File size: 10,146 Bytes
a0baaca
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
"""
Shape Polygons Dataset - Usage Examples

This script demonstrates various ways to load and use the Shape Polygons Dataset.
"""

import os
import pandas as pd
import matplotlib.pyplot as plt
from PIL import Image

# =============================================================================
# Basic Usage: Loading Metadata and Images
# =============================================================================

def load_dataset(data_dir=".", split="train"):
    """Load metadata and return as pandas DataFrame."""
    metadata_path = os.path.join(data_dir, split, "metadata.csv")
    return pd.read_csv(metadata_path)


def load_image(data_dir, split, filename):
    """Load a single image from the dataset."""
    img_path = os.path.join(data_dir, split, "images", filename)
    return Image.open(img_path)


# =============================================================================
# Example 1: Explore Dataset Statistics
# =============================================================================

def explore_statistics(data_dir="."):
    """Print dataset statistics."""
    print("=" * 50)
    print("Shape Polygons Dataset Statistics")
    print("=" * 50)
    
    for split in ["train", "test"]:
        df = load_dataset(data_dir, split)
        print(f"\n{split.upper()} Split:")
        print(f"  Total images: {len(df)}")
        print(f"\n  Vertices distribution:")
        for v in range(3, 9):
            count = len(df[df["vertices"] == v])
            print(f"    {v} vertices: {count} ({count/len(df)*100:.1f}%)")
        
        print(f"\n  Size statistics:")
        print(f"    Min: {df['size'].min():.4f}")
        print(f"    Max: {df['size'].max():.4f}")
        print(f"    Mean: {df['size'].mean():.4f}")


# =============================================================================
# Example 2: Visualize Sample Images
# =============================================================================

def visualize_samples(data_dir=".", n_samples=12, split="train"):
    """Visualize random samples from the dataset."""
    df = load_dataset(data_dir, split)
    samples = df.sample(n=min(n_samples, len(df)))
    
    n_cols = 4
    n_rows = (len(samples) + n_cols - 1) // n_cols
    
    fig, axes = plt.subplots(n_rows, n_cols, figsize=(12, 3 * n_rows))
    axes = axes.flatten() if n_samples > 1 else [axes]
    
    for idx, (_, row) in enumerate(samples.iterrows()):
        img = load_image(data_dir, split, row["filename"])
        axes[idx].imshow(img)
        axes[idx].set_title(f"{row['vertices']} vertices\nsize={row['size']:.2f}")
        axes[idx].axis("off")
    
    # Hide empty subplots
    for idx in range(len(samples), len(axes)):
        axes[idx].axis("off")
    
    plt.tight_layout()
    plt.savefig("samples_visualization.png", dpi=150, bbox_inches="tight")
    print(f"Saved visualization to 'samples_visualization.png'")
    plt.show()


# =============================================================================
# Example 3: Visualize by Shape Type
# =============================================================================

def visualize_by_shape_type(data_dir=".", split="train"):
    """Show one example of each shape type."""
    df = load_dataset(data_dir, split)
    shape_names = {
        3: "Triangle",
        4: "Quadrilateral",
        5: "Pentagon",
        6: "Hexagon",
        7: "Heptagon",
        8: "Octagon"
    }
    
    fig, axes = plt.subplots(2, 3, figsize=(12, 8))
    axes = axes.flatten()
    
    for idx, vertices in enumerate(range(3, 9)):
        sample = df[df["vertices"] == vertices].iloc[0]
        img = load_image(data_dir, split, sample["filename"])
        axes[idx].imshow(img)
        axes[idx].set_title(f"{shape_names[vertices]}\n({vertices} vertices)")
        axes[idx].axis("off")
    
    plt.suptitle("Shape Types in Dataset", fontsize=14, fontweight="bold")
    plt.tight_layout()
    plt.savefig("shape_types.png", dpi=150, bbox_inches="tight")
    print(f"Saved visualization to 'shape_types.png'")
    plt.show()


# =============================================================================
# Example 4: PyTorch Dataset Class
# =============================================================================

# Optional imports for PyTorch functionality
try:
    import torch
    from torch.utils.data import Dataset, DataLoader
    from torchvision import transforms
    PYTORCH_AVAILABLE = True
except ImportError:
    PYTORCH_AVAILABLE = False


class ShapePolygonsDataset:
    """PyTorch Dataset for Shape Polygons.
    
