop(self.open_nodes.index(_a ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_a ) else: self.open_nodes.append(_a ) return [self.start.pos] def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : Dict = [] for action in delta: __magic_name__ : Dict = parent.pos_x + action[1] __magic_name__ : Optional[int] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_a ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _a , _a , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _a , ) ) return successors def SCREAMING_SNAKE_CASE ( self , _a ): __magic_name__ : Dict = node __magic_name__ : int = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __magic_name__ : int = current_node.parent path.reverse() return path class _snake_case : def __init__( self , _a , _a ): __magic_name__ : str = AStar(_a , _a ) __magic_name__ : List[str] = AStar(_a , _a ) __magic_name__ : List[Any] = False def SCREAMING_SNAKE_CASE ( self ): while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() __magic_name__ : int = self.fwd_astar.open_nodes.pop(0 ) __magic_name__ : List[Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( _a , _a ) self.fwd_astar.closed_nodes.append(_a ) self.bwd_astar.closed_nodes.append(_a ) __magic_name__ : List[Any] = current_bwd_node __magic_name__ : str = current_fwd_node __magic_name__ : str = { self.fwd_astar: self.fwd_astar.get_successors(_a ), self.bwd_astar: self.bwd_astar.get_successors(_a ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(_a ) else: # retrieve the best current path __magic_name__ : str = astar.open_nodes.pop( astar.open_nodes.index(_a ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(_a ) else: astar.open_nodes.append(_a ) return [self.fwd_astar.start.pos] def SCREAMING_SNAKE_CASE ( self , _a , _a ): __magic_name__ : Optional[int] = self.fwd_astar.retrace_path(_a ) __magic_name__ : Union[str, Any] = self.bwd_astar.retrace_path(_a ) bwd_path.pop() bwd_path.reverse() __magic_name__ : List[str] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] snake_case : Optional[int] = (0, 0) snake_case : str = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) snake_case : List[str] = time.time() snake_case : Union[str, Any] = AStar(init, goal) snake_case : List[Any] = a_star.search() snake_case : Optional[int] = time.time() - start_time print(F"AStar execution time = {end_time:f} seconds") snake_case : Optional[int] = time.time() snake_case : List[Any] = BidirectionalAStar(init, goal) snake_case : List[Any] = time.time() - bd_start_time print(F"BidirectionalAStar execution time = {bd_end_time:f} seconds")
41
import argparse import json import re from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileNetVaConfig, MobileNetVaForImageClassification, MobileNetVaImageProcessor, load_tf_weights_in_mobilenet_va, ) from transformers.utils import logging logging.set_verbosity_info() snake_case : int = logging.get_logger(__name__) def lowerCAmelCase_ ( _snake_case : str ) -> Optional[Any]: '''simple docstring''' __magic_name__ : Optional[int] = MobileNetVaConfig(layer_norm_eps=0.001 ) if "_quant" in model_name: raise ValueError("Quantized models are not supported." ) __magic_name__ : int = re.match(R"^mobilenet_v1_([^_]*)_([^_]*)$" , _snake_case ) if matches: __magic_name__ : List[str] = float(matches[1] ) __magic_name__ : Dict = int(matches[2] ) # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of # the usual 1000. The first class (index 0) is "background". __magic_name__ : List[str] = 1001 __magic_name__ : Tuple = "imagenet-1k-id2label.json" __magic_name__ : Union[str, Any] = "huggingface/label-files" __magic_name__ : str = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type="dataset" ) , "r" ) ) __magic_name__ : Tuple = {int(_snake_case ) + 1: v for k, v in idalabel.items()} __magic_name__ : Dict = "background" __magic_name__ : str = idalabel __magic_name__ : List[Any] = {v: k for k, v in idalabel.items()} return config def lowerCAmelCase_ ( ) -> str: '''simple docstring''' __magic_name__ : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" __magic_name__ : Any = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( _snake_case : str , _snake_case : Optional[int] , _snake_case : Any , _snake_case : int=False ) -> Optional[int]: '''simple docstring''' __magic_name__ : int = get_mobilenet_va_config(_snake_case ) # Load 🤗 model __magic_name__ : List[Any] = MobileNetVaForImageClassification(_snake_case ).eval() # Load weights from TensorFlow checkpoint