partition
stringclasses
3 values
func_name
stringlengths
1
134
docstring
stringlengths
1
46.9k
path
stringlengths
4
223
original_string
stringlengths
75
104k
code
stringlengths
75
104k
docstring_tokens
listlengths
1
1.97k
repo
stringlengths
7
55
language
stringclasses
1 value
url
stringlengths
87
315
code_tokens
listlengths
19
28.4k
sha
stringlengths
40
40
test
fit
Runs multiple Fisher scoring steps. Args: model_matrix: (Batch of) `float`-like, matrix-shaped `Tensor` where each row represents a sample's features. response: (Batch of) vector-shaped `Tensor` where each element represents a sample's observed response (to the corresponding row of features). Must have same `dtype` as `model_matrix`. model: `tfp.glm.ExponentialFamily`-like instance which implicitly characterizes a negative log-likelihood loss by specifying the distribuion's `mean`, `gradient_mean`, and `variance`. model_coefficients_start: Optional (batch of) vector-shaped `Tensor` representing the initial model coefficients, one for each column in `model_matrix`. Must have same `dtype` as `model_matrix`. Default value: Zeros. predicted_linear_response_start: Optional `Tensor` with `shape`, `dtype` matching `response`; represents `offset` shifted initial linear predictions based on `model_coefficients_start`. Default value: `offset` if `model_coefficients is None`, and `tf.linalg.matvec(model_matrix, model_coefficients_start) + offset` otherwise. l2_regularizer: Optional scalar `Tensor` representing L2 regularization penalty, i.e., `loss(w) = sum{-log p(y[i]|x[i],w) : i=1..n} + l2_regularizer ||w||_2^2`. Default value: `None` (i.e., no L2 regularization). dispersion: Optional (batch of) `Tensor` representing `response` dispersion, i.e., as in, `p(y|theta) := exp((y theta - A(theta)) / dispersion)`. Must broadcast with rows of `model_matrix`. Default value: `None` (i.e., "no dispersion"). offset: Optional `Tensor` representing constant shift applied to `predicted_linear_response`. Must broadcast to `response`. Default value: `None` (i.e., `tf.zeros_like(response)`). convergence_criteria_fn: Python `callable` taking: `is_converged_previous`, `iter_`, `model_coefficients_previous`, `predicted_linear_response_previous`, `model_coefficients_next`, `predicted_linear_response_next`, `response`, `model`, `dispersion` and returning a `bool` `Tensor` indicating that Fisher scoring has converged. See `convergence_criteria_small_relative_norm_weights_change` as an example function. Default value: `None` (i.e., `convergence_criteria_small_relative_norm_weights_change`). learning_rate: Optional (batch of) scalar `Tensor` used to dampen iterative progress. Typically only needed if optimization diverges, should be no larger than `1` and typically very close to `1`. Default value: `None` (i.e., `1`). fast_unsafe_numerics: Optional Python `bool` indicating if faster, less numerically accurate methods can be employed for computing the weighted least-squares solution. Default value: `True` (i.e., "fast but possibly diminished accuracy"). maximum_iterations: Optional maximum number of iterations of Fisher scoring to run; "and-ed" with result of `convergence_criteria_fn`. Default value: `None` (i.e., `infinity`). name: Python `str` used as name prefix to ops created by this function. Default value: `"fit"`. Returns: model_coefficients: (Batch of) vector-shaped `Tensor`; represents the fitted model coefficients, one for each column in `model_matrix`. predicted_linear_response: `response`-shaped `Tensor` representing linear predictions based on new `model_coefficients`, i.e., `tf.linalg.matvec(model_matrix, model_coefficients) + offset`. is_converged: `bool` `Tensor` indicating that the returned `model_coefficients` met the `convergence_criteria_fn` criteria within the `maximum_iterations` limit. iter_: `int32` `Tensor` indicating the number of iterations taken. #### Example ```python from __future__ import print_function import numpy as np import tensorflow as tf import tensorflow_probability as tfp tfd = tfp.distributions def make_dataset(n, d, link, scale=1., dtype=np.float32): model_coefficients = tfd.Uniform( low=np.array(-1, dtype), high=np.array(1, dtype)).sample(d, seed=42) radius = np.sqrt(2.) model_coefficients *= radius / tf.linalg.norm(model_coefficients) model_matrix = tfd.Normal( loc=np.array(0, dtype), scale=np.array(1, dtype)).sample([n, d], seed=43) scale = tf.convert_to_tensor(scale, dtype) linear_response = tf.tensordot( model_matrix, model_coefficients, axes=[[1], [0]]) if link == 'linear': response = tfd.Normal(loc=linear_response, scale=scale).sample(seed=44) elif link == 'probit': response = tf.cast( tfd.Normal(loc=linear_response, scale=scale).sample(seed=44) > 0, dtype) elif link == 'logit': response = tfd.Bernoulli(logits=linear_response).sample(seed=44) else: raise ValueError('unrecognized true link: {}'.format(link)) return model_matrix, response, model_coefficients X, Y, w_true = make_dataset(n=int(1e6), d=100, link='probit') w, linear_response, is_converged, num_iter = tfp.glm.fit( model_matrix=X, response=Y, model=tfp.glm.BernoulliNormalCDF()) log_likelihood = tfp.glm.BernoulliNormalCDF().log_prob(Y, linear_response) with tf.Session() as sess: [w_, linear_response_, is_converged_, num_iter_, Y_, w_true_, log_likelihood_] = sess.run([ w, linear_response, is_converged, num_iter, Y, w_true, log_likelihood]) print('is_converged: ', is_converged_) print(' num_iter: ', num_iter_) print(' accuracy: ', np.mean((linear_response_ > 0.) == Y_)) print(' deviance: ', 2. * np.mean(log_likelihood_)) print('||w0-w1||_2 / (1+||w0||_2): ', (np.linalg.norm(w_true_ - w_, ord=2) / (1. + np.linalg.norm(w_true_, ord=2)))) # ==> # is_converged: True # num_iter: 6 # accuracy: 0.804382 # deviance: -0.820746600628 # ||w0-w1||_2 / (1+||w0||_2): 0.00619245105309 ```
tensorflow_probability/python/glm/fisher_scoring.py
def fit( model_matrix, response, model, model_coefficients_start=None, predicted_linear_response_start=None, l2_regularizer=None, dispersion=None, offset=None, convergence_criteria_fn=None, learning_rate=None, fast_unsafe_numerics=True, maximum_iterations=None, name=None): """Runs multiple Fisher scoring steps. Args: model_matrix: (Batch of) `float`-like, matrix-shaped `Tensor` where each row represents a sample's features. response: (Batch of) vector-shaped `Tensor` where each element represents a sample's observed response (to the corresponding row of features). Must have same `dtype` as `model_matrix`. model: `tfp.glm.ExponentialFamily`-like instance which implicitly characterizes a negative log-likelihood loss by specifying the distribuion's `mean`, `gradient_mean`, and `variance`. model_coefficients_start: Optional (batch of) vector-shaped `Tensor` representing the initial model coefficients, one for each column in `model_matrix`. Must have same `dtype` as `model_matrix`. Default value: Zeros. predicted_linear_response_start: Optional `Tensor` with `shape`, `dtype` matching `response`; represents `offset` shifted initial linear predictions based on `model_coefficients_start`. Default value: `offset` if `model_coefficients is None`, and `tf.linalg.matvec(model_matrix, model_coefficients_start) + offset` otherwise. l2_regularizer: Optional scalar `Tensor` representing L2 regularization penalty, i.e., `loss(w) = sum{-log p(y[i]|x[i],w) : i=1..n} + l2_regularizer ||w||_2^2`. Default value: `None` (i.e., no L2 regularization). dispersion: Optional (batch of) `Tensor` representing `response` dispersion, i.e., as in, `p(y|theta) := exp((y theta - A(theta)) / dispersion)`. Must broadcast with rows of `model_matrix`. Default value: `None` (i.e., "no dispersion"). offset: Optional `Tensor` representing constant shift applied to `predicted_linear_response`. Must broadcast to `response`. Default value: `None` (i.e., `tf.zeros_like(response)`). convergence_criteria_fn: Python `callable` taking: `is_converged_previous`, `iter_`, `model_coefficients_previous`, `predicted_linear_response_previous`, `model_coefficients_next`, `predicted_linear_response_next`, `response`, `model`, `dispersion` and returning a `bool` `Tensor` indicating that Fisher scoring has converged. See `convergence_criteria_small_relative_norm_weights_change` as an example function. Default value: `None` (i.e., `convergence_criteria_small_relative_norm_weights_change`). learning_rate: Optional (batch of) scalar `Tensor` used to dampen iterative progress. Typically only needed if optimization diverges, should be no larger than `1` and typically very close to `1`. Default value: `None` (i.e., `1`). fast_unsafe_numerics: Optional Python `bool` indicating if faster, less numerically accurate methods can be employed for computing the weighted least-squares solution. Default value: `True` (i.e., "fast but possibly diminished accuracy"). maximum_iterations: Optional maximum number of iterations of Fisher scoring to run; "and-ed" with result of `convergence_criteria_fn`. Default value: `None` (i.e., `infinity`). name: Python `str` used as name prefix to ops created by this function. Default value: `"fit"`. Returns: model_coefficients: (Batch of) vector-shaped `Tensor`; represents the fitted model coefficients, one for each column in `model_matrix`. predicted_linear_response: `response`-shaped `Tensor` representing linear predictions based on new `model_coefficients`, i.e., `tf.linalg.matvec(model_matrix, model_coefficients) + offset`. is_converged: `bool` `Tensor` indicating that the returned `model_coefficients` met the `convergence_criteria_fn` criteria within the `maximum_iterations` limit. iter_: `int32` `Tensor` indicating the number of iterations taken. #### Example ```python from __future__ import print_function import numpy as np import tensorflow as tf import tensorflow_probability as tfp tfd = tfp.distributions def make_dataset(n, d, link, scale=1., dtype=np.float32): model_coefficients = tfd.Uniform( low=np.array(-1, dtype), high=np.array(1, dtype)).sample(d, seed=42) radius = np.sqrt(2.) model_coefficients *= radius / tf.linalg.norm(model_coefficients) model_matrix = tfd.Normal( loc=np.array(0, dtype), scale=np.array(1, dtype)).sample([n, d], seed=43) scale = tf.convert_to_tensor(scale, dtype) linear_response = tf.tensordot( model_matrix, model_coefficients, axes=[[1], [0]]) if link == 'linear': response = tfd.Normal(loc=linear_response, scale=scale).sample(seed=44) elif link == 'probit': response = tf.cast( tfd.Normal(loc=linear_response, scale=scale).sample(seed=44) > 0, dtype) elif link == 'logit': response = tfd.Bernoulli(logits=linear_response).sample(seed=44) else: raise ValueError('unrecognized true link: {}'.format(link)) return model_matrix, response, model_coefficients X, Y, w_true = make_dataset(n=int(1e6), d=100, link='probit') w, linear_response, is_converged, num_iter = tfp.glm.fit( model_matrix=X, response=Y, model=tfp.glm.BernoulliNormalCDF()) log_likelihood = tfp.glm.BernoulliNormalCDF().log_prob(Y, linear_response) with tf.Session() as sess: [w_, linear_response_, is_converged_, num_iter_, Y_, w_true_, log_likelihood_] = sess.run([ w, linear_response, is_converged, num_iter, Y, w_true, log_likelihood]) print('is_converged: ', is_converged_) print(' num_iter: ', num_iter_) print(' accuracy: ', np.mean((linear_response_ > 0.) == Y_)) print(' deviance: ', 2. * np.mean(log_likelihood_)) print('||w0-w1||_2 / (1+||w0||_2): ', (np.linalg.norm(w_true_ - w_, ord=2) / (1. + np.linalg.norm(w_true_, ord=2)))) # ==> # is_converged: True # num_iter: 6 # accuracy: 0.804382 # deviance: -0.820746600628 # ||w0-w1||_2 / (1+||w0||_2): 0.00619245105309 ``` """ graph_deps = [model_matrix, response, model_coefficients_start, predicted_linear_response_start, dispersion, offset, learning_rate, maximum_iterations] with tf.compat.v1.name_scope(name, 'fit', graph_deps): [ model_matrix, response, model_coefficients_start, predicted_linear_response_start, offset, ] = prepare_args( model_matrix, response, model_coefficients_start, predicted_linear_response_start, offset) if convergence_criteria_fn is None: convergence_criteria_fn = ( convergence_criteria_small_relative_norm_weights_change()) def _body( is_converged_previous, iter_, model_coefficients_previous, predicted_linear_response_previous): """`tf.while_loop` body.""" model_coefficients_next, predicted_linear_response_next = fit_one_step( model_matrix, response, model, model_coefficients_previous, predicted_linear_response_previous, l2_regularizer, dispersion, offset, learning_rate, fast_unsafe_numerics) is_converged_next = convergence_criteria_fn( is_converged_previous=is_converged_previous, iter_=iter_, model_coefficients_previous=model_coefficients_previous, predicted_linear_response_previous=predicted_linear_response_previous, model_coefficients_next=model_coefficients_next, predicted_linear_response_next=predicted_linear_response_next, response=response, model=model, dispersion=dispersion) return [ is_converged_next, iter_ + 1, model_coefficients_next, predicted_linear_response_next, ] # while not converged: # fit_one_step [ is_converged, iter_, model_coefficients, predicted_linear_response, ] = tf.while_loop( cond=lambda is_converged, *args: tf.logical_not(is_converged), body=_body, loop_vars=[ tf.zeros([], np.bool), # is_converged tf.zeros([], np.int32), # iter_ model_coefficients_start, predicted_linear_response_start, ], maximum_iterations=maximum_iterations) return [ model_coefficients, predicted_linear_response, is_converged, iter_ ]
def fit( model_matrix, response, model, model_coefficients_start=None, predicted_linear_response_start=None, l2_regularizer=None, dispersion=None, offset=None, convergence_criteria_fn=None, learning_rate=None, fast_unsafe_numerics=True, maximum_iterations=None, name=None): """Runs multiple Fisher scoring steps. Args: model_matrix: (Batch of) `float`-like, matrix-shaped `Tensor` where each row represents a sample's features. response: (Batch of) vector-shaped `Tensor` where each element represents a sample's observed response (to the corresponding row of features). Must have same `dtype` as `model_matrix`. model: `tfp.glm.ExponentialFamily`-like instance which implicitly characterizes a negative log-likelihood loss by specifying the distribuion's `mean`, `gradient_mean`, and `variance`. model_coefficients_start: Optional (batch of) vector-shaped `Tensor` representing the initial model coefficients, one for each column in `model_matrix`. Must have same `dtype` as `model_matrix`. Default value: Zeros. predicted_linear_response_start: Optional `Tensor` with `shape`, `dtype` matching `response`; represents `offset` shifted initial linear predictions based on `model_coefficients_start`. Default value: `offset` if `model_coefficients is None`, and `tf.linalg.matvec(model_matrix, model_coefficients_start) + offset` otherwise. l2_regularizer: Optional scalar `Tensor` representing L2 regularization penalty, i.e., `loss(w) = sum{-log p(y[i]|x[i],w) : i=1..n} + l2_regularizer ||w||_2^2`. Default value: `None` (i.e., no L2 regularization). dispersion: Optional (batch of) `Tensor` representing `response` dispersion, i.e., as in, `p(y|theta) := exp((y theta - A(theta)) / dispersion)`. Must broadcast with rows of `model_matrix`. Default value: `None` (i.e., "no dispersion"). offset: Optional `Tensor` representing constant shift applied to `predicted_linear_response`. Must broadcast to `response`. Default value: `None` (i.e., `tf.zeros_like(response)`). convergence_criteria_fn: Python `callable` taking: `is_converged_previous`, `iter_`, `model_coefficients_previous`, `predicted_linear_response_previous`, `model_coefficients_next`, `predicted_linear_response_next`, `response`, `model`, `dispersion` and returning a `bool` `Tensor` indicating that Fisher scoring has converged. See `convergence_criteria_small_relative_norm_weights_change` as an example function. Default value: `None` (i.e., `convergence_criteria_small_relative_norm_weights_change`). learning_rate: Optional (batch of) scalar `Tensor` used to dampen iterative progress. Typically only needed if optimization diverges, should be no larger than `1` and typically very close to `1`. Default value: `None` (i.e., `1`). fast_unsafe_numerics: Optional Python `bool` indicating if faster, less numerically accurate methods can be employed for computing the weighted least-squares solution. Default value: `True` (i.e., "fast but possibly diminished accuracy"). maximum_iterations: Optional maximum number of iterations of Fisher scoring to run; "and-ed" with result of `convergence_criteria_fn`. Default value: `None` (i.e., `infinity`). name: Python `str` used as name prefix to ops created by this function. Default value: `"fit"`. Returns: model_coefficients: (Batch of) vector-shaped `Tensor`; represents the fitted model coefficients, one for each column in `model_matrix`. predicted_linear_response: `response`-shaped `Tensor` representing linear predictions based on new `model_coefficients`, i.e., `tf.linalg.matvec(model_matrix, model_coefficients) + offset`. is_converged: `bool` `Tensor` indicating that the returned `model_coefficients` met the `convergence_criteria_fn` criteria within the `maximum_iterations` limit. iter_: `int32` `Tensor` indicating the number of iterations taken. #### Example ```python from __future__ import print_function import numpy as np import tensorflow as tf import tensorflow_probability as tfp tfd = tfp.distributions def make_dataset(n, d, link, scale=1., dtype=np.float32): model_coefficients = tfd.Uniform( low=np.array(-1, dtype), high=np.array(1, dtype)).sample(d, seed=42) radius = np.sqrt(2.) model_coefficients *= radius / tf.linalg.norm(model_coefficients) model_matrix = tfd.Normal( loc=np.array(0, dtype), scale=np.array(1, dtype)).sample([n, d], seed=43) scale = tf.convert_to_tensor(scale, dtype) linear_response = tf.tensordot( model_matrix, model_coefficients, axes=[[1], [0]]) if link == 'linear': response = tfd.Normal(loc=linear_response, scale=scale).sample(seed=44) elif link == 'probit': response = tf.cast( tfd.Normal(loc=linear_response, scale=scale).sample(seed=44) > 0, dtype) elif link == 'logit': response = tfd.Bernoulli(logits=linear_response).sample(seed=44) else: raise ValueError('unrecognized true link: {}'.format(link)) return model_matrix, response, model_coefficients X, Y, w_true = make_dataset(n=int(1e6), d=100, link='probit') w, linear_response, is_converged, num_iter = tfp.glm.fit( model_matrix=X, response=Y, model=tfp.glm.BernoulliNormalCDF()) log_likelihood = tfp.glm.BernoulliNormalCDF().log_prob(Y, linear_response) with tf.Session() as sess: [w_, linear_response_, is_converged_, num_iter_, Y_, w_true_, log_likelihood_] = sess.run([ w, linear_response, is_converged, num_iter, Y, w_true, log_likelihood]) print('is_converged: ', is_converged_) print(' num_iter: ', num_iter_) print(' accuracy: ', np.mean((linear_response_ > 0.) == Y_)) print(' deviance: ', 2. * np.mean(log_likelihood_)) print('||w0-w1||_2 / (1+||w0||_2): ', (np.linalg.norm(w_true_ - w_, ord=2) / (1. + np.linalg.norm(w_true_, ord=2)))) # ==> # is_converged: True # num_iter: 6 # accuracy: 0.804382 # deviance: -0.820746600628 # ||w0-w1||_2 / (1+||w0||_2): 0.00619245105309 ``` """ graph_deps = [model_matrix, response, model_coefficients_start, predicted_linear_response_start, dispersion, offset, learning_rate, maximum_iterations] with tf.compat.v1.name_scope(name, 'fit', graph_deps): [ model_matrix, response, model_coefficients_start, predicted_linear_response_start, offset, ] = prepare_args( model_matrix, response, model_coefficients_start, predicted_linear_response_start, offset) if convergence_criteria_fn is None: convergence_criteria_fn = ( convergence_criteria_small_relative_norm_weights_change()) def _body( is_converged_previous, iter_, model_coefficients_previous, predicted_linear_response_previous): """`tf.while_loop` body.""" model_coefficients_next, predicted_linear_response_next = fit_one_step( model_matrix, response, model, model_coefficients_previous, predicted_linear_response_previous, l2_regularizer, dispersion, offset, learning_rate, fast_unsafe_numerics) is_converged_next = convergence_criteria_fn( is_converged_previous=is_converged_previous, iter_=iter_, model_coefficients_previous=model_coefficients_previous, predicted_linear_response_previous=predicted_linear_response_previous, model_coefficients_next=model_coefficients_next, predicted_linear_response_next=predicted_linear_response_next, response=response, model=model, dispersion=dispersion) return [ is_converged_next, iter_ + 1, model_coefficients_next, predicted_linear_response_next, ] # while not converged: # fit_one_step [ is_converged, iter_, model_coefficients, predicted_linear_response, ] = tf.while_loop( cond=lambda is_converged, *args: tf.logical_not(is_converged), body=_body, loop_vars=[ tf.zeros([], np.bool), # is_converged tf.zeros([], np.int32), # iter_ model_coefficients_start, predicted_linear_response_start, ], maximum_iterations=maximum_iterations) return [ model_coefficients, predicted_linear_response, is_converged, iter_ ]
[ "Runs", "multiple", "Fisher", "scoring", "steps", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/glm/fisher_scoring.py#L36-L256
[ "def", "fit", "(", "model_matrix", ",", "response", ",", "model", ",", "model_coefficients_start", "=", "None", ",", "predicted_linear_response_start", "=", "None", ",", "l2_regularizer", "=", "None", ",", "dispersion", "=", "None", ",", "offset", "=", "None", ",", "convergence_criteria_fn", "=", "None", ",", "learning_rate", "=", "None", ",", "fast_unsafe_numerics", "=", "True", ",", "maximum_iterations", "=", "None", ",", "name", "=", "None", ")", ":", "graph_deps", "=", "[", "model_matrix", ",", "response", ",", "model_coefficients_start", ",", "predicted_linear_response_start", ",", "dispersion", ",", "offset", ",", "learning_rate", ",", "maximum_iterations", "]", "with", "tf", ".", "compat", ".", "v1", ".", "name_scope", "(", "name", ",", "'fit'", ",", "graph_deps", ")", ":", "[", "model_matrix", ",", "response", ",", "model_coefficients_start", ",", "predicted_linear_response_start", ",", "offset", ",", "]", "=", "prepare_args", "(", "model_matrix", ",", "response", ",", "model_coefficients_start", ",", "predicted_linear_response_start", ",", "offset", ")", "if", "convergence_criteria_fn", "is", "None", ":", "convergence_criteria_fn", "=", "(", "convergence_criteria_small_relative_norm_weights_change", "(", ")", ")", "def", "_body", "(", "is_converged_previous", ",", "iter_", ",", "model_coefficients_previous", ",", "predicted_linear_response_previous", ")", ":", "\"\"\"`tf.while_loop` body.\"\"\"", "model_coefficients_next", ",", "predicted_linear_response_next", "=", "fit_one_step", "(", "model_matrix", ",", "response", ",", "model", ",", "model_coefficients_previous", ",", "predicted_linear_response_previous", ",", "l2_regularizer", ",", "dispersion", ",", "offset", ",", "learning_rate", ",", "fast_unsafe_numerics", ")", "is_converged_next", "=", "convergence_criteria_fn", "(", "is_converged_previous", "=", "is_converged_previous", ",", "iter_", "=", "iter_", ",", "model_coefficients_previous", "=", "model_coefficients_previous", ",", "predicted_linear_response_previous", "=", "predicted_linear_response_previous", ",", "model_coefficients_next", "=", "model_coefficients_next", ",", "predicted_linear_response_next", "=", "predicted_linear_response_next", ",", "response", "=", "response", ",", "model", "=", "model", ",", "dispersion", "=", "dispersion", ")", "return", "[", "is_converged_next", ",", "iter_", "+", "1", ",", "model_coefficients_next", ",", "predicted_linear_response_next", ",", "]", "# while not converged:", "# fit_one_step", "[", "is_converged", ",", "iter_", ",", "model_coefficients", ",", "predicted_linear_response", ",", "]", "=", "tf", ".", "while_loop", "(", "cond", "=", "lambda", "is_converged", ",", "*", "args", ":", "tf", ".", "logical_not", "(", "is_converged", ")", ",", "body", "=", "_body", ",", "loop_vars", "=", "[", "tf", ".", "zeros", "(", "[", "]", ",", "np", ".", "bool", ")", ",", "# is_converged", "tf", ".", "zeros", "(", "[", "]", ",", "np", ".", "int32", ")", ",", "# iter_", "model_coefficients_start", ",", "predicted_linear_response_start", ",", "]", ",", "maximum_iterations", "=", "maximum_iterations", ")", "return", "[", "model_coefficients", ",", "predicted_linear_response", ",", "is_converged", ",", "iter_", "]" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
fit_one_step
Runs one step of Fisher scoring. Args: model_matrix: (Batch of) `float`-like, matrix-shaped `Tensor` where each row represents a sample's features. response: (Batch of) vector-shaped `Tensor` where each element represents a sample's observed response (to the corresponding row of features). Must have same `dtype` as `model_matrix`. model: `tfp.glm.ExponentialFamily`-like instance used to construct the negative log-likelihood loss, gradient, and expected Hessian (i.e., the Fisher information matrix). model_coefficients_start: Optional (batch of) vector-shaped `Tensor` representing the initial model coefficients, one for each column in `model_matrix`. Must have same `dtype` as `model_matrix`. Default value: Zeros. predicted_linear_response_start: Optional `Tensor` with `shape`, `dtype` matching `response`; represents `offset` shifted initial linear predictions based on `model_coefficients_start`. Default value: `offset` if `model_coefficients is None`, and `tf.linalg.matvec(model_matrix, model_coefficients_start) + offset` otherwise. l2_regularizer: Optional scalar `Tensor` representing L2 regularization penalty, i.e., `loss(w) = sum{-log p(y[i]|x[i],w) : i=1..n} + l2_regularizer ||w||_2^2`. Default value: `None` (i.e., no L2 regularization). dispersion: Optional (batch of) `Tensor` representing `response` dispersion, i.e., as in, `p(y|theta) := exp((y theta - A(theta)) / dispersion)`. Must broadcast with rows of `model_matrix`. Default value: `None` (i.e., "no dispersion"). offset: Optional `Tensor` representing constant shift applied to `predicted_linear_response`. Must broadcast to `response`. Default value: `None` (i.e., `tf.zeros_like(response)`). learning_rate: Optional (batch of) scalar `Tensor` used to dampen iterative progress. Typically only needed if optimization diverges, should be no larger than `1` and typically very close to `1`. Default value: `None` (i.e., `1`). fast_unsafe_numerics: Optional Python `bool` indicating if solve should be based on Cholesky or QR decomposition. Default value: `True` (i.e., "prefer speed via Cholesky decomposition"). name: Python `str` used as name prefix to ops created by this function. Default value: `"fit_one_step"`. Returns: model_coefficients: (Batch of) vector-shaped `Tensor`; represents the next estimate of the model coefficients, one for each column in `model_matrix`. predicted_linear_response: `response`-shaped `Tensor` representing linear predictions based on new `model_coefficients`, i.e., `tf.linalg.matvec(model_matrix, model_coefficients_next) + offset`.
tensorflow_probability/python/glm/fisher_scoring.py
def fit_one_step( model_matrix, response, model, model_coefficients_start=None, predicted_linear_response_start=None, l2_regularizer=None, dispersion=None, offset=None, learning_rate=None, fast_unsafe_numerics=True, name=None): """Runs one step of Fisher scoring. Args: model_matrix: (Batch of) `float`-like, matrix-shaped `Tensor` where each row represents a sample's features. response: (Batch of) vector-shaped `Tensor` where each element represents a sample's observed response (to the corresponding row of features). Must have same `dtype` as `model_matrix`. model: `tfp.glm.ExponentialFamily`-like instance used to construct the negative log-likelihood loss, gradient, and expected Hessian (i.e., the Fisher information matrix). model_coefficients_start: Optional (batch of) vector-shaped `Tensor` representing the initial model coefficients, one for each column in `model_matrix`. Must have same `dtype` as `model_matrix`. Default value: Zeros. predicted_linear_response_start: Optional `Tensor` with `shape`, `dtype` matching `response`; represents `offset` shifted initial linear predictions based on `model_coefficients_start`. Default value: `offset` if `model_coefficients is None`, and `tf.linalg.matvec(model_matrix, model_coefficients_start) + offset` otherwise. l2_regularizer: Optional scalar `Tensor` representing L2 regularization penalty, i.e., `loss(w) = sum{-log p(y[i]|x[i],w) : i=1..n} + l2_regularizer ||w||_2^2`. Default value: `None` (i.e., no L2 regularization). dispersion: Optional (batch of) `Tensor` representing `response` dispersion, i.e., as in, `p(y|theta) := exp((y theta - A(theta)) / dispersion)`. Must broadcast with rows of `model_matrix`. Default value: `None` (i.e., "no dispersion"). offset: Optional `Tensor` representing constant shift applied to `predicted_linear_response`. Must broadcast to `response`. Default value: `None` (i.e., `tf.zeros_like(response)`). learning_rate: Optional (batch of) scalar `Tensor` used to dampen iterative progress. Typically only needed if optimization diverges, should be no larger than `1` and typically very close to `1`. Default value: `None` (i.e., `1`). fast_unsafe_numerics: Optional Python `bool` indicating if solve should be based on Cholesky or QR decomposition. Default value: `True` (i.e., "prefer speed via Cholesky decomposition"). name: Python `str` used as name prefix to ops created by this function. Default value: `"fit_one_step"`. Returns: model_coefficients: (Batch of) vector-shaped `Tensor`; represents the next estimate of the model coefficients, one for each column in `model_matrix`. predicted_linear_response: `response`-shaped `Tensor` representing linear predictions based on new `model_coefficients`, i.e., `tf.linalg.matvec(model_matrix, model_coefficients_next) + offset`. """ graph_deps = [model_matrix, response, model_coefficients_start, predicted_linear_response_start, dispersion, learning_rate] with tf.compat.v1.name_scope(name, 'fit_one_step', graph_deps): [ model_matrix, response, model_coefficients_start, predicted_linear_response_start, offset, ] = prepare_args( model_matrix, response, model_coefficients_start, predicted_linear_response_start, offset) # Compute: mean, grad(mean, predicted_linear_response_start), and variance. mean, variance, grad_mean = model(predicted_linear_response_start) # If either `grad_mean` or `variance is non-finite or zero, then we'll # replace it with a value such that the row is zeroed out. Although this # procedure may seem circuitous, it is necessary to ensure this algorithm is # itself differentiable. is_valid = ( tf.math.is_finite(grad_mean) & tf.not_equal(grad_mean, 0.) & tf.math.is_finite(variance) & (variance > 0.)) def mask_if_invalid(x, mask): mask = tf.fill( tf.shape(input=x), value=np.array(mask, x.dtype.as_numpy_dtype)) return tf.where(is_valid, x, mask) # Run one step of iteratively reweighted least-squares. # Compute "`z`", the adjusted predicted linear response. # z = predicted_linear_response_start # + learning_rate * (response - mean) / grad_mean z = (response - mean) / mask_if_invalid(grad_mean, 1.) # TODO(jvdillon): Rather than use learning rate, we should consider using # backtracking line search. if learning_rate is not None: z *= learning_rate[..., tf.newaxis] z += predicted_linear_response_start if offset is not None: z -= offset # Compute "`w`", the per-sample weight. if dispersion is not None: # For convenience, we'll now scale the variance by the dispersion factor. variance *= dispersion w = ( mask_if_invalid(grad_mean, 0.) * tf.math.rsqrt(mask_if_invalid(variance, np.inf))) a = model_matrix * w[..., tf.newaxis] b = z * w # Solve `min{ || A @ model_coefficients - b ||_2**2 : model_coefficients }` # where `@` denotes `matmul`. if l2_regularizer is None: l2_regularizer = np.array(0, a.dtype.as_numpy_dtype) else: l2_regularizer_ = distribution_util.maybe_get_static_value( l2_regularizer, a.dtype.as_numpy_dtype) if l2_regularizer_ is not None: l2_regularizer = l2_regularizer_ def _embed_l2_regularization(): """Adds synthetic observations to implement L2 regularization.""" # `tf.matrix_solve_ls` does not respect the `l2_regularization` argument # when `fast_unsafe_numerics` is `False`. This function adds synthetic # observations to the data to implement the regularization instead. # Adding observations `sqrt(l2_regularizer) * I` is mathematically # equivalent to adding the term # `-l2_regularizer ||coefficients||_2**2` to the log-likelihood. num_model_coefficients = num_cols(model_matrix) batch_shape = tf.shape(input=model_matrix)[:-2] eye = tf.eye( num_model_coefficients, batch_shape=batch_shape, dtype=a.dtype) a_ = tf.concat([a, tf.sqrt(l2_regularizer) * eye], axis=-2) b_ = distribution_util.pad( b, count=num_model_coefficients, axis=-1, back=True) # Return l2_regularizer=0 since its now embedded. l2_regularizer_ = np.array(0, a.dtype.as_numpy_dtype) return a_, b_, l2_regularizer_ a, b, l2_regularizer = prefer_static.cond( prefer_static.reduce_all([not(fast_unsafe_numerics), l2_regularizer > 0.]), _embed_l2_regularization, lambda: (a, b, l2_regularizer)) model_coefficients_next = tf.linalg.lstsq( a, b[..., tf.newaxis], fast=fast_unsafe_numerics, l2_regularizer=l2_regularizer, name='model_coefficients_next') model_coefficients_next = model_coefficients_next[..., 0] # TODO(b/79122261): The approach used in `matrix_solve_ls` could be made # faster by avoiding explicitly forming Q and instead keeping the # factorization in 'implicit' form with stacked (rescaled) Householder # vectors underneath the 'R' and then applying the (accumulated) # reflectors in the appropriate order to apply Q'. However, we don't # presently do this because we lack core TF functionality. For reference, # the vanilla QR approach is: # q, r = tf.linalg.qr(a) # c = tf.matmul(q, b, adjoint_a=True) # model_coefficients_next = tf.matrix_triangular_solve( # r, c, lower=False, name='model_coefficients_next') predicted_linear_response_next = calculate_linear_predictor( model_matrix, model_coefficients_next, offset, name='predicted_linear_response_next') return model_coefficients_next, predicted_linear_response_next
def fit_one_step( model_matrix, response, model, model_coefficients_start=None, predicted_linear_response_start=None, l2_regularizer=None, dispersion=None, offset=None, learning_rate=None, fast_unsafe_numerics=True, name=None): """Runs one step of Fisher scoring. Args: model_matrix: (Batch of) `float`-like, matrix-shaped `Tensor` where each row represents a sample's features. response: (Batch of) vector-shaped `Tensor` where each element represents a sample's observed response (to the corresponding row of features). Must have same `dtype` as `model_matrix`. model: `tfp.glm.ExponentialFamily`-like instance used to construct the negative log-likelihood loss, gradient, and expected Hessian (i.e., the Fisher information matrix). model_coefficients_start: Optional (batch of) vector-shaped `Tensor` representing the initial model coefficients, one for each column in `model_matrix`. Must have same `dtype` as `model_matrix`. Default value: Zeros. predicted_linear_response_start: Optional `Tensor` with `shape`, `dtype` matching `response`; represents `offset` shifted initial linear predictions based on `model_coefficients_start`. Default value: `offset` if `model_coefficients is None`, and `tf.linalg.matvec(model_matrix, model_coefficients_start) + offset` otherwise. l2_regularizer: Optional scalar `Tensor` representing L2 regularization penalty, i.e., `loss(w) = sum{-log p(y[i]|x[i],w) : i=1..n} + l2_regularizer ||w||_2^2`. Default value: `None` (i.e., no L2 regularization). dispersion: Optional (batch of) `Tensor` representing `response` dispersion, i.e., as in, `p(y|theta) := exp((y theta - A(theta)) / dispersion)`. Must broadcast with rows of `model_matrix`. Default value: `None` (i.e., "no dispersion"). offset: Optional `Tensor` representing constant shift applied to `predicted_linear_response`. Must broadcast to `response`. Default value: `None` (i.e., `tf.zeros_like(response)`). learning_rate: Optional (batch of) scalar `Tensor` used to dampen iterative progress. Typically only needed if optimization diverges, should be no larger than `1` and typically very close to `1`. Default value: `None` (i.e., `1`). fast_unsafe_numerics: Optional Python `bool` indicating if solve should be based on Cholesky or QR decomposition. Default value: `True` (i.e., "prefer speed via Cholesky decomposition"). name: Python `str` used as name prefix to ops created by this function. Default value: `"fit_one_step"`. Returns: model_coefficients: (Batch of) vector-shaped `Tensor`; represents the next estimate of the model coefficients, one for each column in `model_matrix`. predicted_linear_response: `response`-shaped `Tensor` representing linear predictions based on new `model_coefficients`, i.e., `tf.linalg.matvec(model_matrix, model_coefficients_next) + offset`. """ graph_deps = [model_matrix, response, model_coefficients_start, predicted_linear_response_start, dispersion, learning_rate] with tf.compat.v1.name_scope(name, 'fit_one_step', graph_deps): [ model_matrix, response, model_coefficients_start, predicted_linear_response_start, offset, ] = prepare_args( model_matrix, response, model_coefficients_start, predicted_linear_response_start, offset) # Compute: mean, grad(mean, predicted_linear_response_start), and variance. mean, variance, grad_mean = model(predicted_linear_response_start) # If either `grad_mean` or `variance is non-finite or zero, then we'll # replace it with a value such that the row is zeroed out. Although this # procedure may seem circuitous, it is necessary to ensure this algorithm is # itself differentiable. is_valid = ( tf.math.is_finite(grad_mean) & tf.not_equal(grad_mean, 0.) & tf.math.is_finite(variance) & (variance > 0.)) def mask_if_invalid(x, mask): mask = tf.fill( tf.shape(input=x), value=np.array(mask, x.dtype.as_numpy_dtype)) return tf.where(is_valid, x, mask) # Run one step of iteratively reweighted least-squares. # Compute "`z`", the adjusted predicted linear response. # z = predicted_linear_response_start # + learning_rate * (response - mean) / grad_mean z = (response - mean) / mask_if_invalid(grad_mean, 1.) # TODO(jvdillon): Rather than use learning rate, we should consider using # backtracking line search. if learning_rate is not None: z *= learning_rate[..., tf.newaxis] z += predicted_linear_response_start if offset is not None: z -= offset # Compute "`w`", the per-sample weight. if dispersion is not None: # For convenience, we'll now scale the variance by the dispersion factor. variance *= dispersion w = ( mask_if_invalid(grad_mean, 0.) * tf.math.rsqrt(mask_if_invalid(variance, np.inf))) a = model_matrix * w[..., tf.newaxis] b = z * w # Solve `min{ || A @ model_coefficients - b ||_2**2 : model_coefficients }` # where `@` denotes `matmul`. if l2_regularizer is None: l2_regularizer = np.array(0, a.dtype.as_numpy_dtype) else: l2_regularizer_ = distribution_util.maybe_get_static_value( l2_regularizer, a.dtype.as_numpy_dtype) if l2_regularizer_ is not None: l2_regularizer = l2_regularizer_ def _embed_l2_regularization(): """Adds synthetic observations to implement L2 regularization.""" # `tf.matrix_solve_ls` does not respect the `l2_regularization` argument # when `fast_unsafe_numerics` is `False`. This function adds synthetic # observations to the data to implement the regularization instead. # Adding observations `sqrt(l2_regularizer) * I` is mathematically # equivalent to adding the term # `-l2_regularizer ||coefficients||_2**2` to the log-likelihood. num_model_coefficients = num_cols(model_matrix) batch_shape = tf.shape(input=model_matrix)[:-2] eye = tf.eye( num_model_coefficients, batch_shape=batch_shape, dtype=a.dtype) a_ = tf.concat([a, tf.sqrt(l2_regularizer) * eye], axis=-2) b_ = distribution_util.pad( b, count=num_model_coefficients, axis=-1, back=True) # Return l2_regularizer=0 since its now embedded. l2_regularizer_ = np.array(0, a.dtype.as_numpy_dtype) return a_, b_, l2_regularizer_ a, b, l2_regularizer = prefer_static.cond( prefer_static.reduce_all([not(fast_unsafe_numerics), l2_regularizer > 0.]), _embed_l2_regularization, lambda: (a, b, l2_regularizer)) model_coefficients_next = tf.linalg.lstsq( a, b[..., tf.newaxis], fast=fast_unsafe_numerics, l2_regularizer=l2_regularizer, name='model_coefficients_next') model_coefficients_next = model_coefficients_next[..., 0] # TODO(b/79122261): The approach used in `matrix_solve_ls` could be made # faster by avoiding explicitly forming Q and instead keeping the # factorization in 'implicit' form with stacked (rescaled) Householder # vectors underneath the 'R' and then applying the (accumulated) # reflectors in the appropriate order to apply Q'. However, we don't # presently do this because we lack core TF functionality. For reference, # the vanilla QR approach is: # q, r = tf.linalg.qr(a) # c = tf.matmul(q, b, adjoint_a=True) # model_coefficients_next = tf.matrix_triangular_solve( # r, c, lower=False, name='model_coefficients_next') predicted_linear_response_next = calculate_linear_predictor( model_matrix, model_coefficients_next, offset, name='predicted_linear_response_next') return model_coefficients_next, predicted_linear_response_next
[ "Runs", "one", "step", "of", "Fisher", "scoring", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/glm/fisher_scoring.py#L259-L439
[ "def", "fit_one_step", "(", "model_matrix", ",", "response", ",", "model", ",", "model_coefficients_start", "=", "None", ",", "predicted_linear_response_start", "=", "None", ",", "l2_regularizer", "=", "None", ",", "dispersion", "=", "None", ",", "offset", "=", "None", ",", "learning_rate", "=", "None", ",", "fast_unsafe_numerics", "=", "True", ",", "name", "=", "None", ")", ":", "graph_deps", "=", "[", "model_matrix", ",", "response", ",", "model_coefficients_start", ",", "predicted_linear_response_start", ",", "dispersion", ",", "learning_rate", "]", "with", "tf", ".", "compat", ".", "v1", ".", "name_scope", "(", "name", ",", "'fit_one_step'", ",", "graph_deps", ")", ":", "[", "model_matrix", ",", "response", ",", "model_coefficients_start", ",", "predicted_linear_response_start", ",", "offset", ",", "]", "=", "prepare_args", "(", "model_matrix", ",", "response", ",", "model_coefficients_start", ",", "predicted_linear_response_start", ",", "offset", ")", "# Compute: mean, grad(mean, predicted_linear_response_start), and variance.", "mean", ",", "variance", ",", "grad_mean", "=", "model", "(", "predicted_linear_response_start", ")", "# If either `grad_mean` or `variance is non-finite or zero, then we'll", "# replace it with a value such that the row is zeroed out. Although this", "# procedure may seem circuitous, it is necessary to ensure this algorithm is", "# itself differentiable.", "is_valid", "=", "(", "tf", ".", "math", ".", "is_finite", "(", "grad_mean", ")", "&", "tf", ".", "not_equal", "(", "grad_mean", ",", "0.", ")", "&", "tf", ".", "math", ".", "is_finite", "(", "variance", ")", "&", "(", "variance", ">", "0.", ")", ")", "def", "mask_if_invalid", "(", "x", ",", "mask", ")", ":", "mask", "=", "tf", ".", "fill", "(", "tf", ".", "shape", "(", "input", "=", "x", ")", ",", "value", "=", "np", ".", "array", "(", "mask", ",", "x", ".", "dtype", ".", "as_numpy_dtype", ")", ")", "return", "tf", ".", "where", "(", "is_valid", ",", "x", ",", "mask", ")", "# Run one step of iteratively reweighted least-squares.", "# Compute \"`z`\", the adjusted predicted linear response.", "# z = predicted_linear_response_start", "# + learning_rate * (response - mean) / grad_mean", "z", "=", "(", "response", "-", "mean", ")", "/", "mask_if_invalid", "(", "grad_mean", ",", "1.", ")", "# TODO(jvdillon): Rather than use learning rate, we should consider using", "# backtracking line search.", "if", "learning_rate", "is", "not", "None", ":", "z", "*=", "learning_rate", "[", "...", ",", "tf", ".", "newaxis", "]", "z", "+=", "predicted_linear_response_start", "if", "offset", "is", "not", "None", ":", "z", "-=", "offset", "# Compute \"`w`\", the per-sample weight.", "if", "dispersion", "is", "not", "None", ":", "# For convenience, we'll now scale the variance by the dispersion factor.", "variance", "*=", "dispersion", "w", "=", "(", "mask_if_invalid", "(", "grad_mean", ",", "0.", ")", "*", "tf", ".", "math", ".", "rsqrt", "(", "mask_if_invalid", "(", "variance", ",", "np", ".", "inf", ")", ")", ")", "a", "=", "model_matrix", "*", "w", "[", "...", ",", "tf", ".", "newaxis", "]", "b", "=", "z", "*", "w", "# Solve `min{ || A @ model_coefficients - b ||_2**2 : model_coefficients }`", "# where `@` denotes `matmul`.", "if", "l2_regularizer", "is", "None", ":", "l2_regularizer", "=", "np", ".", "array", "(", "0", ",", "a", ".", "dtype", ".", "as_numpy_dtype", ")", "else", ":", "l2_regularizer_", "=", "distribution_util", ".", "maybe_get_static_value", "(", "l2_regularizer", ",", "a", ".", "dtype", ".", "as_numpy_dtype", ")", "if", "l2_regularizer_", "is", "not", "None", ":", "l2_regularizer", "=", "l2_regularizer_", "def", "_embed_l2_regularization", "(", ")", ":", "\"\"\"Adds synthetic observations to implement L2 regularization.\"\"\"", "# `tf.matrix_solve_ls` does not respect the `l2_regularization` argument", "# when `fast_unsafe_numerics` is `False`. This function adds synthetic", "# observations to the data to implement the regularization instead.", "# Adding observations `sqrt(l2_regularizer) * I` is mathematically", "# equivalent to adding the term", "# `-l2_regularizer ||coefficients||_2**2` to the log-likelihood.", "num_model_coefficients", "=", "num_cols", "(", "model_matrix", ")", "batch_shape", "=", "tf", ".", "shape", "(", "input", "=", "model_matrix", ")", "[", ":", "-", "2", "]", "eye", "=", "tf", ".", "eye", "(", "num_model_coefficients", ",", "batch_shape", "=", "batch_shape", ",", "dtype", "=", "a", ".", "dtype", ")", "a_", "=", "tf", ".", "concat", "(", "[", "a", ",", "tf", ".", "sqrt", "(", "l2_regularizer", ")", "*", "eye", "]", ",", "axis", "=", "-", "2", ")", "b_", "=", "distribution_util", ".", "pad", "(", "b", ",", "count", "=", "num_model_coefficients", ",", "axis", "=", "-", "1", ",", "back", "=", "True", ")", "# Return l2_regularizer=0 since its now embedded.", "l2_regularizer_", "=", "np", ".", "array", "(", "0", ",", "a", ".", "dtype", ".", "as_numpy_dtype", ")", "return", "a_", ",", "b_", ",", "l2_regularizer_", "a", ",", "b", ",", "l2_regularizer", "=", "prefer_static", ".", "cond", "(", "prefer_static", ".", "reduce_all", "(", "[", "not", "(", "fast_unsafe_numerics", ")", ",", "l2_regularizer", ">", "0.", "]", ")", ",", "_embed_l2_regularization", ",", "lambda", ":", "(", "a", ",", "b", ",", "l2_regularizer", ")", ")", "model_coefficients_next", "=", "tf", ".", "linalg", ".", "lstsq", "(", "a", ",", "b", "[", "...", ",", "tf", ".", "newaxis", "]", ",", "fast", "=", "fast_unsafe_numerics", ",", "l2_regularizer", "=", "l2_regularizer", ",", "name", "=", "'model_coefficients_next'", ")", "model_coefficients_next", "=", "model_coefficients_next", "[", "...", ",", "0", "]", "# TODO(b/79122261): The approach used in `matrix_solve_ls` could be made", "# faster by avoiding explicitly forming Q and instead keeping the", "# factorization in 'implicit' form with stacked (rescaled) Householder", "# vectors underneath the 'R' and then applying the (accumulated)", "# reflectors in the appropriate order to apply Q'. However, we don't", "# presently do this because we lack core TF functionality. For reference,", "# the vanilla QR approach is:", "# q, r = tf.linalg.qr(a)", "# c = tf.matmul(q, b, adjoint_a=True)", "# model_coefficients_next = tf.matrix_triangular_solve(", "# r, c, lower=False, name='model_coefficients_next')", "predicted_linear_response_next", "=", "calculate_linear_predictor", "(", "model_matrix", ",", "model_coefficients_next", ",", "offset", ",", "name", "=", "'predicted_linear_response_next'", ")", "return", "model_coefficients_next", ",", "predicted_linear_response_next" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
convergence_criteria_small_relative_norm_weights_change
Returns Python `callable` which indicates fitting procedure has converged. Writing old, new `model_coefficients` as `w0`, `w1`, this function defines convergence as, ```python relative_euclidean_norm = (tf.norm(w0 - w1, ord=2, axis=-1) / (1. + tf.norm(w0, ord=2, axis=-1))) reduce_all(relative_euclidean_norm < tolerance) ``` where `tf.norm(x, ord=2)` denotes the [Euclidean norm]( https://en.wikipedia.org/wiki/Norm_(mathematics)#Euclidean_norm) of `x`. Args: tolerance: `float`-like `Tensor` indicating convergence, i.e., when max relative Euclidean norm weights difference < tolerance`. Default value: `1e-5`. norm_order: Order of the norm. Default value: `2` (i.e., "Euclidean norm".) Returns: convergence_criteria_fn: Python `callable` which returns `bool` `Tensor` indicated fitting procedure has converged. (See inner function specification for argument signature.) Default value: `1e-5`.
tensorflow_probability/python/glm/fisher_scoring.py
def convergence_criteria_small_relative_norm_weights_change( tolerance=1e-5, norm_order=2): """Returns Python `callable` which indicates fitting procedure has converged. Writing old, new `model_coefficients` as `w0`, `w1`, this function defines convergence as, ```python relative_euclidean_norm = (tf.norm(w0 - w1, ord=2, axis=-1) / (1. + tf.norm(w0, ord=2, axis=-1))) reduce_all(relative_euclidean_norm < tolerance) ``` where `tf.norm(x, ord=2)` denotes the [Euclidean norm]( https://en.wikipedia.org/wiki/Norm_(mathematics)#Euclidean_norm) of `x`. Args: tolerance: `float`-like `Tensor` indicating convergence, i.e., when max relative Euclidean norm weights difference < tolerance`. Default value: `1e-5`. norm_order: Order of the norm. Default value: `2` (i.e., "Euclidean norm".) Returns: convergence_criteria_fn: Python `callable` which returns `bool` `Tensor` indicated fitting procedure has converged. (See inner function specification for argument signature.) Default value: `1e-5`. """ def convergence_criteria_fn( is_converged_previous, # pylint: disable=unused-argument iter_, model_coefficients_previous, predicted_linear_response_previous, # pylint: disable=unused-argument model_coefficients_next, predicted_linear_response_next, # pylint: disable=unused-argument response, # pylint: disable=unused-argument model, # pylint: disable=unused-argument dispersion): # pylint: disable=unused-argument """Returns `bool` `Tensor` indicating if fitting procedure has converged. Args: is_converged_previous: "old" convergence results. iter_: Iteration number. model_coefficients_previous: "old" `model_coefficients`. predicted_linear_response_previous: "old" `predicted_linear_response`. model_coefficients_next: "new" `model_coefficients`. predicted_linear_response_next: "new: `predicted_linear_response`. response: (Batch of) vector-shaped `Tensor` where each element represents a sample's observed response (to the corresponding row of features). Must have same `dtype` as `model_matrix`. model: `tfp.glm.ExponentialFamily`-like instance used to construct the negative log-likelihood loss, gradient, and expected Hessian (i.e., the Fisher information matrix). dispersion: `Tensor` representing `response` dispersion, i.e., as in: `p(y|theta) := exp((y theta - A(theta)) / dispersion)`. Must broadcast with rows of `model_matrix`. Default value: `None` (i.e., "no dispersion"). Returns: is_converged: `bool` `Tensor`. """ relative_euclidean_norm = ( tf.norm( tensor=model_coefficients_previous - model_coefficients_next, ord=norm_order, axis=-1) / (1. + tf.norm(tensor=model_coefficients_previous, ord=norm_order, axis=-1))) return (iter_ > 0) & tf.reduce_all( input_tensor=relative_euclidean_norm < tolerance) return convergence_criteria_fn
def convergence_criteria_small_relative_norm_weights_change( tolerance=1e-5, norm_order=2): """Returns Python `callable` which indicates fitting procedure has converged. Writing old, new `model_coefficients` as `w0`, `w1`, this function defines convergence as, ```python relative_euclidean_norm = (tf.norm(w0 - w1, ord=2, axis=-1) / (1. + tf.norm(w0, ord=2, axis=-1))) reduce_all(relative_euclidean_norm < tolerance) ``` where `tf.norm(x, ord=2)` denotes the [Euclidean norm]( https://en.wikipedia.org/wiki/Norm_(mathematics)#Euclidean_norm) of `x`. Args: tolerance: `float`-like `Tensor` indicating convergence, i.e., when max relative Euclidean norm weights difference < tolerance`. Default value: `1e-5`. norm_order: Order of the norm. Default value: `2` (i.e., "Euclidean norm".) Returns: convergence_criteria_fn: Python `callable` which returns `bool` `Tensor` indicated fitting procedure has converged. (See inner function specification for argument signature.) Default value: `1e-5`. """ def convergence_criteria_fn( is_converged_previous, # pylint: disable=unused-argument iter_, model_coefficients_previous, predicted_linear_response_previous, # pylint: disable=unused-argument model_coefficients_next, predicted_linear_response_next, # pylint: disable=unused-argument response, # pylint: disable=unused-argument model, # pylint: disable=unused-argument dispersion): # pylint: disable=unused-argument """Returns `bool` `Tensor` indicating if fitting procedure has converged. Args: is_converged_previous: "old" convergence results. iter_: Iteration number. model_coefficients_previous: "old" `model_coefficients`. predicted_linear_response_previous: "old" `predicted_linear_response`. model_coefficients_next: "new" `model_coefficients`. predicted_linear_response_next: "new: `predicted_linear_response`. response: (Batch of) vector-shaped `Tensor` where each element represents a sample's observed response (to the corresponding row of features). Must have same `dtype` as `model_matrix`. model: `tfp.glm.ExponentialFamily`-like instance used to construct the negative log-likelihood loss, gradient, and expected Hessian (i.e., the Fisher information matrix). dispersion: `Tensor` representing `response` dispersion, i.e., as in: `p(y|theta) := exp((y theta - A(theta)) / dispersion)`. Must broadcast with rows of `model_matrix`. Default value: `None` (i.e., "no dispersion"). Returns: is_converged: `bool` `Tensor`. """ relative_euclidean_norm = ( tf.norm( tensor=model_coefficients_previous - model_coefficients_next, ord=norm_order, axis=-1) / (1. + tf.norm(tensor=model_coefficients_previous, ord=norm_order, axis=-1))) return (iter_ > 0) & tf.reduce_all( input_tensor=relative_euclidean_norm < tolerance) return convergence_criteria_fn
[ "Returns", "Python", "callable", "which", "indicates", "fitting", "procedure", "has", "converged", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/glm/fisher_scoring.py#L442-L514
[ "def", "convergence_criteria_small_relative_norm_weights_change", "(", "tolerance", "=", "1e-5", ",", "norm_order", "=", "2", ")", ":", "def", "convergence_criteria_fn", "(", "is_converged_previous", ",", "# pylint: disable=unused-argument", "iter_", ",", "model_coefficients_previous", ",", "predicted_linear_response_previous", ",", "# pylint: disable=unused-argument", "model_coefficients_next", ",", "predicted_linear_response_next", ",", "# pylint: disable=unused-argument", "response", ",", "# pylint: disable=unused-argument", "model", ",", "# pylint: disable=unused-argument", "dispersion", ")", ":", "# pylint: disable=unused-argument", "\"\"\"Returns `bool` `Tensor` indicating if fitting procedure has converged.\n\n Args:\n is_converged_previous: \"old\" convergence results.\n iter_: Iteration number.\n model_coefficients_previous: \"old\" `model_coefficients`.\n predicted_linear_response_previous: \"old\" `predicted_linear_response`.\n model_coefficients_next: \"new\" `model_coefficients`.\n predicted_linear_response_next: \"new: `predicted_linear_response`.\n response: (Batch of) vector-shaped `Tensor` where each element represents\n a sample's observed response (to the corresponding row of features).\n Must have same `dtype` as `model_matrix`.\n model: `tfp.glm.ExponentialFamily`-like instance used to construct the\n negative log-likelihood loss, gradient, and expected Hessian (i.e., the\n Fisher information matrix).\n dispersion: `Tensor` representing `response` dispersion, i.e., as in:\n `p(y|theta) := exp((y theta - A(theta)) / dispersion)`. Must broadcast\n with rows of `model_matrix`.\n Default value: `None` (i.e., \"no dispersion\").\n\n Returns:\n is_converged: `bool` `Tensor`.\n \"\"\"", "relative_euclidean_norm", "=", "(", "tf", ".", "norm", "(", "tensor", "=", "model_coefficients_previous", "-", "model_coefficients_next", ",", "ord", "=", "norm_order", ",", "axis", "=", "-", "1", ")", "/", "(", "1.", "+", "tf", ".", "norm", "(", "tensor", "=", "model_coefficients_previous", ",", "ord", "=", "norm_order", ",", "axis", "=", "-", "1", ")", ")", ")", "return", "(", "iter_", ">", "0", ")", "&", "tf", ".", "reduce_all", "(", "input_tensor", "=", "relative_euclidean_norm", "<", "tolerance", ")", "return", "convergence_criteria_fn" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
prepare_args
Helper to `fit` which sanitizes input args. Args: model_matrix: (Batch of) `float`-like, matrix-shaped `Tensor` where each row represents a sample's features. response: (Batch of) vector-shaped `Tensor` where each element represents a sample's observed response (to the corresponding row of features). Must have same `dtype` as `model_matrix`. model_coefficients: Optional (batch of) vector-shaped `Tensor` representing the model coefficients, one for each column in `model_matrix`. Must have same `dtype` as `model_matrix`. Default value: `tf.zeros(tf.shape(model_matrix)[-1], model_matrix.dtype)`. predicted_linear_response: Optional `Tensor` with `shape`, `dtype` matching `response`; represents `offset` shifted initial linear predictions based on current `model_coefficients`. Default value: `offset` if `model_coefficients is None`, and `tf.linalg.matvec(model_matrix, model_coefficients_start) + offset` otherwise. offset: Optional `Tensor` with `shape`, `dtype` matching `response`; represents constant shift applied to `predicted_linear_response`. Default value: `None` (i.e., `tf.zeros_like(response)`). name: Python `str` used as name prefix to ops created by this function. Default value: `"prepare_args"`. Returns: model_matrix: A `Tensor` with `shape`, `dtype` and values of the `model_matrix` argument. response: A `Tensor` with `shape`, `dtype` and values of the `response` argument. model_coefficients_start: A `Tensor` with `shape`, `dtype` and values of the `model_coefficients_start` argument if specified. A (batch of) vector-shaped `Tensors` with `dtype` matching `model_matrix` containing the default starting point otherwise. predicted_linear_response: A `Tensor` with `shape`, `dtype` and values of the `predicted_linear_response` argument if specified. A `Tensor` with `shape`, `dtype` matching `response` containing the default value otherwise. offset: A `Tensor` with `shape`, `dtype` and values of the `offset` argument if specified or `None` otherwise.
tensorflow_probability/python/glm/fisher_scoring.py
def prepare_args(model_matrix, response, model_coefficients, predicted_linear_response, offset, name=None): """Helper to `fit` which sanitizes input args. Args: model_matrix: (Batch of) `float`-like, matrix-shaped `Tensor` where each row represents a sample's features. response: (Batch of) vector-shaped `Tensor` where each element represents a sample's observed response (to the corresponding row of features). Must have same `dtype` as `model_matrix`. model_coefficients: Optional (batch of) vector-shaped `Tensor` representing the model coefficients, one for each column in `model_matrix`. Must have same `dtype` as `model_matrix`. Default value: `tf.zeros(tf.shape(model_matrix)[-1], model_matrix.dtype)`. predicted_linear_response: Optional `Tensor` with `shape`, `dtype` matching `response`; represents `offset` shifted initial linear predictions based on current `model_coefficients`. Default value: `offset` if `model_coefficients is None`, and `tf.linalg.matvec(model_matrix, model_coefficients_start) + offset` otherwise. offset: Optional `Tensor` with `shape`, `dtype` matching `response`; represents constant shift applied to `predicted_linear_response`. Default value: `None` (i.e., `tf.zeros_like(response)`). name: Python `str` used as name prefix to ops created by this function. Default value: `"prepare_args"`. Returns: model_matrix: A `Tensor` with `shape`, `dtype` and values of the `model_matrix` argument. response: A `Tensor` with `shape`, `dtype` and values of the `response` argument. model_coefficients_start: A `Tensor` with `shape`, `dtype` and values of the `model_coefficients_start` argument if specified. A (batch of) vector-shaped `Tensors` with `dtype` matching `model_matrix` containing the default starting point otherwise. predicted_linear_response: A `Tensor` with `shape`, `dtype` and values of the `predicted_linear_response` argument if specified. A `Tensor` with `shape`, `dtype` matching `response` containing the default value otherwise. offset: A `Tensor` with `shape`, `dtype` and values of the `offset` argument if specified or `None` otherwise. """ graph_deps = [model_matrix, response, model_coefficients, predicted_linear_response, offset] with tf.compat.v1.name_scope(name, 'prepare_args', graph_deps): dtype = dtype_util.common_dtype(graph_deps, np.float32) model_matrix = tf.convert_to_tensor( value=model_matrix, dtype=dtype, name='model_matrix') if offset is not None: offset = tf.convert_to_tensor(value=offset, dtype=dtype, name='offset') response = tf.convert_to_tensor( value=response, dtype=dtype, name='response') use_default_model_coefficients = model_coefficients is None if use_default_model_coefficients: # User did not supply model coefficients; assume they're all zero. batch_shape = tf.shape(input=model_matrix)[:-2] num_columns = tf.shape(input=model_matrix)[-1] model_coefficients = tf.zeros( shape=tf.concat([batch_shape, [num_columns]], axis=0), dtype=dtype, name='model_coefficients') else: # User did supply model coefficients; convert to Tensor in case it's # numpy or literal. model_coefficients = tf.convert_to_tensor( value=model_coefficients, dtype=dtype, name='model_coefficients') if predicted_linear_response is None: if use_default_model_coefficients: # Since we're using zeros for model_coefficients, we know the predicted # linear response will also be all zeros. if offset is None: predicted_linear_response = tf.zeros_like( response, dtype, name='predicted_linear_response') else: predicted_linear_response = tf.broadcast_to( offset, tf.shape(input=response), name='predicted_linear_response') else: # We were given model_coefficients but not the predicted linear # response. predicted_linear_response = calculate_linear_predictor( model_matrix, model_coefficients, offset) else: predicted_linear_response = tf.convert_to_tensor( value=predicted_linear_response, dtype=dtype, name='predicted_linear_response') return [ model_matrix, response, model_coefficients, predicted_linear_response, offset, ]
def prepare_args(model_matrix, response, model_coefficients, predicted_linear_response, offset, name=None): """Helper to `fit` which sanitizes input args. Args: model_matrix: (Batch of) `float`-like, matrix-shaped `Tensor` where each row represents a sample's features. response: (Batch of) vector-shaped `Tensor` where each element represents a sample's observed response (to the corresponding row of features). Must have same `dtype` as `model_matrix`. model_coefficients: Optional (batch of) vector-shaped `Tensor` representing the model coefficients, one for each column in `model_matrix`. Must have same `dtype` as `model_matrix`. Default value: `tf.zeros(tf.shape(model_matrix)[-1], model_matrix.dtype)`. predicted_linear_response: Optional `Tensor` with `shape`, `dtype` matching `response`; represents `offset` shifted initial linear predictions based on current `model_coefficients`. Default value: `offset` if `model_coefficients is None`, and `tf.linalg.matvec(model_matrix, model_coefficients_start) + offset` otherwise. offset: Optional `Tensor` with `shape`, `dtype` matching `response`; represents constant shift applied to `predicted_linear_response`. Default value: `None` (i.e., `tf.zeros_like(response)`). name: Python `str` used as name prefix to ops created by this function. Default value: `"prepare_args"`. Returns: model_matrix: A `Tensor` with `shape`, `dtype` and values of the `model_matrix` argument. response: A `Tensor` with `shape`, `dtype` and values of the `response` argument. model_coefficients_start: A `Tensor` with `shape`, `dtype` and values of the `model_coefficients_start` argument if specified. A (batch of) vector-shaped `Tensors` with `dtype` matching `model_matrix` containing the default starting point otherwise. predicted_linear_response: A `Tensor` with `shape`, `dtype` and values of the `predicted_linear_response` argument if specified. A `Tensor` with `shape`, `dtype` matching `response` containing the default value otherwise. offset: A `Tensor` with `shape`, `dtype` and values of the `offset` argument if specified or `None` otherwise. """ graph_deps = [model_matrix, response, model_coefficients, predicted_linear_response, offset] with tf.compat.v1.name_scope(name, 'prepare_args', graph_deps): dtype = dtype_util.common_dtype(graph_deps, np.float32) model_matrix = tf.convert_to_tensor( value=model_matrix, dtype=dtype, name='model_matrix') if offset is not None: offset = tf.convert_to_tensor(value=offset, dtype=dtype, name='offset') response = tf.convert_to_tensor( value=response, dtype=dtype, name='response') use_default_model_coefficients = model_coefficients is None if use_default_model_coefficients: # User did not supply model coefficients; assume they're all zero. batch_shape = tf.shape(input=model_matrix)[:-2] num_columns = tf.shape(input=model_matrix)[-1] model_coefficients = tf.zeros( shape=tf.concat([batch_shape, [num_columns]], axis=0), dtype=dtype, name='model_coefficients') else: # User did supply model coefficients; convert to Tensor in case it's # numpy or literal. model_coefficients = tf.convert_to_tensor( value=model_coefficients, dtype=dtype, name='model_coefficients') if predicted_linear_response is None: if use_default_model_coefficients: # Since we're using zeros for model_coefficients, we know the predicted # linear response will also be all zeros. if offset is None: predicted_linear_response = tf.zeros_like( response, dtype, name='predicted_linear_response') else: predicted_linear_response = tf.broadcast_to( offset, tf.shape(input=response), name='predicted_linear_response') else: # We were given model_coefficients but not the predicted linear # response. predicted_linear_response = calculate_linear_predictor( model_matrix, model_coefficients, offset) else: predicted_linear_response = tf.convert_to_tensor( value=predicted_linear_response, dtype=dtype, name='predicted_linear_response') return [ model_matrix, response, model_coefficients, predicted_linear_response, offset, ]
[ "Helper", "to", "fit", "which", "sanitizes", "input", "args", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/glm/fisher_scoring.py#L517-L620
[ "def", "prepare_args", "(", "model_matrix", ",", "response", ",", "model_coefficients", ",", "predicted_linear_response", ",", "offset", ",", "name", "=", "None", ")", ":", "graph_deps", "=", "[", "model_matrix", ",", "response", ",", "model_coefficients", ",", "predicted_linear_response", ",", "offset", "]", "with", "tf", ".", "compat", ".", "v1", ".", "name_scope", "(", "name", ",", "'prepare_args'", ",", "graph_deps", ")", ":", "dtype", "=", "dtype_util", ".", "common_dtype", "(", "graph_deps", ",", "np", ".", "float32", ")", "model_matrix", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "model_matrix", ",", "dtype", "=", "dtype", ",", "name", "=", "'model_matrix'", ")", "if", "offset", "is", "not", "None", ":", "offset", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "offset", ",", "dtype", "=", "dtype", ",", "name", "=", "'offset'", ")", "response", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "response", ",", "dtype", "=", "dtype", ",", "name", "=", "'response'", ")", "use_default_model_coefficients", "=", "model_coefficients", "is", "None", "if", "use_default_model_coefficients", ":", "# User did not supply model coefficients; assume they're all zero.", "batch_shape", "=", "tf", ".", "shape", "(", "input", "=", "model_matrix", ")", "[", ":", "-", "2", "]", "num_columns", "=", "tf", ".", "shape", "(", "input", "=", "model_matrix", ")", "[", "-", "1", "]", "model_coefficients", "=", "tf", ".", "zeros", "(", "shape", "=", "tf", ".", "concat", "(", "[", "batch_shape", ",", "[", "num_columns", "]", "]", ",", "axis", "=", "0", ")", ",", "dtype", "=", "dtype", ",", "name", "=", "'model_coefficients'", ")", "else", ":", "# User did supply model coefficients; convert to Tensor in case it's", "# numpy or literal.", "model_coefficients", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "model_coefficients", ",", "dtype", "=", "dtype", ",", "name", "=", "'model_coefficients'", ")", "if", "predicted_linear_response", "is", "None", ":", "if", "use_default_model_coefficients", ":", "# Since we're using zeros for model_coefficients, we know the predicted", "# linear response will also be all zeros.", "if", "offset", "is", "None", ":", "predicted_linear_response", "=", "tf", ".", "zeros_like", "(", "response", ",", "dtype", ",", "name", "=", "'predicted_linear_response'", ")", "else", ":", "predicted_linear_response", "=", "tf", ".", "broadcast_to", "(", "offset", ",", "tf", ".", "shape", "(", "input", "=", "response", ")", ",", "name", "=", "'predicted_linear_response'", ")", "else", ":", "# We were given model_coefficients but not the predicted linear", "# response.", "predicted_linear_response", "=", "calculate_linear_predictor", "(", "model_matrix", ",", "model_coefficients", ",", "offset", ")", "else", ":", "predicted_linear_response", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "predicted_linear_response", ",", "dtype", "=", "dtype", ",", "name", "=", "'predicted_linear_response'", ")", "return", "[", "model_matrix", ",", "response", ",", "model_coefficients", ",", "predicted_linear_response", ",", "offset", ",", "]" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
calculate_linear_predictor
Computes `model_matrix @ model_coefficients + offset`.
tensorflow_probability/python/glm/fisher_scoring.py
def calculate_linear_predictor(model_matrix, model_coefficients, offset=None, name=None): """Computes `model_matrix @ model_coefficients + offset`.""" with tf.compat.v1.name_scope(name, 'calculate_linear_predictor', [model_matrix, model_coefficients, offset]): predicted_linear_response = tf.linalg.matvec(model_matrix, model_coefficients) if offset is not None: predicted_linear_response += offset return predicted_linear_response
def calculate_linear_predictor(model_matrix, model_coefficients, offset=None, name=None): """Computes `model_matrix @ model_coefficients + offset`.""" with tf.compat.v1.name_scope(name, 'calculate_linear_predictor', [model_matrix, model_coefficients, offset]): predicted_linear_response = tf.linalg.matvec(model_matrix, model_coefficients) if offset is not None: predicted_linear_response += offset return predicted_linear_response
[ "Computes", "model_matrix" ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/glm/fisher_scoring.py#L623-L632
[ "def", "calculate_linear_predictor", "(", "model_matrix", ",", "model_coefficients", ",", "offset", "=", "None", ",", "name", "=", "None", ")", ":", "with", "tf", ".", "compat", ".", "v1", ".", "name_scope", "(", "name", ",", "'calculate_linear_predictor'", ",", "[", "model_matrix", ",", "model_coefficients", ",", "offset", "]", ")", ":", "predicted_linear_response", "=", "tf", ".", "linalg", ".", "matvec", "(", "model_matrix", ",", "model_coefficients", ")", "if", "offset", "is", "not", "None", ":", "predicted_linear_response", "+=", "offset", "return", "predicted_linear_response" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
num_cols
Returns number of cols in a given `Tensor`.
tensorflow_probability/python/glm/fisher_scoring.py
def num_cols(x): """Returns number of cols in a given `Tensor`.""" if tf.compat.dimension_value(x.shape[-1]) is not None: return tf.compat.dimension_value(x.shape[-1]) return tf.shape(input=x)[-1]
def num_cols(x): """Returns number of cols in a given `Tensor`.""" if tf.compat.dimension_value(x.shape[-1]) is not None: return tf.compat.dimension_value(x.shape[-1]) return tf.shape(input=x)[-1]
[ "Returns", "number", "of", "cols", "in", "a", "given", "Tensor", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/glm/fisher_scoring.py#L635-L639
[ "def", "num_cols", "(", "x", ")", ":", "if", "tf", ".", "compat", ".", "dimension_value", "(", "x", ".", "shape", "[", "-", "1", "]", ")", "is", "not", "None", ":", "return", "tf", ".", "compat", ".", "dimension_value", "(", "x", ".", "shape", "[", "-", "1", "]", ")", "return", "tf", ".", "shape", "(", "input", "=", "x", ")", "[", "-", "1", "]" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
_prefer_static
Wraps original_fn, preferring to call static_fn when inputs are static.
tensorflow_probability/python/internal/prefer_static.py
def _prefer_static(original_fn, static_fn): """Wraps original_fn, preferring to call static_fn when inputs are static.""" original_spec = tf_inspect.getfullargspec(original_fn) static_spec = tf_inspect.getfullargspec(static_fn) if original_spec != static_spec: raise ValueError( 'Arg specs do not match: original={}, static={}, fn={}'.format( original_spec, static_spec, original_fn)) @decorator.decorator def wrap(wrapped_fn, *args, **kwargs): del wrapped_fn [args_, kwargs_], all_static = _maybe_get_static_args([args, kwargs]) if all_static: return static_fn(*args_, **kwargs_) return original_fn(*args, **kwargs) return wrap(original_fn)
def _prefer_static(original_fn, static_fn): """Wraps original_fn, preferring to call static_fn when inputs are static.""" original_spec = tf_inspect.getfullargspec(original_fn) static_spec = tf_inspect.getfullargspec(static_fn) if original_spec != static_spec: raise ValueError( 'Arg specs do not match: original={}, static={}, fn={}'.format( original_spec, static_spec, original_fn)) @decorator.decorator def wrap(wrapped_fn, *args, **kwargs): del wrapped_fn [args_, kwargs_], all_static = _maybe_get_static_args([args, kwargs]) if all_static: return static_fn(*args_, **kwargs_) return original_fn(*args, **kwargs) return wrap(original_fn)
[ "Wraps", "original_fn", "preferring", "to", "call", "static_fn", "when", "inputs", "are", "static", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/prefer_static.py#L41-L56
[ "def", "_prefer_static", "(", "original_fn", ",", "static_fn", ")", ":", "original_spec", "=", "tf_inspect", ".", "getfullargspec", "(", "original_fn", ")", "static_spec", "=", "tf_inspect", ".", "getfullargspec", "(", "static_fn", ")", "if", "original_spec", "!=", "static_spec", ":", "raise", "ValueError", "(", "'Arg specs do not match: original={}, static={}, fn={}'", ".", "format", "(", "original_spec", ",", "static_spec", ",", "original_fn", ")", ")", "@", "decorator", ".", "decorator", "def", "wrap", "(", "wrapped_fn", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "del", "wrapped_fn", "[", "args_", ",", "kwargs_", "]", ",", "all_static", "=", "_maybe_get_static_args", "(", "[", "args", ",", "kwargs", "]", ")", "if", "all_static", ":", "return", "static_fn", "(", "*", "args_", ",", "*", "*", "kwargs_", ")", "return", "original_fn", "(", "*", "args", ",", "*", "*", "kwargs", ")", "return", "wrap", "(", "original_fn", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
_copy_docstring
Wraps new_fn with the doc of original_fn.
