partition
stringclasses
3 values
func_name
stringlengths
1
134
docstring
stringlengths
1
46.9k
path
stringlengths
4
223
original_string
stringlengths
75
104k
code
stringlengths
75
104k
docstring_tokens
listlengths
1
1.97k
repo
stringlengths
7
55
language
stringclasses
1 value
url
stringlengths
87
315
code_tokens
listlengths
19
28.4k
sha
stringlengths
40
40
valid
BasePeonyClient.run_tasks
Run the tasks attached to the instance
peony/client.py
async def run_tasks(self): """ Run the tasks attached to the instance """ tasks = self.get_tasks() self._gathered_tasks = asyncio.gather(*tasks, loop=self.loop) try: await self._gathered_tasks except CancelledError: pass
async def run_tasks(self): """ Run the tasks attached to the instance """ tasks = self.get_tasks() self._gathered_tasks = asyncio.gather(*tasks, loop=self.loop) try: await self._gathered_tasks except CancelledError: pass
[ "Run", "the", "tasks", "attached", "to", "the", "instance" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/client.py#L402-L409
[ "async", "def", "run_tasks", "(", "self", ")", ":", "tasks", "=", "self", ".", "get_tasks", "(", ")", "self", ".", "_gathered_tasks", "=", "asyncio", ".", "gather", "(", "*", "tasks", ",", "loop", "=", "self", ".", "loop", ")", "try", ":", "await", "self", ".", "_gathered_tasks", "except", "CancelledError", ":", "pass" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
BasePeonyClient.close
properly close the client
peony/client.py
async def close(self): """ properly close the client """ tasks = self._get_close_tasks() if tasks: await asyncio.wait(tasks) self._session = None
async def close(self): """ properly close the client """ tasks = self._get_close_tasks() if tasks: await asyncio.wait(tasks) self._session = None
[ "properly", "close", "the", "client" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/client.py#L458-L465
[ "async", "def", "close", "(", "self", ")", ":", "tasks", "=", "self", ".", "_get_close_tasks", "(", ")", "if", "tasks", ":", "await", "asyncio", ".", "wait", "(", "tasks", ")", "self", ".", "_session", "=", "None" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
PeonyClient._get_twitter_configuration
create a ``twitter_configuration`` attribute with the response of the endpoint https://api.twitter.com/1.1/help/configuration.json
peony/client.py
async def _get_twitter_configuration(self): """ create a ``twitter_configuration`` attribute with the response of the endpoint https://api.twitter.com/1.1/help/configuration.json """ api = self['api', general.twitter_api_version, ".json", general.twitter_base_api_url] return await api.help.configuration.get()
async def _get_twitter_configuration(self): """ create a ``twitter_configuration`` attribute with the response of the endpoint https://api.twitter.com/1.1/help/configuration.json """ api = self['api', general.twitter_api_version, ".json", general.twitter_base_api_url] return await api.help.configuration.get()
[ "create", "a", "twitter_configuration", "attribute", "with", "the", "response", "of", "the", "endpoint", "https", ":", "//", "api", ".", "twitter", ".", "com", "/", "1", ".", "1", "/", "help", "/", "configuration", ".", "json" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/client.py#L487-L496
[ "async", "def", "_get_twitter_configuration", "(", "self", ")", ":", "api", "=", "self", "[", "'api'", ",", "general", ".", "twitter_api_version", ",", "\".json\"", ",", "general", ".", "twitter_base_api_url", "]", "return", "await", "api", ".", "help", ".", "configuration", ".", "get", "(", ")" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
PeonyClient._get_user
create a ``user`` attribute with the response of the endpoint https://api.twitter.com/1.1/account/verify_credentials.json
peony/client.py
async def _get_user(self): """ create a ``user`` attribute with the response of the endpoint https://api.twitter.com/1.1/account/verify_credentials.json """ api = self['api', general.twitter_api_version, ".json", general.twitter_base_api_url] return await api.account.verify_credentials.get()
async def _get_user(self): """ create a ``user`` attribute with the response of the endpoint https://api.twitter.com/1.1/account/verify_credentials.json """ api = self['api', general.twitter_api_version, ".json", general.twitter_base_api_url] return await api.account.verify_credentials.get()
[ "create", "a", "user", "attribute", "with", "the", "response", "of", "the", "endpoint", "https", ":", "//", "api", ".", "twitter", ".", "com", "/", "1", ".", "1", "/", "account", "/", "verify_credentials", ".", "json" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/client.py#L506-L514
[ "async", "def", "_get_user", "(", "self", ")", ":", "api", "=", "self", "[", "'api'", ",", "general", ".", "twitter_api_version", ",", "\".json\"", ",", "general", ".", "twitter_base_api_url", "]", "return", "await", "api", ".", "account", ".", "verify_credentials", ".", "get", "(", ")" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
PeonyClient._chunked_upload
upload media in chunks Parameters ---------- media : file object a file object of the media media_size : int size of the media path : str, optional filename of the media media_type : str, optional mime type of the media media_category : str, optional twitter media category, must be used with ``media_type`` chunk_size : int, optional size of a chunk in bytes params : dict, optional additional parameters of the request Returns ------- .data_processing.PeonyResponse Response of the request
peony/client.py
async def _chunked_upload(self, media, media_size, path=None, media_type=None, media_category=None, chunk_size=2**20, **params): """ upload media in chunks Parameters ---------- media : file object a file object of the media media_size : int size of the media path : str, optional filename of the media media_type : str, optional mime type of the media media_category : str, optional twitter media category, must be used with ``media_type`` chunk_size : int, optional size of a chunk in bytes params : dict, optional additional parameters of the request Returns ------- .data_processing.PeonyResponse Response of the request """ if isinstance(media, bytes): media = io.BytesIO(media) chunk = media.read(chunk_size) is_coro = asyncio.iscoroutine(chunk) if is_coro: chunk = await chunk if media_type is None: media_metadata = await utils.get_media_metadata(chunk, path) media_type, media_category = media_metadata elif media_category is None: media_category = utils.get_category(media_type) response = await self.upload.media.upload.post( command="INIT", total_bytes=media_size, media_type=media_type, media_category=media_category, **params ) media_id = response['media_id'] i = 0 while chunk: if is_coro: req = self.upload.media.upload.post(command="APPEND", media_id=media_id, media=chunk, segment_index=i) chunk, _ = await asyncio.gather(media.read(chunk_size), req) else: await self.upload.media.upload.post(command="APPEND", media_id=media_id, media=chunk, segment_index=i) chunk = media.read(chunk_size) i += 1 status = await self.upload.media.upload.post(command="FINALIZE", media_id=media_id) if 'processing_info' in status: while status['processing_info'].get('state') != "succeeded": processing_info = status['processing_info'] if processing_info.get('state') == "failed": error = processing_info.get('error', {}) message = error.get('message', str(status)) raise exceptions.MediaProcessingError(data=status, message=message, **params) delay = processing_info['check_after_secs'] await asyncio.sleep(delay) status = await self.upload.media.upload.get( command="STATUS", media_id=media_id, **params ) return response
async def _chunked_upload(self, media, media_size, path=None, media_type=None, media_category=None, chunk_size=2**20, **params): """ upload media in chunks Parameters ---------- media : file object a file object of the media media_size : int size of the media path : str, optional filename of the media media_type : str, optional mime type of the media media_category : str, optional twitter media category, must be used with ``media_type`` chunk_size : int, optional size of a chunk in bytes params : dict, optional additional parameters of the request Returns ------- .data_processing.PeonyResponse Response of the request """ if isinstance(media, bytes): media = io.BytesIO(media) chunk = media.read(chunk_size) is_coro = asyncio.iscoroutine(chunk) if is_coro: chunk = await chunk if media_type is None: media_metadata = await utils.get_media_metadata(chunk, path) media_type, media_category = media_metadata elif media_category is None: media_category = utils.get_category(media_type) response = await self.upload.media.upload.post( command="INIT", total_bytes=media_size, media_type=media_type, media_category=media_category, **params ) media_id = response['media_id'] i = 0 while chunk: if is_coro: req = self.upload.media.upload.post(command="APPEND", media_id=media_id, media=chunk, segment_index=i) chunk, _ = await asyncio.gather(media.read(chunk_size), req) else: await self.upload.media.upload.post(command="APPEND", media_id=media_id, media=chunk, segment_index=i) chunk = media.read(chunk_size) i += 1 status = await self.upload.media.upload.post(command="FINALIZE", media_id=media_id) if 'processing_info' in status: while status['processing_info'].get('state') != "succeeded": processing_info = status['processing_info'] if processing_info.get('state') == "failed": error = processing_info.get('error', {}) message = error.get('message', str(status)) raise exceptions.MediaProcessingError(data=status, message=message, **params) delay = processing_info['check_after_secs'] await asyncio.sleep(delay) status = await self.upload.media.upload.get( command="STATUS", media_id=media_id, **params ) return response
[ "upload", "media", "in", "chunks" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/client.py#L542-L640
[ "async", "def", "_chunked_upload", "(", "self", ",", "media", ",", "media_size", ",", "path", "=", "None", ",", "media_type", "=", "None", ",", "media_category", "=", "None", ",", "chunk_size", "=", "2", "**", "20", ",", "*", "*", "params", ")", ":", "if", "isinstance", "(", "media", ",", "bytes", ")", ":", "media", "=", "io", ".", "BytesIO", "(", "media", ")", "chunk", "=", "media", ".", "read", "(", "chunk_size", ")", "is_coro", "=", "asyncio", ".", "iscoroutine", "(", "chunk", ")", "if", "is_coro", ":", "chunk", "=", "await", "chunk", "if", "media_type", "is", "None", ":", "media_metadata", "=", "await", "utils", ".", "get_media_metadata", "(", "chunk", ",", "path", ")", "media_type", ",", "media_category", "=", "media_metadata", "elif", "media_category", "is", "None", ":", "media_category", "=", "utils", ".", "get_category", "(", "media_type", ")", "response", "=", "await", "self", ".", "upload", ".", "media", ".", "upload", ".", "post", "(", "command", "=", "\"INIT\"", ",", "total_bytes", "=", "media_size", ",", "media_type", "=", "media_type", ",", "media_category", "=", "media_category", ",", "*", "*", "params", ")", "media_id", "=", "response", "[", "'media_id'", "]", "i", "=", "0", "while", "chunk", ":", "if", "is_coro", ":", "req", "=", "self", ".", "upload", ".", "media", ".", "upload", ".", "post", "(", "command", "=", "\"APPEND\"", ",", "media_id", "=", "media_id", ",", "media", "=", "chunk", ",", "segment_index", "=", "i", ")", "chunk", ",", "_", "=", "await", "asyncio", ".", "gather", "(", "media", ".", "read", "(", "chunk_size", ")", ",", "req", ")", "else", ":", "await", "self", ".", "upload", ".", "media", ".", "upload", ".", "post", "(", "command", "=", "\"APPEND\"", ",", "media_id", "=", "media_id", ",", "media", "=", "chunk", ",", "segment_index", "=", "i", ")", "chunk", "=", "media", ".", "read", "(", "chunk_size", ")", "i", "+=", "1", "status", "=", "await", "self", ".", "upload", ".", "media", ".", "upload", ".", "post", "(", "command", "=", "\"FINALIZE\"", ",", "media_id", "=", "media_id", ")", "if", "'processing_info'", "in", "status", ":", "while", "status", "[", "'processing_info'", "]", ".", "get", "(", "'state'", ")", "!=", "\"succeeded\"", ":", "processing_info", "=", "status", "[", "'processing_info'", "]", "if", "processing_info", ".", "get", "(", "'state'", ")", "==", "\"failed\"", ":", "error", "=", "processing_info", ".", "get", "(", "'error'", ",", "{", "}", ")", "message", "=", "error", ".", "get", "(", "'message'", ",", "str", "(", "status", ")", ")", "raise", "exceptions", ".", "MediaProcessingError", "(", "data", "=", "status", ",", "message", "=", "message", ",", "*", "*", "params", ")", "delay", "=", "processing_info", "[", "'check_after_secs'", "]", "await", "asyncio", ".", "sleep", "(", "delay", ")", "status", "=", "await", "self", ".", "upload", ".", "media", ".", "upload", ".", "get", "(", "command", "=", "\"STATUS\"", ",", "media_id", "=", "media_id", ",", "*", "*", "params", ")", "return", "response" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
PeonyClient.upload_media
upload a media on twitter Parameters ---------- file_ : str or pathlib.Path or file Path to the file or file object media_type : str, optional mime type of the media media_category : str, optional Twitter's media category of the media, must be used with ``media_type`` chunked : bool, optional If True, force the use of the chunked upload for the media size_limit : int, optional If set, the media will be sent using a multipart upload if its size is over ``size_limit`` bytes params : dict parameters used when making the request Returns ------- .data_processing.PeonyResponse Response of the request
peony/client.py
async def upload_media(self, file_, media_type=None, media_category=None, chunked=None, size_limit=None, **params): """ upload a media on twitter Parameters ---------- file_ : str or pathlib.Path or file Path to the file or file object media_type : str, optional mime type of the media media_category : str, optional Twitter's media category of the media, must be used with ``media_type`` chunked : bool, optional If True, force the use of the chunked upload for the media size_limit : int, optional If set, the media will be sent using a multipart upload if its size is over ``size_limit`` bytes params : dict parameters used when making the request Returns ------- .data_processing.PeonyResponse Response of the request """ if isinstance(file_, str): url = urlparse(file_) if url.scheme.startswith('http'): media = await self._session.get(file_) else: path = urlparse(file_).path.strip(" \"'") media = await utils.execute(open(path, 'rb')) elif hasattr(file_, 'read') or isinstance(file_, bytes): media = file_ else: raise TypeError("upload_media input must be a file object or a " "filename or binary data or an aiohttp request") media_size = await utils.get_size(media) if chunked is not None: size_test = False else: size_test = await self._size_test(media_size, size_limit) if isinstance(media, aiohttp.ClientResponse): # send the content of the response media = media.content if chunked or (size_test and chunked is None): args = media, media_size, file_, media_type, media_category response = await self._chunked_upload(*args, **params) else: response = await self.upload.media.upload.post(media=media, **params) if not hasattr(file_, 'read') and not getattr(media, 'closed', True): media.close() return response
async def upload_media(self, file_, media_type=None, media_category=None, chunked=None, size_limit=None, **params): """ upload a media on twitter Parameters ---------- file_ : str or pathlib.Path or file Path to the file or file object media_type : str, optional mime type of the media media_category : str, optional Twitter's media category of the media, must be used with ``media_type`` chunked : bool, optional If True, force the use of the chunked upload for the media size_limit : int, optional If set, the media will be sent using a multipart upload if its size is over ``size_limit`` bytes params : dict parameters used when making the request Returns ------- .data_processing.PeonyResponse Response of the request """ if isinstance(file_, str): url = urlparse(file_) if url.scheme.startswith('http'): media = await self._session.get(file_) else: path = urlparse(file_).path.strip(" \"'") media = await utils.execute(open(path, 'rb')) elif hasattr(file_, 'read') or isinstance(file_, bytes): media = file_ else: raise TypeError("upload_media input must be a file object or a " "filename or binary data or an aiohttp request") media_size = await utils.get_size(media) if chunked is not None: size_test = False else: size_test = await self._size_test(media_size, size_limit) if isinstance(media, aiohttp.ClientResponse): # send the content of the response media = media.content if chunked or (size_test and chunked is None): args = media, media_size, file_, media_type, media_category response = await self._chunked_upload(*args, **params) else: response = await self.upload.media.upload.post(media=media, **params) if not hasattr(file_, 'read') and not getattr(media, 'closed', True): media.close() return response
[ "upload", "a", "media", "on", "twitter" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/client.py#L652-L716
[ "async", "def", "upload_media", "(", "self", ",", "file_", ",", "media_type", "=", "None", ",", "media_category", "=", "None", ",", "chunked", "=", "None", ",", "size_limit", "=", "None", ",", "*", "*", "params", ")", ":", "if", "isinstance", "(", "file_", ",", "str", ")", ":", "url", "=", "urlparse", "(", "file_", ")", "if", "url", ".", "scheme", ".", "startswith", "(", "'http'", ")", ":", "media", "=", "await", "self", ".", "_session", ".", "get", "(", "file_", ")", "else", ":", "path", "=", "urlparse", "(", "file_", ")", ".", "path", ".", "strip", "(", "\" \\\"'\"", ")", "media", "=", "await", "utils", ".", "execute", "(", "open", "(", "path", ",", "'rb'", ")", ")", "elif", "hasattr", "(", "file_", ",", "'read'", ")", "or", "isinstance", "(", "file_", ",", "bytes", ")", ":", "media", "=", "file_", "else", ":", "raise", "TypeError", "(", "\"upload_media input must be a file object or a \"", "\"filename or binary data or an aiohttp request\"", ")", "media_size", "=", "await", "utils", ".", "get_size", "(", "media", ")", "if", "chunked", "is", "not", "None", ":", "size_test", "=", "False", "else", ":", "size_test", "=", "await", "self", ".", "_size_test", "(", "media_size", ",", "size_limit", ")", "if", "isinstance", "(", "media", ",", "aiohttp", ".", "ClientResponse", ")", ":", "# send the content of the response", "media", "=", "media", ".", "content", "if", "chunked", "or", "(", "size_test", "and", "chunked", "is", "None", ")", ":", "args", "=", "media", ",", "media_size", ",", "file_", ",", "media_type", ",", "media_category", "response", "=", "await", "self", ".", "_chunked_upload", "(", "*", "args", ",", "*", "*", "params", ")", "else", ":", "response", "=", "await", "self", ".", "upload", ".", "media", ".", "upload", ".", "post", "(", "media", "=", "media", ",", "*", "*", "params", ")", "if", "not", "hasattr", "(", "file_", ",", "'read'", ")", "and", "not", "getattr", "(", "media", ",", "'closed'", ",", "True", ")", ":", "media", ".", "close", "(", ")", "return", "response" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
split_stdout_lines
Given the standard output from NetMHC/NetMHCpan/NetMHCcons tools, drop all {comments, lines of hyphens, empty lines} and split the remaining lines by whitespace.
mhctools/parsing.py
def split_stdout_lines(stdout): """ Given the standard output from NetMHC/NetMHCpan/NetMHCcons tools, drop all {comments, lines of hyphens, empty lines} and split the remaining lines by whitespace. """ # all the NetMHC formats use lines full of dashes before any actual # binding results seen_dash = False for l in stdout.split("\n"): l = l.strip() # wait for a line like '----------' before trying to parse entries # have to include multiple dashes here since NetMHC 4.0 sometimes # gives negative positions in its "peptide" input mode if l.startswith("---"): seen_dash = True continue if not seen_dash: continue # ignore empty lines and comments if not l or l.startswith("#"): continue # beginning of headers in NetMHC if any(l.startswith(word) for word in NETMHC_TOKENS): continue yield l.split()
def split_stdout_lines(stdout): """ Given the standard output from NetMHC/NetMHCpan/NetMHCcons tools, drop all {comments, lines of hyphens, empty lines} and split the remaining lines by whitespace. """ # all the NetMHC formats use lines full of dashes before any actual # binding results seen_dash = False for l in stdout.split("\n"): l = l.strip() # wait for a line like '----------' before trying to parse entries # have to include multiple dashes here since NetMHC 4.0 sometimes # gives negative positions in its "peptide" input mode if l.startswith("---"): seen_dash = True continue if not seen_dash: continue # ignore empty lines and comments if not l or l.startswith("#"): continue # beginning of headers in NetMHC if any(l.startswith(word) for word in NETMHC_TOKENS): continue yield l.split()
[ "Given", "the", "standard", "output", "from", "NetMHC", "/", "NetMHCpan", "/", "NetMHCcons", "tools", "drop", "all", "{", "comments", "lines", "of", "hyphens", "empty", "lines", "}", "and", "split", "the", "remaining", "lines", "by", "whitespace", "." ]
openvax/mhctools
python
https://github.com/openvax/mhctools/blob/b329b4dccd60fae41296816b8cbfe15d6ca07e67/mhctools/parsing.py#L41-L66
[ "def", "split_stdout_lines", "(", "stdout", ")", ":", "# all the NetMHC formats use lines full of dashes before any actual", "# binding results", "seen_dash", "=", "False", "for", "l", "in", "stdout", ".", "split", "(", "\"\\n\"", ")", ":", "l", "=", "l", ".", "strip", "(", ")", "# wait for a line like '----------' before trying to parse entries", "# have to include multiple dashes here since NetMHC 4.0 sometimes", "# gives negative positions in its \"peptide\" input mode", "if", "l", ".", "startswith", "(", "\"---\"", ")", ":", "seen_dash", "=", "True", "continue", "if", "not", "seen_dash", ":", "continue", "# ignore empty lines and comments", "if", "not", "l", "or", "l", ".", "startswith", "(", "\"#\"", ")", ":", "continue", "# beginning of headers in NetMHC", "if", "any", "(", "l", ".", "startswith", "(", "word", ")", "for", "word", "in", "NETMHC_TOKENS", ")", ":", "continue", "yield", "l", ".", "split", "(", ")" ]
b329b4dccd60fae41296816b8cbfe15d6ca07e67
valid
clean_fields
Sometimes, NetMHC* has fields that are only populated sometimes, which results in different count/indexing of the fields when that happens. We handle this by looking for particular strings at particular indices, and deleting them. Warning: this may result in unexpected behavior sometimes. For example, we ignore "SB" and "WB" for NetMHC 3.x output; which also means that any line with a key called SB or WB will be ignored. Also, sometimes NetMHC* will have fields that we want to modify in some consistent way, e.g. NetMHCpan3 has 1-based offsets and all other predictors have 0-based offsets (and we rely on 0-based offsets). We handle this using a map from field index to transform function.
mhctools/parsing.py
def clean_fields(fields, ignored_value_indices, transforms): """ Sometimes, NetMHC* has fields that are only populated sometimes, which results in different count/indexing of the fields when that happens. We handle this by looking for particular strings at particular indices, and deleting them. Warning: this may result in unexpected behavior sometimes. For example, we ignore "SB" and "WB" for NetMHC 3.x output; which also means that any line with a key called SB or WB will be ignored. Also, sometimes NetMHC* will have fields that we want to modify in some consistent way, e.g. NetMHCpan3 has 1-based offsets and all other predictors have 0-based offsets (and we rely on 0-based offsets). We handle this using a map from field index to transform function. """ cleaned_fields = [] for i, field in enumerate(fields): if field in ignored_value_indices: ignored_index = ignored_value_indices[field] # Is the value we want to ignore at the index where we'd ignore it? if ignored_index == i: continue # transform this field if the index is in transforms, otherwise leave alone cleaned_field = transforms[i](field) if i in transforms else field cleaned_fields.append(cleaned_field) return cleaned_fields
def clean_fields(fields, ignored_value_indices, transforms): """ Sometimes, NetMHC* has fields that are only populated sometimes, which results in different count/indexing of the fields when that happens. We handle this by looking for particular strings at particular indices, and deleting them. Warning: this may result in unexpected behavior sometimes. For example, we ignore "SB" and "WB" for NetMHC 3.x output; which also means that any line with a key called SB or WB will be ignored. Also, sometimes NetMHC* will have fields that we want to modify in some consistent way, e.g. NetMHCpan3 has 1-based offsets and all other predictors have 0-based offsets (and we rely on 0-based offsets). We handle this using a map from field index to transform function. """ cleaned_fields = [] for i, field in enumerate(fields): if field in ignored_value_indices: ignored_index = ignored_value_indices[field] # Is the value we want to ignore at the index where we'd ignore it? if ignored_index == i: continue # transform this field if the index is in transforms, otherwise leave alone cleaned_field = transforms[i](field) if i in transforms else field cleaned_fields.append(cleaned_field) return cleaned_fields
[ "Sometimes", "NetMHC", "*", "has", "fields", "that", "are", "only", "populated", "sometimes", "which", "results", "in", "different", "count", "/", "indexing", "of", "the", "fields", "when", "that", "happens", "." ]
openvax/mhctools
python
https://github.com/openvax/mhctools/blob/b329b4dccd60fae41296816b8cbfe15d6ca07e67/mhctools/parsing.py#L69-L98
[ "def", "clean_fields", "(", "fields", ",", "ignored_value_indices", ",", "transforms", ")", ":", "cleaned_fields", "=", "[", "]", "for", "i", ",", "field", "in", "enumerate", "(", "fields", ")", ":", "if", "field", "in", "ignored_value_indices", ":", "ignored_index", "=", "ignored_value_indices", "[", "field", "]", "# Is the value we want to ignore at the index where we'd ignore it?", "if", "ignored_index", "==", "i", ":", "continue", "# transform this field if the index is in transforms, otherwise leave alone", "cleaned_field", "=", "transforms", "[", "i", "]", "(", "field", ")", "if", "i", "in", "transforms", "else", "field", "cleaned_fields", ".", "append", "(", "cleaned_field", ")", "return", "cleaned_fields" ]
b329b4dccd60fae41296816b8cbfe15d6ca07e67
valid
parse_stdout
Generic function for parsing any NetMHC* output, given expected indices of values of interest. Parameters ---------- ignored_value_indices : dict Map from values to the positions we'll ignore them at. See clean_fields. transforms : dict Map from field index to a transform function to be applied to values in that field. See clean_fields. Returns BindingPredictionCollection
mhctools/parsing.py
def parse_stdout( stdout, prediction_method_name, sequence_key_mapping, key_index, offset_index, peptide_index, allele_index, ic50_index, rank_index, log_ic50_index, ignored_value_indices={}, transforms={}): """ Generic function for parsing any NetMHC* output, given expected indices of values of interest. Parameters ---------- ignored_value_indices : dict Map from values to the positions we'll ignore them at. See clean_fields. transforms : dict Map from field index to a transform function to be applied to values in that field. See clean_fields. Returns BindingPredictionCollection """ binding_predictions = [] for fields in split_stdout_lines(stdout): fields = clean_fields(fields, ignored_value_indices, transforms) offset = int(fields[offset_index]) peptide = str(fields[peptide_index]) allele = str(fields[allele_index]) ic50 = float(fields[ic50_index]) rank = float(fields[rank_index]) if rank_index else 0.0 log_ic50 = float(fields[log_ic50_index]) key = str(fields[key_index]) if sequence_key_mapping: original_key = sequence_key_mapping[key] else: # if sequence_key_mapping isn't provided then let's assume it's the # identity function original_key = key binding_predictions.append(BindingPrediction( source_sequence_name=original_key, offset=offset, peptide=peptide, allele=normalize_allele_name(allele), affinity=ic50, percentile_rank=rank, log_affinity=log_ic50, prediction_method_name=prediction_method_name)) return binding_predictions
def parse_stdout( stdout, prediction_method_name, sequence_key_mapping, key_index, offset_index, peptide_index, allele_index, ic50_index, rank_index, log_ic50_index, ignored_value_indices={}, transforms={}): """ Generic function for parsing any NetMHC* output, given expected indices of values of interest. Parameters ---------- ignored_value_indices : dict Map from values to the positions we'll ignore them at. See clean_fields. transforms : dict Map from field index to a transform function to be applied to values in that field. See clean_fields. Returns BindingPredictionCollection """ binding_predictions = [] for fields in split_stdout_lines(stdout): fields = clean_fields(fields, ignored_value_indices, transforms) offset = int(fields[offset_index]) peptide = str(fields[peptide_index]) allele = str(fields[allele_index]) ic50 = float(fields[ic50_index]) rank = float(fields[rank_index]) if rank_index else 0.0 log_ic50 = float(fields[log_ic50_index]) key = str(fields[key_index]) if sequence_key_mapping: original_key = sequence_key_mapping[key] else: # if sequence_key_mapping isn't provided then let's assume it's the # identity function original_key = key binding_predictions.append(BindingPrediction( source_sequence_name=original_key, offset=offset, peptide=peptide, allele=normalize_allele_name(allele), affinity=ic50, percentile_rank=rank, log_affinity=log_ic50, prediction_method_name=prediction_method_name)) return binding_predictions
[ "Generic", "function", "for", "parsing", "any", "NetMHC", "*", "output", "given", "expected", "indices", "of", "values", "of", "interest", "." ]
openvax/mhctools
python
https://github.com/openvax/mhctools/blob/b329b4dccd60fae41296816b8cbfe15d6ca07e67/mhctools/parsing.py#L100-L157
[ "def", "parse_stdout", "(", "stdout", ",", "prediction_method_name", ",", "sequence_key_mapping", ",", "key_index", ",", "offset_index", ",", "peptide_index", ",", "allele_index", ",", "ic50_index", ",", "rank_index", ",", "log_ic50_index", ",", "ignored_value_indices", "=", "{", "}", ",", "transforms", "=", "{", "}", ")", ":", "binding_predictions", "=", "[", "]", "for", "fields", "in", "split_stdout_lines", "(", "stdout", ")", ":", "fields", "=", "clean_fields", "(", "fields", ",", "ignored_value_indices", ",", "transforms", ")", "offset", "=", "int", "(", "fields", "[", "offset_index", "]", ")", "peptide", "=", "str", "(", "fields", "[", "peptide_index", "]", ")", "allele", "=", "str", "(", "fields", "[", "allele_index", "]", ")", "ic50", "=", "float", "(", "fields", "[", "ic50_index", "]", ")", "rank", "=", "float", "(", "fields", "[", "rank_index", "]", ")", "if", "rank_index", "else", "0.0", "log_ic50", "=", "float", "(", "fields", "[", "log_ic50_index", "]", ")", "key", "=", "str", "(", "fields", "[", "key_index", "]", ")", "if", "sequence_key_mapping", ":", "original_key", "=", "sequence_key_mapping", "[", "key", "]", "else", ":", "# if sequence_key_mapping isn't provided then let's assume it's the", "# identity function", "original_key", "=", "key", "binding_predictions", ".", "append", "(", "BindingPrediction", "(", "source_sequence_name", "=", "original_key", ",", "offset", "=", "offset", ",", "peptide", "=", "peptide", ",", "allele", "=", "normalize_allele_name", "(", "allele", ")", ",", "affinity", "=", "ic50", ",", "percentile_rank", "=", "rank", ",", "log_affinity", "=", "log_ic50", ",", "prediction_method_name", "=", "prediction_method_name", ")", ")", "return", "binding_predictions" ]
b329b4dccd60fae41296816b8cbfe15d6ca07e67
valid
parse_netmhc3_stdout
