html_url
stringlengths
46
51
number
int64
1
7.85k
title
stringlengths
1
290
user
dict
labels
listlengths
0
4
state
stringclasses
2 values
locked
bool
1 class
comments
listlengths
0
30
created_at
timestamp[ns, tz=UTC]date
2020-04-14 10:18:02
2025-11-05 18:11:12
updated_at
timestamp[ns, tz=UTC]date
2020-04-27 16:04:17
2025-11-06 09:44:34
closed_at
timestamp[ns, tz=UTC]date
2020-04-14 12:01:40
2025-11-05 16:02:32
author_association
stringclasses
4 values
draft
bool
2 classes
pull_request
dict
body
stringlengths
0
228k
closed_by
dict
reactions
dict
state_reason
stringclasses
4 values
sub_issues_summary
dict
issue_dependencies_summary
dict
is_pull_request
bool
2 classes
https://github.com/huggingface/datasets/issues/5775
5,775
ArrowDataset.save_to_disk lost some logic of remote
{ "avatar_url": "https://avatars.githubusercontent.com/u/29817738?v=4", "events_url": "https://api.github.com/users/Zoupers/events{/privacy}", "followers_url": "https://api.github.com/users/Zoupers/followers", "following_url": "https://api.github.com/users/Zoupers/following{/other_user}", "gists_url": "https://api.github.com/users/Zoupers/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Zoupers", "id": 29817738, "login": "Zoupers", "node_id": "MDQ6VXNlcjI5ODE3NzM4", "organizations_url": "https://api.github.com/users/Zoupers/orgs", "received_events_url": "https://api.github.com/users/Zoupers/received_events", "repos_url": "https://api.github.com/users/Zoupers/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Zoupers/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Zoupers/subscriptions", "type": "User", "url": "https://api.github.com/users/Zoupers", "user_view_type": "public" }
[]
closed
false
[ "We just fixed this on `main` and will do a new release soon :)" ]
2023-04-20T16:58:01Z
2023-04-26T12:11:36Z
2023-04-26T12:11:17Z
NONE
null
null
### Describe the bug https://github.com/huggingface/datasets/blob/e7ce0ac60c7efc10886471932854903a7c19f172/src/datasets/arrow_dataset.py#L1371 Here is the bug point, when I want to save from a `DatasetDict` class and the items of the instance is like `[('train', Dataset({features: ..., num_rows: ...}))]` , there is no guarantee that there exists a directory name `train` under `dataset_dict_path`. ### Steps to reproduce the bug 1. Mock a DatasetDict with items like what I said. 2. using save_to_disk with storage_options, u can use local sftp. code may like below ```python from datasets import load_dataset dataset = load_dataset(...) dataset.save_to_disk('sftp:///tmp', storage_options={'host': 'localhost', 'username': 'admin'}) ``` I suppose u can reproduce the bug by these steps. ### Expected behavior Should create the folder if it does not exists, just like we do locally. ### Environment info - `datasets` version: 2.11.0 - Platform: Linux-6.2.10-arch1-1-x86_64-with-glibc2.35 - Python version: 3.10.9 - Huggingface_hub version: 0.13.2 - PyArrow version: 11.0.0 - Pandas version: 1.5.3
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5775/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/pull/5774
5,774
Fix style
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010336 / 0.011353 (-0.001017) | 0.007085 / 0.011008 (-0.003924) | 0.135577 / 0.038508 (0.097069) | 0.038301 / 0.023109 (0.015192) | 0.427919 / 0.275898 (0.152021) | 0.461451 / 0.323480 (0.137971) | 0.008929 / 0.007986 (0.000944) | 0.005260 / 0.004328 (0.000931) | 0.103481 / 0.004250 (0.099231) | 0.054885 / 0.037052 (0.017833) | 0.434956 / 0.258489 (0.176467) | 0.466915 / 0.293841 (0.173074) | 0.052403 / 0.128546 (-0.076144) | 0.021128 / 0.075646 (-0.054518) | 0.466847 / 0.419271 (0.047576) | 0.085096 / 0.043533 (0.041563) | 0.439935 / 0.255139 (0.184796) | 0.453613 / 0.283200 (0.170413) | 0.123913 / 0.141683 (-0.017769) | 1.930114 / 1.452155 (0.477959) | 2.052083 / 1.492716 (0.559366) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.280612 / 0.018006 (0.262606) | 0.583937 / 0.000490 (0.583447) | 0.004542 / 0.000200 (0.004342) | 0.000117 / 0.000054 (0.000063) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.035901 / 0.037411 (-0.001510) | 0.160357 / 0.014526 (0.145831) | 0.141661 / 0.176557 (-0.034896) | 0.234915 / 0.737135 (-0.502220) | 0.164110 / 0.296338 (-0.132228) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.659901 / 0.215209 (0.444692) | 6.529102 / 2.077655 (4.451447) | 2.635324 / 1.504120 (1.131204) | 2.275777 / 1.541195 (0.734583) | 2.343205 / 1.468490 (0.874715) | 1.241310 / 4.584777 (-3.343467) | 5.683784 / 3.745712 (1.938072) | 3.377162 / 5.269862 (-1.892700) | 2.176404 / 4.565676 (-2.389273) | 0.144303 / 0.424275 (-0.279972) | 0.016352 / 0.007607 (0.008745) | 0.817383 / 0.226044 (0.591339) | 8.148356 / 2.268929 (5.879428) | 3.489277 / 55.444624 (-51.955347) | 2.848086 / 6.876477 (-4.028391) | 2.973304 / 2.142072 (0.831232) | 1.517821 / 4.805227 (-3.287407) | 0.278794 / 6.500664 (-6.221870) | 0.096385 / 0.075469 (0.020916) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.631693 / 1.841788 (-0.210095) | 19.564716 / 8.074308 (11.490408) | 23.583081 / 10.191392 (13.391689) | 0.252363 / 0.680424 (-0.428061) | 0.027644 / 0.534201 (-0.506557) | 0.579634 / 0.579283 (0.000351) | 0.645702 / 0.434364 (0.211338) | 0.667302 / 0.540337 (0.126965) | 0.766425 / 1.386936 (-0.620511) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.011186 / 0.011353 (-0.000167) | 0.007327 / 0.011008 (-0.003681) | 0.105441 / 0.038508 (0.066933) | 0.040293 / 0.023109 (0.017184) | 0.480557 / 0.275898 (0.204659) | 0.522049 / 0.323480 (0.198569) | 0.007779 / 0.007986 (-0.000207) | 0.007338 / 0.004328 (0.003009) | 0.104744 / 0.004250 (0.100494) | 0.059463 / 0.037052 (0.022411) | 0.494055 / 0.258489 (0.235566) | 0.534340 / 0.293841 (0.240499) | 0.062800 / 0.128546 (-0.065746) | 0.020687 / 0.075646 (-0.054959) | 0.135833 / 0.419271 (-0.283439) | 0.087472 / 0.043533 (0.043939) | 0.465019 / 0.255139 (0.209880) | 0.526713 / 0.283200 (0.243513) | 0.131424 / 0.141683 (-0.010259) | 1.884759 / 1.452155 (0.432605) | 2.015817 / 1.492716 (0.523101) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.237032 / 0.018006 (0.219026) | 0.605209 / 0.000490 (0.604719) | 0.006653 / 0.000200 (0.006453) | 0.000264 / 0.000054 (0.000210) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034982 / 0.037411 (-0.002430) | 0.141409 / 0.014526 (0.126883) | 0.151635 / 0.176557 (-0.024922) | 0.217298 / 0.737135 (-0.519837) | 0.171945 / 0.296338 (-0.124393) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.678596 / 0.215209 (0.463387) | 6.802432 / 2.077655 (4.724777) | 3.021617 / 1.504120 (1.517497) | 2.722508 / 1.541195 (1.181313) | 2.728194 / 1.468490 (1.259704) | 1.245863 / 4.584777 (-3.338914) | 5.762676 / 3.745712 (2.016963) | 5.497855 / 5.269862 (0.227994) | 2.855764 / 4.565676 (-1.709912) | 0.157359 / 0.424275 (-0.266916) | 0.015562 / 0.007607 (0.007955) | 0.865559 / 0.226044 (0.639515) | 8.553052 / 2.268929 (6.284123) | 3.905544 / 55.444624 (-51.539081) | 3.272528 / 6.876477 (-3.603949) | 3.399481 / 2.142072 (1.257408) | 1.540155 / 4.805227 (-3.265072) | 0.275871 / 6.500664 (-6.224793) | 0.092346 / 0.075469 (0.016877) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.753646 / 1.841788 (-0.088142) | 20.074050 / 8.074308 (11.999742) | 23.920391 / 10.191392 (13.728999) | 0.257161 / 0.680424 (-0.423263) | 0.027805 / 0.534201 (-0.506396) | 0.565605 / 0.579283 (-0.013678) | 0.643277 / 0.434364 (0.208914) | 0.633504 / 0.540337 (0.093167) | 0.754317 / 1.386936 (-0.632619) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2d34c7968ea1a3fe7d4fa7cdf23673e0354f69ac \"CML watermark\")\n" ]
2023-04-20T13:21:32Z
2023-04-20T13:34:26Z
2023-04-20T13:24:28Z
MEMBER
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5774.diff", "html_url": "https://github.com/huggingface/datasets/pull/5774", "merged_at": "2023-04-20T13:24:28Z", "patch_url": "https://github.com/huggingface/datasets/pull/5774.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5774" }
Fix C419 issues
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5774/reactions" }
null
null
null
true
https://github.com/huggingface/datasets/issues/5773
5,773
train_dataset does not implement __len__
{ "avatar_url": "https://avatars.githubusercontent.com/u/38179632?v=4", "events_url": "https://api.github.com/users/ben-8543/events{/privacy}", "followers_url": "https://api.github.com/users/ben-8543/followers", "following_url": "https://api.github.com/users/ben-8543/following{/other_user}", "gists_url": "https://api.github.com/users/ben-8543/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ben-8543", "id": 38179632, "login": "ben-8543", "node_id": "MDQ6VXNlcjM4MTc5NjMy", "organizations_url": "https://api.github.com/users/ben-8543/orgs", "received_events_url": "https://api.github.com/users/ben-8543/received_events", "repos_url": "https://api.github.com/users/ben-8543/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ben-8543/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ben-8543/subscriptions", "type": "User", "url": "https://api.github.com/users/ben-8543", "user_view_type": "public" }
[]
open
false
[ "Thanks for reporting, @v-yunbin.\r\n\r\nCould you please give more details, the steps to reproduce the bug, the complete error back trace and the environment information (`datasets-cli env`)?", "this is a detail error info from transformers:\r\n```\r\nTraceback (most recent call last):\r\n File \"finetune.py\", line 177, in <module>\r\n whisper_finetune(traindir,devdir,outdir)\r\n File \"finetune.py\", line 161, in whisper_finetune\r\n trainer = Seq2SeqTrainer(\r\n File \"/home/ybZhang/miniconda3/envs/whister/lib/python3.8/site-packages/transformers/trainer_seq2seq.py\", line 56, in __init__\r\n super().__init__(\r\n File \"/home/ybZhang/miniconda3/envs/whister/lib/python3.8/site-packages/transformers/trainer.py\", line 567, in __init__\r\n raise ValueError(\r\nValueError: The train_dataset does not implement __len__, max_steps has to be specified. The number of steps needs to be known in advance for the learning rate scheduler.\r\n```\r\n", "How did you create `train_dataset`? The `datasets` library does not appear in your stack trace.\r\n\r\nWe need more information in order to reproduce the issue...", "```\r\ndef asr_dataset(traindir,devdir):\r\n we_voice = IterableDatasetDict()\r\n #we_voice[\"train\"] = load_from_disk(traindir,streaming=True)\r\n #we_voice[\"test\"]= load_from_disk(devdir,streaming=True)\r\n we_voice[\"train\"] = load_dataset(\"csv\",data_files=os.path.join(traindir,\"train.csv\"),split=\"train\",streaming=True)\r\n #print(load_dataset(\"csv\",data_files=os.path.join(traindir,\"train.csv\"),split=\"train\"))\r\n we_voice[\"test\"] = load_dataset(\"csv\",data_files=os.path.join(devdir,\"dev.csv\"), split=\"train\",streaming=True)\r\n we_voice = we_voice.remove_columns([\"id\"])\r\n we_voice = we_voice.cast_column(\"audio\", Audio(sampling_rate=16000))\r\n return we_voice\r\n\r\n```", "As you are using iterable datasets (`streaming=True`), their length is not defined.\r\n\r\nYou should:\r\n- Either use non-iterable datasets, which have a defined length: use `DatasetDict` and not passing `streaming=True`\r\n- Or pass `args.max_steps` to the `Trainer`", "I don't know how to give a reasonable args.max_steps...........................", "Then you should not use streaming.", "@albertvillanova I think @v-yunbin, myself, and others might be slightly confused about max_steps and how it differs from num_train_epochs.", "@lkurlandski A **step** is referring to optimizer's update after back propagation, and it's associated with a batch of data. For example, if a dataset contains 64 examples and you have an overall batch size of 4, then an epoch will have 64/4=16 batches. Therefore, in one epoch, you will have 16 optimizer **steps**." ]
2023-04-20T04:37:05Z
2023-07-19T20:33:13Z
null
NONE
null
null
when train using data precessored by the datasets, I get follow warning and it leads to that I can not set epoch numbers: `ValueError: The train_dataset does not implement __len__, max_steps has to be specified. The number of steps needs to be known in advance for the learning rate scheduler.`
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5773/reactions" }
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/pull/5772
5,772
Fix JSON builder when missing keys in first row
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009262 / 0.011353 (-0.002091) | 0.006157 / 0.011008 (-0.004851) | 0.125960 / 0.038508 (0.087451) | 0.036213 / 0.023109 (0.013104) | 0.399331 / 0.275898 (0.123433) | 0.453597 / 0.323480 (0.130117) | 0.006990 / 0.007986 (-0.000995) | 0.007320 / 0.004328 (0.002991) | 0.100321 / 0.004250 (0.096070) | 0.048870 / 0.037052 (0.011818) | 0.396284 / 0.258489 (0.137795) | 0.475619 / 0.293841 (0.181778) | 0.052329 / 0.128546 (-0.076217) | 0.019564 / 0.075646 (-0.056083) | 0.430942 / 0.419271 (0.011670) | 0.063224 / 0.043533 (0.019692) | 0.391717 / 0.255139 (0.136578) | 0.448342 / 0.283200 (0.165142) | 0.114055 / 0.141683 (-0.027628) | 1.793204 / 1.452155 (0.341049) | 1.895151 / 1.492716 (0.402435) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.283699 / 0.018006 (0.265693) | 0.597194 / 0.000490 (0.596704) | 0.007143 / 0.000200 (0.006944) | 0.000602 / 0.000054 (0.000548) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.034761 / 0.037411 (-0.002651) | 0.124555 / 0.014526 (0.110030) | 0.149126 / 0.176557 (-0.027430) | 0.220335 / 0.737135 (-0.516801) | 0.153109 / 0.296338 (-0.143229) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.620210 / 0.215209 (0.405001) | 6.229937 / 2.077655 (4.152282) | 2.615203 / 1.504120 (1.111083) | 2.239337 / 1.541195 (0.698143) | 2.262138 / 1.468490 (0.793648) | 1.196498 / 4.584777 (-3.388279) | 5.609932 / 3.745712 (1.864220) | 3.031347 / 5.269862 (-2.238515) | 2.025530 / 4.565676 (-2.540146) | 0.139828 / 0.424275 (-0.284447) | 0.015476 / 0.007607 (0.007869) | 0.768964 / 0.226044 (0.542920) | 7.728677 / 2.268929 (5.459748) | 3.336407 / 55.444624 (-52.108217) | 2.700055 / 6.876477 (-4.176422) | 2.765223 / 2.142072 (0.623151) | 1.409073 / 4.805227 (-3.396155) | 0.246849 / 6.500664 (-6.253815) | 0.081231 / 0.075469 (0.005762) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.593836 / 1.841788 (-0.247952) | 18.020525 / 8.074308 (9.946216) | 21.766822 / 10.191392 (11.575430) | 0.258615 / 0.680424 (-0.421809) | 0.026895 / 0.534201 (-0.507306) | 0.529823 / 0.579283 (-0.049460) | 0.623470 / 0.434364 (0.189106) | 0.628171 / 0.540337 (0.087833) | 0.745249 / 1.386936 (-0.641687) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008624 / 0.011353 (-0.002729) | 0.006317 / 0.011008 (-0.004691) | 0.097315 / 0.038508 (0.058807) | 0.035217 / 0.023109 (0.012108) | 0.440197 / 0.275898 (0.164299) | 0.473863 / 0.323480 (0.150383) | 0.006722 / 0.007986 (-0.001264) | 0.006444 / 0.004328 (0.002116) | 0.102056 / 0.004250 (0.097806) | 0.047142 / 0.037052 (0.010089) | 0.452476 / 0.258489 (0.193986) | 0.487619 / 0.293841 (0.193778) | 0.052456 / 0.128546 (-0.076090) | 0.018735 / 0.075646 (-0.056911) | 0.114656 / 0.419271 (-0.304616) | 0.062577 / 0.043533 (0.019044) | 0.444471 / 0.255139 (0.189332) | 0.494264 / 0.283200 (0.211065) | 0.117112 / 0.141683 (-0.024571) | 1.848965 / 1.452155 (0.396810) | 1.984008 / 1.492716 (0.491292) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.290494 / 0.018006 (0.272488) | 0.588415 / 0.000490 (0.587925) | 0.000459 / 0.000200 (0.000259) | 0.000080 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032873 / 0.037411 (-0.004538) | 0.131139 / 0.014526 (0.116614) | 0.140268 / 0.176557 (-0.036289) | 0.204561 / 0.737135 (-0.532574) | 0.147443 / 0.296338 (-0.148895) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.636899 / 0.215209 (0.421690) | 6.236139 / 2.077655 (4.158484) | 2.801468 / 1.504120 (1.297348) | 2.398808 / 1.541195 (0.857613) | 2.493150 / 1.468490 (1.024659) | 1.228845 / 4.584777 (-3.355932) | 5.675874 / 3.745712 (1.930162) | 3.084939 / 5.269862 (-2.184922) | 2.061310 / 4.565676 (-2.504367) | 0.142285 / 0.424275 (-0.281990) | 0.014972 / 0.007607 (0.007365) | 0.786599 / 0.226044 (0.560555) | 7.876036 / 2.268929 (5.607107) | 3.476136 / 55.444624 (-51.968489) | 2.847922 / 6.876477 (-4.028555) | 3.040326 / 2.142072 (0.898253) | 1.448538 / 4.805227 (-3.356690) | 0.257230 / 6.500664 (-6.243434) | 0.085137 / 0.075469 (0.009668) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.668173 / 1.841788 (-0.173615) | 18.668520 / 8.074308 (10.594212) | 20.535542 / 10.191392 (10.344150) | 0.244580 / 0.680424 (-0.435844) | 0.026364 / 0.534201 (-0.507837) | 0.531753 / 0.579283 (-0.047530) | 0.616578 / 0.434364 (0.182214) | 0.618906 / 0.540337 (0.078569) | 0.738785 / 1.386936 (-0.648151) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f7265cafa3103d77d6d52aa897088faefcd96659 \"CML watermark\")\n" ]
2023-04-19T14:32:57Z
2023-04-21T06:45:13Z
2023-04-21T06:35:27Z
MEMBER
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5772.diff", "html_url": "https://github.com/huggingface/datasets/pull/5772", "merged_at": "2023-04-21T06:35:27Z", "patch_url": "https://github.com/huggingface/datasets/pull/5772.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5772" }
Until now, the JSON builder only considered the keys present in the first element of the list: - Either explicitly: by passing index 0 in `dataset[0].keys()` - Or implicitly: `pa.Table.from_pylist(dataset)`, where "schema (default None): If not passed, will be inferred from the first row of the mapping values" This PR fixes the bug by considering the union of the keys present in all the rows. Fix #5726.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5772/reactions" }
null
null
null
true
https://github.com/huggingface/datasets/issues/5771
5,771
Support cloud storage for loading datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/2437102?v=4", "events_url": "https://api.github.com/users/eli-osherovich/events{/privacy}", "followers_url": "https://api.github.com/users/eli-osherovich/followers", "following_url": "https://api.github.com/users/eli-osherovich/following{/other_user}", "gists_url": "https://api.github.com/users/eli-osherovich/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/eli-osherovich", "id": 2437102, "login": "eli-osherovich", "node_id": "MDQ6VXNlcjI0MzcxMDI=", "organizations_url": "https://api.github.com/users/eli-osherovich/orgs", "received_events_url": "https://api.github.com/users/eli-osherovich/received_events", "repos_url": "https://api.github.com/users/eli-osherovich/repos", "site_admin": false, "starred_url": "https://api.github.com/users/eli-osherovich/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/eli-osherovich/subscriptions", "type": "User", "url": "https://api.github.com/users/eli-osherovich", "user_view_type": "public" }
[ { "color": "cfd3d7", "default": true, "description": "This issue or pull request already exists", "id": 1935892865, "name": "duplicate", "node_id": "MDU6TGFiZWwxOTM1ODkyODY1", "url": "https://api.github.com/repos/huggingface/datasets/labels/duplicate" }, { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
[ "A duplicate of https://github.com/huggingface/datasets/issues/5281" ]
2023-04-19T12:43:53Z
2023-05-07T17:47:41Z
2023-05-07T17:47:41Z
CONTRIBUTOR
null
null
### Feature request It seems that the the current implementation supports cloud storage only for `load_from_disk`. It would be nice if a similar functionality existed in `load_dataset`. ### Motivation Motivation is pretty clear -- let users work with datasets located in the cloud. ### Your contribution I can help implementing this.
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5771/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/pull/5770
5,770
Add IterableDataset.from_spark
{ "avatar_url": "https://avatars.githubusercontent.com/u/106995444?v=4", "events_url": "https://api.github.com/users/maddiedawson/events{/privacy}", "followers_url": "https://api.github.com/users/maddiedawson/followers", "following_url": "https://api.github.com/users/maddiedawson/following{/other_user}", "gists_url": "https://api.github.com/users/maddiedawson/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/maddiedawson", "id": 106995444, "login": "maddiedawson", "node_id": "U_kgDOBmCe9A", "organizations_url": "https://api.github.com/users/maddiedawson/orgs", "received_events_url": "https://api.github.com/users/maddiedawson/received_events", "repos_url": "https://api.github.com/users/maddiedawson/repos", "site_admin": false, "starred_url": "https://api.github.com/users/maddiedawson/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/maddiedawson/subscriptions", "type": "User", "url": "https://api.github.com/users/maddiedawson", "user_view_type": "public" }
[]
closed
false
[ "_The documentation is not available anymore as the PR was closed or merged._", "Hi again @lhoestq this is ready for review! Not sure I have permission to add people to the reviewers list...", "Cool ! I think you can define `IterableDataset.from_spark` instead of adding `streaming=` in `Dataset.from_spark`, it can be more intuitive IMO :)", "Thanks for reviewing! I moved the streaming behavior to IterableDataset.from_spark", "Thanks Quentin! I'll flesh out the docs in a follow-up PR", "Friendly ping @lhoestq ", "Thanks @lhoestq ! I fixed the partition order thing and added more unit tests.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006165 / 0.011353 (-0.005188) | 0.004497 / 0.011008 (-0.006511) | 0.099142 / 0.038508 (0.060634) | 0.027479 / 0.023109 (0.004369) | 0.352491 / 0.275898 (0.076593) | 0.402993 / 0.323480 (0.079513) | 0.004885 / 0.007986 (-0.003100) | 0.003315 / 0.004328 (-0.001013) | 0.075787 / 0.004250 (0.071537) | 0.035320 / 0.037052 (-0.001732) | 0.368401 / 0.258489 (0.109912) | 0.409090 / 0.293841 (0.115249) | 0.030125 / 0.128546 (-0.098421) | 0.011670 / 0.075646 (-0.063976) | 0.324381 / 0.419271 (-0.094890) | 0.050815 / 0.043533 (0.007283) | 0.352598 / 0.255139 (0.097460) | 0.389189 / 0.283200 (0.105989) | 0.092873 / 0.141683 (-0.048810) | 1.485140 / 1.452155 (0.032986) | 1.545586 / 1.492716 (0.052869) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.199522 / 0.018006 (0.181516) | 0.404576 / 0.000490 (0.404087) | 0.003322 / 0.000200 (0.003122) | 0.000074 / 0.000054 (0.000020) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022945 / 0.037411 (-0.014466) | 0.095512 / 0.014526 (0.080987) | 0.103077 / 0.176557 (-0.073480) | 0.163918 / 0.737135 (-0.573217) | 0.105560 / 0.296338 (-0.190779) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.417360 / 0.215209 (0.202151) | 4.161693 / 2.077655 (2.084039) | 1.851941 / 1.504120 (0.347821) | 1.649872 / 1.541195 (0.108677) | 1.682099 / 1.468490 (0.213609) | 0.693187 / 4.584777 (-3.891590) | 3.462528 / 3.745712 (-0.283184) | 1.839893 / 5.269862 (-3.429968) | 1.155945 / 4.565676 (-3.409731) | 0.082611 / 0.424275 (-0.341664) | 0.012076 / 0.007607 (0.004469) | 0.514325 / 0.226044 (0.288280) | 5.155052 / 2.268929 (2.886123) | 2.307280 / 55.444624 (-53.137345) | 1.966483 / 6.876477 (-4.909994) | 2.018892 / 2.142072 (-0.123181) | 0.803068 / 4.805227 (-4.002159) | 0.152213 / 6.500664 (-6.348451) | 0.066320 / 0.075469 (-0.009149) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.218578 / 1.841788 (-0.623209) | 13.563869 / 8.074308 (5.489561) | 13.954596 / 10.191392 (3.763204) | 0.151527 / 0.680424 (-0.528897) | 0.016655 / 0.534201 (-0.517546) | 0.380637 / 0.579283 (-0.198646) | 0.395854 / 0.434364 (-0.038509) | 0.459111 / 0.540337 (-0.081226) | 0.560219 / 1.386936 (-0.826717) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006427 / 0.011353 (-0.004926) | 0.004728 / 0.011008 (-0.006280) | 0.080525 / 0.038508 (0.042017) | 0.027294 / 0.023109 (0.004185) | 0.414688 / 0.275898 (0.138790) | 0.449882 / 0.323480 (0.126402) | 0.004771 / 0.007986 (-0.003214) | 0.003402 / 0.004328 (-0.000926) | 0.078748 / 0.004250 (0.074497) | 0.037046 / 0.037052 (-0.000007) | 0.417398 / 0.258489 (0.158909) | 0.462921 / 0.293841 (0.169080) | 0.030364 / 0.128546 (-0.098182) | 0.011810 / 0.075646 (-0.063837) | 0.089787 / 0.419271 (-0.329485) | 0.039806 / 0.043533 (-0.003727) | 0.403401 / 0.255139 (0.148262) | 0.439477 / 0.283200 (0.156278) | 0.088431 / 0.141683 (-0.053252) | 1.534373 / 1.452155 (0.082219) | 1.592316 / 1.492716 (0.099600) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.217701 / 0.018006 (0.199695) | 0.384770 / 0.000490 (0.384280) | 0.000437 / 0.000200 (0.000237) | 0.000061 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024952 / 0.037411 (-0.012459) | 0.098728 / 0.014526 (0.084202) | 0.106324 / 0.176557 (-0.070233) | 0.155484 / 0.737135 (-0.581651) | 0.109503 / 0.296338 (-0.186836) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.450639 / 0.215209 (0.235430) | 4.523110 / 2.077655 (2.445455) | 2.224810 / 1.504120 (0.720690) | 2.119516 / 1.541195 (0.578321) | 2.225192 / 1.468490 (0.756702) | 0.695397 / 4.584777 (-3.889380) | 3.433559 / 3.745712 (-0.312153) | 2.633127 / 5.269862 (-2.636735) | 1.448471 / 4.565676 (-3.117206) | 0.082262 / 0.424275 (-0.342013) | 0.012246 / 0.007607 (0.004639) | 0.561243 / 0.226044 (0.335199) | 5.652711 / 2.268929 (3.383782) | 2.689771 / 55.444624 (-52.754853) | 2.359512 / 6.876477 (-4.516965) | 2.471098 / 2.142072 (0.329026) | 0.802955 / 4.805227 (-4.002272) | 0.151142 / 6.500664 (-6.349522) | 0.067494 / 0.075469 (-0.007975) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.306879 / 1.841788 (-0.534909) | 14.030775 / 8.074308 (5.956467) | 12.917790 / 10.191392 (2.726398) | 0.141269 / 0.680424 (-0.539155) | 0.016264 / 0.534201 (-0.517937) | 0.411957 / 0.579283 (-0.167326) | 0.393235 / 0.434364 (-0.041129) | 0.505144 / 0.540337 (-0.035193) | 0.590660 / 1.386936 (-0.796276) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7790ebd7072eafff755fb575b392f3efa74069e4 \"CML watermark\")\n" ]
2023-04-18T17:47:53Z
2023-05-17T14:07:32Z
2023-05-17T14:00:38Z
CONTRIBUTOR
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5770.diff", "html_url": "https://github.com/huggingface/datasets/pull/5770", "merged_at": "2023-05-17T14:00:38Z", "patch_url": "https://github.com/huggingface/datasets/pull/5770.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5770" }
Follow-up from https://github.com/huggingface/datasets/pull/5701 Related issue: https://github.com/huggingface/datasets/issues/5678
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5770/reactions" }
null
null
null
true
https://github.com/huggingface/datasets/issues/5769
5,769
Tiktoken tokenizers are not pickable
{ "avatar_url": "https://avatars.githubusercontent.com/u/22663468?v=4", "events_url": "https://api.github.com/users/markovalexander/events{/privacy}", "followers_url": "https://api.github.com/users/markovalexander/followers", "following_url": "https://api.github.com/users/markovalexander/following{/other_user}", "gists_url": "https://api.github.com/users/markovalexander/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/markovalexander", "id": 22663468, "login": "markovalexander", "node_id": "MDQ6VXNlcjIyNjYzNDY4", "organizations_url": "https://api.github.com/users/markovalexander/orgs", "received_events_url": "https://api.github.com/users/markovalexander/received_events", "repos_url": "https://api.github.com/users/markovalexander/repos", "site_admin": false, "starred_url": "https://api.github.com/users/markovalexander/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/markovalexander/subscriptions", "type": "User", "url": "https://api.github.com/users/markovalexander", "user_view_type": "public" }
[]
closed
false
[ "Thanks for reporting, @markovalexander.\r\n\r\nUnfortunately, I'm not able to reproduce the issue: the `tiktoken` tokenizer can be used within `Dataset.map`, both in my local machine and in a Colab notebook: https://colab.research.google.com/drive/1DhJroZgk0sNFJ2Mrz-jYgrmh9jblXaCG?usp=sharing\r\n\r\nAre you sure you are using `datasets` version 2.11.0?" ]
2023-04-18T16:07:40Z
2023-05-04T18:55:57Z
2023-05-04T18:55:57Z
NONE
null
null
### Describe the bug Since tiktoken tokenizer is not pickable, it is not possible to use it inside `dataset.map()` with multiprocessing enabled. However, you [made](https://github.com/huggingface/datasets/issues/5536) tiktoken's tokenizers pickable in `datasets==2.10.0` for caching. For some reason, this logic does not work in dataset processing and raises `TypeError: cannot pickle 'builtins.CoreBPE' object` ### Steps to reproduce the bug ``` from datasets import load_dataset import tiktoken dataset = load_dataset("stas/openwebtext-10k") enc = tiktoken.get_encoding("gpt2") tokenized = dataset.map( process, remove_columns=['text'], desc="tokenizing the OWT splits", num_proc=2, ) def process(example): ids = enc.encode(example['text']) ids.append(enc.eot_token) out = {'ids': ids, 'len': len(ids)} return out ``` ### Expected behavior starts processing dataset ### Environment info - `datasets` version: 2.11.0 - Platform: Linux-5.15.0-1021-oracle-x86_64-with-glibc2.29 - Python version: 3.8.10 - Huggingface_hub version: 0.13.4 - PyArrow version: 9.0.0 - Pandas version: 2.0.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5769/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5768
5,768
load_dataset("squad") doesn't work in 2.7.1 and 2.10.1
{ "avatar_url": "https://avatars.githubusercontent.com/u/57412770?v=4", "events_url": "https://api.github.com/users/yaseen157/events{/privacy}", "followers_url": "https://api.github.com/users/yaseen157/followers", "following_url": "https://api.github.com/users/yaseen157/following{/other_user}", "gists_url": "https://api.github.com/users/yaseen157/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/yaseen157", "id": 57412770, "login": "yaseen157", "node_id": "MDQ6VXNlcjU3NDEyNzcw", "organizations_url": "https://api.github.com/users/yaseen157/orgs", "received_events_url": "https://api.github.com/users/yaseen157/received_events", "repos_url": "https://api.github.com/users/yaseen157/repos", "site_admin": false, "starred_url": "https://api.github.com/users/yaseen157/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/yaseen157/subscriptions", "type": "User", "url": "https://api.github.com/users/yaseen157", "user_view_type": "public" }
[]
closed
false
[ "Thanks for reporting, @yaseen157.\r\n\r\nCould you please give the complete error stack trace?", "I am not able to reproduce your issue: the dataset loads perfectly on my local machine and on a Colab notebook: https://colab.research.google.com/drive/1Fbdoa1JdNz8DOdX6gmIsOK1nCT8Abj4O?usp=sharing\r\n```python\r\nIn [1]: from datasets import load_dataset\r\n\r\nIn [2]: ds = load_dataset(\"squad\")\r\nDownloading builder script: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 5.27k/5.27k [00:00<00:00, 3.22MB/s]\r\nDownloading metadata: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2.36k/2.36k [00:00<00:00, 1.60MB/s]\r\nDownloading readme: 100%|█████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 7.67k/7.67k [00:00<00:00, 4.58MB/s]\r\nDownloading and preparing dataset squad/plain_text to ...t/.cache/huggingface/datasets/squad/plain_text/1.0.0/d6ec3ceb99ca480ce37cdd35555d6cb2511d223b9150cce08a837ef62ffea453...\r\nDownloading data: 30.3MB [00:00, 91.8MB/s] | 0/2 [00:00<?, ?it/s]\r\nDownloading data: 4.85MB [00:00, 75.3MB/s] \r\nDownloading data files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2.31it/s]\r\nExtracting data files: 100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 2157.01it/s]\r\nDataset squad downloaded and prepared to .../.cache/huggingface/datasets/squad/plain_text/1.0.0/d6ec3ceb99ca480ce37cdd35555d6cb2511d223b9150cce08a837ef62ffea453. Subsequent calls will reuse this data.\r\n100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 463.95it/s]\r\n\r\nIn [3]: ds\r\nOut[3]: \r\nDatasetDict({\r\n train: Dataset({\r\n features: ['id', 'title', 'context', 'question', 'answers'],\r\n num_rows: 87599\r\n })\r\n validation: Dataset({\r\n features: ['id', 'title', 'context', 'question', 'answers'],\r\n num_rows: 10570\r\n })\r\n})\r\n```", "I am at a complete loss for what's happening here. A quick summary, I have 3 machines to try this with:\r\n1) My windows 10 laptop\r\n2) Linux machine1, super computer login node\r\n3) Linux machine2, super computer compute node\r\n\r\nLet's define the following as a test script for the machines:\r\n\r\n```\r\nimport traceback\r\nimport datasets\r\nprint(f\"{datasets.__version__=}\")\r\ntry:\r\n ds = datasets.load_dataset(\"squad\")\r\nexcept:\r\n traceback.print_exc()\r\nelse:\r\n print(\"Success!\")\r\n```\r\n\r\nThe Windows laptop enters some sort of traceback recursion loop:\r\n\r\n> datasets.__version__='2.7.1'\r\n> Downloading and preparing dataset squad/plain_text to C:/Users/yr3g17/.cache/huggingface/datasets/squad/plain_text/1.0.0/d6ec3ceb99ca480ce37cdd35555d6cb2511d223b9150cce08a837ef62ffea453...\r\n> Downloading data files: 100%|██████████| 2/2 [00:00<?, ?it/s]\r\n> Traceback (most recent call last):\r\n> File \"<string>\", line 1, in <module>\r\n> File \"C:\\Users\\yr3g17\\AppData\\Local\\Programs\\Python\\Python39\\lib\\multiprocessing\\spawn.py\", line 116, in spawn_main\r\n> exitcode = _main(fd, parent_sentinel)\r\n> File \"C:\\Users\\yr3g17\\AppData\\Local\\Programs\\Python\\Python39\\lib\\multiprocessing\\spawn.py\", line 125, in _main\r\n> prepare(preparation_data)\r\n> File \"C:\\Users\\yr3g17\\AppData\\Local\\Programs\\Python\\Python39\\lib\\multiprocessing\\spawn.py\", line 236, in prepare\r\n> _fixup_main_from_path(data['init_main_from_path'])\r\n> File \"C:\\Users\\yr3g17\\AppData\\Local\\Programs\\Python\\Python39\\lib\\multiprocessing\\spawn.py\", line 287, in _fixup_main_from_path\r\n> main_content = runpy.run_path(main_path,\r\n> File \"C:\\Users\\yr3g17\\AppData\\Local\\Programs\\Python\\Python39\\lib\\runpy.py\", line 267, in run_path\r\n> code, fname = _get_code_from_file(run_name, path_name)\r\n> File \"C:\\Users\\yr3g17\\AppData\\Local\\Programs\\Python\\Python39\\lib\\runpy.py\", line 237, in _get_code_from_file\r\n> with io.open_code(decoded_path) as f:\r\n> OSError: [Errno 22] Invalid argument: 'C:\\\\Users\\\\yr3g17\\\\OneDrive - University of Southampton\\\\Documents\\\\PhD-repository\\\\<input>'\r\n> Traceback (most recent call last):\r\n> File \"<string>\", line 1, in <module>\r\n> File \"C:\\Users\\yr3g17\\AppData\\Local\\Programs\\Python\\Python39\\lib\\multiprocessing\\spawn.py\", line 116, in spawn_main\r\n> exitcode = _main(fd, parent_sentinel)\r\n> File \"C:\\Users\\yr3g17\\AppData\\Local\\Programs\\Python\\Python39\\lib\\multiprocessing\\spawn.py\", line 125, in _main\r\n> prepare(preparation_data)\r\n**this error traceback is endlessly recursive**\r\n\r\nThis is a brand new issue that started today and I didn't even realise was a thing, as I had been using my windows machine to follow tracebacks for the other machines...\r\n\r\nI suspect this issue had something to do with my filepath naming, but I couldn't confirm this when I spent time trying to debug this myself weeks ago, something to do with files being locked and never released. I'm not too concerned about my laptop not working here because I've had so many issues with Microsoft OneDrive and my filesystem.\r\n\r\nLinux machines 1 and 2 were working fine for months, but have all of a sudden stopped working. Trying to run linux machine 1 (login node), I get:\r\n\r\n> datasets.__version__='2.10.1'\r\n> Downloading and preparing dataset json/squad to /home/yr3g17/.cache/hugg\r\ningface/datasets/json/squad-d733af945be1d2c2/0.0.0/0f7e3662623656454fcd2\r\nb650f34e886a7db4b9104504885bd462096cc7a9f51...\r\n> Downloading data files: 100%|███████████████████████████████████████████\r\n█████████████████████████████████████████████| 2/2 [00:00<00:00, 4042.70\r\nit/s]\r\n>Extracting data files: 100%|███████████████████████████████████████\r\n███████████████████████████████████████████████████| 2/2 [00:00<00:00, 1\r\n11.15it/s]\r\n> Generating train split: 0 examples [00:00, ? examples/s]\r\n\r\n and hangs here. This has not happened to me before on the Linux machine. If I forcefully keyboard interrupt, I get:\r\n \r\n> Traceback (most recent call last):\r\n> File \"<stdin>\", line 2, in <module>\r\n> File \"/home/yr3g17/.conda/envs/arkroyal/lib/python3.10/site-packages/d\r\n> atasets/load.py\", line 1782, in load_dataset\r\n> builder_instance.download_and_prepare(\r\n> File \"/home/yr3g17/.conda/envs/arkroyal/lib/python3.10/site-packages/d\r\n> atasets/builder.py\", line 793, in download_and_prepare\r\n> with FileLock(lock_path) if is_local else contextlib.nullcontext():\r\n> File \"/home/yr3g17/.conda/envs/arkroyal/lib/python3.10/site-packages/d\r\n> atasets/utils/filelock.py\", line 320, in __enter__\r\n> self.acquire()\r\n> File \"/home/yr3g17/.conda/envs/arkroyal/lib/python3.10/site-packages/d\r\n> atasets/utils/filelock.py\", line 282, in acquire\r\n> time.sleep(poll_intervall)\r\n\r\nWhich also appears to be file lock related! I resolved this by navigating to my ~/.cache/huggingface/datasets directory and wiping out anything to do with the squad dataset in *.lock files. Now I get:\r\n\r\n```\r\nfrom datasets import load_dataset\r\ndataset_load(\"squad\")\r\n\r\n```\r\n> Downloading and preparing dataset squad/plain_text to /home/yr3g17/.cache/huggingface/datasets/squad/plain_text/1.0.0/d6ec3ceb99ca480ce37cdd35555d6cb\r\n> 2511d223b9150cce08a837ef62ffea453...\r\n> Downloading data files: 100%|██████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 44.75it/s]\r\n> Extracting data files: 100%|███████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 8.54it/s]\r\n> Dataset squad downloaded and prepared to /home/yr3g17/.cache/huggingface/datasets/squad/plain_text/1.0.0/d6ec3ceb99ca480ce37cdd35555d6cb2511d223b9150\r\n> cce08a837ef62ffea453. Subsequent calls will reuse this data.\r\n> 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 19.77it/s]\r\n> DatasetDict({\r\n> train: Dataset({\r\n> features: ['id', 'title', 'context', 'question', 'answers'],\r\n> num_rows: 87599\r\n> })\r\n> validation: Dataset({\r\n> features: ['id', 'title', 'context', 'question', 'answers'],\r\n> num_rows: 10570\r\n> })\r\n> })\r\n> \r\n\r\nWhich all seems fine right, it's doing what it should be. But now, without ever leaving the IDE, I \"make a subsequent call\" to reuse the data by repeating the command. I encounter the following traceback\r\n\r\n`load_dataset(\"squad\")`\r\n\r\n> Traceback (most recent call last):\r\n> File \"<stdin>\", line 1, in <module>\r\n> File \"/home/yr3g17/.conda/envs/arkroyal/lib/python3.10/site-packages/datasets/load.py\", line 1759, in load_dataset\r\n> builder_instance = load_dataset_builder(\r\n> File \"/home/yr3g17/.conda/envs/arkroyal/lib/python3.10/site-packages/datasets/load.py\", line 1496, in load_dataset_builder\r\n> dataset_module = dataset_module_factory(\r\n> File \"/home/yr3g17/.conda/envs/arkroyal/lib/python3.10/site-packages/datasets/load.py\", line 1151, in dataset_module_factory\r\n> ).get_module()\r\n> File \"/home/yr3g17/.conda/envs/arkroyal/lib/python3.10/site-packages/datasets/load.py\", line 631, in get_module\r\n> data_files = DataFilesDict.from_local_or_remote(\r\n> File \"/home/yr3g17/.conda/envs/arkroyal/lib/python3.10/site-packages/datasets/data_files.py\", line 796, in from_local_or_remote\r\n> DataFilesList.from_local_or_remote(\r\n> File \"/home/yr3g17/.conda/envs/arkroyal/lib/python3.10/site-packages/datasets/data_files.py\", line 764, in from_local_or_remote\r\n> data_files = resolve_patterns_locally_or_by_urls(base_path, patterns, allowed_extensions)\r\n> File \"/home/yr3g17/.conda/envs/arkroyal/lib/python3.10/site-packages/datasets/data_files.py\", line 369, in resolve_patterns_locally_or_by_urls\r\n> raise FileNotFoundError(error_msg)\r\n> FileNotFoundError: Unable to resolve any data file that matches '['train[-._ 0-9/]**', '**[-._ 0-9/]train[-._ 0-9/]**', 'training[-._ 0-9/]**', '**[-\r\n> ._ 0-9/]training[-._ 0-9/]**']' at /mainfs/home/yr3g17/.cache/huggingface/datasets/squad with any supported extension ['csv', 'tsv', 'json', 'jsonl',\r\n> 'parquet', 'txt', 'blp', 'bmp', 'dib', 'bufr', 'cur', 'pcx', 'dcx', 'dds', 'ps', 'eps', 'fit', 'fits', 'fli', 'flc', 'ftc', 'ftu', 'gbr', 'gif', 'gr\r\n> ib', 'h5', 'hdf', 'png', 'apng', 'jp2', 'j2k', 'jpc', 'jpf', 'jpx', 'j2c', 'icns', 'ico', 'im', 'iim', 'tif', 'tiff', 'jfif', 'jpe', 'jpg', 'jpeg', '\r\n> mpg', 'mpeg', 'msp', 'pcd', 'pxr', 'pbm', 'pgm', 'ppm', 'pnm', 'psd', 'bw', 'rgb', 'rgba', 'sgi', 'ras', 'tga', 'icb', 'vda', 'vst', 'webp', 'wmf', '\r\n> emf', 'xbm', 'xpm', 'BLP', 'BMP', 'DIB', 'BUFR', 'CUR', 'PCX', 'DCX', 'DDS', 'PS', 'EPS', 'FIT', 'FITS', 'FLI', 'FLC', 'FTC', 'FTU', 'GBR', 'GIF', 'G\r\n> RIB', 'H5', 'HDF', 'PNG', 'APNG', 'JP2', 'J2K', 'JPC', 'JPF', 'JPX', 'J2C', 'ICNS', 'ICO', 'IM', 'IIM', 'TIF', 'TIFF', 'JFIF', 'JPE', 'JPG', 'JPEG',\r\n> 'MPG', 'MPEG', 'MSP', 'PCD', 'PXR', 'PBM', 'PGM', 'PPM', 'PNM', 'PSD', 'BW', 'RGB', 'RGBA', 'SGI', 'RAS', 'TGA', 'ICB', 'VDA', 'VST', 'WEBP', 'WMF',\r\n> 'EMF', 'XBM', 'XPM', 'aiff', 'au', 'avr', 'caf', 'flac', 'htk', 'svx', 'mat4', 'mat5', 'mpc2k', 'ogg', 'paf', 'pvf', 'raw', 'rf64', 'sd2', 'sds', 'ir\r\n> cam', 'voc', 'w64', 'wav', 'nist', 'wavex', 'wve', 'xi', 'mp3', 'opus', 'AIFF', 'AU', 'AVR', 'CAF', 'FLAC', 'HTK', 'SVX', 'MAT4', 'MAT5', 'MPC2K', 'O\r\n> GG', 'PAF', 'PVF', 'RAW', 'RF64', 'SD2', 'SDS', 'IRCAM', 'VOC', 'W64', 'WAV', 'NIST', 'WAVEX', 'WVE', 'XI', 'MP3', 'OPUS', 'zip']\r\n\r\nIt doesn't even appear like I can reliably repeat this process. I'll nuke squad files in my dataset cache and run the Python code again (which downloads a new copy of the dataset to cache). It will either fail (as it just did in the quote above), or it will successfully recall the dataset.\r\n\r\nI repeated this nuking process a few times until calling load_dataset was reliably giving me the correct result (no filelocking issues or tracebacks). I then sent the test script as a job to the supercomputer compute nodes (which do not have internet access and therefore depend on cached data from Linux machine 1 login nodes)\r\n\r\n> Using the latest cached version of the module from /home/yr3g17/.cache/huggingface/modules/datasets_modules/datasets/squad/8730650fed465361f38ac4d810\r\n> ccdd16e8fc87b56498e52fb7e2cadaefc1f177 (last modified on Tue Feb 14 10:12:56 2023) since it couldn't be found locally at squad., or remotely on the Hugging Face Hub.\r\n> Traceback (most recent call last):\r\n> File \"/mainfs/scratch/yr3g17/squad_qanswering/3054408/0/../../main.py\", line 5, in <module>\r\n> dataset = load_dataset(\"squad\")\r\n> File \"/home/yr3g17/.conda/envs/arkroyal/lib/python3.10/site-packages/datasets/load.py\", line 1759, in load_dataset\r\n> builder_instance = load_dataset_builder(\r\n> File \"/home/yr3g17/.conda/envs/arkroyal/lib/python3.10/site-packages/datasets/load.py\", line 1522, in load_dataset_builder\r\n> builder_instance: DatasetBuilder = builder_cls(\r\n> TypeError: 'NoneType' object is not callable\r\n\r\nand I have absolutely no idea why the second and third machines are producing different tracebacks. I have previously run these exact scripts successfully on the login and compute nodes of the supercomputer, this issue I'm raising has appeared fairly recently for me. This, is where I encounter the TypeError that I opened this issue with, which I was able to traceback (using my laptop before it too started not working) to whatever was dynamically importing \"builder_cls\". That bit of code wasn't doing importing builder_cls correctly and would effectively make the assignment \"builder_cls=None\" resulting in the TypeError. Does any of this help?", "I'm back on linux machine 1 (login node) now. After submitting that as a job to machine 2 and it failing with TypeError, linux machine 1 now produces identical traceback to machine 2:\r\n\r\n> (arkroyal) [yr3g17@cyan52 squad_qanswering]$ python\r\n> Python 3.10.8 (main, Nov 24 2022, 14:13:03) [GCC 11.2.0] on linux\r\n> Type \"help\", \"copyright\", \"credits\" or \"license\" for more information.\r\n>\r\n> from datasets import load_dataset\r\n> load_dataset(\"squad\")\r\n>\r\n> Traceback (most recent call last):\r\n> File \"<stdin>\", line 1, in <module>\r\n> File \"/home/yr3g17/.conda/envs/arkroyal/lib/python3.10/site-packages/datasets/load.py\", line 1759, in load_dataset\r\n> builder_instance = load_dataset_builder(\r\n> File \"/home/yr3g17/.conda/envs/arkroyal/lib/python3.10/site-packages/datasets/load.py\", line 1522, in load_dataset_builder\r\n> builder_instance: DatasetBuilder = builder_cls(\r\n> TypeError: 'NoneType' object is not callable\r\n\r\nI thought it might be useful to provide you with my cache file structure:\r\n\r\n>_home_yr3g17_.cache_huggingface_datasets_casino_default_1.1.0_302c3b1ac78c48091deabe83a11f4003c7b472a4e11a8eb92799653785bd5da1.lock\r\n>_home_yr3g17_.cache_huggingface_datasets_imdb_plain_text_1.0.0_2fdd8b9bcadd6e7055e742a706876ba43f19faee861df134affd7a3f60fc38a1.lock\r\n>_home_yr3g17_.cache_huggingface_datasets_squad_plain_text_1.0.0_d6ec3ceb99ca480ce37cdd35555d6cb2511d223b9150cce08a837ef62ffea453.lock\r\n>_home_yr3g17_.cache_huggingface_datasets_yelp_review_full_yelp_review_full_1.0.0_e8e18e19d7be9e75642fc66b198abadb116f73599ec89a69ba5dd8d1e57ba0bf.lock\r\n> casino\r\n> downloads\r\n> imdb\r\n> json\r\n> squad\r\n> squad_v2\r\n> yelp_review_full\r\n\r\nThe inside of squad/plain_text/1.0.0/ looks like\r\n\r\n> d6ec3ceb99ca480ce37cdd35555d6cb2511d223b9150cce08a837ef62ffea453\r\n> d6ec3ceb99ca480ce37cdd35555d6cb2511d223b9150cce08a837ef62ffea453.incomplete_info.lock\r\n> d6ec3ceb99ca480ce37cdd35555d6cb2511d223b9150cce08a837ef62ffea453_builder.lock\r\n", "I see this is quite a complex use case...\r\n\r\nLet's try multiple things:\r\n- First, update `datasets` and make sure you use the same version in all machines, so that we can easily compare different behaviors.\r\n ```\r\n pip install -U datasets\r\n ```\r\n- Second, wherever you run the `load_dataset(\"squad\")` command, make sure there is not a local directory named \"squad\". The datasets library gives priority to any local file/directory over the datasets on the Hugging Face Hub\r\n - I tell you this, because in one of your trace backs, it seems it refers to a local directory:\r\n ```\r\n Downloading and preparing dataset json/squad to /home/yr3g17/.cache/huggingface/datasets/json/squad-d733af945be1d2c2/0.0.0/0f7e3662623656454fcd2b650f34e886a7db4b9104504885bd462096cc7a9f51...\r\n ```\r\n- Third, to use the \"squad\" dataset from the Hub, you need to have internet connection, so that you can download the \"squad\" Python loading script from the Hub. Do all your machines have internet connection?\r\n - I ask this because of this error message:\r\n ```\r\n Using the latest cached version of the module from /home/yr3g17/.cache/huggingface/modules/datasets_modules/datasets/squad/8730650fed465361f38ac4d810ccdd16e8fc87b56498e52fb7e2cadaefc1f177 (last modified on Tue Feb 14 10:12:56 2023) since it couldn't be found locally at squad., or remotely on the Hugging Face Hub.\r\n ```\r\n- Fourth, to be sure that we avoid any issues with the cache, it is a good idea to remove it and regenerate it. Remove `.cache/huggingface/datasets` and also `.cache/huggingface/modules`\r\n- Fifth, as an additional debugging tool, let's be sure we use the latest \"squad\" Python loading script by passing the revision parameter:\r\n ```\r\n ds = load_dataset(\"squad\", revision=\"5fe18c4c680f9922d794e3f4dd673a751c74ee37\")\r\n ```", "Additionally, we just had an infrastructure issue on the Hugging Face Hub at around 11:30 today. That might have contributed to the connectivity issue... It is fixed now.\r\n\r\nhttps://status.huggingface.co/", "Hi again, thanks for your help and insight Albert Villanova.\r\n\r\nIt's all working now, so thank you for that. For the benefit of anyone else who ends up in this thread, I solved the problem by addressing Albert's advice:\r\n\r\n(1) Both Windows and Linux machine 1 (have internet access) and can now access the SQuAD dataset. The supercomputer login node can only access version 2.7.1, but my Windows laptop is running on datasets 2.11.0 just fine. I suspect it was just a perfect storm alongside the aforementioned \"infrastructure issue\".\r\n\r\n(2) I did have a local directory called squad, because I was using a local copy of evaluate's \"SQuAD\" metric. The supercomputer compute nodes do not have internet access and treat `metric = evaluate.load('<x>')` as a way of loading a metric at the local path `./<x>/<x>.py`, which could've been a related issue as I was storing the metric under `squad/squad.py`. Don't be lazy like me and store the evaluation code under a path with a name that can be misinterpreted.\r\n\r\n(3) I can't give internet access to the supercomputer compute nodes, so local files do just fine here.\r\n\r\n(4) The windows and Linux machine 1 can both access the internet and were getting fresh copies of the dataset from the huggingface hub. Linux machine 2 was working after I cleared the contents of ~/.cache/huggingface/....\r\n\r\nI feel silly now, knowing it was all so simple! Sorry about that Albert, and thanks again for the help. I've not raised a Github issue like this before, so I'm not sure if I should be close my own issues or if this is something you guys do?", "Thanks for your detailed feedback which for sure will be useful to other community members." ]
2023-04-18T07:10:56Z
2023-04-20T10:27:23Z
2023-04-20T10:27:22Z
NONE
null
null
### Describe the bug There is an issue that seems to be unique to the "squad" dataset, in which it cannot be loaded using standard methods. This issue is most quickly reproduced from the command line, using the HF examples to verify a dataset is loaded properly. This is not a problem with "squad_v2" dataset for example. ### Steps to reproduce the bug cmd line > $ python -c "from datasets import load_dataset; print(load_dataset('squad', split='train')[0])" OR Python IDE > from datasets import load_dataset > load_dataset("squad") ### Expected behavior I expected to either see the output described here from running the very same command in command line ([https://huggingface.co/docs/datasets/installation]), or any output that does not raise Python's TypeError. There is some funky behaviour in the dataset builder portion of the codebase that means it is trying to import the squad dataset with an incorrect path, or the squad dataset couldn't be downloaded. I'm not really sure what the problem is beyond that. Messing around with caching I did manage to get it to load the dataset once, and then couldn't repeat this. ### Environment info datasets=2.7.1 **or** 2.10.1, python=3.10.8, Linux 3.10.0-1160.36.2.el7.x86_64 **or** Windows 10-64
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5768/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5767
5,767
How to use Distill-BERT with different datasets?
{ "avatar_url": "https://avatars.githubusercontent.com/u/109907638?v=4", "events_url": "https://api.github.com/users/sauravtii/events{/privacy}", "followers_url": "https://api.github.com/users/sauravtii/followers", "following_url": "https://api.github.com/users/sauravtii/following{/other_user}", "gists_url": "https://api.github.com/users/sauravtii/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sauravtii", "id": 109907638, "login": "sauravtii", "node_id": "U_kgDOBo0Otg", "organizations_url": "https://api.github.com/users/sauravtii/orgs", "received_events_url": "https://api.github.com/users/sauravtii/received_events", "repos_url": "https://api.github.com/users/sauravtii/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sauravtii/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sauravtii/subscriptions", "type": "User", "url": "https://api.github.com/users/sauravtii", "user_view_type": "public" }
[]
closed
false
[ "Closing this one in favor of the same issue opened in the `transformers` repo." ]
2023-04-18T06:25:12Z
2023-04-20T16:52:05Z
2023-04-20T16:52:05Z
NONE
null
null
### Describe the bug - `transformers` version: 4.11.3 - Platform: Linux-5.4.0-58-generic-x86_64-with-glibc2.29 - Python version: 3.8.10 - PyTorch version (GPU?): 1.12.0+cu102 (True) - Tensorflow version (GPU?): 2.10.0 (True) - Flax version (CPU?/GPU?/TPU?): not installed (NA) - Jax version: not installed - JaxLib version: not installed - Using GPU in script?: <fill in> - Using distributed or parallel set-up in script?: <fill in> ### Steps to reproduce the bug I recently read [this](https://huggingface.co/docs/transformers/quicktour#train-with-tensorflow:~:text=The%20most%20important%20thing%20to%20remember%20is%20you%20need%20to%20instantiate%20a%20tokenizer%20with%20the%20same%20model%20name%20to%20ensure%20you%E2%80%99re%20using%20the%20same%20tokenization%20rules%20a%20model%20was%20pretrained%20with.) and was wondering how to use distill-BERT (which is pre-trained with imdb dataset) with a different dataset (for eg. [this](https://huggingface.co/datasets/yhavinga/imdb_dutch) dataset)? ### Expected behavior Distill-BERT should work with different datasets. ### Environment info - `datasets` version: 1.12.1 - Platform: Linux-5.4.0-58-generic-x86_64-with-glibc2.29 - Python version: 3.8.10 - PyArrow version: 11.0.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5767/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5766
5,766
Support custom feature types
{ "avatar_url": "https://avatars.githubusercontent.com/u/37540982?v=4", "events_url": "https://api.github.com/users/jmontalt/events{/privacy}", "followers_url": "https://api.github.com/users/jmontalt/followers", "following_url": "https://api.github.com/users/jmontalt/following{/other_user}", "gists_url": "https://api.github.com/users/jmontalt/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jmontalt", "id": 37540982, "login": "jmontalt", "node_id": "MDQ6VXNlcjM3NTQwOTgy", "organizations_url": "https://api.github.com/users/jmontalt/orgs", "received_events_url": "https://api.github.com/users/jmontalt/received_events", "repos_url": "https://api.github.com/users/jmontalt/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jmontalt/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jmontalt/subscriptions", "type": "User", "url": "https://api.github.com/users/jmontalt", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
[ "Hi ! Interesting :) What kind of new types would you like to use ?\r\n\r\nNote that you can already implement your own decoding by using `set_transform` that can decode data on-the-fly when rows are accessed", "An interesting proposal indeed. \r\n\r\nPandas and Polars have the \"extension API\", so doing something similar on our side could be useful, too. However, this requires defining a common interface for the existing feature types before discussing the API/workflow for defining/sharing custom feature types, and this could take some time.\r\n\r\nIt would also be nice if the datasets viewer could render these custom types.", "Thank you for your replies! @lhoestq I have a use case involving whole-slide images in digital pathology. These are very large images (potentially gigapixel scale), so standard image tools are not suitable. Essentially, encoding/decoding can be done from/to [`OpenSlide`](https://openslide.org/api/python/) objects. Though there may be interest in this use case from the digital pathology community, it may not be sufficiently useful to suggest adding the feature type, but there will likely be many other use cases for a generic custom feature type.\r\n\r\nThank you for pointing out `set_transform`! I will make sure to keep this in mind in the future.\r\n\r\n@mariosasko An \"extension API\" sounds like a good idea, though I understand that this needs to be properly defined, and that you will need to discuss it internally. Support from the viewer would be awesome, too, though the generalization to arbitrary types sounds challenging.\r\n\r\nFor now, happy to know that you're considering the feature. Feel free to let me know if I can do anything to support the process.", "Not a beautiful solution, but we use this for now\r\n\r\n\r\n```\r\nimport datasets.features.features\r\nold_decode_fn = datasets.features.features.decode_nested_example\r\ndef decode_ext_fn(schema, obj, token_per_repo_id = None):\r\n #Decode new type here\r\n\r\n return old_decode_fn(schema, obj, token_per_repo_id)\r\ndatasets.features.features.decode_nested_example = decode_ext_fn\r\n\r\n```\r\n" ]
2023-04-17T15:46:41Z
2024-03-10T11:11:22Z
null
NONE
null
null
### Feature request I think it would be nice to allow registering custom feature types with the 🤗 Datasets library. For example, allow to do something along the following lines: ``` from datasets.features import register_feature_type # this would be a new function @register_feature_type class CustomFeatureType: def encode_example(self, value): """User-provided logic to encode an example of this feature.""" pass def decode_example(self, value, token_per_repo_id=None): """User-provided logic to decode an example of this feature.""" pass ``` ### Motivation Users of 🤗 Datasets, such as myself, may want to use the library to load datasets with unsupported feature types (i.e., beyond `ClassLabel`, `Image`, or `Audio`). This would be useful for prototyping new feature types and for feature types that aren't used widely enough to warrant inclusion in 🤗 Datasets. At the moment, this is only possible by monkey-patching 🤗 Datasets, which obfuscates the code and is prone to breaking with library updates. It also requires the user to write some custom code which could be easily avoided. ### Your contribution I would be happy to contribute this feature. My proposed solution would involve changing the following call to `globals()` to an explicit feature type registry, which a user-facing `register_feature_type` decorator could update. https://github.com/huggingface/datasets/blob/fd893098627230cc734f6009ad04cf885c979ac4/src/datasets/features/features.py#L1329 I would also provide an abstract base class for custom feature types which users could inherit. This would have at least an `encode_example` method and a `decode_example` method, similar to `Image` or `Audio`. The existing `encode_nested_example` and `decode_nested_example` functions would also need to be updated to correctly call the corresponding functions for the new type.