tensorflow_probability/python/internal/prefer_static.py
def _copy_docstring(original_fn, new_fn): """Wraps new_fn with the doc of original_fn.""" original_spec = tf_inspect.getfullargspec(original_fn) new_spec = tf_inspect.getfullargspec(new_fn) if original_spec != new_spec: raise ValueError( 'Arg specs do not match: original={}, new={}, fn={}'.format( original_spec, new_spec, original_fn)) @decorator.decorator def wrap(wrapped_fn, *args, **kwargs): del wrapped_fn return new_fn(*args, **kwargs) return wrap(original_fn)
def _copy_docstring(original_fn, new_fn): """Wraps new_fn with the doc of original_fn.""" original_spec = tf_inspect.getfullargspec(original_fn) new_spec = tf_inspect.getfullargspec(new_fn) if original_spec != new_spec: raise ValueError( 'Arg specs do not match: original={}, new={}, fn={}'.format( original_spec, new_spec, original_fn)) @decorator.decorator def wrap(wrapped_fn, *args, **kwargs): del wrapped_fn return new_fn(*args, **kwargs) return wrap(original_fn)
[ "Wraps", "new_fn", "with", "the", "doc", "of", "original_fn", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/prefer_static.py#L59-L71
[ "def", "_copy_docstring", "(", "original_fn", ",", "new_fn", ")", ":", "original_spec", "=", "tf_inspect", ".", "getfullargspec", "(", "original_fn", ")", "new_spec", "=", "tf_inspect", ".", "getfullargspec", "(", "new_fn", ")", "if", "original_spec", "!=", "new_spec", ":", "raise", "ValueError", "(", "'Arg specs do not match: original={}, new={}, fn={}'", ".", "format", "(", "original_spec", ",", "new_spec", ",", "original_fn", ")", ")", "@", "decorator", ".", "decorator", "def", "wrap", "(", "wrapped_fn", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "del", "wrapped_fn", "return", "new_fn", "(", "*", "args", ",", "*", "*", "kwargs", ")", "return", "wrap", "(", "original_fn", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
_get_static_predicate
Helper function for statically evaluating predicates in `cond`.
tensorflow_probability/python/internal/prefer_static.py
def _get_static_predicate(pred): """Helper function for statically evaluating predicates in `cond`.""" if pred in {0, 1}: # Accept 1/0 as valid boolean values pred_value = bool(pred) elif isinstance(pred, bool): pred_value = pred elif isinstance(pred, tf.Tensor): pred_value = tf.get_static_value(pred) # TODO(jamieas): remove the dependency on `pywrap_tensorflow`. # pylint: disable=protected-access if pred_value is None: pred_value = c_api.TF_TryEvaluateConstant_wrapper(pred.graph._c_graph, pred._as_tf_output()) # pylint: enable=protected-access else: raise TypeError('`pred` must be a Tensor, or a Python bool, or 1 or 0. ' 'Found instead: {}'.format(pred)) return pred_value
def _get_static_predicate(pred): """Helper function for statically evaluating predicates in `cond`.""" if pred in {0, 1}: # Accept 1/0 as valid boolean values pred_value = bool(pred) elif isinstance(pred, bool): pred_value = pred elif isinstance(pred, tf.Tensor): pred_value = tf.get_static_value(pred) # TODO(jamieas): remove the dependency on `pywrap_tensorflow`. # pylint: disable=protected-access if pred_value is None: pred_value = c_api.TF_TryEvaluateConstant_wrapper(pred.graph._c_graph, pred._as_tf_output()) # pylint: enable=protected-access else: raise TypeError('`pred` must be a Tensor, or a Python bool, or 1 or 0. ' 'Found instead: {}'.format(pred)) return pred_value
[ "Helper", "function", "for", "statically", "evaluating", "predicates", "in", "cond", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/prefer_static.py#L78-L97
[ "def", "_get_static_predicate", "(", "pred", ")", ":", "if", "pred", "in", "{", "0", ",", "1", "}", ":", "# Accept 1/0 as valid boolean values", "pred_value", "=", "bool", "(", "pred", ")", "elif", "isinstance", "(", "pred", ",", "bool", ")", ":", "pred_value", "=", "pred", "elif", "isinstance", "(", "pred", ",", "tf", ".", "Tensor", ")", ":", "pred_value", "=", "tf", ".", "get_static_value", "(", "pred", ")", "# TODO(jamieas): remove the dependency on `pywrap_tensorflow`.", "# pylint: disable=protected-access", "if", "pred_value", "is", "None", ":", "pred_value", "=", "c_api", ".", "TF_TryEvaluateConstant_wrapper", "(", "pred", ".", "graph", ".", "_c_graph", ",", "pred", ".", "_as_tf_output", "(", ")", ")", "# pylint: enable=protected-access", "else", ":", "raise", "TypeError", "(", "'`pred` must be a Tensor, or a Python bool, or 1 or 0. '", "'Found instead: {}'", ".", "format", "(", "pred", ")", ")", "return", "pred_value" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
rank_from_shape
Computes `rank` given a `Tensor`'s `shape`.
tensorflow_probability/python/internal/prefer_static.py
def rank_from_shape(shape_tensor_fn, tensorshape=None): """Computes `rank` given a `Tensor`'s `shape`.""" if tensorshape is None: shape_tensor = (shape_tensor_fn() if callable(shape_tensor_fn) else shape_tensor_fn) if (hasattr(shape_tensor, 'shape') and hasattr(shape_tensor.shape, 'num_elements')): ndims_ = tensorshape_util.num_elements(shape_tensor.shape) else: ndims_ = len(shape_tensor) ndims_fn = lambda: tf.size(input=shape_tensor) else: ndims_ = tensorshape_util.rank(tensorshape) ndims_fn = lambda: tf.size(input=shape_tensor_fn() # pylint: disable=g-long-lambda if callable(shape_tensor_fn) else shape_tensor_fn) return ndims_fn() if ndims_ is None else ndims_
def rank_from_shape(shape_tensor_fn, tensorshape=None): """Computes `rank` given a `Tensor`'s `shape`.""" if tensorshape is None: shape_tensor = (shape_tensor_fn() if callable(shape_tensor_fn) else shape_tensor_fn) if (hasattr(shape_tensor, 'shape') and hasattr(shape_tensor.shape, 'num_elements')): ndims_ = tensorshape_util.num_elements(shape_tensor.shape) else: ndims_ = len(shape_tensor) ndims_fn = lambda: tf.size(input=shape_tensor) else: ndims_ = tensorshape_util.rank(tensorshape) ndims_fn = lambda: tf.size(input=shape_tensor_fn() # pylint: disable=g-long-lambda if callable(shape_tensor_fn) else shape_tensor_fn) return ndims_fn() if ndims_ is None else ndims_
[ "Computes", "rank", "given", "a", "Tensor", "s", "shape", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/prefer_static.py#L100-L117
[ "def", "rank_from_shape", "(", "shape_tensor_fn", ",", "tensorshape", "=", "None", ")", ":", "if", "tensorshape", "is", "None", ":", "shape_tensor", "=", "(", "shape_tensor_fn", "(", ")", "if", "callable", "(", "shape_tensor_fn", ")", "else", "shape_tensor_fn", ")", "if", "(", "hasattr", "(", "shape_tensor", ",", "'shape'", ")", "and", "hasattr", "(", "shape_tensor", ".", "shape", ",", "'num_elements'", ")", ")", ":", "ndims_", "=", "tensorshape_util", ".", "num_elements", "(", "shape_tensor", ".", "shape", ")", "else", ":", "ndims_", "=", "len", "(", "shape_tensor", ")", "ndims_fn", "=", "lambda", ":", "tf", ".", "size", "(", "input", "=", "shape_tensor", ")", "else", ":", "ndims_", "=", "tensorshape_util", ".", "rank", "(", "tensorshape", ")", "ndims_fn", "=", "lambda", ":", "tf", ".", "size", "(", "input", "=", "shape_tensor_fn", "(", ")", "# pylint: disable=g-long-lambda", "if", "callable", "(", "shape_tensor_fn", ")", "else", "shape_tensor_fn", ")", "return", "ndims_fn", "(", ")", "if", "ndims_", "is", "None", "else", "ndims_" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
cond
Return either `true_fn()` if predicate `pred` is true else `false_fn()`. If `pred` is a bool or has a constant value, we return either `true_fn()` or `false_fn()`, otherwise we use `tf.cond` to dynamically route to both. Arguments: pred: A scalar determining whether to return the result of `true_fn` or `false_fn`. true_fn: The callable to be performed if pred is true. false_fn: The callable to be performed if pred is false. name: Optional name prefix when using `tf.cond`. Returns: Tensors returned by the call to either `true_fn` or `false_fn`. Raises: TypeError: If `true_fn` or `false_fn` is not callable.
tensorflow_probability/python/internal/prefer_static.py
def cond(pred, true_fn=None, false_fn=None, name=None): """Return either `true_fn()` if predicate `pred` is true else `false_fn()`. If `pred` is a bool or has a constant value, we return either `true_fn()` or `false_fn()`, otherwise we use `tf.cond` to dynamically route to both. Arguments: pred: A scalar determining whether to return the result of `true_fn` or `false_fn`. true_fn: The callable to be performed if pred is true. false_fn: The callable to be performed if pred is false. name: Optional name prefix when using `tf.cond`. Returns: Tensors returned by the call to either `true_fn` or `false_fn`. Raises: TypeError: If `true_fn` or `false_fn` is not callable. """ if not callable(true_fn): raise TypeError('`true_fn` must be callable.') if not callable(false_fn): raise TypeError('`false_fn` must be callable.') pred_value = _get_static_predicate(pred) if pred_value is not None: if pred_value: return true_fn() else: return false_fn() else: return tf.cond(pred=pred, true_fn=true_fn, false_fn=false_fn, name=name)
def cond(pred, true_fn=None, false_fn=None, name=None): """Return either `true_fn()` if predicate `pred` is true else `false_fn()`. If `pred` is a bool or has a constant value, we return either `true_fn()` or `false_fn()`, otherwise we use `tf.cond` to dynamically route to both. Arguments: pred: A scalar determining whether to return the result of `true_fn` or `false_fn`. true_fn: The callable to be performed if pred is true. false_fn: The callable to be performed if pred is false. name: Optional name prefix when using `tf.cond`. Returns: Tensors returned by the call to either `true_fn` or `false_fn`. Raises: TypeError: If `true_fn` or `false_fn` is not callable. """ if not callable(true_fn): raise TypeError('`true_fn` must be callable.') if not callable(false_fn): raise TypeError('`false_fn` must be callable.') pred_value = _get_static_predicate(pred) if pred_value is not None: if pred_value: return true_fn() else: return false_fn() else: return tf.cond(pred=pred, true_fn=true_fn, false_fn=false_fn, name=name)
[ "Return", "either", "true_fn", "()", "if", "predicate", "pred", "is", "true", "else", "false_fn", "()", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/prefer_static.py#L120-L151
[ "def", "cond", "(", "pred", ",", "true_fn", "=", "None", ",", "false_fn", "=", "None", ",", "name", "=", "None", ")", ":", "if", "not", "callable", "(", "true_fn", ")", ":", "raise", "TypeError", "(", "'`true_fn` must be callable.'", ")", "if", "not", "callable", "(", "false_fn", ")", ":", "raise", "TypeError", "(", "'`false_fn` must be callable.'", ")", "pred_value", "=", "_get_static_predicate", "(", "pred", ")", "if", "pred_value", "is", "not", "None", ":", "if", "pred_value", ":", "return", "true_fn", "(", ")", "else", ":", "return", "false_fn", "(", ")", "else", ":", "return", "tf", ".", "cond", "(", "pred", "=", "pred", ",", "true_fn", "=", "true_fn", ",", "false_fn", "=", "false_fn", ",", "name", "=", "name", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
case
Like tf.case, except attempts to statically evaluate predicates. If any predicate in `pred_fn_pairs` is a bool or has a constant value, the associated callable will be called or omitted depending on its value. Otherwise this functions like tf.case. Args: pred_fn_pairs: Dict or list of pairs of a boolean scalar tensor and a callable which returns a list of tensors. default: Optional callable that returns a list of tensors. exclusive: True iff at most one predicate is allowed to evaluate to `True`. name: A name for this operation (optional). Returns: The tensors returned by the first pair whose predicate evaluated to True, or those returned by `default` if none does. Raises: TypeError: If `pred_fn_pairs` is not a list/dictionary. TypeError: If `pred_fn_pairs` is a list but does not contain 2-tuples. TypeError: If `fns[i]` is not callable for any i, or `default` is not callable.
tensorflow_probability/python/internal/prefer_static.py
def case(pred_fn_pairs, default=None, exclusive=False, name='smart_case'): """Like tf.case, except attempts to statically evaluate predicates. If any predicate in `pred_fn_pairs` is a bool or has a constant value, the associated callable will be called or omitted depending on its value. Otherwise this functions like tf.case. Args: pred_fn_pairs: Dict or list of pairs of a boolean scalar tensor and a callable which returns a list of tensors. default: Optional callable that returns a list of tensors. exclusive: True iff at most one predicate is allowed to evaluate to `True`. name: A name for this operation (optional). Returns: The tensors returned by the first pair whose predicate evaluated to True, or those returned by `default` if none does. Raises: TypeError: If `pred_fn_pairs` is not a list/dictionary. TypeError: If `pred_fn_pairs` is a list but does not contain 2-tuples. TypeError: If `fns[i]` is not callable for any i, or `default` is not callable. """ return control_flow_ops._case_helper( # pylint: disable=protected-access cond, pred_fn_pairs, default, exclusive, name, allow_python_preds=True)
def case(pred_fn_pairs, default=None, exclusive=False, name='smart_case'): """Like tf.case, except attempts to statically evaluate predicates. If any predicate in `pred_fn_pairs` is a bool or has a constant value, the associated callable will be called or omitted depending on its value. Otherwise this functions like tf.case. Args: pred_fn_pairs: Dict or list of pairs of a boolean scalar tensor and a callable which returns a list of tensors. default: Optional callable that returns a list of tensors. exclusive: True iff at most one predicate is allowed to evaluate to `True`. name: A name for this operation (optional). Returns: The tensors returned by the first pair whose predicate evaluated to True, or those returned by `default` if none does. Raises: TypeError: If `pred_fn_pairs` is not a list/dictionary. TypeError: If `pred_fn_pairs` is a list but does not contain 2-tuples. TypeError: If `fns[i]` is not callable for any i, or `default` is not callable. """ return control_flow_ops._case_helper( # pylint: disable=protected-access cond, pred_fn_pairs, default, exclusive, name, allow_python_preds=True)
[ "Like", "tf", ".", "case", "except", "attempts", "to", "statically", "evaluate", "predicates", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/prefer_static.py#L154-L179
[ "def", "case", "(", "pred_fn_pairs", ",", "default", "=", "None", ",", "exclusive", "=", "False", ",", "name", "=", "'smart_case'", ")", ":", "return", "control_flow_ops", ".", "_case_helper", "(", "# pylint: disable=protected-access", "cond", ",", "pred_fn_pairs", ",", "default", ",", "exclusive", ",", "name", ",", "allow_python_preds", "=", "True", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
ExponentialFamily.log_prob
Computes `D(param=mean(r)).log_prob(response)` for linear response, `r`. Args: response: `float`-like `Tensor` representing observed ("actual") responses. predicted_linear_response: `float`-like `Tensor` corresponding to `tf.matmul(model_matrix, weights)`. name: Python `str` used as TF namescope for ops created by member functions. Default value: `None` (i.e., 'log_prob'). Returns: log_prob: `Tensor` with shape and dtype of `predicted_linear_response` representing the distribution prescribed log-probability of the observed `response`s.
tensorflow_probability/python/glm/family.py
def log_prob(self, response, predicted_linear_response, name=None): """Computes `D(param=mean(r)).log_prob(response)` for linear response, `r`. Args: response: `float`-like `Tensor` representing observed ("actual") responses. predicted_linear_response: `float`-like `Tensor` corresponding to `tf.matmul(model_matrix, weights)`. name: Python `str` used as TF namescope for ops created by member functions. Default value: `None` (i.e., 'log_prob'). Returns: log_prob: `Tensor` with shape and dtype of `predicted_linear_response` representing the distribution prescribed log-probability of the observed `response`s. """ with self._name_scope( name, 'log_prob', [response, predicted_linear_response]): dtype = dtype_util.common_dtype([response, predicted_linear_response]) response = tf.convert_to_tensor( value=response, dtype=dtype, name='response') predicted_linear_response = tf.convert_to_tensor( value=predicted_linear_response, name='predicted_linear_response') return self._log_prob(response, predicted_linear_response)
def log_prob(self, response, predicted_linear_response, name=None): """Computes `D(param=mean(r)).log_prob(response)` for linear response, `r`. Args: response: `float`-like `Tensor` representing observed ("actual") responses. predicted_linear_response: `float`-like `Tensor` corresponding to `tf.matmul(model_matrix, weights)`. name: Python `str` used as TF namescope for ops created by member functions. Default value: `None` (i.e., 'log_prob'). Returns: log_prob: `Tensor` with shape and dtype of `predicted_linear_response` representing the distribution prescribed log-probability of the observed `response`s. """ with self._name_scope( name, 'log_prob', [response, predicted_linear_response]): dtype = dtype_util.common_dtype([response, predicted_linear_response]) response = tf.convert_to_tensor( value=response, dtype=dtype, name='response') predicted_linear_response = tf.convert_to_tensor( value=predicted_linear_response, name='predicted_linear_response') return self._log_prob(response, predicted_linear_response)
[ "Computes", "D", "(", "param", "=", "mean", "(", "r", "))", ".", "log_prob", "(", "response", ")", "for", "linear", "response", "r", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/glm/family.py#L137-L161
[ "def", "log_prob", "(", "self", ",", "response", ",", "predicted_linear_response", ",", "name", "=", "None", ")", ":", "with", "self", ".", "_name_scope", "(", "name", ",", "'log_prob'", ",", "[", "response", ",", "predicted_linear_response", "]", ")", ":", "dtype", "=", "dtype_util", ".", "common_dtype", "(", "[", "response", ",", "predicted_linear_response", "]", ")", "response", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "response", ",", "dtype", "=", "dtype", ",", "name", "=", "'response'", ")", "predicted_linear_response", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "predicted_linear_response", ",", "name", "=", "'predicted_linear_response'", ")", "return", "self", ".", "_log_prob", "(", "response", ",", "predicted_linear_response", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
ExponentialFamily._name_scope
Helper function to standardize op scope.
tensorflow_probability/python/glm/family.py
def _name_scope(self, name=None, default_name=None, values=None): """Helper function to standardize op scope.""" with tf.compat.v1.name_scope(self.name): with tf.compat.v1.name_scope( name, default_name, values=values or []) as scope: yield scope
def _name_scope(self, name=None, default_name=None, values=None): """Helper function to standardize op scope.""" with tf.compat.v1.name_scope(self.name): with tf.compat.v1.name_scope( name, default_name, values=values or []) as scope: yield scope
[ "Helper", "function", "to", "standardize", "op", "scope", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/glm/family.py#L174-L179
[ "def", "_name_scope", "(", "self", ",", "name", "=", "None", ",", "default_name", "=", "None", ",", "values", "=", "None", ")", ":", "with", "tf", ".", "compat", ".", "v1", ".", "name_scope", "(", "self", ".", "name", ")", ":", "with", "tf", ".", "compat", ".", "v1", ".", "name_scope", "(", "name", ",", "default_name", ",", "values", "=", "values", "or", "[", "]", ")", "as", "scope", ":", "yield", "scope" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
mixture_stddev
Computes the standard deviation of a mixture distribution. This function works regardless of the component distribution, so long as each component's mean and standard deviation can be provided. Args: mixture_weight_vector: A 2D tensor with shape [batch_size, num_components] mean_vector: A 2D tensor of mixture component means. Has shape `[batch_size, num_components]`. stddev_vector: A 2D tensor of mixture component standard deviations. Has shape `[batch_size, num_components]`. Returns: A 1D tensor of shape `[batch_size]` representing the standard deviation of the mixture distribution with given weights and component means and standard deviations. Raises: ValueError: If the shapes of the input tensors are not as expected.
tensorflow_probability/python/internal/distribution_util.py
def mixture_stddev(mixture_weight_vector, mean_vector, stddev_vector): """Computes the standard deviation of a mixture distribution. This function works regardless of the component distribution, so long as each component's mean and standard deviation can be provided. Args: mixture_weight_vector: A 2D tensor with shape [batch_size, num_components] mean_vector: A 2D tensor of mixture component means. Has shape `[batch_size, num_components]`. stddev_vector: A 2D tensor of mixture component standard deviations. Has shape `[batch_size, num_components]`. Returns: A 1D tensor of shape `[batch_size]` representing the standard deviation of the mixture distribution with given weights and component means and standard deviations. Raises: ValueError: If the shapes of the input tensors are not as expected. """ tensorshape_util.assert_has_rank(mixture_weight_vector.shape, 2) if not tensorshape_util.is_compatible_with(mean_vector.shape, mixture_weight_vector.shape): raise ValueError("Expecting means to have same shape as mixture weights.") if not tensorshape_util.is_compatible_with(stddev_vector.shape, mixture_weight_vector.shape): raise ValueError("Expecting stddevs to have same shape as mixture weights.") # Reshape the distribution parameters for batched vectorized dot products. pi_for_dot_prod = tf.expand_dims(mixture_weight_vector, axis=1) mu_for_dot_prod = tf.expand_dims(mean_vector, axis=2) sigma_for_dot_prod = tf.expand_dims(stddev_vector, axis=2) # weighted average of component means under mixture distribution. mean_wa = tf.matmul(pi_for_dot_prod, mu_for_dot_prod) mean_wa = tf.reshape(mean_wa, (-1,)) # weighted average of component variances under mixture distribution. var_wa = tf.matmul(pi_for_dot_prod, tf.square(sigma_for_dot_prod)) var_wa = tf.reshape(var_wa, (-1,)) # weighted average of component squared means under mixture distribution. sq_mean_wa = tf.matmul(pi_for_dot_prod, tf.square(mu_for_dot_prod)) sq_mean_wa = tf.reshape(sq_mean_wa, (-1,)) mixture_variance = var_wa + sq_mean_wa - tf.square(mean_wa) return tf.sqrt(mixture_variance)
def mixture_stddev(mixture_weight_vector, mean_vector, stddev_vector): """Computes the standard deviation of a mixture distribution. This function works regardless of the component distribution, so long as each component's mean and standard deviation can be provided. Args: mixture_weight_vector: A 2D tensor with shape [batch_size, num_components] mean_vector: A 2D tensor of mixture component means. Has shape `[batch_size, num_components]`. stddev_vector: A 2D tensor of mixture component standard deviations. Has shape `[batch_size, num_components]`. Returns: A 1D tensor of shape `[batch_size]` representing the standard deviation of the mixture distribution with given weights and component means and standard deviations. Raises: ValueError: If the shapes of the input tensors are not as expected. """ tensorshape_util.assert_has_rank(mixture_weight_vector.shape, 2) if not tensorshape_util.is_compatible_with(mean_vector.shape, mixture_weight_vector.shape): raise ValueError("Expecting means to have same shape as mixture weights.") if not tensorshape_util.is_compatible_with(stddev_vector.shape, mixture_weight_vector.shape): raise ValueError("Expecting stddevs to have same shape as mixture weights.") # Reshape the distribution parameters for batched vectorized dot products. pi_for_dot_prod = tf.expand_dims(mixture_weight_vector, axis=1) mu_for_dot_prod = tf.expand_dims(mean_vector, axis=2) sigma_for_dot_prod = tf.expand_dims(stddev_vector, axis=2) # weighted average of component means under mixture distribution. mean_wa = tf.matmul(pi_for_dot_prod, mu_for_dot_prod) mean_wa = tf.reshape(mean_wa, (-1,)) # weighted average of component variances under mixture distribution. var_wa = tf.matmul(pi_for_dot_prod, tf.square(sigma_for_dot_prod)) var_wa = tf.reshape(var_wa, (-1,)) # weighted average of component squared means under mixture distribution. sq_mean_wa = tf.matmul(pi_for_dot_prod, tf.square(mu_for_dot_prod)) sq_mean_wa = tf.reshape(sq_mean_wa, (-1,)) mixture_variance = var_wa + sq_mean_wa - tf.square(mean_wa) return tf.sqrt(mixture_variance)
[ "Computes", "the", "standard", "deviation", "of", "a", "mixture", "distribution", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L39-L82
[ "def", "mixture_stddev", "(", "mixture_weight_vector", ",", "mean_vector", ",", "stddev_vector", ")", ":", "tensorshape_util", ".", "assert_has_rank", "(", "mixture_weight_vector", ".", "shape", ",", "2", ")", "if", "not", "tensorshape_util", ".", "is_compatible_with", "(", "mean_vector", ".", "shape", ",", "mixture_weight_vector", ".", "shape", ")", ":", "raise", "ValueError", "(", "\"Expecting means to have same shape as mixture weights.\"", ")", "if", "not", "tensorshape_util", ".", "is_compatible_with", "(", "stddev_vector", ".", "shape", ",", "mixture_weight_vector", ".", "shape", ")", ":", "raise", "ValueError", "(", "\"Expecting stddevs to have same shape as mixture weights.\"", ")", "# Reshape the distribution parameters for batched vectorized dot products.", "pi_for_dot_prod", "=", "tf", ".", "expand_dims", "(", "mixture_weight_vector", ",", "axis", "=", "1", ")", "mu_for_dot_prod", "=", "tf", ".", "expand_dims", "(", "mean_vector", ",", "axis", "=", "2", ")", "sigma_for_dot_prod", "=", "tf", ".", "expand_dims", "(", "stddev_vector", ",", "axis", "=", "2", ")", "# weighted average of component means under mixture distribution.", "mean_wa", "=", "tf", ".", "matmul", "(", "pi_for_dot_prod", ",", "mu_for_dot_prod", ")", "mean_wa", "=", "tf", ".", "reshape", "(", "mean_wa", ",", "(", "-", "1", ",", ")", ")", "# weighted average of component variances under mixture distribution.", "var_wa", "=", "tf", ".", "matmul", "(", "pi_for_dot_prod", ",", "tf", ".", "square", "(", "sigma_for_dot_prod", ")", ")", "var_wa", "=", "tf", ".", "reshape", "(", "var_wa", ",", "(", "-", "1", ",", ")", ")", "# weighted average of component squared means under mixture distribution.", "sq_mean_wa", "=", "tf", ".", "matmul", "(", "pi_for_dot_prod", ",", "tf", ".", "square", "(", "mu_for_dot_prod", ")", ")", "sq_mean_wa", "=", "tf", ".", "reshape", "(", "sq_mean_wa", ",", "(", "-", "1", ",", ")", ")", "mixture_variance", "=", "var_wa", "+", "sq_mean_wa", "-", "tf", ".", "square", "(", "mean_wa", ")", "return", "tf", ".", "sqrt", "(", "mixture_variance", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
make_tril_scale
Creates a LinearOperator representing a lower triangular matrix. Args: loc: Floating-point `Tensor`. This is used for inferring shape in the case where only `scale_identity_multiplier` is set. scale_tril: Floating-point `Tensor` representing the diagonal matrix. `scale_diag` has shape [N1, N2, ... k, k], which represents a k x k lower triangular matrix. When `None` no `scale_tril` term is added to the LinearOperator. The upper triangular elements above the diagonal are ignored. scale_diag: Floating-point `Tensor` representing the diagonal matrix. `scale_diag` has shape [N1, N2, ... k], which represents a k x k diagonal matrix. When `None` no diagonal term is added to the LinearOperator. scale_identity_multiplier: floating point rank 0 `Tensor` representing a scaling done to the identity matrix. When `scale_identity_multiplier = scale_diag = scale_tril = None` then `scale += IdentityMatrix`. Otherwise no scaled-identity-matrix is added to `scale`. shape_hint: scalar integer `Tensor` representing a hint at the dimension of the identity matrix when only `scale_identity_multiplier` is set. validate_args: Python `bool` indicating whether arguments should be checked for correctness. assert_positive: Python `bool` indicating whether LinearOperator should be checked for being positive definite. name: Python `str` name given to ops managed by this object. Returns: `LinearOperator` representing a lower triangular matrix. Raises: ValueError: If only `scale_identity_multiplier` is set and `loc` and `shape_hint` are both None.
tensorflow_probability/python/internal/distribution_util.py
def make_tril_scale(loc=None, scale_tril=None, scale_diag=None, scale_identity_multiplier=None, shape_hint=None, validate_args=False, assert_positive=False, name=None): """Creates a LinearOperator representing a lower triangular matrix. Args: loc: Floating-point `Tensor`. This is used for inferring shape in the case where only `scale_identity_multiplier` is set. scale_tril: Floating-point `Tensor` representing the diagonal matrix. `scale_diag` has shape [N1, N2, ... k, k], which represents a k x k lower triangular matrix. When `None` no `scale_tril` term is added to the LinearOperator. The upper triangular elements above the diagonal are ignored. scale_diag: Floating-point `Tensor` representing the diagonal matrix. `scale_diag` has shape [N1, N2, ... k], which represents a k x k diagonal matrix. When `None` no diagonal term is added to the LinearOperator. scale_identity_multiplier: floating point rank 0 `Tensor` representing a scaling done to the identity matrix. When `scale_identity_multiplier = scale_diag = scale_tril = None` then `scale += IdentityMatrix`. Otherwise no scaled-identity-matrix is added to `scale`. shape_hint: scalar integer `Tensor` representing a hint at the dimension of the identity matrix when only `scale_identity_multiplier` is set. validate_args: Python `bool` indicating whether arguments should be checked for correctness. assert_positive: Python `bool` indicating whether LinearOperator should be checked for being positive definite. name: Python `str` name given to ops managed by this object. Returns: `LinearOperator` representing a lower triangular matrix. Raises: ValueError: If only `scale_identity_multiplier` is set and `loc` and `shape_hint` are both None. """ def _maybe_attach_assertion(x): if not validate_args: return x if assert_positive: return with_dependencies([ assert_util.assert_positive( tf.linalg.diag_part(x), message="diagonal part must be positive"), ], x) return with_dependencies([ assert_util.assert_none_equal( tf.linalg.diag_part(x), tf.zeros([], x.dtype), message="diagonal part must be non-zero"), ], x) with tf.name_scope(name or "make_tril_scale"): dtype = dtype_util.common_dtype( [loc, scale_tril, scale_diag, scale_identity_multiplier], preferred_dtype=tf.float32) loc = _convert_to_tensor(loc, name="loc", dtype=dtype) scale_tril = _convert_to_tensor(scale_tril, name="scale_tril", dtype=dtype) scale_diag = _convert_to_tensor(scale_diag, name="scale_diag", dtype=dtype) scale_identity_multiplier = _convert_to_tensor( scale_identity_multiplier, name="scale_identity_multiplier", dtype=dtype) if scale_tril is not None: scale_tril = tf.linalg.band_part(scale_tril, -1, 0) # Zero out TriU. tril_diag = tf.linalg.diag_part(scale_tril) if scale_diag is not None: tril_diag += scale_diag if scale_identity_multiplier is not None: tril_diag += scale_identity_multiplier[..., tf.newaxis] scale_tril = tf.linalg.set_diag(scale_tril, tril_diag) return tf.linalg.LinearOperatorLowerTriangular( tril=_maybe_attach_assertion(scale_tril), is_non_singular=True, is_self_adjoint=False, is_positive_definite=assert_positive) return make_diag_scale( loc=loc, scale_diag=scale_diag, scale_identity_multiplier=scale_identity_multiplier, shape_hint=shape_hint, validate_args=validate_args, assert_positive=assert_positive, name=name)
def make_tril_scale(loc=None, scale_tril=None, scale_diag=None, scale_identity_multiplier=None, shape_hint=None, validate_args=False, assert_positive=False, name=None): """Creates a LinearOperator representing a lower triangular matrix. Args: loc: Floating-point `Tensor`. This is used for inferring shape in the case where only `scale_identity_multiplier` is set. scale_tril: Floating-point `Tensor` representing the diagonal matrix. `scale_diag` has shape [N1, N2, ... k, k], which represents a k x k lower triangular matrix. When `None` no `scale_tril` term is added to the LinearOperator. The upper triangular elements above the diagonal are ignored. scale_diag: Floating-point `Tensor` representing the diagonal matrix. `scale_diag` has shape [N1, N2, ... k], which represents a k x k diagonal matrix. When `None` no diagonal term is added to the LinearOperator. scale_identity_multiplier: floating point rank 0 `Tensor` representing a scaling done to the identity matrix. When `scale_identity_multiplier = scale_diag = scale_tril = None` then `scale += IdentityMatrix`. Otherwise no scaled-identity-matrix is added to `scale`. shape_hint: scalar integer `Tensor` representing a hint at the dimension of the identity matrix when only `scale_identity_multiplier` is set. validate_args: Python `bool` indicating whether arguments should be checked for correctness. assert_positive: Python `bool` indicating whether LinearOperator should be checked for being positive definite. name: Python `str` name given to ops managed by this object. Returns: `LinearOperator` representing a lower triangular matrix. Raises: ValueError: If only `scale_identity_multiplier` is set and `loc` and `shape_hint` are both None. """ def _maybe_attach_assertion(x): if not validate_args: return x if assert_positive: return with_dependencies([ assert_util.assert_positive( tf.linalg.diag_part(x), message="diagonal part must be positive"), ], x) return with_dependencies([ assert_util.assert_none_equal( tf.linalg.diag_part(x), tf.zeros([], x.dtype), message="diagonal part must be non-zero"), ], x) with tf.name_scope(name or "make_tril_scale"): dtype = dtype_util.common_dtype( [loc, scale_tril, scale_diag, scale_identity_multiplier], preferred_dtype=tf.float32) loc = _convert_to_tensor(loc, name="loc", dtype=dtype) scale_tril = _convert_to_tensor(scale_tril, name="scale_tril", dtype=dtype) scale_diag = _convert_to_tensor(scale_diag, name="scale_diag", dtype=dtype) scale_identity_multiplier = _convert_to_tensor( scale_identity_multiplier, name="scale_identity_multiplier", dtype=dtype) if scale_tril is not None: scale_tril = tf.linalg.band_part(scale_tril, -1, 0) # Zero out TriU. tril_diag = tf.linalg.diag_part(scale_tril) if scale_diag is not None: tril_diag += scale_diag if scale_identity_multiplier is not None: tril_diag += scale_identity_multiplier[..., tf.newaxis] scale_tril = tf.linalg.set_diag(scale_tril, tril_diag) return tf.linalg.LinearOperatorLowerTriangular( tril=_maybe_attach_assertion(scale_tril), is_non_singular=True, is_self_adjoint=False, is_positive_definite=assert_positive) return make_diag_scale( loc=loc, scale_diag=scale_diag, scale_identity_multiplier=scale_identity_multiplier, shape_hint=shape_hint, validate_args=validate_args, assert_positive=assert_positive, name=name)
[ "Creates", "a", "LinearOperator", "representing", "a", "lower", "triangular", "matrix", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L85-L177
[ "def", "make_tril_scale", "(", "loc", "=", "None", ",", "scale_tril", "=", "None", ",", "scale_diag", "=", "None", ",", "scale_identity_multiplier", "=", "None", ",", "shape_hint", "=", "None", ",", "validate_args", "=", "False", ",", "assert_positive", "=", "False", ",", "name", "=", "None", ")", ":", "def", "_maybe_attach_assertion", "(", "x", ")", ":", "if", "not", "validate_args", ":", "return", "x", "if", "assert_positive", ":", "return", "with_dependencies", "(", "[", "assert_util", ".", "assert_positive", "(", "tf", ".", "linalg", ".", "diag_part", "(", "x", ")", ",", "message", "=", "\"diagonal part must be positive\"", ")", ",", "]", ",", "x", ")", "return", "with_dependencies", "(", "[", "assert_util", ".", "assert_none_equal", "(", "tf", ".", "linalg", ".", "diag_part", "(", "x", ")", ",", "tf", ".", "zeros", "(", "[", "]", ",", "x", ".", "dtype", ")", ",", "message", "=", "\"diagonal part must be non-zero\"", ")", ",", "]", ",", "x", ")", "with", "tf", ".", "name_scope", "(", "name", "or", "\"make_tril_scale\"", ")", ":", "dtype", "=", "dtype_util", ".", "common_dtype", "(", "[", "loc", ",", "scale_tril", ",", "scale_diag", ",", "scale_identity_multiplier", "]", ",", "preferred_dtype", "=", "tf", ".", "float32", ")", "loc", "=", "_convert_to_tensor", "(", "loc", ",", "name", "=", "\"loc\"", ",", "dtype", "=", "dtype", ")", "scale_tril", "=", "_convert_to_tensor", "(", "scale_tril", ",", "name", "=", "\"scale_tril\"", ",", "dtype", "=", "dtype", ")", "scale_diag", "=", "_convert_to_tensor", "(", "scale_diag", ",", "name", "=", "\"scale_diag\"", ",", "dtype", "=", "dtype", ")", "scale_identity_multiplier", "=", "_convert_to_tensor", "(", "scale_identity_multiplier", ",", "name", "=", "\"scale_identity_multiplier\"", ",", "dtype", "=", "dtype", ")", "if", "scale_tril", "is", "not", "None", ":", "scale_tril", "=", "tf", ".", "linalg", ".", "band_part", "(", "scale_tril", ",", "-", "1", ",", "0", ")", "# Zero out TriU.", "tril_diag", "=", "tf", ".", "linalg", ".", "diag_part", "(", "scale_tril", ")", "if", "scale_diag", "is", "not", "None", ":", "tril_diag", "+=", "scale_diag", "if", "scale_identity_multiplier", "is", "not", "None", ":", "tril_diag", "+=", "scale_identity_multiplier", "[", "...", ",", "tf", ".", "newaxis", "]", "scale_tril", "=", "tf", ".", "linalg", ".", "set_diag", "(", "scale_tril", ",", "tril_diag", ")", "return", "tf", ".", "linalg", ".", "LinearOperatorLowerTriangular", "(", "tril", "=", "_maybe_attach_assertion", "(", "scale_tril", ")", ",", "is_non_singular", "=", "True", ",", "is_self_adjoint", "=", "False", ",", "is_positive_definite", "=", "assert_positive", ")", "return", "make_diag_scale", "(", "loc", "=", "loc", ",", "scale_diag", "=", "scale_diag", ",", "scale_identity_multiplier", "=", "scale_identity_multiplier", ",", "shape_hint", "=", "shape_hint", ",", "validate_args", "=", "validate_args", ",", "assert_positive", "=", "assert_positive", ",", "name", "=", "name", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
make_diag_scale
Creates a LinearOperator representing a diagonal matrix. Args: loc: Floating-point `Tensor`. This is used for inferring shape in the case where only `scale_identity_multiplier` is set. scale_diag: Floating-point `Tensor` representing the diagonal matrix. `scale_diag` has shape [N1, N2, ... k], which represents a k x k diagonal matrix. When `None` no diagonal term is added to the LinearOperator. scale_identity_multiplier: floating point rank 0 `Tensor` representing a scaling done to the identity matrix. When `scale_identity_multiplier = scale_diag = scale_tril = None` then `scale += IdentityMatrix`. Otherwise no scaled-identity-matrix is added to `scale`. shape_hint: scalar integer `Tensor` representing a hint at the dimension of the identity matrix when only `scale_identity_multiplier` is set. validate_args: Python `bool` indicating whether arguments should be checked for correctness. assert_positive: Python `bool` indicating whether LinearOperator should be checked for being positive definite. name: Python `str` name given to ops managed by this object. dtype: TF `DType` to prefer when converting args to `Tensor`s. Else, we fall back to a compatible dtype across all of `loc`, `scale_diag`, and `scale_identity_multiplier`. Returns: `LinearOperator` representing a lower triangular matrix. Raises: ValueError: If only `scale_identity_multiplier` is set and `loc` and `shape_hint` are both None.
tensorflow_probability/python/internal/distribution_util.py
def make_diag_scale(loc=None, scale_diag=None, scale_identity_multiplier=None, shape_hint=None, validate_args=False, assert_positive=False, name=None, dtype=None): """Creates a LinearOperator representing a diagonal matrix. Args: loc: Floating-point `Tensor`. This is used for inferring shape in the case where only `scale_identity_multiplier` is set. scale_diag: Floating-point `Tensor` representing the diagonal matrix. `scale_diag` has shape [N1, N2, ... k], which represents a k x k diagonal matrix. When `None` no diagonal term is added to the LinearOperator. scale_identity_multiplier: floating point rank 0 `Tensor` representing a scaling done to the identity matrix. When `scale_identity_multiplier = scale_diag = scale_tril = None` then `scale += IdentityMatrix`. Otherwise no scaled-identity-matrix is added to `scale`. shape_hint: scalar integer `Tensor` representing a hint at the dimension of the identity matrix when only `scale_identity_multiplier` is set. validate_args: Python `bool` indicating whether arguments should be checked for correctness. assert_positive: Python `bool` indicating whether LinearOperator should be checked for being positive definite. name: Python `str` name given to ops managed by this object. dtype: TF `DType` to prefer when converting args to `Tensor`s. Else, we fall back to a compatible dtype across all of `loc`, `scale_diag`, and `scale_identity_multiplier`. Returns: `LinearOperator` representing a lower triangular matrix. Raises: ValueError: If only `scale_identity_multiplier` is set and `loc` and `shape_hint` are both None. """ def _maybe_attach_assertion(x): if not validate_args: return x if assert_positive: return with_dependencies([ assert_util.assert_positive( x, message="diagonal part must be positive"), ], x) return with_dependencies([ assert_util.assert_none_equal( x, tf.zeros([], x.dtype), message="diagonal part must be non-zero") ], x) with tf.name_scope(name or "make_diag_scale"): if dtype is None: dtype = dtype_util.common_dtype( [loc, scale_diag, scale_identity_multiplier], preferred_dtype=tf.float32) loc = _convert_to_tensor(loc, name="loc", dtype=dtype) scale_diag = _convert_to_tensor(scale_diag, name="scale_diag", dtype=dtype) scale_identity_multiplier = _convert_to_tensor( scale_identity_multiplier, name="scale_identity_multiplier", dtype=dtype) if scale_diag is not None: if scale_identity_multiplier is not None: scale_diag += scale_identity_multiplier[..., tf.newaxis] return tf.linalg.LinearOperatorDiag( diag=_maybe_attach_assertion(scale_diag), is_non_singular=True, is_self_adjoint=True, is_positive_definite=assert_positive) if loc is None and shape_hint is None: raise ValueError("Cannot infer `event_shape` unless `loc` or " "`shape_hint` is specified.") num_rows = shape_hint del shape_hint if num_rows is None: num_rows = tf.compat.dimension_value(loc.shape[-1]) if num_rows is None: num_rows = tf.shape(input=loc)[-1] if scale_identity_multiplier is None: return tf.linalg.LinearOperatorIdentity( num_rows=num_rows, dtype=dtype, is_self_adjoint=True, is_positive_definite=True, assert_proper_shapes=validate_args) return tf.linalg.LinearOperatorScaledIdentity( num_rows=num_rows, multiplier=_maybe_attach_assertion(scale_identity_multiplier), is_non_singular=True, is_self_adjoint=True, is_positive_definite=assert_positive, assert_proper_shapes=validate_args)
def make_diag_scale(loc=None, scale_diag=None, scale_identity_multiplier=None, shape_hint=None, validate_args=False, assert_positive=False, name=None, dtype=None): """Creates a LinearOperator representing a diagonal matrix. Args: loc: Floating-point `Tensor`. This is used for inferring shape in the case where only `scale_identity_multiplier` is set. scale_diag: Floating-point `Tensor` representing the diagonal matrix. `scale_diag` has shape [N1, N2, ... k], which represents a k x k diagonal matrix. When `None` no diagonal term is added to the LinearOperator. scale_identity_multiplier: floating point rank 0 `Tensor` representing a scaling done to the identity matrix. When `scale_identity_multiplier = scale_diag = scale_tril = None` then `scale += IdentityMatrix`. Otherwise no scaled-identity-matrix is added to `scale`. shape_hint: scalar integer `Tensor` representing a hint at the dimension of the identity matrix when only `scale_identity_multiplier` is set. validate_args: Python `bool` indicating whether arguments should be checked for correctness. assert_positive: Python `bool` indicating whether LinearOperator should be checked for being positive definite. name: Python `str` name given to ops managed by this object. dtype: TF `DType` to prefer when converting args to `Tensor`s. Else, we fall back to a compatible dtype across all of `loc`, `scale_diag`, and `scale_identity_multiplier`. Returns: `LinearOperator` representing a lower triangular matrix. Raises: ValueError: If only `scale_identity_multiplier` is set and `loc` and `shape_hint` are both None. """ def _maybe_attach_assertion(x): if not validate_args: return x if assert_positive: return with_dependencies([ assert_util.assert_positive( x, message="diagonal part must be positive"), ], x) return with_dependencies([ assert_util.assert_none_equal( x, tf.zeros([], x.dtype), message="diagonal part must be non-zero") ], x) with tf.name_scope(name or "make_diag_scale"): if dtype is None: dtype = dtype_util.common_dtype( [loc, scale_diag, scale_identity_multiplier], preferred_dtype=tf.float32) loc = _convert_to_tensor(loc, name="loc", dtype=dtype) scale_diag = _convert_to_tensor(scale_diag, name="scale_diag", dtype=dtype) scale_identity_multiplier = _convert_to_tensor( scale_identity_multiplier, name="scale_identity_multiplier", dtype=dtype) if scale_diag is not None: if scale_identity_multiplier is not None: scale_diag += scale_identity_multiplier[..., tf.newaxis] return tf.linalg.LinearOperatorDiag( diag=_maybe_attach_assertion(scale_diag), is_non_singular=True, is_self_adjoint=True, is_positive_definite=assert_positive) if loc is None and shape_hint is None: raise ValueError("Cannot infer `event_shape` unless `loc` or " "`shape_hint` is specified.") num_rows = shape_hint del shape_hint if num_rows is None: num_rows = tf.compat.dimension_value(loc.shape[-1]) if num_rows is None: num_rows = tf.shape(input=loc)[-1] if scale_identity_multiplier is None: return tf.linalg.LinearOperatorIdentity( num_rows=num_rows, dtype=dtype, is_self_adjoint=True, is_positive_definite=True, assert_proper_shapes=validate_args) return tf.linalg.LinearOperatorScaledIdentity( num_rows=num_rows, multiplier=_maybe_attach_assertion(scale_identity_multiplier), is_non_singular=True, is_self_adjoint=True, is_positive_definite=assert_positive, assert_proper_shapes=validate_args)
[ "Creates", "a", "LinearOperator", "representing", "a", "diagonal", "matrix", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L180-L278
[ "def", "make_diag_scale", "(", "loc", "=", "None", ",", "scale_diag", "=", "None", ",", "scale_identity_multiplier", "=", "None", ",", "shape_hint", "=", "None", ",", "validate_args", "=", "False", ",", "assert_positive", "=", "False", ",", "name", "=", "None", ",", "dtype", "=", "None", ")", ":", "def", "_maybe_attach_assertion", "(", "x", ")", ":", "if", "not", "validate_args", ":", "return", "x", "if", "assert_positive", ":", "return", "with_dependencies", "(", "[", "assert_util", ".", "assert_positive", "(", "x", ",", "message", "=", "\"diagonal part must be positive\"", ")", ",", "]", ",", "x", ")", "return", "with_dependencies", "(", "[", "assert_util", ".", "assert_none_equal", "(", "x", ",", "tf", ".", "zeros", "(", "[", "]", ",", "x", ".", "dtype", ")", ",", "message", "=", "\"diagonal part must be non-zero\"", ")", "]", ",", "x", ")", "with", "tf", ".", "name_scope", "(", "name", "or", "\"make_diag_scale\"", ")", ":", "if", "dtype", "is", "None", ":", "dtype", "=", "dtype_util", ".", "common_dtype", "(", "[", "loc", ",", "scale_diag", ",", "scale_identity_multiplier", "]", ",", "preferred_dtype", "=", "tf", ".", "float32", ")", "loc", "=", "_convert_to_tensor", "(", "loc", ",", "name", "=", "\"loc\"", ",", "dtype", "=", "dtype", ")", "scale_diag", "=", "_convert_to_tensor", "(", "scale_diag", ",", "name", "=", "\"scale_diag\"", ",", "dtype", "=", "dtype", ")", "scale_identity_multiplier", "=", "_convert_to_tensor", "(", "scale_identity_multiplier", ",", "name", "=", "\"scale_identity_multiplier\"", ",", "dtype", "=", "dtype", ")", "if", "scale_diag", "is", "not", "None", ":", "if", "scale_identity_multiplier", "is", "not", "None", ":", "scale_diag", "+=", "scale_identity_multiplier", "[", "...", ",", "tf", ".", "newaxis", "]", "return", "tf", ".", "linalg", ".", "LinearOperatorDiag", "(", "diag", "=", "_maybe_attach_assertion", "(", "scale_diag", ")", ",", "is_non_singular", "=", "True", ",", "is_self_adjoint", "=", "True", ",", "is_positive_definite", "=", "assert_positive", ")", "if", "loc", "is", "None", "and", "shape_hint", "is", "None", ":", "raise", "ValueError", "(", "\"Cannot infer `event_shape` unless `loc` or \"", "\"`shape_hint` is specified.\"", ")", "num_rows", "=", "shape_hint", "del", "shape_hint", "if", "num_rows", "is", "None", ":", "num_rows", "=", "tf", ".", "compat", ".", "dimension_value", "(", "loc", ".", "shape", "[", "-", "1", "]", ")", "if", "num_rows", "is", "None", ":", "num_rows", "=", "tf", ".", "shape", "(", "input", "=", "loc", ")", "[", "-", "1", "]", "if", "scale_identity_multiplier", "is", "None", ":", "return", "tf", ".", "linalg", ".", "LinearOperatorIdentity", "(", "num_rows", "=", "num_rows", ",", "dtype", "=", "dtype", ",", "is_self_adjoint", "=", "True", ",", "is_positive_definite", "=", "True", ",", "assert_proper_shapes", "=", "validate_args", ")", "return", "tf", ".", "linalg", ".", "LinearOperatorScaledIdentity", "(", "num_rows", "=", "num_rows", ",", "multiplier", "=", "_maybe_attach_assertion", "(", "scale_identity_multiplier", ")", ",", "is_non_singular", "=", "True", ",", "is_self_adjoint", "=", "True", ",", "is_positive_definite", "=", "assert_positive", ",", "assert_proper_shapes", "=", "validate_args", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
shapes_from_loc_and_scale
Infer distribution batch and event shapes from a location and scale. Location and scale family distributions determine their batch/event shape by broadcasting the `loc` and `scale` args. This helper does that broadcast, statically if possible. Batch shape broadcasts as per the normal rules. We allow the `loc` event shape to broadcast up to that of `scale`. We do not allow `scale`'s event shape to change. Therefore, the last dimension of `loc` must either be size `1`, or the same as `scale.range_dimension`. See `MultivariateNormalLinearOperator` for a usage example. Args: loc: `Tensor` (already converted to tensor) or `None`. If `None`, or `rank(loc)==0`, both batch and event shape are determined by `scale`. scale: A `LinearOperator` instance. name: A string name to prepend to created ops. Returns: batch_shape: `TensorShape` (if broadcast is done statically), or `Tensor`. event_shape: `TensorShape` (if broadcast is done statically), or `Tensor`. Raises: ValueError: If the last dimension of `loc` is determined statically to be different than the range of `scale`.
tensorflow_probability/python/internal/distribution_util.py
def shapes_from_loc_and_scale(loc, scale, name="shapes_from_loc_and_scale"): """Infer distribution batch and event shapes from a location and scale. Location and scale family distributions determine their batch/event shape by broadcasting the `loc` and `scale` args. This helper does that broadcast, statically if possible. Batch shape broadcasts as per the normal rules. We allow the `loc` event shape to broadcast up to that of `scale`. We do not allow `scale`'s event shape to change. Therefore, the last dimension of `loc` must either be size `1`, or the same as `scale.range_dimension`. See `MultivariateNormalLinearOperator` for a usage example. Args: loc: `Tensor` (already converted to tensor) or `None`. If `None`, or `rank(loc)==0`, both batch and event shape are determined by `scale`. scale: A `LinearOperator` instance. name: A string name to prepend to created ops. Returns: batch_shape: `TensorShape` (if broadcast is done statically), or `Tensor`. event_shape: `TensorShape` (if broadcast is done statically), or `Tensor`. Raises: ValueError: If the last dimension of `loc` is determined statically to be different than the range of `scale`. """ if loc is not None and tensorshape_util.rank(loc.shape) == 0: loc = None # scalar loc is irrelevant to determining batch/event shape. with tf.name_scope(name): # Get event shape. event_size = scale.range_dimension_tensor() event_size_ = tf.get_static_value(event_size) loc_event_size_ = (None if loc is None else tf.compat.dimension_value(loc.shape[-1])) if event_size_ is not None and loc_event_size_ is not None: # Static check that event shapes match. if loc_event_size_ != 1 and loc_event_size_ != event_size_: raise ValueError( "Event size of 'scale' ({}) could not be broadcast up to that " "of 'loc' ({}).".format(event_size_, loc_event_size_)) elif loc_event_size_ is not None and loc_event_size_ != 1: event_size_ = loc_event_size_ if event_size_ is None: event_shape = event_size[tf.newaxis] else: event_shape = tf.convert_to_tensor( value=np.reshape(event_size_, [1]), dtype=tf.int32, name="event_shape") # Get batch shape. batch_shape = scale.batch_shape_tensor() if loc is not None: loc_batch_shape = tensorshape_util.with_rank_at_least(loc.shape, 1)[:-1] if tensorshape_util.rank( loc.shape) is None or not tensorshape_util.is_fully_defined( loc_batch_shape): loc_batch_shape = tf.shape(input=loc)[:-1] else: loc_batch_shape = tf.convert_to_tensor( value=loc_batch_shape, dtype=tf.int32, name="loc_batch_shape") # This is defined in the core util module. batch_shape = prefer_static_broadcast_shape(batch_shape, loc_batch_shape) # pylint: disable=undefined-variable batch_shape = tf.convert_to_tensor( value=batch_shape, dtype=tf.int32, name="batch_shape") return batch_shape, event_shape
def shapes_from_loc_and_scale(loc, scale, name="shapes_from_loc_and_scale"): """Infer distribution batch and event shapes from a location and scale. Location and scale family distributions determine their batch/event shape by broadcasting the `loc` and `scale` args. This helper does that broadcast, statically if possible. Batch shape broadcasts as per the normal rules. We allow the `loc` event shape to broadcast up to that of `scale`. We do not allow `scale`'s event shape to change. Therefore, the last dimension of `loc` must either be size `1`, or the same as `scale.range_dimension`. See `MultivariateNormalLinearOperator` for a usage example. Args: loc: `Tensor` (already converted to tensor) or `None`. If `None`, or `rank(loc)==0`, both batch and event shape are determined by `scale`. scale: A `LinearOperator` instance. name: A string name to prepend to created ops. Returns: batch_shape: `TensorShape` (if broadcast is done statically), or `Tensor`. event_shape: `TensorShape` (if broadcast is done statically), or `Tensor`. Raises: ValueError: If the last dimension of `loc` is determined statically to be different than the range of `scale`. """ if loc is not None and tensorshape_util.rank(loc.shape) == 0: loc = None # scalar loc is irrelevant to determining batch/event shape. with tf.name_scope(name): # Get event shape. event_size = scale.range_dimension_tensor() event_size_ = tf.get_static_value(event_size) loc_event_size_ = (None if loc is None else tf.compat.dimension_value(loc.shape[-1])) if event_size_ is not None and loc_event_size_ is not None: # Static check that event shapes match. if loc_event_size_ != 1 and loc_event_size_ != event_size_: raise ValueError( "Event size of 'scale' ({}) could not be broadcast up to that " "of 'loc' ({}).".format(event_size_, loc_event_size_)) elif loc_event_size_ is not None and loc_event_size_ != 1: event_size_ = loc_event_size_ if event_size_ is None: event_shape = event_size[tf.newaxis] else: event_shape = tf.convert_to_tensor( value=np.reshape(event_size_, [1]), dtype=tf.int32, name="event_shape") # Get batch shape. batch_shape = scale.batch_shape_tensor() if loc is not None: loc_batch_shape = tensorshape_util.with_rank_at_least(loc.shape, 1)[:-1] if tensorshape_util.rank( loc.shape) is None or not tensorshape_util.is_fully_defined( loc_batch_shape): loc_batch_shape = tf.shape(input=loc)[:-1] else: loc_batch_shape = tf.convert_to_tensor( value=loc_batch_shape, dtype=tf.int32, name="loc_batch_shape") # This is defined in the core util module. batch_shape = prefer_static_broadcast_shape(batch_shape, loc_batch_shape) # pylint: disable=undefined-variable batch_shape = tf.convert_to_tensor( value=batch_shape, dtype=tf.int32, name="batch_shape") return batch_shape, event_shape
[ "Infer", "distribution", "batch", "and", "event", "shapes", "from", "a", "location", "and", "scale", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L281-L351
[ "def", "shapes_from_loc_and_scale", "(", "loc", ",", "scale", ",", "name", "=", "\"shapes_from_loc_and_scale\"", ")", ":", "if", "loc", "is", "not", "None", "and", "tensorshape_util", ".", "rank", "(", "loc", ".", "shape", ")", "==", "0", ":", "loc", "=", "None", "# scalar loc is irrelevant to determining batch/event shape.", "with", "tf", ".", "name_scope", "(", "name", ")", ":", "# Get event shape.", "event_size", "=", "scale", ".", "range_dimension_tensor", "(", ")", "event_size_", "=", "tf", ".", "get_static_value", "(", "event_size", ")", "loc_event_size_", "=", "(", "None", "if", "loc", "is", "None", "else", "tf", ".", "compat", ".", "dimension_value", "(", "loc", ".", "shape", "[", "-", "1", "]", ")", ")", "if", "event_size_", "is", "not", "None", "and", "loc_event_size_", "is", "not", "None", ":", "# Static check that event shapes match.", "if", "loc_event_size_", "!=", "1", "and", "loc_event_size_", "!=", "event_size_", ":", "raise", "ValueError", "(", "\"Event size of 'scale' ({}) could not be broadcast up to that \"", "\"of 'loc' ({}).\"", ".", "format", "(", "event_size_", ",", "loc_event_size_", ")", ")", "elif", "loc_event_size_", "is", "not", "None", "and", "loc_event_size_", "!=", "1", ":", "event_size_", "=", "loc_event_size_", "if", "event_size_", "is", "None", ":", "event_shape", "=", "event_size", "[", "tf", ".", "newaxis", "]", "else", ":", "event_shape", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "np", ".", "reshape", "(", "event_size_", ",", "[", "1", "]", ")", ",", "dtype", "=", "tf", ".", "int32", ",", "name", "=", "\"event_shape\"", ")", "# Get batch shape.", "batch_shape", "=", "scale", ".", "batch_shape_tensor", "(", ")", "if", "loc", "is", "not", "None", ":", "loc_batch_shape", "=", "tensorshape_util", ".", "with_rank_at_least", "(", "loc", ".", "shape", ",", "1", ")", "[", ":", "-", "1", "]", "if", "tensorshape_util", ".", "rank", "(", "loc", ".", "shape", ")", "is", "None", "or", "not", "tensorshape_util", ".", "is_fully_defined", "(", "loc_batch_shape", ")", ":", "loc_batch_shape", "=", "tf", ".", "shape", "(", "input", "=", "loc", ")", "[", ":", "-", "1", "]", "else", ":", "loc_batch_shape", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "loc_batch_shape", ",", "dtype", "=", "tf", ".", "int32", ",", "name", "=", "\"loc_batch_shape\"", ")", "# This is defined in the core util module.", "batch_shape", "=", "prefer_static_broadcast_shape", "(", "batch_shape", ",", "loc_batch_shape", ")", "# pylint: disable=undefined-variable", "batch_shape", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "batch_shape", ",", "dtype", "=", "tf", ".", "int32", ",", "name", "=", "\"batch_shape\"", ")", "return", "batch_shape", ",", "event_shape" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
get_broadcast_shape
Get broadcast shape as a Python list of integers (preferred) or `Tensor`. Args: *tensors: One or more `Tensor` objects (already converted!). Returns: broadcast shape: Python list (if shapes determined statically), otherwise an `int32` `Tensor`.
tensorflow_probability/python/internal/distribution_util.py
def get_broadcast_shape(*tensors): """Get broadcast shape as a Python list of integers (preferred) or `Tensor`. Args: *tensors: One or more `Tensor` objects (already converted!). Returns: broadcast shape: Python list (if shapes determined statically), otherwise an `int32` `Tensor`. """ # Try static. s_shape = tensors[0].shape for t in tensors[1:]: s_shape = tf.broadcast_static_shape(s_shape, t.shape) if tensorshape_util.is_fully_defined(s_shape): return tensorshape_util.as_list(s_shape) # Fallback on dynamic. d_shape = tf.shape(input=tensors[0]) for t in tensors[1:]: d_shape = tf.broadcast_dynamic_shape(d_shape, tf.shape(input=t)) return d_shape
def get_broadcast_shape(*tensors): """Get broadcast shape as a Python list of integers (preferred) or `Tensor`. Args: *tensors: One or more `Tensor` objects (already converted!). Returns: broadcast shape: Python list (if shapes determined statically), otherwise an `int32` `Tensor`. """ # Try static. s_shape = tensors[0].shape for t in tensors[1:]: s_shape = tf.broadcast_static_shape(s_shape, t.shape) if tensorshape_util.is_fully_defined(s_shape): return tensorshape_util.as_list(s_shape) # Fallback on dynamic. d_shape = tf.shape(input=tensors[0]) for t in tensors[1:]: d_shape = tf.broadcast_dynamic_shape(d_shape, tf.shape(input=t)) return d_shape
[ "Get", "broadcast", "shape", "as", "a", "Python", "list", "of", "integers", "(", "preferred", ")", "or", "Tensor", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L354-L375
[ "def", "get_broadcast_shape", "(", "*", "tensors", ")", ":", "# Try static.", "s_shape", "=", "tensors", "[", "0", "]", ".", "shape", "for", "t", "in", "tensors", "[", "1", ":", "]", ":", "s_shape", "=", "tf", ".", "broadcast_static_shape", "(", "s_shape", ",", "t", ".", "shape", ")", "if", "tensorshape_util", ".", "is_fully_defined", "(", "s_shape", ")", ":", "return", "tensorshape_util", ".", "as_list", "(", "s_shape", ")", "# Fallback on dynamic.", "d_shape", "=", "tf", ".", "shape", "(", "input", "=", "tensors", "[", "0", "]", ")", "for", "t", "in", "tensors", "[", "1", ":", "]", ":", "d_shape", "=", "tf", ".", "broadcast_dynamic_shape", "(", "d_shape", ",", "tf", ".", "shape", "(", "input", "=", "t", ")", ")", "return", "d_shape" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
is_diagonal_scale
Returns `True` if `scale` is a `LinearOperator` that is known to be diag. Args: scale: `LinearOperator` instance. Returns: Python `bool`. Raises: TypeError: If `scale` is not a `LinearOperator`.
tensorflow_probability/python/internal/distribution_util.py
def is_diagonal_scale(scale): """Returns `True` if `scale` is a `LinearOperator` that is known to be diag. Args: scale: `LinearOperator` instance. Returns: Python `bool`. Raises: TypeError: If `scale` is not a `LinearOperator`. """ if not isinstance(scale, tf.linalg.LinearOperator): raise TypeError("Expected argument 'scale' to be instance of LinearOperator" ". Found: %s" % scale) return (isinstance(scale, tf.linalg.LinearOperatorIdentity) or isinstance(scale, tf.linalg.LinearOperatorScaledIdentity) or isinstance(scale, tf.linalg.LinearOperatorDiag))
def is_diagonal_scale(scale): """Returns `True` if `scale` is a `LinearOperator` that is known to be diag. Args: scale: `LinearOperator` instance. Returns: Python `bool`. Raises: TypeError: If `scale` is not a `LinearOperator`. """ if not isinstance(scale, tf.linalg.LinearOperator): raise TypeError("Expected argument 'scale' to be instance of LinearOperator" ". Found: %s" % scale) return (isinstance(scale, tf.linalg.LinearOperatorIdentity) or isinstance(scale, tf.linalg.LinearOperatorScaledIdentity) or isinstance(scale, tf.linalg.LinearOperatorDiag))
[ "Returns", "True", "if", "scale", "is", "a", "LinearOperator", "that", "is", "known", "to", "be", "diag", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L378-L395
[ "def", "is_diagonal_scale", "(", "scale", ")", ":", "if", "not", "isinstance", "(", "scale", ",", "tf", ".", "linalg", ".", "LinearOperator", ")", ":", "raise", "TypeError", "(", "\"Expected argument 'scale' to be instance of LinearOperator\"", "\". Found: %s\"", "%", "scale", ")", "return", "(", "isinstance", "(", "scale", ",", "tf", ".", "linalg", ".", "LinearOperatorIdentity", ")", "or", "isinstance", "(", "scale", ",", "tf", ".", "linalg", ".", "LinearOperatorScaledIdentity", ")", "or", "isinstance", "(", "scale", ",", "tf", ".", "linalg", ".", "LinearOperatorDiag", ")", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
maybe_check_scalar_distribution
Helper which checks validity of a scalar `distribution` init arg. Valid here means: * `distribution` has scalar batch and event shapes. * `distribution` is `FULLY_REPARAMETERIZED` * `distribution` has expected dtype. Args: distribution: `Distribution`-like object. expected_base_dtype: `TensorFlow` `dtype`. validate_args: Python `bool`. Whether to do additional checks: (i) check that reparameterization_type is `FULLY_REPARAMETERIZED`. (ii) add `tf.Assert` ops to the graph to enforce that distribution is scalar in the event that this cannot be determined statically. Returns: List of `tf.Assert` ops to run to enforce validity checks that could not be statically determined. Empty if `not validate_args`. Raises: ValueError: If validate_args and distribution is not FULLY_REPARAMETERIZED ValueError: If distribution is statically determined to not have both scalar batch and scalar event shapes.
tensorflow_probability/python/internal/distribution_util.py
def maybe_check_scalar_distribution(distribution, expected_base_dtype, validate_args): """Helper which checks validity of a scalar `distribution` init arg. Valid here means: * `distribution` has scalar batch and event shapes. * `distribution` is `FULLY_REPARAMETERIZED` * `distribution` has expected dtype. Args: distribution: `Distribution`-like object. expected_base_dtype: `TensorFlow` `dtype`. validate_args: Python `bool`. Whether to do additional checks: (i) check that reparameterization_type is `FULLY_REPARAMETERIZED`. (ii) add `tf.Assert` ops to the graph to enforce that distribution is scalar in the event that this cannot be determined statically. Returns: List of `tf.Assert` ops to run to enforce validity checks that could not be statically determined. Empty if `not validate_args`. Raises: ValueError: If validate_args and distribution is not FULLY_REPARAMETERIZED ValueError: If distribution is statically determined to not have both scalar batch and scalar event shapes. """ if distribution.dtype != expected_base_dtype: raise TypeError("dtype mismatch; " "distribution.dtype=\"{}\" is not \"{}\"".format( dtype_util.name(distribution.dtype), dtype_util.name(expected_base_dtype))) # Although `reparameterization_type` is a static property, we guard it by # `validate_args`. This allows users to use a `distribution` which is not # reparameterized itself. However, we tacitly assume that although the # distribution is not reparameterized, it only depends on non-trainable # variables. if validate_args and (distribution.reparameterization_type != reparameterization.FULLY_REPARAMETERIZED): raise ValueError("Base distribution should be reparameterized or be " "a function of non-trainable variables; " "distribution.reparameterization_type = \"{}\" " "!= \"FULLY_REPARAMETERIZED\".".format( distribution.reparameterization_type)) with tf.name_scope("check_distribution"): assertions = [] def check_is_scalar(is_scalar, name): is_scalar_ = tf.get_static_value(is_scalar) if is_scalar_ is not None: if not is_scalar_: raise ValueError("distribution must be scalar; " "distribution.{}=False is not True".format(name)) elif validate_args: assertions.append( assert_util.assert_equal( is_scalar, True, message=("distribution must be scalar; " "distribution.{}=False is not True".format(name)))) check_is_scalar(distribution.is_scalar_event(), "is_scalar_event") check_is_scalar(distribution.is_scalar_batch(), "is_scalar_batch") return assertions
def maybe_check_scalar_distribution(distribution, expected_base_dtype, validate_args): """Helper which checks validity of a scalar `distribution` init arg. Valid here means: * `distribution` has scalar batch and event shapes. * `distribution` is `FULLY_REPARAMETERIZED` * `distribution` has expected dtype. Args: distribution: `Distribution`-like object. expected_base_dtype: `TensorFlow` `dtype`. validate_args: Python `bool`. Whether to do additional checks: (i) check that reparameterization_type is `FULLY_REPARAMETERIZED`. (ii) add `tf.Assert` ops to the graph to enforce that distribution is scalar in the event that this cannot be determined statically. Returns: List of `tf.Assert` ops to run to enforce validity checks that could not be statically determined. Empty if `not validate_args`. Raises: ValueError: If validate_args and distribution is not FULLY_REPARAMETERIZED ValueError: If distribution is statically determined to not have both scalar batch and scalar event shapes. """ if distribution.dtype != expected_base_dtype: raise TypeError("dtype mismatch; " "distribution.dtype=\"{}\" is not \"{}\"".format( dtype_util.name(distribution.dtype), dtype_util.name(expected_base_dtype))) # Although `reparameterization_type` is a static property, we guard it by # `validate_args`. This allows users to use a `distribution` which is not # reparameterized itself. However, we tacitly assume that although the # distribution is not reparameterized, it only depends on non-trainable # variables. if validate_args and (distribution.reparameterization_type != reparameterization.FULLY_REPARAMETERIZED): raise ValueError("Base distribution should be reparameterized or be " "a function of non-trainable variables; " "distribution.reparameterization_type = \"{}\" " "!= \"FULLY_REPARAMETERIZED\".".format( distribution.reparameterization_type)) with tf.name_scope("check_distribution"): assertions = [] def check_is_scalar(is_scalar, name): is_scalar_ = tf.get_static_value(is_scalar) if is_scalar_ is not None: if not is_scalar_: raise ValueError("distribution must be scalar; " "distribution.{}=False is not True".format(name)) elif validate_args: assertions.append( assert_util.assert_equal( is_scalar, True, message=("distribution must be scalar; " "distribution.{}=False is not True".format(name)))) check_is_scalar(distribution.is_scalar_event(), "is_scalar_event") check_is_scalar(distribution.is_scalar_batch(), "is_scalar_batch") return assertions
[ "Helper", "which", "checks", "validity", "of", "a", "scalar", "distribution", "init", "arg", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L398-L462
[ "def", "maybe_check_scalar_distribution", "(", "distribution", ",", "expected_base_dtype", ",", "validate_args", ")", ":", "if", "distribution", ".", "dtype", "!=", "expected_base_dtype", ":", "raise", "TypeError", "(", "\"dtype mismatch; \"", "\"distribution.dtype=\\\"{}\\\" is not \\\"{}\\\"\"", ".", "format", "(", "dtype_util", ".", "name", "(", "distribution", ".", "dtype", ")", ",", "dtype_util", ".", "name", "(", "expected_base_dtype", ")", ")", ")", "# Although `reparameterization_type` is a static property, we guard it by", "# `validate_args`. This allows users to use a `distribution` which is not", "# reparameterized itself. However, we tacitly assume that although the", "# distribution is not reparameterized, it only depends on non-trainable", "# variables.", "if", "validate_args", "and", "(", "distribution", ".", "reparameterization_type", "!=", "reparameterization", ".", "FULLY_REPARAMETERIZED", ")", ":", "raise", "ValueError", "(", "\"Base distribution should be reparameterized or be \"", "\"a function of non-trainable variables; \"", "\"distribution.reparameterization_type = \\\"{}\\\" \"", "\"!= \\\"FULLY_REPARAMETERIZED\\\".\"", ".", "format", "(", "distribution", ".", "reparameterization_type", ")", ")", "with", "tf", ".", "name_scope", "(", "\"check_distribution\"", ")", ":", "assertions", "=", "[", "]", "def", "check_is_scalar", "(", "is_scalar", ",", "name", ")", ":", "is_scalar_", "=", "tf", ".", "get_static_value", "(", "is_scalar", ")", "if", "is_scalar_", "is", "not", "None", ":", "if", "not", "is_scalar_", ":", "raise", "ValueError", "(", "\"distribution must be scalar; \"", "\"distribution.{}=False is not True\"", ".", "format", "(", "name", ")", ")", "elif", "validate_args", ":", "assertions", ".", "append", "(", "assert_util", ".", "assert_equal", "(", "is_scalar", ",", "True", ",", "message", "=", "(", "\"distribution must be scalar; \"", "\"distribution.{}=False is not True\"", ".", "format", "(", "name", ")", ")", ")", ")", "check_is_scalar", "(", "distribution", ".", "is_scalar_event", "(", ")", ",", "\"is_scalar_event\"", ")", "check_is_scalar", "(", "distribution", ".", "is_scalar_batch", "(", ")", ",", "\"is_scalar_batch\"", ")", "return", "assertions" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
pad_mixture_dimensions
Pad dimensions of event tensors for mixture distributions. See `Mixture._sample_n` and `MixtureSameFamily._sample_n` for usage examples. Args: x: event tensor to pad. mixture_distribution: Base distribution of the mixture. categorical_distribution: `Categorical` distribution that mixes the base distribution. event_ndims: Integer specifying the number of event dimensions in the event tensor. Returns: A padded version of `x` that can broadcast with `categorical_distribution`.
tensorflow_probability/python/internal/distribution_util.py
def pad_mixture_dimensions(x, mixture_distribution, categorical_distribution, event_ndims): """Pad dimensions of event tensors for mixture distributions. See `Mixture._sample_n` and `MixtureSameFamily._sample_n` for usage examples. Args: x: event tensor to pad. mixture_distribution: Base distribution of the mixture. categorical_distribution: `Categorical` distribution that mixes the base distribution. event_ndims: Integer specifying the number of event dimensions in the event tensor. Returns: A padded version of `x` that can broadcast with `categorical_distribution`. """ with tf.name_scope("pad_mix_dims"): def _get_ndims(d): if tensorshape_util.rank(d.batch_shape) is not None: return tensorshape_util.rank(d.batch_shape) return tf.shape(input=d.batch_shape_tensor())[0] dist_batch_ndims = _get_ndims(mixture_distribution) cat_batch_ndims = _get_ndims(categorical_distribution) pad_ndims = tf.where(categorical_distribution.is_scalar_batch(), dist_batch_ndims, dist_batch_ndims - cat_batch_ndims) s = tf.shape(input=x) x = tf.reshape( x, shape=tf.concat([ s[:-1], tf.ones([pad_ndims], dtype=tf.int32), s[-1:], tf.ones([event_ndims], dtype=tf.int32), ], axis=0)) return x
def pad_mixture_dimensions(x, mixture_distribution, categorical_distribution, event_ndims): """Pad dimensions of event tensors for mixture distributions. See `Mixture._sample_n` and `MixtureSameFamily._sample_n` for usage examples. Args: x: event tensor to pad. mixture_distribution: Base distribution of the mixture. categorical_distribution: `Categorical` distribution that mixes the base distribution. event_ndims: Integer specifying the number of event dimensions in the event tensor. Returns: A padded version of `x` that can broadcast with `categorical_distribution`. """ with tf.name_scope("pad_mix_dims"): def _get_ndims(d): if tensorshape_util.rank(d.batch_shape) is not None: return tensorshape_util.rank(d.batch_shape) return tf.shape(input=d.batch_shape_tensor())[0] dist_batch_ndims = _get_ndims(mixture_distribution) cat_batch_ndims = _get_ndims(categorical_distribution) pad_ndims = tf.where(categorical_distribution.is_scalar_batch(), dist_batch_ndims, dist_batch_ndims - cat_batch_ndims) s = tf.shape(input=x) x = tf.reshape( x, shape=tf.concat([ s[:-1], tf.ones([pad_ndims], dtype=tf.int32), s[-1:], tf.ones([event_ndims], dtype=tf.int32), ], axis=0)) return x
[ "Pad", "dimensions", "of", "event", "tensors", "for", "mixture", "distributions", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L465-L503
[ "def", "pad_mixture_dimensions", "(", "x", ",", "mixture_distribution", ",", "categorical_distribution", ",", "event_ndims", ")", ":", "with", "tf", ".", "name_scope", "(", "\"pad_mix_dims\"", ")", ":", "def", "_get_ndims", "(", "d", ")", ":", "if", "tensorshape_util", ".", "rank", "(", "d", ".", "batch_shape", ")", "is", "not", "None", ":", "return", "tensorshape_util", ".", "rank", "(", "d", ".", "batch_shape", ")", "return", "tf", ".", "shape", "(", "input", "=", "d", ".", "batch_shape_tensor", "(", ")", ")", "[", "0", "]", "dist_batch_ndims", "=", "_get_ndims", "(", "mixture_distribution", ")", "cat_batch_ndims", "=", "_get_ndims", "(", "categorical_distribution", ")", "pad_ndims", "=", "tf", ".", "where", "(", "categorical_distribution", ".", "is_scalar_batch", "(", ")", ",", "dist_batch_ndims", ",", "dist_batch_ndims", "-", "cat_batch_ndims", ")", "s", "=", "tf", ".", "shape", "(", "input", "=", "x", ")", "x", "=", "tf", ".", "reshape", "(", "x", ",", "shape", "=", "tf", ".", "concat", "(", "[", "s", "[", ":", "-", "1", "]", ",", "tf", ".", "ones", "(", "[", "pad_ndims", "]", ",", "dtype", "=", "tf", ".", "int32", ")", ",", "s", "[", "-", "1", ":", "]", ",", "tf", ".", "ones", "(", "[", "event_ndims", "]", ",", "dtype", "=", "tf", ".", "int32", ")", ",", "]", ",", "axis", "=", "0", ")", ")", "return", "x" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
pick_scalar_condition
Convenience function that chooses one of two values based on the predicate. This utility is equivalent to a version of `tf.where` that accepts only a scalar predicate and computes its result statically when possible. It may also be used in place of `tf.cond` when both branches yield a `Tensor` of the same shape; the operational difference is that `tf.cond` uses control flow to evaluate only the branch that's needed, while `tf.where` (and thus this method) may evaluate both branches before the predicate's truth is known. This means that `tf.cond` is preferred when one of the branches is expensive to evaluate (like performing a large matmul), while this method is preferred when both branches are cheap, e.g., constants. In the latter case, we expect this method to be substantially faster than `tf.cond` on GPU and to give similar performance on CPU. Args: pred: Scalar `bool` `Tensor` predicate. true_value: `Tensor` to return if `pred` is `True`. false_value: `Tensor` to return if `pred` is `False`. Must have the same shape as `true_value`. name: Python `str` name given to ops managed by this object. Returns: result: a `Tensor` (or `Tensor`-convertible Python value) equal to `true_value` if `pred` evaluates to `True` and `false_value` otherwise. If the condition can be evaluated statically, the result returned is one of the input Python values, with no graph side effects.