    Requires: torch, torchvision
    """
    
    def __init__(self, root_dir, split="train", transform=None, task="classification"):
        """
        Args:
            root_dir: Root directory of the dataset
            split: "train" or "test"
            transform: Optional torchvision transforms
            task: "classification" for vertex count, "regression" for size prediction, "multi" for all properties
        """
        if not PYTORCH_AVAILABLE:
            raise ImportError("PyTorch is required. Install with: pip install torch torchvision")
        
        self.root_dir = root_dir
        self.split = split
        self.transform = transform
        self.task = task
        self.metadata = pd.read_csv(os.path.join(root_dir, split, "metadata.csv"))
        
        if self.transform is None:
            self.transform = transforms.Compose([
                transforms.ToTensor(),
                transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
            ])
    
    def __len__(self):
        return len(self.metadata)
    
    def __getitem__(self, idx):
        row = self.metadata.iloc[idx]
        img_path = os.path.join(self.root_dir, self.split, "images", row["filename"])
        image = Image.open(img_path).convert("RGB")
        
        if self.transform:
            image = self.transform(image)
        
        if self.task == "classification":
            # Class label: 0-5 for 3-8 vertices
            label = torch.tensor(row["vertices"] - 3, dtype=torch.long)
        elif self.task == "regression":
            # Predict size
            label = torch.tensor(row["size"], dtype=torch.float32)
        elif self.task == "multi":
            # Multi-task: return all properties
            label = {
                "vertices": torch.tensor(row["vertices"] - 3, dtype=torch.long),
                "size": torch.tensor(row["size"], dtype=torch.float32),
                "angle": torch.tensor(row["angle"], dtype=torch.float32),
                "center": torch.tensor([row["center_x"], row["center_y"]], dtype=torch.float32),
                "color": torch.tensor([row["color_r"], row["color_g"], row["color_b"]], dtype=torch.float32)
            }
        else:
            raise ValueError(f"Unknown task: {self.task}")
        
        return image, label


def demo_pytorch_dataloader(data_dir="."):
    """Demonstrate PyTorch DataLoader usage."""
    if not PYTORCH_AVAILABLE:
        print("PyTorch is not installed. Install with: pip install torch torchvision")
        return
    
    print("Creating PyTorch Dataset and DataLoader...")
    dataset = ShapePolygonsDataset(data_dir, split="train", task="classification")
    dataloader = DataLoader(dataset, batch_size=32, shuffle=True, num_workers=0)
    
    # Get one batch
    images, labels = next(iter(dataloader))
    print(f"Batch shape: {images.shape}")
    print(f"Labels shape: {labels.shape}")
    print(f"Label values (vertices - 3): {labels[:10].tolist()}")
    print(f"Actual vertex counts: {[l + 3 for l in labels[:10].tolist()]}")


# =============================================================================
# Example 5: Color Analysis
# =============================================================================

def analyze_colors(data_dir=".", split="train"):
    """Analyze color distribution in the dataset."""
    df = load_dataset(data_dir, split)
    
    fig, axes = plt.subplots(1, 3, figsize=(15, 4))
    colors = ["red", "green", "blue"]
    columns = ["color_r", "color_g", "color_b"]
    
    for idx, (color, col) in enumerate(zip(colors, columns)):
        axes[idx].hist(df[col], bins=50, color=color, alpha=0.7, edgecolor="black")
        axes[idx].set_xlabel(f"{color.capitalize()} Value")
        axes[idx].set_ylabel("Frequency")
        axes[idx].set_title(f"{color.capitalize()} Channel Distribution")
    
    plt.suptitle(f"Color Distribution in {split.capitalize()} Set", fontsize=14, fontweight="bold")
    plt.tight_layout()
    plt.savefig("color_distribution.png", dpi=150, bbox_inches="tight")
    print(f"Saved visualization to 'color_distribution.png'")
    plt.show()


# =============================================================================
# Main
# =============================================================================

if __name__ == "__main__":
    import argparse
    
    parser = argparse.ArgumentParser(description="Shape Polygons Dataset Examples")
    parser.add_argument("--data-dir", type=str, default=".", help="Path to dataset root")
    parser.add_argument(
        "--example",
        type=str,
        choices=["stats", "samples", "shapes", "pytorch", "colors", "all"],
        default="all",
        help="Which example to run"
    )
    args = parser.parse_args()
    
    examples = {
        "stats": ("Dataset Statistics", lambda: explore_statistics(args.data_dir)),
        "samples": ("Sample Visualization", lambda: visualize_samples(args.data_dir)),
        "shapes": ("Shape Types", lambda: visualize_by_shape_type(args.data_dir)),
        "pytorch": ("PyTorch DataLoader Demo", lambda: demo_pytorch_dataloader(args.data_dir)),
        "colors": ("Color Analysis", lambda: analyze_colors(args.data_dir)),
    }
    
    if args.example == "all":
        for name, (desc, func) in examples.items():
            print(f"\n{'=' * 50}")
            print(f"Example: {desc}")
            print("=" * 50)
            func()
    else:
        name = args.example
        desc, func = examples[name]
        print(f"Running Example: {desc}")
        func()