Parse the output format for NetMHC 3.x, which looks like: ---------------------------------------------------------------------------------------------------- pos peptide logscore affinity(nM) Bind Level Protein Name Allele ---------------------------------------------------------------------------------------------------- 0 SIINKFELL 0.437 441 WB A1 HLA-A02:01 -------------------------------------------------------------------------------------------------- 0 SIINKFFFQ 0.206 5411 A2 HLA-A02:01 1 IINKFFFQQ 0.128 12544 A2 HLA-A02:01 2 INKFFFQQQ 0.046 30406 A2 HLA-A02:01 3 NKFFFQQQQ 0.050 29197 A2 HLA-A02:01 --------------------------------------------------------------------------------------------------
mhctools/parsing.py
def parse_netmhc3_stdout( stdout, prediction_method_name="netmhc3", sequence_key_mapping=None): """ Parse the output format for NetMHC 3.x, which looks like: ---------------------------------------------------------------------------------------------------- pos peptide logscore affinity(nM) Bind Level Protein Name Allele ---------------------------------------------------------------------------------------------------- 0 SIINKFELL 0.437 441 WB A1 HLA-A02:01 -------------------------------------------------------------------------------------------------- 0 SIINKFFFQ 0.206 5411 A2 HLA-A02:01 1 IINKFFFQQ 0.128 12544 A2 HLA-A02:01 2 INKFFFQQQ 0.046 30406 A2 HLA-A02:01 3 NKFFFQQQQ 0.050 29197 A2 HLA-A02:01 -------------------------------------------------------------------------------------------------- """ return parse_stdout( stdout=stdout, prediction_method_name=prediction_method_name, sequence_key_mapping=sequence_key_mapping, key_index=4, offset_index=0, peptide_index=1, allele_index=5, ic50_index=3, rank_index=None, log_ic50_index=2, ignored_value_indices={"WB": 4, "SB": 4})
def parse_netmhc3_stdout( stdout, prediction_method_name="netmhc3", sequence_key_mapping=None): """ Parse the output format for NetMHC 3.x, which looks like: ---------------------------------------------------------------------------------------------------- pos peptide logscore affinity(nM) Bind Level Protein Name Allele ---------------------------------------------------------------------------------------------------- 0 SIINKFELL 0.437 441 WB A1 HLA-A02:01 -------------------------------------------------------------------------------------------------- 0 SIINKFFFQ 0.206 5411 A2 HLA-A02:01 1 IINKFFFQQ 0.128 12544 A2 HLA-A02:01 2 INKFFFQQQ 0.046 30406 A2 HLA-A02:01 3 NKFFFQQQQ 0.050 29197 A2 HLA-A02:01 -------------------------------------------------------------------------------------------------- """ return parse_stdout( stdout=stdout, prediction_method_name=prediction_method_name, sequence_key_mapping=sequence_key_mapping, key_index=4, offset_index=0, peptide_index=1, allele_index=5, ic50_index=3, rank_index=None, log_ic50_index=2, ignored_value_indices={"WB": 4, "SB": 4})
[ "Parse", "the", "output", "format", "for", "NetMHC", "3", ".", "x", "which", "looks", "like", ":" ]
openvax/mhctools
python
https://github.com/openvax/mhctools/blob/b329b4dccd60fae41296816b8cbfe15d6ca07e67/mhctools/parsing.py#L159-L188
[ "def", "parse_netmhc3_stdout", "(", "stdout", ",", "prediction_method_name", "=", "\"netmhc3\"", ",", "sequence_key_mapping", "=", "None", ")", ":", "return", "parse_stdout", "(", "stdout", "=", "stdout", ",", "prediction_method_name", "=", "prediction_method_name", ",", "sequence_key_mapping", "=", "sequence_key_mapping", ",", "key_index", "=", "4", ",", "offset_index", "=", "0", ",", "peptide_index", "=", "1", ",", "allele_index", "=", "5", ",", "ic50_index", "=", "3", ",", "rank_index", "=", "None", ",", "log_ic50_index", "=", "2", ",", "ignored_value_indices", "=", "{", "\"WB\"", ":", "4", ",", "\"SB\"", ":", "4", "}", ")" ]
b329b4dccd60fae41296816b8cbfe15d6ca07e67
valid
parse_netmhc4_stdout
# Peptide length 9 # Rank Threshold for Strong binding peptides 0.500 # Rank Threshold for Weak binding peptides 2.000 ----------------------------------------------------------------------------------- pos HLA peptide Core Offset I_pos I_len D_pos D_len iCore Identity 1-log50k(aff) Affinity(nM) %Rank BindLevel ----------------------------------------------------------------------------------- 0 HLA-A0201 TMDKSELVQ TMDKSELVQ 0 0 0 0 0 TMDKSELVQ 143B_BOVIN_P293 0.051 28676.59 43.00 1 HLA-A0201 MDKSELVQK MDKSELVQK 0 0 0 0 0 MDKSELVQK 143B_BOVIN_P293 0.030 36155.15 70.00 2 HLA-A0201 DKSELVQKA DKSELVQKA 0 0 0 0 0 DKSELVQKA 143B_BOVIN_P293 0.030 36188.42 70.00 3 HLA-A0201 KSELVQKAK KSELVQKAK 0 0 0 0 0 KSELVQKAK 143B_BOVIN_P293 0.032 35203.22 65.00 4 HLA-A0201 SELVQKAKL SELVQKAKL 0 0 0 0 0 SELVQKAKL 143B_BOVIN_P293 0.031 35670.99 65.00 5 HLA-A0201 ELVQKAKLA ELVQKAKLA 0 0 0 0 0 ELVQKAKLA 143B_BOVIN_P293 0.080 21113.07 29.00 6 HLA-A0201 LVQKAKLAE LVQKAKLAE 0 0 0 0 0 LVQKAKLAE 143B_BOVIN_P293 0.027 37257.56 75.00 7 HLA-A0201 VQKAKLAEQ VQKAKLAEQ 0 0 0 0 0 VQKAKLAEQ 143B_BOVIN_P293 0.040 32404.62 55.00 219 HLA-A0201 QLLRDNLTL QLLRDNLTL 0 0 0 0 0 QLLRDNLTL 143B_BOVIN_P293 0.527 167.10 1.50 <= WB -----------------------------------------------------------------------------------
mhctools/parsing.py
def parse_netmhc4_stdout( stdout, prediction_method_name="netmhc4", sequence_key_mapping=None): """ # Peptide length 9 # Rank Threshold for Strong binding peptides 0.500 # Rank Threshold for Weak binding peptides 2.000 ----------------------------------------------------------------------------------- pos HLA peptide Core Offset I_pos I_len D_pos D_len iCore Identity 1-log50k(aff) Affinity(nM) %Rank BindLevel ----------------------------------------------------------------------------------- 0 HLA-A0201 TMDKSELVQ TMDKSELVQ 0 0 0 0 0 TMDKSELVQ 143B_BOVIN_P293 0.051 28676.59 43.00 1 HLA-A0201 MDKSELVQK MDKSELVQK 0 0 0 0 0 MDKSELVQK 143B_BOVIN_P293 0.030 36155.15 70.00 2 HLA-A0201 DKSELVQKA DKSELVQKA 0 0 0 0 0 DKSELVQKA 143B_BOVIN_P293 0.030 36188.42 70.00 3 HLA-A0201 KSELVQKAK KSELVQKAK 0 0 0 0 0 KSELVQKAK 143B_BOVIN_P293 0.032 35203.22 65.00 4 HLA-A0201 SELVQKAKL SELVQKAKL 0 0 0 0 0 SELVQKAKL 143B_BOVIN_P293 0.031 35670.99 65.00 5 HLA-A0201 ELVQKAKLA ELVQKAKLA 0 0 0 0 0 ELVQKAKLA 143B_BOVIN_P293 0.080 21113.07 29.00 6 HLA-A0201 LVQKAKLAE LVQKAKLAE 0 0 0 0 0 LVQKAKLAE 143B_BOVIN_P293 0.027 37257.56 75.00 7 HLA-A0201 VQKAKLAEQ VQKAKLAEQ 0 0 0 0 0 VQKAKLAEQ 143B_BOVIN_P293 0.040 32404.62 55.00 219 HLA-A0201 QLLRDNLTL QLLRDNLTL 0 0 0 0 0 QLLRDNLTL 143B_BOVIN_P293 0.527 167.10 1.50 <= WB ----------------------------------------------------------------------------------- """ return parse_stdout( stdout=stdout, prediction_method_name=prediction_method_name, sequence_key_mapping=sequence_key_mapping, key_index=10, offset_index=0, peptide_index=2, allele_index=1, ic50_index=12, rank_index=13, log_ic50_index=11)
def parse_netmhc4_stdout( stdout, prediction_method_name="netmhc4", sequence_key_mapping=None): """ # Peptide length 9 # Rank Threshold for Strong binding peptides 0.500 # Rank Threshold for Weak binding peptides 2.000 ----------------------------------------------------------------------------------- pos HLA peptide Core Offset I_pos I_len D_pos D_len iCore Identity 1-log50k(aff) Affinity(nM) %Rank BindLevel ----------------------------------------------------------------------------------- 0 HLA-A0201 TMDKSELVQ TMDKSELVQ 0 0 0 0 0 TMDKSELVQ 143B_BOVIN_P293 0.051 28676.59 43.00 1 HLA-A0201 MDKSELVQK MDKSELVQK 0 0 0 0 0 MDKSELVQK 143B_BOVIN_P293 0.030 36155.15 70.00 2 HLA-A0201 DKSELVQKA DKSELVQKA 0 0 0 0 0 DKSELVQKA 143B_BOVIN_P293 0.030 36188.42 70.00 3 HLA-A0201 KSELVQKAK KSELVQKAK 0 0 0 0 0 KSELVQKAK 143B_BOVIN_P293 0.032 35203.22 65.00 4 HLA-A0201 SELVQKAKL SELVQKAKL 0 0 0 0 0 SELVQKAKL 143B_BOVIN_P293 0.031 35670.99 65.00 5 HLA-A0201 ELVQKAKLA ELVQKAKLA 0 0 0 0 0 ELVQKAKLA 143B_BOVIN_P293 0.080 21113.07 29.00 6 HLA-A0201 LVQKAKLAE LVQKAKLAE 0 0 0 0 0 LVQKAKLAE 143B_BOVIN_P293 0.027 37257.56 75.00 7 HLA-A0201 VQKAKLAEQ VQKAKLAEQ 0 0 0 0 0 VQKAKLAEQ 143B_BOVIN_P293 0.040 32404.62 55.00 219 HLA-A0201 QLLRDNLTL QLLRDNLTL 0 0 0 0 0 QLLRDNLTL 143B_BOVIN_P293 0.527 167.10 1.50 <= WB ----------------------------------------------------------------------------------- """ return parse_stdout( stdout=stdout, prediction_method_name=prediction_method_name, sequence_key_mapping=sequence_key_mapping, key_index=10, offset_index=0, peptide_index=2, allele_index=1, ic50_index=12, rank_index=13, log_ic50_index=11)
[ "#", "Peptide", "length", "9", "#", "Rank", "Threshold", "for", "Strong", "binding", "peptides", "0", ".", "500", "#", "Rank", "Threshold", "for", "Weak", "binding", "peptides", "2", ".", "000", "-----------------------------------------------------------------------------------", "pos", "HLA", "peptide", "Core", "Offset", "I_pos", "I_len", "D_pos", "D_len", "iCore", "Identity", "1", "-", "log50k", "(", "aff", ")", "Affinity", "(", "nM", ")", "%Rank", "BindLevel", "-----------------------------------------------------------------------------------", "0", "HLA", "-", "A0201", "TMDKSELVQ", "TMDKSELVQ", "0", "0", "0", "0", "0", "TMDKSELVQ", "143B_BOVIN_P293", "0", ".", "051", "28676", ".", "59", "43", ".", "00", "1", "HLA", "-", "A0201", "MDKSELVQK", "MDKSELVQK", "0", "0", "0", "0", "0", "MDKSELVQK", "143B_BOVIN_P293", "0", ".", "030", "36155", ".", "15", "70", ".", "00", "2", "HLA", "-", "A0201", "DKSELVQKA", "DKSELVQKA", "0", "0", "0", "0", "0", "DKSELVQKA", "143B_BOVIN_P293", "0", ".", "030", "36188", ".", "42", "70", ".", "00", "3", "HLA", "-", "A0201", "KSELVQKAK", "KSELVQKAK", "0", "0", "0", "0", "0", "KSELVQKAK", "143B_BOVIN_P293", "0", ".", "032", "35203", ".", "22", "65", ".", "00", "4", "HLA", "-", "A0201", "SELVQKAKL", "SELVQKAKL", "0", "0", "0", "0", "0", "SELVQKAKL", "143B_BOVIN_P293", "0", ".", "031", "35670", ".", "99", "65", ".", "00", "5", "HLA", "-", "A0201", "ELVQKAKLA", "ELVQKAKLA", "0", "0", "0", "0", "0", "ELVQKAKLA", "143B_BOVIN_P293", "0", ".", "080", "21113", ".", "07", "29", ".", "00", "6", "HLA", "-", "A0201", "LVQKAKLAE", "LVQKAKLAE", "0", "0", "0", "0", "0", "LVQKAKLAE", "143B_BOVIN_P293", "0", ".", "027", "37257", ".", "56", "75", ".", "00", "7", "HLA", "-", "A0201", "VQKAKLAEQ", "VQKAKLAEQ", "0", "0", "0", "0", "0", "VQKAKLAEQ", "143B_BOVIN_P293", "0", ".", "040", "32404", ".", "62", "55", ".", "00", "219", "HLA", "-", "A0201", "QLLRDNLTL", "QLLRDNLTL", "0", "0", "0", "0", "0", "QLLRDNLTL", "143B_BOVIN_P293", "0", ".", "527", "167", ".", "10", "1", ".", "50", "<", "=", "WB", "-----------------------------------------------------------------------------------" ]
openvax/mhctools
python
https://github.com/openvax/mhctools/blob/b329b4dccd60fae41296816b8cbfe15d6ca07e67/mhctools/parsing.py#L190-L222
[ "def", "parse_netmhc4_stdout", "(", "stdout", ",", "prediction_method_name", "=", "\"netmhc4\"", ",", "sequence_key_mapping", "=", "None", ")", ":", "return", "parse_stdout", "(", "stdout", "=", "stdout", ",", "prediction_method_name", "=", "prediction_method_name", ",", "sequence_key_mapping", "=", "sequence_key_mapping", ",", "key_index", "=", "10", ",", "offset_index", "=", "0", ",", "peptide_index", "=", "2", ",", "allele_index", "=", "1", ",", "ic50_index", "=", "12", ",", "rank_index", "=", "13", ",", "log_ic50_index", "=", "11", ")" ]
b329b4dccd60fae41296816b8cbfe15d6ca07e67
valid
parse_netmhcpan28_stdout
# Affinity Threshold for Strong binding peptides 50.000', # Affinity Threshold for Weak binding peptides 500.000', # Rank Threshold for Strong binding peptides 0.500', # Rank Threshold for Weak binding peptides 2.000', ---------------------------------------------------------------------------- pos HLA peptide Identity 1-log50k(aff) Affinity(nM) %Rank BindLevel ---------------------------------------------------------------------------- 0 HLA-A*02:03 QQQQQYFPE id0 0.024 38534.25 50.00 1 HLA-A*02:03 QQQQYFPEI id0 0.278 2461.53 15.00 2 HLA-A*02:03 QQQYFPEIT id0 0.078 21511.53 50.00 3 HLA-A*02:03 QQYFPEITH id0 0.041 32176.84 50.00 4 HLA-A*02:03 QYFPEITHI id0 0.085 19847.09 32.00 5 HLA-A*02:03 YFPEITHII id0 0.231 4123.85 15.00 6 HLA-A*02:03 FPEITHIII id0 0.060 26134.28 50.00 7 HLA-A*02:03 PEITHIIIA id0 0.034 34524.63 50.00 8 HLA-A*02:03 EITHIIIAS id0 0.076 21974.48 50.00 9 HLA-A*02:03 ITHIIIASS id0 0.170 7934.26 32.00 10 HLA-A*02:03 THIIIASSS id0 0.040 32361.18 50.00 11 HLA-A*02:03 HIIIASSSL id0 0.515 189.74 4.00 <= WB
mhctools/parsing.py
def parse_netmhcpan28_stdout( stdout, prediction_method_name="netmhcpan", sequence_key_mapping=None): """ # Affinity Threshold for Strong binding peptides 50.000', # Affinity Threshold for Weak binding peptides 500.000', # Rank Threshold for Strong binding peptides 0.500', # Rank Threshold for Weak binding peptides 2.000', ---------------------------------------------------------------------------- pos HLA peptide Identity 1-log50k(aff) Affinity(nM) %Rank BindLevel ---------------------------------------------------------------------------- 0 HLA-A*02:03 QQQQQYFPE id0 0.024 38534.25 50.00 1 HLA-A*02:03 QQQQYFPEI id0 0.278 2461.53 15.00 2 HLA-A*02:03 QQQYFPEIT id0 0.078 21511.53 50.00 3 HLA-A*02:03 QQYFPEITH id0 0.041 32176.84 50.00 4 HLA-A*02:03 QYFPEITHI id0 0.085 19847.09 32.00 5 HLA-A*02:03 YFPEITHII id0 0.231 4123.85 15.00 6 HLA-A*02:03 FPEITHIII id0 0.060 26134.28 50.00 7 HLA-A*02:03 PEITHIIIA id0 0.034 34524.63 50.00 8 HLA-A*02:03 EITHIIIAS id0 0.076 21974.48 50.00 9 HLA-A*02:03 ITHIIIASS id0 0.170 7934.26 32.00 10 HLA-A*02:03 THIIIASSS id0 0.040 32361.18 50.00 11 HLA-A*02:03 HIIIASSSL id0 0.515 189.74 4.00 <= WB """ check_stdout_error(stdout, "NetMHCpan-2.8") return parse_stdout( stdout=stdout, prediction_method_name=prediction_method_name, sequence_key_mapping=sequence_key_mapping, key_index=3, offset_index=0, peptide_index=2, allele_index=1, ic50_index=5, rank_index=6, log_ic50_index=4)
def parse_netmhcpan28_stdout( stdout, prediction_method_name="netmhcpan", sequence_key_mapping=None): """ # Affinity Threshold for Strong binding peptides 50.000', # Affinity Threshold for Weak binding peptides 500.000', # Rank Threshold for Strong binding peptides 0.500', # Rank Threshold for Weak binding peptides 2.000', ---------------------------------------------------------------------------- pos HLA peptide Identity 1-log50k(aff) Affinity(nM) %Rank BindLevel ---------------------------------------------------------------------------- 0 HLA-A*02:03 QQQQQYFPE id0 0.024 38534.25 50.00 1 HLA-A*02:03 QQQQYFPEI id0 0.278 2461.53 15.00 2 HLA-A*02:03 QQQYFPEIT id0 0.078 21511.53 50.00 3 HLA-A*02:03 QQYFPEITH id0 0.041 32176.84 50.00 4 HLA-A*02:03 QYFPEITHI id0 0.085 19847.09 32.00 5 HLA-A*02:03 YFPEITHII id0 0.231 4123.85 15.00 6 HLA-A*02:03 FPEITHIII id0 0.060 26134.28 50.00 7 HLA-A*02:03 PEITHIIIA id0 0.034 34524.63 50.00 8 HLA-A*02:03 EITHIIIAS id0 0.076 21974.48 50.00 9 HLA-A*02:03 ITHIIIASS id0 0.170 7934.26 32.00 10 HLA-A*02:03 THIIIASSS id0 0.040 32361.18 50.00 11 HLA-A*02:03 HIIIASSSL id0 0.515 189.74 4.00 <= WB """ check_stdout_error(stdout, "NetMHCpan-2.8") return parse_stdout( stdout=stdout, prediction_method_name=prediction_method_name, sequence_key_mapping=sequence_key_mapping, key_index=3, offset_index=0, peptide_index=2, allele_index=1, ic50_index=5, rank_index=6, log_ic50_index=4)
[ "#", "Affinity", "Threshold", "for", "Strong", "binding", "peptides", "50", ".", "000", "#", "Affinity", "Threshold", "for", "Weak", "binding", "peptides", "500", ".", "000", "#", "Rank", "Threshold", "for", "Strong", "binding", "peptides", "0", ".", "500", "#", "Rank", "Threshold", "for", "Weak", "binding", "peptides", "2", ".", "000", "----------------------------------------------------------------------------", "pos", "HLA", "peptide", "Identity", "1", "-", "log50k", "(", "aff", ")", "Affinity", "(", "nM", ")", "%Rank", "BindLevel", "----------------------------------------------------------------------------", "0", "HLA", "-", "A", "*", "02", ":", "03", "QQQQQYFPE", "id0", "0", ".", "024", "38534", ".", "25", "50", ".", "00", "1", "HLA", "-", "A", "*", "02", ":", "03", "QQQQYFPEI", "id0", "0", ".", "278", "2461", ".", "53", "15", ".", "00", "2", "HLA", "-", "A", "*", "02", ":", "03", "QQQYFPEIT", "id0", "0", ".", "078", "21511", ".", "53", "50", ".", "00", "3", "HLA", "-", "A", "*", "02", ":", "03", "QQYFPEITH", "id0", "0", ".", "041", "32176", ".", "84", "50", ".", "00", "4", "HLA", "-", "A", "*", "02", ":", "03", "QYFPEITHI", "id0", "0", ".", "085", "19847", ".", "09", "32", ".", "00", "5", "HLA", "-", "A", "*", "02", ":", "03", "YFPEITHII", "id0", "0", ".", "231", "4123", ".", "85", "15", ".", "00", "6", "HLA", "-", "A", "*", "02", ":", "03", "FPEITHIII", "id0", "0", ".", "060", "26134", ".", "28", "50", ".", "00", "7", "HLA", "-", "A", "*", "02", ":", "03", "PEITHIIIA", "id0", "0", ".", "034", "34524", ".", "63", "50", ".", "00", "8", "HLA", "-", "A", "*", "02", ":", "03", "EITHIIIAS", "id0", "0", ".", "076", "21974", ".", "48", "50", ".", "00", "9", "HLA", "-", "A", "*", "02", ":", "03", "ITHIIIASS", "id0", "0", ".", "170", "7934", ".", "26", "32", ".", "00", "10", "HLA", "-", "A", "*", "02", ":", "03", "THIIIASSS", "id0", "0", ".", "040", "32361", ".", "18", "50", ".", "00", "11", "HLA", "-", "A", "*", "02", ":", "03", "HIIIASSSL", "id0", "0", ".", "515", "189", ".", "74", "4", ".", "00", "<", "=", "WB" ]
openvax/mhctools
python
https://github.com/openvax/mhctools/blob/b329b4dccd60fae41296816b8cbfe15d6ca07e67/mhctools/parsing.py#L224-L260
[ "def", "parse_netmhcpan28_stdout", "(", "stdout", ",", "prediction_method_name", "=", "\"netmhcpan\"", ",", "sequence_key_mapping", "=", "None", ")", ":", "check_stdout_error", "(", "stdout", ",", "\"NetMHCpan-2.8\"", ")", "return", "parse_stdout", "(", "stdout", "=", "stdout", ",", "prediction_method_name", "=", "prediction_method_name", ",", "sequence_key_mapping", "=", "sequence_key_mapping", ",", "key_index", "=", "3", ",", "offset_index", "=", "0", ",", "peptide_index", "=", "2", ",", "allele_index", "=", "1", ",", "ic50_index", "=", "5", ",", "rank_index", "=", "6", ",", "log_ic50_index", "=", "4", ")" ]
b329b4dccd60fae41296816b8cbfe15d6ca07e67
valid
parse_netmhcpan3_stdout
# Rank Threshold for Strong binding peptides 0.500 # Rank Threshold for Weak binding peptides 2.000 ----------------------------------------------------------------------------------- Pos HLA Peptide Core Of Gp Gl Ip Il Icore Identity Score Aff(nM) %Rank BindLevel ----------------------------------------------------------------------------------- 1 HLA-B*18:01 MFCQLAKT MFCQLAKT- 0 0 0 8 1 MFCQLAKT sequence0_0 0.02864 36676.0 45.00 2 HLA-B*18:01 FCQLAKTY F-CQLAKTY 0 0 0 1 1 FCQLAKTY sequence0_0 0.07993 21056.5 13.00
mhctools/parsing.py
def parse_netmhcpan3_stdout( stdout, prediction_method_name="netmhcpan", sequence_key_mapping=None): """ # Rank Threshold for Strong binding peptides 0.500 # Rank Threshold for Weak binding peptides 2.000 ----------------------------------------------------------------------------------- Pos HLA Peptide Core Of Gp Gl Ip Il Icore Identity Score Aff(nM) %Rank BindLevel ----------------------------------------------------------------------------------- 1 HLA-B*18:01 MFCQLAKT MFCQLAKT- 0 0 0 8 1 MFCQLAKT sequence0_0 0.02864 36676.0 45.00 2 HLA-B*18:01 FCQLAKTY F-CQLAKTY 0 0 0 1 1 FCQLAKTY sequence0_0 0.07993 21056.5 13.00 """ # the offset specified in "pos" (at index 0) is 1-based instead of 0-based. we adjust it to be # 0-based, as in all the other netmhc predictors supported by this library. transforms = { 0: lambda x: int(x) - 1, } return parse_stdout( stdout=stdout, prediction_method_name=prediction_method_name, sequence_key_mapping=sequence_key_mapping, key_index=10, offset_index=0, peptide_index=2, allele_index=1, ic50_index=12, rank_index=13, log_ic50_index=11, transforms=transforms)
def parse_netmhcpan3_stdout( stdout, prediction_method_name="netmhcpan", sequence_key_mapping=None): """ # Rank Threshold for Strong binding peptides 0.500 # Rank Threshold for Weak binding peptides 2.000 ----------------------------------------------------------------------------------- Pos HLA Peptide Core Of Gp Gl Ip Il Icore Identity Score Aff(nM) %Rank BindLevel ----------------------------------------------------------------------------------- 1 HLA-B*18:01 MFCQLAKT MFCQLAKT- 0 0 0 8 1 MFCQLAKT sequence0_0 0.02864 36676.0 45.00 2 HLA-B*18:01 FCQLAKTY F-CQLAKTY 0 0 0 1 1 FCQLAKTY sequence0_0 0.07993 21056.5 13.00 """ # the offset specified in "pos" (at index 0) is 1-based instead of 0-based. we adjust it to be # 0-based, as in all the other netmhc predictors supported by this library. transforms = { 0: lambda x: int(x) - 1, } return parse_stdout( stdout=stdout, prediction_method_name=prediction_method_name, sequence_key_mapping=sequence_key_mapping, key_index=10, offset_index=0, peptide_index=2, allele_index=1, ic50_index=12, rank_index=13, log_ic50_index=11, transforms=transforms)
[ "#", "Rank", "Threshold", "for", "Strong", "binding", "peptides", "0", ".", "500", "#", "Rank", "Threshold", "for", "Weak", "binding", "peptides", "2", ".", "000", "-----------------------------------------------------------------------------------", "Pos", "HLA", "Peptide", "Core", "Of", "Gp", "Gl", "Ip", "Il", "Icore", "Identity", "Score", "Aff", "(", "nM", ")", "%Rank", "BindLevel", "-----------------------------------------------------------------------------------", "1", "HLA", "-", "B", "*", "18", ":", "01", "MFCQLAKT", "MFCQLAKT", "-", "0", "0", "0", "8", "1", "MFCQLAKT", "sequence0_0", "0", ".", "02864", "36676", ".", "0", "45", ".", "00", "2", "HLA", "-", "B", "*", "18", ":", "01", "FCQLAKTY", "F", "-", "CQLAKTY", "0", "0", "0", "1", "1", "FCQLAKTY", "sequence0_0", "0", ".", "07993", "21056", ".", "5", "13", ".", "00" ]
openvax/mhctools
python
https://github.com/openvax/mhctools/blob/b329b4dccd60fae41296816b8cbfe15d6ca07e67/mhctools/parsing.py#L262-L292
[ "def", "parse_netmhcpan3_stdout", "(", "stdout", ",", "prediction_method_name", "=", "\"netmhcpan\"", ",", "sequence_key_mapping", "=", "None", ")", ":", "# the offset specified in \"pos\" (at index 0) is 1-based instead of 0-based. we adjust it to be", "# 0-based, as in all the other netmhc predictors supported by this library.", "transforms", "=", "{", "0", ":", "lambda", "x", ":", "int", "(", "x", ")", "-", "1", ",", "}", "return", "parse_stdout", "(", "stdout", "=", "stdout", ",", "prediction_method_name", "=", "prediction_method_name", ",", "sequence_key_mapping", "=", "sequence_key_mapping", ",", "key_index", "=", "10", ",", "offset_index", "=", "0", ",", "peptide_index", "=", "2", ",", "allele_index", "=", "1", ",", "ic50_index", "=", "12", ",", "rank_index", "=", "13", ",", "log_ic50_index", "=", "11", ",", "transforms", "=", "transforms", ")" ]
b329b4dccd60fae41296816b8cbfe15d6ca07e67
valid
parse_netmhcpan4_stdout
# NetMHCpan version 4.0 # Tmpdir made /var/folders/jc/fyrvcrcs3sb8g4mkdg6nl_t80000gp/T//netMHCpanuH3SvY # Input is in PEPTIDE format # Make binding affinity predictions HLA-A02:01 : Distance to training data 0.000 (using nearest neighbor HLA-A02:01) # Rank Threshold for Strong binding peptides 0.500 # Rank Threshold for Weak binding peptides 2.000 ----------------------------------------------------------------------------------- Pos HLA Peptide Core Of Gp Gl Ip Il Icore Identity Score Aff(nM) %Rank BindLevel ----------------------------------------------------------------------------------- 1 HLA-A*02:01 SIINFEKL SIINF-EKL 0 0 0 5 1 SIINFEKL PEPLIST 0.1141340 14543.1 18.9860 ----------------------------------------------------------------------------------- Protein PEPLIST. Allele HLA-A*02:01. Number of high binders 0. Number of weak binders 0. Number of peptides 1
mhctools/parsing.py
def parse_netmhcpan4_stdout( stdout, prediction_method_name="netmhcpan", sequence_key_mapping=None): """ # NetMHCpan version 4.0 # Tmpdir made /var/folders/jc/fyrvcrcs3sb8g4mkdg6nl_t80000gp/T//netMHCpanuH3SvY # Input is in PEPTIDE format # Make binding affinity predictions HLA-A02:01 : Distance to training data 0.000 (using nearest neighbor HLA-A02:01) # Rank Threshold for Strong binding peptides 0.500 # Rank Threshold for Weak binding peptides 2.000 ----------------------------------------------------------------------------------- Pos HLA Peptide Core Of Gp Gl Ip Il Icore Identity Score Aff(nM) %Rank BindLevel ----------------------------------------------------------------------------------- 1 HLA-A*02:01 SIINFEKL SIINF-EKL 0 0 0 5 1 SIINFEKL PEPLIST 0.1141340 14543.1 18.9860 ----------------------------------------------------------------------------------- Protein PEPLIST. Allele HLA-A*02:01. Number of high binders 0. Number of weak binders 0. Number of peptides 1 """ # Output format is compatible with netmhcpan3, but netmhcpan 4.0 must be # called with the -BA flag, so it gives affinity predictions, not mass-spec # elution likelihoods. return parse_netmhcpan3_stdout( stdout=stdout, prediction_method_name=prediction_method_name, sequence_key_mapping=sequence_key_mapping)
def parse_netmhcpan4_stdout( stdout, prediction_method_name="netmhcpan", sequence_key_mapping=None): """ # NetMHCpan version 4.0 # Tmpdir made /var/folders/jc/fyrvcrcs3sb8g4mkdg6nl_t80000gp/T//netMHCpanuH3SvY # Input is in PEPTIDE format # Make binding affinity predictions HLA-A02:01 : Distance to training data 0.000 (using nearest neighbor HLA-A02:01) # Rank Threshold for Strong binding peptides 0.500 # Rank Threshold for Weak binding peptides 2.000 ----------------------------------------------------------------------------------- Pos HLA Peptide Core Of Gp Gl Ip Il Icore Identity Score Aff(nM) %Rank BindLevel ----------------------------------------------------------------------------------- 1 HLA-A*02:01 SIINFEKL SIINF-EKL 0 0 0 5 1 SIINFEKL PEPLIST 0.1141340 14543.1 18.9860 ----------------------------------------------------------------------------------- Protein PEPLIST. Allele HLA-A*02:01. Number of high binders 0. Number of weak binders 0. Number of peptides 1 """ # Output format is compatible with netmhcpan3, but netmhcpan 4.0 must be # called with the -BA flag, so it gives affinity predictions, not mass-spec # elution likelihoods. return parse_netmhcpan3_stdout( stdout=stdout, prediction_method_name=prediction_method_name, sequence_key_mapping=sequence_key_mapping)
[ "#", "NetMHCpan", "version", "4", ".", "0" ]
openvax/mhctools
python
https://github.com/openvax/mhctools/blob/b329b4dccd60fae41296816b8cbfe15d6ca07e67/mhctools/parsing.py#L295-L326
[ "def", "parse_netmhcpan4_stdout", "(", "stdout", ",", "prediction_method_name", "=", "\"netmhcpan\"", ",", "sequence_key_mapping", "=", "None", ")", ":", "# Output format is compatible with netmhcpan3, but netmhcpan 4.0 must be", "# called with the -BA flag, so it gives affinity predictions, not mass-spec", "# elution likelihoods.", "return", "parse_netmhcpan3_stdout", "(", "stdout", "=", "stdout", ",", "prediction_method_name", "=", "prediction_method_name", ",", "sequence_key_mapping", "=", "sequence_key_mapping", ")" ]
b329b4dccd60fae41296816b8cbfe15d6ca07e67
valid
_parse_iedb_response
Take the binding predictions returned by IEDB's web API and parse them into a DataFrame Expect response to look like: allele seq_num start end length peptide ic50 percentile_rank HLA-A*01:01 1 2 10 9 LYNTVATLY 2145.70 3.7 HLA-A*01:01 1 5 13 9 TVATLYCVH 2216.49 3.9 HLA-A*01:01 1 7 15 9 ATLYCVHQR 2635.42 5.1 HLA-A*01:01 1 4 12 9 NTVATLYCV 6829.04 20 HLA-A*01:01 1 1 9 9 SLYNTVATL 8032.38 24 HLA-A*01:01 1 8 16 9 TLYCVHQRI 8853.90 26 HLA-A*01:01 1 3 11 9 YNTVATLYC 9865.62 29 HLA-A*01:01 1 6 14 9 VATLYCVHQ 27575.71 58 HLA-A*01:01 1 10 18 9 YCVHQRIDV 48929.64 74 HLA-A*01:01 1 9 17 9 LYCVHQRID 50000.00 75
mhctools/iedb.py
def _parse_iedb_response(response): """Take the binding predictions returned by IEDB's web API and parse them into a DataFrame Expect response to look like: allele seq_num start end length peptide ic50 percentile_rank HLA-A*01:01 1 2 10 9 LYNTVATLY 2145.70 3.7 HLA-A*01:01 1 5 13 9 TVATLYCVH 2216.49 3.9 HLA-A*01:01 1 7 15 9 ATLYCVHQR 2635.42 5.1 HLA-A*01:01 1 4 12 9 NTVATLYCV 6829.04 20 HLA-A*01:01 1 1 9 9 SLYNTVATL 8032.38 24 HLA-A*01:01 1 8 16 9 TLYCVHQRI 8853.90 26 HLA-A*01:01 1 3 11 9 YNTVATLYC 9865.62 29 HLA-A*01:01 1 6 14 9 VATLYCVHQ 27575.71 58 HLA-A*01:01 1 10 18 9 YCVHQRIDV 48929.64 74 HLA-A*01:01 1 9 17 9 LYCVHQRID 50000.00 75 """ if len(response) == 0: raise ValueError("Empty response from IEDB!") df = pd.read_csv(io.BytesIO(response), delim_whitespace=True, header=0) # pylint doesn't realize that df is a DataFrame, so tell is assert type(df) == pd.DataFrame df = pd.DataFrame(df) if len(df) == 0: raise ValueError( "No binding predictions in response from IEDB: %s" % (response,)) required_columns = [ "allele", "peptide", "ic50", "start", "end", ] for column in required_columns: if column not in df.columns: raise ValueError( "Response from IEDB is missing '%s' column: %s. Full " "response:\n%s" % ( column, df.ix[0], response)) # since IEDB has allowed multiple column names for percentile rank, # we're defensively normalizing all of them to just 'rank' df = df.rename(columns={ "percentile_rank": "rank", "percentile rank": "rank"}) return df
def _parse_iedb_response(response): """Take the binding predictions returned by IEDB's web API and parse them into a DataFrame Expect response to look like: allele seq_num start end length peptide ic50 percentile_rank HLA-A*01:01 1 2 10 9 LYNTVATLY 2145.70 3.7 HLA-A*01:01 1 5 13 9 TVATLYCVH 2216.49 3.9 HLA-A*01:01 1 7 15 9 ATLYCVHQR 2635.42 5.1 HLA-A*01:01 1 4 12 9 NTVATLYCV 6829.04 20 HLA-A*01:01 1 1 9 9 SLYNTVATL 8032.38 24 HLA-A*01:01 1 8 16 9 TLYCVHQRI 8853.90 26 HLA-A*01:01 1 3 11 9 YNTVATLYC 9865.62 29 HLA-A*01:01 1 6 14 9 VATLYCVHQ 27575.71 58 HLA-A*01:01 1 10 18 9 YCVHQRIDV 48929.64 74 HLA-A*01:01 1 9 17 9 LYCVHQRID 50000.00 75 """ if len(response) == 0: raise ValueError("Empty response from IEDB!") df = pd.read_csv(io.BytesIO(response), delim_whitespace=True, header=0) # pylint doesn't realize that df is a DataFrame, so tell is assert type(df) == pd.DataFrame df = pd.DataFrame(df) if len(df) == 0: raise ValueError( "No binding predictions in response from IEDB: %s" % (response,)) required_columns = [ "allele", "peptide", "ic50", "start", "end", ] for column in required_columns: if column not in df.columns: raise ValueError( "Response from IEDB is missing '%s' column: %s. Full " "response:\n%s" % ( column, df.ix[0], response)) # since IEDB has allowed multiple column names for percentile rank, # we're defensively normalizing all of them to just 'rank' df = df.rename(columns={ "percentile_rank": "rank", "percentile rank": "rank"}) return df
[ "Take", "the", "binding", "predictions", "returned", "by", "IEDB", "s", "web", "API", "and", "parse", "them", "into", "a", "DataFrame" ]
openvax/mhctools
python
https://github.com/openvax/mhctools/blob/b329b4dccd60fae41296816b8cbfe15d6ca07e67/mhctools/iedb.py#L70-L118
[ "def", "_parse_iedb_response", "(", "response", ")", ":", "if", "len", "(", "response", ")", "==", "0", ":", "raise", "ValueError", "(", "\"Empty response from IEDB!\"", ")", "df", "=", "pd", ".", "read_csv", "(", "io", ".", "BytesIO", "(", "response", ")", ",", "delim_whitespace", "=", "True", ",", "header", "=", "0", ")", "# pylint doesn't realize that df is a DataFrame, so tell is", "assert", "type", "(", "df", ")", "==", "pd", ".", "DataFrame", "df", "=", "pd", ".", "DataFrame", "(", "df", ")", "if", "len", "(", "df", ")", "==", "0", ":", "raise", "ValueError", "(", "\"No binding predictions in response from IEDB: %s\"", "%", "(", "response", ",", ")", ")", "required_columns", "=", "[", "\"allele\"", ",", "\"peptide\"", ",", "\"ic50\"", ",", "\"start\"", ",", "\"end\"", ",", "]", "for", "column", "in", "required_columns", ":", "if", "column", "not", "in", "df", ".", "columns", ":", "raise", "ValueError", "(", "\"Response from IEDB is missing '%s' column: %s. Full \"", "\"response:\\n%s\"", "%", "(", "column", ",", "df", ".", "ix", "[", "0", "]", ",", "response", ")", ")", "# since IEDB has allowed multiple column names for percentile rank,", "# we're defensively normalizing all of them to just 'rank'", "df", "=", "df", ".", "rename", "(", "columns", "=", "{", "\"percentile_rank\"", ":", "\"rank\"", ",", "\"percentile rank\"", ":", "\"rank\"", "}", ")", "return", "df" ]
b329b4dccd60fae41296816b8cbfe15d6ca07e67
valid
_query_iedb
Call into IEDB's web API for MHC binding prediction using request dictionary with fields: - "method" - "length" - "sequence_text" - "allele" Parse the response into a DataFrame.