tensorflow_probability/python/internal/distribution_util.py
def pick_scalar_condition(pred, true_value, false_value, name=None): """Convenience function that chooses one of two values based on the predicate. This utility is equivalent to a version of `tf.where` that accepts only a scalar predicate and computes its result statically when possible. It may also be used in place of `tf.cond` when both branches yield a `Tensor` of the same shape; the operational difference is that `tf.cond` uses control flow to evaluate only the branch that's needed, while `tf.where` (and thus this method) may evaluate both branches before the predicate's truth is known. This means that `tf.cond` is preferred when one of the branches is expensive to evaluate (like performing a large matmul), while this method is preferred when both branches are cheap, e.g., constants. In the latter case, we expect this method to be substantially faster than `tf.cond` on GPU and to give similar performance on CPU. Args: pred: Scalar `bool` `Tensor` predicate. true_value: `Tensor` to return if `pred` is `True`. false_value: `Tensor` to return if `pred` is `False`. Must have the same shape as `true_value`. name: Python `str` name given to ops managed by this object. Returns: result: a `Tensor` (or `Tensor`-convertible Python value) equal to `true_value` if `pred` evaluates to `True` and `false_value` otherwise. If the condition can be evaluated statically, the result returned is one of the input Python values, with no graph side effects. """ with tf.name_scope(name or "pick_scalar_condition"): pred = tf.convert_to_tensor( value=pred, dtype_hint=tf.bool, name="pred") true_value = tf.convert_to_tensor(value=true_value, name="true_value") false_value = tf.convert_to_tensor(value=false_value, name="false_value") pred_ = tf.get_static_value(pred) if pred_ is None: return tf.where(pred, true_value, false_value) return true_value if pred_ else false_value
def pick_scalar_condition(pred, true_value, false_value, name=None): """Convenience function that chooses one of two values based on the predicate. This utility is equivalent to a version of `tf.where` that accepts only a scalar predicate and computes its result statically when possible. It may also be used in place of `tf.cond` when both branches yield a `Tensor` of the same shape; the operational difference is that `tf.cond` uses control flow to evaluate only the branch that's needed, while `tf.where` (and thus this method) may evaluate both branches before the predicate's truth is known. This means that `tf.cond` is preferred when one of the branches is expensive to evaluate (like performing a large matmul), while this method is preferred when both branches are cheap, e.g., constants. In the latter case, we expect this method to be substantially faster than `tf.cond` on GPU and to give similar performance on CPU. Args: pred: Scalar `bool` `Tensor` predicate. true_value: `Tensor` to return if `pred` is `True`. false_value: `Tensor` to return if `pred` is `False`. Must have the same shape as `true_value`. name: Python `str` name given to ops managed by this object. Returns: result: a `Tensor` (or `Tensor`-convertible Python value) equal to `true_value` if `pred` evaluates to `True` and `false_value` otherwise. If the condition can be evaluated statically, the result returned is one of the input Python values, with no graph side effects. """ with tf.name_scope(name or "pick_scalar_condition"): pred = tf.convert_to_tensor( value=pred, dtype_hint=tf.bool, name="pred") true_value = tf.convert_to_tensor(value=true_value, name="true_value") false_value = tf.convert_to_tensor(value=false_value, name="false_value") pred_ = tf.get_static_value(pred) if pred_ is None: return tf.where(pred, true_value, false_value) return true_value if pred_ else false_value
[ "Convenience", "function", "that", "chooses", "one", "of", "two", "values", "based", "on", "the", "predicate", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L506-L542
[ "def", "pick_scalar_condition", "(", "pred", ",", "true_value", ",", "false_value", ",", "name", "=", "None", ")", ":", "with", "tf", ".", "name_scope", "(", "name", "or", "\"pick_scalar_condition\"", ")", ":", "pred", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "pred", ",", "dtype_hint", "=", "tf", ".", "bool", ",", "name", "=", "\"pred\"", ")", "true_value", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "true_value", ",", "name", "=", "\"true_value\"", ")", "false_value", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "false_value", ",", "name", "=", "\"false_value\"", ")", "pred_", "=", "tf", ".", "get_static_value", "(", "pred", ")", "if", "pred_", "is", "None", ":", "return", "tf", ".", "where", "(", "pred", ",", "true_value", ",", "false_value", ")", "return", "true_value", "if", "pred_", "else", "false_value" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
make_non_negative_axis
Make (possibly negatively indexed) `axis` argument non-negative.
tensorflow_probability/python/internal/distribution_util.py
def make_non_negative_axis(axis, rank): """Make (possibly negatively indexed) `axis` argument non-negative.""" axis = tf.convert_to_tensor(value=axis, name="axis") rank = tf.convert_to_tensor(value=rank, name="rank") axis_ = tf.get_static_value(axis) rank_ = tf.get_static_value(rank) # Static case. if axis_ is not None and rank_ is not None: is_scalar = axis_.ndim == 0 if is_scalar: axis_ = [axis_] positive_axis = [] for a_ in axis_: if a_ < 0: positive_axis.append(rank_ + a_) else: positive_axis.append(a_) if is_scalar: positive_axis = positive_axis[0] return tf.convert_to_tensor(value=positive_axis, dtype=axis.dtype) # Dynamic case. # Unfortunately static values are lost by this tf.where. return tf.where(axis < 0, rank + axis, axis)
def make_non_negative_axis(axis, rank): """Make (possibly negatively indexed) `axis` argument non-negative.""" axis = tf.convert_to_tensor(value=axis, name="axis") rank = tf.convert_to_tensor(value=rank, name="rank") axis_ = tf.get_static_value(axis) rank_ = tf.get_static_value(rank) # Static case. if axis_ is not None and rank_ is not None: is_scalar = axis_.ndim == 0 if is_scalar: axis_ = [axis_] positive_axis = [] for a_ in axis_: if a_ < 0: positive_axis.append(rank_ + a_) else: positive_axis.append(a_) if is_scalar: positive_axis = positive_axis[0] return tf.convert_to_tensor(value=positive_axis, dtype=axis.dtype) # Dynamic case. # Unfortunately static values are lost by this tf.where. return tf.where(axis < 0, rank + axis, axis)
[ "Make", "(", "possibly", "negatively", "indexed", ")", "axis", "argument", "non", "-", "negative", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L545-L569
[ "def", "make_non_negative_axis", "(", "axis", ",", "rank", ")", ":", "axis", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "axis", ",", "name", "=", "\"axis\"", ")", "rank", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "rank", ",", "name", "=", "\"rank\"", ")", "axis_", "=", "tf", ".", "get_static_value", "(", "axis", ")", "rank_", "=", "tf", ".", "get_static_value", "(", "rank", ")", "# Static case.", "if", "axis_", "is", "not", "None", "and", "rank_", "is", "not", "None", ":", "is_scalar", "=", "axis_", ".", "ndim", "==", "0", "if", "is_scalar", ":", "axis_", "=", "[", "axis_", "]", "positive_axis", "=", "[", "]", "for", "a_", "in", "axis_", ":", "if", "a_", "<", "0", ":", "positive_axis", ".", "append", "(", "rank_", "+", "a_", ")", "else", ":", "positive_axis", ".", "append", "(", "a_", ")", "if", "is_scalar", ":", "positive_axis", "=", "positive_axis", "[", "0", "]", "return", "tf", ".", "convert_to_tensor", "(", "value", "=", "positive_axis", ",", "dtype", "=", "axis", ".", "dtype", ")", "# Dynamic case.", "# Unfortunately static values are lost by this tf.where.", "return", "tf", ".", "where", "(", "axis", "<", "0", ",", "rank", "+", "axis", ",", "axis", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
move_dimension
Move a single tensor dimension within its shape. This is a special case of `tf.transpose()`, which applies arbitrary permutations to tensor dimensions. Args: x: Tensor of rank `ndims`. source_idx: Integer index into `x.shape` (negative indexing is supported). dest_idx: Integer index into `x.shape` (negative indexing is supported). Returns: x_perm: Tensor of rank `ndims`, in which the dimension at original index `source_idx` has been moved to new index `dest_idx`, with all other dimensions retained in their original order. Example: ```python x = tf.placeholder(shape=[200, 30, 4, 1, 6]) x_perm = _move_dimension(x, 1, 1) # no-op x_perm = _move_dimension(x, 0, 3) # result shape [30, 4, 1, 200, 6] x_perm = _move_dimension(x, 0, -2) # equivalent to previous x_perm = _move_dimension(x, 4, 2) # result shape [200, 30, 6, 4, 1] ```
tensorflow_probability/python/internal/distribution_util.py
def move_dimension(x, source_idx, dest_idx): """Move a single tensor dimension within its shape. This is a special case of `tf.transpose()`, which applies arbitrary permutations to tensor dimensions. Args: x: Tensor of rank `ndims`. source_idx: Integer index into `x.shape` (negative indexing is supported). dest_idx: Integer index into `x.shape` (negative indexing is supported). Returns: x_perm: Tensor of rank `ndims`, in which the dimension at original index `source_idx` has been moved to new index `dest_idx`, with all other dimensions retained in their original order. Example: ```python x = tf.placeholder(shape=[200, 30, 4, 1, 6]) x_perm = _move_dimension(x, 1, 1) # no-op x_perm = _move_dimension(x, 0, 3) # result shape [30, 4, 1, 200, 6] x_perm = _move_dimension(x, 0, -2) # equivalent to previous x_perm = _move_dimension(x, 4, 2) # result shape [200, 30, 6, 4, 1] ``` """ ndims = prefer_static_rank(x) dtype = dtype_util.common_dtype([source_idx, dest_idx], preferred_dtype=tf.int32) source_idx = tf.convert_to_tensor(value=source_idx, dtype=dtype) dest_idx = tf.convert_to_tensor(value=dest_idx, dtype=dtype) # Handle negative indexing. source_idx = pick_scalar_condition(source_idx < 0, ndims + source_idx, source_idx) dest_idx = pick_scalar_condition(dest_idx < 0, ndims + dest_idx, dest_idx) # Construct the appropriate permutation of dimensions, depending # whether the source is before or after the destination. def move_left_permutation(): return prefer_static_value( tf.concat([ tf.range(0, dest_idx, dtype=dtype), [source_idx], tf.range(dest_idx, source_idx, dtype=dtype), tf.range(source_idx + 1, ndims, dtype=dtype) ], axis=0)) def move_right_permutation(): return prefer_static_value( tf.concat([ tf.range(0, source_idx, dtype=dtype), tf.range(source_idx + 1, dest_idx + 1, dtype=dtype), [source_idx], tf.range(dest_idx + 1, ndims, dtype=dtype) ], axis=0)) def x_permuted(): return tf.transpose( a=x, perm=prefer_static.cond(source_idx < dest_idx, move_right_permutation, move_left_permutation)) # One final conditional to handle the special case where source # and destination indices are equal. return prefer_static.cond(tf.equal(source_idx, dest_idx), lambda: x, x_permuted)
def move_dimension(x, source_idx, dest_idx): """Move a single tensor dimension within its shape. This is a special case of `tf.transpose()`, which applies arbitrary permutations to tensor dimensions. Args: x: Tensor of rank `ndims`. source_idx: Integer index into `x.shape` (negative indexing is supported). dest_idx: Integer index into `x.shape` (negative indexing is supported). Returns: x_perm: Tensor of rank `ndims`, in which the dimension at original index `source_idx` has been moved to new index `dest_idx`, with all other dimensions retained in their original order. Example: ```python x = tf.placeholder(shape=[200, 30, 4, 1, 6]) x_perm = _move_dimension(x, 1, 1) # no-op x_perm = _move_dimension(x, 0, 3) # result shape [30, 4, 1, 200, 6] x_perm = _move_dimension(x, 0, -2) # equivalent to previous x_perm = _move_dimension(x, 4, 2) # result shape [200, 30, 6, 4, 1] ``` """ ndims = prefer_static_rank(x) dtype = dtype_util.common_dtype([source_idx, dest_idx], preferred_dtype=tf.int32) source_idx = tf.convert_to_tensor(value=source_idx, dtype=dtype) dest_idx = tf.convert_to_tensor(value=dest_idx, dtype=dtype) # Handle negative indexing. source_idx = pick_scalar_condition(source_idx < 0, ndims + source_idx, source_idx) dest_idx = pick_scalar_condition(dest_idx < 0, ndims + dest_idx, dest_idx) # Construct the appropriate permutation of dimensions, depending # whether the source is before or after the destination. def move_left_permutation(): return prefer_static_value( tf.concat([ tf.range(0, dest_idx, dtype=dtype), [source_idx], tf.range(dest_idx, source_idx, dtype=dtype), tf.range(source_idx + 1, ndims, dtype=dtype) ], axis=0)) def move_right_permutation(): return prefer_static_value( tf.concat([ tf.range(0, source_idx, dtype=dtype), tf.range(source_idx + 1, dest_idx + 1, dtype=dtype), [source_idx], tf.range(dest_idx + 1, ndims, dtype=dtype) ], axis=0)) def x_permuted(): return tf.transpose( a=x, perm=prefer_static.cond(source_idx < dest_idx, move_right_permutation, move_left_permutation)) # One final conditional to handle the special case where source # and destination indices are equal. return prefer_static.cond(tf.equal(source_idx, dest_idx), lambda: x, x_permuted)
[ "Move", "a", "single", "tensor", "dimension", "within", "its", "shape", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L572-L639
[ "def", "move_dimension", "(", "x", ",", "source_idx", ",", "dest_idx", ")", ":", "ndims", "=", "prefer_static_rank", "(", "x", ")", "dtype", "=", "dtype_util", ".", "common_dtype", "(", "[", "source_idx", ",", "dest_idx", "]", ",", "preferred_dtype", "=", "tf", ".", "int32", ")", "source_idx", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "source_idx", ",", "dtype", "=", "dtype", ")", "dest_idx", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "dest_idx", ",", "dtype", "=", "dtype", ")", "# Handle negative indexing.", "source_idx", "=", "pick_scalar_condition", "(", "source_idx", "<", "0", ",", "ndims", "+", "source_idx", ",", "source_idx", ")", "dest_idx", "=", "pick_scalar_condition", "(", "dest_idx", "<", "0", ",", "ndims", "+", "dest_idx", ",", "dest_idx", ")", "# Construct the appropriate permutation of dimensions, depending", "# whether the source is before or after the destination.", "def", "move_left_permutation", "(", ")", ":", "return", "prefer_static_value", "(", "tf", ".", "concat", "(", "[", "tf", ".", "range", "(", "0", ",", "dest_idx", ",", "dtype", "=", "dtype", ")", ",", "[", "source_idx", "]", ",", "tf", ".", "range", "(", "dest_idx", ",", "source_idx", ",", "dtype", "=", "dtype", ")", ",", "tf", ".", "range", "(", "source_idx", "+", "1", ",", "ndims", ",", "dtype", "=", "dtype", ")", "]", ",", "axis", "=", "0", ")", ")", "def", "move_right_permutation", "(", ")", ":", "return", "prefer_static_value", "(", "tf", ".", "concat", "(", "[", "tf", ".", "range", "(", "0", ",", "source_idx", ",", "dtype", "=", "dtype", ")", ",", "tf", ".", "range", "(", "source_idx", "+", "1", ",", "dest_idx", "+", "1", ",", "dtype", "=", "dtype", ")", ",", "[", "source_idx", "]", ",", "tf", ".", "range", "(", "dest_idx", "+", "1", ",", "ndims", ",", "dtype", "=", "dtype", ")", "]", ",", "axis", "=", "0", ")", ")", "def", "x_permuted", "(", ")", ":", "return", "tf", ".", "transpose", "(", "a", "=", "x", ",", "perm", "=", "prefer_static", ".", "cond", "(", "source_idx", "<", "dest_idx", ",", "move_right_permutation", ",", "move_left_permutation", ")", ")", "# One final conditional to handle the special case where source", "# and destination indices are equal.", "return", "prefer_static", ".", "cond", "(", "tf", ".", "equal", "(", "source_idx", ",", "dest_idx", ")", ",", "lambda", ":", "x", ",", "x_permuted", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
assert_integer_form
Assert that x has integer components (or floats equal to integers). Args: x: Floating-point `Tensor` data: The tensors to print out if the condition is `False`. Defaults to error message and first few entries of `x` and `y`. summarize: Print this many entries of each tensor. message: A string to prefix to the default message. int_dtype: A `tf.dtype` used to cast the float to. The default (`None`) implies the smallest possible signed int will be used for casting. name: A name for this operation (optional). Returns: Op raising `InvalidArgumentError` if `cast(x, int_dtype) != x`.
tensorflow_probability/python/internal/distribution_util.py
def assert_integer_form(x, data=None, summarize=None, message=None, int_dtype=None, name="assert_integer_form"): """Assert that x has integer components (or floats equal to integers). Args: x: Floating-point `Tensor` data: The tensors to print out if the condition is `False`. Defaults to error message and first few entries of `x` and `y`. summarize: Print this many entries of each tensor. message: A string to prefix to the default message. int_dtype: A `tf.dtype` used to cast the float to. The default (`None`) implies the smallest possible signed int will be used for casting. name: A name for this operation (optional). Returns: Op raising `InvalidArgumentError` if `cast(x, int_dtype) != x`. """ with tf.name_scope(name): x = tf.convert_to_tensor(value=x, name="x") if dtype_util.is_integer(x.dtype): return tf.no_op() message = message or "{} has non-integer components".format(x) if int_dtype is None: try: int_dtype = { tf.float16: tf.int16, tf.float32: tf.int32, tf.float64: tf.int64, }[dtype_util.base_dtype(x.dtype)] except KeyError: raise TypeError("Unrecognized type {}".format(dtype_util.name(x.dtype))) return assert_util.assert_equal( x, tf.cast(tf.cast(x, int_dtype), x.dtype), data=data, summarize=summarize, message=message, name=name)
def assert_integer_form(x, data=None, summarize=None, message=None, int_dtype=None, name="assert_integer_form"): """Assert that x has integer components (or floats equal to integers). Args: x: Floating-point `Tensor` data: The tensors to print out if the condition is `False`. Defaults to error message and first few entries of `x` and `y`. summarize: Print this many entries of each tensor. message: A string to prefix to the default message. int_dtype: A `tf.dtype` used to cast the float to. The default (`None`) implies the smallest possible signed int will be used for casting. name: A name for this operation (optional). Returns: Op raising `InvalidArgumentError` if `cast(x, int_dtype) != x`. """ with tf.name_scope(name): x = tf.convert_to_tensor(value=x, name="x") if dtype_util.is_integer(x.dtype): return tf.no_op() message = message or "{} has non-integer components".format(x) if int_dtype is None: try: int_dtype = { tf.float16: tf.int16, tf.float32: tf.int32, tf.float64: tf.int64, }[dtype_util.base_dtype(x.dtype)] except KeyError: raise TypeError("Unrecognized type {}".format(dtype_util.name(x.dtype))) return assert_util.assert_equal( x, tf.cast(tf.cast(x, int_dtype), x.dtype), data=data, summarize=summarize, message=message, name=name)
[ "Assert", "that", "x", "has", "integer", "components", "(", "or", "floats", "equal", "to", "integers", ")", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L642-L683
[ "def", "assert_integer_form", "(", "x", ",", "data", "=", "None", ",", "summarize", "=", "None", ",", "message", "=", "None", ",", "int_dtype", "=", "None", ",", "name", "=", "\"assert_integer_form\"", ")", ":", "with", "tf", ".", "name_scope", "(", "name", ")", ":", "x", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "x", ",", "name", "=", "\"x\"", ")", "if", "dtype_util", ".", "is_integer", "(", "x", ".", "dtype", ")", ":", "return", "tf", ".", "no_op", "(", ")", "message", "=", "message", "or", "\"{} has non-integer components\"", ".", "format", "(", "x", ")", "if", "int_dtype", "is", "None", ":", "try", ":", "int_dtype", "=", "{", "tf", ".", "float16", ":", "tf", ".", "int16", ",", "tf", ".", "float32", ":", "tf", ".", "int32", ",", "tf", ".", "float64", ":", "tf", ".", "int64", ",", "}", "[", "dtype_util", ".", "base_dtype", "(", "x", ".", "dtype", ")", "]", "except", "KeyError", ":", "raise", "TypeError", "(", "\"Unrecognized type {}\"", ".", "format", "(", "dtype_util", ".", "name", "(", "x", ".", "dtype", ")", ")", ")", "return", "assert_util", ".", "assert_equal", "(", "x", ",", "tf", ".", "cast", "(", "tf", ".", "cast", "(", "x", ",", "int_dtype", ")", ",", "x", ".", "dtype", ")", ",", "data", "=", "data", ",", "summarize", "=", "summarize", ",", "message", "=", "message", ",", "name", "=", "name", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
embed_check_nonnegative_integer_form
Assert x is a non-negative tensor, and optionally of integers.
tensorflow_probability/python/internal/distribution_util.py
def embed_check_nonnegative_integer_form( x, name="embed_check_nonnegative_integer_form"): """Assert x is a non-negative tensor, and optionally of integers.""" with tf.name_scope(name): x = tf.convert_to_tensor(value=x, name="x") assertions = [ assert_util.assert_non_negative( x, message="'{}' must be non-negative.".format(x)), ] if not dtype_util.is_integer(x.dtype): assertions += [ assert_integer_form( x, message="'{}' cannot contain fractional components.".format(x)), ] return with_dependencies(assertions, x)
def embed_check_nonnegative_integer_form( x, name="embed_check_nonnegative_integer_form"): """Assert x is a non-negative tensor, and optionally of integers.""" with tf.name_scope(name): x = tf.convert_to_tensor(value=x, name="x") assertions = [ assert_util.assert_non_negative( x, message="'{}' must be non-negative.".format(x)), ] if not dtype_util.is_integer(x.dtype): assertions += [ assert_integer_form( x, message="'{}' cannot contain fractional components.".format(x)), ] return with_dependencies(assertions, x)
[ "Assert", "x", "is", "a", "non", "-", "negative", "tensor", "and", "optionally", "of", "integers", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L692-L707
[ "def", "embed_check_nonnegative_integer_form", "(", "x", ",", "name", "=", "\"embed_check_nonnegative_integer_form\"", ")", ":", "with", "tf", ".", "name_scope", "(", "name", ")", ":", "x", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "x", ",", "name", "=", "\"x\"", ")", "assertions", "=", "[", "assert_util", ".", "assert_non_negative", "(", "x", ",", "message", "=", "\"'{}' must be non-negative.\"", ".", "format", "(", "x", ")", ")", ",", "]", "if", "not", "dtype_util", ".", "is_integer", "(", "x", ".", "dtype", ")", ":", "assertions", "+=", "[", "assert_integer_form", "(", "x", ",", "message", "=", "\"'{}' cannot contain fractional components.\"", ".", "format", "(", "x", ")", ")", ",", "]", "return", "with_dependencies", "(", "assertions", ",", "x", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
same_dynamic_shape
Returns whether a and b have the same dynamic shape. Args: a: `Tensor` b: `Tensor` Returns: `bool` `Tensor` representing if both tensors have the same shape.
tensorflow_probability/python/internal/distribution_util.py
def same_dynamic_shape(a, b): """Returns whether a and b have the same dynamic shape. Args: a: `Tensor` b: `Tensor` Returns: `bool` `Tensor` representing if both tensors have the same shape. """ a = tf.convert_to_tensor(value=a, name="a") b = tf.convert_to_tensor(value=b, name="b") # Here we can't just do tf.equal(a.shape, b.shape), since # static shape inference may break the equality comparison between # shape(a) and shape(b) in tf.equal. def all_shapes_equal(): return tf.reduce_all( input_tensor=tf.equal( tf.concat([tf.shape(input=a), tf.shape(input=b)], 0), tf.concat([tf.shape(input=b), tf.shape(input=a)], 0))) # One of the shapes isn't fully defined, so we need to use the dynamic # shape. return tf.cond( pred=tf.equal(tf.rank(a), tf.rank(b)), true_fn=all_shapes_equal, false_fn=lambda: tf.constant(False))
def same_dynamic_shape(a, b): """Returns whether a and b have the same dynamic shape. Args: a: `Tensor` b: `Tensor` Returns: `bool` `Tensor` representing if both tensors have the same shape. """ a = tf.convert_to_tensor(value=a, name="a") b = tf.convert_to_tensor(value=b, name="b") # Here we can't just do tf.equal(a.shape, b.shape), since # static shape inference may break the equality comparison between # shape(a) and shape(b) in tf.equal. def all_shapes_equal(): return tf.reduce_all( input_tensor=tf.equal( tf.concat([tf.shape(input=a), tf.shape(input=b)], 0), tf.concat([tf.shape(input=b), tf.shape(input=a)], 0))) # One of the shapes isn't fully defined, so we need to use the dynamic # shape. return tf.cond( pred=tf.equal(tf.rank(a), tf.rank(b)), true_fn=all_shapes_equal, false_fn=lambda: tf.constant(False))
[ "Returns", "whether", "a", "and", "b", "have", "the", "same", "dynamic", "shape", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L710-L737
[ "def", "same_dynamic_shape", "(", "a", ",", "b", ")", ":", "a", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "a", ",", "name", "=", "\"a\"", ")", "b", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "b", ",", "name", "=", "\"b\"", ")", "# Here we can't just do tf.equal(a.shape, b.shape), since", "# static shape inference may break the equality comparison between", "# shape(a) and shape(b) in tf.equal.", "def", "all_shapes_equal", "(", ")", ":", "return", "tf", ".", "reduce_all", "(", "input_tensor", "=", "tf", ".", "equal", "(", "tf", ".", "concat", "(", "[", "tf", ".", "shape", "(", "input", "=", "a", ")", ",", "tf", ".", "shape", "(", "input", "=", "b", ")", "]", ",", "0", ")", ",", "tf", ".", "concat", "(", "[", "tf", ".", "shape", "(", "input", "=", "b", ")", ",", "tf", ".", "shape", "(", "input", "=", "a", ")", "]", ",", "0", ")", ")", ")", "# One of the shapes isn't fully defined, so we need to use the dynamic", "# shape.", "return", "tf", ".", "cond", "(", "pred", "=", "tf", ".", "equal", "(", "tf", ".", "rank", "(", "a", ")", ",", "tf", ".", "rank", "(", "b", ")", ")", ",", "true_fn", "=", "all_shapes_equal", ",", "false_fn", "=", "lambda", ":", "tf", ".", "constant", "(", "False", ")", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
maybe_get_static_value
Helper which tries to return a static value. Given `x`, extract it's value statically, optionally casting to a specific dtype. If this is not possible, None is returned. Args: x: `Tensor` for which to extract a value statically. dtype: Optional dtype to cast to. Returns: Statically inferred value if possible, otherwise None.
tensorflow_probability/python/internal/distribution_util.py
def maybe_get_static_value(x, dtype=None): """Helper which tries to return a static value. Given `x`, extract it's value statically, optionally casting to a specific dtype. If this is not possible, None is returned. Args: x: `Tensor` for which to extract a value statically. dtype: Optional dtype to cast to. Returns: Statically inferred value if possible, otherwise None. """ if x is None: return x try: # This returns an np.ndarray. x_ = tf.get_static_value(x) except TypeError: x_ = x if x_ is None or dtype is None: return x_ return np.array(x_, dtype)
def maybe_get_static_value(x, dtype=None): """Helper which tries to return a static value. Given `x`, extract it's value statically, optionally casting to a specific dtype. If this is not possible, None is returned. Args: x: `Tensor` for which to extract a value statically. dtype: Optional dtype to cast to. Returns: Statically inferred value if possible, otherwise None. """ if x is None: return x try: # This returns an np.ndarray. x_ = tf.get_static_value(x) except TypeError: x_ = x if x_ is None or dtype is None: return x_ return np.array(x_, dtype)
[ "Helper", "which", "tries", "to", "return", "a", "static", "value", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L740-L762
[ "def", "maybe_get_static_value", "(", "x", ",", "dtype", "=", "None", ")", ":", "if", "x", "is", "None", ":", "return", "x", "try", ":", "# This returns an np.ndarray.", "x_", "=", "tf", ".", "get_static_value", "(", "x", ")", "except", "TypeError", ":", "x_", "=", "x", "if", "x_", "is", "None", "or", "dtype", "is", "None", ":", "return", "x_", "return", "np", ".", "array", "(", "x_", ",", "dtype", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
get_logits_and_probs
Converts logit to probabilities (or vice-versa), and returns both. Args: logits: Floating-point `Tensor` representing log-odds. probs: Floating-point `Tensor` representing probabilities. multidimensional: Python `bool`, default `False`. If `True`, represents whether the last dimension of `logits` or `probs`, a `[N1, N2, ... k]` dimensional tensor, representing the logit or probability of `shape[-1]` classes. validate_args: Python `bool`, default `False`. When `True`, either assert `0 <= probs <= 1` (if not `multidimensional`) or that the last dimension of `probs` sums to one. name: A name for this operation (optional). dtype: `tf.DType` to prefer when converting args to `Tensor`s. Returns: logits, probs: Tuple of `Tensor`s. If `probs` has an entry that is `0` or `1`, then the corresponding entry in the returned logit will be `-Inf` and `Inf` respectively. Raises: ValueError: if neither `probs` nor `logits` were passed in, or both were.
tensorflow_probability/python/internal/distribution_util.py
def get_logits_and_probs(logits=None, probs=None, multidimensional=False, validate_args=False, name="get_logits_and_probs", dtype=None): """Converts logit to probabilities (or vice-versa), and returns both. Args: logits: Floating-point `Tensor` representing log-odds. probs: Floating-point `Tensor` representing probabilities. multidimensional: Python `bool`, default `False`. If `True`, represents whether the last dimension of `logits` or `probs`, a `[N1, N2, ... k]` dimensional tensor, representing the logit or probability of `shape[-1]` classes. validate_args: Python `bool`, default `False`. When `True`, either assert `0 <= probs <= 1` (if not `multidimensional`) or that the last dimension of `probs` sums to one. name: A name for this operation (optional). dtype: `tf.DType` to prefer when converting args to `Tensor`s. Returns: logits, probs: Tuple of `Tensor`s. If `probs` has an entry that is `0` or `1`, then the corresponding entry in the returned logit will be `-Inf` and `Inf` respectively. Raises: ValueError: if neither `probs` nor `logits` were passed in, or both were. """ if dtype is None: dtype = dtype_util.common_dtype([probs, logits], preferred_dtype=tf.float32) with tf.name_scope(name): if (probs is None) == (logits is None): raise ValueError("Must pass probs or logits, but not both.") if probs is None: logits = tf.convert_to_tensor(value=logits, name="logits", dtype=dtype) if not dtype_util.is_floating(logits.dtype): raise TypeError("logits must having floating type.") # We can early return since we constructed probs and therefore know # they're valid. if multidimensional: if validate_args: logits = embed_check_categorical_event_shape(logits) return logits, tf.nn.softmax(logits, name="probs") return logits, tf.sigmoid(logits, name="probs") probs = tf.convert_to_tensor(value=probs, name="probs", dtype=dtype) if not dtype_util.is_floating(probs.dtype): raise TypeError("probs must having floating type.") if validate_args: with tf.name_scope("validate_probs"): one = tf.constant(1., probs.dtype) dependencies = [assert_util.assert_non_negative(probs)] if multidimensional: probs = embed_check_categorical_event_shape(probs) dependencies += [ assert_util.assert_near( tf.reduce_sum(input_tensor=probs, axis=-1), one, message="probs does not sum to 1.") ] else: dependencies += [ assert_util.assert_less_equal( probs, one, message="probs has components greater than 1.") ] probs = with_dependencies(dependencies, probs) with tf.name_scope("logits"): if multidimensional: # Here we don't compute the multidimensional case, in a manner # consistent with respect to the unidimensional case. We do so # following the TF convention. Typically, you might expect to see # logits = log(probs) - log(probs[pivot]). A side-effect of # being consistent with the TF approach is that the unidimensional case # implicitly handles the second dimension but the multidimensional case # explicitly keeps the pivot dimension. return tf.math.log(probs), probs return tf.math.log(probs) - tf.math.log1p(-1. * probs), probs
def get_logits_and_probs(logits=None, probs=None, multidimensional=False, validate_args=False, name="get_logits_and_probs", dtype=None): """Converts logit to probabilities (or vice-versa), and returns both. Args: logits: Floating-point `Tensor` representing log-odds. probs: Floating-point `Tensor` representing probabilities. multidimensional: Python `bool`, default `False`. If `True`, represents whether the last dimension of `logits` or `probs`, a `[N1, N2, ... k]` dimensional tensor, representing the logit or probability of `shape[-1]` classes. validate_args: Python `bool`, default `False`. When `True`, either assert `0 <= probs <= 1` (if not `multidimensional`) or that the last dimension of `probs` sums to one. name: A name for this operation (optional). dtype: `tf.DType` to prefer when converting args to `Tensor`s. Returns: logits, probs: Tuple of `Tensor`s. If `probs` has an entry that is `0` or `1`, then the corresponding entry in the returned logit will be `-Inf` and `Inf` respectively. Raises: ValueError: if neither `probs` nor `logits` were passed in, or both were. """ if dtype is None: dtype = dtype_util.common_dtype([probs, logits], preferred_dtype=tf.float32) with tf.name_scope(name): if (probs is None) == (logits is None): raise ValueError("Must pass probs or logits, but not both.") if probs is None: logits = tf.convert_to_tensor(value=logits, name="logits", dtype=dtype) if not dtype_util.is_floating(logits.dtype): raise TypeError("logits must having floating type.") # We can early return since we constructed probs and therefore know # they're valid. if multidimensional: if validate_args: logits = embed_check_categorical_event_shape(logits) return logits, tf.nn.softmax(logits, name="probs") return logits, tf.sigmoid(logits, name="probs") probs = tf.convert_to_tensor(value=probs, name="probs", dtype=dtype) if not dtype_util.is_floating(probs.dtype): raise TypeError("probs must having floating type.") if validate_args: with tf.name_scope("validate_probs"): one = tf.constant(1., probs.dtype) dependencies = [assert_util.assert_non_negative(probs)] if multidimensional: probs = embed_check_categorical_event_shape(probs) dependencies += [ assert_util.assert_near( tf.reduce_sum(input_tensor=probs, axis=-1), one, message="probs does not sum to 1.") ] else: dependencies += [ assert_util.assert_less_equal( probs, one, message="probs has components greater than 1.") ] probs = with_dependencies(dependencies, probs) with tf.name_scope("logits"): if multidimensional: # Here we don't compute the multidimensional case, in a manner # consistent with respect to the unidimensional case. We do so # following the TF convention. Typically, you might expect to see # logits = log(probs) - log(probs[pivot]). A side-effect of # being consistent with the TF approach is that the unidimensional case # implicitly handles the second dimension but the multidimensional case # explicitly keeps the pivot dimension. return tf.math.log(probs), probs return tf.math.log(probs) - tf.math.log1p(-1. * probs), probs
[ "Converts", "logit", "to", "probabilities", "(", "or", "vice", "-", "versa", ")", "and", "returns", "both", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L765-L845
[ "def", "get_logits_and_probs", "(", "logits", "=", "None", ",", "probs", "=", "None", ",", "multidimensional", "=", "False", ",", "validate_args", "=", "False", ",", "name", "=", "\"get_logits_and_probs\"", ",", "dtype", "=", "None", ")", ":", "if", "dtype", "is", "None", ":", "dtype", "=", "dtype_util", ".", "common_dtype", "(", "[", "probs", ",", "logits", "]", ",", "preferred_dtype", "=", "tf", ".", "float32", ")", "with", "tf", ".", "name_scope", "(", "name", ")", ":", "if", "(", "probs", "is", "None", ")", "==", "(", "logits", "is", "None", ")", ":", "raise", "ValueError", "(", "\"Must pass probs or logits, but not both.\"", ")", "if", "probs", "is", "None", ":", "logits", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "logits", ",", "name", "=", "\"logits\"", ",", "dtype", "=", "dtype", ")", "if", "not", "dtype_util", ".", "is_floating", "(", "logits", ".", "dtype", ")", ":", "raise", "TypeError", "(", "\"logits must having floating type.\"", ")", "# We can early return since we constructed probs and therefore know", "# they're valid.", "if", "multidimensional", ":", "if", "validate_args", ":", "logits", "=", "embed_check_categorical_event_shape", "(", "logits", ")", "return", "logits", ",", "tf", ".", "nn", ".", "softmax", "(", "logits", ",", "name", "=", "\"probs\"", ")", "return", "logits", ",", "tf", ".", "sigmoid", "(", "logits", ",", "name", "=", "\"probs\"", ")", "probs", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "probs", ",", "name", "=", "\"probs\"", ",", "dtype", "=", "dtype", ")", "if", "not", "dtype_util", ".", "is_floating", "(", "probs", ".", "dtype", ")", ":", "raise", "TypeError", "(", "\"probs must having floating type.\"", ")", "if", "validate_args", ":", "with", "tf", ".", "name_scope", "(", "\"validate_probs\"", ")", ":", "one", "=", "tf", ".", "constant", "(", "1.", ",", "probs", ".", "dtype", ")", "dependencies", "=", "[", "assert_util", ".", "assert_non_negative", "(", "probs", ")", "]", "if", "multidimensional", ":", "probs", "=", "embed_check_categorical_event_shape", "(", "probs", ")", "dependencies", "+=", "[", "assert_util", ".", "assert_near", "(", "tf", ".", "reduce_sum", "(", "input_tensor", "=", "probs", ",", "axis", "=", "-", "1", ")", ",", "one", ",", "message", "=", "\"probs does not sum to 1.\"", ")", "]", "else", ":", "dependencies", "+=", "[", "assert_util", ".", "assert_less_equal", "(", "probs", ",", "one", ",", "message", "=", "\"probs has components greater than 1.\"", ")", "]", "probs", "=", "with_dependencies", "(", "dependencies", ",", "probs", ")", "with", "tf", ".", "name_scope", "(", "\"logits\"", ")", ":", "if", "multidimensional", ":", "# Here we don't compute the multidimensional case, in a manner", "# consistent with respect to the unidimensional case. We do so", "# following the TF convention. Typically, you might expect to see", "# logits = log(probs) - log(probs[pivot]). A side-effect of", "# being consistent with the TF approach is that the unidimensional case", "# implicitly handles the second dimension but the multidimensional case", "# explicitly keeps the pivot dimension.", "return", "tf", ".", "math", ".", "log", "(", "probs", ")", ",", "probs", "return", "tf", ".", "math", ".", "log", "(", "probs", ")", "-", "tf", ".", "math", ".", "log1p", "(", "-", "1.", "*", "probs", ")", ",", "probs" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
_is_known_unsigned_by_dtype
Helper returning True if dtype is known to be unsigned.
tensorflow_probability/python/internal/distribution_util.py
def _is_known_unsigned_by_dtype(dt): """Helper returning True if dtype is known to be unsigned.""" return { tf.bool: True, tf.uint8: True, tf.uint16: True, }.get(dt.base_dtype, False)
def _is_known_unsigned_by_dtype(dt): """Helper returning True if dtype is known to be unsigned.""" return { tf.bool: True, tf.uint8: True, tf.uint16: True, }.get(dt.base_dtype, False)
[ "Helper", "returning", "True", "if", "dtype", "is", "known", "to", "be", "unsigned", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L848-L854
[ "def", "_is_known_unsigned_by_dtype", "(", "dt", ")", ":", "return", "{", "tf", ".", "bool", ":", "True", ",", "tf", ".", "uint8", ":", "True", ",", "tf", ".", "uint16", ":", "True", ",", "}", ".", "get", "(", "dt", ".", "base_dtype", ",", "False", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
_is_known_signed_by_dtype
Helper returning True if dtype is known to be signed.
tensorflow_probability/python/internal/distribution_util.py
def _is_known_signed_by_dtype(dt): """Helper returning True if dtype is known to be signed.""" return { tf.float16: True, tf.float32: True, tf.float64: True, tf.int8: True, tf.int16: True, tf.int32: True, tf.int64: True, }.get(dt.base_dtype, False)
def _is_known_signed_by_dtype(dt): """Helper returning True if dtype is known to be signed.""" return { tf.float16: True, tf.float32: True, tf.float64: True, tf.int8: True, tf.int16: True, tf.int32: True, tf.int64: True, }.get(dt.base_dtype, False)
[ "Helper", "returning", "True", "if", "dtype", "is", "known", "to", "be", "signed", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L857-L867
[ "def", "_is_known_signed_by_dtype", "(", "dt", ")", ":", "return", "{", "tf", ".", "float16", ":", "True", ",", "tf", ".", "float32", ":", "True", ",", "tf", ".", "float64", ":", "True", ",", "tf", ".", "int8", ":", "True", ",", "tf", ".", "int16", ":", "True", ",", "tf", ".", "int32", ":", "True", ",", "tf", ".", "int64", ":", "True", ",", "}", ".", "get", "(", "dt", ".", "base_dtype", ",", "False", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
_largest_integer_by_dtype
Helper returning the largest integer exactly representable by dtype.
tensorflow_probability/python/internal/distribution_util.py
def _largest_integer_by_dtype(dt): """Helper returning the largest integer exactly representable by dtype.""" if not _is_known_dtype(dt): raise TypeError("Unrecognized dtype: {}".format(dt.name)) if dt.is_floating: return int(2**(np.finfo(dt.as_numpy_dtype).nmant + 1)) if dt.is_integer: return np.iinfo(dt.as_numpy_dtype).max if dt.base_dtype == tf.bool: return int(1) # We actually can't land here but keep the case for completeness. raise TypeError("Unrecognized dtype: {}".format(dt.name))
def _largest_integer_by_dtype(dt): """Helper returning the largest integer exactly representable by dtype.""" if not _is_known_dtype(dt): raise TypeError("Unrecognized dtype: {}".format(dt.name)) if dt.is_floating: return int(2**(np.finfo(dt.as_numpy_dtype).nmant + 1)) if dt.is_integer: return np.iinfo(dt.as_numpy_dtype).max if dt.base_dtype == tf.bool: return int(1) # We actually can't land here but keep the case for completeness. raise TypeError("Unrecognized dtype: {}".format(dt.name))
[ "Helper", "returning", "the", "largest", "integer", "exactly", "representable", "by", "dtype", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L875-L886
[ "def", "_largest_integer_by_dtype", "(", "dt", ")", ":", "if", "not", "_is_known_dtype", "(", "dt", ")", ":", "raise", "TypeError", "(", "\"Unrecognized dtype: {}\"", ".", "format", "(", "dt", ".", "name", ")", ")", "if", "dt", ".", "is_floating", ":", "return", "int", "(", "2", "**", "(", "np", ".", "finfo", "(", "dt", ".", "as_numpy_dtype", ")", ".", "nmant", "+", "1", ")", ")", "if", "dt", ".", "is_integer", ":", "return", "np", ".", "iinfo", "(", "dt", ".", "as_numpy_dtype", ")", ".", "max", "if", "dt", ".", "base_dtype", "==", "tf", ".", "bool", ":", "return", "int", "(", "1", ")", "# We actually can't land here but keep the case for completeness.", "raise", "TypeError", "(", "\"Unrecognized dtype: {}\"", ".", "format", "(", "dt", ".", "name", ")", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
_smallest_integer_by_dtype
Helper returning the smallest integer exactly representable by dtype.
tensorflow_probability/python/internal/distribution_util.py
def _smallest_integer_by_dtype(dt): """Helper returning the smallest integer exactly representable by dtype.""" if not _is_known_dtype(dt): raise TypeError("Unrecognized dtype: {}".format(dt.name)) if _is_known_unsigned_by_dtype(dt): return 0 return -1 * _largest_integer_by_dtype(dt)
def _smallest_integer_by_dtype(dt): """Helper returning the smallest integer exactly representable by dtype.""" if not _is_known_dtype(dt): raise TypeError("Unrecognized dtype: {}".format(dt.name)) if _is_known_unsigned_by_dtype(dt): return 0 return -1 * _largest_integer_by_dtype(dt)
[ "Helper", "returning", "the", "smallest", "integer", "exactly", "representable", "by", "dtype", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L889-L895
[ "def", "_smallest_integer_by_dtype", "(", "dt", ")", ":", "if", "not", "_is_known_dtype", "(", "dt", ")", ":", "raise", "TypeError", "(", "\"Unrecognized dtype: {}\"", ".", "format", "(", "dt", ".", "name", ")", ")", "if", "_is_known_unsigned_by_dtype", "(", "dt", ")", ":", "return", "0", "return", "-", "1", "*", "_largest_integer_by_dtype", "(", "dt", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
_is_integer_like_by_dtype
Helper returning True if dtype.is_integer or is `bool`.
tensorflow_probability/python/internal/distribution_util.py
def _is_integer_like_by_dtype(dt): """Helper returning True if dtype.is_integer or is `bool`.""" if not _is_known_dtype(dt): raise TypeError("Unrecognized dtype: {}".format(dt.name)) return dt.is_integer or dt.base_dtype == tf.bool
def _is_integer_like_by_dtype(dt): """Helper returning True if dtype.is_integer or is `bool`.""" if not _is_known_dtype(dt): raise TypeError("Unrecognized dtype: {}".format(dt.name)) return dt.is_integer or dt.base_dtype == tf.bool
[ "Helper", "returning", "True", "if", "dtype", ".", "is_integer", "or", "is", "bool", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L898-L902
[ "def", "_is_integer_like_by_dtype", "(", "dt", ")", ":", "if", "not", "_is_known_dtype", "(", "dt", ")", ":", "raise", "TypeError", "(", "\"Unrecognized dtype: {}\"", ".", "format", "(", "dt", ".", "name", ")", ")", "return", "dt", ".", "is_integer", "or", "dt", ".", "base_dtype", "==", "tf", ".", "bool" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
embed_check_categorical_event_shape
Embeds checks that categorical distributions don't have too many classes. A categorical-type distribution is one which, e.g., returns the class label rather than a one-hot encoding. E.g., `Categorical(probs)`. Since distributions output samples in the same dtype as the parameters, we must ensure that casting doesn't lose precision. That is, the `parameter.dtype` implies a maximum number of classes. However, since shape is `int32` and categorical variables are presumed to be indexes into a `Tensor`, we must also ensure that the number of classes is no larger than the largest possible `int32` index, i.e., `2**31-1`. In other words the number of classes, `K`, must satisfy the following condition: ```python K <= min( int(2**31 - 1), # Largest float as an index. { tf.float16: int(2**11), # Largest int as a float16. tf.float32: int(2**24), tf.float64: int(2**53), }.get(dtype_util.base_dtype(categorical_param.dtype), 0)) ``` Args: categorical_param: Floating-point `Tensor` representing parameters of distribution over categories. The rightmost shape is presumed to be the number of categories. name: A name for this operation (optional). Returns: categorical_param: Input `Tensor` with appropriate assertions embedded. Raises: TypeError: if `categorical_param` has an unknown `dtype`. ValueError: if we can statically identify `categorical_param` as being too large (for being closed under int32/float casting).
tensorflow_probability/python/internal/distribution_util.py
def embed_check_categorical_event_shape( categorical_param, name="embed_check_categorical_event_shape"): """Embeds checks that categorical distributions don't have too many classes. A categorical-type distribution is one which, e.g., returns the class label rather than a one-hot encoding. E.g., `Categorical(probs)`. Since distributions output samples in the same dtype as the parameters, we must ensure that casting doesn't lose precision. That is, the `parameter.dtype` implies a maximum number of classes. However, since shape is `int32` and categorical variables are presumed to be indexes into a `Tensor`, we must also ensure that the number of classes is no larger than the largest possible `int32` index, i.e., `2**31-1`. In other words the number of classes, `K`, must satisfy the following condition: ```python K <= min( int(2**31 - 1), # Largest float as an index. { tf.float16: int(2**11), # Largest int as a float16. tf.float32: int(2**24), tf.float64: int(2**53), }.get(dtype_util.base_dtype(categorical_param.dtype), 0)) ``` Args: categorical_param: Floating-point `Tensor` representing parameters of distribution over categories. The rightmost shape is presumed to be the number of categories. name: A name for this operation (optional). Returns: categorical_param: Input `Tensor` with appropriate assertions embedded. Raises: TypeError: if `categorical_param` has an unknown `dtype`. ValueError: if we can statically identify `categorical_param` as being too large (for being closed under int32/float casting). """ with tf.name_scope(name): x = tf.convert_to_tensor(value=categorical_param, name="categorical_param") # The size must not exceed both of: # - The largest possible int32 (since categorical values are presumed to be # indexes into a Tensor). # - The largest possible integer exactly representable under the given # floating-point dtype (since we need to cast to/from). # # The chosen floating-point thresholds are 2**(1 + mantissa_bits). # For more details, see: # https://en.wikipedia.org/wiki/Floating-point_arithmetic#Internal_representation x_dtype = dtype_util.base_dtype(x.dtype) max_event_size = ( _largest_integer_by_dtype(x_dtype) if dtype_util.is_floating(x_dtype) else 0) if max_event_size is 0: raise TypeError("Unable to validate size of unrecognized dtype " "({}).".format(dtype_util.name(x_dtype))) try: x_shape_static = tensorshape_util.with_rank_at_least(x.shape, 1) except ValueError: raise ValueError("A categorical-distribution parameter must have " "at least 1 dimension.") event_size = tf.compat.dimension_value(x_shape_static[-1]) if event_size is not None: if event_size < 2: raise ValueError("A categorical-distribution parameter must have at " "least 2 events.") if event_size > max_event_size: raise ValueError("Number of classes exceeds `dtype` precision, i.e., " "{} implies shape ({}) cannot exceed {}.".format( dtype_util.name(x_dtype), event_size, max_event_size)) return x else: event_size = tf.shape(input=x, out_type=tf.int64, name="x_shape")[-1] return with_dependencies([ assert_util.assert_rank_at_least( x, 1, message=("A categorical-distribution parameter must have " "at least 1 dimension.")), assert_util.assert_greater_equal( tf.shape(input=x)[-1], 2, message=("A categorical-distribution parameter must have at " "least 2 events.")), assert_util.assert_less_equal( event_size, tf.convert_to_tensor(max_event_size, dtype=tf.int64), message="Number of classes exceeds `dtype` precision, " "i.e., {} dtype cannot exceed {} shape.".format( dtype_util.name(x_dtype), max_event_size)), ], x)
def embed_check_categorical_event_shape( categorical_param, name="embed_check_categorical_event_shape"): """Embeds checks that categorical distributions don't have too many classes. A categorical-type distribution is one which, e.g., returns the class label rather than a one-hot encoding. E.g., `Categorical(probs)`. Since distributions output samples in the same dtype as the parameters, we must ensure that casting doesn't lose precision. That is, the `parameter.dtype` implies a maximum number of classes. However, since shape is `int32` and categorical variables are presumed to be indexes into a `Tensor`, we must also ensure that the number of classes is no larger than the largest possible `int32` index, i.e., `2**31-1`. In other words the number of classes, `K`, must satisfy the following condition: ```python K <= min( int(2**31 - 1), # Largest float as an index. { tf.float16: int(2**11), # Largest int as a float16. tf.float32: int(2**24), tf.float64: int(2**53), }.get(dtype_util.base_dtype(categorical_param.dtype), 0)) ``` Args: categorical_param: Floating-point `Tensor` representing parameters of distribution over categories. The rightmost shape is presumed to be the number of categories. name: A name for this operation (optional). Returns: categorical_param: Input `Tensor` with appropriate assertions embedded. Raises: TypeError: if `categorical_param` has an unknown `dtype`. ValueError: if we can statically identify `categorical_param` as being too large (for being closed under int32/float casting). """ with tf.name_scope(name): x = tf.convert_to_tensor(value=categorical_param, name="categorical_param") # The size must not exceed both of: # - The largest possible int32 (since categorical values are presumed to be # indexes into a Tensor). # - The largest possible integer exactly representable under the given # floating-point dtype (since we need to cast to/from). # # The chosen floating-point thresholds are 2**(1 + mantissa_bits). # For more details, see: # https://en.wikipedia.org/wiki/Floating-point_arithmetic#Internal_representation x_dtype = dtype_util.base_dtype(x.dtype) max_event_size = ( _largest_integer_by_dtype(x_dtype) if dtype_util.is_floating(x_dtype) else 0) if max_event_size is 0: raise TypeError("Unable to validate size of unrecognized dtype " "({}).".format(dtype_util.name(x_dtype))) try: x_shape_static = tensorshape_util.with_rank_at_least(x.shape, 1) except ValueError: raise ValueError("A categorical-distribution parameter must have " "at least 1 dimension.") event_size = tf.compat.dimension_value(x_shape_static[-1]) if event_size is not None: if event_size < 2: raise ValueError("A categorical-distribution parameter must have at " "least 2 events.") if event_size > max_event_size: raise ValueError("Number of classes exceeds `dtype` precision, i.e., " "{} implies shape ({}) cannot exceed {}.".format( dtype_util.name(x_dtype), event_size, max_event_size)) return x else: event_size = tf.shape(input=x, out_type=tf.int64, name="x_shape")[-1] return with_dependencies([ assert_util.assert_rank_at_least( x, 1, message=("A categorical-distribution parameter must have " "at least 1 dimension.")), assert_util.assert_greater_equal( tf.shape(input=x)[-1], 2, message=("A categorical-distribution parameter must have at " "least 2 events.")), assert_util.assert_less_equal( event_size, tf.convert_to_tensor(max_event_size, dtype=tf.int64), message="Number of classes exceeds `dtype` precision, " "i.e., {} dtype cannot exceed {} shape.".format( dtype_util.name(x_dtype), max_event_size)), ], x)
[ "Embeds", "checks", "that", "categorical", "distributions", "don", "t", "have", "too", "many", "classes", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L905-L999
[ "def", "embed_check_categorical_event_shape", "(", "categorical_param", ",", "name", "=", "\"embed_check_categorical_event_shape\"", ")", ":", "with", "tf", ".", "name_scope", "(", "name", ")", ":", "x", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "categorical_param", ",", "name", "=", "\"categorical_param\"", ")", "# The size must not exceed both of:", "# - The largest possible int32 (since categorical values are presumed to be", "# indexes into a Tensor).", "# - The largest possible integer exactly representable under the given", "# floating-point dtype (since we need to cast to/from).", "#", "# The chosen floating-point thresholds are 2**(1 + mantissa_bits).", "# For more details, see:", "# https://en.wikipedia.org/wiki/Floating-point_arithmetic#Internal_representation", "x_dtype", "=", "dtype_util", ".", "base_dtype", "(", "x", ".", "dtype", ")", "max_event_size", "=", "(", "_largest_integer_by_dtype", "(", "x_dtype", ")", "if", "dtype_util", ".", "is_floating", "(", "x_dtype", ")", "else", "0", ")", "if", "max_event_size", "is", "0", ":", "raise", "TypeError", "(", "\"Unable to validate size of unrecognized dtype \"", "\"({}).\"", ".", "format", "(", "dtype_util", ".", "name", "(", "x_dtype", ")", ")", ")", "try", ":", "x_shape_static", "=", "tensorshape_util", ".", "with_rank_at_least", "(", "x", ".", "shape", ",", "1", ")", "except", "ValueError", ":", "raise", "ValueError", "(", "\"A categorical-distribution parameter must have \"", "\"at least 1 dimension.\"", ")", "event_size", "=", "tf", ".", "compat", ".", "dimension_value", "(", "x_shape_static", "[", "-", "1", "]", ")", "if", "event_size", "is", "not", "None", ":", "if", "event_size", "<", "2", ":", "raise", "ValueError", "(", "\"A categorical-distribution parameter must have at \"", "\"least 2 events.\"", ")", "if", "event_size", ">", "max_event_size", ":", "raise", "ValueError", "(", "\"Number of classes exceeds `dtype` precision, i.e., \"", "\"{} implies shape ({}) cannot exceed {}.\"", ".", "format", "(", "dtype_util", ".", "name", "(", "x_dtype", ")", ",", "event_size", ",", "max_event_size", ")", ")", "return", "x", "else", ":", "event_size", "=", "tf", ".", "shape", "(", "input", "=", "x", ",", "out_type", "=", "tf", ".", "int64", ",", "name", "=", "\"x_shape\"", ")", "[", "-", "1", "]", "return", "with_dependencies", "(", "[", "assert_util", ".", "assert_rank_at_least", "(", "x", ",", "1", ",", "message", "=", "(", "\"A categorical-distribution parameter must have \"", "\"at least 1 dimension.\"", ")", ")", ",", "assert_util", ".", "assert_greater_equal", "(", "tf", ".", "shape", "(", "input", "=", "x", ")", "[", "-", "1", "]", ",", "2", ",", "message", "=", "(", "\"A categorical-distribution parameter must have at \"", "\"least 2 events.\"", ")", ")", ",", "assert_util", ".", "assert_less_equal", "(", "event_size", ",", "tf", ".", "convert_to_tensor", "(", "max_event_size", ",", "dtype", "=", "tf", ".", "int64", ")", ",", "message", "=", "\"Number of classes exceeds `dtype` precision, \"", "\"i.e., {} dtype cannot exceed {} shape.\"", ".", "format", "(", "dtype_util", ".", "name", "(", "x_dtype", ")", ",", "max_event_size", ")", ")", ",", "]", ",", "x", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
embed_check_integer_casting_closed
Ensures integers remain unaffected despite casting to/from int/float types. Example integer-types: `uint8`, `int32`, `bool`. Example floating-types: `float32`, `float64`. The largest possible integer representable by an IEEE754 floating-point is `2**(1 + mantissa_bits)` yet the largest possible integer as an int-type is `2**(bits - 1) - 1`. This function ensures that a `Tensor` purporting to have integer-form values can be cast to some other type without loss of precision. The smallest representable integer is the negative of the largest representable integer, except for types: `uint8`, `uint16`, `bool`. For these types, the smallest representable integer is `0`. Args: x: `Tensor` representing integer-form values. target_dtype: TF `dtype` under which `x` should have identical values. assert_nonnegative: `bool` indicating `x` should contain nonnegative values. assert_positive: `bool` indicating `x` should contain positive values. name: A name for this operation (optional). Returns: x: Input `Tensor` with appropriate assertions embedded. Raises: TypeError: if `x` is neither integer- nor floating-type. TypeError: if `target_dtype` is neither integer- nor floating-type. TypeError: if neither `x` nor `target_dtype` are integer-type.
tensorflow_probability/python/internal/distribution_util.py
def embed_check_integer_casting_closed(x, target_dtype, assert_nonnegative=True, assert_positive=False, name="embed_check_casting_closed"): """Ensures integers remain unaffected despite casting to/from int/float types. Example integer-types: `uint8`, `int32`, `bool`. Example floating-types: `float32`, `float64`. The largest possible integer representable by an IEEE754 floating-point is `2**(1 + mantissa_bits)` yet the largest possible integer as an int-type is `2**(bits - 1) - 1`. This function ensures that a `Tensor` purporting to have integer-form values can be cast to some other type without loss of precision. The smallest representable integer is the negative of the largest representable integer, except for types: `uint8`, `uint16`, `bool`. For these types, the smallest representable integer is `0`. Args: x: `Tensor` representing integer-form values. target_dtype: TF `dtype` under which `x` should have identical values. assert_nonnegative: `bool` indicating `x` should contain nonnegative values. assert_positive: `bool` indicating `x` should contain positive values. name: A name for this operation (optional). Returns: x: Input `Tensor` with appropriate assertions embedded. Raises: TypeError: if `x` is neither integer- nor floating-type. TypeError: if `target_dtype` is neither integer- nor floating-type. TypeError: if neither `x` nor `target_dtype` are integer-type. """ with tf.name_scope(name): x = tf.convert_to_tensor(value=x, name="x") if (not _is_integer_like_by_dtype(x.dtype) and not dtype_util.is_floating(x.dtype)): raise TypeError("{}.dtype must be floating- or " "integer-type.".format(dtype_util.name(x.dtype))) if (not _is_integer_like_by_dtype(target_dtype) and not dtype_util.is_floating(target_dtype)): raise TypeError("target_dtype ({}) must be floating- or " "integer-type.".format(dtype_util.name(target_dtype))) if (not _is_integer_like_by_dtype(x.dtype) and not _is_integer_like_by_dtype(target_dtype)): raise TypeError("At least one of {}.dtype ({}) and target_dtype ({}) " "must be integer-type.".format( x, dtype_util.name(x.dtype), dtype_util.name(target_dtype))) assertions = [] if assert_positive: assertions += [ assert_util.assert_positive(x, message="Elements must be positive."), ] elif assert_nonnegative: assertions += [ assert_util.assert_non_negative( x, message="Elements must be non-negative."), ] if dtype_util.is_floating(x.dtype): # Being here means _is_integer_like_by_dtype(target_dtype) = True. # Since this check implies the magnitude check below, we need only it. assertions += [ assert_integer_form( x, int_dtype=target_dtype, message="Elements must be {}-equivalent.".format( dtype_util.name(target_dtype))), ] else: if (_largest_integer_by_dtype(x.dtype) > _largest_integer_by_dtype(target_dtype)): # Cast may lose integer precision. assertions += [ assert_util.assert_less_equal( x, _largest_integer_by_dtype(target_dtype), message=("Elements cannot exceed {}.".format( _largest_integer_by_dtype(target_dtype)))), ] if (not assert_nonnegative and (_smallest_integer_by_dtype( x.dtype) < _smallest_integer_by_dtype(target_dtype))): assertions += [ assert_util.assert_greater_equal( x, _smallest_integer_by_dtype(target_dtype), message=("Elements cannot be smaller than {}.".format( _smallest_integer_by_dtype(target_dtype)))), ] if not assertions: return x return with_dependencies(assertions, x)
def embed_check_integer_casting_closed(x, target_dtype, assert_nonnegative=True, assert_positive=False, name="embed_check_casting_closed"): """Ensures integers remain unaffected despite casting to/from int/float types. Example integer-types: `uint8`, `int32`, `bool`. Example floating-types: `float32`, `float64`. The largest possible integer representable by an IEEE754 floating-point is `2**(1 + mantissa_bits)` yet the largest possible integer as an int-type is `2**(bits - 1) - 1`. This function ensures that a `Tensor` purporting to have integer-form values can be cast to some other type without loss of precision. The smallest representable integer is the negative of the largest representable integer, except for types: `uint8`, `uint16`, `bool`. For these types, the smallest representable integer is `0`. Args: x: `Tensor` representing integer-form values. target_dtype: TF `dtype` under which `x` should have identical values. assert_nonnegative: `bool` indicating `x` should contain nonnegative values. assert_positive: `bool` indicating `x` should contain positive values. name: A name for this operation (optional). Returns: x: Input `Tensor` with appropriate assertions embedded. Raises: TypeError: if `x` is neither integer- nor floating-type. TypeError: if `target_dtype` is neither integer- nor floating-type. TypeError: if neither `x` nor `target_dtype` are integer-type. """ with tf.name_scope(name): x = tf.convert_to_tensor(value=x, name="x") if (not _is_integer_like_by_dtype(x.dtype) and not dtype_util.is_floating(x.dtype)): raise TypeError("{}.dtype must be floating- or " "integer-type.".format(dtype_util.name(x.dtype))) if (not _is_integer_like_by_dtype(target_dtype) and not dtype_util.is_floating(target_dtype)): raise TypeError("target_dtype ({}) must be floating- or " "integer-type.".format(dtype_util.name(target_dtype))) if (not _is_integer_like_by_dtype(x.dtype) and not _is_integer_like_by_dtype(target_dtype)): raise TypeError("At least one of {}.dtype ({}) and target_dtype ({}) " "must be integer-type.".format( x, dtype_util.name(x.dtype), dtype_util.name(target_dtype))) assertions = [] if assert_positive: assertions += [ assert_util.assert_positive(x, message="Elements must be positive."), ] elif assert_nonnegative: assertions += [ assert_util.assert_non_negative( x, message="Elements must be non-negative."), ] if dtype_util.is_floating(x.dtype): # Being here means _is_integer_like_by_dtype(target_dtype) = True. # Since this check implies the magnitude check below, we need only it. assertions += [ assert_integer_form( x, int_dtype=target_dtype, message="Elements must be {}-equivalent.".format( dtype_util.name(target_dtype))), ] else: if (_largest_integer_by_dtype(x.dtype) > _largest_integer_by_dtype(target_dtype)): # Cast may lose integer precision. assertions += [ assert_util.assert_less_equal( x, _largest_integer_by_dtype(target_dtype), message=("Elements cannot exceed {}.".format( _largest_integer_by_dtype(target_dtype)))), ] if (not assert_nonnegative and (_smallest_integer_by_dtype( x.dtype) < _smallest_integer_by_dtype(target_dtype))): assertions += [ assert_util.assert_greater_equal( x, _smallest_integer_by_dtype(target_dtype), message=("Elements cannot be smaller than {}.".format( _smallest_integer_by_dtype(target_dtype)))), ] if not assertions: return x return with_dependencies(assertions, x)
[ "Ensures", "integers", "remain", "unaffected", "despite", "casting", "to", "/", "from", "int", "/", "float", "types", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L1002-L1098
[ "def", "embed_check_integer_casting_closed", "(", "x", ",", "target_dtype", ",", "assert_nonnegative", "=", "True", ",", "assert_positive", "=", "False", ",", "name", "=", "\"embed_check_casting_closed\"", ")", ":", "with", "tf", ".", "name_scope", "(", "name", ")", ":", "x", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "x", ",", "name", "=", "\"x\"", ")", "if", "(", "not", "_is_integer_like_by_dtype", "(", "x", ".", "dtype", ")", "and", "not", "dtype_util", ".", "is_floating", "(", "x", ".", "dtype", ")", ")", ":", "raise", "TypeError", "(", "\"{}.dtype must be floating- or \"", "\"integer-type.\"", ".", "format", "(", "dtype_util", ".", "name", "(", "x", ".", "dtype", ")", ")", ")", "if", "(", "not", "_is_integer_like_by_dtype", "(", "target_dtype", ")", "and", "not", "dtype_util", ".", "is_floating", "(", "target_dtype", ")", ")", ":", "raise", "TypeError", "(", "\"target_dtype ({}) must be floating- or \"", "\"integer-type.\"", ".", "format", "(", "dtype_util", ".", "name", "(", "target_dtype", ")", ")", ")", "if", "(", "not", "_is_integer_like_by_dtype", "(", "x", ".", "dtype", ")", "and", "not", "_is_integer_like_by_dtype", "(", "target_dtype", ")", ")", ":", "raise", "TypeError", "(", "\"At least one of {}.dtype ({}) and target_dtype ({}) \"", "\"must be integer-type.\"", ".", "format", "(", "x", ",", "dtype_util", ".", "name", "(", "x", ".", "dtype", ")", ",", "dtype_util", ".", "name", "(", "target_dtype", ")", ")", ")", "assertions", "=", "[", "]", "if", "assert_positive", ":", "assertions", "+=", "[", "assert_util", ".", "assert_positive", "(", "x", ",", "message", "=", "\"Elements must be positive.\"", ")", ",", "]", "elif", "assert_nonnegative", ":", "assertions", "+=", "[", "assert_util", ".", "assert_non_negative", "(", "x", ",", "message", "=", "\"Elements must be non-negative.\"", ")", ",", "]", "if", "dtype_util", ".", "is_floating", "(", "x", ".", "dtype", ")", ":", "# Being here means _is_integer_like_by_dtype(target_dtype) = True.", "# Since this check implies the magnitude check below, we need only it.", "assertions", "+=", "[", "assert_integer_form", "(", "x", ",", "int_dtype", "=", "target_dtype", ",", "message", "=", "\"Elements must be {}-equivalent.\"", ".", "format", "(", "dtype_util", ".", "name", "(", "target_dtype", ")", ")", ")", ",", "]", "else", ":", "if", "(", "_largest_integer_by_dtype", "(", "x", ".", "dtype", ")", ">", "_largest_integer_by_dtype", "(", "target_dtype", ")", ")", ":", "# Cast may lose integer precision.", "assertions", "+=", "[", "assert_util", ".", "assert_less_equal", "(", "x", ",", "_largest_integer_by_dtype", "(", "target_dtype", ")", ",", "message", "=", "(", "\"Elements cannot exceed {}.\"", ".", "format", "(", "_largest_integer_by_dtype", "(", "target_dtype", ")", ")", ")", ")", ",", "]", "if", "(", "not", "assert_nonnegative", "and", "(", "_smallest_integer_by_dtype", "(", "x", ".", "dtype", ")", "<", "_smallest_integer_by_dtype", "(", "target_dtype", ")", ")", ")", ":", "assertions", "+=", "[", "assert_util", ".", "assert_greater_equal", "(", "x", ",", "_smallest_integer_by_dtype", "(", "target_dtype", ")", ",", "message", "=", "(", "\"Elements cannot be smaller than {}.\"", ".", "format", "(", "_smallest_integer_by_dtype", "(", "target_dtype", ")", ")", ")", ")", ",", "]", "if", "not", "assertions", ":", "return", "x", "return", "with_dependencies", "(", "assertions", ",", "x", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
log_combinations
Multinomial coefficient. Given `n` and `counts`, where `counts` has last dimension `k`, we compute the multinomial coefficient as: ```n! / sum_i n_i!``` where `i` runs over all `k` classes. Args: n: Floating-point `Tensor` broadcastable with `counts`. This represents `n` outcomes. counts: Floating-point `Tensor` broadcastable with `n`. This represents counts in `k` classes, where `k` is the last dimension of the tensor. name: A name for this operation (optional). Returns: `Tensor` representing the multinomial coefficient between `n` and `counts`.
tensorflow_probability/python/internal/distribution_util.py
def log_combinations(n, counts, name="log_combinations"): """Multinomial coefficient. Given `n` and `counts`, where `counts` has last dimension `k`, we compute the multinomial coefficient as: ```n! / sum_i n_i!``` where `i` runs over all `k` classes. Args: n: Floating-point `Tensor` broadcastable with `counts`. This represents `n` outcomes. counts: Floating-point `Tensor` broadcastable with `n`. This represents counts in `k` classes, where `k` is the last dimension of the tensor. name: A name for this operation (optional). Returns: `Tensor` representing the multinomial coefficient between `n` and `counts`. """ # First a bit about the number of ways counts could have come in: # E.g. if counts = [1, 2], then this is 3 choose 2. # In general, this is (sum counts)! / sum(counts!) # The sum should be along the last dimension of counts. This is the # "distribution" dimension. Here n a priori represents the sum of counts. with tf.name_scope(name): n = tf.convert_to_tensor(value=n, name="n") counts = tf.convert_to_tensor(value=counts, name="counts") total_permutations = tf.math.lgamma(n + 1) counts_factorial = tf.math.lgamma(counts + 1) redundant_permutations = tf.reduce_sum( input_tensor=counts_factorial, axis=[-1]) return total_permutations - redundant_permutations
def log_combinations(n, counts, name="log_combinations"): """Multinomial coefficient. Given `n` and `counts`, where `counts` has last dimension `k`, we compute the multinomial coefficient as: ```n! / sum_i n_i!``` where `i` runs over all `k` classes. Args: n: Floating-point `Tensor` broadcastable with `counts`. This represents `n` outcomes. counts: Floating-point `Tensor` broadcastable with `n`. This represents counts in `k` classes, where `k` is the last dimension of the tensor. name: A name for this operation (optional). Returns: `Tensor` representing the multinomial coefficient between `n` and `counts`. """ # First a bit about the number of ways counts could have come in: # E.g. if counts = [1, 2], then this is 3 choose 2. # In general, this is (sum counts)! / sum(counts!) # The sum should be along the last dimension of counts. This is the # "distribution" dimension. Here n a priori represents the sum of counts. with tf.name_scope(name): n = tf.convert_to_tensor(value=n, name="n") counts = tf.convert_to_tensor(value=counts, name="counts") total_permutations = tf.math.lgamma(n + 1) counts_factorial = tf.math.lgamma(counts + 1) redundant_permutations = tf.reduce_sum( input_tensor=counts_factorial, axis=[-1]) return total_permutations - redundant_permutations
[ "Multinomial", "coefficient", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L1101-L1133
[ "def", "log_combinations", "(", "n", ",", "counts", ",", "name", "=", "\"log_combinations\"", ")", ":", "# First a bit about the number of ways counts could have come in:", "# E.g. if counts = [1, 2], then this is 3 choose 2.", "# In general, this is (sum counts)! / sum(counts!)", "# The sum should be along the last dimension of counts. This is the", "# \"distribution\" dimension. Here n a priori represents the sum of counts.", "with", "tf", ".", "name_scope", "(", "name", ")", ":", "n", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "n", ",", "name", "=", "\"n\"", ")", "counts", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "counts", ",", "name", "=", "\"counts\"", ")", "total_permutations", "=", "tf", ".", "math", ".", "lgamma", "(", "n", "+", "1", ")", "counts_factorial", "=", "tf", ".", "math", ".", "lgamma", "(", "counts", "+", "1", ")", "redundant_permutations", "=", "tf", ".", "reduce_sum", "(", "input_tensor", "=", "counts_factorial", ",", "axis", "=", "[", "-", "1", "]", ")", "return", "total_permutations", "-", "redundant_permutations" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
matrix_diag_transform
Transform diagonal of [batch-]matrix, leave rest of matrix unchanged. Create a trainable covariance defined by a Cholesky factor: ```python # Transform network layer into 2 x 2 array. matrix_values = tf.contrib.layers.fully_connected(activations, 4) matrix = tf.reshape(matrix_values, (batch_size, 2, 2)) # Make the diagonal positive. If the upper triangle was zero, this would be a # valid Cholesky factor. chol = matrix_diag_transform(matrix, transform=tf.nn.softplus) # LinearOperatorLowerTriangular ignores the upper triangle. operator = LinearOperatorLowerTriangular(chol) ``` Example of heteroskedastic 2-D linear regression. ```python tfd = tfp.distributions # Get a trainable Cholesky factor. matrix_values = tf.contrib.layers.fully_connected(activations, 4) matrix = tf.reshape(matrix_values, (batch_size, 2, 2)) chol = matrix_diag_transform(matrix, transform=tf.nn.softplus) # Get a trainable mean. mu = tf.contrib.layers.fully_connected(activations, 2) # This is a fully trainable multivariate normal! dist = tfd.MultivariateNormalTriL(mu, chol) # Standard log loss. Minimizing this will "train" mu and chol, and then dist # will be a distribution predicting labels as multivariate Gaussians. loss = -1 * tf.reduce_mean(dist.log_prob(labels)) ``` Args: matrix: Rank `R` `Tensor`, `R >= 2`, where the last two dimensions are equal. transform: Element-wise function mapping `Tensors` to `Tensors`. To be applied to the diagonal of `matrix`. If `None`, `matrix` is returned unchanged. Defaults to `None`. name: A name to give created ops. Defaults to "matrix_diag_transform". Returns: A `Tensor` with same shape and `dtype` as `matrix`.