null
{ "+1": 2, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/5766/reactions" }
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5765
5,765
ValueError: You should supply an encoding or a list of encodings to this method that includes input_ids, but you provided ['text']
{ "avatar_url": "https://avatars.githubusercontent.com/u/109907638?v=4", "events_url": "https://api.github.com/users/sauravtii/events{/privacy}", "followers_url": "https://api.github.com/users/sauravtii/followers", "following_url": "https://api.github.com/users/sauravtii/following{/other_user}", "gists_url": "https://api.github.com/users/sauravtii/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sauravtii", "id": 109907638, "login": "sauravtii", "node_id": "U_kgDOBo0Otg", "organizations_url": "https://api.github.com/users/sauravtii/orgs", "received_events_url": "https://api.github.com/users/sauravtii/received_events", "repos_url": "https://api.github.com/users/sauravtii/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sauravtii/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sauravtii/subscriptions", "type": "User", "url": "https://api.github.com/users/sauravtii", "user_view_type": "public" }
[]
open
false
[ "You need to remove the `text` and `text_en` columns before passing the dataset to the `DataLoader` to avoid this error:\r\n```python\r\ntokenized_datasets = tokenized_datasets.remove_columns([\"text\", \"text_en\"])\r\n```\r\n", "Thanks @mariosasko. Now I am getting this error:\r\n\r\n```\r\nTraceback (most recent call last):\r\n File \"client_2.py\", line 138, in <module>\r\n main()\r\n File \"client_2.py\", line 134, in main\r\n fl.client.start_numpy_client(server_address=\"localhost:8080\", client=IMDBClient())\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/flwr/client/app.py\", line 208, in start_numpy_client\r\n start_client(\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/flwr/client/app.py\", line 142, in start_client\r\n client_message, sleep_duration, keep_going = handle(\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/flwr/client/grpc_client/message_handler.py\", line 68, in handle\r\n return _fit(client, server_msg.fit_ins), 0, True\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/flwr/client/grpc_client/message_handler.py\", line 157, in _fit\r\n fit_res = client.fit(fit_ins)\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/flwr/client/app.py\", line 252, in _fit\r\n results = self.numpy_client.fit(parameters, ins.config) # type: ignore\r\n File \"client_2.py\", line 124, in fit\r\n train(net, trainloader, epochs=1)\r\n File \"client_2.py\", line 78, in train\r\n for batch in trainloader:\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/torch/utils/data/dataloader.py\", line 652, in __next__\r\n data = self._next_data()\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/torch/utils/data/dataloader.py\", line 692, in _next_data\r\n data = self._dataset_fetcher.fetch(index) # may raise StopIteration\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py\", line 49, in fetch\r\n data = [self.dataset[idx] for idx in possibly_batched_index]\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py\", line 49, in <listcomp>\r\n data = [self.dataset[idx] for idx in possibly_batched_index]\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/arrow_dataset.py\", line 1525, in __getitem__\r\n return self._getitem(\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/arrow_dataset.py\", line 1517, in _getitem\r\n pa_subtable = query_table(self._data, key, indices=self._indices if self._indices is not None else None)\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/formatting/formatting.py\", line 373, in query_table\r\n pa_subtable = _query_table_with_indices_mapping(table, key, indices=indices)\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/formatting/formatting.py\", line 55, in _query_table_with_indices_mapping\r\n return _query_table(table, key)\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/formatting/formatting.py\", line 79, in _query_table\r\n return table.fast_slice(key % table.num_rows, 1)\r\nZeroDivisionError: integer division or modulo by zero\r\n```\r\n\r\nThis is my code:\r\n\r\n```\r\nfrom collections import OrderedDict\r\nimport warnings\r\n\r\nimport flwr as fl\r\nimport torch\r\nimport numpy as np\r\n\r\nimport random\r\nfrom torch.utils.data import DataLoader\r\n\r\nfrom datasets import load_dataset, load_metric\r\n\r\nfrom transformers import AutoTokenizer, DataCollatorWithPadding\r\nfrom transformers import AutoModelForSequenceClassification\r\nfrom transformers import AdamW\r\n#from transformers import tokenized_datasets\r\n\r\n\r\nwarnings.filterwarnings(\"ignore\", category=UserWarning)\r\n# DEVICE = torch.device(\"cuda:0\" if torch.cuda.is_available() else \"cpu\")\r\n\r\nDEVICE = \"cpu\"\r\n\r\nCHECKPOINT = \"distilbert-base-uncased\" # transformer model checkpoint\r\n\r\n\r\ndef load_data():\r\n \"\"\"Load IMDB data (training and eval)\"\"\"\r\n raw_datasets = load_dataset(\"yhavinga/imdb_dutch\")\r\n raw_datasets = raw_datasets.shuffle(seed=42)\r\n\r\n # remove unnecessary data split\r\n del raw_datasets[\"unsupervised\"]\r\n\r\n tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT)\r\n\r\n def tokenize_function(examples):\r\n return tokenizer(examples[\"text\"], truncation=True)\r\n\r\n # random 100 samples\r\n population = random.sample(range(len(raw_datasets[\"train\"])), 100)\r\n\r\n tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)\r\n tokenized_datasets[\"train\"] = tokenized_datasets[\"train\"].select(population)\r\n tokenized_datasets[\"test\"] = tokenized_datasets[\"test\"].select(population)\r\n\r\n # tokenized_datasets = tokenized_datasets.remove_columns(\"text\")\r\n # tokenized_datasets = tokenized_datasets.rename_column(\"label\", \"labels\")\r\n\r\n tokenized_datasets = tokenized_datasets.remove_columns(\"attention_mask\")\r\n tokenized_datasets = tokenized_datasets.remove_columns(\"input_ids\")\r\n tokenized_datasets = tokenized_datasets.remove_columns(\"label\")\r\n # tokenized_datasets = tokenized_datasets.remove_columns(\"text_en\")\r\n\r\n # tokenized_datasets = tokenized_datasets.remove_columns(raw_datasets[\"train\"].column_names)\r\n \r\n tokenized_datasets = tokenized_datasets.remove_columns([\"text\", \"text_en\"])\r\n \r\n data_collator = DataCollatorWithPadding(tokenizer=tokenizer)\r\n trainloader = DataLoader(\r\n tokenized_datasets[\"train\"],\r\n shuffle=True,\r\n batch_size=32,\r\n collate_fn=data_collator,\r\n )\r\n\r\n testloader = DataLoader(\r\n tokenized_datasets[\"test\"], batch_size=32, collate_fn=data_collator\r\n )\r\n\r\n return trainloader, testloader\r\n\r\n\r\ndef train(net, trainloader, epochs):\r\n optimizer = AdamW(net.parameters(), lr=5e-4)\r\n net.train()\r\n for _ in range(epochs):\r\n for batch in trainloader:\r\n batch = {k: v.to(DEVICE) for k, v in batch.items()}\r\n outputs = net(**batch)\r\n loss = outputs.loss\r\n loss.backward()\r\n optimizer.step()\r\n optimizer.zero_grad()\r\n\r\n\r\ndef test(net, testloader):\r\n metric = load_metric(\"accuracy\")\r\n loss = 0\r\n net.eval()\r\n for batch in testloader:\r\n batch = {k: v.to(DEVICE) for k, v in batch.items()}\r\n with torch.no_grad():\r\n outputs = net(**batch)\r\n logits = outputs.logits\r\n loss += outputs.loss.item()\r\n predictions = torch.argmax(logits, dim=-1)\r\n metric.add_batch(predictions=predictions, references=batch[\"labels\"])\r\n loss /= len(testloader.dataset)\r\n accuracy = metric.compute()[\"accuracy\"]\r\n return loss, accuracy\r\n\r\n\r\ndef main():\r\n net = AutoModelForSequenceClassification.from_pretrained(\r\n CHECKPOINT, num_labels=2\r\n ).to(DEVICE)\r\n\r\n trainloader, testloader = load_data()\r\n\r\n # Flower client\r\n class IMDBClient(fl.client.NumPyClient):\r\n def get_parameters(self, config):\r\n return [val.cpu().numpy() for _, val in net.state_dict().items()]\r\n\r\n def set_parameters(self, parameters):\r\n params_dict = zip(net.state_dict().keys(), parameters)\r\n state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})\r\n net.load_state_dict(state_dict, strict=True)\r\n\r\n def fit(self, parameters, config):\r\n self.set_parameters(parameters)\r\n print(\"Training Started...\")\r\n train(net, trainloader, epochs=1)\r\n print(\"Training Finished.\")\r\n return self.get_parameters(config={}), len(trainloader), {}\r\n\r\n def evaluate(self, parameters, config):\r\n self.set_parameters(parameters)\r\n loss, accuracy = test(net, testloader)\r\n return float(loss), len(testloader), {\"accuracy\": float(accuracy)}\r\n\r\n # Start client\r\n fl.client.start_numpy_client(server_address=\"localhost:8080\", client=IMDBClient())\r\n\r\n\r\nif __name__ == \"__main__\":\r\n main()\r\n```", "Please also remove/comment these lines:\r\n```python\r\ntokenized_datasets = tokenized_datasets.remove_columns(\"attention_mask\")\r\ntokenized_datasets = tokenized_datasets.remove_columns(\"input_ids\")\r\ntokenized_datasets = tokenized_datasets.remove_columns(\"label\")\r\n```", "Thanks @mariosasko .\r\n\r\nNow, I am trying out this [tutorial](https://flower.dev/docs/quickstart-huggingface.html) which basically trains distil-BERT with IMDB dataset (very similar to this [tutorial](https://huggingface.co/docs/transformers/main/tasks/sequence_classification)). But I don't know why my accuracy isn't increasing even after training for a significant amount of time and also by using the entire dataset. Below I have attached `client.py` file:\r\n\r\n`client.py`:\r\n\r\n```\r\nfrom collections import OrderedDict\r\nimport warnings\r\n\r\nimport flwr as fl\r\nimport torch\r\nimport numpy as np\r\n\r\nimport random\r\nfrom torch.utils.data import DataLoader\r\n\r\nfrom datasets import load_dataset, load_metric\r\n\r\nfrom transformers import AutoTokenizer, DataCollatorWithPadding\r\nfrom transformers import AutoModelForSequenceClassification\r\nfrom transformers import AdamW\r\n\r\nwarnings.filterwarnings(\"ignore\", category=UserWarning)\r\n\r\nDEVICE = \"cuda:1\"\r\n\r\nCHECKPOINT = \"distilbert-base-uncased\" # transformer model checkpoint\r\n\r\n\r\ndef load_data():\r\n \"\"\"Load IMDB data (training and eval)\"\"\"\r\n raw_datasets = load_dataset(\"imdb\")\r\n raw_datasets = raw_datasets.shuffle(seed=42)\r\n\r\n # remove unnecessary data split\r\n del raw_datasets[\"unsupervised\"]\r\n\r\n tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT)\r\n\r\n def tokenize_function(examples):\r\n return tokenizer(examples[\"text\"], truncation=True)\r\n\r\n tokenized_datasets = raw_datasets.map(tokenize_function, batched=True)\r\n\r\n tokenized_datasets = tokenized_datasets.remove_columns(\"text\")\r\n tokenized_datasets = tokenized_datasets.rename_column(\"label\", \"labels\")\r\n\r\n data_collator = DataCollatorWithPadding(tokenizer=tokenizer)\r\n trainloader = DataLoader(\r\n tokenized_datasets[\"train\"],\r\n shuffle=True,\r\n batch_size=32,\r\n collate_fn=data_collator,\r\n )\r\n\r\n testloader = DataLoader(\r\n tokenized_datasets[\"test\"], batch_size=32, collate_fn=data_collator\r\n )\r\n\r\n return trainloader, testloader\r\n\r\n\r\ndef train(net, trainloader, epochs):\r\n optimizer = AdamW(net.parameters(), lr=5e-5)\r\n net.train()\r\n for i in range(epochs):\r\n print(\"Epoch: \", i+1)\r\n j = 1\r\n print(\"####################### The length of the trainloader is: \", len(trainloader)) \r\n for batch in trainloader:\r\n print(\"####################### The batch number is: \", j)\r\n batch = {k: v.to(DEVICE) for k, v in batch.items()}\r\n outputs = net(**batch)\r\n loss = outputs.loss\r\n loss.backward()\r\n optimizer.step()\r\n optimizer.zero_grad()\r\n j += 1\r\n\r\n\r\ndef test(net, testloader):\r\n metric = load_metric(\"accuracy\")\r\n loss = 0\r\n net.eval()\r\n for batch in testloader:\r\n batch = {k: v.to(DEVICE) for k, v in batch.items()}\r\n with torch.no_grad():\r\n outputs = net(**batch)\r\n logits = outputs.logits\r\n loss += outputs.loss.item()\r\n predictions = torch.argmax(logits, dim=-1)\r\n metric.add_batch(predictions=predictions, references=batch[\"labels\"])\r\n loss /= len(testloader.dataset)\r\n accuracy = metric.compute()[\"accuracy\"]\r\n return loss, accuracy\r\n\r\n\r\ndef main():\r\n net = AutoModelForSequenceClassification.from_pretrained(\r\n CHECKPOINT, num_labels=2\r\n ).to(DEVICE)\r\n\r\n trainloader, testloader = load_data()\r\n\r\n # Flower client\r\n class IMDBClient(fl.client.NumPyClient):\r\n def get_parameters(self, config):\r\n return [val.cpu().numpy() for _, val in net.state_dict().items()]\r\n\r\n def set_parameters(self, parameters):\r\n params_dict = zip(net.state_dict().keys(), parameters)\r\n state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict})\r\n net.load_state_dict(state_dict, strict=True)\r\n\r\n def fit(self, parameters, config):\r\n self.set_parameters(parameters)\r\n print(\"Training Started...\")\r\n train(net, trainloader, epochs=1)\r\n print(\"Training Finished.\")\r\n return self.get_parameters(config={}), len(trainloader), {}\r\n\r\n def evaluate(self, parameters, config):\r\n self.set_parameters(parameters)\r\n loss, accuracy = test(net, testloader)\r\n print({\"loss\": float(loss), \"accuracy\": float(accuracy)})\r\n return float(loss), len(testloader), {\"loss\": float(loss), \"accuracy\": float(accuracy)}\r\n\r\n # Start client\r\n fl.client.start_numpy_client(server_address=\"localhost:5040\", client=IMDBClient())\r\n\r\n\r\nif __name__ == \"__main__\":\r\n main()\r\n```\r\n\r\nCan I get any help, please?" ]
2023-04-17T15:00:50Z
2023-04-25T13:50:45Z
null
NONE
null
null
### Describe the bug Following is my code that I am trying to run, but facing an error (have attached the whole error below): My code: ``` from collections import OrderedDict import warnings import flwr as fl import torch import numpy as np import random from torch.utils.data import DataLoader from datasets import load_dataset, load_metric from transformers import AutoTokenizer, DataCollatorWithPadding from transformers import AutoModelForSequenceClassification from transformers import AdamW #from transformers import tokenized_datasets warnings.filterwarnings("ignore", category=UserWarning) # DEVICE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") DEVICE = "cpu" CHECKPOINT = "distilbert-base-uncased" # transformer model checkpoint def load_data(): """Load IMDB data (training and eval)""" raw_datasets = load_dataset("yhavinga/imdb_dutch") raw_datasets = raw_datasets.shuffle(seed=42) # remove unnecessary data split del raw_datasets["unsupervised"] tokenizer = AutoTokenizer.from_pretrained(CHECKPOINT) def tokenize_function(examples): return tokenizer(examples["text"], truncation=True) # random 100 samples population = random.sample(range(len(raw_datasets["train"])), 100) tokenized_datasets = raw_datasets.map(tokenize_function, batched=True) tokenized_datasets["train"] = tokenized_datasets["train"].select(population) tokenized_datasets["test"] = tokenized_datasets["test"].select(population) # tokenized_datasets = tokenized_datasets.remove_columns("text") # tokenized_datasets = tokenized_datasets.rename_column("label", "labels") tokenized_datasets = tokenized_datasets.remove_columns("attention_mask") tokenized_datasets = tokenized_datasets.remove_columns("input_ids") tokenized_datasets = tokenized_datasets.remove_columns("label") tokenized_datasets = tokenized_datasets.remove_columns("text_en") # tokenized_datasets = tokenized_datasets.remove_columns(raw_datasets["train"].column_names) data_collator = DataCollatorWithPadding(tokenizer=tokenizer) trainloader = DataLoader( tokenized_datasets["train"], shuffle=True, batch_size=32, collate_fn=data_collator, ) testloader = DataLoader( tokenized_datasets["test"], batch_size=32, collate_fn=data_collator ) return trainloader, testloader def train(net, trainloader, epochs): optimizer = AdamW(net.parameters(), lr=5e-4) net.train() for _ in range(epochs): for batch in trainloader: batch = {k: v.to(DEVICE) for k, v in batch.items()} outputs = net(**batch) loss = outputs.loss loss.backward() optimizer.step() optimizer.zero_grad() def test(net, testloader): metric = load_metric("accuracy") loss = 0 net.eval() for batch in testloader: batch = {k: v.to(DEVICE) for k, v in batch.items()} with torch.no_grad(): outputs = net(**batch) logits = outputs.logits loss += outputs.loss.item() predictions = torch.argmax(logits, dim=-1) metric.add_batch(predictions=predictions, references=batch["labels"]) loss /= len(testloader.dataset) accuracy = metric.compute()["accuracy"] return loss, accuracy def main(): net = AutoModelForSequenceClassification.from_pretrained( CHECKPOINT, num_labels=2 ).to(DEVICE) trainloader, testloader = load_data() # Flower client class IMDBClient(fl.client.NumPyClient): def get_parameters(self, config): return [val.cpu().numpy() for _, val in net.state_dict().items()] def set_parameters(self, parameters): params_dict = zip(net.state_dict().keys(), parameters) state_dict = OrderedDict({k: torch.Tensor(v) for k, v in params_dict}) net.load_state_dict(state_dict, strict=True) def fit(self, parameters, config): self.set_parameters(parameters) print("Training Started...") train(net, trainloader, epochs=1) print("Training Finished.") return self.get_parameters(config={}), len(trainloader), {} def evaluate(self, parameters, config): self.set_parameters(parameters) loss, accuracy = test(net, testloader) return float(loss), len(testloader), {"accuracy": float(accuracy)} # Start client fl.client.start_numpy_client(server_address="localhost:8080", client=IMDBClient()) if __name__ == "__main__": main() ``` Error: ``` Traceback (most recent call last): File "client_2.py", line 136, in <module> main() File "client_2.py", line 132, in main fl.client.start_numpy_client(server_address="localhost:8080", client=IMDBClient()) File "/home/saurav/.local/lib/python3.8/site-packages/flwr/client/app.py", line 208, in start_numpy_client start_client( File "/home/saurav/.local/lib/python3.8/site-packages/flwr/client/app.py", line 142, in start_client client_message, sleep_duration, keep_going = handle( File "/home/saurav/.local/lib/python3.8/site-packages/flwr/client/grpc_client/message_handler.py", line 68, in handle return _fit(client, server_msg.fit_ins), 0, True File "/home/saurav/.local/lib/python3.8/site-packages/flwr/client/grpc_client/message_handler.py", line 157, in _fit fit_res = client.fit(fit_ins) File "/home/saurav/.local/lib/python3.8/site-packages/flwr/client/app.py", line 252, in _fit results = self.numpy_client.fit(parameters, ins.config) # type: ignore File "client_2.py", line 122, in fit train(net, trainloader, epochs=1) File "client_2.py", line 76, in train for batch in trainloader: File "/home/saurav/.local/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 652, in __next__ data = self._next_data() File "/home/saurav/.local/lib/python3.8/site-packages/torch/utils/data/dataloader.py", line 692, in _next_data data = self._dataset_fetcher.fetch(index) # may raise StopIteration File "/home/saurav/.local/lib/python3.8/site-packages/torch/utils/data/_utils/fetch.py", line 52, in fetch return self.collate_fn(data) File "/home/saurav/.local/lib/python3.8/site-packages/transformers/data/data_collator.py", line 221, in __call__ batch = self.tokenizer.pad( File "/home/saurav/.local/lib/python3.8/site-packages/transformers/tokenization_utils_base.py", line 2713, in pad raise ValueError( ValueError: You should supply an encoding or a list of encodings to this method that includes input_ids, but you provided ['text'] ``` ### Steps to reproduce the bug Run the above code. ### Expected behavior Don't know, doing it for the first time. ### Environment info - `datasets` version: 1.12.1 - Platform: Linux-5.4.0-58-generic-x86_64-with-glibc2.29 - Python version: 3.8.10 - PyArrow version: 11.0.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5765/reactions" }
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5764
5,764
ConnectionError: Couldn't reach https://www.dropbox.com/s/zts98j4vkqtsns6/aclImdb_v2.tar?dl=1
{ "avatar_url": "https://avatars.githubusercontent.com/u/109907638?v=4", "events_url": "https://api.github.com/users/sauravtii/events{/privacy}", "followers_url": "https://api.github.com/users/sauravtii/followers", "following_url": "https://api.github.com/users/sauravtii/following{/other_user}", "gists_url": "https://api.github.com/users/sauravtii/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sauravtii", "id": 109907638, "login": "sauravtii", "node_id": "U_kgDOBo0Otg", "organizations_url": "https://api.github.com/users/sauravtii/orgs", "received_events_url": "https://api.github.com/users/sauravtii/received_events", "repos_url": "https://api.github.com/users/sauravtii/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sauravtii/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sauravtii/subscriptions", "type": "User", "url": "https://api.github.com/users/sauravtii", "user_view_type": "public" }
[]
closed
false
[ "Thanks for reporting, @sauravtii.\r\n\r\nUnfortunately, I'm not able to reproduce the issue:\r\n```python\r\nIn [1]: from datasets import load_dataset\r\n\r\nIn [2]: ds = load_dataset(\"josianem/imdb\")\r\n\r\nIn [2]: ds\r\nOut[2]: \r\nDatasetDict({\r\n train: Dataset({\r\n features: ['text', 'label'],\r\n num_rows: 25799\r\n })\r\n test: Dataset({\r\n features: ['text', 'label'],\r\n num_rows: 25000\r\n })\r\n unsupervised: Dataset({\r\n features: ['text', 'label'],\r\n num_rows: 50000\r\n })\r\n})\r\n```\r\n\r\nCould you please retry to load the dataset? Maybe there was a temporary connection issue to Dropbox.", "Thanks @albertvillanova. I am facing another issue now\r\n\r\n```\r\nTraceback (most recent call last):\r\n File \"sample.py\", line 4, in <module>\r\n dataset = load_dataset(\"josianem/imdb\")\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/load.py\", line 1112, in load_dataset\r\n builder_instance.download_and_prepare(\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/builder.py\", line 636, in download_and_prepare\r\n self._download_and_prepare(\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/builder.py\", line 738, in _download_and_prepare\r\n verify_splits(self.info.splits, split_dict)\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/utils/info_utils.py\", line 74, in verify_splits\r\n raise NonMatchingSplitsSizesError(str(bad_splits))\r\ndatasets.utils.info_utils.NonMatchingSplitsSizesError: [{'expected': SplitInfo(name='train', num_bytes=34501348, num_examples=25799, dataset_name='imdb'), 'recorded': SplitInfo(name='train', num_bytes=0, num_examples=0, dataset_name='imdb')}, {'expected': SplitInfo(name='test', num_bytes=32650697, num_examples=25000, dataset_name='imdb'), 'recorded': SplitInfo(name='test', num_bytes=0, num_examples=0, dataset_name='imdb')}, {'expected': SplitInfo(name='unsupervised', num_bytes=67106814, num_examples=50000, dataset_name='imdb'), 'recorded': SplitInfo(name='unsupervised', num_bytes=0, num_examples=0, dataset_name='imdb')}]\r\n```\r\n\r\nThis is my code\r\n\r\n```\r\nfrom datasets import load_dataset, load_metric\r\n\r\ndataset = load_dataset(\"josianem/imdb\")\r\n```", "Your connection didn't work and you got an empty dataset (`num_bytes=0, num_examples=0`):\r\n```\r\ndatasets.utils.info_utils.NonMatchingSplitsSizesError: \r\n[\r\n {\r\n 'expected': SplitInfo(name='train', num_bytes=34501348, num_examples=25799, dataset_name='imdb'), \r\n 'recorded': SplitInfo(name='train', num_bytes=0, num_examples=0, dataset_name='imdb')\r\n }, \r\n {\r\n 'expected': SplitInfo(name='test', num_bytes=32650697, num_examples=25000, dataset_name='imdb'), \r\n 'recorded': SplitInfo(name='test', num_bytes=0, num_examples=0, dataset_name='imdb')\r\n }, \r\n {\r\n 'expected': SplitInfo(name='unsupervised', num_bytes=67106814, num_examples=50000, dataset_name='imdb'), \r\n 'recorded': SplitInfo(name='unsupervised', num_bytes=0, num_examples=0, dataset_name='imdb')\r\n }\r\n]\r\n```\r\n\r\nCould you please try the link in your browser and see if it works? https://www.dropbox.com/s/zts98j4vkqtsns6/aclImdb_v2.tar?dl=1\r\n- If it does not work, you should contact the author of the dataset in their Community tab (https://huggingface.co/datasets/josianem/imdb/discussions) and inform them, so that they can host their data elsewhere, for example on the Hugging Face Hub itself\r\n\r\nIf the link works, you should try to load the dataset but forcing the re-download of the data files (so that the cache is refreshed with the actual data file), by passing `download_mode=\"force_redownload\"`:\r\n```python\r\ndataset = load_dataset(\"josianem/imdb\", download_mode=\"force_redownload\")\r\n```", "After pasting the link in the browser, it did start the download so it seems that the link is working. But even after including the `download_mode` in my code I am facing the same issue:\r\n\r\nError:\r\n```\r\nTraceback (most recent call last):\r\n File \"sample.py\", line 4, in <module>\r\n dataset = load_dataset(\"josianem/imdb\", download_mode=\"force_redownload\")\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/load.py\", line 1112, in load_dataset\r\n builder_instance.download_and_prepare(\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/builder.py\", line 636, in download_and_prepare\r\n self._download_and_prepare(\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/builder.py\", line 704, in _download_and_prepare\r\n split_generators = self._split_generators(dl_manager, **split_generators_kwargs)\r\n File \"/home/saurav/.cache/huggingface/modules/datasets_modules/datasets/imdb/cc6ab4acab2799be15d5d217c24548b856156dafdc850165fdc4f2031f27ff2f/imdb.py\", line 79, in _split_generators\r\n archive = dl_manager.download(_DOWNLOAD_URL)\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/utils/download_manager.py\", line 196, in download\r\n downloaded_path_or_paths = map_nested(\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/utils/py_utils.py\", line 197, in map_nested\r\n return function(data_struct)\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/utils/download_manager.py\", line 217, in _download\r\n return cached_path(url_or_filename, download_config=download_config)\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/utils/file_utils.py\", line 289, in cached_path\r\n output_path = get_from_cache(\r\n File \"/home/saurav/.local/lib/python3.8/site-packages/datasets/utils/file_utils.py\", line 606, in get_from_cache\r\n raise ConnectionError(\"Couldn't reach {}\".format(url))\r\nConnectionError: Couldn't reach https://www.dropbox.com/s/zts98j4vkqtsns6/aclImdb_v2.tar?dl=1\r\n```\r\n\r\nMy code:\r\n```\r\nfrom datasets import load_dataset, load_metric\r\n\r\ndataset = load_dataset(\"josianem/imdb\", download_mode=\"force_redownload\")\r\n```", "I have tried again to reproduce your issue without success: the dataset loads perfectly, both in my local machine and in a Colab notebook.\r\n- See: https://colab.research.google.com/drive/1dky3T0XGFuldggy22NNQQN-UqOFqvnuY?usp=sharing\r\n\r\nI think the cause maight be that you are using a very old version of `datasets`. Please, could you update it and retry?\r\n```\r\npip install -U datasets\r\n```", "That worked!! Thanks @albertvillanova : )\r\n\r\n```\r\nDownloading builder script: 100%|███████| 4.20k/4.20k [00:00<00:00, 6.69MB/s]\r\nDownloading metadata: 100%|█████████████| 2.60k/2.60k [00:00<00:00, 3.41MB/s]\r\nDownloading readme: 100%|███████████████| 7.52k/7.52k [00:00<00:00, 12.6MB/s]\r\nDownloading and preparing dataset imdb/plain_text to /home/saurav/.cache/huggingface/datasets/josianem___imdb/plain_text/1.0.0/cc6ab4acab2799be15d5d217c24548b856156dafdc850165fdc4f2031f27ff2f...\r\nDownloading data: 100%|███████████████████| 301M/301M [01:32<00:00, 3.25MB/s]\r\nDataset imdb downloaded and prepared to /home/saurav/.cache/huggingface/datasets/josianem___imdb/plain_text/1.0.0/cc6ab4acab2799be15d5d217c24548b856156dafdc850165fdc4f2031f27ff2f. Subsequent calls will reuse this data.\r\n100%|█████████████████████████████████████████| 3/3 [00:00<00:00, 794.83it/s]\r\n```\r\n\r\nThe code I used:\r\n```\r\nfrom datasets import load_dataset, load_metric\r\n\r\ndataset = load_dataset(\"josianem/imdb\", download_mode=\"force_redownload\")\r\n\r\n```\r\n\r\nBut when I remove `download_mode=\"force_redownload\"` I get the same error. Any guess on that?", "That is because the cache got the \"empty\" download file the first time you tried and got the connection error.\r\n\r\nThen, once you no longer get the connection error, you need to refresh the cache by passing `download_mode=\"force_redownload\"`." ]
2023-04-17T09:08:18Z
2023-04-18T07:18:20Z
2023-04-18T07:18:20Z
NONE
null
null
### Describe the bug I want to use this (https://huggingface.co/datasets/josianem/imdb) dataset therefore I am trying to load it using the following code: ``` dataset = load_dataset("josianem/imdb") ``` The dataset is not getting loaded and gives the error message as the following: ``` Traceback (most recent call last): File "sample.py", line 3, in <module> dataset = load_dataset("josianem/imdb") File "/home/saurav/.local/lib/python3.8/site-packages/datasets/load.py", line 1112, in load_dataset builder_instance.download_and_prepare( File "/home/saurav/.local/lib/python3.8/site-packages/datasets/builder.py", line 636, in download_and_prepare self._download_and_prepare( File "/home/saurav/.local/lib/python3.8/site-packages/datasets/builder.py", line 704, in _download_and_prepare split_generators = self._split_generators(dl_manager, **split_generators_kwargs) File "/home/saurav/.cache/huggingface/modules/datasets_modules/datasets/imdb/cc6ab4acab2799be15d5d217c24548b856156dafdc850165fdc4f2031f27ff2f/imdb.py", line 79, in _split_generators archive = dl_manager.download(_DOWNLOAD_URL) File "/home/saurav/.local/lib/python3.8/site-packages/datasets/utils/download_manager.py", line 196, in download downloaded_path_or_paths = map_nested( File "/home/saurav/.local/lib/python3.8/site-packages/datasets/utils/py_utils.py", line 197, in map_nested return function(data_struct) File "/home/saurav/.local/lib/python3.8/site-packages/datasets/utils/download_manager.py", line 217, in _download return cached_path(url_or_filename, download_config=download_config) File "/home/saurav/.local/lib/python3.8/site-packages/datasets/utils/file_utils.py", line 289, in cached_path output_path = get_from_cache( File "/home/saurav/.local/lib/python3.8/site-packages/datasets/utils/file_utils.py", line 606, in get_from_cache raise ConnectionError("Couldn't reach {}".format(url)) ConnectionError: Couldn't reach https://www.dropbox.com/s/zts98j4vkqtsns6/aclImdb_v2.tar?dl=1 ``` ### Steps to reproduce the bug You can reproduce the error by using the following code: ``` from datasets import load_dataset, load_metric dataset = load_dataset("josianem/imdb") ``` ### Expected behavior The dataset should get loaded (I am using this dataset for the first time so not much aware of the exact behavior). ### Environment info - `datasets` version: 1.12.1 - Platform: Linux-5.4.0-58-generic-x86_64-with-glibc2.29 - Python version: 3.8.10 - PyArrow version: 11.0.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5764/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/pull/5763
5,763
fix typo: "mow" -> "now"
{ "avatar_url": "https://avatars.githubusercontent.com/u/1967608?v=4", "events_url": "https://api.github.com/users/csris/events{/privacy}", "followers_url": "https://api.github.com/users/csris/followers", "following_url": "https://api.github.com/users/csris/following{/other_user}", "gists_url": "https://api.github.com/users/csris/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/csris", "id": 1967608, "login": "csris", "node_id": "MDQ6VXNlcjE5Njc2MDg=", "organizations_url": "https://api.github.com/users/csris/orgs", "received_events_url": "https://api.github.com/users/csris/received_events", "repos_url": "https://api.github.com/users/csris/repos", "site_admin": false, "starred_url": "https://api.github.com/users/csris/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/csris/subscriptions", "type": "User", "url": "https://api.github.com/users/csris", "user_view_type": "public" }
[]
closed
false
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006804 / 0.011353 (-0.004549) | 0.004984 / 0.011008 (-0.006024) | 0.096781 / 0.038508 (0.058273) | 0.033049 / 0.023109 (0.009939) | 0.297681 / 0.275898 (0.021783) | 0.329553 / 0.323480 (0.006073) | 0.005697 / 0.007986 (-0.002289) | 0.004019 / 0.004328 (-0.000310) | 0.072691 / 0.004250 (0.068441) | 0.046921 / 0.037052 (0.009868) | 0.311467 / 0.258489 (0.052978) | 0.337616 / 0.293841 (0.043775) | 0.042400 / 0.128546 (-0.086146) | 0.011919 / 0.075646 (-0.063727) | 0.331390 / 0.419271 (-0.087881) | 0.051004 / 0.043533 (0.007471) | 0.295317 / 0.255139 (0.040178) | 0.316570 / 0.283200 (0.033371) | 0.099283 / 0.141683 (-0.042400) | 1.430583 / 1.452155 (-0.021572) | 1.493550 / 1.492716 (0.000834) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.213634 / 0.018006 (0.195628) | 0.432557 / 0.000490 (0.432067) | 0.001586 / 0.000200 (0.001386) | 0.000079 / 0.000054 (0.000025) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025249 / 0.037411 (-0.012162) | 0.105433 / 0.014526 (0.090908) | 0.113474 / 0.176557 (-0.063082) | 0.168799 / 0.737135 (-0.568336) | 0.119363 / 0.296338 (-0.176975) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.412450 / 0.215209 (0.197241) | 4.117432 / 2.077655 (2.039777) | 1.935176 / 1.504120 (0.431056) | 1.745674 / 1.541195 (0.204479) | 1.853872 / 1.468490 (0.385382) | 0.703429 / 4.584777 (-3.881348) | 3.756981 / 3.745712 (0.011269) | 3.730607 / 5.269862 (-1.539255) | 1.839052 / 4.565676 (-2.726624) | 0.087574 / 0.424275 (-0.336701) | 0.012293 / 0.007607 (0.004686) | 0.517234 / 0.226044 (0.291190) | 5.189759 / 2.268929 (2.920831) | 2.418739 / 55.444624 (-53.025885) | 2.081424 / 6.876477 (-4.795053) | 2.204464 / 2.142072 (0.062392) | 0.842768 / 4.805227 (-3.962459) | 0.169014 / 6.500664 (-6.331650) | 0.063711 / 0.075469 (-0.011758) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.180636 / 1.841788 (-0.661152) | 14.816088 / 8.074308 (6.741779) | 14.290085 / 10.191392 (4.098693) | 0.165267 / 0.680424 (-0.515156) | 0.017290 / 0.534201 (-0.516911) | 0.419678 / 0.579283 (-0.159605) | 0.418164 / 0.434364 (-0.016200) | 0.492210 / 0.540337 (-0.048127) | 0.588528 / 1.386936 (-0.798408) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007144 / 0.011353 (-0.004209) | 0.005223 / 0.011008 (-0.005785) | 0.073583 / 0.038508 (0.035075) | 0.033534 / 0.023109 (0.010425) | 0.339020 / 0.275898 (0.063122) | 0.366546 / 0.323480 (0.043066) | 0.006245 / 0.007986 (-0.001741) | 0.004081 / 0.004328 (-0.000247) | 0.073089 / 0.004250 (0.068839) | 0.047024 / 0.037052 (0.009971) | 0.342540 / 0.258489 (0.084051) | 0.379743 / 0.293841 (0.085902) | 0.037551 / 0.128546 (-0.090995) | 0.012246 / 0.075646 (-0.063400) | 0.084796 / 0.419271 (-0.334476) | 0.052256 / 0.043533 (0.008723) | 0.342675 / 0.255139 (0.087536) | 0.367157 / 0.283200 (0.083957) | 0.102939 / 0.141683 (-0.038744) | 1.409039 / 1.452155 (-0.043115) | 1.526137 / 1.492716 (0.033420) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.208143 / 0.018006 (0.190136) | 0.437940 / 0.000490 (0.437450) | 0.000424 / 0.000200 (0.000224) | 0.000056 / 0.000054 (0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028321 / 0.037411 (-0.009091) | 0.110417 / 0.014526 (0.095891) | 0.119449 / 0.176557 (-0.057107) | 0.168081 / 0.737135 (-0.569054) | 0.126658 / 0.296338 (-0.169681) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.429302 / 0.215209 (0.214093) | 4.270547 / 2.077655 (2.192892) | 2.061323 / 1.504120 (0.557203) | 1.857877 / 1.541195 (0.316682) | 1.873317 / 1.468490 (0.404827) | 0.688750 / 4.584777 (-3.896027) | 3.767951 / 3.745712 (0.022239) | 2.011436 / 5.269862 (-3.258426) | 1.299965 / 4.565676 (-3.265712) | 0.084799 / 0.424275 (-0.339476) | 0.012082 / 0.007607 (0.004475) | 0.521981 / 0.226044 (0.295937) | 5.265333 / 2.268929 (2.996405) | 2.494326 / 55.444624 (-52.950298) | 2.144672 / 6.876477 (-4.731804) | 2.365624 / 2.142072 (0.223551) | 0.839868 / 4.805227 (-3.965359) | 0.166614 / 6.500664 (-6.334050) | 0.063804 / 0.075469 (-0.011665) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.264623 / 1.841788 (-0.577164) | 14.946515 / 8.074308 (6.872207) | 14.450115 / 10.191392 (4.258723) | 0.163878 / 0.680424 (-0.516546) | 0.017501 / 0.534201 (-0.516700) | 0.420992 / 0.579283 (-0.158291) | 0.423005 / 0.434364 (-0.011359) | 0.489505 / 0.540337 (-0.050832) | 0.594631 / 1.386936 (-0.792305) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#fd893098627230cc734f6009ad04cf885c979ac4 \"CML watermark\")\n" ]
2023-04-17T06:03:44Z
2023-04-17T15:01:53Z
2023-04-17T14:54:46Z
CONTRIBUTOR
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5763.diff", "html_url": "https://github.com/huggingface/datasets/pull/5763", "merged_at": "2023-04-17T14:54:46Z", "patch_url": "https://github.com/huggingface/datasets/pull/5763.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5763" }
I noticed a typo as I was reading the datasets documentation. This PR contains a trivial fix changing "mow" to "now."
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5763/reactions" }
null
null
null
true
https://github.com/huggingface/datasets/issues/5762
5,762
Not able to load the pile
{ "avatar_url": "https://avatars.githubusercontent.com/u/17240858?v=4", "events_url": "https://api.github.com/users/surya-narayanan/events{/privacy}", "followers_url": "https://api.github.com/users/surya-narayanan/followers", "following_url": "https://api.github.com/users/surya-narayanan/following{/other_user}", "gists_url": "https://api.github.com/users/surya-narayanan/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/surya-narayanan", "id": 17240858, "login": "surya-narayanan", "node_id": "MDQ6VXNlcjE3MjQwODU4", "organizations_url": "https://api.github.com/users/surya-narayanan/orgs", "received_events_url": "https://api.github.com/users/surya-narayanan/received_events", "repos_url": "https://api.github.com/users/surya-narayanan/repos", "site_admin": false, "starred_url": "https://api.github.com/users/surya-narayanan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/surya-narayanan/subscriptions", "type": "User", "url": "https://api.github.com/users/surya-narayanan", "user_view_type": "public" }
[]
closed
false
[ "Thanks for reporting, @surya-narayanan.\r\n\r\nI see you already started a discussion about this on the Community tab of the corresponding dataset: https://huggingface.co/datasets/EleutherAI/the_pile/discussions/10\r\nLet's continue the discussion there!" ]
2023-04-17T03:09:10Z
2023-04-17T09:37:27Z
2023-04-17T09:37:27Z
NONE
null
null
### Describe the bug Got this error when I am trying to load the pile dataset ``` TypeError: Couldn't cast array of type struct<file: string, id: string> to {'id': Value(dtype='string', id=None)} ``` ### Steps to reproduce the bug Please visit the following sample notebook https://colab.research.google.com/drive/1JHcjawcHL6QHhi5VcqYd07W2QCEj2nWK#scrollTo=ulJP3eJCI-tB ### Expected behavior The pile should work ### Environment info - `datasets` version: 2.11.0 - Platform: Linux-5.10.147+-x86_64-with-glibc2.31 - Python version: 3.9.16 - Huggingface_hub version: 0.13.4 - PyArrow version: 9.0.0 - Pandas version: 1.5.3
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5762/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5761
5,761
One or several metadata.jsonl were found, but not in the same directory or in a parent directory
{ "avatar_url": "https://avatars.githubusercontent.com/u/69686152?v=4", "events_url": "https://api.github.com/users/blghtr/events{/privacy}", "followers_url": "https://api.github.com/users/blghtr/followers", "following_url": "https://api.github.com/users/blghtr/following{/other_user}", "gists_url": "https://api.github.com/users/blghtr/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/blghtr", "id": 69686152, "login": "blghtr", "node_id": "MDQ6VXNlcjY5Njg2MTUy", "organizations_url": "https://api.github.com/users/blghtr/orgs", "received_events_url": "https://api.github.com/users/blghtr/received_events", "repos_url": "https://api.github.com/users/blghtr/repos", "site_admin": false, "starred_url": "https://api.github.com/users/blghtr/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/blghtr/subscriptions", "type": "User", "url": "https://api.github.com/users/blghtr", "user_view_type": "public" }
[]
open
false
[ "Also, when generated from a zip archive, the dataset contains only a few images. In my case, 20 versus 2000+ contained in the archive. The generation from folders works as expected.", "Thanks for reporting, @blghtr.\r\n\r\nYou should include the `metadata.jsonl` in your ZIP archives, at the root level directory.\r\n\r\nI agree that our documentation is not clear enough. Maybe we could improve it.", "You can find a dummy dataset example here: https://huggingface.co/datasets/albertvillanova/tmp-imagefolder-metadata\r\n\r\n```\r\ntmp-imagefolder-metadata/\r\n└── data/\r\n ├── train.zip\r\n └── valid.zip\r\n```\r\nwhere, the directory structure within the `train.zip` archive is:\r\n```\r\nmetadata.jsonl\r\ntrain/\r\n ├── bharatanatyam/\r\n └── bharatanatyam_original_113.jpg_70c297a2-e2f2-4ed8-b93c-0c03d0809fe2.jpg\r\n └── kathak/\r\n └── kathak_original_10.jpg_2c4a2c3d-47fc-4b33-9c09-38b542826632.jpg\r\n```\r\nand the metadata file contains:\r\n```\r\n{\"file_name\": \"train/bharatanatyam/bharatanatyam_original_113.jpg_70c297a2-e2f2-4ed8-b93c-0c03d0809fe2.jpg\", \"text\": \"first\"}\r\n{\"file_name\": \"train/kathak/kathak_original_10.jpg_2c4a2c3d-47fc-4b33-9c09-38b542826632.jpg\", \"text\": \"second\"}\r\n```" ]
2023-04-16T16:21:55Z
2023-04-19T11:53:24Z
null
NONE
null
null
### Describe the bug An attempt to generate a dataset from a zip archive using imagefolder and metadata.jsonl does not lead to the expected result. Tried all possible locations of the json file: the file in the archive is ignored (generated dataset contains only images), the file next to the archive like [here](https://huggingface.co/docs/datasets/image_dataset#imagefolder) leads to an error: ``` --------------------------------------------------------------------------- ValueError Traceback (most recent call last) File ~\PycharmProjects\testproj\venv\lib\site-packages\datasets\builder.py:1610, in GeneratorBasedBuilder._prepare_split_single(self, gen_kwargs, fpath, file_format, max_shard_size, split_info, check_duplicate_keys, job_id) 1609 _time = time.time() -> 1610 for key, record in generator: 1611 if max_shard_size is not None and writer._num_bytes > max_shard_size: File ~\PycharmProjects\testproj\venv\lib\site-packages\datasets\packaged_modules\folder_based_builder\folder_based_builder.py:370, in FolderBasedBuilder._generate_examples(self, files, metadata_files, split_name, add_metadata, add_labels) 369 else: --> 370 raise ValueError( 371 f"One or several metadata.{metadata_ext} were found, but not in the same directory or in a parent directory of {downloaded_dir_file}." 372 ) 373 if metadata_dir is not None and downloaded_metadata_file is not None: ValueError: One or several metadata.jsonl were found, but not in the same directory or in a parent directory of C:\Users\User\.cache\huggingface\datasets\downloads\extracted\f7fb7de25fb28ae63089974524f2d271a39d83888bc456d04aa3b3d45f33e6a6\ff0745a0-a741-4d9e-b228-a93b851adf61.png. The above exception was the direct cause of the following exception: DatasetGenerationError Traceback (most recent call last) Cell In[3], line 1 ----> 1 dataset = load_dataset("imagefolder", data_dir=r'C:\Users\User\data') File ~\PycharmProjects\testproj\venv\lib\site-packages\datasets\load.py:1791, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, num_proc, storage_options, **config_kwargs) 1788 try_from_hf_gcs = path not in _PACKAGED_DATASETS_MODULES 1790 # Download and prepare data -> 1791 builder_instance.download_and_prepare( 1792 download_config=download_config, 1793 download_mode=download_mode, 1794 verification_mode=verification_mode, 1795 try_from_hf_gcs=try_from_hf_gcs, 1796 num_proc=num_proc, 1797 storage_options=storage_options, 1798 ) 1800 # Build dataset for splits 1801 keep_in_memory = ( 1802 keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size) 1803 ) File ~\PycharmProjects\testproj\venv\lib\site-packages\datasets\builder.py:891, in DatasetBuilder.download_and_prepare(self, output_dir, download_config, download_mode, verification_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs) 889 if num_proc is not None: 890 prepare_split_kwargs["num_proc"] = num_proc --> 891 self._download_and_prepare( 892 dl_manager=dl_manager, 893 verification_mode=verification_mode, 894 **prepare_split_kwargs, 895 **download_and_prepare_kwargs, 896 ) 897 # Sync info 898 self.info.dataset_size = sum(split.num_bytes for split in self.info.splits.values()) File ~\PycharmProjects\testproj\venv\lib\site-packages\datasets\builder.py:1651, in GeneratorBasedBuilder._download_and_prepare(self, dl_manager, verification_mode, **prepare_splits_kwargs) 1650 def _download_and_prepare(self, dl_manager, verification_mode, **prepare_splits_kwargs): -> 1651 super()._download_and_prepare( 1652 dl_manager, 1653 verification_mode, 1654 check_duplicate_keys=verification_mode == VerificationMode.BASIC_CHECKS 1655 or verification_mode == VerificationMode.ALL_CHECKS, 1656 **prepare_splits_kwargs, 1657 ) File ~\PycharmProjects\testproj\venv\lib\site-packages\datasets\builder.py:986, in DatasetBuilder._download_and_prepare(self, dl_manager, verification_mode, **prepare_split_kwargs) 982 split_dict.add(split_generator.split_info) 984 try: 985 # Prepare split will record examples associated to the split --> 986 self._prepare_split(split_generator, **prepare_split_kwargs) 987 except OSError as e: 988 raise OSError( 989 "Cannot find data file. " 990 + (self.manual_download_instructions or "") 991 + "\nOriginal error:\n" 992 + str(e) 993 ) from None File ~\PycharmProjects\testproj\venv\lib\site-packages\datasets\builder.py:1490, in GeneratorBasedBuilder._prepare_split(self, split_generator, check_duplicate_keys, file_format, num_proc, max_shard_size) 1488 gen_kwargs = split_generator.gen_kwargs 1489 job_id = 0 -> 1490 for job_id, done, content in self._prepare_split_single( 1491 gen_kwargs=gen_kwargs, job_id=job_id, **_prepare_split_args 1492 ): 1493 if done: 1494 result = content File ~\PycharmProjects\testproj\venv\lib\site-packages\datasets\builder.py:1646, in GeneratorBasedBuilder._prepare_split_single(self, gen_kwargs, fpath, file_format, max_shard_size, split_info, check_duplicate_keys, job_id) 1644 if isinstance(e, SchemaInferenceError) and e.__context__ is not None: 1645 e = e.__context__ -> 1646 raise DatasetGenerationError("An error occurred while generating the dataset") from e 1648 yield job_id, True, (total_num_examples, total_num_bytes, writer._features, num_shards, shard_lengths) DatasetGenerationError: An error occurred while generating the dataset ``` ### Steps to reproduce the bug 1. Organize directory structure like in the docs: folder/metadata.jsonl folder/train.zip 2. Run load_dataset("imagefolder", data_dir='folder/metadata.jsonl', split='train') ### Expected behavior Dataset generated with all additional features from metadata.jsonl ### Environment info - `datasets` version: 2.11.0 - Platform: Windows-10-10.0.22621-SP0 - Python version: 3.9.0 - Huggingface_hub version: 0.13.4 - PyArrow version: 11.0.0 - Pandas version: 1.5.3
null
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/5761/reactions" }
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5760
5,760
Multi-image loading in Imagefolder dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/44398246?v=4", "events_url": "https://api.github.com/users/vvvm23/events{/privacy}", "followers_url": "https://api.github.com/users/vvvm23/followers", "following_url": "https://api.github.com/users/vvvm23/following{/other_user}", "gists_url": "https://api.github.com/users/vvvm23/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/vvvm23", "id": 44398246, "login": "vvvm23", "node_id": "MDQ6VXNlcjQ0Mzk4MjQ2", "organizations_url": "https://api.github.com/users/vvvm23/orgs", "received_events_url": "https://api.github.com/users/vvvm23/received_events", "repos_url": "https://api.github.com/users/vvvm23/repos", "site_admin": false, "starred_url": "https://api.github.com/users/vvvm23/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/vvvm23/subscriptions", "type": "User", "url": "https://api.github.com/users/vvvm23", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
[ "Supporting this could be useful (I remember a use-case for this on the Hub). Do you agree @polinaeterna? \r\n\r\nImplementing this should be possible if we iterate over metadata files and build image/audio file paths instead of iterating over image/audio files and looking for the corresponding entries in metadata files.", "I've build a similar feature from scratch and would be interested to combine it with the datasets package.\r\n\r\nMy solution works something like this:\r\nInterpret the first element of each column as a file path. If the path exists and is a file, (try to) load the files for the entire column. Thereby, one isn't restricted to a particular column name, with comes in handy when dealing with multiple file columns.\r\n\r\nI've looked into the code to try to implement this, but didn't find the right places. I'm also open to contribute, but will need some guidance.", "Required here: https://discuss.huggingface.co/t/dataset-repo-requires-arbitrary-python-code-execution/59346/14", "+1\r\n\r\nIs the only way to do this right now to write a custom dataset loader script?", "Also: be able to have input and output images for each row. Asked here: https://discuss.huggingface.co/t/how-to-structure-image-files-for-datasets-load-dataset-imagefolder-when-you-have-input-and-output-images-like-in-instruct-pix2pix/82467", "👀 I encountered the same problem. Is the only way to solve it by writing a custom dataset loader script?", "Yes I had to use script at the end\r\n\r\nSent from Outlook for iOS<https://aka.ms/o0ukef>\r\n________________________________\r\nFrom: Yunzhuo Hao ***@***.***>\r\nSent: Sunday, December 1, 2024 11:52:21 AM\r\nTo: huggingface/datasets ***@***.***>\r\nCc: Sushant Gautam ***@***.***>; Manual ***@***.***>\r\nSubject: Re: [huggingface/datasets] Multi-image loading in Imagefolder dataset (Issue #5760)\r\n\r\n\r\n👀 I encountered the same problem. Is the only way to solve it by writing a custom dataset loader script?\r\n\r\n—\r\nReply to this email directly, view it on GitHub<https://github.com/huggingface/datasets/issues/5760#issuecomment-2509684773>, or unsubscribe<https://github.com/notifications/unsubscribe-auth/AD7SQP5KY67NTZ7ELAGSIJ32DLS6LAVCNFSM6AAAAABSZRPAQOVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDKMBZGY4DINZXGM>.\r\nYou are receiving this because you are subscribed to this thread.Message ID: ***@***.***>\r\n", "@SushantGautam Thanks for your reply!! In addition, can the dataset shared by writing such a script be displayed in the Viewer? And if it is convenient, can you please show me your script? Thanks again!!", "Yes will be visible!\r\nThe script docs is at\r\nhttps://huggingface.co/docs/datasets/en/dataset_script\r\n\r\n\r\n\r\nSincerely,\r\n*Sushant Gautam*\r\n\r\n📧: ***@***.*** | ***@***.***\r\n🌐: sushant.info.np | simula.no/people/sushant\r\n<https://www.simula.no/people/sushant>\r\n[image: Simula Metropolitan Center for Digital Engineering]\r\n<https://www.simulamet.no/>\r\nStensberggata 27, 0170 Oslo\r\nFind me on:* LinkedIn <https://www.linkedin.com/in/eSushant> | Facebook\r\n<https://www.facebook.com/eSushant> | Twitter\r\n<https://twitter.com/esushant> *\r\n\r\n\r\nOn Sun, 1 Dec 2024 at 12:02, Yunzhuo Hao ***@***.***> wrote:\r\n\r\n> @SushantGautam <https://github.com/SushantGautam> Thanks for your reply!!\r\n> In addition, can the dataset shared by writing such a script be displayed\r\n> in the Viewer? And if it is convenient, can you please show me your script?\r\n> Thanks again!!\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/5760#issuecomment-2509692544>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/AD7SQP2XGIKBCSSSNW2S6K32DLUFDAVCNFSM6AAAAABSZRPAQOVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDKMBZGY4TENJUGQ>\r\n> .\r\n> You are receiving this because you were mentioned.Message ID:\r\n> ***@***.***>\r\n>\r\n", "I see. Thank you very very much!!!\r\n\r\nSushant Gautam ***@***.***>于2024年12月1日 周日18:54写道:\r\n\r\n> Yes I had to use script at the end\r\n>\r\n> Sent from Outlook for iOS<https://aka.ms/o0ukef>\r\n> ________________________________\r\n> From: Yunzhuo Hao ***@***.***>\r\n> Sent: Sunday, December 1, 2024 11:52:21 AM\r\n> To: huggingface/datasets ***@***.***>\r\n> Cc: Sushant Gautam ***@***.***>; Manual ***@***.***>\r\n> Subject: Re: [huggingface/datasets] Multi-image loading in Imagefolder\r\n> dataset (Issue #5760)\r\n>\r\n>\r\n> 👀 I encountered the same problem. Is the only way to solve it by writing\r\n> a custom dataset loader script?\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub<\r\n> https://github.com/huggingface/datasets/issues/5760#issuecomment-2509684773>,\r\n> or unsubscribe<\r\n> https://github.com/notifications/unsubscribe-auth/AD7SQP5KY67NTZ7ELAGSIJ32DLS6LAVCNFSM6AAAAABSZRPAQOVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDKMBZGY4DINZXGM>.\r\n>\r\n> You are receiving this because you are subscribed to this thread.Message\r\n> ID: ***@***.***>\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/5760#issuecomment-2509685427>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/AVYJNSJ6UQZ6G6VGSB5RGXD2DLTGFAVCNFSM6AAAAABSZRPAQOVHI2DSMVQWIX3LMV43OSLTON2WKQ3PNVWWK3TUHMZDKMBZGY4DKNBSG4>\r\n> .\r\n> You are receiving this because you commented.Message ID:\r\n> ***@***.***>\r\n>\r\n" ]
2023-04-16T16:01:05Z
2024-12-01T11:16:09Z
null
NONE
null
null
### Feature request Extend the `imagefolder` dataloading script to support loading multiple images per dataset entry. This only really makes sense if a metadata file is present. Currently you can use the following format (example `metadata.jsonl`: ``` {'file_name': 'path_to_image.png', 'metadata': ...} ... ``` which will return a batch with key `image` and any other metadata. I would propose extending `file_name` to also accept a list of files, which would return a batch with key `images` and any other metadata. ### Motivation This is useful for example in segmentation tasks in computer vision models, or in text-to-image models that also accept conditioning signals such as another image, feature map, or similar. Currently if I want to do this, I would need to write a custom dataset, rather than just use `imagefolder`. ### Your contribution Would be open to doing a PR, but also happy for someone else to take it as I am not familiar with the datasets library.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 1, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/5760/reactions" }
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5759
5,759
Can I load in list of list of dict format?
{ "avatar_url": "https://avatars.githubusercontent.com/u/72137647?v=4", "events_url": "https://api.github.com/users/LZY-the-boys/events{/privacy}", "followers_url": "https://api.github.com/users/LZY-the-boys/followers", "following_url": "https://api.github.com/users/LZY-the-boys/following{/other_user}", "gists_url": "https://api.github.com/users/LZY-the-boys/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/LZY-the-boys", "id": 72137647, "login": "LZY-the-boys", "node_id": "MDQ6VXNlcjcyMTM3NjQ3", "organizations_url": "https://api.github.com/users/LZY-the-boys/orgs", "received_events_url": "https://api.github.com/users/LZY-the-boys/received_events", "repos_url": "https://api.github.com/users/LZY-the-boys/repos", "site_admin": false, "starred_url": "https://api.github.com/users/LZY-the-boys/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/LZY-the-boys/subscriptions", "type": "User", "url": "https://api.github.com/users/LZY-the-boys", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
[ "Thanks for reporting, @LZY-the-boys.\r\n\r\nCould you please give more details about what is your intended dataset structure? What are the names of the columns and the value of each row?\r\n\r\nCurrently, the JSON-Lines format is supported:\r\n- Each line correspond to one row of the dataset\r\n- Each line is composed of one JSON object, where the names are the names of the columns, and the values are the values for the row-column pair." ]
2023-04-16T13:50:14Z
2023-04-19T12:04:36Z
null
NONE
null
null
### Feature request my jsonl dataset has following format: ``` [{'input':xxx, 'output':xxx},{'input:xxx,'output':xxx},...] [{'input':xxx, 'output':xxx},{'input:xxx,'output':xxx},...] ``` I try to use `datasets.load_dataset('json', data_files=path)` or `datasets.Dataset.from_json`, it raises ``` File "site-packages/datasets/arrow_dataset.py", line 1078, in from_json ).read() File "site-packages/datasets/io/json.py", line 59, in read self.builder.download_and_prepare( File "site-packages/datasets/builder.py", line 872, in download_and_prepare self._download_and_prepare( File "site-packages/datasets/builder.py", line 967, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "site-packages/datasets/builder.py", line 1749, in _prepare_split for job_id, done, content in self._prepare_split_single( File "site-packages/datasets/builder.py", line 1892, in _prepare_split_single raise DatasetGenerationError("An error occurred while generating the dataset") from e datasets.builder.DatasetGenerationError: An error occurred while generating the dataset ``` ### Motivation I wanna use features like `Datasets.map` or `Datasets.shuffle`, so i need the dataset in memory to be `arrow_dataset.Datasets` format ### Your contribution PR
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5759/reactions" }
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/pull/5758
5,758
Fixes #5757
{ "avatar_url": "https://avatars.githubusercontent.com/u/2437102?v=4", "events_url": "https://api.github.com/users/eli-osherovich/events{/privacy}", "followers_url": "https://api.github.com/users/eli-osherovich/followers", "following_url": "https://api.github.com/users/eli-osherovich/following{/other_user}", "gists_url": "https://api.github.com/users/eli-osherovich/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/eli-osherovich", "id": 2437102, "login": "eli-osherovich", "node_id": "MDQ6VXNlcjI0MzcxMDI=", "organizations_url": "https://api.github.com/users/eli-osherovich/orgs", "received_events_url": "https://api.github.com/users/eli-osherovich/received_events", "repos_url": "https://api.github.com/users/eli-osherovich/repos", "site_admin": false, "starred_url": "https://api.github.com/users/eli-osherovich/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/eli-osherovich/subscriptions", "type": "User", "url": "https://api.github.com/users/eli-osherovich", "user_view_type": "public" }
[]
closed
false
[ "The CI can be fixed by merging `main` into your branch. Can you do that before we merge ?", "_The documentation is not available anymore as the PR was closed or merged._", "Done.\n\nOn Thu, Apr 20, 2023 at 6:01 PM Quentin Lhoest ***@***.***>\nwrote:\n\n> The CI can be fixed by merging main into your branch. Can you do that\n> before we merge ?\n>\n> —\n> Reply to this email directly, view it on GitHub\n> <https://github.com/huggingface/datasets/pull/5758#issuecomment-1516488124>,\n> or unsubscribe\n> <https://github.com/notifications/unsubscribe-auth/AASS73QPLA735AMN4PFDYRTXCFFTJANCNFSM6AAAAAAXACBUQU>\n> .\n> You are receiving this because you authored the thread.Message ID:\n> ***@***.***>\n>\n", "Nice thanks !", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007161 / 0.011353 (-0.004192) | 0.005099 / 0.011008 (-0.005909) | 0.099301 / 0.038508 (0.060793) | 0.034144 / 0.023109 (0.011034) | 0.298273 / 0.275898 (0.022375) | 0.329009 / 0.323480 (0.005529) | 0.005486 / 0.007986 (-0.002500) | 0.003887 / 0.004328 (-0.000441) | 0.074769 / 0.004250 (0.070518) | 0.047505 / 0.037052 (0.010453) | 0.306550 / 0.258489 (0.048061) | 0.335380 / 0.293841 (0.041540) | 0.034796 / 0.128546 (-0.093750) | 0.012152 / 0.075646 (-0.063495) | 0.332194 / 0.419271 (-0.087077) | 0.049661 / 0.043533 (0.006128) | 0.296832 / 0.255139 (0.041693) | 0.316417 / 0.283200 (0.033218) | 0.098234 / 0.141683 (-0.043449) | 1.494114 / 1.452155 (0.041959) | 1.566468 / 1.492716 (0.073751) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.221309 / 0.018006 (0.203303) | 0.440855 / 0.000490 (0.440365) | 0.003025 / 0.000200 (0.002825) | 0.000076 / 0.000054 (0.000021) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026594 / 0.037411 (-0.010817) | 0.110406 / 0.014526 (0.095880) | 0.116117 / 0.176557 (-0.060439) | 0.173502 / 0.737135 (-0.563633) | 0.121988 / 0.296338 (-0.174351) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.403307 / 0.215209 (0.188098) | 4.034146 / 2.077655 (1.956492) | 1.852162 / 1.504120 (0.348042) | 1.675643 / 1.541195 (0.134448) | 1.748851 / 1.468490 (0.280360) | 0.703458 / 4.584777 (-3.881319) | 3.809055 / 3.745712 (0.063343) | 2.118060 / 5.269862 (-3.151801) | 1.338394 / 4.565676 (-3.227282) | 0.086319 / 0.424275 (-0.337956) | 0.012195 / 0.007607 (0.004588) | 0.520814 / 0.226044 (0.294769) | 5.201074 / 2.268929 (2.932145) | 2.418384 / 55.444624 (-53.026240) | 2.085496 / 6.876477 (-4.790980) | 2.245638 / 2.142072 (0.103565) | 0.849042 / 4.805227 (-3.956185) | 0.171912 / 6.500664 (-6.328752) | 0.065691 / 0.075469 (-0.009778) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.159985 / 1.841788 (-0.681803) | 14.910867 / 8.074308 (6.836559) | 14.473926 / 10.191392 (4.282534) | 0.181532 / 0.680424 (-0.498891) | 0.017203 / 0.534201 (-0.516998) | 0.420805 / 0.579283 (-0.158479) | 0.426455 / 0.434364 (-0.007909) | 0.497086 / 0.540337 (-0.043251) | 0.593909 / 1.386936 (-0.793027) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007688 / 0.011353 (-0.003665) | 0.005353 / 0.011008 (-0.005656) | 0.076869 / 0.038508 (0.038361) | 0.035030 / 0.023109 (0.011921) | 0.344649 / 0.275898 (0.068751) | 0.387669 / 0.323480 (0.064190) | 0.005913 / 0.007986 (-0.002072) | 0.004107 / 0.004328 (-0.000221) | 0.074111 / 0.004250 (0.069860) | 0.049351 / 0.037052 (0.012299) | 0.346061 / 0.258489 (0.087572) | 0.395499 / 0.293841 (0.101658) | 0.035549 / 0.128546 (-0.092997) | 0.012340 / 0.075646 (-0.063307) | 0.087031 / 0.419271 (-0.332241) | 0.049088 / 0.043533 (0.005556) | 0.342774 / 0.255139 (0.087635) | 0.362037 / 0.283200 (0.078837) | 0.100329 / 0.141683 (-0.041354) | 1.442349 / 1.452155 (-0.009806) | 1.551079 / 1.492716 (0.058363) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.228458 / 0.018006 (0.210452) | 0.446190 / 0.000490 (0.445701) | 0.000413 / 0.000200 (0.000213) | 0.000056 / 0.000054 (0.000001) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029884 / 0.037411 (-0.007527) | 0.117527 / 0.014526 (0.103002) | 0.123221 / 0.176557 (-0.053335) | 0.172290 / 0.737135 (-0.564845) | 0.128682 / 0.296338 (-0.167657) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420905 / 0.215209 (0.205696) | 4.199342 / 2.077655 (2.121687) | 2.007327 / 1.504120 (0.503207) | 1.814732 / 1.541195 (0.273537) | 1.893999 / 1.468490 (0.425509) | 0.712259 / 4.584777 (-3.872518) | 3.843402 / 3.745712 (0.097690) | 3.198514 / 5.269862 (-2.071348) | 1.678732 / 4.565676 (-2.886945) | 0.086435 / 0.424275 (-0.337840) | 0.012233 / 0.007607 (0.004626) | 0.526121 / 0.226044 (0.300077) | 5.190578 / 2.268929 (2.921650) | 2.473259 / 55.444624 (-52.971366) | 2.142795 / 6.876477 (-4.733682) | 2.277594 / 2.142072 (0.135521) | 0.846117 / 4.805227 (-3.959110) | 0.169458 / 6.500664 (-6.331206) | 0.065017 / 0.075469 (-0.010452) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.272479 / 1.841788 (-0.569309) | 15.086473 / 8.074308 (7.012165) | 14.659728 / 10.191392 (4.468336) | 0.163915 / 0.680424 (-0.516509) | 0.017561 / 0.534201 (-0.516640) | 0.422074 / 0.579283 (-0.157209) | 0.421963 / 0.434364 (-0.012401) | 0.490321 / 0.540337 (-0.050016) | 0.586854 / 1.386936 (-0.800083) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e7ce0ac60c7efc10886471932854903a7c19f172 \"CML watermark\")\n" ]
2023-04-16T11:56:01Z
2023-04-20T15:37:49Z
2023-04-20T15:30:48Z
CONTRIBUTOR
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5758.diff", "html_url": "https://github.com/huggingface/datasets/pull/5758", "merged_at": "2023-04-20T15:30:48Z", "patch_url": "https://github.com/huggingface/datasets/pull/5758.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5758" }
Fixes the bug #5757
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5758/reactions" }
null
null
null
true
https://github.com/huggingface/datasets/issues/5757
5,757
Tilde (~) is not supported
{ "avatar_url": "https://avatars.githubusercontent.com/u/2437102?v=4", "events_url": "https://api.github.com/users/eli-osherovich/events{/privacy}", "followers_url": "https://api.github.com/users/eli-osherovich/followers", "following_url": "https://api.github.com/users/eli-osherovich/following{/other_user}", "gists_url": "https://api.github.com/users/eli-osherovich/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/eli-osherovich", "id": 2437102, "login": "eli-osherovich", "node_id": "MDQ6VXNlcjI0MzcxMDI=", "organizations_url": "https://api.github.com/users/eli-osherovich/orgs", "received_events_url": "https://api.github.com/users/eli-osherovich/received_events", "repos_url": "https://api.github.com/users/eli-osherovich/repos", "site_admin": false, "starred_url": "https://api.github.com/users/eli-osherovich/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/eli-osherovich/subscriptions", "type": "User", "url": "https://api.github.com/users/eli-osherovich", "user_view_type": "public" }
[]
closed
false
[]
2023-04-16T11:48:10Z
2023-04-20T15:30:51Z
2023-04-20T15:30:51Z
CONTRIBUTOR
null
null
### Describe the bug It seems that `~` is not recognized correctly in local paths. Whenever I try to use it I get an exception ### Steps to reproduce the bug ```python load_dataset("imagefolder", data_dir="~/data/my_dataset") ``` Will generate the following error: ``` EmptyDatasetError: The directory at /path/to/cwd/~/data/datasets/clementine_tagged_per_cam doesn't contain any data files ``` ### Expected behavior Load the dataset. ### Environment info datasets==2.11.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5757/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5756
5,756
Calling shuffle on a IterableDataset with streaming=True, gives "ValueError: cannot reshape array"
{ "avatar_url": "https://avatars.githubusercontent.com/u/21077341?v=4", "events_url": "https://api.github.com/users/rohfle/events{/privacy}", "followers_url": "https://api.github.com/users/rohfle/followers", "following_url": "https://api.github.com/users/rohfle/following{/other_user}", "gists_url": "https://api.github.com/users/rohfle/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/rohfle", "id": 21077341, "login": "rohfle", "node_id": "MDQ6VXNlcjIxMDc3MzQx", "organizations_url": "https://api.github.com/users/rohfle/orgs", "received_events_url": "https://api.github.com/users/rohfle/received_events", "repos_url": "https://api.github.com/users/rohfle/repos", "site_admin": false, "starred_url": "https://api.github.com/users/rohfle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rohfle/subscriptions", "type": "User", "url": "https://api.github.com/users/rohfle", "user_view_type": "public" }
[]
closed
false
[ "Hi! I've merged a PR on the Hub with a fix: https://huggingface.co/datasets/fashion_mnist/discussions/3", "Thanks, this appears to have fixed the issue.\r\n\r\nI've created a PR for the same change in the mnist dataset: https://huggingface.co/datasets/mnist/discussions/3/files" ]
2023-04-16T04:59:47Z
2023-04-18T03:40:56Z
2023-04-18T03:40:56Z
NONE
null
null
### Describe the bug When calling shuffle on a IterableDataset with streaming=True, I get the following error: ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/administrator/Documents/Projects/huggingface/jax-diffusers-sprint-consistency-models/virtualenv/lib/python3.10/site-packages/datasets/iterable_dataset.py", line 937, in __iter__ for key, example in ex_iterable: File "/home/administrator/Documents/Projects/huggingface/jax-diffusers-sprint-consistency-models/virtualenv/lib/python3.10/site-packages/datasets/iterable_dataset.py", line 627, in __iter__ for x in self.ex_iterable: File "/home/administrator/Documents/Projects/huggingface/jax-diffusers-sprint-consistency-models/virtualenv/lib/python3.10/site-packages/datasets/iterable_dataset.py", line 138, in __iter__ yield from self.generate_examples_fn(**kwargs_with_shuffled_shards) File "/home/administrator/.cache/huggingface/modules/datasets_modules/datasets/mnist/fda16c03c4ecfb13f165ba7e29cf38129ce035011519968cdaf74894ce91c9d4/mnist.py", line 111, in _generate_examples images = np.frombuffer(f.read(), dtype=np.uint8).reshape(size, 28, 28) ValueError: cannot reshape array of size 59992 into shape (60000,28,28) ``` Tested with the fashion_mnist and mnist datasets ### Steps to reproduce the bug Code to reproduce ```python from datasets import load_dataset SHUFFLE_SEED = 42 SHUFFLE_BUFFER_SIZE = 10_000 dataset = load_dataset('fashion_mnist', streaming=True).shuffle(seed=SHUFFLE_SEED, buffer_size=SHUFFLE_BUFFER_SIZE) next(iter(dataset['train'])) ``` ### Expected behavior A random item from the dataset and no error ### Environment info - `datasets` version: 2.11.0 - Platform: Linux-5.15.0-69-generic-x86_64-with-glibc2.35 - Python version: 3.10.6 - Huggingface_hub version: 0.13.4 - PyArrow version: 11.0.0 - Pandas version: 2.0.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/21077341?v=4", "events_url": "https://api.github.com/users/rohfle/events{/privacy}", "followers_url": "https://api.github.com/users/rohfle/followers", "following_url": "https://api.github.com/users/rohfle/following{/other_user}", "gists_url": "https://api.github.com/users/rohfle/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/rohfle", "id": 21077341, "login": "rohfle", "node_id": "MDQ6VXNlcjIxMDc3MzQx", "organizations_url": "https://api.github.com/users/rohfle/orgs", "received_events_url": "https://api.github.com/users/rohfle/received_events", "repos_url": "https://api.github.com/users/rohfle/repos", "site_admin": false, "starred_url": "https://api.github.com/users/rohfle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rohfle/subscriptions", "type": "User", "url": "https://api.github.com/users/rohfle", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5756/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5755
5,755
ImportError: cannot import name 'DeprecatedEnum' from 'datasets.utils.deprecation_utils'
{ "avatar_url": "https://avatars.githubusercontent.com/u/1405491?v=4", "events_url": "https://api.github.com/users/fivejjs/events{/privacy}", "followers_url": "https://api.github.com/users/fivejjs/followers", "following_url": "https://api.github.com/users/fivejjs/following{/other_user}", "gists_url": "https://api.github.com/users/fivejjs/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/fivejjs", "id": 1405491, "login": "fivejjs", "node_id": "MDQ6VXNlcjE0MDU0OTE=", "organizations_url": "https://api.github.com/users/fivejjs/orgs", "received_events_url": "https://api.github.com/users/fivejjs/received_events", "repos_url": "https://api.github.com/users/fivejjs/repos", "site_admin": false, "starred_url": "https://api.github.com/users/fivejjs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/fivejjs/subscriptions", "type": "User", "url": "https://api.github.com/users/fivejjs", "user_view_type": "public" }
[]
closed
false
[ "update the version. fix" ]
2023-04-14T23:28:54Z
2023-04-14T23:36:19Z
2023-04-14T23:36:19Z
NONE
null
null
### Describe the bug The module moved to new place? ### Steps to reproduce the bug in the import step, ```python from datasets.utils.deprecation_utils import DeprecatedEnum ``` error: ``` ImportError: cannot import name 'DeprecatedEnum' from 'datasets.utils.deprecation_utils' ``` ### Expected behavior import successfully ### Environment info python==3.9.16 datasets==1.18.3
{ "avatar_url": "https://avatars.githubusercontent.com/u/1405491?v=4", "events_url": "https://api.github.com/users/fivejjs/events{/privacy}", "followers_url": "https://api.github.com/users/fivejjs/followers", "following_url": "https://api.github.com/users/fivejjs/following{/other_user}", "gists_url": "https://api.github.com/users/fivejjs/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/fivejjs", "id": 1405491, "login": "fivejjs", "node_id": "MDQ6VXNlcjE0MDU0OTE=", "organizations_url": "https://api.github.com/users/fivejjs/orgs", "received_events_url": "https://api.github.com/users/fivejjs/received_events", "repos_url": "https://api.github.com/users/fivejjs/repos", "site_admin": false, "starred_url": "https://api.github.com/users/fivejjs/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/fivejjs/subscriptions", "type": "User", "url": "https://api.github.com/users/fivejjs", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5755/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/pull/5754
5,754
Minor tqdm fixes
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
[]
closed
false
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006479 / 0.011353 (-0.004874) | 0.004592 / 0.011008 (-0.006416) | 0.097239 / 0.038508 (0.058731) | 0.028609 / 0.023109 (0.005499) | 0.309225 / 0.275898 (0.033327) | 0.340015 / 0.323480 (0.016535) | 0.004857 / 0.007986 (-0.003129) | 0.004649 / 0.004328 (0.000320) | 0.074770 / 0.004250 (0.070520) | 0.038351 / 0.037052 (0.001299) | 0.313360 / 0.258489 (0.054871) | 0.350256 / 0.293841 (0.056416) | 0.030770 / 0.128546 (-0.097776) | 0.011591 / 0.075646 (-0.064055) | 0.322444 / 0.419271 (-0.096828) | 0.043704 / 0.043533 (0.000171) | 0.311790 / 0.255139 (0.056651) | 0.339183 / 0.283200 (0.055984) | 0.088041 / 0.141683 (-0.053642) | 1.490649 / 1.452155 (0.038494) | 1.561789 / 1.492716 (0.069072) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.208984 / 0.018006 (0.190978) | 0.406105 / 0.000490 (0.405616) | 0.003152 / 0.000200 (0.002952) | 0.000074 / 0.000054 (0.000019) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022622 / 0.037411 (-0.014790) | 0.095819 / 0.014526 (0.081294) | 0.105132 / 0.176557 (-0.071424) | 0.165684 / 0.737135 (-0.571451) | 0.106706 / 0.296338 (-0.189632) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.426126 / 0.215209 (0.210917) | 4.233864 / 2.077655 (2.156209) | 1.918727 / 1.504120 (0.414607) | 1.729905 / 1.541195 (0.188710) | 1.760342 / 1.468490 (0.291852) | 0.695449 / 4.584777 (-3.889328) | 3.413531 / 3.745712 (-0.332181) | 1.904557 / 5.269862 (-3.365305) | 1.270604 / 4.565676 (-3.295072) | 0.083018 / 0.424275 (-0.341257) | 0.012760 / 0.007607 (0.005152) | 0.523991 / 0.226044 (0.297947) | 5.236132 / 2.268929 (2.967204) | 2.360959 / 55.444624 (-53.083665) | 1.996533 / 6.876477 (-4.879943) | 2.072934 / 2.142072 (-0.069138) | 0.804133 / 4.805227 (-4.001094) | 0.150976 / 6.500664 (-6.349688) | 0.065503 / 0.075469 (-0.009966) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.211828 / 1.841788 (-0.629960) | 13.657743 / 8.074308 (5.583435) | 13.887148 / 10.191392 (3.695756) | 0.145996 / 0.680424 (-0.534428) | 0.016562 / 0.534201 (-0.517639) | 0.380359 / 0.579283 (-0.198924) | 0.388698 / 0.434364 (-0.045666) | 0.440373 / 0.540337 (-0.099965) | 0.531753 / 1.386936 (-0.855183) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006444 / 0.011353 (-0.004909) | 0.004569 / 0.011008 (-0.006439) | 0.076239 / 0.038508 (0.037731) | 0.028462 / 0.023109 (0.005352) | 0.365540 / 0.275898 (0.089642) | 0.398242 / 0.323480 (0.074762) | 0.005785 / 0.007986 (-0.002200) | 0.003346 / 0.004328 (-0.000982) | 0.076296 / 0.004250 (0.072046) | 0.039853 / 0.037052 (0.002800) | 0.367684 / 0.258489 (0.109195) | 0.409570 / 0.293841 (0.115730) | 0.030536 / 0.128546 (-0.098010) | 0.011534 / 0.075646 (-0.064112) | 0.084962 / 0.419271 (-0.334309) | 0.042708 / 0.043533 (-0.000825) | 0.344058 / 0.255139 (0.088919) | 0.389096 / 0.283200 (0.105897) | 0.090559 / 0.141683 (-0.051124) | 1.507101 / 1.452155 (0.054946) | 1.563977 / 1.492716 (0.071260) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.228740 / 0.018006 (0.210734) | 0.396890 / 0.000490 (0.396400) | 0.000392 / 0.000200 (0.000192) | 0.000060 / 0.000054 (0.000006) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025052 / 0.037411 (-0.012360) | 0.099951 / 0.014526 (0.085426) | 0.106847 / 0.176557 (-0.069710) | 0.156666 / 0.737135 (-0.580469) | 0.110344 / 0.296338 (-0.185994) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.442363 / 0.215209 (0.227154) | 4.429571 / 2.077655 (2.351917) | 2.076501 / 1.504120 (0.572381) | 1.875226 / 1.541195 (0.334031) | 1.909093 / 1.468490 (0.440603) | 0.703047 / 4.584777 (-3.881730) | 3.457036 / 3.745712 (-0.288676) | 2.866648 / 5.269862 (-2.403214) | 1.524430 / 4.565676 (-3.041246) | 0.083687 / 0.424275 (-0.340588) | 0.012251 / 0.007607 (0.004643) | 0.543945 / 0.226044 (0.317901) | 5.440559 / 2.268929 (3.171630) | 2.522924 / 55.444624 (-52.921700) | 2.188770 / 6.876477 (-4.687707) | 2.249632 / 2.142072 (0.107559) | 0.813499 / 4.805227 (-3.991728) | 0.152861 / 6.500664 (-6.347803) | 0.067189 / 0.075469 (-0.008280) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.284255 / 1.841788 (-0.557533) | 14.207864 / 8.074308 (6.133556) | 14.279691 / 10.191392 (4.088299) | 0.167027 / 0.680424 (-0.513396) | 0.016455 / 0.534201 (-0.517746) | 0.380798 / 0.579283 (-0.198485) | 0.390013 / 0.434364 (-0.044351) | 0.445493 / 0.540337 (-0.094845) | 0.526278 / 1.386936 (-0.860658) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3fdb46c526b9d070df0eb2d56b0ecacdace7cb9a \"CML watermark\")\n" ]
2023-04-14T18:15:14Z
2023-04-20T15:27:58Z
2023-04-20T15:21:00Z
COLLABORATOR
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5754.diff", "html_url": "https://github.com/huggingface/datasets/pull/5754", "merged_at": "2023-04-20T15:21:00Z", "patch_url": "https://github.com/huggingface/datasets/pull/5754.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5754" }
`GeneratorBasedBuilder`'s TQDM bars were not used as context managers. This PR fixes that (missed these bars in https://github.com/huggingface/datasets/pull/5560). Also, this PR modifies the single-proc `save_to_disk` to fix the issue with the TQDM bar not accumulating the progress in the multi-shard setting (again, this bug was introduced by me in the linked PR 😎)
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5754/reactions" }
null
null
null
true
https://github.com/huggingface/datasets/issues/5753
5,753
[IterableDatasets] Add column followed by interleave datasets gives bogus outputs
{ "avatar_url": "https://avatars.githubusercontent.com/u/93869735?v=4", "events_url": "https://api.github.com/users/sanchit-gandhi/events{/privacy}", "followers_url": "https://api.github.com/users/sanchit-gandhi/followers", "following_url": "https://api.github.com/users/sanchit-gandhi/following{/other_user}", "gists_url": "https://api.github.com/users/sanchit-gandhi/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sanchit-gandhi", "id": 93869735, "login": "sanchit-gandhi", "node_id": "U_kgDOBZhWpw", "organizations_url": "https://api.github.com/users/sanchit-gandhi/orgs", "received_events_url": "https://api.github.com/users/sanchit-gandhi/received_events", "repos_url": "https://api.github.com/users/sanchit-gandhi/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sanchit-gandhi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sanchit-gandhi/subscriptions", "type": "User", "url": "https://api.github.com/users/sanchit-gandhi", "user_view_type": "public" }
[]
closed
false
[ "Problem with the code snippet! Using global vars and functions was not a good idea with iterable datasets!\r\n\r\nIf we update to:\r\n```python\r\nfrom datasets import load_dataset\r\n\r\noriginal_dataset = load_dataset(\"librispeech_asr\", \"clean\", split=\"validation\", streaming=True)\r\n\r\n# now add a new column to our streaming dataset using our hack\r\nname = \"new_column\"\r\ncolumn_1 = [f\"new dataset 1, row {i}\" for i in range(50)]\r\n\r\nnew_features = original_dataset.features.copy()\r\nnew_features[name] = new_features[\"file\"] # I know that \"file\" has the right column type to match our new feature\r\n\r\ndef add_column_fn_1(example, idx):\r\n if name in example:\r\n raise ValueError(f\"Error when adding {name}: column {name} is already in the dataset.\")\r\n return {name: column_1[idx]}\r\n\r\nmodified_dataset_1 = original_dataset.map(add_column_fn_1, with_indices=True, features=new_features)\r\n\r\n# now create a second modified dataset using the same trick\r\ncolumn_2 = [f\"new dataset 2, row {i}\" for i in range(50)]\r\n\r\ndef add_column_fn_2(example, idx):\r\n if name in example:\r\n raise ValueError(f\"Error when adding {name}: column {name} is already in the dataset.\")\r\n return {name: column_2[idx]}\r\n\r\nmodified_dataset_2 = original_dataset.map(add_column_fn_2, with_indices=True, features=new_features)\r\n\r\ninterleaved_dataset = interleave_datasets([modified_dataset_1, modified_dataset_2])\r\n\r\nfor i, sample in enumerate(interleaved_dataset):\r\n print(sample[\"new_column\"])\r\n if i == 10:\r\n break\r\n```\r\nwe get the correct outputs:\r\n```python\r\nnew dataset 1, row 0\r\nnew dataset 2, row 0\r\nnew dataset 1, row 1\r\nnew dataset 2, row 1\r\nnew dataset 1, row 2\r\nnew dataset 2, row 2\r\nnew dataset 1, row 3\r\nnew dataset 2, row 3\r\nnew dataset 1, row 4\r\nnew dataset 2, row 4\r\nnew dataset 1, row 5\r\n```\r\n", "Thanks @sanchit-gandhi, this solo performance is very helpful! :)" ]
2023-04-14T17:32:31Z
2025-07-04T05:22:53Z
2023-04-14T17:36:37Z
CONTRIBUTOR
null
null
### Describe the bug If we add a new column to our iterable dataset using the hack described in #5752, when we then interleave datasets the new column is pinned to one value. ### Steps to reproduce the bug What we're going to do here is: 1. Load an iterable dataset in streaming mode (`original_dataset`) 2. Add a new column to this dataset using the hack in #5752 (`modified_dataset_1`) 3. Create another new dataset by adding a column with the same key but different values (`modified_dataset_2`) 4. Interleave our new datasets (`modified_dataset_1` + `modified_dataset_2`) 5. Check the value of our newly added column (`new_column`) ```python from datasets import load_dataset # load an iterable dataset original_dataset = load_dataset("librispeech_asr", "clean", split="validation", streaming=True) # now add a new column to our streaming dataset using our hack from 5752 name = "new_column" column = [f"new dataset 1, row {i}" for i in range(50)] new_features = original_dataset.features.copy() new_features[name] = new_features["file"] # I know that "file" has the right column type to match our new feature def add_column_fn(example, idx): if name in example: raise ValueError(f"Error when adding {name}: column {name} is already in the dataset.") return {name: column[idx]} modified_dataset_1 = original_dataset.map(add_column_fn, with_indices=True, features=new_features) # now create a second modified dataset using the same trick column = [f"new dataset 2, row {i}" for i in range(50)] def add_column_fn(example, idx): if name in example: raise ValueError(f"Error when adding {name}: column {name} is already in the dataset.") return {name: column[idx]} modified_dataset_2 = original_dataset.map(add_column_fn, with_indices=True, features=new_features) # interleave these datasets interleaved_dataset = interleave_datasets([modified_dataset_1, modified_dataset_2]) # now check what the value of the added column is for i, sample in enumerate(interleaved_dataset): print(sample["new_column"]) if i == 10: break ``` **Print Output:** ``` new dataset 2, row 0 new dataset 2, row 0 new dataset 2, row 1 new dataset 2, row 1 new dataset 2, row 2 new dataset 2, row 2 new dataset 2, row 3 new dataset 2, row 3 new dataset 2, row 4 new dataset 2, row 4 new dataset 2, row 5 ``` We see that we only get outputs from our second dataset. ### Expected behavior We should interleave between dataset 1 and 2 and increase in row value: ``` new dataset 1, row 0 new dataset 2, row 0 new dataset 1, row 1 new dataset 2, row 1 new dataset 1, row 2 new dataset 2, row 2 ... ``` ### Environment info - datasets version: 2.10.2.dev0 - Platform: Linux-4.19.0-23-cloud-amd64-x86_64-with-glibc2.28 - Python version: 3.9.16 - Huggingface_hub version: 0.13.3 - PyArrow version: 10.0.1 - Pandas version: 1.5.2
{ "avatar_url": "https://avatars.githubusercontent.com/u/93869735?v=4", "events_url": "https://api.github.com/users/sanchit-gandhi/events{/privacy}", "followers_url": "https://api.github.com/users/sanchit-gandhi/followers", "following_url": "https://api.github.com/users/sanchit-gandhi/following{/other_user}", "gists_url": "https://api.github.com/users/sanchit-gandhi/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sanchit-gandhi", "id": 93869735, "login": "sanchit-gandhi", "node_id": "U_kgDOBZhWpw", "organizations_url": "https://api.github.com/users/sanchit-gandhi/orgs", "received_events_url": "https://api.github.com/users/sanchit-gandhi/received_events", "repos_url": "https://api.github.com/users/sanchit-gandhi/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sanchit-gandhi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sanchit-gandhi/subscriptions", "type": "User", "url": "https://api.github.com/users/sanchit-gandhi", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5753/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5752
5,752
Streaming dataset looses `.feature` method after `.add_column`