load_tf_weights_in_mobilenet_va(_snake_case , _snake_case , _snake_case ) # Check outputs on an image, prepared by MobileNetV1ImageProcessor __magic_name__ : Dict = MobileNetVaImageProcessor( crop_size={"width": config.image_size, "height": config.image_size} , size={"shortest_edge": config.image_size + 32} , ) __magic_name__ : int = image_processor(images=prepare_img() , return_tensors="pt" ) __magic_name__ : Any = model(**_snake_case ) __magic_name__ : Dict = outputs.logits assert logits.shape == (1, 1001) if model_name == "mobilenet_v1_1.0_224": __magic_name__ : Tuple = torch.tensor([-4.1_739, -1.1_233, 3.1_205] ) elif model_name == "mobilenet_v1_0.75_192": __magic_name__ : Optional[Any] = torch.tensor([-3.9_440, -2.3_141, -0.3_333] ) else: __magic_name__ : str = None if expected_logits is not None: assert torch.allclose(logits[0, :3] , _snake_case , atol=1E-4 ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if push_to_hub: print("Pushing to the hub..." ) __magic_name__ : List[str] = "google/" + model_name image_processor.push_to_hub(_snake_case ) model.push_to_hub(_snake_case ) if __name__ == "__main__": snake_case : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="mobilenet_v1_1.0_224", type=str, help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.", ) parser.add_argument( "--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)." ) parser.add_argument( "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) snake_case : str = parser.parse_args() convert_movilevit_checkpoint( args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
41
1
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): # A local function to see if a dot lands in the circle. def is_in_circle(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> bool: lowercase = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle lowercase = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(__SCREAMING_SNAKE_CASE ) ) # The ratio of the area for circle to square is pi/4. lowercase = proportion * 4 print(F'''The estimated value of pi is {pi_estimate}''' ) print(F'''The numpy value of pi is {pi}''' ) print(F'''The total error is {abs(pi - pi_estimate )}''' ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0.0 , __SCREAMING_SNAKE_CASE = 1.0 , ): return mean( function_to_integrate(uniform(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) for _ in range(__SCREAMING_SNAKE_CASE ) ) * (max_value - min_value) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 0.0 , __SCREAMING_SNAKE_CASE = 1.0 ): def identity_function(__SCREAMING_SNAKE_CASE ) -> float: return x lowercase = area_under_curve_estimator( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase = (max_value * max_value - min_value * min_value) / 2 print('******************' ) print(F'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(F'''Estimated value is {estimated_value}''' ) print(F'''Expected value is {expected_value}''' ) print(F'''Total error is {abs(estimated_value - expected_value )}''' ) print('******************' ) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): def function_to_integrate(__SCREAMING_SNAKE_CASE ) -> float: return sqrt(4.0 - x * x ) lowercase = area_under_curve_estimator( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , 0.0 , 2.0 ) print('******************' ) print('Estimating pi using area_under_curve_estimator' ) print(F'''Estimated value is {estimated_value}''' ) print(F'''Expected value is {pi}''' ) print(F'''Total error is {abs(estimated_value - pi )}''' ) print('******************' ) if __name__ == "__main__": import doctest doctest.testmod()
195
import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCAmelCase = logging.get_logger(__name__) def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE ): lowercase = r'\w+[.]\d+' lowercase = re.findall(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for pat in pats: lowercase = key.replace(__SCREAMING_SNAKE_CASE , '_'.join(pat.split('.' ) ) ) return key def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = pt_tuple_key[:-1] + ('scale',) if ( any('norm' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowercase = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowercase = pt_tuple_key[:-1] + ('scale',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowercase = pt_tuple_key[:-1] + ('embedding',) return renamed_pt_tuple_key, pt_tensor # conv layer lowercase = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowercase = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer lowercase = pt_tuple_key[:-1] + ('kernel',) if pt_tuple_key[-1] == "weight": lowercase = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowercase = pt_tuple_key[:-1] + ('weight',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowercase = pt_tuple_key[:-1] + ('bias',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=42 ): # Step 1: Convert pytorch tensor to numpy lowercase = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowercase = flax_model.init_weights(PRNGKey(__SCREAMING_SNAKE_CASE ) ) lowercase = flatten_dict(__SCREAMING_SNAKE_CASE ) lowercase = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase = rename_key(__SCREAMING_SNAKE_CASE ) lowercase = tuple(renamed_pt_key.split('.' ) ) # Correctly rename weight parameters lowercase , lowercase = rename_key_and_reshape_tensor(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown lowercase = jnp.asarray(__SCREAMING_SNAKE_CASE ) return unflatten_dict(__SCREAMING_SNAKE_CASE )
195
1
"""simple docstring""" import math def lowercase ( a__ : int ) -> bool: _UpperCamelCase = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(a__ ) def lowercase ( a__ : float = 1 / 12345 ) -> int: _UpperCamelCase = 0 _UpperCamelCase = 0 _UpperCamelCase = 3 while True: _UpperCamelCase = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(a__ ): _UpperCamelCase = int(a__ ) total_partitions += 1 if check_partition_perfect(a__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(a__ ) integer += 1 if __name__ == "__main__": print(F'''{solution() = }''')
368
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( _lowercase): snake_case__ = ['''image_processor''', '''tokenizer'''] snake_case__ = '''BlipImageProcessor''' snake_case__ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : Optional[Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] ) -> int: _UpperCamelCase = False super().__init__(__UpperCamelCase , __UpperCamelCase ) _UpperCamelCase = self.image_processor def __call__( self : Any , __UpperCamelCase : ImageInput = None , __UpperCamelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Union[bool, str, PaddingStrategy] = False , __UpperCamelCase : Union[bool, str, TruncationStrategy] = None , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : int = 0 , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : bool = False , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[str, TensorType]] = None , **__UpperCamelCase : List[str] , ) -> BatchEncoding: if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None: _UpperCamelCase = self.tokenizer _UpperCamelCase = self.tokenizer( text=__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , stride=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_overflowing_tokens=__UpperCamelCase , return_special_tokens_mask=__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_length=__UpperCamelCase , verbose=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , ) return text_encoding # add pixel_values _UpperCamelCase = self.image_processor(__UpperCamelCase , return_tensors=__UpperCamelCase ) if text is not None: _UpperCamelCase = self.tokenizer( text=__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , stride=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_overflowing_tokens=__UpperCamelCase , return_special_tokens_mask=__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_length=__UpperCamelCase , verbose=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , ) else: _UpperCamelCase = None if text_encoding is not None: encoding_image_processor.update(__UpperCamelCase ) return encoding_image_processor def _UpperCamelCase ( self : Union[str, Any] , *__UpperCamelCase : str , **__UpperCamelCase : Any ) -> List[Any]: return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def _UpperCamelCase ( self : Optional[int] , *__UpperCamelCase : List[Any] , **__UpperCamelCase : str ) -> str: return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @property def _UpperCamelCase ( self : List[str] ) -> Dict: _UpperCamelCase = self.tokenizer.model_input_names _UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
54
0