mhctools/iedb.py
def _query_iedb(request_values, url): """ Call into IEDB's web API for MHC binding prediction using request dictionary with fields: - "method" - "length" - "sequence_text" - "allele" Parse the response into a DataFrame. """ data = urlencode(request_values) req = Request(url, data.encode("ascii")) response = urlopen(req).read() return _parse_iedb_response(response)
def _query_iedb(request_values, url): """ Call into IEDB's web API for MHC binding prediction using request dictionary with fields: - "method" - "length" - "sequence_text" - "allele" Parse the response into a DataFrame. """ data = urlencode(request_values) req = Request(url, data.encode("ascii")) response = urlopen(req).read() return _parse_iedb_response(response)
[ "Call", "into", "IEDB", "s", "web", "API", "for", "MHC", "binding", "prediction", "using", "request", "dictionary", "with", "fields", ":", "-", "method", "-", "length", "-", "sequence_text", "-", "allele" ]
openvax/mhctools
python
https://github.com/openvax/mhctools/blob/b329b4dccd60fae41296816b8cbfe15d6ca07e67/mhctools/iedb.py#L120-L134
[ "def", "_query_iedb", "(", "request_values", ",", "url", ")", ":", "data", "=", "urlencode", "(", "request_values", ")", "req", "=", "Request", "(", "url", ",", "data", ".", "encode", "(", "\"ascii\"", ")", ")", "response", "=", "urlopen", "(", "req", ")", ".", "read", "(", ")", "return", "_parse_iedb_response", "(", "response", ")" ]
b329b4dccd60fae41296816b8cbfe15d6ca07e67
valid
IedbBasePredictor.predict_subsequences
Given a dictionary mapping unique keys to amino acid sequences, run MHC binding predictions on all candidate epitopes extracted from sequences and return a EpitopeCollection. Parameters ---------- fasta_dictionary : dict or string Mapping of protein identifiers to protein amino acid sequences. If string then converted to dictionary.
mhctools/iedb.py
def predict_subsequences(self, sequence_dict, peptide_lengths=None): """Given a dictionary mapping unique keys to amino acid sequences, run MHC binding predictions on all candidate epitopes extracted from sequences and return a EpitopeCollection. Parameters ---------- fasta_dictionary : dict or string Mapping of protein identifiers to protein amino acid sequences. If string then converted to dictionary. """ sequence_dict = check_sequence_dictionary(sequence_dict) peptide_lengths = self._check_peptide_lengths(peptide_lengths) # take each mutated sequence in the dataframe # and general MHC binding scores for all k-mer substrings binding_predictions = [] expected_peptides = set([]) normalized_alleles = [] for key, amino_acid_sequence in sequence_dict.items(): for l in peptide_lengths: for i in range(len(amino_acid_sequence) - l + 1): expected_peptides.add(amino_acid_sequence[i:i + l]) self._check_peptide_inputs(expected_peptides) for allele in self.alleles: # IEDB MHCII predictor expects DRA1 to be omitted. allele = normalize_allele_name(allele, omit_dra1=True) normalized_alleles.append(allele) request = self._get_iedb_request_params( amino_acid_sequence, allele) logger.info( "Calling IEDB (%s) with request %s", self.url, request) response_df = _query_iedb(request, self.url) for _, row in response_df.iterrows(): binding_predictions.append( BindingPrediction( source_sequence_name=key, offset=row['start'] - 1, allele=row['allele'], peptide=row['peptide'], affinity=row['ic50'], percentile_rank=row['rank'], prediction_method_name="iedb-" + self.prediction_method)) self._check_results( binding_predictions, alleles=normalized_alleles, peptides=expected_peptides) return BindingPredictionCollection(binding_predictions)
def predict_subsequences(self, sequence_dict, peptide_lengths=None): """Given a dictionary mapping unique keys to amino acid sequences, run MHC binding predictions on all candidate epitopes extracted from sequences and return a EpitopeCollection. Parameters ---------- fasta_dictionary : dict or string Mapping of protein identifiers to protein amino acid sequences. If string then converted to dictionary. """ sequence_dict = check_sequence_dictionary(sequence_dict) peptide_lengths = self._check_peptide_lengths(peptide_lengths) # take each mutated sequence in the dataframe # and general MHC binding scores for all k-mer substrings binding_predictions = [] expected_peptides = set([]) normalized_alleles = [] for key, amino_acid_sequence in sequence_dict.items(): for l in peptide_lengths: for i in range(len(amino_acid_sequence) - l + 1): expected_peptides.add(amino_acid_sequence[i:i + l]) self._check_peptide_inputs(expected_peptides) for allele in self.alleles: # IEDB MHCII predictor expects DRA1 to be omitted. allele = normalize_allele_name(allele, omit_dra1=True) normalized_alleles.append(allele) request = self._get_iedb_request_params( amino_acid_sequence, allele) logger.info( "Calling IEDB (%s) with request %s", self.url, request) response_df = _query_iedb(request, self.url) for _, row in response_df.iterrows(): binding_predictions.append( BindingPrediction( source_sequence_name=key, offset=row['start'] - 1, allele=row['allele'], peptide=row['peptide'], affinity=row['ic50'], percentile_rank=row['rank'], prediction_method_name="iedb-" + self.prediction_method)) self._check_results( binding_predictions, alleles=normalized_alleles, peptides=expected_peptides) return BindingPredictionCollection(binding_predictions)
[ "Given", "a", "dictionary", "mapping", "unique", "keys", "to", "amino", "acid", "sequences", "run", "MHC", "binding", "predictions", "on", "all", "candidate", "epitopes", "extracted", "from", "sequences", "and", "return", "a", "EpitopeCollection", "." ]
openvax/mhctools
python
https://github.com/openvax/mhctools/blob/b329b4dccd60fae41296816b8cbfe15d6ca07e67/mhctools/iedb.py#L191-L241
[ "def", "predict_subsequences", "(", "self", ",", "sequence_dict", ",", "peptide_lengths", "=", "None", ")", ":", "sequence_dict", "=", "check_sequence_dictionary", "(", "sequence_dict", ")", "peptide_lengths", "=", "self", ".", "_check_peptide_lengths", "(", "peptide_lengths", ")", "# take each mutated sequence in the dataframe", "# and general MHC binding scores for all k-mer substrings", "binding_predictions", "=", "[", "]", "expected_peptides", "=", "set", "(", "[", "]", ")", "normalized_alleles", "=", "[", "]", "for", "key", ",", "amino_acid_sequence", "in", "sequence_dict", ".", "items", "(", ")", ":", "for", "l", "in", "peptide_lengths", ":", "for", "i", "in", "range", "(", "len", "(", "amino_acid_sequence", ")", "-", "l", "+", "1", ")", ":", "expected_peptides", ".", "add", "(", "amino_acid_sequence", "[", "i", ":", "i", "+", "l", "]", ")", "self", ".", "_check_peptide_inputs", "(", "expected_peptides", ")", "for", "allele", "in", "self", ".", "alleles", ":", "# IEDB MHCII predictor expects DRA1 to be omitted.", "allele", "=", "normalize_allele_name", "(", "allele", ",", "omit_dra1", "=", "True", ")", "normalized_alleles", ".", "append", "(", "allele", ")", "request", "=", "self", ".", "_get_iedb_request_params", "(", "amino_acid_sequence", ",", "allele", ")", "logger", ".", "info", "(", "\"Calling IEDB (%s) with request %s\"", ",", "self", ".", "url", ",", "request", ")", "response_df", "=", "_query_iedb", "(", "request", ",", "self", ".", "url", ")", "for", "_", ",", "row", "in", "response_df", ".", "iterrows", "(", ")", ":", "binding_predictions", ".", "append", "(", "BindingPrediction", "(", "source_sequence_name", "=", "key", ",", "offset", "=", "row", "[", "'start'", "]", "-", "1", ",", "allele", "=", "row", "[", "'allele'", "]", ",", "peptide", "=", "row", "[", "'peptide'", "]", ",", "affinity", "=", "row", "[", "'ic50'", "]", ",", "percentile_rank", "=", "row", "[", "'rank'", "]", ",", "prediction_method_name", "=", "\"iedb-\"", "+", "self", ".", "prediction_method", ")", ")", "self", ".", "_check_results", "(", "binding_predictions", ",", "alleles", "=", "normalized_alleles", ",", "peptides", "=", "expected_peptides", ")", "return", "BindingPredictionCollection", "(", "binding_predictions", ")" ]
b329b4dccd60fae41296816b8cbfe15d6ca07e67
valid
get_args
Hackish way to get the arguments of a function Parameters ---------- func : callable Function to get the arguments from skip : int, optional Arguments to skip, defaults to 0 set it to 1 to skip the ``self`` argument of a method. Returns ------- tuple Function's arguments
peony/utils.py
def get_args(func, skip=0): """ Hackish way to get the arguments of a function Parameters ---------- func : callable Function to get the arguments from skip : int, optional Arguments to skip, defaults to 0 set it to 1 to skip the ``self`` argument of a method. Returns ------- tuple Function's arguments """ code = getattr(func, '__code__', None) if code is None: code = func.__call__.__code__ return code.co_varnames[skip:code.co_argcount]
def get_args(func, skip=0): """ Hackish way to get the arguments of a function Parameters ---------- func : callable Function to get the arguments from skip : int, optional Arguments to skip, defaults to 0 set it to 1 to skip the ``self`` argument of a method. Returns ------- tuple Function's arguments """ code = getattr(func, '__code__', None) if code is None: code = func.__call__.__code__ return code.co_varnames[skip:code.co_argcount]
[ "Hackish", "way", "to", "get", "the", "arguments", "of", "a", "function" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/utils.py#L149-L171
[ "def", "get_args", "(", "func", ",", "skip", "=", "0", ")", ":", "code", "=", "getattr", "(", "func", ",", "'__code__'", ",", "None", ")", "if", "code", "is", "None", ":", "code", "=", "func", ".", "__call__", ".", "__code__", "return", "code", ".", "co_varnames", "[", "skip", ":", "code", ".", "co_argcount", "]" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
log_error
log an exception and its traceback on the logger defined Parameters ---------- msg : str, optional A message to add to the error exc_info : tuple Information about the current exception logger : logging.Logger logger to use
peony/utils.py
def log_error(msg=None, exc_info=None, logger=None, **kwargs): """ log an exception and its traceback on the logger defined Parameters ---------- msg : str, optional A message to add to the error exc_info : tuple Information about the current exception logger : logging.Logger logger to use """ if logger is None: logger = _logger if not exc_info: exc_info = sys.exc_info() if msg is None: msg = "" exc_class, exc_msg, _ = exc_info if all(info is not None for info in exc_info): logger.error(msg, exc_info=exc_info)
def log_error(msg=None, exc_info=None, logger=None, **kwargs): """ log an exception and its traceback on the logger defined Parameters ---------- msg : str, optional A message to add to the error exc_info : tuple Information about the current exception logger : logging.Logger logger to use """ if logger is None: logger = _logger if not exc_info: exc_info = sys.exc_info() if msg is None: msg = "" exc_class, exc_msg, _ = exc_info if all(info is not None for info in exc_info): logger.error(msg, exc_info=exc_info)
[ "log", "an", "exception", "and", "its", "traceback", "on", "the", "logger", "defined" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/utils.py#L174-L199
[ "def", "log_error", "(", "msg", "=", "None", ",", "exc_info", "=", "None", ",", "logger", "=", "None", ",", "*", "*", "kwargs", ")", ":", "if", "logger", "is", "None", ":", "logger", "=", "_logger", "if", "not", "exc_info", ":", "exc_info", "=", "sys", ".", "exc_info", "(", ")", "if", "msg", "is", "None", ":", "msg", "=", "\"\"", "exc_class", ",", "exc_msg", ",", "_", "=", "exc_info", "if", "all", "(", "info", "is", "not", "None", "for", "info", "in", "exc_info", ")", ":", "logger", ".", "error", "(", "msg", ",", "exc_info", "=", "exc_info", ")" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
get_media_metadata
Get all the file's metadata and read any kind of file object Parameters ---------- data : bytes first bytes of the file (the mimetype shoudl be guessed from the file headers path : str, optional path to the file Returns ------- str The mimetype of the media str The category of the media on Twitter
peony/utils.py
async def get_media_metadata(data, path=None): """ Get all the file's metadata and read any kind of file object Parameters ---------- data : bytes first bytes of the file (the mimetype shoudl be guessed from the file headers path : str, optional path to the file Returns ------- str The mimetype of the media str The category of the media on Twitter """ if isinstance(data, bytes): media_type = await get_type(data, path) else: raise TypeError("get_metadata input must be a bytes") media_category = get_category(media_type) _logger.info("media_type: %s, media_category: %s" % (media_type, media_category)) return media_type, media_category
async def get_media_metadata(data, path=None): """ Get all the file's metadata and read any kind of file object Parameters ---------- data : bytes first bytes of the file (the mimetype shoudl be guessed from the file headers path : str, optional path to the file Returns ------- str The mimetype of the media str The category of the media on Twitter """ if isinstance(data, bytes): media_type = await get_type(data, path) else: raise TypeError("get_metadata input must be a bytes") media_category = get_category(media_type) _logger.info("media_type: %s, media_category: %s" % (media_type, media_category)) return media_type, media_category
[ "Get", "all", "the", "file", "s", "metadata", "and", "read", "any", "kind", "of", "file", "object" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/utils.py#L202-L232
[ "async", "def", "get_media_metadata", "(", "data", ",", "path", "=", "None", ")", ":", "if", "isinstance", "(", "data", ",", "bytes", ")", ":", "media_type", "=", "await", "get_type", "(", "data", ",", "path", ")", "else", ":", "raise", "TypeError", "(", "\"get_metadata input must be a bytes\"", ")", "media_category", "=", "get_category", "(", "media_type", ")", "_logger", ".", "info", "(", "\"media_type: %s, media_category: %s\"", "%", "(", "media_type", ",", "media_category", ")", ")", "return", "media_type", ",", "media_category" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
get_size
Get the size of a file Parameters ---------- media : file object The file object of the media Returns ------- int The size of the file
peony/utils.py
async def get_size(media): """ Get the size of a file Parameters ---------- media : file object The file object of the media Returns ------- int The size of the file """ if hasattr(media, 'seek'): await execute(media.seek(0, os.SEEK_END)) size = await execute(media.tell()) await execute(media.seek(0)) elif hasattr(media, 'headers'): size = int(media.headers['Content-Length']) elif isinstance(media, bytes): size = len(media) else: raise TypeError("Can't get size of media of type:", type(media).__name__) _logger.info("media size: %dB" % size) return size
async def get_size(media): """ Get the size of a file Parameters ---------- media : file object The file object of the media Returns ------- int The size of the file """ if hasattr(media, 'seek'): await execute(media.seek(0, os.SEEK_END)) size = await execute(media.tell()) await execute(media.seek(0)) elif hasattr(media, 'headers'): size = int(media.headers['Content-Length']) elif isinstance(media, bytes): size = len(media) else: raise TypeError("Can't get size of media of type:", type(media).__name__) _logger.info("media size: %dB" % size) return size
[ "Get", "the", "size", "of", "a", "file" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/utils.py#L235-L262
[ "async", "def", "get_size", "(", "media", ")", ":", "if", "hasattr", "(", "media", ",", "'seek'", ")", ":", "await", "execute", "(", "media", ".", "seek", "(", "0", ",", "os", ".", "SEEK_END", ")", ")", "size", "=", "await", "execute", "(", "media", ".", "tell", "(", ")", ")", "await", "execute", "(", "media", ".", "seek", "(", "0", ")", ")", "elif", "hasattr", "(", "media", ",", "'headers'", ")", ":", "size", "=", "int", "(", "media", ".", "headers", "[", "'Content-Length'", "]", ")", "elif", "isinstance", "(", "media", ",", "bytes", ")", ":", "size", "=", "len", "(", "media", ")", "else", ":", "raise", "TypeError", "(", "\"Can't get size of media of type:\"", ",", "type", "(", "media", ")", ".", "__name__", ")", "_logger", ".", "info", "(", "\"media size: %dB\"", "%", "size", ")", "return", "size" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
get_type
Parameters ---------- media : file object A file object of the image path : str, optional The path to the file Returns ------- str The mimetype of the media str The category of the media on Twitter
peony/utils.py
async def get_type(media, path=None): """ Parameters ---------- media : file object A file object of the image path : str, optional The path to the file Returns ------- str The mimetype of the media str The category of the media on Twitter """ if magic: if not media: raise TypeError("Media data is empty") _logger.debug("guessing mimetype using magic") media_type = mime.from_buffer(media[:1024]) else: media_type = None if path: _logger.debug("guessing mimetype using built-in module") media_type = mime.guess_type(path)[0] if media_type is None: msg = ("Could not guess the mimetype of the media.\n" "Please consider installing python-magic\n" "(pip3 install peony-twitter[magic])") raise RuntimeError(msg) return media_type
async def get_type(media, path=None): """ Parameters ---------- media : file object A file object of the image path : str, optional The path to the file Returns ------- str The mimetype of the media str The category of the media on Twitter """ if magic: if not media: raise TypeError("Media data is empty") _logger.debug("guessing mimetype using magic") media_type = mime.from_buffer(media[:1024]) else: media_type = None if path: _logger.debug("guessing mimetype using built-in module") media_type = mime.guess_type(path)[0] if media_type is None: msg = ("Could not guess the mimetype of the media.\n" "Please consider installing python-magic\n" "(pip3 install peony-twitter[magic])") raise RuntimeError(msg) return media_type
[ "Parameters", "----------", "media", ":", "file", "object", "A", "file", "object", "of", "the", "image", "path", ":", "str", "optional", "The", "path", "to", "the", "file" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/utils.py#L265-L299
[ "async", "def", "get_type", "(", "media", ",", "path", "=", "None", ")", ":", "if", "magic", ":", "if", "not", "media", ":", "raise", "TypeError", "(", "\"Media data is empty\"", ")", "_logger", ".", "debug", "(", "\"guessing mimetype using magic\"", ")", "media_type", "=", "mime", ".", "from_buffer", "(", "media", "[", ":", "1024", "]", ")", "else", ":", "media_type", "=", "None", "if", "path", ":", "_logger", ".", "debug", "(", "\"guessing mimetype using built-in module\"", ")", "media_type", "=", "mime", ".", "guess_type", "(", "path", ")", "[", "0", "]", "if", "media_type", "is", "None", ":", "msg", "=", "(", "\"Could not guess the mimetype of the media.\\n\"", "\"Please consider installing python-magic\\n\"", "\"(pip3 install peony-twitter[magic])\"", ")", "raise", "RuntimeError", "(", "msg", ")", "return", "media_type" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
set_debug
activates error messages, useful during development
peony/utils.py
def set_debug(): """ activates error messages, useful during development """ logging.basicConfig(level=logging.WARNING) peony.logger.setLevel(logging.DEBUG)
def set_debug(): """ activates error messages, useful during development """ logging.basicConfig(level=logging.WARNING) peony.logger.setLevel(logging.DEBUG)
[ "activates", "error", "messages", "useful", "during", "development" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/utils.py#L328-L331
[ "def", "set_debug", "(", ")", ":", "logging", ".", "basicConfig", "(", "level", "=", "logging", ".", "WARNING", ")", "peony", ".", "logger", ".", "setLevel", "(", "logging", ".", "DEBUG", ")" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
BindingPrediction.clone_with_updates
Returns new BindingPrediction with updated fields
mhctools/binding_prediction.py
def clone_with_updates(self, **kwargs): """Returns new BindingPrediction with updated fields""" fields_dict = self.to_dict() fields_dict.update(kwargs) return BindingPrediction(**fields_dict)
def clone_with_updates(self, **kwargs): """Returns new BindingPrediction with updated fields""" fields_dict = self.to_dict() fields_dict.update(kwargs) return BindingPrediction(**fields_dict)
[ "Returns", "new", "BindingPrediction", "with", "updated", "fields" ]
openvax/mhctools
python
https://github.com/openvax/mhctools/blob/b329b4dccd60fae41296816b8cbfe15d6ca07e67/mhctools/binding_prediction.py#L109-L113
[ "def", "clone_with_updates", "(", "self", ",", "*", "*", "kwargs", ")", ":", "fields_dict", "=", "self", ".", "to_dict", "(", ")", "fields_dict", ".", "update", "(", "kwargs", ")", "return", "BindingPrediction", "(", "*", "*", "fields_dict", ")" ]
b329b4dccd60fae41296816b8cbfe15d6ca07e67
valid
NetMHCpan
This function wraps NetMHCpan28 and NetMHCpan3 to automatically detect which class to use, with the help of the miraculous and strange '--version' netmhcpan argument.