{ "avatar_url": "https://avatars.githubusercontent.com/u/93869735?v=4", "events_url": "https://api.github.com/users/sanchit-gandhi/events{/privacy}", "followers_url": "https://api.github.com/users/sanchit-gandhi/followers", "following_url": "https://api.github.com/users/sanchit-gandhi/following{/other_user}", "gists_url": "https://api.github.com/users/sanchit-gandhi/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/sanchit-gandhi", "id": 93869735, "login": "sanchit-gandhi", "node_id": "U_kgDOBZhWpw", "organizations_url": "https://api.github.com/users/sanchit-gandhi/orgs", "received_events_url": "https://api.github.com/users/sanchit-gandhi/received_events", "repos_url": "https://api.github.com/users/sanchit-gandhi/repos", "site_admin": false, "starred_url": "https://api.github.com/users/sanchit-gandhi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/sanchit-gandhi/subscriptions", "type": "User", "url": "https://api.github.com/users/sanchit-gandhi", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
open
false
[ "I believe the issue resides in this line:\r\nhttps://github.com/huggingface/datasets/blob/7c3a9b057c476c40d157bd7a5d57f49066239df0/src/datasets/iterable_dataset.py#L1415\r\n\r\nIf we pass the **new** features of the dataset to the `.map` method we can return the features after adding a column, e.g.:\r\n```python\r\nfrom datasets import load_dataset, Value\r\n\r\noriginal_dataset = load_dataset(\"librispeech_asr\", \"clean\", split=\"validation\", streaming=True)\r\nprint(original_dataset.features.keys())\r\n\r\n# now add a new column to our streaming dataset using our hack\r\nname = \"new_column\"\r\ncolumn = [\"some random text\" for _ in range(50)]\r\n\r\nnew_features = original_dataset.features.copy()\r\nnew_features[name] = Value(dtype=\"string\", id=None) # I know the correct column type for this feature\r\n\r\ndef add_column_fn(example, idx):\r\n if name in example:\r\n raise ValueError(f\"Error when adding {name}: column {name} is already in the dataset.\")\r\n return {name: column[idx]}\r\n\r\nmodified_dataset = original_dataset.map(add_column_fn, with_indices=True, features=new_features)\r\n\r\nprint(modified_dataset.features.keys())\r\n```\r\n**Print Output:**\r\n```\r\ndict_keys(['file', 'audio', 'text', 'speaker_id', 'chapter_id', 'id'])\r\ndict_keys(['file', 'audio', 'text', 'speaker_id', 'chapter_id', 'id', 'new_column'])\r\n```\r\n", "It seems that map will also cause this issue\r\n\r\n### Steps to reproduce the bug\r\n```python\r\nfrom datasets import load_dataset\r\n\r\noriginal_dataset = load_dataset(\"librispeech_asr\", \"clean\", split=\"validation\", streaming=True)\r\nprint(original_dataset.features.keys())\r\n\r\ndef test(data):\r\n return data\r\n\r\nmodified_dataset = original_dataset.map(test)\r\nprint(modified_dataset.features.keys())\r\n```\r\n\r\n### Output\r\n```\r\ndict_keys(['file', 'audio', 'text', 'speaker_id', 'chapter_id', 'id'])\r\n---------------------------------------------------------------------------\r\nAttributeError Traceback (most recent call last)\r\nCell In[5], line 10\r\n 7 return data\r\n 9 modified_dataset = original_dataset.map(test)\r\n---> 10 print(modified_dataset.features.keys())\r\n\r\nAttributeError: 'NoneType' object has no attribute 'keys'\r\n```" ]
2023-04-14T16:39:50Z
2024-01-18T10:15:20Z
null
CONTRIBUTOR
null
null
### Describe the bug After appending a new column to a streaming dataset using `.add_column`, we can no longer access the list of dataset features using the `.feature` method. ### Steps to reproduce the bug ```python from datasets import load_dataset original_dataset = load_dataset("librispeech_asr", "clean", split="validation", streaming=True) print(original_dataset.features.keys()) # now add a new column to our streaming dataset modified_dataset = original_dataset.add_column("new_column", ["some random text" for _ in range(50)]) print(modified_dataset.features.keys()) ``` **Print Output:** ``` dict_keys(['file', 'audio', 'text', 'speaker_id', 'chapter_id', 'id']) --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) Cell In[1], line 8 6 # now add a new column to our streaming dataset 7 modified_dataset = original_dataset.add_column("new_column", ["some random text" for _ in range(50)]) ----> 8 print(modified_dataset.features.keys()) AttributeError: 'NoneType' object has no attribute 'keys' ``` We see that we get the features for the original dataset, but not the modified one with the added column. ### Expected behavior Features should be persevered after adding a new column, i.e. calling: ```python print(modified_dataset.features.keys()) ``` Should return: ``` dict_keys(['file', 'audio', 'text', 'speaker_id', 'chapter_id', 'id', 'new_column']) ``` ### Environment info - `datasets` version: 2.10.2.dev0 - Platform: Linux-4.19.0-23-cloud-amd64-x86_64-with-glibc2.28 - Python version: 3.9.16 - Huggingface_hub version: 0.13.3 - PyArrow version: 10.0.1 - Pandas version: 1.5.2
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5752/reactions" }
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/pull/5751
5,751
Consistent ArrayXD Python formatting + better NumPy/Pandas formatting
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
[]
closed
false
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010459 / 0.011353 (-0.000894) | 0.007009 / 0.011008 (-0.003999) | 0.153885 / 0.038508 (0.115377) | 0.037308 / 0.023109 (0.014199) | 0.431931 / 0.275898 (0.156033) | 0.452940 / 0.323480 (0.129461) | 0.008572 / 0.007986 (0.000586) | 0.007479 / 0.004328 (0.003150) | 0.093835 / 0.004250 (0.089584) | 0.050172 / 0.037052 (0.013120) | 0.428855 / 0.258489 (0.170366) | 0.517814 / 0.293841 (0.223974) | 0.058558 / 0.128546 (-0.069988) | 0.019550 / 0.075646 (-0.056096) | 0.449837 / 0.419271 (0.030566) | 0.069710 / 0.043533 (0.026177) | 0.444163 / 0.255139 (0.189024) | 0.469003 / 0.283200 (0.185803) | 0.114665 / 0.141683 (-0.027018) | 1.822415 / 1.452155 (0.370261) | 1.956360 / 1.492716 (0.463644) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.237489 / 0.018006 (0.219483) | 0.556947 / 0.000490 (0.556457) | 0.006988 / 0.000200 (0.006789) | 0.000499 / 0.000054 (0.000444) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.037047 / 0.037411 (-0.000364) | 0.133973 / 0.014526 (0.119447) | 0.137072 / 0.176557 (-0.039485) | 0.201520 / 0.737135 (-0.535615) | 0.144177 / 0.296338 (-0.152161) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.694853 / 0.215209 (0.479644) | 6.805746 / 2.077655 (4.728091) | 2.717864 / 1.504120 (1.213744) | 2.360529 / 1.541195 (0.819335) | 2.384403 / 1.468490 (0.915913) | 1.337512 / 4.584777 (-3.247265) | 5.734090 / 3.745712 (1.988378) | 5.344909 / 5.269862 (0.075047) | 2.906218 / 4.565676 (-1.659458) | 0.160148 / 0.424275 (-0.264127) | 0.015159 / 0.007607 (0.007551) | 0.871356 / 0.226044 (0.645312) | 8.550965 / 2.268929 (6.282037) | 3.613522 / 55.444624 (-51.831103) | 2.868508 / 6.876477 (-4.007969) | 2.912263 / 2.142072 (0.770190) | 1.652548 / 4.805227 (-3.152680) | 0.274117 / 6.500664 (-6.226547) | 0.085911 / 0.075469 (0.010442) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.624798 / 1.841788 (-0.216989) | 18.413303 / 8.074308 (10.338995) | 21.742854 / 10.191392 (11.551462) | 0.255937 / 0.680424 (-0.424487) | 0.029492 / 0.534201 (-0.504709) | 0.541932 / 0.579283 (-0.037351) | 0.638594 / 0.434364 (0.204230) | 0.607427 / 0.540337 (0.067090) | 0.763046 / 1.386936 (-0.623890) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.020543 / 0.011353 (0.009190) | 0.006079 / 0.011008 (-0.004929) | 0.100558 / 0.038508 (0.062050) | 0.039474 / 0.023109 (0.016365) | 0.468889 / 0.275898 (0.192991) | 0.477731 / 0.323480 (0.154251) | 0.006999 / 0.007986 (-0.000987) | 0.005845 / 0.004328 (0.001516) | 0.110022 / 0.004250 (0.105772) | 0.056885 / 0.037052 (0.019833) | 0.447296 / 0.258489 (0.188807) | 0.489007 / 0.293841 (0.195166) | 0.055086 / 0.128546 (-0.073460) | 0.020623 / 0.075646 (-0.055024) | 0.129599 / 0.419271 (-0.289672) | 0.064316 / 0.043533 (0.020784) | 0.446681 / 0.255139 (0.191542) | 0.488897 / 0.283200 (0.205698) | 0.119121 / 0.141683 (-0.022562) | 1.836248 / 1.452155 (0.384093) | 2.002456 / 1.492716 (0.509740) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.249344 / 0.018006 (0.231338) | 0.544320 / 0.000490 (0.543830) | 0.000459 / 0.000200 (0.000259) | 0.000088 / 0.000054 (0.000034) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.038771 / 0.037411 (0.001359) | 0.129527 / 0.014526 (0.115002) | 0.144681 / 0.176557 (-0.031876) | 0.208237 / 0.737135 (-0.528898) | 0.149502 / 0.296338 (-0.146836) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.668457 / 0.215209 (0.453248) | 6.729550 / 2.077655 (4.651895) | 2.741076 / 1.504120 (1.236956) | 2.394737 / 1.541195 (0.853542) | 2.415242 / 1.468490 (0.946752) | 1.322334 / 4.584777 (-3.262442) | 5.787454 / 3.745712 (2.041742) | 3.309847 / 5.269862 (-1.960015) | 2.199181 / 4.565676 (-2.366495) | 0.170740 / 0.424275 (-0.253535) | 0.015095 / 0.007607 (0.007487) | 0.864157 / 0.226044 (0.638112) | 8.701858 / 2.268929 (6.432929) | 3.617966 / 55.444624 (-51.826658) | 2.847144 / 6.876477 (-4.029332) | 3.011391 / 2.142072 (0.869319) | 1.595466 / 4.805227 (-3.209762) | 0.284010 / 6.500664 (-6.216654) | 0.091054 / 0.075469 (0.015585) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.702404 / 1.841788 (-0.139384) | 19.427130 / 8.074308 (11.352822) | 21.900446 / 10.191392 (11.709053) | 0.244088 / 0.680424 (-0.436336) | 0.027428 / 0.534201 (-0.506773) | 0.552226 / 0.579283 (-0.027057) | 0.653102 / 0.434364 (0.218738) | 0.635379 / 0.540337 (0.095042) | 0.771842 / 1.386936 (-0.615094) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#efde2a0b9ad937defc83e0ac3f14bbb90fb5f345 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006547 / 0.011353 (-0.004806) | 0.004569 / 0.011008 (-0.006439) | 0.097782 / 0.038508 (0.059274) | 0.028157 / 0.023109 (0.005048) | 0.319017 / 0.275898 (0.043119) | 0.340758 / 0.323480 (0.017278) | 0.005078 / 0.007986 (-0.002907) | 0.003343 / 0.004328 (-0.000985) | 0.074194 / 0.004250 (0.069944) | 0.037918 / 0.037052 (0.000866) | 0.310298 / 0.258489 (0.051809) | 0.349441 / 0.293841 (0.055600) | 0.030375 / 0.128546 (-0.098171) | 0.011527 / 0.075646 (-0.064119) | 0.320499 / 0.419271 (-0.098773) | 0.042639 / 0.043533 (-0.000894) | 0.312182 / 0.255139 (0.057043) | 0.329058 / 0.283200 (0.045858) | 0.085517 / 0.141683 (-0.056165) | 1.532603 / 1.452155 (0.080448) | 1.583996 / 1.492716 (0.091279) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.208286 / 0.018006 (0.190280) | 0.418696 / 0.000490 (0.418206) | 0.007051 / 0.000200 (0.006851) | 0.000409 / 0.000054 (0.000354) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024055 / 0.037411 (-0.013356) | 0.098420 / 0.014526 (0.083894) | 0.104785 / 0.176557 (-0.071771) | 0.163618 / 0.737135 (-0.573517) | 0.110006 / 0.296338 (-0.186332) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.418756 / 0.215209 (0.203547) | 4.179557 / 2.077655 (2.101902) | 1.881708 / 1.504120 (0.377588) | 1.683393 / 1.541195 (0.142198) | 1.731909 / 1.468490 (0.263419) | 0.696674 / 4.584777 (-3.888103) | 3.384167 / 3.745712 (-0.361545) | 3.173479 / 5.269862 (-2.096382) | 1.620019 / 4.565676 (-2.945658) | 0.082850 / 0.424275 (-0.341426) | 0.012396 / 0.007607 (0.004789) | 0.519743 / 0.226044 (0.293699) | 5.208480 / 2.268929 (2.939552) | 2.312917 / 55.444624 (-53.131708) | 1.963486 / 6.876477 (-4.912991) | 2.084553 / 2.142072 (-0.057519) | 0.805486 / 4.805227 (-3.999742) | 0.153429 / 6.500664 (-6.347235) | 0.069451 / 0.075469 (-0.006018) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.197185 / 1.841788 (-0.644603) | 14.341005 / 8.074308 (6.266696) | 14.476162 / 10.191392 (4.284770) | 0.157372 / 0.680424 (-0.523052) | 0.016444 / 0.534201 (-0.517757) | 0.383721 / 0.579283 (-0.195562) | 0.380800 / 0.434364 (-0.053564) | 0.441137 / 0.540337 (-0.099200) | 0.524778 / 1.386936 (-0.862158) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006728 / 0.011353 (-0.004625) | 0.004536 / 0.011008 (-0.006472) | 0.076266 / 0.038508 (0.037757) | 0.028133 / 0.023109 (0.005024) | 0.351072 / 0.275898 (0.075174) | 0.375823 / 0.323480 (0.052344) | 0.005166 / 0.007986 (-0.002819) | 0.004717 / 0.004328 (0.000388) | 0.076130 / 0.004250 (0.071880) | 0.041354 / 0.037052 (0.004301) | 0.345904 / 0.258489 (0.087415) | 0.384119 / 0.293841 (0.090278) | 0.030759 / 0.128546 (-0.097787) | 0.011659 / 0.075646 (-0.063988) | 0.085269 / 0.419271 (-0.334002) | 0.042161 / 0.043533 (-0.001372) | 0.340806 / 0.255139 (0.085667) | 0.366832 / 0.283200 (0.083632) | 0.092187 / 0.141683 (-0.049495) | 1.520035 / 1.452155 (0.067880) | 1.603856 / 1.492716 (0.111140) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.237763 / 0.018006 (0.219757) | 0.413406 / 0.000490 (0.412916) | 0.000415 / 0.000200 (0.000215) | 0.000060 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026095 / 0.037411 (-0.011317) | 0.105775 / 0.014526 (0.091249) | 0.108452 / 0.176557 (-0.068105) | 0.160014 / 0.737135 (-0.577122) | 0.112385 / 0.296338 (-0.183953) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.437327 / 0.215209 (0.222118) | 4.374949 / 2.077655 (2.297294) | 2.090292 / 1.504120 (0.586172) | 1.885946 / 1.541195 (0.344752) | 1.946768 / 1.468490 (0.478278) | 0.704124 / 4.584777 (-3.880653) | 3.394994 / 3.745712 (-0.350718) | 1.905189 / 5.269862 (-3.364673) | 1.182300 / 4.565676 (-3.383376) | 0.082920 / 0.424275 (-0.341355) | 0.012781 / 0.007607 (0.005174) | 0.535467 / 0.226044 (0.309423) | 5.362799 / 2.268929 (3.093870) | 2.504825 / 55.444624 (-52.939799) | 2.180458 / 6.876477 (-4.696019) | 2.317750 / 2.142072 (0.175677) | 0.811182 / 4.805227 (-3.994045) | 0.151654 / 6.500664 (-6.349010) | 0.067925 / 0.075469 (-0.007544) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.290746 / 1.841788 (-0.551042) | 14.799309 / 8.074308 (6.725001) | 14.439722 / 10.191392 (4.248330) | 0.144358 / 0.680424 (-0.536066) | 0.016688 / 0.534201 (-0.517513) | 0.392907 / 0.579283 (-0.186376) | 0.383109 / 0.434364 (-0.051255) | 0.450069 / 0.540337 (-0.090269) | 0.532534 / 1.386936 (-0.854402) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#87c061032972509a2a1b4103763e62fb74912128 \"CML watermark\")\n", "I turned it into a draft to fix the failing tests, but CI is now green, so there is no good reason for it :)" ]
2023-04-14T14:13:59Z
2023-04-20T14:43:20Z
2023-04-20T14:40:34Z
COLLABORATOR
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5751.diff", "html_url": "https://github.com/huggingface/datasets/pull/5751", "merged_at": "2023-04-20T14:40:34Z", "patch_url": "https://github.com/huggingface/datasets/pull/5751.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5751" }
Return a list of lists instead of a list of NumPy arrays when converting the variable-shaped `ArrayXD` to Python. Additionally, improve the NumPy conversion by returning a numeric NumPy array when the offsets are equal or a NumPy object array when they aren't, and allow converting the variable-shaped `ArrayXD` to Pandas. (Reported in https://github.com/huggingface/datasets/issues/5719#issuecomment-1507579671)
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5751/reactions" }
null
null
null
true
https://github.com/huggingface/datasets/issues/5750
5,750
Fail to create datasets from a generator when using Google Big Query
{ "avatar_url": "https://avatars.githubusercontent.com/u/895720?v=4", "events_url": "https://api.github.com/users/ivanprado/events{/privacy}", "followers_url": "https://api.github.com/users/ivanprado/followers", "following_url": "https://api.github.com/users/ivanprado/following{/other_user}", "gists_url": "https://api.github.com/users/ivanprado/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ivanprado", "id": 895720, "login": "ivanprado", "node_id": "MDQ6VXNlcjg5NTcyMA==", "organizations_url": "https://api.github.com/users/ivanprado/orgs", "received_events_url": "https://api.github.com/users/ivanprado/received_events", "repos_url": "https://api.github.com/users/ivanprado/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ivanprado/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ivanprado/subscriptions", "type": "User", "url": "https://api.github.com/users/ivanprado", "user_view_type": "public" }
[]
closed
false
[ "`from_generator` expects a generator function, not a generator object, so this should work:\r\n```python\r\nfrom datasets import Dataset\r\nfrom google.cloud import bigquery\r\n\r\nclient = bigquery.Client()\r\n\r\ndef gen()\r\n # Perform a query.\r\n QUERY = (\r\n 'SELECT name FROM `bigquery-public-data.usa_names.usa_1910_2013` '\r\n 'WHERE state = \"TX\" '\r\n 'LIMIT 100')\r\n query_job = client.query(QUERY) # API request\r\n yield from query_job.result() # Waits for query to finish\r\n\r\nds = Dataset.from_generator(rows)\r\n\r\nfor r in ds:\r\n print(r)\r\n```", "@mariosasko your code was incomplete, so I tried to fix it:\r\n\r\n```py\r\nfrom datasets import Dataset\r\nfrom google.cloud import bigquery\r\n\r\nclient = bigquery.Client()\r\n\r\ndef gen():\r\n # Perform a query.\r\n QUERY = (\r\n 'SELECT name FROM `bigquery-public-data.usa_names.usa_1910_2013` '\r\n 'WHERE state = \"TX\" '\r\n 'LIMIT 100')\r\n query_job = client.query(QUERY) # API request\r\n yield from query_job.result() # Waits for query to finish\r\n\r\nds = Dataset.from_generator(gen)\r\n\r\nfor r in ds:\r\n print(r)\r\n```\r\n\r\nThe error is also present in this case:\r\n\r\n```\r\n_pickle.PicklingError: Pickling client objects is explicitly not supported.\r\nClients have non-trivial state that is local and unpickleable.\r\n```\r\n\r\nI think it doesn't matter if the generator is an object or a function. The problem is that the generator is referencing an object that is not pickable (the client in this case). ", "It does matter: this function expects a generator function, as stated in the docs.\r\n\r\nThis should work:\r\n```python\r\nfrom datasets import Dataset\r\nfrom google.cloud import bigquery\r\n\r\ndef gen():\r\n client = bigquery.Client()\r\n # Perform a query.\r\n QUERY = (\r\n 'SELECT name FROM `bigquery-public-data.usa_names.usa_1910_2013` '\r\n 'WHERE state = \"TX\" '\r\n 'LIMIT 100')\r\n query_job = client.query(QUERY) # API request\r\n yield from query_job.result() # Waits for query to finish\r\n\r\nds = Dataset.from_generator(gen)\r\n\r\nfor r in ds:\r\n print(r)\r\n```\r\n\r\nWe could allow passing non-picklable objects and use a random hash for the generated arrow file. In that case, the caching mechanism would not work, meaning repeated calls with the same set of arguments would generate new datasets instead of reusing the cached version, but this behavior is still better than raising an error.", "Thank you @mariosasko . Your last code is working indeed. Curiously, the important detail here was to wrap the client instantiation within the generator itself. If the line `client = bigquery.Client()` is moved outside, then the error is back.\r\n\r\nI see now also your point in regard to the generator being a generator function. We can close the issue if you want." ]
2023-04-14T13:50:59Z
2023-04-17T12:20:43Z
2023-04-17T12:20:43Z
NONE
null
null
### Describe the bug Creating a dataset from a generator using `Dataset.from_generator()` fails if the generator is the [Google Big Query Python client](https://cloud.google.com/python/docs/reference/bigquery/latest). The problem is that the Big Query client is not pickable. And the function `create_config_id` tries to get a hash of the generator by pickling it. So the following error is generated: ``` _pickle.PicklingError: Pickling client objects is explicitly not supported. Clients have non-trivial state that is local and unpickleable. ``` ### Steps to reproduce the bug 1. Install the big query client and datasets `pip install google-cloud-bigquery datasets` 2. Run the following code: ```py from datasets import Dataset from google.cloud import bigquery client = bigquery.Client() # Perform a query. QUERY = ( 'SELECT name FROM `bigquery-public-data.usa_names.usa_1910_2013` ' 'WHERE state = "TX" ' 'LIMIT 100') query_job = client.query(QUERY) # API request rows = query_job.result() # Waits for query to finish ds = Dataset.from_generator(rows) for r in ds: print(r) ``` ### Expected behavior Two options: 1. Ignore the pickle errors when computing the hash 2. Provide a scape hutch so that we can avoid calculating the hash for the generator. For example, allowing to provide a hash from the user. ### Environment info python 3.9 google-cloud-bigquery 3.9.0 datasets 2.11.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5750/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5749
5,749
AttributeError: 'Version' object has no attribute 'match'
{ "avatar_url": "https://avatars.githubusercontent.com/u/54584290?v=4", "events_url": "https://api.github.com/users/gulnaz-zh/events{/privacy}", "followers_url": "https://api.github.com/users/gulnaz-zh/followers", "following_url": "https://api.github.com/users/gulnaz-zh/following{/other_user}", "gists_url": "https://api.github.com/users/gulnaz-zh/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/gulnaz-zh", "id": 54584290, "login": "gulnaz-zh", "node_id": "MDQ6VXNlcjU0NTg0Mjkw", "organizations_url": "https://api.github.com/users/gulnaz-zh/orgs", "received_events_url": "https://api.github.com/users/gulnaz-zh/received_events", "repos_url": "https://api.github.com/users/gulnaz-zh/repos", "site_admin": false, "starred_url": "https://api.github.com/users/gulnaz-zh/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gulnaz-zh/subscriptions", "type": "User", "url": "https://api.github.com/users/gulnaz-zh", "user_view_type": "public" }
[]
closed
false
[ "I got the same error, and the official website for visual genome is down. Did you solve this problem? ", "I am in the same situation now :( ", "Thanks for reporting, @gulnaz-zh.\r\n\r\nI am investigating it.", "The host server is down: https://visualgenome.org/\r\n\r\nWe are contacting the dataset authors.", "Apart form data host server being down, there is an additional issue with the `datasets` library introduced by this PR:\r\n- #5238\r\n\r\nI am working to fix it.", "PR that fixes the AttributeError: https://huggingface.co/datasets/visual_genome/discussions/2", "For the issue with their data host server being down, I have opened a discussion in the \"Community\" tab of the Hub dataset: https://huggingface.co/datasets/visual_genome/discussions/3\r\nLet's continue the discussion there.", "The authors just replied to us with their new URL: https://homes.cs.washington.edu/~ranjay/visualgenome/\r\n\r\nWe have fixed the datasets loading script, which is operative again." ]
2023-04-14T10:48:06Z
2023-06-30T11:31:17Z
2023-04-18T12:57:08Z
NONE
null
null
### Describe the bug When I run from datasets import load_dataset data = load_dataset("visual_genome", 'region_descriptions_v1.2.0') AttributeError: 'Version' object has no attribute 'match' ### Steps to reproduce the bug from datasets import load_dataset data = load_dataset("visual_genome", 'region_descriptions_v1.2.0') ### Expected behavior This is error trace: Downloading and preparing dataset visual_genome/region_descriptions_v1.2.0 to C:/Users/Acer/.cache/huggingface/datasets/visual_genome/region_descriptions_v1.2.0/1.2.0/136fe5b83f6691884566c5530313288171e053a3b33bfe3ea2e4c8b39abaf7f3... --------------------------------------------------------------------------- AttributeError Traceback (most recent call last) Cell In[6], line 1 ----> 1 data = load_dataset("visual_genome", 'region_descriptions_v1.2.0') File ~\.conda\envs\aai\Lib\site-packages\datasets\load.py:1791, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, num_proc, storage_options, **config_kwargs) 1788 try_from_hf_gcs = path not in _PACKAGED_DATASETS_MODULES 1790 # Download and prepare data -> 1791 builder_instance.download_and_prepare( 1792 download_config=download_config, 1793 download_mode=download_mode, 1794 verification_mode=verification_mode, 1795 try_from_hf_gcs=try_from_hf_gcs, 1796 num_proc=num_proc, 1797 storage_options=storage_options, 1798 ) 1800 # Build dataset for splits 1801 keep_in_memory = ( 1802 keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size) 1803 ) File ~\.conda\envs\aai\Lib\site-packages\datasets\builder.py:891, in DatasetBuilder.download_and_prepare(self, output_dir, download_config, download_mode, verification_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, file_format, max_shard_size, num_proc, storage_options, **download_and_prepare_kwargs) 889 if num_proc is not None: 890 prepare_split_kwargs["num_proc"] = num_proc --> 891 self._download_and_prepare( 892 dl_manager=dl_manager, 893 verification_mode=verification_mode, 894 **prepare_split_kwargs, 895 **download_and_prepare_kwargs, 896 ) 897 # Sync info 898 self.info.dataset_size = sum(split.num_bytes for split in self.info.splits.values()) File ~\.conda\envs\aai\Lib\site-packages\datasets\builder.py:1651, in GeneratorBasedBuilder._download_and_prepare(self, dl_manager, verification_mode, **prepare_splits_kwargs) 1650 def _download_and_prepare(self, dl_manager, verification_mode, **prepare_splits_kwargs): -> 1651 super()._download_and_prepare( 1652 dl_manager, 1653 verification_mode, 1654 check_duplicate_keys=verification_mode == VerificationMode.BASIC_CHECKS 1655 or verification_mode == VerificationMode.ALL_CHECKS, 1656 **prepare_splits_kwargs, 1657 ) File ~\.conda\envs\aai\Lib\site-packages\datasets\builder.py:964, in DatasetBuilder._download_and_prepare(self, dl_manager, verification_mode, **prepare_split_kwargs) 962 split_dict = SplitDict(dataset_name=self.name) 963 split_generators_kwargs = self._make_split_generators_kwargs(prepare_split_kwargs) --> 964 split_generators = self._split_generators(dl_manager, **split_generators_kwargs) 966 # Checksums verification 967 if verification_mode == VerificationMode.ALL_CHECKS and dl_manager.record_checksums: File ~\.cache\huggingface\modules\datasets_modules\datasets\visual_genome\136fe5b83f6691884566c5530313288171e053a3b33bfe3ea2e4c8b39abaf7f3\visual_genome.py:377, in VisualGenome._split_generators(self, dl_manager) 375 def _split_generators(self, dl_manager): 376 # Download image meta datas. --> 377 image_metadatas_dir = dl_manager.download_and_extract(self.config.image_metadata_url) 378 image_metadatas_file = os.path.join( 379 image_metadatas_dir, _get_decompressed_filename_from_url(self.config.image_metadata_url) 380 ) 382 # Download annotations File ~\.cache\huggingface\modules\datasets_modules\datasets\visual_genome\136fe5b83f6691884566c5530313288171e053a3b33bfe3ea2e4c8b39abaf7f3\visual_genome.py:328, in VisualGenomeConfig.image_metadata_url(self) 326 @property 327 def image_metadata_url(self): --> 328 if not self.version.match(_LATEST_VERSIONS["image_metadata"]): 329 logger.warning( 330 f"Latest image metadata version is {_LATEST_VERSIONS['image_metadata']}. Trying to generate a dataset of version: {self.version}. Please double check that image data are unchanged between the two versions." 331 ) 332 return f"{_BASE_ANNOTATION_URL}/image_data.json.zip" ### Environment info datasets 2.11.0 python 3.11.3
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 2, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/5749/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/pull/5748
5,748
[BUG FIX] Issue 5739
{ "avatar_url": "https://avatars.githubusercontent.com/u/1772912?v=4", "events_url": "https://api.github.com/users/airlsyn/events{/privacy}", "followers_url": "https://api.github.com/users/airlsyn/followers", "following_url": "https://api.github.com/users/airlsyn/following{/other_user}", "gists_url": "https://api.github.com/users/airlsyn/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/airlsyn", "id": 1772912, "login": "airlsyn", "node_id": "MDQ6VXNlcjE3NzI5MTI=", "organizations_url": "https://api.github.com/users/airlsyn/orgs", "received_events_url": "https://api.github.com/users/airlsyn/received_events", "repos_url": "https://api.github.com/users/airlsyn/repos", "site_admin": false, "starred_url": "https://api.github.com/users/airlsyn/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/airlsyn/subscriptions", "type": "User", "url": "https://api.github.com/users/airlsyn", "user_view_type": "public" }
[]
open
false
[]
2023-04-14T05:07:31Z
2023-04-14T05:07:31Z
null
NONE
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5748.diff", "html_url": "https://github.com/huggingface/datasets/pull/5748", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/5748.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5748" }
A fix for https://github.com/huggingface/datasets/issues/5739
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5748/reactions" }
null
null
null
true
https://github.com/huggingface/datasets/pull/5747
5,747
[WIP] Add Dataset.to_spark
{ "avatar_url": "https://avatars.githubusercontent.com/u/106995444?v=4", "events_url": "https://api.github.com/users/maddiedawson/events{/privacy}", "followers_url": "https://api.github.com/users/maddiedawson/followers", "following_url": "https://api.github.com/users/maddiedawson/following{/other_user}", "gists_url": "https://api.github.com/users/maddiedawson/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/maddiedawson", "id": 106995444, "login": "maddiedawson", "node_id": "U_kgDOBmCe9A", "organizations_url": "https://api.github.com/users/maddiedawson/orgs", "received_events_url": "https://api.github.com/users/maddiedawson/received_events", "repos_url": "https://api.github.com/users/maddiedawson/repos", "site_admin": false, "starred_url": "https://api.github.com/users/maddiedawson/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/maddiedawson/subscriptions", "type": "User", "url": "https://api.github.com/users/maddiedawson", "user_view_type": "public" }
[]
closed
false
[]
2023-04-13T23:20:03Z
2024-01-08T18:31:50Z
2024-01-08T18:31:50Z
CONTRIBUTOR
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5747.diff", "html_url": "https://github.com/huggingface/datasets/pull/5747", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/5747.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5747" }
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/106995444?v=4", "events_url": "https://api.github.com/users/maddiedawson/events{/privacy}", "followers_url": "https://api.github.com/users/maddiedawson/followers", "following_url": "https://api.github.com/users/maddiedawson/following{/other_user}", "gists_url": "https://api.github.com/users/maddiedawson/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/maddiedawson", "id": 106995444, "login": "maddiedawson", "node_id": "U_kgDOBmCe9A", "organizations_url": "https://api.github.com/users/maddiedawson/orgs", "received_events_url": "https://api.github.com/users/maddiedawson/received_events", "repos_url": "https://api.github.com/users/maddiedawson/repos", "site_admin": false, "starred_url": "https://api.github.com/users/maddiedawson/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/maddiedawson/subscriptions", "type": "User", "url": "https://api.github.com/users/maddiedawson", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5747/reactions" }
null
null
null
true
https://github.com/huggingface/datasets/pull/5746
5,746
Fix link in docs
{ "avatar_url": "https://avatars.githubusercontent.com/u/7485661?v=4", "events_url": "https://api.github.com/users/bbbxyz/events{/privacy}", "followers_url": "https://api.github.com/users/bbbxyz/followers", "following_url": "https://api.github.com/users/bbbxyz/following{/other_user}", "gists_url": "https://api.github.com/users/bbbxyz/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/bbbxyz", "id": 7485661, "login": "bbbxyz", "node_id": "MDQ6VXNlcjc0ODU2NjE=", "organizations_url": "https://api.github.com/users/bbbxyz/orgs", "received_events_url": "https://api.github.com/users/bbbxyz/received_events", "repos_url": "https://api.github.com/users/bbbxyz/repos", "site_admin": false, "starred_url": "https://api.github.com/users/bbbxyz/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bbbxyz/subscriptions", "type": "User", "url": "https://api.github.com/users/bbbxyz", "user_view_type": "public" }
[]
closed
false
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006461 / 0.011353 (-0.004892) | 0.004671 / 0.011008 (-0.006337) | 0.097329 / 0.038508 (0.058821) | 0.028380 / 0.023109 (0.005270) | 0.369892 / 0.275898 (0.093994) | 0.398244 / 0.323480 (0.074764) | 0.004795 / 0.007986 (-0.003190) | 0.004866 / 0.004328 (0.000538) | 0.075060 / 0.004250 (0.070809) | 0.035678 / 0.037052 (-0.001374) | 0.372197 / 0.258489 (0.113708) | 0.407509 / 0.293841 (0.113668) | 0.031557 / 0.128546 (-0.096989) | 0.011608 / 0.075646 (-0.064038) | 0.325467 / 0.419271 (-0.093805) | 0.042590 / 0.043533 (-0.000943) | 0.373738 / 0.255139 (0.118599) | 0.395793 / 0.283200 (0.112593) | 0.082335 / 0.141683 (-0.059348) | 1.471582 / 1.452155 (0.019427) | 1.535834 / 1.492716 (0.043117) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.192432 / 0.018006 (0.174426) | 0.404423 / 0.000490 (0.403933) | 0.003252 / 0.000200 (0.003052) | 0.000073 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025312 / 0.037411 (-0.012099) | 0.099964 / 0.014526 (0.085438) | 0.108779 / 0.176557 (-0.067777) | 0.170438 / 0.737135 (-0.566697) | 0.110116 / 0.296338 (-0.186223) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420402 / 0.215209 (0.205193) | 4.179142 / 2.077655 (2.101487) | 1.858114 / 1.504120 (0.353994) | 1.674452 / 1.541195 (0.133257) | 1.697839 / 1.468490 (0.229349) | 0.694707 / 4.584777 (-3.890070) | 3.394321 / 3.745712 (-0.351391) | 1.918437 / 5.269862 (-3.351425) | 1.277954 / 4.565676 (-3.287723) | 0.082357 / 0.424275 (-0.341918) | 0.012206 / 0.007607 (0.004598) | 0.522093 / 0.226044 (0.296049) | 5.239604 / 2.268929 (2.970675) | 2.347764 / 55.444624 (-53.096860) | 1.996864 / 6.876477 (-4.879613) | 2.050820 / 2.142072 (-0.091253) | 0.806110 / 4.805227 (-3.999118) | 0.151061 / 6.500664 (-6.349603) | 0.066438 / 0.075469 (-0.009031) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.211233 / 1.841788 (-0.630554) | 14.054422 / 8.074308 (5.980114) | 14.110141 / 10.191392 (3.918749) | 0.129962 / 0.680424 (-0.550462) | 0.017271 / 0.534201 (-0.516930) | 0.386410 / 0.579283 (-0.192873) | 0.392648 / 0.434364 (-0.041716) | 0.444940 / 0.540337 (-0.095398) | 0.533535 / 1.386936 (-0.853401) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006865 / 0.011353 (-0.004488) | 0.004662 / 0.011008 (-0.006346) | 0.077837 / 0.038508 (0.039329) | 0.028258 / 0.023109 (0.005149) | 0.346136 / 0.275898 (0.070238) | 0.380414 / 0.323480 (0.056934) | 0.005039 / 0.007986 (-0.002947) | 0.004967 / 0.004328 (0.000638) | 0.077774 / 0.004250 (0.073523) | 0.037504 / 0.037052 (0.000452) | 0.341550 / 0.258489 (0.083061) | 0.382494 / 0.293841 (0.088653) | 0.031881 / 0.128546 (-0.096665) | 0.011746 / 0.075646 (-0.063901) | 0.087087 / 0.419271 (-0.332185) | 0.043108 / 0.043533 (-0.000425) | 0.344103 / 0.255139 (0.088964) | 0.366613 / 0.283200 (0.083413) | 0.090399 / 0.141683 (-0.051284) | 1.492675 / 1.452155 (0.040520) | 1.588666 / 1.492716 (0.095950) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.191859 / 0.018006 (0.173853) | 0.412514 / 0.000490 (0.412025) | 0.001953 / 0.000200 (0.001753) | 0.000084 / 0.000054 (0.000030) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025159 / 0.037411 (-0.012252) | 0.100125 / 0.014526 (0.085599) | 0.106000 / 0.176557 (-0.070556) | 0.160710 / 0.737135 (-0.576425) | 0.110449 / 0.296338 (-0.185889) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436636 / 0.215209 (0.221427) | 4.364597 / 2.077655 (2.286942) | 2.077492 / 1.504120 (0.573372) | 1.868248 / 1.541195 (0.327053) | 1.911218 / 1.468490 (0.442728) | 0.700306 / 4.584777 (-3.884471) | 3.385428 / 3.745712 (-0.360284) | 2.965384 / 5.269862 (-2.304478) | 1.522093 / 4.565676 (-3.043583) | 0.082805 / 0.424275 (-0.341470) | 0.012432 / 0.007607 (0.004825) | 0.538478 / 0.226044 (0.312433) | 5.383207 / 2.268929 (3.114278) | 2.525177 / 55.444624 (-52.919447) | 2.179632 / 6.876477 (-4.696845) | 2.280768 / 2.142072 (0.138695) | 0.805869 / 4.805227 (-3.999358) | 0.152716 / 6.500664 (-6.347948) | 0.067848 / 0.075469 (-0.007621) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.318899 / 1.841788 (-0.522889) | 14.416310 / 8.074308 (6.342002) | 14.172804 / 10.191392 (3.981412) | 0.141729 / 0.680424 (-0.538695) | 0.016785 / 0.534201 (-0.517416) | 0.378626 / 0.579283 (-0.200657) | 0.387153 / 0.434364 (-0.047211) | 0.439950 / 0.540337 (-0.100388) | 0.523958 / 1.386936 (-0.862978) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#7c3a9b057c476c40d157bd7a5d57f49066239df0 \"CML watermark\")\n" ]
2023-04-13T20:45:19Z
2023-04-14T13:15:38Z
2023-04-14T13:08:42Z
CONTRIBUTOR
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5746.diff", "html_url": "https://github.com/huggingface/datasets/pull/5746", "merged_at": "2023-04-14T13:08:42Z", "patch_url": "https://github.com/huggingface/datasets/pull/5746.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5746" }
Fixes a broken link in the use_with_pytorch docs
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5746/reactions" }
null
null
null
true
https://github.com/huggingface/datasets/pull/5745
5,745
[BUG FIX] Issue 5744
{ "avatar_url": "https://avatars.githubusercontent.com/u/15572698?v=4", "events_url": "https://api.github.com/users/keyboardAnt/events{/privacy}", "followers_url": "https://api.github.com/users/keyboardAnt/followers", "following_url": "https://api.github.com/users/keyboardAnt/following{/other_user}", "gists_url": "https://api.github.com/users/keyboardAnt/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/keyboardAnt", "id": 15572698, "login": "keyboardAnt", "node_id": "MDQ6VXNlcjE1NTcyNjk4", "organizations_url": "https://api.github.com/users/keyboardAnt/orgs", "received_events_url": "https://api.github.com/users/keyboardAnt/received_events", "repos_url": "https://api.github.com/users/keyboardAnt/repos", "site_admin": false, "starred_url": "https://api.github.com/users/keyboardAnt/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/keyboardAnt/subscriptions", "type": "User", "url": "https://api.github.com/users/keyboardAnt", "user_view_type": "public" }
[]
open
false
[ "Have met the same problem with datasets==2.8.0, pandas==2.0.0. It could be solved by installing the latest version of datasets or using datasets==2.8.0, pandas==1.5.3.", "Pandas 2.0.0 has removed support to passing `mangle_dupe_cols`.\r\n\r\nHowever, our `datasets` library does not use this parameter: it only passes it to pandas if the user passes it to `load_dataset`.\r\n\r\nYou should better:\r\n- Either \"take steps to stop the use of 'mangle_dupe_cols'\" (as it was suggested in the deprecation warning in pandas-1.5.3)\r\n- Or pin pandas (< 2.0.0) in your local requirements file\r\n\r\nPlease note that from `datasets` library, we don't want to force users to use a specific pandas version. We would like to support users as well:\r\n- that use pandas < 1.5.3\r\n- that use pandas >= 2.0.0 and that do not pass the 'mangle_dupe_cols' parameter", "`datasets` 2.11 doesn't pass `mangle_dupe_cols` unless the user specifies it indeed, so I think we're fine" ]
2023-04-13T20:29:55Z
2023-04-21T15:22:43Z
null
NONE
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5745.diff", "html_url": "https://github.com/huggingface/datasets/pull/5745", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/5745.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5745" }
A temporal fix for https://github.com/huggingface/datasets/issues/5744.
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5745/reactions" }
null
null
null
true
https://github.com/huggingface/datasets/issues/5744
5,744
[BUG] With Pandas 2.0.0, `load_dataset` raises `TypeError: read_csv() got an unexpected keyword argument 'mangle_dupe_cols'`
{ "avatar_url": "https://avatars.githubusercontent.com/u/15572698?v=4", "events_url": "https://api.github.com/users/keyboardAnt/events{/privacy}", "followers_url": "https://api.github.com/users/keyboardAnt/followers", "following_url": "https://api.github.com/users/keyboardAnt/following{/other_user}", "gists_url": "https://api.github.com/users/keyboardAnt/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/keyboardAnt", "id": 15572698, "login": "keyboardAnt", "node_id": "MDQ6VXNlcjE1NTcyNjk4", "organizations_url": "https://api.github.com/users/keyboardAnt/orgs", "received_events_url": "https://api.github.com/users/keyboardAnt/received_events", "repos_url": "https://api.github.com/users/keyboardAnt/repos", "site_admin": false, "starred_url": "https://api.github.com/users/keyboardAnt/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/keyboardAnt/subscriptions", "type": "User", "url": "https://api.github.com/users/keyboardAnt", "user_view_type": "public" }
[]
closed
false
[ "Thanks for reporting, @keyboardAnt.\r\n\r\nWe haven't noticed any crash in our CI tests. Could you please indicate specifically the `load_dataset` command that crashes in your side, so that we can reproduce it?", "This has been fixed in `datasets` 2.11", "I am still getting this bug with the latest pandas and datasets lib installed. Anyone else?\r\n```\r\nfrom datasets import load_dataset\r\n\r\ndataset = load_dataset(\"csv\", data_files={\"train\":\"/kaggle/working/train.csv\", \"test\":\"/kaggle/working/test.csv\"})\r\nprint(dataset)\r\n\r\n\r\n\r\n---------------------------------------------------------------------------\r\nTypeError Traceback (most recent call last)\r\nCell In[5], line 3\r\n 1 from datasets import load_dataset\r\n----> 3 dataset = load_dataset(\"csv\", data_files={\"train\":\"/kaggle/working/train.csv\", \"test\":\"/kaggle/working/test.csv\"})\r\n 4 print(dataset)\r\n\r\nFile /opt/conda/lib/python3.10/site-packages/datasets/load.py:1691, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, **config_kwargs)\r\n 1688 try_from_hf_gcs = path not in _PACKAGED_DATASETS_MODULES\r\n 1690 # Download and prepare data\r\n-> 1691 builder_instance.download_and_prepare(\r\n 1692 download_config=download_config,\r\n 1693 download_mode=download_mode,\r\n 1694 ignore_verifications=ignore_verifications,\r\n 1695 try_from_hf_gcs=try_from_hf_gcs,\r\n 1696 use_auth_token=use_auth_token,\r\n 1697 )\r\n 1699 # Build dataset for splits\r\n 1700 keep_in_memory = (\r\n 1701 keep_in_memory if keep_in_memory is not None else is_small_dataset(builder_instance.info.dataset_size)\r\n 1702 )\r\n\r\nFile /opt/conda/lib/python3.10/site-packages/datasets/builder.py:605, in DatasetBuilder.download_and_prepare(self, download_config, download_mode, ignore_verifications, try_from_hf_gcs, dl_manager, base_path, use_auth_token, **download_and_prepare_kwargs)\r\n 603 logger.warning(\"HF google storage unreachable. Downloading and preparing it from source\")\r\n 604 if not downloaded_from_gcs:\r\n--> 605 self._download_and_prepare(\r\n 606 dl_manager=dl_manager, verify_infos=verify_infos, **download_and_prepare_kwargs\r\n 607 )\r\n 608 # Sync info\r\n 609 self.info.dataset_size = sum(split.num_bytes for split in self.info.splits.values())\r\n\r\nFile /opt/conda/lib/python3.10/site-packages/datasets/builder.py:694, in DatasetBuilder._download_and_prepare(self, dl_manager, verify_infos, **prepare_split_kwargs)\r\n 690 split_dict.add(split_generator.split_info)\r\n 692 try:\r\n 693 # Prepare split will record examples associated to the split\r\n--> 694 self._prepare_split(split_generator, **prepare_split_kwargs)\r\n 695 except OSError as e:\r\n 696 raise OSError(\r\n 697 \"Cannot find data file. \"\r\n 698 + (self.manual_download_instructions or \"\")\r\n 699 + \"\\nOriginal error:\\n\"\r\n 700 + str(e)\r\n 701 ) from None\r\n\r\nFile /opt/conda/lib/python3.10/site-packages/datasets/builder.py:1151, in ArrowBasedBuilder._prepare_split(self, split_generator)\r\n 1149 generator = self._generate_tables(**split_generator.gen_kwargs)\r\n 1150 with ArrowWriter(features=self.info.features, path=fpath) as writer:\r\n-> 1151 for key, table in logging.tqdm(\r\n 1152 generator, unit=\" tables\", leave=False, disable=True # not logging.is_progress_bar_enabled()\r\n 1153 ):\r\n 1154 writer.write_table(table)\r\n 1155 num_examples, num_bytes = writer.finalize()\r\n\r\nFile /opt/conda/lib/python3.10/site-packages/tqdm/notebook.py:249, in tqdm_notebook.__iter__(self)\r\n 247 try:\r\n 248 it = super(tqdm_notebook, self).__iter__()\r\n--> 249 for obj in it:\r\n 250 # return super(tqdm...) will not catch exception\r\n 251 yield obj\r\n 252 # NB: except ... [ as ...] breaks IPython async KeyboardInterrupt\r\n\r\nFile /opt/conda/lib/python3.10/site-packages/tqdm/std.py:1170, in tqdm.__iter__(self)\r\n 1167 # If the bar is disabled, then just walk the iterable\r\n 1168 # (note: keep this check outside the loop for performance)\r\n 1169 if self.disable:\r\n-> 1170 for obj in iterable:\r\n 1171 yield obj\r\n 1172 return\r\n\r\nFile /opt/conda/lib/python3.10/site-packages/datasets/packaged_modules/csv/csv.py:154, in Csv._generate_tables(self, files)\r\n 152 dtype = {name: dtype.to_pandas_dtype() for name, dtype in zip(schema.names, schema.types)} if schema else None\r\n 153 for file_idx, file in enumerate(files):\r\n--> 154 csv_file_reader = pd.read_csv(file, iterator=True, dtype=dtype, **self.config.read_csv_kwargs)\r\n 155 try:\r\n 156 for batch_idx, df in enumerate(csv_file_reader):\r\n\r\nTypeError: read_csv() got an unexpected keyword argument 'mangle_dupe_cols'```", "Feel free to update `datasets` to fix this issue\r\n\r\n```\r\npip install -U datasets\r\n```", "I am still having the same issue with the version >= 2.14", "Edit: Sorry, I found that our version is 2.2.1. Please ignore the following comment. This issue was already solved by this line:\r\nhttps://github.com/huggingface/datasets/blob/bf02cff8d70180a9e89328961ded9e3d8510fd22/src/datasets/packaged_modules/csv/csv.py#L18\r\n\r\n> This issue still exists as you can see in version 2.14:\r\n> https://github.com/huggingface/datasets/blob/bf02cff8d70180a9e89328961ded9e3d8510fd22/src/datasets/packaged_modules/csv/csv.py#L35\r\n> https://github.com/huggingface/datasets/blob/bf02cff8d70180a9e89328961ded9e3d8510fd22/src/datasets/packaged_modules/csv/csv.py#L84\r\n> that \"mangle_dupe_cols\" still exists in the arguments.\r\n> \r\n> And this error occurs at this line:\r\n> https://github.com/huggingface/datasets/blob/bf02cff8d70180a9e89328961ded9e3d8510fd22/src/datasets/packaged_modules/csv/csv.py#L185\r\n> where\r\n> ```python\r\n> file == '~/llama/llama-recipes/recipes/finetuning/gtrain_10k.csv'\r\n> dtype == None\r\n> self.config.pd_read_csv_kwargs == {\r\n> \"sep\": \",\",\r\n> \"header\": \"infer\",\r\n> \"index_col\": None,\r\n> \"usecols\": None,\r\n> \"mangle_dupe_cols\": True,\r\n> \"engine\": None,\r\n> \"true_values\": None,\r\n> \"false_values\": None,\r\n> \"skipinitialspace\": False,\r\n> \"skiprows\": None,\r\n> \"nrows\": None,\r\n> \"na_values\": None,\r\n> \"keep_default_na\": True,\r\n> \"na_filter\": True,\r\n> \"verbose\": False,\r\n> \"skip_blank_lines\": True,\r\n> \"thousands\": None,\r\n> \"decimal\": \".\",\r\n> \"lineterminator\": None,\r\n> \"quotechar\": '\"',\r\n> \"quoting\": 0,\r\n> \"escapechar\": None,\r\n> \"comment\": None,\r\n> \"encoding\": None,\r\n> \"dialect\": None,\r\n> \"skipfooter\": 0,\r\n> \"doublequote\": True,\r\n> \"memory_map\": False,\r\n> \"float_precision\": None,\r\n> \"chunksize\": 10000,\r\n> }\r\n> ```\r\n> for me.\r\n> \r\n> Here is where we got the error: https://github.com/meta-llama/llama-recipes/issues/426" ]
2023-04-13T20:21:28Z
2024-04-09T16:13:59Z
2023-07-06T17:01:59Z
NONE
null
null
The `load_dataset` function with Pandas `1.5.3` has no issue (just a FutureWarning) but crashes with Pandas `2.0.0`. For your convenience, I opened a draft Pull Request to fix it quickly: https://github.com/huggingface/datasets/pull/5745 --- * The FutureWarning mentioned above: ``` FutureWarning: the 'mangle_dupe_cols' keyword is deprecated and will be removed in a future version. Please take steps to stop the use of 'mangle_dupe_cols' ```
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 4, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 4, "url": "https://api.github.com/repos/huggingface/datasets/issues/5744/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5743
5,743
dataclass.py in virtual environment is overriding the stdlib module "dataclasses"
{ "avatar_url": "https://avatars.githubusercontent.com/u/71216295?v=4", "events_url": "https://api.github.com/users/syedabdullahhassan/events{/privacy}", "followers_url": "https://api.github.com/users/syedabdullahhassan/followers", "following_url": "https://api.github.com/users/syedabdullahhassan/following{/other_user}", "gists_url": "https://api.github.com/users/syedabdullahhassan/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/syedabdullahhassan", "id": 71216295, "login": "syedabdullahhassan", "node_id": "MDQ6VXNlcjcxMjE2Mjk1", "organizations_url": "https://api.github.com/users/syedabdullahhassan/orgs", "received_events_url": "https://api.github.com/users/syedabdullahhassan/received_events", "repos_url": "https://api.github.com/users/syedabdullahhassan/repos", "site_admin": false, "starred_url": "https://api.github.com/users/syedabdullahhassan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/syedabdullahhassan/subscriptions", "type": "User", "url": "https://api.github.com/users/syedabdullahhassan", "user_view_type": "public" }
[]
closed
false
[ "We no longer depend on `dataclasses` (for almost a year), so I don't think our package is the problematic one. \r\n\r\nI think it makes more sense to raise this issue in the `dataclasses` repo: https://github.com/ericvsmith/dataclasses." ]
2023-04-13T17:28:33Z
2023-04-17T12:23:18Z
2023-04-17T12:23:18Z
NONE
null
null
### Describe the bug "e:\Krish_naik\FSDSRegression\venv\Lib\dataclasses.py" is overriding the stdlib module "dataclasses" ### Steps to reproduce the bug module issue ### Expected behavior overriding the stdlib module "dataclasses" ### Environment info VS code
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5743/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/pull/5742
5,742
Warning specifying future change in to_tf_dataset behaviour
{ "avatar_url": "https://avatars.githubusercontent.com/u/22614925?v=4", "events_url": "https://api.github.com/users/amyeroberts/events{/privacy}", "followers_url": "https://api.github.com/users/amyeroberts/followers", "following_url": "https://api.github.com/users/amyeroberts/following{/other_user}", "gists_url": "https://api.github.com/users/amyeroberts/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/amyeroberts", "id": 22614925, "login": "amyeroberts", "node_id": "MDQ6VXNlcjIyNjE0OTI1", "organizations_url": "https://api.github.com/users/amyeroberts/orgs", "received_events_url": "https://api.github.com/users/amyeroberts/received_events", "repos_url": "https://api.github.com/users/amyeroberts/repos", "site_admin": false, "starred_url": "https://api.github.com/users/amyeroberts/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/amyeroberts/subscriptions", "type": "User", "url": "https://api.github.com/users/amyeroberts", "user_view_type": "public" }
[]
closed
false
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006693 / 0.011353 (-0.004660) | 0.004586 / 0.011008 (-0.006422) | 0.097238 / 0.038508 (0.058730) | 0.027912 / 0.023109 (0.004802) | 0.347339 / 0.275898 (0.071441) | 0.393847 / 0.323480 (0.070368) | 0.005105 / 0.007986 (-0.002880) | 0.004750 / 0.004328 (0.000422) | 0.074671 / 0.004250 (0.070421) | 0.037912 / 0.037052 (0.000860) | 0.368973 / 0.258489 (0.110483) | 0.403983 / 0.293841 (0.110142) | 0.030817 / 0.128546 (-0.097730) | 0.011813 / 0.075646 (-0.063833) | 0.324470 / 0.419271 (-0.094802) | 0.044232 / 0.043533 (0.000699) | 0.347623 / 0.255139 (0.092484) | 0.382458 / 0.283200 (0.099259) | 0.086603 / 0.141683 (-0.055080) | 1.485778 / 1.452155 (0.033623) | 1.549776 / 1.492716 (0.057059) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.200154 / 0.018006 (0.182147) | 0.440645 / 0.000490 (0.440155) | 0.003664 / 0.000200 (0.003464) | 0.000069 / 0.000054 (0.000015) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023635 / 0.037411 (-0.013776) | 0.094969 / 0.014526 (0.080443) | 0.103630 / 0.176557 (-0.072927) | 0.168655 / 0.737135 (-0.568480) | 0.105850 / 0.296338 (-0.190488) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.425224 / 0.215209 (0.210015) | 4.236618 / 2.077655 (2.158963) | 1.917091 / 1.504120 (0.412971) | 1.746984 / 1.541195 (0.205789) | 1.817766 / 1.468490 (0.349276) | 0.700989 / 4.584777 (-3.883788) | 3.412577 / 3.745712 (-0.333135) | 3.049311 / 5.269862 (-2.220551) | 1.607692 / 4.565676 (-2.957984) | 0.083410 / 0.424275 (-0.340865) | 0.012601 / 0.007607 (0.004994) | 0.528244 / 0.226044 (0.302200) | 5.284134 / 2.268929 (3.015206) | 2.391885 / 55.444624 (-53.052740) | 2.020018 / 6.876477 (-4.856459) | 2.105908 / 2.142072 (-0.036164) | 0.801262 / 4.805227 (-4.003965) | 0.151467 / 6.500664 (-6.349197) | 0.066529 / 0.075469 (-0.008940) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.203894 / 1.841788 (-0.637894) | 13.827561 / 8.074308 (5.753253) | 14.136730 / 10.191392 (3.945338) | 0.143829 / 0.680424 (-0.536595) | 0.016410 / 0.534201 (-0.517791) | 0.378194 / 0.579283 (-0.201089) | 0.391235 / 0.434364 (-0.043129) | 0.439261 / 0.540337 (-0.101076) | 0.527181 / 1.386936 (-0.859755) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006639 / 0.011353 (-0.004714) | 0.004469 / 0.011008 (-0.006540) | 0.076495 / 0.038508 (0.037987) | 0.027880 / 0.023109 (0.004771) | 0.342807 / 0.275898 (0.066909) | 0.374258 / 0.323480 (0.050778) | 0.005543 / 0.007986 (-0.002443) | 0.003362 / 0.004328 (-0.000966) | 0.075064 / 0.004250 (0.070813) | 0.039209 / 0.037052 (0.002156) | 0.342490 / 0.258489 (0.084001) | 0.382135 / 0.293841 (0.088294) | 0.030356 / 0.128546 (-0.098191) | 0.011762 / 0.075646 (-0.063884) | 0.086031 / 0.419271 (-0.333241) | 0.041991 / 0.043533 (-0.001542) | 0.340323 / 0.255139 (0.085184) | 0.364160 / 0.283200 (0.080961) | 0.088483 / 0.141683 (-0.053200) | 1.502836 / 1.452155 (0.050681) | 1.570438 / 1.492716 (0.077722) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.218486 / 0.018006 (0.200480) | 0.405251 / 0.000490 (0.404761) | 0.000398 / 0.000200 (0.000198) | 0.000062 / 0.000054 (0.000008) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025738 / 0.037411 (-0.011673) | 0.100390 / 0.014526 (0.085864) | 0.109913 / 0.176557 (-0.066644) | 0.161310 / 0.737135 (-0.575826) | 0.113269 / 0.296338 (-0.183069) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.438083 / 0.215209 (0.222874) | 4.377742 / 2.077655 (2.300087) | 2.069949 / 1.504120 (0.565829) | 1.857807 / 1.541195 (0.316613) | 1.881315 / 1.468490 (0.412825) | 0.695373 / 4.584777 (-3.889404) | 3.440287 / 3.745712 (-0.305425) | 1.842888 / 5.269862 (-3.426973) | 1.146655 / 4.565676 (-3.419022) | 0.083386 / 0.424275 (-0.340889) | 0.012290 / 0.007607 (0.004683) | 0.545672 / 0.226044 (0.319628) | 5.469568 / 2.268929 (3.200639) | 2.511886 / 55.444624 (-52.932739) | 2.184210 / 6.876477 (-4.692267) | 2.329822 / 2.142072 (0.187749) | 0.804114 / 4.805227 (-4.001114) | 0.151651 / 6.500664 (-6.349013) | 0.067269 / 0.075469 (-0.008200) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.272564 / 1.841788 (-0.569223) | 14.180708 / 8.074308 (6.106400) | 14.181657 / 10.191392 (3.990265) | 0.131443 / 0.680424 (-0.548981) | 0.016513 / 0.534201 (-0.517688) | 0.383786 / 0.579283 (-0.195497) | 0.397678 / 0.434364 (-0.036686) | 0.447003 / 0.540337 (-0.093334) | 0.539453 / 1.386936 (-0.847483) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#649d5a3315f9e7666713b6affe318ee00c7163a0 \"CML watermark\")\n" ]
2023-04-13T11:10:00Z
2023-04-21T13:18:14Z
2023-04-21T13:11:09Z
CONTRIBUTOR
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5742.diff", "html_url": "https://github.com/huggingface/datasets/pull/5742", "merged_at": "2023-04-21T13:11:09Z", "patch_url": "https://github.com/huggingface/datasets/pull/5742.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5742" }
Warning specifying future changes happening to `to_tf_dataset` behaviour when #5602 is merged in
{ "avatar_url": "https://avatars.githubusercontent.com/u/22614925?v=4", "events_url": "https://api.github.com/users/amyeroberts/events{/privacy}", "followers_url": "https://api.github.com/users/amyeroberts/followers", "following_url": "https://api.github.com/users/amyeroberts/following{/other_user}", "gists_url": "https://api.github.com/users/amyeroberts/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/amyeroberts", "id": 22614925, "login": "amyeroberts", "node_id": "MDQ6VXNlcjIyNjE0OTI1", "organizations_url": "https://api.github.com/users/amyeroberts/orgs", "received_events_url": "https://api.github.com/users/amyeroberts/received_events", "repos_url": "https://api.github.com/users/amyeroberts/repos", "site_admin": false, "starred_url": "https://api.github.com/users/amyeroberts/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/amyeroberts/subscriptions", "type": "User", "url": "https://api.github.com/users/amyeroberts", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5742/reactions" }
null
null
null
true
https://github.com/huggingface/datasets/pull/5741
5,741
Fix CI warnings
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007448 / 0.011353 (-0.003905) | 0.005182 / 0.011008 (-0.005826) | 0.098718 / 0.038508 (0.060210) | 0.034594 / 0.023109 (0.011485) | 0.317301 / 0.275898 (0.041403) | 0.357800 / 0.323480 (0.034320) | 0.005860 / 0.007986 (-0.002126) | 0.004267 / 0.004328 (-0.000061) | 0.074876 / 0.004250 (0.070626) | 0.048002 / 0.037052 (0.010950) | 0.333360 / 0.258489 (0.074871) | 0.362080 / 0.293841 (0.068239) | 0.035957 / 0.128546 (-0.092589) | 0.012245 / 0.075646 (-0.063401) | 0.332970 / 0.419271 (-0.086301) | 0.050825 / 0.043533 (0.007293) | 0.313936 / 0.255139 (0.058797) | 0.340684 / 0.283200 (0.057485) | 0.106630 / 0.141683 (-0.035053) | 1.427898 / 1.452155 (-0.024257) | 1.547518 / 1.492716 (0.054801) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.296952 / 0.018006 (0.278945) | 0.515708 / 0.000490 (0.515218) | 0.004225 / 0.000200 (0.004025) | 0.000082 / 0.000054 (0.000027) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029365 / 0.037411 (-0.008046) | 0.111142 / 0.014526 (0.096616) | 0.124414 / 0.176557 (-0.052142) | 0.185227 / 0.737135 (-0.551908) | 0.129545 / 0.296338 (-0.166793) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.403303 / 0.215209 (0.188094) | 4.044138 / 2.077655 (1.966483) | 1.803622 / 1.504120 (0.299502) | 1.615436 / 1.541195 (0.074242) | 1.703576 / 1.468490 (0.235086) | 0.706398 / 4.584777 (-3.878379) | 3.912995 / 3.745712 (0.167283) | 4.004575 / 5.269862 (-1.265287) | 2.101592 / 4.565676 (-2.464085) | 0.087280 / 0.424275 (-0.336995) | 0.012564 / 0.007607 (0.004957) | 0.508484 / 0.226044 (0.282440) | 5.089351 / 2.268929 (2.820422) | 2.269022 / 55.444624 (-53.175602) | 1.933375 / 6.876477 (-4.943102) | 2.136783 / 2.142072 (-0.005289) | 0.862624 / 4.805227 (-3.942603) | 0.172107 / 6.500664 (-6.328557) | 0.066694 / 0.075469 (-0.008775) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.172513 / 1.841788 (-0.669275) | 15.877519 / 8.074308 (7.803211) | 14.687476 / 10.191392 (4.496084) | 0.189392 / 0.680424 (-0.491032) | 0.017334 / 0.534201 (-0.516866) | 0.420201 / 0.579283 (-0.159082) | 0.418502 / 0.434364 (-0.015862) | 0.489130 / 0.540337 (-0.051207) | 0.580678 / 1.386936 (-0.806258) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007942 / 0.011353 (-0.003411) | 0.005312 / 0.011008 (-0.005696) | 0.074684 / 0.038508 (0.036176) | 0.035952 / 0.023109 (0.012843) | 0.349672 / 0.275898 (0.073774) | 0.377157 / 0.323480 (0.053678) | 0.006399 / 0.007986 (-0.001586) | 0.005769 / 0.004328 (0.001441) | 0.074283 / 0.004250 (0.070032) | 0.053217 / 0.037052 (0.016165) | 0.342545 / 0.258489 (0.084056) | 0.383663 / 0.293841 (0.089822) | 0.037234 / 0.128546 (-0.091312) | 0.012349 / 0.075646 (-0.063298) | 0.086522 / 0.419271 (-0.332749) | 0.049888 / 0.043533 (0.006355) | 0.337686 / 0.255139 (0.082547) | 0.361564 / 0.283200 (0.078365) | 0.104902 / 0.141683 (-0.036781) | 1.478259 / 1.452155 (0.026104) | 1.576376 / 1.492716 (0.083660) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.339760 / 0.018006 (0.321753) | 0.530946 / 0.000490 (0.530456) | 0.000474 / 0.000200 (0.000274) | 0.000063 / 0.000054 (0.000008) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029685 / 0.037411 (-0.007726) | 0.109409 / 0.014526 (0.094883) | 0.125579 / 0.176557 (-0.050978) | 0.175378 / 0.737135 (-0.561757) | 0.130672 / 0.296338 (-0.165667) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.428456 / 0.215209 (0.213247) | 4.238731 / 2.077655 (2.161077) | 2.046703 / 1.504120 (0.542583) | 1.850701 / 1.541195 (0.309506) | 1.909290 / 1.468490 (0.440800) | 0.714314 / 4.584777 (-3.870463) | 3.816056 / 3.745712 (0.070344) | 2.118567 / 5.269862 (-3.151295) | 1.348017 / 4.565676 (-3.217659) | 0.087140 / 0.424275 (-0.337135) | 0.012546 / 0.007607 (0.004938) | 0.538041 / 0.226044 (0.311997) | 5.381822 / 2.268929 (3.112893) | 2.525685 / 55.444624 (-52.918939) | 2.178659 / 6.876477 (-4.697817) | 2.381054 / 2.142072 (0.238981) | 0.844404 / 4.805227 (-3.960823) | 0.171802 / 6.500664 (-6.328862) | 0.065630 / 0.075469 (-0.009839) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.262187 / 1.841788 (-0.579600) | 16.197668 / 8.074308 (8.123360) | 15.148636 / 10.191392 (4.957244) | 0.152601 / 0.680424 (-0.527823) | 0.020238 / 0.534201 (-0.513963) | 0.420141 / 0.579283 (-0.159142) | 0.416295 / 0.434364 (-0.018068) | 0.487051 / 0.540337 (-0.053286) | 0.581942 / 1.386936 (-0.804994) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#9615e5af75b190c4e7b66792f9ba444f352765a0 \"CML watermark\")\n" ]
2023-04-13T07:17:02Z
2023-04-13T09:48:10Z
2023-04-13T09:40:50Z
MEMBER
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5741.diff", "html_url": "https://github.com/huggingface/datasets/pull/5741", "merged_at": "2023-04-13T09:40:50Z", "patch_url": "https://github.com/huggingface/datasets/pull/5741.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5741" }
Fix warnings in our CI tests.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5741/reactions" }
null
null
null
true
https://github.com/huggingface/datasets/pull/5740
5,740
Fix CI mock filesystem fixtures
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
[ "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007003 / 0.011353 (-0.004350) | 0.004854 / 0.011008 (-0.006154) | 0.096982 / 0.038508 (0.058474) | 0.033218 / 0.023109 (0.010109) | 0.314088 / 0.275898 (0.038190) | 0.351315 / 0.323480 (0.027835) | 0.005679 / 0.007986 (-0.002307) | 0.005404 / 0.004328 (0.001075) | 0.071773 / 0.004250 (0.067522) | 0.044593 / 0.037052 (0.007540) | 0.323643 / 0.258489 (0.065154) | 0.357172 / 0.293841 (0.063331) | 0.036782 / 0.128546 (-0.091764) | 0.012146 / 0.075646 (-0.063501) | 0.334874 / 0.419271 (-0.084397) | 0.051475 / 0.043533 (0.007942) | 0.305949 / 0.255139 (0.050810) | 0.339326 / 0.283200 (0.056126) | 0.101509 / 0.141683 (-0.040174) | 1.458254 / 1.452155 (0.006099) | 1.535252 / 1.492716 (0.042535) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.264837 / 0.018006 (0.246831) | 0.441444 / 0.000490 (0.440955) | 0.003331 / 0.000200 (0.003131) | 0.000084 / 0.000054 (0.000030) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026529 / 0.037411 (-0.010882) | 0.105924 / 0.014526 (0.091398) | 0.117191 / 0.176557 (-0.059365) | 0.176606 / 0.737135 (-0.560529) | 0.123452 / 0.296338 (-0.172887) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.412351 / 0.215209 (0.197142) | 4.135468 / 2.077655 (2.057813) | 1.912820 / 1.504120 (0.408700) | 1.738993 / 1.541195 (0.197798) | 1.754228 / 1.468490 (0.285738) | 0.692239 / 4.584777 (-3.892538) | 3.765672 / 3.745712 (0.019959) | 2.081141 / 5.269862 (-3.188720) | 1.425153 / 4.565676 (-3.140523) | 0.085055 / 0.424275 (-0.339220) | 0.011918 / 0.007607 (0.004311) | 0.517573 / 0.226044 (0.291529) | 5.179809 / 2.268929 (2.910881) | 2.471620 / 55.444624 (-52.973005) | 2.140634 / 6.876477 (-4.735843) | 2.200150 / 2.142072 (0.058077) | 0.831662 / 4.805227 (-3.973566) | 0.168828 / 6.500664 (-6.331836) | 0.062755 / 0.075469 (-0.012714) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.196890 / 1.841788 (-0.644898) | 14.826423 / 8.074308 (6.752114) | 14.020782 / 10.191392 (3.829390) | 0.161275 / 0.680424 (-0.519149) | 0.017467 / 0.534201 (-0.516734) | 0.422278 / 0.579283 (-0.157005) | 0.424053 / 0.434364 (-0.010311) | 0.490768 / 0.540337 (-0.049570) | 0.584490 / 1.386936 (-0.802446) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007102 / 0.011353 (-0.004250) | 0.005145 / 0.011008 (-0.005863) | 0.073823 / 0.038508 (0.035315) | 0.032947 / 0.023109 (0.009838) | 0.336978 / 0.275898 (0.061080) | 0.368961 / 0.323480 (0.045481) | 0.006052 / 0.007986 (-0.001934) | 0.003970 / 0.004328 (-0.000358) | 0.072925 / 0.004250 (0.068674) | 0.044502 / 0.037052 (0.007450) | 0.340849 / 0.258489 (0.082360) | 0.381487 / 0.293841 (0.087646) | 0.037207 / 0.128546 (-0.091339) | 0.012095 / 0.075646 (-0.063551) | 0.085206 / 0.419271 (-0.334065) | 0.056236 / 0.043533 (0.012703) | 0.334048 / 0.255139 (0.078909) | 0.360442 / 0.283200 (0.077242) | 0.104402 / 0.141683 (-0.037281) | 1.446907 / 1.452155 (-0.005248) | 1.542430 / 1.492716 (0.049713) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.238720 / 0.018006 (0.220714) | 0.445857 / 0.000490 (0.445367) | 0.009280 / 0.000200 (0.009080) | 0.000150 / 0.000054 (0.000095) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028414 / 0.037411 (-0.008998) | 0.110506 / 0.014526 (0.095981) | 0.124593 / 0.176557 (-0.051964) | 0.170951 / 0.737135 (-0.566184) | 0.128033 / 0.296338 (-0.168305) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.426206 / 0.215209 (0.210997) | 4.267289 / 2.077655 (2.189634) | 2.026880 / 1.504120 (0.522760) | 1.844052 / 1.541195 (0.302858) | 1.897697 / 1.468490 (0.429207) | 0.713545 / 4.584777 (-3.871232) | 3.815052 / 3.745712 (0.069339) | 3.217091 / 5.269862 (-2.052770) | 1.790546 / 4.565676 (-2.775130) | 0.087501 / 0.424275 (-0.336774) | 0.012136 / 0.007607 (0.004529) | 0.534495 / 0.226044 (0.308451) | 5.325913 / 2.268929 (3.056984) | 2.484309 / 55.444624 (-52.960315) | 2.149721 / 6.876477 (-4.726756) | 2.158764 / 2.142072 (0.016692) | 0.855273 / 4.805227 (-3.949954) | 0.170374 / 6.500664 (-6.330290) | 0.064053 / 0.075469 (-0.011416) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.253171 / 1.841788 (-0.588617) | 15.254562 / 8.074308 (7.180254) | 14.242119 / 10.191392 (4.050727) | 0.159298 / 0.680424 (-0.521126) | 0.017504 / 0.534201 (-0.516696) | 0.419710 / 0.579283 (-0.159574) | 0.417879 / 0.434364 (-0.016485) | 0.486328 / 0.540337 (-0.054009) | 0.578933 / 1.386936 (-0.808003) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#bc38663c8e2c2b0b246791c3ed8bddbff163dd64 \"CML watermark\")\n", "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008476 / 0.011353 (-0.002877) | 0.005745 / 0.011008 (-0.005263) | 0.115307 / 0.038508 (0.076799) | 0.039356 / 0.023109 (0.016247) | 0.367155 / 0.275898 (0.091257) | 0.422147 / 0.323480 (0.098667) | 0.006817 / 0.007986 (-0.001168) | 0.004652 / 0.004328 (0.000323) | 0.084045 / 0.004250 (0.079795) | 0.055483 / 0.037052 (0.018431) | 0.364249 / 0.258489 (0.105760) | 0.415975 / 0.293841 (0.122134) | 0.041322 / 0.128546 (-0.087224) | 0.014178 / 0.075646 (-0.061469) | 0.392658 / 0.419271 (-0.026614) | 0.060156 / 0.043533 (0.016623) | 0.373938 / 0.255139 (0.118799) | 0.397494 / 0.283200 (0.114294) | 0.113811 / 0.141683 (-0.027872) | 1.688581 / 1.452155 (0.236427) | 1.790374 / 1.492716 (0.297658) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.222203 / 0.018006 (0.204196) | 0.471109 / 0.000490 (0.470619) | 0.007071 / 0.000200 (0.006871) | 0.000156 / 0.000054 (0.000102) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032112 / 0.037411 (-0.005299) | 0.118726 / 0.014526 (0.104200) | 0.134918 / 0.176557 (-0.041639) | 0.207766 / 0.737135 (-0.529369) | 0.139756 / 0.296338 (-0.156582) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.479858 / 0.215209 (0.264649) | 4.798428 / 2.077655 (2.720773) | 2.221573 / 1.504120 (0.717453) | 1.964956 / 1.541195 (0.423761) | 2.021763 / 1.468490 (0.553273) | 0.820401 / 4.584777 (-3.764376) | 4.533887 / 3.745712 (0.788175) | 4.121332 / 5.269862 (-1.148529) | 2.195807 / 4.565676 (-2.369869) | 0.103133 / 0.424275 (-0.321142) | 0.014620 / 0.007607 (0.007013) | 0.605012 / 0.226044 (0.378967) | 5.966623 / 2.268929 (3.697694) | 2.844118 / 55.444624 (-52.600506) | 2.463569 / 6.876477 (-4.412907) | 2.597177 / 2.142072 (0.455105) | 0.983201 / 4.805227 (-3.822026) | 0.199500 / 6.500664 (-6.301164) | 0.078387 / 0.075469 (0.002918) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.401083 / 1.841788 (-0.440705) | 17.258725 / 8.074308 (9.184417) | 16.825992 / 10.191392 (6.634600) | 0.216762 / 0.680424 (-0.463662) | 0.021135 / 0.534201 (-0.513066) | 0.513688 / 0.579283 (-0.065595) | 0.488892 / 0.434364 (0.054529) | 0.566745 / 0.540337 (0.026408) | 0.688958 / 1.386936 (-0.697978) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007948 / 0.011353 (-0.003405) | 0.005981 / 0.011008 (-0.005027) | 0.084474 / 0.038508 (0.045966) | 0.037952 / 0.023109 (0.014843) | 0.383359 / 0.275898 (0.107461) | 0.409324 / 0.323480 (0.085844) | 0.006641 / 0.007986 (-0.001344) | 0.004785 / 0.004328 (0.000456) | 0.083214 / 0.004250 (0.078964) | 0.053177 / 0.037052 (0.016125) | 0.393147 / 0.258489 (0.134658) | 0.438496 / 0.293841 (0.144655) | 0.042090 / 0.128546 (-0.086456) | 0.013373 / 0.075646 (-0.062273) | 0.097585 / 0.419271 (-0.321686) | 0.056359 / 0.043533 (0.012826) | 0.378113 / 0.255139 (0.122974) | 0.403874 / 0.283200 (0.120674) | 0.123503 / 0.141683 (-0.018180) | 1.639557 / 1.452155 (0.187403) | 1.759787 / 1.492716 (0.267071) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.242534 / 0.018006 (0.224528) | 0.459040 / 0.000490 (0.458550) | 0.000454 / 0.000200 (0.000254) | 0.000066 / 0.000054 (0.000011) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031747 / 0.037411 (-0.005664) | 0.125823 / 0.014526 (0.111297) | 0.138985 / 0.176557 (-0.037571) | 0.194371 / 0.737135 (-0.542764) | 0.148905 / 0.296338 (-0.147433) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.508201 / 0.215209 (0.292992) | 5.007519 / 2.077655 (2.929865) | 2.412956 / 1.504120 (0.908836) | 2.143378 / 1.541195 (0.602183) | 2.192966 / 1.468490 (0.724476) | 0.828497 / 4.584777 (-3.756280) | 4.496457 / 3.745712 (0.750745) | 2.397546 / 5.269862 (-2.872315) | 1.522889 / 4.565676 (-3.042787) | 0.099904 / 0.424275 (-0.324371) | 0.014561 / 0.007607 (0.006954) | 0.627417 / 0.226044 (0.401373) | 6.296441 / 2.268929 (4.027512) | 2.962858 / 55.444624 (-52.481767) | 2.543083 / 6.876477 (-4.333394) | 2.711884 / 2.142072 (0.569811) | 0.997969 / 4.805227 (-3.807259) | 0.200283 / 6.500664 (-6.300382) | 0.075934 / 0.075469 (0.000465) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.541707 / 1.841788 (-0.300081) | 17.791559 / 8.074308 (9.717251) | 16.782877 / 10.191392 (6.591485) | 0.171954 / 0.680424 (-0.508470) | 0.020506 / 0.534201 (-0.513695) | 0.504189 / 0.579283 (-0.075094) | 0.501655 / 0.434364 (0.067291) | 0.583120 / 0.540337 (0.042782) | 0.694931 / 1.386936 (-0.692005) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#53355f308f4ffb9b4071f5d420b5c6767799ef1c \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007613 / 0.011353 (-0.003740) | 0.005057 / 0.011008 (-0.005951) | 0.099147 / 0.038508 (0.060639) | 0.035358 / 0.023109 (0.012249) | 0.303442 / 0.275898 (0.027544) | 0.336898 / 0.323480 (0.013418) | 0.006216 / 0.007986 (-0.001770) | 0.004085 / 0.004328 (-0.000244) | 0.074567 / 0.004250 (0.070317) | 0.050917 / 0.037052 (0.013865) | 0.301786 / 0.258489 (0.043297) | 0.341362 / 0.293841 (0.047521) | 0.037019 / 0.128546 (-0.091528) | 0.011977 / 0.075646 (-0.063669) | 0.334688 / 0.419271 (-0.084583) | 0.051326 / 0.043533 (0.007793) | 0.299878 / 0.255139 (0.044739) | 0.325571 / 0.283200 (0.042371) | 0.110744 / 0.141683 (-0.030939) | 1.480898 / 1.452155 (0.028743) | 1.566917 / 1.492716 (0.074201) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.253249 / 0.018006 (0.235242) | 0.558576 / 0.000490 (0.558086) | 0.003838 / 0.000200 (0.003638) | 0.000085 / 0.000054 (0.000030) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028731 / 0.037411 (-0.008681) | 0.110643 / 0.014526 (0.096117) | 0.119560 / 0.176557 (-0.056996) | 0.178010 / 0.737135 (-0.559126) | 0.130286 / 0.296338 (-0.166053) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.400190 / 0.215209 (0.184981) | 3.999326 / 2.077655 (1.921672) | 1.797332 / 1.504120 (0.293212) | 1.610808 / 1.541195 (0.069613) | 1.679949 / 1.468490 (0.211459) | 0.696539 / 4.584777 (-3.888238) | 3.784766 / 3.745712 (0.039054) | 2.205008 / 5.269862 (-3.064854) | 1.501697 / 4.565676 (-3.063979) | 0.085553 / 0.424275 (-0.338723) | 0.012223 / 0.007607 (0.004616) | 0.494858 / 0.226044 (0.268813) | 4.968535 / 2.268929 (2.699606) | 2.258759 / 55.444624 (-53.185865) | 1.926236 / 6.876477 (-4.950241) | 2.072155 / 2.142072 (-0.069917) | 0.838354 / 4.805227 (-3.966873) | 0.168810 / 6.500664 (-6.331854) | 0.064347 / 0.075469 (-0.011122) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.166696 / 1.841788 (-0.675091) | 14.721287 / 8.074308 (6.646979) | 14.319272 / 10.191392 (4.127880) | 0.144534 / 0.680424 (-0.535890) | 0.017502 / 0.534201 (-0.516699) | 0.422682 / 0.579283 (-0.156601) | 0.424426 / 0.434364 (-0.009938) | 0.493561 / 0.540337 (-0.046777) | 0.586765 / 1.386936 (-0.800171) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007764 / 0.011353 (-0.003589) | 0.005516 / 0.011008 (-0.005492) | 0.074745 / 0.038508 (0.036237) | 0.034364 / 0.023109 (0.011255) | 0.344318 / 0.275898 (0.068420) | 0.374779 / 0.323480 (0.051299) | 0.005904 / 0.007986 (-0.002082) | 0.004323 / 0.004328 (-0.000005) | 0.073191 / 0.004250 (0.068941) | 0.051549 / 0.037052 (0.014496) | 0.341792 / 0.258489 (0.083303) | 0.387576 / 0.293841 (0.093735) | 0.037483 / 0.128546 (-0.091063) | 0.012410 / 0.075646 (-0.063237) | 0.086480 / 0.419271 (-0.332791) | 0.050035 / 0.043533 (0.006502) | 0.335475 / 0.255139 (0.080336) | 0.361436 / 0.283200 (0.078236) | 0.106890 / 0.141683 (-0.034792) | 1.464032 / 1.452155 (0.011877) | 1.563490 / 1.492716 (0.070774) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.268765 / 0.018006 (0.250758) | 0.563811 / 0.000490 (0.563321) | 0.004904 / 0.000200 (0.004704) | 0.000096 / 0.000054 (0.000041) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029885 / 0.037411 (-0.007526) | 0.113885 / 0.014526 (0.099359) | 0.124283 / 0.176557 (-0.052274) | 0.173619 / 0.737135 (-0.563517) | 0.131781 / 0.296338 (-0.164557) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420296 / 0.215209 (0.205087) | 4.167656 / 2.077655 (2.090001) | 1.982356 / 1.504120 (0.478237) | 1.792181 / 1.541195 (0.250986) | 1.871459 / 1.468490 (0.402969) | 0.707066 / 4.584777 (-3.877711) | 3.835922 / 3.745712 (0.090210) | 3.506796 / 5.269862 (-1.763066) | 1.857172 / 4.565676 (-2.708505) | 0.086219 / 0.424275 (-0.338056) | 0.012404 / 0.007607 (0.004796) | 0.512393 / 0.226044 (0.286348) | 5.111623 / 2.268929 (2.842695) | 2.493523 / 55.444624 (-52.951101) | 2.188220 / 6.876477 (-4.688257) | 2.319096 / 2.142072 (0.177024) | 0.844084 / 4.805227 (-3.961144) | 0.171130 / 6.500664 (-6.329534) | 0.065913 / 0.075469 (-0.009556) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.284768 / 1.841788 (-0.557020) | 15.334610 / 8.074308 (7.260301) | 14.724436 / 10.191392 (4.533044) | 0.188425 / 0.680424 (-0.491999) | 0.017984 / 0.534201 (-0.516217) | 0.428150 / 0.579283 (-0.151133) | 0.429013 / 0.434364 (-0.005351) | 0.500818 / 0.540337 (-0.039519) | 0.592879 / 1.386936 (-0.794057) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ee68da958c2fab3a26d9f0efb1e207ecbcf7ce15 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006870 / 0.011353 (-0.004483) | 0.004702 / 0.011008 (-0.006306) | 0.099258 / 0.038508 (0.060750) | 0.029008 / 0.023109 (0.005899) | 0.330599 / 0.275898 (0.054701) | 0.361163 / 0.323480 (0.037683) | 0.005020 / 0.007986 (-0.002965) | 0.003474 / 0.004328 (-0.000855) | 0.075902 / 0.004250 (0.071651) | 0.037462 / 0.037052 (0.000410) | 0.336213 / 0.258489 (0.077724) | 0.370645 / 0.293841 (0.076804) | 0.032435 / 0.128546 (-0.096111) | 0.011686 / 0.075646 (-0.063960) | 0.326040 / 0.419271 (-0.093232) | 0.043750 / 0.043533 (0.000217) | 0.332629 / 0.255139 (0.077490) | 0.353302 / 0.283200 (0.070102) | 0.090421 / 0.141683 (-0.051262) | 1.470097 / 1.452155 (0.017942) | 1.544908 / 1.492716 (0.052191) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.213418 / 0.018006 (0.195411) | 0.434808 / 0.000490 (0.434319) | 0.005949 / 0.000200 (0.005749) | 0.000072 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023085 / 0.037411 (-0.014327) | 0.098222 / 0.014526 (0.083696) | 0.104543 / 0.176557 (-0.072013) | 0.165423 / 0.737135 (-0.571713) | 0.108732 / 0.296338 (-0.187606) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.433933 / 0.215209 (0.218724) | 4.334358 / 2.077655 (2.256704) | 2.013984 / 1.504120 (0.509864) | 1.862981 / 1.541195 (0.321787) | 1.873936 / 1.468490 (0.405446) | 0.699857 / 4.584777 (-3.884920) | 3.417815 / 3.745712 (-0.327897) | 1.946403 / 5.269862 (-3.323459) | 1.308683 / 4.565676 (-3.256994) | 0.083297 / 0.424275 (-0.340978) | 0.012610 / 0.007607 (0.005003) | 0.540877 / 0.226044 (0.314832) | 5.408293 / 2.268929 (3.139365) | 2.529574 / 55.444624 (-52.915050) | 2.201047 / 6.876477 (-4.675429) | 2.392966 / 2.142072 (0.250894) | 0.812719 / 4.805227 (-3.992509) | 0.154013 / 6.500664 (-6.346651) | 0.067614 / 0.075469 (-0.007855) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.228150 / 1.841788 (-0.613638) | 14.037090 / 8.074308 (5.962782) | 14.259416 / 10.191392 (4.068024) | 0.155554 / 0.680424 (-0.524870) | 0.016521 / 0.534201 (-0.517680) | 0.379615 / 0.579283 (-0.199668) | 0.421352 / 0.434364 (-0.013012) | 0.446512 / 0.540337 (-0.093825) | 0.531802 / 1.386936 (-0.855134) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006629 / 0.011353 (-0.004724) | 0.004432 / 0.011008 (-0.006577) | 0.076662 / 0.038508 (0.038154) | 0.027674 / 0.023109 (0.004565) | 0.341667 / 0.275898 (0.065769) | 0.376493 / 0.323480 (0.053014) | 0.005076 / 0.007986 (-0.002910) | 0.004655 / 0.004328 (0.000326) | 0.075698 / 0.004250 (0.071448) | 0.036905 / 0.037052 (-0.000147) | 0.342394 / 0.258489 (0.083905) | 0.383330 / 0.293841 (0.089489) | 0.031729 / 0.128546 (-0.096817) | 0.011582 / 0.075646 (-0.064064) | 0.085721 / 0.419271 (-0.333551) | 0.042012 / 0.043533 (-0.001521) | 0.342063 / 0.255139 (0.086924) | 0.367335 / 0.283200 (0.084136) | 0.089641 / 0.141683 (-0.052042) | 1.520353 / 1.452155 (0.068198) | 1.643653 / 1.492716 (0.150937) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.178995 / 0.018006 (0.160989) | 0.436544 / 0.000490 (0.436055) | 0.002311 / 0.000200 (0.002111) | 0.000081 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025386 / 0.037411 (-0.012026) | 0.099717 / 0.014526 (0.085192) | 0.110809 / 0.176557 (-0.065747) | 0.162931 / 0.737135 (-0.574204) | 0.110430 / 0.296338 (-0.185909) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.438592 / 0.215209 (0.223382) | 4.372560 / 2.077655 (2.294905) | 2.069686 / 1.504120 (0.565567) | 1.860576 / 1.541195 (0.319382) | 1.898161 / 1.468490 (0.429671) | 0.698353 / 4.584777 (-3.886424) | 3.462440 / 3.745712 (-0.283272) | 1.868602 / 5.269862 (-3.401260) | 1.160498 / 4.565676 (-3.405179) | 0.082869 / 0.424275 (-0.341406) | 0.012690 / 0.007607 (0.005083) | 0.533278 / 0.226044 (0.307233) | 5.386214 / 2.268929 (3.117285) | 2.519243 / 55.444624 (-52.925382) | 2.171109 / 6.876477 (-4.705368) | 2.272617 / 2.142072 (0.130544) | 0.805843 / 4.805227 (-3.999384) | 0.152275 / 6.500664 (-6.348389) | 0.068038 / 0.075469 (-0.007431) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.291967 / 1.841788 (-0.549821) | 14.386474 / 8.074308 (6.312166) | 14.180693 / 10.191392 (3.989301) | 0.131714 / 0.680424 (-0.548710) | 0.016596 / 0.534201 (-0.517605) | 0.384293 / 0.579283 (-0.194990) | 0.404051 / 0.434364 (-0.030313) | 0.452167 / 0.540337 (-0.088170) | 0.542718 / 1.386936 (-0.844218) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f9c770bb1a43fa7fe390286d7535266d3964d067 \"CML watermark\")\n" ]
2023-04-12T08:52:35Z
2023-04-13T11:01:24Z
2023-04-13T10:54:13Z
MEMBER
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5740.diff", "html_url": "https://github.com/huggingface/datasets/pull/5740", "merged_at": "2023-04-13T10:54:13Z", "patch_url": "https://github.com/huggingface/datasets/pull/5740.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5740" }
This PR fixes the fixtures of our CI mock filesystems. Before, we had to pass `clobber=True` to `fsspec.register_implementation` to overwrite the still present previously added "mock" filesystem. That meant that the mock filesystem fixture was not working properly, because the previously added "mock" filesystem, should have been deleted by the fixture. This PR fixes the mock filesystem fixtures, so that the "mock" filesystem is properly deleted from the inner `fsspec` registry. Tests were added to check the correct behavior of the mock filesystem fixtures. Related to: - #5733
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5740/reactions" }
null
null
null
true
https://github.com/huggingface/datasets/issues/5739
5,739
weird result during dataset split when data path starts with `/data`
{ "avatar_url": "https://avatars.githubusercontent.com/u/1772912?v=4", "events_url": "https://api.github.com/users/airlsyn/events{/privacy}", "followers_url": "https://api.github.com/users/airlsyn/followers", "following_url": "https://api.github.com/users/airlsyn/following{/other_user}", "gists_url": "https://api.github.com/users/airlsyn/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/airlsyn", "id": 1772912, "login": "airlsyn", "node_id": "MDQ6VXNlcjE3NzI5MTI=", "organizations_url": "https://api.github.com/users/airlsyn/orgs", "received_events_url": "https://api.github.com/users/airlsyn/received_events", "repos_url": "https://api.github.com/users/airlsyn/repos", "site_admin": false, "starred_url": "https://api.github.com/users/airlsyn/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/airlsyn/subscriptions", "type": "User", "url": "https://api.github.com/users/airlsyn", "user_view_type": "public" }
[]
open
false
[ "Same problem.", "hi! \r\nI think you can run python from `/data/train/raw/` directory and load dataset as `load_dataset(\"code_contests\")` to mitigate this issue as a workaround. \r\n@ericxsun Do you want to open a PR to fix the regex? As you already found the solution :) ", "> hi! I think you can run python from `/data/train/raw/` directory and load dataset as `load_dataset(\"code_contests\")` to mitigate this issue as a workaround. @ericxsun Do you want to open a PR to fix the regex? As you already found the solution :)\r\n\r\nSure, please see https://github.com/huggingface/datasets/pull/5748 @polinaeterna ", "I think `string_to_dict` is ok, and that the issue is that it gets `'/data2/train/raw/code_contests/data/test-00000-of-00001-9c49eeff30aacaa8.parquet'` as input instead of `'data/test-00000-of-00001-9c49eeff30aacaa8.parquet'`. The path should be relative to the directory being loaded by `load_dataset`" ]
2023-04-12T04:51:35Z
2023-04-21T14:20:59Z
null
NONE
null
null
### Describe the bug The regex defined here https://github.com/huggingface/datasets/blob/f2607935c4e45c70c44fcb698db0363ca7ba83d4/src/datasets/utils/py_utils.py#L158 will cause a weird result during dataset split when data path starts with `/data` ### Steps to reproduce the bug 1. clone dataset into local path ``` cd /data/train/raw/ git lfs clone https://huggingface.co/datasets/deepmind/code_contests.git ls /data/train/raw/code_contests # README.md data dataset_infos.json ls /data/train/raw/code_contests/data # test-00000-of-00001-9c49eeff30aacaa8.parquet # train-[0-9]+-of-[0-9]+-xx.parquet # valid-00000-of-00001-5e672c5751f060d3.parquet ``` 2. loading data from local ``` from datasets import load_dataset dataset = load_dataset('/data/train/raw/code_contests') FileNotFoundError: Unable to resolve any data file that matches '['data/train/raw/code_contests/data/train-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]*.*']' at /data/train/raw/code_contests with any supported extension ``` weird path `data/train/raw/code_contests/data/train-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]*.*` While dive deep into `LocalDatasetModuleFactoryWithoutScript` defined in [load.py](https://github.com/huggingface/datasets/blob/f2607935c4e45c70c44fcb698db0363ca7ba83d4/src/datasets/load.py#L627) and _get_data_files_patterns https://github.com/huggingface/datasets/blob/f2607935c4e45c70c44fcb698db0363ca7ba83d4/src/datasets/data_files.py#L228. I found the weird behavior caused by `string_to_dict` 3. check `string_to_dict` ``` p = '/data/train/raw/code_contests/data/test-00000-of-00001-9c49eeff30aacaa8.parquet' split_pattern = 'data/{split}-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]*.*' string_to_dict(p, split_pattern) # {'split': 'train/raw/code_contests/data/test'} p = '/data2/train/raw/code_contests/data/test-00000-of-00001-9c49eeff30aacaa8.parquet' string_to_dict(p, split_pattern) {'split': 'test'} ``` go deep into string_to_dict https://github.com/huggingface/datasets/blob/f2607935c4e45c70c44fcb698db0363ca7ba83d4/src/datasets/utils/py_utils.py#L158. 4. test the regex: <img width="680" alt="image" src="https://user-images.githubusercontent.com/1772912/231351129-75179f01-fb9f-4f12-8fa9-0dfcc3d5f3bd.png"> <img width="679" alt="image" src="https://user-images.githubusercontent.com/1772912/231351025-009f3d83-2cf3-4e15-9ed4-6b9663dcb2ee.png"> ### Expected behavior statement in `steps to reproduce the bug` 3. check `string_to_dict` ``` p = '/data/train/raw/code_contests/data/test-00000-of-00001-9c49eeff30aacaa8.parquet' split_pattern = 'data/{split}-[0-9][0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]*.*' string_to_dict(p, split_pattern) # {'split': 'train/raw/code_contests/data/test'} p = '/data2/train/raw/code_contests/data/test-00000-of-00001-9c49eeff30aacaa8.parquet' string_to_dict(p, split_pattern) {'split': 'test'} ``` ### Environment info - linux(debian) - python 3.7 - datasets 2.8.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5739/reactions" }
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5738
5,738
load_dataset("text","dataset.txt") loads the wrong dataset!