tensorflow_probability/python/internal/distribution_util.py
def matrix_diag_transform(matrix, transform=None, name=None): """Transform diagonal of [batch-]matrix, leave rest of matrix unchanged. Create a trainable covariance defined by a Cholesky factor: ```python # Transform network layer into 2 x 2 array. matrix_values = tf.contrib.layers.fully_connected(activations, 4) matrix = tf.reshape(matrix_values, (batch_size, 2, 2)) # Make the diagonal positive. If the upper triangle was zero, this would be a # valid Cholesky factor. chol = matrix_diag_transform(matrix, transform=tf.nn.softplus) # LinearOperatorLowerTriangular ignores the upper triangle. operator = LinearOperatorLowerTriangular(chol) ``` Example of heteroskedastic 2-D linear regression. ```python tfd = tfp.distributions # Get a trainable Cholesky factor. matrix_values = tf.contrib.layers.fully_connected(activations, 4) matrix = tf.reshape(matrix_values, (batch_size, 2, 2)) chol = matrix_diag_transform(matrix, transform=tf.nn.softplus) # Get a trainable mean. mu = tf.contrib.layers.fully_connected(activations, 2) # This is a fully trainable multivariate normal! dist = tfd.MultivariateNormalTriL(mu, chol) # Standard log loss. Minimizing this will "train" mu and chol, and then dist # will be a distribution predicting labels as multivariate Gaussians. loss = -1 * tf.reduce_mean(dist.log_prob(labels)) ``` Args: matrix: Rank `R` `Tensor`, `R >= 2`, where the last two dimensions are equal. transform: Element-wise function mapping `Tensors` to `Tensors`. To be applied to the diagonal of `matrix`. If `None`, `matrix` is returned unchanged. Defaults to `None`. name: A name to give created ops. Defaults to "matrix_diag_transform". Returns: A `Tensor` with same shape and `dtype` as `matrix`. """ with tf.name_scope(name or "matrix_diag_transform"): matrix = tf.convert_to_tensor(value=matrix, name="matrix") if transform is None: return matrix # Replace the diag with transformed diag. diag = tf.linalg.diag_part(matrix) transformed_diag = transform(diag) transformed_mat = tf.linalg.set_diag(matrix, transformed_diag) return transformed_mat
def matrix_diag_transform(matrix, transform=None, name=None): """Transform diagonal of [batch-]matrix, leave rest of matrix unchanged. Create a trainable covariance defined by a Cholesky factor: ```python # Transform network layer into 2 x 2 array. matrix_values = tf.contrib.layers.fully_connected(activations, 4) matrix = tf.reshape(matrix_values, (batch_size, 2, 2)) # Make the diagonal positive. If the upper triangle was zero, this would be a # valid Cholesky factor. chol = matrix_diag_transform(matrix, transform=tf.nn.softplus) # LinearOperatorLowerTriangular ignores the upper triangle. operator = LinearOperatorLowerTriangular(chol) ``` Example of heteroskedastic 2-D linear regression. ```python tfd = tfp.distributions # Get a trainable Cholesky factor. matrix_values = tf.contrib.layers.fully_connected(activations, 4) matrix = tf.reshape(matrix_values, (batch_size, 2, 2)) chol = matrix_diag_transform(matrix, transform=tf.nn.softplus) # Get a trainable mean. mu = tf.contrib.layers.fully_connected(activations, 2) # This is a fully trainable multivariate normal! dist = tfd.MultivariateNormalTriL(mu, chol) # Standard log loss. Minimizing this will "train" mu and chol, and then dist # will be a distribution predicting labels as multivariate Gaussians. loss = -1 * tf.reduce_mean(dist.log_prob(labels)) ``` Args: matrix: Rank `R` `Tensor`, `R >= 2`, where the last two dimensions are equal. transform: Element-wise function mapping `Tensors` to `Tensors`. To be applied to the diagonal of `matrix`. If `None`, `matrix` is returned unchanged. Defaults to `None`. name: A name to give created ops. Defaults to "matrix_diag_transform". Returns: A `Tensor` with same shape and `dtype` as `matrix`. """ with tf.name_scope(name or "matrix_diag_transform"): matrix = tf.convert_to_tensor(value=matrix, name="matrix") if transform is None: return matrix # Replace the diag with transformed diag. diag = tf.linalg.diag_part(matrix) transformed_diag = transform(diag) transformed_mat = tf.linalg.set_diag(matrix, transformed_diag) return transformed_mat
[ "Transform", "diagonal", "of", "[", "batch", "-", "]", "matrix", "leave", "rest", "of", "matrix", "unchanged", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L1136-L1195
[ "def", "matrix_diag_transform", "(", "matrix", ",", "transform", "=", "None", ",", "name", "=", "None", ")", ":", "with", "tf", ".", "name_scope", "(", "name", "or", "\"matrix_diag_transform\"", ")", ":", "matrix", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "matrix", ",", "name", "=", "\"matrix\"", ")", "if", "transform", "is", "None", ":", "return", "matrix", "# Replace the diag with transformed diag.", "diag", "=", "tf", ".", "linalg", ".", "diag_part", "(", "matrix", ")", "transformed_diag", "=", "transform", "(", "diag", ")", "transformed_mat", "=", "tf", ".", "linalg", ".", "set_diag", "(", "matrix", ",", "transformed_diag", ")", "return", "transformed_mat" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
rotate_transpose
Circularly moves dims left or right. Effectively identical to: ```python numpy.transpose(x, numpy.roll(numpy.arange(len(x.shape)), shift)) ``` When `validate_args=False` additional graph-runtime checks are performed. These checks entail moving data from to GPU to CPU. Example: ```python x = tf.random_normal([1, 2, 3, 4]) # Tensor of shape [1, 2, 3, 4]. rotate_transpose(x, -1).shape == [2, 3, 4, 1] rotate_transpose(x, -2).shape == [3, 4, 1, 2] rotate_transpose(x, 1).shape == [4, 1, 2, 3] rotate_transpose(x, 2).shape == [3, 4, 1, 2] rotate_transpose(x, 7).shape == rotate_transpose(x, 3).shape # [2, 3, 4, 1] rotate_transpose(x, -7).shape == rotate_transpose(x, -3).shape # [4, 1, 2, 3] ``` Args: x: `Tensor`. shift: `Tensor`. Number of dimensions to transpose left (shift<0) or transpose right (shift>0). name: Python `str`. The name to give this op. Returns: rotated_x: Input `Tensor` with dimensions circularly rotated by shift. Raises: TypeError: if shift is not integer type.
tensorflow_probability/python/internal/distribution_util.py
def rotate_transpose(x, shift, name="rotate_transpose"): """Circularly moves dims left or right. Effectively identical to: ```python numpy.transpose(x, numpy.roll(numpy.arange(len(x.shape)), shift)) ``` When `validate_args=False` additional graph-runtime checks are performed. These checks entail moving data from to GPU to CPU. Example: ```python x = tf.random_normal([1, 2, 3, 4]) # Tensor of shape [1, 2, 3, 4]. rotate_transpose(x, -1).shape == [2, 3, 4, 1] rotate_transpose(x, -2).shape == [3, 4, 1, 2] rotate_transpose(x, 1).shape == [4, 1, 2, 3] rotate_transpose(x, 2).shape == [3, 4, 1, 2] rotate_transpose(x, 7).shape == rotate_transpose(x, 3).shape # [2, 3, 4, 1] rotate_transpose(x, -7).shape == rotate_transpose(x, -3).shape # [4, 1, 2, 3] ``` Args: x: `Tensor`. shift: `Tensor`. Number of dimensions to transpose left (shift<0) or transpose right (shift>0). name: Python `str`. The name to give this op. Returns: rotated_x: Input `Tensor` with dimensions circularly rotated by shift. Raises: TypeError: if shift is not integer type. """ with tf.name_scope(name): x = tf.convert_to_tensor(value=x, name="x") shift = tf.convert_to_tensor(value=shift, name="shift") # We do not assign back to preserve constant-ness. assert_util.assert_integer(shift) shift_value_static = tf.get_static_value(shift) ndims = tensorshape_util.rank(x.shape) if ndims is not None and shift_value_static is not None: if ndims < 2: return x shift_value_static = np.sign(shift_value_static) * ( abs(shift_value_static) % ndims) if shift_value_static == 0: return x perm = np.roll(np.arange(ndims), shift_value_static) return tf.transpose(a=x, perm=perm) else: # Consider if we always had a positive shift, and some specified # direction. # When shifting left we want the new array: # last(x, n-shift) + first(x, shift) # and if shifting right then we want: # last(x, shift) + first(x, n-shift) # Observe that last(a) == slice(a, n) and first(a) == slice(0, a). # Also, we can encode direction and shift as one: direction * shift. # Combining these facts, we have: # a = cond(shift<0, -shift, n-shift) # last(x, n-a) + first(x, a) == x[a:n] + x[0:a] # Finally, we transform shift by modulo length so it can be specified # independently from the array upon which it operates (like python). ndims = tf.rank(x) shift = tf.where( tf.less(shift, 0), -shift % ndims, ndims - shift % ndims) first = tf.range(0, shift) last = tf.range(shift, ndims) perm = tf.concat([last, first], 0) return tf.transpose(a=x, perm=perm)
def rotate_transpose(x, shift, name="rotate_transpose"): """Circularly moves dims left or right. Effectively identical to: ```python numpy.transpose(x, numpy.roll(numpy.arange(len(x.shape)), shift)) ``` When `validate_args=False` additional graph-runtime checks are performed. These checks entail moving data from to GPU to CPU. Example: ```python x = tf.random_normal([1, 2, 3, 4]) # Tensor of shape [1, 2, 3, 4]. rotate_transpose(x, -1).shape == [2, 3, 4, 1] rotate_transpose(x, -2).shape == [3, 4, 1, 2] rotate_transpose(x, 1).shape == [4, 1, 2, 3] rotate_transpose(x, 2).shape == [3, 4, 1, 2] rotate_transpose(x, 7).shape == rotate_transpose(x, 3).shape # [2, 3, 4, 1] rotate_transpose(x, -7).shape == rotate_transpose(x, -3).shape # [4, 1, 2, 3] ``` Args: x: `Tensor`. shift: `Tensor`. Number of dimensions to transpose left (shift<0) or transpose right (shift>0). name: Python `str`. The name to give this op. Returns: rotated_x: Input `Tensor` with dimensions circularly rotated by shift. Raises: TypeError: if shift is not integer type. """ with tf.name_scope(name): x = tf.convert_to_tensor(value=x, name="x") shift = tf.convert_to_tensor(value=shift, name="shift") # We do not assign back to preserve constant-ness. assert_util.assert_integer(shift) shift_value_static = tf.get_static_value(shift) ndims = tensorshape_util.rank(x.shape) if ndims is not None and shift_value_static is not None: if ndims < 2: return x shift_value_static = np.sign(shift_value_static) * ( abs(shift_value_static) % ndims) if shift_value_static == 0: return x perm = np.roll(np.arange(ndims), shift_value_static) return tf.transpose(a=x, perm=perm) else: # Consider if we always had a positive shift, and some specified # direction. # When shifting left we want the new array: # last(x, n-shift) + first(x, shift) # and if shifting right then we want: # last(x, shift) + first(x, n-shift) # Observe that last(a) == slice(a, n) and first(a) == slice(0, a). # Also, we can encode direction and shift as one: direction * shift. # Combining these facts, we have: # a = cond(shift<0, -shift, n-shift) # last(x, n-a) + first(x, a) == x[a:n] + x[0:a] # Finally, we transform shift by modulo length so it can be specified # independently from the array upon which it operates (like python). ndims = tf.rank(x) shift = tf.where( tf.less(shift, 0), -shift % ndims, ndims - shift % ndims) first = tf.range(0, shift) last = tf.range(shift, ndims) perm = tf.concat([last, first], 0) return tf.transpose(a=x, perm=perm)
[ "Circularly", "moves", "dims", "left", "or", "right", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L1198-L1271
[ "def", "rotate_transpose", "(", "x", ",", "shift", ",", "name", "=", "\"rotate_transpose\"", ")", ":", "with", "tf", ".", "name_scope", "(", "name", ")", ":", "x", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "x", ",", "name", "=", "\"x\"", ")", "shift", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "shift", ",", "name", "=", "\"shift\"", ")", "# We do not assign back to preserve constant-ness.", "assert_util", ".", "assert_integer", "(", "shift", ")", "shift_value_static", "=", "tf", ".", "get_static_value", "(", "shift", ")", "ndims", "=", "tensorshape_util", ".", "rank", "(", "x", ".", "shape", ")", "if", "ndims", "is", "not", "None", "and", "shift_value_static", "is", "not", "None", ":", "if", "ndims", "<", "2", ":", "return", "x", "shift_value_static", "=", "np", ".", "sign", "(", "shift_value_static", ")", "*", "(", "abs", "(", "shift_value_static", ")", "%", "ndims", ")", "if", "shift_value_static", "==", "0", ":", "return", "x", "perm", "=", "np", ".", "roll", "(", "np", ".", "arange", "(", "ndims", ")", ",", "shift_value_static", ")", "return", "tf", ".", "transpose", "(", "a", "=", "x", ",", "perm", "=", "perm", ")", "else", ":", "# Consider if we always had a positive shift, and some specified", "# direction.", "# When shifting left we want the new array:", "# last(x, n-shift) + first(x, shift)", "# and if shifting right then we want:", "# last(x, shift) + first(x, n-shift)", "# Observe that last(a) == slice(a, n) and first(a) == slice(0, a).", "# Also, we can encode direction and shift as one: direction * shift.", "# Combining these facts, we have:", "# a = cond(shift<0, -shift, n-shift)", "# last(x, n-a) + first(x, a) == x[a:n] + x[0:a]", "# Finally, we transform shift by modulo length so it can be specified", "# independently from the array upon which it operates (like python).", "ndims", "=", "tf", ".", "rank", "(", "x", ")", "shift", "=", "tf", ".", "where", "(", "tf", ".", "less", "(", "shift", ",", "0", ")", ",", "-", "shift", "%", "ndims", ",", "ndims", "-", "shift", "%", "ndims", ")", "first", "=", "tf", ".", "range", "(", "0", ",", "shift", ")", "last", "=", "tf", ".", "range", "(", "shift", ",", "ndims", ")", "perm", "=", "tf", ".", "concat", "(", "[", "last", ",", "first", "]", ",", "0", ")", "return", "tf", ".", "transpose", "(", "a", "=", "x", ",", "perm", "=", "perm", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
pick_vector
Picks possibly different length row `Tensor`s based on condition. Value `Tensor`s should have exactly one dimension. If `cond` is a python Boolean or `tf.constant` then either `true_vector` or `false_vector` is immediately returned. I.e., no graph nodes are created and no validation happens. Args: cond: `Tensor`. Must have `dtype=tf.bool` and be scalar. true_vector: `Tensor` of one dimension. Returned when cond is `True`. false_vector: `Tensor` of one dimension. Returned when cond is `False`. name: Python `str`. The name to give this op. Example: ```python pick_vector(tf.less(0, 5), tf.range(10, 12), tf.range(15, 18)) # [10, 11] pick_vector(tf.less(5, 0), tf.range(10, 12), tf.range(15, 18)) # [15, 16, 17] ``` Returns: true_or_false_vector: `Tensor`. Raises: TypeError: if `cond.dtype != tf.bool` TypeError: if `cond` is not a constant and `true_vector.dtype != false_vector.dtype`
tensorflow_probability/python/internal/distribution_util.py
def pick_vector(cond, true_vector, false_vector, name="pick_vector"): """Picks possibly different length row `Tensor`s based on condition. Value `Tensor`s should have exactly one dimension. If `cond` is a python Boolean or `tf.constant` then either `true_vector` or `false_vector` is immediately returned. I.e., no graph nodes are created and no validation happens. Args: cond: `Tensor`. Must have `dtype=tf.bool` and be scalar. true_vector: `Tensor` of one dimension. Returned when cond is `True`. false_vector: `Tensor` of one dimension. Returned when cond is `False`. name: Python `str`. The name to give this op. Example: ```python pick_vector(tf.less(0, 5), tf.range(10, 12), tf.range(15, 18)) # [10, 11] pick_vector(tf.less(5, 0), tf.range(10, 12), tf.range(15, 18)) # [15, 16, 17] ``` Returns: true_or_false_vector: `Tensor`. Raises: TypeError: if `cond.dtype != tf.bool` TypeError: if `cond` is not a constant and `true_vector.dtype != false_vector.dtype` """ with tf.name_scope(name): cond = tf.convert_to_tensor( value=cond, dtype_hint=tf.bool, name="cond") if cond.dtype != tf.bool: raise TypeError( "{}.dtype={} which is not {}".format(cond, cond.dtype, tf.bool)) true_vector = tf.convert_to_tensor(value=true_vector, name="true_vector") false_vector = tf.convert_to_tensor(value=false_vector, name="false_vector") if true_vector.dtype != false_vector.dtype: raise TypeError( "{}.dtype={} does not match {}.dtype={}".format( true_vector, true_vector.dtype, false_vector, false_vector.dtype)) cond_value_static = tf.get_static_value(cond) if cond_value_static is not None: return true_vector if cond_value_static else false_vector n = tf.shape(input=true_vector)[0] return tf.slice( tf.concat([true_vector, false_vector], 0), [tf.where(cond, 0, n)], [tf.where(cond, n, -1)])
def pick_vector(cond, true_vector, false_vector, name="pick_vector"): """Picks possibly different length row `Tensor`s based on condition. Value `Tensor`s should have exactly one dimension. If `cond` is a python Boolean or `tf.constant` then either `true_vector` or `false_vector` is immediately returned. I.e., no graph nodes are created and no validation happens. Args: cond: `Tensor`. Must have `dtype=tf.bool` and be scalar. true_vector: `Tensor` of one dimension. Returned when cond is `True`. false_vector: `Tensor` of one dimension. Returned when cond is `False`. name: Python `str`. The name to give this op. Example: ```python pick_vector(tf.less(0, 5), tf.range(10, 12), tf.range(15, 18)) # [10, 11] pick_vector(tf.less(5, 0), tf.range(10, 12), tf.range(15, 18)) # [15, 16, 17] ``` Returns: true_or_false_vector: `Tensor`. Raises: TypeError: if `cond.dtype != tf.bool` TypeError: if `cond` is not a constant and `true_vector.dtype != false_vector.dtype` """ with tf.name_scope(name): cond = tf.convert_to_tensor( value=cond, dtype_hint=tf.bool, name="cond") if cond.dtype != tf.bool: raise TypeError( "{}.dtype={} which is not {}".format(cond, cond.dtype, tf.bool)) true_vector = tf.convert_to_tensor(value=true_vector, name="true_vector") false_vector = tf.convert_to_tensor(value=false_vector, name="false_vector") if true_vector.dtype != false_vector.dtype: raise TypeError( "{}.dtype={} does not match {}.dtype={}".format( true_vector, true_vector.dtype, false_vector, false_vector.dtype)) cond_value_static = tf.get_static_value(cond) if cond_value_static is not None: return true_vector if cond_value_static else false_vector n = tf.shape(input=true_vector)[0] return tf.slice( tf.concat([true_vector, false_vector], 0), [tf.where(cond, 0, n)], [tf.where(cond, n, -1)])
[ "Picks", "possibly", "different", "length", "row", "Tensor", "s", "based", "on", "condition", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L1274-L1320
[ "def", "pick_vector", "(", "cond", ",", "true_vector", ",", "false_vector", ",", "name", "=", "\"pick_vector\"", ")", ":", "with", "tf", ".", "name_scope", "(", "name", ")", ":", "cond", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "cond", ",", "dtype_hint", "=", "tf", ".", "bool", ",", "name", "=", "\"cond\"", ")", "if", "cond", ".", "dtype", "!=", "tf", ".", "bool", ":", "raise", "TypeError", "(", "\"{}.dtype={} which is not {}\"", ".", "format", "(", "cond", ",", "cond", ".", "dtype", ",", "tf", ".", "bool", ")", ")", "true_vector", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "true_vector", ",", "name", "=", "\"true_vector\"", ")", "false_vector", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "false_vector", ",", "name", "=", "\"false_vector\"", ")", "if", "true_vector", ".", "dtype", "!=", "false_vector", ".", "dtype", ":", "raise", "TypeError", "(", "\"{}.dtype={} does not match {}.dtype={}\"", ".", "format", "(", "true_vector", ",", "true_vector", ".", "dtype", ",", "false_vector", ",", "false_vector", ".", "dtype", ")", ")", "cond_value_static", "=", "tf", ".", "get_static_value", "(", "cond", ")", "if", "cond_value_static", "is", "not", "None", ":", "return", "true_vector", "if", "cond_value_static", "else", "false_vector", "n", "=", "tf", ".", "shape", "(", "input", "=", "true_vector", ")", "[", "0", "]", "return", "tf", ".", "slice", "(", "tf", ".", "concat", "(", "[", "true_vector", ",", "false_vector", "]", ",", "0", ")", ",", "[", "tf", ".", "where", "(", "cond", ",", "0", ",", "n", ")", "]", ",", "[", "tf", ".", "where", "(", "cond", ",", "n", ",", "-", "1", ")", "]", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
prefer_static_broadcast_shape
Convenience function which statically broadcasts shape when possible. Args: shape1: `1-D` integer `Tensor`. Already converted to tensor! shape2: `1-D` integer `Tensor`. Already converted to tensor! name: A string name to prepend to created ops. Returns: The broadcast shape, either as `TensorShape` (if broadcast can be done statically), or as a `Tensor`.
tensorflow_probability/python/internal/distribution_util.py
def prefer_static_broadcast_shape(shape1, shape2, name="prefer_static_broadcast_shape"): """Convenience function which statically broadcasts shape when possible. Args: shape1: `1-D` integer `Tensor`. Already converted to tensor! shape2: `1-D` integer `Tensor`. Already converted to tensor! name: A string name to prepend to created ops. Returns: The broadcast shape, either as `TensorShape` (if broadcast can be done statically), or as a `Tensor`. """ with tf.name_scope(name): def make_shape_tensor(x): return tf.convert_to_tensor(value=x, name="shape", dtype=tf.int32) def get_tensor_shape(s): if isinstance(s, tf.TensorShape): return s s_ = tf.get_static_value(make_shape_tensor(s)) if s_ is not None: return tf.TensorShape(s_) return None def get_shape_tensor(s): if not isinstance(s, tf.TensorShape): return make_shape_tensor(s) if tensorshape_util.is_fully_defined(s): return make_shape_tensor(tensorshape_util.as_list(s)) raise ValueError("Cannot broadcast from partially " "defined `TensorShape`.") shape1_ = get_tensor_shape(shape1) shape2_ = get_tensor_shape(shape2) if shape1_ is not None and shape2_ is not None: return tf.broadcast_static_shape(shape1_, shape2_) shape1_ = get_shape_tensor(shape1) shape2_ = get_shape_tensor(shape2) return tf.broadcast_dynamic_shape(shape1_, shape2_)
def prefer_static_broadcast_shape(shape1, shape2, name="prefer_static_broadcast_shape"): """Convenience function which statically broadcasts shape when possible. Args: shape1: `1-D` integer `Tensor`. Already converted to tensor! shape2: `1-D` integer `Tensor`. Already converted to tensor! name: A string name to prepend to created ops. Returns: The broadcast shape, either as `TensorShape` (if broadcast can be done statically), or as a `Tensor`. """ with tf.name_scope(name): def make_shape_tensor(x): return tf.convert_to_tensor(value=x, name="shape", dtype=tf.int32) def get_tensor_shape(s): if isinstance(s, tf.TensorShape): return s s_ = tf.get_static_value(make_shape_tensor(s)) if s_ is not None: return tf.TensorShape(s_) return None def get_shape_tensor(s): if not isinstance(s, tf.TensorShape): return make_shape_tensor(s) if tensorshape_util.is_fully_defined(s): return make_shape_tensor(tensorshape_util.as_list(s)) raise ValueError("Cannot broadcast from partially " "defined `TensorShape`.") shape1_ = get_tensor_shape(shape1) shape2_ = get_tensor_shape(shape2) if shape1_ is not None and shape2_ is not None: return tf.broadcast_static_shape(shape1_, shape2_) shape1_ = get_shape_tensor(shape1) shape2_ = get_shape_tensor(shape2) return tf.broadcast_dynamic_shape(shape1_, shape2_)
[ "Convenience", "function", "which", "statically", "broadcasts", "shape", "when", "possible", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L1323-L1365
[ "def", "prefer_static_broadcast_shape", "(", "shape1", ",", "shape2", ",", "name", "=", "\"prefer_static_broadcast_shape\"", ")", ":", "with", "tf", ".", "name_scope", "(", "name", ")", ":", "def", "make_shape_tensor", "(", "x", ")", ":", "return", "tf", ".", "convert_to_tensor", "(", "value", "=", "x", ",", "name", "=", "\"shape\"", ",", "dtype", "=", "tf", ".", "int32", ")", "def", "get_tensor_shape", "(", "s", ")", ":", "if", "isinstance", "(", "s", ",", "tf", ".", "TensorShape", ")", ":", "return", "s", "s_", "=", "tf", ".", "get_static_value", "(", "make_shape_tensor", "(", "s", ")", ")", "if", "s_", "is", "not", "None", ":", "return", "tf", ".", "TensorShape", "(", "s_", ")", "return", "None", "def", "get_shape_tensor", "(", "s", ")", ":", "if", "not", "isinstance", "(", "s", ",", "tf", ".", "TensorShape", ")", ":", "return", "make_shape_tensor", "(", "s", ")", "if", "tensorshape_util", ".", "is_fully_defined", "(", "s", ")", ":", "return", "make_shape_tensor", "(", "tensorshape_util", ".", "as_list", "(", "s", ")", ")", "raise", "ValueError", "(", "\"Cannot broadcast from partially \"", "\"defined `TensorShape`.\"", ")", "shape1_", "=", "get_tensor_shape", "(", "shape1", ")", "shape2_", "=", "get_tensor_shape", "(", "shape2", ")", "if", "shape1_", "is", "not", "None", "and", "shape2_", "is", "not", "None", ":", "return", "tf", ".", "broadcast_static_shape", "(", "shape1_", ",", "shape2_", ")", "shape1_", "=", "get_shape_tensor", "(", "shape1", ")", "shape2_", "=", "get_shape_tensor", "(", "shape2", ")", "return", "tf", ".", "broadcast_dynamic_shape", "(", "shape1_", ",", "shape2_", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
gen_new_seed
Generate a new seed, from the given seed and salt.
tensorflow_probability/python/internal/distribution_util.py
def gen_new_seed(seed, salt): """Generate a new seed, from the given seed and salt.""" if seed is None: return None string = (str(seed) + salt).encode("utf-8") return int(hashlib.md5(string).hexdigest()[:8], 16) & 0x7FFFFFFF
def gen_new_seed(seed, salt): """Generate a new seed, from the given seed and salt.""" if seed is None: return None string = (str(seed) + salt).encode("utf-8") return int(hashlib.md5(string).hexdigest()[:8], 16) & 0x7FFFFFFF
[ "Generate", "a", "new", "seed", "from", "the", "given", "seed", "and", "salt", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L1407-L1412
[ "def", "gen_new_seed", "(", "seed", ",", "salt", ")", ":", "if", "seed", "is", "None", ":", "return", "None", "string", "=", "(", "str", "(", "seed", ")", "+", "salt", ")", ".", "encode", "(", "\"utf-8\"", ")", "return", "int", "(", "hashlib", ".", "md5", "(", "string", ")", ".", "hexdigest", "(", ")", "[", ":", "8", "]", ",", "16", ")", "&", "0x7FFFFFFF" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
fill_triangular
r"""Creates a (batch of) triangular matrix from a vector of inputs. Created matrix can be lower- or upper-triangular. (It is more efficient to create the matrix as upper or lower, rather than transpose.) Triangular matrix elements are filled in a clockwise spiral. See example, below. If `x.shape` is `[b1, b2, ..., bB, d]` then the output shape is `[b1, b2, ..., bB, n, n]` where `n` is such that `d = n(n+1)/2`, i.e., `n = int(np.sqrt(0.25 + 2. * m) - 0.5)`. Example: ```python fill_triangular([1, 2, 3, 4, 5, 6]) # ==> [[4, 0, 0], # [6, 5, 0], # [3, 2, 1]] fill_triangular([1, 2, 3, 4, 5, 6], upper=True) # ==> [[1, 2, 3], # [0, 5, 6], # [0, 0, 4]] ``` The key trick is to create an upper triangular matrix by concatenating `x` and a tail of itself, then reshaping. Suppose that we are filling the upper triangle of an `n`-by-`n` matrix `M` from a vector `x`. The matrix `M` contains n**2 entries total. The vector `x` contains `n * (n+1) / 2` entries. For concreteness, we'll consider `n = 5` (so `x` has `15` entries and `M` has `25`). We'll concatenate `x` and `x` with the first (`n = 5`) elements removed and reversed: ```python x = np.arange(15) + 1 xc = np.concatenate([x, x[5:][::-1]]) # ==> array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 15, 14, 13, # 12, 11, 10, 9, 8, 7, 6]) # (We add one to the arange result to disambiguate the zeros below the # diagonal of our upper-triangular matrix from the first entry in `x`.) # Now, when reshapedlay this out as a matrix: y = np.reshape(xc, [5, 5]) # ==> array([[ 1, 2, 3, 4, 5], # [ 6, 7, 8, 9, 10], # [11, 12, 13, 14, 15], # [15, 14, 13, 12, 11], # [10, 9, 8, 7, 6]]) # Finally, zero the elements below the diagonal: y = np.triu(y, k=0) # ==> array([[ 1, 2, 3, 4, 5], # [ 0, 7, 8, 9, 10], # [ 0, 0, 13, 14, 15], # [ 0, 0, 0, 12, 11], # [ 0, 0, 0, 0, 6]]) ``` From this example we see that the resuting matrix is upper-triangular, and contains all the entries of x, as desired. The rest is details: - If `n` is even, `x` doesn't exactly fill an even number of rows (it fills `n / 2` rows and half of an additional row), but the whole scheme still works. - If we want a lower triangular matrix instead of an upper triangular, we remove the first `n` elements from `x` rather than from the reversed `x`. For additional comparisons, a pure numpy version of this function can be found in `distribution_util_test.py`, function `_fill_triangular`. Args: x: `Tensor` representing lower (or upper) triangular elements. upper: Python `bool` representing whether output matrix should be upper triangular (`True`) or lower triangular (`False`, default). name: Python `str`. The name to give this op. Returns: tril: `Tensor` with lower (or upper) triangular elements filled from `x`. Raises: ValueError: if `x` cannot be mapped to a triangular matrix.
tensorflow_probability/python/internal/distribution_util.py
def fill_triangular(x, upper=False, name=None): r"""Creates a (batch of) triangular matrix from a vector of inputs. Created matrix can be lower- or upper-triangular. (It is more efficient to create the matrix as upper or lower, rather than transpose.) Triangular matrix elements are filled in a clockwise spiral. See example, below. If `x.shape` is `[b1, b2, ..., bB, d]` then the output shape is `[b1, b2, ..., bB, n, n]` where `n` is such that `d = n(n+1)/2`, i.e., `n = int(np.sqrt(0.25 + 2. * m) - 0.5)`. Example: ```python fill_triangular([1, 2, 3, 4, 5, 6]) # ==> [[4, 0, 0], # [6, 5, 0], # [3, 2, 1]] fill_triangular([1, 2, 3, 4, 5, 6], upper=True) # ==> [[1, 2, 3], # [0, 5, 6], # [0, 0, 4]] ``` The key trick is to create an upper triangular matrix by concatenating `x` and a tail of itself, then reshaping. Suppose that we are filling the upper triangle of an `n`-by-`n` matrix `M` from a vector `x`. The matrix `M` contains n**2 entries total. The vector `x` contains `n * (n+1) / 2` entries. For concreteness, we'll consider `n = 5` (so `x` has `15` entries and `M` has `25`). We'll concatenate `x` and `x` with the first (`n = 5`) elements removed and reversed: ```python x = np.arange(15) + 1 xc = np.concatenate([x, x[5:][::-1]]) # ==> array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 15, 14, 13, # 12, 11, 10, 9, 8, 7, 6]) # (We add one to the arange result to disambiguate the zeros below the # diagonal of our upper-triangular matrix from the first entry in `x`.) # Now, when reshapedlay this out as a matrix: y = np.reshape(xc, [5, 5]) # ==> array([[ 1, 2, 3, 4, 5], # [ 6, 7, 8, 9, 10], # [11, 12, 13, 14, 15], # [15, 14, 13, 12, 11], # [10, 9, 8, 7, 6]]) # Finally, zero the elements below the diagonal: y = np.triu(y, k=0) # ==> array([[ 1, 2, 3, 4, 5], # [ 0, 7, 8, 9, 10], # [ 0, 0, 13, 14, 15], # [ 0, 0, 0, 12, 11], # [ 0, 0, 0, 0, 6]]) ``` From this example we see that the resuting matrix is upper-triangular, and contains all the entries of x, as desired. The rest is details: - If `n` is even, `x` doesn't exactly fill an even number of rows (it fills `n / 2` rows and half of an additional row), but the whole scheme still works. - If we want a lower triangular matrix instead of an upper triangular, we remove the first `n` elements from `x` rather than from the reversed `x`. For additional comparisons, a pure numpy version of this function can be found in `distribution_util_test.py`, function `_fill_triangular`. Args: x: `Tensor` representing lower (or upper) triangular elements. upper: Python `bool` representing whether output matrix should be upper triangular (`True`) or lower triangular (`False`, default). name: Python `str`. The name to give this op. Returns: tril: `Tensor` with lower (or upper) triangular elements filled from `x`. Raises: ValueError: if `x` cannot be mapped to a triangular matrix. """ with tf.name_scope(name or "fill_triangular"): x = tf.convert_to_tensor(value=x, name="x") m = tf.compat.dimension_value( tensorshape_util.with_rank_at_least(x.shape, 1)[-1]) if m is not None: # Formula derived by solving for n: m = n(n+1)/2. m = np.int32(m) n = np.sqrt(0.25 + 2. * m) - 0.5 if n != np.floor(n): raise ValueError("Input right-most shape ({}) does not " "correspond to a triangular matrix.".format(m)) n = np.int32(n) static_final_shape = x.shape[:-1].concatenate([n, n]) else: m = tf.shape(input=x)[-1] # For derivation, see above. Casting automatically lops off the 0.5, so we # omit it. We don't validate n is an integer because this has # graph-execution cost; an error will be thrown from the reshape, below. n = tf.cast( tf.sqrt(0.25 + tf.cast(2 * m, dtype=tf.float32)), dtype=tf.int32) static_final_shape = tensorshape_util.with_rank_at_least( x.shape, 1)[:-1].concatenate([None, None]) # Try it out in numpy: # n = 3 # x = np.arange(n * (n + 1) / 2) # m = x.shape[0] # n = np.int32(np.sqrt(.25 + 2 * m) - .5) # x_tail = x[(m - (n**2 - m)):] # np.concatenate([x_tail, x[::-1]], 0).reshape(n, n) # lower # # ==> array([[3, 4, 5], # [5, 4, 3], # [2, 1, 0]]) # np.concatenate([x, x_tail[::-1]], 0).reshape(n, n) # upper # # ==> array([[0, 1, 2], # [3, 4, 5], # [5, 4, 3]]) # # Note that we can't simply do `x[..., -(n**2 - m):]` because this doesn't # correctly handle `m == n == 1`. Hence, we do nonnegative indexing. # Furthermore observe that: # m - (n**2 - m) # = n**2 / 2 + n / 2 - (n**2 - n**2 / 2 + n / 2) # = 2 (n**2 / 2 + n / 2) - n**2 # = n**2 + n - n**2 # = n ndims = prefer_static_rank(x) if upper: x_list = [x, tf.reverse(x[..., n:], axis=[ndims - 1])] else: x_list = [x[..., n:], tf.reverse(x, axis=[ndims - 1])] new_shape = ( tensorshape_util.as_list(static_final_shape) if tensorshape_util.is_fully_defined(static_final_shape) else tf.concat( [tf.shape(input=x)[:-1], [n, n]], axis=0)) x = tf.reshape(tf.concat(x_list, axis=-1), new_shape) x = tf.linalg.band_part( x, num_lower=(0 if upper else -1), num_upper=(-1 if upper else 0)) tensorshape_util.set_shape(x, static_final_shape) return x
def fill_triangular(x, upper=False, name=None): r"""Creates a (batch of) triangular matrix from a vector of inputs. Created matrix can be lower- or upper-triangular. (It is more efficient to create the matrix as upper or lower, rather than transpose.) Triangular matrix elements are filled in a clockwise spiral. See example, below. If `x.shape` is `[b1, b2, ..., bB, d]` then the output shape is `[b1, b2, ..., bB, n, n]` where `n` is such that `d = n(n+1)/2`, i.e., `n = int(np.sqrt(0.25 + 2. * m) - 0.5)`. Example: ```python fill_triangular([1, 2, 3, 4, 5, 6]) # ==> [[4, 0, 0], # [6, 5, 0], # [3, 2, 1]] fill_triangular([1, 2, 3, 4, 5, 6], upper=True) # ==> [[1, 2, 3], # [0, 5, 6], # [0, 0, 4]] ``` The key trick is to create an upper triangular matrix by concatenating `x` and a tail of itself, then reshaping. Suppose that we are filling the upper triangle of an `n`-by-`n` matrix `M` from a vector `x`. The matrix `M` contains n**2 entries total. The vector `x` contains `n * (n+1) / 2` entries. For concreteness, we'll consider `n = 5` (so `x` has `15` entries and `M` has `25`). We'll concatenate `x` and `x` with the first (`n = 5`) elements removed and reversed: ```python x = np.arange(15) + 1 xc = np.concatenate([x, x[5:][::-1]]) # ==> array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 15, 14, 13, # 12, 11, 10, 9, 8, 7, 6]) # (We add one to the arange result to disambiguate the zeros below the # diagonal of our upper-triangular matrix from the first entry in `x`.) # Now, when reshapedlay this out as a matrix: y = np.reshape(xc, [5, 5]) # ==> array([[ 1, 2, 3, 4, 5], # [ 6, 7, 8, 9, 10], # [11, 12, 13, 14, 15], # [15, 14, 13, 12, 11], # [10, 9, 8, 7, 6]]) # Finally, zero the elements below the diagonal: y = np.triu(y, k=0) # ==> array([[ 1, 2, 3, 4, 5], # [ 0, 7, 8, 9, 10], # [ 0, 0, 13, 14, 15], # [ 0, 0, 0, 12, 11], # [ 0, 0, 0, 0, 6]]) ``` From this example we see that the resuting matrix is upper-triangular, and contains all the entries of x, as desired. The rest is details: - If `n` is even, `x` doesn't exactly fill an even number of rows (it fills `n / 2` rows and half of an additional row), but the whole scheme still works. - If we want a lower triangular matrix instead of an upper triangular, we remove the first `n` elements from `x` rather than from the reversed `x`. For additional comparisons, a pure numpy version of this function can be found in `distribution_util_test.py`, function `_fill_triangular`. Args: x: `Tensor` representing lower (or upper) triangular elements. upper: Python `bool` representing whether output matrix should be upper triangular (`True`) or lower triangular (`False`, default). name: Python `str`. The name to give this op. Returns: tril: `Tensor` with lower (or upper) triangular elements filled from `x`. Raises: ValueError: if `x` cannot be mapped to a triangular matrix. """ with tf.name_scope(name or "fill_triangular"): x = tf.convert_to_tensor(value=x, name="x") m = tf.compat.dimension_value( tensorshape_util.with_rank_at_least(x.shape, 1)[-1]) if m is not None: # Formula derived by solving for n: m = n(n+1)/2. m = np.int32(m) n = np.sqrt(0.25 + 2. * m) - 0.5 if n != np.floor(n): raise ValueError("Input right-most shape ({}) does not " "correspond to a triangular matrix.".format(m)) n = np.int32(n) static_final_shape = x.shape[:-1].concatenate([n, n]) else: m = tf.shape(input=x)[-1] # For derivation, see above. Casting automatically lops off the 0.5, so we # omit it. We don't validate n is an integer because this has # graph-execution cost; an error will be thrown from the reshape, below. n = tf.cast( tf.sqrt(0.25 + tf.cast(2 * m, dtype=tf.float32)), dtype=tf.int32) static_final_shape = tensorshape_util.with_rank_at_least( x.shape, 1)[:-1].concatenate([None, None]) # Try it out in numpy: # n = 3 # x = np.arange(n * (n + 1) / 2) # m = x.shape[0] # n = np.int32(np.sqrt(.25 + 2 * m) - .5) # x_tail = x[(m - (n**2 - m)):] # np.concatenate([x_tail, x[::-1]], 0).reshape(n, n) # lower # # ==> array([[3, 4, 5], # [5, 4, 3], # [2, 1, 0]]) # np.concatenate([x, x_tail[::-1]], 0).reshape(n, n) # upper # # ==> array([[0, 1, 2], # [3, 4, 5], # [5, 4, 3]]) # # Note that we can't simply do `x[..., -(n**2 - m):]` because this doesn't # correctly handle `m == n == 1`. Hence, we do nonnegative indexing. # Furthermore observe that: # m - (n**2 - m) # = n**2 / 2 + n / 2 - (n**2 - n**2 / 2 + n / 2) # = 2 (n**2 / 2 + n / 2) - n**2 # = n**2 + n - n**2 # = n ndims = prefer_static_rank(x) if upper: x_list = [x, tf.reverse(x[..., n:], axis=[ndims - 1])] else: x_list = [x[..., n:], tf.reverse(x, axis=[ndims - 1])] new_shape = ( tensorshape_util.as_list(static_final_shape) if tensorshape_util.is_fully_defined(static_final_shape) else tf.concat( [tf.shape(input=x)[:-1], [n, n]], axis=0)) x = tf.reshape(tf.concat(x_list, axis=-1), new_shape) x = tf.linalg.band_part( x, num_lower=(0 if upper else -1), num_upper=(-1 if upper else 0)) tensorshape_util.set_shape(x, static_final_shape) return x
[ "r", "Creates", "a", "(", "batch", "of", ")", "triangular", "matrix", "from", "a", "vector", "of", "inputs", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L1415-L1561
[ "def", "fill_triangular", "(", "x", ",", "upper", "=", "False", ",", "name", "=", "None", ")", ":", "with", "tf", ".", "name_scope", "(", "name", "or", "\"fill_triangular\"", ")", ":", "x", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "x", ",", "name", "=", "\"x\"", ")", "m", "=", "tf", ".", "compat", ".", "dimension_value", "(", "tensorshape_util", ".", "with_rank_at_least", "(", "x", ".", "shape", ",", "1", ")", "[", "-", "1", "]", ")", "if", "m", "is", "not", "None", ":", "# Formula derived by solving for n: m = n(n+1)/2.", "m", "=", "np", ".", "int32", "(", "m", ")", "n", "=", "np", ".", "sqrt", "(", "0.25", "+", "2.", "*", "m", ")", "-", "0.5", "if", "n", "!=", "np", ".", "floor", "(", "n", ")", ":", "raise", "ValueError", "(", "\"Input right-most shape ({}) does not \"", "\"correspond to a triangular matrix.\"", ".", "format", "(", "m", ")", ")", "n", "=", "np", ".", "int32", "(", "n", ")", "static_final_shape", "=", "x", ".", "shape", "[", ":", "-", "1", "]", ".", "concatenate", "(", "[", "n", ",", "n", "]", ")", "else", ":", "m", "=", "tf", ".", "shape", "(", "input", "=", "x", ")", "[", "-", "1", "]", "# For derivation, see above. Casting automatically lops off the 0.5, so we", "# omit it. We don't validate n is an integer because this has", "# graph-execution cost; an error will be thrown from the reshape, below.", "n", "=", "tf", ".", "cast", "(", "tf", ".", "sqrt", "(", "0.25", "+", "tf", ".", "cast", "(", "2", "*", "m", ",", "dtype", "=", "tf", ".", "float32", ")", ")", ",", "dtype", "=", "tf", ".", "int32", ")", "static_final_shape", "=", "tensorshape_util", ".", "with_rank_at_least", "(", "x", ".", "shape", ",", "1", ")", "[", ":", "-", "1", "]", ".", "concatenate", "(", "[", "None", ",", "None", "]", ")", "# Try it out in numpy:", "# n = 3", "# x = np.arange(n * (n + 1) / 2)", "# m = x.shape[0]", "# n = np.int32(np.sqrt(.25 + 2 * m) - .5)", "# x_tail = x[(m - (n**2 - m)):]", "# np.concatenate([x_tail, x[::-1]], 0).reshape(n, n) # lower", "# # ==> array([[3, 4, 5],", "# [5, 4, 3],", "# [2, 1, 0]])", "# np.concatenate([x, x_tail[::-1]], 0).reshape(n, n) # upper", "# # ==> array([[0, 1, 2],", "# [3, 4, 5],", "# [5, 4, 3]])", "#", "# Note that we can't simply do `x[..., -(n**2 - m):]` because this doesn't", "# correctly handle `m == n == 1`. Hence, we do nonnegative indexing.", "# Furthermore observe that:", "# m - (n**2 - m)", "# = n**2 / 2 + n / 2 - (n**2 - n**2 / 2 + n / 2)", "# = 2 (n**2 / 2 + n / 2) - n**2", "# = n**2 + n - n**2", "# = n", "ndims", "=", "prefer_static_rank", "(", "x", ")", "if", "upper", ":", "x_list", "=", "[", "x", ",", "tf", ".", "reverse", "(", "x", "[", "...", ",", "n", ":", "]", ",", "axis", "=", "[", "ndims", "-", "1", "]", ")", "]", "else", ":", "x_list", "=", "[", "x", "[", "...", ",", "n", ":", "]", ",", "tf", ".", "reverse", "(", "x", ",", "axis", "=", "[", "ndims", "-", "1", "]", ")", "]", "new_shape", "=", "(", "tensorshape_util", ".", "as_list", "(", "static_final_shape", ")", "if", "tensorshape_util", ".", "is_fully_defined", "(", "static_final_shape", ")", "else", "tf", ".", "concat", "(", "[", "tf", ".", "shape", "(", "input", "=", "x", ")", "[", ":", "-", "1", "]", ",", "[", "n", ",", "n", "]", "]", ",", "axis", "=", "0", ")", ")", "x", "=", "tf", ".", "reshape", "(", "tf", ".", "concat", "(", "x_list", ",", "axis", "=", "-", "1", ")", ",", "new_shape", ")", "x", "=", "tf", ".", "linalg", ".", "band_part", "(", "x", ",", "num_lower", "=", "(", "0", "if", "upper", "else", "-", "1", ")", ",", "num_upper", "=", "(", "-", "1", "if", "upper", "else", "0", ")", ")", "tensorshape_util", ".", "set_shape", "(", "x", ",", "static_final_shape", ")", "return", "x" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
fill_triangular_inverse
Creates a vector from a (batch of) triangular matrix. The vector is created from the lower-triangular or upper-triangular portion depending on the value of the parameter `upper`. If `x.shape` is `[b1, b2, ..., bB, n, n]` then the output shape is `[b1, b2, ..., bB, d]` where `d = n (n + 1) / 2`. Example: ```python fill_triangular_inverse( [[4, 0, 0], [6, 5, 0], [3, 2, 1]]) # ==> [1, 2, 3, 4, 5, 6] fill_triangular_inverse( [[1, 2, 3], [0, 5, 6], [0, 0, 4]], upper=True) # ==> [1, 2, 3, 4, 5, 6] ``` Args: x: `Tensor` representing lower (or upper) triangular elements. upper: Python `bool` representing whether output matrix should be upper triangular (`True`) or lower triangular (`False`, default). name: Python `str`. The name to give this op. Returns: flat_tril: (Batch of) vector-shaped `Tensor` representing vectorized lower (or upper) triangular elements from `x`.
tensorflow_probability/python/internal/distribution_util.py
def fill_triangular_inverse(x, upper=False, name=None): """Creates a vector from a (batch of) triangular matrix. The vector is created from the lower-triangular or upper-triangular portion depending on the value of the parameter `upper`. If `x.shape` is `[b1, b2, ..., bB, n, n]` then the output shape is `[b1, b2, ..., bB, d]` where `d = n (n + 1) / 2`. Example: ```python fill_triangular_inverse( [[4, 0, 0], [6, 5, 0], [3, 2, 1]]) # ==> [1, 2, 3, 4, 5, 6] fill_triangular_inverse( [[1, 2, 3], [0, 5, 6], [0, 0, 4]], upper=True) # ==> [1, 2, 3, 4, 5, 6] ``` Args: x: `Tensor` representing lower (or upper) triangular elements. upper: Python `bool` representing whether output matrix should be upper triangular (`True`) or lower triangular (`False`, default). name: Python `str`. The name to give this op. Returns: flat_tril: (Batch of) vector-shaped `Tensor` representing vectorized lower (or upper) triangular elements from `x`. """ with tf.name_scope(name or "fill_triangular_inverse"): x = tf.convert_to_tensor(value=x, name="x") n = tf.compat.dimension_value( tensorshape_util.with_rank_at_least(x.shape, 2)[-1]) if n is not None: n = np.int32(n) m = np.int32((n * (n + 1)) // 2) static_final_shape = x.shape[:-2].concatenate([m]) else: n = tf.shape(input=x)[-1] m = (n * (n + 1)) // 2 static_final_shape = tensorshape_util.with_rank_at_least( x.shape, 2)[:-2].concatenate([None]) ndims = prefer_static_rank(x) if upper: initial_elements = x[..., 0, :] triangular_portion = x[..., 1:, :] else: initial_elements = tf.reverse(x[..., -1, :], axis=[ndims - 2]) triangular_portion = x[..., :-1, :] rotated_triangular_portion = tf.reverse( tf.reverse(triangular_portion, axis=[ndims - 1]), axis=[ndims - 2]) consolidated_matrix = triangular_portion + rotated_triangular_portion end_sequence = tf.reshape( consolidated_matrix, tf.concat([tf.shape(input=x)[:-2], [n * (n - 1)]], axis=0)) y = tf.concat([initial_elements, end_sequence[..., :m - n]], axis=-1) tensorshape_util.set_shape(y, static_final_shape) return y
def fill_triangular_inverse(x, upper=False, name=None): """Creates a vector from a (batch of) triangular matrix. The vector is created from the lower-triangular or upper-triangular portion depending on the value of the parameter `upper`. If `x.shape` is `[b1, b2, ..., bB, n, n]` then the output shape is `[b1, b2, ..., bB, d]` where `d = n (n + 1) / 2`. Example: ```python fill_triangular_inverse( [[4, 0, 0], [6, 5, 0], [3, 2, 1]]) # ==> [1, 2, 3, 4, 5, 6] fill_triangular_inverse( [[1, 2, 3], [0, 5, 6], [0, 0, 4]], upper=True) # ==> [1, 2, 3, 4, 5, 6] ``` Args: x: `Tensor` representing lower (or upper) triangular elements. upper: Python `bool` representing whether output matrix should be upper triangular (`True`) or lower triangular (`False`, default). name: Python `str`. The name to give this op. Returns: flat_tril: (Batch of) vector-shaped `Tensor` representing vectorized lower (or upper) triangular elements from `x`. """ with tf.name_scope(name or "fill_triangular_inverse"): x = tf.convert_to_tensor(value=x, name="x") n = tf.compat.dimension_value( tensorshape_util.with_rank_at_least(x.shape, 2)[-1]) if n is not None: n = np.int32(n) m = np.int32((n * (n + 1)) // 2) static_final_shape = x.shape[:-2].concatenate([m]) else: n = tf.shape(input=x)[-1] m = (n * (n + 1)) // 2 static_final_shape = tensorshape_util.with_rank_at_least( x.shape, 2)[:-2].concatenate([None]) ndims = prefer_static_rank(x) if upper: initial_elements = x[..., 0, :] triangular_portion = x[..., 1:, :] else: initial_elements = tf.reverse(x[..., -1, :], axis=[ndims - 2]) triangular_portion = x[..., :-1, :] rotated_triangular_portion = tf.reverse( tf.reverse(triangular_portion, axis=[ndims - 1]), axis=[ndims - 2]) consolidated_matrix = triangular_portion + rotated_triangular_portion end_sequence = tf.reshape( consolidated_matrix, tf.concat([tf.shape(input=x)[:-2], [n * (n - 1)]], axis=0)) y = tf.concat([initial_elements, end_sequence[..., :m - n]], axis=-1) tensorshape_util.set_shape(y, static_final_shape) return y
[ "Creates", "a", "vector", "from", "a", "(", "batch", "of", ")", "triangular", "matrix", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L1564-L1630
[ "def", "fill_triangular_inverse", "(", "x", ",", "upper", "=", "False", ",", "name", "=", "None", ")", ":", "with", "tf", ".", "name_scope", "(", "name", "or", "\"fill_triangular_inverse\"", ")", ":", "x", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "x", ",", "name", "=", "\"x\"", ")", "n", "=", "tf", ".", "compat", ".", "dimension_value", "(", "tensorshape_util", ".", "with_rank_at_least", "(", "x", ".", "shape", ",", "2", ")", "[", "-", "1", "]", ")", "if", "n", "is", "not", "None", ":", "n", "=", "np", ".", "int32", "(", "n", ")", "m", "=", "np", ".", "int32", "(", "(", "n", "*", "(", "n", "+", "1", ")", ")", "//", "2", ")", "static_final_shape", "=", "x", ".", "shape", "[", ":", "-", "2", "]", ".", "concatenate", "(", "[", "m", "]", ")", "else", ":", "n", "=", "tf", ".", "shape", "(", "input", "=", "x", ")", "[", "-", "1", "]", "m", "=", "(", "n", "*", "(", "n", "+", "1", ")", ")", "//", "2", "static_final_shape", "=", "tensorshape_util", ".", "with_rank_at_least", "(", "x", ".", "shape", ",", "2", ")", "[", ":", "-", "2", "]", ".", "concatenate", "(", "[", "None", "]", ")", "ndims", "=", "prefer_static_rank", "(", "x", ")", "if", "upper", ":", "initial_elements", "=", "x", "[", "...", ",", "0", ",", ":", "]", "triangular_portion", "=", "x", "[", "...", ",", "1", ":", ",", ":", "]", "else", ":", "initial_elements", "=", "tf", ".", "reverse", "(", "x", "[", "...", ",", "-", "1", ",", ":", "]", ",", "axis", "=", "[", "ndims", "-", "2", "]", ")", "triangular_portion", "=", "x", "[", "...", ",", ":", "-", "1", ",", ":", "]", "rotated_triangular_portion", "=", "tf", ".", "reverse", "(", "tf", ".", "reverse", "(", "triangular_portion", ",", "axis", "=", "[", "ndims", "-", "1", "]", ")", ",", "axis", "=", "[", "ndims", "-", "2", "]", ")", "consolidated_matrix", "=", "triangular_portion", "+", "rotated_triangular_portion", "end_sequence", "=", "tf", ".", "reshape", "(", "consolidated_matrix", ",", "tf", ".", "concat", "(", "[", "tf", ".", "shape", "(", "input", "=", "x", ")", "[", ":", "-", "2", "]", ",", "[", "n", "*", "(", "n", "-", "1", ")", "]", "]", ",", "axis", "=", "0", ")", ")", "y", "=", "tf", ".", "concat", "(", "[", "initial_elements", ",", "end_sequence", "[", "...", ",", ":", "m", "-", "n", "]", "]", ",", "axis", "=", "-", "1", ")", "tensorshape_util", ".", "set_shape", "(", "y", ",", "static_final_shape", ")", "return", "y" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
tridiag
Creates a matrix with values set above, below, and on the diagonal. Example: ```python tridiag(below=[1., 2., 3.], diag=[4., 5., 6., 7.], above=[8., 9., 10.]) # ==> array([[ 4., 8., 0., 0.], # [ 1., 5., 9., 0.], # [ 0., 2., 6., 10.], # [ 0., 0., 3., 7.]], dtype=float32) ``` Warning: This Op is intended for convenience, not efficiency. Args: below: `Tensor` of shape `[B1, ..., Bb, d-1]` corresponding to the below diagonal part. `None` is logically equivalent to `below = 0`. diag: `Tensor` of shape `[B1, ..., Bb, d]` corresponding to the diagonal part. `None` is logically equivalent to `diag = 0`. above: `Tensor` of shape `[B1, ..., Bb, d-1]` corresponding to the above diagonal part. `None` is logically equivalent to `above = 0`. name: Python `str`. The name to give this op. Returns: tridiag: `Tensor` with values set above, below and on the diagonal. Raises: ValueError: if all inputs are `None`.
tensorflow_probability/python/internal/distribution_util.py
def tridiag(below=None, diag=None, above=None, name=None): """Creates a matrix with values set above, below, and on the diagonal. Example: ```python tridiag(below=[1., 2., 3.], diag=[4., 5., 6., 7.], above=[8., 9., 10.]) # ==> array([[ 4., 8., 0., 0.], # [ 1., 5., 9., 0.], # [ 0., 2., 6., 10.], # [ 0., 0., 3., 7.]], dtype=float32) ``` Warning: This Op is intended for convenience, not efficiency. Args: below: `Tensor` of shape `[B1, ..., Bb, d-1]` corresponding to the below diagonal part. `None` is logically equivalent to `below = 0`. diag: `Tensor` of shape `[B1, ..., Bb, d]` corresponding to the diagonal part. `None` is logically equivalent to `diag = 0`. above: `Tensor` of shape `[B1, ..., Bb, d-1]` corresponding to the above diagonal part. `None` is logically equivalent to `above = 0`. name: Python `str`. The name to give this op. Returns: tridiag: `Tensor` with values set above, below and on the diagonal. Raises: ValueError: if all inputs are `None`. """ def _pad(x): """Prepends and appends a zero to every vector in a batch of vectors.""" shape = tf.concat([tf.shape(input=x)[:-1], [1]], axis=0) z = tf.zeros(shape, dtype=x.dtype) return tf.concat([z, x, z], axis=-1) def _add(*x): """Adds list of Tensors, ignoring `None`.""" s = None for y in x: if y is None: continue elif s is None: s = y else: s += y if s is None: raise ValueError("Must specify at least one of `below`, `diag`, `above`.") return s with tf.name_scope(name or "tridiag"): if below is not None: below = tf.convert_to_tensor(value=below, name="below") below = tf.linalg.diag(_pad(below))[..., :-1, 1:] if diag is not None: diag = tf.convert_to_tensor(value=diag, name="diag") diag = tf.linalg.diag(diag) if above is not None: above = tf.convert_to_tensor(value=above, name="above") above = tf.linalg.diag(_pad(above))[..., 1:, :-1] # TODO(jvdillon): Consider using scatter_nd instead of creating three full # matrices. return _add(below, diag, above)
def tridiag(below=None, diag=None, above=None, name=None): """Creates a matrix with values set above, below, and on the diagonal. Example: ```python tridiag(below=[1., 2., 3.], diag=[4., 5., 6., 7.], above=[8., 9., 10.]) # ==> array([[ 4., 8., 0., 0.], # [ 1., 5., 9., 0.], # [ 0., 2., 6., 10.], # [ 0., 0., 3., 7.]], dtype=float32) ``` Warning: This Op is intended for convenience, not efficiency. Args: below: `Tensor` of shape `[B1, ..., Bb, d-1]` corresponding to the below diagonal part. `None` is logically equivalent to `below = 0`. diag: `Tensor` of shape `[B1, ..., Bb, d]` corresponding to the diagonal part. `None` is logically equivalent to `diag = 0`. above: `Tensor` of shape `[B1, ..., Bb, d-1]` corresponding to the above diagonal part. `None` is logically equivalent to `above = 0`. name: Python `str`. The name to give this op. Returns: tridiag: `Tensor` with values set above, below and on the diagonal. Raises: ValueError: if all inputs are `None`. """ def _pad(x): """Prepends and appends a zero to every vector in a batch of vectors.""" shape = tf.concat([tf.shape(input=x)[:-1], [1]], axis=0) z = tf.zeros(shape, dtype=x.dtype) return tf.concat([z, x, z], axis=-1) def _add(*x): """Adds list of Tensors, ignoring `None`.""" s = None for y in x: if y is None: continue elif s is None: s = y else: s += y if s is None: raise ValueError("Must specify at least one of `below`, `diag`, `above`.") return s with tf.name_scope(name or "tridiag"): if below is not None: below = tf.convert_to_tensor(value=below, name="below") below = tf.linalg.diag(_pad(below))[..., :-1, 1:] if diag is not None: diag = tf.convert_to_tensor(value=diag, name="diag") diag = tf.linalg.diag(diag) if above is not None: above = tf.convert_to_tensor(value=above, name="above") above = tf.linalg.diag(_pad(above))[..., 1:, :-1] # TODO(jvdillon): Consider using scatter_nd instead of creating three full # matrices. return _add(below, diag, above)
[ "Creates", "a", "matrix", "with", "values", "set", "above", "below", "and", "on", "the", "diagonal", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L1633-L1698
[ "def", "tridiag", "(", "below", "=", "None", ",", "diag", "=", "None", ",", "above", "=", "None", ",", "name", "=", "None", ")", ":", "def", "_pad", "(", "x", ")", ":", "\"\"\"Prepends and appends a zero to every vector in a batch of vectors.\"\"\"", "shape", "=", "tf", ".", "concat", "(", "[", "tf", ".", "shape", "(", "input", "=", "x", ")", "[", ":", "-", "1", "]", ",", "[", "1", "]", "]", ",", "axis", "=", "0", ")", "z", "=", "tf", ".", "zeros", "(", "shape", ",", "dtype", "=", "x", ".", "dtype", ")", "return", "tf", ".", "concat", "(", "[", "z", ",", "x", ",", "z", "]", ",", "axis", "=", "-", "1", ")", "def", "_add", "(", "*", "x", ")", ":", "\"\"\"Adds list of Tensors, ignoring `None`.\"\"\"", "s", "=", "None", "for", "y", "in", "x", ":", "if", "y", "is", "None", ":", "continue", "elif", "s", "is", "None", ":", "s", "=", "y", "else", ":", "s", "+=", "y", "if", "s", "is", "None", ":", "raise", "ValueError", "(", "\"Must specify at least one of `below`, `diag`, `above`.\"", ")", "return", "s", "with", "tf", ".", "name_scope", "(", "name", "or", "\"tridiag\"", ")", ":", "if", "below", "is", "not", "None", ":", "below", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "below", ",", "name", "=", "\"below\"", ")", "below", "=", "tf", ".", "linalg", ".", "diag", "(", "_pad", "(", "below", ")", ")", "[", "...", ",", ":", "-", "1", ",", "1", ":", "]", "if", "diag", "is", "not", "None", ":", "diag", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "diag", ",", "name", "=", "\"diag\"", ")", "diag", "=", "tf", ".", "linalg", ".", "diag", "(", "diag", ")", "if", "above", "is", "not", "None", ":", "above", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "above", ",", "name", "=", "\"above\"", ")", "above", "=", "tf", ".", "linalg", ".", "diag", "(", "_pad", "(", "above", ")", ")", "[", "...", ",", "1", ":", ",", ":", "-", "1", "]", "# TODO(jvdillon): Consider using scatter_nd instead of creating three full", "# matrices.", "return", "_add", "(", "below", ",", "diag", ",", "above", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
reduce_weighted_logsumexp
Computes `log(abs(sum(weight * exp(elements across tensor dimensions))))`. If all weights `w` are known to be positive, it is more efficient to directly use `reduce_logsumexp`, i.e., `tf.reduce_logsumexp(logx + tf.log(w))` is more efficient than `du.reduce_weighted_logsumexp(logx, w)`. Reduces `input_tensor` along the dimensions given in `axis`. Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in `axis`. If `keep_dims` is true, the reduced dimensions are retained with length 1. If `axis` has no entries, all dimensions are reduced, and a tensor with a single element is returned. This function is more numerically stable than log(sum(w * exp(input))). It avoids overflows caused by taking the exp of large inputs and underflows caused by taking the log of small inputs. For example: ```python x = tf.constant([[0., 0, 0], [0, 0, 0]]) w = tf.constant([[-1., 1, 1], [1, 1, 1]]) du.reduce_weighted_logsumexp(x, w) # ==> log(-1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1) = log(4) du.reduce_weighted_logsumexp(x, w, axis=0) # ==> [log(-1+1), log(1+1), log(1+1)] du.reduce_weighted_logsumexp(x, w, axis=1) # ==> [log(-1+1+1), log(1+1+1)] du.reduce_weighted_logsumexp(x, w, axis=1, keep_dims=True) # ==> [[log(-1+1+1)], [log(1+1+1)]] du.reduce_weighted_logsumexp(x, w, axis=[0, 1]) # ==> log(-1+5) ``` Args: logx: The tensor to reduce. Should have numeric type. w: The weight tensor. Should have numeric type identical to `logx`. axis: The dimensions to reduce. If `None` (the default), reduces all dimensions. Must be in the range `[-rank(input_tensor), rank(input_tensor))`. keep_dims: If true, retains reduced dimensions with length 1. return_sign: If `True`, returns the sign of the result. name: A name for the operation (optional). Returns: lswe: The `log(abs(sum(weight * exp(x))))` reduced tensor. sign: (Optional) The sign of `sum(weight * exp(x))`.
tensorflow_probability/python/internal/distribution_util.py
def reduce_weighted_logsumexp(logx, w=None, axis=None, keep_dims=False, return_sign=False, name=None): """Computes `log(abs(sum(weight * exp(elements across tensor dimensions))))`. If all weights `w` are known to be positive, it is more efficient to directly use `reduce_logsumexp`, i.e., `tf.reduce_logsumexp(logx + tf.log(w))` is more efficient than `du.reduce_weighted_logsumexp(logx, w)`. Reduces `input_tensor` along the dimensions given in `axis`. Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in `axis`. If `keep_dims` is true, the reduced dimensions are retained with length 1. If `axis` has no entries, all dimensions are reduced, and a tensor with a single element is returned. This function is more numerically stable than log(sum(w * exp(input))). It avoids overflows caused by taking the exp of large inputs and underflows caused by taking the log of small inputs. For example: ```python x = tf.constant([[0., 0, 0], [0, 0, 0]]) w = tf.constant([[-1., 1, 1], [1, 1, 1]]) du.reduce_weighted_logsumexp(x, w) # ==> log(-1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1) = log(4) du.reduce_weighted_logsumexp(x, w, axis=0) # ==> [log(-1+1), log(1+1), log(1+1)] du.reduce_weighted_logsumexp(x, w, axis=1) # ==> [log(-1+1+1), log(1+1+1)] du.reduce_weighted_logsumexp(x, w, axis=1, keep_dims=True) # ==> [[log(-1+1+1)], [log(1+1+1)]] du.reduce_weighted_logsumexp(x, w, axis=[0, 1]) # ==> log(-1+5) ``` Args: logx: The tensor to reduce. Should have numeric type. w: The weight tensor. Should have numeric type identical to `logx`. axis: The dimensions to reduce. If `None` (the default), reduces all dimensions. Must be in the range `[-rank(input_tensor), rank(input_tensor))`. keep_dims: If true, retains reduced dimensions with length 1. return_sign: If `True`, returns the sign of the result. name: A name for the operation (optional). Returns: lswe: The `log(abs(sum(weight * exp(x))))` reduced tensor. sign: (Optional) The sign of `sum(weight * exp(x))`. """ with tf.name_scope(name or "reduce_weighted_logsumexp"): logx = tf.convert_to_tensor(value=logx, name="logx") if w is None: lswe = tf.reduce_logsumexp( input_tensor=logx, axis=axis, keepdims=keep_dims) if return_sign: sgn = tf.ones_like(lswe) return lswe, sgn return lswe w = tf.convert_to_tensor(value=w, dtype=logx.dtype, name="w") log_absw_x = logx + tf.math.log(tf.abs(w)) max_log_absw_x = tf.reduce_max( input_tensor=log_absw_x, axis=axis, keepdims=True) # If the largest element is `-inf` or `inf` then we don't bother subtracting # off the max. We do this because otherwise we'd get `inf - inf = NaN`. That # this is ok follows from the fact that we're actually free to subtract any # value we like, so long as we add it back after taking the `log(sum(...))`. max_log_absw_x = tf.where( tf.math.is_inf(max_log_absw_x), tf.zeros_like(max_log_absw_x), max_log_absw_x) wx_over_max_absw_x = (tf.sign(w) * tf.exp(log_absw_x - max_log_absw_x)) sum_wx_over_max_absw_x = tf.reduce_sum( input_tensor=wx_over_max_absw_x, axis=axis, keepdims=keep_dims) if not keep_dims: max_log_absw_x = tf.squeeze(max_log_absw_x, axis) sgn = tf.sign(sum_wx_over_max_absw_x) lswe = max_log_absw_x + tf.math.log(sgn * sum_wx_over_max_absw_x) if return_sign: return lswe, sgn return lswe
def reduce_weighted_logsumexp(logx, w=None, axis=None, keep_dims=False, return_sign=False, name=None): """Computes `log(abs(sum(weight * exp(elements across tensor dimensions))))`. If all weights `w` are known to be positive, it is more efficient to directly use `reduce_logsumexp`, i.e., `tf.reduce_logsumexp(logx + tf.log(w))` is more efficient than `du.reduce_weighted_logsumexp(logx, w)`. Reduces `input_tensor` along the dimensions given in `axis`. Unless `keep_dims` is true, the rank of the tensor is reduced by 1 for each entry in `axis`. If `keep_dims` is true, the reduced dimensions are retained with length 1. If `axis` has no entries, all dimensions are reduced, and a tensor with a single element is returned. This function is more numerically stable than log(sum(w * exp(input))). It avoids overflows caused by taking the exp of large inputs and underflows caused by taking the log of small inputs. For example: ```python x = tf.constant([[0., 0, 0], [0, 0, 0]]) w = tf.constant([[-1., 1, 1], [1, 1, 1]]) du.reduce_weighted_logsumexp(x, w) # ==> log(-1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1) = log(4) du.reduce_weighted_logsumexp(x, w, axis=0) # ==> [log(-1+1), log(1+1), log(1+1)] du.reduce_weighted_logsumexp(x, w, axis=1) # ==> [log(-1+1+1), log(1+1+1)] du.reduce_weighted_logsumexp(x, w, axis=1, keep_dims=True) # ==> [[log(-1+1+1)], [log(1+1+1)]] du.reduce_weighted_logsumexp(x, w, axis=[0, 1]) # ==> log(-1+5) ``` Args: logx: The tensor to reduce. Should have numeric type. w: The weight tensor. Should have numeric type identical to `logx`. axis: The dimensions to reduce. If `None` (the default), reduces all dimensions. Must be in the range `[-rank(input_tensor), rank(input_tensor))`. keep_dims: If true, retains reduced dimensions with length 1. return_sign: If `True`, returns the sign of the result. name: A name for the operation (optional). Returns: lswe: The `log(abs(sum(weight * exp(x))))` reduced tensor. sign: (Optional) The sign of `sum(weight * exp(x))`. """ with tf.name_scope(name or "reduce_weighted_logsumexp"): logx = tf.convert_to_tensor(value=logx, name="logx") if w is None: lswe = tf.reduce_logsumexp( input_tensor=logx, axis=axis, keepdims=keep_dims) if return_sign: sgn = tf.ones_like(lswe) return lswe, sgn return lswe w = tf.convert_to_tensor(value=w, dtype=logx.dtype, name="w") log_absw_x = logx + tf.math.log(tf.abs(w)) max_log_absw_x = tf.reduce_max( input_tensor=log_absw_x, axis=axis, keepdims=True) # If the largest element is `-inf` or `inf` then we don't bother subtracting # off the max. We do this because otherwise we'd get `inf - inf = NaN`. That # this is ok follows from the fact that we're actually free to subtract any # value we like, so long as we add it back after taking the `log(sum(...))`. max_log_absw_x = tf.where( tf.math.is_inf(max_log_absw_x), tf.zeros_like(max_log_absw_x), max_log_absw_x) wx_over_max_absw_x = (tf.sign(w) * tf.exp(log_absw_x - max_log_absw_x)) sum_wx_over_max_absw_x = tf.reduce_sum( input_tensor=wx_over_max_absw_x, axis=axis, keepdims=keep_dims) if not keep_dims: max_log_absw_x = tf.squeeze(max_log_absw_x, axis) sgn = tf.sign(sum_wx_over_max_absw_x) lswe = max_log_absw_x + tf.math.log(sgn * sum_wx_over_max_absw_x) if return_sign: return lswe, sgn return lswe
[ "Computes", "log", "(", "abs", "(", "sum", "(", "weight", "*", "exp", "(", "elements", "across", "tensor", "dimensions", "))))", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L1701-L1793
[ "def", "reduce_weighted_logsumexp", "(", "logx", ",", "w", "=", "None", ",", "axis", "=", "None", ",", "keep_dims", "=", "False", ",", "return_sign", "=", "False", ",", "name", "=", "None", ")", ":", "with", "tf", ".", "name_scope", "(", "name", "or", "\"reduce_weighted_logsumexp\"", ")", ":", "logx", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "logx", ",", "name", "=", "\"logx\"", ")", "if", "w", "is", "None", ":", "lswe", "=", "tf", ".", "reduce_logsumexp", "(", "input_tensor", "=", "logx", ",", "axis", "=", "axis", ",", "keepdims", "=", "keep_dims", ")", "if", "return_sign", ":", "sgn", "=", "tf", ".", "ones_like", "(", "lswe", ")", "return", "lswe", ",", "sgn", "return", "lswe", "w", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "w", ",", "dtype", "=", "logx", ".", "dtype", ",", "name", "=", "\"w\"", ")", "log_absw_x", "=", "logx", "+", "tf", ".", "math", ".", "log", "(", "tf", ".", "abs", "(", "w", ")", ")", "max_log_absw_x", "=", "tf", ".", "reduce_max", "(", "input_tensor", "=", "log_absw_x", ",", "axis", "=", "axis", ",", "keepdims", "=", "True", ")", "# If the largest element is `-inf` or `inf` then we don't bother subtracting", "# off the max. We do this because otherwise we'd get `inf - inf = NaN`. That", "# this is ok follows from the fact that we're actually free to subtract any", "# value we like, so long as we add it back after taking the `log(sum(...))`.", "max_log_absw_x", "=", "tf", ".", "where", "(", "tf", ".", "math", ".", "is_inf", "(", "max_log_absw_x", ")", ",", "tf", ".", "zeros_like", "(", "max_log_absw_x", ")", ",", "max_log_absw_x", ")", "wx_over_max_absw_x", "=", "(", "tf", ".", "sign", "(", "w", ")", "*", "tf", ".", "exp", "(", "log_absw_x", "-", "max_log_absw_x", ")", ")", "sum_wx_over_max_absw_x", "=", "tf", ".", "reduce_sum", "(", "input_tensor", "=", "wx_over_max_absw_x", ",", "axis", "=", "axis", ",", "keepdims", "=", "keep_dims", ")", "if", "not", "keep_dims", ":", "max_log_absw_x", "=", "tf", ".", "squeeze", "(", "max_log_absw_x", ",", "axis", ")", "sgn", "=", "tf", ".", "sign", "(", "sum_wx_over_max_absw_x", ")", "lswe", "=", "max_log_absw_x", "+", "tf", ".", "math", ".", "log", "(", "sgn", "*", "sum_wx_over_max_absw_x", ")", "if", "return_sign", ":", "return", "lswe", ",", "sgn", "return", "lswe" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
softplus_inverse
Computes the inverse softplus, i.e., x = softplus_inverse(softplus(x)). Mathematically this op is equivalent to: ```none softplus_inverse = log(exp(x) - 1.) ``` Args: x: `Tensor`. Non-negative (not enforced), floating-point. name: A name for the operation (optional). Returns: `Tensor`. Has the same type/shape as input `x`.