mhctools/netmhc_pan.py
def NetMHCpan( alleles, program_name="netMHCpan", process_limit=-1, default_peptide_lengths=[9], extra_flags=[]): """ This function wraps NetMHCpan28 and NetMHCpan3 to automatically detect which class to use, with the help of the miraculous and strange '--version' netmhcpan argument. """ # convert to str since Python3 returns a `bytes` object. # The '_MHCTOOLS_VERSION_SNIFFING' here is meaningless, but it is necessary # to call `netmhcpan --version` with some argument, otherwise it hangs. with open(os.devnull, 'w') as devnull: output = check_output([ program_name, "--version", "_MHCTOOLS_VERSION_SNIFFING"], stderr=devnull) output_str = output.decode("ascii", "ignore") common_kwargs = { "alleles": alleles, "default_peptide_lengths": default_peptide_lengths, "program_name": program_name, "process_limit": process_limit, "extra_flags": extra_flags, } if "NetMHCpan version 2.8" in output_str: return NetMHCpan28(**common_kwargs) elif "NetMHCpan version 3.0" in output_str: return NetMHCpan3(**common_kwargs) elif "NetMHCpan version 4.0" in output_str: return NetMHCpan4(**common_kwargs) else: raise RuntimeError( "This software expects NetMHCpan version 2.8, 3.0, or 4.0")
def NetMHCpan( alleles, program_name="netMHCpan", process_limit=-1, default_peptide_lengths=[9], extra_flags=[]): """ This function wraps NetMHCpan28 and NetMHCpan3 to automatically detect which class to use, with the help of the miraculous and strange '--version' netmhcpan argument. """ # convert to str since Python3 returns a `bytes` object. # The '_MHCTOOLS_VERSION_SNIFFING' here is meaningless, but it is necessary # to call `netmhcpan --version` with some argument, otherwise it hangs. with open(os.devnull, 'w') as devnull: output = check_output([ program_name, "--version", "_MHCTOOLS_VERSION_SNIFFING"], stderr=devnull) output_str = output.decode("ascii", "ignore") common_kwargs = { "alleles": alleles, "default_peptide_lengths": default_peptide_lengths, "program_name": program_name, "process_limit": process_limit, "extra_flags": extra_flags, } if "NetMHCpan version 2.8" in output_str: return NetMHCpan28(**common_kwargs) elif "NetMHCpan version 3.0" in output_str: return NetMHCpan3(**common_kwargs) elif "NetMHCpan version 4.0" in output_str: return NetMHCpan4(**common_kwargs) else: raise RuntimeError( "This software expects NetMHCpan version 2.8, 3.0, or 4.0")
[ "This", "function", "wraps", "NetMHCpan28", "and", "NetMHCpan3", "to", "automatically", "detect", "which", "class", "to", "use", "with", "the", "help", "of", "the", "miraculous", "and", "strange", "--", "version", "netmhcpan", "argument", "." ]
openvax/mhctools
python
https://github.com/openvax/mhctools/blob/b329b4dccd60fae41296816b8cbfe15d6ca07e67/mhctools/netmhc_pan.py#L28-L64
[ "def", "NetMHCpan", "(", "alleles", ",", "program_name", "=", "\"netMHCpan\"", ",", "process_limit", "=", "-", "1", ",", "default_peptide_lengths", "=", "[", "9", "]", ",", "extra_flags", "=", "[", "]", ")", ":", "# convert to str since Python3 returns a `bytes` object.", "# The '_MHCTOOLS_VERSION_SNIFFING' here is meaningless, but it is necessary", "# to call `netmhcpan --version` with some argument, otherwise it hangs.", "with", "open", "(", "os", ".", "devnull", ",", "'w'", ")", "as", "devnull", ":", "output", "=", "check_output", "(", "[", "program_name", ",", "\"--version\"", ",", "\"_MHCTOOLS_VERSION_SNIFFING\"", "]", ",", "stderr", "=", "devnull", ")", "output_str", "=", "output", ".", "decode", "(", "\"ascii\"", ",", "\"ignore\"", ")", "common_kwargs", "=", "{", "\"alleles\"", ":", "alleles", ",", "\"default_peptide_lengths\"", ":", "default_peptide_lengths", ",", "\"program_name\"", ":", "program_name", ",", "\"process_limit\"", ":", "process_limit", ",", "\"extra_flags\"", ":", "extra_flags", ",", "}", "if", "\"NetMHCpan version 2.8\"", "in", "output_str", ":", "return", "NetMHCpan28", "(", "*", "*", "common_kwargs", ")", "elif", "\"NetMHCpan version 3.0\"", "in", "output_str", ":", "return", "NetMHCpan3", "(", "*", "*", "common_kwargs", ")", "elif", "\"NetMHCpan version 4.0\"", "in", "output_str", ":", "return", "NetMHCpan4", "(", "*", "*", "common_kwargs", ")", "else", ":", "raise", "RuntimeError", "(", "\"This software expects NetMHCpan version 2.8, 3.0, or 4.0\"", ")" ]
b329b4dccd60fae41296816b8cbfe15d6ca07e67
valid
IdIterator.get_data
Get the data from the response
peony/iterators.py
def get_data(self, response): """ Get the data from the response """ if self._response_list: return response elif self._response_key is None: if hasattr(response, "items"): for key, data in response.items(): if (hasattr(data, "__getitem__") and not hasattr(data, "items") and len(data) > 0 and 'id' in data[0]): self._response_key = key return data else: self._response_list = True return response else: return response[self._response_key] raise NoDataFound(response=response, url=self.request.get_url())
def get_data(self, response): """ Get the data from the response """ if self._response_list: return response elif self._response_key is None: if hasattr(response, "items"): for key, data in response.items(): if (hasattr(data, "__getitem__") and not hasattr(data, "items") and len(data) > 0 and 'id' in data[0]): self._response_key = key return data else: self._response_list = True return response else: return response[self._response_key] raise NoDataFound(response=response, url=self.request.get_url())
[ "Get", "the", "data", "from", "the", "response" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/iterators.py#L72-L91
[ "def", "get_data", "(", "self", ",", "response", ")", ":", "if", "self", ".", "_response_list", ":", "return", "response", "elif", "self", ".", "_response_key", "is", "None", ":", "if", "hasattr", "(", "response", ",", "\"items\"", ")", ":", "for", "key", ",", "data", "in", "response", ".", "items", "(", ")", ":", "if", "(", "hasattr", "(", "data", ",", "\"__getitem__\"", ")", "and", "not", "hasattr", "(", "data", ",", "\"items\"", ")", "and", "len", "(", "data", ")", ">", "0", "and", "'id'", "in", "data", "[", "0", "]", ")", ":", "self", ".", "_response_key", "=", "key", "return", "data", "else", ":", "self", ".", "_response_list", "=", "True", "return", "response", "else", ":", "return", "response", "[", "self", ".", "_response_key", "]", "raise", "NoDataFound", "(", "response", "=", "response", ",", "url", "=", "self", ".", "request", ".", "get_url", "(", ")", ")" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
SinceIdIterator.call_on_response
Try to fill the gaps and strip last tweet from the response if its id is that of the first tweet of the last response Parameters ---------- data : list The response data
peony/iterators.py
async def call_on_response(self, data): """ Try to fill the gaps and strip last tweet from the response if its id is that of the first tweet of the last response Parameters ---------- data : list The response data """ since_id = self.kwargs.get(self.param, 0) + 1 if self.fill_gaps: if data[-1]['id'] != since_id: max_id = data[-1]['id'] - 1 responses = with_max_id(self.request(**self.kwargs, max_id=max_id)) async for tweets in responses: data.extend(tweets) if data[-1]['id'] == self.last_id: data = data[:-1] if not data and not self.force: raise StopAsyncIteration await self.set_param(data)
async def call_on_response(self, data): """ Try to fill the gaps and strip last tweet from the response if its id is that of the first tweet of the last response Parameters ---------- data : list The response data """ since_id = self.kwargs.get(self.param, 0) + 1 if self.fill_gaps: if data[-1]['id'] != since_id: max_id = data[-1]['id'] - 1 responses = with_max_id(self.request(**self.kwargs, max_id=max_id)) async for tweets in responses: data.extend(tweets) if data[-1]['id'] == self.last_id: data = data[:-1] if not data and not self.force: raise StopAsyncIteration await self.set_param(data)
[ "Try", "to", "fill", "the", "gaps", "and", "strip", "last", "tweet", "from", "the", "response", "if", "its", "id", "is", "that", "of", "the", "first", "tweet", "of", "the", "last", "response" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/iterators.py#L150-L177
[ "async", "def", "call_on_response", "(", "self", ",", "data", ")", ":", "since_id", "=", "self", ".", "kwargs", ".", "get", "(", "self", ".", "param", ",", "0", ")", "+", "1", "if", "self", ".", "fill_gaps", ":", "if", "data", "[", "-", "1", "]", "[", "'id'", "]", "!=", "since_id", ":", "max_id", "=", "data", "[", "-", "1", "]", "[", "'id'", "]", "-", "1", "responses", "=", "with_max_id", "(", "self", ".", "request", "(", "*", "*", "self", ".", "kwargs", ",", "max_id", "=", "max_id", ")", ")", "async", "for", "tweets", "in", "responses", ":", "data", ".", "extend", "(", "tweets", ")", "if", "data", "[", "-", "1", "]", "[", "'id'", "]", "==", "self", ".", "last_id", ":", "data", "=", "data", "[", ":", "-", "1", "]", "if", "not", "data", "and", "not", "self", ".", "force", ":", "raise", "StopAsyncIteration", "await", "self", ".", "set_param", "(", "data", ")" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
get_oauth_token
Get a temporary oauth token Parameters ---------- consumer_key : str Your consumer key consumer_secret : str Your consumer secret callback_uri : str, optional Callback uri, defaults to 'oob' Returns ------- dict Temporary tokens
peony/oauth_dance.py
async def get_oauth_token(consumer_key, consumer_secret, callback_uri="oob"): """ Get a temporary oauth token Parameters ---------- consumer_key : str Your consumer key consumer_secret : str Your consumer secret callback_uri : str, optional Callback uri, defaults to 'oob' Returns ------- dict Temporary tokens """ client = BasePeonyClient(consumer_key=consumer_key, consumer_secret=consumer_secret, api_version="", suffix="") response = await client.api.oauth.request_token.post( _suffix="", oauth_callback=callback_uri ) return parse_token(response)
async def get_oauth_token(consumer_key, consumer_secret, callback_uri="oob"): """ Get a temporary oauth token Parameters ---------- consumer_key : str Your consumer key consumer_secret : str Your consumer secret callback_uri : str, optional Callback uri, defaults to 'oob' Returns ------- dict Temporary tokens """ client = BasePeonyClient(consumer_key=consumer_key, consumer_secret=consumer_secret, api_version="", suffix="") response = await client.api.oauth.request_token.post( _suffix="", oauth_callback=callback_uri ) return parse_token(response)
[ "Get", "a", "temporary", "oauth", "token" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/oauth_dance.py#L10-L39
[ "async", "def", "get_oauth_token", "(", "consumer_key", ",", "consumer_secret", ",", "callback_uri", "=", "\"oob\"", ")", ":", "client", "=", "BasePeonyClient", "(", "consumer_key", "=", "consumer_key", ",", "consumer_secret", "=", "consumer_secret", ",", "api_version", "=", "\"\"", ",", "suffix", "=", "\"\"", ")", "response", "=", "await", "client", ".", "api", ".", "oauth", ".", "request_token", ".", "post", "(", "_suffix", "=", "\"\"", ",", "oauth_callback", "=", "callback_uri", ")", "return", "parse_token", "(", "response", ")" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
get_oauth_verifier
Open authorize page in a browser, print the url if it didn't work Arguments --------- oauth_token : str The oauth token received in :func:`get_oauth_token` Returns ------- str The PIN entered by the user
peony/oauth_dance.py
async def get_oauth_verifier(oauth_token): """ Open authorize page in a browser, print the url if it didn't work Arguments --------- oauth_token : str The oauth token received in :func:`get_oauth_token` Returns ------- str The PIN entered by the user """ url = "https://api.twitter.com/oauth/authorize?oauth_token=" + oauth_token try: browser = webbrowser.open(url) await asyncio.sleep(2) if not browser: raise RuntimeError except RuntimeError: print("could not open a browser\ngo here to enter your PIN: " + url) verifier = input("\nEnter your PIN: ") return verifier
async def get_oauth_verifier(oauth_token): """ Open authorize page in a browser, print the url if it didn't work Arguments --------- oauth_token : str The oauth token received in :func:`get_oauth_token` Returns ------- str The PIN entered by the user """ url = "https://api.twitter.com/oauth/authorize?oauth_token=" + oauth_token try: browser = webbrowser.open(url) await asyncio.sleep(2) if not browser: raise RuntimeError except RuntimeError: print("could not open a browser\ngo here to enter your PIN: " + url) verifier = input("\nEnter your PIN: ") return verifier
[ "Open", "authorize", "page", "in", "a", "browser", "print", "the", "url", "if", "it", "didn", "t", "work" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/oauth_dance.py#L42-L69
[ "async", "def", "get_oauth_verifier", "(", "oauth_token", ")", ":", "url", "=", "\"https://api.twitter.com/oauth/authorize?oauth_token=\"", "+", "oauth_token", "try", ":", "browser", "=", "webbrowser", ".", "open", "(", "url", ")", "await", "asyncio", ".", "sleep", "(", "2", ")", "if", "not", "browser", ":", "raise", "RuntimeError", "except", "RuntimeError", ":", "print", "(", "\"could not open a browser\\ngo here to enter your PIN: \"", "+", "url", ")", "verifier", "=", "input", "(", "\"\\nEnter your PIN: \"", ")", "return", "verifier" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
get_access_token
get the access token of the user Parameters ---------- consumer_key : str Your consumer key consumer_secret : str Your consumer secret oauth_token : str OAuth token from :func:`get_oauth_token` oauth_token_secret : str OAuth token secret from :func:`get_oauth_token` oauth_verifier : str OAuth verifier from :func:`get_oauth_verifier` Returns ------- dict Access tokens
peony/oauth_dance.py
async def get_access_token(consumer_key, consumer_secret, oauth_token, oauth_token_secret, oauth_verifier, **kwargs): """ get the access token of the user Parameters ---------- consumer_key : str Your consumer key consumer_secret : str Your consumer secret oauth_token : str OAuth token from :func:`get_oauth_token` oauth_token_secret : str OAuth token secret from :func:`get_oauth_token` oauth_verifier : str OAuth verifier from :func:`get_oauth_verifier` Returns ------- dict Access tokens """ client = BasePeonyClient(consumer_key=consumer_key, consumer_secret=consumer_secret, access_token=oauth_token, access_token_secret=oauth_token_secret, api_version="", suffix="") response = await client.api.oauth.access_token.get( _suffix="", oauth_verifier=oauth_verifier ) return parse_token(response)
async def get_access_token(consumer_key, consumer_secret, oauth_token, oauth_token_secret, oauth_verifier, **kwargs): """ get the access token of the user Parameters ---------- consumer_key : str Your consumer key consumer_secret : str Your consumer secret oauth_token : str OAuth token from :func:`get_oauth_token` oauth_token_secret : str OAuth token secret from :func:`get_oauth_token` oauth_verifier : str OAuth verifier from :func:`get_oauth_verifier` Returns ------- dict Access tokens """ client = BasePeonyClient(consumer_key=consumer_key, consumer_secret=consumer_secret, access_token=oauth_token, access_token_secret=oauth_token_secret, api_version="", suffix="") response = await client.api.oauth.access_token.get( _suffix="", oauth_verifier=oauth_verifier ) return parse_token(response)
[ "get", "the", "access", "token", "of", "the", "user" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/oauth_dance.py#L72-L109
[ "async", "def", "get_access_token", "(", "consumer_key", ",", "consumer_secret", ",", "oauth_token", ",", "oauth_token_secret", ",", "oauth_verifier", ",", "*", "*", "kwargs", ")", ":", "client", "=", "BasePeonyClient", "(", "consumer_key", "=", "consumer_key", ",", "consumer_secret", "=", "consumer_secret", ",", "access_token", "=", "oauth_token", ",", "access_token_secret", "=", "oauth_token_secret", ",", "api_version", "=", "\"\"", ",", "suffix", "=", "\"\"", ")", "response", "=", "await", "client", ".", "api", ".", "oauth", ".", "access_token", ".", "get", "(", "_suffix", "=", "\"\"", ",", "oauth_verifier", "=", "oauth_verifier", ")", "return", "parse_token", "(", "response", ")" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
async_oauth_dance
OAuth dance to get the user's access token Parameters ---------- consumer_key : str Your consumer key consumer_secret : str Your consumer secret callback_uri : str Callback uri, defaults to 'oob' Returns ------- dict Access tokens
peony/oauth_dance.py
async def async_oauth_dance(consumer_key, consumer_secret, callback_uri="oob"): """ OAuth dance to get the user's access token Parameters ---------- consumer_key : str Your consumer key consumer_secret : str Your consumer secret callback_uri : str Callback uri, defaults to 'oob' Returns ------- dict Access tokens """ token = await get_oauth_token(consumer_key, consumer_secret, callback_uri) oauth_verifier = await get_oauth_verifier(token['oauth_token']) token = await get_access_token( consumer_key, consumer_secret, oauth_verifier=oauth_verifier, **token ) token = dict( consumer_key=consumer_key, consumer_secret=consumer_secret, access_token=token['oauth_token'], access_token_secret=token['oauth_token_secret'] ) return token
async def async_oauth_dance(consumer_key, consumer_secret, callback_uri="oob"): """ OAuth dance to get the user's access token Parameters ---------- consumer_key : str Your consumer key consumer_secret : str Your consumer secret callback_uri : str Callback uri, defaults to 'oob' Returns ------- dict Access tokens """ token = await get_oauth_token(consumer_key, consumer_secret, callback_uri) oauth_verifier = await get_oauth_verifier(token['oauth_token']) token = await get_access_token( consumer_key, consumer_secret, oauth_verifier=oauth_verifier, **token ) token = dict( consumer_key=consumer_key, consumer_secret=consumer_secret, access_token=token['oauth_token'], access_token_secret=token['oauth_token_secret'] ) return token
[ "OAuth", "dance", "to", "get", "the", "user", "s", "access", "token" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/oauth_dance.py#L112-L149
[ "async", "def", "async_oauth_dance", "(", "consumer_key", ",", "consumer_secret", ",", "callback_uri", "=", "\"oob\"", ")", ":", "token", "=", "await", "get_oauth_token", "(", "consumer_key", ",", "consumer_secret", ",", "callback_uri", ")", "oauth_verifier", "=", "await", "get_oauth_verifier", "(", "token", "[", "'oauth_token'", "]", ")", "token", "=", "await", "get_access_token", "(", "consumer_key", ",", "consumer_secret", ",", "oauth_verifier", "=", "oauth_verifier", ",", "*", "*", "token", ")", "token", "=", "dict", "(", "consumer_key", "=", "consumer_key", ",", "consumer_secret", "=", "consumer_secret", ",", "access_token", "=", "token", "[", "'oauth_token'", "]", ",", "access_token_secret", "=", "token", "[", "'oauth_token_secret'", "]", ")", "return", "token" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
parse_token
parse the responses containing the tokens Parameters ---------- response : str The response containing the tokens Returns ------- dict The parsed tokens
peony/oauth_dance.py
def parse_token(response): """ parse the responses containing the tokens Parameters ---------- response : str The response containing the tokens Returns ------- dict The parsed tokens """ items = response.split("&") items = [item.split("=") for item in items] return {key: value for key, value in items}
def parse_token(response): """ parse the responses containing the tokens Parameters ---------- response : str The response containing the tokens Returns ------- dict The parsed tokens """ items = response.split("&") items = [item.split("=") for item in items] return {key: value for key, value in items}
[ "parse", "the", "responses", "containing", "the", "tokens" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/oauth_dance.py#L152-L169
[ "def", "parse_token", "(", "response", ")", ":", "items", "=", "response", ".", "split", "(", "\"&\"", ")", "items", "=", "[", "item", ".", "split", "(", "\"=\"", ")", "for", "item", "in", "items", "]", "return", "{", "key", ":", "value", "for", "key", ",", "value", "in", "items", "}" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
oauth_dance
OAuth dance to get the user's access token It calls async_oauth_dance and create event loop of not given Parameters ---------- consumer_key : str Your consumer key consumer_secret : str Your consumer secret oauth_callback : str Callback uri, defaults to 'oob' loop : event loop asyncio event loop Returns ------- dict Access tokens
peony/oauth_dance.py
def oauth_dance(consumer_key, consumer_secret, oauth_callback="oob", loop=None): """ OAuth dance to get the user's access token It calls async_oauth_dance and create event loop of not given Parameters ---------- consumer_key : str Your consumer key consumer_secret : str Your consumer secret oauth_callback : str Callback uri, defaults to 'oob' loop : event loop asyncio event loop Returns ------- dict Access tokens """ loop = asyncio.get_event_loop() if loop is None else loop coro = async_oauth_dance(consumer_key, consumer_secret, oauth_callback) return loop.run_until_complete(coro)
def oauth_dance(consumer_key, consumer_secret, oauth_callback="oob", loop=None): """ OAuth dance to get the user's access token It calls async_oauth_dance and create event loop of not given Parameters ---------- consumer_key : str Your consumer key consumer_secret : str Your consumer secret oauth_callback : str Callback uri, defaults to 'oob' loop : event loop asyncio event loop Returns ------- dict Access tokens """ loop = asyncio.get_event_loop() if loop is None else loop coro = async_oauth_dance(consumer_key, consumer_secret, oauth_callback) return loop.run_until_complete(coro)
[ "OAuth", "dance", "to", "get", "the", "user", "s", "access", "token" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/oauth_dance.py#L172-L198
[ "def", "oauth_dance", "(", "consumer_key", ",", "consumer_secret", ",", "oauth_callback", "=", "\"oob\"", ",", "loop", "=", "None", ")", ":", "loop", "=", "asyncio", ".", "get_event_loop", "(", ")", "if", "loop", "is", "None", "else", "loop", "coro", "=", "async_oauth_dance", "(", "consumer_key", ",", "consumer_secret", ",", "oauth_callback", ")", "return", "loop", ".", "run_until_complete", "(", "coro", ")" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
oauth2_dance
oauth2 dance Parameters ---------- consumer_key : str Your consumer key consumer_secret : str Your consumer secret loop : event loop, optional event loop to use Returns ------- str Bearer token
peony/oauth_dance.py
def oauth2_dance(consumer_key, consumer_secret, loop=None): """ oauth2 dance Parameters ---------- consumer_key : str Your consumer key consumer_secret : str Your consumer secret loop : event loop, optional event loop to use Returns ------- str Bearer token """ loop = asyncio.get_event_loop() if loop is None else loop client = BasePeonyClient(consumer_key=consumer_key, consumer_secret=consumer_secret, auth=oauth.OAuth2Headers) loop.run_until_complete(client.headers.sign()) return client.headers.token
def oauth2_dance(consumer_key, consumer_secret, loop=None): """ oauth2 dance Parameters ---------- consumer_key : str Your consumer key consumer_secret : str Your consumer secret loop : event loop, optional event loop to use Returns ------- str Bearer token """ loop = asyncio.get_event_loop() if loop is None else loop client = BasePeonyClient(consumer_key=consumer_key, consumer_secret=consumer_secret, auth=oauth.OAuth2Headers) loop.run_until_complete(client.headers.sign()) return client.headers.token
[ "oauth2", "dance" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/oauth_dance.py#L201-L225
[ "def", "oauth2_dance", "(", "consumer_key", ",", "consumer_secret", ",", "loop", "=", "None", ")", ":", "loop", "=", "asyncio", ".", "get_event_loop", "(", ")", "if", "loop", "is", "None", "else", "loop", "client", "=", "BasePeonyClient", "(", "consumer_key", "=", "consumer_key", ",", "consumer_secret", "=", "consumer_secret", ",", "auth", "=", "oauth", ".", "OAuth2Headers", ")", "loop", ".", "run_until_complete", "(", "client", ".", "headers", ".", "sign", "(", ")", ")", "return", "client", ".", "headers", ".", "token" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
NetChop.predict
Return netChop predictions for each position in each sequence. Parameters ----------- sequences : list of string Amino acid sequences to predict cleavage for Returns ----------- list of list of float The i'th list corresponds to the i'th sequence. Each list gives the cleavage probability for each position in the sequence.
mhctools/netchop.py
def predict(self, sequences): """ Return netChop predictions for each position in each sequence. Parameters ----------- sequences : list of string Amino acid sequences to predict cleavage for Returns ----------- list of list of float The i'th list corresponds to the i'th sequence. Each list gives the cleavage probability for each position in the sequence. """ with tempfile.NamedTemporaryFile(suffix=".fsa", mode="w") as input_fd: for (i, sequence) in enumerate(sequences): input_fd.write("> %d\n" % i) input_fd.write(sequence) input_fd.write("\n") input_fd.flush() try: output = subprocess.check_output(["netChop", input_fd.name]) except subprocess.CalledProcessError as e: logging.error("Error calling netChop: %s:\n%s" % (e, e.output)) raise parsed = self.parse_netchop(output) assert len(parsed) == len(sequences), \ "Expected %d results but got %d" % ( len(sequences), len(parsed)) assert [len(x) for x in parsed] == [len(x) for x in sequences] return parsed
def predict(self, sequences): """ Return netChop predictions for each position in each sequence. Parameters ----------- sequences : list of string Amino acid sequences to predict cleavage for Returns ----------- list of list of float The i'th list corresponds to the i'th sequence. Each list gives the cleavage probability for each position in the sequence. """ with tempfile.NamedTemporaryFile(suffix=".fsa", mode="w") as input_fd: for (i, sequence) in enumerate(sequences): input_fd.write("> %d\n" % i) input_fd.write(sequence) input_fd.write("\n") input_fd.flush() try: output = subprocess.check_output(["netChop", input_fd.name]) except subprocess.CalledProcessError as e: logging.error("Error calling netChop: %s:\n%s" % (e, e.output)) raise parsed = self.parse_netchop(output) assert len(parsed) == len(sequences), \ "Expected %d results but got %d" % ( len(sequences), len(parsed)) assert [len(x) for x in parsed] == [len(x) for x in sequences] return parsed
[ "Return", "netChop", "predictions", "for", "each", "position", "in", "each", "sequence", "." ]
openvax/mhctools
python
https://github.com/openvax/mhctools/blob/b329b4dccd60fae41296816b8cbfe15d6ca07e67/mhctools/netchop.py#L26-L59
[ "def", "predict", "(", "self", ",", "sequences", ")", ":", "with", "tempfile", ".", "NamedTemporaryFile", "(", "suffix", "=", "\".fsa\"", ",", "mode", "=", "\"w\"", ")", "as", "input_fd", ":", "for", "(", "i", ",", "sequence", ")", "in", "enumerate", "(", "sequences", ")", ":", "input_fd", ".", "write", "(", "\"> %d\\n\"", "%", "i", ")", "input_fd", ".", "write", "(", "sequence", ")", "input_fd", ".", "write", "(", "\"\\n\"", ")", "input_fd", ".", "flush", "(", ")", "try", ":", "output", "=", "subprocess", ".", "check_output", "(", "[", "\"netChop\"", ",", "input_fd", ".", "name", "]", ")", "except", "subprocess", ".", "CalledProcessError", "as", "e", ":", "logging", ".", "error", "(", "\"Error calling netChop: %s:\\n%s\"", "%", "(", "e", ",", "e", ".", "output", ")", ")", "raise", "parsed", "=", "self", ".", "parse_netchop", "(", "output", ")", "assert", "len", "(", "parsed", ")", "==", "len", "(", "sequences", ")", ",", "\"Expected %d results but got %d\"", "%", "(", "len", "(", "sequences", ")", ",", "len", "(", "parsed", ")", ")", "assert", "[", "len", "(", "x", ")", "for", "x", "in", "parsed", "]", "==", "[", "len", "(", "x", ")", "for", "x", "in", "sequences", "]", "return", "parsed" ]
b329b4dccd60fae41296816b8cbfe15d6ca07e67
valid
NetChop.parse_netchop
Parse netChop stdout.
mhctools/netchop.py
def parse_netchop(netchop_output): """ Parse netChop stdout. """ line_iterator = iter(netchop_output.decode().split("\n")) scores = [] for line in line_iterator: if "pos" in line and 'AA' in line and 'score' in line: scores.append([]) if "----" not in next(line_iterator): raise ValueError("Dashes expected") line = next(line_iterator) while '-------' not in line: score = float(line.split()[3]) scores[-1].append(score) line = next(line_iterator) return scores
def parse_netchop(netchop_output): """ Parse netChop stdout. """ line_iterator = iter(netchop_output.decode().split("\n")) scores = [] for line in line_iterator: if "pos" in line and 'AA' in line and 'score' in line: scores.append([]) if "----" not in next(line_iterator): raise ValueError("Dashes expected") line = next(line_iterator) while '-------' not in line: score = float(line.split()[3]) scores[-1].append(score) line = next(line_iterator) return scores
[ "Parse", "netChop", "stdout", "." ]
openvax/mhctools
python
https://github.com/openvax/mhctools/blob/b329b4dccd60fae41296816b8cbfe15d6ca07e67/mhctools/netchop.py#L62-L78
[ "def", "parse_netchop", "(", "netchop_output", ")", ":", "line_iterator", "=", "iter", "(", "netchop_output", ".", "decode", "(", ")", ".", "split", "(", "\"\\n\"", ")", ")", "scores", "=", "[", "]", "for", "line", "in", "line_iterator", ":", "if", "\"pos\"", "in", "line", "and", "'AA'", "in", "line", "and", "'score'", "in", "line", ":", "scores", ".", "append", "(", "[", "]", ")", "if", "\"----\"", "not", "in", "next", "(", "line_iterator", ")", ":", "raise", "ValueError", "(", "\"Dashes expected\"", ")", "line", "=", "next", "(", "line_iterator", ")", "while", "'-------'", "not", "in", "line", ":", "score", "=", "float", "(", "line", ".", "split", "(", ")", "[", "3", "]", ")", "scores", "[", "-", "1", "]", ".", "append", "(", "score", ")", "line", "=", "next", "(", "line_iterator", ")", "return", "scores" ]
b329b4dccd60fae41296816b8cbfe15d6ca07e67
valid
BindingPredictionCollection.to_dataframe
Converts collection of BindingPrediction objects to DataFrame
mhctools/binding_prediction_collection.py
def to_dataframe( self, columns=BindingPrediction.fields + ("length",)): """ Converts collection of BindingPrediction objects to DataFrame """ return pd.DataFrame.from_records( [tuple([getattr(x, name) for name in columns]) for x in self], columns=columns)
def to_dataframe( self, columns=BindingPrediction.fields + ("length",)): """ Converts collection of BindingPrediction objects to DataFrame """ return pd.DataFrame.from_records( [tuple([getattr(x, name) for name in columns]) for x in self], columns=columns)
[ "Converts", "collection", "of", "BindingPrediction", "objects", "to", "DataFrame" ]
openvax/mhctools
python
https://github.com/openvax/mhctools/blob/b329b4dccd60fae41296816b8cbfe15d6ca07e67/mhctools/binding_prediction_collection.py#L23-L31
[ "def", "to_dataframe", "(", "self", ",", "columns", "=", "BindingPrediction", ".", "fields", "+", "(", "\"length\"", ",", ")", ")", ":", "return", "pd", ".", "DataFrame", ".", "from_records", "(", "[", "tuple", "(", "[", "getattr", "(", "x", ",", "name", ")", "for", "name", "in", "columns", "]", ")", "for", "x", "in", "self", "]", ",", "columns", "=", "columns", ")" ]
b329b4dccd60fae41296816b8cbfe15d6ca07e67
valid
NetMHC
This function wraps NetMHC3 and NetMHC4 to automatically detect which class to use. Currently based on running the '-h' command and looking for discriminating substrings between the versions.
mhctools/netmhc.py
def NetMHC(alleles, default_peptide_lengths=[9], program_name="netMHC"): """ This function wraps NetMHC3 and NetMHC4 to automatically detect which class to use. Currently based on running the '-h' command and looking for discriminating substrings between the versions. """ # run NetMHC's help command and parse discriminating substrings out of # the resulting str output with open(os.devnull, 'w') as devnull: help_output = check_output([program_name, "-h"], stderr=devnull) help_output_str = help_output.decode("ascii", "ignore") substring_to_netmhc_class = { "-listMHC": NetMHC4, "--Alleles": NetMHC3, } successes = [] for substring, netmhc_class in substring_to_netmhc_class.items(): if substring in help_output_str: successes.append(netmhc_class) if len(successes) > 1: raise SystemError("Command %s is valid for multiple NetMHC versions. " "This is likely an mhctools bug." % program_name) if len(successes) == 0: raise SystemError("Command %s is not a valid way of calling any NetMHC software." % program_name) netmhc_class = successes[0] return netmhc_class( alleles=alleles, default_peptide_lengths=default_peptide_lengths, program_name=program_name)
def NetMHC(alleles, default_peptide_lengths=[9], program_name="netMHC"): """ This function wraps NetMHC3 and NetMHC4 to automatically detect which class to use. Currently based on running the '-h' command and looking for discriminating substrings between the versions. """ # run NetMHC's help command and parse discriminating substrings out of # the resulting str output with open(os.devnull, 'w') as devnull: help_output = check_output([program_name, "-h"], stderr=devnull) help_output_str = help_output.decode("ascii", "ignore") substring_to_netmhc_class = { "-listMHC": NetMHC4, "--Alleles": NetMHC3, } successes = [] for substring, netmhc_class in substring_to_netmhc_class.items(): if substring in help_output_str: successes.append(netmhc_class) if len(successes) > 1: raise SystemError("Command %s is valid for multiple NetMHC versions. " "This is likely an mhctools bug." % program_name) if len(successes) == 0: raise SystemError("Command %s is not a valid way of calling any NetMHC software." % program_name) netmhc_class = successes[0] return netmhc_class( alleles=alleles, default_peptide_lengths=default_peptide_lengths, program_name=program_name)
[ "This", "function", "wraps", "NetMHC3", "and", "NetMHC4", "to", "automatically", "detect", "which", "class", "to", "use", ".", "Currently", "based", "on", "running", "the", "-", "h", "command", "and", "looking", "for", "discriminating", "substrings", "between", "the", "versions", "." ]
openvax/mhctools
python
https://github.com/openvax/mhctools/blob/b329b4dccd60fae41296816b8cbfe15d6ca07e67/mhctools/netmhc.py#L23-L59
[ "def", "NetMHC", "(", "alleles", ",", "default_peptide_lengths", "=", "[", "9", "]", ",", "program_name", "=", "\"netMHC\"", ")", ":", "# run NetMHC's help command and parse discriminating substrings out of", "# the resulting str output", "with", "open", "(", "os", ".", "devnull", ",", "'w'", ")", "as", "devnull", ":", "help_output", "=", "check_output", "(", "[", "program_name", ",", "\"-h\"", "]", ",", "stderr", "=", "devnull", ")", "help_output_str", "=", "help_output", ".", "decode", "(", "\"ascii\"", ",", "\"ignore\"", ")", "substring_to_netmhc_class", "=", "{", "\"-listMHC\"", ":", "NetMHC4", ",", "\"--Alleles\"", ":", "NetMHC3", ",", "}", "successes", "=", "[", "]", "for", "substring", ",", "netmhc_class", "in", "substring_to_netmhc_class", ".", "items", "(", ")", ":", "if", "substring", "in", "help_output_str", ":", "successes", ".", "append", "(", "netmhc_class", ")", "if", "len", "(", "successes", ")", ">", "1", ":", "raise", "SystemError", "(", "\"Command %s is valid for multiple NetMHC versions. \"", "\"This is likely an mhctools bug.\"", "%", "program_name", ")", "if", "len", "(", "successes", ")", "==", "0", ":", "raise", "SystemError", "(", "\"Command %s is not a valid way of calling any NetMHC software.\"", "%", "program_name", ")", "netmhc_class", "=", "successes", "[", "0", "]", "return", "netmhc_class", "(", "alleles", "=", "alleles", ",", "default_peptide_lengths", "=", "default_peptide_lengths", ",", "program_name", "=", "program_name", ")" ]
b329b4dccd60fae41296816b8cbfe15d6ca07e67
valid
MHCflurry.predict_peptides
Predict MHC affinity for peptides.