{ "avatar_url": "https://avatars.githubusercontent.com/u/41713505?v=4", "events_url": "https://api.github.com/users/Tylersuard/events{/privacy}", "followers_url": "https://api.github.com/users/Tylersuard/followers", "following_url": "https://api.github.com/users/Tylersuard/following{/other_user}", "gists_url": "https://api.github.com/users/Tylersuard/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Tylersuard", "id": 41713505, "login": "Tylersuard", "node_id": "MDQ6VXNlcjQxNzEzNTA1", "organizations_url": "https://api.github.com/users/Tylersuard/orgs", "received_events_url": "https://api.github.com/users/Tylersuard/received_events", "repos_url": "https://api.github.com/users/Tylersuard/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Tylersuard/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Tylersuard/subscriptions", "type": "User", "url": "https://api.github.com/users/Tylersuard", "user_view_type": "public" }
[]
closed
false
[ "You need to provide a text file as `data_files`, not as a configuration:\r\n\r\n```python\r\nmy_dataset = load_dataset(\"text\", data_files=\"TextFile.txt\")\r\n```\r\n\r\nOtherwise, since `data_files` is `None`, it picks up Colab's sample datasets from the `content` dir." ]
2023-04-12T01:07:46Z
2023-04-19T12:08:27Z
2023-04-19T12:08:27Z
NONE
null
null
### Describe the bug I am trying to load my own custom text dataset using the load_dataset function. My dataset is a bunch of ordered text, think along the lines of shakespeare plays. However, after I load the dataset and I inspect it, the dataset is a table with a bunch of latitude and longitude values! What in the world?? ### Steps to reproduce the bug my_dataset = load_dataset("text","TextFile.txt") my_dataset ### Expected behavior I expected the dataset to contain the actual data from the text document that I used. ### Environment info Google Colab
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5738/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5737
5,737
ClassLabel Error
{ "avatar_url": "https://avatars.githubusercontent.com/u/10896776?v=4", "events_url": "https://api.github.com/users/mrcaelumn/events{/privacy}", "followers_url": "https://api.github.com/users/mrcaelumn/followers", "following_url": "https://api.github.com/users/mrcaelumn/following{/other_user}", "gists_url": "https://api.github.com/users/mrcaelumn/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mrcaelumn", "id": 10896776, "login": "mrcaelumn", "node_id": "MDQ6VXNlcjEwODk2Nzc2", "organizations_url": "https://api.github.com/users/mrcaelumn/orgs", "received_events_url": "https://api.github.com/users/mrcaelumn/received_events", "repos_url": "https://api.github.com/users/mrcaelumn/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mrcaelumn/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mrcaelumn/subscriptions", "type": "User", "url": "https://api.github.com/users/mrcaelumn", "user_view_type": "public" }
[]
closed
false
[ "Hi, you can use the `cast_column` function to change the feature type from a `Value(int64)` to `ClassLabel`:\r\n\r\n```py\r\ndataset = dataset.cast_column(\"label\", ClassLabel(names=[\"label_1\", \"label_2\", \"label_3\"]))\r\nprint(dataset.features)\r\n{'text': Value(dtype='string', id=None),\r\n 'label': ClassLabel(names=['label_1', 'label_2', 'label_3'], id=None)}\r\n```", "thank you @stevhliu, its worked. " ]
2023-04-11T17:14:13Z
2023-04-13T16:49:57Z
2023-04-13T16:49:57Z
NONE
null
null
### Describe the bug I still getting the error "call() takes 1 positional argument but 2 were given" even after ensuring that the value being passed to the label object is a single value and that the ClassLabel object has been created with the correct number of label classes ### Steps to reproduce the bug from datasets import ClassLabel, Dataset 1. Create the ClassLabel object with 3 label values and their corresponding names label_test = ClassLabel(num_classes=3, names=["label_1", "label_2", "label_3"]) 2. Define a dictionary with text and label fields data = { 'text': ['text_1', 'text_2', 'text_3'], 'label': [1, 2, 3], } 3. Create a Hugging Face dataset from the dictionary dataset = Dataset.from_dict(data) print(dataset.features) 4. Map the label values to their corresponding label names using the label object dataset = dataset.map(lambda example: {'text': example['text'], 'label': label_test(example['label'])}) 5. Print the resulting dataset print(dataset) ### Expected behavior I hope my label type is class label instead int. ### Environment info python 3.9 google colab
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5737/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5736
5,736
FORCE_REDOWNLOAD raises "Directory not empty" exception on second run
{ "avatar_url": "https://avatars.githubusercontent.com/u/1219084?v=4", "events_url": "https://api.github.com/users/rcasero/events{/privacy}", "followers_url": "https://api.github.com/users/rcasero/followers", "following_url": "https://api.github.com/users/rcasero/following{/other_user}", "gists_url": "https://api.github.com/users/rcasero/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/rcasero", "id": 1219084, "login": "rcasero", "node_id": "MDQ6VXNlcjEyMTkwODQ=", "organizations_url": "https://api.github.com/users/rcasero/orgs", "received_events_url": "https://api.github.com/users/rcasero/received_events", "repos_url": "https://api.github.com/users/rcasero/repos", "site_admin": false, "starred_url": "https://api.github.com/users/rcasero/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rcasero/subscriptions", "type": "User", "url": "https://api.github.com/users/rcasero", "user_view_type": "public" }
[]
open
false
[ "Hi ! I couldn't reproduce your issue :/\r\n\r\nIt seems that `shutil.rmtree` failed. It is supposed to work even if the directory is not empty, but you still end up with `OSError: [Errno 39] Directory not empty:`. Can you make sure another process is not using this directory at the same time ?", "I have the same error with `datasets==2.14.5` and `pyarrow==13.0.0`. Python 3.10.13", "I have same error. Any workaround?" ]
2023-04-11T11:29:15Z
2023-11-30T07:16:58Z
null
NONE
null
null
### Describe the bug Running `load_dataset(..., download_mode=datasets.DownloadMode.FORCE_REDOWNLOAD)` twice raises a `Directory not empty` exception on the second run. ### Steps to reproduce the bug I cannot test this on datasets v2.11.0 due to #5711, but this happens in v2.10.1. 1. Set up a script `my_dataset.py` to generate and load an offline dataset. 2. Load it with ```python ds = datasets.load_dataset(path=/path/to/my_dataset.py, name='toy', data_dir=/path/to/my_dataset.py, cache_dir=cache_dir, download_mode=datasets.DownloadMode.FORCE_REDOWNLOAD, ) ``` It loads fine ``` Dataset my_dataset downloaded and prepared to /path/to/cache/toy-..e05e/1.0.0/...5b4c. Subsequent calls will reuse this data. ``` 3. Try to load it again with the same snippet and the splits are generated, but at the end of the loading process it raises the error ``` 2023-04-11 12:10:19,965: DEBUG: open file: /path/to/cache/toy-..e05e/1.0.0/...5b4c.incomplete/dataset_info.json Traceback (most recent call last): File "<string>", line 2, in <module> File "/path/to/conda/environment/lib/python3.10/site-packages/datasets/load.py", line 1782, in load_dataset builder_instance.download_and_prepare( File "/path/to/conda/environment/lib/python3.10/site-packages/datasets/builder.py", line 852, in download_and_prepare with incomplete_dir(self._output_dir) as tmp_output_dir: File "/path/to/conda/environment/lib/python3.10/contextlib.py", line 142, in __exit__ next(self.gen) File "/path/to/conda/environment/lib/python3.10/site-packages/datasets/builder.py", line 826, in incomplete_dir shutil.rmtree(dirname) File "/path/to/conda/environment/lib/python3.10/shutil.py", line 730, in rmtree onerror(os.rmdir, path, sys.exc_info()) File "/path/to/conda/environment/lib/python3.10/shutil.py", line 728, in rmtree os.rmdir(path) OSError: [Errno 39] Directory not empty: '/path/to/cache/toy-..e05e/1.0.0/...5b4c' ``` ### Expected behavior Regenerate the dataset from scratch and reload it. ### Environment info - `datasets` version: 2.10.1 - Platform: Linux-4.18.0-483.el8.x86_64-x86_64-with-glibc2.28 - Python version: 3.10.8 - PyArrow version: 11.0.0 - Pandas version: 1.5.2
null
{ "+1": 4, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 4, "url": "https://api.github.com/repos/huggingface/datasets/issues/5736/reactions" }
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/pull/5735
5,735
Implement sharding on merged iterable datasets
{ "avatar_url": "https://avatars.githubusercontent.com/u/48770768?v=4", "events_url": "https://api.github.com/users/bruno-hays/events{/privacy}", "followers_url": "https://api.github.com/users/bruno-hays/followers", "following_url": "https://api.github.com/users/bruno-hays/following{/other_user}", "gists_url": "https://api.github.com/users/bruno-hays/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/bruno-hays", "id": 48770768, "login": "bruno-hays", "node_id": "MDQ6VXNlcjQ4NzcwNzY4", "organizations_url": "https://api.github.com/users/bruno-hays/orgs", "received_events_url": "https://api.github.com/users/bruno-hays/received_events", "repos_url": "https://api.github.com/users/bruno-hays/repos", "site_admin": false, "starred_url": "https://api.github.com/users/bruno-hays/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/bruno-hays/subscriptions", "type": "User", "url": "https://api.github.com/users/bruno-hays", "user_view_type": "public" }
[]
closed
false
[ "_The documentation is not available anymore as the PR was closed or merged._", "Hi ! What if one of the sub-iterables only has one shard ? In that case I don't think we'd end up with a correctly interleaved dataset, since only rank 0 would yield examples from this sub-iterable", "Hi ! \r\nI just tested this out with the code below and it seems to be ok. Both datasets are alternating and we get all the examples with no duplicates.\r\n\r\nOn thing to keep in mind is that the max amount of workers is equal to the lowest amount of shard amongst the datasets to be merged (1 in this example).\r\n\r\n ```python\r\nfrom torch.utils.data import DataLoader\r\n\r\nfrom datasets import load_dataset, interleave_datasets\r\n\r\n\r\ndef process_dataset_train(batch):\r\n return {\"input\": f'train: {batch[\"review\"][:20]}'}\r\n\r\n\r\ndef process_dataset_test(batch):\r\n return {\"input\": f'test: {batch[\"review\"][:20]}'}\r\n\r\n\r\ndef identity_collator(x):\r\n return x\r\n\r\n\r\nif __name__ == \"__main__\":\r\n ds = load_dataset(\"lhoestq/demo1\")\r\n ds[\"train\"] = ds[\"train\"].map(process_dataset_train, remove_columns=ds[\"train\"].column_names)\r\n ds[\"test\"] = ds[\"test\"].map(process_dataset_test, remove_columns=ds[\"test\"].column_names)\r\n\r\n ds1 = ds[\"train\"].to_iterable_dataset(num_shards=5)\r\n ds2 = ds[\"test\"].to_iterable_dataset(num_shards=1)\r\n\r\n ds_merged = interleave_datasets([ds1, ds2], stopping_strategy=\"all_exhausted\")\r\n\r\n dataloader = DataLoader(ds_merged, collate_fn=identity_collator, num_workers=1, batch_size=1)\r\n\r\n for i, element in enumerate(dataloader):\r\n print(i, element)\r\n\r\n```\r\n\r\n```\r\n0 [{'input': 'train: Great app! The new v'}]\r\n1 [{'input': 'test: Works with RTL and N'}]\r\n2 [{'input': \"train: Great It's not fully\"}]\r\n3 [{'input': 'test: Works with RTL SDR W'}]\r\n4 [{'input': 'train: Works on a Nexus 6p '}]\r\n5 [{'input': 'test: Awsome App! Easy to '}]\r\n6 [{'input': 'train: The bandwidth seemed'}]\r\n7 [{'input': \"test: I'll forgo the refun\"}]\r\n8 [{'input': 'train: Works well with my H'}]\r\n9 [{'input': 'test: looks like a great p'}]\r\n```", "<s> Could you try with `num_workers>1` ? </s>\r\n\r\nedit: Oh I see\r\n\r\n> On thing to keep in mind is that the max amount of workers is equal to the lowest amount of shard amongst the datasets to be merged (1 in this example).", "Great ! It's ok to have the max amount of workers is equal to the lowest amount of shard :)\r\n\r\nSo in the case of `num_workers>min(n_shards_per_dataset)` maybe some workers should turn off, and a warning can probably be shown. This is already the case if you use a single dataset with a single shard and `num_workers>1`.\r\n\r\n\r\nRight now it seems to raise an error:\r\n\r\n```python\r\n File \"/Users/quentinlhoest/hf/datasets/src/datasets/iterable_dataset.py\", line 979, in __iter__\r\n yield from self._iter_pytorch(ex_iterable)\r\n File \"/Users/quentinlhoest/hf/datasets/src/datasets/iterable_dataset.py\", line 912, in _iter_pytorch\r\n for key, example in ex_iterable.shard_data_sources(worker_info.id, worker_info.num_workers):\r\n File \"/Users/quentinlhoest/hf/datasets/src/datasets/iterable_dataset.py\", line 259, in shard_data_sources\r\n [iterable.shard_data_sources(worker_id, num_workers) for iterable in self.ex_iterables],\r\n File \"/Users/quentinlhoest/hf/datasets/src/datasets/iterable_dataset.py\", line 259, in <listcomp>\r\n [iterable.shard_data_sources(worker_id, num_workers) for iterable in self.ex_iterables],\r\n File \"/Users/quentinlhoest/hf/datasets/src/datasets/iterable_dataset.py\", line 125, in shard_data_sources\r\n requested_gen_kwargs = _merge_gen_kwargs([gen_kwargs_list[i] for i in shard_indices])\r\n File \"/Users/quentinlhoest/hf/datasets/src/datasets/utils/sharding.py\", line 76, in _merge_gen_kwargs\r\n for key in gen_kwargs_list[0]\r\nIndexError: list index out of range\r\n```", "Good point. I have fixed the n_shards property of merged iterable datasets so that this warning is raised properly", "Hey @lhoestq, what do you think of the last modifications ? ", "Hello! No problem :)\r\n\r\n- About HorizontallyConcatenatedMultiSourcesExamplesIterable, I've haven't been able to create a bug with sharding. So either I missed something or it's working somehow:\r\n\r\n```python\r\nfrom torch.utils.data import DataLoader\r\n\r\nfrom datasets import load_dataset, interleave_datasets, concatenate_datasets\r\n\r\n\r\ndef process_dataset_train(batch):\r\n return {\"input\": f'train: {batch[\"review\"][:20]}'}\r\n\r\n\r\ndef process_dataset_test(batch):\r\n return {\"input\": f'test: {batch[\"review\"][:20]}'}\r\n\r\n\r\ndef identity_collator(x):\r\n return x\r\n\r\n\r\nif __name__ == \"__main__\":\r\n ds = load_dataset(\"lhoestq/demo1\")\r\n ds[\"train\"] = ds[\"train\"].map(process_dataset_train, remove_columns=ds[\"train\"].column_names)\r\n ds[\"test\"] = ds[\"test\"].map(process_dataset_test, remove_columns=ds[\"test\"].column_names)\r\n ds[\"test\"] = ds[\"test\"].rename_columns({\"input\": \"input2\"})\r\n\r\n ds1 = ds[\"train\"].to_iterable_dataset(num_shards=5)\r\n ds2 = ds[\"test\"].to_iterable_dataset(num_shards=3)\r\n\r\n ds_merged = concatenate_datasets([ds1, ds2], axis=1)\r\n\r\n #n_shards is always 1 for HorizontallyConcatenatedMultiSourcesExamplesIterable\r\n dataloader = DataLoader(ds_merged, collate_fn=identity_collator, num_workers=1, batch_size=1)\r\n\r\n for i, element in enumerate(dataloader):\r\n print(i, element)\r\n```\r\n\r\n```\r\n0 [{'input': 'train: Great app! The new v', 'input2': 'test: Works with RTL and N'}]\r\n1 [{'input': \"train: Great It's not fully\", 'input2': 'test: Works with RTL SDR W'}]\r\n2 [{'input': 'train: Works on a Nexus 6p ', 'input2': 'test: Awsome App! Easy to '}]\r\n3 [{'input': 'train: The bandwidth seemed', 'input2': \"test: I'll forgo the refun\"}]\r\n4 [{'input': 'train: Works well with my H', 'input2': 'test: looks like a great p'}]\r\n```\r\n\r\n- I've added a test but I'm not completely happy with it. My issue is that multiprocessing makes interleaving not completely deterministic as samples are yielded whenever ready by each process, if I'm correct.\r\nAs a result I opted to check for the amount of samples yielded and make that they are all unique, which should be equivalent.\r\nBut now my issue is that the \"first_exhausted\" method breaks the loop when one of the datasets of one of the shards is empty which means that all shards stop yielding and we could be missing up to n_workers samples. I don't know if this is the behaviour expected, but I had to modify the test to accomodate this.\r\n\r\nWhat are your thoughts about this ?", "Ah indeed it works because it's set to be only 1 shard - my bad :)", "> But now my issue is that the \"first_exhausted\" method breaks the loop when one of the datasets of one of the shards is empty which means that all shards stop yielding and we could be missing up to n_workers samples. I don't know if this is the behaviour expected, but I had to modify the test to accomodate this.\r\n\r\nThis looks reasonable, maybe this can be documented in the `interleave_datasets` docstring ?\r\n```\r\nNote for iterable datasets:\r\n\r\nIn a distributed setup or in PyTorch DataLoader workers, the stopping strategy is applied per process.\r\nTherefore the \"first_exhausted\" strategy on an sharded iterable dataset can generate less samples in total (up to 1 missing sample per subdataset per worker).\r\n```", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006441 / 0.011353 (-0.004912) | 0.004551 / 0.011008 (-0.006457) | 0.099144 / 0.038508 (0.060636) | 0.028163 / 0.023109 (0.005054) | 0.386342 / 0.275898 (0.110444) | 0.398347 / 0.323480 (0.074867) | 0.004836 / 0.007986 (-0.003150) | 0.004724 / 0.004328 (0.000395) | 0.076277 / 0.004250 (0.072027) | 0.036305 / 0.037052 (-0.000747) | 0.377179 / 0.258489 (0.118690) | 0.410694 / 0.293841 (0.116853) | 0.030196 / 0.128546 (-0.098351) | 0.011436 / 0.075646 (-0.064211) | 0.325911 / 0.419271 (-0.093360) | 0.043709 / 0.043533 (0.000177) | 0.375801 / 0.255139 (0.120662) | 0.396511 / 0.283200 (0.113311) | 0.088346 / 0.141683 (-0.053337) | 1.483427 / 1.452155 (0.031272) | 1.553708 / 1.492716 (0.060992) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.190974 / 0.018006 (0.172968) | 0.451309 / 0.000490 (0.450819) | 0.004045 / 0.000200 (0.003845) | 0.000077 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023814 / 0.037411 (-0.013597) | 0.096922 / 0.014526 (0.082396) | 0.101506 / 0.176557 (-0.075050) | 0.164694 / 0.737135 (-0.572441) | 0.106899 / 0.296338 (-0.189439) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.432164 / 0.215209 (0.216954) | 4.308076 / 2.077655 (2.230421) | 2.092434 / 1.504120 (0.588314) | 1.937405 / 1.541195 (0.396210) | 1.988030 / 1.468490 (0.519540) | 0.695476 / 4.584777 (-3.889301) | 3.436413 / 3.745712 (-0.309299) | 2.892954 / 5.269862 (-2.376908) | 1.519906 / 4.565676 (-3.045771) | 0.082579 / 0.424275 (-0.341696) | 0.012233 / 0.007607 (0.004626) | 0.531329 / 0.226044 (0.305284) | 5.365272 / 2.268929 (3.096344) | 2.391452 / 55.444624 (-53.053172) | 2.051116 / 6.876477 (-4.825361) | 2.140663 / 2.142072 (-0.001410) | 0.807262 / 4.805227 (-3.997966) | 0.151290 / 6.500664 (-6.349374) | 0.066137 / 0.075469 (-0.009333) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.193106 / 1.841788 (-0.648682) | 13.577240 / 8.074308 (5.502932) | 14.280126 / 10.191392 (4.088734) | 0.142538 / 0.680424 (-0.537886) | 0.016641 / 0.534201 (-0.517560) | 0.386318 / 0.579283 (-0.192965) | 0.385991 / 0.434364 (-0.048373) | 0.440712 / 0.540337 (-0.099625) | 0.524189 / 1.386936 (-0.862747) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006628 / 0.011353 (-0.004725) | 0.004664 / 0.011008 (-0.006344) | 0.077254 / 0.038508 (0.038746) | 0.028369 / 0.023109 (0.005259) | 0.343076 / 0.275898 (0.067178) | 0.376491 / 0.323480 (0.053011) | 0.005298 / 0.007986 (-0.002687) | 0.004853 / 0.004328 (0.000524) | 0.075927 / 0.004250 (0.071677) | 0.039951 / 0.037052 (0.002899) | 0.346225 / 0.258489 (0.087736) | 0.382367 / 0.293841 (0.088526) | 0.031133 / 0.128546 (-0.097413) | 0.011666 / 0.075646 (-0.063981) | 0.086383 / 0.419271 (-0.332889) | 0.042885 / 0.043533 (-0.000647) | 0.343885 / 0.255139 (0.088746) | 0.366840 / 0.283200 (0.083640) | 0.095942 / 0.141683 (-0.045741) | 1.528972 / 1.452155 (0.076817) | 1.586392 / 1.492716 (0.093676) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223952 / 0.018006 (0.205946) | 0.410767 / 0.000490 (0.410277) | 0.001014 / 0.000200 (0.000814) | 0.000067 / 0.000054 (0.000012) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024210 / 0.037411 (-0.013201) | 0.100308 / 0.014526 (0.085782) | 0.106899 / 0.176557 (-0.069658) | 0.156514 / 0.737135 (-0.580621) | 0.109548 / 0.296338 (-0.186790) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.434763 / 0.215209 (0.219554) | 4.348485 / 2.077655 (2.270831) | 2.064255 / 1.504120 (0.560135) | 1.864394 / 1.541195 (0.323199) | 1.899732 / 1.468490 (0.431242) | 0.694147 / 4.584777 (-3.890630) | 3.357898 / 3.745712 (-0.387815) | 2.909155 / 5.269862 (-2.360707) | 1.424790 / 4.565676 (-3.140886) | 0.082597 / 0.424275 (-0.341678) | 0.012442 / 0.007607 (0.004835) | 0.538758 / 0.226044 (0.312713) | 5.390288 / 2.268929 (3.121359) | 2.532016 / 55.444624 (-52.912609) | 2.185724 / 6.876477 (-4.690753) | 2.274176 / 2.142072 (0.132104) | 0.804785 / 4.805227 (-4.000442) | 0.152649 / 6.500664 (-6.348015) | 0.067707 / 0.075469 (-0.007762) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.285219 / 1.841788 (-0.556568) | 13.958098 / 8.074308 (5.883790) | 14.043653 / 10.191392 (3.852261) | 0.144526 / 0.680424 (-0.535898) | 0.016813 / 0.534201 (-0.517388) | 0.390286 / 0.579283 (-0.188997) | 0.389184 / 0.434364 (-0.045180) | 0.470810 / 0.540337 (-0.069527) | 0.562391 / 1.386936 (-0.824545) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#4bb172c9772858c188f85ffc9a51f8cb1da292a0 \"CML watermark\")\n" ]
2023-04-11T10:02:25Z
2023-04-27T16:39:04Z
2023-04-27T16:32:09Z
CONTRIBUTOR
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5735.diff", "html_url": "https://github.com/huggingface/datasets/pull/5735", "merged_at": "2023-04-27T16:32:09Z", "patch_url": "https://github.com/huggingface/datasets/pull/5735.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5735" }
This PR allows sharding of merged iterable datasets. Merged iterable datasets with for instance the `interleave_datasets` command are comprised of multiple sub-iterable, one for each dataset that has been merged. With this PR, sharding a merged iterable will result in multiple merged datasets each comprised of sharded sub-iterable, ensuring that there is no duplication of data. As a result it is now possible to set any amount of workers in the dataloader as long as it is lower or equal to the lowest amount of shards amongst the datasets. Before it had to be set to 0. I previously talked about this issue on the forum [here](https://discuss.huggingface.co/t/interleaving-iterable-dataset-with-num-workers-0/35801)
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5735/reactions" }
null
null
null
true
https://github.com/huggingface/datasets/issues/5734
5,734
Remove temporary pin of fsspec
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
[]
2023-04-11T09:04:17Z
2023-04-11T11:04:52Z
2023-04-11T11:04:52Z
MEMBER
null
null
Once root cause is found and fixed, remove the temporary pin introduced by: - #5731
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5734/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/pull/5733
5,733
Unpin fsspec
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006240 / 0.011353 (-0.005113) | 0.004392 / 0.011008 (-0.006616) | 0.097276 / 0.038508 (0.058768) | 0.027262 / 0.023109 (0.004153) | 0.303203 / 0.275898 (0.027305) | 0.331878 / 0.323480 (0.008398) | 0.004706 / 0.007986 (-0.003279) | 0.004428 / 0.004328 (0.000100) | 0.074666 / 0.004250 (0.070416) | 0.036154 / 0.037052 (-0.000899) | 0.302997 / 0.258489 (0.044508) | 0.340350 / 0.293841 (0.046509) | 0.031011 / 0.128546 (-0.097535) | 0.011616 / 0.075646 (-0.064031) | 0.323671 / 0.419271 (-0.095601) | 0.042062 / 0.043533 (-0.001471) | 0.311381 / 0.255139 (0.056242) | 0.324697 / 0.283200 (0.041498) | 0.084248 / 0.141683 (-0.057435) | 1.471651 / 1.452155 (0.019496) | 1.533414 / 1.492716 (0.040697) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.193555 / 0.018006 (0.175549) | 0.393452 / 0.000490 (0.392962) | 0.002348 / 0.000200 (0.002148) | 0.000071 / 0.000054 (0.000016) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022523 / 0.037411 (-0.014889) | 0.096552 / 0.014526 (0.082026) | 0.101746 / 0.176557 (-0.074810) | 0.163145 / 0.737135 (-0.573990) | 0.106417 / 0.296338 (-0.189921) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.448589 / 0.215209 (0.233380) | 4.467803 / 2.077655 (2.390148) | 2.178745 / 1.504120 (0.674625) | 1.983339 / 1.541195 (0.442145) | 2.056554 / 1.468490 (0.588064) | 0.697571 / 4.584777 (-3.887206) | 3.363967 / 3.745712 (-0.381745) | 1.872526 / 5.269862 (-3.397336) | 1.258245 / 4.565676 (-3.307432) | 0.082954 / 0.424275 (-0.341321) | 0.012306 / 0.007607 (0.004699) | 0.545096 / 0.226044 (0.319052) | 5.468706 / 2.268929 (3.199777) | 2.645333 / 55.444624 (-52.799292) | 2.287659 / 6.876477 (-4.588818) | 2.346768 / 2.142072 (0.204696) | 0.803730 / 4.805227 (-4.001497) | 0.151037 / 6.500664 (-6.349627) | 0.066404 / 0.075469 (-0.009065) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.192982 / 1.841788 (-0.648806) | 13.631225 / 8.074308 (5.556917) | 13.830053 / 10.191392 (3.638661) | 0.141901 / 0.680424 (-0.538523) | 0.016500 / 0.534201 (-0.517701) | 0.373268 / 0.579283 (-0.206015) | 0.380123 / 0.434364 (-0.054241) | 0.430786 / 0.540337 (-0.109551) | 0.512669 / 1.386936 (-0.874267) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006161 / 0.011353 (-0.005192) | 0.004399 / 0.011008 (-0.006609) | 0.076210 / 0.038508 (0.037702) | 0.026791 / 0.023109 (0.003681) | 0.341523 / 0.275898 (0.065625) | 0.370400 / 0.323480 (0.046920) | 0.004495 / 0.007986 (-0.003491) | 0.003204 / 0.004328 (-0.001125) | 0.075444 / 0.004250 (0.071194) | 0.035914 / 0.037052 (-0.001138) | 0.343806 / 0.258489 (0.085317) | 0.384320 / 0.293841 (0.090479) | 0.031438 / 0.128546 (-0.097109) | 0.011253 / 0.075646 (-0.064393) | 0.085364 / 0.419271 (-0.333908) | 0.041407 / 0.043533 (-0.002126) | 0.338831 / 0.255139 (0.083692) | 0.364357 / 0.283200 (0.081158) | 0.087417 / 0.141683 (-0.054266) | 1.520624 / 1.452155 (0.068470) | 1.572432 / 1.492716 (0.079716) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.232403 / 0.018006 (0.214396) | 0.388187 / 0.000490 (0.387698) | 0.001158 / 0.000200 (0.000958) | 0.000069 / 0.000054 (0.000014) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024596 / 0.037411 (-0.012816) | 0.101203 / 0.014526 (0.086677) | 0.105243 / 0.176557 (-0.071314) | 0.158215 / 0.737135 (-0.578920) | 0.110277 / 0.296338 (-0.186061) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.435661 / 0.215209 (0.220452) | 4.350151 / 2.077655 (2.272496) | 2.072372 / 1.504120 (0.568252) | 1.870675 / 1.541195 (0.329480) | 1.910883 / 1.468490 (0.442393) | 0.697384 / 4.584777 (-3.887393) | 3.399377 / 3.745712 (-0.346335) | 2.685008 / 5.269862 (-2.584854) | 1.476843 / 4.565676 (-3.088834) | 0.083177 / 0.424275 (-0.341098) | 0.012413 / 0.007607 (0.004806) | 0.542543 / 0.226044 (0.316498) | 5.431422 / 2.268929 (3.162494) | 2.506419 / 55.444624 (-52.938206) | 2.166342 / 6.876477 (-4.710135) | 2.164421 / 2.142072 (0.022348) | 0.800609 / 4.805227 (-4.004618) | 0.150527 / 6.500664 (-6.350137) | 0.065780 / 0.075469 (-0.009689) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.293409 / 1.841788 (-0.548379) | 13.814898 / 8.074308 (5.740590) | 13.940416 / 10.191392 (3.749024) | 0.149377 / 0.680424 (-0.531047) | 0.016462 / 0.534201 (-0.517739) | 0.393748 / 0.579283 (-0.185535) | 0.384327 / 0.434364 (-0.050037) | 0.489900 / 0.540337 (-0.050437) | 0.574608 / 1.386936 (-0.812328) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f2607935c4e45c70c44fcb698db0363ca7ba83d4 \"CML watermark\")\n" ]
2023-04-11T08:52:12Z
2023-04-11T11:11:45Z
2023-04-11T11:04:51Z
MEMBER
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5733.diff", "html_url": "https://github.com/huggingface/datasets/pull/5733", "merged_at": "2023-04-11T11:04:51Z", "patch_url": "https://github.com/huggingface/datasets/pull/5733.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5733" }
In `fsspec--2023.4.0` default value for clobber when registering an implementation was changed from True to False. See: - https://github.com/fsspec/filesystem_spec/pull/1237 This PR recovers previous behavior by passing clobber True when registering mock implementations. This PR also removes the temporary pin introduced by: - #5731 Fix #5734.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5733/reactions" }
null
null
null
true
https://github.com/huggingface/datasets/issues/5732
5,732
Enwik8 should support the standard split
{ "avatar_url": "https://avatars.githubusercontent.com/u/10287371?v=4", "events_url": "https://api.github.com/users/lucaslingle/events{/privacy}", "followers_url": "https://api.github.com/users/lucaslingle/followers", "following_url": "https://api.github.com/users/lucaslingle/following{/other_user}", "gists_url": "https://api.github.com/users/lucaslingle/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lucaslingle", "id": 10287371, "login": "lucaslingle", "node_id": "MDQ6VXNlcjEwMjg3Mzcx", "organizations_url": "https://api.github.com/users/lucaslingle/orgs", "received_events_url": "https://api.github.com/users/lucaslingle/received_events", "repos_url": "https://api.github.com/users/lucaslingle/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lucaslingle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lucaslingle/subscriptions", "type": "User", "url": "https://api.github.com/users/lucaslingle", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
[ "#self-assign", "The Enwik8 pipeline is not present in this codebase, and is hosted elsewhere. I have opened a PR [there](https://huggingface.co/datasets/enwik8/discussions/4) instead. " ]
2023-04-11T08:38:53Z
2023-04-11T09:28:17Z
2023-04-11T09:28:16Z
NONE
null
null
### Feature request The HuggingFace Datasets library currently supports two BuilderConfigs for Enwik8. One config yields individual lines as examples, while the other config yields the entire dataset as a single example. Both support only a monolithic split: it is all grouped as "train". The HuggingFace Datasets library should include a BuilderConfig for Enwik8 with train, validation, and test sets derived from the first 90 million bytes, next 5 million bytes, and last 5 million bytes, respectively. This Enwik8 split is standard practice in LM papers, as elaborated and motivated below. ### Motivation Enwik8 is commonly split into 90M, 5M, 5M consecutive bytes. This is done in the Transformer-XL [codebase](https://github.com/kimiyoung/transformer-xl/blob/44781ed21dbaec88b280f74d9ae2877f52b492a5/getdata.sh#L34), and is additionally mentioned in the Sparse Transformers [paper](https://arxiv.org/abs/1904.10509) and the Compressive Transformers [paper](https://arxiv.org/abs/1911.05507). This split is pretty much universal among language modeling papers. One may obtain the splits by manual wrangling, using the data yielded by the ```enwik8-raw``` BuilderConfig. However, this undermines the seamless functionality of the library: one must slice the single raw example, extract it into three tensors, and wrap each in a separate dataset. This becomes even more of a nuisance if using the current Enwik8 HuggingFace dataset as a TfdsDataSource with [SeqIO](https://github.com/google/seqio), where a pipeline of preprocessors is typically included in a SeqIO Task definition, to be applied immediately after loading the data with TFDS. ### Your contribution Supporting this functionality in HuggingFace Datasets will only require an additional BuilderConfig for Enwik8 and a few additional lines of code. I will submit a PR.
{ "avatar_url": "https://avatars.githubusercontent.com/u/10287371?v=4", "events_url": "https://api.github.com/users/lucaslingle/events{/privacy}", "followers_url": "https://api.github.com/users/lucaslingle/followers", "following_url": "https://api.github.com/users/lucaslingle/following{/other_user}", "gists_url": "https://api.github.com/users/lucaslingle/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lucaslingle", "id": 10287371, "login": "lucaslingle", "node_id": "MDQ6VXNlcjEwMjg3Mzcx", "organizations_url": "https://api.github.com/users/lucaslingle/orgs", "received_events_url": "https://api.github.com/users/lucaslingle/received_events", "repos_url": "https://api.github.com/users/lucaslingle/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lucaslingle/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lucaslingle/subscriptions", "type": "User", "url": "https://api.github.com/users/lucaslingle", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5732/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/pull/5731
5,731
Temporarily pin fsspec
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009735 / 0.011353 (-0.001618) | 0.010410 / 0.011008 (-0.000598) | 0.134986 / 0.038508 (0.096478) | 0.038392 / 0.023109 (0.015283) | 0.414451 / 0.275898 (0.138553) | 0.447775 / 0.323480 (0.124295) | 0.007223 / 0.007986 (-0.000763) | 0.006373 / 0.004328 (0.002045) | 0.102631 / 0.004250 (0.098381) | 0.048516 / 0.037052 (0.011464) | 0.410179 / 0.258489 (0.151690) | 0.467773 / 0.293841 (0.173932) | 0.053163 / 0.128546 (-0.075384) | 0.019801 / 0.075646 (-0.055845) | 0.452708 / 0.419271 (0.033436) | 0.068691 / 0.043533 (0.025159) | 0.405482 / 0.255139 (0.150343) | 0.457669 / 0.283200 (0.174470) | 0.113464 / 0.141683 (-0.028219) | 1.918143 / 1.452155 (0.465988) | 2.033123 / 1.492716 (0.540407) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.274564 / 0.018006 (0.256557) | 0.608855 / 0.000490 (0.608366) | 0.006266 / 0.000200 (0.006066) | 0.000105 / 0.000054 (0.000050) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033704 / 0.037411 (-0.003708) | 0.130982 / 0.014526 (0.116456) | 0.143862 / 0.176557 (-0.032694) | 0.212622 / 0.737135 (-0.524513) | 0.148899 / 0.296338 (-0.147439) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.670968 / 0.215209 (0.455759) | 6.602911 / 2.077655 (4.525256) | 2.644290 / 1.504120 (1.140171) | 2.268593 / 1.541195 (0.727399) | 2.325393 / 1.468490 (0.856903) | 1.388156 / 4.584777 (-3.196621) | 5.958569 / 3.745712 (2.212857) | 3.310756 / 5.269862 (-1.959106) | 2.390953 / 4.565676 (-2.174724) | 0.147416 / 0.424275 (-0.276859) | 0.015201 / 0.007607 (0.007594) | 0.794109 / 0.226044 (0.568064) | 7.984855 / 2.268929 (5.715926) | 3.382275 / 55.444624 (-52.062349) | 2.676102 / 6.876477 (-4.200375) | 2.846743 / 2.142072 (0.704671) | 1.467523 / 4.805227 (-3.337704) | 0.283184 / 6.500664 (-6.217480) | 0.088655 / 0.075469 (0.013186) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.632765 / 1.841788 (-0.209022) | 19.102473 / 8.074308 (11.028165) | 25.632535 / 10.191392 (15.441143) | 0.255628 / 0.680424 (-0.424795) | 0.034655 / 0.534201 (-0.499546) | 0.564593 / 0.579283 (-0.014690) | 0.668339 / 0.434364 (0.233975) | 0.648414 / 0.540337 (0.108076) | 0.766735 / 1.386936 (-0.620201) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009658 / 0.011353 (-0.001695) | 0.006690 / 0.011008 (-0.004318) | 0.099151 / 0.038508 (0.060643) | 0.037092 / 0.023109 (0.013983) | 0.470354 / 0.275898 (0.194456) | 0.525863 / 0.323480 (0.202383) | 0.007593 / 0.007986 (-0.000393) | 0.006637 / 0.004328 (0.002308) | 0.098782 / 0.004250 (0.094532) | 0.058524 / 0.037052 (0.021471) | 0.502569 / 0.258489 (0.244080) | 0.526410 / 0.293841 (0.232569) | 0.059486 / 0.128546 (-0.069060) | 0.019742 / 0.075646 (-0.055904) | 0.119715 / 0.419271 (-0.299556) | 0.065269 / 0.043533 (0.021736) | 0.483327 / 0.255139 (0.228188) | 0.506148 / 0.283200 (0.222948) | 0.123178 / 0.141683 (-0.018505) | 1.916624 / 1.452155 (0.464470) | 2.051410 / 1.492716 (0.558694) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.286481 / 0.018006 (0.268475) | 0.597300 / 0.000490 (0.596810) | 0.008906 / 0.000200 (0.008706) | 0.000128 / 0.000054 (0.000074) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031406 / 0.037411 (-0.006005) | 0.146748 / 0.014526 (0.132222) | 0.152898 / 0.176557 (-0.023658) | 0.212535 / 0.737135 (-0.524600) | 0.155577 / 0.296338 (-0.140761) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.660989 / 0.215209 (0.445780) | 6.688530 / 2.077655 (4.610875) | 3.039278 / 1.504120 (1.535159) | 2.660357 / 1.541195 (1.119162) | 2.696912 / 1.468490 (1.228422) | 1.259760 / 4.584777 (-3.325017) | 5.922452 / 3.745712 (2.176740) | 5.304200 / 5.269862 (0.034338) | 2.823928 / 4.565676 (-1.741748) | 0.148118 / 0.424275 (-0.276157) | 0.015575 / 0.007607 (0.007968) | 0.794404 / 0.226044 (0.568360) | 8.233651 / 2.268929 (5.964722) | 3.777482 / 55.444624 (-51.667142) | 3.064924 / 6.876477 (-3.811552) | 3.117803 / 2.142072 (0.975731) | 1.479559 / 4.805227 (-3.325668) | 0.254070 / 6.500664 (-6.246594) | 0.086806 / 0.075469 (0.011337) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.735515 / 1.841788 (-0.106273) | 18.934157 / 8.074308 (10.859848) | 22.645248 / 10.191392 (12.453856) | 0.227073 / 0.680424 (-0.453351) | 0.030650 / 0.534201 (-0.503551) | 0.594619 / 0.579283 (0.015336) | 0.653304 / 0.434364 (0.218940) | 0.707484 / 0.540337 (0.167147) | 0.823327 / 1.386936 (-0.563610) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#273392966e434286f4f5ba2ad596730bff11056d \"CML watermark\")\n" ]
2023-04-11T08:33:15Z
2023-04-11T08:57:45Z
2023-04-11T08:47:55Z
MEMBER
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5731.diff", "html_url": "https://github.com/huggingface/datasets/pull/5731", "merged_at": "2023-04-11T08:47:55Z", "patch_url": "https://github.com/huggingface/datasets/pull/5731.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5731" }
Fix #5730.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5731/reactions" }
null
null
null
true
https://github.com/huggingface/datasets/issues/5730
5,730
CI is broken: ValueError: Name (mock) already in the registry and clobber is False
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
[]
2023-04-11T08:29:46Z
2023-04-11T08:47:56Z
2023-04-11T08:47:56Z
MEMBER
null
null
CI is broken for `test_py310`. See: https://github.com/huggingface/datasets/actions/runs/4665326892/jobs/8258580948 ``` =========================== short test summary info ============================ ERROR tests/test_builder.py::test_builder_with_filesystem_download_and_prepare - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_builder.py::test_builder_with_filesystem_download_and_prepare_reload - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_dataset_dict.py::test_dummy_datasetdict_serialize_fs - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_file_utils.py::test_get_from_cache_fsspec - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_filesystem.py::test_is_remote_filesystem - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::test_xexists[tmp_path/file.txt-True] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::test_xexists[tmp_path/file_that_doesnt_exist.txt-False] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::test_xexists[mock://top_level/second_level/date=2019-10-01/a.parquet-True] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::test_xexists[mock://top_level/second_level/date=2019-10-01/file_that_doesnt_exist.parquet-False] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::test_xlistdir[tmp_path-expected_paths0] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::test_xlistdir[mock://-expected_paths1] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::test_xlistdir[mock://top_level-expected_paths2] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::test_xlistdir[mock://top_level/second_level/date=2019-10-01-expected_paths3] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::test_xisdir[tmp_path-True] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::test_xisdir[tmp_path/file.txt-False] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::test_xisdir[mock://-True] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::test_xisdir[mock://top_level-True] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::test_xisdir[mock://dir_that_doesnt_exist-False] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::test_xisfile[tmp_path/file.txt-True] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::test_xisfile[tmp_path/file_that_doesnt_exist.txt-False] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::test_xisfile[mock://-False] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::test_xisfile[mock://top_level/second_level/date=2019-10-01/a.parquet-True] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::test_xgetsize[tmp_path/file.txt-100] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::test_xgetsize[mock://-0] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::test_xgetsize[mock://top_level/second_level/date=2019-10-01/a.parquet-100] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::test_xglob[tmp_path/*.txt-expected_paths0] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::test_xglob[mock://*-expected_paths1] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::test_xglob[mock://top_*-expected_paths2] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::test_xglob[mock://top_level/second_level/date=2019-10-0[1-4]-expected_paths3] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::test_xglob[mock://top_level/second_level/date=2019-10-0[1-4]/*-expected_paths4] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::test_xwalk[tmp_path-expected_outputs0] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::test_xwalk[mock://top_level/second_level-expected_outputs1] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::TestxPath::test_xpath_exists[tmp_path/file.txt-True] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::TestxPath::test_xpath_exists[tmp_path/file_that_doesnt_exist.txt-False] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::TestxPath::test_xpath_exists[mock://top_level/second_level/date=2019-10-01/a.parquet-True] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::TestxPath::test_xpath_exists[mock://top_level/second_level/date=2019-10-01/file_that_doesnt_exist.parquet-False] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::TestxPath::test_xpath_glob[tmp_path-*.txt-expected_paths0] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::TestxPath::test_xpath_glob[mock://-*-expected_paths1] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::TestxPath::test_xpath_glob[mock://-top_*-expected_paths2] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::TestxPath::test_xpath_glob[mock://top_level/second_level-date=2019-10-0[1-4]-expected_paths3] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::TestxPath::test_xpath_glob[mock://top_level/second_level-date=2019-10-0[1-4]/*-expected_paths4] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::TestxPath::test_xpath_rglob[tmp_path-*.txt-expected_paths0] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::TestxPath::test_xpath_rglob[mock://-date=2019-10-0[1-4]-expected_paths1] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::TestxPath::test_xpath_rglob[mock://top_level-date=2019-10-0[1-4]-expected_paths2] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::TestxPath::test_xpath_rglob[mock://-date=2019-10-0[1-4]/*-expected_paths3] - ValueError: Name (mock) already in the registry and clobber is False ERROR tests/test_streaming_download_manager.py::TestxPath::test_xpath_rglob[mock://top_level-date=2019-10-0[1-4]/*-expected_paths4] - ValueError: Name (mock) already in the registry and clobber is False ===== 2105 passed, 18 skipped, 38 warnings, 46 errors in 236.22s (0:03:56) ===== ```
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5730/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/pull/5729
5,729
Fix nondeterministic sharded data split order
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
[ "_The documentation is not available anymore as the PR was closed or merged._", "The error in the CI was unrelated to this PR. I have merged main branch once that has been fixed.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006954 / 0.011353 (-0.004399) | 0.004947 / 0.011008 (-0.006061) | 0.086564 / 0.038508 (0.048056) | 0.031167 / 0.023109 (0.008058) | 0.262285 / 0.275898 (-0.013613) | 0.295753 / 0.323480 (-0.027727) | 0.005389 / 0.007986 (-0.002596) | 0.004130 / 0.004328 (-0.000198) | 0.065127 / 0.004250 (0.060877) | 0.042511 / 0.037052 (0.005458) | 0.263497 / 0.258489 (0.005008) | 0.307456 / 0.293841 (0.013615) | 0.031338 / 0.128546 (-0.097209) | 0.011023 / 0.075646 (-0.064623) | 0.295625 / 0.419271 (-0.123647) | 0.045813 / 0.043533 (0.002280) | 0.259369 / 0.255139 (0.004230) | 0.279325 / 0.283200 (-0.003875) | 0.099748 / 0.141683 (-0.041934) | 1.252572 / 1.452155 (-0.199583) | 1.347069 / 1.492716 (-0.145647) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.249726 / 0.018006 (0.231720) | 0.556882 / 0.000490 (0.556392) | 0.008237 / 0.000200 (0.008037) | 0.000294 / 0.000054 (0.000239) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026879 / 0.037411 (-0.010533) | 0.105141 / 0.014526 (0.090615) | 0.115473 / 0.176557 (-0.061084) | 0.172989 / 0.737135 (-0.564147) | 0.120433 / 0.296338 (-0.175906) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.400022 / 0.215209 (0.184812) | 3.965402 / 2.077655 (1.887747) | 1.805257 / 1.504120 (0.301138) | 1.610136 / 1.541195 (0.068941) | 1.661162 / 1.468490 (0.192672) | 0.695311 / 4.584777 (-3.889466) | 3.753757 / 3.745712 (0.008045) | 2.060609 / 5.269862 (-3.209253) | 1.333251 / 4.565676 (-3.232426) | 0.085790 / 0.424275 (-0.338485) | 0.012256 / 0.007607 (0.004649) | 0.502133 / 0.226044 (0.276088) | 5.040979 / 2.268929 (2.772051) | 2.310919 / 55.444624 (-53.133705) | 2.010534 / 6.876477 (-4.865943) | 2.132961 / 2.142072 (-0.009111) | 0.837636 / 4.805227 (-3.967592) | 0.169838 / 6.500664 (-6.330826) | 0.065003 / 0.075469 (-0.010466) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.218674 / 1.841788 (-0.623114) | 14.696076 / 8.074308 (6.621768) | 14.559492 / 10.191392 (4.368100) | 0.167761 / 0.680424 (-0.512663) | 0.017747 / 0.534201 (-0.516454) | 0.421624 / 0.579283 (-0.157659) | 0.414086 / 0.434364 (-0.020278) | 0.501398 / 0.540337 (-0.038940) | 0.596099 / 1.386936 (-0.790837) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007230 / 0.011353 (-0.004123) | 0.005345 / 0.011008 (-0.005664) | 0.073739 / 0.038508 (0.035231) | 0.033440 / 0.023109 (0.010330) | 0.339790 / 0.275898 (0.063892) | 0.367857 / 0.323480 (0.044377) | 0.005927 / 0.007986 (-0.002058) | 0.004279 / 0.004328 (-0.000049) | 0.074247 / 0.004250 (0.069996) | 0.048971 / 0.037052 (0.011918) | 0.340235 / 0.258489 (0.081746) | 0.380521 / 0.293841 (0.086680) | 0.035322 / 0.128546 (-0.093225) | 0.012416 / 0.075646 (-0.063230) | 0.086060 / 0.419271 (-0.333212) | 0.049331 / 0.043533 (0.005799) | 0.342871 / 0.255139 (0.087732) | 0.355673 / 0.283200 (0.072473) | 0.111976 / 0.141683 (-0.029707) | 1.462530 / 1.452155 (0.010375) | 1.550336 / 1.492716 (0.057620) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.266560 / 0.018006 (0.248554) | 0.550886 / 0.000490 (0.550396) | 0.001069 / 0.000200 (0.000869) | 0.000085 / 0.000054 (0.000031) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028701 / 0.037411 (-0.008711) | 0.110535 / 0.014526 (0.096010) | 0.122846 / 0.176557 (-0.053711) | 0.176395 / 0.737135 (-0.560740) | 0.128653 / 0.296338 (-0.167685) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.431693 / 0.215209 (0.216484) | 4.283691 / 2.077655 (2.206036) | 2.013967 / 1.504120 (0.509847) | 1.823914 / 1.541195 (0.282719) | 1.872055 / 1.468490 (0.403565) | 0.703318 / 4.584777 (-3.881459) | 3.783412 / 3.745712 (0.037699) | 2.950147 / 5.269862 (-2.319715) | 1.826159 / 4.565676 (-2.739518) | 0.086897 / 0.424275 (-0.337379) | 0.012512 / 0.007607 (0.004905) | 0.526730 / 0.226044 (0.300685) | 5.263871 / 2.268929 (2.994943) | 2.552163 / 55.444624 (-52.892462) | 2.276216 / 6.876477 (-4.600261) | 2.419934 / 2.142072 (0.277862) | 0.848235 / 4.805227 (-3.956993) | 0.170405 / 6.500664 (-6.330259) | 0.064979 / 0.075469 (-0.010491) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.276780 / 1.841788 (-0.565008) | 15.100829 / 8.074308 (7.026521) | 15.117531 / 10.191392 (4.926139) | 0.147129 / 0.680424 (-0.533295) | 0.017806 / 0.534201 (-0.516395) | 0.422975 / 0.579283 (-0.156308) | 0.430286 / 0.434364 (-0.004078) | 0.501405 / 0.540337 (-0.038932) | 0.596810 / 1.386936 (-0.790126) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#f6ee2e6603fe81638256d37a6aa7ad0400e31a83 \"CML watermark\")\n" ]
2023-04-11T07:34:20Z
2023-04-26T15:12:25Z
2023-04-26T15:05:12Z
MEMBER
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5729.diff", "html_url": "https://github.com/huggingface/datasets/pull/5729", "merged_at": "2023-04-26T15:05:12Z", "patch_url": "https://github.com/huggingface/datasets/pull/5729.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5729" }
This PR makes the order of the split names deterministic. Before it was nondeterministic because we were iterating over `set` elements. Fix #5728.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5729/reactions" }
null
null
null
true
https://github.com/huggingface/datasets/issues/5728
5,728
The order of data split names is nondeterministic
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
[]
2023-04-11T07:31:25Z
2023-04-26T15:05:13Z
2023-04-26T15:05:13Z
MEMBER
null
null
After this CI error: https://github.com/huggingface/datasets/actions/runs/4639528358/jobs/8210492953?pr=5718 ``` FAILED tests/test_data_files.py::test_get_data_files_patterns[data_file_per_split4] - AssertionError: assert ['random', 'train'] == ['train', 'random'] At index 0 diff: 'random' != 'train' Full diff: - ['train', 'random'] + ['random', 'train'] ``` I have checked locally and found out that the data split order is nondeterministic. This is caused by the use of `set` for sharded splits.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5728/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5727
5,727
load_dataset fails with FileNotFound error on Windows
{ "avatar_url": "https://avatars.githubusercontent.com/u/122648572?v=4", "events_url": "https://api.github.com/users/joelkowalewski/events{/privacy}", "followers_url": "https://api.github.com/users/joelkowalewski/followers", "following_url": "https://api.github.com/users/joelkowalewski/following{/other_user}", "gists_url": "https://api.github.com/users/joelkowalewski/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/joelkowalewski", "id": 122648572, "login": "joelkowalewski", "node_id": "U_kgDOB093_A", "organizations_url": "https://api.github.com/users/joelkowalewski/orgs", "received_events_url": "https://api.github.com/users/joelkowalewski/received_events", "repos_url": "https://api.github.com/users/joelkowalewski/repos", "site_admin": false, "starred_url": "https://api.github.com/users/joelkowalewski/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/joelkowalewski/subscriptions", "type": "User", "url": "https://api.github.com/users/joelkowalewski", "user_view_type": "public" }
[]
closed
false
[ "Hi! Can you please paste the entire error stack trace, not only the last few lines?", "`----> 1 dataset = datasets.load_dataset(\"glue\", \"ax\")\r\n\r\nFile ~\\anaconda3\\envs\\huggingface\\Lib\\site-packages\\datasets\\load.py:1767, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, use_auth_token, task, streaming, num_proc, storage_options, **config_kwargs)\r\n 1762 verification_mode = VerificationMode(\r\n 1763 (verification_mode or VerificationMode.BASIC_CHECKS) if not save_infos else VerificationMode.ALL_CHECKS\r\n 1764 )\r\n 1766 # Create a dataset builder\r\n-> 1767 builder_instance = load_dataset_builder(\r\n 1768 path=path,\r\n 1769 name=name,\r\n 1770 data_dir=data_dir,\r\n 1771 data_files=data_files,\r\n 1772 cache_dir=cache_dir,\r\n 1773 features=features,\r\n 1774 download_config=download_config,\r\n 1775 download_mode=download_mode,\r\n 1776 revision=revision,\r\n 1777 use_auth_token=use_auth_token,\r\n 1778 storage_options=storage_options,\r\n 1779 **config_kwargs,\r\n 1780 )\r\n 1782 # Return iterable dataset in case of streaming\r\n 1783 if streaming:\r\n\r\nFile ~\\anaconda3\\envs\\huggingface\\Lib\\site-packages\\datasets\\load.py:1498, in load_dataset_builder(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, use_auth_token, storage_options, **config_kwargs)\r\n 1496 download_config = download_config.copy() if download_config else DownloadConfig()\r\n 1497 download_config.use_auth_token = use_auth_token\r\n-> 1498 dataset_module = dataset_module_factory(\r\n 1499 path,\r\n 1500 revision=revision,\r\n 1501 download_config=download_config,\r\n 1502 download_mode=download_mode,\r\n 1503 data_dir=data_dir,\r\n 1504 data_files=data_files,\r\n 1505 )\r\n 1507 # Get dataset builder class from the processing script\r\n 1508 builder_cls = import_main_class(dataset_module.module_path)\r\n\r\nFile ~\\anaconda3\\envs\\huggingface\\Lib\\site-packages\\datasets\\load.py:1211, in dataset_module_factory(path, revision, download_config, download_mode, dynamic_modules_path, data_dir, data_files, **download_kwargs)\r\n 1209 raise e1 from None\r\n 1210 if isinstance(e1, FileNotFoundError):\r\n-> 1211 raise FileNotFoundError(\r\n 1212 f\"Couldn't find a dataset script at {relative_to_absolute_path(combined_path)} or any data file in the same directory. \"\r\n 1213 f\"Couldn't find '{path}' on the Hugging Face Hub either: {type(e1).__name__}: {e1}\"\r\n 1214 ) from None\r\n 1215 raise e1 from None\r\n 1216 else:`", "Okay, this is the issue:\r\n```\r\nFileNotFoundError: [WinError 3] The system cannot find the path specified: \r\n'C:\\\\Users\\\\...\\\\.cache\\\\huggingface'\r\n``` \r\n\r\nI don't remember seeing this error before.\r\n\r\nI guess it could happen in a multi-process environment if one of the processes deletes the `datasets` cache as the other one is loading a dataset (with `load_dataset`), so make sure that's not the case. Also, you can disable the Windows max path length limit (if enabled), but this is most likely not the problem.", "Closing due to inactivity." ]
2023-04-10T23:21:12Z
2023-07-21T14:08:20Z
2023-07-21T14:08:19Z
NONE
null
null
### Describe the bug Although I can import and run the datasets library in a Colab environment, I cannot successfully load any data on my own machine (Windows 10) despite following the install steps: (1) create conda environment (2) activate environment (3) install with: ``conda` install -c huggingface -c conda-forge datasets` Then ``` from datasets import load_dataset # this or any other example from the website fails with the FileNotFoundError glue = load_dataset("glue", "ax") ``` **Below I have pasted the error omitting the full path**: ``` raise FileNotFoundError( FileNotFoundError: Couldn't find a dataset script at C:\Users\...\glue\glue.py or any data file in the same directory. Couldn't find 'glue' on the Hugging Face Hub either: FileNotFoundError: [WinError 3] The system cannot find the path specified: 'C:\\Users\\...\\.cache\\huggingface' ``` ### Steps to reproduce the bug On Windows 10 1) create a minimal conda environment (with just Python) (2) activate environment (3) install datasets with: ``conda` install -c huggingface -c conda-forge datasets` (4) import load_dataset and follow example usage from any dataset card. ### Expected behavior The expected behavior is to load the file into the Python session running on my machine without error. ### Environment info ``` # Name Version Build Channel aiohttp 3.8.4 py311ha68e1ae_0 conda-forge aiosignal 1.3.1 pyhd8ed1ab_0 conda-forge arrow-cpp 11.0.0 h57928b3_13_cpu conda-forge async-timeout 4.0.2 pyhd8ed1ab_0 conda-forge attrs 22.2.0 pyh71513ae_0 conda-forge aws-c-auth 0.6.26 h1262f0c_1 conda-forge aws-c-cal 0.5.21 h7cda486_2 conda-forge aws-c-common 0.8.14 hcfcfb64_0 conda-forge aws-c-compression 0.2.16 h8a79959_5 conda-forge aws-c-event-stream 0.2.20 h5f78564_4 conda-forge aws-c-http 0.7.6 h2545be9_0 conda-forge aws-c-io 0.13.19 h0d2781e_3 conda-forge aws-c-mqtt 0.8.6 hd211e0c_12 conda-forge aws-c-s3 0.2.7 h8113e7b_1 conda-forge aws-c-sdkutils 0.1.8 h8a79959_0 conda-forge aws-checksums 0.1.14 h8a79959_5 conda-forge aws-crt-cpp 0.19.8 he6d3b81_12 conda-forge aws-sdk-cpp 1.10.57 h64004b3_8 conda-forge brotlipy 0.7.0 py311ha68e1ae_1005 conda-forge bzip2 1.0.8 h8ffe710_4 conda-forge c-ares 1.19.0 h2bbff1b_0 ca-certificates 2023.01.10 haa95532_0 certifi 2022.12.7 pyhd8ed1ab_0 conda-forge cffi 1.15.1 py311h7d9ee11_3 conda-forge charset-normalizer 2.1.1 pyhd8ed1ab_0 conda-forge colorama 0.4.6 pyhd8ed1ab_0 conda-forge cryptography 40.0.1 py311h28e9c30_0 conda-forge dataclasses 0.8 pyhc8e2a94_3 conda-forge datasets 2.11.0 py_0 huggingface dill 0.3.6 pyhd8ed1ab_1 conda-forge filelock 3.11.0 pyhd8ed1ab_0 conda-forge frozenlist 1.3.3 py311ha68e1ae_0 conda-forge fsspec 2023.4.0 pyh1a96a4e_0 conda-forge gflags 2.2.2 ha925a31_1004 conda-forge glog 0.6.0 h4797de2_0 conda-forge huggingface_hub 0.13.4 py_0 huggingface idna 3.4 pyhd8ed1ab_0 conda-forge importlib-metadata 6.3.0 pyha770c72_0 conda-forge importlib_metadata 6.3.0 hd8ed1ab_0 conda-forge intel-openmp 2023.0.0 h57928b3_25922 conda-forge krb5 1.20.1 heb0366b_0 conda-forge libabseil 20230125.0 cxx17_h63175ca_1 conda-forge libarrow 11.0.0 h04c43f8_13_cpu conda-forge libblas 3.9.0 16_win64_mkl conda-forge libbrotlicommon 1.0.9 hcfcfb64_8 conda-forge libbrotlidec 1.0.9 hcfcfb64_8 conda-forge libbrotlienc 1.0.9 hcfcfb64_8 conda-forge libcblas 3.9.0 16_win64_mkl conda-forge libcrc32c 1.1.2 h0e60522_0 conda-forge libcurl 7.88.1 h68f0423_1 conda-forge libexpat 2.5.0 h63175ca_1 conda-forge libffi 3.4.2 h8ffe710_5 conda-forge libgoogle-cloud 2.8.0 hf2ff781_1 conda-forge libgrpc 1.52.1 h32da247_1 conda-forge libhwloc 2.9.0 h51c2c0f_0 conda-forge libiconv 1.17 h8ffe710_0 conda-forge liblapack 3.9.0 16_win64_mkl conda-forge libprotobuf 3.21.12 h12be248_0 conda-forge libsqlite 3.40.0 hcfcfb64_0 conda-forge libssh2 1.10.0 h9a1e1f7_3 conda-forge libthrift 0.18.1 h9ce19ad_0 conda-forge libutf8proc 2.8.0 h82a8f57_0 conda-forge libxml2 2.10.3 hc3477c8_6 conda-forge libzlib 1.2.13 hcfcfb64_4 conda-forge lz4-c 1.9.4 hcfcfb64_0 conda-forge mkl 2022.1.0 h6a75c08_874 conda-forge multidict 6.0.4 py311ha68e1ae_0 conda-forge multiprocess 0.70.14 py311ha68e1ae_3 conda-forge numpy 1.24.2 py311h0b4df5a_0 conda-forge openssl 3.1.0 hcfcfb64_0 conda-forge orc 1.8.3 hada7b9e_0 conda-forge packaging 23.0 pyhd8ed1ab_0 conda-forge pandas 2.0.0 py311hf63dbb6_0 conda-forge parquet-cpp 1.5.1 2 conda-forge pip 23.0.1 pyhd8ed1ab_0 conda-forge pthreads-win32 2.9.1 hfa6e2cd_3 conda-forge pyarrow 11.0.0 py311h6a6099b_13_cpu conda-forge pycparser 2.21 pyhd8ed1ab_0 conda-forge pyopenssl 23.1.1 pyhd8ed1ab_0 conda-forge pysocks 1.7.1 pyh0701188_6 conda-forge python 3.11.3 h2628c8c_0_cpython conda-forge python-dateutil 2.8.2 pyhd8ed1ab_0 conda-forge python-tzdata 2023.3 pyhd8ed1ab_0 conda-forge python-xxhash 3.2.0 py311ha68e1ae_0 conda-forge python_abi 3.11 3_cp311 conda-forge pytz 2023.3 pyhd8ed1ab_0 conda-forge pyyaml 6.0 py311ha68e1ae_5 conda-forge re2 2023.02.02 h63175ca_0 conda-forge requests 2.28.2 pyhd8ed1ab_1 conda-forge setuptools 67.6.1 pyhd8ed1ab_0 conda-forge six 1.16.0 pyh6c4a22f_0 conda-forge snappy 1.1.10 hfb803bf_0 conda-forge tbb 2021.8.0 h91493d7_0 conda-forge tk 8.6.12 h8ffe710_0 conda-forge tqdm 4.65.0 pyhd8ed1ab_1 conda-forge typing-extensions 4.5.0 hd8ed1ab_0 conda-forge typing_extensions 4.5.0 pyha770c72_0 conda-forge tzdata 2023c h71feb2d_0 conda-forge ucrt 10.0.22621.0 h57928b3_0 conda-forge urllib3 1.26.15 pyhd8ed1ab_0 conda-forge vc 14.3 hb6edc58_10 conda-forge vs2015_runtime 14.34.31931 h4c5c07a_10 conda-forge wheel 0.40.0 pyhd8ed1ab_0 conda-forge win_inet_pton 1.1.0 pyhd8ed1ab_6 conda-forge xxhash 0.8.1 hcfcfb64_0 conda-forge xz 5.2.10 h8cc25b3_1 yaml 0.2.5 h8ffe710_2 conda-forge yarl 1.8.2 py311ha68e1ae_0 conda-forge zipp 3.15.0 pyhd8ed1ab_0 conda-forge zlib 1.2.13 hcfcfb64_4 conda-forge zstd 1.5.4 hd43e919_0 ```
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5727/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5726
5,726
Fallback JSON Dataset loading does not load all values when features specified manually
{ "avatar_url": "https://avatars.githubusercontent.com/u/3610788?v=4", "events_url": "https://api.github.com/users/myluki2000/events{/privacy}", "followers_url": "https://api.github.com/users/myluki2000/followers", "following_url": "https://api.github.com/users/myluki2000/following{/other_user}", "gists_url": "https://api.github.com/users/myluki2000/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/myluki2000", "id": 3610788, "login": "myluki2000", "node_id": "MDQ6VXNlcjM2MTA3ODg=", "organizations_url": "https://api.github.com/users/myluki2000/orgs", "received_events_url": "https://api.github.com/users/myluki2000/received_events", "repos_url": "https://api.github.com/users/myluki2000/repos", "site_admin": false, "starred_url": "https://api.github.com/users/myluki2000/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/myluki2000/subscriptions", "type": "User", "url": "https://api.github.com/users/myluki2000", "user_view_type": "public" }
[]
closed
false
[ "Thanks for reporting, @myluki2000.\r\n\r\nI am working on a fix." ]
2023-04-10T15:22:14Z
2023-04-21T06:35:28Z
2023-04-21T06:35:28Z
NONE
null
null
### Describe the bug The fallback JSON dataset loader located here: https://github.com/huggingface/datasets/blob/1c4ec00511868bd881e84a6f7e0333648d833b8e/src/datasets/packaged_modules/json/json.py#L130-L153 does not load the values of features correctly when features are specified manually and not all features have a value in the first entry of the dataset. I'm pretty sure this is not supposed to be expected bahavior? To fix this you'd have to change this line: https://github.com/huggingface/datasets/blob/1c4ec00511868bd881e84a6f7e0333648d833b8e/src/datasets/packaged_modules/json/json.py#L140 To pass a schema to pyarrow which has the same structure as the features argument passed to the load_dataset() method. ### Steps to reproduce the bug Consider a dataset JSON like this: ``` [ { "instruction": "Do stuff", "output": "Answer stuff" }, { "instruction": "Do stuff2", "input": "Additional Input2", "output": "Answer stuff2" } ] ``` Using this code to load the dataset: ``` from datasets import load_dataset, Features, Value features = { "instruction": Value("string"), "input": Value("string"), "output": Value("string") } features = Features(features) ds = load_dataset("json", data_files="./ds.json", features=features) for row in ds["train"]: print(row) ``` we get a dataset that looks like this: | **Instruction** | **Input** | **Output** | |-----------------|--------------------|-----------------| | "Do stuff" | None | "Answer Stuff" | | "Do stuff2" | None | "Answer Stuff2" | ### Expected behavior The input column should contain values other than None for dataset entries that have the "input" attribute set: | **Instruction** | **Input** | **Output** | |-----------------|--------------------|-----------------| | "Do stuff" | None | "Answer Stuff" | | "Do stuff2" | "Additional Input2" | "Answer Stuff2" | ### Environment info Python 3.10.10 Datasets 2.11.0 Windows 10
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5726/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5725
5,725
How to limit the number of examples in dataset, for testing?