tensorflow_probability/python/internal/distribution_util.py
def softplus_inverse(x, name=None): """Computes the inverse softplus, i.e., x = softplus_inverse(softplus(x)). Mathematically this op is equivalent to: ```none softplus_inverse = log(exp(x) - 1.) ``` Args: x: `Tensor`. Non-negative (not enforced), floating-point. name: A name for the operation (optional). Returns: `Tensor`. Has the same type/shape as input `x`. """ with tf.name_scope(name or "softplus_inverse"): x = tf.convert_to_tensor(value=x, name="x") # We begin by deriving a more numerically stable softplus_inverse: # x = softplus(y) = Log[1 + exp{y}], (which means x > 0). # ==> exp{x} = 1 + exp{y} (1) # ==> y = Log[exp{x} - 1] (2) # = Log[(exp{x} - 1) / exp{x}] + Log[exp{x}] # = Log[(1 - exp{-x}) / 1] + Log[exp{x}] # = Log[1 - exp{-x}] + x (3) # (2) is the "obvious" inverse, but (3) is more stable than (2) for large x. # For small x (e.g. x = 1e-10), (3) will become -inf since 1 - exp{-x} will # be zero. To fix this, we use 1 - exp{-x} approx x for small x > 0. # # In addition to the numerically stable derivation above, we clamp # small/large values to be congruent with the logic in: # tensorflow/core/kernels/softplus_op.h # # Finally, we set the input to one whenever the input is too large or too # small. This ensures that no unchosen codepath is +/- inf. This is # necessary to ensure the gradient doesn't get NaNs. Recall that the # gradient of `where` behaves like `pred*pred_true + (1-pred)*pred_false` # thus an `inf` in an unselected path results in `0*inf=nan`. We are careful # to overwrite `x` with ones only when we will never actually use this # value. Note that we use ones and not zeros since `log(expm1(0.)) = -inf`. threshold = np.log(np.finfo(dtype_util.as_numpy_dtype(x.dtype)).eps) + 2. is_too_small = tf.less(x, np.exp(threshold)) is_too_large = tf.greater(x, -threshold) too_small_value = tf.math.log(x) too_large_value = x # This `where` will ultimately be a NOP because we won't select this # codepath whenever we used the surrogate `ones_like`. x = tf.where(tf.logical_or(is_too_small, is_too_large), tf.ones_like(x), x) y = x + tf.math.log(-tf.math.expm1(-x)) # == log(expm1(x)) return tf.where(is_too_small, too_small_value, tf.where(is_too_large, too_large_value, y))
def softplus_inverse(x, name=None): """Computes the inverse softplus, i.e., x = softplus_inverse(softplus(x)). Mathematically this op is equivalent to: ```none softplus_inverse = log(exp(x) - 1.) ``` Args: x: `Tensor`. Non-negative (not enforced), floating-point. name: A name for the operation (optional). Returns: `Tensor`. Has the same type/shape as input `x`. """ with tf.name_scope(name or "softplus_inverse"): x = tf.convert_to_tensor(value=x, name="x") # We begin by deriving a more numerically stable softplus_inverse: # x = softplus(y) = Log[1 + exp{y}], (which means x > 0). # ==> exp{x} = 1 + exp{y} (1) # ==> y = Log[exp{x} - 1] (2) # = Log[(exp{x} - 1) / exp{x}] + Log[exp{x}] # = Log[(1 - exp{-x}) / 1] + Log[exp{x}] # = Log[1 - exp{-x}] + x (3) # (2) is the "obvious" inverse, but (3) is more stable than (2) for large x. # For small x (e.g. x = 1e-10), (3) will become -inf since 1 - exp{-x} will # be zero. To fix this, we use 1 - exp{-x} approx x for small x > 0. # # In addition to the numerically stable derivation above, we clamp # small/large values to be congruent with the logic in: # tensorflow/core/kernels/softplus_op.h # # Finally, we set the input to one whenever the input is too large or too # small. This ensures that no unchosen codepath is +/- inf. This is # necessary to ensure the gradient doesn't get NaNs. Recall that the # gradient of `where` behaves like `pred*pred_true + (1-pred)*pred_false` # thus an `inf` in an unselected path results in `0*inf=nan`. We are careful # to overwrite `x` with ones only when we will never actually use this # value. Note that we use ones and not zeros since `log(expm1(0.)) = -inf`. threshold = np.log(np.finfo(dtype_util.as_numpy_dtype(x.dtype)).eps) + 2. is_too_small = tf.less(x, np.exp(threshold)) is_too_large = tf.greater(x, -threshold) too_small_value = tf.math.log(x) too_large_value = x # This `where` will ultimately be a NOP because we won't select this # codepath whenever we used the surrogate `ones_like`. x = tf.where(tf.logical_or(is_too_small, is_too_large), tf.ones_like(x), x) y = x + tf.math.log(-tf.math.expm1(-x)) # == log(expm1(x)) return tf.where(is_too_small, too_small_value, tf.where(is_too_large, too_large_value, y))
[ "Computes", "the", "inverse", "softplus", "i", ".", "e", ".", "x", "=", "softplus_inverse", "(", "softplus", "(", "x", "))", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L1799-L1849
[ "def", "softplus_inverse", "(", "x", ",", "name", "=", "None", ")", ":", "with", "tf", ".", "name_scope", "(", "name", "or", "\"softplus_inverse\"", ")", ":", "x", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "x", ",", "name", "=", "\"x\"", ")", "# We begin by deriving a more numerically stable softplus_inverse:", "# x = softplus(y) = Log[1 + exp{y}], (which means x > 0).", "# ==> exp{x} = 1 + exp{y} (1)", "# ==> y = Log[exp{x} - 1] (2)", "# = Log[(exp{x} - 1) / exp{x}] + Log[exp{x}]", "# = Log[(1 - exp{-x}) / 1] + Log[exp{x}]", "# = Log[1 - exp{-x}] + x (3)", "# (2) is the \"obvious\" inverse, but (3) is more stable than (2) for large x.", "# For small x (e.g. x = 1e-10), (3) will become -inf since 1 - exp{-x} will", "# be zero. To fix this, we use 1 - exp{-x} approx x for small x > 0.", "#", "# In addition to the numerically stable derivation above, we clamp", "# small/large values to be congruent with the logic in:", "# tensorflow/core/kernels/softplus_op.h", "#", "# Finally, we set the input to one whenever the input is too large or too", "# small. This ensures that no unchosen codepath is +/- inf. This is", "# necessary to ensure the gradient doesn't get NaNs. Recall that the", "# gradient of `where` behaves like `pred*pred_true + (1-pred)*pred_false`", "# thus an `inf` in an unselected path results in `0*inf=nan`. We are careful", "# to overwrite `x` with ones only when we will never actually use this", "# value. Note that we use ones and not zeros since `log(expm1(0.)) = -inf`.", "threshold", "=", "np", ".", "log", "(", "np", ".", "finfo", "(", "dtype_util", ".", "as_numpy_dtype", "(", "x", ".", "dtype", ")", ")", ".", "eps", ")", "+", "2.", "is_too_small", "=", "tf", ".", "less", "(", "x", ",", "np", ".", "exp", "(", "threshold", ")", ")", "is_too_large", "=", "tf", ".", "greater", "(", "x", ",", "-", "threshold", ")", "too_small_value", "=", "tf", ".", "math", ".", "log", "(", "x", ")", "too_large_value", "=", "x", "# This `where` will ultimately be a NOP because we won't select this", "# codepath whenever we used the surrogate `ones_like`.", "x", "=", "tf", ".", "where", "(", "tf", ".", "logical_or", "(", "is_too_small", ",", "is_too_large", ")", ",", "tf", ".", "ones_like", "(", "x", ")", ",", "x", ")", "y", "=", "x", "+", "tf", ".", "math", ".", "log", "(", "-", "tf", ".", "math", ".", "expm1", "(", "-", "x", ")", ")", "# == log(expm1(x))", "return", "tf", ".", "where", "(", "is_too_small", ",", "too_small_value", ",", "tf", ".", "where", "(", "is_too_large", ",", "too_large_value", ",", "y", ")", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
dimension_size
Returns the size of a specific dimension.
tensorflow_probability/python/internal/distribution_util.py
def dimension_size(x, axis): """Returns the size of a specific dimension.""" # Since tf.gather isn't "constant-in, constant-out", we must first check the # static shape or fallback to dynamic shape. s = tf.compat.dimension_value( tensorshape_util.with_rank_at_least(x.shape, np.abs(axis))[axis]) if s is not None: return s return tf.shape(input=x)[axis]
def dimension_size(x, axis): """Returns the size of a specific dimension.""" # Since tf.gather isn't "constant-in, constant-out", we must first check the # static shape or fallback to dynamic shape. s = tf.compat.dimension_value( tensorshape_util.with_rank_at_least(x.shape, np.abs(axis))[axis]) if s is not None: return s return tf.shape(input=x)[axis]
[ "Returns", "the", "size", "of", "a", "specific", "dimension", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L1853-L1861
[ "def", "dimension_size", "(", "x", ",", "axis", ")", ":", "# Since tf.gather isn't \"constant-in, constant-out\", we must first check the", "# static shape or fallback to dynamic shape.", "s", "=", "tf", ".", "compat", ".", "dimension_value", "(", "tensorshape_util", ".", "with_rank_at_least", "(", "x", ".", "shape", ",", "np", ".", "abs", "(", "axis", ")", ")", "[", "axis", "]", ")", "if", "s", "is", "not", "None", ":", "return", "s", "return", "tf", ".", "shape", "(", "input", "=", "x", ")", "[", "axis", "]" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
process_quadrature_grid_and_probs
Validates quadrature grid, probs or computes them as necessary. Args: quadrature_grid_and_probs: Python pair of `float`-like `Tensor`s representing the sample points and the corresponding (possibly normalized) weight. When `None`, defaults to: `np.polynomial.hermite.hermgauss(deg=8)`. dtype: The expected `dtype` of `grid` and `probs`. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. name: Python `str` name prefixed to Ops created by this class. Returns: quadrature_grid_and_probs: Python pair of `float`-like `Tensor`s representing the sample points and the corresponding (possibly normalized) weight. Raises: ValueError: if `quadrature_grid_and_probs is not None` and `len(quadrature_grid_and_probs[0]) != len(quadrature_grid_and_probs[1])`
tensorflow_probability/python/internal/distribution_util.py
def process_quadrature_grid_and_probs(quadrature_grid_and_probs, dtype, validate_args, name=None): """Validates quadrature grid, probs or computes them as necessary. Args: quadrature_grid_and_probs: Python pair of `float`-like `Tensor`s representing the sample points and the corresponding (possibly normalized) weight. When `None`, defaults to: `np.polynomial.hermite.hermgauss(deg=8)`. dtype: The expected `dtype` of `grid` and `probs`. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. name: Python `str` name prefixed to Ops created by this class. Returns: quadrature_grid_and_probs: Python pair of `float`-like `Tensor`s representing the sample points and the corresponding (possibly normalized) weight. Raises: ValueError: if `quadrature_grid_and_probs is not None` and `len(quadrature_grid_and_probs[0]) != len(quadrature_grid_and_probs[1])` """ with tf.name_scope(name or "process_quadrature_grid_and_probs"): if quadrature_grid_and_probs is None: grid, probs = np.polynomial.hermite.hermgauss(deg=8) grid = grid.astype(dtype_util.as_numpy_dtype(dtype)) probs = probs.astype(dtype_util.as_numpy_dtype(dtype)) probs /= np.linalg.norm(probs, ord=1, keepdims=True) grid = tf.convert_to_tensor(value=grid, name="grid", dtype=dtype) probs = tf.convert_to_tensor(value=probs, name="probs", dtype=dtype) return grid, probs grid, probs = tuple(quadrature_grid_and_probs) grid = tf.convert_to_tensor(value=grid, name="grid", dtype=dtype) probs = tf.convert_to_tensor( value=probs, name="unnormalized_probs", dtype=dtype) probs /= tf.norm(tensor=probs, ord=1, axis=-1, keepdims=True, name="probs") def _static_event_size(x): """Returns the static size of a specific dimension or `None`.""" return tf.compat.dimension_value( tensorshape_util.with_rank_at_least(x.shape, 1)[-1]) m, n = _static_event_size(probs), _static_event_size(grid) if m is not None and n is not None: if m != n: raise ValueError("`quadrature_grid_and_probs` must be a `tuple` of " "same-length zero-th-dimension `Tensor`s " "(saw lengths {}, {})".format(m, n)) elif validate_args: assertions = [ assert_util.assert_equal( dimension_size(probs, axis=-1), dimension_size(grid, axis=-1), message=("`quadrature_grid_and_probs` must be a `tuple` of " "same-length zero-th-dimension `Tensor`s")), ] with tf.control_dependencies(assertions): grid = tf.identity(grid) probs = tf.identity(probs) return grid, probs
def process_quadrature_grid_and_probs(quadrature_grid_and_probs, dtype, validate_args, name=None): """Validates quadrature grid, probs or computes them as necessary. Args: quadrature_grid_and_probs: Python pair of `float`-like `Tensor`s representing the sample points and the corresponding (possibly normalized) weight. When `None`, defaults to: `np.polynomial.hermite.hermgauss(deg=8)`. dtype: The expected `dtype` of `grid` and `probs`. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. name: Python `str` name prefixed to Ops created by this class. Returns: quadrature_grid_and_probs: Python pair of `float`-like `Tensor`s representing the sample points and the corresponding (possibly normalized) weight. Raises: ValueError: if `quadrature_grid_and_probs is not None` and `len(quadrature_grid_and_probs[0]) != len(quadrature_grid_and_probs[1])` """ with tf.name_scope(name or "process_quadrature_grid_and_probs"): if quadrature_grid_and_probs is None: grid, probs = np.polynomial.hermite.hermgauss(deg=8) grid = grid.astype(dtype_util.as_numpy_dtype(dtype)) probs = probs.astype(dtype_util.as_numpy_dtype(dtype)) probs /= np.linalg.norm(probs, ord=1, keepdims=True) grid = tf.convert_to_tensor(value=grid, name="grid", dtype=dtype) probs = tf.convert_to_tensor(value=probs, name="probs", dtype=dtype) return grid, probs grid, probs = tuple(quadrature_grid_and_probs) grid = tf.convert_to_tensor(value=grid, name="grid", dtype=dtype) probs = tf.convert_to_tensor( value=probs, name="unnormalized_probs", dtype=dtype) probs /= tf.norm(tensor=probs, ord=1, axis=-1, keepdims=True, name="probs") def _static_event_size(x): """Returns the static size of a specific dimension or `None`.""" return tf.compat.dimension_value( tensorshape_util.with_rank_at_least(x.shape, 1)[-1]) m, n = _static_event_size(probs), _static_event_size(grid) if m is not None and n is not None: if m != n: raise ValueError("`quadrature_grid_and_probs` must be a `tuple` of " "same-length zero-th-dimension `Tensor`s " "(saw lengths {}, {})".format(m, n)) elif validate_args: assertions = [ assert_util.assert_equal( dimension_size(probs, axis=-1), dimension_size(grid, axis=-1), message=("`quadrature_grid_and_probs` must be a `tuple` of " "same-length zero-th-dimension `Tensor`s")), ] with tf.control_dependencies(assertions): grid = tf.identity(grid) probs = tf.identity(probs) return grid, probs
[ "Validates", "quadrature", "grid", "probs", "or", "computes", "them", "as", "necessary", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L1864-L1929
[ "def", "process_quadrature_grid_and_probs", "(", "quadrature_grid_and_probs", ",", "dtype", ",", "validate_args", ",", "name", "=", "None", ")", ":", "with", "tf", ".", "name_scope", "(", "name", "or", "\"process_quadrature_grid_and_probs\"", ")", ":", "if", "quadrature_grid_and_probs", "is", "None", ":", "grid", ",", "probs", "=", "np", ".", "polynomial", ".", "hermite", ".", "hermgauss", "(", "deg", "=", "8", ")", "grid", "=", "grid", ".", "astype", "(", "dtype_util", ".", "as_numpy_dtype", "(", "dtype", ")", ")", "probs", "=", "probs", ".", "astype", "(", "dtype_util", ".", "as_numpy_dtype", "(", "dtype", ")", ")", "probs", "/=", "np", ".", "linalg", ".", "norm", "(", "probs", ",", "ord", "=", "1", ",", "keepdims", "=", "True", ")", "grid", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "grid", ",", "name", "=", "\"grid\"", ",", "dtype", "=", "dtype", ")", "probs", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "probs", ",", "name", "=", "\"probs\"", ",", "dtype", "=", "dtype", ")", "return", "grid", ",", "probs", "grid", ",", "probs", "=", "tuple", "(", "quadrature_grid_and_probs", ")", "grid", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "grid", ",", "name", "=", "\"grid\"", ",", "dtype", "=", "dtype", ")", "probs", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "probs", ",", "name", "=", "\"unnormalized_probs\"", ",", "dtype", "=", "dtype", ")", "probs", "/=", "tf", ".", "norm", "(", "tensor", "=", "probs", ",", "ord", "=", "1", ",", "axis", "=", "-", "1", ",", "keepdims", "=", "True", ",", "name", "=", "\"probs\"", ")", "def", "_static_event_size", "(", "x", ")", ":", "\"\"\"Returns the static size of a specific dimension or `None`.\"\"\"", "return", "tf", ".", "compat", ".", "dimension_value", "(", "tensorshape_util", ".", "with_rank_at_least", "(", "x", ".", "shape", ",", "1", ")", "[", "-", "1", "]", ")", "m", ",", "n", "=", "_static_event_size", "(", "probs", ")", ",", "_static_event_size", "(", "grid", ")", "if", "m", "is", "not", "None", "and", "n", "is", "not", "None", ":", "if", "m", "!=", "n", ":", "raise", "ValueError", "(", "\"`quadrature_grid_and_probs` must be a `tuple` of \"", "\"same-length zero-th-dimension `Tensor`s \"", "\"(saw lengths {}, {})\"", ".", "format", "(", "m", ",", "n", ")", ")", "elif", "validate_args", ":", "assertions", "=", "[", "assert_util", ".", "assert_equal", "(", "dimension_size", "(", "probs", ",", "axis", "=", "-", "1", ")", ",", "dimension_size", "(", "grid", ",", "axis", "=", "-", "1", ")", ",", "message", "=", "(", "\"`quadrature_grid_and_probs` must be a `tuple` of \"", "\"same-length zero-th-dimension `Tensor`s\"", ")", ")", ",", "]", "with", "tf", ".", "control_dependencies", "(", "assertions", ")", ":", "grid", "=", "tf", ".", "identity", "(", "grid", ")", "probs", "=", "tf", ".", "identity", "(", "probs", ")", "return", "grid", ",", "probs" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
pad
Pads `value` to the front and/or back of a `Tensor` dim, `count` times. Args: x: `Tensor` input. axis: Scalar `int`-like `Tensor` representing the single dimension to pad. (Negative indexing is supported.) front: Python `bool`; if `True` the beginning of the `axis` dimension is padded with `value`, `count` times. If `False` no front padding is made. back: Python `bool`; if `True` the end of the `axis` dimension is padded with `value`, `count` times. If `False` no end padding is made. value: Scalar `int`-like `Tensor` representing the actual value added to the front and/or back of the `axis` dimension of `x`. count: Scalar `int`-like `Tensor` representing number of elements added to the front and/or back of the `axis` dimension of `x`. E.g., if `front = back = True` then `2 * count` elements are added. name: Python `str` name prefixed to Ops created by this function. Returns: pad: The padded version of input `x`. Raises: ValueError: if both `front` and `back` are `False`. TypeError: if `count` is not `int`-like.
tensorflow_probability/python/internal/distribution_util.py
def pad(x, axis, front=False, back=False, value=0, count=1, name=None): """Pads `value` to the front and/or back of a `Tensor` dim, `count` times. Args: x: `Tensor` input. axis: Scalar `int`-like `Tensor` representing the single dimension to pad. (Negative indexing is supported.) front: Python `bool`; if `True` the beginning of the `axis` dimension is padded with `value`, `count` times. If `False` no front padding is made. back: Python `bool`; if `True` the end of the `axis` dimension is padded with `value`, `count` times. If `False` no end padding is made. value: Scalar `int`-like `Tensor` representing the actual value added to the front and/or back of the `axis` dimension of `x`. count: Scalar `int`-like `Tensor` representing number of elements added to the front and/or back of the `axis` dimension of `x`. E.g., if `front = back = True` then `2 * count` elements are added. name: Python `str` name prefixed to Ops created by this function. Returns: pad: The padded version of input `x`. Raises: ValueError: if both `front` and `back` are `False`. TypeError: if `count` is not `int`-like. """ with tf.name_scope(name or "pad"): x = tf.convert_to_tensor(value=x, name="x") value = tf.convert_to_tensor(value=value, dtype=x.dtype, name="value") count = tf.convert_to_tensor(value=count, name="count") if not dtype_util.is_integer(count.dtype): raise TypeError("`count.dtype` (`{}`) must be `int`-like.".format( dtype_util.name(count.dtype))) if not front and not back: raise ValueError("At least one of `front`, `back` must be `True`.") ndims = ( tensorshape_util.rank(x.shape) if tensorshape_util.rank(x.shape) is not None else tf.rank( x, name="ndims")) axis = tf.convert_to_tensor(value=axis, name="axis") axis_ = tf.get_static_value(axis) if axis_ is not None: axis = axis_ if axis < 0: axis = ndims + axis count_ = tf.get_static_value(count) if axis_ >= 0 or tensorshape_util.rank(x.shape) is not None: head = x.shape[:axis] mid_dim_value = tf.compat.dimension_value(x.shape[axis]) if count_ is None or mid_dim_value is None: middle = tf.TensorShape(None) else: middle = tf.TensorShape(mid_dim_value + count_ * (front + back)) tail = x.shape[axis + 1:] final_shape = head.concatenate(middle.concatenate(tail)) else: final_shape = None else: axis = tf.where(axis < 0, ndims + axis, axis) final_shape = None x = tf.pad( tensor=x, paddings=tf.one_hot( indices=tf.stack([axis if front else -1, axis if back else -1]), depth=ndims, axis=0, on_value=count, dtype=tf.int32), constant_values=value) if final_shape is not None: tensorshape_util.set_shape(x, final_shape) return x
def pad(x, axis, front=False, back=False, value=0, count=1, name=None): """Pads `value` to the front and/or back of a `Tensor` dim, `count` times. Args: x: `Tensor` input. axis: Scalar `int`-like `Tensor` representing the single dimension to pad. (Negative indexing is supported.) front: Python `bool`; if `True` the beginning of the `axis` dimension is padded with `value`, `count` times. If `False` no front padding is made. back: Python `bool`; if `True` the end of the `axis` dimension is padded with `value`, `count` times. If `False` no end padding is made. value: Scalar `int`-like `Tensor` representing the actual value added to the front and/or back of the `axis` dimension of `x`. count: Scalar `int`-like `Tensor` representing number of elements added to the front and/or back of the `axis` dimension of `x`. E.g., if `front = back = True` then `2 * count` elements are added. name: Python `str` name prefixed to Ops created by this function. Returns: pad: The padded version of input `x`. Raises: ValueError: if both `front` and `back` are `False`. TypeError: if `count` is not `int`-like. """ with tf.name_scope(name or "pad"): x = tf.convert_to_tensor(value=x, name="x") value = tf.convert_to_tensor(value=value, dtype=x.dtype, name="value") count = tf.convert_to_tensor(value=count, name="count") if not dtype_util.is_integer(count.dtype): raise TypeError("`count.dtype` (`{}`) must be `int`-like.".format( dtype_util.name(count.dtype))) if not front and not back: raise ValueError("At least one of `front`, `back` must be `True`.") ndims = ( tensorshape_util.rank(x.shape) if tensorshape_util.rank(x.shape) is not None else tf.rank( x, name="ndims")) axis = tf.convert_to_tensor(value=axis, name="axis") axis_ = tf.get_static_value(axis) if axis_ is not None: axis = axis_ if axis < 0: axis = ndims + axis count_ = tf.get_static_value(count) if axis_ >= 0 or tensorshape_util.rank(x.shape) is not None: head = x.shape[:axis] mid_dim_value = tf.compat.dimension_value(x.shape[axis]) if count_ is None or mid_dim_value is None: middle = tf.TensorShape(None) else: middle = tf.TensorShape(mid_dim_value + count_ * (front + back)) tail = x.shape[axis + 1:] final_shape = head.concatenate(middle.concatenate(tail)) else: final_shape = None else: axis = tf.where(axis < 0, ndims + axis, axis) final_shape = None x = tf.pad( tensor=x, paddings=tf.one_hot( indices=tf.stack([axis if front else -1, axis if back else -1]), depth=ndims, axis=0, on_value=count, dtype=tf.int32), constant_values=value) if final_shape is not None: tensorshape_util.set_shape(x, final_shape) return x
[ "Pads", "value", "to", "the", "front", "and", "/", "or", "back", "of", "a", "Tensor", "dim", "count", "times", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L1932-L2002
[ "def", "pad", "(", "x", ",", "axis", ",", "front", "=", "False", ",", "back", "=", "False", ",", "value", "=", "0", ",", "count", "=", "1", ",", "name", "=", "None", ")", ":", "with", "tf", ".", "name_scope", "(", "name", "or", "\"pad\"", ")", ":", "x", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "x", ",", "name", "=", "\"x\"", ")", "value", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "value", ",", "dtype", "=", "x", ".", "dtype", ",", "name", "=", "\"value\"", ")", "count", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "count", ",", "name", "=", "\"count\"", ")", "if", "not", "dtype_util", ".", "is_integer", "(", "count", ".", "dtype", ")", ":", "raise", "TypeError", "(", "\"`count.dtype` (`{}`) must be `int`-like.\"", ".", "format", "(", "dtype_util", ".", "name", "(", "count", ".", "dtype", ")", ")", ")", "if", "not", "front", "and", "not", "back", ":", "raise", "ValueError", "(", "\"At least one of `front`, `back` must be `True`.\"", ")", "ndims", "=", "(", "tensorshape_util", ".", "rank", "(", "x", ".", "shape", ")", "if", "tensorshape_util", ".", "rank", "(", "x", ".", "shape", ")", "is", "not", "None", "else", "tf", ".", "rank", "(", "x", ",", "name", "=", "\"ndims\"", ")", ")", "axis", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "axis", ",", "name", "=", "\"axis\"", ")", "axis_", "=", "tf", ".", "get_static_value", "(", "axis", ")", "if", "axis_", "is", "not", "None", ":", "axis", "=", "axis_", "if", "axis", "<", "0", ":", "axis", "=", "ndims", "+", "axis", "count_", "=", "tf", ".", "get_static_value", "(", "count", ")", "if", "axis_", ">=", "0", "or", "tensorshape_util", ".", "rank", "(", "x", ".", "shape", ")", "is", "not", "None", ":", "head", "=", "x", ".", "shape", "[", ":", "axis", "]", "mid_dim_value", "=", "tf", ".", "compat", ".", "dimension_value", "(", "x", ".", "shape", "[", "axis", "]", ")", "if", "count_", "is", "None", "or", "mid_dim_value", "is", "None", ":", "middle", "=", "tf", ".", "TensorShape", "(", "None", ")", "else", ":", "middle", "=", "tf", ".", "TensorShape", "(", "mid_dim_value", "+", "count_", "*", "(", "front", "+", "back", ")", ")", "tail", "=", "x", ".", "shape", "[", "axis", "+", "1", ":", "]", "final_shape", "=", "head", ".", "concatenate", "(", "middle", ".", "concatenate", "(", "tail", ")", ")", "else", ":", "final_shape", "=", "None", "else", ":", "axis", "=", "tf", ".", "where", "(", "axis", "<", "0", ",", "ndims", "+", "axis", ",", "axis", ")", "final_shape", "=", "None", "x", "=", "tf", ".", "pad", "(", "tensor", "=", "x", ",", "paddings", "=", "tf", ".", "one_hot", "(", "indices", "=", "tf", ".", "stack", "(", "[", "axis", "if", "front", "else", "-", "1", ",", "axis", "if", "back", "else", "-", "1", "]", ")", ",", "depth", "=", "ndims", ",", "axis", "=", "0", ",", "on_value", "=", "count", ",", "dtype", "=", "tf", ".", "int32", ")", ",", "constant_values", "=", "value", ")", "if", "final_shape", "is", "not", "None", ":", "tensorshape_util", ".", "set_shape", "(", "x", ",", "final_shape", ")", "return", "x" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
parent_frame_arguments
Returns parent frame arguments. When called inside a function, returns a dictionary with the caller's function arguments. These are positional arguments and keyword arguments (**kwargs), while variable arguments (*varargs) are excluded. When called at global scope, this will return an empty dictionary, since there are no arguments. WARNING: If caller function argument names are overloaded before invoking this method, then values will reflect the overloaded value. For this reason, we recommend calling `parent_frame_arguments` at the beginning of the function.
tensorflow_probability/python/internal/distribution_util.py
def parent_frame_arguments(): """Returns parent frame arguments. When called inside a function, returns a dictionary with the caller's function arguments. These are positional arguments and keyword arguments (**kwargs), while variable arguments (*varargs) are excluded. When called at global scope, this will return an empty dictionary, since there are no arguments. WARNING: If caller function argument names are overloaded before invoking this method, then values will reflect the overloaded value. For this reason, we recommend calling `parent_frame_arguments` at the beginning of the function. """ # All arguments and the names used for *varargs, and **kwargs arg_names, variable_arg_name, keyword_arg_name, local_vars = ( tf_inspect._inspect.getargvalues( # pylint: disable=protected-access # Get the first frame of the caller of this method. tf_inspect._inspect.stack()[1][0])) # pylint: disable=protected-access # Remove the *varargs, and flatten the **kwargs. Both are # nested lists. local_vars.pop(variable_arg_name, {}) keyword_args = local_vars.pop(keyword_arg_name, {}) final_args = {} # Copy over arguments and their values. In general, local_vars # may contain more than just the arguments, since this method # can be called anywhere in a function. for arg_name in arg_names: final_args[arg_name] = local_vars.pop(arg_name) final_args.update(keyword_args) return final_args
def parent_frame_arguments(): """Returns parent frame arguments. When called inside a function, returns a dictionary with the caller's function arguments. These are positional arguments and keyword arguments (**kwargs), while variable arguments (*varargs) are excluded. When called at global scope, this will return an empty dictionary, since there are no arguments. WARNING: If caller function argument names are overloaded before invoking this method, then values will reflect the overloaded value. For this reason, we recommend calling `parent_frame_arguments` at the beginning of the function. """ # All arguments and the names used for *varargs, and **kwargs arg_names, variable_arg_name, keyword_arg_name, local_vars = ( tf_inspect._inspect.getargvalues( # pylint: disable=protected-access # Get the first frame of the caller of this method. tf_inspect._inspect.stack()[1][0])) # pylint: disable=protected-access # Remove the *varargs, and flatten the **kwargs. Both are # nested lists. local_vars.pop(variable_arg_name, {}) keyword_args = local_vars.pop(keyword_arg_name, {}) final_args = {} # Copy over arguments and their values. In general, local_vars # may contain more than just the arguments, since this method # can be called anywhere in a function. for arg_name in arg_names: final_args[arg_name] = local_vars.pop(arg_name) final_args.update(keyword_args) return final_args
[ "Returns", "parent", "frame", "arguments", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L2005-L2039
[ "def", "parent_frame_arguments", "(", ")", ":", "# All arguments and the names used for *varargs, and **kwargs", "arg_names", ",", "variable_arg_name", ",", "keyword_arg_name", ",", "local_vars", "=", "(", "tf_inspect", ".", "_inspect", ".", "getargvalues", "(", "# pylint: disable=protected-access", "# Get the first frame of the caller of this method.", "tf_inspect", ".", "_inspect", ".", "stack", "(", ")", "[", "1", "]", "[", "0", "]", ")", ")", "# pylint: disable=protected-access", "# Remove the *varargs, and flatten the **kwargs. Both are", "# nested lists.", "local_vars", ".", "pop", "(", "variable_arg_name", ",", "{", "}", ")", "keyword_args", "=", "local_vars", ".", "pop", "(", "keyword_arg_name", ",", "{", "}", ")", "final_args", "=", "{", "}", "# Copy over arguments and their values. In general, local_vars", "# may contain more than just the arguments, since this method", "# can be called anywhere in a function.", "for", "arg_name", "in", "arg_names", ":", "final_args", "[", "arg_name", "]", "=", "local_vars", ".", "pop", "(", "arg_name", ")", "final_args", ".", "update", "(", "keyword_args", ")", "return", "final_args" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
expand_to_vector
Transform a 0-D or 1-D `Tensor` to be 1-D. For user convenience, many parts of the TensorFlow Probability API accept inputs of rank 0 or 1 -- i.e., allowing an `event_shape` of `[5]` to be passed to the API as either `5` or `[5]`. This function can be used to transform such an argument to always be 1-D. NOTE: Python or NumPy values will be converted to `Tensor`s with standard type inference/conversion. In particular, an empty list or tuple will become an empty `Tensor` with dtype `float32`. Callers should convert values to `Tensor`s before calling this function if different behavior is desired (e.g. converting empty lists / other values to `Tensor`s with dtype `int32`). Args: x: A 0-D or 1-D `Tensor`. tensor_name: Python `str` name for `Tensor`s created by this function. op_name: Python `str` name for `Op`s created by this function. validate_args: Python `bool, default `False`. When `True`, arguments may be checked for validity at execution time, possibly degrading runtime performance. When `False`, invalid inputs may silently render incorrect outputs. Returns: vector: a 1-D `Tensor`.
tensorflow_probability/python/internal/distribution_util.py
def expand_to_vector(x, tensor_name=None, op_name=None, validate_args=False): """Transform a 0-D or 1-D `Tensor` to be 1-D. For user convenience, many parts of the TensorFlow Probability API accept inputs of rank 0 or 1 -- i.e., allowing an `event_shape` of `[5]` to be passed to the API as either `5` or `[5]`. This function can be used to transform such an argument to always be 1-D. NOTE: Python or NumPy values will be converted to `Tensor`s with standard type inference/conversion. In particular, an empty list or tuple will become an empty `Tensor` with dtype `float32`. Callers should convert values to `Tensor`s before calling this function if different behavior is desired (e.g. converting empty lists / other values to `Tensor`s with dtype `int32`). Args: x: A 0-D or 1-D `Tensor`. tensor_name: Python `str` name for `Tensor`s created by this function. op_name: Python `str` name for `Op`s created by this function. validate_args: Python `bool, default `False`. When `True`, arguments may be checked for validity at execution time, possibly degrading runtime performance. When `False`, invalid inputs may silently render incorrect outputs. Returns: vector: a 1-D `Tensor`. """ with tf.name_scope(op_name or "expand_to_vector"): x = tf.convert_to_tensor(value=x, name="x") ndims = tensorshape_util.rank(x.shape) if ndims is None: # Maybe expand ndims from 0 to 1. if validate_args: x = with_dependencies([ assert_util.assert_rank_at_most( x, 1, message="Input is neither scalar nor vector.") ], x) ndims = tf.rank(x) expanded_shape = pick_vector( tf.equal(ndims, 0), np.array([1], dtype=np.int32), tf.shape(input=x)) return tf.reshape(x, expanded_shape) elif ndims == 0: # Definitely expand ndims from 0 to 1. x_const = tf.get_static_value(x) if x_const is not None: return tf.convert_to_tensor( value=dtype_util.as_numpy_dtype(x.dtype)([x_const]), name=tensor_name) else: return tf.reshape(x, [1]) elif ndims != 1: raise ValueError("Input is neither scalar nor vector.") # ndims == 1 return x
def expand_to_vector(x, tensor_name=None, op_name=None, validate_args=False): """Transform a 0-D or 1-D `Tensor` to be 1-D. For user convenience, many parts of the TensorFlow Probability API accept inputs of rank 0 or 1 -- i.e., allowing an `event_shape` of `[5]` to be passed to the API as either `5` or `[5]`. This function can be used to transform such an argument to always be 1-D. NOTE: Python or NumPy values will be converted to `Tensor`s with standard type inference/conversion. In particular, an empty list or tuple will become an empty `Tensor` with dtype `float32`. Callers should convert values to `Tensor`s before calling this function if different behavior is desired (e.g. converting empty lists / other values to `Tensor`s with dtype `int32`). Args: x: A 0-D or 1-D `Tensor`. tensor_name: Python `str` name for `Tensor`s created by this function. op_name: Python `str` name for `Op`s created by this function. validate_args: Python `bool, default `False`. When `True`, arguments may be checked for validity at execution time, possibly degrading runtime performance. When `False`, invalid inputs may silently render incorrect outputs. Returns: vector: a 1-D `Tensor`. """ with tf.name_scope(op_name or "expand_to_vector"): x = tf.convert_to_tensor(value=x, name="x") ndims = tensorshape_util.rank(x.shape) if ndims is None: # Maybe expand ndims from 0 to 1. if validate_args: x = with_dependencies([ assert_util.assert_rank_at_most( x, 1, message="Input is neither scalar nor vector.") ], x) ndims = tf.rank(x) expanded_shape = pick_vector( tf.equal(ndims, 0), np.array([1], dtype=np.int32), tf.shape(input=x)) return tf.reshape(x, expanded_shape) elif ndims == 0: # Definitely expand ndims from 0 to 1. x_const = tf.get_static_value(x) if x_const is not None: return tf.convert_to_tensor( value=dtype_util.as_numpy_dtype(x.dtype)([x_const]), name=tensor_name) else: return tf.reshape(x, [1]) elif ndims != 1: raise ValueError("Input is neither scalar nor vector.") # ndims == 1 return x
[ "Transform", "a", "0", "-", "D", "or", "1", "-", "D", "Tensor", "to", "be", "1", "-", "D", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L2103-L2159
[ "def", "expand_to_vector", "(", "x", ",", "tensor_name", "=", "None", ",", "op_name", "=", "None", ",", "validate_args", "=", "False", ")", ":", "with", "tf", ".", "name_scope", "(", "op_name", "or", "\"expand_to_vector\"", ")", ":", "x", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "x", ",", "name", "=", "\"x\"", ")", "ndims", "=", "tensorshape_util", ".", "rank", "(", "x", ".", "shape", ")", "if", "ndims", "is", "None", ":", "# Maybe expand ndims from 0 to 1.", "if", "validate_args", ":", "x", "=", "with_dependencies", "(", "[", "assert_util", ".", "assert_rank_at_most", "(", "x", ",", "1", ",", "message", "=", "\"Input is neither scalar nor vector.\"", ")", "]", ",", "x", ")", "ndims", "=", "tf", ".", "rank", "(", "x", ")", "expanded_shape", "=", "pick_vector", "(", "tf", ".", "equal", "(", "ndims", ",", "0", ")", ",", "np", ".", "array", "(", "[", "1", "]", ",", "dtype", "=", "np", ".", "int32", ")", ",", "tf", ".", "shape", "(", "input", "=", "x", ")", ")", "return", "tf", ".", "reshape", "(", "x", ",", "expanded_shape", ")", "elif", "ndims", "==", "0", ":", "# Definitely expand ndims from 0 to 1.", "x_const", "=", "tf", ".", "get_static_value", "(", "x", ")", "if", "x_const", "is", "not", "None", ":", "return", "tf", ".", "convert_to_tensor", "(", "value", "=", "dtype_util", ".", "as_numpy_dtype", "(", "x", ".", "dtype", ")", "(", "[", "x_const", "]", ")", ",", "name", "=", "tensor_name", ")", "else", ":", "return", "tf", ".", "reshape", "(", "x", ",", "[", "1", "]", ")", "elif", "ndims", "!=", "1", ":", "raise", "ValueError", "(", "\"Input is neither scalar nor vector.\"", ")", "# ndims == 1", "return", "x" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
with_dependencies
Produces the content of `output_tensor` only after `dependencies`. In some cases, a user may want the output of an operation to be consumed externally only after some other dependencies have run first. This function returns `output_tensor`, but only after all operations in `dependencies` have run. Note that this means that there is no guarantee that `output_tensor` will be evaluated after any `dependencies` have run. See also `tf.tuple` and `tf.group`. Args: dependencies: Iterable of operations to run before this op finishes. output_tensor: A `Tensor` or `IndexedSlices` that will be returned. name: (Optional) A name for this operation. Returns: output_with_deps: Same as `output_tensor` but with embedded dependencies. Raises: TypeError: if `output_tensor` is not a `Tensor` or `IndexedSlices`.
tensorflow_probability/python/internal/distribution_util.py
def with_dependencies(dependencies, output_tensor, name=None): """Produces the content of `output_tensor` only after `dependencies`. In some cases, a user may want the output of an operation to be consumed externally only after some other dependencies have run first. This function returns `output_tensor`, but only after all operations in `dependencies` have run. Note that this means that there is no guarantee that `output_tensor` will be evaluated after any `dependencies` have run. See also `tf.tuple` and `tf.group`. Args: dependencies: Iterable of operations to run before this op finishes. output_tensor: A `Tensor` or `IndexedSlices` that will be returned. name: (Optional) A name for this operation. Returns: output_with_deps: Same as `output_tensor` but with embedded dependencies. Raises: TypeError: if `output_tensor` is not a `Tensor` or `IndexedSlices`. """ if tf.executing_eagerly(): return output_tensor with tf.name_scope(name or "control_dependency") as name: with tf.control_dependencies(d for d in dependencies if d is not None): output_tensor = tf.convert_to_tensor(value=output_tensor) if isinstance(output_tensor, tf.Tensor): return tf.identity(output_tensor, name=name) else: return tf.IndexedSlices( tf.identity(output_tensor.values, name=name), output_tensor.indices, output_tensor.dense_shape)
def with_dependencies(dependencies, output_tensor, name=None): """Produces the content of `output_tensor` only after `dependencies`. In some cases, a user may want the output of an operation to be consumed externally only after some other dependencies have run first. This function returns `output_tensor`, but only after all operations in `dependencies` have run. Note that this means that there is no guarantee that `output_tensor` will be evaluated after any `dependencies` have run. See also `tf.tuple` and `tf.group`. Args: dependencies: Iterable of operations to run before this op finishes. output_tensor: A `Tensor` or `IndexedSlices` that will be returned. name: (Optional) A name for this operation. Returns: output_with_deps: Same as `output_tensor` but with embedded dependencies. Raises: TypeError: if `output_tensor` is not a `Tensor` or `IndexedSlices`. """ if tf.executing_eagerly(): return output_tensor with tf.name_scope(name or "control_dependency") as name: with tf.control_dependencies(d for d in dependencies if d is not None): output_tensor = tf.convert_to_tensor(value=output_tensor) if isinstance(output_tensor, tf.Tensor): return tf.identity(output_tensor, name=name) else: return tf.IndexedSlices( tf.identity(output_tensor.values, name=name), output_tensor.indices, output_tensor.dense_shape)
[ "Produces", "the", "content", "of", "output_tensor", "only", "after", "dependencies", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/distribution_util.py#L2162-L2195
[ "def", "with_dependencies", "(", "dependencies", ",", "output_tensor", ",", "name", "=", "None", ")", ":", "if", "tf", ".", "executing_eagerly", "(", ")", ":", "return", "output_tensor", "with", "tf", ".", "name_scope", "(", "name", "or", "\"control_dependency\"", ")", "as", "name", ":", "with", "tf", ".", "control_dependencies", "(", "d", "for", "d", "in", "dependencies", "if", "d", "is", "not", "None", ")", ":", "output_tensor", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "output_tensor", ")", "if", "isinstance", "(", "output_tensor", ",", "tf", ".", "Tensor", ")", ":", "return", "tf", ".", "identity", "(", "output_tensor", ",", "name", "=", "name", ")", "else", ":", "return", "tf", ".", "IndexedSlices", "(", "tf", ".", "identity", "(", "output_tensor", ".", "values", ",", "name", "=", "name", ")", ",", "output_tensor", ".", "indices", ",", "output_tensor", ".", "dense_shape", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
_maybe_validate_rightmost_transposed_ndims
Checks that `rightmost_transposed_ndims` is valid.
tensorflow_probability/python/bijectors/transpose.py
def _maybe_validate_rightmost_transposed_ndims( rightmost_transposed_ndims, validate_args, name=None): """Checks that `rightmost_transposed_ndims` is valid.""" with tf.name_scope(name or 'maybe_validate_rightmost_transposed_ndims'): assertions = [] if not dtype_util.is_integer(rightmost_transposed_ndims.dtype): raise TypeError('`rightmost_transposed_ndims` must be integer type.') if tensorshape_util.rank(rightmost_transposed_ndims.shape) is not None: if tensorshape_util.rank(rightmost_transposed_ndims.shape) != 0: raise ValueError('`rightmost_transposed_ndims` must be a scalar, ' 'saw rank: {}.'.format( tensorshape_util.rank( rightmost_transposed_ndims.shape))) elif validate_args: assertions += [assert_util.assert_rank(rightmost_transposed_ndims, 0)] rightmost_transposed_ndims_ = tf.get_static_value( rightmost_transposed_ndims) msg = '`rightmost_transposed_ndims` must be non-negative.' if rightmost_transposed_ndims_ is not None: if rightmost_transposed_ndims_ < 0: raise ValueError(msg[:-1] + ', saw: {}.'.format( rightmost_transposed_ndims_)) elif validate_args: assertions += [ assert_util.assert_non_negative( rightmost_transposed_ndims, message=msg) ] return assertions
def _maybe_validate_rightmost_transposed_ndims( rightmost_transposed_ndims, validate_args, name=None): """Checks that `rightmost_transposed_ndims` is valid.""" with tf.name_scope(name or 'maybe_validate_rightmost_transposed_ndims'): assertions = [] if not dtype_util.is_integer(rightmost_transposed_ndims.dtype): raise TypeError('`rightmost_transposed_ndims` must be integer type.') if tensorshape_util.rank(rightmost_transposed_ndims.shape) is not None: if tensorshape_util.rank(rightmost_transposed_ndims.shape) != 0: raise ValueError('`rightmost_transposed_ndims` must be a scalar, ' 'saw rank: {}.'.format( tensorshape_util.rank( rightmost_transposed_ndims.shape))) elif validate_args: assertions += [assert_util.assert_rank(rightmost_transposed_ndims, 0)] rightmost_transposed_ndims_ = tf.get_static_value( rightmost_transposed_ndims) msg = '`rightmost_transposed_ndims` must be non-negative.' if rightmost_transposed_ndims_ is not None: if rightmost_transposed_ndims_ < 0: raise ValueError(msg[:-1] + ', saw: {}.'.format( rightmost_transposed_ndims_)) elif validate_args: assertions += [ assert_util.assert_non_negative( rightmost_transposed_ndims, message=msg) ] return assertions
[ "Checks", "that", "rightmost_transposed_ndims", "is", "valid", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/bijectors/transpose.py#L258-L288
[ "def", "_maybe_validate_rightmost_transposed_ndims", "(", "rightmost_transposed_ndims", ",", "validate_args", ",", "name", "=", "None", ")", ":", "with", "tf", ".", "name_scope", "(", "name", "or", "'maybe_validate_rightmost_transposed_ndims'", ")", ":", "assertions", "=", "[", "]", "if", "not", "dtype_util", ".", "is_integer", "(", "rightmost_transposed_ndims", ".", "dtype", ")", ":", "raise", "TypeError", "(", "'`rightmost_transposed_ndims` must be integer type.'", ")", "if", "tensorshape_util", ".", "rank", "(", "rightmost_transposed_ndims", ".", "shape", ")", "is", "not", "None", ":", "if", "tensorshape_util", ".", "rank", "(", "rightmost_transposed_ndims", ".", "shape", ")", "!=", "0", ":", "raise", "ValueError", "(", "'`rightmost_transposed_ndims` must be a scalar, '", "'saw rank: {}.'", ".", "format", "(", "tensorshape_util", ".", "rank", "(", "rightmost_transposed_ndims", ".", "shape", ")", ")", ")", "elif", "validate_args", ":", "assertions", "+=", "[", "assert_util", ".", "assert_rank", "(", "rightmost_transposed_ndims", ",", "0", ")", "]", "rightmost_transposed_ndims_", "=", "tf", ".", "get_static_value", "(", "rightmost_transposed_ndims", ")", "msg", "=", "'`rightmost_transposed_ndims` must be non-negative.'", "if", "rightmost_transposed_ndims_", "is", "not", "None", ":", "if", "rightmost_transposed_ndims_", "<", "0", ":", "raise", "ValueError", "(", "msg", "[", ":", "-", "1", "]", "+", "', saw: {}.'", ".", "format", "(", "rightmost_transposed_ndims_", ")", ")", "elif", "validate_args", ":", "assertions", "+=", "[", "assert_util", ".", "assert_non_negative", "(", "rightmost_transposed_ndims", ",", "message", "=", "msg", ")", "]", "return", "assertions" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
_maybe_validate_perm
Checks that `perm` is valid.
tensorflow_probability/python/bijectors/transpose.py
def _maybe_validate_perm(perm, validate_args, name=None): """Checks that `perm` is valid.""" with tf.name_scope(name or 'maybe_validate_perm'): assertions = [] if not dtype_util.is_integer(perm.dtype): raise TypeError('`perm` must be integer type') msg = '`perm` must be a vector.' if tensorshape_util.rank(perm.shape) is not None: if tensorshape_util.rank(perm.shape) != 1: raise ValueError( msg[:-1] + ', saw rank: {}.'.format(tensorshape_util.rank(perm.shape))) elif validate_args: assertions += [assert_util.assert_rank(perm, 1, message=msg)] perm_ = tf.get_static_value(perm) msg = '`perm` must be a valid permutation vector.' if perm_ is not None: if not np.all(np.arange(np.size(perm_)) == np.sort(perm_)): raise ValueError(msg[:-1] + ', saw: {}.'.format(perm_)) elif validate_args: assertions += [ assert_util.assert_equal( tf.sort(perm), tf.range(tf.size(input=perm)), message=msg) ] return assertions
def _maybe_validate_perm(perm, validate_args, name=None): """Checks that `perm` is valid.""" with tf.name_scope(name or 'maybe_validate_perm'): assertions = [] if not dtype_util.is_integer(perm.dtype): raise TypeError('`perm` must be integer type') msg = '`perm` must be a vector.' if tensorshape_util.rank(perm.shape) is not None: if tensorshape_util.rank(perm.shape) != 1: raise ValueError( msg[:-1] + ', saw rank: {}.'.format(tensorshape_util.rank(perm.shape))) elif validate_args: assertions += [assert_util.assert_rank(perm, 1, message=msg)] perm_ = tf.get_static_value(perm) msg = '`perm` must be a valid permutation vector.' if perm_ is not None: if not np.all(np.arange(np.size(perm_)) == np.sort(perm_)): raise ValueError(msg[:-1] + ', saw: {}.'.format(perm_)) elif validate_args: assertions += [ assert_util.assert_equal( tf.sort(perm), tf.range(tf.size(input=perm)), message=msg) ] return assertions
[ "Checks", "that", "perm", "is", "valid", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/bijectors/transpose.py#L291-L318
[ "def", "_maybe_validate_perm", "(", "perm", ",", "validate_args", ",", "name", "=", "None", ")", ":", "with", "tf", ".", "name_scope", "(", "name", "or", "'maybe_validate_perm'", ")", ":", "assertions", "=", "[", "]", "if", "not", "dtype_util", ".", "is_integer", "(", "perm", ".", "dtype", ")", ":", "raise", "TypeError", "(", "'`perm` must be integer type'", ")", "msg", "=", "'`perm` must be a vector.'", "if", "tensorshape_util", ".", "rank", "(", "perm", ".", "shape", ")", "is", "not", "None", ":", "if", "tensorshape_util", ".", "rank", "(", "perm", ".", "shape", ")", "!=", "1", ":", "raise", "ValueError", "(", "msg", "[", ":", "-", "1", "]", "+", "', saw rank: {}.'", ".", "format", "(", "tensorshape_util", ".", "rank", "(", "perm", ".", "shape", ")", ")", ")", "elif", "validate_args", ":", "assertions", "+=", "[", "assert_util", ".", "assert_rank", "(", "perm", ",", "1", ",", "message", "=", "msg", ")", "]", "perm_", "=", "tf", ".", "get_static_value", "(", "perm", ")", "msg", "=", "'`perm` must be a valid permutation vector.'", "if", "perm_", "is", "not", "None", ":", "if", "not", "np", ".", "all", "(", "np", ".", "arange", "(", "np", ".", "size", "(", "perm_", ")", ")", "==", "np", ".", "sort", "(", "perm_", ")", ")", ":", "raise", "ValueError", "(", "msg", "[", ":", "-", "1", "]", "+", "', saw: {}.'", ".", "format", "(", "perm_", ")", ")", "elif", "validate_args", ":", "assertions", "+=", "[", "assert_util", ".", "assert_equal", "(", "tf", ".", "sort", "(", "perm", ")", ",", "tf", ".", "range", "(", "tf", ".", "size", "(", "input", "=", "perm", ")", ")", ",", "message", "=", "msg", ")", "]", "return", "assertions" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
Transpose._event_shape
Helper for _forward and _inverse_event_shape.
tensorflow_probability/python/bijectors/transpose.py
def _event_shape(self, shape, static_perm_to_shape): """Helper for _forward and _inverse_event_shape.""" rightmost_ = tf.get_static_value(self.rightmost_transposed_ndims) if tensorshape_util.rank(shape) is None or rightmost_ is None: return tf.TensorShape(None) if tensorshape_util.rank(shape) < rightmost_: raise ValueError('Invalid shape: min event ndims={} but got {}'.format( rightmost_, shape)) perm_ = tf.get_static_value(self.perm, partial=True) if perm_ is None: return shape[:tensorshape_util.rank(shape) - rightmost_].concatenate( [None] * int(rightmost_)) # We can use elimination to reidentify a single None dimension. if sum(p is None for p in perm_) == 1: present = np.argsort([-1 if p is None else p for p in perm_]) for i, p in enumerate(present[1:]): # The -1 sorts to position 0. if i != p: perm_ = [i if p is None else p for p in perm_] break return shape[:tensorshape_util.rank(shape) - rightmost_].concatenate( static_perm_to_shape(shape[tensorshape_util.rank(shape) - rightmost_:], perm_))
def _event_shape(self, shape, static_perm_to_shape): """Helper for _forward and _inverse_event_shape.""" rightmost_ = tf.get_static_value(self.rightmost_transposed_ndims) if tensorshape_util.rank(shape) is None or rightmost_ is None: return tf.TensorShape(None) if tensorshape_util.rank(shape) < rightmost_: raise ValueError('Invalid shape: min event ndims={} but got {}'.format( rightmost_, shape)) perm_ = tf.get_static_value(self.perm, partial=True) if perm_ is None: return shape[:tensorshape_util.rank(shape) - rightmost_].concatenate( [None] * int(rightmost_)) # We can use elimination to reidentify a single None dimension. if sum(p is None for p in perm_) == 1: present = np.argsort([-1 if p is None else p for p in perm_]) for i, p in enumerate(present[1:]): # The -1 sorts to position 0. if i != p: perm_ = [i if p is None else p for p in perm_] break return shape[:tensorshape_util.rank(shape) - rightmost_].concatenate( static_perm_to_shape(shape[tensorshape_util.rank(shape) - rightmost_:], perm_))
[ "Helper", "for", "_forward", "and", "_inverse_event_shape", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/bijectors/transpose.py#L184-L205
[ "def", "_event_shape", "(", "self", ",", "shape", ",", "static_perm_to_shape", ")", ":", "rightmost_", "=", "tf", ".", "get_static_value", "(", "self", ".", "rightmost_transposed_ndims", ")", "if", "tensorshape_util", ".", "rank", "(", "shape", ")", "is", "None", "or", "rightmost_", "is", "None", ":", "return", "tf", ".", "TensorShape", "(", "None", ")", "if", "tensorshape_util", ".", "rank", "(", "shape", ")", "<", "rightmost_", ":", "raise", "ValueError", "(", "'Invalid shape: min event ndims={} but got {}'", ".", "format", "(", "rightmost_", ",", "shape", ")", ")", "perm_", "=", "tf", ".", "get_static_value", "(", "self", ".", "perm", ",", "partial", "=", "True", ")", "if", "perm_", "is", "None", ":", "return", "shape", "[", ":", "tensorshape_util", ".", "rank", "(", "shape", ")", "-", "rightmost_", "]", ".", "concatenate", "(", "[", "None", "]", "*", "int", "(", "rightmost_", ")", ")", "# We can use elimination to reidentify a single None dimension.", "if", "sum", "(", "p", "is", "None", "for", "p", "in", "perm_", ")", "==", "1", ":", "present", "=", "np", ".", "argsort", "(", "[", "-", "1", "if", "p", "is", "None", "else", "p", "for", "p", "in", "perm_", "]", ")", "for", "i", ",", "p", "in", "enumerate", "(", "present", "[", "1", ":", "]", ")", ":", "# The -1 sorts to position 0.", "if", "i", "!=", "p", ":", "perm_", "=", "[", "i", "if", "p", "is", "None", "else", "p", "for", "p", "in", "perm_", "]", "break", "return", "shape", "[", ":", "tensorshape_util", ".", "rank", "(", "shape", ")", "-", "rightmost_", "]", ".", "concatenate", "(", "static_perm_to_shape", "(", "shape", "[", "tensorshape_util", ".", "rank", "(", "shape", ")", "-", "rightmost_", ":", "]", ",", "perm_", ")", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
concatenate
Returns the concatenation of the dimension in `x` and `other`. *Note:* If either `x` or `other` is completely unknown, concatenation will discard information about the other shape. In future, we might support concatenation that preserves this information for use with slicing. For more details, see `help(tf.TensorShape.concatenate)`. Args: x: object representing a shape; convertible to `tf.TensorShape`. other: object representing a shape; convertible to `tf.TensorShape`. Returns: new_shape: an object like `x` whose elements are the concatenation of the dimensions in `x` and `other`.
tensorflow_probability/python/internal/tensorshape_util.py
def concatenate(x, other): """Returns the concatenation of the dimension in `x` and `other`. *Note:* If either `x` or `other` is completely unknown, concatenation will discard information about the other shape. In future, we might support concatenation that preserves this information for use with slicing. For more details, see `help(tf.TensorShape.concatenate)`. Args: x: object representing a shape; convertible to `tf.TensorShape`. other: object representing a shape; convertible to `tf.TensorShape`. Returns: new_shape: an object like `x` whose elements are the concatenation of the dimensions in `x` and `other`. """ return type(x)(tf.TensorShape(x).concatenate(other))
def concatenate(x, other): """Returns the concatenation of the dimension in `x` and `other`. *Note:* If either `x` or `other` is completely unknown, concatenation will discard information about the other shape. In future, we might support concatenation that preserves this information for use with slicing. For more details, see `help(tf.TensorShape.concatenate)`. Args: x: object representing a shape; convertible to `tf.TensorShape`. other: object representing a shape; convertible to `tf.TensorShape`. Returns: new_shape: an object like `x` whose elements are the concatenation of the dimensions in `x` and `other`. """ return type(x)(tf.TensorShape(x).concatenate(other))
[ "Returns", "the", "concatenation", "of", "the", "dimension", "in", "x", "and", "other", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/tensorshape_util.py#L99-L116
[ "def", "concatenate", "(", "x", ",", "other", ")", ":", "return", "type", "(", "x", ")", "(", "tf", ".", "TensorShape", "(", "x", ")", ".", "concatenate", "(", "other", ")", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
constant_value_as_shape
A version of `constant_value()` that returns a `TensorShape`. This version should be used when a constant tensor value is interpreted as a (possibly partial) shape, e.g. in the shape function for `tf.reshape()`. By explicitly requesting a `TensorShape` as the return value, it is possible to represent unknown dimensions; by contrast, `constant_value()` is all-or-nothing. Args: tensor: The rank-0 or rank-1 Tensor to be evaluated. Returns: A `TensorShape` based on the constant value of the given `tensor`. Raises: ValueError: If the shape is rank-0 and is not statically known to be -1.
tensorflow_probability/python/internal/tensorshape_util.py
def constant_value_as_shape(tensor): # pylint: disable=invalid-name """A version of `constant_value()` that returns a `TensorShape`. This version should be used when a constant tensor value is interpreted as a (possibly partial) shape, e.g. in the shape function for `tf.reshape()`. By explicitly requesting a `TensorShape` as the return value, it is possible to represent unknown dimensions; by contrast, `constant_value()` is all-or-nothing. Args: tensor: The rank-0 or rank-1 Tensor to be evaluated. Returns: A `TensorShape` based on the constant value of the given `tensor`. Raises: ValueError: If the shape is rank-0 and is not statically known to be -1. """ shape = tf.get_static_value(tensor) if shape is not None: return [None if dim == -1 else dim for dim in shape] return tensor_util.constant_value_as_shape(tensor)
def constant_value_as_shape(tensor): # pylint: disable=invalid-name """A version of `constant_value()` that returns a `TensorShape`. This version should be used when a constant tensor value is interpreted as a (possibly partial) shape, e.g. in the shape function for `tf.reshape()`. By explicitly requesting a `TensorShape` as the return value, it is possible to represent unknown dimensions; by contrast, `constant_value()` is all-or-nothing. Args: tensor: The rank-0 or rank-1 Tensor to be evaluated. Returns: A `TensorShape` based on the constant value of the given `tensor`. Raises: ValueError: If the shape is rank-0 and is not statically known to be -1. """ shape = tf.get_static_value(tensor) if shape is not None: return [None if dim == -1 else dim for dim in shape] return tensor_util.constant_value_as_shape(tensor)
[ "A", "version", "of", "constant_value", "()", "that", "returns", "a", "TensorShape", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/tensorshape_util.py#L119-L141
[ "def", "constant_value_as_shape", "(", "tensor", ")", ":", "# pylint: disable=invalid-name", "shape", "=", "tf", ".", "get_static_value", "(", "tensor", ")", "if", "shape", "is", "not", "None", ":", "return", "[", "None", "if", "dim", "==", "-", "1", "else", "dim", "for", "dim", "in", "shape", "]", "return", "tensor_util", ".", "constant_value_as_shape", "(", "tensor", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
dims
Returns a list of dimension sizes, or `None` if `rank` is unknown. For more details, see `help(tf.TensorShape.dims)`. Args: x: object representing a shape; convertible to `tf.TensorShape`. Returns: shape_as_list: list of sizes or `None` values representing each dimensions size if known. A size is `tf.Dimension` if input is a `tf.TensorShape` and an `int` otherwise.
tensorflow_probability/python/internal/tensorshape_util.py
def dims(x): """Returns a list of dimension sizes, or `None` if `rank` is unknown. For more details, see `help(tf.TensorShape.dims)`. Args: x: object representing a shape; convertible to `tf.TensorShape`. Returns: shape_as_list: list of sizes or `None` values representing each dimensions size if known. A size is `tf.Dimension` if input is a `tf.TensorShape` and an `int` otherwise. """ if isinstance(x, tf.TensorShape): return x.dims r = tf.TensorShape(x).dims return None if r is None else list(map(tf.compat.dimension_value, r))
def dims(x): """Returns a list of dimension sizes, or `None` if `rank` is unknown. For more details, see `help(tf.TensorShape.dims)`. Args: x: object representing a shape; convertible to `tf.TensorShape`. Returns: shape_as_list: list of sizes or `None` values representing each dimensions size if known. A size is `tf.Dimension` if input is a `tf.TensorShape` and an `int` otherwise. """ if isinstance(x, tf.TensorShape): return x.dims r = tf.TensorShape(x).dims return None if r is None else list(map(tf.compat.dimension_value, r))
[ "Returns", "a", "list", "of", "dimension", "sizes", "or", "None", "if", "rank", "is", "unknown", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/tensorshape_util.py#L144-L160
[ "def", "dims", "(", "x", ")", ":", "if", "isinstance", "(", "x", ",", "tf", ".", "TensorShape", ")", ":", "return", "x", ".", "dims", "r", "=", "tf", ".", "TensorShape", "(", "x", ")", ".", "dims", "return", "None", "if", "r", "is", "None", "else", "list", "(", "map", "(", "tf", ".", "compat", ".", "dimension_value", ",", "r", ")", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
merge_with
Returns a shape combining the information in `x` and `other`. The dimensions in `x` and `other` are merged elementwise, according to the rules defined for `tf.Dimension.merge_with()`. For more details, see `help(tf.TensorShape.merge_with)`. Args: x: object representing a shape; convertible to `tf.TensorShape`. other: object representing a shape; convertible to `tf.TensorShape`. Returns: merged_shape: shape having `type(x)` containing the combined information of `x` and `other`. Raises: ValueError: If `x` and `other` are not compatible.
tensorflow_probability/python/internal/tensorshape_util.py
def merge_with(x, other): """Returns a shape combining the information in `x` and `other`. The dimensions in `x` and `other` are merged elementwise, according to the rules defined for `tf.Dimension.merge_with()`. For more details, see `help(tf.TensorShape.merge_with)`. Args: x: object representing a shape; convertible to `tf.TensorShape`. other: object representing a shape; convertible to `tf.TensorShape`. Returns: merged_shape: shape having `type(x)` containing the combined information of `x` and `other`. Raises: ValueError: If `x` and `other` are not compatible. """ return type(x)(tf.TensorShape(x).merge_with(other))
def merge_with(x, other): """Returns a shape combining the information in `x` and `other`. The dimensions in `x` and `other` are merged elementwise, according to the rules defined for `tf.Dimension.merge_with()`. For more details, see `help(tf.TensorShape.merge_with)`. Args: x: object representing a shape; convertible to `tf.TensorShape`. other: object representing a shape; convertible to `tf.TensorShape`. Returns: merged_shape: shape having `type(x)` containing the combined information of `x` and `other`. Raises: ValueError: If `x` and `other` are not compatible. """ return type(x)(tf.TensorShape(x).merge_with(other))
[ "Returns", "a", "shape", "combining", "the", "information", "in", "x", "and", "other", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/tensorshape_util.py#L192-L211
[ "def", "merge_with", "(", "x", ",", "other", ")", ":", "return", "type", "(", "x", ")", "(", "tf", ".", "TensorShape", "(", "x", ")", ".", "merge_with", "(", "other", ")", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
with_rank_at_least
Returns a shape based on `x` with at least the given `rank`. For more details, see `help(tf.TensorShape.with_rank_at_least)`. Args: x: object representing a shape; convertible to `tf.TensorShape`. rank: An `int` representing the minimum rank of `x` or else an assertion is raised. Returns: shape: a shape having `type(x)` but guaranteed to have at least the given rank (or else an assertion was raised). Raises: ValueError: If `x` does not represent a shape with at least the given `rank`.
tensorflow_probability/python/internal/tensorshape_util.py
def with_rank_at_least(x, rank): # pylint: disable=redefined-outer-name """Returns a shape based on `x` with at least the given `rank`. For more details, see `help(tf.TensorShape.with_rank_at_least)`. Args: x: object representing a shape; convertible to `tf.TensorShape`. rank: An `int` representing the minimum rank of `x` or else an assertion is raised. Returns: shape: a shape having `type(x)` but guaranteed to have at least the given rank (or else an assertion was raised). Raises: ValueError: If `x` does not represent a shape with at least the given `rank`. """ return type(x)(tf.TensorShape(x).with_rank_at_least(rank))
def with_rank_at_least(x, rank): # pylint: disable=redefined-outer-name """Returns a shape based on `x` with at least the given `rank`. For more details, see `help(tf.TensorShape.with_rank_at_least)`. Args: x: object representing a shape; convertible to `tf.TensorShape`. rank: An `int` representing the minimum rank of `x` or else an assertion is raised. Returns: shape: a shape having `type(x)` but guaranteed to have at least the given rank (or else an assertion was raised). Raises: ValueError: If `x` does not represent a shape with at least the given `rank`. """ return type(x)(tf.TensorShape(x).with_rank_at_least(rank))
[ "Returns", "a", "shape", "based", "on", "x", "with", "at", "least", "the", "given", "rank", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/internal/tensorshape_util.py#L285-L303
[ "def", "with_rank_at_least", "(", "x", ",", "rank", ")", ":", "# pylint: disable=redefined-outer-name", "return", "type", "(", "x", ")", "(", "tf", ".", "TensorShape", "(", "x", ")", ".", "with_rank_at_least", "(", "rank", ")", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
_check_equal_shape
Check that source and target shape match, statically if possible.
tensorflow_probability/python/distributions/linear_gaussian_ssm.py
def _check_equal_shape(name, static_shape, dynamic_shape, static_target_shape, dynamic_target_shape=None): """Check that source and target shape match, statically if possible.""" static_target_shape = tf.TensorShape(static_target_shape) if tensorshape_util.is_fully_defined( static_shape) and tensorshape_util.is_fully_defined(static_target_shape): if static_shape != static_target_shape: raise ValueError("{}: required shape {} but found {}". format(name, static_target_shape, static_shape)) return None else: if dynamic_target_shape is None: if tensorshape_util.is_fully_defined(static_target_shape): dynamic_target_shape = tensorshape_util.as_list(static_target_shape) else: raise ValueError("{}: cannot infer target shape: no dynamic shape " "specified and static shape {} is not fully defined". format(name, static_target_shape)) return assert_util.assert_equal( dynamic_shape, dynamic_target_shape, message=("{}: required shape {}".format(name, static_target_shape)))
def _check_equal_shape(name, static_shape, dynamic_shape, static_target_shape, dynamic_target_shape=None): """Check that source and target shape match, statically if possible.""" static_target_shape = tf.TensorShape(static_target_shape) if tensorshape_util.is_fully_defined( static_shape) and tensorshape_util.is_fully_defined(static_target_shape): if static_shape != static_target_shape: raise ValueError("{}: required shape {} but found {}". format(name, static_target_shape, static_shape)) return None else: if dynamic_target_shape is None: if tensorshape_util.is_fully_defined(static_target_shape): dynamic_target_shape = tensorshape_util.as_list(static_target_shape) else: raise ValueError("{}: cannot infer target shape: no dynamic shape " "specified and static shape {} is not fully defined". format(name, static_target_shape)) return assert_util.assert_equal( dynamic_shape, dynamic_target_shape, message=("{}: required shape {}".format(name, static_target_shape)))
[ "Check", "that", "source", "and", "target", "shape", "match", "statically", "if", "possible", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/linear_gaussian_ssm.py#L44-L69
[ "def", "_check_equal_shape", "(", "name", ",", "static_shape", ",", "dynamic_shape", ",", "static_target_shape", ",", "dynamic_target_shape", "=", "None", ")", ":", "static_target_shape", "=", "tf", ".", "TensorShape", "(", "static_target_shape", ")", "if", "tensorshape_util", ".", "is_fully_defined", "(", "static_shape", ")", "and", "tensorshape_util", ".", "is_fully_defined", "(", "static_target_shape", ")", ":", "if", "static_shape", "!=", "static_target_shape", ":", "raise", "ValueError", "(", "\"{}: required shape {} but found {}\"", ".", "format", "(", "name", ",", "static_target_shape", ",", "static_shape", ")", ")", "return", "None", "else", ":", "if", "dynamic_target_shape", "is", "None", ":", "if", "tensorshape_util", ".", "is_fully_defined", "(", "static_target_shape", ")", ":", "dynamic_target_shape", "=", "tensorshape_util", ".", "as_list", "(", "static_target_shape", ")", "else", ":", "raise", "ValueError", "(", "\"{}: cannot infer target shape: no dynamic shape \"", "\"specified and static shape {} is not fully defined\"", ".", "format", "(", "name", ",", "static_target_shape", ")", ")", "return", "assert_util", ".", "assert_equal", "(", "dynamic_shape", ",", "dynamic_target_shape", ",", "message", "=", "(", "\"{}: required shape {}\"", ".", "format", "(", "name", ",", "static_target_shape", ")", ")", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
_augment_sample_shape
Augment a sample shape to broadcast batch dimensions. Computes an augmented sample shape, so that any batch dimensions not part of the distribution `partial_batch_dist` are treated as identical distributions. # partial_batch_dist.batch_shape = [ 7] # full_sample_and_batch_shape = [3, 4, 7] # => return an augmented sample shape of [3, 4] so that # partial_batch_dist.sample(augmented_sample_shape) has combined # sample and batch shape of [3, 4, 7]. Args: partial_batch_dist: `tfd.Distribution` instance with batch shape a prefix of `full_sample_and_batch_shape`. full_sample_and_batch_shape: a Tensor or Tensor-like shape. validate_args: if True, check for shape errors at runtime. Returns: augmented_sample_shape: sample shape such that `partial_batch_dist.sample(augmented_sample_shape)` has combined sample and batch shape of `full_sample_and_batch_shape`. Raises: ValueError: if `partial_batch_dist.batch_shape` has more dimensions than `full_sample_and_batch_shape`. NotImplementedError: if broadcasting would be required to make `partial_batch_dist.batch_shape` into a prefix of `full_sample_and_batch_shape` .
tensorflow_probability/python/distributions/linear_gaussian_ssm.py
def _augment_sample_shape(partial_batch_dist, full_sample_and_batch_shape, validate_args=False): """Augment a sample shape to broadcast batch dimensions. Computes an augmented sample shape, so that any batch dimensions not part of the distribution `partial_batch_dist` are treated as identical distributions. # partial_batch_dist.batch_shape = [ 7] # full_sample_and_batch_shape = [3, 4, 7] # => return an augmented sample shape of [3, 4] so that # partial_batch_dist.sample(augmented_sample_shape) has combined # sample and batch shape of [3, 4, 7]. Args: partial_batch_dist: `tfd.Distribution` instance with batch shape a prefix of `full_sample_and_batch_shape`. full_sample_and_batch_shape: a Tensor or Tensor-like shape. validate_args: if True, check for shape errors at runtime. Returns: augmented_sample_shape: sample shape such that `partial_batch_dist.sample(augmented_sample_shape)` has combined sample and batch shape of `full_sample_and_batch_shape`. Raises: ValueError: if `partial_batch_dist.batch_shape` has more dimensions than `full_sample_and_batch_shape`. NotImplementedError: if broadcasting would be required to make `partial_batch_dist.batch_shape` into a prefix of `full_sample_and_batch_shape` . """ full_ndims = distribution_util.prefer_static_shape( full_sample_and_batch_shape)[0] partial_batch_ndims = ( tensorshape_util.rank(partial_batch_dist.batch_shape) # pylint: disable=g-long-ternary if tensorshape_util.rank(partial_batch_dist.batch_shape) is not None else distribution_util.prefer_static_shape( partial_batch_dist.batch_shape_tensor())[0]) num_broadcast_dims = full_ndims - partial_batch_ndims expected_partial_batch_shape = ( full_sample_and_batch_shape[num_broadcast_dims:]) expected_partial_batch_shape_static = tf.get_static_value( full_sample_and_batch_shape[num_broadcast_dims:]) # Raise errors statically if possible. num_broadcast_dims_static = tf.get_static_value(num_broadcast_dims) if num_broadcast_dims_static is not None: if num_broadcast_dims_static < 0: raise ValueError("Cannot broadcast distribution {} batch shape to " "target batch shape with fewer dimensions" .format(partial_batch_dist)) if (expected_partial_batch_shape_static is not None and tensorshape_util.is_fully_defined(partial_batch_dist.batch_shape)): if (partial_batch_dist.batch_shape and any(expected_partial_batch_shape_static != tensorshape_util.as_list( partial_batch_dist.batch_shape))): raise NotImplementedError("Broadcasting is not supported; " "unexpected batch shape " "(expected {}, saw {}).".format( expected_partial_batch_shape_static, partial_batch_dist.batch_shape )) runtime_assertions = [] if validate_args: runtime_assertions.append( assert_util.assert_greater_equal( tf.convert_to_tensor(value=num_broadcast_dims, dtype=tf.int32), tf.zeros((), dtype=tf.int32), message=("Cannot broadcast distribution {} batch shape to " "target batch shape with fewer dimensions.".format( partial_batch_dist)))) runtime_assertions.append( assert_util.assert_equal( expected_partial_batch_shape, partial_batch_dist.batch_shape_tensor(), message=("Broadcasting is not supported; " "unexpected batch shape."), name="assert_batch_shape_same")) with tf.control_dependencies(runtime_assertions): return full_sample_and_batch_shape[:num_broadcast_dims]
def _augment_sample_shape(partial_batch_dist, full_sample_and_batch_shape, validate_args=False): """Augment a sample shape to broadcast batch dimensions. Computes an augmented sample shape, so that any batch dimensions not part of the distribution `partial_batch_dist` are treated as identical distributions. # partial_batch_dist.batch_shape = [ 7] # full_sample_and_batch_shape = [3, 4, 7] # => return an augmented sample shape of [3, 4] so that # partial_batch_dist.sample(augmented_sample_shape) has combined # sample and batch shape of [3, 4, 7]. Args: partial_batch_dist: `tfd.Distribution` instance with batch shape a prefix of `full_sample_and_batch_shape`. full_sample_and_batch_shape: a Tensor or Tensor-like shape. validate_args: if True, check for shape errors at runtime. Returns: augmented_sample_shape: sample shape such that `partial_batch_dist.sample(augmented_sample_shape)` has combined sample and batch shape of `full_sample_and_batch_shape`. Raises: ValueError: if `partial_batch_dist.batch_shape` has more dimensions than `full_sample_and_batch_shape`. NotImplementedError: if broadcasting would be required to make `partial_batch_dist.batch_shape` into a prefix of `full_sample_and_batch_shape` . """ full_ndims = distribution_util.prefer_static_shape( full_sample_and_batch_shape)[0] partial_batch_ndims = ( tensorshape_util.rank(partial_batch_dist.batch_shape) # pylint: disable=g-long-ternary if tensorshape_util.rank(partial_batch_dist.batch_shape) is not None else distribution_util.prefer_static_shape( partial_batch_dist.batch_shape_tensor())[0]) num_broadcast_dims = full_ndims - partial_batch_ndims expected_partial_batch_shape = ( full_sample_and_batch_shape[num_broadcast_dims:]) expected_partial_batch_shape_static = tf.get_static_value( full_sample_and_batch_shape[num_broadcast_dims:]) # Raise errors statically if possible. num_broadcast_dims_static = tf.get_static_value(num_broadcast_dims) if num_broadcast_dims_static is not None: if num_broadcast_dims_static < 0: raise ValueError("Cannot broadcast distribution {} batch shape to " "target batch shape with fewer dimensions" .format(partial_batch_dist)) if (expected_partial_batch_shape_static is not None and tensorshape_util.is_fully_defined(partial_batch_dist.batch_shape)): if (partial_batch_dist.batch_shape and any(expected_partial_batch_shape_static != tensorshape_util.as_list( partial_batch_dist.batch_shape))): raise NotImplementedError("Broadcasting is not supported; " "unexpected batch shape " "(expected {}, saw {}).".format( expected_partial_batch_shape_static, partial_batch_dist.batch_shape )) runtime_assertions = [] if validate_args: runtime_assertions.append( assert_util.assert_greater_equal( tf.convert_to_tensor(value=num_broadcast_dims, dtype=tf.int32), tf.zeros((), dtype=tf.int32), message=("Cannot broadcast distribution {} batch shape to " "target batch shape with fewer dimensions.".format( partial_batch_dist)))) runtime_assertions.append( assert_util.assert_equal( expected_partial_batch_shape, partial_batch_dist.batch_shape_tensor(), message=("Broadcasting is not supported; " "unexpected batch shape."), name="assert_batch_shape_same")) with tf.control_dependencies(runtime_assertions): return full_sample_and_batch_shape[:num_broadcast_dims]
[ "Augment", "a", "sample", "shape", "to", "broadcast", "batch", "dimensions", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/linear_gaussian_ssm.py#L72-L155
[ "def", "_augment_sample_shape", "(", "partial_batch_dist", ",", "full_sample_and_batch_shape", ",", "validate_args", "=", "False", ")", ":", "full_ndims", "=", "distribution_util", ".", "prefer_static_shape", "(", "full_sample_and_batch_shape", ")", "[", "0", "]", "partial_batch_ndims", "=", "(", "tensorshape_util", ".", "rank", "(", "partial_batch_dist", ".", "batch_shape", ")", "# pylint: disable=g-long-ternary", "if", "tensorshape_util", ".", "rank", "(", "partial_batch_dist", ".", "batch_shape", ")", "is", "not", "None", "else", "distribution_util", ".", "prefer_static_shape", "(", "partial_batch_dist", ".", "batch_shape_tensor", "(", ")", ")", "[", "0", "]", ")", "num_broadcast_dims", "=", "full_ndims", "-", "partial_batch_ndims", "expected_partial_batch_shape", "=", "(", "full_sample_and_batch_shape", "[", "num_broadcast_dims", ":", "]", ")", "expected_partial_batch_shape_static", "=", "tf", ".", "get_static_value", "(", "full_sample_and_batch_shape", "[", "num_broadcast_dims", ":", "]", ")", "# Raise errors statically if possible.", "num_broadcast_dims_static", "=", "tf", ".", "get_static_value", "(", "num_broadcast_dims", ")", "if", "num_broadcast_dims_static", "is", "not", "None", ":", "if", "num_broadcast_dims_static", "<", "0", ":", "raise", "ValueError", "(", "\"Cannot broadcast distribution {} batch shape to \"", "\"target batch shape with fewer dimensions\"", ".", "format", "(", "partial_batch_dist", ")", ")", "if", "(", "expected_partial_batch_shape_static", "is", "not", "None", "and", "tensorshape_util", ".", "is_fully_defined", "(", "partial_batch_dist", ".", "batch_shape", ")", ")", ":", "if", "(", "partial_batch_dist", ".", "batch_shape", "and", "any", "(", "expected_partial_batch_shape_static", "!=", "tensorshape_util", ".", "as_list", "(", "partial_batch_dist", ".", "batch_shape", ")", ")", ")", ":", "raise", "NotImplementedError", "(", "\"Broadcasting is not supported; \"", "\"unexpected batch shape \"", "\"(expected {}, saw {}).\"", ".", "format", "(", "expected_partial_batch_shape_static", ",", "partial_batch_dist", ".", "batch_shape", ")", ")", "runtime_assertions", "=", "[", "]", "if", "validate_args", ":", "runtime_assertions", ".", "append", "(", "assert_util", ".", "assert_greater_equal", "(", "tf", ".", "convert_to_tensor", "(", "value", "=", "num_broadcast_dims", ",", "dtype", "=", "tf", ".", "int32", ")", ",", "tf", ".", "zeros", "(", "(", ")", ",", "dtype", "=", "tf", ".", "int32", ")", ",", "message", "=", "(", "\"Cannot broadcast distribution {} batch shape to \"", "\"target batch shape with fewer dimensions.\"", ".", "format", "(", "partial_batch_dist", ")", ")", ")", ")", "runtime_assertions", ".", "append", "(", "assert_util", ".", "assert_equal", "(", "expected_partial_batch_shape", ",", "partial_batch_dist", ".", "batch_shape_tensor", "(", ")", ",", "message", "=", "(", "\"Broadcasting is not supported; \"", "\"unexpected batch shape.\"", ")", ",", "name", "=", "\"assert_batch_shape_same\"", ")", ")", "with", "tf", ".", "control_dependencies", "(", "runtime_assertions", ")", ":", "return", "full_sample_and_batch_shape", "[", ":", "num_broadcast_dims", "]" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
build_backward_pass_step
Build a callable that perform one step for backward smoothing. Args: get_transition_matrix_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `LinearOperator` of shape `[latent_size, latent_size]`. Returns: backward_pass_step: a callable that updates a BackwardPassState from timestep `t` to `t-1`.