mhctools/mhcflurry.py
def predict_peptides(self, peptides): """ Predict MHC affinity for peptides. """ # importing locally to avoid slowing down CLI applications which # don't use MHCflurry from mhcflurry.encodable_sequences import EncodableSequences binding_predictions = [] encodable_sequences = EncodableSequences.create(peptides) for allele in self.alleles: predictions_df = self.predictor.predict_to_dataframe( encodable_sequences, allele=allele) for (_, row) in predictions_df.iterrows(): binding_prediction = BindingPrediction( allele=allele, peptide=row.peptide, affinity=row.prediction, percentile_rank=( row.prediction_percentile if 'prediction_percentile' in row else nan), prediction_method_name="mhcflurry" ) binding_predictions.append(binding_prediction) return BindingPredictionCollection(binding_predictions)
def predict_peptides(self, peptides): """ Predict MHC affinity for peptides. """ # importing locally to avoid slowing down CLI applications which # don't use MHCflurry from mhcflurry.encodable_sequences import EncodableSequences binding_predictions = [] encodable_sequences = EncodableSequences.create(peptides) for allele in self.alleles: predictions_df = self.predictor.predict_to_dataframe( encodable_sequences, allele=allele) for (_, row) in predictions_df.iterrows(): binding_prediction = BindingPrediction( allele=allele, peptide=row.peptide, affinity=row.prediction, percentile_rank=( row.prediction_percentile if 'prediction_percentile' in row else nan), prediction_method_name="mhcflurry" ) binding_predictions.append(binding_prediction) return BindingPredictionCollection(binding_predictions)
[ "Predict", "MHC", "affinity", "for", "peptides", "." ]
openvax/mhctools
python
https://github.com/openvax/mhctools/blob/b329b4dccd60fae41296816b8cbfe15d6ca07e67/mhctools/mhcflurry.py#L75-L100
[ "def", "predict_peptides", "(", "self", ",", "peptides", ")", ":", "# importing locally to avoid slowing down CLI applications which", "# don't use MHCflurry", "from", "mhcflurry", ".", "encodable_sequences", "import", "EncodableSequences", "binding_predictions", "=", "[", "]", "encodable_sequences", "=", "EncodableSequences", ".", "create", "(", "peptides", ")", "for", "allele", "in", "self", ".", "alleles", ":", "predictions_df", "=", "self", ".", "predictor", ".", "predict_to_dataframe", "(", "encodable_sequences", ",", "allele", "=", "allele", ")", "for", "(", "_", ",", "row", ")", "in", "predictions_df", ".", "iterrows", "(", ")", ":", "binding_prediction", "=", "BindingPrediction", "(", "allele", "=", "allele", ",", "peptide", "=", "row", ".", "peptide", ",", "affinity", "=", "row", ".", "prediction", ",", "percentile_rank", "=", "(", "row", ".", "prediction_percentile", "if", "'prediction_percentile'", "in", "row", "else", "nan", ")", ",", "prediction_method_name", "=", "\"mhcflurry\"", ")", "binding_predictions", ".", "append", "(", "binding_prediction", ")", "return", "BindingPredictionCollection", "(", "binding_predictions", ")" ]
b329b4dccd60fae41296816b8cbfe15d6ca07e67
valid
seq_to_str
Given a sequence convert it to a comma separated string. If, however, the argument is a single object, return its string representation.
mhctools/common.py
def seq_to_str(obj, sep=","): """ Given a sequence convert it to a comma separated string. If, however, the argument is a single object, return its string representation. """ if isinstance(obj, string_classes): return obj elif isinstance(obj, (list, tuple)): return sep.join([str(x) for x in obj]) else: return str(obj)
def seq_to_str(obj, sep=","): """ Given a sequence convert it to a comma separated string. If, however, the argument is a single object, return its string representation. """ if isinstance(obj, string_classes): return obj elif isinstance(obj, (list, tuple)): return sep.join([str(x) for x in obj]) else: return str(obj)
[ "Given", "a", "sequence", "convert", "it", "to", "a", "comma", "separated", "string", ".", "If", "however", "the", "argument", "is", "a", "single", "object", "return", "its", "string", "representation", "." ]
openvax/mhctools
python
https://github.com/openvax/mhctools/blob/b329b4dccd60fae41296816b8cbfe15d6ca07e67/mhctools/common.py#L24-L35
[ "def", "seq_to_str", "(", "obj", ",", "sep", "=", "\",\"", ")", ":", "if", "isinstance", "(", "obj", ",", "string_classes", ")", ":", "return", "obj", "elif", "isinstance", "(", "obj", ",", "(", "list", ",", "tuple", ")", ")", ":", "return", "sep", ".", "join", "(", "[", "str", "(", "x", ")", "for", "x", "in", "obj", "]", ")", "else", ":", "return", "str", "(", "obj", ")" ]
b329b4dccd60fae41296816b8cbfe15d6ca07e67
valid
convert
Convert the image to all the formats specified Parameters ---------- img : PIL.Image.Image The image to convert formats : list List of all the formats to use Returns ------- io.BytesIO A file object containing the converted image
examples/upload.py
def convert(img, formats): """ Convert the image to all the formats specified Parameters ---------- img : PIL.Image.Image The image to convert formats : list List of all the formats to use Returns ------- io.BytesIO A file object containing the converted image """ media = None min_size = 0 for kwargs in formats: f = io.BytesIO() if img.mode == "RGBA" and kwargs['format'] != "PNG": # convert to RGB if picture is too large as a png # this implies that the png format is the first in `formats` if min_size < 5 * 1024**2: continue else: img.convert('RGB') img.save(f, **kwargs) size = f.tell() if media is None or size < min_size: if media is not None: media.close() media = f min_size = size else: f.close() return media
def convert(img, formats): """ Convert the image to all the formats specified Parameters ---------- img : PIL.Image.Image The image to convert formats : list List of all the formats to use Returns ------- io.BytesIO A file object containing the converted image """ media = None min_size = 0 for kwargs in formats: f = io.BytesIO() if img.mode == "RGBA" and kwargs['format'] != "PNG": # convert to RGB if picture is too large as a png # this implies that the png format is the first in `formats` if min_size < 5 * 1024**2: continue else: img.convert('RGB') img.save(f, **kwargs) size = f.tell() if media is None or size < min_size: if media is not None: media.close() media = f min_size = size else: f.close() return media
[ "Convert", "the", "image", "to", "all", "the", "formats", "specified", "Parameters", "----------", "img", ":", "PIL", ".", "Image", ".", "Image", "The", "image", "to", "convert", "formats", ":", "list", "List", "of", "all", "the", "formats", "to", "use", "Returns", "-------", "io", ".", "BytesIO", "A", "file", "object", "containing", "the", "converted", "image" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/examples/upload.py#L25-L64
[ "def", "convert", "(", "img", ",", "formats", ")", ":", "media", "=", "None", "min_size", "=", "0", "for", "kwargs", "in", "formats", ":", "f", "=", "io", ".", "BytesIO", "(", ")", "if", "img", ".", "mode", "==", "\"RGBA\"", "and", "kwargs", "[", "'format'", "]", "!=", "\"PNG\"", ":", "# convert to RGB if picture is too large as a png", "# this implies that the png format is the first in `formats`", "if", "min_size", "<", "5", "*", "1024", "**", "2", ":", "continue", "else", ":", "img", ".", "convert", "(", "'RGB'", ")", "img", ".", "save", "(", "f", ",", "*", "*", "kwargs", ")", "size", "=", "f", ".", "tell", "(", ")", "if", "media", "is", "None", "or", "size", "<", "min_size", ":", "if", "media", "is", "not", "None", ":", "media", ".", "close", "(", ")", "media", "=", "f", "min_size", "=", "size", "else", ":", "f", ".", "close", "(", ")", "return", "media" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
optimize_media
Optimize an image Resize the picture to the ``max_size``, defaulting to the large photo size of Twitter in :meth:`PeonyClient.upload_media` when used with the ``optimize_media`` argument. Parameters ---------- file_ : file object the file object of an image max_size : :obj:`tuple` or :obj:`list` of :obj:`int` a tuple in the format (width, height) which is maximum size of the picture returned by this function formats : :obj`list` or :obj:`tuple` of :obj:`dict` a list of all the formats to convert the picture to Returns ------- file The smallest file created in this function
examples/upload.py
def optimize_media(file_, max_size, formats): """ Optimize an image Resize the picture to the ``max_size``, defaulting to the large photo size of Twitter in :meth:`PeonyClient.upload_media` when used with the ``optimize_media`` argument. Parameters ---------- file_ : file object the file object of an image max_size : :obj:`tuple` or :obj:`list` of :obj:`int` a tuple in the format (width, height) which is maximum size of the picture returned by this function formats : :obj`list` or :obj:`tuple` of :obj:`dict` a list of all the formats to convert the picture to Returns ------- file The smallest file created in this function """ if not PIL: msg = ("Pillow must be installed to optimize a media\n" "$ pip3 install Pillow") raise RuntimeError(msg) img = PIL.Image.open(file_) # resize the picture (defaults to the 'large' photo size of Twitter # in peony.PeonyClient.upload_media) ratio = max(hw / max_hw for hw, max_hw in zip(img.size, max_size)) if ratio > 1: size = tuple(int(hw // ratio) for hw in img.size) img = img.resize(size, PIL.Image.ANTIALIAS) media = convert(img, formats) # do not close a file opened by the user # only close if a filename was given if not hasattr(file_, 'read'): img.close() return media
def optimize_media(file_, max_size, formats): """ Optimize an image Resize the picture to the ``max_size``, defaulting to the large photo size of Twitter in :meth:`PeonyClient.upload_media` when used with the ``optimize_media`` argument. Parameters ---------- file_ : file object the file object of an image max_size : :obj:`tuple` or :obj:`list` of :obj:`int` a tuple in the format (width, height) which is maximum size of the picture returned by this function formats : :obj`list` or :obj:`tuple` of :obj:`dict` a list of all the formats to convert the picture to Returns ------- file The smallest file created in this function """ if not PIL: msg = ("Pillow must be installed to optimize a media\n" "$ pip3 install Pillow") raise RuntimeError(msg) img = PIL.Image.open(file_) # resize the picture (defaults to the 'large' photo size of Twitter # in peony.PeonyClient.upload_media) ratio = max(hw / max_hw for hw, max_hw in zip(img.size, max_size)) if ratio > 1: size = tuple(int(hw // ratio) for hw in img.size) img = img.resize(size, PIL.Image.ANTIALIAS) media = convert(img, formats) # do not close a file opened by the user # only close if a filename was given if not hasattr(file_, 'read'): img.close() return media
[ "Optimize", "an", "image", "Resize", "the", "picture", "to", "the", "max_size", "defaulting", "to", "the", "large", "photo", "size", "of", "Twitter", "in", ":", "meth", ":", "PeonyClient", ".", "upload_media", "when", "used", "with", "the", "optimize_media", "argument", ".", "Parameters", "----------", "file_", ":", "file", "object", "the", "file", "object", "of", "an", "image", "max_size", ":", ":", "obj", ":", "tuple", "or", ":", "obj", ":", "list", "of", ":", "obj", ":", "int", "a", "tuple", "in", "the", "format", "(", "width", "height", ")", "which", "is", "maximum", "size", "of", "the", "picture", "returned", "by", "this", "function", "formats", ":", ":", "obj", "list", "or", ":", "obj", ":", "tuple", "of", ":", "obj", ":", "dict", "a", "list", "of", "all", "the", "formats", "to", "convert", "the", "picture", "to", "Returns", "-------", "file", "The", "smallest", "file", "created", "in", "this", "function" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/examples/upload.py#L67-L109
[ "def", "optimize_media", "(", "file_", ",", "max_size", ",", "formats", ")", ":", "if", "not", "PIL", ":", "msg", "=", "(", "\"Pillow must be installed to optimize a media\\n\"", "\"$ pip3 install Pillow\"", ")", "raise", "RuntimeError", "(", "msg", ")", "img", "=", "PIL", ".", "Image", ".", "open", "(", "file_", ")", "# resize the picture (defaults to the 'large' photo size of Twitter", "# in peony.PeonyClient.upload_media)", "ratio", "=", "max", "(", "hw", "/", "max_hw", "for", "hw", ",", "max_hw", "in", "zip", "(", "img", ".", "size", ",", "max_size", ")", ")", "if", "ratio", ">", "1", ":", "size", "=", "tuple", "(", "int", "(", "hw", "//", "ratio", ")", "for", "hw", "in", "img", ".", "size", ")", "img", "=", "img", ".", "resize", "(", "size", ",", "PIL", ".", "Image", ".", "ANTIALIAS", ")", "media", "=", "convert", "(", "img", ",", "formats", ")", "# do not close a file opened by the user", "# only close if a filename was given", "if", "not", "hasattr", "(", "file_", ",", "'read'", ")", ":", "img", ".", "close", "(", ")", "return", "media" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
create_input_peptides_files
Creates one or more files containing one peptide per line, returns names of files.
mhctools/input_file_formats.py
def create_input_peptides_files( peptides, max_peptides_per_file=None, group_by_length=False): """ Creates one or more files containing one peptide per line, returns names of files. """ if group_by_length: peptide_lengths = {len(p) for p in peptides} peptide_groups = {l: [] for l in peptide_lengths} for p in peptides: peptide_groups[len(p)].append(p) else: peptide_groups = {"": peptides} file_names = [] for key, group in peptide_groups.items(): n_peptides = len(group) if not max_peptides_per_file: max_peptides_per_file = n_peptides input_file = None for i, p in enumerate(group): if i % max_peptides_per_file == 0: if input_file is not None: file_names.append(input_file.name) input_file.close() input_file = make_writable_tempfile( prefix_number=i // max_peptides_per_file, prefix_name=key, suffix=".txt") input_file.write("%s\n" % p) if input_file is not None: file_names.append(input_file.name) input_file.close() return file_names
def create_input_peptides_files( peptides, max_peptides_per_file=None, group_by_length=False): """ Creates one or more files containing one peptide per line, returns names of files. """ if group_by_length: peptide_lengths = {len(p) for p in peptides} peptide_groups = {l: [] for l in peptide_lengths} for p in peptides: peptide_groups[len(p)].append(p) else: peptide_groups = {"": peptides} file_names = [] for key, group in peptide_groups.items(): n_peptides = len(group) if not max_peptides_per_file: max_peptides_per_file = n_peptides input_file = None for i, p in enumerate(group): if i % max_peptides_per_file == 0: if input_file is not None: file_names.append(input_file.name) input_file.close() input_file = make_writable_tempfile( prefix_number=i // max_peptides_per_file, prefix_name=key, suffix=".txt") input_file.write("%s\n" % p) if input_file is not None: file_names.append(input_file.name) input_file.close() return file_names
[ "Creates", "one", "or", "more", "files", "containing", "one", "peptide", "per", "line", "returns", "names", "of", "files", "." ]
openvax/mhctools
python
https://github.com/openvax/mhctools/blob/b329b4dccd60fae41296816b8cbfe15d6ca07e67/mhctools/input_file_formats.py#L26-L61
[ "def", "create_input_peptides_files", "(", "peptides", ",", "max_peptides_per_file", "=", "None", ",", "group_by_length", "=", "False", ")", ":", "if", "group_by_length", ":", "peptide_lengths", "=", "{", "len", "(", "p", ")", "for", "p", "in", "peptides", "}", "peptide_groups", "=", "{", "l", ":", "[", "]", "for", "l", "in", "peptide_lengths", "}", "for", "p", "in", "peptides", ":", "peptide_groups", "[", "len", "(", "p", ")", "]", ".", "append", "(", "p", ")", "else", ":", "peptide_groups", "=", "{", "\"\"", ":", "peptides", "}", "file_names", "=", "[", "]", "for", "key", ",", "group", "in", "peptide_groups", ".", "items", "(", ")", ":", "n_peptides", "=", "len", "(", "group", ")", "if", "not", "max_peptides_per_file", ":", "max_peptides_per_file", "=", "n_peptides", "input_file", "=", "None", "for", "i", ",", "p", "in", "enumerate", "(", "group", ")", ":", "if", "i", "%", "max_peptides_per_file", "==", "0", ":", "if", "input_file", "is", "not", "None", ":", "file_names", ".", "append", "(", "input_file", ".", "name", ")", "input_file", ".", "close", "(", ")", "input_file", "=", "make_writable_tempfile", "(", "prefix_number", "=", "i", "//", "max_peptides_per_file", ",", "prefix_name", "=", "key", ",", "suffix", "=", "\".txt\"", ")", "input_file", ".", "write", "(", "\"%s\\n\"", "%", "p", ")", "if", "input_file", "is", "not", "None", ":", "file_names", ".", "append", "(", "input_file", ".", "name", ")", "input_file", ".", "close", "(", ")", "return", "file_names" ]
b329b4dccd60fae41296816b8cbfe15d6ca07e67
valid
BasePredictor._check_peptide_lengths
If peptide lengths not specified, then try using the default lengths associated with this predictor object. If those aren't a valid non-empty sequence of integers, then raise an exception. Otherwise return the peptide lengths.
mhctools/base_predictor.py
def _check_peptide_lengths(self, peptide_lengths=None): """ If peptide lengths not specified, then try using the default lengths associated with this predictor object. If those aren't a valid non-empty sequence of integers, then raise an exception. Otherwise return the peptide lengths. """ if not peptide_lengths: peptide_lengths = self.default_peptide_lengths if not peptide_lengths: raise ValueError( ("Must either provide 'peptide_lengths' argument " "or set 'default_peptide_lengths")) if isinstance(peptide_lengths, int): peptide_lengths = [peptide_lengths] require_iterable_of(peptide_lengths, int) for peptide_length in peptide_lengths: if (self.min_peptide_length is not None and peptide_length < self.min_peptide_length): raise ValueError( "Invalid peptide length %d, shorter than min %d" % ( peptide_length, self.min_peptide_length)) elif (self.max_peptide_length is not None and peptide_length > self.max_peptide_length): raise ValueError( "Invalid peptide length %d, longer than max %d" % ( peptide_length, self.max_peptide_length)) return peptide_lengths
def _check_peptide_lengths(self, peptide_lengths=None): """ If peptide lengths not specified, then try using the default lengths associated with this predictor object. If those aren't a valid non-empty sequence of integers, then raise an exception. Otherwise return the peptide lengths. """ if not peptide_lengths: peptide_lengths = self.default_peptide_lengths if not peptide_lengths: raise ValueError( ("Must either provide 'peptide_lengths' argument " "or set 'default_peptide_lengths")) if isinstance(peptide_lengths, int): peptide_lengths = [peptide_lengths] require_iterable_of(peptide_lengths, int) for peptide_length in peptide_lengths: if (self.min_peptide_length is not None and peptide_length < self.min_peptide_length): raise ValueError( "Invalid peptide length %d, shorter than min %d" % ( peptide_length, self.min_peptide_length)) elif (self.max_peptide_length is not None and peptide_length > self.max_peptide_length): raise ValueError( "Invalid peptide length %d, longer than max %d" % ( peptide_length, self.max_peptide_length)) return peptide_lengths
[ "If", "peptide", "lengths", "not", "specified", "then", "try", "using", "the", "default", "lengths", "associated", "with", "this", "predictor", "object", ".", "If", "those", "aren", "t", "a", "valid", "non", "-", "empty", "sequence", "of", "integers", "then", "raise", "an", "exception", ".", "Otherwise", "return", "the", "peptide", "lengths", "." ]
openvax/mhctools
python
https://github.com/openvax/mhctools/blob/b329b4dccd60fae41296816b8cbfe15d6ca07e67/mhctools/base_predictor.py#L103-L133
[ "def", "_check_peptide_lengths", "(", "self", ",", "peptide_lengths", "=", "None", ")", ":", "if", "not", "peptide_lengths", ":", "peptide_lengths", "=", "self", ".", "default_peptide_lengths", "if", "not", "peptide_lengths", ":", "raise", "ValueError", "(", "(", "\"Must either provide 'peptide_lengths' argument \"", "\"or set 'default_peptide_lengths\"", ")", ")", "if", "isinstance", "(", "peptide_lengths", ",", "int", ")", ":", "peptide_lengths", "=", "[", "peptide_lengths", "]", "require_iterable_of", "(", "peptide_lengths", ",", "int", ")", "for", "peptide_length", "in", "peptide_lengths", ":", "if", "(", "self", ".", "min_peptide_length", "is", "not", "None", "and", "peptide_length", "<", "self", ".", "min_peptide_length", ")", ":", "raise", "ValueError", "(", "\"Invalid peptide length %d, shorter than min %d\"", "%", "(", "peptide_length", ",", "self", ".", "min_peptide_length", ")", ")", "elif", "(", "self", ".", "max_peptide_length", "is", "not", "None", "and", "peptide_length", ">", "self", ".", "max_peptide_length", ")", ":", "raise", "ValueError", "(", "\"Invalid peptide length %d, longer than max %d\"", "%", "(", "peptide_length", ",", "self", ".", "max_peptide_length", ")", ")", "return", "peptide_lengths" ]
b329b4dccd60fae41296816b8cbfe15d6ca07e67
valid
BasePredictor._check_peptide_inputs
Check peptide sequences to make sure they are valid for this predictor.
mhctools/base_predictor.py
def _check_peptide_inputs(self, peptides): """ Check peptide sequences to make sure they are valid for this predictor. """ require_iterable_of(peptides, string_types) check_X = not self.allow_X_in_peptides check_lower = not self.allow_lowercase_in_peptides check_min_length = self.min_peptide_length is not None min_length = self.min_peptide_length check_max_length = self.max_peptide_length is not None max_length = self.max_peptide_length for p in peptides: if not p.isalpha(): raise ValueError("Invalid characters in peptide '%s'" % p) elif check_X and "X" in p: raise ValueError("Invalid character 'X' in peptide '%s'" % p) elif check_lower and not p.isupper(): raise ValueError("Invalid lowercase letters in peptide '%s'" % p) elif check_min_length and len(p) < min_length: raise ValueError( "Peptide '%s' too short (%d chars), must be at least %d" % ( p, len(p), min_length)) elif check_max_length and len(p) > max_length: raise ValueError( "Peptide '%s' too long (%d chars), must be at least %d" % ( p, len(p), max_length))
def _check_peptide_inputs(self, peptides): """ Check peptide sequences to make sure they are valid for this predictor. """ require_iterable_of(peptides, string_types) check_X = not self.allow_X_in_peptides check_lower = not self.allow_lowercase_in_peptides check_min_length = self.min_peptide_length is not None min_length = self.min_peptide_length check_max_length = self.max_peptide_length is not None max_length = self.max_peptide_length for p in peptides: if not p.isalpha(): raise ValueError("Invalid characters in peptide '%s'" % p) elif check_X and "X" in p: raise ValueError("Invalid character 'X' in peptide '%s'" % p) elif check_lower and not p.isupper(): raise ValueError("Invalid lowercase letters in peptide '%s'" % p) elif check_min_length and len(p) < min_length: raise ValueError( "Peptide '%s' too short (%d chars), must be at least %d" % ( p, len(p), min_length)) elif check_max_length and len(p) > max_length: raise ValueError( "Peptide '%s' too long (%d chars), must be at least %d" % ( p, len(p), max_length))
[ "Check", "peptide", "sequences", "to", "make", "sure", "they", "are", "valid", "for", "this", "predictor", "." ]
openvax/mhctools
python
https://github.com/openvax/mhctools/blob/b329b4dccd60fae41296816b8cbfe15d6ca07e67/mhctools/base_predictor.py#L151-L176
[ "def", "_check_peptide_inputs", "(", "self", ",", "peptides", ")", ":", "require_iterable_of", "(", "peptides", ",", "string_types", ")", "check_X", "=", "not", "self", ".", "allow_X_in_peptides", "check_lower", "=", "not", "self", ".", "allow_lowercase_in_peptides", "check_min_length", "=", "self", ".", "min_peptide_length", "is", "not", "None", "min_length", "=", "self", ".", "min_peptide_length", "check_max_length", "=", "self", ".", "max_peptide_length", "is", "not", "None", "max_length", "=", "self", ".", "max_peptide_length", "for", "p", "in", "peptides", ":", "if", "not", "p", ".", "isalpha", "(", ")", ":", "raise", "ValueError", "(", "\"Invalid characters in peptide '%s'\"", "%", "p", ")", "elif", "check_X", "and", "\"X\"", "in", "p", ":", "raise", "ValueError", "(", "\"Invalid character 'X' in peptide '%s'\"", "%", "p", ")", "elif", "check_lower", "and", "not", "p", ".", "isupper", "(", ")", ":", "raise", "ValueError", "(", "\"Invalid lowercase letters in peptide '%s'\"", "%", "p", ")", "elif", "check_min_length", "and", "len", "(", "p", ")", "<", "min_length", ":", "raise", "ValueError", "(", "\"Peptide '%s' too short (%d chars), must be at least %d\"", "%", "(", "p", ",", "len", "(", "p", ")", ",", "min_length", ")", ")", "elif", "check_max_length", "and", "len", "(", "p", ")", ">", "max_length", ":", "raise", "ValueError", "(", "\"Peptide '%s' too long (%d chars), must be at least %d\"", "%", "(", "p", ",", "len", "(", "p", ")", ",", "max_length", ")", ")" ]
b329b4dccd60fae41296816b8cbfe15d6ca07e67
valid
BasePredictor.predict_subsequences
Given a dictionary mapping sequence names to amino acid strings, and an optional list of peptide lengths, returns a BindingPredictionCollection.
mhctools/base_predictor.py
def predict_subsequences( self, sequence_dict, peptide_lengths=None): """ Given a dictionary mapping sequence names to amino acid strings, and an optional list of peptide lengths, returns a BindingPredictionCollection. """ if isinstance(sequence_dict, string_types): sequence_dict = {"seq": sequence_dict} elif isinstance(sequence_dict, (list, tuple)): sequence_dict = {seq: seq for seq in sequence_dict} peptide_lengths = self._check_peptide_lengths(peptide_lengths) # convert long protein sequences to set of peptides and # associated sequence name / offsets that each peptide may have come # from peptide_set = set([]) peptide_to_name_offset_pairs = defaultdict(list) for name, sequence in sequence_dict.items(): for peptide_length in peptide_lengths: for i in range(len(sequence) - peptide_length + 1): peptide = sequence[i:i + peptide_length] peptide_set.add(peptide) peptide_to_name_offset_pairs[peptide].append((name, i)) peptide_list = sorted(peptide_set) binding_predictions = self.predict_peptides(peptide_list) # create BindingPrediction objects with sequence name and offset results = [] for binding_prediction in binding_predictions: for name, offset in peptide_to_name_offset_pairs[ binding_prediction.peptide]: results.append(binding_prediction.clone_with_updates( source_sequence_name=name, offset=offset)) self._check_results( results, peptides=peptide_set, alleles=self.alleles) return BindingPredictionCollection(results)
def predict_subsequences( self, sequence_dict, peptide_lengths=None): """ Given a dictionary mapping sequence names to amino acid strings, and an optional list of peptide lengths, returns a BindingPredictionCollection. """ if isinstance(sequence_dict, string_types): sequence_dict = {"seq": sequence_dict} elif isinstance(sequence_dict, (list, tuple)): sequence_dict = {seq: seq for seq in sequence_dict} peptide_lengths = self._check_peptide_lengths(peptide_lengths) # convert long protein sequences to set of peptides and # associated sequence name / offsets that each peptide may have come # from peptide_set = set([]) peptide_to_name_offset_pairs = defaultdict(list) for name, sequence in sequence_dict.items(): for peptide_length in peptide_lengths: for i in range(len(sequence) - peptide_length + 1): peptide = sequence[i:i + peptide_length] peptide_set.add(peptide) peptide_to_name_offset_pairs[peptide].append((name, i)) peptide_list = sorted(peptide_set) binding_predictions = self.predict_peptides(peptide_list) # create BindingPrediction objects with sequence name and offset results = [] for binding_prediction in binding_predictions: for name, offset in peptide_to_name_offset_pairs[ binding_prediction.peptide]: results.append(binding_prediction.clone_with_updates( source_sequence_name=name, offset=offset)) self._check_results( results, peptides=peptide_set, alleles=self.alleles) return BindingPredictionCollection(results)
[ "Given", "a", "dictionary", "mapping", "sequence", "names", "to", "amino", "acid", "strings", "and", "an", "optional", "list", "of", "peptide", "lengths", "returns", "a", "BindingPredictionCollection", "." ]
openvax/mhctools
python
https://github.com/openvax/mhctools/blob/b329b4dccd60fae41296816b8cbfe15d6ca07e67/mhctools/base_predictor.py#L178-L222
[ "def", "predict_subsequences", "(", "self", ",", "sequence_dict", ",", "peptide_lengths", "=", "None", ")", ":", "if", "isinstance", "(", "sequence_dict", ",", "string_types", ")", ":", "sequence_dict", "=", "{", "\"seq\"", ":", "sequence_dict", "}", "elif", "isinstance", "(", "sequence_dict", ",", "(", "list", ",", "tuple", ")", ")", ":", "sequence_dict", "=", "{", "seq", ":", "seq", "for", "seq", "in", "sequence_dict", "}", "peptide_lengths", "=", "self", ".", "_check_peptide_lengths", "(", "peptide_lengths", ")", "# convert long protein sequences to set of peptides and", "# associated sequence name / offsets that each peptide may have come", "# from", "peptide_set", "=", "set", "(", "[", "]", ")", "peptide_to_name_offset_pairs", "=", "defaultdict", "(", "list", ")", "for", "name", ",", "sequence", "in", "sequence_dict", ".", "items", "(", ")", ":", "for", "peptide_length", "in", "peptide_lengths", ":", "for", "i", "in", "range", "(", "len", "(", "sequence", ")", "-", "peptide_length", "+", "1", ")", ":", "peptide", "=", "sequence", "[", "i", ":", "i", "+", "peptide_length", "]", "peptide_set", ".", "add", "(", "peptide", ")", "peptide_to_name_offset_pairs", "[", "peptide", "]", ".", "append", "(", "(", "name", ",", "i", ")", ")", "peptide_list", "=", "sorted", "(", "peptide_set", ")", "binding_predictions", "=", "self", ".", "predict_peptides", "(", "peptide_list", ")", "# create BindingPrediction objects with sequence name and offset", "results", "=", "[", "]", "for", "binding_prediction", "in", "binding_predictions", ":", "for", "name", ",", "offset", "in", "peptide_to_name_offset_pairs", "[", "binding_prediction", ".", "peptide", "]", ":", "results", ".", "append", "(", "binding_prediction", ".", "clone_with_updates", "(", "source_sequence_name", "=", "name", ",", "offset", "=", "offset", ")", ")", "self", ".", "_check_results", "(", "results", ",", "peptides", "=", "peptide_set", ",", "alleles", "=", "self", ".", "alleles", ")", "return", "BindingPredictionCollection", "(", "results", ")" ]
b329b4dccd60fae41296816b8cbfe15d6ca07e67
valid
BasePredictor._check_hla_alleles
Given a list of HLA alleles and an optional list of valid HLA alleles, return a set of alleles that we will pass into the MHC binding predictor.