{ "avatar_url": "https://avatars.githubusercontent.com/u/845175?v=4", "events_url": "https://api.github.com/users/ndvbd/events{/privacy}", "followers_url": "https://api.github.com/users/ndvbd/followers", "following_url": "https://api.github.com/users/ndvbd/following{/other_user}", "gists_url": "https://api.github.com/users/ndvbd/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ndvbd", "id": 845175, "login": "ndvbd", "node_id": "MDQ6VXNlcjg0NTE3NQ==", "organizations_url": "https://api.github.com/users/ndvbd/orgs", "received_events_url": "https://api.github.com/users/ndvbd/received_events", "repos_url": "https://api.github.com/users/ndvbd/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ndvbd/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ndvbd/subscriptions", "type": "User", "url": "https://api.github.com/users/ndvbd", "user_view_type": "public" }
[]
closed
false
[ "Hi! You can use the `nrows` parameter for this:\r\n```python\r\ndata = load_dataset(\"json\", data_files=data_path, nrows=10)\r\n```", "@mariosasko I get:\r\n\r\n`TypeError: __init__() got an unexpected keyword argument 'nrows'`", "I misread the format in which the dataset is stored - the `nrows` parameter works for CSV, but not JSON.\r\n\r\nThis means the only option is first to create a DataFrame and then convert it to a Dataset object:\r\n```python\r\nimport pandas as pd\r\nfrom datasets import Dataset\r\n\r\ndf = pd.read_json(data_path, lines=True, nrows=10)\r\nds = Dataset.from_pandas(df)\r\n```" ]
2023-04-10T08:41:43Z
2023-04-21T06:16:24Z
2023-04-21T06:16:24Z
NONE
null
null
### Describe the bug I am using this command: `data = load_dataset("json", data_files=data_path)` However, I want to add a parameter, to limit the number of loaded examples to be 10, for development purposes, but can't find this simple parameter. ### Steps to reproduce the bug In the description. ### Expected behavior To be able to limit the number of examples ### Environment info Nothing special
{ "avatar_url": "https://avatars.githubusercontent.com/u/845175?v=4", "events_url": "https://api.github.com/users/ndvbd/events{/privacy}", "followers_url": "https://api.github.com/users/ndvbd/followers", "following_url": "https://api.github.com/users/ndvbd/following{/other_user}", "gists_url": "https://api.github.com/users/ndvbd/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ndvbd", "id": 845175, "login": "ndvbd", "node_id": "MDQ6VXNlcjg0NTE3NQ==", "organizations_url": "https://api.github.com/users/ndvbd/orgs", "received_events_url": "https://api.github.com/users/ndvbd/received_events", "repos_url": "https://api.github.com/users/ndvbd/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ndvbd/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ndvbd/subscriptions", "type": "User", "url": "https://api.github.com/users/ndvbd", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5725/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5724
5,724
Error after shuffling streaming IterableDatasets with downloaded dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/41177966?v=4", "events_url": "https://api.github.com/users/szxiangjn/events{/privacy}", "followers_url": "https://api.github.com/users/szxiangjn/followers", "following_url": "https://api.github.com/users/szxiangjn/following{/other_user}", "gists_url": "https://api.github.com/users/szxiangjn/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/szxiangjn", "id": 41177966, "login": "szxiangjn", "node_id": "MDQ6VXNlcjQxMTc3OTY2", "organizations_url": "https://api.github.com/users/szxiangjn/orgs", "received_events_url": "https://api.github.com/users/szxiangjn/received_events", "repos_url": "https://api.github.com/users/szxiangjn/repos", "site_admin": false, "starred_url": "https://api.github.com/users/szxiangjn/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/szxiangjn/subscriptions", "type": "User", "url": "https://api.github.com/users/szxiangjn", "user_view_type": "public" }
[]
closed
false
[ "Moving `\"en\"` to the end of the path instead of passing it as a config name should fix the error:\r\n```python\r\nimport datasets\r\ndataset = datasets.load_dataset('/path/to/your/data/dir/en', streaming=True, split='train')\r\ndataset = dataset.shuffle(buffer_size=10_000, seed=42)\r\nnext(iter(dataset))\r\n```\r\n\r\nPS: https://github.com/huggingface/datasets/pull/5331, once merged, will allow us to define C4's configs in its README, making downloading it much more user-friendly." ]
2023-04-09T16:58:44Z
2023-04-20T20:37:30Z
2023-04-20T20:37:30Z
NONE
null
null
### Describe the bug I downloaded the C4 dataset, and used streaming IterableDatasets to read it. Everything went normal until I used `dataset = dataset.shuffle(seed=42, buffer_size=10_000)` to shuffle the dataset. Shuffled dataset will throw the following error when it is used by `next(iter(dataset))`: ``` File "/data/miniconda3/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 937, in __iter__ for key, example in ex_iterable: File "/data/miniconda3/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 627, in __iter__ for x in self.ex_iterable: File "/data/miniconda3/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 138, in __iter__ yield from self.generate_examples_fn(**kwargs_with_shuffled_shards) File "/data/miniconda3/lib/python3.9/site-packages/datasets/iterable_dataset.py", line 763, in wrapper for key, table in generate_tables_fn(**kwargs): File "/data/miniconda3/lib/python3.9/site-packages/datasets/packaged_modules/json/json.py", line 101, in _generate_tables batch = f.read(self.config.chunksize) File "/data/miniconda3/lib/python3.9/site-packages/datasets/download/streaming_download_manager.py", line 372, in read_with_retries out = read(*args, **kwargs) File "/data/miniconda3/lib/python3.9/gzip.py", line 300, in read return self._buffer.read(size) File "/data/miniconda3/lib/python3.9/_compression.py", line 68, in readinto data = self.read(len(byte_view)) File "/data/miniconda3/lib/python3.9/gzip.py", line 487, in read if not self._read_gzip_header(): File "/data/miniconda3/lib/python3.9/gzip.py", line 435, in _read_gzip_header raise BadGzipFile('Not a gzipped file (%r)' % magic) gzip.BadGzipFile: Not a gzipped file (b've') ``` I found that there is no problem to use the dataset in this way without shuffling. Also, use `dataset = datasets.load_dataset('c4', 'en', split='train', streaming=True)`, which will download the dataset on-the-fly instead of loading from the local file, will also not have problems even after shuffle. ### Steps to reproduce the bug 1. Download C4 dataset from https://huggingface.co/datasets/allenai/c4 2. ``` import datasets dataset = datasets.load_dataset('/path/to/your/data/dir', 'en', streaming=True, split='train') dataset = dataset.shuffle(buffer_size=10_000, seed=42) next(iter(dataset)) ``` ### Expected behavior `next(iter(dataset))` should give me a sample from the dataset ### Environment info - `datasets` version: 2.11.0 - Platform: Linux-5.4.32-1-tlinux4-0001-x86_64-with-glibc2.28 - Python version: 3.9.16 - Huggingface_hub version: 0.13.1 - PyArrow version: 11.0.0 - Pandas version: 1.5.3
{ "avatar_url": "https://avatars.githubusercontent.com/u/41177966?v=4", "events_url": "https://api.github.com/users/szxiangjn/events{/privacy}", "followers_url": "https://api.github.com/users/szxiangjn/followers", "following_url": "https://api.github.com/users/szxiangjn/following{/other_user}", "gists_url": "https://api.github.com/users/szxiangjn/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/szxiangjn", "id": 41177966, "login": "szxiangjn", "node_id": "MDQ6VXNlcjQxMTc3OTY2", "organizations_url": "https://api.github.com/users/szxiangjn/orgs", "received_events_url": "https://api.github.com/users/szxiangjn/received_events", "repos_url": "https://api.github.com/users/szxiangjn/repos", "site_admin": false, "starred_url": "https://api.github.com/users/szxiangjn/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/szxiangjn/subscriptions", "type": "User", "url": "https://api.github.com/users/szxiangjn", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5724/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5722
5,722
Distributed Training Error on Customized Dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/16603773?v=4", "events_url": "https://api.github.com/users/wlhgtc/events{/privacy}", "followers_url": "https://api.github.com/users/wlhgtc/followers", "following_url": "https://api.github.com/users/wlhgtc/following{/other_user}", "gists_url": "https://api.github.com/users/wlhgtc/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/wlhgtc", "id": 16603773, "login": "wlhgtc", "node_id": "MDQ6VXNlcjE2NjAzNzcz", "organizations_url": "https://api.github.com/users/wlhgtc/orgs", "received_events_url": "https://api.github.com/users/wlhgtc/received_events", "repos_url": "https://api.github.com/users/wlhgtc/repos", "site_admin": false, "starred_url": "https://api.github.com/users/wlhgtc/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/wlhgtc/subscriptions", "type": "User", "url": "https://api.github.com/users/wlhgtc", "user_view_type": "public" }
[]
closed
false
[ "Hmm the error doesn't seem related to data loading.\r\n\r\nRegarding `split_dataset_by_node`: it's generally used to split an iterable dataset (e.g. when streaming) in pytorch DDP. It's not needed if you use a regular dataset since the pytorch DataLoader already assigns a subset of the dataset indices to each node." ]
2023-04-09T11:04:59Z
2023-07-24T14:50:46Z
2023-07-24T14:50:46Z
NONE
null
null
Hi guys, recently I tried to use `datasets` to train a dual encoder. I finish my own datasets according to the nice [tutorial](https://huggingface.co/docs/datasets/v2.11.0/en/dataset_script) Here are my code: ```python class RetrivalDataset(datasets.GeneratorBasedBuilder): """CrossEncoder dataset.""" BUILDER_CONFIGS = [RetrivalConfig(name="DuReader")] # DEFAULT_CONFIG_NAME = "DuReader" def _info(self): return datasets.DatasetInfo( features=datasets.Features( { "id": datasets.Value("string"), "question": datasets.Value("string"), "documents": Sequence(datasets.Value("string")), } ), supervised_keys=None, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" train_file = self.config.data_dir + self.config.train_file valid_file = self.config.data_dir + self.config.valid_file logger.info(f"Training on {self.config.train_file}") logger.info(f"Evaluating on {self.config.valid_file}") return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={"file_path": train_file} ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={"file_path": valid_file} ), ] def _generate_examples(self, file_path): with jsonlines.open(file_path, "r") as f: for record in f: label = record["label"] question = record["question"] # dual encoder all_documents = record["all_documents"] positive_paragraph = all_documents.pop(label) all_documents = [positive_paragraph] + all_documents u_id = "{}_#_{}".format( md5_hash(question + "".join(all_documents)), "".join(random.sample(string.ascii_letters + string.digits, 7)), ) item = { "question": question, "documents": all_documents, "id": u_id, } yield u_id, item ``` It works well on single GPU, but got errors as follows when used DDP: ```python Detected mismatch between collectives on ranks. Rank 1 is running collective: CollectiveFingerPrint(OpType=BARRIER), but Rank 0 is running collective: CollectiveFingerPrint(OpType=ALLGATHER_COALESCED) ``` Here are my train script on a two A100 mechine: ```bash export TORCH_DISTRIBUTED_DEBUG=DETAIL export TORCH_SHOW_CPP_STACKTRACES=1 export NCCL_DEBUG=INFO export NCCL_DEBUG_SUBSYS=INIT,COLL,ENV nohup torchrun --nproc_per_node 2 train.py experiments/de-big.json >logs/de-big.log 2>&1& ``` I am not sure if this error below related to my dataset code when use DDP. And I notice the PR(#5369 ), but I don't know when and where should I used the function(`split_dataset_by_node`) . @lhoestq hope you could help me?
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5722/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5721
5,721
Calling datasets.load_dataset("text" ...) results in a wrong split.
{ "avatar_url": "https://avatars.githubusercontent.com/u/1841186?v=4", "events_url": "https://api.github.com/users/cyrilzakka/events{/privacy}", "followers_url": "https://api.github.com/users/cyrilzakka/followers", "following_url": "https://api.github.com/users/cyrilzakka/following{/other_user}", "gists_url": "https://api.github.com/users/cyrilzakka/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/cyrilzakka", "id": 1841186, "login": "cyrilzakka", "node_id": "MDQ6VXNlcjE4NDExODY=", "organizations_url": "https://api.github.com/users/cyrilzakka/orgs", "received_events_url": "https://api.github.com/users/cyrilzakka/received_events", "repos_url": "https://api.github.com/users/cyrilzakka/repos", "site_admin": false, "starred_url": "https://api.github.com/users/cyrilzakka/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/cyrilzakka/subscriptions", "type": "User", "url": "https://api.github.com/users/cyrilzakka", "user_view_type": "public" }
[]
open
false
[]
2023-04-08T23:55:12Z
2023-04-08T23:55:12Z
null
NONE
null
null
### Describe the bug When creating a text dataset, the training split should have the bulk of the examples by default. Currently, testing does. ### Steps to reproduce the bug I have a folder with 18K text files in it. Each text file essentially consists in a document or article scraped from online. Calling the following codeL ``` folder_path = "/home/cyril/Downloads/llama_dataset" data = datasets.load_dataset("text", data_dir=folder_path) data.save_to_disk("/home/cyril/Downloads/data.hf") data = datasets.load_from_disk("/home/cyril/Downloads/data.hf") print(data) ``` Results in the following split: ``` DatasetDict({ train: Dataset({ features: ['text'], num_rows: 2114 }) test: Dataset({ features: ['text'], num_rows: 200882 }) validation: Dataset({ features: ['text'], num_rows: 152 }) }) ``` It seems to me like the train/test/validation splits are in the wrong order since test split >>>> train_split ### Expected behavior Train split should have the bulk of the training examples. ### Environment info datasets 2.11.0, python 3.10.6
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5721/reactions" }
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5720
5,720
Streaming IterableDatasets do not work with torch DataLoaders
{ "avatar_url": "https://avatars.githubusercontent.com/u/29244648?v=4", "events_url": "https://api.github.com/users/jlehrer1/events{/privacy}", "followers_url": "https://api.github.com/users/jlehrer1/followers", "following_url": "https://api.github.com/users/jlehrer1/following{/other_user}", "gists_url": "https://api.github.com/users/jlehrer1/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jlehrer1", "id": 29244648, "login": "jlehrer1", "node_id": "MDQ6VXNlcjI5MjQ0NjQ4", "organizations_url": "https://api.github.com/users/jlehrer1/orgs", "received_events_url": "https://api.github.com/users/jlehrer1/received_events", "repos_url": "https://api.github.com/users/jlehrer1/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jlehrer1/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jlehrer1/subscriptions", "type": "User", "url": "https://api.github.com/users/jlehrer1", "user_view_type": "public" }
[]
open
false
[ "Edit: This behavior is true even without `.take/.set`", "I'm experiencing the same problem that @jlehrer1. I was able to reproduce it with a very small example:\r\n\r\n```py\r\nfrom datasets import Dataset, load_dataset, load_dataset_builder\r\nfrom torch.utils.data import DataLoader\r\n\r\n\r\ndef my_gen():\r\n for i in range(1, 4):\r\n yield {\"a\": i}\r\n\r\n# Saving the dataset as a parquet file\r\ndataset = Dataset.from_generator(my_gen)\r\ntrain_path = \"/tmp/test.parquet\"\r\ndataset.to_parquet(train_path)\r\n\r\n# Creating a local dataset from the parquet file\r\ndata_files = {\"train\": [str(train_path)]}\r\nbuilder = load_dataset_builder(\"parquet\", data_files=data_files)\r\nbuilder.download_and_prepare(\"/tmp/test_ds\", file_format=\"parquet\")\r\n\r\n# Loading the dataset from the local directory as streaming\r\ndataset = load_dataset(\"parquet\", data_dir=\"/tmp/test_ds\", split=\"train\", streaming=True)\r\ndataset.with_format(\"torch\")\r\n\r\ndl = DataLoader(dataset, batch_size=2, num_workers=1)\r\nfor row in dl:\r\n print(row)\r\n```\r\n\r\nMy env info:\r\n```\r\ndatasets 2.11.0\r\ntorch 2.0.0\r\ntorchvision 0.15.1\r\nPython 3.9.16\r\n```\r\n\r\nNote that the example above doesn't fail if the number of workers used is `0`", "I cannot reproduce this error, not even with your MRE @ivanprado (your env appears to be the same as Colab's, and your code runs there without issues). ", "@mariosasko you are right, it works on Colab. I digged deeper and found that the problem arises when the multiprocessing method is set to be `spawn`. This code reproduces the problem in Colab:\r\n\r\n```py\r\nfrom datasets import Dataset, load_dataset, load_dataset_builder\r\nfrom torch.utils.data import DataLoader\r\nimport multiprocessing as mp\r\n\r\nmp.set_start_method('spawn')\r\n\r\ndef my_gen():\r\n for i in range(1, 4):\r\n yield {\"a\": i}\r\n\r\n\r\ndef main():\r\n # Saving the dataset as a parquet file\r\n dataset = Dataset.from_generator(my_gen)\r\n train_path = \"/tmp/test.parquet\"\r\n dataset.to_parquet(train_path)\r\n\r\n # Creating a local dataset from the parquet file\r\n data_files = {\"train\": [str(train_path)]}\r\n builder = load_dataset_builder(\"parquet\", data_files=data_files)\r\n builder.download_and_prepare(\"/tmp/test_ds\", file_format=\"parquet\")\r\n\r\n # Loading the dataset from the local directory as streaming\r\n dataset = load_dataset(\"parquet\", data_dir=\"/tmp/test_ds\", split=\"train\", streaming=True)\r\n dataset.with_format(\"torch\")\r\n\r\n dl = DataLoader(dataset, batch_size=2, num_workers=1)\r\n for row in dl:\r\n print(row)\r\n\r\nmain()\r\n```", "So is there a way to fix this by changing the `mp` method? This is blocking any usage of the `datasets` library for me", "@jlehrer1 can you try adding `mp.set_start_method('fork')` at the beginning of your code? Maybe this helps you. Keep us posted. ", "I have a similar issue: \r\n> mp.set_start_method('fork')\r\n\r\n\r\nDidnt work", "What if I want to use GPU? spawn is a must have @ivanprado ", "@ivanprado you're right, this problem gets solved in case number of workers is set to 0, but this essentially destroys any level parallelism we can get.", "Exactly guys, agree with you. I'm just one like yours here. I'm not a datasets contributor. This issue prevented me to use this library." ]
2023-04-08T18:45:48Z
2025-03-19T14:06:47Z
null
NONE
null
null
### Describe the bug When using streaming datasets set up with train/val split using `.skip()` and `.take()`, the following error occurs when iterating over a torch dataloader: ``` File "/Users/julian/miniconda3/envs/sims/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 363, in __iter__ self._iterator = self._get_iterator() File "/Users/julian/miniconda3/envs/sims/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 314, in _get_iterator return _MultiProcessingDataLoaderIter(self) File "/Users/julian/miniconda3/envs/sims/lib/python3.9/site-packages/torch/utils/data/dataloader.py", line 927, in __init__ w.start() File "/Users/julian/miniconda3/envs/sims/lib/python3.9/multiprocessing/process.py", line 121, in start self._popen = self._Popen(self) File "/Users/julian/miniconda3/envs/sims/lib/python3.9/multiprocessing/context.py", line 224, in _Popen return _default_context.get_context().Process._Popen(process_obj) File "/Users/julian/miniconda3/envs/sims/lib/python3.9/multiprocessing/context.py", line 284, in _Popen return Popen(process_obj) File "/Users/julian/miniconda3/envs/sims/lib/python3.9/multiprocessing/popen_spawn_posix.py", line 32, in __init__ super().__init__(process_obj) File "/Users/julian/miniconda3/envs/sims/lib/python3.9/multiprocessing/popen_fork.py", line 19, in __init__ self._launch(process_obj) File "/Users/julian/miniconda3/envs/sims/lib/python3.9/multiprocessing/popen_spawn_posix.py", line 47, in _launch reduction.dump(process_obj, fp) File "/Users/julian/miniconda3/envs/sims/lib/python3.9/multiprocessing/reduction.py", line 60, in dump ForkingPickler(file, protocol).dump(obj) AttributeError: Can't pickle local object '_generate_examples_from_tables_wrapper.<locals>.wrapper' ``` To reproduce, run the code ``` from datasets import load_dataset data = load_dataset(args.dataset_name, split="train", streaming=True) train_len = 5000 val_len = 100 train, val = data.take(train_len), data.skip(train_len).take(val_len) traindata = IterableClipDataset(data, context_length=args.max_len, tokenizer=tokenizer, image_key="url", text_key="text") traindata = DataLoader(traindata, batch_size=args.batch_size, num_workers=args.num_workers, persistent_workers=True) ``` Where the class IterableClipDataset is a simple wrapper to cast the dataset to a torch iterabledataset, defined via ``` from torch.utils.data import Dataset, IterableDataset from torchvision.transforms import Compose, Resize, ToTensor from transformers import AutoTokenizer import requests from PIL import Image class IterableClipDataset(IterableDataset): def __init__(self, dataset, context_length: int, image_transform=None, tokenizer=None, image_key="image", text_key="text"): self.dataset = dataset self.context_length = context_length self.image_transform = Compose([Resize((224, 224)), ToTensor()]) if image_transform is None else image_transform self.tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") if tokenizer is None else tokenizer self.image_key = image_key self.text_key = text_key def read_image(self, url: str): try: # Try to read the image image = Image.open(requests.get(url, stream=True).raw) except: image = Image.new("RGB", (224, 224), (0, 0, 0)) return image def process_sample(self, image, text): if isinstance(image, str): image = self.read_image(image) if self.image_transform is not None: image = self.image_transform(image) text = self.tokenizer.encode( text, add_special_tokens=True, max_length=self.context_length, truncation=True, padding="max_length" ) text = torch.tensor(text, dtype=torch.long) return image, text def __iter__(self): for sample in self.dataset: image, text = sample[self.image_key], sample[self.text_key] yield self.process_sample(image, text) ``` ### Steps to reproduce the bug Steps to reproduce 1. Install `datasets`, `torch`, and `PIL` (if you want to reproduce exactly) 2. Run the code above ### Expected behavior Batched data is produced from the dataloader ### Environment info ``` datasets == 2.9.0 python == 3.9.12 torch == 1.11.0 ```
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5720/reactions" }
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5719
5,719
Array2D feature creates a list of list instead of a numpy array
{ "avatar_url": "https://avatars.githubusercontent.com/u/15215732?v=4", "events_url": "https://api.github.com/users/offchan42/events{/privacy}", "followers_url": "https://api.github.com/users/offchan42/followers", "following_url": "https://api.github.com/users/offchan42/following{/other_user}", "gists_url": "https://api.github.com/users/offchan42/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/offchan42", "id": 15215732, "login": "offchan42", "node_id": "MDQ6VXNlcjE1MjE1NzMy", "organizations_url": "https://api.github.com/users/offchan42/orgs", "received_events_url": "https://api.github.com/users/offchan42/received_events", "repos_url": "https://api.github.com/users/offchan42/repos", "site_admin": false, "starred_url": "https://api.github.com/users/offchan42/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/offchan42/subscriptions", "type": "User", "url": "https://api.github.com/users/offchan42", "user_view_type": "public" }
[]
closed
false
[ "Hi! \r\n\r\nYou need to set the format to `np` before indexing the dataset to get NumPy arrays:\r\n```python\r\nfeatures = Features(dict(seq=Array2D((2,2), 'float32'))) \r\nds = Dataset.from_dict(dict(seq=[np.random.rand(2,2)]), features=features)\r\nds.set_format(\"np\")\r\na = ds[0]['seq']\r\n```\r\n\r\n> I think it should not be the expected behavior especially when I feed a numpy array as input to the data creation function. Why is it converting my array into a list?\r\n\r\nThe same dataset can have examples in different types (Numpy arrays, Torch tensors, Pandas series, etc.), so recovering them all would be slow and impractical. Instead, the design of our formatting API is similar to Arrow's (the lib we use internally to store data on disk/ in RAM), which allows converting a batch of data to Python/Numpy/Pandas in a single call (and uses C++ to do so to make it faster).\r\n\r\n> Also if I change the first dimension of the Array2D shape to None, it's returning array correctly.\r\n\r\nSetting the first dimension to `None` makes it variable-length (allows passing arrays with the first dimensions of differing lengths).\r\n", "Current behavior when indexing the dataset:\r\n- Using `Array((2,2))` returns a list of lists.\r\n- Using `Array((None,2))` returns a numpy array.\r\n\r\nDon't you think this is kind of unexpected behavior from end-user perspective? \r\nAs a user, I expect that when I use `Array2D`, the behavior needs to be consistent even if I specify None or not. It should either return a list or an array. It needs to choose one. Let's say if it always return a list, then I will call `ds.set_format('np')` no problem.\r\n\r\nThe consistency can be in any of these aspects:\r\n1. preserves the type of the input data (in this case, a numpy array)\r\n2. ensure the output type is always the same (it can be either list or array, but it needs to be one of them)\r\n\r\nRight now the API doesn't conform to any of these aspects. But I think it needs to conform to one.", "I thought we made this consistent by returning lists in both scenarios...", "Fixed in #5751 " ]
2023-04-07T21:04:08Z
2023-04-20T15:34:41Z
2023-04-20T15:34:41Z
NONE
null
null
### Describe the bug I'm not sure if this is expected behavior or not. When I create a 2D array using `Array2D`, the data has list type instead of numpy array. I think it should not be the expected behavior especially when I feed a numpy array as input to the data creation function. Why is it converting my array into a list? Also if I change the first dimension of the `Array2D` shape to None, it's returning array correctly. ### Steps to reproduce the bug Run this code: ```py from datasets import Dataset, Features, Array2D import numpy as np # you have to change the first dimension of the shape to None to make it return an array features = Features(dict(seq=Array2D((2,2), 'float32'))) ds = Dataset.from_dict(dict(seq=[np.random.rand(2,2)]), features=features) a = ds[0]['seq'] print(a) print(type(a)) ``` The following will be printed in stdout: ``` [[0.8127174377441406, 0.3760348856449127], [0.7510159611701965, 0.4322739541530609]] <class 'list'> ``` ### Expected behavior Each indexed item should be a list or numpy array. Currently, `Array((2,2))` yields a list but `Array((None,2))` yields an array. ### Environment info - `datasets` version: 2.11.0 - Platform: Windows-10-10.0.19045-SP0 - Python version: 3.9.13 - Huggingface_hub version: 0.13.4 - PyArrow version: 11.0.0 - Pandas version: 1.4.4
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5719/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/pull/5718
5,718
Reorder default data splits to have validation before test
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
[ "_The documentation is not available anymore as the PR was closed or merged._", "After this CI error: https://github.com/huggingface/datasets/actions/runs/4639528358/jobs/8210492953?pr=5718\r\n```\r\nFAILED tests/test_data_files.py::test_get_data_files_patterns[data_file_per_split4] - AssertionError: assert ['random', 'train'] == ['train', 'random']\r\n At index 0 diff: 'random' != 'train'\r\n Full diff:\r\n - ['train', 'random']\r\n + ['random', 'train']\r\n```\r\nI have checked locally and found out that the data split order is nondeterministic. I am addressing this in a separate issue.\r\n\r\nWe should first address:\r\n- #5728 \r\n- #5729", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007728 / 0.011353 (-0.003624) | 0.005275 / 0.011008 (-0.005734) | 0.097708 / 0.038508 (0.059199) | 0.039851 / 0.023109 (0.016741) | 0.333360 / 0.275898 (0.057462) | 0.376135 / 0.323480 (0.052655) | 0.006355 / 0.007986 (-0.001630) | 0.004193 / 0.004328 (-0.000135) | 0.072882 / 0.004250 (0.068631) | 0.052668 / 0.037052 (0.015615) | 0.347359 / 0.258489 (0.088870) | 0.382280 / 0.293841 (0.088440) | 0.035996 / 0.128546 (-0.092550) | 0.012517 / 0.075646 (-0.063129) | 0.334520 / 0.419271 (-0.084751) | 0.051969 / 0.043533 (0.008436) | 0.335735 / 0.255139 (0.080596) | 0.359921 / 0.283200 (0.076722) | 0.113971 / 0.141683 (-0.027712) | 1.465636 / 1.452155 (0.013481) | 1.559824 / 1.492716 (0.067108) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223997 / 0.018006 (0.205991) | 0.499041 / 0.000490 (0.498551) | 0.009697 / 0.000200 (0.009497) | 0.000245 / 0.000054 (0.000190) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027031 / 0.037411 (-0.010381) | 0.110271 / 0.014526 (0.095745) | 0.115848 / 0.176557 (-0.060709) | 0.174253 / 0.737135 (-0.562883) | 0.122616 / 0.296338 (-0.173723) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.417275 / 0.215209 (0.202066) | 4.158678 / 2.077655 (2.081023) | 1.917585 / 1.504120 (0.413465) | 1.722219 / 1.541195 (0.181025) | 1.813284 / 1.468490 (0.344793) | 0.707193 / 4.584777 (-3.877584) | 3.853545 / 3.745712 (0.107833) | 3.369240 / 5.269862 (-1.900621) | 1.820264 / 4.565676 (-2.745412) | 0.087340 / 0.424275 (-0.336936) | 0.012305 / 0.007607 (0.004698) | 0.520326 / 0.226044 (0.294281) | 5.107383 / 2.268929 (2.838455) | 2.413977 / 55.444624 (-53.030647) | 2.074356 / 6.876477 (-4.802121) | 2.255959 / 2.142072 (0.113887) | 0.849850 / 4.805227 (-3.955377) | 0.170116 / 6.500664 (-6.330548) | 0.067203 / 0.075469 (-0.008267) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.168158 / 1.841788 (-0.673629) | 15.046312 / 8.074308 (6.972004) | 15.113924 / 10.191392 (4.922532) | 0.145288 / 0.680424 (-0.535136) | 0.017959 / 0.534201 (-0.516242) | 0.424666 / 0.579283 (-0.154617) | 0.422560 / 0.434364 (-0.011804) | 0.526386 / 0.540337 (-0.013952) | 0.623755 / 1.386936 (-0.763181) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007676 / 0.011353 (-0.003677) | 0.005240 / 0.011008 (-0.005769) | 0.074668 / 0.038508 (0.036160) | 0.035570 / 0.023109 (0.012461) | 0.348524 / 0.275898 (0.072626) | 0.378157 / 0.323480 (0.054677) | 0.006112 / 0.007986 (-0.001873) | 0.005641 / 0.004328 (0.001312) | 0.073536 / 0.004250 (0.069286) | 0.048651 / 0.037052 (0.011599) | 0.359282 / 0.258489 (0.100793) | 0.385961 / 0.293841 (0.092120) | 0.035417 / 0.128546 (-0.093129) | 0.012227 / 0.075646 (-0.063419) | 0.085725 / 0.419271 (-0.333546) | 0.049651 / 0.043533 (0.006118) | 0.344122 / 0.255139 (0.088983) | 0.364795 / 0.283200 (0.081595) | 0.112711 / 0.141683 (-0.028972) | 1.426823 / 1.452155 (-0.025332) | 1.534745 / 1.492716 (0.042029) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.201728 / 0.018006 (0.183721) | 0.448533 / 0.000490 (0.448043) | 0.003554 / 0.000200 (0.003354) | 0.000092 / 0.000054 (0.000038) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030917 / 0.037411 (-0.006494) | 0.117966 / 0.014526 (0.103440) | 0.125954 / 0.176557 (-0.050602) | 0.176382 / 0.737135 (-0.560753) | 0.130757 / 0.296338 (-0.165582) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.422167 / 0.215209 (0.206958) | 4.213948 / 2.077655 (2.136294) | 2.040049 / 1.504120 (0.535929) | 1.858317 / 1.541195 (0.317122) | 1.937108 / 1.468490 (0.468618) | 0.707797 / 4.584777 (-3.876979) | 3.831061 / 3.745712 (0.085349) | 3.373711 / 5.269862 (-1.896151) | 1.590343 / 4.565676 (-2.975333) | 0.086672 / 0.424275 (-0.337603) | 0.012429 / 0.007607 (0.004821) | 0.520269 / 0.226044 (0.294225) | 5.207285 / 2.268929 (2.938357) | 2.518107 / 55.444624 (-52.926517) | 2.230696 / 6.876477 (-4.645781) | 2.363164 / 2.142072 (0.221091) | 0.836749 / 4.805227 (-3.968479) | 0.169676 / 6.500664 (-6.330988) | 0.065766 / 0.075469 (-0.009703) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.251195 / 1.841788 (-0.590592) | 15.196091 / 8.074308 (7.121782) | 14.991600 / 10.191392 (4.800208) | 0.165335 / 0.680424 (-0.515089) | 0.017789 / 0.534201 (-0.516412) | 0.433863 / 0.579283 (-0.145420) | 0.428660 / 0.434364 (-0.005704) | 0.527385 / 0.540337 (-0.012952) | 0.628067 / 1.386936 (-0.758869) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d06b8c21ba98ae85971a2b1d135ac2ef035b59c9 \"CML watermark\")\n" ]
2023-04-07T16:01:26Z
2023-04-27T14:43:13Z
2023-04-27T14:35:52Z
MEMBER
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5718.diff", "html_url": "https://github.com/huggingface/datasets/pull/5718", "merged_at": "2023-04-27T14:35:52Z", "patch_url": "https://github.com/huggingface/datasets/pull/5718.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5718" }
This PR reorders data splits, so that by default validation appears before test. The default order becomes: [train, validation, test] instead of [train, test, validation].
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5718/reactions" }
null
null
null
true
https://github.com/huggingface/datasets/issues/5717
5,717
Errror when saving to disk a dataset of images
{ "avatar_url": "https://avatars.githubusercontent.com/u/959590?v=4", "events_url": "https://api.github.com/users/jplu/events{/privacy}", "followers_url": "https://api.github.com/users/jplu/followers", "following_url": "https://api.github.com/users/jplu/following{/other_user}", "gists_url": "https://api.github.com/users/jplu/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jplu", "id": 959590, "login": "jplu", "node_id": "MDQ6VXNlcjk1OTU5MA==", "organizations_url": "https://api.github.com/users/jplu/orgs", "received_events_url": "https://api.github.com/users/jplu/received_events", "repos_url": "https://api.github.com/users/jplu/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jplu/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jplu/subscriptions", "type": "User", "url": "https://api.github.com/users/jplu", "user_view_type": "public" }
[]
open
false
[ "Looks like as long as the number of shards makes a batch lower than 1000 images it works. In my training set I have 40K images. If I use `num_shards=40` (batch of 1000 images) I get the error, but if I update it to `num_shards=50` (batch of 800 images) it works.\r\n\r\nI will be happy to share my dataset privately if it can help to better debug.", "Hi! I didn't manage to reproduce this behavior, so sharing the dataset with us would help a lot. \r\n\r\n> My dataset is around 50K images, is this error might be due to a bad image?\r\n\r\nThis shouldn't be the case as we save raw data to disk without decoding it.", "OK, thanks! The dataset is currently hosted on a gcs bucket. How would you like to proceed for sharing the link? ", "You could follow [this](https://cloud.google.com/storage/docs/collaboration#browser) procedure or upload the dataset to Google Drive (50K images is not that much unless high-res) and send me an email with the link.", "Thanks @mariosasko. I just sent you the GDrive link.", "Thanks @jplu! I managed to reproduce the `TypeError` - it stems from [this](https://github.com/huggingface/datasets/blob/e3f4f124a1b118a5bfff5bae76b25a68aedbebbc/src/datasets/features/image.py#L258-L264) line, which can return a `ChunkedArray` (its mask is also chunked then, which Arrow does not allow) when the embedded data is too big to fit in a standard `Array`.\r\n\r\nI'm working on a fix.", "@yairl-dn You should be able to bypass this issue by reducing `datasets.config.DEFAULT_MAX_BATCH_SIZE` (1000 by default)\r\n\r\nIn Datasets 3.0, the Image storage format will be simplified, so this should be easier to fix then.", "The same error occurs with my save_to_disk() of Audio() items. I still get it with:\r\n```python\r\nimport datasets\r\ndatasets.config.DEFAULT_MAX_BATCH_SIZE=35\r\nfrom datasets import Features, Array2D, Value, Dataset, Sequence, Audio\r\n```\r\n\r\n```\r\nSaving the dataset (41/47 shards): 88%|██████████████████████████████████████████▉ | 297/339 [01:21<00:11, 3.65 examples/s]\r\nTraceback (most recent call last):\r\nFile \"/mnt/ddrive/prj/voice/voice-training-dataset-create/./dataset.py\", line 155, in <module>\r\ncreate_dataset(args)\r\nFile \"/mnt/ddrive/prj/voice/voice-training-dataset-create/./dataset.py\", line 137, in create_dataset\r\nhf_dataset.save_to_disk(args.outds)\r\nFile \"/home/j/src/py/datasets/src/datasets/arrow_dataset.py\", line 1532, in save_to_disk\r\nfor job_id, done, content in Dataset._save_to_disk_single(**kwargs):\r\nFile \"/home/j/src/py/datasets/src/datasets/arrow_dataset.py\", line 1563, in _save_to_disk_single\r\nwriter.write_table(pa_table)\r\nFile \"/home/j/src/py/datasets/src/datasets/arrow_writer.py\", line 574, in write_table\r\npa_table = embed_table_storage(pa_table)\r\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\nFile \"/home/j/src/py/datasets/src/datasets/table.py\", line 2307, in embed_table_storage\r\narrays = [\r\n^\r\nFile \"/home/j/src/py/datasets/src/datasets/table.py\", line 2308, in <listcomp>\r\nembed_array_storage(table[name], feature) if require_storage_embed(feature) else table[name]\r\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\nFile \"/home/j/src/py/datasets/src/datasets/table.py\", line 1831, in wrapper\r\nreturn pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])\r\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\nFile \"/home/j/src/py/datasets/src/datasets/table.py\", line 1831, in <listcomp>\r\nreturn pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])\r\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\nFile \"/home/j/src/py/datasets/src/datasets/table.py\", line 2177, in embed_array_storage\r\nreturn feature.embed_storage(array)\r\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\nFile \"/home/j/src/py/datasets/src/datasets/features/audio.py\", line 276, in embed_storage\r\nstorage = pa.StructArray.from_arrays([bytes_array, path_array], [\"bytes\", \"path\"], mask=bytes_array.is_null())\r\n^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^\r\nFile \"pyarrow/array.pxi\", line 2850, in pyarrow.lib.StructArray.from_arrays\r\nFile \"pyarrow/array.pxi\", line 3290, in pyarrow.lib.c_mask_inverted_from_obj\r\nTypeError: Mask must be a pyarrow.Array of type boolean\r\n```", "Similar to @jaggzh, setting `datasets.config.DEFAULT_MAX_BATCH_SIZE` did not help in my case (same error here but for different dataset: https://github.com/Stanford-AIMI/RRG24/issues/2).\r\n\r\nThis is also reproducible with this open dataset: https://huggingface.co/datasets/nlphuji/winogavil/discussions/1\r\n\r\nHere's some code to do so:\r\n```python\r\nimport datasets\r\n\r\ndatasets.config.DEFAULT_MAX_BATCH_SIZE = 1\r\n\r\nfrom datasets import load_dataset\r\n\r\nds = load_dataset(\"nlphuji/winogavil\")\r\n\r\nds.save_to_disk(\"temp\")\r\n```\r\n\r\nI've done some more debugging with `datasets==2.18.0` (which incorporates PR #6283 as suggested by @lhoestq in the above dataset discussion), and it seems like the culprit might now be these lines: https://github.com/huggingface/datasets/blob/ca8409a8bec4508255b9c3e808d0751eb1005260/src/datasets/table.py#L2111-L2115\r\n\r\nFrom what I understand (and apologies I'm new to pyarrow), for an Image or Audio feature, these lines recursively call `embed_array_storage` for a list of either feature, ending up in the feature's `embed_storage` function. For all values in the list, `embed_storage` reads the bytes if they're not already loaded. The issue is the list being passed to the first recursive call is `array.values` which are the underlying values of `array` regardless of `array`'s slicing (as influenced by parameters such as `datasets.config.DEFAULT_MAX_BATCH_SIZE`). This results in the same overflowing list of bytes that result in the ChunkedArray being returned in `embed_storage`. Even if the array weren't to overflow and this code ran without throwing an exception, it still seems incorrect to load all values if you ultimately only want some subset with `ListArray.from_arrays(offsets, values)`; it seems some wasted effort if those values thrown out will get loaded again in the next batch and vice versa for the current batch of values during later batches.\r\n\r\nMaybe there's a fix where you could pass a mask to `embed_storage` such that it only loads the values you ultimately want for the current batch? Curious to see if you agree with this diagnosis of the problem and if you think this fix is viable @mariosasko?", "Would be nice if they have something similar to Dagshub's S3 sync; it worked like a charm for my bigger datasets.", "I guess also the proposed masking solution simply enables `datasets.config.DEFAULT_MAX_BATCH_SIZE` by reducing the number of elements loaded, it does not address the underlying problem of trying to load all the images as bytes into a pyarrow array.\r\n\r\nI'm happy to turn this into an actual PR but here's what I've implemented locally at `tables.py:embed_array_storage` to fix the above test case (`nlphuji/winogavil`) and my own use case:\r\n```python\r\n elif pa.types.is_list(array.type):\r\n # feature must be either [subfeature] or Sequence(subfeature)\r\n # Merge offsets with the null bitmap to avoid the \"Null bitmap with offsets slice not supported\" ArrowNotImplementedError\r\n array_offsets = _combine_list_array_offsets_with_mask(array)\r\n\r\n # mask underlying struct array so array_values.to_pylist()\r\n # fills None (see feature.embed_storage)\r\n idxs = np.arange(len(array.values))\r\n idxs = pa.ListArray.from_arrays(array_offsets, idxs).flatten()\r\n mask = np.ones(len(array.values)).astype(bool)\r\n mask[idxs] = False\r\n mask = pa.array(mask)\r\n # indexing 0 might be problematic but not sure\r\n # how else to get arbitrary keys from a struct array\r\n array_keys = array.values[0].keys()\r\n # is array.values always a struct array?\r\n array_values = pa.StructArray.from_arrays(\r\n arrays=[array.values.field(k) for k in array_keys],\r\n names=array_keys,\r\n mask=mask,\r\n )\r\n if isinstance(feature, list):\r\n return pa.ListArray.from_arrays(array_offsets, _e(array_values, feature[0]))\r\n if isinstance(feature, Sequence) and feature.length == -1:\r\n return pa.ListArray.from_arrays(array_offsets, _e(array_values, feature.feature))\r\n```\r\n\r\nAgain though I'm new to pyarrow so this might not be the cleanest implementation, also I'm really not sure if there are other cases where this solution doesn't work. Would love to get some feedback from the hf folks!", "I have the same issue, with an audio dataset where file sizes vary significantly (~0.2-200 mb). Reducing `datasets.config.DEFAULT_MAX_BATCH_SIZE` doesn't help.", "Still the problem is occured.\r\nHuggingface is sucks 🤮🤮🤮🤮", "Came across this issue myself, with the same symptoms and reasons as everyone else; `pa.array` is returning a `ChunkedArray` in `features.audio.Audio.embed_storage` for my audio which varies between ~1MB and ~10MB in size.\r\n\r\nI would rather remove a troublesome file from my dataset than have to switch off this library, but it would be difficult to identify which file(s) caused the issue, and it may just shift the issue down to another shard or another file anyway. So, I took the path of least resistance and simply **dropped** anything beyond the first chunk when this issue occurred, and added a warning to indicate what was dropped.\r\n\r\nIn the end I lost **one** file out of 105,024 samples and was able to complete the 1,479 shard dataset after only the one issue on shard 228.\r\n\r\nWhile this is certainly not an ideal solution, it does represent a much better user experience, and was acceptable for my use case. I'm going to test the Image portion and then open a pull request to propose this \"lossy\" behavior become the way these edge cases are handled (maybe behind an environment flag?) until someone like @mariosasko or others can formulate a more holistic solution.\r\n\r\nMy work-in-progress \"fix\": https://github.com/huggingface/datasets/compare/main...painebenjamin:datasets:main (https://github.com/painebenjamin/datasets)", "Another option could be to use `pa.large_binary` instead of `pa.binary` in certain cases ?", "For my large audio dataset, what seems to work for me is to locally change `pa_type` to `pa.large_binary` in both\r\n\r\nhttps://github.com/huggingface/datasets/blob/01f91bae037c98f2e05456287bab21470adb8f07/src/datasets/features/audio.py#L71\r\n\r\nand\r\n\r\nhttps://github.com/huggingface/datasets/blob/01f91bae037c98f2e05456287bab21470adb8f07/src/datasets/features/audio.py#L270\r\n\r\nprior to uploading the dataset. Before downloading it, I just remove both changes to make sure any user with latest `datasets` can use it.\r\n\r\nAs a side note, the other proposed workarounds did not work for me.", "Hey @fdschmidt93 I am not sure to follow. Can users downloading your dataset from the hub read it if you created the files with large_binary? It sounds like it will not be casted properly for them? ", "Yes, that should work. In full detail -\r\n\r\nI have two separate conda environments. \r\n\r\n1. The one I prepare the data with for which I apply the above changes.\r\n2. Another one I actually run my experiments with that uses latest available `datasets` from pip\r\n\r\nThis seems to work just fine. More concretely, I'm downloading my own data uploaded with environment 1 from a private HF datasets repo in environment 2 (i.e., `load_dataset(...)`) and run the experiments.\r\n\r\nE: The private HF repo I was referring to now is public: https://huggingface.co/datasets/WueNLP/belebele-fleurs", "Interesting ... so it's not even relevant at reading time, only writting ... Thanks I'll try this out.", "I'm experiencing the same issue with the image dataset. Has this problem been resolved? Neither reducing the number of images per batch nor decreasing the DEFAULT_MAX_BATCH_SIZE has solved the issue.\n\nWhat I discovered is that in [line 272](https://github.com/huggingface/datasets/blob/3a4e74a9ace62ecd5c9cde7dcb6bcabd65cc7857/src/datasets/features/image.py#L272), when the storage length becomes large (probably over 1000), it returns a chunked array, which causes an error. \n\n Therefore, I tried to explicitly flatten it using `.combine_chunks()`, but encountered errors like `pyarrow.lib.ArrowInvalid: offset overflow while concatenating arrays`. \n```python\n bytes_array = pa.array(\n [\n (path_to_bytes(x[\"path\"]) if x[\"bytes\"] is None else x[\"bytes\"]) if x is not None else None\n for x in storage.to_pylist()\n ],\n type=pa.binary(),\n ).combine_chunks() # <- HERE\n```\n\nThis makes me feel there are limitations in processing images with arrow.\n\nWhen constructing an image dataset, I think storing image paths as strings might be the most straightforward bypass rather than using `Image()`. I'm curious if there would be any performance disadvantages to this approach.\n", "Absurd, after months I encountered the same error with datasets 3.6.0 and an Image-Text dataset.\nAny solution?", "I end up by splitting the dataset in chunks, and uploading them with different commits and config names. Starting from ~ 30k images, each chunk has ~ 2.5k images. \nThis is the only effective solution I found.\n\nI wonder how the HF team has successfully uploaded datasets like the_cauldron [localized_narratives] with more then 200k lines of image-text. I mean, for sure they can do more then push_to_hub, eventually they can explain @lhoestq ? (thanks in advance) " ]
2023-04-07T11:59:17Z
2025-07-13T08:27:47Z
null
CONTRIBUTOR
null
null
### Describe the bug Hello! I have an issue when I try to save on disk my dataset of images. The error I get is: ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/jplu/miniconda3/envs/image-xp/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 1442, in save_to_disk for job_id, done, content in Dataset._save_to_disk_single(**kwargs): File "/home/jplu/miniconda3/envs/image-xp/lib/python3.10/site-packages/datasets/arrow_dataset.py", line 1473, in _save_to_disk_single writer.write_table(pa_table) File "/home/jplu/miniconda3/envs/image-xp/lib/python3.10/site-packages/datasets/arrow_writer.py", line 570, in write_table pa_table = embed_table_storage(pa_table) File "/home/jplu/miniconda3/envs/image-xp/lib/python3.10/site-packages/datasets/table.py", line 2268, in embed_table_storage arrays = [ File "/home/jplu/miniconda3/envs/image-xp/lib/python3.10/site-packages/datasets/table.py", line 2269, in <listcomp> embed_array_storage(table[name], feature) if require_storage_embed(feature) else table[name] File "/home/jplu/miniconda3/envs/image-xp/lib/python3.10/site-packages/datasets/table.py", line 1817, in wrapper return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/home/jplu/miniconda3/envs/image-xp/lib/python3.10/site-packages/datasets/table.py", line 1817, in <listcomp> return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/home/jplu/miniconda3/envs/image-xp/lib/python3.10/site-packages/datasets/table.py", line 2142, in embed_array_storage return feature.embed_storage(array) File "/home/jplu/miniconda3/envs/image-xp/lib/python3.10/site-packages/datasets/features/image.py", line 269, in embed_storage storage = pa.StructArray.from_arrays([bytes_array, path_array], ["bytes", "path"], mask=bytes_array.is_null()) File "pyarrow/array.pxi", line 2766, in pyarrow.lib.StructArray.from_arrays File "pyarrow/array.pxi", line 2961, in pyarrow.lib.c_mask_inverted_from_obj TypeError: Mask must be a pyarrow.Array of type boolean ``` My dataset is around 50K images, is this error might be due to a bad image? Thanks for the help. ### Steps to reproduce the bug ```python from datasets import load_dataset dataset = load_dataset("imagefolder", data_dir="/path/to/dataset") dataset["train"].save_to_disk("./myds", num_shards=40) ``` ### Expected behavior Having my dataset properly saved to disk. ### Environment info - `datasets` version: 2.11.0 - Platform: Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 - Python version: 3.10.10 - Huggingface_hub version: 0.13.3 - PyArrow version: 11.0.0 - Pandas version: 2.0.0
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 1, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/5717/reactions" }
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5716
5,716
Handle empty audio
{ "avatar_url": "https://avatars.githubusercontent.com/u/38179632?v=4", "events_url": "https://api.github.com/users/ben-8543/events{/privacy}", "followers_url": "https://api.github.com/users/ben-8543/followers", "following_url": "https://api.github.com/users/ben-8543/following{/other_user}", "gists_url": "https://api.github.com/users/ben-8543/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/ben-8543", "id": 38179632, "login": "ben-8543", "node_id": "MDQ6VXNlcjM4MTc5NjMy", "organizations_url": "https://api.github.com/users/ben-8543/orgs", "received_events_url": "https://api.github.com/users/ben-8543/received_events", "repos_url": "https://api.github.com/users/ben-8543/repos", "site_admin": false, "starred_url": "https://api.github.com/users/ben-8543/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ben-8543/subscriptions", "type": "User", "url": "https://api.github.com/users/ben-8543", "user_view_type": "public" }
[]
closed
false
[ "Hi! Can you share one of the problematic audio files with us?\r\n\r\nI tried to reproduce the error with the following code: \r\n```python\r\nimport soundfile as sf\r\nimport numpy as np\r\nfrom datasets import Audio\r\n\r\nsf.write(\"empty.wav\", np.array([]), 16000)\r\nAudio(sampling_rate=24000).decode_example({\"path\": \"empty.wav\", \"bytes\": None})\r\n```\r\nBut without success.\r\n\r\nAlso, what version of `librosa` is installed in your env? (You can get this info with `python -c \"import librosa; print(librosa.__version__)`)\r\n\r\n", "I'm closing this issue as the reproducer hasn't been provided." ]
2023-04-07T09:51:40Z
2023-09-27T17:47:08Z
2023-09-27T17:47:08Z
NONE
null
null
Some audio paths exist, but they are empty, and an error will be reported when reading the audio path.How to use the filter function to avoid the empty audio path? when a audio is empty, when do resample , it will break: `array, sampling_rate = sf.read(f) array = librosa.resample(array, orig_sr=sampling_rate, target_sr=self.sampling_rate)`
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5716/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5715
5,715
Return Numpy Array (fixed length) Mode, in __get_item__, Instead of List
{ "avatar_url": "https://avatars.githubusercontent.com/u/34066771?v=4", "events_url": "https://api.github.com/users/jungbaepark/events{/privacy}", "followers_url": "https://api.github.com/users/jungbaepark/followers", "following_url": "https://api.github.com/users/jungbaepark/following{/other_user}", "gists_url": "https://api.github.com/users/jungbaepark/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jungbaepark", "id": 34066771, "login": "jungbaepark", "node_id": "MDQ6VXNlcjM0MDY2Nzcx", "organizations_url": "https://api.github.com/users/jungbaepark/orgs", "received_events_url": "https://api.github.com/users/jungbaepark/received_events", "repos_url": "https://api.github.com/users/jungbaepark/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jungbaepark/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jungbaepark/subscriptions", "type": "User", "url": "https://api.github.com/users/jungbaepark", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
[ "Hi! \r\n\r\nYou can use [`.set_format(\"np\")`](https://huggingface.co/docs/datasets/process#format) to get NumPy arrays (or Pytorch tensors with `.set_format(\"torch\")`) in `__getitem__`.\r\n\r\nAlso, have you been able to reproduce the linked PyTorch issue with a HF dataset?\r\n " ]
2023-04-06T13:57:48Z
2023-04-20T17:16:26Z
2023-04-20T17:16:26Z
NONE
null
null
### Feature request There are old known issues, but they can be easily forgettable problems in multiprocessing with pytorch-dataloader: Too high usage of RAM or shared-memory in pytorch when we set num workers > 1 and returning type of dataset or dataloader is "List" or "Dict". https://github.com/pytorch/pytorch/issues/13246 With huggingface datasets, unfortunately, the default return type is the list, so the problem is raised too often if we do not set anything for the issue. However, this issue can be released when the returning output is fixed in length. Therefore, I request the mode, returning outputs with fixed length (e.g. numpy array) rather than list. The design would be good when we load datasets as ```python load_dataset(..., with_return_as_fixed_tensor=True) ``` ### Motivation The general solution for this issue is already in the comments: https://github.com/pytorch/pytorch/issues/13246#issuecomment-905703662 : Numpy or Pandas seems not to have problems, while both have the string type. (I'm not sure that the sequence of huggingface datasets can solve this problem as well) ### Your contribution I'll read it ! thanks
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5715/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/pull/5714
5,714
Fix xnumpy_load for .npz files
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006498 / 0.011353 (-0.004855) | 0.004406 / 0.011008 (-0.006602) | 0.097136 / 0.038508 (0.058628) | 0.027711 / 0.023109 (0.004601) | 0.303092 / 0.275898 (0.027194) | 0.336804 / 0.323480 (0.013324) | 0.004838 / 0.007986 (-0.003148) | 0.004533 / 0.004328 (0.000204) | 0.075062 / 0.004250 (0.070812) | 0.035105 / 0.037052 (-0.001947) | 0.310245 / 0.258489 (0.051756) | 0.347086 / 0.293841 (0.053245) | 0.030867 / 0.128546 (-0.097679) | 0.011436 / 0.075646 (-0.064211) | 0.320728 / 0.419271 (-0.098544) | 0.042303 / 0.043533 (-0.001230) | 0.308177 / 0.255139 (0.053038) | 0.333673 / 0.283200 (0.050473) | 0.084736 / 0.141683 (-0.056947) | 1.477391 / 1.452155 (0.025237) | 1.530399 / 1.492716 (0.037682) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.212698 / 0.018006 (0.194692) | 0.409098 / 0.000490 (0.408608) | 0.004202 / 0.000200 (0.004002) | 0.000070 / 0.000054 (0.000016) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.022725 / 0.037411 (-0.014686) | 0.095866 / 0.014526 (0.081340) | 0.104153 / 0.176557 (-0.072404) | 0.162964 / 0.737135 (-0.574171) | 0.106505 / 0.296338 (-0.189834) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.431336 / 0.215209 (0.216127) | 4.283290 / 2.077655 (2.205635) | 1.982418 / 1.504120 (0.478298) | 1.762104 / 1.541195 (0.220909) | 1.807528 / 1.468490 (0.339038) | 0.695507 / 4.584777 (-3.889270) | 3.376299 / 3.745712 (-0.369413) | 1.856642 / 5.269862 (-3.413219) | 1.154258 / 4.565676 (-3.411419) | 0.082749 / 0.424275 (-0.341526) | 0.012289 / 0.007607 (0.004682) | 0.525842 / 0.226044 (0.299798) | 5.285764 / 2.268929 (3.016835) | 2.389926 / 55.444624 (-53.054698) | 2.021830 / 6.876477 (-4.854646) | 2.107460 / 2.142072 (-0.034612) | 0.808118 / 4.805227 (-3.997109) | 0.150791 / 6.500664 (-6.349873) | 0.065825 / 0.075469 (-0.009644) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.206939 / 1.841788 (-0.634849) | 13.795902 / 8.074308 (5.721594) | 14.107950 / 10.191392 (3.916558) | 0.144300 / 0.680424 (-0.536124) | 0.016478 / 0.534201 (-0.517723) | 0.379395 / 0.579283 (-0.199888) | 0.388437 / 0.434364 (-0.045927) | 0.451443 / 0.540337 (-0.088894) | 0.523142 / 1.386936 (-0.863794) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006503 / 0.011353 (-0.004850) | 0.004578 / 0.011008 (-0.006430) | 0.076278 / 0.038508 (0.037770) | 0.028052 / 0.023109 (0.004943) | 0.337873 / 0.275898 (0.061975) | 0.371368 / 0.323480 (0.047888) | 0.005086 / 0.007986 (-0.002899) | 0.003354 / 0.004328 (-0.000975) | 0.076876 / 0.004250 (0.072625) | 0.039146 / 0.037052 (0.002093) | 0.340299 / 0.258489 (0.081810) | 0.381209 / 0.293841 (0.087368) | 0.031771 / 0.128546 (-0.096775) | 0.011670 / 0.075646 (-0.063976) | 0.085156 / 0.419271 (-0.334116) | 0.041990 / 0.043533 (-0.001543) | 0.338644 / 0.255139 (0.083505) | 0.362461 / 0.283200 (0.079262) | 0.089772 / 0.141683 (-0.051911) | 1.480341 / 1.452155 (0.028187) | 1.562815 / 1.492716 (0.070099) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.205700 / 0.018006 (0.187694) | 0.402206 / 0.000490 (0.401716) | 0.001212 / 0.000200 (0.001012) | 0.000070 / 0.000054 (0.000016) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025172 / 0.037411 (-0.012240) | 0.100959 / 0.014526 (0.086433) | 0.108464 / 0.176557 (-0.068093) | 0.161321 / 0.737135 (-0.575814) | 0.114245 / 0.296338 (-0.182093) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.437425 / 0.215209 (0.222216) | 4.362212 / 2.077655 (2.284557) | 2.068815 / 1.504120 (0.564695) | 1.864089 / 1.541195 (0.322894) | 1.909038 / 1.468490 (0.440548) | 0.696097 / 4.584777 (-3.888680) | 3.358628 / 3.745712 (-0.387084) | 2.999085 / 5.269862 (-2.270777) | 1.533917 / 4.565676 (-3.031760) | 0.083010 / 0.424275 (-0.341266) | 0.012372 / 0.007607 (0.004765) | 0.539926 / 0.226044 (0.313882) | 5.438326 / 2.268929 (3.169397) | 2.498581 / 55.444624 (-52.946043) | 2.153359 / 6.876477 (-4.723117) | 2.177891 / 2.142072 (0.035819) | 0.803169 / 4.805227 (-4.002059) | 0.151079 / 6.500664 (-6.349585) | 0.065981 / 0.075469 (-0.009489) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.336682 / 1.841788 (-0.505106) | 14.133055 / 8.074308 (6.058747) | 14.033972 / 10.191392 (3.842580) | 0.152109 / 0.680424 (-0.528315) | 0.016475 / 0.534201 (-0.517726) | 0.387808 / 0.579283 (-0.191475) | 0.378347 / 0.434364 (-0.056017) | 0.484732 / 0.540337 (-0.055606) | 0.569907 / 1.386936 (-0.817029) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1c4ec00511868bd881e84a6f7e0333648d833b8e \"CML watermark\")\n" ]
2023-04-06T13:01:45Z
2023-04-07T09:23:54Z
2023-04-07T09:16:57Z
MEMBER
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5714.diff", "html_url": "https://github.com/huggingface/datasets/pull/5714", "merged_at": "2023-04-07T09:16:57Z", "patch_url": "https://github.com/huggingface/datasets/pull/5714.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5714" }
PR: - #5626 implemented support for streaming `.npy` files by using `numpy.load`. However, it introduced a bug when used with `.npz` files, within a context manager: ``` ValueError: seek of closed file ``` or in streaming mode: ``` ValueError: I/O operation on closed file. ``` This PR fixes the bug and tests for both `.npy` and `.npz` files. Fix #5711.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5714/reactions" }
null
null
null
true
https://github.com/huggingface/datasets/issues/5713
5,713
ArrowNotImplementedError when loading dataset from the hub
{ "avatar_url": "https://avatars.githubusercontent.com/u/959590?v=4", "events_url": "https://api.github.com/users/jplu/events{/privacy}", "followers_url": "https://api.github.com/users/jplu/followers", "following_url": "https://api.github.com/users/jplu/following{/other_user}", "gists_url": "https://api.github.com/users/jplu/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jplu", "id": 959590, "login": "jplu", "node_id": "MDQ6VXNlcjk1OTU5MA==", "organizations_url": "https://api.github.com/users/jplu/orgs", "received_events_url": "https://api.github.com/users/jplu/received_events", "repos_url": "https://api.github.com/users/jplu/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jplu/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jplu/subscriptions", "type": "User", "url": "https://api.github.com/users/jplu", "user_view_type": "public" }
[]
closed
false
[ "Hi Julien ! This sounds related to https://github.com/huggingface/datasets/issues/5695 - TL;DR: you need to have shards smaller than 2GB to avoid this issue\r\n\r\nThe number of rows per shard is computed using an estimated size of the full dataset, which can sometimes lead to shards bigger than `max_shard_size`. The estimation is currently done using the first samples of the dataset (which can surely be improved). We should probably open an issue to fix this once and for all.\r\n\r\nAnyway for your specific dataset I'd suggest you to pass `num_shards` instead of `max_shard_size` for now, and make sure to have enough shards to end up with shards smaller than 2GB", "Hi Quentin! Thanks a lot! Using `num_shards` instead of `max_shard_size` works as expected.\r\n\r\nIndeed the way you describe how the size is computed cannot really work with the dataset I'm building as all the image doesn't have the same resolution and then size. Opening an issue on this might be a good idea." ]
2023-04-06T10:27:22Z
2023-04-06T13:06:22Z
2023-04-06T13:06:21Z
CONTRIBUTOR
null
null
### Describe the bug Hello, I have created a dataset by using the image loader. Once the dataset is created I try to download it and I get the error: ``` Traceback (most recent call last): File "/home/jplu/miniconda3/envs/image-xp/lib/python3.10/site-packages/datasets/builder.py", line 1860, in _prepare_split_single for _, table in generator: File "/home/jplu/miniconda3/envs/image-xp/lib/python3.10/site-packages/datasets/packaged_modules/parquet/parquet.py", line 69, in _generate_tables for batch_idx, record_batch in enumerate( File "pyarrow/_parquet.pyx", line 1323, in iter_batches File "pyarrow/error.pxi", line 121, in pyarrow.lib.check_status pyarrow.lib.ArrowNotImplementedError: Nested data conversions not implemented for chunked array outputs The above exception was the direct cause of the following exception: Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/jplu/miniconda3/envs/image-xp/lib/python3.10/site-packages/datasets/load.py", line 1791, in load_dataset builder_instance.download_and_prepare( File "/home/jplu/miniconda3/envs/image-xp/lib/python3.10/site-packages/datasets/builder.py", line 891, in download_and_prepare self._download_and_prepare( File "/home/jplu/miniconda3/envs/image-xp/lib/python3.10/site-packages/datasets/builder.py", line 986, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/home/jplu/miniconda3/envs/image-xp/lib/python3.10/site-packages/datasets/builder.py", line 1748, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/home/jplu/miniconda3/envs/image-xp/lib/python3.10/site-packages/datasets/builder.py", line 1893, in _prepare_split_single raise DatasetGenerationError("An error occurred while generating the dataset") from e datasets.builder.DatasetGenerationError: An error occurred while generating the dataset ``` ### Steps to reproduce the bug Create the dataset and push it to the hub: ```python from datasets import load_dataset dataset = load_dataset("imagefolder", data_dir="/path/to/dataset") dataset.push_to_hub("org/dataset-name", private=True, max_shard_size="1GB") ``` Then use it: ```python from datasets import load_dataset dataset = load_dataset("org/dataset-name") ``` ### Expected behavior To properly download and use the pushed dataset. Something else to note is that I specified to have shards of 1GB max, but at the end, for the train set, it is an almost 7GB single file that is pushed. ### Environment info - `datasets` version: 2.11.0 - Platform: Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 - Python version: 3.10.10 - Huggingface_hub version: 0.13.3 - PyArrow version: 11.0.0 - Pandas version: 2.0.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/959590?v=4", "events_url": "https://api.github.com/users/jplu/events{/privacy}", "followers_url": "https://api.github.com/users/jplu/followers", "following_url": "https://api.github.com/users/jplu/following{/other_user}", "gists_url": "https://api.github.com/users/jplu/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jplu", "id": 959590, "login": "jplu", "node_id": "MDQ6VXNlcjk1OTU5MA==", "organizations_url": "https://api.github.com/users/jplu/orgs", "received_events_url": "https://api.github.com/users/jplu/received_events", "repos_url": "https://api.github.com/users/jplu/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jplu/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jplu/subscriptions", "type": "User", "url": "https://api.github.com/users/jplu", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5713/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5712
5,712
load_dataset in v2.11.0 raises "ValueError: seek of closed file" in np.load()
{ "avatar_url": "https://avatars.githubusercontent.com/u/1219084?v=4", "events_url": "https://api.github.com/users/rcasero/events{/privacy}", "followers_url": "https://api.github.com/users/rcasero/followers", "following_url": "https://api.github.com/users/rcasero/following{/other_user}", "gists_url": "https://api.github.com/users/rcasero/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/rcasero", "id": 1219084, "login": "rcasero", "node_id": "MDQ6VXNlcjEyMTkwODQ=", "organizations_url": "https://api.github.com/users/rcasero/orgs", "received_events_url": "https://api.github.com/users/rcasero/received_events", "repos_url": "https://api.github.com/users/rcasero/repos", "site_admin": false, "starred_url": "https://api.github.com/users/rcasero/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rcasero/subscriptions", "type": "User", "url": "https://api.github.com/users/rcasero", "user_view_type": "public" }
[]
closed
false
[ "Closing since this is a duplicate of #5711", "> Closing since this is a duplicate of #5711\r\n\r\nSorry @mariosasko , my internet went down went submitting the issue, and somehow it ended up creating a duplicate" ]
2023-04-05T16:47:10Z
2023-04-06T08:32:37Z
2023-04-05T17:17:44Z
NONE
null
null
### Describe the bug Hi, I have some `dataset_load()` code of a custom offline dataset that works with datasets v2.10.1. ```python ds = datasets.load_dataset(path=dataset_dir, name=configuration, data_dir=dataset_dir, cache_dir=cache_dir, aux_dir=aux_dir, # download_mode=datasets.DownloadMode.FORCE_REDOWNLOAD, num_proc=18) ``` When upgrading datasets to 2.11.0, it fails with error ``` Traceback (most recent call last): File "<string>", line 2, in <module> File "/home/ramon.casero/opt/miniconda3/envs/myenv/lib/python3.10/site-packages/datasets/load.py", line 1791, in load_dataset builder_instance.download_and_prepare( File "/home/ramon.casero/opt/miniconda3/envs/myenv/lib/python3.10/site-packages/datasets/builder.py", line 891, in download_and_prepare self._download_and_prepare( File "/home/ramon.casero/opt/miniconda3/envs/myenv/lib/python3.10/site-packages/datasets/builder.py", line 1651, in _download_and_prepare super()._download_and_prepare( File "/home/ramon.casero/opt/miniconda3/envs/myenv/lib/python3.10/site-packages/datasets/builder.py", line 964, in _download_and_prepare split_generators = self._split_generators(dl_manager, **split_generators_kwargs) File "/home/ramon.casero/.cache/huggingface/modules/datasets_modules/datasets/71f67f69e6e00e139903a121f96b71f39b65a6b6aaeb0862e6a5da3a3f565b4c/mydataset.py", line 682, in _split_generators self.some_function() File "/home/ramon.casero/.cache/huggingface/modules/datasets_modules/datasets/71f67f69e6e00e139903a121f96b71f39b65a6b6aaeb0862e6a5da3a3f565b4c/mydataset.py", line 1314, in some_function() x_df = pd.DataFrame({'cell_type_descriptor': fp['x'].tolist()}) File "/home/ramon.casero/opt/miniconda3/envs/myenv/lib/python3.10/site-packages/numpy/lib/npyio.py", line 248, in __getitem__ bytes = self.zip.open(key) File "/home/ramon.casero/opt/miniconda3/envs/myenv/lib/python3.10/zipfile.py", line 1530, in open fheader = zef_file.read(sizeFileHeader) File "/home/ramon.casero/opt/miniconda3/envs/myenv/lib/python3.10/zipfile.py", line 744, in read self._file.seek(self._pos) ValueError: seek of closed file ``` ### Steps to reproduce the bug Sorry, I cannot share the data or code because they are not mine to share, but the point of failure is a call in `some_function()` ```python with np.load(filename) as fp: x_df = pd.DataFrame({'feature': fp['x'].tolist()}) ``` I'll try to generate a short snippet that reproduces the error. ### Expected behavior I would expect that `load_dataset` works on the custom datasets generation script for v2.11.0 the same way it works for 2.10.1, without making `np.load()` give a `ValueError: seek of closed file` error. ### Environment info - `datasets` version: 2.11.0 - Platform: Linux-4.18.0-483.el8.x86_64-x86_64-with-glibc2.28 - Python version: 3.10.8 - Huggingface_hub version: 0.12.0 - PyArrow version: 11.0.0 - Pandas version: 1.5.2 - numpy: 1.24.2 - This is an offline dataset that uses `datasets.config.HF_DATASETS_OFFLINE = True` in the generation script.
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5712/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5711
5,711
load_dataset in v2.11.0 raises "ValueError: seek of closed file" in np.load()
{ "avatar_url": "https://avatars.githubusercontent.com/u/1219084?v=4", "events_url": "https://api.github.com/users/rcasero/events{/privacy}", "followers_url": "https://api.github.com/users/rcasero/followers", "following_url": "https://api.github.com/users/rcasero/following{/other_user}", "gists_url": "https://api.github.com/users/rcasero/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/rcasero", "id": 1219084, "login": "rcasero", "node_id": "MDQ6VXNlcjEyMTkwODQ=", "organizations_url": "https://api.github.com/users/rcasero/orgs", "received_events_url": "https://api.github.com/users/rcasero/received_events", "repos_url": "https://api.github.com/users/rcasero/repos", "site_admin": false, "starred_url": "https://api.github.com/users/rcasero/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/rcasero/subscriptions", "type": "User", "url": "https://api.github.com/users/rcasero", "user_view_type": "public" }
[]
closed
false
[ "It seems like https://github.com/huggingface/datasets/pull/5626 has introduced this error. \r\n\r\ncc @albertvillanova \r\n\r\nI think replacing:\r\nhttps://github.com/huggingface/datasets/blob/0803a006db1c395ac715662cc6079651f77c11ea/src/datasets/download/streaming_download_manager.py#L777-L778\r\nwith:\r\n```python\r\nreturn np.load(xopen(filepath_or_buffer, \"rb\", use_auth_token=use_auth_token), *args, **kwargs)\r\n```\r\nshould fix the issue.\r\n\r\n(Maybe this is also worth doing a patch release afterward)", "Thanks for reporting, @rcasero.\r\n\r\nI can have a look..." ]
2023-04-05T16:46:49Z
2023-04-07T09:16:59Z
2023-04-07T09:16:59Z
NONE
null
null
### Describe the bug Hi, I have some `dataset_load()` code of a custom offline dataset that works with datasets v2.10.1. ```python ds = datasets.load_dataset(path=dataset_dir, name=configuration, data_dir=dataset_dir, cache_dir=cache_dir, aux_dir=aux_dir, # download_mode=datasets.DownloadMode.FORCE_REDOWNLOAD, num_proc=18) ``` When upgrading datasets to 2.11.0, it fails with error ``` Traceback (most recent call last): File "<string>", line 2, in <module> File "/home/ramon.casero/opt/miniconda3/envs/myenv/lib/python3.10/site-packages/datasets/load.py", line 1791, in load_dataset builder_instance.download_and_prepare( File "/home/ramon.casero/opt/miniconda3/envs/myenv/lib/python3.10/site-packages/datasets/builder.py", line 891, in download_and_prepare self._download_and_prepare( File "/home/ramon.casero/opt/miniconda3/envs/myenv/lib/python3.10/site-packages/datasets/builder.py", line 1651, in _download_and_prepare super()._download_and_prepare( File "/home/ramon.casero/opt/miniconda3/envs/myenv/lib/python3.10/site-packages/datasets/builder.py", line 964, in _download_and_prepare split_generators = self._split_generators(dl_manager, **split_generators_kwargs) File "/home/ramon.casero/.cache/huggingface/modules/datasets_modules/datasets/71f67f69e6e00e139903a121f96b71f39b65a6b6aaeb0862e6a5da3a3f565b4c/mydataset.py", line 682, in _split_generators self.some_function() File "/home/ramon.casero/.cache/huggingface/modules/datasets_modules/datasets/71f67f69e6e00e139903a121f96b71f39b65a6b6aaeb0862e6a5da3a3f565b4c/mydataset.py", line 1314, in some_function() x_df = pd.DataFrame({'cell_type_descriptor': fp['x'].tolist()}) File "/home/ramon.casero/opt/miniconda3/envs/myenv/lib/python3.10/site-packages/numpy/lib/npyio.py", line 248, in __getitem__ bytes = self.zip.open(key) File "/home/ramon.casero/opt/miniconda3/envs/myenv/lib/python3.10/zipfile.py", line 1530, in open fheader = zef_file.read(sizeFileHeader) File "/home/ramon.casero/opt/miniconda3/envs/myenv/lib/python3.10/zipfile.py", line 744, in read self._file.seek(self._pos) ValueError: seek of closed file ``` ### Steps to reproduce the bug Sorry, I cannot share the data or code because they are not mine to share, but the point of failure is a call in `some_function()` ```python with np.load(embedding_filename) as fp: x_df = pd.DataFrame({'feature': fp['x'].tolist()}) ``` I'll try to generate a short snippet that reproduces the error. ### Expected behavior I would expect that `load_dataset` works on the custom datasets generation script for v2.11.0 the same way it works for 2.10.1, without making `np.load()` give a `ValueError: seek of closed file` error. ### Environment info - `datasets` version: 2.11.0 - Platform: Linux-4.18.0-483.el8.x86_64-x86_64-with-glibc2.28 - Python version: 3.10.8 - Huggingface_hub version: 0.12.0 - PyArrow version: 11.0.0 - Pandas version: 1.5.2 - numpy: 1.24.2 - This is an offline dataset that uses `datasets.config.HF_DATASETS_OFFLINE = True` in the generation script.