tensorflow_probability/python/distributions/linear_gaussian_ssm.py
def build_backward_pass_step(get_transition_matrix_for_timestep): """Build a callable that perform one step for backward smoothing. Args: get_transition_matrix_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `LinearOperator` of shape `[latent_size, latent_size]`. Returns: backward_pass_step: a callable that updates a BackwardPassState from timestep `t` to `t-1`. """ def backward_pass_step(state, filtered_parameters): """Run a single step of backward smoothing.""" (filtered_mean, filtered_cov, predicted_mean, predicted_cov) = filtered_parameters transition_matrix = get_transition_matrix_for_timestep(state.timestep) next_posterior_mean = state.backward_mean next_posterior_cov = state.backward_cov posterior_mean, posterior_cov = backward_smoothing_update( filtered_mean, filtered_cov, predicted_mean, predicted_cov, next_posterior_mean, next_posterior_cov, transition_matrix) return BackwardPassState(backward_mean=posterior_mean, backward_cov=posterior_cov, timestep=state.timestep-1) return backward_pass_step
def build_backward_pass_step(get_transition_matrix_for_timestep): """Build a callable that perform one step for backward smoothing. Args: get_transition_matrix_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `LinearOperator` of shape `[latent_size, latent_size]`. Returns: backward_pass_step: a callable that updates a BackwardPassState from timestep `t` to `t-1`. """ def backward_pass_step(state, filtered_parameters): """Run a single step of backward smoothing.""" (filtered_mean, filtered_cov, predicted_mean, predicted_cov) = filtered_parameters transition_matrix = get_transition_matrix_for_timestep(state.timestep) next_posterior_mean = state.backward_mean next_posterior_cov = state.backward_cov posterior_mean, posterior_cov = backward_smoothing_update( filtered_mean, filtered_cov, predicted_mean, predicted_cov, next_posterior_mean, next_posterior_cov, transition_matrix) return BackwardPassState(backward_mean=posterior_mean, backward_cov=posterior_cov, timestep=state.timestep-1) return backward_pass_step
[ "Build", "a", "callable", "that", "perform", "one", "step", "for", "backward", "smoothing", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/linear_gaussian_ssm.py#L1158-L1195
[ "def", "build_backward_pass_step", "(", "get_transition_matrix_for_timestep", ")", ":", "def", "backward_pass_step", "(", "state", ",", "filtered_parameters", ")", ":", "\"\"\"Run a single step of backward smoothing.\"\"\"", "(", "filtered_mean", ",", "filtered_cov", ",", "predicted_mean", ",", "predicted_cov", ")", "=", "filtered_parameters", "transition_matrix", "=", "get_transition_matrix_for_timestep", "(", "state", ".", "timestep", ")", "next_posterior_mean", "=", "state", ".", "backward_mean", "next_posterior_cov", "=", "state", ".", "backward_cov", "posterior_mean", ",", "posterior_cov", "=", "backward_smoothing_update", "(", "filtered_mean", ",", "filtered_cov", ",", "predicted_mean", ",", "predicted_cov", ",", "next_posterior_mean", ",", "next_posterior_cov", ",", "transition_matrix", ")", "return", "BackwardPassState", "(", "backward_mean", "=", "posterior_mean", ",", "backward_cov", "=", "posterior_cov", ",", "timestep", "=", "state", ".", "timestep", "-", "1", ")", "return", "backward_pass_step" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
backward_smoothing_update
Backward update for a Kalman smoother. Give the `filtered_mean` mu(t | t), `filtered_cov` sigma(t | t), `predicted_mean` mu(t+1 | t) and `predicted_cov` sigma(t+1 | t), as returns from the `forward_filter` function, as well as `next_posterior_mean` mu(t+1 | 1:T) and `next_posterior_cov` sigma(t+1 | 1:T), if the `transition_matrix` of states from time t to time t+1 is given as A(t+1), the 1 step backward smoothed distribution parameter could be calculated as: p(z(t) | Obs(1:T)) = N( mu(t | 1:T), sigma(t | 1:T)), mu(t | 1:T) = mu(t | t) + J(t) * (mu(t+1 | 1:T) - mu(t+1 | t)), sigma(t | 1:T) = sigma(t | t) + J(t) * (sigma(t+1 | 1:T) - sigma(t+1 | t) * J(t)', J(t) = sigma(t | t) * A(t+1)' / sigma(t+1 | t), where all the multiplications are matrix multiplication, and `/` is the matrix inverse. J(t) is the backward Kalman gain matrix. The algorithm can be intialized from mu(T | 1:T) and sigma(T | 1:T), which are the last step parameters returned by forward_filter. Args: filtered_mean: `Tensor` with event shape `[latent_size, 1]` and batch shape `B`, containing mu(t | t). filtered_cov: `Tensor` with event shape `[latent_size, latent_size]` and batch shape `B`, containing sigma(t | t). predicted_mean: `Tensor` with event shape `[latent_size, 1]` and batch shape `B`, containing mu(t+1 | t). predicted_cov: `Tensor` with event shape `[latent_size, latent_size]` and batch shape `B`, containing sigma(t+1 | t). next_posterior_mean: `Tensor` with event shape `[latent_size, 1]` and batch shape `B`, containing mu(t+1 | 1:T). next_posterior_cov: `Tensor` with event shape `[latent_size, latent_size]` and batch shape `B`, containing sigma(t+1 | 1:T). transition_matrix: `LinearOperator` with shape `[latent_size, latent_size]` and batch shape broadcastable to `B`. Returns: posterior_mean: `Tensor` with event shape `[latent_size, 1]` and batch shape `B`, containing mu(t | 1:T). posterior_cov: `Tensor` with event shape `[latent_size, latent_size]` and batch shape `B`, containing sigma(t | 1:T).
tensorflow_probability/python/distributions/linear_gaussian_ssm.py
def backward_smoothing_update(filtered_mean, filtered_cov, predicted_mean, predicted_cov, next_posterior_mean, next_posterior_cov, transition_matrix): """Backward update for a Kalman smoother. Give the `filtered_mean` mu(t | t), `filtered_cov` sigma(t | t), `predicted_mean` mu(t+1 | t) and `predicted_cov` sigma(t+1 | t), as returns from the `forward_filter` function, as well as `next_posterior_mean` mu(t+1 | 1:T) and `next_posterior_cov` sigma(t+1 | 1:T), if the `transition_matrix` of states from time t to time t+1 is given as A(t+1), the 1 step backward smoothed distribution parameter could be calculated as: p(z(t) | Obs(1:T)) = N( mu(t | 1:T), sigma(t | 1:T)), mu(t | 1:T) = mu(t | t) + J(t) * (mu(t+1 | 1:T) - mu(t+1 | t)), sigma(t | 1:T) = sigma(t | t) + J(t) * (sigma(t+1 | 1:T) - sigma(t+1 | t) * J(t)', J(t) = sigma(t | t) * A(t+1)' / sigma(t+1 | t), where all the multiplications are matrix multiplication, and `/` is the matrix inverse. J(t) is the backward Kalman gain matrix. The algorithm can be intialized from mu(T | 1:T) and sigma(T | 1:T), which are the last step parameters returned by forward_filter. Args: filtered_mean: `Tensor` with event shape `[latent_size, 1]` and batch shape `B`, containing mu(t | t). filtered_cov: `Tensor` with event shape `[latent_size, latent_size]` and batch shape `B`, containing sigma(t | t). predicted_mean: `Tensor` with event shape `[latent_size, 1]` and batch shape `B`, containing mu(t+1 | t). predicted_cov: `Tensor` with event shape `[latent_size, latent_size]` and batch shape `B`, containing sigma(t+1 | t). next_posterior_mean: `Tensor` with event shape `[latent_size, 1]` and batch shape `B`, containing mu(t+1 | 1:T). next_posterior_cov: `Tensor` with event shape `[latent_size, latent_size]` and batch shape `B`, containing sigma(t+1 | 1:T). transition_matrix: `LinearOperator` with shape `[latent_size, latent_size]` and batch shape broadcastable to `B`. Returns: posterior_mean: `Tensor` with event shape `[latent_size, 1]` and batch shape `B`, containing mu(t | 1:T). posterior_cov: `Tensor` with event shape `[latent_size, latent_size]` and batch shape `B`, containing sigma(t | 1:T). """ # Compute backward Kalman gain: # J = F * T' * P^{-1} # Since both F(iltered) and P(redictive) are cov matrices, # thus self-adjoint, we can take the transpose. # computation: # = (P^{-1} * T * F)' # = (P^{-1} * tmp_gain_cov) ' # = (P \ tmp_gain_cov)' tmp_gain_cov = transition_matrix.matmul(filtered_cov) predicted_cov_chol = tf.linalg.cholesky(predicted_cov) gain_transpose = tf.linalg.cholesky_solve(predicted_cov_chol, tmp_gain_cov) posterior_mean = (filtered_mean + tf.linalg.matmul(gain_transpose, next_posterior_mean - predicted_mean, adjoint_a=True)) posterior_cov = ( filtered_cov + tf.linalg.matmul(gain_transpose, tf.linalg.matmul( next_posterior_cov - predicted_cov, gain_transpose), adjoint_a=True)) return (posterior_mean, posterior_cov)
def backward_smoothing_update(filtered_mean, filtered_cov, predicted_mean, predicted_cov, next_posterior_mean, next_posterior_cov, transition_matrix): """Backward update for a Kalman smoother. Give the `filtered_mean` mu(t | t), `filtered_cov` sigma(t | t), `predicted_mean` mu(t+1 | t) and `predicted_cov` sigma(t+1 | t), as returns from the `forward_filter` function, as well as `next_posterior_mean` mu(t+1 | 1:T) and `next_posterior_cov` sigma(t+1 | 1:T), if the `transition_matrix` of states from time t to time t+1 is given as A(t+1), the 1 step backward smoothed distribution parameter could be calculated as: p(z(t) | Obs(1:T)) = N( mu(t | 1:T), sigma(t | 1:T)), mu(t | 1:T) = mu(t | t) + J(t) * (mu(t+1 | 1:T) - mu(t+1 | t)), sigma(t | 1:T) = sigma(t | t) + J(t) * (sigma(t+1 | 1:T) - sigma(t+1 | t) * J(t)', J(t) = sigma(t | t) * A(t+1)' / sigma(t+1 | t), where all the multiplications are matrix multiplication, and `/` is the matrix inverse. J(t) is the backward Kalman gain matrix. The algorithm can be intialized from mu(T | 1:T) and sigma(T | 1:T), which are the last step parameters returned by forward_filter. Args: filtered_mean: `Tensor` with event shape `[latent_size, 1]` and batch shape `B`, containing mu(t | t). filtered_cov: `Tensor` with event shape `[latent_size, latent_size]` and batch shape `B`, containing sigma(t | t). predicted_mean: `Tensor` with event shape `[latent_size, 1]` and batch shape `B`, containing mu(t+1 | t). predicted_cov: `Tensor` with event shape `[latent_size, latent_size]` and batch shape `B`, containing sigma(t+1 | t). next_posterior_mean: `Tensor` with event shape `[latent_size, 1]` and batch shape `B`, containing mu(t+1 | 1:T). next_posterior_cov: `Tensor` with event shape `[latent_size, latent_size]` and batch shape `B`, containing sigma(t+1 | 1:T). transition_matrix: `LinearOperator` with shape `[latent_size, latent_size]` and batch shape broadcastable to `B`. Returns: posterior_mean: `Tensor` with event shape `[latent_size, 1]` and batch shape `B`, containing mu(t | 1:T). posterior_cov: `Tensor` with event shape `[latent_size, latent_size]` and batch shape `B`, containing sigma(t | 1:T). """ # Compute backward Kalman gain: # J = F * T' * P^{-1} # Since both F(iltered) and P(redictive) are cov matrices, # thus self-adjoint, we can take the transpose. # computation: # = (P^{-1} * T * F)' # = (P^{-1} * tmp_gain_cov) ' # = (P \ tmp_gain_cov)' tmp_gain_cov = transition_matrix.matmul(filtered_cov) predicted_cov_chol = tf.linalg.cholesky(predicted_cov) gain_transpose = tf.linalg.cholesky_solve(predicted_cov_chol, tmp_gain_cov) posterior_mean = (filtered_mean + tf.linalg.matmul(gain_transpose, next_posterior_mean - predicted_mean, adjoint_a=True)) posterior_cov = ( filtered_cov + tf.linalg.matmul(gain_transpose, tf.linalg.matmul( next_posterior_cov - predicted_cov, gain_transpose), adjoint_a=True)) return (posterior_mean, posterior_cov)
[ "Backward", "update", "for", "a", "Kalman", "smoother", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/linear_gaussian_ssm.py#L1198-L1272
[ "def", "backward_smoothing_update", "(", "filtered_mean", ",", "filtered_cov", ",", "predicted_mean", ",", "predicted_cov", ",", "next_posterior_mean", ",", "next_posterior_cov", ",", "transition_matrix", ")", ":", "# Compute backward Kalman gain:", "# J = F * T' * P^{-1}", "# Since both F(iltered) and P(redictive) are cov matrices,", "# thus self-adjoint, we can take the transpose.", "# computation:", "# = (P^{-1} * T * F)'", "# = (P^{-1} * tmp_gain_cov) '", "# = (P \\ tmp_gain_cov)'", "tmp_gain_cov", "=", "transition_matrix", ".", "matmul", "(", "filtered_cov", ")", "predicted_cov_chol", "=", "tf", ".", "linalg", ".", "cholesky", "(", "predicted_cov", ")", "gain_transpose", "=", "tf", ".", "linalg", ".", "cholesky_solve", "(", "predicted_cov_chol", ",", "tmp_gain_cov", ")", "posterior_mean", "=", "(", "filtered_mean", "+", "tf", ".", "linalg", ".", "matmul", "(", "gain_transpose", ",", "next_posterior_mean", "-", "predicted_mean", ",", "adjoint_a", "=", "True", ")", ")", "posterior_cov", "=", "(", "filtered_cov", "+", "tf", ".", "linalg", ".", "matmul", "(", "gain_transpose", ",", "tf", ".", "linalg", ".", "matmul", "(", "next_posterior_cov", "-", "predicted_cov", ",", "gain_transpose", ")", ",", "adjoint_a", "=", "True", ")", ")", "return", "(", "posterior_mean", ",", "posterior_cov", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
build_kalman_filter_step
Build a callable that performs one step of Kalman filtering. Args: get_transition_matrix_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `LinearOperator` of shape `[latent_size, latent_size]`. get_transition_noise_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `MultivariateNormalLinearOperator` of event shape `[latent_size]`. get_observation_matrix_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `LinearOperator` of shape `[observation_size, observation_size]`. get_observation_noise_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `MultivariateNormalLinearOperator` of event shape `[observation_size]`. Returns: kalman_filter_step: a callable that updates a KalmanFilterState from timestep `t-1` to `t`.
tensorflow_probability/python/distributions/linear_gaussian_ssm.py
def build_kalman_filter_step(get_transition_matrix_for_timestep, get_transition_noise_for_timestep, get_observation_matrix_for_timestep, get_observation_noise_for_timestep): """Build a callable that performs one step of Kalman filtering. Args: get_transition_matrix_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `LinearOperator` of shape `[latent_size, latent_size]`. get_transition_noise_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `MultivariateNormalLinearOperator` of event shape `[latent_size]`. get_observation_matrix_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `LinearOperator` of shape `[observation_size, observation_size]`. get_observation_noise_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `MultivariateNormalLinearOperator` of event shape `[observation_size]`. Returns: kalman_filter_step: a callable that updates a KalmanFilterState from timestep `t-1` to `t`. """ def kalman_filter_step(state, elems_t): """Run a single step of Kalman filtering. Args: state: A `KalmanFilterState` object representing the previous filter state at time `t-1`. elems_t: A tuple of Tensors `(x_t, mask_t)`, or a `Tensor` `x_t`. `x_t` is a `Tensor` with rightmost shape dimensions `[observation_size, 1]` representing the vector observed at time `t`, and `mask_t` is a `Tensor` with rightmost dimensions`[1, 1]` representing the observation mask at time `t`. Both `x_t` and `mask_t` may have batch dimensions, which must be compatible with the batch dimensions of `state.predicted_mean` and `state.predictived_cov` respectively. If `mask_t` is not provided, it is assumed to be `None`. Returns: new_state: A `KalmanFilterState` object representing the new filter state at time `t`. """ if isinstance(elems_t, tuple): x_t, mask_t = elems_t else: x_t = elems_t mask_t = None observation_matrix = get_observation_matrix_for_timestep(state.timestep) observation_noise = get_observation_noise_for_timestep(state.timestep) if mask_t is not None: # Before running the update, fill in masked observations using the prior # expectation. The precise filled value shouldn't matter since updates # from masked elements will not be selected below, but we need to ensure # that any results we incidently compute on masked values are at least # finite (not inf or NaN) so that they don't screw up gradient propagation # through `tf.where`, as described in # https://github.com/tensorflow/tensorflow/issues/2540. # We fill with the prior expectation because any fixed value such as zero # might be arbitrarily unlikely under the prior, leading to overflow in # the updates, but the prior expectation should always be a # 'reasonable' observation. x_expected = _propagate_mean(state.predicted_mean, observation_matrix, observation_noise) * tf.ones_like(x_t) x_t = tf.where( tf.broadcast_to(mask_t, tf.shape(input=x_expected)), x_expected, tf.broadcast_to(x_t, tf.shape(input=x_expected))) # Given predicted mean u_{t|t-1} and covariance P_{t|t-1} from the # previous step, incorporate the observation x_t, producing the # filtered mean u_t and covariance P_t. (filtered_mean, filtered_cov, observation_dist) = linear_gaussian_update( state.predicted_mean, state.predicted_cov, observation_matrix, observation_noise, x_t) # Compute the marginal likelihood p(x_{t} | x_{:t-1}) for this # observation. log_marginal_likelihood = observation_dist.log_prob(x_t[..., 0]) if mask_t is not None: filtered_mean = tf.where( tf.broadcast_to(mask_t, tf.shape(input=filtered_mean)), state.predicted_mean, filtered_mean) filtered_cov = tf.where( tf.broadcast_to(mask_t, tf.shape(input=filtered_cov)), state.predicted_cov, filtered_cov) log_marginal_likelihood = tf.where( tf.broadcast_to(mask_t[..., 0, 0], tf.shape(input=log_marginal_likelihood)), tf.zeros_like(log_marginal_likelihood), log_marginal_likelihood) # Run the filtered posterior through the transition # model to predict the next time step: # u_{t|t-1} = F_t u_{t-1} + b_t # P_{t|t-1} = F_t P_{t-1} F_t' + Q_t predicted_mean, predicted_cov = kalman_transition( filtered_mean, filtered_cov, get_transition_matrix_for_timestep(state.timestep), get_transition_noise_for_timestep(state.timestep)) return KalmanFilterState( filtered_mean, filtered_cov, predicted_mean, predicted_cov, observation_dist.mean()[..., tf.newaxis], observation_dist.covariance(), log_marginal_likelihood, state.timestep+1) return kalman_filter_step
def build_kalman_filter_step(get_transition_matrix_for_timestep, get_transition_noise_for_timestep, get_observation_matrix_for_timestep, get_observation_noise_for_timestep): """Build a callable that performs one step of Kalman filtering. Args: get_transition_matrix_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `LinearOperator` of shape `[latent_size, latent_size]`. get_transition_noise_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `MultivariateNormalLinearOperator` of event shape `[latent_size]`. get_observation_matrix_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `LinearOperator` of shape `[observation_size, observation_size]`. get_observation_noise_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `MultivariateNormalLinearOperator` of event shape `[observation_size]`. Returns: kalman_filter_step: a callable that updates a KalmanFilterState from timestep `t-1` to `t`. """ def kalman_filter_step(state, elems_t): """Run a single step of Kalman filtering. Args: state: A `KalmanFilterState` object representing the previous filter state at time `t-1`. elems_t: A tuple of Tensors `(x_t, mask_t)`, or a `Tensor` `x_t`. `x_t` is a `Tensor` with rightmost shape dimensions `[observation_size, 1]` representing the vector observed at time `t`, and `mask_t` is a `Tensor` with rightmost dimensions`[1, 1]` representing the observation mask at time `t`. Both `x_t` and `mask_t` may have batch dimensions, which must be compatible with the batch dimensions of `state.predicted_mean` and `state.predictived_cov` respectively. If `mask_t` is not provided, it is assumed to be `None`. Returns: new_state: A `KalmanFilterState` object representing the new filter state at time `t`. """ if isinstance(elems_t, tuple): x_t, mask_t = elems_t else: x_t = elems_t mask_t = None observation_matrix = get_observation_matrix_for_timestep(state.timestep) observation_noise = get_observation_noise_for_timestep(state.timestep) if mask_t is not None: # Before running the update, fill in masked observations using the prior # expectation. The precise filled value shouldn't matter since updates # from masked elements will not be selected below, but we need to ensure # that any results we incidently compute on masked values are at least # finite (not inf or NaN) so that they don't screw up gradient propagation # through `tf.where`, as described in # https://github.com/tensorflow/tensorflow/issues/2540. # We fill with the prior expectation because any fixed value such as zero # might be arbitrarily unlikely under the prior, leading to overflow in # the updates, but the prior expectation should always be a # 'reasonable' observation. x_expected = _propagate_mean(state.predicted_mean, observation_matrix, observation_noise) * tf.ones_like(x_t) x_t = tf.where( tf.broadcast_to(mask_t, tf.shape(input=x_expected)), x_expected, tf.broadcast_to(x_t, tf.shape(input=x_expected))) # Given predicted mean u_{t|t-1} and covariance P_{t|t-1} from the # previous step, incorporate the observation x_t, producing the # filtered mean u_t and covariance P_t. (filtered_mean, filtered_cov, observation_dist) = linear_gaussian_update( state.predicted_mean, state.predicted_cov, observation_matrix, observation_noise, x_t) # Compute the marginal likelihood p(x_{t} | x_{:t-1}) for this # observation. log_marginal_likelihood = observation_dist.log_prob(x_t[..., 0]) if mask_t is not None: filtered_mean = tf.where( tf.broadcast_to(mask_t, tf.shape(input=filtered_mean)), state.predicted_mean, filtered_mean) filtered_cov = tf.where( tf.broadcast_to(mask_t, tf.shape(input=filtered_cov)), state.predicted_cov, filtered_cov) log_marginal_likelihood = tf.where( tf.broadcast_to(mask_t[..., 0, 0], tf.shape(input=log_marginal_likelihood)), tf.zeros_like(log_marginal_likelihood), log_marginal_likelihood) # Run the filtered posterior through the transition # model to predict the next time step: # u_{t|t-1} = F_t u_{t-1} + b_t # P_{t|t-1} = F_t P_{t-1} F_t' + Q_t predicted_mean, predicted_cov = kalman_transition( filtered_mean, filtered_cov, get_transition_matrix_for_timestep(state.timestep), get_transition_noise_for_timestep(state.timestep)) return KalmanFilterState( filtered_mean, filtered_cov, predicted_mean, predicted_cov, observation_dist.mean()[..., tf.newaxis], observation_dist.covariance(), log_marginal_likelihood, state.timestep+1) return kalman_filter_step
[ "Build", "a", "callable", "that", "performs", "one", "step", "of", "Kalman", "filtering", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/linear_gaussian_ssm.py#L1275-L1394
[ "def", "build_kalman_filter_step", "(", "get_transition_matrix_for_timestep", ",", "get_transition_noise_for_timestep", ",", "get_observation_matrix_for_timestep", ",", "get_observation_noise_for_timestep", ")", ":", "def", "kalman_filter_step", "(", "state", ",", "elems_t", ")", ":", "\"\"\"Run a single step of Kalman filtering.\n\n Args:\n state: A `KalmanFilterState` object representing the previous\n filter state at time `t-1`.\n elems_t: A tuple of Tensors `(x_t, mask_t)`, or a `Tensor` `x_t`.\n `x_t` is a `Tensor` with rightmost shape dimensions\n `[observation_size, 1]` representing the vector observed at time `t`,\n and `mask_t` is a `Tensor` with rightmost dimensions`[1, 1]`\n representing the observation mask at time `t`. Both `x_t` and `mask_t`\n may have batch dimensions, which must be compatible with the batch\n dimensions of `state.predicted_mean` and `state.predictived_cov`\n respectively. If `mask_t` is not provided, it is assumed to be `None`.\n\n Returns:\n new_state: A `KalmanFilterState` object representing the new\n filter state at time `t`.\n \"\"\"", "if", "isinstance", "(", "elems_t", ",", "tuple", ")", ":", "x_t", ",", "mask_t", "=", "elems_t", "else", ":", "x_t", "=", "elems_t", "mask_t", "=", "None", "observation_matrix", "=", "get_observation_matrix_for_timestep", "(", "state", ".", "timestep", ")", "observation_noise", "=", "get_observation_noise_for_timestep", "(", "state", ".", "timestep", ")", "if", "mask_t", "is", "not", "None", ":", "# Before running the update, fill in masked observations using the prior", "# expectation. The precise filled value shouldn't matter since updates", "# from masked elements will not be selected below, but we need to ensure", "# that any results we incidently compute on masked values are at least", "# finite (not inf or NaN) so that they don't screw up gradient propagation", "# through `tf.where`, as described in", "# https://github.com/tensorflow/tensorflow/issues/2540.", "# We fill with the prior expectation because any fixed value such as zero", "# might be arbitrarily unlikely under the prior, leading to overflow in", "# the updates, but the prior expectation should always be a", "# 'reasonable' observation.", "x_expected", "=", "_propagate_mean", "(", "state", ".", "predicted_mean", ",", "observation_matrix", ",", "observation_noise", ")", "*", "tf", ".", "ones_like", "(", "x_t", ")", "x_t", "=", "tf", ".", "where", "(", "tf", ".", "broadcast_to", "(", "mask_t", ",", "tf", ".", "shape", "(", "input", "=", "x_expected", ")", ")", ",", "x_expected", ",", "tf", ".", "broadcast_to", "(", "x_t", ",", "tf", ".", "shape", "(", "input", "=", "x_expected", ")", ")", ")", "# Given predicted mean u_{t|t-1} and covariance P_{t|t-1} from the", "# previous step, incorporate the observation x_t, producing the", "# filtered mean u_t and covariance P_t.", "(", "filtered_mean", ",", "filtered_cov", ",", "observation_dist", ")", "=", "linear_gaussian_update", "(", "state", ".", "predicted_mean", ",", "state", ".", "predicted_cov", ",", "observation_matrix", ",", "observation_noise", ",", "x_t", ")", "# Compute the marginal likelihood p(x_{t} | x_{:t-1}) for this", "# observation.", "log_marginal_likelihood", "=", "observation_dist", ".", "log_prob", "(", "x_t", "[", "...", ",", "0", "]", ")", "if", "mask_t", "is", "not", "None", ":", "filtered_mean", "=", "tf", ".", "where", "(", "tf", ".", "broadcast_to", "(", "mask_t", ",", "tf", ".", "shape", "(", "input", "=", "filtered_mean", ")", ")", ",", "state", ".", "predicted_mean", ",", "filtered_mean", ")", "filtered_cov", "=", "tf", ".", "where", "(", "tf", ".", "broadcast_to", "(", "mask_t", ",", "tf", ".", "shape", "(", "input", "=", "filtered_cov", ")", ")", ",", "state", ".", "predicted_cov", ",", "filtered_cov", ")", "log_marginal_likelihood", "=", "tf", ".", "where", "(", "tf", ".", "broadcast_to", "(", "mask_t", "[", "...", ",", "0", ",", "0", "]", ",", "tf", ".", "shape", "(", "input", "=", "log_marginal_likelihood", ")", ")", ",", "tf", ".", "zeros_like", "(", "log_marginal_likelihood", ")", ",", "log_marginal_likelihood", ")", "# Run the filtered posterior through the transition", "# model to predict the next time step:", "# u_{t|t-1} = F_t u_{t-1} + b_t", "# P_{t|t-1} = F_t P_{t-1} F_t' + Q_t", "predicted_mean", ",", "predicted_cov", "=", "kalman_transition", "(", "filtered_mean", ",", "filtered_cov", ",", "get_transition_matrix_for_timestep", "(", "state", ".", "timestep", ")", ",", "get_transition_noise_for_timestep", "(", "state", ".", "timestep", ")", ")", "return", "KalmanFilterState", "(", "filtered_mean", ",", "filtered_cov", ",", "predicted_mean", ",", "predicted_cov", ",", "observation_dist", ".", "mean", "(", ")", "[", "...", ",", "tf", ".", "newaxis", "]", ",", "observation_dist", ".", "covariance", "(", ")", ",", "log_marginal_likelihood", ",", "state", ".", "timestep", "+", "1", ")", "return", "kalman_filter_step" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
linear_gaussian_update
Conjugate update for a linear Gaussian model. Given a normal prior on a latent variable `z`, `p(z) = N(prior_mean, prior_cov) = N(u, P)`, for which we observe a linear Gaussian transformation `x`, `p(x|z) = N(H * z + c, R)`, the posterior is also normal: `p(z|x) = N(u*, P*)`. We can write this update as x_expected = H * u + c # pushforward prior mean S = R + H * P * H' # pushforward prior cov K = P * H' * S^{-1} # optimal Kalman gain u* = u + K * (x_observed - x_expected) # posterior mean P* = (I - K * H) * P (I - K * H)' + K * R * K' # posterior cov (see, e.g., https://en.wikipedia.org/wiki/Kalman_filter#Update) Args: prior_mean: `Tensor` with event shape `[latent_size, 1]` and potential batch shape `B = [b1, ..., b_n]`. prior_cov: `Tensor` with event shape `[latent_size, latent_size]` and batch shape `B` (matching `prior_mean`). observation_matrix: `LinearOperator` with shape `[observation_size, latent_size]` and batch shape broadcastable to `B`. observation_noise: potentially-batched `MultivariateNormalLinearOperator` instance with event shape `[observation_size]` and batch shape broadcastable to `B`. x_observed: potentially batched `Tensor` with event shape `[observation_size, 1]` and batch shape `B`. Returns: posterior_mean: `Tensor` with event shape `[latent_size, 1]` and batch shape `B`. posterior_cov: `Tensor` with event shape `[latent_size, latent_size]` and batch shape `B`. predictive_dist: the prior predictive distribution `p(x|z)`, as a `Distribution` instance with event shape `[observation_size]` and batch shape `B`. This will typically be `tfd.MultivariateNormalTriL`, but when `observation_size=1` we return a `tfd.Independent(tfd.Normal)` instance as an optimization.
tensorflow_probability/python/distributions/linear_gaussian_ssm.py
def linear_gaussian_update( prior_mean, prior_cov, observation_matrix, observation_noise, x_observed): """Conjugate update for a linear Gaussian model. Given a normal prior on a latent variable `z`, `p(z) = N(prior_mean, prior_cov) = N(u, P)`, for which we observe a linear Gaussian transformation `x`, `p(x|z) = N(H * z + c, R)`, the posterior is also normal: `p(z|x) = N(u*, P*)`. We can write this update as x_expected = H * u + c # pushforward prior mean S = R + H * P * H' # pushforward prior cov K = P * H' * S^{-1} # optimal Kalman gain u* = u + K * (x_observed - x_expected) # posterior mean P* = (I - K * H) * P (I - K * H)' + K * R * K' # posterior cov (see, e.g., https://en.wikipedia.org/wiki/Kalman_filter#Update) Args: prior_mean: `Tensor` with event shape `[latent_size, 1]` and potential batch shape `B = [b1, ..., b_n]`. prior_cov: `Tensor` with event shape `[latent_size, latent_size]` and batch shape `B` (matching `prior_mean`). observation_matrix: `LinearOperator` with shape `[observation_size, latent_size]` and batch shape broadcastable to `B`. observation_noise: potentially-batched `MultivariateNormalLinearOperator` instance with event shape `[observation_size]` and batch shape broadcastable to `B`. x_observed: potentially batched `Tensor` with event shape `[observation_size, 1]` and batch shape `B`. Returns: posterior_mean: `Tensor` with event shape `[latent_size, 1]` and batch shape `B`. posterior_cov: `Tensor` with event shape `[latent_size, latent_size]` and batch shape `B`. predictive_dist: the prior predictive distribution `p(x|z)`, as a `Distribution` instance with event shape `[observation_size]` and batch shape `B`. This will typically be `tfd.MultivariateNormalTriL`, but when `observation_size=1` we return a `tfd.Independent(tfd.Normal)` instance as an optimization. """ # If observations are scalar, we can avoid some matrix ops. observation_size_is_static_and_scalar = ( tf.compat.dimension_value(observation_matrix.shape[-2]) == 1) # Push the predicted mean for the latent state through the # observation model x_expected = _propagate_mean(prior_mean, observation_matrix, observation_noise) # Push the predictive covariance of the latent state through the # observation model: # S = R + H * P * H'. # We use a temporary variable for H * P, # reused below to compute Kalman gain. tmp_obs_cov = observation_matrix.matmul(prior_cov) predicted_obs_cov = ( observation_matrix.matmul(tmp_obs_cov, adjoint_arg=True) + observation_noise.covariance()) # Compute optimal Kalman gain: # K = P * H' * S^{-1} # Since both S and P are cov matrices, thus symmetric, # we can take the transpose and reuse our previous # computation: # = (S^{-1} * H * P)' # = (S^{-1} * tmp_obs_cov) ' # = (S \ tmp_obs_cov)' if observation_size_is_static_and_scalar: gain_transpose = tmp_obs_cov/predicted_obs_cov else: predicted_obs_cov_chol = tf.linalg.cholesky(predicted_obs_cov) gain_transpose = tf.linalg.cholesky_solve(predicted_obs_cov_chol, tmp_obs_cov) # Compute the posterior mean, incorporating the observation. # u* = u + K (x_observed - x_expected) posterior_mean = (prior_mean + tf.linalg.matmul(gain_transpose, x_observed - x_expected, adjoint_a=True)) # For the posterior covariance, we could use the simple update # P* = P - K * H * P # but this is prone to numerical issues because it subtracts a # value from a PSD matrix. We choose instead to use the more # expensive Jordan form update # P* = (I - K H) * P * (I - K H)' + K R K' # which always produces a PSD result. This uses # tmp_term = (I - K * H)' # as an intermediate quantity. tmp_term = -observation_matrix.matmul(gain_transpose, adjoint=True) # -K * H tmp_term = tf.linalg.set_diag(tmp_term, tf.linalg.diag_part(tmp_term) + 1) posterior_cov = ( tf.linalg.matmul( tmp_term, tf.linalg.matmul(prior_cov, tmp_term), adjoint_a=True) + tf.linalg.matmul(gain_transpose, tf.linalg.matmul( observation_noise.covariance(), gain_transpose), adjoint_a=True)) if observation_size_is_static_and_scalar: # A plain Normal would have event shape `[]`; wrapping with Independent # ensures `event_shape=[1]` as required. predictive_dist = independent.Independent( normal.Normal(loc=x_expected[..., 0], scale=tf.sqrt(predicted_obs_cov[..., 0])), reinterpreted_batch_ndims=1) # Minor hack to define the covariance, so that `predictive_dist` can pass as # an MVNTriL-like object. predictive_dist.covariance = lambda: predicted_obs_cov else: predictive_dist = mvn_tril.MultivariateNormalTriL( loc=x_expected[..., 0], scale_tril=predicted_obs_cov_chol) return posterior_mean, posterior_cov, predictive_dist
def linear_gaussian_update( prior_mean, prior_cov, observation_matrix, observation_noise, x_observed): """Conjugate update for a linear Gaussian model. Given a normal prior on a latent variable `z`, `p(z) = N(prior_mean, prior_cov) = N(u, P)`, for which we observe a linear Gaussian transformation `x`, `p(x|z) = N(H * z + c, R)`, the posterior is also normal: `p(z|x) = N(u*, P*)`. We can write this update as x_expected = H * u + c # pushforward prior mean S = R + H * P * H' # pushforward prior cov K = P * H' * S^{-1} # optimal Kalman gain u* = u + K * (x_observed - x_expected) # posterior mean P* = (I - K * H) * P (I - K * H)' + K * R * K' # posterior cov (see, e.g., https://en.wikipedia.org/wiki/Kalman_filter#Update) Args: prior_mean: `Tensor` with event shape `[latent_size, 1]` and potential batch shape `B = [b1, ..., b_n]`. prior_cov: `Tensor` with event shape `[latent_size, latent_size]` and batch shape `B` (matching `prior_mean`). observation_matrix: `LinearOperator` with shape `[observation_size, latent_size]` and batch shape broadcastable to `B`. observation_noise: potentially-batched `MultivariateNormalLinearOperator` instance with event shape `[observation_size]` and batch shape broadcastable to `B`. x_observed: potentially batched `Tensor` with event shape `[observation_size, 1]` and batch shape `B`. Returns: posterior_mean: `Tensor` with event shape `[latent_size, 1]` and batch shape `B`. posterior_cov: `Tensor` with event shape `[latent_size, latent_size]` and batch shape `B`. predictive_dist: the prior predictive distribution `p(x|z)`, as a `Distribution` instance with event shape `[observation_size]` and batch shape `B`. This will typically be `tfd.MultivariateNormalTriL`, but when `observation_size=1` we return a `tfd.Independent(tfd.Normal)` instance as an optimization. """ # If observations are scalar, we can avoid some matrix ops. observation_size_is_static_and_scalar = ( tf.compat.dimension_value(observation_matrix.shape[-2]) == 1) # Push the predicted mean for the latent state through the # observation model x_expected = _propagate_mean(prior_mean, observation_matrix, observation_noise) # Push the predictive covariance of the latent state through the # observation model: # S = R + H * P * H'. # We use a temporary variable for H * P, # reused below to compute Kalman gain. tmp_obs_cov = observation_matrix.matmul(prior_cov) predicted_obs_cov = ( observation_matrix.matmul(tmp_obs_cov, adjoint_arg=True) + observation_noise.covariance()) # Compute optimal Kalman gain: # K = P * H' * S^{-1} # Since both S and P are cov matrices, thus symmetric, # we can take the transpose and reuse our previous # computation: # = (S^{-1} * H * P)' # = (S^{-1} * tmp_obs_cov) ' # = (S \ tmp_obs_cov)' if observation_size_is_static_and_scalar: gain_transpose = tmp_obs_cov/predicted_obs_cov else: predicted_obs_cov_chol = tf.linalg.cholesky(predicted_obs_cov) gain_transpose = tf.linalg.cholesky_solve(predicted_obs_cov_chol, tmp_obs_cov) # Compute the posterior mean, incorporating the observation. # u* = u + K (x_observed - x_expected) posterior_mean = (prior_mean + tf.linalg.matmul(gain_transpose, x_observed - x_expected, adjoint_a=True)) # For the posterior covariance, we could use the simple update # P* = P - K * H * P # but this is prone to numerical issues because it subtracts a # value from a PSD matrix. We choose instead to use the more # expensive Jordan form update # P* = (I - K H) * P * (I - K H)' + K R K' # which always produces a PSD result. This uses # tmp_term = (I - K * H)' # as an intermediate quantity. tmp_term = -observation_matrix.matmul(gain_transpose, adjoint=True) # -K * H tmp_term = tf.linalg.set_diag(tmp_term, tf.linalg.diag_part(tmp_term) + 1) posterior_cov = ( tf.linalg.matmul( tmp_term, tf.linalg.matmul(prior_cov, tmp_term), adjoint_a=True) + tf.linalg.matmul(gain_transpose, tf.linalg.matmul( observation_noise.covariance(), gain_transpose), adjoint_a=True)) if observation_size_is_static_and_scalar: # A plain Normal would have event shape `[]`; wrapping with Independent # ensures `event_shape=[1]` as required. predictive_dist = independent.Independent( normal.Normal(loc=x_expected[..., 0], scale=tf.sqrt(predicted_obs_cov[..., 0])), reinterpreted_batch_ndims=1) # Minor hack to define the covariance, so that `predictive_dist` can pass as # an MVNTriL-like object. predictive_dist.covariance = lambda: predicted_obs_cov else: predictive_dist = mvn_tril.MultivariateNormalTriL( loc=x_expected[..., 0], scale_tril=predicted_obs_cov_chol) return posterior_mean, posterior_cov, predictive_dist
[ "Conjugate", "update", "for", "a", "linear", "Gaussian", "model", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/linear_gaussian_ssm.py#L1397-L1519
[ "def", "linear_gaussian_update", "(", "prior_mean", ",", "prior_cov", ",", "observation_matrix", ",", "observation_noise", ",", "x_observed", ")", ":", "# If observations are scalar, we can avoid some matrix ops.", "observation_size_is_static_and_scalar", "=", "(", "tf", ".", "compat", ".", "dimension_value", "(", "observation_matrix", ".", "shape", "[", "-", "2", "]", ")", "==", "1", ")", "# Push the predicted mean for the latent state through the", "# observation model", "x_expected", "=", "_propagate_mean", "(", "prior_mean", ",", "observation_matrix", ",", "observation_noise", ")", "# Push the predictive covariance of the latent state through the", "# observation model:", "# S = R + H * P * H'.", "# We use a temporary variable for H * P,", "# reused below to compute Kalman gain.", "tmp_obs_cov", "=", "observation_matrix", ".", "matmul", "(", "prior_cov", ")", "predicted_obs_cov", "=", "(", "observation_matrix", ".", "matmul", "(", "tmp_obs_cov", ",", "adjoint_arg", "=", "True", ")", "+", "observation_noise", ".", "covariance", "(", ")", ")", "# Compute optimal Kalman gain:", "# K = P * H' * S^{-1}", "# Since both S and P are cov matrices, thus symmetric,", "# we can take the transpose and reuse our previous", "# computation:", "# = (S^{-1} * H * P)'", "# = (S^{-1} * tmp_obs_cov) '", "# = (S \\ tmp_obs_cov)'", "if", "observation_size_is_static_and_scalar", ":", "gain_transpose", "=", "tmp_obs_cov", "/", "predicted_obs_cov", "else", ":", "predicted_obs_cov_chol", "=", "tf", ".", "linalg", ".", "cholesky", "(", "predicted_obs_cov", ")", "gain_transpose", "=", "tf", ".", "linalg", ".", "cholesky_solve", "(", "predicted_obs_cov_chol", ",", "tmp_obs_cov", ")", "# Compute the posterior mean, incorporating the observation.", "# u* = u + K (x_observed - x_expected)", "posterior_mean", "=", "(", "prior_mean", "+", "tf", ".", "linalg", ".", "matmul", "(", "gain_transpose", ",", "x_observed", "-", "x_expected", ",", "adjoint_a", "=", "True", ")", ")", "# For the posterior covariance, we could use the simple update", "# P* = P - K * H * P", "# but this is prone to numerical issues because it subtracts a", "# value from a PSD matrix. We choose instead to use the more", "# expensive Jordan form update", "# P* = (I - K H) * P * (I - K H)' + K R K'", "# which always produces a PSD result. This uses", "# tmp_term = (I - K * H)'", "# as an intermediate quantity.", "tmp_term", "=", "-", "observation_matrix", ".", "matmul", "(", "gain_transpose", ",", "adjoint", "=", "True", ")", "# -K * H", "tmp_term", "=", "tf", ".", "linalg", ".", "set_diag", "(", "tmp_term", ",", "tf", ".", "linalg", ".", "diag_part", "(", "tmp_term", ")", "+", "1", ")", "posterior_cov", "=", "(", "tf", ".", "linalg", ".", "matmul", "(", "tmp_term", ",", "tf", ".", "linalg", ".", "matmul", "(", "prior_cov", ",", "tmp_term", ")", ",", "adjoint_a", "=", "True", ")", "+", "tf", ".", "linalg", ".", "matmul", "(", "gain_transpose", ",", "tf", ".", "linalg", ".", "matmul", "(", "observation_noise", ".", "covariance", "(", ")", ",", "gain_transpose", ")", ",", "adjoint_a", "=", "True", ")", ")", "if", "observation_size_is_static_and_scalar", ":", "# A plain Normal would have event shape `[]`; wrapping with Independent", "# ensures `event_shape=[1]` as required.", "predictive_dist", "=", "independent", ".", "Independent", "(", "normal", ".", "Normal", "(", "loc", "=", "x_expected", "[", "...", ",", "0", "]", ",", "scale", "=", "tf", ".", "sqrt", "(", "predicted_obs_cov", "[", "...", ",", "0", "]", ")", ")", ",", "reinterpreted_batch_ndims", "=", "1", ")", "# Minor hack to define the covariance, so that `predictive_dist` can pass as", "# an MVNTriL-like object.", "predictive_dist", ".", "covariance", "=", "lambda", ":", "predicted_obs_cov", "else", ":", "predictive_dist", "=", "mvn_tril", ".", "MultivariateNormalTriL", "(", "loc", "=", "x_expected", "[", "...", ",", "0", "]", ",", "scale_tril", "=", "predicted_obs_cov_chol", ")", "return", "posterior_mean", ",", "posterior_cov", ",", "predictive_dist" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
kalman_transition
Propagate a filtered distribution through a transition model.
tensorflow_probability/python/distributions/linear_gaussian_ssm.py
def kalman_transition(filtered_mean, filtered_cov, transition_matrix, transition_noise): """Propagate a filtered distribution through a transition model.""" predicted_mean = _propagate_mean(filtered_mean, transition_matrix, transition_noise) predicted_cov = _propagate_cov(filtered_cov, transition_matrix, transition_noise) return predicted_mean, predicted_cov
def kalman_transition(filtered_mean, filtered_cov, transition_matrix, transition_noise): """Propagate a filtered distribution through a transition model.""" predicted_mean = _propagate_mean(filtered_mean, transition_matrix, transition_noise) predicted_cov = _propagate_cov(filtered_cov, transition_matrix, transition_noise) return predicted_mean, predicted_cov
[ "Propagate", "a", "filtered", "distribution", "through", "a", "transition", "model", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/linear_gaussian_ssm.py#L1522-L1532
[ "def", "kalman_transition", "(", "filtered_mean", ",", "filtered_cov", ",", "transition_matrix", ",", "transition_noise", ")", ":", "predicted_mean", "=", "_propagate_mean", "(", "filtered_mean", ",", "transition_matrix", ",", "transition_noise", ")", "predicted_cov", "=", "_propagate_cov", "(", "filtered_cov", ",", "transition_matrix", ",", "transition_noise", ")", "return", "predicted_mean", ",", "predicted_cov" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
build_kalman_mean_step
Build a callable that performs one step of Kalman mean recursion. Args: get_transition_matrix_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `LinearOperator` of shape `[latent_size, latent_size]`. get_transition_noise_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `MultivariateNormalLinearOperator` of event shape `[latent_size]`. get_observation_matrix_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `LinearOperator` of shape `[observation_size, observation_size]`. get_observation_noise_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `MultivariateNormalLinearOperator` of event shape `[observation_size]`. Returns: kalman_mean_step: a callable that computes latent state and observation means at time `t`, given latent mean at time `t-1`.
tensorflow_probability/python/distributions/linear_gaussian_ssm.py
def build_kalman_mean_step(get_transition_matrix_for_timestep, get_transition_noise_for_timestep, get_observation_matrix_for_timestep, get_observation_noise_for_timestep): """Build a callable that performs one step of Kalman mean recursion. Args: get_transition_matrix_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `LinearOperator` of shape `[latent_size, latent_size]`. get_transition_noise_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `MultivariateNormalLinearOperator` of event shape `[latent_size]`. get_observation_matrix_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `LinearOperator` of shape `[observation_size, observation_size]`. get_observation_noise_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `MultivariateNormalLinearOperator` of event shape `[observation_size]`. Returns: kalman_mean_step: a callable that computes latent state and observation means at time `t`, given latent mean at time `t-1`. """ def mean_step(previous_means, t): """Single step of prior mean recursion.""" previous_latent_mean, _ = previous_means latent_mean = _propagate_mean(previous_latent_mean, get_transition_matrix_for_timestep(t - 1), get_transition_noise_for_timestep(t - 1)) observation_mean = _propagate_mean(latent_mean, get_observation_matrix_for_timestep(t), get_observation_noise_for_timestep(t)) return (latent_mean, observation_mean) return mean_step
def build_kalman_mean_step(get_transition_matrix_for_timestep, get_transition_noise_for_timestep, get_observation_matrix_for_timestep, get_observation_noise_for_timestep): """Build a callable that performs one step of Kalman mean recursion. Args: get_transition_matrix_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `LinearOperator` of shape `[latent_size, latent_size]`. get_transition_noise_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `MultivariateNormalLinearOperator` of event shape `[latent_size]`. get_observation_matrix_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `LinearOperator` of shape `[observation_size, observation_size]`. get_observation_noise_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `MultivariateNormalLinearOperator` of event shape `[observation_size]`. Returns: kalman_mean_step: a callable that computes latent state and observation means at time `t`, given latent mean at time `t-1`. """ def mean_step(previous_means, t): """Single step of prior mean recursion.""" previous_latent_mean, _ = previous_means latent_mean = _propagate_mean(previous_latent_mean, get_transition_matrix_for_timestep(t - 1), get_transition_noise_for_timestep(t - 1)) observation_mean = _propagate_mean(latent_mean, get_observation_matrix_for_timestep(t), get_observation_noise_for_timestep(t)) return (latent_mean, observation_mean) return mean_step
[ "Build", "a", "callable", "that", "performs", "one", "step", "of", "Kalman", "mean", "recursion", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/linear_gaussian_ssm.py#L1535-L1574
[ "def", "build_kalman_mean_step", "(", "get_transition_matrix_for_timestep", ",", "get_transition_noise_for_timestep", ",", "get_observation_matrix_for_timestep", ",", "get_observation_noise_for_timestep", ")", ":", "def", "mean_step", "(", "previous_means", ",", "t", ")", ":", "\"\"\"Single step of prior mean recursion.\"\"\"", "previous_latent_mean", ",", "_", "=", "previous_means", "latent_mean", "=", "_propagate_mean", "(", "previous_latent_mean", ",", "get_transition_matrix_for_timestep", "(", "t", "-", "1", ")", ",", "get_transition_noise_for_timestep", "(", "t", "-", "1", ")", ")", "observation_mean", "=", "_propagate_mean", "(", "latent_mean", ",", "get_observation_matrix_for_timestep", "(", "t", ")", ",", "get_observation_noise_for_timestep", "(", "t", ")", ")", "return", "(", "latent_mean", ",", "observation_mean", ")", "return", "mean_step" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
build_kalman_cov_step
Build a callable for one step of Kalman covariance recursion. Args: get_transition_matrix_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `LinearOperator` of shape `[latent_size, latent_size]`. get_transition_noise_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `MultivariateNormalLinearOperator` of event shape `[latent_size]`. get_observation_matrix_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `LinearOperator` of shape `[observation_size, observation_size]`. get_observation_noise_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `MultivariateNormalLinearOperator` of event shape `[observation_size]`. Returns: cov_step: a callable that computes latent state and observation covariance at time `t`, given latent covariance at time `t-1`.
tensorflow_probability/python/distributions/linear_gaussian_ssm.py
def build_kalman_cov_step(get_transition_matrix_for_timestep, get_transition_noise_for_timestep, get_observation_matrix_for_timestep, get_observation_noise_for_timestep): """Build a callable for one step of Kalman covariance recursion. Args: get_transition_matrix_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `LinearOperator` of shape `[latent_size, latent_size]`. get_transition_noise_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `MultivariateNormalLinearOperator` of event shape `[latent_size]`. get_observation_matrix_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `LinearOperator` of shape `[observation_size, observation_size]`. get_observation_noise_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `MultivariateNormalLinearOperator` of event shape `[observation_size]`. Returns: cov_step: a callable that computes latent state and observation covariance at time `t`, given latent covariance at time `t-1`. """ def cov_step(previous_covs, t): """Single step of prior covariance recursion.""" previous_latent_cov, _ = previous_covs latent_cov = _propagate_cov( previous_latent_cov, get_transition_matrix_for_timestep(t - 1), get_transition_noise_for_timestep(t - 1)) observation_cov = _propagate_cov( latent_cov, get_observation_matrix_for_timestep(t), get_observation_noise_for_timestep(t)) return (latent_cov, observation_cov) return cov_step
def build_kalman_cov_step(get_transition_matrix_for_timestep, get_transition_noise_for_timestep, get_observation_matrix_for_timestep, get_observation_noise_for_timestep): """Build a callable for one step of Kalman covariance recursion. Args: get_transition_matrix_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `LinearOperator` of shape `[latent_size, latent_size]`. get_transition_noise_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `MultivariateNormalLinearOperator` of event shape `[latent_size]`. get_observation_matrix_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `LinearOperator` of shape `[observation_size, observation_size]`. get_observation_noise_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `MultivariateNormalLinearOperator` of event shape `[observation_size]`. Returns: cov_step: a callable that computes latent state and observation covariance at time `t`, given latent covariance at time `t-1`. """ def cov_step(previous_covs, t): """Single step of prior covariance recursion.""" previous_latent_cov, _ = previous_covs latent_cov = _propagate_cov( previous_latent_cov, get_transition_matrix_for_timestep(t - 1), get_transition_noise_for_timestep(t - 1)) observation_cov = _propagate_cov( latent_cov, get_observation_matrix_for_timestep(t), get_observation_noise_for_timestep(t)) return (latent_cov, observation_cov) return cov_step
[ "Build", "a", "callable", "for", "one", "step", "of", "Kalman", "covariance", "recursion", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/linear_gaussian_ssm.py#L1577-L1619
[ "def", "build_kalman_cov_step", "(", "get_transition_matrix_for_timestep", ",", "get_transition_noise_for_timestep", ",", "get_observation_matrix_for_timestep", ",", "get_observation_noise_for_timestep", ")", ":", "def", "cov_step", "(", "previous_covs", ",", "t", ")", ":", "\"\"\"Single step of prior covariance recursion.\"\"\"", "previous_latent_cov", ",", "_", "=", "previous_covs", "latent_cov", "=", "_propagate_cov", "(", "previous_latent_cov", ",", "get_transition_matrix_for_timestep", "(", "t", "-", "1", ")", ",", "get_transition_noise_for_timestep", "(", "t", "-", "1", ")", ")", "observation_cov", "=", "_propagate_cov", "(", "latent_cov", ",", "get_observation_matrix_for_timestep", "(", "t", ")", ",", "get_observation_noise_for_timestep", "(", "t", ")", ")", "return", "(", "latent_cov", ",", "observation_cov", ")", "return", "cov_step" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
build_kalman_sample_step
Build a callable for one step of Kalman sampling recursion. Args: get_transition_matrix_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `LinearOperator` of shape `[latent_size, latent_size]`. get_transition_noise_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `MultivariateNormalLinearOperator` of event shape `[latent_size]`. get_observation_matrix_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `LinearOperator` of shape `[observation_size, observation_size]`. get_observation_noise_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `MultivariateNormalLinearOperator` of event shape `[observation_size]`. full_sample_and_batch_shape: Desired sample and batch shape of the returned samples, concatenated in a single `Tensor`. stream: `tfd.SeedStream` instance used to generate a sequence of random seeds. validate_args: if True, perform error checking at runtime. Returns: sample_step: a callable that samples the latent state and observation at time `t`, given latent state at time `t-1`.
tensorflow_probability/python/distributions/linear_gaussian_ssm.py
def build_kalman_sample_step(get_transition_matrix_for_timestep, get_transition_noise_for_timestep, get_observation_matrix_for_timestep, get_observation_noise_for_timestep, full_sample_and_batch_shape, stream, validate_args=False): """Build a callable for one step of Kalman sampling recursion. Args: get_transition_matrix_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `LinearOperator` of shape `[latent_size, latent_size]`. get_transition_noise_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `MultivariateNormalLinearOperator` of event shape `[latent_size]`. get_observation_matrix_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `LinearOperator` of shape `[observation_size, observation_size]`. get_observation_noise_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `MultivariateNormalLinearOperator` of event shape `[observation_size]`. full_sample_and_batch_shape: Desired sample and batch shape of the returned samples, concatenated in a single `Tensor`. stream: `tfd.SeedStream` instance used to generate a sequence of random seeds. validate_args: if True, perform error checking at runtime. Returns: sample_step: a callable that samples the latent state and observation at time `t`, given latent state at time `t-1`. """ def sample_step(sampled_prev, t): """Sample values for a single timestep.""" latent_prev, _ = sampled_prev transition_matrix = get_transition_matrix_for_timestep(t - 1) transition_noise = get_transition_noise_for_timestep(t - 1) latent_pred = transition_matrix.matmul(latent_prev) latent_sampled = latent_pred + transition_noise.sample( sample_shape=_augment_sample_shape( transition_noise, full_sample_and_batch_shape, validate_args), seed=stream())[..., tf.newaxis] observation_matrix = get_observation_matrix_for_timestep(t) observation_noise = get_observation_noise_for_timestep(t) observation_pred = observation_matrix.matmul(latent_sampled) observation_sampled = observation_pred + observation_noise.sample( sample_shape=_augment_sample_shape( observation_noise, full_sample_and_batch_shape, validate_args), seed=stream())[..., tf.newaxis] return (latent_sampled, observation_sampled) return sample_step
def build_kalman_sample_step(get_transition_matrix_for_timestep, get_transition_noise_for_timestep, get_observation_matrix_for_timestep, get_observation_noise_for_timestep, full_sample_and_batch_shape, stream, validate_args=False): """Build a callable for one step of Kalman sampling recursion. Args: get_transition_matrix_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `LinearOperator` of shape `[latent_size, latent_size]`. get_transition_noise_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `MultivariateNormalLinearOperator` of event shape `[latent_size]`. get_observation_matrix_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `LinearOperator` of shape `[observation_size, observation_size]`. get_observation_noise_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `MultivariateNormalLinearOperator` of event shape `[observation_size]`. full_sample_and_batch_shape: Desired sample and batch shape of the returned samples, concatenated in a single `Tensor`. stream: `tfd.SeedStream` instance used to generate a sequence of random seeds. validate_args: if True, perform error checking at runtime. Returns: sample_step: a callable that samples the latent state and observation at time `t`, given latent state at time `t-1`. """ def sample_step(sampled_prev, t): """Sample values for a single timestep.""" latent_prev, _ = sampled_prev transition_matrix = get_transition_matrix_for_timestep(t - 1) transition_noise = get_transition_noise_for_timestep(t - 1) latent_pred = transition_matrix.matmul(latent_prev) latent_sampled = latent_pred + transition_noise.sample( sample_shape=_augment_sample_shape( transition_noise, full_sample_and_batch_shape, validate_args), seed=stream())[..., tf.newaxis] observation_matrix = get_observation_matrix_for_timestep(t) observation_noise = get_observation_noise_for_timestep(t) observation_pred = observation_matrix.matmul(latent_sampled) observation_sampled = observation_pred + observation_noise.sample( sample_shape=_augment_sample_shape( observation_noise, full_sample_and_batch_shape, validate_args), seed=stream())[..., tf.newaxis] return (latent_sampled, observation_sampled) return sample_step
[ "Build", "a", "callable", "for", "one", "step", "of", "Kalman", "sampling", "recursion", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/linear_gaussian_ssm.py#L1622-L1685
[ "def", "build_kalman_sample_step", "(", "get_transition_matrix_for_timestep", ",", "get_transition_noise_for_timestep", ",", "get_observation_matrix_for_timestep", ",", "get_observation_noise_for_timestep", ",", "full_sample_and_batch_shape", ",", "stream", ",", "validate_args", "=", "False", ")", ":", "def", "sample_step", "(", "sampled_prev", ",", "t", ")", ":", "\"\"\"Sample values for a single timestep.\"\"\"", "latent_prev", ",", "_", "=", "sampled_prev", "transition_matrix", "=", "get_transition_matrix_for_timestep", "(", "t", "-", "1", ")", "transition_noise", "=", "get_transition_noise_for_timestep", "(", "t", "-", "1", ")", "latent_pred", "=", "transition_matrix", ".", "matmul", "(", "latent_prev", ")", "latent_sampled", "=", "latent_pred", "+", "transition_noise", ".", "sample", "(", "sample_shape", "=", "_augment_sample_shape", "(", "transition_noise", ",", "full_sample_and_batch_shape", ",", "validate_args", ")", ",", "seed", "=", "stream", "(", ")", ")", "[", "...", ",", "tf", ".", "newaxis", "]", "observation_matrix", "=", "get_observation_matrix_for_timestep", "(", "t", ")", "observation_noise", "=", "get_observation_noise_for_timestep", "(", "t", ")", "observation_pred", "=", "observation_matrix", ".", "matmul", "(", "latent_sampled", ")", "observation_sampled", "=", "observation_pred", "+", "observation_noise", ".", "sample", "(", "sample_shape", "=", "_augment_sample_shape", "(", "observation_noise", ",", "full_sample_and_batch_shape", ",", "validate_args", ")", ",", "seed", "=", "stream", "(", ")", ")", "[", "...", ",", "tf", ".", "newaxis", "]", "return", "(", "latent_sampled", ",", "observation_sampled", ")", "return", "sample_step" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
build_pushforward_latents_step
Build a callable to push latent means/covs to observed means/covs. Args: get_observation_matrix_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `LinearOperator` of shape `[observation_size, observation_size]`. get_observation_noise_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `MultivariateNormalLinearOperator` of event shape `[observation_size]`. Returns: pushforward_latents_step: a callable that computes the observation mean and covariance at time `t`, given latent mean and covariance at time `t`.
tensorflow_probability/python/distributions/linear_gaussian_ssm.py
def build_pushforward_latents_step(get_observation_matrix_for_timestep, get_observation_noise_for_timestep): """Build a callable to push latent means/covs to observed means/covs. Args: get_observation_matrix_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `LinearOperator` of shape `[observation_size, observation_size]`. get_observation_noise_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `MultivariateNormalLinearOperator` of event shape `[observation_size]`. Returns: pushforward_latents_step: a callable that computes the observation mean and covariance at time `t`, given latent mean and covariance at time `t`. """ def pushforward_latents_step(_, latent_t_mean_cov): """Loop body fn to pushforward latents to observations at a time step.""" t, latent_mean, latent_cov = latent_t_mean_cov observation_matrix = get_observation_matrix_for_timestep(t) observation_noise = get_observation_noise_for_timestep(t) observation_mean = _propagate_mean(latent_mean, observation_matrix, observation_noise) observation_cov = _propagate_cov(latent_cov, observation_matrix, observation_noise) return (observation_mean, observation_cov) return pushforward_latents_step
def build_pushforward_latents_step(get_observation_matrix_for_timestep, get_observation_noise_for_timestep): """Build a callable to push latent means/covs to observed means/covs. Args: get_observation_matrix_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `LinearOperator` of shape `[observation_size, observation_size]`. get_observation_noise_for_timestep: callable taking a timestep as an integer `Tensor` argument, and returning a `MultivariateNormalLinearOperator` of event shape `[observation_size]`. Returns: pushforward_latents_step: a callable that computes the observation mean and covariance at time `t`, given latent mean and covariance at time `t`. """ def pushforward_latents_step(_, latent_t_mean_cov): """Loop body fn to pushforward latents to observations at a time step.""" t, latent_mean, latent_cov = latent_t_mean_cov observation_matrix = get_observation_matrix_for_timestep(t) observation_noise = get_observation_noise_for_timestep(t) observation_mean = _propagate_mean(latent_mean, observation_matrix, observation_noise) observation_cov = _propagate_cov(latent_cov, observation_matrix, observation_noise) return (observation_mean, observation_cov) return pushforward_latents_step
[ "Build", "a", "callable", "to", "push", "latent", "means", "/", "covs", "to", "observed", "means", "/", "covs", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/linear_gaussian_ssm.py#L1688-L1721
[ "def", "build_pushforward_latents_step", "(", "get_observation_matrix_for_timestep", ",", "get_observation_noise_for_timestep", ")", ":", "def", "pushforward_latents_step", "(", "_", ",", "latent_t_mean_cov", ")", ":", "\"\"\"Loop body fn to pushforward latents to observations at a time step.\"\"\"", "t", ",", "latent_mean", ",", "latent_cov", "=", "latent_t_mean_cov", "observation_matrix", "=", "get_observation_matrix_for_timestep", "(", "t", ")", "observation_noise", "=", "get_observation_noise_for_timestep", "(", "t", ")", "observation_mean", "=", "_propagate_mean", "(", "latent_mean", ",", "observation_matrix", ",", "observation_noise", ")", "observation_cov", "=", "_propagate_cov", "(", "latent_cov", ",", "observation_matrix", ",", "observation_noise", ")", "return", "(", "observation_mean", ",", "observation_cov", ")", "return", "pushforward_latents_step" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
_propagate_mean
Propagate a mean through linear Gaussian transformation.
tensorflow_probability/python/distributions/linear_gaussian_ssm.py
def _propagate_mean(mean, linop, dist): """Propagate a mean through linear Gaussian transformation.""" return linop.matmul(mean) + dist.mean()[..., tf.newaxis]
def _propagate_mean(mean, linop, dist): """Propagate a mean through linear Gaussian transformation.""" return linop.matmul(mean) + dist.mean()[..., tf.newaxis]
[ "Propagate", "a", "mean", "through", "linear", "Gaussian", "transformation", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/linear_gaussian_ssm.py#L1724-L1726
[ "def", "_propagate_mean", "(", "mean", ",", "linop", ",", "dist", ")", ":", "return", "linop", ".", "matmul", "(", "mean", ")", "+", "dist", ".", "mean", "(", ")", "[", "...", ",", "tf", ".", "newaxis", "]" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
_propagate_cov
Propagate covariance through linear Gaussian transformation.
tensorflow_probability/python/distributions/linear_gaussian_ssm.py
def _propagate_cov(cov, linop, dist): """Propagate covariance through linear Gaussian transformation.""" # For linop A and input cov P, returns `A P A' + dist.cov()` return linop.matmul(linop.matmul(cov), adjoint_arg=True) + dist.covariance()
def _propagate_cov(cov, linop, dist): """Propagate covariance through linear Gaussian transformation.""" # For linop A and input cov P, returns `A P A' + dist.cov()` return linop.matmul(linop.matmul(cov), adjoint_arg=True) + dist.covariance()
[ "Propagate", "covariance", "through", "linear", "Gaussian", "transformation", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/linear_gaussian_ssm.py#L1729-L1732
[ "def", "_propagate_cov", "(", "cov", ",", "linop", ",", "dist", ")", ":", "# For linop A and input cov P, returns `A P A' + dist.cov()`", "return", "linop", ".", "matmul", "(", "linop", ".", "matmul", "(", "cov", ")", ",", "adjoint_arg", "=", "True", ")", "+", "dist", ".", "covariance", "(", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
LinearGaussianStateSpaceModel.backward_smoothing_pass
Run the backward pass in Kalman smoother. The backward smoothing is using Rauch, Tung and Striebel smoother as as discussed in section 18.3.2 of Kevin P. Murphy, 2012, Machine Learning: A Probabilistic Perspective, The MIT Press. The inputs are returned by `forward_filter` function. Args: filtered_means: Means of the per-timestep filtered marginal distributions p(z_t | x_{:t}), as a Tensor of shape `sample_shape(x) + batch_shape + [num_timesteps, latent_size]`. filtered_covs: Covariances of the per-timestep filtered marginal distributions p(z_t | x_{:t}), as a Tensor of shape `batch_shape + [num_timesteps, latent_size, latent_size]`. predicted_means: Means of the per-timestep predictive distributions over latent states, p(z_{t+1} | x_{:t}), as a Tensor of shape `sample_shape(x) + batch_shape + [num_timesteps, latent_size]`. predicted_covs: Covariances of the per-timestep predictive distributions over latent states, p(z_{t+1} | x_{:t}), as a Tensor of shape `batch_shape + [num_timesteps, latent_size, latent_size]`. Returns: posterior_means: Means of the smoothed marginal distributions p(z_t | x_{1:T}), as a Tensor of shape `sample_shape(x) + batch_shape + [num_timesteps, latent_size]`, which is of the same shape as filtered_means. posterior_covs: Covariances of the smoothed marginal distributions p(z_t | x_{1:T}), as a Tensor of shape `batch_shape + [num_timesteps, latent_size, latent_size]`. which is of the same shape as filtered_covs.