import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def a ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' # Initialise PyTorch model lowercase__ = BigBirdConfig.from_json_file(lowerCamelCase_ ) print(F"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: lowercase__ = BigBirdForQuestionAnswering(lowerCamelCase_ ) else: lowercase__ = BigBirdForPreTraining(lowerCamelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(lowerCamelCase_ , lowerCamelCase_ , is_trivia_qa=lowerCamelCase_ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": A__ : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--big_bird_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--is_trivia_qa', action='store_true', help='Whether to convert a model with a trivia_qa head.' ) A__ : Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
207
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer A__ : List[Any] = logging.get_logger(__name__) A__ : str = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A__ : int = { 'vocab_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt' ), 'distilbert-base-german-cased': 'https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt', 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'distilbert-base-uncased': 'https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json', 'distilbert-base-uncased-distilled-squad': ( 'https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-cased': 'https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json', 'distilbert-base-cased-distilled-squad': ( 'https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json' ), 'distilbert-base-german-cased': ( 'https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json' ), 'distilbert-base-multilingual-cased': ( 'https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json' ), }, } A__ : Optional[Any] = { 'distilbert-base-uncased': 5_12, 'distilbert-base-uncased-distilled-squad': 5_12, 'distilbert-base-cased': 5_12, 'distilbert-base-cased-distilled-squad': 5_12, 'distilbert-base-german-cased': 5_12, 'distilbert-base-multilingual-cased': 5_12, } A__ : List[str] = { 'distilbert-base-uncased': {'do_lower_case': True}, 'distilbert-base-uncased-distilled-squad': {'do_lower_case': True}, 'distilbert-base-cased': {'do_lower_case': False}, 'distilbert-base-cased-distilled-squad': {'do_lower_case': False}, 'distilbert-base-german-cased': {'do_lower_case': False}, 'distilbert-base-multilingual-cased': {'do_lower_case': False}, } class _UpperCAmelCase ( A__ ): """simple docstring""" lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = PRETRAINED_INIT_CONFIGURATION lowercase__ = ["""input_ids""", """attention_mask"""] lowercase__ = DistilBertTokenizer def __init__( self : List[Any], lowerCamelCase : List[Any]=None, lowerCamelCase : Dict=None, lowerCamelCase : str=True, lowerCamelCase : Optional[int]="[UNK]", lowerCamelCase : Optional[Any]="[SEP]", lowerCamelCase : List[Any]="[PAD]", lowerCamelCase : Any="[CLS]", lowerCamelCase : Union[str, Any]="[MASK]", lowerCamelCase : str=True, lowerCamelCase : int=None, **lowerCamelCase : Union[str, Any], ): '''simple docstring''' super().__init__( lowerCamelCase, tokenizer_file=lowerCamelCase, do_lower_case=lowerCamelCase, unk_token=lowerCamelCase, sep_token=lowerCamelCase, pad_token=lowerCamelCase, cls_token=lowerCamelCase, mask_token=lowerCamelCase, tokenize_chinese_chars=lowerCamelCase, strip_accents=lowerCamelCase, **lowerCamelCase, ) lowercase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''', lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''', lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''', lowerCamelCase ) != tokenize_chinese_chars ): lowercase__ = getattr(lowerCamelCase, normalizer_state.pop('''type''' ) ) lowercase__ = do_lower_case lowercase__ = strip_accents lowercase__ = tokenize_chinese_chars lowercase__ = normalizer_class(**lowerCamelCase ) lowercase__ = do_lower_case def lowercase__ ( self : str, lowerCamelCase : Optional[Any], lowerCamelCase : List[Any]=None ): '''simple docstring''' lowercase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase__ ( self : Union[str, Any], lowerCamelCase : List[int], lowerCamelCase : Optional[List[int]] = None ): '''simple docstring''' lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase__ ( self : str, lowerCamelCase : str, lowerCamelCase : Optional[str] = None ): '''simple docstring''' lowercase__ = self._tokenizer.model.save(lowerCamelCase, name=lowerCamelCase ) return tuple(lowerCamelCase )
207
1
