Dataset Viewer
Auto-converted to Parquet Duplicate
image
imagewidth (px)
512
512
text
stringlengths
2
33
style
stringclasses
32 values
α€₯ပဂတာ α€Ÿα€±α€¬α€”α€Ήα€α€­α‹
style_1
α€₯ပဂတာ α€Ÿα€±α€¬α€”α€Ήα€α€­α‹
style_2
α€₯ပဂတာ α€Ÿα€±α€¬α€”α€Ήα€α€­α‹
style_3
α€₯ပဂတာ α€Ÿα€±α€¬α€”α€Ήα€α€­α‹
style_4
α€₯ပဂတာ α€Ÿα€±α€¬α€”α€Ήα€α€­α‹
style_5
α€₯ပဂတာ α€Ÿα€±α€¬α€”α€Ήα€α€­α‹
style_6
α€₯ပဂတာ α€Ÿα€±α€¬α€”α€Ήα€α€­α‹
style_7
α€₯ပဂတာ α€Ÿα€±α€¬α€”α€Ήα€α€­α‹
style_8
α€₯ပဂတာ α€Ÿα€±α€¬α€”α€Ήα€α€­α‹
style_9
α€₯ပဂတာ α€Ÿα€±α€¬α€”α€Ήα€α€­α‹
style_10
α€₯ပဂတာ α€Ÿα€±α€¬α€”α€Ήα€α€­α‹
style_11
α€₯ပဂတာ α€Ÿα€±α€¬α€”α€Ήα€α€­α‹
style_12
α€₯ပဂတာ α€Ÿα€±α€¬α€”α€Ήα€α€­α‹
style_13
α€₯ပဂတာ α€Ÿα€±α€¬α€”α€Ήα€α€­α‹
style_14
α€₯ပဂတာ α€Ÿα€±α€¬α€”α€Ήα€α€­α‹
style_15
α€₯ပဂတာ α€Ÿα€±α€¬α€”α€Ήα€α€­α‹
style_16
α€₯ပဂတာ α€Ÿα€±α€¬α€”α€Ήα€α€­α‹
style_17
α€₯ပဂတာ α€Ÿα€±α€¬α€”α€Ήα€α€­α‹
style_18
α€₯ပဂတာ α€Ÿα€±α€¬α€”α€Ήα€α€­α‹
style_19
α€₯ပဂတာ α€Ÿα€±α€¬α€”α€Ήα€α€­α‹
style_20
α€₯ပဂတာ α€Ÿα€±α€¬α€”α€Ήα€α€­α‹
style_21
α€₯ပဂတာ α€Ÿα€±α€¬α€”α€Ήα€α€­α‹
style_22
α€₯ပဂတာ α€Ÿα€±α€¬α€”α€Ήα€α€­α‹
style_23
α€₯ပဂတာ α€Ÿα€±α€¬α€”α€Ήα€α€­α‹
style_24
α€₯ပဂတာ α€Ÿα€±α€¬α€”α€Ήα€α€­α‹
style_25
α€₯ပဂတာ α€Ÿα€±α€¬α€”α€Ήα€α€­α‹
style_26
α€₯ပဂတာ α€Ÿα€±α€¬α€”α€Ήα€α€­α‹
style_27
α€₯ပဂတာ α€Ÿα€±α€¬α€”α€Ήα€α€­α‹
style_28
α€₯ပဂတာ α€Ÿα€±α€¬α€”α€Ήα€α€­α‹
style_29
α€₯ပဂတာ α€Ÿα€±α€¬α€”α€Ήα€α€­α‹
style_30
α€₯ပဂတာ α€Ÿα€±α€¬α€”α€Ήα€α€­α‹
style_31
α€₯ပဂတာ α€Ÿα€±α€¬α€”α€Ήα€α€­α‹
style_32
α€‘α€¬α€€α€¬α€›α€±α€Ÿα€­ ဗုဒ္ဓါ
style_1
α€‘α€¬α€€α€¬α€›α€±α€Ÿα€­ ဗုဒ္ဓါ
style_2
α€‘α€¬α€€α€¬α€›α€±α€Ÿα€­ ဗုဒ္ဓါ
style_3
α€‘α€¬α€€α€¬α€›α€±α€Ÿα€­ ဗုဒ္ဓါ
style_4
α€‘α€¬α€€α€¬α€›α€±α€Ÿα€­ ဗုဒ္ဓါ
style_5
α€‘α€¬α€€α€¬α€›α€±α€Ÿα€­ ဗုဒ္ဓါ
style_6
α€‘α€¬α€€α€¬α€›α€±α€Ÿα€­ ဗုဒ္ဓါ
style_7
α€‘α€¬α€€α€¬α€›α€±α€Ÿα€­ ဗုဒ္ဓါ
style_8
α€‘α€¬α€€α€¬α€›α€±α€Ÿα€­ ဗုဒ္ဓါ
style_9
α€‘α€¬α€€α€¬α€›α€±α€Ÿα€­ ဗုဒ္ဓါ
style_10
α€‘α€¬α€€α€¬α€›α€±α€Ÿα€­ ဗုဒ္ဓါ
style_11
α€‘α€¬α€€α€¬α€›α€±α€Ÿα€­ ဗုဒ္ဓါ
style_12
α€‘α€¬α€€α€¬α€›α€±α€Ÿα€­ ဗုဒ္ဓါ
style_13
α€‘α€¬α€€α€¬α€›α€±α€Ÿα€­ ဗုဒ္ဓါ
style_14
α€‘α€¬α€€α€¬α€›α€±α€Ÿα€­ ဗုဒ္ဓါ
style_15
α€‘α€¬α€€α€¬α€›α€±α€Ÿα€­ ဗုဒ္ဓါ