tensorflow_probability/python/distributions/linear_gaussian_ssm.py
def backward_smoothing_pass(self, filtered_means, filtered_covs, predicted_means, predicted_covs): """Run the backward pass in Kalman smoother. The backward smoothing is using Rauch, Tung and Striebel smoother as as discussed in section 18.3.2 of Kevin P. Murphy, 2012, Machine Learning: A Probabilistic Perspective, The MIT Press. The inputs are returned by `forward_filter` function. Args: filtered_means: Means of the per-timestep filtered marginal distributions p(z_t | x_{:t}), as a Tensor of shape `sample_shape(x) + batch_shape + [num_timesteps, latent_size]`. filtered_covs: Covariances of the per-timestep filtered marginal distributions p(z_t | x_{:t}), as a Tensor of shape `batch_shape + [num_timesteps, latent_size, latent_size]`. predicted_means: Means of the per-timestep predictive distributions over latent states, p(z_{t+1} | x_{:t}), as a Tensor of shape `sample_shape(x) + batch_shape + [num_timesteps, latent_size]`. predicted_covs: Covariances of the per-timestep predictive distributions over latent states, p(z_{t+1} | x_{:t}), as a Tensor of shape `batch_shape + [num_timesteps, latent_size, latent_size]`. Returns: posterior_means: Means of the smoothed marginal distributions p(z_t | x_{1:T}), as a Tensor of shape `sample_shape(x) + batch_shape + [num_timesteps, latent_size]`, which is of the same shape as filtered_means. posterior_covs: Covariances of the smoothed marginal distributions p(z_t | x_{1:T}), as a Tensor of shape `batch_shape + [num_timesteps, latent_size, latent_size]`. which is of the same shape as filtered_covs. """ with tf.name_scope("backward_pass"): filtered_means = tf.convert_to_tensor( value=filtered_means, name="filtered_means") filtered_covs = tf.convert_to_tensor( value=filtered_covs, name="filtered_covs") predicted_means = tf.convert_to_tensor( value=predicted_means, name="predicted_means") predicted_covs = tf.convert_to_tensor( value=predicted_covs, name="predicted_covs") # To scan over time dimension, we need to move 'num_timesteps' from the # event shape to the initial dimension of the tensor. filtered_means = distribution_util.move_dimension(filtered_means, -2, 0) filtered_covs = distribution_util.move_dimension(filtered_covs, -3, 0) predicted_means = distribution_util.move_dimension(predicted_means, -2, 0) predicted_covs = distribution_util.move_dimension(predicted_covs, -3, 0) # The means are assumed to be vectors. Adding a dummy index to # ensure the `matmul` op working smoothly. filtered_means = filtered_means[..., tf.newaxis] predicted_means = predicted_means[..., tf.newaxis] initial_backward_mean = predicted_means[-1, ...] initial_backward_cov = predicted_covs[-1, ...] num_timesteps = tf.shape(input=filtered_means)[0] initial_state = BackwardPassState( backward_mean=initial_backward_mean, backward_cov=initial_backward_cov, timestep=self.initial_step + num_timesteps - 1) update_step_fn = build_backward_pass_step( self.get_transition_matrix_for_timestep) # For backward pass, it scans the `elems` from last to first. posterior_states = tf.scan(update_step_fn, elems=(filtered_means, filtered_covs, predicted_means, predicted_covs), initializer=initial_state, reverse=True) # Move the time dimension back into the event shape. posterior_means = distribution_util.move_dimension( posterior_states.backward_mean[..., 0], 0, -2) posterior_covs = distribution_util.move_dimension( posterior_states.backward_cov, 0, -3) return (posterior_means, posterior_covs)
def backward_smoothing_pass(self, filtered_means, filtered_covs, predicted_means, predicted_covs): """Run the backward pass in Kalman smoother. The backward smoothing is using Rauch, Tung and Striebel smoother as as discussed in section 18.3.2 of Kevin P. Murphy, 2012, Machine Learning: A Probabilistic Perspective, The MIT Press. The inputs are returned by `forward_filter` function. Args: filtered_means: Means of the per-timestep filtered marginal distributions p(z_t | x_{:t}), as a Tensor of shape `sample_shape(x) + batch_shape + [num_timesteps, latent_size]`. filtered_covs: Covariances of the per-timestep filtered marginal distributions p(z_t | x_{:t}), as a Tensor of shape `batch_shape + [num_timesteps, latent_size, latent_size]`. predicted_means: Means of the per-timestep predictive distributions over latent states, p(z_{t+1} | x_{:t}), as a Tensor of shape `sample_shape(x) + batch_shape + [num_timesteps, latent_size]`. predicted_covs: Covariances of the per-timestep predictive distributions over latent states, p(z_{t+1} | x_{:t}), as a Tensor of shape `batch_shape + [num_timesteps, latent_size, latent_size]`. Returns: posterior_means: Means of the smoothed marginal distributions p(z_t | x_{1:T}), as a Tensor of shape `sample_shape(x) + batch_shape + [num_timesteps, latent_size]`, which is of the same shape as filtered_means. posterior_covs: Covariances of the smoothed marginal distributions p(z_t | x_{1:T}), as a Tensor of shape `batch_shape + [num_timesteps, latent_size, latent_size]`. which is of the same shape as filtered_covs. """ with tf.name_scope("backward_pass"): filtered_means = tf.convert_to_tensor( value=filtered_means, name="filtered_means") filtered_covs = tf.convert_to_tensor( value=filtered_covs, name="filtered_covs") predicted_means = tf.convert_to_tensor( value=predicted_means, name="predicted_means") predicted_covs = tf.convert_to_tensor( value=predicted_covs, name="predicted_covs") # To scan over time dimension, we need to move 'num_timesteps' from the # event shape to the initial dimension of the tensor. filtered_means = distribution_util.move_dimension(filtered_means, -2, 0) filtered_covs = distribution_util.move_dimension(filtered_covs, -3, 0) predicted_means = distribution_util.move_dimension(predicted_means, -2, 0) predicted_covs = distribution_util.move_dimension(predicted_covs, -3, 0) # The means are assumed to be vectors. Adding a dummy index to # ensure the `matmul` op working smoothly. filtered_means = filtered_means[..., tf.newaxis] predicted_means = predicted_means[..., tf.newaxis] initial_backward_mean = predicted_means[-1, ...] initial_backward_cov = predicted_covs[-1, ...] num_timesteps = tf.shape(input=filtered_means)[0] initial_state = BackwardPassState( backward_mean=initial_backward_mean, backward_cov=initial_backward_cov, timestep=self.initial_step + num_timesteps - 1) update_step_fn = build_backward_pass_step( self.get_transition_matrix_for_timestep) # For backward pass, it scans the `elems` from last to first. posterior_states = tf.scan(update_step_fn, elems=(filtered_means, filtered_covs, predicted_means, predicted_covs), initializer=initial_state, reverse=True) # Move the time dimension back into the event shape. posterior_means = distribution_util.move_dimension( posterior_states.backward_mean[..., 0], 0, -2) posterior_covs = distribution_util.move_dimension( posterior_states.backward_cov, 0, -3) return (posterior_means, posterior_covs)
[ "Run", "the", "backward", "pass", "in", "Kalman", "smoother", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/linear_gaussian_ssm.py#L454-L541
[ "def", "backward_smoothing_pass", "(", "self", ",", "filtered_means", ",", "filtered_covs", ",", "predicted_means", ",", "predicted_covs", ")", ":", "with", "tf", ".", "name_scope", "(", "\"backward_pass\"", ")", ":", "filtered_means", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "filtered_means", ",", "name", "=", "\"filtered_means\"", ")", "filtered_covs", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "filtered_covs", ",", "name", "=", "\"filtered_covs\"", ")", "predicted_means", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "predicted_means", ",", "name", "=", "\"predicted_means\"", ")", "predicted_covs", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "predicted_covs", ",", "name", "=", "\"predicted_covs\"", ")", "# To scan over time dimension, we need to move 'num_timesteps' from the", "# event shape to the initial dimension of the tensor.", "filtered_means", "=", "distribution_util", ".", "move_dimension", "(", "filtered_means", ",", "-", "2", ",", "0", ")", "filtered_covs", "=", "distribution_util", ".", "move_dimension", "(", "filtered_covs", ",", "-", "3", ",", "0", ")", "predicted_means", "=", "distribution_util", ".", "move_dimension", "(", "predicted_means", ",", "-", "2", ",", "0", ")", "predicted_covs", "=", "distribution_util", ".", "move_dimension", "(", "predicted_covs", ",", "-", "3", ",", "0", ")", "# The means are assumed to be vectors. Adding a dummy index to", "# ensure the `matmul` op working smoothly.", "filtered_means", "=", "filtered_means", "[", "...", ",", "tf", ".", "newaxis", "]", "predicted_means", "=", "predicted_means", "[", "...", ",", "tf", ".", "newaxis", "]", "initial_backward_mean", "=", "predicted_means", "[", "-", "1", ",", "...", "]", "initial_backward_cov", "=", "predicted_covs", "[", "-", "1", ",", "...", "]", "num_timesteps", "=", "tf", ".", "shape", "(", "input", "=", "filtered_means", ")", "[", "0", "]", "initial_state", "=", "BackwardPassState", "(", "backward_mean", "=", "initial_backward_mean", ",", "backward_cov", "=", "initial_backward_cov", ",", "timestep", "=", "self", ".", "initial_step", "+", "num_timesteps", "-", "1", ")", "update_step_fn", "=", "build_backward_pass_step", "(", "self", ".", "get_transition_matrix_for_timestep", ")", "# For backward pass, it scans the `elems` from last to first.", "posterior_states", "=", "tf", ".", "scan", "(", "update_step_fn", ",", "elems", "=", "(", "filtered_means", ",", "filtered_covs", ",", "predicted_means", ",", "predicted_covs", ")", ",", "initializer", "=", "initial_state", ",", "reverse", "=", "True", ")", "# Move the time dimension back into the event shape.", "posterior_means", "=", "distribution_util", ".", "move_dimension", "(", "posterior_states", ".", "backward_mean", "[", "...", ",", "0", "]", ",", "0", ",", "-", "2", ")", "posterior_covs", "=", "distribution_util", ".", "move_dimension", "(", "posterior_states", ".", "backward_cov", ",", "0", ",", "-", "3", ")", "return", "(", "posterior_means", ",", "posterior_covs", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
LinearGaussianStateSpaceModel._joint_sample_n
Draw a joint sample from the prior over latents and observations.
tensorflow_probability/python/distributions/linear_gaussian_ssm.py
def _joint_sample_n(self, n, seed=None): """Draw a joint sample from the prior over latents and observations.""" with tf.name_scope("sample_n_joint"): stream = seed_stream.SeedStream( seed, salt="LinearGaussianStateSpaceModel_sample_n_joint") sample_and_batch_shape = distribution_util.prefer_static_value( tf.concat([[n], self.batch_shape_tensor()], axis=0)) # Sample the initial timestep from the prior. Since we want # this sample to have full batch shape (not just the batch shape # of the self.initial_state_prior object which might in general be # smaller), we augment the sample shape to include whatever # extra batch dimensions are required. with tf.control_dependencies(self.runtime_assertions): initial_latent = self.initial_state_prior.sample( sample_shape=_augment_sample_shape( self.initial_state_prior, sample_and_batch_shape, self.validate_args), seed=stream()) # Add a dummy dimension so that matmul() does matrix-vector # multiplication. initial_latent = initial_latent[..., tf.newaxis] initial_observation_matrix = ( self.get_observation_matrix_for_timestep(self.initial_step)) initial_observation_noise = ( self.get_observation_noise_for_timestep(self.initial_step)) initial_observation_pred = initial_observation_matrix.matmul( initial_latent) initial_observation = (initial_observation_pred + initial_observation_noise.sample( sample_shape=_augment_sample_shape( initial_observation_noise, sample_and_batch_shape, self.validate_args), seed=stream())[..., tf.newaxis]) sample_step = build_kalman_sample_step( self.get_transition_matrix_for_timestep, self.get_transition_noise_for_timestep, self.get_observation_matrix_for_timestep, self.get_observation_noise_for_timestep, full_sample_and_batch_shape=sample_and_batch_shape, stream=stream, validate_args=self.validate_args) # Scan over all timesteps to sample latents and observations. (latents, observations) = tf.scan( sample_step, elems=tf.range(self.initial_step+1, self.final_step), initializer=(initial_latent, initial_observation)) # Combine the initial sampled timestep with the remaining timesteps. latents = tf.concat([initial_latent[tf.newaxis, ...], latents], axis=0) observations = tf.concat([initial_observation[tf.newaxis, ...], observations], axis=0) # Put dimensions back in order. The samples we've computed are # ordered by timestep, with shape `[num_timesteps, num_samples, # batch_shape, size, 1]` where `size` represents `latent_size` # or `observation_size` respectively. But timesteps are really # part of each probabilistic event, so we need to return a Tensor # of shape `[num_samples, batch_shape, num_timesteps, size]`. latents = tf.squeeze(latents, -1) latents = distribution_util.move_dimension(latents, 0, -2) observations = tf.squeeze(observations, -1) observations = distribution_util.move_dimension(observations, 0, -2) return latents, observations
def _joint_sample_n(self, n, seed=None): """Draw a joint sample from the prior over latents and observations.""" with tf.name_scope("sample_n_joint"): stream = seed_stream.SeedStream( seed, salt="LinearGaussianStateSpaceModel_sample_n_joint") sample_and_batch_shape = distribution_util.prefer_static_value( tf.concat([[n], self.batch_shape_tensor()], axis=0)) # Sample the initial timestep from the prior. Since we want # this sample to have full batch shape (not just the batch shape # of the self.initial_state_prior object which might in general be # smaller), we augment the sample shape to include whatever # extra batch dimensions are required. with tf.control_dependencies(self.runtime_assertions): initial_latent = self.initial_state_prior.sample( sample_shape=_augment_sample_shape( self.initial_state_prior, sample_and_batch_shape, self.validate_args), seed=stream()) # Add a dummy dimension so that matmul() does matrix-vector # multiplication. initial_latent = initial_latent[..., tf.newaxis] initial_observation_matrix = ( self.get_observation_matrix_for_timestep(self.initial_step)) initial_observation_noise = ( self.get_observation_noise_for_timestep(self.initial_step)) initial_observation_pred = initial_observation_matrix.matmul( initial_latent) initial_observation = (initial_observation_pred + initial_observation_noise.sample( sample_shape=_augment_sample_shape( initial_observation_noise, sample_and_batch_shape, self.validate_args), seed=stream())[..., tf.newaxis]) sample_step = build_kalman_sample_step( self.get_transition_matrix_for_timestep, self.get_transition_noise_for_timestep, self.get_observation_matrix_for_timestep, self.get_observation_noise_for_timestep, full_sample_and_batch_shape=sample_and_batch_shape, stream=stream, validate_args=self.validate_args) # Scan over all timesteps to sample latents and observations. (latents, observations) = tf.scan( sample_step, elems=tf.range(self.initial_step+1, self.final_step), initializer=(initial_latent, initial_observation)) # Combine the initial sampled timestep with the remaining timesteps. latents = tf.concat([initial_latent[tf.newaxis, ...], latents], axis=0) observations = tf.concat([initial_observation[tf.newaxis, ...], observations], axis=0) # Put dimensions back in order. The samples we've computed are # ordered by timestep, with shape `[num_timesteps, num_samples, # batch_shape, size, 1]` where `size` represents `latent_size` # or `observation_size` respectively. But timesteps are really # part of each probabilistic event, so we need to return a Tensor # of shape `[num_samples, batch_shape, num_timesteps, size]`. latents = tf.squeeze(latents, -1) latents = distribution_util.move_dimension(latents, 0, -2) observations = tf.squeeze(observations, -1) observations = distribution_util.move_dimension(observations, 0, -2) return latents, observations
[ "Draw", "a", "joint", "sample", "from", "the", "prior", "over", "latents", "and", "observations", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/linear_gaussian_ssm.py#L590-L665
[ "def", "_joint_sample_n", "(", "self", ",", "n", ",", "seed", "=", "None", ")", ":", "with", "tf", ".", "name_scope", "(", "\"sample_n_joint\"", ")", ":", "stream", "=", "seed_stream", ".", "SeedStream", "(", "seed", ",", "salt", "=", "\"LinearGaussianStateSpaceModel_sample_n_joint\"", ")", "sample_and_batch_shape", "=", "distribution_util", ".", "prefer_static_value", "(", "tf", ".", "concat", "(", "[", "[", "n", "]", ",", "self", ".", "batch_shape_tensor", "(", ")", "]", ",", "axis", "=", "0", ")", ")", "# Sample the initial timestep from the prior. Since we want", "# this sample to have full batch shape (not just the batch shape", "# of the self.initial_state_prior object which might in general be", "# smaller), we augment the sample shape to include whatever", "# extra batch dimensions are required.", "with", "tf", ".", "control_dependencies", "(", "self", ".", "runtime_assertions", ")", ":", "initial_latent", "=", "self", ".", "initial_state_prior", ".", "sample", "(", "sample_shape", "=", "_augment_sample_shape", "(", "self", ".", "initial_state_prior", ",", "sample_and_batch_shape", ",", "self", ".", "validate_args", ")", ",", "seed", "=", "stream", "(", ")", ")", "# Add a dummy dimension so that matmul() does matrix-vector", "# multiplication.", "initial_latent", "=", "initial_latent", "[", "...", ",", "tf", ".", "newaxis", "]", "initial_observation_matrix", "=", "(", "self", ".", "get_observation_matrix_for_timestep", "(", "self", ".", "initial_step", ")", ")", "initial_observation_noise", "=", "(", "self", ".", "get_observation_noise_for_timestep", "(", "self", ".", "initial_step", ")", ")", "initial_observation_pred", "=", "initial_observation_matrix", ".", "matmul", "(", "initial_latent", ")", "initial_observation", "=", "(", "initial_observation_pred", "+", "initial_observation_noise", ".", "sample", "(", "sample_shape", "=", "_augment_sample_shape", "(", "initial_observation_noise", ",", "sample_and_batch_shape", ",", "self", ".", "validate_args", ")", ",", "seed", "=", "stream", "(", ")", ")", "[", "...", ",", "tf", ".", "newaxis", "]", ")", "sample_step", "=", "build_kalman_sample_step", "(", "self", ".", "get_transition_matrix_for_timestep", ",", "self", ".", "get_transition_noise_for_timestep", ",", "self", ".", "get_observation_matrix_for_timestep", ",", "self", ".", "get_observation_noise_for_timestep", ",", "full_sample_and_batch_shape", "=", "sample_and_batch_shape", ",", "stream", "=", "stream", ",", "validate_args", "=", "self", ".", "validate_args", ")", "# Scan over all timesteps to sample latents and observations.", "(", "latents", ",", "observations", ")", "=", "tf", ".", "scan", "(", "sample_step", ",", "elems", "=", "tf", ".", "range", "(", "self", ".", "initial_step", "+", "1", ",", "self", ".", "final_step", ")", ",", "initializer", "=", "(", "initial_latent", ",", "initial_observation", ")", ")", "# Combine the initial sampled timestep with the remaining timesteps.", "latents", "=", "tf", ".", "concat", "(", "[", "initial_latent", "[", "tf", ".", "newaxis", ",", "...", "]", ",", "latents", "]", ",", "axis", "=", "0", ")", "observations", "=", "tf", ".", "concat", "(", "[", "initial_observation", "[", "tf", ".", "newaxis", ",", "...", "]", ",", "observations", "]", ",", "axis", "=", "0", ")", "# Put dimensions back in order. The samples we've computed are", "# ordered by timestep, with shape `[num_timesteps, num_samples,", "# batch_shape, size, 1]` where `size` represents `latent_size`", "# or `observation_size` respectively. But timesteps are really", "# part of each probabilistic event, so we need to return a Tensor", "# of shape `[num_samples, batch_shape, num_timesteps, size]`.", "latents", "=", "tf", ".", "squeeze", "(", "latents", ",", "-", "1", ")", "latents", "=", "distribution_util", ".", "move_dimension", "(", "latents", ",", "0", ",", "-", "2", ")", "observations", "=", "tf", ".", "squeeze", "(", "observations", ",", "-", "1", ")", "observations", "=", "distribution_util", ".", "move_dimension", "(", "observations", ",", "0", ",", "-", "2", ")", "return", "latents", ",", "observations" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
LinearGaussianStateSpaceModel.forward_filter
Run a Kalman filter over a provided sequence of outputs. Note that the returned values `filtered_means`, `predicted_means`, and `observation_means` depend on the observed time series `x`, while the corresponding covariances are independent of the observed series; i.e., they depend only on the model itself. This means that the mean values have shape `concat([sample_shape(x), batch_shape, [num_timesteps, {latent/observation}_size]])`, while the covariances have shape `concat[(batch_shape, [num_timesteps, {latent/observation}_size, {latent/observation}_size]])`, which does not depend on the sample shape. Args: x: a float-type `Tensor` with rightmost dimensions `[num_timesteps, observation_size]` matching `self.event_shape`. Additional dimensions must match or be broadcastable to `self.batch_shape`; any further dimensions are interpreted as a sample shape. mask: optional bool-type `Tensor` with rightmost dimension `[num_timesteps]`; `True` values specify that the value of `x` at that timestep is masked, i.e., not conditioned on. Additional dimensions must match or be broadcastable to `self.batch_shape`; any further dimensions must match or be broadcastable to the sample shape of `x`. Default value: `None`. Returns: log_likelihoods: Per-timestep log marginal likelihoods `log p(x_t | x_{:t-1})` evaluated at the input `x`, as a `Tensor` of shape `sample_shape(x) + batch_shape + [num_timesteps].` filtered_means: Means of the per-timestep filtered marginal distributions p(z_t | x_{:t}), as a Tensor of shape `sample_shape(x) + batch_shape + [num_timesteps, latent_size]`. filtered_covs: Covariances of the per-timestep filtered marginal distributions p(z_t | x_{:t}), as a Tensor of shape `sample_shape(mask) + batch_shape + [num_timesteps, latent_size, latent_size]`. Note that the covariances depend only on the model and the mask, not on the data, so this may have fewer dimensions than `filtered_means`. predicted_means: Means of the per-timestep predictive distributions over latent states, p(z_{t+1} | x_{:t}), as a Tensor of shape `sample_shape(x) + batch_shape + [num_timesteps, latent_size]`. predicted_covs: Covariances of the per-timestep predictive distributions over latent states, p(z_{t+1} | x_{:t}), as a Tensor of shape `sample_shape(mask) + batch_shape + [num_timesteps, latent_size, latent_size]`. Note that the covariances depend only on the model and the mask, not on the data, so this may have fewer dimensions than `predicted_means`. observation_means: Means of the per-timestep predictive distributions over observations, p(x_{t} | x_{:t-1}), as a Tensor of shape `sample_shape(x) + batch_shape + [num_timesteps, observation_size]`. observation_covs: Covariances of the per-timestep predictive distributions over observations, p(x_{t} | x_{:t-1}), as a Tensor of shape `sample_shape(mask) + batch_shape + [num_timesteps, observation_size, observation_size]`. Note that the covariances depend only on the model and the mask, not on the data, so this may have fewer dimensions than `observation_means`.
tensorflow_probability/python/distributions/linear_gaussian_ssm.py
def forward_filter(self, x, mask=None): """Run a Kalman filter over a provided sequence of outputs. Note that the returned values `filtered_means`, `predicted_means`, and `observation_means` depend on the observed time series `x`, while the corresponding covariances are independent of the observed series; i.e., they depend only on the model itself. This means that the mean values have shape `concat([sample_shape(x), batch_shape, [num_timesteps, {latent/observation}_size]])`, while the covariances have shape `concat[(batch_shape, [num_timesteps, {latent/observation}_size, {latent/observation}_size]])`, which does not depend on the sample shape. Args: x: a float-type `Tensor` with rightmost dimensions `[num_timesteps, observation_size]` matching `self.event_shape`. Additional dimensions must match or be broadcastable to `self.batch_shape`; any further dimensions are interpreted as a sample shape. mask: optional bool-type `Tensor` with rightmost dimension `[num_timesteps]`; `True` values specify that the value of `x` at that timestep is masked, i.e., not conditioned on. Additional dimensions must match or be broadcastable to `self.batch_shape`; any further dimensions must match or be broadcastable to the sample shape of `x`. Default value: `None`. Returns: log_likelihoods: Per-timestep log marginal likelihoods `log p(x_t | x_{:t-1})` evaluated at the input `x`, as a `Tensor` of shape `sample_shape(x) + batch_shape + [num_timesteps].` filtered_means: Means of the per-timestep filtered marginal distributions p(z_t | x_{:t}), as a Tensor of shape `sample_shape(x) + batch_shape + [num_timesteps, latent_size]`. filtered_covs: Covariances of the per-timestep filtered marginal distributions p(z_t | x_{:t}), as a Tensor of shape `sample_shape(mask) + batch_shape + [num_timesteps, latent_size, latent_size]`. Note that the covariances depend only on the model and the mask, not on the data, so this may have fewer dimensions than `filtered_means`. predicted_means: Means of the per-timestep predictive distributions over latent states, p(z_{t+1} | x_{:t}), as a Tensor of shape `sample_shape(x) + batch_shape + [num_timesteps, latent_size]`. predicted_covs: Covariances of the per-timestep predictive distributions over latent states, p(z_{t+1} | x_{:t}), as a Tensor of shape `sample_shape(mask) + batch_shape + [num_timesteps, latent_size, latent_size]`. Note that the covariances depend only on the model and the mask, not on the data, so this may have fewer dimensions than `predicted_means`. observation_means: Means of the per-timestep predictive distributions over observations, p(x_{t} | x_{:t-1}), as a Tensor of shape `sample_shape(x) + batch_shape + [num_timesteps, observation_size]`. observation_covs: Covariances of the per-timestep predictive distributions over observations, p(x_{t} | x_{:t-1}), as a Tensor of shape `sample_shape(mask) + batch_shape + [num_timesteps, observation_size, observation_size]`. Note that the covariances depend only on the model and the mask, not on the data, so this may have fewer dimensions than `observation_means`. """ with tf.name_scope("forward_filter"): x = tf.convert_to_tensor(value=x, name="x") if mask is not None: mask = tf.convert_to_tensor(value=mask, name="mask", dtype_hint=tf.bool) # Check event shape statically if possible check_x_shape_op = _check_equal_shape( "x", x.shape[-2:], tf.shape(input=x)[-2:], self.event_shape, self.event_shape_tensor()) check_mask_dims_op = None check_mask_shape_op = None if mask is not None: if (tensorshape_util.rank(mask.shape) is None or tensorshape_util.rank(x.shape) is None): check_mask_dims_op = assert_util.assert_greater_equal( tf.rank(x), tf.rank(mask), message=("mask cannot have higher rank than x!")) elif tensorshape_util.rank(mask.shape) > tensorshape_util.rank(x.shape): raise ValueError( "mask cannot have higher rank than x! ({} vs {})".format( tensorshape_util.rank(mask.shape), tensorshape_util.rank(x.shape))) check_mask_shape_op = _check_equal_shape( "mask", mask.shape[-1:], tf.shape(input=mask)[-1:], self.event_shape[-2:-1], self.event_shape_tensor()[-2:-1]) if self.validate_args: runtime_assertions = self.runtime_assertions if check_x_shape_op is not None: runtime_assertions += [check_x_shape_op] if check_mask_shape_op is not None: runtime_assertions += [check_mask_shape_op] if check_mask_dims_op is not None: runtime_assertions += [check_mask_dims_op] with tf.control_dependencies(runtime_assertions): x = tf.identity(x) # Get the full output sample_shape + batch shape. Usually # this will just be x[:-2], i.e. the input shape excluding # event shape. But users can specify inputs that broadcast # batch dimensions, so we need to broadcast this against # self.batch_shape. if tensorshape_util.is_fully_defined( self.batch_shape) and tensorshape_util.is_fully_defined(x.shape): sample_and_batch_shape = tf.broadcast_static_shape( x.shape[:-2], self.batch_shape) else: sample_and_batch_shape = tf.broadcast_dynamic_shape( tf.shape(input=x)[:-2], self.batch_shape_tensor()) # Get the full output shape for covariances. The posterior variances # in a LGSSM depend only on the model params (batch shape) and on the # missingness pattern (mask shape), so in general this may be smaller # than the full `sample_and_batch_shape`. if mask is None: mask_sample_and_batch_shape = self.batch_shape_tensor() else: if (tensorshape_util.is_fully_defined(self.batch_shape) and tensorshape_util.is_fully_defined(mask.shape)): mask_sample_and_batch_shape = tf.broadcast_static_shape( mask.shape[:-1], self.batch_shape) else: mask_sample_and_batch_shape = tf.broadcast_dynamic_shape( tf.shape(input=mask)[:-1], self.batch_shape_tensor()) # To scan over timesteps we need to move `num_timsteps` from the # event shape to the initial dimension of the tensor. x = distribution_util.move_dimension(x, -2, 0) if mask is not None: mask = distribution_util.move_dimension(mask, -1, 0) # Observations are assumed to be vectors, but we add a dummy # extra dimension to allow us to use `matmul` throughout. x = x[..., tf.newaxis] if mask is not None: # Align mask.shape with x.shape, including a unit dimension to broadcast # against `observation_size`. mask = mask[..., tf.newaxis, tf.newaxis] # Initialize filtering distribution from the prior. The mean in # a Kalman filter depends on data, so should match the full # sample and batch shape. The covariance is data-independent, so # only has batch shape. prior_mean = _broadcast_to_shape( self.initial_state_prior.mean()[..., tf.newaxis], tf.concat([sample_and_batch_shape, [self.latent_size, 1]], axis=0)) prior_cov = _broadcast_to_shape( self.initial_state_prior.covariance(), tf.concat([mask_sample_and_batch_shape, [self.latent_size, self.latent_size]], axis=0)) initial_observation_matrix = ( self.get_observation_matrix_for_timestep(self.initial_step)) initial_observation_noise = ( self.get_observation_noise_for_timestep(self.initial_step)) initial_observation_mean = _propagate_mean(prior_mean, initial_observation_matrix, initial_observation_noise) initial_observation_cov = _propagate_cov(prior_cov, initial_observation_matrix, initial_observation_noise) initial_state = KalmanFilterState( predicted_mean=prior_mean, predicted_cov=prior_cov, filtered_mean=prior_mean, # establishes shape, value ignored filtered_cov=prior_cov, # establishes shape, value ignored observation_mean=initial_observation_mean, observation_cov=initial_observation_cov, log_marginal_likelihood=tf.zeros( shape=sample_and_batch_shape, dtype=self.dtype), timestep=tf.convert_to_tensor( value=self.initial_step, dtype=tf.int32, name="initial_step")) update_step_fn = build_kalman_filter_step( self.get_transition_matrix_for_timestep, self.get_transition_noise_for_timestep, self.get_observation_matrix_for_timestep, self.get_observation_noise_for_timestep) filter_states = tf.scan(update_step_fn, elems=x if mask is None else (x, mask), initializer=initial_state) log_likelihoods = distribution_util.move_dimension( filter_states.log_marginal_likelihood, 0, -1) # Move the time dimension back into the event shape. filtered_means = distribution_util.move_dimension( filter_states.filtered_mean[..., 0], 0, -2) filtered_covs = distribution_util.move_dimension( filter_states.filtered_cov, 0, -3) predicted_means = distribution_util.move_dimension( filter_states.predicted_mean[..., 0], 0, -2) predicted_covs = distribution_util.move_dimension( filter_states.predicted_cov, 0, -3) observation_means = distribution_util.move_dimension( filter_states.observation_mean[..., 0], 0, -2) observation_covs = distribution_util.move_dimension( filter_states.observation_cov, 0, -3) # We could directly construct the batch Distributions # filtered_marginals = tfd.MultivariateNormalFullCovariance( # filtered_means, filtered_covs) # predicted_marginals = tfd.MultivariateNormalFullCovariance( # predicted_means, predicted_covs) # but we choose not to: returning the raw means and covariances # saves computation in Eager mode (avoiding an immediate # Cholesky factorization that the user may not want) and aids # debugging of numerical issues. return (log_likelihoods, filtered_means, filtered_covs, predicted_means, predicted_covs, observation_means, observation_covs)
def forward_filter(self, x, mask=None): """Run a Kalman filter over a provided sequence of outputs. Note that the returned values `filtered_means`, `predicted_means`, and `observation_means` depend on the observed time series `x`, while the corresponding covariances are independent of the observed series; i.e., they depend only on the model itself. This means that the mean values have shape `concat([sample_shape(x), batch_shape, [num_timesteps, {latent/observation}_size]])`, while the covariances have shape `concat[(batch_shape, [num_timesteps, {latent/observation}_size, {latent/observation}_size]])`, which does not depend on the sample shape. Args: x: a float-type `Tensor` with rightmost dimensions `[num_timesteps, observation_size]` matching `self.event_shape`. Additional dimensions must match or be broadcastable to `self.batch_shape`; any further dimensions are interpreted as a sample shape. mask: optional bool-type `Tensor` with rightmost dimension `[num_timesteps]`; `True` values specify that the value of `x` at that timestep is masked, i.e., not conditioned on. Additional dimensions must match or be broadcastable to `self.batch_shape`; any further dimensions must match or be broadcastable to the sample shape of `x`. Default value: `None`. Returns: log_likelihoods: Per-timestep log marginal likelihoods `log p(x_t | x_{:t-1})` evaluated at the input `x`, as a `Tensor` of shape `sample_shape(x) + batch_shape + [num_timesteps].` filtered_means: Means of the per-timestep filtered marginal distributions p(z_t | x_{:t}), as a Tensor of shape `sample_shape(x) + batch_shape + [num_timesteps, latent_size]`. filtered_covs: Covariances of the per-timestep filtered marginal distributions p(z_t | x_{:t}), as a Tensor of shape `sample_shape(mask) + batch_shape + [num_timesteps, latent_size, latent_size]`. Note that the covariances depend only on the model and the mask, not on the data, so this may have fewer dimensions than `filtered_means`. predicted_means: Means of the per-timestep predictive distributions over latent states, p(z_{t+1} | x_{:t}), as a Tensor of shape `sample_shape(x) + batch_shape + [num_timesteps, latent_size]`. predicted_covs: Covariances of the per-timestep predictive distributions over latent states, p(z_{t+1} | x_{:t}), as a Tensor of shape `sample_shape(mask) + batch_shape + [num_timesteps, latent_size, latent_size]`. Note that the covariances depend only on the model and the mask, not on the data, so this may have fewer dimensions than `predicted_means`. observation_means: Means of the per-timestep predictive distributions over observations, p(x_{t} | x_{:t-1}), as a Tensor of shape `sample_shape(x) + batch_shape + [num_timesteps, observation_size]`. observation_covs: Covariances of the per-timestep predictive distributions over observations, p(x_{t} | x_{:t-1}), as a Tensor of shape `sample_shape(mask) + batch_shape + [num_timesteps, observation_size, observation_size]`. Note that the covariances depend only on the model and the mask, not on the data, so this may have fewer dimensions than `observation_means`. """ with tf.name_scope("forward_filter"): x = tf.convert_to_tensor(value=x, name="x") if mask is not None: mask = tf.convert_to_tensor(value=mask, name="mask", dtype_hint=tf.bool) # Check event shape statically if possible check_x_shape_op = _check_equal_shape( "x", x.shape[-2:], tf.shape(input=x)[-2:], self.event_shape, self.event_shape_tensor()) check_mask_dims_op = None check_mask_shape_op = None if mask is not None: if (tensorshape_util.rank(mask.shape) is None or tensorshape_util.rank(x.shape) is None): check_mask_dims_op = assert_util.assert_greater_equal( tf.rank(x), tf.rank(mask), message=("mask cannot have higher rank than x!")) elif tensorshape_util.rank(mask.shape) > tensorshape_util.rank(x.shape): raise ValueError( "mask cannot have higher rank than x! ({} vs {})".format( tensorshape_util.rank(mask.shape), tensorshape_util.rank(x.shape))) check_mask_shape_op = _check_equal_shape( "mask", mask.shape[-1:], tf.shape(input=mask)[-1:], self.event_shape[-2:-1], self.event_shape_tensor()[-2:-1]) if self.validate_args: runtime_assertions = self.runtime_assertions if check_x_shape_op is not None: runtime_assertions += [check_x_shape_op] if check_mask_shape_op is not None: runtime_assertions += [check_mask_shape_op] if check_mask_dims_op is not None: runtime_assertions += [check_mask_dims_op] with tf.control_dependencies(runtime_assertions): x = tf.identity(x) # Get the full output sample_shape + batch shape. Usually # this will just be x[:-2], i.e. the input shape excluding # event shape. But users can specify inputs that broadcast # batch dimensions, so we need to broadcast this against # self.batch_shape. if tensorshape_util.is_fully_defined( self.batch_shape) and tensorshape_util.is_fully_defined(x.shape): sample_and_batch_shape = tf.broadcast_static_shape( x.shape[:-2], self.batch_shape) else: sample_and_batch_shape = tf.broadcast_dynamic_shape( tf.shape(input=x)[:-2], self.batch_shape_tensor()) # Get the full output shape for covariances. The posterior variances # in a LGSSM depend only on the model params (batch shape) and on the # missingness pattern (mask shape), so in general this may be smaller # than the full `sample_and_batch_shape`. if mask is None: mask_sample_and_batch_shape = self.batch_shape_tensor() else: if (tensorshape_util.is_fully_defined(self.batch_shape) and tensorshape_util.is_fully_defined(mask.shape)): mask_sample_and_batch_shape = tf.broadcast_static_shape( mask.shape[:-1], self.batch_shape) else: mask_sample_and_batch_shape = tf.broadcast_dynamic_shape( tf.shape(input=mask)[:-1], self.batch_shape_tensor()) # To scan over timesteps we need to move `num_timsteps` from the # event shape to the initial dimension of the tensor. x = distribution_util.move_dimension(x, -2, 0) if mask is not None: mask = distribution_util.move_dimension(mask, -1, 0) # Observations are assumed to be vectors, but we add a dummy # extra dimension to allow us to use `matmul` throughout. x = x[..., tf.newaxis] if mask is not None: # Align mask.shape with x.shape, including a unit dimension to broadcast # against `observation_size`. mask = mask[..., tf.newaxis, tf.newaxis] # Initialize filtering distribution from the prior. The mean in # a Kalman filter depends on data, so should match the full # sample and batch shape. The covariance is data-independent, so # only has batch shape. prior_mean = _broadcast_to_shape( self.initial_state_prior.mean()[..., tf.newaxis], tf.concat([sample_and_batch_shape, [self.latent_size, 1]], axis=0)) prior_cov = _broadcast_to_shape( self.initial_state_prior.covariance(), tf.concat([mask_sample_and_batch_shape, [self.latent_size, self.latent_size]], axis=0)) initial_observation_matrix = ( self.get_observation_matrix_for_timestep(self.initial_step)) initial_observation_noise = ( self.get_observation_noise_for_timestep(self.initial_step)) initial_observation_mean = _propagate_mean(prior_mean, initial_observation_matrix, initial_observation_noise) initial_observation_cov = _propagate_cov(prior_cov, initial_observation_matrix, initial_observation_noise) initial_state = KalmanFilterState( predicted_mean=prior_mean, predicted_cov=prior_cov, filtered_mean=prior_mean, # establishes shape, value ignored filtered_cov=prior_cov, # establishes shape, value ignored observation_mean=initial_observation_mean, observation_cov=initial_observation_cov, log_marginal_likelihood=tf.zeros( shape=sample_and_batch_shape, dtype=self.dtype), timestep=tf.convert_to_tensor( value=self.initial_step, dtype=tf.int32, name="initial_step")) update_step_fn = build_kalman_filter_step( self.get_transition_matrix_for_timestep, self.get_transition_noise_for_timestep, self.get_observation_matrix_for_timestep, self.get_observation_noise_for_timestep) filter_states = tf.scan(update_step_fn, elems=x if mask is None else (x, mask), initializer=initial_state) log_likelihoods = distribution_util.move_dimension( filter_states.log_marginal_likelihood, 0, -1) # Move the time dimension back into the event shape. filtered_means = distribution_util.move_dimension( filter_states.filtered_mean[..., 0], 0, -2) filtered_covs = distribution_util.move_dimension( filter_states.filtered_cov, 0, -3) predicted_means = distribution_util.move_dimension( filter_states.predicted_mean[..., 0], 0, -2) predicted_covs = distribution_util.move_dimension( filter_states.predicted_cov, 0, -3) observation_means = distribution_util.move_dimension( filter_states.observation_mean[..., 0], 0, -2) observation_covs = distribution_util.move_dimension( filter_states.observation_cov, 0, -3) # We could directly construct the batch Distributions # filtered_marginals = tfd.MultivariateNormalFullCovariance( # filtered_means, filtered_covs) # predicted_marginals = tfd.MultivariateNormalFullCovariance( # predicted_means, predicted_covs) # but we choose not to: returning the raw means and covariances # saves computation in Eager mode (avoiding an immediate # Cholesky factorization that the user may not want) and aids # debugging of numerical issues. return (log_likelihoods, filtered_means, filtered_covs, predicted_means, predicted_covs, observation_means, observation_covs)
[ "Run", "a", "Kalman", "filter", "over", "a", "provided", "sequence", "of", "outputs", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/linear_gaussian_ssm.py#L696-L912
[ "def", "forward_filter", "(", "self", ",", "x", ",", "mask", "=", "None", ")", ":", "with", "tf", ".", "name_scope", "(", "\"forward_filter\"", ")", ":", "x", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "x", ",", "name", "=", "\"x\"", ")", "if", "mask", "is", "not", "None", ":", "mask", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "mask", ",", "name", "=", "\"mask\"", ",", "dtype_hint", "=", "tf", ".", "bool", ")", "# Check event shape statically if possible", "check_x_shape_op", "=", "_check_equal_shape", "(", "\"x\"", ",", "x", ".", "shape", "[", "-", "2", ":", "]", ",", "tf", ".", "shape", "(", "input", "=", "x", ")", "[", "-", "2", ":", "]", ",", "self", ".", "event_shape", ",", "self", ".", "event_shape_tensor", "(", ")", ")", "check_mask_dims_op", "=", "None", "check_mask_shape_op", "=", "None", "if", "mask", "is", "not", "None", ":", "if", "(", "tensorshape_util", ".", "rank", "(", "mask", ".", "shape", ")", "is", "None", "or", "tensorshape_util", ".", "rank", "(", "x", ".", "shape", ")", "is", "None", ")", ":", "check_mask_dims_op", "=", "assert_util", ".", "assert_greater_equal", "(", "tf", ".", "rank", "(", "x", ")", ",", "tf", ".", "rank", "(", "mask", ")", ",", "message", "=", "(", "\"mask cannot have higher rank than x!\"", ")", ")", "elif", "tensorshape_util", ".", "rank", "(", "mask", ".", "shape", ")", ">", "tensorshape_util", ".", "rank", "(", "x", ".", "shape", ")", ":", "raise", "ValueError", "(", "\"mask cannot have higher rank than x! ({} vs {})\"", ".", "format", "(", "tensorshape_util", ".", "rank", "(", "mask", ".", "shape", ")", ",", "tensorshape_util", ".", "rank", "(", "x", ".", "shape", ")", ")", ")", "check_mask_shape_op", "=", "_check_equal_shape", "(", "\"mask\"", ",", "mask", ".", "shape", "[", "-", "1", ":", "]", ",", "tf", ".", "shape", "(", "input", "=", "mask", ")", "[", "-", "1", ":", "]", ",", "self", ".", "event_shape", "[", "-", "2", ":", "-", "1", "]", ",", "self", ".", "event_shape_tensor", "(", ")", "[", "-", "2", ":", "-", "1", "]", ")", "if", "self", ".", "validate_args", ":", "runtime_assertions", "=", "self", ".", "runtime_assertions", "if", "check_x_shape_op", "is", "not", "None", ":", "runtime_assertions", "+=", "[", "check_x_shape_op", "]", "if", "check_mask_shape_op", "is", "not", "None", ":", "runtime_assertions", "+=", "[", "check_mask_shape_op", "]", "if", "check_mask_dims_op", "is", "not", "None", ":", "runtime_assertions", "+=", "[", "check_mask_dims_op", "]", "with", "tf", ".", "control_dependencies", "(", "runtime_assertions", ")", ":", "x", "=", "tf", ".", "identity", "(", "x", ")", "# Get the full output sample_shape + batch shape. Usually", "# this will just be x[:-2], i.e. the input shape excluding", "# event shape. But users can specify inputs that broadcast", "# batch dimensions, so we need to broadcast this against", "# self.batch_shape.", "if", "tensorshape_util", ".", "is_fully_defined", "(", "self", ".", "batch_shape", ")", "and", "tensorshape_util", ".", "is_fully_defined", "(", "x", ".", "shape", ")", ":", "sample_and_batch_shape", "=", "tf", ".", "broadcast_static_shape", "(", "x", ".", "shape", "[", ":", "-", "2", "]", ",", "self", ".", "batch_shape", ")", "else", ":", "sample_and_batch_shape", "=", "tf", ".", "broadcast_dynamic_shape", "(", "tf", ".", "shape", "(", "input", "=", "x", ")", "[", ":", "-", "2", "]", ",", "self", ".", "batch_shape_tensor", "(", ")", ")", "# Get the full output shape for covariances. The posterior variances", "# in a LGSSM depend only on the model params (batch shape) and on the", "# missingness pattern (mask shape), so in general this may be smaller", "# than the full `sample_and_batch_shape`.", "if", "mask", "is", "None", ":", "mask_sample_and_batch_shape", "=", "self", ".", "batch_shape_tensor", "(", ")", "else", ":", "if", "(", "tensorshape_util", ".", "is_fully_defined", "(", "self", ".", "batch_shape", ")", "and", "tensorshape_util", ".", "is_fully_defined", "(", "mask", ".", "shape", ")", ")", ":", "mask_sample_and_batch_shape", "=", "tf", ".", "broadcast_static_shape", "(", "mask", ".", "shape", "[", ":", "-", "1", "]", ",", "self", ".", "batch_shape", ")", "else", ":", "mask_sample_and_batch_shape", "=", "tf", ".", "broadcast_dynamic_shape", "(", "tf", ".", "shape", "(", "input", "=", "mask", ")", "[", ":", "-", "1", "]", ",", "self", ".", "batch_shape_tensor", "(", ")", ")", "# To scan over timesteps we need to move `num_timsteps` from the", "# event shape to the initial dimension of the tensor.", "x", "=", "distribution_util", ".", "move_dimension", "(", "x", ",", "-", "2", ",", "0", ")", "if", "mask", "is", "not", "None", ":", "mask", "=", "distribution_util", ".", "move_dimension", "(", "mask", ",", "-", "1", ",", "0", ")", "# Observations are assumed to be vectors, but we add a dummy", "# extra dimension to allow us to use `matmul` throughout.", "x", "=", "x", "[", "...", ",", "tf", ".", "newaxis", "]", "if", "mask", "is", "not", "None", ":", "# Align mask.shape with x.shape, including a unit dimension to broadcast", "# against `observation_size`.", "mask", "=", "mask", "[", "...", ",", "tf", ".", "newaxis", ",", "tf", ".", "newaxis", "]", "# Initialize filtering distribution from the prior. The mean in", "# a Kalman filter depends on data, so should match the full", "# sample and batch shape. The covariance is data-independent, so", "# only has batch shape.", "prior_mean", "=", "_broadcast_to_shape", "(", "self", ".", "initial_state_prior", ".", "mean", "(", ")", "[", "...", ",", "tf", ".", "newaxis", "]", ",", "tf", ".", "concat", "(", "[", "sample_and_batch_shape", ",", "[", "self", ".", "latent_size", ",", "1", "]", "]", ",", "axis", "=", "0", ")", ")", "prior_cov", "=", "_broadcast_to_shape", "(", "self", ".", "initial_state_prior", ".", "covariance", "(", ")", ",", "tf", ".", "concat", "(", "[", "mask_sample_and_batch_shape", ",", "[", "self", ".", "latent_size", ",", "self", ".", "latent_size", "]", "]", ",", "axis", "=", "0", ")", ")", "initial_observation_matrix", "=", "(", "self", ".", "get_observation_matrix_for_timestep", "(", "self", ".", "initial_step", ")", ")", "initial_observation_noise", "=", "(", "self", ".", "get_observation_noise_for_timestep", "(", "self", ".", "initial_step", ")", ")", "initial_observation_mean", "=", "_propagate_mean", "(", "prior_mean", ",", "initial_observation_matrix", ",", "initial_observation_noise", ")", "initial_observation_cov", "=", "_propagate_cov", "(", "prior_cov", ",", "initial_observation_matrix", ",", "initial_observation_noise", ")", "initial_state", "=", "KalmanFilterState", "(", "predicted_mean", "=", "prior_mean", ",", "predicted_cov", "=", "prior_cov", ",", "filtered_mean", "=", "prior_mean", ",", "# establishes shape, value ignored", "filtered_cov", "=", "prior_cov", ",", "# establishes shape, value ignored", "observation_mean", "=", "initial_observation_mean", ",", "observation_cov", "=", "initial_observation_cov", ",", "log_marginal_likelihood", "=", "tf", ".", "zeros", "(", "shape", "=", "sample_and_batch_shape", ",", "dtype", "=", "self", ".", "dtype", ")", ",", "timestep", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "self", ".", "initial_step", ",", "dtype", "=", "tf", ".", "int32", ",", "name", "=", "\"initial_step\"", ")", ")", "update_step_fn", "=", "build_kalman_filter_step", "(", "self", ".", "get_transition_matrix_for_timestep", ",", "self", ".", "get_transition_noise_for_timestep", ",", "self", ".", "get_observation_matrix_for_timestep", ",", "self", ".", "get_observation_noise_for_timestep", ")", "filter_states", "=", "tf", ".", "scan", "(", "update_step_fn", ",", "elems", "=", "x", "if", "mask", "is", "None", "else", "(", "x", ",", "mask", ")", ",", "initializer", "=", "initial_state", ")", "log_likelihoods", "=", "distribution_util", ".", "move_dimension", "(", "filter_states", ".", "log_marginal_likelihood", ",", "0", ",", "-", "1", ")", "# Move the time dimension back into the event shape.", "filtered_means", "=", "distribution_util", ".", "move_dimension", "(", "filter_states", ".", "filtered_mean", "[", "...", ",", "0", "]", ",", "0", ",", "-", "2", ")", "filtered_covs", "=", "distribution_util", ".", "move_dimension", "(", "filter_states", ".", "filtered_cov", ",", "0", ",", "-", "3", ")", "predicted_means", "=", "distribution_util", ".", "move_dimension", "(", "filter_states", ".", "predicted_mean", "[", "...", ",", "0", "]", ",", "0", ",", "-", "2", ")", "predicted_covs", "=", "distribution_util", ".", "move_dimension", "(", "filter_states", ".", "predicted_cov", ",", "0", ",", "-", "3", ")", "observation_means", "=", "distribution_util", ".", "move_dimension", "(", "filter_states", ".", "observation_mean", "[", "...", ",", "0", "]", ",", "0", ",", "-", "2", ")", "observation_covs", "=", "distribution_util", ".", "move_dimension", "(", "filter_states", ".", "observation_cov", ",", "0", ",", "-", "3", ")", "# We could directly construct the batch Distributions", "# filtered_marginals = tfd.MultivariateNormalFullCovariance(", "# filtered_means, filtered_covs)", "# predicted_marginals = tfd.MultivariateNormalFullCovariance(", "# predicted_means, predicted_covs)", "# but we choose not to: returning the raw means and covariances", "# saves computation in Eager mode (avoiding an immediate", "# Cholesky factorization that the user may not want) and aids", "# debugging of numerical issues.", "return", "(", "log_likelihoods", ",", "filtered_means", ",", "filtered_covs", ",", "predicted_means", ",", "predicted_covs", ",", "observation_means", ",", "observation_covs", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
LinearGaussianStateSpaceModel.posterior_marginals
Run a Kalman smoother to return posterior mean and cov. Note that the returned values `smoothed_means` depend on the observed time series `x`, while the `smoothed_covs` are independent of the observed series; i.e., they depend only on the model itself. This means that the mean values have shape `concat([sample_shape(x), batch_shape, [num_timesteps, {latent/observation}_size]])`, while the covariances have shape `concat[(batch_shape, [num_timesteps, {latent/observation}_size, {latent/observation}_size]])`, which does not depend on the sample shape. This function only performs smoothing. If the user wants the intermediate values, which are returned by filtering pass `forward_filter`, one could get it by: ``` (log_likelihoods, filtered_means, filtered_covs, predicted_means, predicted_covs, observation_means, observation_covs) = model.forward_filter(x) smoothed_means, smoothed_covs = model.backward_smoothing_pass(x) ``` where `x` is an observation sequence. Args: x: a float-type `Tensor` with rightmost dimensions `[num_timesteps, observation_size]` matching `self.event_shape`. Additional dimensions must match or be broadcastable to `self.batch_shape`; any further dimensions are interpreted as a sample shape. mask: optional bool-type `Tensor` with rightmost dimension `[num_timesteps]`; `True` values specify that the value of `x` at that timestep is masked, i.e., not conditioned on. Additional dimensions must match or be broadcastable to `self.batch_shape`; any further dimensions must match or be broadcastable to the sample shape of `x`. Default value: `None`. Returns: smoothed_means: Means of the per-timestep smoothed distributions over latent states, p(x_{t} | x_{:T}), as a Tensor of shape `sample_shape(x) + batch_shape + [num_timesteps, observation_size]`. smoothed_covs: Covariances of the per-timestep smoothed distributions over latent states, p(x_{t} | x_{:T}), as a Tensor of shape `sample_shape(mask) + batch_shape + [num_timesteps, observation_size, observation_size]`. Note that the covariances depend only on the model and the mask, not on the data, so this may have fewer dimensions than `filtered_means`.
tensorflow_probability/python/distributions/linear_gaussian_ssm.py
def posterior_marginals(self, x, mask=None): """Run a Kalman smoother to return posterior mean and cov. Note that the returned values `smoothed_means` depend on the observed time series `x`, while the `smoothed_covs` are independent of the observed series; i.e., they depend only on the model itself. This means that the mean values have shape `concat([sample_shape(x), batch_shape, [num_timesteps, {latent/observation}_size]])`, while the covariances have shape `concat[(batch_shape, [num_timesteps, {latent/observation}_size, {latent/observation}_size]])`, which does not depend on the sample shape. This function only performs smoothing. If the user wants the intermediate values, which are returned by filtering pass `forward_filter`, one could get it by: ``` (log_likelihoods, filtered_means, filtered_covs, predicted_means, predicted_covs, observation_means, observation_covs) = model.forward_filter(x) smoothed_means, smoothed_covs = model.backward_smoothing_pass(x) ``` where `x` is an observation sequence. Args: x: a float-type `Tensor` with rightmost dimensions `[num_timesteps, observation_size]` matching `self.event_shape`. Additional dimensions must match or be broadcastable to `self.batch_shape`; any further dimensions are interpreted as a sample shape. mask: optional bool-type `Tensor` with rightmost dimension `[num_timesteps]`; `True` values specify that the value of `x` at that timestep is masked, i.e., not conditioned on. Additional dimensions must match or be broadcastable to `self.batch_shape`; any further dimensions must match or be broadcastable to the sample shape of `x`. Default value: `None`. Returns: smoothed_means: Means of the per-timestep smoothed distributions over latent states, p(x_{t} | x_{:T}), as a Tensor of shape `sample_shape(x) + batch_shape + [num_timesteps, observation_size]`. smoothed_covs: Covariances of the per-timestep smoothed distributions over latent states, p(x_{t} | x_{:T}), as a Tensor of shape `sample_shape(mask) + batch_shape + [num_timesteps, observation_size, observation_size]`. Note that the covariances depend only on the model and the mask, not on the data, so this may have fewer dimensions than `filtered_means`. """ with tf.name_scope("smooth"): x = tf.convert_to_tensor(value=x, name="x") (_, filtered_means, filtered_covs, predicted_means, predicted_covs, _, _) = self.forward_filter( x, mask=mask) (smoothed_means, smoothed_covs) = self.backward_smoothing_pass( filtered_means, filtered_covs, predicted_means, predicted_covs) return (smoothed_means, smoothed_covs)
def posterior_marginals(self, x, mask=None): """Run a Kalman smoother to return posterior mean and cov. Note that the returned values `smoothed_means` depend on the observed time series `x`, while the `smoothed_covs` are independent of the observed series; i.e., they depend only on the model itself. This means that the mean values have shape `concat([sample_shape(x), batch_shape, [num_timesteps, {latent/observation}_size]])`, while the covariances have shape `concat[(batch_shape, [num_timesteps, {latent/observation}_size, {latent/observation}_size]])`, which does not depend on the sample shape. This function only performs smoothing. If the user wants the intermediate values, which are returned by filtering pass `forward_filter`, one could get it by: ``` (log_likelihoods, filtered_means, filtered_covs, predicted_means, predicted_covs, observation_means, observation_covs) = model.forward_filter(x) smoothed_means, smoothed_covs = model.backward_smoothing_pass(x) ``` where `x` is an observation sequence. Args: x: a float-type `Tensor` with rightmost dimensions `[num_timesteps, observation_size]` matching `self.event_shape`. Additional dimensions must match or be broadcastable to `self.batch_shape`; any further dimensions are interpreted as a sample shape. mask: optional bool-type `Tensor` with rightmost dimension `[num_timesteps]`; `True` values specify that the value of `x` at that timestep is masked, i.e., not conditioned on. Additional dimensions must match or be broadcastable to `self.batch_shape`; any further dimensions must match or be broadcastable to the sample shape of `x`. Default value: `None`. Returns: smoothed_means: Means of the per-timestep smoothed distributions over latent states, p(x_{t} | x_{:T}), as a Tensor of shape `sample_shape(x) + batch_shape + [num_timesteps, observation_size]`. smoothed_covs: Covariances of the per-timestep smoothed distributions over latent states, p(x_{t} | x_{:T}), as a Tensor of shape `sample_shape(mask) + batch_shape + [num_timesteps, observation_size, observation_size]`. Note that the covariances depend only on the model and the mask, not on the data, so this may have fewer dimensions than `filtered_means`. """ with tf.name_scope("smooth"): x = tf.convert_to_tensor(value=x, name="x") (_, filtered_means, filtered_covs, predicted_means, predicted_covs, _, _) = self.forward_filter( x, mask=mask) (smoothed_means, smoothed_covs) = self.backward_smoothing_pass( filtered_means, filtered_covs, predicted_means, predicted_covs) return (smoothed_means, smoothed_covs)
[ "Run", "a", "Kalman", "smoother", "to", "return", "posterior", "mean", "and", "cov", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/linear_gaussian_ssm.py#L914-L975
[ "def", "posterior_marginals", "(", "self", ",", "x", ",", "mask", "=", "None", ")", ":", "with", "tf", ".", "name_scope", "(", "\"smooth\"", ")", ":", "x", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "x", ",", "name", "=", "\"x\"", ")", "(", "_", ",", "filtered_means", ",", "filtered_covs", ",", "predicted_means", ",", "predicted_covs", ",", "_", ",", "_", ")", "=", "self", ".", "forward_filter", "(", "x", ",", "mask", "=", "mask", ")", "(", "smoothed_means", ",", "smoothed_covs", ")", "=", "self", ".", "backward_smoothing_pass", "(", "filtered_means", ",", "filtered_covs", ",", "predicted_means", ",", "predicted_covs", ")", "return", "(", "smoothed_means", ",", "smoothed_covs", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
LinearGaussianStateSpaceModel._joint_mean
Compute prior means for all variables via dynamic programming. Returns: latent_means: Prior means of latent states `z_t`, as a `Tensor` of shape `batch_shape + [num_timesteps, latent_size]` observation_means: Prior covariance matrices of observations `x_t`, as a `Tensor` of shape `batch_shape + [num_timesteps, observation_size]`
tensorflow_probability/python/distributions/linear_gaussian_ssm.py
def _joint_mean(self): """Compute prior means for all variables via dynamic programming. Returns: latent_means: Prior means of latent states `z_t`, as a `Tensor` of shape `batch_shape + [num_timesteps, latent_size]` observation_means: Prior covariance matrices of observations `x_t`, as a `Tensor` of shape `batch_shape + [num_timesteps, observation_size]` """ with tf.name_scope("mean_joint"): # The initial timestep is a special case, since we sample the # latent state from the prior rather than the transition model. with tf.control_dependencies(self.runtime_assertions): # Broadcast to ensure we represent the full batch shape. initial_latent_mean = _broadcast_to_shape( self.initial_state_prior.mean()[..., tf.newaxis], tf.concat([self.batch_shape_tensor(), [self.latent_size, 1]], axis=0)) initial_observation_mean = _propagate_mean( initial_latent_mean, self.get_observation_matrix_for_timestep(self.initial_step), self.get_observation_noise_for_timestep(self.initial_step)) mean_step = build_kalman_mean_step( self.get_transition_matrix_for_timestep, self.get_transition_noise_for_timestep, self.get_observation_matrix_for_timestep, self.get_observation_noise_for_timestep) # Scan over all timesteps following the initial step. (latent_means, observation_means) = tf.scan( mean_step, elems=tf.range(self.initial_step+1, self.final_step), initializer=(initial_latent_mean, initial_observation_mean)) # Squish the initial step back on top of the other (scanned) timesteps latent_means = tf.concat([initial_latent_mean[tf.newaxis, ...], latent_means], axis=0) observation_means = tf.concat([initial_observation_mean[tf.newaxis, ...], observation_means], axis=0) # Put dimensions back in order. The samples we've computed have # shape `[num_timesteps, batch_shape, size, 1]`, where `size` # is the dimension of the latent or observation spaces # respectively, but we want to return values with shape # `[batch_shape, num_timesteps, size]`. latent_means = tf.squeeze(latent_means, -1) latent_means = distribution_util.move_dimension(latent_means, 0, -2) observation_means = tf.squeeze(observation_means, -1) observation_means = distribution_util.move_dimension( observation_means, 0, -2) return latent_means, observation_means
def _joint_mean(self): """Compute prior means for all variables via dynamic programming. Returns: latent_means: Prior means of latent states `z_t`, as a `Tensor` of shape `batch_shape + [num_timesteps, latent_size]` observation_means: Prior covariance matrices of observations `x_t`, as a `Tensor` of shape `batch_shape + [num_timesteps, observation_size]` """ with tf.name_scope("mean_joint"): # The initial timestep is a special case, since we sample the # latent state from the prior rather than the transition model. with tf.control_dependencies(self.runtime_assertions): # Broadcast to ensure we represent the full batch shape. initial_latent_mean = _broadcast_to_shape( self.initial_state_prior.mean()[..., tf.newaxis], tf.concat([self.batch_shape_tensor(), [self.latent_size, 1]], axis=0)) initial_observation_mean = _propagate_mean( initial_latent_mean, self.get_observation_matrix_for_timestep(self.initial_step), self.get_observation_noise_for_timestep(self.initial_step)) mean_step = build_kalman_mean_step( self.get_transition_matrix_for_timestep, self.get_transition_noise_for_timestep, self.get_observation_matrix_for_timestep, self.get_observation_noise_for_timestep) # Scan over all timesteps following the initial step. (latent_means, observation_means) = tf.scan( mean_step, elems=tf.range(self.initial_step+1, self.final_step), initializer=(initial_latent_mean, initial_observation_mean)) # Squish the initial step back on top of the other (scanned) timesteps latent_means = tf.concat([initial_latent_mean[tf.newaxis, ...], latent_means], axis=0) observation_means = tf.concat([initial_observation_mean[tf.newaxis, ...], observation_means], axis=0) # Put dimensions back in order. The samples we've computed have # shape `[num_timesteps, batch_shape, size, 1]`, where `size` # is the dimension of the latent or observation spaces # respectively, but we want to return values with shape # `[batch_shape, num_timesteps, size]`. latent_means = tf.squeeze(latent_means, -1) latent_means = distribution_util.move_dimension(latent_means, 0, -2) observation_means = tf.squeeze(observation_means, -1) observation_means = distribution_util.move_dimension( observation_means, 0, -2) return latent_means, observation_means
[ "Compute", "prior", "means", "for", "all", "variables", "via", "dynamic", "programming", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/linear_gaussian_ssm.py#L981-L1038
[ "def", "_joint_mean", "(", "self", ")", ":", "with", "tf", ".", "name_scope", "(", "\"mean_joint\"", ")", ":", "# The initial timestep is a special case, since we sample the", "# latent state from the prior rather than the transition model.", "with", "tf", ".", "control_dependencies", "(", "self", ".", "runtime_assertions", ")", ":", "# Broadcast to ensure we represent the full batch shape.", "initial_latent_mean", "=", "_broadcast_to_shape", "(", "self", ".", "initial_state_prior", ".", "mean", "(", ")", "[", "...", ",", "tf", ".", "newaxis", "]", ",", "tf", ".", "concat", "(", "[", "self", ".", "batch_shape_tensor", "(", ")", ",", "[", "self", ".", "latent_size", ",", "1", "]", "]", ",", "axis", "=", "0", ")", ")", "initial_observation_mean", "=", "_propagate_mean", "(", "initial_latent_mean", ",", "self", ".", "get_observation_matrix_for_timestep", "(", "self", ".", "initial_step", ")", ",", "self", ".", "get_observation_noise_for_timestep", "(", "self", ".", "initial_step", ")", ")", "mean_step", "=", "build_kalman_mean_step", "(", "self", ".", "get_transition_matrix_for_timestep", ",", "self", ".", "get_transition_noise_for_timestep", ",", "self", ".", "get_observation_matrix_for_timestep", ",", "self", ".", "get_observation_noise_for_timestep", ")", "# Scan over all timesteps following the initial step.", "(", "latent_means", ",", "observation_means", ")", "=", "tf", ".", "scan", "(", "mean_step", ",", "elems", "=", "tf", ".", "range", "(", "self", ".", "initial_step", "+", "1", ",", "self", ".", "final_step", ")", ",", "initializer", "=", "(", "initial_latent_mean", ",", "initial_observation_mean", ")", ")", "# Squish the initial step back on top of the other (scanned) timesteps", "latent_means", "=", "tf", ".", "concat", "(", "[", "initial_latent_mean", "[", "tf", ".", "newaxis", ",", "...", "]", ",", "latent_means", "]", ",", "axis", "=", "0", ")", "observation_means", "=", "tf", ".", "concat", "(", "[", "initial_observation_mean", "[", "tf", ".", "newaxis", ",", "...", "]", ",", "observation_means", "]", ",", "axis", "=", "0", ")", "# Put dimensions back in order. The samples we've computed have", "# shape `[num_timesteps, batch_shape, size, 1]`, where `size`", "# is the dimension of the latent or observation spaces", "# respectively, but we want to return values with shape", "# `[batch_shape, num_timesteps, size]`.", "latent_means", "=", "tf", ".", "squeeze", "(", "latent_means", ",", "-", "1", ")", "latent_means", "=", "distribution_util", ".", "move_dimension", "(", "latent_means", ",", "0", ",", "-", "2", ")", "observation_means", "=", "tf", ".", "squeeze", "(", "observation_means", ",", "-", "1", ")", "observation_means", "=", "distribution_util", ".", "move_dimension", "(", "observation_means", ",", "0", ",", "-", "2", ")", "return", "latent_means", ",", "observation_means" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
LinearGaussianStateSpaceModel._joint_covariances
Compute prior covariances for all variables via dynamic programming. Returns: latent_covs: Prior covariance matrices of latent states `z_t`, as a `Tensor` of shape `batch_shape + [num_timesteps, latent_size, latent_size]` observation_covs: Prior covariance matrices of observations `x_t`, as a `Tensor` of shape `batch_shape + [num_timesteps, observation_size, observation_size]`
tensorflow_probability/python/distributions/linear_gaussian_ssm.py
def _joint_covariances(self): """Compute prior covariances for all variables via dynamic programming. Returns: latent_covs: Prior covariance matrices of latent states `z_t`, as a `Tensor` of shape `batch_shape + [num_timesteps, latent_size, latent_size]` observation_covs: Prior covariance matrices of observations `x_t`, as a `Tensor` of shape `batch_shape + [num_timesteps, observation_size, observation_size]` """ with tf.name_scope("covariance_joint"): with tf.control_dependencies(self.runtime_assertions): initial_latent_cov = _broadcast_to_shape( self.initial_state_prior.covariance(), tf.concat([self.batch_shape_tensor(), [self.latent_size, self.latent_size]], axis=0)) initial_observation_cov = _propagate_cov( initial_latent_cov, self.get_observation_matrix_for_timestep(self.initial_step), self.get_observation_noise_for_timestep(self.initial_step)) cov_step = build_kalman_cov_step( self.get_transition_matrix_for_timestep, self.get_transition_noise_for_timestep, self.get_observation_matrix_for_timestep, self.get_observation_noise_for_timestep) # Scan over all timesteps following the initial step. (latent_covs, observation_covs) = tf.scan( cov_step, elems=tf.range(self.initial_step+1, self.final_step), initializer=(initial_latent_cov, initial_observation_cov)) # Squish the initial step back on top of the other (scanned) timesteps latent_covs = tf.concat([initial_latent_cov[tf.newaxis, ...], latent_covs], axis=0) observation_covs = tf.concat([initial_observation_cov[tf.newaxis, ...], observation_covs], axis=0) # Put dimensions back in order. The samples we've computed have # shape `[num_timesteps, batch_shape, size, size]`, where `size` # is the dimension of the state or observation spaces # respectively, but we want to return values with shape # `[batch_shape, num_timesteps, size, size]`. latent_covs = distribution_util.move_dimension(latent_covs, 0, -3) observation_covs = distribution_util.move_dimension( observation_covs, 0, -3) return latent_covs, observation_covs
def _joint_covariances(self): """Compute prior covariances for all variables via dynamic programming. Returns: latent_covs: Prior covariance matrices of latent states `z_t`, as a `Tensor` of shape `batch_shape + [num_timesteps, latent_size, latent_size]` observation_covs: Prior covariance matrices of observations `x_t`, as a `Tensor` of shape `batch_shape + [num_timesteps, observation_size, observation_size]` """ with tf.name_scope("covariance_joint"): with tf.control_dependencies(self.runtime_assertions): initial_latent_cov = _broadcast_to_shape( self.initial_state_prior.covariance(), tf.concat([self.batch_shape_tensor(), [self.latent_size, self.latent_size]], axis=0)) initial_observation_cov = _propagate_cov( initial_latent_cov, self.get_observation_matrix_for_timestep(self.initial_step), self.get_observation_noise_for_timestep(self.initial_step)) cov_step = build_kalman_cov_step( self.get_transition_matrix_for_timestep, self.get_transition_noise_for_timestep, self.get_observation_matrix_for_timestep, self.get_observation_noise_for_timestep) # Scan over all timesteps following the initial step. (latent_covs, observation_covs) = tf.scan( cov_step, elems=tf.range(self.initial_step+1, self.final_step), initializer=(initial_latent_cov, initial_observation_cov)) # Squish the initial step back on top of the other (scanned) timesteps latent_covs = tf.concat([initial_latent_cov[tf.newaxis, ...], latent_covs], axis=0) observation_covs = tf.concat([initial_observation_cov[tf.newaxis, ...], observation_covs], axis=0) # Put dimensions back in order. The samples we've computed have # shape `[num_timesteps, batch_shape, size, size]`, where `size` # is the dimension of the state or observation spaces # respectively, but we want to return values with shape # `[batch_shape, num_timesteps, size, size]`. latent_covs = distribution_util.move_dimension(latent_covs, 0, -3) observation_covs = distribution_util.move_dimension( observation_covs, 0, -3) return latent_covs, observation_covs
[ "Compute", "prior", "covariances", "for", "all", "variables", "via", "dynamic", "programming", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/linear_gaussian_ssm.py#L1040-L1091
[ "def", "_joint_covariances", "(", "self", ")", ":", "with", "tf", ".", "name_scope", "(", "\"covariance_joint\"", ")", ":", "with", "tf", ".", "control_dependencies", "(", "self", ".", "runtime_assertions", ")", ":", "initial_latent_cov", "=", "_broadcast_to_shape", "(", "self", ".", "initial_state_prior", ".", "covariance", "(", ")", ",", "tf", ".", "concat", "(", "[", "self", ".", "batch_shape_tensor", "(", ")", ",", "[", "self", ".", "latent_size", ",", "self", ".", "latent_size", "]", "]", ",", "axis", "=", "0", ")", ")", "initial_observation_cov", "=", "_propagate_cov", "(", "initial_latent_cov", ",", "self", ".", "get_observation_matrix_for_timestep", "(", "self", ".", "initial_step", ")", ",", "self", ".", "get_observation_noise_for_timestep", "(", "self", ".", "initial_step", ")", ")", "cov_step", "=", "build_kalman_cov_step", "(", "self", ".", "get_transition_matrix_for_timestep", ",", "self", ".", "get_transition_noise_for_timestep", ",", "self", ".", "get_observation_matrix_for_timestep", ",", "self", ".", "get_observation_noise_for_timestep", ")", "# Scan over all timesteps following the initial step.", "(", "latent_covs", ",", "observation_covs", ")", "=", "tf", ".", "scan", "(", "cov_step", ",", "elems", "=", "tf", ".", "range", "(", "self", ".", "initial_step", "+", "1", ",", "self", ".", "final_step", ")", ",", "initializer", "=", "(", "initial_latent_cov", ",", "initial_observation_cov", ")", ")", "# Squish the initial step back on top of the other (scanned) timesteps", "latent_covs", "=", "tf", ".", "concat", "(", "[", "initial_latent_cov", "[", "tf", ".", "newaxis", ",", "...", "]", ",", "latent_covs", "]", ",", "axis", "=", "0", ")", "observation_covs", "=", "tf", ".", "concat", "(", "[", "initial_observation_cov", "[", "tf", ".", "newaxis", ",", "...", "]", ",", "observation_covs", "]", ",", "axis", "=", "0", ")", "# Put dimensions back in order. The samples we've computed have", "# shape `[num_timesteps, batch_shape, size, size]`, where `size`", "# is the dimension of the state or observation spaces", "# respectively, but we want to return values with shape", "# `[batch_shape, num_timesteps, size, size]`.", "latent_covs", "=", "distribution_util", ".", "move_dimension", "(", "latent_covs", ",", "0", ",", "-", "3", ")", "observation_covs", "=", "distribution_util", ".", "move_dimension", "(", "observation_covs", ",", "0", ",", "-", "3", ")", "return", "latent_covs", ",", "observation_covs" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
LinearGaussianStateSpaceModel.latents_to_observations
Push latent means and covariances forward through the observation model. Args: latent_means: float `Tensor` of shape `[..., num_timesteps, latent_size]` latent_covs: float `Tensor` of shape `[..., num_timesteps, latent_size, latent_size]`. Returns: observation_means: float `Tensor` of shape `[..., num_timesteps, observation_size]` observation_covs: float `Tensor` of shape `[..., num_timesteps, observation_size, observation_size]`
tensorflow_probability/python/distributions/linear_gaussian_ssm.py
def latents_to_observations(self, latent_means, latent_covs): """Push latent means and covariances forward through the observation model. Args: latent_means: float `Tensor` of shape `[..., num_timesteps, latent_size]` latent_covs: float `Tensor` of shape `[..., num_timesteps, latent_size, latent_size]`. Returns: observation_means: float `Tensor` of shape `[..., num_timesteps, observation_size]` observation_covs: float `Tensor` of shape `[..., num_timesteps, observation_size, observation_size]` """ with tf.name_scope("latents_to_observations"): pushforward_latents_step = build_pushforward_latents_step( self.get_observation_matrix_for_timestep, self.get_observation_noise_for_timestep) latent_means = distribution_util.move_dimension( latent_means, source_idx=-2, dest_idx=0) latent_means = latent_means[..., tf.newaxis] # Make matmul happy. latent_covs = distribution_util.move_dimension( latent_covs, source_idx=-3, dest_idx=0) (initial_observation_mean, initial_observation_cov) = pushforward_latents_step( _=None, # Loop body ignores previous observations. latent_t_mean_cov=(self.initial_step, latent_means[self.initial_step], latent_covs[self.initial_step])) # TODO(davmre) this loop is embarassingly parallel; replace with `pfor`. timesteps = tf.range(self.initial_step, self.initial_step + self.num_timesteps) observation_means, observation_covs = tf.scan( pushforward_latents_step, elems=(timesteps, latent_means, latent_covs), initializer=(initial_observation_mean, initial_observation_cov), parallel_iterations=10000) observation_means = distribution_util.move_dimension( observation_means[..., 0], source_idx=0, dest_idx=-2) observation_covs = distribution_util.move_dimension( observation_covs, source_idx=0, dest_idx=-3) return observation_means, observation_covs
def latents_to_observations(self, latent_means, latent_covs): """Push latent means and covariances forward through the observation model. Args: latent_means: float `Tensor` of shape `[..., num_timesteps, latent_size]` latent_covs: float `Tensor` of shape `[..., num_timesteps, latent_size, latent_size]`. Returns: observation_means: float `Tensor` of shape `[..., num_timesteps, observation_size]` observation_covs: float `Tensor` of shape `[..., num_timesteps, observation_size, observation_size]` """ with tf.name_scope("latents_to_observations"): pushforward_latents_step = build_pushforward_latents_step( self.get_observation_matrix_for_timestep, self.get_observation_noise_for_timestep) latent_means = distribution_util.move_dimension( latent_means, source_idx=-2, dest_idx=0) latent_means = latent_means[..., tf.newaxis] # Make matmul happy. latent_covs = distribution_util.move_dimension( latent_covs, source_idx=-3, dest_idx=0) (initial_observation_mean, initial_observation_cov) = pushforward_latents_step( _=None, # Loop body ignores previous observations. latent_t_mean_cov=(self.initial_step, latent_means[self.initial_step], latent_covs[self.initial_step])) # TODO(davmre) this loop is embarassingly parallel; replace with `pfor`. timesteps = tf.range(self.initial_step, self.initial_step + self.num_timesteps) observation_means, observation_covs = tf.scan( pushforward_latents_step, elems=(timesteps, latent_means, latent_covs), initializer=(initial_observation_mean, initial_observation_cov), parallel_iterations=10000) observation_means = distribution_util.move_dimension( observation_means[..., 0], source_idx=0, dest_idx=-2) observation_covs = distribution_util.move_dimension( observation_covs, source_idx=0, dest_idx=-3) return observation_means, observation_covs
[ "Push", "latent", "means", "and", "covariances", "forward", "through", "the", "observation", "model", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/linear_gaussian_ssm.py#L1097-L1145
[ "def", "latents_to_observations", "(", "self", ",", "latent_means", ",", "latent_covs", ")", ":", "with", "tf", ".", "name_scope", "(", "\"latents_to_observations\"", ")", ":", "pushforward_latents_step", "=", "build_pushforward_latents_step", "(", "self", ".", "get_observation_matrix_for_timestep", ",", "self", ".", "get_observation_noise_for_timestep", ")", "latent_means", "=", "distribution_util", ".", "move_dimension", "(", "latent_means", ",", "source_idx", "=", "-", "2", ",", "dest_idx", "=", "0", ")", "latent_means", "=", "latent_means", "[", "...", ",", "tf", ".", "newaxis", "]", "# Make matmul happy.", "latent_covs", "=", "distribution_util", ".", "move_dimension", "(", "latent_covs", ",", "source_idx", "=", "-", "3", ",", "dest_idx", "=", "0", ")", "(", "initial_observation_mean", ",", "initial_observation_cov", ")", "=", "pushforward_latents_step", "(", "_", "=", "None", ",", "# Loop body ignores previous observations.", "latent_t_mean_cov", "=", "(", "self", ".", "initial_step", ",", "latent_means", "[", "self", ".", "initial_step", "]", ",", "latent_covs", "[", "self", ".", "initial_step", "]", ")", ")", "# TODO(davmre) this loop is embarassingly parallel; replace with `pfor`.", "timesteps", "=", "tf", ".", "range", "(", "self", ".", "initial_step", ",", "self", ".", "initial_step", "+", "self", ".", "num_timesteps", ")", "observation_means", ",", "observation_covs", "=", "tf", ".", "scan", "(", "pushforward_latents_step", ",", "elems", "=", "(", "timesteps", ",", "latent_means", ",", "latent_covs", ")", ",", "initializer", "=", "(", "initial_observation_mean", ",", "initial_observation_cov", ")", ",", "parallel_iterations", "=", "10000", ")", "observation_means", "=", "distribution_util", ".", "move_dimension", "(", "observation_means", "[", "...", ",", "0", "]", ",", "source_idx", "=", "0", ",", "dest_idx", "=", "-", "2", ")", "observation_covs", "=", "distribution_util", ".", "move_dimension", "(", "observation_covs", ",", "source_idx", "=", "0", ",", "dest_idx", "=", "-", "3", ")", "return", "observation_means", ",", "observation_covs" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
_bessel_ive
Computes I_v(z)*exp(-abs(z)) using a recurrence relation, where z > 0.
