text
stringlengths 1
93.6k
|
|---|
diffusion_hyperparams = calc_diffusion_hyperparams(**diffusion_config)
|
for key in diffusion_hyperparams:
|
if key != "T":
|
diffusion_hyperparams[key] = map_gpu(diffusion_hyperparams[key])
|
# predefine model
|
net = Model(**model_config)
|
print_size(net)
|
# load checkpoint
|
try:
|
# checkpoint = torch.load(model_path, map_location='cpu')
|
# net.load_state_dict(checkpoint)
|
d = fix_legacy_dict(torch.load(model_path, map_location='cpu'))
|
dm = net.state_dict()
|
# for k in args.delete_keys:
|
# print(
|
# f"Deleting key {k} becuase its shape in ckpt ({d[k].shape}) doesn't match "
|
# + f"with shape in model ({dm[k].shape})"
|
# )
|
# del d[k]
|
net.load_state_dict(d, strict=False)
|
net = map_gpu(net)
|
net.eval()
|
print('checkpoint successfully loaded')
|
except:
|
raise Exception('No valid model found')
|
# sampling
|
C, H, W = model_config["in_channels"], model_config["resolution"], model_config["resolution"]
|
for i in tqdm(range(n_exist // batchsize, n_generate // batchsize)):
|
if approxdiff == 'STD':
|
Xi = STD_sampling(net, (batchsize, C, H, W), diffusion_hyperparams)
|
elif approxdiff == 'STEP':
|
user_defined_steps = generation_param["user_defined_steps"]
|
Xi = STEP_sampling(net, (batchsize, C, H, W),
|
diffusion_hyperparams,
|
user_defined_steps,
|
kappa=generation_param["kappa"])
|
elif approxdiff == 'VAR':
|
user_defined_eta = generation_param["user_defined_eta"]
|
continuous_steps = _precompute_VAR_steps(diffusion_hyperparams, user_defined_eta)
|
Xi = VAR_sampling(net, (batchsize, C, H, W),
|
diffusion_hyperparams,
|
user_defined_eta,
|
kappa=generation_param["kappa"],
|
continuous_steps=continuous_steps)
|
# print(diffusion_hyperparams)
|
# print(user_defined_eta)
|
# print(continuous_steps)
|
# save image
|
for j, x in enumerate(rescale(Xi)):
|
index = i * batchsize + j
|
save_image(x, fp=os.path.join('generated', output_name, '{}.jpg'.format(index)))
|
save_image(make_grid(rescale(Xi)[:64]), fp=os.path.join('generated', '{}.jpg'.format(output_name)))
|
if __name__ == '__main__':
|
parser = argparse.ArgumentParser()
|
# dataset and model
|
parser.add_argument('-name', '--name', type=str, default = 'cifar10', choices=["cifar10", "celeba64"],
|
help='Name of experiment')
|
parser.add_argument('-ema', '--ema', help='Whether use ema', default = True)
|
parser.add_argument('-pretrain', '--pretrain', help='Whether use pretrained model', default = False)
|
# fast generation parameters
|
parser.add_argument('-approxdiff', '--approxdiff', type=str, default = 'VAR', choices=['STD', 'STEP', 'VAR'], help='approximate diffusion process')
|
parser.add_argument('-kappa', '--kappa', type=float, default=1.0, help='factor to be multiplied to sigma')
|
parser.add_argument('-S', '--S', type=int, default=10, help='number of steps')
|
parser.add_argument('-schedule', '--schedule', type=str, choices=['linear', 'quadratic'], default = 'quadratic', help='noise level schedules')
|
# generation util
|
parser.add_argument('-n', '--n_generate', type=int, help='Number of samples to generate', default = 50048)
|
parser.add_argument('-bs', '--batchsize', type=int, default=128, help='Batchsize of generation')
|
parser.add_argument('-gpu', '--gpu', type=str, default='cuda', choices=['cuda']+[str(i) for i in range(16)], help='gpu device')
|
args = parser.parse_args()
|
global map_gpu
|
map_gpu = _map_gpu(args.gpu)
|
from config import model_config_map
|
model_config = model_config_map[args.name]
|
kappa = args.kappa
|
if args.approxdiff == 'STD':
|
variance_schedule = '1000'
|
generation_param = {"kappa": kappa}
|
elif args.approxdiff == 'VAR': # user defined variance
|
user_defined_eta = get_VAR_noise(args.S, args.schedule)
|
generation_param = {"kappa": kappa,
|
"user_defined_eta": user_defined_eta}
|
variance_schedule = '{}{}'.format(args.S, args.schedule)
|
elif args.approxdiff == 'STEP': # user defined step
|
user_defined_steps = get_STEP_step(args.S, args.schedule)
|
generation_param = {"kappa": kappa,
|
"user_defined_steps": user_defined_steps}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.