import numpy class UpperCAmelCase_ : '''simple docstring''' def __init__( self , _A , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. __SCREAMING_SNAKE_CASE = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. __SCREAMING_SNAKE_CASE = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. __SCREAMING_SNAKE_CASE = numpy.random.rand(3 , 1 ) # Real output values provided. __SCREAMING_SNAKE_CASE = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. __SCREAMING_SNAKE_CASE = numpy.zeros(output_array.shape ) def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. __SCREAMING_SNAKE_CASE = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. __SCREAMING_SNAKE_CASE = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def _A ( self ): '''simple docstring''' __SCREAMING_SNAKE_CASE = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) __SCREAMING_SNAKE_CASE = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) __SCREAMING_SNAKE_CASE = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def _A ( self , _A , _A , _A ): '''simple docstring''' for iteration in range(1 , iterations + 1 ): __SCREAMING_SNAKE_CASE = self.feedforward() self.back_propagation() if give_loss: __SCREAMING_SNAKE_CASE = numpy.mean(numpy.square(output - self.feedforward() ) ) print(f"""Iteration {iteration} Loss: {loss}""" ) def _A ( self , _A ): '''simple docstring''' __SCREAMING_SNAKE_CASE = input_arr __SCREAMING_SNAKE_CASE = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) __SCREAMING_SNAKE_CASE = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) __SCREAMING_SNAKE_CASE = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def __lowercase ( a__ ) -> numpy.ndarray: return 1 / (1 + numpy.exp(-value )) def __lowercase ( a__ ) -> numpy.ndarray: return (value) * (1 - (value)) def __lowercase ( ) -> int: __SCREAMING_SNAKE_CASE = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. __SCREAMING_SNAKE_CASE = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. __SCREAMING_SNAKE_CASE = TwoHiddenLayerNeuralNetwork( input_array=a__ , output_array=a__ ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=a__ , iterations=10 , give_loss=a__ ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
371
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ : Dict =logging.get_logger(__name__) lowerCAmelCase__ : Optional[int] ={ '''asapp/sew-tiny-100k''': '''https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json''', # See all SEW models at https://huggingface.co/models?filter=sew } class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = '''sew''' def __init__( self , _A=32 , _A=768 , _A=12 , _A=12 , _A=3_072 , _A=2 , _A="gelu" , _A=0.1 , _A=0.1 , _A=0.1 , _A=0.0 , _A=0.1 , _A=0.1 , _A=0.0_2 , _A=1e-5 , _A="group" , _A="gelu" , _A=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , _A=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , _A=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , _A=False , _A=128 , _A=16 , _A=True , _A=0.0_5 , _A=10 , _A=2 , _A=0.0 , _A=10 , _A=0 , _A="mean" , _A=False , _A=False , _A=256 , _A=0 , _A=1 , _A=2 , **_A , ): '''simple docstring''' super().__init__(**_A , pad_token_id=_A , bos_token_id=_A , eos_token_id=_A ) __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = feat_extract_norm __SCREAMING_SNAKE_CASE = feat_extract_activation __SCREAMING_SNAKE_CASE = list(_A ) __SCREAMING_SNAKE_CASE = list(_A ) __SCREAMING_SNAKE_CASE = list(_A ) __SCREAMING_SNAKE_CASE = conv_bias __SCREAMING_SNAKE_CASE = num_conv_pos_embeddings __SCREAMING_SNAKE_CASE = num_conv_pos_embedding_groups __SCREAMING_SNAKE_CASE = len(self.conv_dim ) __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = squeeze_factor __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_dropout __SCREAMING_SNAKE_CASE = attention_dropout __SCREAMING_SNAKE_CASE = activation_dropout __SCREAMING_SNAKE_CASE = feat_proj_dropout __SCREAMING_SNAKE_CASE = final_dropout __SCREAMING_SNAKE_CASE = layerdrop __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( 'Configuration for convolutional layers is incorrect.' 'It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,' f"""but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)""" f"""= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __SCREAMING_SNAKE_CASE = apply_spec_augment __SCREAMING_SNAKE_CASE = mask_time_prob __SCREAMING_SNAKE_CASE = mask_time_length __SCREAMING_SNAKE_CASE = mask_time_min_masks __SCREAMING_SNAKE_CASE = mask_feature_prob __SCREAMING_SNAKE_CASE = mask_feature_length __SCREAMING_SNAKE_CASE = mask_feature_min_masks # ctc loss __SCREAMING_SNAKE_CASE = ctc_loss_reduction __SCREAMING_SNAKE_CASE = ctc_zero_infinity # sequence classification __SCREAMING_SNAKE_CASE = use_weighted_layer_sum __SCREAMING_SNAKE_CASE = classifier_proj_size @property def _A ( self ): '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
118
0