tensorflow_probability/python/distributions/von_mises_fisher.py
def _bessel_ive(v, z, cache=None): """Computes I_v(z)*exp(-abs(z)) using a recurrence relation, where z > 0.""" # TODO(b/67497980): Switch to a more numerically faithful implementation. z = tf.convert_to_tensor(value=z) wrap = lambda result: tf.debugging.check_numerics(result, 'besseli{}'.format(v )) if float(v) >= 2: raise ValueError( 'Evaluating bessel_i by recurrence becomes imprecise for large v') cache = cache or {} safe_z = tf.where(z > 0, z, tf.ones_like(z)) if v in cache: return wrap(cache[v]) if v == 0: cache[v] = tf.math.bessel_i0e(z) elif v == 1: cache[v] = tf.math.bessel_i1e(z) elif v == 0.5: # sinh(x)*exp(-abs(x)), sinh(x) = (e^x - e^{-x}) / 2 sinhe = lambda x: (tf.exp(x - tf.abs(x)) - tf.exp(-x - tf.abs(x))) / 2 cache[v] = ( np.sqrt(2 / np.pi) * sinhe(z) * tf.where(z > 0, tf.math.rsqrt(safe_z), tf.ones_like(safe_z))) elif v == -0.5: # cosh(x)*exp(-abs(x)), cosh(x) = (e^x + e^{-x}) / 2 coshe = lambda x: (tf.exp(x - tf.abs(x)) + tf.exp(-x - tf.abs(x))) / 2 cache[v] = ( np.sqrt(2 / np.pi) * coshe(z) * tf.where(z > 0, tf.math.rsqrt(safe_z), tf.ones_like(safe_z))) if v <= 1: return wrap(cache[v]) # Recurrence relation: cache[v] = (_bessel_ive(v - 2, z, cache) - (2 * (v - 1)) * _bessel_ive(v - 1, z, cache) / z) return wrap(cache[v])
def _bessel_ive(v, z, cache=None): """Computes I_v(z)*exp(-abs(z)) using a recurrence relation, where z > 0.""" # TODO(b/67497980): Switch to a more numerically faithful implementation. z = tf.convert_to_tensor(value=z) wrap = lambda result: tf.debugging.check_numerics(result, 'besseli{}'.format(v )) if float(v) >= 2: raise ValueError( 'Evaluating bessel_i by recurrence becomes imprecise for large v') cache = cache or {} safe_z = tf.where(z > 0, z, tf.ones_like(z)) if v in cache: return wrap(cache[v]) if v == 0: cache[v] = tf.math.bessel_i0e(z) elif v == 1: cache[v] = tf.math.bessel_i1e(z) elif v == 0.5: # sinh(x)*exp(-abs(x)), sinh(x) = (e^x - e^{-x}) / 2 sinhe = lambda x: (tf.exp(x - tf.abs(x)) - tf.exp(-x - tf.abs(x))) / 2 cache[v] = ( np.sqrt(2 / np.pi) * sinhe(z) * tf.where(z > 0, tf.math.rsqrt(safe_z), tf.ones_like(safe_z))) elif v == -0.5: # cosh(x)*exp(-abs(x)), cosh(x) = (e^x + e^{-x}) / 2 coshe = lambda x: (tf.exp(x - tf.abs(x)) + tf.exp(-x - tf.abs(x))) / 2 cache[v] = ( np.sqrt(2 / np.pi) * coshe(z) * tf.where(z > 0, tf.math.rsqrt(safe_z), tf.ones_like(safe_z))) if v <= 1: return wrap(cache[v]) # Recurrence relation: cache[v] = (_bessel_ive(v - 2, z, cache) - (2 * (v - 1)) * _bessel_ive(v - 1, z, cache) / z) return wrap(cache[v])
[ "Computes", "I_v", "(", "z", ")", "*", "exp", "(", "-", "abs", "(", "z", "))", "using", "a", "recurrence", "relation", "where", "z", ">", "0", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/von_mises_fisher.py#L36-L73
[ "def", "_bessel_ive", "(", "v", ",", "z", ",", "cache", "=", "None", ")", ":", "# TODO(b/67497980): Switch to a more numerically faithful implementation.", "z", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "z", ")", "wrap", "=", "lambda", "result", ":", "tf", ".", "debugging", ".", "check_numerics", "(", "result", ",", "'besseli{}'", ".", "format", "(", "v", ")", ")", "if", "float", "(", "v", ")", ">=", "2", ":", "raise", "ValueError", "(", "'Evaluating bessel_i by recurrence becomes imprecise for large v'", ")", "cache", "=", "cache", "or", "{", "}", "safe_z", "=", "tf", ".", "where", "(", "z", ">", "0", ",", "z", ",", "tf", ".", "ones_like", "(", "z", ")", ")", "if", "v", "in", "cache", ":", "return", "wrap", "(", "cache", "[", "v", "]", ")", "if", "v", "==", "0", ":", "cache", "[", "v", "]", "=", "tf", ".", "math", ".", "bessel_i0e", "(", "z", ")", "elif", "v", "==", "1", ":", "cache", "[", "v", "]", "=", "tf", ".", "math", ".", "bessel_i1e", "(", "z", ")", "elif", "v", "==", "0.5", ":", "# sinh(x)*exp(-abs(x)), sinh(x) = (e^x - e^{-x}) / 2", "sinhe", "=", "lambda", "x", ":", "(", "tf", ".", "exp", "(", "x", "-", "tf", ".", "abs", "(", "x", ")", ")", "-", "tf", ".", "exp", "(", "-", "x", "-", "tf", ".", "abs", "(", "x", ")", ")", ")", "/", "2", "cache", "[", "v", "]", "=", "(", "np", ".", "sqrt", "(", "2", "/", "np", ".", "pi", ")", "*", "sinhe", "(", "z", ")", "*", "tf", ".", "where", "(", "z", ">", "0", ",", "tf", ".", "math", ".", "rsqrt", "(", "safe_z", ")", ",", "tf", ".", "ones_like", "(", "safe_z", ")", ")", ")", "elif", "v", "==", "-", "0.5", ":", "# cosh(x)*exp(-abs(x)), cosh(x) = (e^x + e^{-x}) / 2", "coshe", "=", "lambda", "x", ":", "(", "tf", ".", "exp", "(", "x", "-", "tf", ".", "abs", "(", "x", ")", ")", "+", "tf", ".", "exp", "(", "-", "x", "-", "tf", ".", "abs", "(", "x", ")", ")", ")", "/", "2", "cache", "[", "v", "]", "=", "(", "np", ".", "sqrt", "(", "2", "/", "np", ".", "pi", ")", "*", "coshe", "(", "z", ")", "*", "tf", ".", "where", "(", "z", ">", "0", ",", "tf", ".", "math", ".", "rsqrt", "(", "safe_z", ")", ",", "tf", ".", "ones_like", "(", "safe_z", ")", ")", ")", "if", "v", "<=", "1", ":", "return", "wrap", "(", "cache", "[", "v", "]", ")", "# Recurrence relation:", "cache", "[", "v", "]", "=", "(", "_bessel_ive", "(", "v", "-", "2", ",", "z", ",", "cache", ")", "-", "(", "2", "*", "(", "v", "-", "1", ")", ")", "*", "_bessel_ive", "(", "v", "-", "1", ",", "z", ",", "cache", ")", "/", "z", ")", "return", "wrap", "(", "cache", "[", "v", "]", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
VonMisesFisher._log_normalization
Computes the log-normalizer of the distribution.
tensorflow_probability/python/distributions/von_mises_fisher.py
def _log_normalization(self): """Computes the log-normalizer of the distribution.""" event_dim = tf.compat.dimension_value(self.event_shape[0]) if event_dim is None: raise ValueError('vMF _log_normalizer currently only supports ' 'statically known event shape') safe_conc = tf.where(self.concentration > 0, self.concentration, tf.ones_like(self.concentration)) safe_lognorm = ((event_dim / 2 - 1) * tf.math.log(safe_conc) - (event_dim / 2) * np.log(2 * np.pi) - tf.math.log(_bessel_ive(event_dim / 2 - 1, safe_conc)) - tf.abs(safe_conc)) log_nsphere_surface_area = ( np.log(2.) + (event_dim / 2) * np.log(np.pi) - tf.math.lgamma(tf.cast(event_dim / 2, self.dtype))) return tf.where(self.concentration > 0, -safe_lognorm, log_nsphere_surface_area * tf.ones_like(safe_lognorm))
def _log_normalization(self): """Computes the log-normalizer of the distribution.""" event_dim = tf.compat.dimension_value(self.event_shape[0]) if event_dim is None: raise ValueError('vMF _log_normalizer currently only supports ' 'statically known event shape') safe_conc = tf.where(self.concentration > 0, self.concentration, tf.ones_like(self.concentration)) safe_lognorm = ((event_dim / 2 - 1) * tf.math.log(safe_conc) - (event_dim / 2) * np.log(2 * np.pi) - tf.math.log(_bessel_ive(event_dim / 2 - 1, safe_conc)) - tf.abs(safe_conc)) log_nsphere_surface_area = ( np.log(2.) + (event_dim / 2) * np.log(np.pi) - tf.math.lgamma(tf.cast(event_dim / 2, self.dtype))) return tf.where(self.concentration > 0, -safe_lognorm, log_nsphere_surface_area * tf.ones_like(safe_lognorm))
[ "Computes", "the", "log", "-", "normalizer", "of", "the", "distribution", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/von_mises_fisher.py#L262-L280
[ "def", "_log_normalization", "(", "self", ")", ":", "event_dim", "=", "tf", ".", "compat", ".", "dimension_value", "(", "self", ".", "event_shape", "[", "0", "]", ")", "if", "event_dim", "is", "None", ":", "raise", "ValueError", "(", "'vMF _log_normalizer currently only supports '", "'statically known event shape'", ")", "safe_conc", "=", "tf", ".", "where", "(", "self", ".", "concentration", ">", "0", ",", "self", ".", "concentration", ",", "tf", ".", "ones_like", "(", "self", ".", "concentration", ")", ")", "safe_lognorm", "=", "(", "(", "event_dim", "/", "2", "-", "1", ")", "*", "tf", ".", "math", ".", "log", "(", "safe_conc", ")", "-", "(", "event_dim", "/", "2", ")", "*", "np", ".", "log", "(", "2", "*", "np", ".", "pi", ")", "-", "tf", ".", "math", ".", "log", "(", "_bessel_ive", "(", "event_dim", "/", "2", "-", "1", ",", "safe_conc", ")", ")", "-", "tf", ".", "abs", "(", "safe_conc", ")", ")", "log_nsphere_surface_area", "=", "(", "np", ".", "log", "(", "2.", ")", "+", "(", "event_dim", "/", "2", ")", "*", "np", ".", "log", "(", "np", ".", "pi", ")", "-", "tf", ".", "math", ".", "lgamma", "(", "tf", ".", "cast", "(", "event_dim", "/", "2", ",", "self", ".", "dtype", ")", ")", ")", "return", "tf", ".", "where", "(", "self", ".", "concentration", ">", "0", ",", "-", "safe_lognorm", ",", "log_nsphere_surface_area", "*", "tf", ".", "ones_like", "(", "safe_lognorm", ")", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
VonMisesFisher._maybe_assert_valid_sample
Check counts for proper shape, values, then return tensor version.
tensorflow_probability/python/distributions/von_mises_fisher.py
def _maybe_assert_valid_sample(self, samples): """Check counts for proper shape, values, then return tensor version.""" if not self.validate_args: return samples with tf.control_dependencies([ assert_util.assert_near( 1., tf.linalg.norm(tensor=samples, axis=-1), message='samples must be unit length'), assert_util.assert_equal( tf.shape(input=samples)[-1:], self.event_shape_tensor(), message=('samples must have innermost dimension matching that of ' '`self.mean_direction`')), ]): return tf.identity(samples)
def _maybe_assert_valid_sample(self, samples): """Check counts for proper shape, values, then return tensor version.""" if not self.validate_args: return samples with tf.control_dependencies([ assert_util.assert_near( 1., tf.linalg.norm(tensor=samples, axis=-1), message='samples must be unit length'), assert_util.assert_equal( tf.shape(input=samples)[-1:], self.event_shape_tensor(), message=('samples must have innermost dimension matching that of ' '`self.mean_direction`')), ]): return tf.identity(samples)
[ "Check", "counts", "for", "proper", "shape", "values", "then", "return", "tensor", "version", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/von_mises_fisher.py#L285-L300
[ "def", "_maybe_assert_valid_sample", "(", "self", ",", "samples", ")", ":", "if", "not", "self", ".", "validate_args", ":", "return", "samples", "with", "tf", ".", "control_dependencies", "(", "[", "assert_util", ".", "assert_near", "(", "1.", ",", "tf", ".", "linalg", ".", "norm", "(", "tensor", "=", "samples", ",", "axis", "=", "-", "1", ")", ",", "message", "=", "'samples must be unit length'", ")", ",", "assert_util", ".", "assert_equal", "(", "tf", ".", "shape", "(", "input", "=", "samples", ")", "[", "-", "1", ":", "]", ",", "self", ".", "event_shape_tensor", "(", ")", ",", "message", "=", "(", "'samples must have innermost dimension matching that of '", "'`self.mean_direction`'", ")", ")", ",", "]", ")", ":", "return", "tf", ".", "identity", "(", "samples", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
VonMisesFisher._mode
The mode of the von Mises-Fisher distribution is the mean direction.
tensorflow_probability/python/distributions/von_mises_fisher.py
def _mode(self): """The mode of the von Mises-Fisher distribution is the mean direction.""" return (self.mean_direction + tf.zeros_like(self.concentration)[..., tf.newaxis])
def _mode(self): """The mode of the von Mises-Fisher distribution is the mean direction.""" return (self.mean_direction + tf.zeros_like(self.concentration)[..., tf.newaxis])
[ "The", "mode", "of", "the", "von", "Mises", "-", "Fisher", "distribution", "is", "the", "mean", "direction", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/von_mises_fisher.py#L302-L305
[ "def", "_mode", "(", "self", ")", ":", "return", "(", "self", ".", "mean_direction", "+", "tf", ".", "zeros_like", "(", "self", ".", "concentration", ")", "[", "...", ",", "tf", ".", "newaxis", "]", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
VonMisesFisher._rotate
Applies a Householder rotation to `samples`.
tensorflow_probability/python/distributions/von_mises_fisher.py
def _rotate(self, samples): """Applies a Householder rotation to `samples`.""" event_dim = ( tf.compat.dimension_value(self.event_shape[0]) or self._event_shape_tensor()[0]) basis = tf.concat([[1.], tf.zeros([event_dim - 1], dtype=self.dtype)], axis=0), u = tf.nn.l2_normalize(basis - self.mean_direction, axis=-1) return samples - 2 * tf.reduce_sum( input_tensor=samples * u, axis=-1, keepdims=True) * u
def _rotate(self, samples): """Applies a Householder rotation to `samples`.""" event_dim = ( tf.compat.dimension_value(self.event_shape[0]) or self._event_shape_tensor()[0]) basis = tf.concat([[1.], tf.zeros([event_dim - 1], dtype=self.dtype)], axis=0), u = tf.nn.l2_normalize(basis - self.mean_direction, axis=-1) return samples - 2 * tf.reduce_sum( input_tensor=samples * u, axis=-1, keepdims=True) * u
[ "Applies", "a", "Householder", "rotation", "to", "samples", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/von_mises_fisher.py#L347-L356
[ "def", "_rotate", "(", "self", ",", "samples", ")", ":", "event_dim", "=", "(", "tf", ".", "compat", ".", "dimension_value", "(", "self", ".", "event_shape", "[", "0", "]", ")", "or", "self", ".", "_event_shape_tensor", "(", ")", "[", "0", "]", ")", "basis", "=", "tf", ".", "concat", "(", "[", "[", "1.", "]", ",", "tf", ".", "zeros", "(", "[", "event_dim", "-", "1", "]", ",", "dtype", "=", "self", ".", "dtype", ")", "]", ",", "axis", "=", "0", ")", ",", "u", "=", "tf", ".", "nn", ".", "l2_normalize", "(", "basis", "-", "self", ".", "mean_direction", ",", "axis", "=", "-", "1", ")", "return", "samples", "-", "2", "*", "tf", ".", "reduce_sum", "(", "input_tensor", "=", "samples", "*", "u", ",", "axis", "=", "-", "1", ",", "keepdims", "=", "True", ")", "*", "u" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
VonMisesFisher._sample_3d
Specialized inversion sampler for 3D.
tensorflow_probability/python/distributions/von_mises_fisher.py
def _sample_3d(self, n, seed=None): """Specialized inversion sampler for 3D.""" seed = seed_stream.SeedStream(seed, salt='von_mises_fisher_3d') u_shape = tf.concat([[n], self._batch_shape_tensor()], axis=0) z = tf.random.uniform(u_shape, seed=seed(), dtype=self.dtype) # TODO(bjp): Higher-order odd dim analytic CDFs are available in [1], could # be bisected for bounded sampling runtime (i.e. not rejection sampling). # [1]: Inversion sampler via: https://ieeexplore.ieee.org/document/7347705/ # The inversion is: u = 1 + log(z + (1-z)*exp(-2*kappa)) / kappa # We must protect against both kappa and z being zero. safe_conc = tf.where(self.concentration > 0, self.concentration, tf.ones_like(self.concentration)) safe_z = tf.where(z > 0, z, tf.ones_like(z)) safe_u = 1 + tf.reduce_logsumexp( input_tensor=[ tf.math.log(safe_z), tf.math.log1p(-safe_z) - 2 * safe_conc ], axis=0) / safe_conc # Limit of the above expression as kappa->0 is 2*z-1 u = tf.where(self.concentration > tf.zeros_like(safe_u), safe_u, 2 * z - 1) # Limit of the expression as z->0 is -1. u = tf.where(tf.equal(z, 0), -tf.ones_like(u), u) if not self._allow_nan_stats: u = tf.debugging.check_numerics(u, 'u in _sample_3d') return u[..., tf.newaxis]
def _sample_3d(self, n, seed=None): """Specialized inversion sampler for 3D.""" seed = seed_stream.SeedStream(seed, salt='von_mises_fisher_3d') u_shape = tf.concat([[n], self._batch_shape_tensor()], axis=0) z = tf.random.uniform(u_shape, seed=seed(), dtype=self.dtype) # TODO(bjp): Higher-order odd dim analytic CDFs are available in [1], could # be bisected for bounded sampling runtime (i.e. not rejection sampling). # [1]: Inversion sampler via: https://ieeexplore.ieee.org/document/7347705/ # The inversion is: u = 1 + log(z + (1-z)*exp(-2*kappa)) / kappa # We must protect against both kappa and z being zero. safe_conc = tf.where(self.concentration > 0, self.concentration, tf.ones_like(self.concentration)) safe_z = tf.where(z > 0, z, tf.ones_like(z)) safe_u = 1 + tf.reduce_logsumexp( input_tensor=[ tf.math.log(safe_z), tf.math.log1p(-safe_z) - 2 * safe_conc ], axis=0) / safe_conc # Limit of the above expression as kappa->0 is 2*z-1 u = tf.where(self.concentration > tf.zeros_like(safe_u), safe_u, 2 * z - 1) # Limit of the expression as z->0 is -1. u = tf.where(tf.equal(z, 0), -tf.ones_like(u), u) if not self._allow_nan_stats: u = tf.debugging.check_numerics(u, 'u in _sample_3d') return u[..., tf.newaxis]
[ "Specialized", "inversion", "sampler", "for", "3D", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/von_mises_fisher.py#L358-L385
[ "def", "_sample_3d", "(", "self", ",", "n", ",", "seed", "=", "None", ")", ":", "seed", "=", "seed_stream", ".", "SeedStream", "(", "seed", ",", "salt", "=", "'von_mises_fisher_3d'", ")", "u_shape", "=", "tf", ".", "concat", "(", "[", "[", "n", "]", ",", "self", ".", "_batch_shape_tensor", "(", ")", "]", ",", "axis", "=", "0", ")", "z", "=", "tf", ".", "random", ".", "uniform", "(", "u_shape", ",", "seed", "=", "seed", "(", ")", ",", "dtype", "=", "self", ".", "dtype", ")", "# TODO(bjp): Higher-order odd dim analytic CDFs are available in [1], could", "# be bisected for bounded sampling runtime (i.e. not rejection sampling).", "# [1]: Inversion sampler via: https://ieeexplore.ieee.org/document/7347705/", "# The inversion is: u = 1 + log(z + (1-z)*exp(-2*kappa)) / kappa", "# We must protect against both kappa and z being zero.", "safe_conc", "=", "tf", ".", "where", "(", "self", ".", "concentration", ">", "0", ",", "self", ".", "concentration", ",", "tf", ".", "ones_like", "(", "self", ".", "concentration", ")", ")", "safe_z", "=", "tf", ".", "where", "(", "z", ">", "0", ",", "z", ",", "tf", ".", "ones_like", "(", "z", ")", ")", "safe_u", "=", "1", "+", "tf", ".", "reduce_logsumexp", "(", "input_tensor", "=", "[", "tf", ".", "math", ".", "log", "(", "safe_z", ")", ",", "tf", ".", "math", ".", "log1p", "(", "-", "safe_z", ")", "-", "2", "*", "safe_conc", "]", ",", "axis", "=", "0", ")", "/", "safe_conc", "# Limit of the above expression as kappa->0 is 2*z-1", "u", "=", "tf", ".", "where", "(", "self", ".", "concentration", ">", "tf", ".", "zeros_like", "(", "safe_u", ")", ",", "safe_u", ",", "2", "*", "z", "-", "1", ")", "# Limit of the expression as z->0 is -1.", "u", "=", "tf", ".", "where", "(", "tf", ".", "equal", "(", "z", ",", "0", ")", ",", "-", "tf", ".", "ones_like", "(", "u", ")", ",", "u", ")", "if", "not", "self", ".", "_allow_nan_stats", ":", "u", "=", "tf", ".", "debugging", ".", "check_numerics", "(", "u", ",", "'u in _sample_3d'", ")", "return", "u", "[", "...", ",", "tf", ".", "newaxis", "]" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
_copy_fn
Create a deep copy of fn. Args: fn: a callable Returns: A `FunctionType`: a deep copy of fn. Raises: TypeError: if `fn` is not a callable.
tensorflow_probability/python/distributions/distribution.py
def _copy_fn(fn): """Create a deep copy of fn. Args: fn: a callable Returns: A `FunctionType`: a deep copy of fn. Raises: TypeError: if `fn` is not a callable. """ if not callable(fn): raise TypeError("fn is not callable: {}".format(fn)) # The blessed way to copy a function. copy.deepcopy fails to create a # non-reference copy. Since: # types.FunctionType == type(lambda: None), # and the docstring for the function type states: # # function(code, globals[, name[, argdefs[, closure]]]) # # Create a function object from a code object and a dictionary. # ... # # Here we can use this to create a new function with the old function's # code, globals, closure, etc. return types.FunctionType( code=fn.__code__, globals=fn.__globals__, name=fn.__name__, argdefs=fn.__defaults__, closure=fn.__closure__)
def _copy_fn(fn): """Create a deep copy of fn. Args: fn: a callable Returns: A `FunctionType`: a deep copy of fn. Raises: TypeError: if `fn` is not a callable. """ if not callable(fn): raise TypeError("fn is not callable: {}".format(fn)) # The blessed way to copy a function. copy.deepcopy fails to create a # non-reference copy. Since: # types.FunctionType == type(lambda: None), # and the docstring for the function type states: # # function(code, globals[, name[, argdefs[, closure]]]) # # Create a function object from a code object and a dictionary. # ... # # Here we can use this to create a new function with the old function's # code, globals, closure, etc. return types.FunctionType( code=fn.__code__, globals=fn.__globals__, name=fn.__name__, argdefs=fn.__defaults__, closure=fn.__closure__)
[ "Create", "a", "deep", "copy", "of", "fn", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/distribution.py#L75-L104
[ "def", "_copy_fn", "(", "fn", ")", ":", "if", "not", "callable", "(", "fn", ")", ":", "raise", "TypeError", "(", "\"fn is not callable: {}\"", ".", "format", "(", "fn", ")", ")", "# The blessed way to copy a function. copy.deepcopy fails to create a", "# non-reference copy. Since:", "# types.FunctionType == type(lambda: None),", "# and the docstring for the function type states:", "#", "# function(code, globals[, name[, argdefs[, closure]]])", "#", "# Create a function object from a code object and a dictionary.", "# ...", "#", "# Here we can use this to create a new function with the old function's", "# code, globals, closure, etc.", "return", "types", ".", "FunctionType", "(", "code", "=", "fn", ".", "__code__", ",", "globals", "=", "fn", ".", "__globals__", ",", "name", "=", "fn", ".", "__name__", ",", "argdefs", "=", "fn", ".", "__defaults__", ",", "closure", "=", "fn", ".", "__closure__", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
_update_docstring
Update old_str by inserting append_str just before the "Args:" section.
tensorflow_probability/python/distributions/distribution.py
def _update_docstring(old_str, append_str): """Update old_str by inserting append_str just before the "Args:" section.""" old_str = old_str or "" old_str_lines = old_str.split("\n") # Step 0: Prepend spaces to all lines of append_str. This is # necessary for correct markdown generation. append_str = "\n".join(" %s" % line for line in append_str.split("\n")) # Step 1: Find mention of "Args": has_args_ix = [ ix for ix, line in enumerate(old_str_lines) if line.strip().lower() == "args:"] if has_args_ix: final_args_ix = has_args_ix[-1] return ("\n".join(old_str_lines[:final_args_ix]) + "\n\n" + append_str + "\n\n" + "\n".join(old_str_lines[final_args_ix:])) else: return old_str + "\n\n" + append_str
def _update_docstring(old_str, append_str): """Update old_str by inserting append_str just before the "Args:" section.""" old_str = old_str or "" old_str_lines = old_str.split("\n") # Step 0: Prepend spaces to all lines of append_str. This is # necessary for correct markdown generation. append_str = "\n".join(" %s" % line for line in append_str.split("\n")) # Step 1: Find mention of "Args": has_args_ix = [ ix for ix, line in enumerate(old_str_lines) if line.strip().lower() == "args:"] if has_args_ix: final_args_ix = has_args_ix[-1] return ("\n".join(old_str_lines[:final_args_ix]) + "\n\n" + append_str + "\n\n" + "\n".join(old_str_lines[final_args_ix:])) else: return old_str + "\n\n" + append_str
[ "Update", "old_str", "by", "inserting", "append_str", "just", "before", "the", "Args", ":", "section", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/distribution.py#L107-L126
[ "def", "_update_docstring", "(", "old_str", ",", "append_str", ")", ":", "old_str", "=", "old_str", "or", "\"\"", "old_str_lines", "=", "old_str", ".", "split", "(", "\"\\n\"", ")", "# Step 0: Prepend spaces to all lines of append_str. This is", "# necessary for correct markdown generation.", "append_str", "=", "\"\\n\"", ".", "join", "(", "\" %s\"", "%", "line", "for", "line", "in", "append_str", ".", "split", "(", "\"\\n\"", ")", ")", "# Step 1: Find mention of \"Args\":", "has_args_ix", "=", "[", "ix", "for", "ix", ",", "line", "in", "enumerate", "(", "old_str_lines", ")", "if", "line", ".", "strip", "(", ")", ".", "lower", "(", ")", "==", "\"args:\"", "]", "if", "has_args_ix", ":", "final_args_ix", "=", "has_args_ix", "[", "-", "1", "]", "return", "(", "\"\\n\"", ".", "join", "(", "old_str_lines", "[", ":", "final_args_ix", "]", ")", "+", "\"\\n\\n\"", "+", "append_str", "+", "\"\\n\\n\"", "+", "\"\\n\"", ".", "join", "(", "old_str_lines", "[", "final_args_ix", ":", "]", ")", ")", "else", ":", "return", "old_str", "+", "\"\\n\\n\"", "+", "append_str" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
_convert_to_tensor
Converts the given `value` to a (structure of) `Tensor`. This function converts Python objects of various types to a (structure of) `Tensor` objects. It accepts `Tensor` objects, numpy arrays, Python lists, and Python scalars. For example: Args: value: An object whose structure matches that of `dtype ` and/or `dtype_hint` and for which each leaf has a registered `Tensor` conversion function. dtype: Optional (structure of) element type for the returned tensor. If missing, the type is inferred from the type of `value`. dtype_hint: Optional (structure of) element type for the returned tensor, used when dtype is None. In some cases, a caller may not have a dtype in mind when converting to a tensor, so dtype_hint can be used as a soft preference. If the conversion to `dtype_hint` is not possible, this argument has no effect. name: Optional name to use if a new `Tensor` is created. Returns: tensor: A (structure of) `Tensor` based on `value`. Raises: TypeError: If no conversion function is registered for `value` to `dtype`. RuntimeError: If a registered conversion function returns an invalid value. ValueError: If the `value` is a tensor not of given `dtype` in graph mode.
tensorflow_probability/python/distributions/distribution.py
def _convert_to_tensor(value, dtype=None, dtype_hint=None, name=None): """Converts the given `value` to a (structure of) `Tensor`. This function converts Python objects of various types to a (structure of) `Tensor` objects. It accepts `Tensor` objects, numpy arrays, Python lists, and Python scalars. For example: Args: value: An object whose structure matches that of `dtype ` and/or `dtype_hint` and for which each leaf has a registered `Tensor` conversion function. dtype: Optional (structure of) element type for the returned tensor. If missing, the type is inferred from the type of `value`. dtype_hint: Optional (structure of) element type for the returned tensor, used when dtype is None. In some cases, a caller may not have a dtype in mind when converting to a tensor, so dtype_hint can be used as a soft preference. If the conversion to `dtype_hint` is not possible, this argument has no effect. name: Optional name to use if a new `Tensor` is created. Returns: tensor: A (structure of) `Tensor` based on `value`. Raises: TypeError: If no conversion function is registered for `value` to `dtype`. RuntimeError: If a registered conversion function returns an invalid value. ValueError: If the `value` is a tensor not of given `dtype` in graph mode. """ if (tf.nest.is_nested(dtype) or tf.nest.is_nested(dtype_hint)): if dtype is None: fn = lambda v, pd: tf.convert_to_tensor(v, dtype_hint=pd, name=name) return tf.nest.map_structure(fn, value, dtype_hint) elif dtype_hint is None: fn = lambda v, d: tf.convert_to_tensor(v, dtype=d, name=name) return tf.nest.map_structure(fn, value, dtype_hint) else: fn = lambda v, d, pd: tf.convert_to_tensor( # pylint: disable=g-long-lambda v, dtype=d, dtype_hint=pd, name=name) return tf.nest.map_structure(fn, value, dtype, dtype_hint) return tf.convert_to_tensor( value=value, dtype=dtype, dtype_hint=dtype_hint, name=name)
def _convert_to_tensor(value, dtype=None, dtype_hint=None, name=None): """Converts the given `value` to a (structure of) `Tensor`. This function converts Python objects of various types to a (structure of) `Tensor` objects. It accepts `Tensor` objects, numpy arrays, Python lists, and Python scalars. For example: Args: value: An object whose structure matches that of `dtype ` and/or `dtype_hint` and for which each leaf has a registered `Tensor` conversion function. dtype: Optional (structure of) element type for the returned tensor. If missing, the type is inferred from the type of `value`. dtype_hint: Optional (structure of) element type for the returned tensor, used when dtype is None. In some cases, a caller may not have a dtype in mind when converting to a tensor, so dtype_hint can be used as a soft preference. If the conversion to `dtype_hint` is not possible, this argument has no effect. name: Optional name to use if a new `Tensor` is created. Returns: tensor: A (structure of) `Tensor` based on `value`. Raises: TypeError: If no conversion function is registered for `value` to `dtype`. RuntimeError: If a registered conversion function returns an invalid value. ValueError: If the `value` is a tensor not of given `dtype` in graph mode. """ if (tf.nest.is_nested(dtype) or tf.nest.is_nested(dtype_hint)): if dtype is None: fn = lambda v, pd: tf.convert_to_tensor(v, dtype_hint=pd, name=name) return tf.nest.map_structure(fn, value, dtype_hint) elif dtype_hint is None: fn = lambda v, d: tf.convert_to_tensor(v, dtype=d, name=name) return tf.nest.map_structure(fn, value, dtype_hint) else: fn = lambda v, d, pd: tf.convert_to_tensor( # pylint: disable=g-long-lambda v, dtype=d, dtype_hint=pd, name=name) return tf.nest.map_structure(fn, value, dtype, dtype_hint) return tf.convert_to_tensor( value=value, dtype=dtype, dtype_hint=dtype_hint, name=name)
[ "Converts", "the", "given", "value", "to", "a", "(", "structure", "of", ")", "Tensor", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/distribution.py#L129-L170
[ "def", "_convert_to_tensor", "(", "value", ",", "dtype", "=", "None", ",", "dtype_hint", "=", "None", ",", "name", "=", "None", ")", ":", "if", "(", "tf", ".", "nest", ".", "is_nested", "(", "dtype", ")", "or", "tf", ".", "nest", ".", "is_nested", "(", "dtype_hint", ")", ")", ":", "if", "dtype", "is", "None", ":", "fn", "=", "lambda", "v", ",", "pd", ":", "tf", ".", "convert_to_tensor", "(", "v", ",", "dtype_hint", "=", "pd", ",", "name", "=", "name", ")", "return", "tf", ".", "nest", ".", "map_structure", "(", "fn", ",", "value", ",", "dtype_hint", ")", "elif", "dtype_hint", "is", "None", ":", "fn", "=", "lambda", "v", ",", "d", ":", "tf", ".", "convert_to_tensor", "(", "v", ",", "dtype", "=", "d", ",", "name", "=", "name", ")", "return", "tf", ".", "nest", ".", "map_structure", "(", "fn", ",", "value", ",", "dtype_hint", ")", "else", ":", "fn", "=", "lambda", "v", ",", "d", ",", "pd", ":", "tf", ".", "convert_to_tensor", "(", "# pylint: disable=g-long-lambda", "v", ",", "dtype", "=", "d", ",", "dtype_hint", "=", "pd", ",", "name", "=", "name", ")", "return", "tf", ".", "nest", ".", "map_structure", "(", "fn", ",", "value", ",", "dtype", ",", "dtype_hint", ")", "return", "tf", ".", "convert_to_tensor", "(", "value", "=", "value", ",", "dtype", "=", "dtype", ",", "dtype_hint", "=", "dtype_hint", ",", "name", "=", "name", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
_remove_dict_keys_with_value
Removes `dict` keys which have have `self` as value.
tensorflow_probability/python/distributions/distribution.py
def _remove_dict_keys_with_value(dict_, val): """Removes `dict` keys which have have `self` as value.""" return {k: v for k, v in dict_.items() if v is not val}
def _remove_dict_keys_with_value(dict_, val): """Removes `dict` keys which have have `self` as value.""" return {k: v for k, v in dict_.items() if v is not val}
[ "Removes", "dict", "keys", "which", "have", "have", "self", "as", "value", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/distribution.py#L173-L175
[ "def", "_remove_dict_keys_with_value", "(", "dict_", ",", "val", ")", ":", "return", "{", "k", ":", "v", "for", "k", ",", "v", "in", "dict_", ".", "items", "(", ")", "if", "v", "is", "not", "val", "}" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
_recursively_replace_dict_for_pretty_dict
Recursively replace `dict`s with `_PrettyDict`.
tensorflow_probability/python/distributions/distribution.py
def _recursively_replace_dict_for_pretty_dict(x): """Recursively replace `dict`s with `_PrettyDict`.""" # We use "PrettyDict" because collections.OrderedDict repr/str has the word # "OrderedDict" in it. We only want to print "OrderedDict" if in fact the # input really is an OrderedDict. if isinstance(x, dict): return _PrettyDict({ k: _recursively_replace_dict_for_pretty_dict(v) for k, v in x.items()}) if (isinstance(x, collections.Sequence) and not isinstance(x, six.string_types)): args = (_recursively_replace_dict_for_pretty_dict(x_) for x_ in x) is_named_tuple = (isinstance(x, tuple) and hasattr(x, "_asdict") and hasattr(x, "_fields")) return type(x)(*args) if is_named_tuple else type(x)(args) if isinstance(x, collections.Mapping): return type(x)(**{k: _recursively_replace_dict_for_pretty_dict(v) for k, v in x.items()}) return x
def _recursively_replace_dict_for_pretty_dict(x): """Recursively replace `dict`s with `_PrettyDict`.""" # We use "PrettyDict" because collections.OrderedDict repr/str has the word # "OrderedDict" in it. We only want to print "OrderedDict" if in fact the # input really is an OrderedDict. if isinstance(x, dict): return _PrettyDict({ k: _recursively_replace_dict_for_pretty_dict(v) for k, v in x.items()}) if (isinstance(x, collections.Sequence) and not isinstance(x, six.string_types)): args = (_recursively_replace_dict_for_pretty_dict(x_) for x_ in x) is_named_tuple = (isinstance(x, tuple) and hasattr(x, "_asdict") and hasattr(x, "_fields")) return type(x)(*args) if is_named_tuple else type(x)(args) if isinstance(x, collections.Mapping): return type(x)(**{k: _recursively_replace_dict_for_pretty_dict(v) for k, v in x.items()}) return x
[ "Recursively", "replace", "dict", "s", "with", "_PrettyDict", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/distributions/distribution.py#L1392-L1411
[ "def", "_recursively_replace_dict_for_pretty_dict", "(", "x", ")", ":", "# We use \"PrettyDict\" because collections.OrderedDict repr/str has the word", "# \"OrderedDict\" in it. We only want to print \"OrderedDict\" if in fact the", "# input really is an OrderedDict.", "if", "isinstance", "(", "x", ",", "dict", ")", ":", "return", "_PrettyDict", "(", "{", "k", ":", "_recursively_replace_dict_for_pretty_dict", "(", "v", ")", "for", "k", ",", "v", "in", "x", ".", "items", "(", ")", "}", ")", "if", "(", "isinstance", "(", "x", ",", "collections", ".", "Sequence", ")", "and", "not", "isinstance", "(", "x", ",", "six", ".", "string_types", ")", ")", ":", "args", "=", "(", "_recursively_replace_dict_for_pretty_dict", "(", "x_", ")", "for", "x_", "in", "x", ")", "is_named_tuple", "=", "(", "isinstance", "(", "x", ",", "tuple", ")", "and", "hasattr", "(", "x", ",", "\"_asdict\"", ")", "and", "hasattr", "(", "x", ",", "\"_fields\"", ")", ")", "return", "type", "(", "x", ")", "(", "*", "args", ")", "if", "is_named_tuple", "else", "type", "(", "x", ")", "(", "args", ")", "if", "isinstance", "(", "x", ",", "collections", ".", "Mapping", ")", ":", "return", "type", "(", "x", ")", "(", "*", "*", "{", "k", ":", "_recursively_replace_dict_for_pretty_dict", "(", "v", ")", "for", "k", ",", "v", "in", "x", ".", "items", "(", ")", "}", ")", "return", "x" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
expectation
Computes the Monte-Carlo approximation of `E_p[f(X)]`. This function computes the Monte-Carlo approximation of an expectation, i.e., ```none E_p[f(X)] approx= m**-1 sum_i^m f(x_j), x_j ~iid p(X) ``` where: - `x_j = samples[j, ...]`, - `log(p(samples)) = log_prob(samples)` and - `m = prod(shape(samples)[axis])`. Tricks: Reparameterization and Score-Gradient When p is "reparameterized", i.e., a diffeomorphic transformation of a parameterless distribution (e.g., `Normal(Y; m, s) <=> Y = sX + m, X ~ Normal(0,1)`), we can swap gradient and expectation, i.e., `grad[ Avg{ s_i : i=1...n } ] = Avg{ grad[s_i] : i=1...n }` where `S_n = Avg{s_i}` and `s_i = f(x_i), x_i ~ p`. However, if p is not reparameterized, TensorFlow's gradient will be incorrect since the chain-rule stops at samples of non-reparameterized distributions. (The non-differentiated result, `approx_expectation`, is the same regardless of `use_reparametrization`.) In this circumstance using the Score-Gradient trick results in an unbiased gradient, i.e., ```none grad[ E_p[f(X)] ] = grad[ int dx p(x) f(x) ] = int dx grad[ p(x) f(x) ] = int dx [ p'(x) f(x) + p(x) f'(x) ] = int dx p(x) [p'(x) / p(x) f(x) + f'(x) ] = int dx p(x) grad[ f(x) p(x) / stop_grad[p(x)] ] = E_p[ grad[ f(x) p(x) / stop_grad[p(x)] ] ] ``` Unless p is not reparametrized, it is usually preferable to `use_reparametrization = True`. Warning: users are responsible for verifying `p` is a "reparameterized" distribution. Example Use: ```python # Monte-Carlo approximation of a reparameterized distribution, e.g., Normal. num_draws = int(1e5) p = tfp.distributions.Normal(loc=0., scale=1.) q = tfp.distributions.Normal(loc=1., scale=2.) exact_kl_normal_normal = tfp.distributions.kl_divergence(p, q) # ==> 0.44314718 approx_kl_normal_normal = tfp.monte_carlo.expectation( f=lambda x: p.log_prob(x) - q.log_prob(x), samples=p.sample(num_draws, seed=42), log_prob=p.log_prob, use_reparametrization=(p.reparameterization_type == tfp.distributions.FULLY_REPARAMETERIZED)) # ==> 0.44632751 # Relative Error: <1% # Monte-Carlo approximation of non-reparameterized distribution, # e.g., Bernoulli. num_draws = int(1e5) p = tfp.distributions.Bernoulli(probs=0.4) q = tfp.distributions.Bernoulli(probs=0.8) exact_kl_bernoulli_bernoulli = tfp.distributions.kl_divergence(p, q) # ==> 0.38190854 approx_kl_bernoulli_bernoulli = tfp.monte_carlo.expectation( f=lambda x: p.log_prob(x) - q.log_prob(x), samples=p.sample(num_draws, seed=42), log_prob=p.log_prob, use_reparametrization=(p.reparameterization_type == tfp.distributions.FULLY_REPARAMETERIZED)) # ==> 0.38336259 # Relative Error: <1% # For comparing the gradients, see `expectation_test.py`. ``` Note: The above example is for illustration only. To compute approximate KL-divergence, the following is preferred: ```python approx_kl_p_q = bf.monte_carlo_csiszar_f_divergence( f=bf.kl_reverse, p_log_prob=q.log_prob, q=p, num_draws=num_draws) ``` Args: f: Python callable which can return `f(samples)`. samples: `Tensor` of samples used to form the Monte-Carlo approximation of `E_p[f(X)]`. A batch of samples should be indexed by `axis` dimensions. log_prob: Python callable which can return `log_prob(samples)`. Must correspond to the natural-logarithm of the pdf/pmf of each sample. Only required/used if `use_reparametrization=False`. Default value: `None`. use_reparametrization: Python `bool` indicating that the approximation should use the fact that the gradient of samples is unbiased. Whether `True` or `False`, this arg only affects the gradient of the resulting `approx_expectation`. Default value: `True`. axis: The dimensions to average. If `None`, averages all dimensions. Default value: `0` (the left-most dimension). keep_dims: If True, retains averaged dimensions using size `1`. Default value: `False`. name: A `name_scope` for operations created by this function. Default value: `None` (which implies "expectation"). Returns: approx_expectation: `Tensor` corresponding to the Monte-Carlo approximation of `E_p[f(X)]`. Raises: ValueError: if `f` is not a Python `callable`. ValueError: if `use_reparametrization=False` and `log_prob` is not a Python `callable`.
tensorflow_probability/python/monte_carlo/expectation.py
def expectation(f, samples, log_prob=None, use_reparametrization=True, axis=0, keep_dims=False, name=None): """Computes the Monte-Carlo approximation of `E_p[f(X)]`. This function computes the Monte-Carlo approximation of an expectation, i.e., ```none E_p[f(X)] approx= m**-1 sum_i^m f(x_j), x_j ~iid p(X) ``` where: - `x_j = samples[j, ...]`, - `log(p(samples)) = log_prob(samples)` and - `m = prod(shape(samples)[axis])`. Tricks: Reparameterization and Score-Gradient When p is "reparameterized", i.e., a diffeomorphic transformation of a parameterless distribution (e.g., `Normal(Y; m, s) <=> Y = sX + m, X ~ Normal(0,1)`), we can swap gradient and expectation, i.e., `grad[ Avg{ s_i : i=1...n } ] = Avg{ grad[s_i] : i=1...n }` where `S_n = Avg{s_i}` and `s_i = f(x_i), x_i ~ p`. However, if p is not reparameterized, TensorFlow's gradient will be incorrect since the chain-rule stops at samples of non-reparameterized distributions. (The non-differentiated result, `approx_expectation`, is the same regardless of `use_reparametrization`.) In this circumstance using the Score-Gradient trick results in an unbiased gradient, i.e., ```none grad[ E_p[f(X)] ] = grad[ int dx p(x) f(x) ] = int dx grad[ p(x) f(x) ] = int dx [ p'(x) f(x) + p(x) f'(x) ] = int dx p(x) [p'(x) / p(x) f(x) + f'(x) ] = int dx p(x) grad[ f(x) p(x) / stop_grad[p(x)] ] = E_p[ grad[ f(x) p(x) / stop_grad[p(x)] ] ] ``` Unless p is not reparametrized, it is usually preferable to `use_reparametrization = True`. Warning: users are responsible for verifying `p` is a "reparameterized" distribution. Example Use: ```python # Monte-Carlo approximation of a reparameterized distribution, e.g., Normal. num_draws = int(1e5) p = tfp.distributions.Normal(loc=0., scale=1.) q = tfp.distributions.Normal(loc=1., scale=2.) exact_kl_normal_normal = tfp.distributions.kl_divergence(p, q) # ==> 0.44314718 approx_kl_normal_normal = tfp.monte_carlo.expectation( f=lambda x: p.log_prob(x) - q.log_prob(x), samples=p.sample(num_draws, seed=42), log_prob=p.log_prob, use_reparametrization=(p.reparameterization_type == tfp.distributions.FULLY_REPARAMETERIZED)) # ==> 0.44632751 # Relative Error: <1% # Monte-Carlo approximation of non-reparameterized distribution, # e.g., Bernoulli. num_draws = int(1e5) p = tfp.distributions.Bernoulli(probs=0.4) q = tfp.distributions.Bernoulli(probs=0.8) exact_kl_bernoulli_bernoulli = tfp.distributions.kl_divergence(p, q) # ==> 0.38190854 approx_kl_bernoulli_bernoulli = tfp.monte_carlo.expectation( f=lambda x: p.log_prob(x) - q.log_prob(x), samples=p.sample(num_draws, seed=42), log_prob=p.log_prob, use_reparametrization=(p.reparameterization_type == tfp.distributions.FULLY_REPARAMETERIZED)) # ==> 0.38336259 # Relative Error: <1% # For comparing the gradients, see `expectation_test.py`. ``` Note: The above example is for illustration only. To compute approximate KL-divergence, the following is preferred: ```python approx_kl_p_q = bf.monte_carlo_csiszar_f_divergence( f=bf.kl_reverse, p_log_prob=q.log_prob, q=p, num_draws=num_draws) ``` Args: f: Python callable which can return `f(samples)`. samples: `Tensor` of samples used to form the Monte-Carlo approximation of `E_p[f(X)]`. A batch of samples should be indexed by `axis` dimensions. log_prob: Python callable which can return `log_prob(samples)`. Must correspond to the natural-logarithm of the pdf/pmf of each sample. Only required/used if `use_reparametrization=False`. Default value: `None`. use_reparametrization: Python `bool` indicating that the approximation should use the fact that the gradient of samples is unbiased. Whether `True` or `False`, this arg only affects the gradient of the resulting `approx_expectation`. Default value: `True`. axis: The dimensions to average. If `None`, averages all dimensions. Default value: `0` (the left-most dimension). keep_dims: If True, retains averaged dimensions using size `1`. Default value: `False`. name: A `name_scope` for operations created by this function. Default value: `None` (which implies "expectation"). Returns: approx_expectation: `Tensor` corresponding to the Monte-Carlo approximation of `E_p[f(X)]`. Raises: ValueError: if `f` is not a Python `callable`. ValueError: if `use_reparametrization=False` and `log_prob` is not a Python `callable`. """ with tf.compat.v1.name_scope(name, 'expectation', [samples]): if not callable(f): raise ValueError('`f` must be a callable function.') if use_reparametrization: return tf.reduce_mean( input_tensor=f(samples), axis=axis, keepdims=keep_dims) else: if not callable(log_prob): raise ValueError('`log_prob` must be a callable function.') stop = tf.stop_gradient # For readability. x = stop(samples) logpx = log_prob(x) fx = f(x) # Call `f` once in case it has side-effects. # To achieve this, we use the fact that: # `h(x) - stop(h(x)) == zeros_like(h(x))` # but its gradient is grad[h(x)]. # # This technique was published as: # Jakob Foerster, Greg Farquhar, Maruan Al-Shedivat, Tim Rocktaeschel, # Eric P. Xing, Shimon Whiteson (ICML 2018) # "DiCE: The Infinitely Differentiable Monte-Carlo Estimator" # https://arxiv.org/abs/1802.05098 # # Unlike using: # fx = fx + stop(fx) * (logpx - stop(logpx)), # DiCE ensures that any order gradients of the objective # are unbiased gradient estimators. # # Note that IEEE754 specifies that `x - x == 0.` and `x + 0. == x`, hence # this trick loses no precision. For more discussion regarding the # relevant portions of the IEEE754 standard, see the StackOverflow # question, # "Is there a floating point value of x, for which x-x == 0 is false?" # http://stackoverflow.com/q/2686644 dice = fx * tf.exp(logpx - stop(logpx)) return tf.reduce_mean(input_tensor=dice, axis=axis, keepdims=keep_dims)
def expectation(f, samples, log_prob=None, use_reparametrization=True, axis=0, keep_dims=False, name=None): """Computes the Monte-Carlo approximation of `E_p[f(X)]`. This function computes the Monte-Carlo approximation of an expectation, i.e., ```none E_p[f(X)] approx= m**-1 sum_i^m f(x_j), x_j ~iid p(X) ``` where: - `x_j = samples[j, ...]`, - `log(p(samples)) = log_prob(samples)` and - `m = prod(shape(samples)[axis])`. Tricks: Reparameterization and Score-Gradient When p is "reparameterized", i.e., a diffeomorphic transformation of a parameterless distribution (e.g., `Normal(Y; m, s) <=> Y = sX + m, X ~ Normal(0,1)`), we can swap gradient and expectation, i.e., `grad[ Avg{ s_i : i=1...n } ] = Avg{ grad[s_i] : i=1...n }` where `S_n = Avg{s_i}` and `s_i = f(x_i), x_i ~ p`. However, if p is not reparameterized, TensorFlow's gradient will be incorrect since the chain-rule stops at samples of non-reparameterized distributions. (The non-differentiated result, `approx_expectation`, is the same regardless of `use_reparametrization`.) In this circumstance using the Score-Gradient trick results in an unbiased gradient, i.e., ```none grad[ E_p[f(X)] ] = grad[ int dx p(x) f(x) ] = int dx grad[ p(x) f(x) ] = int dx [ p'(x) f(x) + p(x) f'(x) ] = int dx p(x) [p'(x) / p(x) f(x) + f'(x) ] = int dx p(x) grad[ f(x) p(x) / stop_grad[p(x)] ] = E_p[ grad[ f(x) p(x) / stop_grad[p(x)] ] ] ``` Unless p is not reparametrized, it is usually preferable to `use_reparametrization = True`. Warning: users are responsible for verifying `p` is a "reparameterized" distribution. Example Use: ```python # Monte-Carlo approximation of a reparameterized distribution, e.g., Normal. num_draws = int(1e5) p = tfp.distributions.Normal(loc=0., scale=1.) q = tfp.distributions.Normal(loc=1., scale=2.) exact_kl_normal_normal = tfp.distributions.kl_divergence(p, q) # ==> 0.44314718 approx_kl_normal_normal = tfp.monte_carlo.expectation( f=lambda x: p.log_prob(x) - q.log_prob(x), samples=p.sample(num_draws, seed=42), log_prob=p.log_prob, use_reparametrization=(p.reparameterization_type == tfp.distributions.FULLY_REPARAMETERIZED)) # ==> 0.44632751 # Relative Error: <1% # Monte-Carlo approximation of non-reparameterized distribution, # e.g., Bernoulli. num_draws = int(1e5) p = tfp.distributions.Bernoulli(probs=0.4) q = tfp.distributions.Bernoulli(probs=0.8) exact_kl_bernoulli_bernoulli = tfp.distributions.kl_divergence(p, q) # ==> 0.38190854 approx_kl_bernoulli_bernoulli = tfp.monte_carlo.expectation( f=lambda x: p.log_prob(x) - q.log_prob(x), samples=p.sample(num_draws, seed=42), log_prob=p.log_prob, use_reparametrization=(p.reparameterization_type == tfp.distributions.FULLY_REPARAMETERIZED)) # ==> 0.38336259 # Relative Error: <1% # For comparing the gradients, see `expectation_test.py`. ``` Note: The above example is for illustration only. To compute approximate KL-divergence, the following is preferred: ```python approx_kl_p_q = bf.monte_carlo_csiszar_f_divergence( f=bf.kl_reverse, p_log_prob=q.log_prob, q=p, num_draws=num_draws) ``` Args: f: Python callable which can return `f(samples)`. samples: `Tensor` of samples used to form the Monte-Carlo approximation of `E_p[f(X)]`. A batch of samples should be indexed by `axis` dimensions. log_prob: Python callable which can return `log_prob(samples)`. Must correspond to the natural-logarithm of the pdf/pmf of each sample. Only required/used if `use_reparametrization=False`. Default value: `None`. use_reparametrization: Python `bool` indicating that the approximation should use the fact that the gradient of samples is unbiased. Whether `True` or `False`, this arg only affects the gradient of the resulting `approx_expectation`. Default value: `True`. axis: The dimensions to average. If `None`, averages all dimensions. Default value: `0` (the left-most dimension). keep_dims: If True, retains averaged dimensions using size `1`. Default value: `False`. name: A `name_scope` for operations created by this function. Default value: `None` (which implies "expectation"). Returns: approx_expectation: `Tensor` corresponding to the Monte-Carlo approximation of `E_p[f(X)]`. Raises: ValueError: if `f` is not a Python `callable`. ValueError: if `use_reparametrization=False` and `log_prob` is not a Python `callable`. """ with tf.compat.v1.name_scope(name, 'expectation', [samples]): if not callable(f): raise ValueError('`f` must be a callable function.') if use_reparametrization: return tf.reduce_mean( input_tensor=f(samples), axis=axis, keepdims=keep_dims) else: if not callable(log_prob): raise ValueError('`log_prob` must be a callable function.') stop = tf.stop_gradient # For readability. x = stop(samples) logpx = log_prob(x) fx = f(x) # Call `f` once in case it has side-effects. # To achieve this, we use the fact that: # `h(x) - stop(h(x)) == zeros_like(h(x))` # but its gradient is grad[h(x)]. # # This technique was published as: # Jakob Foerster, Greg Farquhar, Maruan Al-Shedivat, Tim Rocktaeschel, # Eric P. Xing, Shimon Whiteson (ICML 2018) # "DiCE: The Infinitely Differentiable Monte-Carlo Estimator" # https://arxiv.org/abs/1802.05098 # # Unlike using: # fx = fx + stop(fx) * (logpx - stop(logpx)), # DiCE ensures that any order gradients of the objective # are unbiased gradient estimators. # # Note that IEEE754 specifies that `x - x == 0.` and `x + 0. == x`, hence # this trick loses no precision. For more discussion regarding the # relevant portions of the IEEE754 standard, see the StackOverflow # question, # "Is there a floating point value of x, for which x-x == 0 is false?" # http://stackoverflow.com/q/2686644 dice = fx * tf.exp(logpx - stop(logpx)) return tf.reduce_mean(input_tensor=dice, axis=axis, keepdims=keep_dims)
[ "Computes", "the", "Monte", "-", "Carlo", "approximation", "of", "E_p", "[", "f", "(", "X", ")", "]", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/monte_carlo/expectation.py#L29-L192
[ "def", "expectation", "(", "f", ",", "samples", ",", "log_prob", "=", "None", ",", "use_reparametrization", "=", "True", ",", "axis", "=", "0", ",", "keep_dims", "=", "False", ",", "name", "=", "None", ")", ":", "with", "tf", ".", "compat", ".", "v1", ".", "name_scope", "(", "name", ",", "'expectation'", ",", "[", "samples", "]", ")", ":", "if", "not", "callable", "(", "f", ")", ":", "raise", "ValueError", "(", "'`f` must be a callable function.'", ")", "if", "use_reparametrization", ":", "return", "tf", ".", "reduce_mean", "(", "input_tensor", "=", "f", "(", "samples", ")", ",", "axis", "=", "axis", ",", "keepdims", "=", "keep_dims", ")", "else", ":", "if", "not", "callable", "(", "log_prob", ")", ":", "raise", "ValueError", "(", "'`log_prob` must be a callable function.'", ")", "stop", "=", "tf", ".", "stop_gradient", "# For readability.", "x", "=", "stop", "(", "samples", ")", "logpx", "=", "log_prob", "(", "x", ")", "fx", "=", "f", "(", "x", ")", "# Call `f` once in case it has side-effects.", "# To achieve this, we use the fact that:", "# `h(x) - stop(h(x)) == zeros_like(h(x))`", "# but its gradient is grad[h(x)].", "#", "# This technique was published as:", "# Jakob Foerster, Greg Farquhar, Maruan Al-Shedivat, Tim Rocktaeschel,", "# Eric P. Xing, Shimon Whiteson (ICML 2018)", "# \"DiCE: The Infinitely Differentiable Monte-Carlo Estimator\"", "# https://arxiv.org/abs/1802.05098", "#", "# Unlike using:", "# fx = fx + stop(fx) * (logpx - stop(logpx)),", "# DiCE ensures that any order gradients of the objective", "# are unbiased gradient estimators.", "#", "# Note that IEEE754 specifies that `x - x == 0.` and `x + 0. == x`, hence", "# this trick loses no precision. For more discussion regarding the", "# relevant portions of the IEEE754 standard, see the StackOverflow", "# question,", "# \"Is there a floating point value of x, for which x-x == 0 is false?\"", "# http://stackoverflow.com/q/2686644", "dice", "=", "fx", "*", "tf", ".", "exp", "(", "logpx", "-", "stop", "(", "logpx", ")", ")", "return", "tf", ".", "reduce_mean", "(", "input_tensor", "=", "dice", ",", "axis", "=", "axis", ",", "keepdims", "=", "keep_dims", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
_get_samples
Check args and return samples.
tensorflow_probability/python/monte_carlo/expectation.py
def _get_samples(dist, z, n, seed): """Check args and return samples.""" with tf.compat.v1.name_scope('get_samples', values=[z, n]): if (n is None) == (z is None): raise ValueError( 'Must specify exactly one of arguments "n" and "z". Found: ' 'n = %s, z = %s' % (n, z)) if n is not None: return dist.sample(n, seed=seed) else: return tf.convert_to_tensor(value=z, name='z')
def _get_samples(dist, z, n, seed): """Check args and return samples.""" with tf.compat.v1.name_scope('get_samples', values=[z, n]): if (n is None) == (z is None): raise ValueError( 'Must specify exactly one of arguments "n" and "z". Found: ' 'n = %s, z = %s' % (n, z)) if n is not None: return dist.sample(n, seed=seed) else: return tf.convert_to_tensor(value=z, name='z')
[ "Check", "args", "and", "return", "samples", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/monte_carlo/expectation.py#L205-L215
[ "def", "_get_samples", "(", "dist", ",", "z", ",", "n", ",", "seed", ")", ":", "with", "tf", ".", "compat", ".", "v1", ".", "name_scope", "(", "'get_samples'", ",", "values", "=", "[", "z", ",", "n", "]", ")", ":", "if", "(", "n", "is", "None", ")", "==", "(", "z", "is", "None", ")", ":", "raise", "ValueError", "(", "'Must specify exactly one of arguments \"n\" and \"z\". Found: '", "'n = %s, z = %s'", "%", "(", "n", ",", "z", ")", ")", "if", "n", "is", "not", "None", ":", "return", "dist", ".", "sample", "(", "n", ",", "seed", "=", "seed", ")", "else", ":", "return", "tf", ".", "convert_to_tensor", "(", "value", "=", "z", ",", "name", "=", "'z'", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
is_namedtuple_like
Helper which returns `True` if input is `collections.namedtuple`-like.
tensorflow_probability/python/mcmc/internal/util.py
def is_namedtuple_like(x): """Helper which returns `True` if input is `collections.namedtuple`-like.""" try: for fn in x._fields: _ = getattr(x, fn) return True except AttributeError: return False
def is_namedtuple_like(x): """Helper which returns `True` if input is `collections.namedtuple`-like.""" try: for fn in x._fields: _ = getattr(x, fn) return True except AttributeError: return False
[ "Helper", "which", "returns", "True", "if", "input", "is", "collections", ".", "namedtuple", "-", "like", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/mcmc/internal/util.py#L56-L63
[ "def", "is_namedtuple_like", "(", "x", ")", ":", "try", ":", "for", "fn", "in", "x", ".", "_fields", ":", "_", "=", "getattr", "(", "x", ",", "fn", ")", "return", "True", "except", "AttributeError", ":", "return", "False" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
make_name
Helper which makes a `str` name; useful for tf.compat.v1.name_scope.
tensorflow_probability/python/mcmc/internal/util.py
def make_name(super_name, default_super_name, sub_name): """Helper which makes a `str` name; useful for tf.compat.v1.name_scope.""" name = super_name if super_name is not None else default_super_name if sub_name is not None: name += '_' + sub_name return name
def make_name(super_name, default_super_name, sub_name): """Helper which makes a `str` name; useful for tf.compat.v1.name_scope.""" name = super_name if super_name is not None else default_super_name if sub_name is not None: name += '_' + sub_name return name
[ "Helper", "which", "makes", "a", "str", "name", ";", "useful", "for", "tf", ".", "compat", ".", "v1", ".", "name_scope", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/mcmc/internal/util.py#L66-L71
[ "def", "make_name", "(", "super_name", ",", "default_super_name", ",", "sub_name", ")", ":", "name", "=", "super_name", "if", "super_name", "is", "not", "None", "else", "default_super_name", "if", "sub_name", "is", "not", "None", ":", "name", "+=", "'_'", "+", "sub_name", "return", "name" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
_choose_base_case
Helper to `choose` which expand_dims `is_accepted` and applies tf.where.
tensorflow_probability/python/mcmc/internal/util.py
def _choose_base_case(is_accepted, accepted, rejected, name=None): """Helper to `choose` which expand_dims `is_accepted` and applies tf.where.""" def _expand_is_accepted_like(x): """Helper to expand `is_accepted` like the shape of some input arg.""" with tf.compat.v1.name_scope('expand_is_accepted_like'): expand_shape = tf.concat([ tf.shape(input=is_accepted), tf.ones([tf.rank(x) - tf.rank(is_accepted)], dtype=tf.int32), ], axis=0) multiples = tf.concat([ tf.ones([tf.rank(is_accepted)], dtype=tf.int32), tf.shape(input=x)[tf.rank(is_accepted):], ], axis=0) m = tf.tile(tf.reshape(is_accepted, expand_shape), multiples) m.set_shape(m.shape.merge_with(x.shape)) return m def _where(accepted, rejected): if accepted is rejected: return accepted accepted = tf.convert_to_tensor(value=accepted, name='accepted') rejected = tf.convert_to_tensor(value=rejected, name='rejected') r = tf.where(_expand_is_accepted_like(accepted), accepted, rejected) r.set_shape(r.shape.merge_with(accepted.shape.merge_with(rejected.shape))) return r with tf.compat.v1.name_scope( name, 'choose', values=[is_accepted, accepted, rejected]): if not is_list_like(accepted): return _where(accepted, rejected) return [(choose(is_accepted, a, r, name=name) if is_namedtuple_like(a) else _where(a, r)) for a, r in zip(accepted, rejected)]
def _choose_base_case(is_accepted, accepted, rejected, name=None): """Helper to `choose` which expand_dims `is_accepted` and applies tf.where.""" def _expand_is_accepted_like(x): """Helper to expand `is_accepted` like the shape of some input arg.""" with tf.compat.v1.name_scope('expand_is_accepted_like'): expand_shape = tf.concat([ tf.shape(input=is_accepted), tf.ones([tf.rank(x) - tf.rank(is_accepted)], dtype=tf.int32), ], axis=0) multiples = tf.concat([ tf.ones([tf.rank(is_accepted)], dtype=tf.int32), tf.shape(input=x)[tf.rank(is_accepted):], ], axis=0) m = tf.tile(tf.reshape(is_accepted, expand_shape), multiples) m.set_shape(m.shape.merge_with(x.shape)) return m def _where(accepted, rejected): if accepted is rejected: return accepted accepted = tf.convert_to_tensor(value=accepted, name='accepted') rejected = tf.convert_to_tensor(value=rejected, name='rejected') r = tf.where(_expand_is_accepted_like(accepted), accepted, rejected) r.set_shape(r.shape.merge_with(accepted.shape.merge_with(rejected.shape))) return r with tf.compat.v1.name_scope( name, 'choose', values=[is_accepted, accepted, rejected]): if not is_list_like(accepted): return _where(accepted, rejected) return [(choose(is_accepted, a, r, name=name) if is_namedtuple_like(a) else _where(a, r)) for a, r in zip(accepted, rejected)]
[ "Helper", "to", "choose", "which", "expand_dims", "is_accepted", "and", "applies", "tf", ".", "where", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/mcmc/internal/util.py#L74-L111
[ "def", "_choose_base_case", "(", "is_accepted", ",", "accepted", ",", "rejected", ",", "name", "=", "None", ")", ":", "def", "_expand_is_accepted_like", "(", "x", ")", ":", "\"\"\"Helper to expand `is_accepted` like the shape of some input arg.\"\"\"", "with", "tf", ".", "compat", ".", "v1", ".", "name_scope", "(", "'expand_is_accepted_like'", ")", ":", "expand_shape", "=", "tf", ".", "concat", "(", "[", "tf", ".", "shape", "(", "input", "=", "is_accepted", ")", ",", "tf", ".", "ones", "(", "[", "tf", ".", "rank", "(", "x", ")", "-", "tf", ".", "rank", "(", "is_accepted", ")", "]", ",", "dtype", "=", "tf", ".", "int32", ")", ",", "]", ",", "axis", "=", "0", ")", "multiples", "=", "tf", ".", "concat", "(", "[", "tf", ".", "ones", "(", "[", "tf", ".", "rank", "(", "is_accepted", ")", "]", ",", "dtype", "=", "tf", ".", "int32", ")", ",", "tf", ".", "shape", "(", "input", "=", "x", ")", "[", "tf", ".", "rank", "(", "is_accepted", ")", ":", "]", ",", "]", ",", "axis", "=", "0", ")", "m", "=", "tf", ".", "tile", "(", "tf", ".", "reshape", "(", "is_accepted", ",", "expand_shape", ")", ",", "multiples", ")", "m", ".", "set_shape", "(", "m", ".", "shape", ".", "merge_with", "(", "x", ".", "shape", ")", ")", "return", "m", "def", "_where", "(", "accepted", ",", "rejected", ")", ":", "if", "accepted", "is", "rejected", ":", "return", "accepted", "accepted", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "accepted", ",", "name", "=", "'accepted'", ")", "rejected", "=", "tf", ".", "convert_to_tensor", "(", "value", "=", "rejected", ",", "name", "=", "'rejected'", ")", "r", "=", "tf", ".", "where", "(", "_expand_is_accepted_like", "(", "accepted", ")", ",", "accepted", ",", "rejected", ")", "r", ".", "set_shape", "(", "r", ".", "shape", ".", "merge_with", "(", "accepted", ".", "shape", ".", "merge_with", "(", "rejected", ".", "shape", ")", ")", ")", "return", "r", "with", "tf", ".", "compat", ".", "v1", ".", "name_scope", "(", "name", ",", "'choose'", ",", "values", "=", "[", "is_accepted", ",", "accepted", ",", "rejected", "]", ")", ":", "if", "not", "is_list_like", "(", "accepted", ")", ":", "return", "_where", "(", "accepted", ",", "rejected", ")", "return", "[", "(", "choose", "(", "is_accepted", ",", "a", ",", "r", ",", "name", "=", "name", ")", "if", "is_namedtuple_like", "(", "a", ")", "else", "_where", "(", "a", ",", "r", ")", ")", "for", "a", ",", "r", "in", "zip", "(", "accepted", ",", "rejected", ")", "]" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
choose
Helper which expand_dims `is_accepted` then applies tf.where.
tensorflow_probability/python/mcmc/internal/util.py
def choose(is_accepted, accepted, rejected, name=None): """Helper which expand_dims `is_accepted` then applies tf.where.""" if not is_namedtuple_like(accepted): return _choose_base_case(is_accepted, accepted, rejected, name=name) if not isinstance(accepted, type(rejected)): raise TypeError('Type of `accepted` ({}) must be identical to ' 'type of `rejected` ({})'.format( type(accepted).__name__, type(rejected).__name__)) return type(accepted)(**dict( [(fn, choose(is_accepted, getattr(accepted, fn), getattr(rejected, fn), name=name)) for fn in accepted._fields]))
def choose(is_accepted, accepted, rejected, name=None): """Helper which expand_dims `is_accepted` then applies tf.where.""" if not is_namedtuple_like(accepted): return _choose_base_case(is_accepted, accepted, rejected, name=name) if not isinstance(accepted, type(rejected)): raise TypeError('Type of `accepted` ({}) must be identical to ' 'type of `rejected` ({})'.format( type(accepted).__name__, type(rejected).__name__)) return type(accepted)(**dict( [(fn, choose(is_accepted, getattr(accepted, fn), getattr(rejected, fn), name=name)) for fn in accepted._fields]))
[ "Helper", "which", "expand_dims", "is_accepted", "then", "applies", "tf", ".", "where", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/mcmc/internal/util.py#L114-L129
[ "def", "choose", "(", "is_accepted", ",", "accepted", ",", "rejected", ",", "name", "=", "None", ")", ":", "if", "not", "is_namedtuple_like", "(", "accepted", ")", ":", "return", "_choose_base_case", "(", "is_accepted", ",", "accepted", ",", "rejected", ",", "name", "=", "name", ")", "if", "not", "isinstance", "(", "accepted", ",", "type", "(", "rejected", ")", ")", ":", "raise", "TypeError", "(", "'Type of `accepted` ({}) must be identical to '", "'type of `rejected` ({})'", ".", "format", "(", "type", "(", "accepted", ")", ".", "__name__", ",", "type", "(", "rejected", ")", ".", "__name__", ")", ")", "return", "type", "(", "accepted", ")", "(", "*", "*", "dict", "(", "[", "(", "fn", ",", "choose", "(", "is_accepted", ",", "getattr", "(", "accepted", ",", "fn", ")", ",", "getattr", "(", "rejected", ",", "fn", ")", ",", "name", "=", "name", ")", ")", "for", "fn", "in", "accepted", ".", "_fields", "]", ")", ")" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5
test
safe_sum
Elementwise adds list members, replacing non-finite results with alt_value. Typically the `alt_value` is chosen so the `MetropolisHastings` `TransitionKernel` always rejects the proposal. Args: x: Python `list` of `Tensors` to elementwise add. alt_value: Python scalar used to replace any elementwise sums which would otherwise be non-finite. name: Python `str` name prefixed to Ops created by this function. Default value: `None` (i.e., "safe_sum"). Returns: safe_sum: `Tensor` representing the elementwise sum of list of `Tensor`s `x` or `alt_value` where sums are non-finite. Raises: TypeError: if `x` is not list-like. ValueError: if `x` is empty.
tensorflow_probability/python/mcmc/internal/util.py
def safe_sum(x, alt_value=-np.inf, name=None): """Elementwise adds list members, replacing non-finite results with alt_value. Typically the `alt_value` is chosen so the `MetropolisHastings` `TransitionKernel` always rejects the proposal. Args: x: Python `list` of `Tensors` to elementwise add. alt_value: Python scalar used to replace any elementwise sums which would otherwise be non-finite. name: Python `str` name prefixed to Ops created by this function. Default value: `None` (i.e., "safe_sum"). Returns: safe_sum: `Tensor` representing the elementwise sum of list of `Tensor`s `x` or `alt_value` where sums are non-finite. Raises: TypeError: if `x` is not list-like. ValueError: if `x` is empty. """ with tf.compat.v1.name_scope(name, 'safe_sum', [x, alt_value]): if not is_list_like(x): raise TypeError('Expected list input.') if not x: raise ValueError('Input should not be empty.') in_shape = x[0].shape x = tf.stack(x, axis=-1) x = tf.reduce_sum(input_tensor=x, axis=-1) alt_value = np.array(alt_value, x.dtype.as_numpy_dtype) alt_fill = tf.fill(tf.shape(input=x), value=alt_value) x = tf.where(tf.math.is_finite(x), x, alt_fill) x.set_shape(x.shape.merge_with(in_shape)) return x
def safe_sum(x, alt_value=-np.inf, name=None): """Elementwise adds list members, replacing non-finite results with alt_value. Typically the `alt_value` is chosen so the `MetropolisHastings` `TransitionKernel` always rejects the proposal. Args: x: Python `list` of `Tensors` to elementwise add. alt_value: Python scalar used to replace any elementwise sums which would otherwise be non-finite. name: Python `str` name prefixed to Ops created by this function. Default value: `None` (i.e., "safe_sum"). Returns: safe_sum: `Tensor` representing the elementwise sum of list of `Tensor`s `x` or `alt_value` where sums are non-finite. Raises: TypeError: if `x` is not list-like. ValueError: if `x` is empty. """ with tf.compat.v1.name_scope(name, 'safe_sum', [x, alt_value]): if not is_list_like(x): raise TypeError('Expected list input.') if not x: raise ValueError('Input should not be empty.') in_shape = x[0].shape x = tf.stack(x, axis=-1) x = tf.reduce_sum(input_tensor=x, axis=-1) alt_value = np.array(alt_value, x.dtype.as_numpy_dtype) alt_fill = tf.fill(tf.shape(input=x), value=alt_value) x = tf.where(tf.math.is_finite(x), x, alt_fill) x.set_shape(x.shape.merge_with(in_shape)) return x
[ "Elementwise", "adds", "list", "members", "replacing", "non", "-", "finite", "results", "with", "alt_value", "." ]
tensorflow/probability
python
https://github.com/tensorflow/probability/blob/e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5/tensorflow_probability/python/mcmc/internal/util.py#L132-L165
[ "def", "safe_sum", "(", "x", ",", "alt_value", "=", "-", "np", ".", "inf", ",", "name", "=", "None", ")", ":", "with", "tf", ".", "compat", ".", "v1", ".", "name_scope", "(", "name", ",", "'safe_sum'", ",", "[", "x", ",", "alt_value", "]", ")", ":", "if", "not", "is_list_like", "(", "x", ")", ":", "raise", "TypeError", "(", "'Expected list input.'", ")", "if", "not", "x", ":", "raise", "ValueError", "(", "'Input should not be empty.'", ")", "in_shape", "=", "x", "[", "0", "]", ".", "shape", "x", "=", "tf", ".", "stack", "(", "x", ",", "axis", "=", "-", "1", ")", "x", "=", "tf", ".", "reduce_sum", "(", "input_tensor", "=", "x", ",", "axis", "=", "-", "1", ")", "alt_value", "=", "np", ".", "array", "(", "alt_value", ",", "x", ".", "dtype", ".", "as_numpy_dtype", ")", "alt_fill", "=", "tf", ".", "fill", "(", "tf", ".", "shape", "(", "input", "=", "x", ")", ",", "value", "=", "alt_value", ")", "x", "=", "tf", ".", "where", "(", "tf", ".", "math", ".", "is_finite", "(", "x", ")", ",", "x", ",", "alt_fill", ")", "x", ".", "set_shape", "(", "x", ".", "shape", ".", "merge_with", "(", "in_shape", ")", ")", "return", "x" ]
e87fe34111d68c35db0f9eeb4935f1ece9e1a8f5