metadata
license: cc-by-4.0
task_categories:
- text-classification
- text-generation
language:
- en
tags:
- open-source-ai
- ai-adoption
- research-data
- qualitative-research
- quantitative-research
size_categories:
- 1K<n<10K
configs:
- config_name: survey_data
data_files:
- EPFL_Enterprise_OSAI_Adoption_Survey_Data.csv
- config_name: interview_data
data_files:
- EPFL_Enterprise_OSAI_Adoption_Interview_Data.csv
- config_name: coding_data
data_files:
- EPFL_Coding_Matrix.csv
- EPFL_Survey_Qualitative_Coding.csv
- EPFL_Qualitative_Coding_Analysis.csv
- EPFL_Code_Frequencies_with_RQ.csv
- config_name: supporting_data
data_files:
- EPFL_Quantitative_Summary_Statistics.csv
- EPFL_Method_Appendix_Instrument_RQ_Mapping.csv
EPFL Enterprise Open-Source AI Adoption Research Dataset
Dataset Summary
This dataset contains mixed-methods research data from 100 organizations regarding their strategic adoption of open-source AI through the Hugging Face ecosystem. The research was conducted at EPFL (École Polytechnique Fédérale de Lausanne) and supports the development of the Gate-Lever framework for enterprise open-source AI adoption.
Dataset Description
- Repository:
epfl-enterprise-osai-adoption-research-data - Institution: EPFL (École Polytechnique Fédérale de Lausanne)
- Research Type: Mixed-methods (quantitative survey + qualitative interviews)
- Sample Size: 100 organizations + 6 in-depth interviews
- Industries: 12 sectors (Technology, Finance, Healthcare, Energy, etc.)
- Collection Period: 2025
- Anonymization: All identifying information removed
Dataset Structure
This dataset is organized into 4 configurations to handle different data schemas:
Configuration 1: Survey Data (survey_data)
EPFL_Enterprise_OSAI_Adoption_Survey_Data.csv: Main survey responses from 100 organizations
Configuration 2: Interview Data (interview_data)
EPFL_Enterprise_OSAI_Adoption_Interview_Data.csv: Interview transcripts and analysis from 6 organizations
Configuration 3: Coding Data (coding_data)
EPFL_Coding_Matrix.csv: Gate-Lever coding framework structureEPFL_Survey_Qualitative_Coding.csv: Complete survey coding with adoption stagesEPFL_Qualitative_Coding_Analysis.csv: Coding frequency analysisEPFL_Code_Frequencies_with_RQ.csv: Coding frequencies mapped to research questions
Configuration 4: Supporting Data (supporting_data)
EPFL_Quantitative_Summary_Statistics.csv: Statistical summary tablesEPFL_Method_Appendix_Instrument_RQ_Mapping.csv: Survey questions mapped to research questions
Research Framework
This dataset supports the Gate-Lever Framework for strategic open-source AI adoption:
- Governance Gates: Compliance, data privacy, security, documentation, licensing clarity
- Execution Levers: Performance, cost efficiency, customization, support, time-to-value
- Adoption Stages: Pre-adoption, Adopting, Adopted
- Organizational Clusters: Performance-Driven Adopters, Governance-Locked Organizations, Balanced Transition Organizations
Key Variables
Survey Data Variables
- Respondent_ID: Anonymous respondent identifier
- Org_Size: Organization size category
- Industry: Industry sector (12 categories)
- HF_Familiarity: Hugging Face familiarity (1-5 scale)
- AI_Solution_Type: Current AI solution type (Proprietary/Both/Open-source)
- Decision_Factors: Key decision factors (open text)
- Integration_Difficulty: Integration challenge rating (1-5 scale)
- Adoption_Intention: Plan to increase Hugging Face use (Yes/No/Not sure)
- AI_Stage_Overall: AI maturity stage (Early/Intermediate/Advanced)
- OpenSource_Stage: Open-Source AI Adoption stage (Pre-adoption/Adopting/Adopted)
- Gate_Index: Governance/compliance factors index (0-1)
- Lever_Index: Performance/optimization factors index (0-1)
- Adoption_Intention_Binary: Binary adoption intention (0/1)
- Cluster: Organizational profile cluster (0-2)
Interview Data Variables
- ID: Interview identifier (I1-I6)
- Industry: Participant industry sector
- Role: Participant role/title
- Stage: Adoption stage classification
- Theme 1-6: Coded themes from thematic analysis
- Framework_Link: Connection to Gate-Lever framework
- Main_Takeaway: Key insights from each interview
Methodology
Data Collection
- Survey: Online survey with structured and open-text questions
- Interviews: Semi-structured interviews (30-45 minutes each)
- Coding: Systematic thematic analysis using Gate-Lever framework
- Validation: Inter-coder reliability testing (85% agreement)
Statistical Analysis
- Descriptive Statistics: Sample characteristics and variable distributions
- Correlation Analysis: Gate-Lever relationships and adoption predictors
- Cluster Analysis: K-means clustering for organizational segmentation
- Regression Analysis: Logistic and linear regression for adoption prediction
- ANOVA: Integration difficulty differences across adoption stages
Usage
Loading the Dataset
from datasets import load_dataset
# Load specific configurations
survey_data = load_dataset("itseffi/epfl-enterprise-osai-adoption-research-data", "survey_data")
interview_data = load_dataset("itseffi/epfl-enterprise-osai-adoption-research-data", "interview_data")
coding_data = load_dataset("itseffi/epfl-enterprise-osai-adoption-research-data", "coding_data")
supporting_data = load_dataset("itseffi/epfl-enterprise-osai-adoption-research-data", "supporting_data")
# Or load all configurations
dataset = load_dataset("itseffi/epfl-enterprise-osai-adoption-research-data")
Suitable For
- Open-source AI adoption frameworks
- Strategic AI adoption research
- Enterprise technology adoption studies
- Mixed-methods research validation
- Technology adoption theory development
Limitations
- Sample limited to European organizations
- Self-reported data may introduce bias
- Focus on Hugging Face ecosystem specifically
License
This dataset is released under the Creative Commons Attribution 4.0 International License (CC BY 4.0).
Contact
For questions about this dataset, please use the Hugging Face repository discussions.
Repository Information
- Repository: https://huggingface.co/datasets/itseffi/epfl-enterprise-osai-adoption-research-data
- Institution: EPFL (École Polytechnique Fédérale de Lausanne)
- Research Project: Strategic Enterprise Adoption of Hugging Face
- Framework: Enterprise Open-Source AI Adoption Framework