style_16
α€‘α€¬α€€α€¬α€›α€±α€Ÿα€­ ဗုဒ္ဓါ
style_17
α€‘α€¬α€€α€¬α€›α€±α€Ÿα€­ ဗုဒ္ဓါ
style_18
α€‘α€¬α€€α€¬α€›α€±α€Ÿα€­ ဗုဒ္ဓါ
style_19
α€‘α€¬α€€α€¬α€›α€±α€Ÿα€­ ဗုဒ္ဓါ
style_20
α€‘α€¬α€€α€¬α€›α€±α€Ÿα€­ ဗုဒ္ဓါ
style_21
α€‘α€¬α€€α€¬α€›α€±α€Ÿα€­ ဗုဒ္ဓါ
style_22
α€‘α€¬α€€α€¬α€›α€±α€Ÿα€­ ဗုဒ္ဓါ
style_23
α€‘α€¬α€€α€¬α€›α€±α€Ÿα€­ ဗုဒ္ဓါ
style_24
α€‘α€¬α€€α€¬α€›α€±α€Ÿα€­ ဗုဒ္ဓါ
style_25
α€‘α€¬α€€α€¬α€›α€±α€Ÿα€­ ဗုဒ္ဓါ
style_26
α€‘α€¬α€€α€¬α€›α€±α€Ÿα€­ ဗုဒ္ဓါ
style_27
α€‘α€¬α€€α€¬α€›α€±α€Ÿα€­ ဗုဒ္ဓါ
style_28
α€‘α€¬α€€α€¬α€›α€±α€Ÿα€­ ဗုဒ္ဓါ
style_29
α€‘α€¬α€€α€¬α€›α€±α€Ÿα€­ ဗုဒ္ဓါ
style_30
α€‘α€¬α€€α€¬α€›α€±α€Ÿα€­ ဗုဒ္ဓါ
style_31
α€‘α€¬α€€α€¬α€›α€±α€Ÿα€­ ဗုဒ္ဓါ
style_32
α€•α€­α€α€Ήα€α€¬α€š ဂမနန္တိ။
style_1
α€•α€­α€α€Ήα€α€¬α€š ဂမနန္တိ။
style_2
α€•α€­α€α€Ήα€α€¬α€š ဂမနန္တိ။
style_3
α€•α€­α€α€Ήα€α€¬α€š ဂမနန္တိ။
style_4
α€•α€­α€α€Ήα€α€¬α€š ဂမနန္တိ။
style_5
α€•α€­α€α€Ήα€α€¬α€š ဂမနန္တိ။
style_6
α€•α€­α€α€Ήα€α€¬α€š ဂမနန္တိ။
style_7
α€•α€­α€α€Ήα€α€¬α€š ဂမနန္တိ။
style_8
α€•α€­α€α€Ήα€α€¬α€š ဂမနန္တိ။
style_9
α€•α€­α€α€Ήα€α€¬α€š ဂမနန္တိ။
style_10
α€•α€­α€α€Ήα€α€¬α€š ဂမနန္တိ။
style_11
α€•α€­α€α€Ήα€α€¬α€š ဂမနန္တိ။
style_12
α€•α€­α€α€Ήα€α€¬α€š ဂမနန္တိ။
style_13
α€•α€­α€α€Ήα€α€¬α€š ဂမနန္တိ။
style_14
α€•α€­α€α€Ήα€α€¬α€š ဂမနန္တိ။
style_15
α€•α€­α€α€Ήα€α€¬α€š ဂမနန္တိ။
style_16
α€•α€­α€α€Ήα€α€¬α€š ဂမနန္တိ။
style_17
α€•α€­α€α€Ήα€α€¬α€š ဂမနန္တိ။
style_18
α€•α€­α€α€Ήα€α€¬α€š ဂမနန္တိ။
style_19
α€•α€­α€α€Ήα€α€¬α€š ဂမနန္တိ။
style_20
α€•α€­α€α€Ήα€α€¬α€š ဂမနန္တိ။
style_21
α€•α€­α€α€Ήα€α€¬α€š ဂမနန္တိ။
style_22
α€•α€­α€α€Ήα€α€¬α€š ဂမနန္တိ။
style_23
α€•α€­α€α€Ήα€α€¬α€š ဂမနန္တိ။
style_24
α€•α€­α€α€Ήα€α€¬α€š ဂမနန္တိ။
style_25
α€•α€­α€α€Ήα€α€¬α€š ဂမနန္တိ။
style_26
α€•α€­α€α€Ήα€α€¬α€š ဂမနန္တိ။
style_27
α€•α€­α€α€Ήα€α€¬α€š ဂမနန္တိ။
style_28
α€•α€­α€α€Ήα€α€¬α€š ဂမနန္တိ။
style_29
α€•α€­α€α€Ήα€α€¬α€š ဂမနန္တိ။
style_30
α€•α€­α€α€Ήα€α€¬α€š ဂမနန္တိ။
style_31
α€•α€­α€α€Ήα€α€¬α€š ဂမနန္တိ။
style_32
α€šα€±α€” α€˜α€‚α€α€«
style_1
α€šα€±α€” α€˜α€‚α€α€«
style_2
α€šα€±α€” α€˜α€‚α€α€«
style_3
α€šα€±α€” α€˜α€‚α€α€«
style_4
End of preview. Expand in Data Studio