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5711/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5710
5,710
OSError: Memory mapping file failed: Cannot allocate memory
{ "avatar_url": "https://avatars.githubusercontent.com/u/53392976?v=4", "events_url": "https://api.github.com/users/Saibo-creator/events{/privacy}", "followers_url": "https://api.github.com/users/Saibo-creator/followers", "following_url": "https://api.github.com/users/Saibo-creator/following{/other_user}", "gists_url": "https://api.github.com/users/Saibo-creator/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Saibo-creator", "id": 53392976, "login": "Saibo-creator", "node_id": "MDQ6VXNlcjUzMzkyOTc2", "organizations_url": "https://api.github.com/users/Saibo-creator/orgs", "received_events_url": "https://api.github.com/users/Saibo-creator/received_events", "repos_url": "https://api.github.com/users/Saibo-creator/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Saibo-creator/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Saibo-creator/subscriptions", "type": "User", "url": "https://api.github.com/users/Saibo-creator", "user_view_type": "public" }
[]
closed
false
[ "Hi! This error means that PyArrow's internal [`mmap`](https://man7.org/linux/man-pages/man2/mmap.2.html) call failed to allocate memory, which can be tricky to debug. Since this error is more related to PyArrow than us, I think it's best to report this issue in their [repo](https://github.com/apache/arrow) (they are more experienced on this matter). Also, googling \"mmap cannot allocate memory\" returns some approaches to solving this problem." ]
2023-04-05T14:11:26Z
2023-04-20T17:16:40Z
2023-04-20T17:16:40Z
NONE
null
null
### Describe the bug Hello, I have a series of datasets each of 5 GB, 600 datasets in total. So together this makes 3TB. When I trying to load all the 600 datasets into memory, I get the above error message. Is this normal because I'm hitting the max size of memory mapping of the OS? Thank you ```terminal 0_21/cache-e9c42499f65b1881.arrow load_hf_datasets_from_disk: 82%|████████████████████████████████████████████████████████████████████████████████████████████████████▍ | 494/600 [07:26<01:35, 1.11it/s] Traceback (most recent call last): File "example_load_genkalm_dataset.py", line 35, in <module> multi_ds.post_process(max_node_num=args.max_node_num,max_seq_length=args.max_seq_length,delay=args.delay) File "/home/geng/GenKaLM/src/dataloader/dataset.py", line 142, in post_process genkalm_dataset = GenKaLM_Dataset.from_hf_dataset(path_or_name=ds_path, max_seq_length=self.max_seq_length, File "/home/geng/GenKaLM/src/dataloader/dataset.py", line 47, in from_hf_dataset hf_ds = load_from_disk(path_or_name) File "/home/geng/.conda/envs/genkalm/lib/python3.8/site-packages/datasets/load.py", line 1848, in load_from_disk return Dataset.load_from_disk(dataset_path, keep_in_memory=keep_in_memory, storage_options=storage_options) File "/home/geng/.conda/envs/genkalm/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 1549, in load_from_disk arrow_table = concat_tables( File "/home/geng/.conda/envs/genkalm/lib/python3.8/site-packages/datasets/table.py", line 1805, in concat_tables tables = list(tables) File "/home/geng/.conda/envs/genkalm/lib/python3.8/site-packages/datasets/arrow_dataset.py", line 1550, in <genexpr> table_cls.from_file(Path(dataset_path, data_file["filename"]).as_posix()) File "/home/geng/.conda/envs/genkalm/lib/python3.8/site-packages/datasets/table.py", line 1065, in from_file table = _memory_mapped_arrow_table_from_file(filename) File "/home/geng/.conda/envs/genkalm/lib/python3.8/site-packages/datasets/table.py", line 50, in _memory_mapped_arrow_table_from_file memory_mapped_stream = pa.memory_map(filename) File "pyarrow/io.pxi", line 950, in pyarrow.lib.memory_map File "pyarrow/io.pxi", line 911, in pyarrow.lib.MemoryMappedFile._open File "pyarrow/error.pxi", line 144, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 115, in pyarrow.lib.check_status OSError: Memory mapping file failed: Cannot allocate memory ``` ### Steps to reproduce the bug Sorry I can not provide a reproducible code as the data is stored on my server and it's too large to share. ### Expected behavior I expect the 3TB of data can be fully mapped to memory ### Environment info - `datasets` version: 2.9.0 - Platform: Linux-4.15.0-204-generic-x86_64-with-debian-buster-sid - Python version: 3.7.6 - PyArrow version: 11.0.0 - Pandas version: 1.0.1
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/5710/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5709
5,709
Manually dataset info made not taken into account
{ "avatar_url": "https://avatars.githubusercontent.com/u/959590?v=4", "events_url": "https://api.github.com/users/jplu/events{/privacy}", "followers_url": "https://api.github.com/users/jplu/followers", "following_url": "https://api.github.com/users/jplu/following{/other_user}", "gists_url": "https://api.github.com/users/jplu/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jplu", "id": 959590, "login": "jplu", "node_id": "MDQ6VXNlcjk1OTU5MA==", "organizations_url": "https://api.github.com/users/jplu/orgs", "received_events_url": "https://api.github.com/users/jplu/received_events", "repos_url": "https://api.github.com/users/jplu/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jplu/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jplu/subscriptions", "type": "User", "url": "https://api.github.com/users/jplu", "user_view_type": "public" }
[]
closed
false
[ "hi @jplu ! Did I understand you correctly that you create the dataset, push it to the Hub with `.push_to_hub` and you see a `dataset_infos.json` file there, then you edit this file, load the dataset with `load_dataset` and you don't see any changes in `.info` attribute of a dataset object? \r\n\r\nThis is actually weird that when you push your dataset to the Hub, a `dataset_infos.json` file is created, because this file is deprecated and it should create `README.md` with the `dataset_info` field instead. Some keys are also deprecated, like \"supervised_keys\" and \"task_templates\".\r\n\r\nCan you please provide a toy reproducible example of how you create and push the dataset? And also why do you want to change this file, especially the number of bytes and examples?", "Hi @polinaeterna Yes I have created the dataset with `Dataset.from_dict` applied some updates afterward and when I pushed to the hub I had a `dataset_infos.json` file and there was a `README.md` file as well.\r\n\r\nI didn't know that the JSON file was deprecated. So I have built my dataset with `ImageBuilder` instead and now it works like a charm without having to touch anything.\r\n\r\nI haven't succeed to reproduce the creation of the JSON file with a toy example, hence, I certainly did some mistakes when I have manipulated my dataset manually at first. My bad." ]
2023-04-05T11:15:17Z
2023-04-06T08:52:20Z
2023-04-06T08:52:19Z
CONTRIBUTOR
null
null
### Describe the bug Hello, I'm manually building an image dataset with the `from_dict` approach. I also build the features with the `cast_features` methods. Once the dataset is created I push it on the hub, and a default `dataset_infos.json` file seems to have been automatically added to the repo in same time. Hence I update it manually with all the missing info, but when I download the dataset the info are never updated. Former `dataset_infos.json` file: ``` {"default": { "description": "", "citation": "", "homepage": "", "license": "", "features": { "image": { "_type": "Image" }, "labels": { "names": [ "Fake", "Real" ], "_type": "ClassLabel" } }, "splits": { "validation": { "name": "validation", "num_bytes": 901010094.0, "num_examples": 3200, "dataset_name": null }, "train": { "name": "train", "num_bytes": 901010094.0, "num_examples": 3200, "dataset_name": null } }, "download_size": 1802008414, "dataset_size": 1802020188.0, "size_in_bytes": 3604028602.0 }} ``` After I update it manually it looks like: ``` { "bstrai--deepfake-detection":{ "description":"", "citation":"", "homepage":"", "license":"", "features":{ "image":{ "decode":true, "id":null, "_type":"Image" }, "labels":{ "num_classes":2, "names":[ "Fake", "Real" ], "id":null, "_type":"ClassLabel" } }, "supervised_keys":{ "input":"image", "output":"labels" }, "task_templates":[ { "task":"image-classification", "image_column":"image", "label_column":"labels" } ], "config_name":null, "splits":{ "validation":{ "name":"validation", "num_bytes":36627822, "num_examples":123, "dataset_name":"deepfake-detection" }, "train":{ "name":"train", "num_bytes":901023694, "num_examples":3200, "dataset_name":"deepfake-detection" } }, "download_checksums":null, "download_size":937562209, "dataset_size":937651516, "size_in_bytes":1875213725 } } ``` Anything I should do to have the new infos in the `dataset_infos.json` to be taken into account? Or it is not possible yet? Thanks! ### Steps to reproduce the bug - ### Expected behavior - ### Environment info - `datasets` version: 2.11.0 - Platform: Linux-5.15.90.1-microsoft-standard-WSL2-x86_64-with-glibc2.35 - Python version: 3.10.10 - Huggingface_hub version: 0.13.3 - PyArrow version: 11.0.0 - Pandas version: 2.0.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/959590?v=4", "events_url": "https://api.github.com/users/jplu/events{/privacy}", "followers_url": "https://api.github.com/users/jplu/followers", "following_url": "https://api.github.com/users/jplu/following{/other_user}", "gists_url": "https://api.github.com/users/jplu/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/jplu", "id": 959590, "login": "jplu", "node_id": "MDQ6VXNlcjk1OTU5MA==", "organizations_url": "https://api.github.com/users/jplu/orgs", "received_events_url": "https://api.github.com/users/jplu/received_events", "repos_url": "https://api.github.com/users/jplu/repos", "site_admin": false, "starred_url": "https://api.github.com/users/jplu/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jplu/subscriptions", "type": "User", "url": "https://api.github.com/users/jplu", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5709/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5708
5,708
Dataset sizes are in MiB instead of MB in dataset cards
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" }, { "color": "E5583E", "default": false, "description": "Related to the dataset viewer on huggingface.co", "id": 3470211881, "name": "dataset-viewer", "node_id": "LA_kwDODunzps7O1zsp", "url": "https://api.github.com/repos/huggingface/datasets/labels/dataset-viewer" } ]
closed
false
[ "Example of bulk edit: https://huggingface.co/datasets/aeslc/discussions/5", "looks great! \r\n\r\nDo you encode the fact that you've already converted a dataset? (to not convert it twice) or do you base yourself on the info contained in `dataset_info`", "I am only looping trough the dataset cards, assuming that all of them were created with MiB.\r\n\r\nI agree we should only run the bulk edit once for all canonical datasets: I'm using a for-loop over canonical datasets.", "yes, worst case, we have this in structured data:\r\n\r\n<img width=\"337\" alt=\"image\" src=\"https://user-images.githubusercontent.com/326577/230037051-06caddcb-08c8-4953-a710-f3d122917db3.png\">\r\n", "I have just included as well the conversion from MB to GB if necessary. See: \r\n- https://huggingface.co/datasets/bookcorpus/discussions/2/files\r\n- https://huggingface.co/datasets/asnq/discussions/2/files", "Nice. Is it another loop? Because in https://huggingface.co/datasets/amazon_us_reviews/discussions/2/files we have `32377.29 MB` for example", "First, I tested some batches to check the changes made. Then I incorporated the MB to GB conversion. Now I'm running the rest.", "The bulk edit parsed 751 canonical datasets and updated 166.", "Thanks a lot!\r\n\r\nThe sizes now match as expected!\r\n\r\n<img width=\"1446\" alt=\"Capture d’écran 2023-04-05 à 16 10 15\" src=\"https://user-images.githubusercontent.com/1676121/230107044-ac2a76ea-a4fe-4e81-a925-f464b85f5edd.png\">\r\n", "I made another bulk edit of ancient canonical datasets that were moved to community organization. I have parsed 11 datasets and opened a PR on 3 of them:\r\n- [x] \"allenai/scicite\": https://huggingface.co/datasets/allenai/scicite/discussions/3\r\n- [x] \"allenai/scifact\": https://huggingface.co/datasets/allenai/scifact/discussions/2\r\n- [x] \"dair-ai/emotion\": https://huggingface.co/datasets/dair-ai/emotion/discussions/6", "should we force merge the PR and close this issue?", "I merged the PRs for \"scicite\" and \"scifact\"." ]
2023-04-05T06:36:03Z
2023-12-21T10:20:28Z
2023-12-21T10:20:27Z
MEMBER
null
null
As @severo reported in an internal discussion (https://github.com/huggingface/moon-landing/issues/5929): Now we show the dataset size: - from the dataset card (in the side column) - from the datasets-server (in the viewer) But, even if the size is the same, we see a mismatch because the viewer shows MB, while the info from the README generally shows MiB (even if it's written MB -> https://huggingface.co/datasets/blimp/blob/main/README.md?code=true#L1932) <img width="664" alt="Capture d’écran 2023-04-04 à 10 16 01" src="https://user-images.githubusercontent.com/1676121/229730887-0bd8fa6e-9462-46c6-bd4e-4d2c5784cabb.png"> TODO: Values to be fixed in: `Size of downloaded dataset files:`, `Size of the generated dataset:` and `Total amount of disk used:` - [x] Bulk edit on the Hub to fix this in all canonical datasets - [x] Bulk PR on the Hub to fix ancient canonical datasets that were moved to organizations
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5708/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5706
5,706
Support categorical data types for Parquet
{ "avatar_url": "https://avatars.githubusercontent.com/u/1430243?v=4", "events_url": "https://api.github.com/users/kklemon/events{/privacy}", "followers_url": "https://api.github.com/users/kklemon/followers", "following_url": "https://api.github.com/users/kklemon/following{/other_user}", "gists_url": "https://api.github.com/users/kklemon/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/kklemon", "id": 1430243, "login": "kklemon", "node_id": "MDQ6VXNlcjE0MzAyNDM=", "organizations_url": "https://api.github.com/users/kklemon/orgs", "received_events_url": "https://api.github.com/users/kklemon/received_events", "repos_url": "https://api.github.com/users/kklemon/repos", "site_admin": false, "starred_url": "https://api.github.com/users/kklemon/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/kklemon/subscriptions", "type": "User", "url": "https://api.github.com/users/kklemon", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
[ "Hi ! We could definitely a type that holds the categories and uses a DictionaryType storage. There's a ClassLabel type that is similar with a 'names' parameter (similar to a id2label in deep learning frameworks) that uses an integer array as storage.\r\n\r\nIt can be added in `features.py`. Here are some pointers:\r\n- the conversion from HF type to PyArrow type is done in `get_nested_type`\r\n- the conversion from Pyarrow type to HF type is done in `generate_from_arrow_type`\r\n- `encode_nested_example` and `decode_nested_example` are used to do user's value (what users see) <-> storage value (what is in the pyarrow.array) if there's any conversion to do", "@kklemon did you implement this? Otherwise I would like to give it a try", "@mhattingpete no, I hadn't time for this so far. Feel free to work on this.", "#self-assign", "This would be super useful, so +1. \r\n\r\nAlso, these prior issues/PRs seem relevant: \r\nhttps://github.com/huggingface/datasets/issues/1906\r\nhttps://github.com/huggingface/datasets/pull/1936", "Hi, this is a really useful feature, has this been implemented yet? ", "Hey folks -- I'm thinking about trying a PR for this. As far as I can tell the only sticky point is that auto-generation of features from a pyarrow schema will fail under the current `generate_from_arrow_type` function because there is no encoding of the categorical string label -> int map in the pa.dictionary type itself; that is stored with the full array. \r\n\r\nI see two ways to solve this. Option 1 is to require datasets with categorical types to use pyarrow schema metadata to encode the entire HF feature dictionary, that way categorical types don't ever need to be inferred from the pa type alone. The downside to this is that it means that these datasets will be a bit brittle, as if the feature encoding API ever changes, they will suddenly be unloadable. \r\n\r\nThe other option is to modify `generate_from_arrow_type` to take per-field metadata, and include just that metadata (the category labels) in the schema metadata. \r\n\r\nDoes anyone at HF have any preference on these two (or alternate) approaches?", "Maybe we don't need to store the string label -> int map in the categorical for the corresponding `datasets` feature ?", "I think that does need to be stored in the Feature object. Similar to how\r\n`ClassLabel` needs the class names for some of the provided default\r\nfunctionality (e.g., encoding or decoding values) here, a categorical\r\nfeature needs the same. Without storing that information, would you suggest\r\nthat categorical features just be stored internally as integer arrays?\r\n\r\nOn Fri, Sep 8, 2023, 5:37 AM Quentin Lhoest ***@***.***>\r\nwrote:\r\n\r\n> Maybe we don't need to store the string label -> int map in the\r\n> categorical for the corresponding datasets feature ?\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/5706#issuecomment-1711375652>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/AADS5XZV3RA4GBRVBLJN72LXZLROZANCNFSM6AAAAAAWSOUTJ4>\r\n> .\r\n> You are receiving this because you commented.Message ID:\r\n> ***@***.***>\r\n>\r\n", "Well IIRC you can concatenate two Arrow arrays with different dictionaries together. But for `datasets` would mean updating the `datasets` features when concatenating two arrays of the same type, which is not supported right now. That's why if there is a way to have it without storing the mapping in the feature object it would be nice.\r\n\r\nFor decoding we do have the string<->integer mapping from the array `dictionary` attribute so we're fine. For encoding I think it can work if we only encode when converting python objects to pyarrow in `TypedSequence.__arrow_array__` in `arow_writer.py`. It can work by converting the python objects to a pyarrow array and then use the `dictionary_encode` method.\r\n\r\nAnother concern about concatenation: I noticed **pyarrow creates the new dictionary and indices in memory** when concatenating two dictionary encoded arrays. This can be a problem for big datastets, and we should probably use ChunkedArray objects instead. This can surely be taken care of in `array_concat` in `table.py`\r\n\r\ncc @mariosasko in case you have other ideas\r\n\r\n", "Hmm, that is a good point. What if we implemented this feature first in a\r\nmanner that didn't allow concatenation of arrays with different index to\r\ncategory maps? Then concatenation would be very straightforward, and I\r\nthink this is reasonable if the index to category map is stored in the\r\nschema as well. Obviously, this is limited in how folks could use the\r\nfeature, but they can always fall back to raw strings if needed, and as\r\nusage increases we'll have more data to see what the right solution here\r\nis.\r\n\r\nOn Fri, Sep 8, 2023, 6:49 AM Quentin Lhoest ***@***.***>\r\nwrote:\r\n\r\n> Well IIRC you can concatenate two Arrow arrays with different dictionaries\r\n> together. But for datasets would mean updating the datasets features when\r\n> concatenating two arrays of the same type, which is not supported right\r\n> now. That's why if there is a way to have it without storing the mapping in\r\n> the feature object it would be nice.\r\n>\r\n> For decoding we do have the string<->integer mapping from the array\r\n> dictionary attribute so we're fine. For encoding I think it can work if\r\n> we only encode when converting python objects to pyarrow in\r\n> TypedSequence.__arrow_array__ in arow_writer.py. It can work by\r\n> converting the python objects to a pyarrow array and then use the\r\n> dictionary_encode method.\r\n>\r\n> Another concern about concatenation: I noticed *pyarrow creates the new\r\n> dictionary and indices in memory* when concatenating two dictionary\r\n> encoded arrays. This can be a problem for big datastets, and we should\r\n> probably use ChunkedArray objects instead. This can surely be taken care of\r\n> in array_concat in table.py\r\n>\r\n> cc @mariosasko <https://github.com/mariosasko> in case you have other\r\n> ideas\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/5706#issuecomment-1711468806>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/AADS5X4E2KC2IXLDPYR3XZLXZLZ2FANCNFSM6AAAAAAWSOUTJ4>\r\n> .\r\n> You are receiving this because you commented.Message ID:\r\n> ***@***.***>\r\n>\r\n", "@lhoestq @mariosasko just re-pinging on this so I can push forward further here. What are your thoughts on disallowing concatenation of categorical arrays for now such that the index to category map can be stored in the schema metadata? And/or other approaches that should be taken here?\r\n", "I think the easiest for now would be to add a `dictionary_decode` argument to the parquet loaders that would convert the dictionary type back to strings when set to `True`, and make `dictionary_decode=False` raise `NotImplementedError` for now if there are dictionary type columns. Would that be ok as a first step ?", "I mean, that would certainly be easiest but I don't think it really solves this issue in a meaningful way. This just changes the burden from string conversion from the user to HF Datasets, but doesn't actually enable HF Datasets to take advantage of the (very significant) storage and associated speed/memory savings offered by using categorical types. Given that those savings are what is of real interest here, I think keeping it explicit that it is not supported (and forcing the user to do the conversion) might actually be better that way this problem stays top of mind.\r\n\r\nIs there an objection with supporting categorical types explicitly through the medium I outlined above, where the error is raised if you try to concat two differently typed categorical columns?", "> This just changes the burden from string conversion from the user to HF Datasets, but doesn't actually enable HF Datasets to take advantage of the (very significant) storage and associated speed/memory savings offered by using categorical types.\r\n\r\nThere's already a ClassLabel type that does pretty much the same thing (store as integer instead of string) if it can help\r\n\r\n> Is there an objection with supporting categorical types explicitly through the medium I outlined above, where the error is raised if you try to concat two differently typed categorical columns?\r\n\r\nYea we do concatenation quite often (e.g. in `map`) so I don't think this is a viable option", "But how often in the cases where concatenation is done now would the\r\ncategorical label vocabulary actually change? I think it would be in\r\nbasically none of them. And in such cases, concatenation remains very easy,\r\nno?\r\n\r\nOn Fri, Sep 22, 2023, 12:02 PM Quentin Lhoest ***@***.***>\r\nwrote:\r\n\r\n> This just changes the burden from string conversion from the user to HF\r\n> Datasets, but doesn't actually enable HF Datasets to take advantage of the\r\n> (very significant) storage and associated speed/memory savings offered by\r\n> using categorical types.\r\n>\r\n> There's already a ClassLabel type that does pretty much the same thing\r\n> (store as integer instead of string) if it can help\r\n>\r\n> Is there an objection with supporting categorical types explicitly through\r\n> the medium I outlined above, where the error is raised if you try to concat\r\n> two differently typed categorical columns?\r\n>\r\n> Yea we do concatenation quite often (e.g. in map) so I don't think this\r\n> is a viable option\r\n>\r\n> —\r\n> Reply to this email directly, view it on GitHub\r\n> <https://github.com/huggingface/datasets/issues/5706#issuecomment-1731667012>,\r\n> or unsubscribe\r\n> <https://github.com/notifications/unsubscribe-auth/AADS5X5CGWFXDCML6UKCWYLX3WZBXANCNFSM6AAAAAAWSOUTJ4>\r\n> .\r\n> You are receiving this because you commented.Message ID:\r\n> ***@***.***>\r\n>\r\n", "Arrow IPC seems to require unified dictionaries anyway so actually we could surely focus only on this use case indeed @mmcdermott \r\n\r\nSo defining a new Feature type in `datasets` that contains the dictionary mapping should be fine (and concatenation would work out of the box), and it should also take care of checking that the data it encodes/decodes has the right dictionary. Do you think it can be done without impacting iterating speed for the other types @mariosasko ?\r\n\r\nRight now we have little bandwidth to work in this kind of things though" ]
2023-04-04T09:45:35Z
2024-06-07T12:20:43Z
2024-06-07T12:20:43Z
NONE
null
null
### Feature request Huggingface datasets does not seem to support categorical / dictionary data types for Parquet as of now. There seems to be a `TODO` in the code for this feature but no implementation yet. Below you can find sample code to reproduce the error that is currently thrown when attempting to read a Parquet file with categorical columns: ```python import pandas as pd import pyarrow.parquet as pq from datasets import load_dataset # Create categorical sample DataFrame df = pd.DataFrame({'type': ['foo', 'bar']}).astype('category') df.to_parquet('data.parquet') # Read back as pyarrow table table = pq.read_table('data.parquet') print(table.schema) # type: dictionary<values=string, indices=int32, ordered=0> # Load with huggingface datasets load_dataset('parquet', data_files='data.parquet') ``` Error: ``` Traceback (most recent call last): File ".venv/lib/python3.10/site-packages/datasets/builder.py", line 1875, in _prepare_split_single writer.write_table(table) File ".venv/lib/python3.10/site-packages/datasets/arrow_writer.py", line 566, in write_table self._build_writer(inferred_schema=pa_table.schema) File ".venv/lib/python3.10/site-packages/datasets/arrow_writer.py", line 379, in _build_writer inferred_features = Features.from_arrow_schema(inferred_schema) File ".venv/lib/python3.10/site-packages/datasets/features/features.py", line 1622, in from_arrow_schema obj = {field.name: generate_from_arrow_type(field.type) for field in pa_schema} File ".venv/lib/python3.10/site-packages/datasets/features/features.py", line 1622, in <dictcomp> obj = {field.name: generate_from_arrow_type(field.type) for field in pa_schema} File ".venv/lib/python3.10/site-packages/datasets/features/features.py", line 1361, in generate_from_arrow_type raise NotImplementedError # TODO(thom) this will need access to the dictionary as well (for labels). I.e. to the py_table NotImplementedError ``` ### Motivation Categorical data types, as offered by Pandas and implemented with the `DictionaryType` dtype in `pyarrow` can significantly reduce dataset size and are a handy way to turn textual features into numerical representations and back. Lack of support in Huggingface datasets greatly reduces compatibility with a common Pandas / Parquet feature. ### Your contribution I could provide a PR. However, it would be nice to have an initial complexity estimate from one of the core developers first.
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5706/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5705
5,705
Getting next item from IterableDataset took forever.
{ "avatar_url": "https://avatars.githubusercontent.com/u/16588434?v=4", "events_url": "https://api.github.com/users/HongtaoYang/events{/privacy}", "followers_url": "https://api.github.com/users/HongtaoYang/followers", "following_url": "https://api.github.com/users/HongtaoYang/following{/other_user}", "gists_url": "https://api.github.com/users/HongtaoYang/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/HongtaoYang", "id": 16588434, "login": "HongtaoYang", "node_id": "MDQ6VXNlcjE2NTg4NDM0", "organizations_url": "https://api.github.com/users/HongtaoYang/orgs", "received_events_url": "https://api.github.com/users/HongtaoYang/received_events", "repos_url": "https://api.github.com/users/HongtaoYang/repos", "site_admin": false, "starred_url": "https://api.github.com/users/HongtaoYang/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/HongtaoYang/subscriptions", "type": "User", "url": "https://api.github.com/users/HongtaoYang", "user_view_type": "public" }
[]
closed
false
[ "Hi! It can take some time to iterate over Parquet files as big as yours, convert the samples to Python, and find the first one that matches a filter predicate before yielding it...", "Thanks @mariosasko, I figured it was the filter operation. I'm closing this issue because it is not a bug, it is the expected beheaviour." ]
2023-04-04T09:16:17Z
2023-04-05T23:35:41Z
2023-04-05T23:35:41Z
NONE
null
null
### Describe the bug I have a large dataset, about 500GB. The format of the dataset is parquet. I then load the dataset and try to get the first item ```python def get_one_item(): dataset = load_dataset("path/to/datafiles", split="train", cache_dir=".", streaming=True) dataset = dataset.filter(lambda example: example['text'].startswith('Ar')) print(next(iter(dataset))) ``` However, this function never finish. I waited ~10mins, the function was still running so I killed the process. I'm now using `line_profiler` to profile how long it would take to return one item. I'll be patient and wait for as long as it needs. I suspect the filter operation is the reason why it took so long. Can I get some possible reasons behind this? ### Steps to reproduce the bug Unfortunately without my data files, there is no way to reproduce this bug. ### Expected behavior With `IteralbeDataset`, I expect the first item to be returned instantly. ### Environment info - datasets version: 2.11.0 - python: 3.7.12
{ "avatar_url": "https://avatars.githubusercontent.com/u/16588434?v=4", "events_url": "https://api.github.com/users/HongtaoYang/events{/privacy}", "followers_url": "https://api.github.com/users/HongtaoYang/followers", "following_url": "https://api.github.com/users/HongtaoYang/following{/other_user}", "gists_url": "https://api.github.com/users/HongtaoYang/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/HongtaoYang", "id": 16588434, "login": "HongtaoYang", "node_id": "MDQ6VXNlcjE2NTg4NDM0", "organizations_url": "https://api.github.com/users/HongtaoYang/orgs", "received_events_url": "https://api.github.com/users/HongtaoYang/received_events", "repos_url": "https://api.github.com/users/HongtaoYang/repos", "site_admin": false, "starred_url": "https://api.github.com/users/HongtaoYang/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/HongtaoYang/subscriptions", "type": "User", "url": "https://api.github.com/users/HongtaoYang", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5705/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/pull/5704
5,704
5537 speedup load
{ "avatar_url": "https://avatars.githubusercontent.com/u/35013374?v=4", "events_url": "https://api.github.com/users/semajyllek/events{/privacy}", "followers_url": "https://api.github.com/users/semajyllek/followers", "following_url": "https://api.github.com/users/semajyllek/following{/other_user}", "gists_url": "https://api.github.com/users/semajyllek/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/semajyllek", "id": 35013374, "login": "semajyllek", "node_id": "MDQ6VXNlcjM1MDEzMzc0", "organizations_url": "https://api.github.com/users/semajyllek/orgs", "received_events_url": "https://api.github.com/users/semajyllek/received_events", "repos_url": "https://api.github.com/users/semajyllek/repos", "site_admin": false, "starred_url": "https://api.github.com/users/semajyllek/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/semajyllek/subscriptions", "type": "User", "url": "https://api.github.com/users/semajyllek", "user_view_type": "public" }
[]
open
false
[ "Awesome ! cc @mariosasko :)", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5704). All of your documentation changes will be reflected on that endpoint.", "Hi, thanks for working on this!\r\n\r\nYour solution only works if the `root` is `\"\"`, e.g., this would yield an incorrect result:\r\n```python\r\ndset = load_dataset(\"user/hf-dataset-repo\", data_dir=\"path/to/data_dir\")\r\n```\r\n\r\nAlso, the `HfFileSystem` implementation in `datasets` will be replaced with the more powerful [one](https://github.com/huggingface/huggingface_hub/blob/main/src/huggingface_hub/hf_file_system.py) from `huggingface_hub` soon (I plan to open a PR that makes `find` much faster in the coming days). \r\n\r\nSo I don't think we want to merge this PR in the current state, but thanks again for the effort.\r\n\r\n (I'll comment on the original issue to propose a cleaner solution)", "Ooof. Sorry, I should have checked that more thoroughly then! I would say we could just add that check and only use my approach if the root is \"\", which would still be faster in many cases, but it sounds like you have a better solution on the way. Thanks for the feedback Mario." ]
2023-04-04T08:58:14Z
2023-04-07T16:10:55Z
null
NONE
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5704.diff", "html_url": "https://github.com/huggingface/datasets/pull/5704", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/5704.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5704" }
I reimplemented fsspec.spec.glob() in `hffilesystem.py` as `_glob`, used it in `_resolve_single_pattern_in_dataset_repository` only, and saw a 20% speedup in times to load the config, on average. That's not much when usually this step takes only 2-3 seconds for most datasets, but in this particular case, `bigcode/the-stack-dedup` , the loading time to get the config (not download the entire 6tb dataset, of course), went from ~170 secs to ~20 secs. What makes this work is this code in `_glob`: ``` if self.dir_cache is not None: allpaths = self.dir_cache else: allpaths = self.find(root, maxdepth=depth, withdirs=True, detail=True, **kwargs) ``` I also had to `import glob.has_magic( )` for `_glob()` (confusing, I know). I hope there is no issue with copying most of the code from `fsspec.spec.glob`, as it is a BSD 3-Clause License, and I left a comment about this in the docstring of` _glob()`, that we may want to delete. As mentioned, I evaluated the speedup across a random selection of about 1000 datasets (not all 27k+), and verified that old_config.eq(new_method_config) with the build in method, but deleted this test and related code changes on the subsequent commit. It's in the commit history if anyone wants to see it. (Note this does not include the outlier of `bigcode/the-stack-dedup` | | old_time | new _time | diff | pct_diff | | -- | -- | -- | -- | -- | | mean | 3.340 | 2.642 | 0.698 | 18.404 | | min | 2.024 | 1.976 | -0.840 | -37.634 | | max | 66.582 | 41.517 | 30.927 | 85.538 |
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5704/reactions" }
null
null
null
true
https://github.com/huggingface/datasets/pull/5703
5,703
[WIP][Test, Please ignore] Investigate performance impact of using multiprocessing only
{ "avatar_url": "https://avatars.githubusercontent.com/u/1535968?v=4", "events_url": "https://api.github.com/users/hvaara/events{/privacy}", "followers_url": "https://api.github.com/users/hvaara/followers", "following_url": "https://api.github.com/users/hvaara/following{/other_user}", "gists_url": "https://api.github.com/users/hvaara/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/hvaara", "id": 1535968, "login": "hvaara", "node_id": "MDQ6VXNlcjE1MzU5Njg=", "organizations_url": "https://api.github.com/users/hvaara/orgs", "received_events_url": "https://api.github.com/users/hvaara/received_events", "repos_url": "https://api.github.com/users/hvaara/repos", "site_admin": false, "starred_url": "https://api.github.com/users/hvaara/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/hvaara/subscriptions", "type": "User", "url": "https://api.github.com/users/hvaara", "user_view_type": "public" }
[]
closed
false
[ "`multiprocess` uses `dill` instead of `pickle` for pickling shared objects and, as such, can pickle more types than `multiprocessing`. And I don't think this is something we want to change :).", "That makes sense to me, and I don't think you should merge this change. I was only curious about the performance impact. I saw the benchmarks that was produced in other PRs, and wanted to get a better understanding of it. I created this PR to see if it got automatically added here.\r\n\r\nIs there a way I can generate those benchmarks myself?", "You can find some speed comparisons between dill and pickle on SO if you google \"dill vs pickle speed\".\r\n\r\nAnd for the benchmarks, you can generate them locally with DVC running this code from the repo root: https://github.com/huggingface/datasets/blob/0803a006db1c395ac715662cc6079651f77c11ea/.github/workflows/benchmarks.yaml#L23-L47.", "Thanks for the help @mariosasko!" ]
2023-04-04T04:37:49Z
2023-04-20T03:17:37Z
2023-04-20T03:17:32Z
NONE
true
{ "diff_url": "https://github.com/huggingface/datasets/pull/5703.diff", "html_url": "https://github.com/huggingface/datasets/pull/5703", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/5703.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5703" }
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/1535968?v=4", "events_url": "https://api.github.com/users/hvaara/events{/privacy}", "followers_url": "https://api.github.com/users/hvaara/followers", "following_url": "https://api.github.com/users/hvaara/following{/other_user}", "gists_url": "https://api.github.com/users/hvaara/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/hvaara", "id": 1535968, "login": "hvaara", "node_id": "MDQ6VXNlcjE1MzU5Njg=", "organizations_url": "https://api.github.com/users/hvaara/orgs", "received_events_url": "https://api.github.com/users/hvaara/received_events", "repos_url": "https://api.github.com/users/hvaara/repos", "site_admin": false, "starred_url": "https://api.github.com/users/hvaara/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/hvaara/subscriptions", "type": "User", "url": "https://api.github.com/users/hvaara", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5703/reactions" }
null
null
null
true
https://github.com/huggingface/datasets/issues/5702
5,702
Is it possible or how to define a `datasets.Sequence` that could potentially be either a dict, a str, or None?
{ "avatar_url": "https://avatars.githubusercontent.com/u/10508116?v=4", "events_url": "https://api.github.com/users/gitforziio/events{/privacy}", "followers_url": "https://api.github.com/users/gitforziio/followers", "following_url": "https://api.github.com/users/gitforziio/following{/other_user}", "gists_url": "https://api.github.com/users/gitforziio/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/gitforziio", "id": 10508116, "login": "gitforziio", "node_id": "MDQ6VXNlcjEwNTA4MTE2", "organizations_url": "https://api.github.com/users/gitforziio/orgs", "received_events_url": "https://api.github.com/users/gitforziio/received_events", "repos_url": "https://api.github.com/users/gitforziio/repos", "site_admin": false, "starred_url": "https://api.github.com/users/gitforziio/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gitforziio/subscriptions", "type": "User", "url": "https://api.github.com/users/gitforziio", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
[ "Hi ! `datasets` uses Apache Arrow as backend to store the data, and it requires each column to have a fixed type. Therefore a column can't have a mix of dicts/lists/strings.\r\n\r\nThough it's possible to have one (nullable) field for each type:\r\n```python\r\nfeatures = Features({\r\n \"text_alone\": Value(\"string\"),\r\n \"text_with_idxes\": {\r\n \"text\": Value(\"string\"),\r\n \"idxes\": Value(\"int64\")\r\n }\r\n})\r\n```\r\n\r\nbut you'd have to reformat your data fiels or define a [dataset loading script](https://huggingface.co/docs/datasets/dataset_script) to apply the appropriate parsing.\r\n\r\nAlternatively we could explore supporting the Arrow [Union](https://arrow.apache.org/docs/python/generated/pyarrow.UnionType.html) type which could solve this issue, but I don't know if it's well supported in python and with the rest of the ecosystem like Parquet", "@lhoestq Thank you! I further wonder if it's possible to use list subscripts as keys of a feature? Like\r\n```python\r\nfeatures = Features({\r\n 0: Value(\"string\"),\r\n 1: {\r\n \"text\": Value(\"string\"),\r\n \"idxes\": [Value(\"int64\")]\r\n },\r\n 2: Value(\"string\"),\r\n # ...\r\n})\r\n```", "Column names need to be strings, so you could use \"1\", \"2\", etc. or give appropriate column names", "@lhoestq Got it. Thank you!" ]
2023-04-04T03:20:43Z
2023-04-05T14:15:18Z
2023-04-05T14:15:17Z
NONE
null
null
### Feature request Hello! Apologies if my question sounds naive: I was wondering if it’s possible, or how one would go about defining a 'datasets.Sequence' element in datasets.Features that could potentially be either a dict, a str, or None? Specifically, I’d like to define a feature for a list that contains 18 elements, each of which has been pre-defined as either a `dict or None` or `str or None` - as demonstrated in the slightly misaligned data provided below: ```json [ [ {"text":"老妇人","idxes":[0,1,2]},null,{"text":"跪","idxes":[3]},null,null,null,null,{"text":"在那坑里","idxes":[4,5,6,7]},null,null,null,null,null,null,null,null,null,null], [ {"text":"那些水","idxes":[13,14,15]},null,{"text":"舀","idxes":[11]},null,null,null,null,null,{"text":"在那坑里","idxes":[4,5,6,7]},null,{"text":"出","idxes":[12]},null,null,null,null,null,null,null], [ {"text":"水","idxes":[38]}, null, {"text":"舀","idxes":[40]}, "假", // note this is just a standalone string null,null,null,{"text":"坑里","idxes":[35,36]},null,null,null,null,null,null,null,null,null,null]] ``` ### Motivation I'm currently working with a dataset of the following structure and I couldn't find a solution in the [documentation](https://huggingface.co/docs/datasets/v2.11.0/en/package_reference/main_classes#datasets.Features). ```json {"qid":"3-train-1058","context":"桑桑害怕了。从玉米地里走到田埂上,他遥望着他家那幢草房子里的灯光,知道母亲没有让他回家的意思,很伤感,有点想哭。但没哭,转身朝阿恕家走去。","corefs":[[{"text":"桑桑","idxes":[0,1]},{"text":"他","idxes":[17]}]],"non_corefs":[],"outputs":[[{"text":"他","idxes":[17]},null,{"text":"走","idxes":[11]},null,null,null,null,null,{"text":"从玉米地里","idxes":[6,7,8,9,10]},{"text":"到田埂上","idxes":[12,13,14,15]},null,null,null,null,null,null,null,null],[{"text":"他","idxes":[17]},null,{"text":"走","idxes":[66]},null,null,null,null,null,null,null,{"text":"转身朝阿恕家去","idxes":[60,61,62,63,64,65,67]},null,null,null,null,null,null,null],[{"text":"灯光","idxes":[30,31]},null,null,null,null,null,null,{"text":"草房子里","idxes":[25,26,27,28]},null,null,null,null,null,null,null,null,null,null],[{"text":"他","idxes":[17]},{"text":"他家那幢草房子","idxes":[21,22,23,24,25,26,27]},null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,"远"],[{"text":"他","idxes":[17]},{"text":"阿恕家","idxes":[63,64,65]},null,null,null,null,null,null,null,null,null,null,null,null,null,null,null,"变近"]]} ``` ### Your contribution I'm going to provide the dataset at https://huggingface.co/datasets/2030NLP/SpaCE2022 .
{ "avatar_url": "https://avatars.githubusercontent.com/u/10508116?v=4", "events_url": "https://api.github.com/users/gitforziio/events{/privacy}", "followers_url": "https://api.github.com/users/gitforziio/followers", "following_url": "https://api.github.com/users/gitforziio/following{/other_user}", "gists_url": "https://api.github.com/users/gitforziio/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/gitforziio", "id": 10508116, "login": "gitforziio", "node_id": "MDQ6VXNlcjEwNTA4MTE2", "organizations_url": "https://api.github.com/users/gitforziio/orgs", "received_events_url": "https://api.github.com/users/gitforziio/received_events", "repos_url": "https://api.github.com/users/gitforziio/repos", "site_admin": false, "starred_url": "https://api.github.com/users/gitforziio/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/gitforziio/subscriptions", "type": "User", "url": "https://api.github.com/users/gitforziio", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5702/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/pull/5701
5,701
Add Dataset.from_spark
{ "avatar_url": "https://avatars.githubusercontent.com/u/106995444?v=4", "events_url": "https://api.github.com/users/maddiedawson/events{/privacy}", "followers_url": "https://api.github.com/users/maddiedawson/followers", "following_url": "https://api.github.com/users/maddiedawson/following{/other_user}", "gists_url": "https://api.github.com/users/maddiedawson/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/maddiedawson", "id": 106995444, "login": "maddiedawson", "node_id": "U_kgDOBmCe9A", "organizations_url": "https://api.github.com/users/maddiedawson/orgs", "received_events_url": "https://api.github.com/users/maddiedawson/received_events", "repos_url": "https://api.github.com/users/maddiedawson/repos", "site_admin": false, "starred_url": "https://api.github.com/users/maddiedawson/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/maddiedawson/subscriptions", "type": "User", "url": "https://api.github.com/users/maddiedawson", "user_view_type": "public" }
[]
closed
false
[ "_The documentation is not available anymore as the PR was closed or merged._", "@mariosasko Would you or another HF datasets maintainer be able to review this, please?", "Amazing ! Great job @maddiedawson \r\n\r\nDo you know if it's possible to also support writing to Parquet using the HF ParquetWriter if `file_format=\"parquet\"` ?\r\n\r\nParquet is often used when people want to stream the data to train models - which is suitable for big datasets. On the other hand Arrow is generally used for local memory mapping with random access.\r\n\r\n> Please note there was a previous PR adding this functionality\r\n\r\nAm I right to say that it uses the spark workers to prepare the Arrow files ? If so this should make the data preparation fast and won't fill up the executor's memory as in the previously proposed PR", "Thanks for taking a look! Unlike the previous PR's approach, this implementation takes advantage of Spark mapping to distribute file writing over multiple tasks. (Also it doesn't load the entire dataset into memory :) )\r\n\r\nSupporting Parquet here sgtm; I'll modify the PR.\r\n\r\nI also updated the PR description with a common Spark-HF use case that we want to improve.", "Hey @albertvillanova @lhoestq , would one of you be able to re-review please? Thank you!", "@lhoestq this is ready for another pass! Thanks so much 🙏 ", "Friendly ping @lhoestq , also cc @polinaeterna who may be able to help take a look?", "Merging `main` into this branch should fix the CI", "Just rebased @lhoestq ", "Thanks @lhoestq ! Is there a way for me to trigger the github workflow myself to triage the test failure? I'm not able to repro the test failures locally.", "There were two test issues in the workflow that I wasn't able to reproduce locally:\r\n\r\n- Python 3.7: createDataFrame fails due to a pickling error. I modified the tests to instead write and read from json files\r\n- Python 3.10: A worker crashes for unknown reasons. I modified the spark setup to explicitly specify local mode in case it was trying to do something else; let's see if that fixes the issue", "Also one more question @lhoestq when is the next datasets release? We're hoping this can make it in", "I just re-ran the CI.\r\nI think we can do a release right after this PR is merged ;)", "Thanks all! @lhoestq could we re-run CI again please? I think we have to disable this feature on python 3.7 due to the pickling error. The other failure was due to https://issues.apache.org/jira/browse/SPARK-30952 so I rewrote the df processing", "Thanks @lhoestq , this is ready for another CI run. I pinned the pyspark version to see if that fixes the pickling issue", "The remaining CI issues have been addressed! They were\r\n\r\n- dill=0.3.1.1 is incompatible with cloudpickle, used by Spark. The min-dependency tests use this dill version, and those were failing. I added a skip-test annotation to skip Spark tests when using this dill version. This shouldn't be a production issue since if users are using that version of dill, they won't really be able to do anything with Spark anyway.\r\n- One of the Spark APIs used in this feature (mapInArrow) is incompatible with Windows. I filed a Spark ticket for the team to investigate. For the tests, I added another annotation to skip Spark tests on Windows. In the next PR (adding streaming mode), we should be able to support Windows since that won't use mapInArrow.\r\n\r\nI ran the CI on my forked branch: https://github.com/maddiedawson/datasets/pull/2 Everything passes except one instance of tests/test_metric_common.py::LocalMetricTest::test_load_metric_frugalscore; it looks like a flake.\r\n\r\n@lhoestq granted that the CI passes here, is this ok to merge and release? We'd like to put out a blog post tomorrow to broadcast this to Spark users!", "Thanks @lhoestq ! Could you help take a look at the error please? Seems unrelated...\r\n\r\nFAILED tests/test_arrow_dataset.py::BaseDatasetTest::test_map_multiprocessing_on_disk - NotADirectoryError: [WinError 267] The directory name is invalid: 'C:\\\\Users\\\\RUNNER~1\\\\AppData\\\\Local\\\\Temp\\\\tmptfnrdj4x\\\\cache-5c5687cf5629c97a_00000_of_00002.arrow'\r\n===== 1 failed, 2152 passed, 23 skipped, 20 warnings in 461.68s (0:07:41) =====", "The blog is live btw! https://www.databricks.com/blog/contributing-spark-loader-for-hugging-face-datasets Hopefully there can be a release today?", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.012686 / 0.011353 (0.001333) | 0.006051 / 0.011008 (-0.004957) | 0.123057 / 0.038508 (0.084549) | 0.033238 / 0.023109 (0.010128) | 0.388207 / 0.275898 (0.112309) | 0.393972 / 0.323480 (0.070492) | 0.006645 / 0.007986 (-0.001340) | 0.006715 / 0.004328 (0.002386) | 0.098348 / 0.004250 (0.094097) | 0.041410 / 0.037052 (0.004358) | 0.380123 / 0.258489 (0.121634) | 0.427982 / 0.293841 (0.134141) | 0.052194 / 0.128546 (-0.076352) | 0.018775 / 0.075646 (-0.056871) | 0.399063 / 0.419271 (-0.020209) | 0.061019 / 0.043533 (0.017487) | 0.370943 / 0.255139 (0.115804) | 0.398326 / 0.283200 (0.115127) | 0.136893 / 0.141683 (-0.004790) | 1.777431 / 1.452155 (0.325276) | 1.844354 / 1.492716 (0.351638) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.267296 / 0.018006 (0.249289) | 0.565133 / 0.000490 (0.564643) | 0.005811 / 0.000200 (0.005611) | 0.000122 / 0.000054 (0.000068) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027009 / 0.037411 (-0.010402) | 0.125907 / 0.014526 (0.111381) | 0.122111 / 0.176557 (-0.054445) | 0.189023 / 0.737135 (-0.548112) | 0.140510 / 0.296338 (-0.155829) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.589269 / 0.215209 (0.374060) | 6.038038 / 2.077655 (3.960384) | 2.394681 / 1.504120 (0.890561) | 2.099268 / 1.541195 (0.558073) | 2.105146 / 1.468490 (0.636656) | 1.216304 / 4.584777 (-3.368473) | 5.823110 / 3.745712 (2.077397) | 4.999323 / 5.269862 (-0.270539) | 2.781554 / 4.565676 (-1.784122) | 0.148370 / 0.424275 (-0.275905) | 0.015163 / 0.007607 (0.007556) | 0.775153 / 0.226044 (0.549109) | 7.425314 / 2.268929 (5.156385) | 3.320254 / 55.444624 (-52.124370) | 2.718595 / 6.876477 (-4.157881) | 2.696215 / 2.142072 (0.554142) | 1.452249 / 4.805227 (-3.352978) | 0.281355 / 6.500664 (-6.219309) | 0.088146 / 0.075469 (0.012677) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.495718 / 1.841788 (-0.346070) | 17.498714 / 8.074308 (9.424405) | 20.109705 / 10.191392 (9.918313) | 0.233053 / 0.680424 (-0.447371) | 0.028336 / 0.534201 (-0.505865) | 0.538146 / 0.579283 (-0.041137) | 0.642106 / 0.434364 (0.207742) | 0.597214 / 0.540337 (0.056876) | 0.732219 / 1.386936 (-0.654717) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008153 / 0.011353 (-0.003200) | 0.005605 / 0.011008 (-0.005403) | 0.096159 / 0.038508 (0.057651) | 0.034102 / 0.023109 (0.010992) | 0.428091 / 0.275898 (0.152193) | 0.476535 / 0.323480 (0.153056) | 0.006278 / 0.007986 (-0.001708) | 0.006752 / 0.004328 (0.002424) | 0.100553 / 0.004250 (0.096302) | 0.045546 / 0.037052 (0.008494) | 0.463236 / 0.258489 (0.204747) | 0.502512 / 0.293841 (0.208671) | 0.051014 / 0.128546 (-0.077533) | 0.018499 / 0.075646 (-0.057148) | 0.127587 / 0.419271 (-0.291685) | 0.059254 / 0.043533 (0.015722) | 0.432248 / 0.255139 (0.177109) | 0.462002 / 0.283200 (0.178802) | 0.124918 / 0.141683 (-0.016765) | 1.689740 / 1.452155 (0.237585) | 1.871546 / 1.492716 (0.378830) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.274844 / 0.018006 (0.256838) | 0.570522 / 0.000490 (0.570032) | 0.004008 / 0.000200 (0.003808) | 0.000146 / 0.000054 (0.000091) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025323 / 0.037411 (-0.012088) | 0.116323 / 0.014526 (0.101797) | 0.129434 / 0.176557 (-0.047122) | 0.187069 / 0.737135 (-0.550067) | 0.134459 / 0.296338 (-0.161880) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.633551 / 0.215209 (0.418341) | 6.290078 / 2.077655 (4.212423) | 2.692071 / 1.504120 (1.187951) | 2.354344 / 1.541195 (0.813149) | 2.409260 / 1.468490 (0.940770) | 1.270515 / 4.584777 (-3.314261) | 5.552982 / 3.745712 (1.807270) | 3.041417 / 5.269862 (-2.228444) | 1.920634 / 4.565676 (-2.645043) | 0.142500 / 0.424275 (-0.281775) | 0.014378 / 0.007607 (0.006770) | 0.786444 / 0.226044 (0.560399) | 7.711558 / 2.268929 (5.442630) | 3.439688 / 55.444624 (-52.004936) | 2.742314 / 6.876477 (-4.134163) | 2.800531 / 2.142072 (0.658458) | 1.405843 / 4.805227 (-3.399385) | 0.245322 / 6.500664 (-6.255342) | 0.076662 / 0.075469 (0.001193) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.592961 / 1.841788 (-0.248827) | 18.165647 / 8.074308 (10.091339) | 20.011433 / 10.191392 (9.820041) | 0.240558 / 0.680424 (-0.439866) | 0.026045 / 0.534201 (-0.508156) | 0.529610 / 0.579283 (-0.049674) | 0.652494 / 0.434364 (0.218130) | 0.612284 / 0.540337 (0.071947) | 0.733180 / 1.386936 (-0.653756) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ea251c726c73bd076a1bef7e39e2ac4e97c8d166 \"CML watermark\")\n", "python 3.9.2\r\nGot an error _pickle.PicklingError use Dataset.from_spark.\r\n\r\nDid the dataset import load data from spark dataframe using multi-node Spark cluster\r\ndf = spark.read.parquet(args.input_data).repartition(50)\r\nds = Dataset.from_spark(df, keep_in_memory=True,\r\n cache_dir=\"/pnc-data/data/nuplan/t5_spark/cache_data\")\r\nds.save_to_disk(args.output_data)\r\n\r\nError : \r\n_pickle.PicklingError: Could not serialize object: RuntimeError: It appears that you are attempting to reference SparkContext from a broadcast variable, action, or transforma\r\ntion. SparkContext can only be used on the driver, not in code that it run on workers. For more information, see SPARK-5063.\r\n23/06/16 21:17:20 WARN ExecutorPodsWatchSnapshotSource: Kubernetes client has been closed (this is expected if the application is shutting down.)\r\n", "Hi @yanzia12138 ! Could you open a new issue please and share the full stack trace ? This will help to know what happened exactly" ]
2023-04-03T23:51:29Z
2023-06-16T16:39:32Z
2023-04-26T15:43:39Z
CONTRIBUTOR
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5701.diff", "html_url": "https://github.com/huggingface/datasets/pull/5701", "merged_at": "2023-04-26T15:43:39Z", "patch_url": "https://github.com/huggingface/datasets/pull/5701.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5701" }
Adds static method Dataset.from_spark to create datasets from Spark DataFrames. This approach alleviates users of the need to materialize their dataframe---a common use case is that the user loads their dataset into a dataframe, uses Spark to apply some transformation to some of the columns, and then wants to train on the dataset. Related issue: https://github.com/huggingface/datasets/issues/5678
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 2, "hooray": 4, "laugh": 0, "rocket": 0, "total_count": 6, "url": "https://api.github.com/repos/huggingface/datasets/issues/5701/reactions" }
null
null
null
true
https://github.com/huggingface/datasets/pull/5700
5,700
fix: fix wrong modification of the 'cache_file_name' -related paramet…
{ "avatar_url": "https://avatars.githubusercontent.com/u/47528215?v=4", "events_url": "https://api.github.com/users/FrancoisNoyez/events{/privacy}", "followers_url": "https://api.github.com/users/FrancoisNoyez/followers", "following_url": "https://api.github.com/users/FrancoisNoyez/following{/other_user}", "gists_url": "https://api.github.com/users/FrancoisNoyez/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/FrancoisNoyez", "id": 47528215, "login": "FrancoisNoyez", "node_id": "MDQ6VXNlcjQ3NTI4MjE1", "organizations_url": "https://api.github.com/users/FrancoisNoyez/orgs", "received_events_url": "https://api.github.com/users/FrancoisNoyez/received_events", "repos_url": "https://api.github.com/users/FrancoisNoyez/repos", "site_admin": false, "starred_url": "https://api.github.com/users/FrancoisNoyez/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/FrancoisNoyez/subscriptions", "type": "User", "url": "https://api.github.com/users/FrancoisNoyez", "user_view_type": "public" }
[]
open
false
[ "Have you tried to set the cache file names if `keep_in_memory`is True ?\r\n\r\n```diff\r\n- if self.cache_files:\r\n+ if self.cache_files and not keep_in_memory:\r\n```\r\n\r\nThis way it doesn't change the indice cache arguments and leave them as `None`", "@lhoestq \r\nRegarding what you suggest:\r\nThe thing is, if cached files already exist and do correspond to the split that we are currently trying to perform, then it would be a shame not to use them, would it not? So I don't think that we should necessarily bypass this step in the method (corresponding to the reading of already existing data), if 'keep_in_memory' = True. For me, 'keep_in_memory' = True is supposed to mean \"don't cache the output of this method\", but it should say nothing regarding what to do with potentially already existing cached data, should it?\r\nBesides, even if we do what you suggest, and do only that (so, not the modifs that I suggested), then, assuming that 'keep_in_memory' = False and that there exist cached files, if the following check on the existence of cached files with specific name fails, we will still have ended up modifying an input value which will be then used in the remaining of the method, potentially altering the behavior that the user intended the method's call to have. Basically, the issue with what you suggest is that we can't guaranty that we won't continue with the remaining of the method even if this condition is met. Because of that, in my opinion, the best way to not have to worry about potential, unwanted side effects in the rest of the code is to not modify those variables in place, and so, here, to use other variables.\r\nSo, I'm sorry, but for those two reasons, I don't think that what you are suggesting addresses the problems which are described in the opened issue.", "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5700). All of your documentation changes will be reflected on that endpoint.", "Makes sense ! Therefore removing the ValueError messages sounds good to me, thanks for detailing.\r\n\r\nThen I think it's fine to keep using the same variables for the cache file names is enough instead of defining new ones - it doesn't alter the behavior of the function. Otherwise it would feel a bit confusing to have similar variables with slightly modified names just for that", "Ok for the removing the ValueError exceptions, thanks.\r\n\r\nThat said, it seems to me like we should still find a way not to modify the values input by the user, insofar as they can be used elsewhere down the line in the program. Sure, here, by removing the raising of those ValueError exceptions, we have fixed one use cases were allowing this modification actually caused an issue, but maybe there are other use cases where this would also caused an issue? Also, maybe in the future we will add other functionalities which will depend on the values of those input parameters, with then new risks of such an issue occurring?\r\nThat's why, in order not to have to worry about that, and in order to make the code a bit more future -proof, I suggest that make sure those input values are not modified.\r\n\r\nOne way that I did this is to create different but similar looking variable names. If you find this confusing, we can always add a comment.\r\nAnother way would be to not store the result of the conditional definition of the values (the '\\_cache_file_name = (... if condition else ...)' in my proposition of code), and to use it every time we need. But since we use those new variables at least twice, that creates code redundancy, which is not great either.\r\nFinally, a third way that I can imagine would be to put all this logic into its own method, which would then encapsulate it, and protect the remaining of the 'train_test_split' code from all unintended side effect that this logic can currently cause. This one is probably best. Also, maybe it could be used to remove some code redundancy elsewhere in the definition of the Dataset class? I have not checked if such a code redundancy exists.", "We're already replacing the user's input by default values automatically in other methods, it's fine to do it here as well and actually fits the library's style.\r\n\r\nNote that the case where it would reload the cache even if `keep_in_memory=True` is not implemented though, but it should be easy to add in `_select_with_indices_mapping`:\r\n- add keep_in_memory in `_new_dataset_with_indices` that uses InMemoryTable.from_file\r\n- inside `_select_with_indices_mapping` return the dataset from `_new_dataset_with_indices` if:\r\n - `keep_in_memory=True`\r\n - and `indices_cache_file_name` is not None and exists \r\n - and `is_caching_enabled()`\r\n\r\nBecause if we let it this way it would recreate the cache file unfortunately", "> We're already replacing the user's input by default values automatically in other methods, it's fine to do it here as well and actually fits the library's style.\r\n\r\nI think the fact that it's a style of the library is not really an argument in itself; however, after thinking through it several times, I think I know see why your solution is acceptable: as soon as the user specifies that 'keep_in_memory=True', they should not care anymore about the value of the '\\_indices_cache_file_name' variables, since from their point of view those are now irrelevant. So it's \"fine\" if we allow ourselves to modify the value of those variables, if it helps the internal code being more concise.\r\nStill, I find that it's a bit unintuitive, and a risk as far as future evolution of the method / of the code is concerned; someone tasked with doing that would need to have the knowledge of a lot of, if not all, the other methods of the class, in order to understand the potentially far-reaching impact of some modifications made to this portion of the code. But I guess that's a choice which is the library's owners to make. Also, if we use your proposed solution, as I explained, we can't get the benefit of potentially reusing possibly already existing cached data.\r\nOn that note...\r\n\r\n> Note that the case where it would reload the cache even if `keep_in_memory=True` is not implemented though\r\n\r\nI'm not sure what you mean here:\r\nWithin the current code trying to load up the potentially already existing split data, there is no trace of the 'keep_in_memory' variable. So why do you say that 'the case where it would reload the cache even if keep_in_memory=True is not implemented' (I assume that you mean 'currently implemented')? Surely, currently, this bit of code works regardless of the value of the 'keep_in_memory' variable', does it not?" ]
2023-04-03T18:05:26Z
2023-04-06T17:17:27Z
null
NONE
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5700.diff", "html_url": "https://github.com/huggingface/datasets/pull/5700", "merged_at": null, "patch_url": "https://github.com/huggingface/datasets/pull/5700.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5700" }
…ers values in 'train_test_split' + fix bad interaction between 'keep_in_memory' and 'cache_file_name' -related parameters (#5699)
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5700/reactions" }
null
null
null
true
https://github.com/huggingface/datasets/issues/5699
5,699
Issue when wanting to split in memory a cached dataset
{ "avatar_url": "https://avatars.githubusercontent.com/u/47528215?v=4", "events_url": "https://api.github.com/users/FrancoisNoyez/events{/privacy}", "followers_url": "https://api.github.com/users/FrancoisNoyez/followers", "following_url": "https://api.github.com/users/FrancoisNoyez/following{/other_user}", "gists_url": "https://api.github.com/users/FrancoisNoyez/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/FrancoisNoyez", "id": 47528215, "login": "FrancoisNoyez", "node_id": "MDQ6VXNlcjQ3NTI4MjE1", "organizations_url": "https://api.github.com/users/FrancoisNoyez/orgs", "received_events_url": "https://api.github.com/users/FrancoisNoyez/received_events", "repos_url": "https://api.github.com/users/FrancoisNoyez/repos", "site_admin": false, "starred_url": "https://api.github.com/users/FrancoisNoyez/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/FrancoisNoyez/subscriptions", "type": "User", "url": "https://api.github.com/users/FrancoisNoyez", "user_view_type": "public" }
[]
open
false
[ "Hi ! Good catch, this is wrong indeed and thanks for opening a PR :)", "Facing the same issue. Kindly fix this bug." ]
2023-04-03T17:00:07Z
2024-05-15T13:12:18Z
null
NONE
null
null
### Describe the bug **In the 'train_test_split' method of the Dataset class** (defined datasets/arrow_dataset.py), **if 'self.cache_files' is not empty**, then, **regarding the input parameters 'train_indices_cache_file_name' and 'test_indices_cache_file_name', if they are None**, we modify them to make them not None, to see if we can just provide back / work from cached data. But if we can't provide cached data, we move on with the call to the method, except those two values are not None anymore, which will conflict with the use of the 'keep_in_memory' parameter down the line. Indeed, at some point we end up calling the 'select' method, **and if 'keep_in_memory' is True**, since the value of this method's parameter 'indices_cache_file_name' is now not None anymore, **an exception is raised, whose message is "Please use either 'keep_in_memory' or 'indices_cache_file_name' but not both.".** Because of that, it's impossible to perform a train / test split of a cached dataset while requesting that the result not be cached. Which is inconvenient when one is just performing experiments, with no intention of caching the result. Aside from this being inconvenient, **the code which lead up to that situation seems simply wrong** to me: the input variable should not be modified so as to change the user's intention just to perform a test, if that test can fail and respecting the user's intention is necessary to proceed in that case. To fix this, I suggest to use other variables / other variable names, in order to host the value(s) needed to perform the test, so as not to change the originally input values needed by the rest of the method's code. Also, **I don't see why an exception should be raised when the 'select' method is called with both 'keep_in_memory'=True and 'indices_cache_file_name'!=None**: should the use of 'keep_in_memory' not prevail anyway, specifying that the user does not want to perform caching, and so making irrelevant the value of 'indices_cache_file_name'? This is indeed what happens when we look further in the code, in the '\_select_with_indices_mapping' method: when 'keep_in_memory' is True, then the value of indices_cache_file_name does not matter, the data will be written to a stream buffer anyway. Hence I suggest to remove the raising of exception in those circumstances. Notably, to remove the raising of it in the 'select', '\_select_with_indices_mapping', 'shuffle' and 'map' methods. ### Steps to reproduce the bug ```python import datasets def generate_examples(): for i in range(10): yield {"id": i} dataset_ = datasets.Dataset.from_generator( generate_examples, keep_in_memory=False, ) dataset_.train_test_split( test_size=3, shuffle=False, keep_in_memory=True, train_indices_cache_file_name=None, test_indices_cache_file_name=None, ) ``` ### Expected behavior The result of the above code should be a DatasetDict instance. Instead, we get the following exception stack: ```python --------------------------------------------------------------------------- ValueError Traceback (most recent call last) Cell In[3], line 1 ----> 1 dataset_.train_test_split( 2 test_size=3, 3 shuffle=False, 4 keep_in_memory=True, 5 train_indices_cache_file_name=None, 6 test_indices_cache_file_name=None, 7 ) File ~/Work/Developments/datasets/src/datasets/arrow_dataset.py:528, in transmit_format.<locals>.wrapper(*args, **kwargs) 521 self_format = { 522 "type": self._format_type, 523 "format_kwargs": self._format_kwargs, 524 "columns": self._format_columns, 525 "output_all_columns": self._output_all_columns, 526 } 527 # apply actual function --> 528 out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) 529 datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out] 530 # re-apply format to the output File ~/Work/Developments/datasets/src/datasets/fingerprint.py:511, in fingerprint_transform.<locals>._fingerprint.<locals>.wrapper(*args, **kwargs) 507 validate_fingerprint(kwargs[fingerprint_name]) 509 # Call actual function --> 511 out = func(dataset, *args, **kwargs) 513 # Update fingerprint of in-place transforms + update in-place history of transforms 515 if inplace: # update after calling func so that the fingerprint doesn't change if the function fails File ~/Work/Developments/datasets/src/datasets/arrow_dataset.py:4428, in Dataset.train_test_split(self, test_size, train_size, shuffle, stratify_by_column, seed, generator, keep_in_memory, load_from_cache_file, train_indices_cache_file_name, test_indices_cache_file_name, writer_batch_size, train_new_fingerprint, test_new_fingerprint) 4425 test_indices = permutation[:n_test] 4426 train_indices = permutation[n_test : (n_test + n_train)] -> 4428 train_split = self.select( 4429 indices=train_indices, 4430 keep_in_memory=keep_in_memory, 4431 indices_cache_file_name=train_indices_cache_file_name, 4432 writer_batch_size=writer_batch_size, 4433 new_fingerprint=train_new_fingerprint, 4434 ) 4435 test_split = self.select( 4436 indices=test_indices, 4437 keep_in_memory=keep_in_memory, (...) 4440 new_fingerprint=test_new_fingerprint, 4441 ) 4443 return DatasetDict({"train": train_split, "test": test_split}) File ~/Work/Developments/datasets/src/datasets/arrow_dataset.py:528, in transmit_format.<locals>.wrapper(*args, **kwargs) 521 self_format = { 522 "type": self._format_type, 523 "format_kwargs": self._format_kwargs, 524 "columns": self._format_columns, 525 "output_all_columns": self._output_all_columns, 526 } 527 # apply actual function --> 528 out: Union["Dataset", "DatasetDict"] = func(self, *args, **kwargs) 529 datasets: List["Dataset"] = list(out.values()) if isinstance(out, dict) else [out] 530 # re-apply format to the output File ~/Work/Developments/datasets/src/datasets/fingerprint.py:511, in fingerprint_transform.<locals>._fingerprint.<locals>.wrapper(*args, **kwargs) 507 validate_fingerprint(kwargs[fingerprint_name]) 509 # Call actual function --> 511 out = func(dataset, *args, **kwargs) 513 # Update fingerprint of in-place transforms + update in-place history of transforms 515 if inplace: # update after calling func so that the fingerprint doesn't change if the function fails File ~/Work/Developments/datasets/src/datasets/arrow_dataset.py:3679, in Dataset.select(self, indices, keep_in_memory, indices_cache_file_name, writer_batch_size, new_fingerprint) 3645 """Create a new dataset with rows selected following the list/array of indices. 3646 3647 Args: (...) 3676 ``` 3677 """ 3678 if keep_in_memory and indices_cache_file_name is not None: -> 3679 raise ValueError("Please use either `keep_in_memory` or `indices_cache_file_name` but not both.") 3681 if len(self.list_indexes()) > 0: 3682 raise DatasetTransformationNotAllowedError( 3683 "Using `.select` on a dataset with attached indexes is not allowed. You can first run `.drop_index() to remove your index and then re-add it." 3684 ) ValueError: Please use either `keep_in_memory` or `indices_cache_file_name` but not both. ``` ### Environment info - `datasets` version: 2.11.1.dev0 - Platform: Linux-5.4.236-1-MANJARO-x86_64-with-glibc2.2.5 - Python version: 3.8.12 - Huggingface_hub version: 0.13.3 - PyArrow version: 11.0.0 - Pandas version: 2.0.0 *** *** EDIT: Now with a pull request to fix this [here](https://github.com/huggingface/datasets/pull/5700)
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5699/reactions" }
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5698
5,698
Add Qdrant as another search index
{ "avatar_url": "https://avatars.githubusercontent.com/u/2649301?v=4", "events_url": "https://api.github.com/users/kacperlukawski/events{/privacy}", "followers_url": "https://api.github.com/users/kacperlukawski/followers", "following_url": "https://api.github.com/users/kacperlukawski/following{/other_user}", "gists_url": "https://api.github.com/users/kacperlukawski/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/kacperlukawski", "id": 2649301, "login": "kacperlukawski", "node_id": "MDQ6VXNlcjI2NDkzMDE=", "organizations_url": "https://api.github.com/users/kacperlukawski/orgs", "received_events_url": "https://api.github.com/users/kacperlukawski/received_events", "repos_url": "https://api.github.com/users/kacperlukawski/repos", "site_admin": false, "starred_url": "https://api.github.com/users/kacperlukawski/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/kacperlukawski/subscriptions", "type": "User", "url": "https://api.github.com/users/kacperlukawski", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
[ "@mariosasko I'd appreciate your feedback on this. " ]
2023-04-03T14:25:19Z
2023-04-11T10:28:40Z
null
CONTRIBUTOR
null
null
### Feature request I'd suggest adding Qdrant (https://qdrant.tech) as another search index available, so users can directly build an index from a dataset. Currently, FAISS and ElasticSearch are only supported: https://huggingface.co/docs/datasets/faiss_es ### Motivation ElasticSearch is a keyword-based search system, while FAISS is a vector search library. Vector database, such as Qdrant, is a different tool based on similarity (like FAISS) but is not limited to a single machine. It makes the vector database well-suited for bigger datasets and collaboration if several people want to access a particular dataset. ### Your contribution I can provide a PR implementing that functionality on my own.