mhctools/base_predictor.py
def _check_hla_alleles( alleles, valid_alleles=None): """ Given a list of HLA alleles and an optional list of valid HLA alleles, return a set of alleles that we will pass into the MHC binding predictor. """ require_iterable_of(alleles, string_types, "HLA alleles") # Don't run the MHC predictor twice for homozygous alleles, # only run it for unique alleles alleles = { normalize_allele_name(allele.strip().upper()) for allele in alleles } if valid_alleles: # For some reason netMHCpan drops the '*' in names, so # 'HLA-A*03:01' becomes 'HLA-A03:01' missing_alleles = [ allele for allele in alleles if allele not in valid_alleles ] if len(missing_alleles) > 0: raise UnsupportedAllele( "Unsupported HLA alleles: %s" % missing_alleles) return list(alleles)
def _check_hla_alleles( alleles, valid_alleles=None): """ Given a list of HLA alleles and an optional list of valid HLA alleles, return a set of alleles that we will pass into the MHC binding predictor. """ require_iterable_of(alleles, string_types, "HLA alleles") # Don't run the MHC predictor twice for homozygous alleles, # only run it for unique alleles alleles = { normalize_allele_name(allele.strip().upper()) for allele in alleles } if valid_alleles: # For some reason netMHCpan drops the '*' in names, so # 'HLA-A*03:01' becomes 'HLA-A03:01' missing_alleles = [ allele for allele in alleles if allele not in valid_alleles ] if len(missing_alleles) > 0: raise UnsupportedAllele( "Unsupported HLA alleles: %s" % missing_alleles) return list(alleles)
[ "Given", "a", "list", "of", "HLA", "alleles", "and", "an", "optional", "list", "of", "valid", "HLA", "alleles", "return", "a", "set", "of", "alleles", "that", "we", "will", "pass", "into", "the", "MHC", "binding", "predictor", "." ]
openvax/mhctools
python
https://github.com/openvax/mhctools/blob/b329b4dccd60fae41296816b8cbfe15d6ca07e67/mhctools/base_predictor.py#L237-L265
[ "def", "_check_hla_alleles", "(", "alleles", ",", "valid_alleles", "=", "None", ")", ":", "require_iterable_of", "(", "alleles", ",", "string_types", ",", "\"HLA alleles\"", ")", "# Don't run the MHC predictor twice for homozygous alleles,", "# only run it for unique alleles", "alleles", "=", "{", "normalize_allele_name", "(", "allele", ".", "strip", "(", ")", ".", "upper", "(", ")", ")", "for", "allele", "in", "alleles", "}", "if", "valid_alleles", ":", "# For some reason netMHCpan drops the '*' in names, so", "# 'HLA-A*03:01' becomes 'HLA-A03:01'", "missing_alleles", "=", "[", "allele", "for", "allele", "in", "alleles", "if", "allele", "not", "in", "valid_alleles", "]", "if", "len", "(", "missing_alleles", ")", ">", "0", ":", "raise", "UnsupportedAllele", "(", "\"Unsupported HLA alleles: %s\"", "%", "missing_alleles", ")", "return", "list", "(", "alleles", ")" ]
b329b4dccd60fae41296816b8cbfe15d6ca07e67
valid
StreamResponse._connect
Connect to the stream Returns ------- asyncio.coroutine The streaming response
peony/stream.py
async def _connect(self): """ Connect to the stream Returns ------- asyncio.coroutine The streaming response """ logger.debug("connecting to the stream") await self.client.setup if self.session is None: self.session = self.client._session kwargs = await self.client.headers.prepare_request(**self.kwargs) request = self.client.error_handler(self.session.request) return await request(timeout=0, **kwargs)
async def _connect(self): """ Connect to the stream Returns ------- asyncio.coroutine The streaming response """ logger.debug("connecting to the stream") await self.client.setup if self.session is None: self.session = self.client._session kwargs = await self.client.headers.prepare_request(**self.kwargs) request = self.client.error_handler(self.session.request) return await request(timeout=0, **kwargs)
[ "Connect", "to", "the", "stream" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/stream.py#L75-L91
[ "async", "def", "_connect", "(", "self", ")", ":", "logger", ".", "debug", "(", "\"connecting to the stream\"", ")", "await", "self", ".", "client", ".", "setup", "if", "self", ".", "session", "is", "None", ":", "self", ".", "session", "=", "self", ".", "client", ".", "_session", "kwargs", "=", "await", "self", ".", "client", ".", "headers", ".", "prepare_request", "(", "*", "*", "self", ".", "kwargs", ")", "request", "=", "self", ".", "client", ".", "error_handler", "(", "self", ".", "session", ".", "request", ")", "return", "await", "request", "(", "timeout", "=", "0", ",", "*", "*", "kwargs", ")" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
StreamResponse.connect
Create the connection Returns ------- self Raises ------ exception.PeonyException On a response status in 4xx that are not status 420 or 429 Also on statuses in 1xx or 3xx since this should not be the status received here
peony/stream.py
async def connect(self): """ Create the connection Returns ------- self Raises ------ exception.PeonyException On a response status in 4xx that are not status 420 or 429 Also on statuses in 1xx or 3xx since this should not be the status received here """ with async_timeout.timeout(self.timeout): self.response = await self._connect() if self.response.status in range(200, 300): self._error_timeout = 0 self.state = NORMAL elif self.response.status == 500: self.state = DISCONNECTION elif self.response.status in range(501, 600): self.state = RECONNECTION elif self.response.status in (420, 429): self.state = ENHANCE_YOUR_CALM else: logger.debug("raising error during stream connection") raise await exceptions.throw(self.response, loads=self.client._loads, url=self.kwargs['url']) logger.debug("stream state: %d" % self.state)
async def connect(self): """ Create the connection Returns ------- self Raises ------ exception.PeonyException On a response status in 4xx that are not status 420 or 429 Also on statuses in 1xx or 3xx since this should not be the status received here """ with async_timeout.timeout(self.timeout): self.response = await self._connect() if self.response.status in range(200, 300): self._error_timeout = 0 self.state = NORMAL elif self.response.status == 500: self.state = DISCONNECTION elif self.response.status in range(501, 600): self.state = RECONNECTION elif self.response.status in (420, 429): self.state = ENHANCE_YOUR_CALM else: logger.debug("raising error during stream connection") raise await exceptions.throw(self.response, loads=self.client._loads, url=self.kwargs['url']) logger.debug("stream state: %d" % self.state)
[ "Create", "the", "connection" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/stream.py#L93-L126
[ "async", "def", "connect", "(", "self", ")", ":", "with", "async_timeout", ".", "timeout", "(", "self", ".", "timeout", ")", ":", "self", ".", "response", "=", "await", "self", ".", "_connect", "(", ")", "if", "self", ".", "response", ".", "status", "in", "range", "(", "200", ",", "300", ")", ":", "self", ".", "_error_timeout", "=", "0", "self", ".", "state", "=", "NORMAL", "elif", "self", ".", "response", ".", "status", "==", "500", ":", "self", ".", "state", "=", "DISCONNECTION", "elif", "self", ".", "response", ".", "status", "in", "range", "(", "501", ",", "600", ")", ":", "self", ".", "state", "=", "RECONNECTION", "elif", "self", ".", "response", ".", "status", "in", "(", "420", ",", "429", ")", ":", "self", ".", "state", "=", "ENHANCE_YOUR_CALM", "else", ":", "logger", ".", "debug", "(", "\"raising error during stream connection\"", ")", "raise", "await", "exceptions", ".", "throw", "(", "self", ".", "response", ",", "loads", "=", "self", ".", "client", ".", "_loads", ",", "url", "=", "self", ".", "kwargs", "[", "'url'", "]", ")", "logger", ".", "debug", "(", "\"stream state: %d\"", "%", "self", ".", "state", ")" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
StreamResponse.init_restart
Restart the stream on error Parameters ---------- error : bool, optional Whether to print the error or not
peony/stream.py
async def init_restart(self, error=None): """ Restart the stream on error Parameters ---------- error : bool, optional Whether to print the error or not """ if error: utils.log_error(logger=logger) if self.state == DISCONNECTION: if self._error_timeout < MAX_DISCONNECTION_TIMEOUT: self._error_timeout += DISCONNECTION_TIMEOUT logger.info("The stream was disconnected, will reconnect in %ss" % self._error_timeout) elif self.state == RECONNECTION: if self._error_timeout < RECONNECTION_TIMEOUT: self._error_timeout = RECONNECTION_TIMEOUT elif self._error_timeout < MAX_RECONNECTION_TIMEOUT: self._error_timeout *= 2 logger.info("Could not connect to the stream, reconnection in %ss" % self._error_timeout) elif self.state == ENHANCE_YOUR_CALM: if self._error_timeout < ENHANCE_YOUR_CALM_TIMEOUT: self._error_timeout = ENHANCE_YOUR_CALM_TIMEOUT else: self._error_timeout *= 2 logger.warning("Enhance Your Calm response received from Twitter. " "If you didn't restart your program frenetically " "then there is probably something wrong with it. " "Make sure you are not opening too many connections" " to the endpoint you are currently using by " "checking out Twitter's Streaming API " "documentation: " "https://dev.twitter.com/streaming/overview\n" "The stream will restart in %ss." % self._error_timeout) elif self.state == EOF: pass # no timeout else: raise RuntimeError("Incorrect state: %d" % self.state) self._reconnecting = True return {'reconnecting_in': self._error_timeout, 'error': error}
async def init_restart(self, error=None): """ Restart the stream on error Parameters ---------- error : bool, optional Whether to print the error or not """ if error: utils.log_error(logger=logger) if self.state == DISCONNECTION: if self._error_timeout < MAX_DISCONNECTION_TIMEOUT: self._error_timeout += DISCONNECTION_TIMEOUT logger.info("The stream was disconnected, will reconnect in %ss" % self._error_timeout) elif self.state == RECONNECTION: if self._error_timeout < RECONNECTION_TIMEOUT: self._error_timeout = RECONNECTION_TIMEOUT elif self._error_timeout < MAX_RECONNECTION_TIMEOUT: self._error_timeout *= 2 logger.info("Could not connect to the stream, reconnection in %ss" % self._error_timeout) elif self.state == ENHANCE_YOUR_CALM: if self._error_timeout < ENHANCE_YOUR_CALM_TIMEOUT: self._error_timeout = ENHANCE_YOUR_CALM_TIMEOUT else: self._error_timeout *= 2 logger.warning("Enhance Your Calm response received from Twitter. " "If you didn't restart your program frenetically " "then there is probably something wrong with it. " "Make sure you are not opening too many connections" " to the endpoint you are currently using by " "checking out Twitter's Streaming API " "documentation: " "https://dev.twitter.com/streaming/overview\n" "The stream will restart in %ss." % self._error_timeout) elif self.state == EOF: pass # no timeout else: raise RuntimeError("Incorrect state: %d" % self.state) self._reconnecting = True return {'reconnecting_in': self._error_timeout, 'error': error}
[ "Restart", "the", "stream", "on", "error" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/stream.py#L201-L251
[ "async", "def", "init_restart", "(", "self", ",", "error", "=", "None", ")", ":", "if", "error", ":", "utils", ".", "log_error", "(", "logger", "=", "logger", ")", "if", "self", ".", "state", "==", "DISCONNECTION", ":", "if", "self", ".", "_error_timeout", "<", "MAX_DISCONNECTION_TIMEOUT", ":", "self", ".", "_error_timeout", "+=", "DISCONNECTION_TIMEOUT", "logger", ".", "info", "(", "\"The stream was disconnected, will reconnect in %ss\"", "%", "self", ".", "_error_timeout", ")", "elif", "self", ".", "state", "==", "RECONNECTION", ":", "if", "self", ".", "_error_timeout", "<", "RECONNECTION_TIMEOUT", ":", "self", ".", "_error_timeout", "=", "RECONNECTION_TIMEOUT", "elif", "self", ".", "_error_timeout", "<", "MAX_RECONNECTION_TIMEOUT", ":", "self", ".", "_error_timeout", "*=", "2", "logger", ".", "info", "(", "\"Could not connect to the stream, reconnection in %ss\"", "%", "self", ".", "_error_timeout", ")", "elif", "self", ".", "state", "==", "ENHANCE_YOUR_CALM", ":", "if", "self", ".", "_error_timeout", "<", "ENHANCE_YOUR_CALM_TIMEOUT", ":", "self", ".", "_error_timeout", "=", "ENHANCE_YOUR_CALM_TIMEOUT", "else", ":", "self", ".", "_error_timeout", "*=", "2", "logger", ".", "warning", "(", "\"Enhance Your Calm response received from Twitter. \"", "\"If you didn't restart your program frenetically \"", "\"then there is probably something wrong with it. \"", "\"Make sure you are not opening too many connections\"", "\" to the endpoint you are currently using by \"", "\"checking out Twitter's Streaming API \"", "\"documentation: \"", "\"https://dev.twitter.com/streaming/overview\\n\"", "\"The stream will restart in %ss.\"", "%", "self", ".", "_error_timeout", ")", "elif", "self", ".", "state", "==", "EOF", ":", "pass", "# no timeout", "else", ":", "raise", "RuntimeError", "(", "\"Incorrect state: %d\"", "%", "self", ".", "state", ")", "self", ".", "_reconnecting", "=", "True", "return", "{", "'reconnecting_in'", ":", "self", ".", "_error_timeout", ",", "'error'", ":", "error", "}" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
StreamResponse.restart_stream
Restart the stream on error
peony/stream.py
async def restart_stream(self): """ Restart the stream on error """ await self.response.release() await asyncio.sleep(self._error_timeout) await self.connect() logger.info("Reconnected to the stream") self._reconnecting = False return {'stream_restart': True}
async def restart_stream(self): """ Restart the stream on error """ await self.response.release() await asyncio.sleep(self._error_timeout) await self.connect() logger.info("Reconnected to the stream") self._reconnecting = False return {'stream_restart': True}
[ "Restart", "the", "stream", "on", "error" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/stream.py#L253-L263
[ "async", "def", "restart_stream", "(", "self", ")", ":", "await", "self", ".", "response", ".", "release", "(", ")", "await", "asyncio", ".", "sleep", "(", "self", ".", "_error_timeout", ")", "await", "self", ".", "connect", "(", ")", "logger", ".", "info", "(", "\"Reconnected to the stream\"", ")", "self", ".", "_reconnecting", "=", "False", "return", "{", "'stream_restart'", ":", "True", "}" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
Handler.with_prefix
decorator to handle commands with prefixes Parameters ---------- prefix : str the prefix of the command strict : bool, optional If set to True the command must be at the beginning of the message. Defaults to False. Returns ------- function a decorator that returns an :class:`EventHandler` instance
peony/commands/event_types.py
def with_prefix(self, prefix, strict=False): """ decorator to handle commands with prefixes Parameters ---------- prefix : str the prefix of the command strict : bool, optional If set to True the command must be at the beginning of the message. Defaults to False. Returns ------- function a decorator that returns an :class:`EventHandler` instance """ def decorated(func): return EventHandler(func=func, event=self.event, prefix=prefix, strict=strict) return decorated
def with_prefix(self, prefix, strict=False): """ decorator to handle commands with prefixes Parameters ---------- prefix : str the prefix of the command strict : bool, optional If set to True the command must be at the beginning of the message. Defaults to False. Returns ------- function a decorator that returns an :class:`EventHandler` instance """ def decorated(func): return EventHandler(func=func, event=self.event, prefix=prefix, strict=strict) return decorated
[ "decorator", "to", "handle", "commands", "with", "prefixes" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/commands/event_types.py#L38-L60
[ "def", "with_prefix", "(", "self", ",", "prefix", ",", "strict", "=", "False", ")", ":", "def", "decorated", "(", "func", ")", ":", "return", "EventHandler", "(", "func", "=", "func", ",", "event", "=", "self", ".", "event", ",", "prefix", "=", "prefix", ",", "strict", "=", "strict", ")", "return", "decorated" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
Event.envelope
returns an :class:`Event` that can be used for site streams
peony/commands/event_types.py
def envelope(self): """ returns an :class:`Event` that can be used for site streams """ def enveloped_event(data): return 'for_user' in data and self._func(data.get('message')) return self.__class__(enveloped_event, self.__name__)
def envelope(self): """ returns an :class:`Event` that can be used for site streams """ def enveloped_event(data): return 'for_user' in data and self._func(data.get('message')) return self.__class__(enveloped_event, self.__name__)
[ "returns", "an", ":", "class", ":", "Event", "that", "can", "be", "used", "for", "site", "streams" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/commands/event_types.py#L83-L89
[ "def", "envelope", "(", "self", ")", ":", "def", "enveloped_event", "(", "data", ")", ":", "return", "'for_user'", "in", "data", "and", "self", ".", "_func", "(", "data", ".", "get", "(", "'message'", ")", ")", "return", "self", ".", "__class__", "(", "enveloped_event", ",", "self", ".", "__name__", ")" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
BDClient.set_tz
set the environment timezone to the timezone set in your twitter settings
examples/birthday.py
async def set_tz(self): """ set the environment timezone to the timezone set in your twitter settings """ settings = await self.api.account.settings.get() tz = settings.time_zone.tzinfo_name os.environ['TZ'] = tz time.tzset()
async def set_tz(self): """ set the environment timezone to the timezone set in your twitter settings """ settings = await self.api.account.settings.get() tz = settings.time_zone.tzinfo_name os.environ['TZ'] = tz time.tzset()
[ "set", "the", "environment", "timezone", "to", "the", "timezone", "set", "in", "your", "twitter", "settings" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/examples/birthday.py#L23-L33
[ "async", "def", "set_tz", "(", "self", ")", ":", "settings", "=", "await", "self", ".", "api", ".", "account", ".", "settings", ".", "get", "(", ")", "tz", "=", "settings", ".", "time_zone", ".", "tzinfo_name", "os", ".", "environ", "[", "'TZ'", "]", "=", "tz", "time", ".", "tzset", "(", ")" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
run_command
Given a list whose first element is a command name, followed by arguments, execute it and show timing info.
mhctools/process_helpers.py
def run_command(args, **kwargs): """ Given a list whose first element is a command name, followed by arguments, execute it and show timing info. """ assert len(args) > 0 start_time = time.time() process = AsyncProcess(args, **kwargs) process.wait() elapsed_time = time.time() - start_time logger.info("%s took %0.4f seconds", args[0], elapsed_time)
def run_command(args, **kwargs): """ Given a list whose first element is a command name, followed by arguments, execute it and show timing info. """ assert len(args) > 0 start_time = time.time() process = AsyncProcess(args, **kwargs) process.wait() elapsed_time = time.time() - start_time logger.info("%s took %0.4f seconds", args[0], elapsed_time)
[ "Given", "a", "list", "whose", "first", "element", "is", "a", "command", "name", "followed", "by", "arguments", "execute", "it", "and", "show", "timing", "info", "." ]
openvax/mhctools
python
https://github.com/openvax/mhctools/blob/b329b4dccd60fae41296816b8cbfe15d6ca07e67/mhctools/process_helpers.py#L74-L84
[ "def", "run_command", "(", "args", ",", "*", "*", "kwargs", ")", ":", "assert", "len", "(", "args", ")", ">", "0", "start_time", "=", "time", ".", "time", "(", ")", "process", "=", "AsyncProcess", "(", "args", ",", "*", "*", "kwargs", ")", "process", ".", "wait", "(", ")", "elapsed_time", "=", "time", ".", "time", "(", ")", "-", "start_time", "logger", ".", "info", "(", "\"%s took %0.4f seconds\"", ",", "args", "[", "0", "]", ",", "elapsed_time", ")" ]
b329b4dccd60fae41296816b8cbfe15d6ca07e67
valid
run_multiple_commands_redirect_stdout
Run multiple shell commands in parallel, write each of their stdout output to files associated with each command. Parameters ---------- multiple_args_dict : dict A dictionary whose keys are files and values are args list. Run each args list as a subprocess and write stdout to the corresponding file. print_commands : bool Print shell commands before running them. process_limit : int Limit the number of concurrent processes to this number. 0 if there is no limit, -1 to use max number of processors polling_freq : int Number of seconds between checking for done processes, if we have a process limit
mhctools/process_helpers.py
def run_multiple_commands_redirect_stdout( multiple_args_dict, print_commands=True, process_limit=-1, polling_freq=0.5, **kwargs): """ Run multiple shell commands in parallel, write each of their stdout output to files associated with each command. Parameters ---------- multiple_args_dict : dict A dictionary whose keys are files and values are args list. Run each args list as a subprocess and write stdout to the corresponding file. print_commands : bool Print shell commands before running them. process_limit : int Limit the number of concurrent processes to this number. 0 if there is no limit, -1 to use max number of processors polling_freq : int Number of seconds between checking for done processes, if we have a process limit """ assert len(multiple_args_dict) > 0 assert all(len(args) > 0 for args in multiple_args_dict.values()) assert all(hasattr(f, 'name') for f in multiple_args_dict.keys()) if process_limit < 0: logger.debug("Using %d processes" % cpu_count()) process_limit = cpu_count() start_time = time.time() processes = Queue(maxsize=process_limit) def add_to_queue(process): process.start() if print_commands: handler = logging.FileHandler(process.redirect_stdout_file.name) handler.setLevel(logging.DEBUG) logger.addHandler(handler) logger.debug(" ".join(process.args)) logger.removeHandler(handler) processes.put(process) for f, args in multiple_args_dict.items(): p = AsyncProcess( args, redirect_stdout_file=f, **kwargs) if not processes.full(): add_to_queue(p) else: while processes.full(): # Are there any done processes? to_remove = [] for possibly_done in processes.queue: if possibly_done.poll() is not None: possibly_done.wait() to_remove.append(possibly_done) # Remove them from the queue and stop checking if to_remove: for process_to_remove in to_remove: processes.queue.remove(process_to_remove) break # Check again in a second if there weren't time.sleep(polling_freq) add_to_queue(p) # Wait for all the rest of the processes while not processes.empty(): processes.get().wait() elapsed_time = time.time() - start_time logger.info( "Ran %d commands in %0.4f seconds", len(multiple_args_dict), elapsed_time)
def run_multiple_commands_redirect_stdout( multiple_args_dict, print_commands=True, process_limit=-1, polling_freq=0.5, **kwargs): """ Run multiple shell commands in parallel, write each of their stdout output to files associated with each command. Parameters ---------- multiple_args_dict : dict A dictionary whose keys are files and values are args list. Run each args list as a subprocess and write stdout to the corresponding file. print_commands : bool Print shell commands before running them. process_limit : int Limit the number of concurrent processes to this number. 0 if there is no limit, -1 to use max number of processors polling_freq : int Number of seconds between checking for done processes, if we have a process limit """ assert len(multiple_args_dict) > 0 assert all(len(args) > 0 for args in multiple_args_dict.values()) assert all(hasattr(f, 'name') for f in multiple_args_dict.keys()) if process_limit < 0: logger.debug("Using %d processes" % cpu_count()) process_limit = cpu_count() start_time = time.time() processes = Queue(maxsize=process_limit) def add_to_queue(process): process.start() if print_commands: handler = logging.FileHandler(process.redirect_stdout_file.name) handler.setLevel(logging.DEBUG) logger.addHandler(handler) logger.debug(" ".join(process.args)) logger.removeHandler(handler) processes.put(process) for f, args in multiple_args_dict.items(): p = AsyncProcess( args, redirect_stdout_file=f, **kwargs) if not processes.full(): add_to_queue(p) else: while processes.full(): # Are there any done processes? to_remove = [] for possibly_done in processes.queue: if possibly_done.poll() is not None: possibly_done.wait() to_remove.append(possibly_done) # Remove them from the queue and stop checking if to_remove: for process_to_remove in to_remove: processes.queue.remove(process_to_remove) break # Check again in a second if there weren't time.sleep(polling_freq) add_to_queue(p) # Wait for all the rest of the processes while not processes.empty(): processes.get().wait() elapsed_time = time.time() - start_time logger.info( "Ran %d commands in %0.4f seconds", len(multiple_args_dict), elapsed_time)
[ "Run", "multiple", "shell", "commands", "in", "parallel", "write", "each", "of", "their", "stdout", "output", "to", "files", "associated", "with", "each", "command", "." ]
openvax/mhctools
python
https://github.com/openvax/mhctools/blob/b329b4dccd60fae41296816b8cbfe15d6ca07e67/mhctools/process_helpers.py#L86-L166
[ "def", "run_multiple_commands_redirect_stdout", "(", "multiple_args_dict", ",", "print_commands", "=", "True", ",", "process_limit", "=", "-", "1", ",", "polling_freq", "=", "0.5", ",", "*", "*", "kwargs", ")", ":", "assert", "len", "(", "multiple_args_dict", ")", ">", "0", "assert", "all", "(", "len", "(", "args", ")", ">", "0", "for", "args", "in", "multiple_args_dict", ".", "values", "(", ")", ")", "assert", "all", "(", "hasattr", "(", "f", ",", "'name'", ")", "for", "f", "in", "multiple_args_dict", ".", "keys", "(", ")", ")", "if", "process_limit", "<", "0", ":", "logger", ".", "debug", "(", "\"Using %d processes\"", "%", "cpu_count", "(", ")", ")", "process_limit", "=", "cpu_count", "(", ")", "start_time", "=", "time", ".", "time", "(", ")", "processes", "=", "Queue", "(", "maxsize", "=", "process_limit", ")", "def", "add_to_queue", "(", "process", ")", ":", "process", ".", "start", "(", ")", "if", "print_commands", ":", "handler", "=", "logging", ".", "FileHandler", "(", "process", ".", "redirect_stdout_file", ".", "name", ")", "handler", ".", "setLevel", "(", "logging", ".", "DEBUG", ")", "logger", ".", "addHandler", "(", "handler", ")", "logger", ".", "debug", "(", "\" \"", ".", "join", "(", "process", ".", "args", ")", ")", "logger", ".", "removeHandler", "(", "handler", ")", "processes", ".", "put", "(", "process", ")", "for", "f", ",", "args", "in", "multiple_args_dict", ".", "items", "(", ")", ":", "p", "=", "AsyncProcess", "(", "args", ",", "redirect_stdout_file", "=", "f", ",", "*", "*", "kwargs", ")", "if", "not", "processes", ".", "full", "(", ")", ":", "add_to_queue", "(", "p", ")", "else", ":", "while", "processes", ".", "full", "(", ")", ":", "# Are there any done processes?", "to_remove", "=", "[", "]", "for", "possibly_done", "in", "processes", ".", "queue", ":", "if", "possibly_done", ".", "poll", "(", ")", "is", "not", "None", ":", "possibly_done", ".", "wait", "(", ")", "to_remove", ".", "append", "(", "possibly_done", ")", "# Remove them from the queue and stop checking", "if", "to_remove", ":", "for", "process_to_remove", "in", "to_remove", ":", "processes", ".", "queue", ".", "remove", "(", "process_to_remove", ")", "break", "# Check again in a second if there weren't", "time", ".", "sleep", "(", "polling_freq", ")", "add_to_queue", "(", "p", ")", "# Wait for all the rest of the processes", "while", "not", "processes", ".", "empty", "(", ")", ":", "processes", ".", "get", "(", ")", ".", "wait", "(", ")", "elapsed_time", "=", "time", ".", "time", "(", ")", "-", "start_time", "logger", ".", "info", "(", "\"Ran %d commands in %0.4f seconds\"", ",", "len", "(", "multiple_args_dict", ")", ",", "elapsed_time", ")" ]
b329b4dccd60fae41296816b8cbfe15d6ca07e67
valid
BaseCommandlinePredictor._determine_supported_alleles
Try asking the commandline predictor (e.g. netMHCpan) which alleles it supports.