πŸ‡²πŸ‡² MyanmarOCR-ImageText Dataset

A clean and diverse Burmese Image-to-Text dataset for OCR and multimodal AI research.


πŸ“Œ Summary

  • Total images: 41,664
  • Unique Burmese text entries: 1,139
  • Styles per text: 32 variations each
  • Resolution: 512 Γ— 512
  • File types: PNG/JPG images
  • Dataset split: train only
  • Use cases: OCR, I2T (image-to-text), VLM pretrain/fine-tune

All text is Burmese only.
No English words and no punctuation like: ? , ' " -


πŸ”‘ Text Content

Includes:

  • Common words & Pali words
  • Signs and short phrases
  • Full Myanmar Unicode support

Variety of Myanmar spellings and writings are included
(မြန်မာထက္ခရာတွေနဲ့ α€…α€€α€¬α€Έα€œα€―α€Άα€Έα€™α€»α€­α€―α€Έα€…α€―α€Άα€•α€«α€α€„α€Ία€•α€«α€α€šα€Ί)


🎨 Style Variations

Each text appears in 32 visual styles with differences in:

  • font
  • color
  • texture
  • rotation (small angle)
  • background patterns

This helps models generalize across real-world environments.


🧩 Data Format

Each sample includes:

Column Type Description
image image 512Γ—512 Burmese rendered text
text string Ground truth Burmese label
style string Style ID (e.g., style_01)

Example record:

{
  "image": "<image>",
  "text": "မြန်မာနိုင်ငဢ",
  "style": "style_07"
}

πŸ§ͺ Usage

from datasets import load_dataset

ds = load_dataset("kalixlouiis/MyanmarOCR-ImageText", split="train")
print(ds[0])

ds[0]["image"].show()

🎯 Intended Purposes

  • Burmese OCR training
  • Scene text model finetuning
  • Vision-language pretraining
  • Synthetic-to-real text recognition research
  • Benchmark for Myanmar multimodal AI

⚠️ Limitations

  • Synthetic images only β€” not real photos/signboards
  • No English text or punctuation
  • No complex layout structures (single word/short text per image)

πŸ“„ License

This dataset is released under the Creative Commons Attribution 4.0 International (CC-BY-4.0) license.

You are free to:

  • βœ” Share β€” copy and redistribute for any purpose
  • βœ” Adapt β€” modify, transform, and build upon the data

As long as you:

  • Give appropriate credit
  • Indicate changes
  • Provide a link to the license

πŸ“Œ License Text: https://creativecommons.org/licenses/by/4.0/


✨ Acknowledgment

Created by @kalixlouiis
with the goal of improving Myanmar OCR and AI research.

If you use this dataset in your research or applications, please cite and provide a link to the dataset page on Hugging Face:

πŸ”— https://huggingface.co/datasets/kalixlouiis/MyanmarOCR-ImageText


πŸ“š Citation

@dataset{kalixlouiis2025myanmarocr,
  title        = {MyanmarOCR-ImageText},
  author       = {Kalix Louis},
  year         = {2025},
  publisher    = {Hugging Face},
  howpublished = {\url{https://huggingface.co/datasets/kalixlouiis/MyanmarOCR-ImageText}},
  license      = {CC-BY-4.0}
}

Downloads last month
50