null
{ "+1": 6, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 6, "url": "https://api.github.com/repos/huggingface/datasets/issues/5698/reactions" }
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/pull/5697
5,697
Raise an error on missing distributed seed
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009644 / 0.011353 (-0.001709) | 0.006407 / 0.011008 (-0.004601) | 0.148353 / 0.038508 (0.109845) | 0.037537 / 0.023109 (0.014428) | 0.379697 / 0.275898 (0.103799) | 0.466260 / 0.323480 (0.142780) | 0.007884 / 0.007986 (-0.000102) | 0.005140 / 0.004328 (0.000812) | 0.111078 / 0.004250 (0.106827) | 0.049429 / 0.037052 (0.012377) | 0.364766 / 0.258489 (0.106277) | 0.453809 / 0.293841 (0.159968) | 0.051918 / 0.128546 (-0.076628) | 0.020081 / 0.075646 (-0.055566) | 0.616041 / 0.419271 (0.196770) | 0.059834 / 0.043533 (0.016301) | 0.373104 / 0.255139 (0.117965) | 0.419304 / 0.283200 (0.136104) | 0.113526 / 0.141683 (-0.028156) | 1.827160 / 1.452155 (0.375006) | 1.912092 / 1.492716 (0.419376) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.269584 / 0.018006 (0.251578) | 0.554100 / 0.000490 (0.553610) | 0.006618 / 0.000200 (0.006418) | 0.000093 / 0.000054 (0.000039) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025280 / 0.037411 (-0.012131) | 0.123116 / 0.014526 (0.108591) | 0.127674 / 0.176557 (-0.048883) | 0.189106 / 0.737135 (-0.548030) | 0.142072 / 0.296338 (-0.154267) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.602201 / 0.215209 (0.386992) | 5.959610 / 2.077655 (3.881956) | 2.404856 / 1.504120 (0.900736) | 2.175017 / 1.541195 (0.633823) | 2.154360 / 1.468490 (0.685870) | 1.265339 / 4.584777 (-3.319438) | 5.598429 / 3.745712 (1.852716) | 5.130249 / 5.269862 (-0.139612) | 2.764922 / 4.565676 (-1.800754) | 0.143232 / 0.424275 (-0.281043) | 0.014721 / 0.007607 (0.007114) | 0.764734 / 0.226044 (0.538689) | 7.518810 / 2.268929 (5.249882) | 3.344734 / 55.444624 (-52.099890) | 2.601158 / 6.876477 (-4.275319) | 2.726018 / 2.142072 (0.583945) | 1.397918 / 4.805227 (-3.407309) | 0.253277 / 6.500664 (-6.247387) | 0.077772 / 0.075469 (0.002303) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.499535 / 1.841788 (-0.342253) | 17.782490 / 8.074308 (9.708182) | 21.953064 / 10.191392 (11.761672) | 0.248753 / 0.680424 (-0.431671) | 0.029194 / 0.534201 (-0.505007) | 0.529700 / 0.579283 (-0.049583) | 0.618412 / 0.434364 (0.184048) | 0.605062 / 0.540337 (0.064725) | 0.725661 / 1.386936 (-0.661275) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009489 / 0.011353 (-0.001864) | 0.006423 / 0.011008 (-0.004585) | 0.096789 / 0.038508 (0.058281) | 0.034639 / 0.023109 (0.011530) | 0.403875 / 0.275898 (0.127977) | 0.439368 / 0.323480 (0.115888) | 0.006354 / 0.007986 (-0.001631) | 0.006794 / 0.004328 (0.002466) | 0.095537 / 0.004250 (0.091287) | 0.047749 / 0.037052 (0.010697) | 0.424157 / 0.258489 (0.165668) | 0.487825 / 0.293841 (0.193984) | 0.054675 / 0.128546 (-0.073872) | 0.021349 / 0.075646 (-0.054297) | 0.108917 / 0.419271 (-0.310354) | 0.075891 / 0.043533 (0.032358) | 0.412889 / 0.255139 (0.157750) | 0.464512 / 0.283200 (0.181312) | 0.118832 / 0.141683 (-0.022850) | 1.721215 / 1.452155 (0.269060) | 1.857195 / 1.492716 (0.364478) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.248308 / 0.018006 (0.230302) | 0.559496 / 0.000490 (0.559006) | 0.007136 / 0.000200 (0.006936) | 0.000160 / 0.000054 (0.000106) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.031772 / 0.037411 (-0.005639) | 0.123565 / 0.014526 (0.109039) | 0.132660 / 0.176557 (-0.043896) | 0.201428 / 0.737135 (-0.535707) | 0.135238 / 0.296338 (-0.161101) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.646978 / 0.215209 (0.431769) | 6.183477 / 2.077655 (4.105822) | 2.782117 / 1.504120 (1.277997) | 2.294093 / 1.541195 (0.752898) | 2.346932 / 1.468490 (0.878442) | 1.239085 / 4.584777 (-3.345692) | 5.696364 / 3.745712 (1.950652) | 4.980102 / 5.269862 (-0.289759) | 2.278116 / 4.565676 (-2.287560) | 0.157339 / 0.424275 (-0.266936) | 0.014936 / 0.007607 (0.007329) | 0.778001 / 0.226044 (0.551957) | 7.708066 / 2.268929 (5.439138) | 3.412235 / 55.444624 (-52.032389) | 2.670670 / 6.876477 (-4.205806) | 2.731802 / 2.142072 (0.589730) | 1.446516 / 4.805227 (-3.358712) | 0.263689 / 6.500664 (-6.236975) | 0.086359 / 0.075469 (0.010890) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.573169 / 1.841788 (-0.268619) | 17.690842 / 8.074308 (9.616534) | 20.343336 / 10.191392 (10.151944) | 0.231028 / 0.680424 (-0.449396) | 0.025954 / 0.534201 (-0.508247) | 0.570554 / 0.579283 (-0.008729) | 0.610453 / 0.434364 (0.176089) | 0.675830 / 0.540337 (0.135493) | 0.790650 / 1.386936 (-0.596286) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#d094ed07823bfb3271f3a9006daa1f92a64967a5 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007553 / 0.011353 (-0.003800) | 0.005426 / 0.011008 (-0.005582) | 0.096550 / 0.038508 (0.058042) | 0.034393 / 0.023109 (0.011284) | 0.322297 / 0.275898 (0.046399) | 0.340943 / 0.323480 (0.017463) | 0.006350 / 0.007986 (-0.001635) | 0.005700 / 0.004328 (0.001372) | 0.074929 / 0.004250 (0.070678) | 0.054819 / 0.037052 (0.017767) | 0.320151 / 0.258489 (0.061662) | 0.346957 / 0.293841 (0.053116) | 0.036659 / 0.128546 (-0.091887) | 0.012443 / 0.075646 (-0.063204) | 0.332232 / 0.419271 (-0.087040) | 0.051467 / 0.043533 (0.007934) | 0.310952 / 0.255139 (0.055813) | 0.325617 / 0.283200 (0.042417) | 0.104908 / 0.141683 (-0.036775) | 1.446752 / 1.452155 (-0.005403) | 1.558773 / 1.492716 (0.066056) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.300639 / 0.018006 (0.282633) | 0.499901 / 0.000490 (0.499411) | 0.007340 / 0.000200 (0.007140) | 0.000255 / 0.000054 (0.000201) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027206 / 0.037411 (-0.010206) | 0.105603 / 0.014526 (0.091077) | 0.118669 / 0.176557 (-0.057887) | 0.174050 / 0.737135 (-0.563086) | 0.125099 / 0.296338 (-0.171239) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.404285 / 0.215209 (0.189076) | 4.034587 / 2.077655 (1.956933) | 1.812639 / 1.504120 (0.308519) | 1.625745 / 1.541195 (0.084551) | 1.735523 / 1.468490 (0.267033) | 0.709699 / 4.584777 (-3.875078) | 3.802196 / 3.745712 (0.056484) | 3.656984 / 5.269862 (-1.612877) | 1.968470 / 4.565676 (-2.597206) | 0.086612 / 0.424275 (-0.337663) | 0.012368 / 0.007607 (0.004761) | 0.502622 / 0.226044 (0.276577) | 5.017876 / 2.268929 (2.748948) | 2.279794 / 55.444624 (-53.164831) | 1.956938 / 6.876477 (-4.919538) | 2.150430 / 2.142072 (0.008357) | 0.847691 / 4.805227 (-3.957536) | 0.170157 / 6.500664 (-6.330507) | 0.064141 / 0.075469 (-0.011328) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.172246 / 1.841788 (-0.669542) | 15.229444 / 8.074308 (7.155136) | 14.715913 / 10.191392 (4.524521) | 0.192501 / 0.680424 (-0.487923) | 0.017972 / 0.534201 (-0.516229) | 0.423834 / 0.579283 (-0.155449) | 0.423019 / 0.434364 (-0.011345) | 0.493298 / 0.540337 (-0.047039) | 0.589833 / 1.386936 (-0.797103) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007773 / 0.011353 (-0.003580) | 0.005449 / 0.011008 (-0.005560) | 0.075180 / 0.038508 (0.036672) | 0.035221 / 0.023109 (0.012111) | 0.338169 / 0.275898 (0.062271) | 0.374002 / 0.323480 (0.050522) | 0.006391 / 0.007986 (-0.001595) | 0.004406 / 0.004328 (0.000078) | 0.074925 / 0.004250 (0.070675) | 0.056527 / 0.037052 (0.019475) | 0.338071 / 0.258489 (0.079582) | 0.391882 / 0.293841 (0.098041) | 0.037241 / 0.128546 (-0.091305) | 0.012546 / 0.075646 (-0.063100) | 0.087331 / 0.419271 (-0.331940) | 0.049851 / 0.043533 (0.006318) | 0.335264 / 0.255139 (0.080125) | 0.354813 / 0.283200 (0.071614) | 0.110614 / 0.141683 (-0.031069) | 1.432782 / 1.452155 (-0.019372) | 1.548800 / 1.492716 (0.056083) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.307892 / 0.018006 (0.289886) | 0.518809 / 0.000490 (0.518319) | 0.004058 / 0.000200 (0.003858) | 0.000099 / 0.000054 (0.000045) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029155 / 0.037411 (-0.008256) | 0.111706 / 0.014526 (0.097180) | 0.122964 / 0.176557 (-0.053592) | 0.170939 / 0.737135 (-0.566196) | 0.128538 / 0.296338 (-0.167801) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.426529 / 0.215209 (0.211320) | 4.254218 / 2.077655 (2.176563) | 2.011455 / 1.504120 (0.507335) | 1.817397 / 1.541195 (0.276202) | 1.952915 / 1.468490 (0.484425) | 0.705052 / 4.584777 (-3.879725) | 3.844458 / 3.745712 (0.098746) | 3.592754 / 5.269862 (-1.677107) | 1.573567 / 4.565676 (-2.992109) | 0.086834 / 0.424275 (-0.337441) | 0.012389 / 0.007607 (0.004782) | 0.541695 / 0.226044 (0.315650) | 5.224492 / 2.268929 (2.955564) | 2.473648 / 55.444624 (-52.970976) | 2.167458 / 6.876477 (-4.709019) | 2.253319 / 2.142072 (0.111246) | 0.836322 / 4.805227 (-3.968905) | 0.168680 / 6.500664 (-6.331984) | 0.065699 / 0.075469 (-0.009770) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.281886 / 1.841788 (-0.559902) | 15.451741 / 8.074308 (7.377433) | 14.906870 / 10.191392 (4.715478) | 0.168554 / 0.680424 (-0.511870) | 0.017365 / 0.534201 (-0.516836) | 0.434183 / 0.579283 (-0.145100) | 0.421891 / 0.434364 (-0.012473) | 0.538993 / 0.540337 (-0.001344) | 0.636212 / 1.386936 (-0.750724) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1f428b8172319a6bfe95d7a4356b1d14a8d386d8 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007362 / 0.011353 (-0.003991) | 0.004992 / 0.011008 (-0.006016) | 0.098730 / 0.038508 (0.060222) | 0.033673 / 0.023109 (0.010563) | 0.296334 / 0.275898 (0.020436) | 0.328208 / 0.323480 (0.004728) | 0.005658 / 0.007986 (-0.002327) | 0.004130 / 0.004328 (-0.000199) | 0.074596 / 0.004250 (0.070346) | 0.048230 / 0.037052 (0.011178) | 0.295631 / 0.258489 (0.037142) | 0.347176 / 0.293841 (0.053335) | 0.036359 / 0.128546 (-0.092187) | 0.011889 / 0.075646 (-0.063758) | 0.332889 / 0.419271 (-0.086382) | 0.049708 / 0.043533 (0.006175) | 0.291207 / 0.255139 (0.036068) | 0.311066 / 0.283200 (0.027867) | 0.098418 / 0.141683 (-0.043265) | 1.415450 / 1.452155 (-0.036705) | 1.526928 / 1.492716 (0.034212) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.212636 / 0.018006 (0.194630) | 0.432337 / 0.000490 (0.431847) | 0.006839 / 0.000200 (0.006639) | 0.000205 / 0.000054 (0.000150) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026045 / 0.037411 (-0.011366) | 0.107427 / 0.014526 (0.092901) | 0.114634 / 0.176557 (-0.061922) | 0.169943 / 0.737135 (-0.567192) | 0.123290 / 0.296338 (-0.173048) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.409432 / 0.215209 (0.194223) | 4.097910 / 2.077655 (2.020255) | 1.857177 / 1.504120 (0.353057) | 1.672355 / 1.541195 (0.131160) | 1.740130 / 1.468490 (0.271640) | 0.706520 / 4.584777 (-3.878257) | 3.773606 / 3.745712 (0.027893) | 2.101635 / 5.269862 (-3.168226) | 1.326295 / 4.565676 (-3.239382) | 0.085672 / 0.424275 (-0.338604) | 0.012142 / 0.007607 (0.004534) | 0.501168 / 0.226044 (0.275123) | 5.049784 / 2.268929 (2.780855) | 2.322477 / 55.444624 (-53.122148) | 1.990105 / 6.876477 (-4.886372) | 2.115003 / 2.142072 (-0.027070) | 0.837518 / 4.805227 (-3.967709) | 0.168457 / 6.500664 (-6.332207) | 0.064622 / 0.075469 (-0.010847) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.188152 / 1.841788 (-0.653635) | 14.991585 / 8.074308 (6.917276) | 14.635187 / 10.191392 (4.443795) | 0.183708 / 0.680424 (-0.496716) | 0.017452 / 0.534201 (-0.516749) | 0.418963 / 0.579283 (-0.160320) | 0.428893 / 0.434364 (-0.005471) | 0.502108 / 0.540337 (-0.038229) | 0.596345 / 1.386936 (-0.790591) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007404 / 0.011353 (-0.003949) | 0.005148 / 0.011008 (-0.005860) | 0.074785 / 0.038508 (0.036277) | 0.033815 / 0.023109 (0.010706) | 0.332752 / 0.275898 (0.056854) | 0.368018 / 0.323480 (0.044538) | 0.005642 / 0.007986 (-0.002344) | 0.004041 / 0.004328 (-0.000287) | 0.073455 / 0.004250 (0.069205) | 0.047380 / 0.037052 (0.010328) | 0.337017 / 0.258489 (0.078528) | 0.384185 / 0.293841 (0.090344) | 0.036592 / 0.128546 (-0.091954) | 0.012109 / 0.075646 (-0.063537) | 0.086862 / 0.419271 (-0.332410) | 0.049030 / 0.043533 (0.005497) | 0.336542 / 0.255139 (0.081403) | 0.350295 / 0.283200 (0.067096) | 0.100998 / 0.141683 (-0.040685) | 1.469749 / 1.452155 (0.017594) | 1.588355 / 1.492716 (0.095639) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227552 / 0.018006 (0.209546) | 0.438087 / 0.000490 (0.437598) | 0.000394 / 0.000200 (0.000194) | 0.000058 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030575 / 0.037411 (-0.006836) | 0.111914 / 0.014526 (0.097388) | 0.124583 / 0.176557 (-0.051973) | 0.175471 / 0.737135 (-0.561665) | 0.129535 / 0.296338 (-0.166803) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.425625 / 0.215209 (0.210416) | 4.228328 / 2.077655 (2.150673) | 2.021087 / 1.504120 (0.516967) | 1.832550 / 1.541195 (0.291355) | 1.925572 / 1.468490 (0.457082) | 0.690772 / 4.584777 (-3.894005) | 3.724900 / 3.745712 (-0.020813) | 2.080286 / 5.269862 (-3.189576) | 1.316854 / 4.565676 (-3.248822) | 0.085123 / 0.424275 (-0.339152) | 0.012078 / 0.007607 (0.004471) | 0.525802 / 0.226044 (0.299758) | 5.242598 / 2.268929 (2.973670) | 2.491596 / 55.444624 (-52.953028) | 2.125156 / 6.876477 (-4.751320) | 2.185922 / 2.142072 (0.043850) | 0.823116 / 4.805227 (-3.982111) | 0.165188 / 6.500664 (-6.335476) | 0.063970 / 0.075469 (-0.011499) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.256948 / 1.841788 (-0.584840) | 14.981990 / 8.074308 (6.907682) | 14.565266 / 10.191392 (4.373874) | 0.175064 / 0.680424 (-0.505360) | 0.017628 / 0.534201 (-0.516573) | 0.429979 / 0.579283 (-0.149304) | 0.422509 / 0.434364 (-0.011855) | 0.546262 / 0.540337 (0.005924) | 0.647103 / 1.386936 (-0.739833) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#0803a006db1c395ac715662cc6079651f77c11ea \"CML watermark\")\n" ]
2023-04-03T10:44:58Z
2023-04-04T15:05:24Z
2023-04-04T14:58:16Z
MEMBER
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5697.diff", "html_url": "https://github.com/huggingface/datasets/pull/5697", "merged_at": "2023-04-04T14:58:16Z", "patch_url": "https://github.com/huggingface/datasets/pull/5697.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5697" }
close https://github.com/huggingface/datasets/issues/5696
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5697/reactions" }
null
null
null
true
https://github.com/huggingface/datasets/issues/5696
5,696
Shuffle a sharded iterable dataset without seed can lead to duplicate data
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
[]
2023-04-03T09:40:03Z
2023-04-04T14:58:18Z
2023-04-04T14:58:18Z
MEMBER
null
null
As reported in https://github.com/huggingface/datasets/issues/5360 If `seed=None` in `.shuffle()`, shuffled datasets don't use the same shuffling seed across nodes. Because of that, the lists of shards is not shuffled the same way across nodes, and therefore some shards may be assigned to multiple nodes instead of exactly one. This can happen only when you have a number of shards that is a factor of the number of nodes. The current workaround is to always set a `seed` in `.shuffle()`
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5696/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5695
5,695
Loading big dataset raises pyarrow.lib.ArrowNotImplementedError
{ "avatar_url": "https://avatars.githubusercontent.com/u/32778667?v=4", "events_url": "https://api.github.com/users/amariucaitheodor/events{/privacy}", "followers_url": "https://api.github.com/users/amariucaitheodor/followers", "following_url": "https://api.github.com/users/amariucaitheodor/following{/other_user}", "gists_url": "https://api.github.com/users/amariucaitheodor/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/amariucaitheodor", "id": 32778667, "login": "amariucaitheodor", "node_id": "MDQ6VXNlcjMyNzc4NjY3", "organizations_url": "https://api.github.com/users/amariucaitheodor/orgs", "received_events_url": "https://api.github.com/users/amariucaitheodor/received_events", "repos_url": "https://api.github.com/users/amariucaitheodor/repos", "site_admin": false, "starred_url": "https://api.github.com/users/amariucaitheodor/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/amariucaitheodor/subscriptions", "type": "User", "url": "https://api.github.com/users/amariucaitheodor", "user_view_type": "public" }
[]
closed
false
[ "Hi ! It looks like an issue with PyArrow: https://issues.apache.org/jira/browse/ARROW-5030\r\n\r\nIt appears it can happen when you have parquet files with row groups larger than 2GB.\r\nI can see that your parquet files are around 10GB. It is usually advised to keep a value around the default value 500MB to avoid these issues.\r\n\r\nNote that currently the row group size is simply defined by the number of rows `datasets.config.DEFAULT_MAX_BATCH_SIZE`, so reducing this value could let you have parquet files bigger than 2GB and with row groups lower than 2GB.\r\n\r\nWould it be possible for you to re-upload the dataset with the default shard size 500MB ?", "Hey, thanks for the reply! I've since switched to working with the locally-saved dataset (which works).\r\nMaybe it makes sense to show a warning for uploads with large shard sizes? Since the functionality completely breaks (due to the PyArrow bug).", "Just tried uploading the same dataset with 500MB shards, I get an errors 4 hours in:\r\n\r\n```\r\nPushing dataset shards to the dataset hub: 25%|██▍ | 358/1453 [4:40:31<14:18:00, 47.01s/it]\r\nTraceback (most recent call last):\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/_commit_api.py\", line 344, in _inner_upload_lfs_object\r\n return _upload_lfs_object(operation=operation, lfs_batch_action=batch_action, token=token)\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/_commit_api.py\", line 391, in _upload_lfs_object\r\n lfs_upload(\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/lfs.py\", line 254, in lfs_upload\r\n _upload_multi_part(\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/lfs.py\", line 374, in _upload_multi_part\r\n hf_raise_for_status(part_upload_res)\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/utils/_errors.py\", line 301, in hf_raise_for_status\r\n raise HfHubHTTPError(str(e), response=response) from e\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/utils/_errors.py\", line 46, in __init__\r\n server_data = response.json()\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/requests/models.py\", line 899, in json\r\n return complexjson.loads(\r\n File \"/cluster/work/cotterell/tamariucai/miniconda3/envs/torch-multimodal/lib/python3.8/json/__init__.py\", line 357, in loads\r\n return _default_decoder.decode(s)\r\n File \"/cluster/work/cotterell/tamariucai/miniconda3/envs/torch-multimodal/lib/python3.8/json/decoder.py\", line 337, in decode\r\n obj, end = self.raw_decode(s, idx=_w(s, 0).end())\r\n File \"/cluster/work/cotterell/tamariucai/miniconda3/envs/torch-multimodal/lib/python3.8/json/decoder.py\", line 355, in raw_decode\r\n raise JSONDecodeError(\"Expecting value\", s, err.value) from None\r\njson.decoder.JSONDecodeError: Expecting value: line 1 column 1 (char 0)\r\n\r\nThe above exception was the direct cause of the following exception:\r\n\r\nTraceback (most recent call last):\r\n File \"process_wit.py\", line 146, in <module>\r\n dataset.push_to_hub(FINAL_PATH, max_shard_size=\"500MB\", private=False)\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/datasets/dataset_dict.py\", line 1534, in push_to_hub\r\n repo_id, split, uploaded_size, dataset_nbytes, _, _ = self[split]._push_parquet_shards_to_hub(\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/datasets/arrow_dataset.py\", line 4804, in _push_parquet_shards_to_hub\r\n _retry(\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/datasets/utils/file_utils.py\", line 281, in _retry\r\n return func(*func_args, **func_kwargs)\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/utils/_validators.py\", line 120, in _inner_fn\r\n return fn(*args, **kwargs)\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/hf_api.py\", line 2593, in upload_file\r\n commit_info = self.create_commit(\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/utils/_validators.py\", line 120, in _inner_fn\r\n return fn(*args, **kwargs)\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/hf_api.py\", line 2411, in create_commit\r\n upload_lfs_files(\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/utils/_validators.py\", line 120, in _inner_fn\r\n return fn(*args, **kwargs)\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/_commit_api.py\", line 351, in upload_lfs_files\r\n thread_map(\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/tqdm/contrib/concurrent.py\", line 69, in thread_map\r\n return _executor_map(ThreadPoolExecutor, fn, *iterables, **tqdm_kwargs)\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/tqdm/contrib/concurrent.py\", line 51, in _executor_map\r\n return list(tqdm_class(ex.map(fn, *iterables, chunksize=chunksize), **kwargs))\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/tqdm/std.py\", line 1178, in __iter__\r\n for obj in iterable:\r\n File \"/cluster/work/cotterell/tamariucai/miniconda3/envs/torch-multimodal/lib/python3.8/concurrent/futures/_base.py\", line 619, in result_iterator\r\n yield fs.pop().result()\r\n File \"/cluster/work/cotterell/tamariucai/miniconda3/envs/torch-multimodal/lib/python3.8/concurrent/futures/_base.py\", line 444, in result\r\n return self.__get_result()\r\n File \"/cluster/work/cotterell/tamariucai/miniconda3/envs/torch-multimodal/lib/python3.8/concurrent/futures/_base.py\", line 389, in __get_result\r\n raise self._exception\r\n File \"/cluster/work/cotterell/tamariucai/miniconda3/envs/torch-multimodal/lib/python3.8/concurrent/futures/thread.py\", line 57, in run\r\n result = self.fn(*self.args, **self.kwargs)\r\n File \"/cluster/home/tamariucai/.local/lib/python3.8/site-packages/huggingface_hub/_commit_api.py\", line 346, in _inner_upload_lfs_object\r\n raise RuntimeError(f\"Error while uploading '{operation.path_in_repo}' to the Hub.\") from exc\r\nRuntimeError: Error while uploading 'data/train-00358-of-01453-22a5cc8b3eb12be3.parquet' to the Hub.\r\n```\r\nLocal saves do work, however.", "Hmmm that was probably an intermitent bug, you can resume the upload by re-running push_to_hub", "Leaving this other error here for the record, which occurs when I load the +700GB dataset from the hub with shard sizes of 500MB:\r\n\r\n```\r\n Traceback (most recent call last): \r\n File \"/cluster/home/tamariucai/.local/lib/python3.10/site-packages/datasets/builder.py\", line 1860, in _prepare_split_single\r\n for _, table in generator:\r\n File \"/cluster/home/tamariucai/.local/lib/python3.10/site-packages/datasets/packaged_modules/parquet/parquet.py\", line 69, in _generate_tables\r\n for batch_idx, record_batch in enumerate(\r\n File \"pyarrow/_parquet.pyx\", line 1323, in iter_batches\r\n File \"pyarrow/error.pxi\", line 115, in pyarrow.lib.check_status\r\nOSError: Corrupt snappy compressed data.\r\n```\r\nI will probably switch back to the local big dataset or shrink it.", "I am having this same issue trying to load my Audio dataset of about 520GB of audio files and about 1.8 million rows: https://github.com/huggingface/datasets/issues/5695#issuecomment-1500738729\r\n\r\n\r\nI also tried the default shard size of 500MB and still hit this issue after about 4 hours. When I re-run the code, it restarts the uploading from scratch. I don't know how to resume it as @lhoestq suggested [here] (https://github.com/huggingface/datasets/issues/5695#issuecomment-1500829320).", "`push_to_hub` has a fast resuming, though for audio/image there is this PR to fix a speed issue: https://github.com/huggingface/datasets/pull/6056" ]
2023-04-02T14:42:44Z
2024-05-15T12:04:47Z
2023-04-10T08:04:04Z
NONE
null
null
### Describe the bug Calling `datasets.load_dataset` to load the (publicly available) dataset `theodor1289/wit` fails with `pyarrow.lib.ArrowNotImplementedError`. ### Steps to reproduce the bug Steps to reproduce this behavior: 1. `!pip install datasets` 2. `!huggingface-cli login` 3. This step will throw the error (it might take a while as the dataset has ~170GB): ```python from datasets import load_dataset dataset = load_dataset("theodor1289/wit", "train", use_auth_token=True) ``` Stack trace: ``` (torch-multimodal) bash-4.2$ python test.py Downloading and preparing dataset None/None to /cluster/work/cotterell/tamariucai/HuggingfaceDatasets/theodor1289___parquet/theodor1289--wit-7a3e984414a86a0f/0.0.0/2a3b91fbd88a2c90d1dbbb32b460cf621d31bd5b05b934492fdef7d8d6f236ec... Downloading data files: 100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 491.68it/s] Extracting data files: 100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 2/2 [00:00<00:00, 16.93it/s] Traceback (most recent call last): File "/cluster/home/tamariucai/.local/lib/python3.10/site-packages/datasets/builder.py", line 1860, in _prepare_split_single for _, table in generator: File "/cluster/home/tamariucai/.local/lib/python3.10/site-packages/datasets/packaged_modules/parquet/parquet.py", line 69, in _generate_tables for batch_idx, record_batch in enumerate( File "pyarrow/_parquet.pyx", line 1323, in iter_batches File "pyarrow/error.pxi", line 121, in pyarrow.lib.check_status pyarrow.lib.ArrowNotImplementedError: Nested data conversions not implemented for chunked array outputs The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/cluster/work/cotterell/tamariucai/multimodal-mirror/examples/test.py", line 2, in <module> dataset = load_dataset("theodor1289/wit", "train", use_auth_token=True) File "/cluster/home/tamariucai/.local/lib/python3.10/site-packages/datasets/load.py", line 1791, in load_dataset builder_instance.download_and_prepare( File "/cluster/home/tamariucai/.local/lib/python3.10/site-packages/datasets/builder.py", line 891, in download_and_prepare self._download_and_prepare( File "/cluster/home/tamariucai/.local/lib/python3.10/site-packages/datasets/builder.py", line 986, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/cluster/home/tamariucai/.local/lib/python3.10/site-packages/datasets/builder.py", line 1748, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/cluster/home/tamariucai/.local/lib/python3.10/site-packages/datasets/builder.py", line 1893, in _prepare_split_single raise DatasetGenerationError("An error occurred while generating the dataset") from e datasets.builder.DatasetGenerationError: An error occurred while generating the dataset ``` ### Expected behavior The dataset is loaded in variable `dataset`. ### Environment info - `datasets` version: 2.11.0 - Platform: Linux-3.10.0-1160.80.1.el7.x86_64-x86_64-with-glibc2.17 - Python version: 3.10.4 - Huggingface_hub version: 0.13.3 - PyArrow version: 11.0.0 - Pandas version: 1.5.3
{ "avatar_url": "https://avatars.githubusercontent.com/u/32778667?v=4", "events_url": "https://api.github.com/users/amariucaitheodor/events{/privacy}", "followers_url": "https://api.github.com/users/amariucaitheodor/followers", "following_url": "https://api.github.com/users/amariucaitheodor/following{/other_user}", "gists_url": "https://api.github.com/users/amariucaitheodor/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/amariucaitheodor", "id": 32778667, "login": "amariucaitheodor", "node_id": "MDQ6VXNlcjMyNzc4NjY3", "organizations_url": "https://api.github.com/users/amariucaitheodor/orgs", "received_events_url": "https://api.github.com/users/amariucaitheodor/received_events", "repos_url": "https://api.github.com/users/amariucaitheodor/repos", "site_admin": false, "starred_url": "https://api.github.com/users/amariucaitheodor/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/amariucaitheodor/subscriptions", "type": "User", "url": "https://api.github.com/users/amariucaitheodor", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 1, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/5695/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5694
5,694
Dataset configuration
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[ { "color": "c5def5", "default": false, "description": "Generic discussion on the library", "id": 2067400324, "name": "generic discussion", "node_id": "MDU6TGFiZWwyMDY3NDAwMzI0", "url": "https://api.github.com/repos/huggingface/datasets/labels/generic%20discussion" } ]
open
false
[ "Originally we also though about adding it to the YAML part of the README.md:\r\n\r\n```yaml\r\nbuilder_config:\r\n data_dir: data\r\n data_files:\r\n - split: train\r\n pattern: \"train-[0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]*.*\"\r\n```\r\n\r\nHaving it in the README.md could make it easier to modify it in the UI on HF, and for validation on commit", "From internal discussions we agreed to go with the YAML approach, since it's the one that seems more appropriate to be modified by a human on the Hub or locally (while JSON e.g. for models are usually created programmatically).", "Current format:\r\n```yaml\r\nbuilder_config:\r\n data_files:\r\n - split: train\r\n pattern: data/train-*\r\n```" ]
2023-04-01T13:08:05Z
2023-04-04T14:54:37Z
null
MEMBER
null
null
Following discussions from https://github.com/huggingface/datasets/pull/5331 We could have something like `config.json` to define the configuration of a dataset. ```json { "data_dir": "data" "data_files": { "train": "train-[0-9][0-9][0-9][0-9]-of-[0-9][0-9][0-9][0-9][0-9]*.*" } } ``` we could also support a list for several configs with a 'config_name' field. The alternative was to use YAML in the README.md. I think it could also support a `dataset_type` field to specify which dataset builder class to use, and the other parameters would be the builder's parameters. Some parameters exist for all builders like `data_files` and `data_dir`, but some parameters are builder specific like `sep` for csv. This format would be used in `push_to_hub` to be able to push multiple configs. cc @huggingface/datasets EDIT: actually we're going for the YAML approach in README.md
null
{ "+1": 2, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/5694/reactions" }
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/pull/5693
5,693
[docs] Split pattern search order
{ "avatar_url": "https://avatars.githubusercontent.com/u/59462357?v=4", "events_url": "https://api.github.com/users/stevhliu/events{/privacy}", "followers_url": "https://api.github.com/users/stevhliu/followers", "following_url": "https://api.github.com/users/stevhliu/following{/other_user}", "gists_url": "https://api.github.com/users/stevhliu/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/stevhliu", "id": 59462357, "login": "stevhliu", "node_id": "MDQ6VXNlcjU5NDYyMzU3", "organizations_url": "https://api.github.com/users/stevhliu/orgs", "received_events_url": "https://api.github.com/users/stevhliu/received_events", "repos_url": "https://api.github.com/users/stevhliu/repos", "site_admin": false, "starred_url": "https://api.github.com/users/stevhliu/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/stevhliu/subscriptions", "type": "User", "url": "https://api.github.com/users/stevhliu", "user_view_type": "public" }
[]
closed
false
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007841 / 0.011353 (-0.003512) | 0.005640 / 0.011008 (-0.005368) | 0.096465 / 0.038508 (0.057957) | 0.036476 / 0.023109 (0.013367) | 0.306431 / 0.275898 (0.030533) | 0.339545 / 0.323480 (0.016065) | 0.006064 / 0.007986 (-0.001922) | 0.004404 / 0.004328 (0.000076) | 0.073130 / 0.004250 (0.068879) | 0.052765 / 0.037052 (0.015713) | 0.309895 / 0.258489 (0.051406) | 0.354037 / 0.293841 (0.060196) | 0.037127 / 0.128546 (-0.091420) | 0.012387 / 0.075646 (-0.063260) | 0.333503 / 0.419271 (-0.085769) | 0.059799 / 0.043533 (0.016266) | 0.305496 / 0.255139 (0.050358) | 0.324122 / 0.283200 (0.040922) | 0.107007 / 0.141683 (-0.034676) | 1.416743 / 1.452155 (-0.035411) | 1.520772 / 1.492716 (0.028055) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.261233 / 0.018006 (0.243227) | 0.573806 / 0.000490 (0.573316) | 0.000390 / 0.000200 (0.000190) | 0.000058 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027672 / 0.037411 (-0.009740) | 0.112803 / 0.014526 (0.098278) | 0.121085 / 0.176557 (-0.055471) | 0.176056 / 0.737135 (-0.561080) | 0.127171 / 0.296338 (-0.169167) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.414756 / 0.215209 (0.199547) | 4.148743 / 2.077655 (2.071088) | 1.883940 / 1.504120 (0.379820) | 1.698771 / 1.541195 (0.157576) | 1.811926 / 1.468490 (0.343436) | 0.708293 / 4.584777 (-3.876484) | 3.780456 / 3.745712 (0.034744) | 2.098556 / 5.269862 (-3.171306) | 1.323512 / 4.565676 (-3.242164) | 0.086253 / 0.424275 (-0.338022) | 0.012587 / 0.007607 (0.004980) | 0.514824 / 0.226044 (0.288779) | 5.157415 / 2.268929 (2.888487) | 2.382519 / 55.444624 (-53.062105) | 2.014539 / 6.876477 (-4.861938) | 2.215239 / 2.142072 (0.073166) | 0.847178 / 4.805227 (-3.958049) | 0.170053 / 6.500664 (-6.330611) | 0.066461 / 0.075469 (-0.009008) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.199056 / 1.841788 (-0.642732) | 15.244999 / 8.074308 (7.170691) | 14.661593 / 10.191392 (4.470201) | 0.168855 / 0.680424 (-0.511569) | 0.017889 / 0.534201 (-0.516312) | 0.424961 / 0.579283 (-0.154322) | 0.428632 / 0.434364 (-0.005732) | 0.502680 / 0.540337 (-0.037658) | 0.597827 / 1.386936 (-0.789109) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007749 / 0.011353 (-0.003604) | 0.005527 / 0.011008 (-0.005482) | 0.074774 / 0.038508 (0.036266) | 0.035367 / 0.023109 (0.012258) | 0.340594 / 0.275898 (0.064696) | 0.373970 / 0.323480 (0.050490) | 0.006094 / 0.007986 (-0.001892) | 0.004428 / 0.004328 (0.000100) | 0.074120 / 0.004250 (0.069869) | 0.054852 / 0.037052 (0.017800) | 0.357173 / 0.258489 (0.098684) | 0.388877 / 0.293841 (0.095036) | 0.037002 / 0.128546 (-0.091545) | 0.012337 / 0.075646 (-0.063309) | 0.086962 / 0.419271 (-0.332310) | 0.050370 / 0.043533 (0.006837) | 0.342989 / 0.255139 (0.087850) | 0.358065 / 0.283200 (0.074865) | 0.111063 / 0.141683 (-0.030620) | 1.516704 / 1.452155 (0.064549) | 1.634359 / 1.492716 (0.141643) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.261493 / 0.018006 (0.243487) | 0.566288 / 0.000490 (0.565799) | 0.000439 / 0.000200 (0.000239) | 0.000056 / 0.000054 (0.000002) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030426 / 0.037411 (-0.006985) | 0.114606 / 0.014526 (0.100080) | 0.126134 / 0.176557 (-0.050423) | 0.175324 / 0.737135 (-0.561812) | 0.132766 / 0.296338 (-0.163573) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.426785 / 0.215209 (0.211576) | 4.243555 / 2.077655 (2.165900) | 2.089631 / 1.504120 (0.585511) | 1.994562 / 1.541195 (0.453367) | 2.140284 / 1.468490 (0.671794) | 0.698645 / 4.584777 (-3.886132) | 3.807471 / 3.745712 (0.061759) | 3.275343 / 5.269862 (-1.994519) | 1.796756 / 4.565676 (-2.768921) | 0.085986 / 0.424275 (-0.338289) | 0.012213 / 0.007607 (0.004606) | 0.536815 / 0.226044 (0.310771) | 5.344611 / 2.268929 (3.075683) | 2.498578 / 55.444624 (-52.946047) | 2.153260 / 6.876477 (-4.723217) | 2.251310 / 2.142072 (0.109237) | 0.839104 / 4.805227 (-3.966123) | 0.169639 / 6.500664 (-6.331025) | 0.065880 / 0.075469 (-0.009589) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.268610 / 1.841788 (-0.573178) | 15.624915 / 8.074308 (7.550606) | 15.163684 / 10.191392 (4.972292) | 0.172992 / 0.680424 (-0.507432) | 0.018154 / 0.534201 (-0.516047) | 0.440485 / 0.579283 (-0.138798) | 0.431949 / 0.434364 (-0.002415) | 0.547935 / 0.540337 (0.007597) | 0.662442 / 1.386936 (-0.724494) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#5c8a6ba43c4aaa0ca0665d8dadd87ef33e28e8e4 \"CML watermark\")\n" ]
2023-03-31T19:51:38Z
2023-04-03T18:43:30Z
2023-04-03T18:29:58Z
MEMBER
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5693.diff", "html_url": "https://github.com/huggingface/datasets/pull/5693", "merged_at": "2023-04-03T18:29:58Z", "patch_url": "https://github.com/huggingface/datasets/pull/5693.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5693" }
This PR addresses #5681 about the order of split patterns 🤗 Datasets searches for when generating dataset splits.
{ "avatar_url": "https://avatars.githubusercontent.com/u/59462357?v=4", "events_url": "https://api.github.com/users/stevhliu/events{/privacy}", "followers_url": "https://api.github.com/users/stevhliu/followers", "following_url": "https://api.github.com/users/stevhliu/following{/other_user}", "gists_url": "https://api.github.com/users/stevhliu/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/stevhliu", "id": 59462357, "login": "stevhliu", "node_id": "MDQ6VXNlcjU5NDYyMzU3", "organizations_url": "https://api.github.com/users/stevhliu/orgs", "received_events_url": "https://api.github.com/users/stevhliu/received_events", "repos_url": "https://api.github.com/users/stevhliu/repos", "site_admin": false, "starred_url": "https://api.github.com/users/stevhliu/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/stevhliu/subscriptions", "type": "User", "url": "https://api.github.com/users/stevhliu", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5693/reactions" }
null
null
null
true
https://github.com/huggingface/datasets/issues/5692
5,692
pyarrow.lib.ArrowInvalid: Unable to merge: Field <field> has incompatible types
{ "avatar_url": "https://avatars.githubusercontent.com/u/32219669?v=4", "events_url": "https://api.github.com/users/cyanic-selkie/events{/privacy}", "followers_url": "https://api.github.com/users/cyanic-selkie/followers", "following_url": "https://api.github.com/users/cyanic-selkie/following{/other_user}", "gists_url": "https://api.github.com/users/cyanic-selkie/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/cyanic-selkie", "id": 32219669, "login": "cyanic-selkie", "node_id": "MDQ6VXNlcjMyMjE5NjY5", "organizations_url": "https://api.github.com/users/cyanic-selkie/orgs", "received_events_url": "https://api.github.com/users/cyanic-selkie/received_events", "repos_url": "https://api.github.com/users/cyanic-selkie/repos", "site_admin": false, "starred_url": "https://api.github.com/users/cyanic-selkie/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/cyanic-selkie/subscriptions", "type": "User", "url": "https://api.github.com/users/cyanic-selkie", "user_view_type": "public" }
[]
open
false
[ "Hi! The link pointing to the code that generated the dataset is broken. Can you please fix it to make debugging easier?", "> Hi! The link pointing to the code that generated the dataset is broken. Can you please fix it to make debugging easier?\r\n\r\nSorry about that, it's fixed now.\r\n", "@cyanic-selkie could you explain how you fixed it? I met the same error in loading other datasets, is it due to the version of the library enviroment? ", "@MingsYang I never fixed it. If you're referring to my comment above, I only meant I fixed the link to my code.\r\n\r\nAnyway, I managed to work around the issue by using `streaming` when loading the dataset.", "@cyanic-selkie Emm, I get it. I just tried to use a new version python enviroment, and it show no errors anymore.", "Upgrade pyarrow to the latest version solves this problem in my case." ]
2023-03-31T18:19:40Z
2024-01-14T07:24:21Z
null
NONE
null
null
### Describe the bug When loading the dataset [wikianc-en](https://huggingface.co/datasets/cyanic-selkie/wikianc-en) which I created using [this](https://github.com/cyanic-selkie/wikianc) code, I get the following error: ``` Traceback (most recent call last): File "/home/sven/code/rector/answer-detection/train.py", line 106, in <module> (dataset, weights) = get_dataset(args.dataset, tokenizer, labels, args.padding) File "/home/sven/code/rector/answer-detection/dataset.py", line 106, in get_dataset dataset = load_dataset("cyanic-selkie/wikianc-en") File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/load.py", line 1794, in load_dataset ds = builder_instance.as_dataset(split=split, verification_mode=verification_mode, in_memory=keep_in_memory) File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/builder.py", line 1106, in as_dataset datasets = map_nested( File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 443, in map_nested mapped = [ File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 444, in <listcomp> _single_map_nested((function, obj, types, None, True, None)) File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/utils/py_utils.py", line 346, in _single_map_nested return function(data_struct) File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/builder.py", line 1136, in _build_single_dataset ds = self._as_dataset( File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/builder.py", line 1207, in _as_dataset dataset_kwargs = ArrowReader(cache_dir, self.info).read( File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/arrow_reader.py", line 239, in read return self.read_files(files=files, original_instructions=instructions, in_memory=in_memory) File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/arrow_reader.py", line 260, in read_files pa_table = self._read_files(files, in_memory=in_memory) File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/arrow_reader.py", line 203, in _read_files pa_table = concat_tables(pa_tables) if len(pa_tables) != 1 else pa_tables[0] File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/table.py", line 1808, in concat_tables return ConcatenationTable.from_tables(tables, axis=axis) File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/table.py", line 1514, in from_tables return cls.from_blocks(blocks) File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/table.py", line 1427, in from_blocks table = cls._concat_blocks(blocks, axis=0) File "/home/sven/.cache/pypoetry/virtualenvs/rector-Z2mdKRnn-py3.10/lib/python3.10/site-packages/datasets/table.py", line 1373, in _concat_blocks return pa.concat_tables(pa_tables, promote=True) File "pyarrow/table.pxi", line 5224, in pyarrow.lib.concat_tables File "pyarrow/error.pxi", line 144, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 100, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Unable to merge: Field paragraph_anchors has incompatible types: list<: struct<start: uint32 not null, end: uint32 not null, qid: uint32, pageid: uint32, title: string not null> not null> vs list<item: struct<start: uint32, end: uint32, qid: uint32, pageid: uint32, title: string>> ``` This only happens when I load the `train` split, indicating that the size of the dataset is the deciding factor. ### Steps to reproduce the bug ```python from datasets import load_dataset dataset = load_dataset("cyanic-selkie/wikianc-en", split="train") ``` ### Expected behavior The dataset should load normally without any errors. ### Environment info - `datasets` version: 2.10.1 - Platform: Linux-6.2.8-arch1-1-x86_64-with-glibc2.37 - Python version: 3.10.10 - PyArrow version: 11.0.0 - Pandas version: 1.5.3
null
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5692/reactions" }
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/pull/5691
5,691
[docs] Compress data files
{ "avatar_url": "https://avatars.githubusercontent.com/u/59462357?v=4", "events_url": "https://api.github.com/users/stevhliu/events{/privacy}", "followers_url": "https://api.github.com/users/stevhliu/followers", "following_url": "https://api.github.com/users/stevhliu/following{/other_user}", "gists_url": "https://api.github.com/users/stevhliu/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/stevhliu", "id": 59462357, "login": "stevhliu", "node_id": "MDQ6VXNlcjU5NDYyMzU3", "organizations_url": "https://api.github.com/users/stevhliu/orgs", "received_events_url": "https://api.github.com/users/stevhliu/received_events", "repos_url": "https://api.github.com/users/stevhliu/repos", "site_admin": false, "starred_url": "https://api.github.com/users/stevhliu/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/stevhliu/subscriptions", "type": "User", "url": "https://api.github.com/users/stevhliu", "user_view_type": "public" }
[]
closed
false
[ "_The documentation is not available anymore as the PR was closed or merged._", "[Confirmed](https://huggingface.slack.com/archives/C02EMARJ65P/p1680541667004199) with the Hub team the file size limit for the Hugging Face Hub is 10MB :)", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006789 / 0.011353 (-0.004564) | 0.004935 / 0.011008 (-0.006073) | 0.096796 / 0.038508 (0.058288) | 0.032485 / 0.023109 (0.009376) | 0.335342 / 0.275898 (0.059444) | 0.354999 / 0.323480 (0.031519) | 0.005467 / 0.007986 (-0.002519) | 0.005267 / 0.004328 (0.000939) | 0.073988 / 0.004250 (0.069737) | 0.044402 / 0.037052 (0.007350) | 0.331156 / 0.258489 (0.072666) | 0.363595 / 0.293841 (0.069754) | 0.035301 / 0.128546 (-0.093245) | 0.012141 / 0.075646 (-0.063505) | 0.333164 / 0.419271 (-0.086107) | 0.048818 / 0.043533 (0.005286) | 0.331458 / 0.255139 (0.076319) | 0.343567 / 0.283200 (0.060367) | 0.094963 / 0.141683 (-0.046720) | 1.444383 / 1.452155 (-0.007772) | 1.520093 / 1.492716 (0.027377) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.212311 / 0.018006 (0.194305) | 0.436413 / 0.000490 (0.435923) | 0.000333 / 0.000200 (0.000133) | 0.000057 / 0.000054 (0.000003) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026670 / 0.037411 (-0.010742) | 0.105774 / 0.014526 (0.091248) | 0.115796 / 0.176557 (-0.060760) | 0.176504 / 0.737135 (-0.560631) | 0.121883 / 0.296338 (-0.174456) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.400783 / 0.215209 (0.185574) | 4.006608 / 2.077655 (1.928953) | 1.817659 / 1.504120 (0.313539) | 1.619777 / 1.541195 (0.078582) | 1.684247 / 1.468490 (0.215757) | 0.701116 / 4.584777 (-3.883661) | 3.684056 / 3.745712 (-0.061656) | 2.065258 / 5.269862 (-3.204603) | 1.425460 / 4.565676 (-3.140217) | 0.084519 / 0.424275 (-0.339757) | 0.011949 / 0.007607 (0.004342) | 0.496793 / 0.226044 (0.270749) | 4.978864 / 2.268929 (2.709935) | 2.303388 / 55.444624 (-53.141237) | 1.978341 / 6.876477 (-4.898135) | 2.055744 / 2.142072 (-0.086329) | 0.832022 / 4.805227 (-3.973206) | 0.164715 / 6.500664 (-6.335949) | 0.062701 / 0.075469 (-0.012768) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.178723 / 1.841788 (-0.663065) | 14.583986 / 8.074308 (6.509678) | 14.189402 / 10.191392 (3.998010) | 0.183867 / 0.680424 (-0.496557) | 0.017565 / 0.534201 (-0.516636) | 0.421345 / 0.579283 (-0.157938) | 0.420235 / 0.434364 (-0.014129) | 0.496758 / 0.540337 (-0.043580) | 0.591558 / 1.386936 (-0.795378) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007019 / 0.011353 (-0.004334) | 0.004996 / 0.011008 (-0.006012) | 0.073345 / 0.038508 (0.034836) | 0.033077 / 0.023109 (0.009968) | 0.335954 / 0.275898 (0.060056) | 0.372616 / 0.323480 (0.049136) | 0.005678 / 0.007986 (-0.002308) | 0.003906 / 0.004328 (-0.000423) | 0.072841 / 0.004250 (0.068591) | 0.046829 / 0.037052 (0.009777) | 0.335177 / 0.258489 (0.076688) | 0.382862 / 0.293841 (0.089021) | 0.038406 / 0.128546 (-0.090141) | 0.012110 / 0.075646 (-0.063536) | 0.085796 / 0.419271 (-0.333476) | 0.049896 / 0.043533 (0.006363) | 0.338232 / 0.255139 (0.083093) | 0.361054 / 0.283200 (0.077855) | 0.103171 / 0.141683 (-0.038512) | 1.556692 / 1.452155 (0.104538) | 1.540023 / 1.492716 (0.047306) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223705 / 0.018006 (0.205699) | 0.438771 / 0.000490 (0.438282) | 0.002838 / 0.000200 (0.002639) | 0.000081 / 0.000054 (0.000026) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028423 / 0.037411 (-0.008988) | 0.110560 / 0.014526 (0.096035) | 0.121629 / 0.176557 (-0.054928) | 0.173638 / 0.737135 (-0.563498) | 0.127062 / 0.296338 (-0.169277) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.425806 / 0.215209 (0.210597) | 4.251051 / 2.077655 (2.173397) | 2.059735 / 1.504120 (0.555615) | 1.864886 / 1.541195 (0.323692) | 1.941553 / 1.468490 (0.473063) | 0.700084 / 4.584777 (-3.884693) | 3.753150 / 3.745712 (0.007438) | 3.218606 / 5.269862 (-2.051256) | 1.439648 / 4.565676 (-3.126028) | 0.085239 / 0.424275 (-0.339037) | 0.012026 / 0.007607 (0.004419) | 0.521564 / 0.226044 (0.295520) | 5.217902 / 2.268929 (2.948973) | 2.557831 / 55.444624 (-52.886793) | 2.240223 / 6.876477 (-4.636254) | 2.364664 / 2.142072 (0.222591) | 0.825884 / 4.805227 (-3.979343) | 0.167800 / 6.500664 (-6.332864) | 0.063552 / 0.075469 (-0.011917) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.255532 / 1.841788 (-0.586256) | 14.747783 / 8.074308 (6.673475) | 14.352263 / 10.191392 (4.160871) | 0.143659 / 0.680424 (-0.536765) | 0.017517 / 0.534201 (-0.516684) | 0.419863 / 0.579283 (-0.159421) | 0.416674 / 0.434364 (-0.017690) | 0.485694 / 0.540337 (-0.054643) | 0.584810 / 1.386936 (-0.802126) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#61db0e9c936bc67c18b37b0960e2f0bb1f8ffdcd \"CML watermark\")\n" ]
2023-03-31T17:17:26Z
2023-04-19T13:37:32Z
2023-04-19T07:25:58Z
MEMBER
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5691.diff", "html_url": "https://github.com/huggingface/datasets/pull/5691", "merged_at": "2023-04-19T07:25:58Z", "patch_url": "https://github.com/huggingface/datasets/pull/5691.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5691" }
This PR addresses the comments in #5687 about compressing text file extensions before uploading to the Hub. Also clarified what "too large" means based on the GitLFS [docs](https://docs.github.com/en/repositories/working-with-files/managing-large-files/about-git-large-file-storage).
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5691/reactions" }
null
null
null
true
https://github.com/huggingface/datasets/pull/5689
5,689
Support streaming Beam datasets from HF GCS preprocessed data
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
[ "_The documentation is not available anymore as the PR was closed or merged._", "```python\r\nIn [1]: from datasets import load_dataset\r\n\r\nIn [2]: ds = load_dataset(\"wikipedia\", \"20220301.en\", split=\"train\", streaming=True); item = next(iter(ds)); item\r\nOut[2]: \r\n{'id': '12',\r\n 'url': 'https://en.wikipedia.org/wiki/Anarchism',\r\n 'title': 'Anarchism',\r\n 'text': 'Anarchism is a political philosophy and movement that is sceptical of authority and rejects all involuntary, coercive forms of hierarchy. Anarchism calls for the abolition of the state, which it holds to be unnecessary, undesirable, and harmful. As a historically left-wing movement, placed on the farthest left of the political spectrum, it is usually described alongside communalism and libertarian Marxism as the libertarian wing (libertarian socialism) of the socialist movement,...}\r\n```", "I love your example 🏴‍🅰️", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007859 / 0.011353 (-0.003493) | 0.005129 / 0.011008 (-0.005879) | 0.098070 / 0.038508 (0.059562) | 0.036500 / 0.023109 (0.013391) | 0.311575 / 0.275898 (0.035677) | 0.338351 / 0.323480 (0.014872) | 0.005962 / 0.007986 (-0.002024) | 0.004060 / 0.004328 (-0.000268) | 0.072970 / 0.004250 (0.068719) | 0.049289 / 0.037052 (0.012237) | 0.310303 / 0.258489 (0.051814) | 0.347449 / 0.293841 (0.053608) | 0.046912 / 0.128546 (-0.081634) | 0.011952 / 0.075646 (-0.063694) | 0.333600 / 0.419271 (-0.085671) | 0.052700 / 0.043533 (0.009167) | 0.325486 / 0.255139 (0.070347) | 0.326920 / 0.283200 (0.043720) | 0.107683 / 0.141683 (-0.034000) | 1.416679 / 1.452155 (-0.035476) | 1.502418 / 1.492716 (0.009702) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.216520 / 0.018006 (0.198514) | 0.448450 / 0.000490 (0.447960) | 0.004213 / 0.000200 (0.004013) | 0.000082 / 0.000054 (0.000028) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.027081 / 0.037411 (-0.010331) | 0.110989 / 0.014526 (0.096463) | 0.116087 / 0.176557 (-0.060470) | 0.173771 / 0.737135 (-0.563364) | 0.121240 / 0.296338 (-0.175099) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.399938 / 0.215209 (0.184729) | 4.017665 / 2.077655 (1.940010) | 1.782327 / 1.504120 (0.278207) | 1.612955 / 1.541195 (0.071761) | 1.698839 / 1.468490 (0.230349) | 0.706702 / 4.584777 (-3.878075) | 4.533425 / 3.745712 (0.787713) | 2.102611 / 5.269862 (-3.167250) | 1.461429 / 4.565676 (-3.104248) | 0.085719 / 0.424275 (-0.338556) | 0.012104 / 0.007607 (0.004497) | 0.507397 / 0.226044 (0.281352) | 5.061572 / 2.268929 (2.792643) | 2.272106 / 55.444624 (-53.172518) | 1.935575 / 6.876477 (-4.940901) | 2.102541 / 2.142072 (-0.039532) | 0.838395 / 4.805227 (-3.966832) | 0.168573 / 6.500664 (-6.332091) | 0.064234 / 0.075469 (-0.011235) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.190077 / 1.841788 (-0.651710) | 15.765587 / 8.074308 (7.691279) | 14.694626 / 10.191392 (4.503234) | 0.142912 / 0.680424 (-0.537512) | 0.017669 / 0.534201 (-0.516532) | 0.421502 / 0.579283 (-0.157781) | 0.452732 / 0.434364 (0.018368) | 0.497480 / 0.540337 (-0.042857) | 0.586310 / 1.386936 (-0.800626) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007629 / 0.011353 (-0.003724) | 0.005330 / 0.011008 (-0.005679) | 0.076366 / 0.038508 (0.037858) | 0.034703 / 0.023109 (0.011593) | 0.356300 / 0.275898 (0.080402) | 0.392909 / 0.323480 (0.069429) | 0.005959 / 0.007986 (-0.002026) | 0.004140 / 0.004328 (-0.000188) | 0.075289 / 0.004250 (0.071039) | 0.047880 / 0.037052 (0.010828) | 0.357289 / 0.258489 (0.098800) | 0.404554 / 0.293841 (0.110714) | 0.037182 / 0.128546 (-0.091365) | 0.012266 / 0.075646 (-0.063380) | 0.088554 / 0.419271 (-0.330718) | 0.049698 / 0.043533 (0.006165) | 0.353453 / 0.255139 (0.098314) | 0.373252 / 0.283200 (0.090052) | 0.101892 / 0.141683 (-0.039791) | 1.481534 / 1.452155 (0.029380) | 1.553818 / 1.492716 (0.061102) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.229891 / 0.018006 (0.211884) | 0.452444 / 0.000490 (0.451954) | 0.000434 / 0.000200 (0.000234) | 0.000058 / 0.000054 (0.000004) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030170 / 0.037411 (-0.007241) | 0.115097 / 0.014526 (0.100571) | 0.122094 / 0.176557 (-0.054463) | 0.171352 / 0.737135 (-0.565784) | 0.128441 / 0.296338 (-0.167898) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.428347 / 0.215209 (0.213138) | 4.266243 / 2.077655 (2.188588) | 2.148327 / 1.504120 (0.644207) | 1.874141 / 1.541195 (0.332946) | 1.968737 / 1.468490 (0.500246) | 0.715320 / 4.584777 (-3.869457) | 4.166097 / 3.745712 (0.420384) | 2.169550 / 5.269862 (-3.100312) | 1.377441 / 4.565676 (-3.188236) | 0.086376 / 0.424275 (-0.337899) | 0.012018 / 0.007607 (0.004411) | 0.517433 / 0.226044 (0.291388) | 5.167327 / 2.268929 (2.898398) | 2.545822 / 55.444624 (-52.898803) | 2.241726 / 6.876477 (-4.634751) | 2.327220 / 2.142072 (0.185147) | 0.841618 / 4.805227 (-3.963609) | 0.169473 / 6.500664 (-6.331191) | 0.065505 / 0.075469 (-0.009964) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.270476 / 1.841788 (-0.571312) | 17.049885 / 8.074308 (8.975577) | 14.847615 / 10.191392 (4.656223) | 0.168671 / 0.680424 (-0.511753) | 0.017564 / 0.534201 (-0.516637) | 0.424780 / 0.579283 (-0.154503) | 0.517392 / 0.434364 (0.083028) | 0.561197 / 0.540337 (0.020859) | 0.697792 / 1.386936 (-0.689144) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#ce06edf0afb70027ffbd3c2ddec5d28037e9bd31 \"CML watermark\")\n" ]
2023-03-31T08:44:24Z
2023-04-12T05:57:55Z
2023-04-12T05:50:31Z
MEMBER
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5689.diff", "html_url": "https://github.com/huggingface/datasets/pull/5689", "merged_at": "2023-04-12T05:50:30Z", "patch_url": "https://github.com/huggingface/datasets/pull/5689.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5689" }
This PR implements streaming Apache Beam datasets that are already preprocessed by us and stored in the HF Google Cloud Storage: - natural_questions - wiki40b - wikipedia This is done by streaming from the prepared Arrow files in HF Google Cloud Storage. This will fix their corresponding dataset viewers. Related to: - https://github.com/huggingface/datasets-server/pull/988#discussion_r1150767138 Related to: - https://huggingface.co/datasets/natural_questions/discussions/4 - https://huggingface.co/datasets/wiki40b/discussions/2 - https://huggingface.co/datasets/wikipedia/discussions/9 CC: @severo
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 1, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/5689/reactions" }
null
null
null
true
https://github.com/huggingface/datasets/issues/5690
5,690
raise AttributeError(f"No {package_name} attribute {name}") AttributeError: No huggingface_hub attribute hf_api
{ "avatar_url": "https://avatars.githubusercontent.com/u/55964850?v=4", "events_url": "https://api.github.com/users/wccccp/events{/privacy}", "followers_url": "https://api.github.com/users/wccccp/followers", "following_url": "https://api.github.com/users/wccccp/following{/other_user}", "gists_url": "https://api.github.com/users/wccccp/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/wccccp", "id": 55964850, "login": "wccccp", "node_id": "MDQ6VXNlcjU1OTY0ODUw", "organizations_url": "https://api.github.com/users/wccccp/orgs", "received_events_url": "https://api.github.com/users/wccccp/received_events", "repos_url": "https://api.github.com/users/wccccp/repos", "site_admin": false, "starred_url": "https://api.github.com/users/wccccp/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/wccccp/subscriptions", "type": "User", "url": "https://api.github.com/users/wccccp", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
[ "Hi @wccccp, thanks for reporting. \r\nThat's weird since `huggingface_hub` _has_ a module called `hf_api` and you are using a recent version of it. \r\n\r\nWhich version of `datasets` are you using? And is it a bug that you experienced only recently? (cc @lhoestq can it be somehow related to the recent release of `datasets`?)\r\n\r\n~@wccccp what I can suggest you is to uninstall and reinstall completely huggingface_hub and datasets? My first guess is that there is a discrepancy somewhere in your setup 😕~", "@wccccp Actually I have also been able to reproduce the error so it's not an issue with your setup.\r\n\r\n@huggingface/datasets I found this issue quite weird. Is this a module that is not used very often?\r\nThe problematic line is [this one](https://github.com/huggingface/datasets/blame/c33e8ce68b5000988bf6b2e4bca27ffaa469acea/src/datasets/data_files.py#L476) where `huggingface_hub.hf_api.DatasetInfo` is used. `huggingface_hub` is imported [here](https://github.com/huggingface/datasets/blame/c33e8ce68b5000988bf6b2e4bca27ffaa469acea/src/datasets/data_files.py#L6) as `import huggingface_hub`. However since modules are lazy-loaded in `hfh` you need to explicitly import them (i.e. `import huggingface_hub.hf_api`).\r\n\r\nWhat's weird is that nothing has changed for months. Datasets code seems that it didn't change for 2 years when I git-blame this part. And lazy-loading was introduced 1 year ago in `huggingface_hub`. Could it be that `data_files.py` is a file almost never used?\r\n", "For context, I tried to run `import huggingface_hub; huggingface_hub.hf_api.DatasetInfo` in the terminal with different versions of `hfh` and I need to go back to `huggingface_hub==0.7.0` to make it work (latest is 0.13.3).", "Before the error happens at line 120 in `data_files.py`, `datasets.filesystems.hffilesystem` is imported at the top of `data_files.py` and this file does `from huggingface_hub.hf_api import DatasetInfo` - so `huggingface_hub.hf_api` is imported. Not sure how the error could happen, what version of `datasets` are you using @wccccp ?", "Closing due to inactivity." ]
2023-03-31T08:22:22Z
2023-07-21T14:21:57Z
2023-07-21T14:21:57Z
NONE
null
null
### Describe the bug rta.sh Traceback (most recent call last): File "run.py", line 7, in <module> import datasets File "/home/appuser/miniconda3/envs/pt2/lib/python3.8/site-packages/datasets/__init__.py", line 37, in <module> from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder File "/home/appuser/miniconda3/envs/pt2/lib/python3.8/site-packages/datasets/builder.py", line 44, in <module> from .data_files import DataFilesDict, _sanitize_patterns File "/home/appuser/miniconda3/envs/pt2/lib/python3.8/site-packages/datasets/data_files.py", line 120, in <module> dataset_info: huggingface_hub.hf_api.DatasetInfo, File "/home/appuser/miniconda3/envs/pt2/lib/python3.8/site-packages/huggingface_hub/__init__.py", line 290, in __getattr__ raise AttributeError(f"No {package_name} attribute {name}") AttributeError: No huggingface_hub attribute hf_api ### Reproduction _No response_ ### Logs ```shell Traceback (most recent call last): File "run.py", line 7, in <module> import datasets File "/home/appuser/miniconda3/envs/pt2/lib/python3.8/site-packages/datasets/__init__.py", line 37, in <module> from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder File "/home/appuser/miniconda3/envs/pt2/lib/python3.8/site-packages/datasets/builder.py", line 44, in <module> from .data_files import DataFilesDict, _sanitize_patterns File "/home/appuser/miniconda3/envs/pt2/lib/python3.8/site-packages/datasets/data_files.py", line 120, in <module> dataset_info: huggingface_hub.hf_api.DatasetInfo, File "/home/appuser/miniconda3/envs/pt2/lib/python3.8/site-packages/huggingface_hub/__init__.py", line 290, in __getattr__ raise AttributeError(f"No {package_name} attribute {name}") AttributeError: No huggingface_hub attribute hf_api ``` ### System info ```shell - huggingface_hub version: 0.13.2 - Platform: Linux-5.4.0-144-generic-x86_64-with-glibc2.10 - Python version: 3.8.5 - Running in iPython ?: No - Running in notebook ?: No - Running in Google Colab ?: No - Token path ?: /home/appuser/.cache/huggingface/token - Has saved token ?: False - Configured git credential helpers: - FastAI: N/A - Tensorflow: N/A - Torch: 1.7.1 - Jinja2: N/A - Graphviz: N/A - Pydot: N/A - Pillow: 9.3.0 - hf_transfer: N/A - ENDPOINT: https://huggingface.co - HUGGINGFACE_HUB_CACHE: /home/appuser/.cache/huggingface/hub - HUGGINGFACE_ASSETS_CACHE: /home/appuser/.cache/huggingface/assets - HF_TOKEN_PATH: /home/appuser/.cache/huggingface/token - HF_HUB_OFFLINE: False - HF_HUB_DISABLE_TELEMETRY: False - HF_HUB_DISABLE_PROGRESS_BARS: None - HF_HUB_DISABLE_SYMLINKS_WARNING: False - HF_HUB_DISABLE_IMPLICIT_TOKEN: False ```
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5690/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5688
5,688
Wikipedia download_and_prepare for GCS
{ "avatar_url": "https://avatars.githubusercontent.com/u/25522531?v=4", "events_url": "https://api.github.com/users/adrianfagerland/events{/privacy}", "followers_url": "https://api.github.com/users/adrianfagerland/followers", "following_url": "https://api.github.com/users/adrianfagerland/following{/other_user}", "gists_url": "https://api.github.com/users/adrianfagerland/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/adrianfagerland", "id": 25522531, "login": "adrianfagerland", "node_id": "MDQ6VXNlcjI1NTIyNTMx", "organizations_url": "https://api.github.com/users/adrianfagerland/orgs", "received_events_url": "https://api.github.com/users/adrianfagerland/received_events", "repos_url": "https://api.github.com/users/adrianfagerland/repos", "site_admin": false, "starred_url": "https://api.github.com/users/adrianfagerland/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/adrianfagerland/subscriptions", "type": "User", "url": "https://api.github.com/users/adrianfagerland", "user_view_type": "public" }
[]
closed
false
[ "Hi @adrianfagerland, thanks for reporting.\r\n\r\nPlease note that \"wikipedia\" is a special dataset, with an Apache Beam builder: https://beam.apache.org/\r\nYou can find more info about Beam datasets in our docs: https://huggingface.co/docs/datasets/beam\r\n\r\nIt was implemented to be run in parallel processing, using one of the distributed back-ends supported by Apache Beam: https://beam.apache.org/get-started/beam-overview/#apache-beam-pipeline-runners\r\n\r\nThat is, you are trying to process the source wikipedia data on your machine (not distributed) when passing `beam_runner=\"DirectRunner\"`.\r\n\r\nAs documented in the wikipedia dataset page (https://huggingface.co/datasets/wikipedia):\r\n\r\n Some subsets of Wikipedia have already been processed by HuggingFace, and you can load them just with:\r\n \r\n from datasets import load_dataset\r\n \r\n load_dataset(\"wikipedia\", \"20220301.en\")\r\n\r\n The list of pre-processed subsets is:\r\n - \"20220301.de\"\r\n - \"20220301.en\"\r\n - \"20220301.fr\"\r\n - \"20220301.frr\"\r\n - \"20220301.it\"\r\n - \"20220301.simple\"\r\n\r\nTo download the available processed data (in Arrow format):\r\n```python\r\nbuilder = datasets.load_dataset_builder(\"wikipedia\", \"20220301.en\")\r\nbuilder.download_and_prepare(your_path)\r\n```", "When running this using :\r\n```\r\nimport datasets\r\nfrom apache_beam.options.pipeline_options import PipelineOptions\r\nfrom gcsfs import GCSFileSystem\r\n\r\nstorage_options = {\"project\":\"tdt4310\", \"token\":\"cloud\"}\r\nfs = GCSFileSystem(**storage_options)\r\n\r\noutput_dir = \"gcs://quiz_transformer/\"\r\nbeam_options = PipelineOptions(\r\n region=\"europe-west4\",\r\n project=\"tdt4310\",\r\n temp_location=output_dir+\"tmp/\")\r\n\r\n\r\nbuilder = datasets.load_dataset_builder(\"wikipedia\", \"20220301.en\", beam_runner=\"dataflow\", beam_options=beam_options)\r\nbuilder.download_and_prepare(\r\n output_dir, storage_options=storage_options, file_format=\"parquet\")\r\n```\r\nI now get this error:\r\n```\r\nraise FileNotFoundError(f\"Couldn't find file at {url}\")\r\nFileNotFoundError: Couldn't find file at https://dumps.wikimedia.org/enwiki/20220301/dumpstatus.json\r\nDownloading data files: 0%| | 0/1 [00:00<?, ?it/s]\r\n```\r\n\r\nI get the same error for this:\r\n```\r\nimport datasets\r\nfrom gcsfs import GCSFileSystem\r\n\r\nstorage_options = {\"project\":\"tdt4310\", \"token\":\"cloud\"}\r\nfs = GCSFileSystem(**storage_options)\r\n\r\noutput_dir = \"gcs://quiz_transformer/\"\r\nbuilder = datasets.load_dataset_builder(\"wikipedia\", \"20220301.en\")\r\nbuilder.download_and_prepare(\r\n output_dir, storage_options=storage_options, file_format=\"parquet\")\r\n```\r\n\r\n\r\n\r\n", "`wikipedia` is no longer a Beam dataset, so the above code should work now.\r\n\r\nPS: You can use [these files](https://huggingface.co/datasets/wikipedia/tree/main/data/20220301.en) (or a newer dump at https://huggingface.co/datasets/wikimedia/wikipedia/tree/main/20231101.en) instead of generating the Parquet version yourself" ]
2023-03-30T23:43:22Z
2024-03-15T15:59:18Z
2024-03-15T15:59:18Z
NONE
null
null
### Describe the bug I am unable to download the wikipedia dataset onto GCS. When I run the script provided the memory firstly gets eaten up, then it crashes. I tried running this on a VM with 128GB RAM and all I got was a two empty files: _data_builder.lock_, _data.incomplete/beam-temp-wikipedia-train-1ab2039acf3611ed87a9893475de0093_ I have troubleshot this for two straight days now, but I am just unable to get the dataset into storage. ### Steps to reproduce the bug Run this and insert a path: ``` import datasets builder = datasets.load_dataset_builder( "wikipedia", language="en", date="20230320", beam_runner="DirectRunner") builder.download_and_prepare({path}, file_format="parquet") ``` This is where the problem of it eating RAM occurs. I have also tried several versions of this, based on the docs: ``` import gcsfs import datasets storage_options = {"project": "tdt4310", "token": "cloud"} fs = gcsfs.GCSFileSystem(**storage_options) output_dir = "gcs://wikipediadata/" builder = datasets.load_dataset_builder( "wikipedia", date="20230320", language="en", beam_runner="DirectRunner") builder.download_and_prepare( output_dir, storage_options=storage_options, file_format="parquet") ``` The error message that is received here is: > ValueError: Unable to get filesystem from specified path, please use the correct path or ensure the required dependency is installed, e.g., pip install apache-beam[gcp]. Path specified: gcs://wikipediadata/wikipedia-train [while running 'train/Save to parquet/Write/WriteImpl/InitializeWrite'] I have ran `pip install apache-beam[gcp]` ### Expected behavior The wikipedia data loaded into GCS Everything worked when testing with a smaller demo dataset found somewhere in the docs ### Environment info Newest published version of datasets. Python 3.9. Also tested with Python 3.7. 128GB RAM Google Cloud VM instance.