mhctools/base_commandline_predictor.py
def _determine_supported_alleles(command, supported_allele_flag): """ Try asking the commandline predictor (e.g. netMHCpan) which alleles it supports. """ try: # convert to str since Python3 returns a `bytes` object supported_alleles_output = check_output([ command, supported_allele_flag ]) supported_alleles_str = supported_alleles_output.decode("ascii", "ignore") assert len(supported_alleles_str) > 0, \ '%s returned empty allele list' % command supported_alleles = set([]) for line in supported_alleles_str.split("\n"): line = line.strip() if not line.startswith('#') and len(line) > 0: try: # We need to normalize these alleles (the output of the predictor # when it lists its supported alleles) so that they are comparable with # our own alleles. supported_alleles.add(normalize_allele_name(line)) except AlleleParseError as error: logger.info("Skipping allele %s: %s", line, error) continue if len(supported_alleles) == 0: raise ValueError("Unable to determine supported alleles") return supported_alleles except Exception as e: logger.exception(e) raise SystemError("Failed to run %s %s. Possibly an incorrect executable version?" % ( command, supported_allele_flag))
def _determine_supported_alleles(command, supported_allele_flag): """ Try asking the commandline predictor (e.g. netMHCpan) which alleles it supports. """ try: # convert to str since Python3 returns a `bytes` object supported_alleles_output = check_output([ command, supported_allele_flag ]) supported_alleles_str = supported_alleles_output.decode("ascii", "ignore") assert len(supported_alleles_str) > 0, \ '%s returned empty allele list' % command supported_alleles = set([]) for line in supported_alleles_str.split("\n"): line = line.strip() if not line.startswith('#') and len(line) > 0: try: # We need to normalize these alleles (the output of the predictor # when it lists its supported alleles) so that they are comparable with # our own alleles. supported_alleles.add(normalize_allele_name(line)) except AlleleParseError as error: logger.info("Skipping allele %s: %s", line, error) continue if len(supported_alleles) == 0: raise ValueError("Unable to determine supported alleles") return supported_alleles except Exception as e: logger.exception(e) raise SystemError("Failed to run %s %s. Possibly an incorrect executable version?" % ( command, supported_allele_flag))
[ "Try", "asking", "the", "commandline", "predictor", "(", "e", ".", "g", ".", "netMHCpan", ")", "which", "alleles", "it", "supports", "." ]
openvax/mhctools
python
https://github.com/openvax/mhctools/blob/b329b4dccd60fae41296816b8cbfe15d6ca07e67/mhctools/base_commandline_predictor.py#L189-L221
[ "def", "_determine_supported_alleles", "(", "command", ",", "supported_allele_flag", ")", ":", "try", ":", "# convert to str since Python3 returns a `bytes` object", "supported_alleles_output", "=", "check_output", "(", "[", "command", ",", "supported_allele_flag", "]", ")", "supported_alleles_str", "=", "supported_alleles_output", ".", "decode", "(", "\"ascii\"", ",", "\"ignore\"", ")", "assert", "len", "(", "supported_alleles_str", ")", ">", "0", ",", "'%s returned empty allele list'", "%", "command", "supported_alleles", "=", "set", "(", "[", "]", ")", "for", "line", "in", "supported_alleles_str", ".", "split", "(", "\"\\n\"", ")", ":", "line", "=", "line", ".", "strip", "(", ")", "if", "not", "line", ".", "startswith", "(", "'#'", ")", "and", "len", "(", "line", ")", ">", "0", ":", "try", ":", "# We need to normalize these alleles (the output of the predictor", "# when it lists its supported alleles) so that they are comparable with", "# our own alleles.", "supported_alleles", ".", "add", "(", "normalize_allele_name", "(", "line", ")", ")", "except", "AlleleParseError", "as", "error", ":", "logger", ".", "info", "(", "\"Skipping allele %s: %s\"", ",", "line", ",", "error", ")", "continue", "if", "len", "(", "supported_alleles", ")", "==", "0", ":", "raise", "ValueError", "(", "\"Unable to determine supported alleles\"", ")", "return", "supported_alleles", "except", "Exception", "as", "e", ":", "logger", ".", "exception", "(", "e", ")", "raise", "SystemError", "(", "\"Failed to run %s %s. Possibly an incorrect executable version?\"", "%", "(", "command", ",", "supported_allele_flag", ")", ")" ]
b329b4dccd60fae41296816b8cbfe15d6ca07e67
valid
loads
Custom loads function with an object_hook and automatic decoding Parameters ---------- json_data : str The JSON data to decode *args Positional arguments, passed to :func:`json.loads` encoding : :obj:`str`, optional The encoding of the bytestring **kwargs Keyword arguments passed to :func:`json.loads` Returns ------- :obj:`dict` or :obj:`list` Decoded json data
peony/data_processing.py
def loads(json_data, encoding="utf-8", **kwargs): """ Custom loads function with an object_hook and automatic decoding Parameters ---------- json_data : str The JSON data to decode *args Positional arguments, passed to :func:`json.loads` encoding : :obj:`str`, optional The encoding of the bytestring **kwargs Keyword arguments passed to :func:`json.loads` Returns ------- :obj:`dict` or :obj:`list` Decoded json data """ if isinstance(json_data, bytes): json_data = json_data.decode(encoding) return json.loads(json_data, object_hook=JSONData, **kwargs)
def loads(json_data, encoding="utf-8", **kwargs): """ Custom loads function with an object_hook and automatic decoding Parameters ---------- json_data : str The JSON data to decode *args Positional arguments, passed to :func:`json.loads` encoding : :obj:`str`, optional The encoding of the bytestring **kwargs Keyword arguments passed to :func:`json.loads` Returns ------- :obj:`dict` or :obj:`list` Decoded json data """ if isinstance(json_data, bytes): json_data = json_data.decode(encoding) return json.loads(json_data, object_hook=JSONData, **kwargs)
[ "Custom", "loads", "function", "with", "an", "object_hook", "and", "automatic", "decoding" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/data_processing.py#L149-L172
[ "def", "loads", "(", "json_data", ",", "encoding", "=", "\"utf-8\"", ",", "*", "*", "kwargs", ")", ":", "if", "isinstance", "(", "json_data", ",", "bytes", ")", ":", "json_data", "=", "json_data", ".", "decode", "(", "encoding", ")", "return", "json", ".", "loads", "(", "json_data", ",", "object_hook", "=", "JSONData", ",", "*", "*", "kwargs", ")" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
read
read the data of the response Parameters ---------- response : aiohttp.ClientResponse response loads : callable json loads function encoding : :obj:`str`, optional character encoding of the response, if set to None aiohttp should guess the right encoding Returns ------- :obj:`bytes`, :obj:`str`, :obj:`dict` or :obj:`list` the data returned depends on the response
peony/data_processing.py
async def read(response, loads=loads, encoding=None): """ read the data of the response Parameters ---------- response : aiohttp.ClientResponse response loads : callable json loads function encoding : :obj:`str`, optional character encoding of the response, if set to None aiohttp should guess the right encoding Returns ------- :obj:`bytes`, :obj:`str`, :obj:`dict` or :obj:`list` the data returned depends on the response """ ctype = response.headers.get('Content-Type', "").lower() try: if "application/json" in ctype: logger.info("decoding data as json") return await response.json(encoding=encoding, loads=loads) if "text" in ctype: logger.info("decoding data as text") return await response.text(encoding=encoding) except (UnicodeDecodeError, json.JSONDecodeError) as exc: data = await response.read() raise exceptions.PeonyDecodeError(response=response, data=data, exception=exc) return await response.read()
async def read(response, loads=loads, encoding=None): """ read the data of the response Parameters ---------- response : aiohttp.ClientResponse response loads : callable json loads function encoding : :obj:`str`, optional character encoding of the response, if set to None aiohttp should guess the right encoding Returns ------- :obj:`bytes`, :obj:`str`, :obj:`dict` or :obj:`list` the data returned depends on the response """ ctype = response.headers.get('Content-Type', "").lower() try: if "application/json" in ctype: logger.info("decoding data as json") return await response.json(encoding=encoding, loads=loads) if "text" in ctype: logger.info("decoding data as text") return await response.text(encoding=encoding) except (UnicodeDecodeError, json.JSONDecodeError) as exc: data = await response.read() raise exceptions.PeonyDecodeError(response=response, data=data, exception=exc) return await response.read()
[ "read", "the", "data", "of", "the", "response" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/data_processing.py#L175-L211
[ "async", "def", "read", "(", "response", ",", "loads", "=", "loads", ",", "encoding", "=", "None", ")", ":", "ctype", "=", "response", ".", "headers", ".", "get", "(", "'Content-Type'", ",", "\"\"", ")", ".", "lower", "(", ")", "try", ":", "if", "\"application/json\"", "in", "ctype", ":", "logger", ".", "info", "(", "\"decoding data as json\"", ")", "return", "await", "response", ".", "json", "(", "encoding", "=", "encoding", ",", "loads", "=", "loads", ")", "if", "\"text\"", "in", "ctype", ":", "logger", ".", "info", "(", "\"decoding data as text\"", ")", "return", "await", "response", ".", "text", "(", "encoding", "=", "encoding", ")", "except", "(", "UnicodeDecodeError", ",", "json", ".", "JSONDecodeError", ")", "as", "exc", ":", "data", "=", "await", "response", ".", "read", "(", ")", "raise", "exceptions", ".", "PeonyDecodeError", "(", "response", "=", "response", ",", "data", "=", "data", ",", "exception", "=", "exc", ")", "return", "await", "response", ".", "read", "(", ")" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
doc
Find the message shown when someone calls the help command Parameters ---------- func : function the function Returns ------- str The help message for this command
peony/commands/utils.py
def doc(func): """ Find the message shown when someone calls the help command Parameters ---------- func : function the function Returns ------- str The help message for this command """ stripped_chars = " \t" if hasattr(func, '__doc__'): docstring = func.__doc__.lstrip(" \n\t") if "\n" in docstring: i = docstring.index("\n") return docstring[:i].rstrip(stripped_chars) elif docstring: return docstring.rstrip(stripped_chars) return ""
def doc(func): """ Find the message shown when someone calls the help command Parameters ---------- func : function the function Returns ------- str The help message for this command """ stripped_chars = " \t" if hasattr(func, '__doc__'): docstring = func.__doc__.lstrip(" \n\t") if "\n" in docstring: i = docstring.index("\n") return docstring[:i].rstrip(stripped_chars) elif docstring: return docstring.rstrip(stripped_chars) return ""
[ "Find", "the", "message", "shown", "when", "someone", "calls", "the", "help", "command" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/commands/utils.py#L4-L28
[ "def", "doc", "(", "func", ")", ":", "stripped_chars", "=", "\" \\t\"", "if", "hasattr", "(", "func", ",", "'__doc__'", ")", ":", "docstring", "=", "func", ".", "__doc__", ".", "lstrip", "(", "\" \\n\\t\"", ")", "if", "\"\\n\"", "in", "docstring", ":", "i", "=", "docstring", ".", "index", "(", "\"\\n\"", ")", "return", "docstring", "[", ":", "i", "]", ".", "rstrip", "(", "stripped_chars", ")", "elif", "docstring", ":", "return", "docstring", ".", "rstrip", "(", "stripped_chars", ")", "return", "\"\"" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
permission_check
Check the permissions of the user requesting a command Parameters ---------- data : dict message data command_permissions : dict permissions of the command, contains all the roles as key and users with these permissions as values command : function the command that is run permissions : tuple or list a list of permissions for the command Returns ------- bool True if the user has the right permissions, False otherwise
peony/commands/utils.py
def permission_check(data, command_permissions, command=None, permissions=None): """ Check the permissions of the user requesting a command Parameters ---------- data : dict message data command_permissions : dict permissions of the command, contains all the roles as key and users with these permissions as values command : function the command that is run permissions : tuple or list a list of permissions for the command Returns ------- bool True if the user has the right permissions, False otherwise """ if permissions: pass elif command: if hasattr(command, 'permissions'): permissions = command.permissions else: return True # true if no permission is required else: msg = "{name} must be called with command or permissions argument" raise RuntimeError(msg.format(name="_permission_check")) return any(data['sender']['id'] in command_permissions[permission] for permission in permissions if permission in command_permissions)
def permission_check(data, command_permissions, command=None, permissions=None): """ Check the permissions of the user requesting a command Parameters ---------- data : dict message data command_permissions : dict permissions of the command, contains all the roles as key and users with these permissions as values command : function the command that is run permissions : tuple or list a list of permissions for the command Returns ------- bool True if the user has the right permissions, False otherwise """ if permissions: pass elif command: if hasattr(command, 'permissions'): permissions = command.permissions else: return True # true if no permission is required else: msg = "{name} must be called with command or permissions argument" raise RuntimeError(msg.format(name="_permission_check")) return any(data['sender']['id'] in command_permissions[permission] for permission in permissions if permission in command_permissions)
[ "Check", "the", "permissions", "of", "the", "user", "requesting", "a", "command" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/commands/utils.py#L31-L66
[ "def", "permission_check", "(", "data", ",", "command_permissions", ",", "command", "=", "None", ",", "permissions", "=", "None", ")", ":", "if", "permissions", ":", "pass", "elif", "command", ":", "if", "hasattr", "(", "command", ",", "'permissions'", ")", ":", "permissions", "=", "command", ".", "permissions", "else", ":", "return", "True", "# true if no permission is required", "else", ":", "msg", "=", "\"{name} must be called with command or permissions argument\"", "raise", "RuntimeError", "(", "msg", ".", "format", "(", "name", "=", "\"_permission_check\"", ")", ")", "return", "any", "(", "data", "[", "'sender'", "]", "[", "'id'", "]", "in", "command_permissions", "[", "permission", "]", "for", "permission", "in", "permissions", "if", "permission", "in", "command_permissions", ")" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
main
Script to make pMHC binding predictions from amino acid sequences. Usage example: mhctools --sequence SFFPIQQQQQAAALLLI \ --sequence SILQQQAQAQQAQAASSSC \ --extract-subsequences \ --mhc-predictor netmhc \ --mhc-alleles HLA-A0201 H2-Db \ --mhc-predictor netmhc \ --output-csv epitope.csv
mhctools/cli/script.py
def main(args_list=None): """ Script to make pMHC binding predictions from amino acid sequences. Usage example: mhctools --sequence SFFPIQQQQQAAALLLI \ --sequence SILQQQAQAQQAQAASSSC \ --extract-subsequences \ --mhc-predictor netmhc \ --mhc-alleles HLA-A0201 H2-Db \ --mhc-predictor netmhc \ --output-csv epitope.csv """ args = parse_args(args_list) binding_predictions = run_predictor(args) df = binding_predictions.to_dataframe() logger.info('\n%s', df) if args.output_csv: df.to_csv(args.output_csv, index=False) print("Wrote: %s" % args.output_csv)
def main(args_list=None): """ Script to make pMHC binding predictions from amino acid sequences. Usage example: mhctools --sequence SFFPIQQQQQAAALLLI \ --sequence SILQQQAQAQQAQAASSSC \ --extract-subsequences \ --mhc-predictor netmhc \ --mhc-alleles HLA-A0201 H2-Db \ --mhc-predictor netmhc \ --output-csv epitope.csv """ args = parse_args(args_list) binding_predictions = run_predictor(args) df = binding_predictions.to_dataframe() logger.info('\n%s', df) if args.output_csv: df.to_csv(args.output_csv, index=False) print("Wrote: %s" % args.output_csv)
[ "Script", "to", "make", "pMHC", "binding", "predictions", "from", "amino", "acid", "sequences", "." ]
openvax/mhctools
python
https://github.com/openvax/mhctools/blob/b329b4dccd60fae41296816b8cbfe15d6ca07e67/mhctools/cli/script.py#L100-L120
[ "def", "main", "(", "args_list", "=", "None", ")", ":", "args", "=", "parse_args", "(", "args_list", ")", "binding_predictions", "=", "run_predictor", "(", "args", ")", "df", "=", "binding_predictions", ".", "to_dataframe", "(", ")", "logger", ".", "info", "(", "'\\n%s'", ",", "df", ")", "if", "args", ".", "output_csv", ":", "df", ".", "to_csv", "(", "args", ".", "output_csv", ",", "index", "=", "False", ")", "print", "(", "\"Wrote: %s\"", "%", "args", ".", "output_csv", ")" ]
b329b4dccd60fae41296816b8cbfe15d6ca07e67
valid
NetMHCIIpan._prepare_drb_allele_name
Assume that we're dealing with a human DRB allele which NetMHCIIpan treats differently because there is little population diversity in the DR-alpha gene
mhctools/netmhcii_pan.py
def _prepare_drb_allele_name(self, parsed_beta_allele): """ Assume that we're dealing with a human DRB allele which NetMHCIIpan treats differently because there is little population diversity in the DR-alpha gene """ if "DRB" not in parsed_beta_allele.gene: raise ValueError("Unexpected allele %s" % parsed_beta_allele) return "%s_%s%s" % ( parsed_beta_allele.gene, parsed_beta_allele.allele_family, parsed_beta_allele.allele_code)
def _prepare_drb_allele_name(self, parsed_beta_allele): """ Assume that we're dealing with a human DRB allele which NetMHCIIpan treats differently because there is little population diversity in the DR-alpha gene """ if "DRB" not in parsed_beta_allele.gene: raise ValueError("Unexpected allele %s" % parsed_beta_allele) return "%s_%s%s" % ( parsed_beta_allele.gene, parsed_beta_allele.allele_family, parsed_beta_allele.allele_code)
[ "Assume", "that", "we", "re", "dealing", "with", "a", "human", "DRB", "allele", "which", "NetMHCIIpan", "treats", "differently", "because", "there", "is", "little", "population", "diversity", "in", "the", "DR", "-", "alpha", "gene" ]
openvax/mhctools
python
https://github.com/openvax/mhctools/blob/b329b4dccd60fae41296816b8cbfe15d6ca07e67/mhctools/netmhcii_pan.py#L48-L59
[ "def", "_prepare_drb_allele_name", "(", "self", ",", "parsed_beta_allele", ")", ":", "if", "\"DRB\"", "not", "in", "parsed_beta_allele", ".", "gene", ":", "raise", "ValueError", "(", "\"Unexpected allele %s\"", "%", "parsed_beta_allele", ")", "return", "\"%s_%s%s\"", "%", "(", "parsed_beta_allele", ".", "gene", ",", "parsed_beta_allele", ".", "allele_family", ",", "parsed_beta_allele", ".", "allele_code", ")" ]
b329b4dccd60fae41296816b8cbfe15d6ca07e67
valid
NetMHCIIpan.prepare_allele_name
netMHCIIpan has some unique requirements for allele formats, expecting the following forms: - DRB1_0101 (for non-alpha/beta pairs) - HLA-DQA10501-DQB10636 (for alpha and beta pairs) Other than human class II alleles, the only other alleles that netMHCIIpan accepts are the following mouse alleles: - H-2-IAb - H-2-IAd
mhctools/netmhcii_pan.py
def prepare_allele_name(self, allele_name): """ netMHCIIpan has some unique requirements for allele formats, expecting the following forms: - DRB1_0101 (for non-alpha/beta pairs) - HLA-DQA10501-DQB10636 (for alpha and beta pairs) Other than human class II alleles, the only other alleles that netMHCIIpan accepts are the following mouse alleles: - H-2-IAb - H-2-IAd """ parsed_alleles = parse_classi_or_classii_allele_name(allele_name) if len(parsed_alleles) == 1: allele = parsed_alleles[0] if allele.species == "H-2": return "%s-%s%s" % ( allele.species, allele.gene, allele.allele_code) return self._prepare_drb_allele_name(allele) else: alpha, beta = parsed_alleles if "DRA" in alpha.gene: return self._prepare_drb_allele_name(beta) return "HLA-%s%s%s-%s%s%s" % ( alpha.gene, alpha.allele_family, alpha.allele_code, beta.gene, beta.allele_family, beta.allele_code)
def prepare_allele_name(self, allele_name): """ netMHCIIpan has some unique requirements for allele formats, expecting the following forms: - DRB1_0101 (for non-alpha/beta pairs) - HLA-DQA10501-DQB10636 (for alpha and beta pairs) Other than human class II alleles, the only other alleles that netMHCIIpan accepts are the following mouse alleles: - H-2-IAb - H-2-IAd """ parsed_alleles = parse_classi_or_classii_allele_name(allele_name) if len(parsed_alleles) == 1: allele = parsed_alleles[0] if allele.species == "H-2": return "%s-%s%s" % ( allele.species, allele.gene, allele.allele_code) return self._prepare_drb_allele_name(allele) else: alpha, beta = parsed_alleles if "DRA" in alpha.gene: return self._prepare_drb_allele_name(beta) return "HLA-%s%s%s-%s%s%s" % ( alpha.gene, alpha.allele_family, alpha.allele_code, beta.gene, beta.allele_family, beta.allele_code)
[ "netMHCIIpan", "has", "some", "unique", "requirements", "for", "allele", "formats", "expecting", "the", "following", "forms", ":", "-", "DRB1_0101", "(", "for", "non", "-", "alpha", "/", "beta", "pairs", ")", "-", "HLA", "-", "DQA10501", "-", "DQB10636", "(", "for", "alpha", "and", "beta", "pairs", ")" ]
openvax/mhctools
python
https://github.com/openvax/mhctools/blob/b329b4dccd60fae41296816b8cbfe15d6ca07e67/mhctools/netmhcii_pan.py#L61-L93
[ "def", "prepare_allele_name", "(", "self", ",", "allele_name", ")", ":", "parsed_alleles", "=", "parse_classi_or_classii_allele_name", "(", "allele_name", ")", "if", "len", "(", "parsed_alleles", ")", "==", "1", ":", "allele", "=", "parsed_alleles", "[", "0", "]", "if", "allele", ".", "species", "==", "\"H-2\"", ":", "return", "\"%s-%s%s\"", "%", "(", "allele", ".", "species", ",", "allele", ".", "gene", ",", "allele", ".", "allele_code", ")", "return", "self", ".", "_prepare_drb_allele_name", "(", "allele", ")", "else", ":", "alpha", ",", "beta", "=", "parsed_alleles", "if", "\"DRA\"", "in", "alpha", ".", "gene", ":", "return", "self", ".", "_prepare_drb_allele_name", "(", "beta", ")", "return", "\"HLA-%s%s%s-%s%s%s\"", "%", "(", "alpha", ".", "gene", ",", "alpha", ".", "allele_family", ",", "alpha", ".", "allele_code", ",", "beta", ".", "gene", ",", "beta", ".", "allele_family", ",", "beta", ".", "allele_code", ")" ]
b329b4dccd60fae41296816b8cbfe15d6ca07e67
valid
get_error
return the error if there is a corresponding exception
peony/exceptions.py
def get_error(data): """ return the error if there is a corresponding exception """ if isinstance(data, dict): if 'errors' in data: error = data['errors'][0] else: error = data.get('error', None) if isinstance(error, dict): if error.get('code') in errors: return error
def get_error(data): """ return the error if there is a corresponding exception """ if isinstance(data, dict): if 'errors' in data: error = data['errors'][0] else: error = data.get('error', None) if isinstance(error, dict): if error.get('code') in errors: return error
[ "return", "the", "error", "if", "there", "is", "a", "corresponding", "exception" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/exceptions.py#L8-L18
[ "def", "get_error", "(", "data", ")", ":", "if", "isinstance", "(", "data", ",", "dict", ")", ":", "if", "'errors'", "in", "data", ":", "error", "=", "data", "[", "'errors'", "]", "[", "0", "]", "else", ":", "error", "=", "data", ".", "get", "(", "'error'", ",", "None", ")", "if", "isinstance", "(", "error", ",", "dict", ")", ":", "if", "error", ".", "get", "(", "'code'", ")", "in", "errors", ":", "return", "error" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
throw
Get the response data if possible and raise an exception
peony/exceptions.py
async def throw(response, loads=None, encoding=None, **kwargs): """ Get the response data if possible and raise an exception """ if loads is None: loads = data_processing.loads data = await data_processing.read(response, loads=loads, encoding=encoding) error = get_error(data) if error is not None: exception = errors[error['code']] raise exception(response=response, error=error, data=data, **kwargs) if response.status in statuses: exception = statuses[response.status] raise exception(response=response, data=data, **kwargs) # raise PeonyException if no specific exception was found raise PeonyException(response=response, data=data, **kwargs)
async def throw(response, loads=None, encoding=None, **kwargs): """ Get the response data if possible and raise an exception """ if loads is None: loads = data_processing.loads data = await data_processing.read(response, loads=loads, encoding=encoding) error = get_error(data) if error is not None: exception = errors[error['code']] raise exception(response=response, error=error, data=data, **kwargs) if response.status in statuses: exception = statuses[response.status] raise exception(response=response, data=data, **kwargs) # raise PeonyException if no specific exception was found raise PeonyException(response=response, data=data, **kwargs)
[ "Get", "the", "response", "data", "if", "possible", "and", "raise", "an", "exception" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/exceptions.py#L21-L39
[ "async", "def", "throw", "(", "response", ",", "loads", "=", "None", ",", "encoding", "=", "None", ",", "*", "*", "kwargs", ")", ":", "if", "loads", "is", "None", ":", "loads", "=", "data_processing", ".", "loads", "data", "=", "await", "data_processing", ".", "read", "(", "response", ",", "loads", "=", "loads", ",", "encoding", "=", "encoding", ")", "error", "=", "get_error", "(", "data", ")", "if", "error", "is", "not", "None", ":", "exception", "=", "errors", "[", "error", "[", "'code'", "]", "]", "raise", "exception", "(", "response", "=", "response", ",", "error", "=", "error", ",", "data", "=", "data", ",", "*", "*", "kwargs", ")", "if", "response", ".", "status", "in", "statuses", ":", "exception", "=", "statuses", "[", "response", ".", "status", "]", "raise", "exception", "(", "response", "=", "response", ",", "data", "=", "data", ",", "*", "*", "kwargs", ")", "# raise PeonyException if no specific exception was found", "raise", "PeonyException", "(", "response", "=", "response", ",", "data", "=", "data", ",", "*", "*", "kwargs", ")" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
ErrorDict.code
Decorator to associate a code to an exception
peony/exceptions.py
def code(self, code): """ Decorator to associate a code to an exception """ def decorator(exception): self[code] = exception return exception return decorator
def code(self, code): """ Decorator to associate a code to an exception """ def decorator(exception): self[code] = exception return exception return decorator
[ "Decorator", "to", "associate", "a", "code", "to", "an", "exception" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/exceptions.py#L101-L107
[ "def", "code", "(", "self", ",", "code", ")", ":", "def", "decorator", "(", "exception", ")", ":", "self", "[", "code", "]", "=", "exception", "return", "exception", "return", "decorator" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
PeonyHeaders.prepare_request
prepare all the arguments for the request Parameters ---------- method : str HTTP method used by the request url : str The url to request headers : dict, optional Additionnal headers proxy : str proxy of the request skip_params : bool Don't use the parameters to sign the request Returns ------- dict Parameters of the request correctly formatted
peony/oauth.py
async def prepare_request(self, method, url, headers=None, skip_params=False, proxy=None, **kwargs): """ prepare all the arguments for the request Parameters ---------- method : str HTTP method used by the request url : str The url to request headers : dict, optional Additionnal headers proxy : str proxy of the request skip_params : bool Don't use the parameters to sign the request Returns ------- dict Parameters of the request correctly formatted """ if method.lower() == "post": key = 'data' else: key = 'params' if key in kwargs and not skip_params: request_params = {key: kwargs.pop(key)} else: request_params = {} request_params.update(dict(method=method.upper(), url=url)) coro = self.sign(**request_params, skip_params=skip_params, headers=headers) request_params['headers'] = await utils.execute(coro) request_params['proxy'] = proxy kwargs.update(request_params) return kwargs
async def prepare_request(self, method, url, headers=None, skip_params=False, proxy=None, **kwargs): """ prepare all the arguments for the request Parameters ---------- method : str HTTP method used by the request url : str The url to request headers : dict, optional Additionnal headers proxy : str proxy of the request skip_params : bool Don't use the parameters to sign the request Returns ------- dict Parameters of the request correctly formatted """ if method.lower() == "post": key = 'data' else: key = 'params' if key in kwargs and not skip_params: request_params = {key: kwargs.pop(key)} else: request_params = {} request_params.update(dict(method=method.upper(), url=url)) coro = self.sign(**request_params, skip_params=skip_params, headers=headers) request_params['headers'] = await utils.execute(coro) request_params['proxy'] = proxy kwargs.update(request_params) return kwargs
[ "prepare", "all", "the", "arguments", "for", "the", "request" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/oauth.py#L61-L107
[ "async", "def", "prepare_request", "(", "self", ",", "method", ",", "url", ",", "headers", "=", "None", ",", "skip_params", "=", "False", ",", "proxy", "=", "None", ",", "*", "*", "kwargs", ")", ":", "if", "method", ".", "lower", "(", ")", "==", "\"post\"", ":", "key", "=", "'data'", "else", ":", "key", "=", "'params'", "if", "key", "in", "kwargs", "and", "not", "skip_params", ":", "request_params", "=", "{", "key", ":", "kwargs", ".", "pop", "(", "key", ")", "}", "else", ":", "request_params", "=", "{", "}", "request_params", ".", "update", "(", "dict", "(", "method", "=", "method", ".", "upper", "(", ")", ",", "url", "=", "url", ")", ")", "coro", "=", "self", ".", "sign", "(", "*", "*", "request_params", ",", "skip_params", "=", "skip_params", ",", "headers", "=", "headers", ")", "request_params", "[", "'headers'", "]", "=", "await", "utils", ".", "execute", "(", "coro", ")", "request_params", "[", "'proxy'", "]", "=", "proxy", "kwargs", ".", "update", "(", "request_params", ")", "return", "kwargs" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
PeonyHeaders._user_headers
Make sure the user doesn't override the Authorization header
peony/oauth.py
def _user_headers(self, headers=None): """ Make sure the user doesn't override the Authorization header """ h = self.copy() if headers is not None: keys = set(headers.keys()) if h.get('Authorization', False): keys -= {'Authorization'} for key in keys: h[key] = headers[key] return h
def _user_headers(self, headers=None): """ Make sure the user doesn't override the Authorization header """ h = self.copy() if headers is not None: keys = set(headers.keys()) if h.get('Authorization', False): keys -= {'Authorization'} for key in keys: h[key] = headers[key] return h
[ "Make", "sure", "the", "user", "doesn", "t", "override", "the", "Authorization", "header" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/oauth.py#L109-L121
[ "def", "_user_headers", "(", "self", ",", "headers", "=", "None", ")", ":", "h", "=", "self", ".", "copy", "(", ")", "if", "headers", "is", "not", "None", ":", "keys", "=", "set", "(", "headers", ".", "keys", "(", ")", ")", "if", "h", ".", "get", "(", "'Authorization'", ",", "False", ")", ":", "keys", "-=", "{", "'Authorization'", "}", "for", "key", "in", "keys", ":", "h", "[", "key", "]", "=", "headers", "[", "key", "]", "return", "h" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
process_keys
Raise error for keys that are not strings and add the prefix if it is missing
peony/commands/commands.py
def process_keys(func): """ Raise error for keys that are not strings and add the prefix if it is missing """ @wraps(func) def decorated(self, k, *args): if not isinstance(k, str): msg = "%s: key must be a string" % self.__class__.__name__ raise ValueError(msg) if not k.startswith(self.prefix): k = self.prefix + k return func(self, k, *args) return decorated
def process_keys(func): """ Raise error for keys that are not strings and add the prefix if it is missing """ @wraps(func) def decorated(self, k, *args): if not isinstance(k, str): msg = "%s: key must be a string" % self.__class__.__name__ raise ValueError(msg) if not k.startswith(self.prefix): k = self.prefix + k return func(self, k, *args) return decorated
[ "Raise", "error", "for", "keys", "that", "are", "not", "strings", "and", "add", "the", "prefix", "if", "it", "is", "missing" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/commands/commands.py#L11-L28
[ "def", "process_keys", "(", "func", ")", ":", "@", "wraps", "(", "func", ")", "def", "decorated", "(", "self", ",", "k", ",", "*", "args", ")", ":", "if", "not", "isinstance", "(", "k", ",", "str", ")", ":", "msg", "=", "\"%s: key must be a string\"", "%", "self", ".", "__class__", ".", "__name__", "raise", "ValueError", "(", "msg", ")", "if", "not", "k", ".", "startswith", "(", "self", ".", "prefix", ")", ":", "k", "=", "self", ".", "prefix", "+", "k", "return", "func", "(", "self", ",", "k", ",", "*", "args", ")", "return", "decorated" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
Functions._get
Analyze the text to get the right function Parameters ---------- text : str The text that could call a function
peony/commands/commands.py
def _get(self, text): """ Analyze the text to get the right function Parameters ---------- text : str The text that could call a function """ if self.strict: match = self.prog.match(text) if match: cmd = match.group() if cmd in self: return cmd else: words = self.prog.findall(text) for word in words: if word in self: return word
def _get(self, text): """ Analyze the text to get the right function Parameters ---------- text : str The text that could call a function """ if self.strict: match = self.prog.match(text) if match: cmd = match.group() if cmd in self: return cmd else: words = self.prog.findall(text) for word in words: if word in self: return word
[ "Analyze", "the", "text", "to", "get", "the", "right", "function" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/commands/commands.py#L77-L96
[ "def", "_get", "(", "self", ",", "text", ")", ":", "if", "self", ".", "strict", ":", "match", "=", "self", ".", "prog", ".", "match", "(", "text", ")", "if", "match", ":", "cmd", "=", "match", ".", "group", "(", ")", "if", "cmd", "in", "self", ":", "return", "cmd", "else", ":", "words", "=", "self", ".", "prog", ".", "findall", "(", "text", ")", "for", "word", "in", "words", ":", "if", "word", "in", "self", ":", "return", "word" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
Functions.run
run the function you want
peony/commands/commands.py
async def run(self, *args, data): """ run the function you want """ cmd = self._get(data.text) try: if cmd is not None: command = self[cmd](*args, data=data) return await peony.utils.execute(command) except: fmt = "Error occurred while running function {cmd}:" peony.utils.log_error(fmt.format(cmd=cmd))
async def run(self, *args, data): """ run the function you want """ cmd = self._get(data.text) try: if cmd is not None: command = self[cmd](*args, data=data) return await peony.utils.execute(command) except: fmt = "Error occurred while running function {cmd}:" peony.utils.log_error(fmt.format(cmd=cmd))
[ "run", "the", "function", "you", "want" ]
odrling/peony-twitter
python
https://github.com/odrling/peony-twitter/blob/967f98e16e1889389540f2e6acbf7cc7a1a80203/peony/commands/commands.py#L98-L109
[ "async", "def", "run", "(", "self", ",", "*", "args", ",", "data", ")", ":", "cmd", "=", "self", ".", "_get", "(", "data", ".", "text", ")", "try", ":", "if", "cmd", "is", "not", "None", ":", "command", "=", "self", "[", "cmd", "]", "(", "*", "args", ",", "data", "=", "data", ")", "return", "await", "peony", ".", "utils", ".", "execute", "(", "command", ")", "except", ":", "fmt", "=", "\"Error occurred while running function {cmd}:\"", "peony", ".", "utils", ".", "log_error", "(", "fmt", ".", "format", "(", "cmd", "=", "cmd", ")", ")" ]
967f98e16e1889389540f2e6acbf7cc7a1a80203
valid
get_cartesian
Given a radius and theta, return the cartesian (x, y) coordinates.