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5688/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5687
5,687
Document to compress data files before uploading
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "color": "0075ca", "default": true, "description": "Improvements or additions to documentation", "id": 1935892861, "name": "documentation", "node_id": "MDU6TGFiZWwxOTM1ODkyODYx", "url": "https://api.github.com/repos/huggingface/datasets/labels/documentation" } ]
closed
false
[ "Great idea!\r\n\r\nShould we also take this opportunity to include some audio/image file formats? Currently, it still reads very text heavy. Something like:\r\n\r\n> We support many text, audio, and image data extensions such as `.zip`, `.rar`, `.mp3`, and `.jpg` among many others. For data extensions like `.csv`, `.json`, `.jsonl`, and `txt`, we recommend compressing them before uploading to the Hub. These file extensions are not tracked by Git LFS by default, and if they're too large, they will not be committed and uploaded. Take a look at the `.gitattributes` file in your repository for a complete list of supported file extensions.", "Hi @stevhliu, thanks for your suggestion.\r\n\r\nI agree it is a good opportunity to mention that audio/image file formats are also supported.\r\n\r\nNit:\r\nI would not mention .zip, .rar after \"text, audio, and image data extensions\". Those are \"compression\" extensions and not \"text, audio, and image data extensions\".\r\n\r\nWhat about something similar to:\r\n> We support many text, audio, and image data extensions such as `.csv`, `.mp3`, and `.jpg` among many others. For text data extensions like `.csv`, `.json`, `.jsonl`, and `.txt`, we recommend compressing them before uploading to the Hub (to `.zip` or `.gz` file extension for example). \r\n>\r\n> Note that text file extensions are not tracked by Git LFS by default, and if they're too large, they will not be committed and uploaded. Take a look at the `.gitattributes` file in your repository for a complete list of tracked file extensions by default.\r\n\r\nNote that for compressions I have mentioned:\r\n- gz, to compress individual files\r\n- zip, to compress and archive multiple files; zip is preferred rather than tar because it supports streaming out of the box", "Perfect, thanks for making the distinction between compression and data extensions!" ]
2023-03-30T06:41:07Z
2023-04-19T07:25:59Z
2023-04-19T07:25:59Z
MEMBER
null
null
In our docs to [Share a dataset to the Hub](https://huggingface.co/docs/datasets/upload_dataset), we tell users to upload directly their data files, like CSV, JSON, JSON-Lines, text,... However, these extensions are not tracked by Git LFS by default, as they are not in the `.giattributes` file. Therefore, if they are too large, Git will fail to commit/upload them. I think for those file extensions (.csv, .json, .jsonl, .txt), we should better recommend to **compress** their data files (using ZIP for example) before uploading them to the Hub. - Compressed files are tracked by Git LFS in our default `.gitattributes` file What do you think? CC: @stevhliu See related issue: - https://huggingface.co/datasets/tcor0005/langchain-docs-400-chunksize/discussions/1
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/5687/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/pull/5686
5,686
set dev version
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
[ "The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_5686). All of your documentation changes will be reflected on that endpoint.", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008460 / 0.011353 (-0.002893) | 0.006114 / 0.011008 (-0.004894) | 0.121496 / 0.038508 (0.082987) | 0.035030 / 0.023109 (0.011920) | 0.397778 / 0.275898 (0.121880) | 0.429020 / 0.323480 (0.105540) | 0.007811 / 0.007986 (-0.000174) | 0.006269 / 0.004328 (0.001940) | 0.098895 / 0.004250 (0.094645) | 0.045407 / 0.037052 (0.008355) | 0.413679 / 0.258489 (0.155189) | 0.437491 / 0.293841 (0.143650) | 0.053207 / 0.128546 (-0.075339) | 0.018471 / 0.075646 (-0.057175) | 0.414800 / 0.419271 (-0.004472) | 0.060864 / 0.043533 (0.017332) | 0.398501 / 0.255139 (0.143362) | 0.421142 / 0.283200 (0.137942) | 0.114908 / 0.141683 (-0.026775) | 1.678630 / 1.452155 (0.226475) | 1.782313 / 1.492716 (0.289596) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.280783 / 0.018006 (0.262777) | 0.591573 / 0.000490 (0.591083) | 0.005797 / 0.000200 (0.005597) | 0.000115 / 0.000054 (0.000060) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030431 / 0.037411 (-0.006981) | 0.117342 / 0.014526 (0.102816) | 0.128456 / 0.176557 (-0.048101) | 0.198782 / 0.737135 (-0.538354) | 0.128501 / 0.296338 (-0.167838) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.603073 / 0.215209 (0.387864) | 6.101354 / 2.077655 (4.023699) | 2.527812 / 1.504120 (1.023692) | 2.101468 / 1.541195 (0.560273) | 2.092813 / 1.468490 (0.624323) | 1.182150 / 4.584777 (-3.402627) | 5.389278 / 3.745712 (1.643566) | 5.041001 / 5.269862 (-0.228860) | 2.650581 / 4.565676 (-1.915095) | 0.138761 / 0.424275 (-0.285514) | 0.014209 / 0.007607 (0.006602) | 0.748596 / 0.226044 (0.522552) | 7.373937 / 2.268929 (5.105008) | 3.245882 / 55.444624 (-52.198742) | 2.523569 / 6.876477 (-4.352908) | 2.581343 / 2.142072 (0.439270) | 1.340436 / 4.805227 (-3.464791) | 0.241388 / 6.500664 (-6.259276) | 0.076634 / 0.075469 (0.001164) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.480237 / 1.841788 (-0.361551) | 16.781338 / 8.074308 (8.707030) | 19.735028 / 10.191392 (9.543636) | 0.256872 / 0.680424 (-0.423551) | 0.029211 / 0.534201 (-0.504990) | 0.503292 / 0.579283 (-0.075991) | 0.584510 / 0.434364 (0.150146) | 0.580293 / 0.540337 (0.039955) | 0.678863 / 1.386936 (-0.708073) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009972 / 0.011353 (-0.001381) | 0.006107 / 0.011008 (-0.004902) | 0.096188 / 0.038508 (0.057680) | 0.033320 / 0.023109 (0.010210) | 0.420789 / 0.275898 (0.144891) | 0.460488 / 0.323480 (0.137008) | 0.006492 / 0.007986 (-0.001493) | 0.005325 / 0.004328 (0.000997) | 0.094974 / 0.004250 (0.090723) | 0.047708 / 0.037052 (0.010655) | 0.426689 / 0.258489 (0.168200) | 0.476440 / 0.293841 (0.182599) | 0.052776 / 0.128546 (-0.075770) | 0.018779 / 0.075646 (-0.056868) | 0.119598 / 0.419271 (-0.299673) | 0.061800 / 0.043533 (0.018267) | 0.421305 / 0.255139 (0.166166) | 0.441125 / 0.283200 (0.157925) | 0.114221 / 0.141683 (-0.027462) | 1.712681 / 1.452155 (0.260526) | 1.852316 / 1.492716 (0.359600) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.272412 / 0.018006 (0.254405) | 0.583996 / 0.000490 (0.583506) | 0.000505 / 0.000200 (0.000305) | 0.000077 / 0.000054 (0.000022) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029553 / 0.037411 (-0.007858) | 0.124921 / 0.014526 (0.110395) | 0.133338 / 0.176557 (-0.043218) | 0.193811 / 0.737135 (-0.543325) | 0.147973 / 0.296338 (-0.148365) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.595241 / 0.215209 (0.380032) | 6.012015 / 2.077655 (3.934360) | 2.611295 / 1.504120 (1.107175) | 2.290127 / 1.541195 (0.748932) | 2.300366 / 1.468490 (0.831876) | 1.197602 / 4.584777 (-3.387175) | 5.439064 / 3.745712 (1.693352) | 2.906088 / 5.269862 (-2.363773) | 1.919183 / 4.565676 (-2.646493) | 0.132166 / 0.424275 (-0.292109) | 0.014544 / 0.007607 (0.006937) | 0.726377 / 0.226044 (0.500333) | 7.361023 / 2.268929 (5.092094) | 3.289266 / 55.444624 (-52.155358) | 2.635570 / 6.876477 (-4.240907) | 2.595691 / 2.142072 (0.453619) | 1.329458 / 4.805227 (-3.475769) | 0.239419 / 6.500664 (-6.261245) | 0.076316 / 0.075469 (0.000847) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.547616 / 1.841788 (-0.294172) | 17.374315 / 8.074308 (9.300007) | 20.216275 / 10.191392 (10.024883) | 0.252102 / 0.680424 (-0.428322) | 0.027535 / 0.534201 (-0.506665) | 0.524618 / 0.579283 (-0.054666) | 0.596803 / 0.434364 (0.162439) | 0.652632 / 0.540337 (0.112294) | 0.762272 / 1.386936 (-0.624664) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#8c7d4b2f981f8cf639dcbd80f40a41aa5b1693c6 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008236 / 0.011353 (-0.003117) | 0.006186 / 0.011008 (-0.004822) | 0.117852 / 0.038508 (0.079344) | 0.034711 / 0.023109 (0.011602) | 0.447564 / 0.275898 (0.171666) | 0.438727 / 0.323480 (0.115247) | 0.006576 / 0.007986 (-0.001410) | 0.005903 / 0.004328 (0.001574) | 0.094309 / 0.004250 (0.090059) | 0.042760 / 0.037052 (0.005708) | 0.393269 / 0.258489 (0.134780) | 0.438061 / 0.293841 (0.144220) | 0.059029 / 0.128546 (-0.069517) | 0.020296 / 0.075646 (-0.055350) | 0.412057 / 0.419271 (-0.007215) | 0.059808 / 0.043533 (0.016275) | 0.407243 / 0.255139 (0.152104) | 0.414290 / 0.283200 (0.131090) | 0.107701 / 0.141683 (-0.033981) | 1.671522 / 1.452155 (0.219367) | 1.775055 / 1.492716 (0.282338) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.275242 / 0.018006 (0.257236) | 0.599698 / 0.000490 (0.599208) | 0.001289 / 0.000200 (0.001089) | 0.000101 / 0.000054 (0.000046) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.029579 / 0.037411 (-0.007832) | 0.127249 / 0.014526 (0.112723) | 0.137431 / 0.176557 (-0.039126) | 0.220330 / 0.737135 (-0.516805) | 0.133540 / 0.296338 (-0.162798) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.571989 / 0.215209 (0.356780) | 5.931503 / 2.077655 (3.853848) | 2.526646 / 1.504120 (1.022527) | 2.189476 / 1.541195 (0.648281) | 2.151935 / 1.468490 (0.683444) | 1.242440 / 4.584777 (-3.342337) | 5.599675 / 3.745712 (1.853963) | 3.242035 / 5.269862 (-2.027826) | 2.368361 / 4.565676 (-2.197315) | 0.145659 / 0.424275 (-0.278616) | 0.013813 / 0.007607 (0.006206) | 0.782495 / 0.226044 (0.556451) | 7.861619 / 2.268929 (5.592690) | 3.241001 / 55.444624 (-52.203623) | 2.611025 / 6.876477 (-4.265452) | 2.667263 / 2.142072 (0.525191) | 1.429992 / 4.805227 (-3.375235) | 0.243008 / 6.500664 (-6.257656) | 0.083686 / 0.075469 (0.008217) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.565526 / 1.841788 (-0.276262) | 18.260815 / 8.074308 (10.186507) | 22.586133 / 10.191392 (12.394741) | 0.231864 / 0.680424 (-0.448559) | 0.030877 / 0.534201 (-0.503324) | 0.569726 / 0.579283 (-0.009557) | 0.678638 / 0.434364 (0.244274) | 0.611810 / 0.540337 (0.071472) | 0.718771 / 1.386936 (-0.668165) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009398 / 0.011353 (-0.001955) | 0.006452 / 0.011008 (-0.004556) | 0.103352 / 0.038508 (0.064844) | 0.034773 / 0.023109 (0.011664) | 0.523782 / 0.275898 (0.247884) | 0.523554 / 0.323480 (0.200074) | 0.006990 / 0.007986 (-0.000996) | 0.004994 / 0.004328 (0.000666) | 0.102199 / 0.004250 (0.097949) | 0.050087 / 0.037052 (0.013035) | 0.496662 / 0.258489 (0.238173) | 0.563130 / 0.293841 (0.269289) | 0.052851 / 0.128546 (-0.075695) | 0.019824 / 0.075646 (-0.055822) | 0.122657 / 0.419271 (-0.296614) | 0.057714 / 0.043533 (0.014181) | 0.470502 / 0.255139 (0.215363) | 0.518908 / 0.283200 (0.235708) | 0.114374 / 0.141683 (-0.027309) | 1.795918 / 1.452155 (0.343763) | 1.957461 / 1.492716 (0.464744) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.303921 / 0.018006 (0.285915) | 0.584406 / 0.000490 (0.583916) | 0.000444 / 0.000200 (0.000244) | 0.000096 / 0.000054 (0.000042) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032254 / 0.037411 (-0.005158) | 0.129966 / 0.014526 (0.115440) | 0.151000 / 0.176557 (-0.025557) | 0.234060 / 0.737135 (-0.503076) | 0.149444 / 0.296338 (-0.146895) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.666627 / 0.215209 (0.451418) | 7.054701 / 2.077655 (4.977046) | 2.836895 / 1.504120 (1.332775) | 2.561994 / 1.541195 (1.020799) | 2.672460 / 1.468490 (1.203970) | 1.411929 / 4.584777 (-3.172848) | 6.026918 / 3.745712 (2.281206) | 3.341745 / 5.269862 (-1.928116) | 2.280317 / 4.565676 (-2.285359) | 0.156635 / 0.424275 (-0.267641) | 0.014256 / 0.007607 (0.006649) | 0.804830 / 0.226044 (0.578786) | 8.106960 / 2.268929 (5.838031) | 3.597452 / 55.444624 (-51.847172) | 3.002847 / 6.876477 (-3.873630) | 2.931160 / 2.142072 (0.789088) | 1.484172 / 4.805227 (-3.321056) | 0.254166 / 6.500664 (-6.246498) | 0.080554 / 0.075469 (0.005085) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.809909 / 1.841788 (-0.031879) | 18.988994 / 8.074308 (10.914686) | 23.153442 / 10.191392 (12.962050) | 0.250554 / 0.680424 (-0.429870) | 0.048677 / 0.534201 (-0.485524) | 0.574109 / 0.579283 (-0.005174) | 0.640917 / 0.434364 (0.206553) | 0.725215 / 0.540337 (0.184878) | 0.878234 / 1.386936 (-0.508702) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#e3667d6e17d68503469c8e88ec344b7cccfa2346 \"CML watermark\")\n" ]
2023-03-29T18:24:13Z
2023-03-29T18:33:49Z
2023-03-29T18:24:22Z
MEMBER
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5686.diff", "html_url": "https://github.com/huggingface/datasets/pull/5686", "merged_at": "2023-03-29T18:24:22Z", "patch_url": "https://github.com/huggingface/datasets/pull/5686.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5686" }
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5686/reactions" }
null
null
null
true
https://github.com/huggingface/datasets/issues/5685
5,685
Broken Image render on the hub website
{ "avatar_url": "https://avatars.githubusercontent.com/u/15908060?v=4", "events_url": "https://api.github.com/users/FrancescoSaverioZuppichini/events{/privacy}", "followers_url": "https://api.github.com/users/FrancescoSaverioZuppichini/followers", "following_url": "https://api.github.com/users/FrancescoSaverioZuppichini/following{/other_user}", "gists_url": "https://api.github.com/users/FrancescoSaverioZuppichini/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/FrancescoSaverioZuppichini", "id": 15908060, "login": "FrancescoSaverioZuppichini", "node_id": "MDQ6VXNlcjE1OTA4MDYw", "organizations_url": "https://api.github.com/users/FrancescoSaverioZuppichini/orgs", "received_events_url": "https://api.github.com/users/FrancescoSaverioZuppichini/received_events", "repos_url": "https://api.github.com/users/FrancescoSaverioZuppichini/repos", "site_admin": false, "starred_url": "https://api.github.com/users/FrancescoSaverioZuppichini/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/FrancescoSaverioZuppichini/subscriptions", "type": "User", "url": "https://api.github.com/users/FrancescoSaverioZuppichini", "user_view_type": "public" }
[]
closed
false
[ "Hi! \r\n\r\nYou can fix the viewer by adding the `dataset_info` YAML field deleted in https://huggingface.co/datasets/Francesco/cell-towers/commit/b95b59ddd91ebe9c12920f0efe0ed415cd0d4298 back to the metadata section of the card. \r\n\r\nTo avoid this issue in the feature, you can use `huggingface_hub`'s [RepoCard](https://huggingface.co/docs/huggingface_hub/package_reference/cards) API to update the dataset card instead of `upload_file`:\r\n```python\r\nfrom huggingface_hub import DatasetCard\r\n# Load card\r\ncard = DatasetCard.load(\"<namespace>/<repo_id>\")\r\n# Modify card content\r\ncard.content = ...\r\n# Push card to the Hub\r\ncard.push_to_hub(\"<namespace>/<repo_id>\")\r\n```\r\n\r\nHowever, the best solution would be to use the features info stored in the header of the Parquet shards generated with `push_to_hub` on the viewer side to avoid unexpected issues such as this one. This shouldn't be too hard to address.", "Thanks for reporting @FrancescoSaverioZuppichini.\r\n\r\nFor future issues with your specific dataset, you can use its \"Community\" tab to start a conversation: https://huggingface.co/datasets/Francesco/cell-towers/discussions/new", "Thanks @albertvillanova , @mariosasko I was not aware of this requirement from the doc (must have skipped :sweat_smile: )\r\n\r\nConfirmed, adding back `dataset_info` fixed the issu" ]
2023-03-29T15:25:30Z
2023-03-30T07:54:25Z
2023-03-30T07:54:25Z
NONE
null
null
### Describe the bug Hi :wave: Not sure if this is the right place to ask, but I am trying to load a huge amount of datasets on the hub (:partying_face: ) but I am facing a little issue with the `image` type ![image](https://user-images.githubusercontent.com/15908060/228587875-427a37f1-3a31-4e17-8bbe-0f759003910d.png) See this [dataset](https://huggingface.co/datasets/Francesco/cell-towers), basically for some reason the first image has numerical bytes inside, not sure if that is okay, but the image render feature **doesn't work** So the dataset is stored in the following way ```python builder.download_and_prepare(output_dir=str(output_dir)) ds = builder.as_dataset(split="train") # [NOTE] no idea how to push it from the builder folder ds.push_to_hub(repo_id=repo_id) builder.as_dataset(split="validation").push_to_hub(repo_id=repo_id) ds = builder.as_dataset(split="test") ds.push_to_hub(repo_id=repo_id) ``` The build is this class ```python class COCOLikeDatasetBuilder(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") def _info(self): features = datasets.Features( { "image_id": datasets.Value("int64"), "image": datasets.Image(), "width": datasets.Value("int32"), "height": datasets.Value("int32"), "objects": datasets.Sequence( { "id": datasets.Value("int64"), "area": datasets.Value("int64"), "bbox": datasets.Sequence( datasets.Value("float32"), length=4 ), "category": datasets.ClassLabel(names=categories), } ), } ) return datasets.DatasetInfo( description=description, features=features, homepage=homepage, license=license, citation=citation, ) def _split_generators(self, dl_manager): archive = dl_manager.download(url) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "annotation_file_path": "train/_annotations.coco.json", "files": dl_manager.iter_archive(archive), }, ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "annotation_file_path": "test/_annotations.coco.json", "files": dl_manager.iter_archive(archive), }, ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "annotation_file_path": "valid/_annotations.coco.json", "files": dl_manager.iter_archive(archive), }, ), ] def _generate_examples(self, annotation_file_path, files): def process_annot(annot, category_id_to_category): return { "id": annot["id"], "area": annot["area"], "bbox": annot["bbox"], "category": category_id_to_category[annot["category_id"]], } image_id_to_image = {} idx = 0 # This loop relies on the ordering of the files in the archive: # Annotation files come first, then the images. for path, f in files: file_name = os.path.basename(path) if annotation_file_path in path: annotations = json.load(f) category_id_to_category = { category["id"]: category["name"] for category in annotations["categories"] } print(category_id_to_category) image_id_to_annotations = collections.defaultdict(list) for annot in annotations["annotations"]: image_id_to_annotations[annot["image_id"]].append(annot) image_id_to_image = { annot["file_name"]: annot for annot in annotations["images"] } elif file_name in image_id_to_image: image = image_id_to_image[file_name] objects = [ process_annot(annot, category_id_to_category) for annot in image_id_to_annotations[image["id"]] ] print(file_name) yield idx, { "image_id": image["id"], "image": {"path": path, "bytes": f.read()}, "width": image["width"], "height": image["height"], "objects": objects, } idx += 1 ``` Basically, I want to add to the hub every dataset I come across on coco format Thanks Fra ### Steps to reproduce the bug In this case, you can just navigate on the [dataset](https://huggingface.co/datasets/Francesco/cell-towers) ### Expected behavior I was expecting the image rendering feature to work ### Environment info Not a lot to share, I am using `datasets` from a fresh venv
{ "avatar_url": "https://avatars.githubusercontent.com/u/15908060?v=4", "events_url": "https://api.github.com/users/FrancescoSaverioZuppichini/events{/privacy}", "followers_url": "https://api.github.com/users/FrancescoSaverioZuppichini/followers", "following_url": "https://api.github.com/users/FrancescoSaverioZuppichini/following{/other_user}", "gists_url": "https://api.github.com/users/FrancescoSaverioZuppichini/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/FrancescoSaverioZuppichini", "id": 15908060, "login": "FrancescoSaverioZuppichini", "node_id": "MDQ6VXNlcjE1OTA4MDYw", "organizations_url": "https://api.github.com/users/FrancescoSaverioZuppichini/orgs", "received_events_url": "https://api.github.com/users/FrancescoSaverioZuppichini/received_events", "repos_url": "https://api.github.com/users/FrancescoSaverioZuppichini/repos", "site_admin": false, "starred_url": "https://api.github.com/users/FrancescoSaverioZuppichini/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/FrancescoSaverioZuppichini/subscriptions", "type": "User", "url": "https://api.github.com/users/FrancescoSaverioZuppichini", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5685/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/pull/5684
5,684
Release: 2.11.0
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
[]
closed
false
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007017 / 0.011353 (-0.004335) | 0.004917 / 0.011008 (-0.006091) | 0.098391 / 0.038508 (0.059883) | 0.032677 / 0.023109 (0.009568) | 0.312126 / 0.275898 (0.036227) | 0.352477 / 0.323480 (0.028998) | 0.005960 / 0.007986 (-0.002025) | 0.003801 / 0.004328 (-0.000528) | 0.073916 / 0.004250 (0.069666) | 0.045610 / 0.037052 (0.008557) | 0.319626 / 0.258489 (0.061137) | 0.370575 / 0.293841 (0.076734) | 0.035888 / 0.128546 (-0.092658) | 0.012012 / 0.075646 (-0.063635) | 0.338290 / 0.419271 (-0.080982) | 0.049452 / 0.043533 (0.005919) | 0.301226 / 0.255139 (0.046087) | 0.336744 / 0.283200 (0.053545) | 0.100835 / 0.141683 (-0.040847) | 1.500008 / 1.452155 (0.047853) | 1.566757 / 1.492716 (0.074041) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.220668 / 0.018006 (0.202662) | 0.449273 / 0.000490 (0.448784) | 0.003861 / 0.000200 (0.003661) | 0.000126 / 0.000054 (0.000072) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026847 / 0.037411 (-0.010565) | 0.105916 / 0.014526 (0.091390) | 0.116245 / 0.176557 (-0.060312) | 0.172617 / 0.737135 (-0.564519) | 0.122846 / 0.296338 (-0.173492) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.417906 / 0.215209 (0.202697) | 4.169092 / 2.077655 (2.091437) | 1.934439 / 1.504120 (0.430319) | 1.735718 / 1.541195 (0.194523) | 1.828205 / 1.468490 (0.359715) | 0.697446 / 4.584777 (-3.887331) | 3.802830 / 3.745712 (0.057118) | 3.686464 / 5.269862 (-1.583398) | 1.863924 / 4.565676 (-2.701752) | 0.086520 / 0.424275 (-0.337755) | 0.012101 / 0.007607 (0.004493) | 0.521252 / 0.226044 (0.295208) | 5.200937 / 2.268929 (2.932009) | 2.414290 / 55.444624 (-53.030334) | 2.070890 / 6.876477 (-4.805587) | 2.237693 / 2.142072 (0.095621) | 0.843417 / 4.805227 (-3.961811) | 0.167856 / 6.500664 (-6.332809) | 0.064997 / 0.075469 (-0.010472) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.212334 / 1.841788 (-0.629454) | 14.710632 / 8.074308 (6.636324) | 14.877489 / 10.191392 (4.686097) | 0.151268 / 0.680424 (-0.529156) | 0.018663 / 0.534201 (-0.515538) | 0.429678 / 0.579283 (-0.149605) | 0.425054 / 0.434364 (-0.009310) | 0.502804 / 0.540337 (-0.037533) | 0.587932 / 1.386936 (-0.799004) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007462 / 0.011353 (-0.003891) | 0.005307 / 0.011008 (-0.005701) | 0.074309 / 0.038508 (0.035801) | 0.033437 / 0.023109 (0.010328) | 0.355087 / 0.275898 (0.079189) | 0.391417 / 0.323480 (0.067937) | 0.005904 / 0.007986 (-0.002082) | 0.004062 / 0.004328 (-0.000266) | 0.073801 / 0.004250 (0.069550) | 0.048503 / 0.037052 (0.011451) | 0.359547 / 0.258489 (0.101058) | 0.405325 / 0.293841 (0.111484) | 0.036615 / 0.128546 (-0.091931) | 0.012185 / 0.075646 (-0.063461) | 0.086829 / 0.419271 (-0.332443) | 0.049101 / 0.043533 (0.005569) | 0.334259 / 0.255139 (0.079120) | 0.376317 / 0.283200 (0.093117) | 0.099935 / 0.141683 (-0.041748) | 1.483166 / 1.452155 (0.031011) | 1.569092 / 1.492716 (0.076375) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.207528 / 0.018006 (0.189521) | 0.437473 / 0.000490 (0.436983) | 0.004915 / 0.000200 (0.004715) | 0.000097 / 0.000054 (0.000043) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028632 / 0.037411 (-0.008780) | 0.111782 / 0.014526 (0.097256) | 0.122545 / 0.176557 (-0.054011) | 0.171191 / 0.737135 (-0.565945) | 0.128999 / 0.296338 (-0.167339) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.424422 / 0.215209 (0.209213) | 4.239488 / 2.077655 (2.161833) | 2.027969 / 1.504120 (0.523849) | 1.800667 / 1.541195 (0.259473) | 1.898701 / 1.468490 (0.430211) | 0.711453 / 4.584777 (-3.873324) | 3.766696 / 3.745712 (0.020984) | 2.107530 / 5.269862 (-3.162331) | 1.347137 / 4.565676 (-3.218540) | 0.086823 / 0.424275 (-0.337452) | 0.012137 / 0.007607 (0.004530) | 0.523143 / 0.226044 (0.297099) | 5.273434 / 2.268929 (3.004505) | 2.545463 / 55.444624 (-52.899161) | 2.246683 / 6.876477 (-4.629793) | 2.296862 / 2.142072 (0.154789) | 0.855690 / 4.805227 (-3.949538) | 0.168526 / 6.500664 (-6.332138) | 0.063392 / 0.075469 (-0.012078) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.248926 / 1.841788 (-0.592862) | 14.676308 / 8.074308 (6.602000) | 14.524364 / 10.191392 (4.332972) | 0.184138 / 0.680424 (-0.496286) | 0.017259 / 0.534201 (-0.516942) | 0.433875 / 0.579283 (-0.145408) | 0.416787 / 0.434364 (-0.017577) | 0.532391 / 0.540337 (-0.007947) | 0.628572 / 1.386936 (-0.758364) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3929cc227a474ce0c716146c8d14ae94f8a7625b \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006469 / 0.011353 (-0.004884) | 0.004499 / 0.011008 (-0.006510) | 0.098856 / 0.038508 (0.060348) | 0.027753 / 0.023109 (0.004644) | 0.321348 / 0.275898 (0.045450) | 0.351480 / 0.323480 (0.028000) | 0.004949 / 0.007986 (-0.003036) | 0.004655 / 0.004328 (0.000327) | 0.076732 / 0.004250 (0.072482) | 0.036175 / 0.037052 (-0.000878) | 0.310111 / 0.258489 (0.051622) | 0.372427 / 0.293841 (0.078586) | 0.031947 / 0.128546 (-0.096599) | 0.011669 / 0.075646 (-0.063977) | 0.323086 / 0.419271 (-0.096186) | 0.043578 / 0.043533 (0.000045) | 0.325549 / 0.255139 (0.070410) | 0.363827 / 0.283200 (0.080627) | 0.087819 / 0.141683 (-0.053864) | 1.479429 / 1.452155 (0.027274) | 1.549797 / 1.492716 (0.057080) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.178502 / 0.018006 (0.160496) | 0.415954 / 0.000490 (0.415465) | 0.008767 / 0.000200 (0.008567) | 0.000429 / 0.000054 (0.000375) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023639 / 0.037411 (-0.013772) | 0.096266 / 0.014526 (0.081740) | 0.106406 / 0.176557 (-0.070151) | 0.168819 / 0.737135 (-0.568317) | 0.109158 / 0.296338 (-0.187181) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.420729 / 0.215209 (0.205520) | 4.219469 / 2.077655 (2.141814) | 1.885673 / 1.504120 (0.381553) | 1.681868 / 1.541195 (0.140674) | 1.709240 / 1.468490 (0.240749) | 0.694763 / 4.584777 (-3.890014) | 3.395377 / 3.745712 (-0.350335) | 1.846811 / 5.269862 (-3.423051) | 1.158381 / 4.565676 (-3.407296) | 0.082717 / 0.424275 (-0.341558) | 0.012302 / 0.007607 (0.004695) | 0.518148 / 0.226044 (0.292103) | 5.189590 / 2.268929 (2.920661) | 2.294127 / 55.444624 (-53.150498) | 1.960080 / 6.876477 (-4.916397) | 2.045359 / 2.142072 (-0.096713) | 0.803739 / 4.805227 (-4.001488) | 0.152322 / 6.500664 (-6.348342) | 0.067051 / 0.075469 (-0.008418) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.206582 / 1.841788 (-0.635206) | 13.590515 / 8.074308 (5.516207) | 14.083739 / 10.191392 (3.892347) | 0.128738 / 0.680424 (-0.551686) | 0.016577 / 0.534201 (-0.517624) | 0.375499 / 0.579283 (-0.203784) | 0.383256 / 0.434364 (-0.051108) | 0.439441 / 0.540337 (-0.100896) | 0.518102 / 1.386936 (-0.868834) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006708 / 0.011353 (-0.004645) | 0.004591 / 0.011008 (-0.006417) | 0.076512 / 0.038508 (0.038004) | 0.027977 / 0.023109 (0.004868) | 0.341915 / 0.275898 (0.066017) | 0.374381 / 0.323480 (0.050901) | 0.004985 / 0.007986 (-0.003001) | 0.003374 / 0.004328 (-0.000954) | 0.075334 / 0.004250 (0.071083) | 0.037522 / 0.037052 (0.000470) | 0.341702 / 0.258489 (0.083213) | 0.384342 / 0.293841 (0.090501) | 0.032231 / 0.128546 (-0.096315) | 0.011494 / 0.075646 (-0.064153) | 0.084897 / 0.419271 (-0.334375) | 0.041914 / 0.043533 (-0.001619) | 0.342030 / 0.255139 (0.086891) | 0.371024 / 0.283200 (0.087825) | 0.089936 / 0.141683 (-0.051746) | 1.497242 / 1.452155 (0.045087) | 1.585203 / 1.492716 (0.092486) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.227681 / 0.018006 (0.209674) | 0.398995 / 0.000490 (0.398505) | 0.003232 / 0.000200 (0.003032) | 0.000073 / 0.000054 (0.000019) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024705 / 0.037411 (-0.012706) | 0.099906 / 0.014526 (0.085380) | 0.106806 / 0.176557 (-0.069750) | 0.157521 / 0.737135 (-0.579614) | 0.110803 / 0.296338 (-0.185535) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.457442 / 0.215209 (0.242233) | 4.580101 / 2.077655 (2.502446) | 2.094687 / 1.504120 (0.590567) | 1.880722 / 1.541195 (0.339528) | 1.938746 / 1.468490 (0.470256) | 0.700933 / 4.584777 (-3.883844) | 3.416278 / 3.745712 (-0.329434) | 2.852183 / 5.269862 (-2.417679) | 1.602659 / 4.565676 (-2.963017) | 0.083949 / 0.424275 (-0.340326) | 0.012255 / 0.007607 (0.004648) | 0.551631 / 0.226044 (0.325586) | 5.539225 / 2.268929 (3.270296) | 2.707298 / 55.444624 (-52.737326) | 2.354720 / 6.876477 (-4.521757) | 2.320790 / 2.142072 (0.178717) | 0.807152 / 4.805227 (-3.998075) | 0.152048 / 6.500664 (-6.348616) | 0.067723 / 0.075469 (-0.007746) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.295690 / 1.841788 (-0.546097) | 13.738082 / 8.074308 (5.663774) | 14.129549 / 10.191392 (3.938157) | 0.161568 / 0.680424 (-0.518855) | 0.016678 / 0.534201 (-0.517522) | 0.386609 / 0.579283 (-0.192674) | 0.383538 / 0.434364 (-0.050826) | 0.477872 / 0.540337 (-0.062465) | 0.564547 / 1.386936 (-0.822389) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#2ab4c98618bce7c1f60ce96d4a853a940ae4b250 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007247 / 0.011353 (-0.004106) | 0.005044 / 0.011008 (-0.005964) | 0.095135 / 0.038508 (0.056627) | 0.033622 / 0.023109 (0.010513) | 0.309969 / 0.275898 (0.034071) | 0.340354 / 0.323480 (0.016875) | 0.005635 / 0.007986 (-0.002351) | 0.003938 / 0.004328 (-0.000391) | 0.072089 / 0.004250 (0.067838) | 0.045592 / 0.037052 (0.008539) | 0.316620 / 0.258489 (0.058131) | 0.358174 / 0.293841 (0.064333) | 0.036446 / 0.128546 (-0.092100) | 0.011961 / 0.075646 (-0.063685) | 0.332299 / 0.419271 (-0.086973) | 0.049955 / 0.043533 (0.006422) | 0.307638 / 0.255139 (0.052499) | 0.331719 / 0.283200 (0.048519) | 0.095115 / 0.141683 (-0.046568) | 1.457960 / 1.452155 (0.005806) | 1.502812 / 1.492716 (0.010096) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.223747 / 0.018006 (0.205740) | 0.444837 / 0.000490 (0.444347) | 0.002583 / 0.000200 (0.002383) | 0.000084 / 0.000054 (0.000030) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026461 / 0.037411 (-0.010951) | 0.103946 / 0.014526 (0.089420) | 0.114355 / 0.176557 (-0.062201) | 0.170076 / 0.737135 (-0.567059) | 0.121087 / 0.296338 (-0.175252) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.403252 / 0.215209 (0.188043) | 4.016911 / 2.077655 (1.939257) | 1.787168 / 1.504120 (0.283048) | 1.605206 / 1.541195 (0.064012) | 1.657012 / 1.468490 (0.188522) | 0.701425 / 4.584777 (-3.883352) | 3.818308 / 3.745712 (0.072596) | 3.493757 / 5.269862 (-1.776105) | 1.860534 / 4.565676 (-2.705142) | 0.084994 / 0.424275 (-0.339281) | 0.011904 / 0.007607 (0.004297) | 0.534199 / 0.226044 (0.308155) | 4.992703 / 2.268929 (2.723774) | 2.286231 / 55.444624 (-53.158393) | 1.918163 / 6.876477 (-4.958314) | 2.029811 / 2.142072 (-0.112262) | 0.837532 / 4.805227 (-3.967695) | 0.168545 / 6.500664 (-6.332119) | 0.062866 / 0.075469 (-0.012604) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.172862 / 1.841788 (-0.668926) | 14.966793 / 8.074308 (6.892485) | 14.202079 / 10.191392 (4.010687) | 0.144688 / 0.680424 (-0.535736) | 0.017499 / 0.534201 (-0.516702) | 0.443081 / 0.579283 (-0.136202) | 0.427496 / 0.434364 (-0.006868) | 0.525182 / 0.540337 (-0.015155) | 0.611849 / 1.386936 (-0.775087) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.007264 / 0.011353 (-0.004089) | 0.005106 / 0.011008 (-0.005902) | 0.074101 / 0.038508 (0.035593) | 0.033388 / 0.023109 (0.010279) | 0.337108 / 0.275898 (0.061210) | 0.369820 / 0.323480 (0.046340) | 0.005701 / 0.007986 (-0.002284) | 0.003976 / 0.004328 (-0.000353) | 0.073517 / 0.004250 (0.069267) | 0.048741 / 0.037052 (0.011688) | 0.339118 / 0.258489 (0.080629) | 0.398687 / 0.293841 (0.104846) | 0.036661 / 0.128546 (-0.091886) | 0.012082 / 0.075646 (-0.063564) | 0.086743 / 0.419271 (-0.332529) | 0.050150 / 0.043533 (0.006617) | 0.335572 / 0.255139 (0.080433) | 0.354306 / 0.283200 (0.071107) | 0.102074 / 0.141683 (-0.039609) | 1.442911 / 1.452155 (-0.009244) | 1.531564 / 1.492716 (0.038848) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.183163 / 0.018006 (0.165157) | 0.439273 / 0.000490 (0.438783) | 0.002765 / 0.000200 (0.002565) | 0.000225 / 0.000054 (0.000171) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028185 / 0.037411 (-0.009227) | 0.107337 / 0.014526 (0.092811) | 0.119925 / 0.176557 (-0.056631) | 0.172120 / 0.737135 (-0.565015) | 0.124332 / 0.296338 (-0.172007) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.428750 / 0.215209 (0.213541) | 4.268933 / 2.077655 (2.191279) | 2.050135 / 1.504120 (0.546015) | 1.837567 / 1.541195 (0.296372) | 1.907040 / 1.468490 (0.438549) | 0.694162 / 4.584777 (-3.890615) | 3.831542 / 3.745712 (0.085830) | 3.476580 / 5.269862 (-1.793281) | 1.855097 / 4.565676 (-2.710580) | 0.085816 / 0.424275 (-0.338459) | 0.012195 / 0.007607 (0.004588) | 0.544920 / 0.226044 (0.318876) | 5.332977 / 2.268929 (3.064049) | 2.592097 / 55.444624 (-52.852527) | 2.295411 / 6.876477 (-4.581065) | 2.330803 / 2.142072 (0.188730) | 0.833268 / 4.805227 (-3.971959) | 0.177698 / 6.500664 (-6.322966) | 0.063780 / 0.075469 (-0.011689) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.273361 / 1.841788 (-0.568427) | 14.981380 / 8.074308 (6.907072) | 14.395166 / 10.191392 (4.203774) | 0.186590 / 0.680424 (-0.493834) | 0.017676 / 0.534201 (-0.516525) | 0.432100 / 0.579283 (-0.147183) | 0.422490 / 0.434364 (-0.011874) | 0.531421 / 0.540337 (-0.008916) | 0.628548 / 1.386936 (-0.758388) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3b16e08dd599f4646a77a5ca88b6445467e1e7e9 \"CML watermark\")\n", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009005 / 0.011353 (-0.002348) | 0.005803 / 0.011008 (-0.005205) | 0.103491 / 0.038508 (0.064983) | 0.048099 / 0.023109 (0.024990) | 0.304026 / 0.275898 (0.028128) | 0.340840 / 0.323480 (0.017360) | 0.006782 / 0.007986 (-0.001204) | 0.004625 / 0.004328 (0.000296) | 0.076695 / 0.004250 (0.072445) | 0.057541 / 0.037052 (0.020489) | 0.304015 / 0.258489 (0.045526) | 0.347822 / 0.293841 (0.053981) | 0.037904 / 0.128546 (-0.090642) | 0.012686 / 0.075646 (-0.062960) | 0.368093 / 0.419271 (-0.051179) | 0.051795 / 0.043533 (0.008262) | 0.302553 / 0.255139 (0.047415) | 0.328581 / 0.283200 (0.045381) | 0.108947 / 0.141683 (-0.032736) | 1.449770 / 1.452155 (-0.002385) | 1.541944 / 1.492716 (0.049227) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.207529 / 0.018006 (0.189523) | 0.455313 / 0.000490 (0.454823) | 0.008276 / 0.000200 (0.008076) | 0.000322 / 0.000054 (0.000268) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.030564 / 0.037411 (-0.006848) | 0.122790 / 0.014526 (0.108264) | 0.126981 / 0.176557 (-0.049576) | 0.187203 / 0.737135 (-0.549932) | 0.129931 / 0.296338 (-0.166408) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.402680 / 0.215209 (0.187471) | 4.017505 / 2.077655 (1.939850) | 1.801480 / 1.504120 (0.297360) | 1.647984 / 1.541195 (0.106790) | 1.702596 / 1.468490 (0.234106) | 0.717469 / 4.584777 (-3.867308) | 3.793813 / 3.745712 (0.048101) | 2.288014 / 5.269862 (-2.981848) | 1.497545 / 4.565676 (-3.068132) | 0.091241 / 0.424275 (-0.333034) | 0.013115 / 0.007607 (0.005508) | 0.498567 / 0.226044 (0.272522) | 4.990203 / 2.268929 (2.721275) | 2.334983 / 55.444624 (-53.109642) | 2.047888 / 6.876477 (-4.828589) | 2.167825 / 2.142072 (0.025753) | 0.863769 / 4.805227 (-3.941459) | 0.172699 / 6.500664 (-6.327965) | 0.069285 / 0.075469 (-0.006184) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.397331 / 1.841788 (-0.444457) | 16.678240 / 8.074308 (8.603932) | 16.665143 / 10.191392 (6.473751) | 0.151011 / 0.680424 (-0.529412) | 0.018303 / 0.534201 (-0.515898) | 0.445389 / 0.579283 (-0.133894) | 0.444644 / 0.434364 (0.010280) | 0.524647 / 0.540337 (-0.015690) | 0.629747 / 1.386936 (-0.757189) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.008853 / 0.011353 (-0.002499) | 0.006196 / 0.011008 (-0.004813) | 0.078595 / 0.038508 (0.040087) | 0.048348 / 0.023109 (0.025239) | 0.347038 / 0.275898 (0.071140) | 0.385807 / 0.323480 (0.062327) | 0.007047 / 0.007986 (-0.000938) | 0.004772 / 0.004328 (0.000443) | 0.076116 / 0.004250 (0.071866) | 0.058805 / 0.037052 (0.021752) | 0.345731 / 0.258489 (0.087242) | 0.401589 / 0.293841 (0.107748) | 0.039349 / 0.128546 (-0.089197) | 0.012949 / 0.075646 (-0.062697) | 0.089761 / 0.419271 (-0.329511) | 0.060001 / 0.043533 (0.016468) | 0.351587 / 0.255139 (0.096448) | 0.377708 / 0.283200 (0.094509) | 0.117391 / 0.141683 (-0.024292) | 1.471622 / 1.452155 (0.019467) | 1.568759 / 1.492716 (0.076042) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.191390 / 0.018006 (0.173384) | 0.469033 / 0.000490 (0.468544) | 0.003615 / 0.000200 (0.003415) | 0.000113 / 0.000054 (0.000059) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.032706 / 0.037411 (-0.004706) | 0.127095 / 0.014526 (0.112569) | 0.128755 / 0.176557 (-0.047801) | 0.182590 / 0.737135 (-0.554545) | 0.136939 / 0.296338 (-0.159400) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.427392 / 0.215209 (0.212183) | 4.246708 / 2.077655 (2.169053) | 2.115557 / 1.504120 (0.611437) | 2.021221 / 1.541195 (0.480026) | 2.177559 / 1.468490 (0.709069) | 0.713930 / 4.584777 (-3.870847) | 4.192467 / 3.745712 (0.446755) | 3.645437 / 5.269862 (-1.624424) | 1.964986 / 4.565676 (-2.600690) | 0.089436 / 0.424275 (-0.334839) | 0.012917 / 0.007607 (0.005310) | 0.530468 / 0.226044 (0.304423) | 5.310759 / 2.268929 (3.041831) | 2.613566 / 55.444624 (-52.831058) | 2.350443 / 6.876477 (-4.526034) | 2.385278 / 2.142072 (0.243205) | 0.862838 / 4.805227 (-3.942389) | 0.172246 / 6.500664 (-6.328418) | 0.069570 / 0.075469 (-0.005899) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.310008 / 1.841788 (-0.531780) | 16.557079 / 8.074308 (8.482771) | 15.818145 / 10.191392 (5.626752) | 0.180337 / 0.680424 (-0.500087) | 0.018117 / 0.534201 (-0.516083) | 0.433189 / 0.579283 (-0.146095) | 0.429276 / 0.434364 (-0.005088) | 0.539757 / 0.540337 (-0.000580) | 0.640905 / 1.386936 (-0.746031) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#3b16e08dd599f4646a77a5ca88b6445467e1e7e9 \"CML watermark\")\n" ]
2023-03-29T15:06:07Z
2023-03-29T18:30:34Z
2023-03-29T18:15:54Z
MEMBER
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5684.diff", "html_url": "https://github.com/huggingface/datasets/pull/5684", "merged_at": "2023-03-29T18:15:54Z", "patch_url": "https://github.com/huggingface/datasets/pull/5684.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5684" }
null
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5684/reactions" }
null
null
null
true
https://github.com/huggingface/datasets/pull/5683
5,683
Fix verification_mode when ignore_verifications is passed
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[]
closed
false
[ "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006935 / 0.011353 (-0.004418) | 0.004711 / 0.011008 (-0.006297) | 0.098461 / 0.038508 (0.059953) | 0.028889 / 0.023109 (0.005780) | 0.332167 / 0.275898 (0.056269) | 0.363309 / 0.323480 (0.039829) | 0.005179 / 0.007986 (-0.002807) | 0.004783 / 0.004328 (0.000455) | 0.074293 / 0.004250 (0.070043) | 0.038778 / 0.037052 (0.001726) | 0.318871 / 0.258489 (0.060382) | 0.362975 / 0.293841 (0.069134) | 0.032897 / 0.128546 (-0.095649) | 0.011685 / 0.075646 (-0.063961) | 0.322824 / 0.419271 (-0.096447) | 0.043842 / 0.043533 (0.000309) | 0.334789 / 0.255139 (0.079650) | 0.352922 / 0.283200 (0.069723) | 0.089692 / 0.141683 (-0.051991) | 1.490110 / 1.452155 (0.037955) | 1.601530 / 1.492716 (0.108813) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.201882 / 0.018006 (0.183875) | 0.410875 / 0.000490 (0.410385) | 0.002472 / 0.000200 (0.002272) | 0.000073 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.023636 / 0.037411 (-0.013775) | 0.102168 / 0.014526 (0.087642) | 0.107247 / 0.176557 (-0.069310) | 0.171858 / 0.737135 (-0.565278) | 0.110619 / 0.296338 (-0.185720) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.433740 / 0.215209 (0.218531) | 4.332121 / 2.077655 (2.254466) | 2.075398 / 1.504120 (0.571278) | 1.941074 / 1.541195 (0.399879) | 2.033331 / 1.468490 (0.564841) | 0.697134 / 4.584777 (-3.887643) | 3.463855 / 3.745712 (-0.281857) | 3.080446 / 5.269862 (-2.189416) | 1.575020 / 4.565676 (-2.990656) | 0.083054 / 0.424275 (-0.341221) | 0.012454 / 0.007607 (0.004847) | 0.537996 / 0.226044 (0.311951) | 5.366765 / 2.268929 (3.097836) | 2.464398 / 55.444624 (-52.980227) | 2.143912 / 6.876477 (-4.732564) | 2.245706 / 2.142072 (0.103634) | 0.801397 / 4.805227 (-4.003831) | 0.150954 / 6.500664 (-6.349710) | 0.066758 / 0.075469 (-0.008711) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.216412 / 1.841788 (-0.625376) | 13.679322 / 8.074308 (5.605014) | 14.055286 / 10.191392 (3.863894) | 0.130264 / 0.680424 (-0.550160) | 0.016566 / 0.534201 (-0.517635) | 0.379126 / 0.579283 (-0.200157) | 0.390815 / 0.434364 (-0.043549) | 0.437586 / 0.540337 (-0.102751) | 0.526822 / 1.386936 (-0.860114) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006898 / 0.011353 (-0.004455) | 0.004705 / 0.011008 (-0.006304) | 0.078592 / 0.038508 (0.040084) | 0.028635 / 0.023109 (0.005525) | 0.340143 / 0.275898 (0.064245) | 0.377526 / 0.323480 (0.054047) | 0.005645 / 0.007986 (-0.002340) | 0.003533 / 0.004328 (-0.000796) | 0.078441 / 0.004250 (0.074191) | 0.039408 / 0.037052 (0.002356) | 0.342303 / 0.258489 (0.083814) | 0.386837 / 0.293841 (0.092996) | 0.032427 / 0.128546 (-0.096119) | 0.011763 / 0.075646 (-0.063883) | 0.087984 / 0.419271 (-0.331287) | 0.042126 / 0.043533 (-0.001406) | 0.339951 / 0.255139 (0.084812) | 0.366165 / 0.283200 (0.082966) | 0.091414 / 0.141683 (-0.050269) | 1.502034 / 1.452155 (0.049880) | 1.597901 / 1.492716 (0.105184) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.232122 / 0.018006 (0.214115) | 0.410205 / 0.000490 (0.409715) | 0.000418 / 0.000200 (0.000218) | 0.000063 / 0.000054 (0.000009) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.026013 / 0.037411 (-0.011399) | 0.105520 / 0.014526 (0.090995) | 0.108649 / 0.176557 (-0.067908) | 0.159324 / 0.737135 (-0.577811) | 0.114033 / 0.296338 (-0.182306) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.455634 / 0.215209 (0.240425) | 4.508544 / 2.077655 (2.430889) | 2.087065 / 1.504120 (0.582945) | 1.872622 / 1.541195 (0.331427) | 1.935617 / 1.468490 (0.467127) | 0.696909 / 4.584777 (-3.887868) | 3.449365 / 3.745712 (-0.296348) | 3.008399 / 5.269862 (-2.261462) | 1.459245 / 4.565676 (-3.106431) | 0.083637 / 0.424275 (-0.340638) | 0.012358 / 0.007607 (0.004750) | 0.547232 / 0.226044 (0.321187) | 5.522395 / 2.268929 (3.253466) | 2.691019 / 55.444624 (-52.753605) | 2.408083 / 6.876477 (-4.468394) | 2.369239 / 2.142072 (0.227166) | 0.807148 / 4.805227 (-3.998080) | 0.152030 / 6.500664 (-6.348634) | 0.067883 / 0.075469 (-0.007586) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.336956 / 1.841788 (-0.504832) | 14.403730 / 8.074308 (6.329422) | 14.854084 / 10.191392 (4.662692) | 0.146530 / 0.680424 (-0.533894) | 0.016611 / 0.534201 (-0.517590) | 0.398557 / 0.579283 (-0.180726) | 0.393194 / 0.434364 (-0.041170) | 0.486824 / 0.540337 (-0.053513) | 0.572844 / 1.386936 (-0.814092) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#411f9cc281e50954ea0c903e7a0a6618b3d31b9e \"CML watermark\")\n" ]
2023-03-29T15:00:50Z
2023-03-29T17:36:06Z
2023-03-29T17:28:57Z
MEMBER
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5683.diff", "html_url": "https://github.com/huggingface/datasets/pull/5683", "merged_at": "2023-03-29T17:28:57Z", "patch_url": "https://github.com/huggingface/datasets/pull/5683.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5683" }
This PR fixes the values assigned to `verification_mode` when passing `ignore_verifications` to `load_dataset`. Related to: - #5303 Fix #5682.
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5683/reactions" }
null
null
null
true
https://github.com/huggingface/datasets/issues/5682
5,682
ValueError when passing ignore_verifications
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
[ { "color": "d73a4a", "default": true, "description": "Something isn't working", "id": 1935892857, "name": "bug", "node_id": "MDU6TGFiZWwxOTM1ODkyODU3", "url": "https://api.github.com/repos/huggingface/datasets/labels/bug" } ]
closed
false
[]
2023-03-29T15:00:30Z
2023-03-29T17:28:58Z
2023-03-29T17:28:58Z
MEMBER
null
null
When passing `ignore_verifications=True` to `load_dataset`, we get a ValueError: ``` ValueError: 'none' is not a valid VerificationMode ```
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5682/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5681
5,681
Add information about patterns search order to the doc about structuring repo
{ "avatar_url": "https://avatars.githubusercontent.com/u/16348744?v=4", "events_url": "https://api.github.com/users/polinaeterna/events{/privacy}", "followers_url": "https://api.github.com/users/polinaeterna/followers", "following_url": "https://api.github.com/users/polinaeterna/following{/other_user}", "gists_url": "https://api.github.com/users/polinaeterna/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/polinaeterna", "id": 16348744, "login": "polinaeterna", "node_id": "MDQ6VXNlcjE2MzQ4NzQ0", "organizations_url": "https://api.github.com/users/polinaeterna/orgs", "received_events_url": "https://api.github.com/users/polinaeterna/received_events", "repos_url": "https://api.github.com/users/polinaeterna/repos", "site_admin": false, "starred_url": "https://api.github.com/users/polinaeterna/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/polinaeterna/subscriptions", "type": "User", "url": "https://api.github.com/users/polinaeterna", "user_view_type": "public" }
[ { "color": "0075ca", "default": true, "description": "Improvements or additions to documentation", "id": 1935892861, "name": "documentation", "node_id": "MDU6TGFiZWwxOTM1ODkyODYx", "url": "https://api.github.com/repos/huggingface/datasets/labels/documentation" } ]
closed
false
[ "Good idea, I think I've seen this a couple of times before too on the forums. I can work on this :)", "Closed in #5693 " ]
2023-03-29T11:44:49Z
2023-04-03T18:31:11Z
2023-04-03T18:31:11Z
CONTRIBUTOR
null
null
Following [this](https://github.com/huggingface/datasets/issues/5650) issue I think we should add a note about the order of patterns that is used to find splits, see [my comment](https://github.com/huggingface/datasets/issues/5650#issuecomment-1488412527). Also we should reference this page in pages about packaged loaders. I have a déjà vu that it had already been discussed as some point but I don't remember....
{ "avatar_url": "https://avatars.githubusercontent.com/u/59462357?v=4", "events_url": "https://api.github.com/users/stevhliu/events{/privacy}", "followers_url": "https://api.github.com/users/stevhliu/followers", "following_url": "https://api.github.com/users/stevhliu/following{/other_user}", "gists_url": "https://api.github.com/users/stevhliu/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/stevhliu", "id": 59462357, "login": "stevhliu", "node_id": "MDQ6VXNlcjU5NDYyMzU3", "organizations_url": "https://api.github.com/users/stevhliu/orgs", "received_events_url": "https://api.github.com/users/stevhliu/received_events", "repos_url": "https://api.github.com/users/stevhliu/repos", "site_admin": false, "starred_url": "https://api.github.com/users/stevhliu/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/stevhliu/subscriptions", "type": "User", "url": "https://api.github.com/users/stevhliu", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5681/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/pull/5680
5,680
Fix a description error for interleave_datasets.
{ "avatar_url": "https://avatars.githubusercontent.com/u/55624066?v=4", "events_url": "https://api.github.com/users/QizhiPei/events{/privacy}", "followers_url": "https://api.github.com/users/QizhiPei/followers", "following_url": "https://api.github.com/users/QizhiPei/following{/other_user}", "gists_url": "https://api.github.com/users/QizhiPei/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/QizhiPei", "id": 55624066, "login": "QizhiPei", "node_id": "MDQ6VXNlcjU1NjI0MDY2", "organizations_url": "https://api.github.com/users/QizhiPei/orgs", "received_events_url": "https://api.github.com/users/QizhiPei/received_events", "repos_url": "https://api.github.com/users/QizhiPei/repos", "site_admin": false, "starred_url": "https://api.github.com/users/QizhiPei/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/QizhiPei/subscriptions", "type": "User", "url": "https://api.github.com/users/QizhiPei", "user_view_type": "public" }
[]
closed
false
[ "_The documentation is not available anymore as the PR was closed or merged._", "_The documentation is not available anymore as the PR was closed or merged._", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006772 / 0.011353 (-0.004581) | 0.004674 / 0.011008 (-0.006335) | 0.098702 / 0.038508 (0.060194) | 0.028257 / 0.023109 (0.005148) | 0.368008 / 0.275898 (0.092110) | 0.402825 / 0.323480 (0.079345) | 0.005158 / 0.007986 (-0.002828) | 0.003470 / 0.004328 (-0.000858) | 0.075541 / 0.004250 (0.071291) | 0.039755 / 0.037052 (0.002702) | 0.373431 / 0.258489 (0.114942) | 0.410159 / 0.293841 (0.116318) | 0.031355 / 0.128546 (-0.097192) | 0.011632 / 0.075646 (-0.064014) | 0.325475 / 0.419271 (-0.093797) | 0.042574 / 0.043533 (-0.000958) | 0.373629 / 0.255139 (0.118490) | 0.393921 / 0.283200 (0.110721) | 0.084669 / 0.141683 (-0.057013) | 1.459947 / 1.452155 (0.007792) | 1.529593 / 1.492716 (0.036877) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.189994 / 0.018006 (0.171988) | 0.409091 / 0.000490 (0.408602) | 0.003693 / 0.000200 (0.003493) | 0.000072 / 0.000054 (0.000018) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.024649 / 0.037411 (-0.012762) | 0.097702 / 0.014526 (0.083177) | 0.103650 / 0.176557 (-0.072906) | 0.167141 / 0.737135 (-0.569994) | 0.108460 / 0.296338 (-0.187879) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.429544 / 0.215209 (0.214335) | 4.277106 / 2.077655 (2.199451) | 2.018745 / 1.504120 (0.514625) | 1.814782 / 1.541195 (0.273587) | 1.897030 / 1.468490 (0.428540) | 0.700332 / 4.584777 (-3.884445) | 3.421761 / 3.745712 (-0.323951) | 3.008281 / 5.269862 (-2.261581) | 1.554230 / 4.565676 (-3.011446) | 0.082922 / 0.424275 (-0.341353) | 0.012312 / 0.007607 (0.004705) | 0.527757 / 0.226044 (0.301713) | 5.287450 / 2.268929 (3.018522) | 2.329083 / 55.444624 (-53.115542) | 2.016651 / 6.876477 (-4.859826) | 2.214510 / 2.142072 (0.072437) | 0.807676 / 4.805227 (-3.997551) | 0.151752 / 6.500664 (-6.348912) | 0.066819 / 0.075469 (-0.008651) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.239522 / 1.841788 (-0.602266) | 13.923672 / 8.074308 (5.849364) | 14.317394 / 10.191392 (4.126002) | 0.159379 / 0.680424 (-0.521045) | 0.016537 / 0.534201 (-0.517664) | 0.376808 / 0.579283 (-0.202475) | 0.376351 / 0.434364 (-0.058012) | 0.437124 / 0.540337 (-0.103213) | 0.520589 / 1.386936 (-0.866347) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.006892 / 0.011353 (-0.004461) | 0.004671 / 0.011008 (-0.006337) | 0.075841 / 0.038508 (0.037333) | 0.028713 / 0.023109 (0.005604) | 0.345105 / 0.275898 (0.069207) | 0.380694 / 0.323480 (0.057214) | 0.005155 / 0.007986 (-0.002830) | 0.003379 / 0.004328 (-0.000949) | 0.075134 / 0.004250 (0.070883) | 0.039990 / 0.037052 (0.002938) | 0.345540 / 0.258489 (0.087051) | 0.389913 / 0.293841 (0.096072) | 0.032089 / 0.128546 (-0.096458) | 0.011583 / 0.075646 (-0.064063) | 0.085169 / 0.419271 (-0.334102) | 0.041847 / 0.043533 (-0.001686) | 0.341504 / 0.255139 (0.086365) | 0.367582 / 0.283200 (0.084382) | 0.092684 / 0.141683 (-0.048999) | 1.498647 / 1.452155 (0.046492) | 1.549056 / 1.492716 (0.056339) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.228643 / 0.018006 (0.210637) | 0.410680 / 0.000490 (0.410191) | 0.000398 / 0.000200 (0.000198) | 0.000059 / 0.000054 (0.000005) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.025354 / 0.037411 (-0.012057) | 0.101567 / 0.014526 (0.087041) | 0.108340 / 0.176557 (-0.068217) | 0.157804 / 0.737135 (-0.579332) | 0.113985 / 0.296338 (-0.182354) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.436427 / 0.215209 (0.221218) | 4.359331 / 2.077655 (2.281676) | 2.047877 / 1.504120 (0.543757) | 1.844242 / 1.541195 (0.303047) | 1.924553 / 1.468490 (0.456063) | 0.695986 / 4.584777 (-3.888791) | 3.435571 / 3.745712 (-0.310141) | 1.905189 / 5.269862 (-3.364673) | 1.198542 / 4.565676 (-3.367134) | 0.083386 / 0.424275 (-0.340889) | 0.012442 / 0.007607 (0.004835) | 0.542562 / 0.226044 (0.316517) | 5.416554 / 2.268929 (3.147625) | 2.499496 / 55.444624 (-52.945128) | 2.160658 / 6.876477 (-4.715819) | 2.210535 / 2.142072 (0.068462) | 0.803324 / 4.805227 (-4.001903) | 0.151735 / 6.500664 (-6.348929) | 0.068392 / 0.075469 (-0.007078) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.319915 / 1.841788 (-0.521873) | 14.176755 / 8.074308 (6.102446) | 14.376366 / 10.191392 (4.184974) | 0.141219 / 0.680424 (-0.539204) | 0.017181 / 0.534201 (-0.517020) | 0.383589 / 0.579283 (-0.195694) | 0.389352 / 0.434364 (-0.045012) | 0.474465 / 0.540337 (-0.065873) | 0.563047 / 1.386936 (-0.823889) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#c33e8ce68b5000988bf6b2e4bca27ffaa469acea \"CML watermark\")\n" ]
2023-03-29T09:50:23Z
2023-03-30T13:14:19Z
2023-03-30T13:07:18Z
CONTRIBUTOR
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5680.diff", "html_url": "https://github.com/huggingface/datasets/pull/5680", "merged_at": "2023-03-30T13:07:18Z", "patch_url": "https://github.com/huggingface/datasets/pull/5680.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5680" }
There is a description mistake in the annotation of interleave_dataset with "all_exhausted" stopping_strategy. ``` python d1 = Dataset.from_dict({"a": [0, 1, 2]}) d2 = Dataset.from_dict({"a": [10, 11, 12, 13]}) d3 = Dataset.from_dict({"a": [20, 21, 22, 23, 24]}) dataset = interleave_datasets([d1, d2, d3], stopping_strategy="all_exhausted") ``` According to the interleave way, the correct output of `dataset["a"]` is `[0, 10, 20, 1, 11, 21, 2, 12, 22, 0, 13, 23, 1, 10, 24]`, not `[0, 10, 20, 1, 11, 21, 2, 12, 22, 0, 13, 23, 1, 0, 24]`
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5680/reactions" }
null
null
null
true
https://github.com/huggingface/datasets/issues/5679
5,679
Allow load_dataset to take a working dir for intermediate data
{ "avatar_url": "https://avatars.githubusercontent.com/u/38018689?v=4", "events_url": "https://api.github.com/users/lu-wang-dl/events{/privacy}", "followers_url": "https://api.github.com/users/lu-wang-dl/followers", "following_url": "https://api.github.com/users/lu-wang-dl/following{/other_user}", "gists_url": "https://api.github.com/users/lu-wang-dl/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lu-wang-dl", "id": 38018689, "login": "lu-wang-dl", "node_id": "MDQ6VXNlcjM4MDE4Njg5", "organizations_url": "https://api.github.com/users/lu-wang-dl/orgs", "received_events_url": "https://api.github.com/users/lu-wang-dl/received_events", "repos_url": "https://api.github.com/users/lu-wang-dl/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lu-wang-dl/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lu-wang-dl/subscriptions", "type": "User", "url": "https://api.github.com/users/lu-wang-dl", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
open
false
[ "Hi ! AFAIK a dataset must be present on a local disk to be able to efficiently memory map the datasets Arrow files. What makes you think that it is possible to load from a cloud storage and have good performance ?\r\n\r\nAnyway it's already possible to download_and_prepare a dataset as Arrow files in a cloud storage with:\r\n```python\r\nbuilder = load_dataset_builder(..., cache_dir=\"/temp/dir\")\r\nbuilder.download_and_prepare(\"/cloud_dir\")\r\n```\r\n\r\nbut then \r\n```python\r\nds = builder.as_dataset()\r\n```\r\nwould fail if \"/cloud_dir\" is not a local directory.", "In my use case, I am trying to mount the S3 bucket as local system with S3FS-FUSE / [goofys](https://github.com/kahing/goofys). I want to use S3 to save the download data and save checkpoint for training for persistent. Setting the s3 location as cache directory is not fast enough. That is why I want to set a work directory for temp data for memory map and only save the final result to s3 cache. ", "You can try setting `HF_DATASETS_DOWNLOADED_DATASETS_PATH` and `HF_DATASETS_EXTRACTED_DATASETS_PATH` to S3, and `HF_DATASETS_CACHE` to your local disk.\r\n\r\nThis way all your downloaded and extracted data are on your mounted S3, but the datasets Arrow files are on your local disk", "If we hope to also persist the Arrow files on the mounted S3 but work with the efficiency of local disk, is there any recommended way to do this, other than copying the Arrow files from local disk to S3?" ]
2023-03-29T07:21:09Z
2023-04-12T22:30:25Z
null
NONE
null
null
### Feature request As a user, I can set a working dir for intermediate data creation. The processed files will be moved to the cache dir, like ``` load_dataset(…, working_dir=”/temp/dir”, cache_dir=”/cloud_dir”). ``` ### Motivation This will help the use case for using datasets with cloud storage as cache. It will help boost the performance. ### Your contribution I can provide a PR to fix this if the proposal seems reasonable.
null
{ "+1": 1, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 1, "url": "https://api.github.com/repos/huggingface/datasets/issues/5679/reactions" }
null
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5678
5,678
Add support to create a Dataset from spark dataframe
{ "avatar_url": "https://avatars.githubusercontent.com/u/38018689?v=4", "events_url": "https://api.github.com/users/lu-wang-dl/events{/privacy}", "followers_url": "https://api.github.com/users/lu-wang-dl/followers", "following_url": "https://api.github.com/users/lu-wang-dl/following{/other_user}", "gists_url": "https://api.github.com/users/lu-wang-dl/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lu-wang-dl", "id": 38018689, "login": "lu-wang-dl", "node_id": "MDQ6VXNlcjM4MDE4Njg5", "organizations_url": "https://api.github.com/users/lu-wang-dl/orgs", "received_events_url": "https://api.github.com/users/lu-wang-dl/received_events", "repos_url": "https://api.github.com/users/lu-wang-dl/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lu-wang-dl/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lu-wang-dl/subscriptions", "type": "User", "url": "https://api.github.com/users/lu-wang-dl", "user_view_type": "public" }
[ { "color": "a2eeef", "default": true, "description": "New feature or request", "id": 1935892871, "name": "enhancement", "node_id": "MDU6TGFiZWwxOTM1ODkyODcx", "url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement" } ]
closed
false
[ "if i read spark Dataframe , got an error on multi-node Spark cluster.\r\nDid the Api (Dataset.from_spark) support Spark cluster, read dataframe and save_to_disk?\r\n\r\nError: \r\n_pickle.PicklingError: Could not serialize object: RuntimeError: It appears that you are attempting to reference SparkContext from a broadcast variable, action, or transforma\r\ntion. SparkContext can only be used on the driver, not in code that it run on workers. For more information, see SPARK-5063.\r\n23/06/16 21:17:20 WARN ExecutorPodsWatchSnapshotSource: Kubernetes client has been closed (this is expected if the application is shutting down.)\r\n\r\n", "How to perform predictions on Dataset object in Spark with multi-node cluster parallelism?", "Addressed in #5701", "Hi ! for your information we are working on some more documentation on how to use Spark with HF Datasets repositories (without the need for the `datasets` library) <s>https://github.com/huggingface/datasets/issues/5678</s>\r\nCc @lu-wang-dl @maddiedawson let me know what you think !", "sorry, wrong link: https://github.com/huggingface/hub-docs/pull/1392" ]
2023-03-29T04:36:28Z
2024-08-27T14:43:19Z
2023-07-21T14:15:38Z
NONE
null
null
### Feature request Add a new API `Dataset.from_spark` to create a Dataset from Spark DataFrame. ### Motivation Spark is a distributed computing framework that can handle large datasets. By supporting loading Spark DataFrames directly into Hugging Face Datasets, we enable take the advantages of spark to processing the data in parallel. By providing a seamless integration between these two frameworks, we make it easier for data scientists and developers to work with both Spark and Hugging Face in the same workflow. ### Your contribution We can discuss about the ideas and I can help preparing a PR for this feature.
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 2, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 2, "url": "https://api.github.com/repos/huggingface/datasets/issues/5678/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5677
5,677
Dataset.map() crashes when any column contains more than 1000 empty dictionaries
{ "avatar_url": "https://avatars.githubusercontent.com/u/7139344?v=4", "events_url": "https://api.github.com/users/mtoles/events{/privacy}", "followers_url": "https://api.github.com/users/mtoles/followers", "following_url": "https://api.github.com/users/mtoles/following{/other_user}", "gists_url": "https://api.github.com/users/mtoles/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mtoles", "id": 7139344, "login": "mtoles", "node_id": "MDQ6VXNlcjcxMzkzNDQ=", "organizations_url": "https://api.github.com/users/mtoles/orgs", "received_events_url": "https://api.github.com/users/mtoles/received_events", "repos_url": "https://api.github.com/users/mtoles/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mtoles/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mtoles/subscriptions", "type": "User", "url": "https://api.github.com/users/mtoles", "user_view_type": "public" }
[]
closed
false
[]
2023-03-29T00:01:31Z
2023-07-07T14:01:14Z
2023-07-07T14:01:14Z
NONE
null
null
### Describe the bug `Dataset.map()` crashes any time any column contains more than `writer_batch_size` (default 1000) empty dictionaries, regardless of whether the column is being operated on. The error does not occur if the dictionaries are non-empty. ### Steps to reproduce the bug Example: ``` import datasets def add_one(example): example["col2"] += 1 return example n = 1001 # crashes # n = 999 # works ds = datasets.Dataset.from_dict({"col1": [{}] * n, "col2": [1] * n}) ds = ds.map(add_one, writer_batch_size=1000) ``` ### Expected behavior Above code should not crash ### Environment info - `datasets` version: 2.10.1 - Platform: Linux-5.4.0-120-generic-x86_64-with-glibc2.10 - Python version: 3.8.15 - PyArrow version: 9.0.0 - Pandas version: 1.5.3
{ "avatar_url": "https://avatars.githubusercontent.com/u/47462742?v=4", "events_url": "https://api.github.com/users/mariosasko/events{/privacy}", "followers_url": "https://api.github.com/users/mariosasko/followers", "following_url": "https://api.github.com/users/mariosasko/following{/other_user}", "gists_url": "https://api.github.com/users/mariosasko/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/mariosasko", "id": 47462742, "login": "mariosasko", "node_id": "MDQ6VXNlcjQ3NDYyNzQy", "organizations_url": "https://api.github.com/users/mariosasko/orgs", "received_events_url": "https://api.github.com/users/mariosasko/received_events", "repos_url": "https://api.github.com/users/mariosasko/repos", "site_admin": false, "starred_url": "https://api.github.com/users/mariosasko/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/mariosasko/subscriptions", "type": "User", "url": "https://api.github.com/users/mariosasko", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5677/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5675
5,675
Filter datasets by language code
{ "avatar_url": "https://avatars.githubusercontent.com/u/5658496?v=4", "events_url": "https://api.github.com/users/named-entity/events{/privacy}", "followers_url": "https://api.github.com/users/named-entity/followers", "following_url": "https://api.github.com/users/named-entity/following{/other_user}", "gists_url": "https://api.github.com/users/named-entity/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/named-entity", "id": 5658496, "login": "named-entity", "node_id": "MDQ6VXNlcjU2NTg0OTY=", "organizations_url": "https://api.github.com/users/named-entity/orgs", "received_events_url": "https://api.github.com/users/named-entity/received_events", "repos_url": "https://api.github.com/users/named-entity/repos", "site_admin": false, "starred_url": "https://api.github.com/users/named-entity/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/named-entity/subscriptions", "type": "User", "url": "https://api.github.com/users/named-entity", "user_view_type": "public" }
[]
closed
false
[ "The dataset still can be found, if instead of using the search form you just enter the language code in the url, like https://huggingface.co/datasets?language=language:myv. \r\n\r\nBut of course having a more complete list of languages in the search form (or just a fallback to the language codes, if they are missing from the code=>language mapping) would be much more convenient!", "Hi! I've opened a PR to make these languages searchable on the Hub.", "Thanks @mariosasko!\r\nDo you think it is possible to turn this into a more scalable pipeline? Such as:\r\n1. Looping through all the datasets on the hub and collecting the set of all their language codes;\r\n2. Selecting the codes not covered yet in `Language.ts`\r\n3. Looking up their codes at https://iso639-3.sil.org/code_tables/639/data\r\n4. Adding all the newly found language codes to `Language.ts`", "@avidale This has been discussed in https://github.com/huggingface/datasets/issues/4881, so also feel free to share your opinion there." ]
2023-03-27T09:42:28Z
2023-03-30T08:08:15Z
2023-03-30T08:08:15Z
NONE
null
null
Hi! I use the language search field on https://huggingface.co/datasets However, some of the datasets tagged by ISO language code are not accessible by this search form. For example, [myv_ru_2022](https://huggingface.co/datasets/slone/myv_ru_2022) is has `myv` language tag but it is not included in Languages search form. I've also noticed the same problem with `mhr` (see https://huggingface.co/datasets/AigizK/mari-russian-parallel-corpora)
{ "avatar_url": "https://avatars.githubusercontent.com/u/8515462?v=4", "events_url": "https://api.github.com/users/albertvillanova/events{/privacy}", "followers_url": "https://api.github.com/users/albertvillanova/followers", "following_url": "https://api.github.com/users/albertvillanova/following{/other_user}", "gists_url": "https://api.github.com/users/albertvillanova/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/albertvillanova", "id": 8515462, "login": "albertvillanova", "node_id": "MDQ6VXNlcjg1MTU0NjI=", "organizations_url": "https://api.github.com/users/albertvillanova/orgs", "received_events_url": "https://api.github.com/users/albertvillanova/received_events", "repos_url": "https://api.github.com/users/albertvillanova/repos", "site_admin": false, "starred_url": "https://api.github.com/users/albertvillanova/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/albertvillanova/subscriptions", "type": "User", "url": "https://api.github.com/users/albertvillanova", "user_view_type": "public" }
{ "+1": 6, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 6, "url": "https://api.github.com/repos/huggingface/datasets/issues/5675/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/issues/5674
5,674
Stored XSS
{ "avatar_url": "https://avatars.githubusercontent.com/u/21213484?v=4", "events_url": "https://api.github.com/users/Fadavvi/events{/privacy}", "followers_url": "https://api.github.com/users/Fadavvi/followers", "following_url": "https://api.github.com/users/Fadavvi/following{/other_user}", "gists_url": "https://api.github.com/users/Fadavvi/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Fadavvi", "id": 21213484, "login": "Fadavvi", "node_id": "MDQ6VXNlcjIxMjEzNDg0", "organizations_url": "https://api.github.com/users/Fadavvi/orgs", "received_events_url": "https://api.github.com/users/Fadavvi/received_events", "repos_url": "https://api.github.com/users/Fadavvi/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Fadavvi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Fadavvi/subscriptions", "type": "User", "url": "https://api.github.com/users/Fadavvi", "user_view_type": "public" }
[]
closed
false
[ "Hi! You can contact `security@huggingface.co` to report this vulnerability." ]
2023-03-26T20:55:58Z
2024-04-30T22:56:41Z
2023-03-27T21:01:55Z
NONE
null
null
x
{ "avatar_url": "https://avatars.githubusercontent.com/u/21213484?v=4", "events_url": "https://api.github.com/users/Fadavvi/events{/privacy}", "followers_url": "https://api.github.com/users/Fadavvi/followers", "following_url": "https://api.github.com/users/Fadavvi/following{/other_user}", "gists_url": "https://api.github.com/users/Fadavvi/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/Fadavvi", "id": 21213484, "login": "Fadavvi", "node_id": "MDQ6VXNlcjIxMjEzNDg0", "organizations_url": "https://api.github.com/users/Fadavvi/orgs", "received_events_url": "https://api.github.com/users/Fadavvi/received_events", "repos_url": "https://api.github.com/users/Fadavvi/repos", "site_admin": false, "starred_url": "https://api.github.com/users/Fadavvi/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Fadavvi/subscriptions", "type": "User", "url": "https://api.github.com/users/Fadavvi", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5674/reactions" }
completed
{ "completed": 0, "percent_completed": 0, "total": 0 }
{ "blocked_by": 0, "blocking": 0, "total_blocked_by": 0, "total_blocking": 0 }
false
https://github.com/huggingface/datasets/pull/5673
5,673
Pass down storage options
{ "avatar_url": "https://avatars.githubusercontent.com/u/2512762?v=4", "events_url": "https://api.github.com/users/dwyatte/events{/privacy}", "followers_url": "https://api.github.com/users/dwyatte/followers", "following_url": "https://api.github.com/users/dwyatte/following{/other_user}", "gists_url": "https://api.github.com/users/dwyatte/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/dwyatte", "id": 2512762, "login": "dwyatte", "node_id": "MDQ6VXNlcjI1MTI3NjI=", "organizations_url": "https://api.github.com/users/dwyatte/orgs", "received_events_url": "https://api.github.com/users/dwyatte/received_events", "repos_url": "https://api.github.com/users/dwyatte/repos", "site_admin": false, "starred_url": "https://api.github.com/users/dwyatte/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/dwyatte/subscriptions", "type": "User", "url": "https://api.github.com/users/dwyatte", "user_view_type": "public" }
[]
closed
false
[ "_The documentation is not available anymore as the PR was closed or merged._", "> download_and_prepare is not called when streaming a dataset, so we may need to have storage_options in the DatasetBuilder.__init__ ? This way it could also be passed later to as_streaming_dataset and the StreamingDownloadManager\r\n\r\n> Currently the storage_options parameter in download_and_prepare are for the target filesystem where the dataset must be downloaded and prepared as arrow files\r\n\r\nAh, I noted this when looking for ways to plumb down `storage_options` although I think I was looking at adding to `BuilderConfig`. The `DatasetBuilder` constructor looks more appropriate for this, will get that added in a future commit", "Noting as experimental SGTM. The only tests I can think of to add at the moment would be mocks that assert the storage options get passed all the way down using `mock.assert_called_with` but if Hugging Face has some S3/GCS buckets for testing, maybe those would be better in a future PR. Let me know what you think", "I think adding tests with the mockfs fixture will do the job. Tests and docs can be added when request_etag and is_remote_url support fsspec (right now they would fail with mockfs).\r\n\r\nLet's see in a subsequent PR, this is exciting ! :)", "<details>\n<summary>Show benchmarks</summary>\n\nPyArrow==8.0.0\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.009217 / 0.011353 (-0.002136) | 0.006275 / 0.011008 (-0.004733) | 0.124361 / 0.038508 (0.085853) | 0.035680 / 0.023109 (0.012570) | 0.395255 / 0.275898 (0.119357) | 0.426104 / 0.323480 (0.102624) | 0.006822 / 0.007986 (-0.001163) | 0.004467 / 0.004328 (0.000138) | 0.099404 / 0.004250 (0.095153) | 0.051919 / 0.037052 (0.014867) | 0.388286 / 0.258489 (0.129797) | 0.426361 / 0.293841 (0.132520) | 0.053100 / 0.128546 (-0.075446) | 0.019453 / 0.075646 (-0.056194) | 0.433139 / 0.419271 (0.013867) | 0.063240 / 0.043533 (0.019707) | 0.381175 / 0.255139 (0.126036) | 0.411686 / 0.283200 (0.128487) | 0.104843 / 0.141683 (-0.036840) | 1.853582 / 1.452155 (0.401427) | 1.935644 / 1.492716 (0.442928) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.218969 / 0.018006 (0.200963) | 0.515011 / 0.000490 (0.514522) | 0.004017 / 0.000200 (0.003818) | 0.000097 / 0.000054 (0.000043) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.028975 / 0.037411 (-0.008437) | 0.125239 / 0.014526 (0.110713) | 0.131371 / 0.176557 (-0.045185) | 0.203864 / 0.737135 (-0.533271) | 0.140784 / 0.296338 (-0.155554) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.620701 / 0.215209 (0.405492) | 6.263557 / 2.077655 (4.185903) | 2.510058 / 1.504120 (1.005938) | 2.085892 / 1.541195 (0.544697) | 2.170362 / 1.468490 (0.701872) | 1.325600 / 4.584777 (-3.259177) | 5.583355 / 3.745712 (1.837642) | 5.092791 / 5.269862 (-0.177071) | 2.814766 / 4.565676 (-1.750911) | 0.153568 / 0.424275 (-0.270707) | 0.014850 / 0.007607 (0.007243) | 0.787011 / 0.226044 (0.560967) | 7.948813 / 2.268929 (5.679885) | 3.320831 / 55.444624 (-52.123793) | 2.526327 / 6.876477 (-4.350150) | 2.691651 / 2.142072 (0.549579) | 1.521199 / 4.805227 (-3.284028) | 0.269738 / 6.500664 (-6.230926) | 0.082959 / 0.075469 (0.007490) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.740056 / 1.841788 (-0.101732) | 17.699732 / 8.074308 (9.625424) | 22.450689 / 10.191392 (12.259297) | 0.229350 / 0.680424 (-0.451073) | 0.027486 / 0.534201 (-0.506715) | 0.536153 / 0.579283 (-0.043130) | 0.608166 / 0.434364 (0.173802) | 0.629144 / 0.540337 (0.088807) | 0.732671 / 1.386936 (-0.654265) |\n\n</details>\nPyArrow==latest\n\n<details>\n<summary>Show updated benchmarks!</summary>\n\n### Benchmark: benchmark_array_xd.json\n\n| metric | read_batch_formatted_as_numpy after write_array2d | read_batch_formatted_as_numpy after write_flattened_sequence | read_batch_formatted_as_numpy after write_nested_sequence | read_batch_unformated after write_array2d | read_batch_unformated after write_flattened_sequence | read_batch_unformated after write_nested_sequence | read_col_formatted_as_numpy after write_array2d | read_col_formatted_as_numpy after write_flattened_sequence | read_col_formatted_as_numpy after write_nested_sequence | read_col_unformated after write_array2d | read_col_unformated after write_flattened_sequence | read_col_unformated after write_nested_sequence | read_formatted_as_numpy after write_array2d | read_formatted_as_numpy after write_flattened_sequence | read_formatted_as_numpy after write_nested_sequence | read_unformated after write_array2d | read_unformated after write_flattened_sequence | read_unformated after write_nested_sequence | write_array2d | write_flattened_sequence | write_nested_sequence |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.010147 / 0.011353 (-0.001206) | 0.006484 / 0.011008 (-0.004524) | 0.098664 / 0.038508 (0.060156) | 0.036400 / 0.023109 (0.013291) | 0.432895 / 0.275898 (0.156997) | 0.466433 / 0.323480 (0.142954) | 0.008102 / 0.007986 (0.000117) | 0.004554 / 0.004328 (0.000225) | 0.100466 / 0.004250 (0.096216) | 0.054066 / 0.037052 (0.017013) | 0.439177 / 0.258489 (0.180688) | 0.502907 / 0.293841 (0.209066) | 0.059210 / 0.128546 (-0.069336) | 0.020220 / 0.075646 (-0.055426) | 0.124671 / 0.419271 (-0.294600) | 0.064278 / 0.043533 (0.020746) | 0.435659 / 0.255139 (0.180520) | 0.459670 / 0.283200 (0.176471) | 0.115574 / 0.141683 (-0.026109) | 1.826360 / 1.452155 (0.374205) | 1.943199 / 1.492716 (0.450483) |\n\n### Benchmark: benchmark_getitem\\_100B.json\n\n| metric | get_batch_of\\_1024\\_random_rows | get_batch_of\\_1024\\_rows | get_first_row | get_last_row |\n|--------|---|---|---|---|\n| new / old (diff) | 0.238463 / 0.018006 (0.220457) | 0.534889 / 0.000490 (0.534400) | 0.000404 / 0.000200 (0.000204) | 0.000092 / 0.000054 (0.000038) |\n\n### Benchmark: benchmark_indices_mapping.json\n\n| metric | select | shard | shuffle | sort | train_test_split |\n|--------|---|---|---|---|---|\n| new / old (diff) | 0.033210 / 0.037411 (-0.004201) | 0.133529 / 0.014526 (0.119003) | 0.143813 / 0.176557 (-0.032743) | 0.213079 / 0.737135 (-0.524056) | 0.148427 / 0.296338 (-0.147912) |\n\n### Benchmark: benchmark_iterating.json\n\n| metric | read 5000 | read 50000 | read_batch 50000 10 | read_batch 50000 100 | read_batch 50000 1000 | read_formatted numpy 5000 | read_formatted pandas 5000 | read_formatted tensorflow 5000 | read_formatted torch 5000 | read_formatted_batch numpy 5000 10 | read_formatted_batch numpy 5000 1000 | shuffled read 5000 | shuffled read 50000 | shuffled read_batch 50000 10 | shuffled read_batch 50000 100 | shuffled read_batch 50000 1000 | shuffled read_formatted numpy 5000 | shuffled read_formatted_batch numpy 5000 10 | shuffled read_formatted_batch numpy 5000 1000 |\n|--------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 0.656819 / 0.215209 (0.441610) | 6.414860 / 2.077655 (4.337205) | 2.756182 / 1.504120 (1.252062) | 2.405268 / 1.541195 (0.864073) | 2.436418 / 1.468490 (0.967928) | 1.289828 / 4.584777 (-3.294949) | 5.572731 / 3.745712 (1.827018) | 3.185432 / 5.269862 (-2.084429) | 2.093220 / 4.565676 (-2.472457) | 0.144817 / 0.424275 (-0.279458) | 0.015674 / 0.007607 (0.008067) | 0.801238 / 0.226044 (0.575194) | 7.955925 / 2.268929 (5.686996) | 3.605670 / 55.444624 (-51.838955) | 2.837568 / 6.876477 (-4.038908) | 2.873848 / 2.142072 (0.731775) | 1.493512 / 4.805227 (-3.311715) | 0.266251 / 6.500664 (-6.234413) | 0.082417 / 0.075469 (0.006948) |\n\n### Benchmark: benchmark_map_filter.json\n\n| metric | filter | map fast-tokenizer batched | map identity | map identity batched | map no-op batched | map no-op batched numpy | map no-op batched pandas | map no-op batched pytorch | map no-op batched tensorflow |\n|--------|---|---|---|---|---|---|---|---|---|\n| new / old (diff) | 1.608685 / 1.841788 (-0.233103) | 18.587875 / 8.074308 (10.513567) | 21.786119 / 10.191392 (11.594727) | 0.261748 / 0.680424 (-0.418675) | 0.026228 / 0.534201 (-0.507973) | 0.553538 / 0.579283 (-0.025745) | 0.599780 / 0.434364 (0.165416) | 0.665663 / 0.540337 (0.125325) | 0.792785 / 1.386936 (-0.594151) |\n\n</details>\n</details>\n\n![](https://cml.dev/watermark.png#1520e017a9bb6f80e82a38b578213e418ad7e845 \"CML watermark\")\n" ]
2023-03-26T20:09:37Z
2023-03-28T15:03:38Z
2023-03-28T14:54:17Z
CONTRIBUTOR
false
{ "diff_url": "https://github.com/huggingface/datasets/pull/5673.diff", "html_url": "https://github.com/huggingface/datasets/pull/5673", "merged_at": "2023-03-28T14:54:17Z", "patch_url": "https://github.com/huggingface/datasets/pull/5673.patch", "url": "https://api.github.com/repos/huggingface/datasets/pulls/5673" }
Remove implementation-specific kwargs from `file_utils.fsspec_get` and `file_utils.fsspec_head`, instead allowing them to be passed down via `storage_options`. This fixes an issue where s3fs did not recognize a timeout arg as well as fixes an issue mentioned in https://github.com/huggingface/datasets/issues/5281 by allowing users to pass down `storage_options` all the way from `datasets.load_dataset` to support implementation-specific credentials Supports something like the following to provide credentials explicitly instead of relying on boto's methods of locating them ``` load_dataset(..., data_files=["s3://..."], storage_options={"profile": "..."}) ```
{ "avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4", "events_url": "https://api.github.com/users/lhoestq/events{/privacy}", "followers_url": "https://api.github.com/users/lhoestq/followers", "following_url": "https://api.github.com/users/lhoestq/following{/other_user}", "gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}", "gravatar_id": "", "html_url": "https://github.com/lhoestq", "id": 42851186, "login": "lhoestq", "node_id": "MDQ6VXNlcjQyODUxMTg2", "organizations_url": "https://api.github.com/users/lhoestq/orgs", "received_events_url": "https://api.github.com/users/lhoestq/received_events", "repos_url": "https://api.github.com/users/lhoestq/repos", "site_admin": false, "starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions", "type": "User", "url": "https://api.github.com/users/lhoestq", "user_view_type": "public" }
{ "+1": 0, "-1": 0, "confused": 0, "eyes": 0, "heart": 0, "hooray": 0, "laugh": 0, "rocket": 0, "total_count": 0, "url": "https://api.github.com/repos/huggingface/datasets/issues/5673/reactions" }
null
null
null
true