hiveplot/hiveplot.py
def get_cartesian(r, theta): """ Given a radius and theta, return the cartesian (x, y) coordinates. """ x = r*np.sin(theta) y = r*np.cos(theta) return x, y
def get_cartesian(r, theta): """ Given a radius and theta, return the cartesian (x, y) coordinates. """ x = r*np.sin(theta) y = r*np.cos(theta) return x, y
[ "Given", "a", "radius", "and", "theta", "return", "the", "cartesian", "(", "x", "y", ")", "coordinates", "." ]
ericmjl/hiveplot
python
https://github.com/ericmjl/hiveplot/blob/f465a7118b7f005c83ab054d400deb02bd9f7410/hiveplot/hiveplot.py#L361-L368
[ "def", "get_cartesian", "(", "r", ",", "theta", ")", ":", "x", "=", "r", "*", "np", ".", "sin", "(", "theta", ")", "y", "=", "r", "*", "np", ".", "cos", "(", "theta", ")", "return", "x", ",", "y" ]
f465a7118b7f005c83ab054d400deb02bd9f7410
valid
HivePlot.simplified_edges
A generator for getting all of the edges without consuming extra memory.
hiveplot/hiveplot.py
def simplified_edges(self): """ A generator for getting all of the edges without consuming extra memory. """ for group, edgelist in self.edges.items(): for u, v, d in edgelist: yield (u, v)
def simplified_edges(self): """ A generator for getting all of the edges without consuming extra memory. """ for group, edgelist in self.edges.items(): for u, v, d in edgelist: yield (u, v)
[ "A", "generator", "for", "getting", "all", "of", "the", "edges", "without", "consuming", "extra", "memory", "." ]
ericmjl/hiveplot
python
https://github.com/ericmjl/hiveplot/blob/f465a7118b7f005c83ab054d400deb02bd9f7410/hiveplot/hiveplot.py#L96-L103
[ "def", "simplified_edges", "(", "self", ")", ":", "for", "group", ",", "edgelist", "in", "self", ".", "edges", ".", "items", "(", ")", ":", "for", "u", ",", "v", ",", "d", "in", "edgelist", ":", "yield", "(", "u", ",", "v", ")" ]
f465a7118b7f005c83ab054d400deb02bd9f7410
valid
HivePlot.initialize_major_angle
Computes the major angle: 2pi radians / number of groups.
hiveplot/hiveplot.py
def initialize_major_angle(self): """ Computes the major angle: 2pi radians / number of groups. """ num_groups = len(self.nodes.keys()) self.major_angle = 2 * np.pi / num_groups
def initialize_major_angle(self): """ Computes the major angle: 2pi radians / number of groups. """ num_groups = len(self.nodes.keys()) self.major_angle = 2 * np.pi / num_groups
[ "Computes", "the", "major", "angle", ":", "2pi", "radians", "/", "number", "of", "groups", "." ]
ericmjl/hiveplot
python
https://github.com/ericmjl/hiveplot/blob/f465a7118b7f005c83ab054d400deb02bd9f7410/hiveplot/hiveplot.py#L105-L110
[ "def", "initialize_major_angle", "(", "self", ")", ":", "num_groups", "=", "len", "(", "self", ".", "nodes", ".", "keys", "(", ")", ")", "self", ".", "major_angle", "=", "2", "*", "np", ".", "pi", "/", "num_groups" ]
f465a7118b7f005c83ab054d400deb02bd9f7410
valid
HivePlot.initialize_minor_angle
Computes the minor angle: 2pi radians / 3 * number of groups.
hiveplot/hiveplot.py
def initialize_minor_angle(self): """ Computes the minor angle: 2pi radians / 3 * number of groups. """ num_groups = len(self.nodes.keys()) self.minor_angle = 2 * np.pi / (6 * num_groups)
def initialize_minor_angle(self): """ Computes the minor angle: 2pi radians / 3 * number of groups. """ num_groups = len(self.nodes.keys()) self.minor_angle = 2 * np.pi / (6 * num_groups)
[ "Computes", "the", "minor", "angle", ":", "2pi", "radians", "/", "3", "*", "number", "of", "groups", "." ]
ericmjl/hiveplot
python
https://github.com/ericmjl/hiveplot/blob/f465a7118b7f005c83ab054d400deb02bd9f7410/hiveplot/hiveplot.py#L112-L118
[ "def", "initialize_minor_angle", "(", "self", ")", ":", "num_groups", "=", "len", "(", "self", ".", "nodes", ".", "keys", "(", ")", ")", "self", ".", "minor_angle", "=", "2", "*", "np", ".", "pi", "/", "(", "6", "*", "num_groups", ")" ]
f465a7118b7f005c83ab054d400deb02bd9f7410
valid
HivePlot.plot_radius
Computes the plot radius: maximum of length of each list of nodes.
hiveplot/hiveplot.py
def plot_radius(self): """ Computes the plot radius: maximum of length of each list of nodes. """ plot_rad = 0 for group, nodelist in self.nodes.items(): proposed_radius = len(nodelist) * self.scale if proposed_radius > plot_rad: plot_rad = proposed_radius return plot_rad + self.internal_radius
def plot_radius(self): """ Computes the plot radius: maximum of length of each list of nodes. """ plot_rad = 0 for group, nodelist in self.nodes.items(): proposed_radius = len(nodelist) * self.scale if proposed_radius > plot_rad: plot_rad = proposed_radius return plot_rad + self.internal_radius
[ "Computes", "the", "plot", "radius", ":", "maximum", "of", "length", "of", "each", "list", "of", "nodes", "." ]
ericmjl/hiveplot
python
https://github.com/ericmjl/hiveplot/blob/f465a7118b7f005c83ab054d400deb02bd9f7410/hiveplot/hiveplot.py#L130-L139
[ "def", "plot_radius", "(", "self", ")", ":", "plot_rad", "=", "0", "for", "group", ",", "nodelist", "in", "self", ".", "nodes", ".", "items", "(", ")", ":", "proposed_radius", "=", "len", "(", "nodelist", ")", "*", "self", ".", "scale", "if", "proposed_radius", ">", "plot_rad", ":", "plot_rad", "=", "proposed_radius", "return", "plot_rad", "+", "self", ".", "internal_radius" ]
f465a7118b7f005c83ab054d400deb02bd9f7410
valid
HivePlot.has_edge_within_group
Checks whether there are within-group edges or not.
hiveplot/hiveplot.py
def has_edge_within_group(self, group): """ Checks whether there are within-group edges or not. """ assert group in self.nodes.keys(),\ "{0} not one of the group of nodes".format(group) nodelist = self.nodes[group] for n1, n2 in self.simplified_edges(): if n1 in nodelist and n2 in nodelist: return True
def has_edge_within_group(self, group): """ Checks whether there are within-group edges or not. """ assert group in self.nodes.keys(),\ "{0} not one of the group of nodes".format(group) nodelist = self.nodes[group] for n1, n2 in self.simplified_edges(): if n1 in nodelist and n2 in nodelist: return True
[ "Checks", "whether", "there", "are", "within", "-", "group", "edges", "or", "not", "." ]
ericmjl/hiveplot
python
https://github.com/ericmjl/hiveplot/blob/f465a7118b7f005c83ab054d400deb02bd9f7410/hiveplot/hiveplot.py#L147-L156
[ "def", "has_edge_within_group", "(", "self", ",", "group", ")", ":", "assert", "group", "in", "self", ".", "nodes", ".", "keys", "(", ")", ",", "\"{0} not one of the group of nodes\"", ".", "format", "(", "group", ")", "nodelist", "=", "self", ".", "nodes", "[", "group", "]", "for", "n1", ",", "n2", "in", "self", ".", "simplified_edges", "(", ")", ":", "if", "n1", "in", "nodelist", "and", "n2", "in", "nodelist", ":", "return", "True" ]
f465a7118b7f005c83ab054d400deb02bd9f7410
valid
HivePlot.plot_axis
Renders the axis.
hiveplot/hiveplot.py
def plot_axis(self, rs, theta): """ Renders the axis. """ xs, ys = get_cartesian(rs, theta) self.ax.plot(xs, ys, 'black', alpha=0.3)
def plot_axis(self, rs, theta): """ Renders the axis. """ xs, ys = get_cartesian(rs, theta) self.ax.plot(xs, ys, 'black', alpha=0.3)
[ "Renders", "the", "axis", "." ]
ericmjl/hiveplot
python
https://github.com/ericmjl/hiveplot/blob/f465a7118b7f005c83ab054d400deb02bd9f7410/hiveplot/hiveplot.py#L158-L163
[ "def", "plot_axis", "(", "self", ",", "rs", ",", "theta", ")", ":", "xs", ",", "ys", "=", "get_cartesian", "(", "rs", ",", "theta", ")", "self", ".", "ax", ".", "plot", "(", "xs", ",", "ys", ",", "'black'", ",", "alpha", "=", "0.3", ")" ]
f465a7118b7f005c83ab054d400deb02bd9f7410
valid
HivePlot.plot_nodes
Plots nodes to screen.
hiveplot/hiveplot.py
def plot_nodes(self, nodelist, theta, group): """ Plots nodes to screen. """ for i, node in enumerate(nodelist): r = self.internal_radius + i * self.scale x, y = get_cartesian(r, theta) circle = plt.Circle(xy=(x, y), radius=self.dot_radius, color=self.node_colormap[group], linewidth=0) self.ax.add_patch(circle)
def plot_nodes(self, nodelist, theta, group): """ Plots nodes to screen. """ for i, node in enumerate(nodelist): r = self.internal_radius + i * self.scale x, y = get_cartesian(r, theta) circle = plt.Circle(xy=(x, y), radius=self.dot_radius, color=self.node_colormap[group], linewidth=0) self.ax.add_patch(circle)
[ "Plots", "nodes", "to", "screen", "." ]
ericmjl/hiveplot
python
https://github.com/ericmjl/hiveplot/blob/f465a7118b7f005c83ab054d400deb02bd9f7410/hiveplot/hiveplot.py#L165-L174
[ "def", "plot_nodes", "(", "self", ",", "nodelist", ",", "theta", ",", "group", ")", ":", "for", "i", ",", "node", "in", "enumerate", "(", "nodelist", ")", ":", "r", "=", "self", ".", "internal_radius", "+", "i", "*", "self", ".", "scale", "x", ",", "y", "=", "get_cartesian", "(", "r", ",", "theta", ")", "circle", "=", "plt", ".", "Circle", "(", "xy", "=", "(", "x", ",", "y", ")", ",", "radius", "=", "self", ".", "dot_radius", ",", "color", "=", "self", ".", "node_colormap", "[", "group", "]", ",", "linewidth", "=", "0", ")", "self", ".", "ax", ".", "add_patch", "(", "circle", ")" ]
f465a7118b7f005c83ab054d400deb02bd9f7410
valid
HivePlot.group_theta
Computes the theta along which a group's nodes are aligned.
hiveplot/hiveplot.py
def group_theta(self, group): """ Computes the theta along which a group's nodes are aligned. """ for i, g in enumerate(self.nodes.keys()): if g == group: break return i * self.major_angle
def group_theta(self, group): """ Computes the theta along which a group's nodes are aligned. """ for i, g in enumerate(self.nodes.keys()): if g == group: break return i * self.major_angle
[ "Computes", "the", "theta", "along", "which", "a", "group", "s", "nodes", "are", "aligned", "." ]
ericmjl/hiveplot
python
https://github.com/ericmjl/hiveplot/blob/f465a7118b7f005c83ab054d400deb02bd9f7410/hiveplot/hiveplot.py#L176-L184
[ "def", "group_theta", "(", "self", ",", "group", ")", ":", "for", "i", ",", "g", "in", "enumerate", "(", "self", ".", "nodes", ".", "keys", "(", ")", ")", ":", "if", "g", "==", "group", ":", "break", "return", "i", "*", "self", ".", "major_angle" ]
f465a7118b7f005c83ab054d400deb02bd9f7410
valid
HivePlot.add_axes_and_nodes
Adds the axes (i.e. 2 or 3 axes, not to be confused with matplotlib axes) and the nodes that belong to each axis.
hiveplot/hiveplot.py
def add_axes_and_nodes(self): """ Adds the axes (i.e. 2 or 3 axes, not to be confused with matplotlib axes) and the nodes that belong to each axis. """ for i, (group, nodelist) in enumerate(self.nodes.items()): theta = self.group_theta(group) if self.has_edge_within_group(group): theta = theta - self.minor_angle self.plot_nodes(nodelist, theta, group) theta = theta + 2 * self.minor_angle self.plot_nodes(nodelist, theta, group) else: self.plot_nodes(nodelist, theta, group)
def add_axes_and_nodes(self): """ Adds the axes (i.e. 2 or 3 axes, not to be confused with matplotlib axes) and the nodes that belong to each axis. """ for i, (group, nodelist) in enumerate(self.nodes.items()): theta = self.group_theta(group) if self.has_edge_within_group(group): theta = theta - self.minor_angle self.plot_nodes(nodelist, theta, group) theta = theta + 2 * self.minor_angle self.plot_nodes(nodelist, theta, group) else: self.plot_nodes(nodelist, theta, group)
[ "Adds", "the", "axes", "(", "i", ".", "e", ".", "2", "or", "3", "axes", "not", "to", "be", "confused", "with", "matplotlib", "axes", ")", "and", "the", "nodes", "that", "belong", "to", "each", "axis", "." ]
ericmjl/hiveplot
python
https://github.com/ericmjl/hiveplot/blob/f465a7118b7f005c83ab054d400deb02bd9f7410/hiveplot/hiveplot.py#L186-L202
[ "def", "add_axes_and_nodes", "(", "self", ")", ":", "for", "i", ",", "(", "group", ",", "nodelist", ")", "in", "enumerate", "(", "self", ".", "nodes", ".", "items", "(", ")", ")", ":", "theta", "=", "self", ".", "group_theta", "(", "group", ")", "if", "self", ".", "has_edge_within_group", "(", "group", ")", ":", "theta", "=", "theta", "-", "self", ".", "minor_angle", "self", ".", "plot_nodes", "(", "nodelist", ",", "theta", ",", "group", ")", "theta", "=", "theta", "+", "2", "*", "self", ".", "minor_angle", "self", ".", "plot_nodes", "(", "nodelist", ",", "theta", ",", "group", ")", "else", ":", "self", ".", "plot_nodes", "(", "nodelist", ",", "theta", ",", "group", ")" ]
f465a7118b7f005c83ab054d400deb02bd9f7410
valid
HivePlot.find_node_group_membership
Identifies the group for which a node belongs to.
hiveplot/hiveplot.py
def find_node_group_membership(self, node): """ Identifies the group for which a node belongs to. """ for group, nodelist in self.nodes.items(): if node in nodelist: return group
def find_node_group_membership(self, node): """ Identifies the group for which a node belongs to. """ for group, nodelist in self.nodes.items(): if node in nodelist: return group
[ "Identifies", "the", "group", "for", "which", "a", "node", "belongs", "to", "." ]
ericmjl/hiveplot
python
https://github.com/ericmjl/hiveplot/blob/f465a7118b7f005c83ab054d400deb02bd9f7410/hiveplot/hiveplot.py#L204-L210
[ "def", "find_node_group_membership", "(", "self", ",", "node", ")", ":", "for", "group", ",", "nodelist", "in", "self", ".", "nodes", ".", "items", "(", ")", ":", "if", "node", "in", "nodelist", ":", "return", "group" ]
f465a7118b7f005c83ab054d400deb02bd9f7410
valid
HivePlot.get_idx
Finds the index of the node in the sorted list.
hiveplot/hiveplot.py
def get_idx(self, node): """ Finds the index of the node in the sorted list. """ group = self.find_node_group_membership(node) return self.nodes[group].index(node)
def get_idx(self, node): """ Finds the index of the node in the sorted list. """ group = self.find_node_group_membership(node) return self.nodes[group].index(node)
[ "Finds", "the", "index", "of", "the", "node", "in", "the", "sorted", "list", "." ]
ericmjl/hiveplot
python
https://github.com/ericmjl/hiveplot/blob/f465a7118b7f005c83ab054d400deb02bd9f7410/hiveplot/hiveplot.py#L212-L217
[ "def", "get_idx", "(", "self", ",", "node", ")", ":", "group", "=", "self", ".", "find_node_group_membership", "(", "node", ")", "return", "self", ".", "nodes", "[", "group", "]", ".", "index", "(", "node", ")" ]
f465a7118b7f005c83ab054d400deb02bd9f7410
valid
HivePlot.node_radius
Computes the radial position of the node.
hiveplot/hiveplot.py
def node_radius(self, node): """ Computes the radial position of the node. """ return self.get_idx(node) * self.scale + self.internal_radius
def node_radius(self, node): """ Computes the radial position of the node. """ return self.get_idx(node) * self.scale + self.internal_radius
[ "Computes", "the", "radial", "position", "of", "the", "node", "." ]
ericmjl/hiveplot
python
https://github.com/ericmjl/hiveplot/blob/f465a7118b7f005c83ab054d400deb02bd9f7410/hiveplot/hiveplot.py#L219-L223
[ "def", "node_radius", "(", "self", ",", "node", ")", ":", "return", "self", ".", "get_idx", "(", "node", ")", "*", "self", ".", "scale", "+", "self", ".", "internal_radius" ]
f465a7118b7f005c83ab054d400deb02bd9f7410
valid
HivePlot.node_theta
Convenience function to find the node's theta angle.
hiveplot/hiveplot.py
def node_theta(self, node): """ Convenience function to find the node's theta angle. """ group = self.find_node_group_membership(node) return self.group_theta(group)
def node_theta(self, node): """ Convenience function to find the node's theta angle. """ group = self.find_node_group_membership(node) return self.group_theta(group)
[ "Convenience", "function", "to", "find", "the", "node", "s", "theta", "angle", "." ]
ericmjl/hiveplot
python
https://github.com/ericmjl/hiveplot/blob/f465a7118b7f005c83ab054d400deb02bd9f7410/hiveplot/hiveplot.py#L225-L230
[ "def", "node_theta", "(", "self", ",", "node", ")", ":", "group", "=", "self", ".", "find_node_group_membership", "(", "node", ")", "return", "self", ".", "group_theta", "(", "group", ")" ]
f465a7118b7f005c83ab054d400deb02bd9f7410
valid
HivePlot.draw_edge
Renders the given edge (n1, n2) to the plot.
hiveplot/hiveplot.py
def draw_edge(self, n1, n2, d, group): """ Renders the given edge (n1, n2) to the plot. """ start_radius = self.node_radius(n1) start_theta = self.node_theta(n1) end_radius = self.node_radius(n2) end_theta = self.node_theta(n2) start_theta, end_theta = self.correct_angles(start_theta, end_theta) start_theta, end_theta = self.adjust_angles(n1, start_theta, n2, end_theta) middle1_radius = np.min([start_radius, end_radius]) middle2_radius = np.max([start_radius, end_radius]) if start_radius > end_radius: middle1_radius, middle2_radius = middle2_radius, middle1_radius middle1_theta = np.mean([start_theta, end_theta]) middle2_theta = np.mean([start_theta, end_theta]) startx, starty = get_cartesian(start_radius, start_theta) middle1x, middle1y = get_cartesian(middle1_radius, middle1_theta) middle2x, middle2y = get_cartesian(middle2_radius, middle2_theta) # middlex, middley = get_cartesian(middle_radius, middle_theta) endx, endy = get_cartesian(end_radius, end_theta) verts = [(startx, starty), (middle1x, middle1y), (middle2x, middle2y), (endx, endy)] codes = [Path.MOVETO, Path.CURVE4, Path.CURVE4, Path.CURVE4] path = Path(verts, codes) if self.edge_colormap is None: edgecolor = 'black' else: edgecolor = self.edge_colormap[group] patch = patches.PathPatch(path, lw=self.linewidth, facecolor='none', edgecolor=edgecolor, alpha=0.3) self.ax.add_patch(patch)
def draw_edge(self, n1, n2, d, group): """ Renders the given edge (n1, n2) to the plot. """ start_radius = self.node_radius(n1) start_theta = self.node_theta(n1) end_radius = self.node_radius(n2) end_theta = self.node_theta(n2) start_theta, end_theta = self.correct_angles(start_theta, end_theta) start_theta, end_theta = self.adjust_angles(n1, start_theta, n2, end_theta) middle1_radius = np.min([start_radius, end_radius]) middle2_radius = np.max([start_radius, end_radius]) if start_radius > end_radius: middle1_radius, middle2_radius = middle2_radius, middle1_radius middle1_theta = np.mean([start_theta, end_theta]) middle2_theta = np.mean([start_theta, end_theta]) startx, starty = get_cartesian(start_radius, start_theta) middle1x, middle1y = get_cartesian(middle1_radius, middle1_theta) middle2x, middle2y = get_cartesian(middle2_radius, middle2_theta) # middlex, middley = get_cartesian(middle_radius, middle_theta) endx, endy = get_cartesian(end_radius, end_theta) verts = [(startx, starty), (middle1x, middle1y), (middle2x, middle2y), (endx, endy)] codes = [Path.MOVETO, Path.CURVE4, Path.CURVE4, Path.CURVE4] path = Path(verts, codes) if self.edge_colormap is None: edgecolor = 'black' else: edgecolor = self.edge_colormap[group] patch = patches.PathPatch(path, lw=self.linewidth, facecolor='none', edgecolor=edgecolor, alpha=0.3) self.ax.add_patch(patch)
[ "Renders", "the", "given", "edge", "(", "n1", "n2", ")", "to", "the", "plot", "." ]
ericmjl/hiveplot
python
https://github.com/ericmjl/hiveplot/blob/f465a7118b7f005c83ab054d400deb02bd9f7410/hiveplot/hiveplot.py#L232-L274
[ "def", "draw_edge", "(", "self", ",", "n1", ",", "n2", ",", "d", ",", "group", ")", ":", "start_radius", "=", "self", ".", "node_radius", "(", "n1", ")", "start_theta", "=", "self", ".", "node_theta", "(", "n1", ")", "end_radius", "=", "self", ".", "node_radius", "(", "n2", ")", "end_theta", "=", "self", ".", "node_theta", "(", "n2", ")", "start_theta", ",", "end_theta", "=", "self", ".", "correct_angles", "(", "start_theta", ",", "end_theta", ")", "start_theta", ",", "end_theta", "=", "self", ".", "adjust_angles", "(", "n1", ",", "start_theta", ",", "n2", ",", "end_theta", ")", "middle1_radius", "=", "np", ".", "min", "(", "[", "start_radius", ",", "end_radius", "]", ")", "middle2_radius", "=", "np", ".", "max", "(", "[", "start_radius", ",", "end_radius", "]", ")", "if", "start_radius", ">", "end_radius", ":", "middle1_radius", ",", "middle2_radius", "=", "middle2_radius", ",", "middle1_radius", "middle1_theta", "=", "np", ".", "mean", "(", "[", "start_theta", ",", "end_theta", "]", ")", "middle2_theta", "=", "np", ".", "mean", "(", "[", "start_theta", ",", "end_theta", "]", ")", "startx", ",", "starty", "=", "get_cartesian", "(", "start_radius", ",", "start_theta", ")", "middle1x", ",", "middle1y", "=", "get_cartesian", "(", "middle1_radius", ",", "middle1_theta", ")", "middle2x", ",", "middle2y", "=", "get_cartesian", "(", "middle2_radius", ",", "middle2_theta", ")", "# middlex, middley = get_cartesian(middle_radius, middle_theta)", "endx", ",", "endy", "=", "get_cartesian", "(", "end_radius", ",", "end_theta", ")", "verts", "=", "[", "(", "startx", ",", "starty", ")", ",", "(", "middle1x", ",", "middle1y", ")", ",", "(", "middle2x", ",", "middle2y", ")", ",", "(", "endx", ",", "endy", ")", "]", "codes", "=", "[", "Path", ".", "MOVETO", ",", "Path", ".", "CURVE4", ",", "Path", ".", "CURVE4", ",", "Path", ".", "CURVE4", "]", "path", "=", "Path", "(", "verts", ",", "codes", ")", "if", "self", ".", "edge_colormap", "is", "None", ":", "edgecolor", "=", "'black'", "else", ":", "edgecolor", "=", "self", ".", "edge_colormap", "[", "group", "]", "patch", "=", "patches", ".", "PathPatch", "(", "path", ",", "lw", "=", "self", ".", "linewidth", ",", "facecolor", "=", "'none'", ",", "edgecolor", "=", "edgecolor", ",", "alpha", "=", "0.3", ")", "self", ".", "ax", ".", "add_patch", "(", "patch", ")" ]
f465a7118b7f005c83ab054d400deb02bd9f7410
valid
HivePlot.add_edges
Draws all of the edges in the graph.
hiveplot/hiveplot.py
def add_edges(self): """ Draws all of the edges in the graph. """ for group, edgelist in self.edges.items(): for (u, v, d) in edgelist: self.draw_edge(u, v, d, group)
def add_edges(self): """ Draws all of the edges in the graph. """ for group, edgelist in self.edges.items(): for (u, v, d) in edgelist: self.draw_edge(u, v, d, group)
[ "Draws", "all", "of", "the", "edges", "in", "the", "graph", "." ]
ericmjl/hiveplot
python
https://github.com/ericmjl/hiveplot/blob/f465a7118b7f005c83ab054d400deb02bd9f7410/hiveplot/hiveplot.py#L276-L282
[ "def", "add_edges", "(", "self", ")", ":", "for", "group", ",", "edgelist", "in", "self", ".", "edges", ".", "items", "(", ")", ":", "for", "(", "u", ",", "v", ",", "d", ")", "in", "edgelist", ":", "self", ".", "draw_edge", "(", "u", ",", "v", ",", "d", ",", "group", ")" ]
f465a7118b7f005c83ab054d400deb02bd9f7410
valid
HivePlot.draw
The master function that is called that draws everything.
hiveplot/hiveplot.py
def draw(self): """ The master function that is called that draws everything. """ self.ax.set_xlim(-self.plot_radius(), self.plot_radius()) self.ax.set_ylim(-self.plot_radius(), self.plot_radius()) self.add_axes_and_nodes() self.add_edges() self.ax.axis('off')
def draw(self): """ The master function that is called that draws everything. """ self.ax.set_xlim(-self.plot_radius(), self.plot_radius()) self.ax.set_ylim(-self.plot_radius(), self.plot_radius()) self.add_axes_and_nodes() self.add_edges() self.ax.axis('off')
[ "The", "master", "function", "that", "is", "called", "that", "draws", "everything", "." ]
ericmjl/hiveplot
python
https://github.com/ericmjl/hiveplot/blob/f465a7118b7f005c83ab054d400deb02bd9f7410/hiveplot/hiveplot.py#L284-L294
[ "def", "draw", "(", "self", ")", ":", "self", ".", "ax", ".", "set_xlim", "(", "-", "self", ".", "plot_radius", "(", ")", ",", "self", ".", "plot_radius", "(", ")", ")", "self", ".", "ax", ".", "set_ylim", "(", "-", "self", ".", "plot_radius", "(", ")", ",", "self", ".", "plot_radius", "(", ")", ")", "self", ".", "add_axes_and_nodes", "(", ")", "self", ".", "add_edges", "(", ")", "self", ".", "ax", ".", "axis", "(", "'off'", ")" ]
f465a7118b7f005c83ab054d400deb02bd9f7410
valid
HivePlot.adjust_angles
This function adjusts the start and end angles to correct for duplicated axes.
hiveplot/hiveplot.py
def adjust_angles(self, start_node, start_angle, end_node, end_angle): """ This function adjusts the start and end angles to correct for duplicated axes. """ start_group = self.find_node_group_membership(start_node) end_group = self.find_node_group_membership(end_node) if start_group == 0 and end_group == len(self.nodes.keys())-1: if self.has_edge_within_group(start_group): start_angle = correct_negative_angle(start_angle - self.minor_angle) if self.has_edge_within_group(end_group): end_angle = correct_negative_angle(end_angle + self.minor_angle) elif start_group == len(self.nodes.keys())-1 and end_group == 0: if self.has_edge_within_group(start_group): start_angle = correct_negative_angle(start_angle + self.minor_angle) if self.has_edge_within_group(end_group): end_angle = correct_negative_angle(end_angle - self.minor_angle) elif start_group < end_group: if self.has_edge_within_group(end_group): end_angle = correct_negative_angle(end_angle - self.minor_angle) if self.has_edge_within_group(start_group): start_angle = correct_negative_angle(start_angle + self.minor_angle) elif end_group < start_group: if self.has_edge_within_group(start_group): start_angle = correct_negative_angle(start_angle - self.minor_angle) if self.has_edge_within_group(end_group): end_angle = correct_negative_angle(end_angle + self.minor_angle) return start_angle, end_angle
def adjust_angles(self, start_node, start_angle, end_node, end_angle): """ This function adjusts the start and end angles to correct for duplicated axes. """ start_group = self.find_node_group_membership(start_node) end_group = self.find_node_group_membership(end_node) if start_group == 0 and end_group == len(self.nodes.keys())-1: if self.has_edge_within_group(start_group): start_angle = correct_negative_angle(start_angle - self.minor_angle) if self.has_edge_within_group(end_group): end_angle = correct_negative_angle(end_angle + self.minor_angle) elif start_group == len(self.nodes.keys())-1 and end_group == 0: if self.has_edge_within_group(start_group): start_angle = correct_negative_angle(start_angle + self.minor_angle) if self.has_edge_within_group(end_group): end_angle = correct_negative_angle(end_angle - self.minor_angle) elif start_group < end_group: if self.has_edge_within_group(end_group): end_angle = correct_negative_angle(end_angle - self.minor_angle) if self.has_edge_within_group(start_group): start_angle = correct_negative_angle(start_angle + self.minor_angle) elif end_group < start_group: if self.has_edge_within_group(start_group): start_angle = correct_negative_angle(start_angle - self.minor_angle) if self.has_edge_within_group(end_group): end_angle = correct_negative_angle(end_angle + self.minor_angle) return start_angle, end_angle
[ "This", "function", "adjusts", "the", "start", "and", "end", "angles", "to", "correct", "for", "duplicated", "axes", "." ]
ericmjl/hiveplot
python
https://github.com/ericmjl/hiveplot/blob/f465a7118b7f005c83ab054d400deb02bd9f7410/hiveplot/hiveplot.py#L296-L336
[ "def", "adjust_angles", "(", "self", ",", "start_node", ",", "start_angle", ",", "end_node", ",", "end_angle", ")", ":", "start_group", "=", "self", ".", "find_node_group_membership", "(", "start_node", ")", "end_group", "=", "self", ".", "find_node_group_membership", "(", "end_node", ")", "if", "start_group", "==", "0", "and", "end_group", "==", "len", "(", "self", ".", "nodes", ".", "keys", "(", ")", ")", "-", "1", ":", "if", "self", ".", "has_edge_within_group", "(", "start_group", ")", ":", "start_angle", "=", "correct_negative_angle", "(", "start_angle", "-", "self", ".", "minor_angle", ")", "if", "self", ".", "has_edge_within_group", "(", "end_group", ")", ":", "end_angle", "=", "correct_negative_angle", "(", "end_angle", "+", "self", ".", "minor_angle", ")", "elif", "start_group", "==", "len", "(", "self", ".", "nodes", ".", "keys", "(", ")", ")", "-", "1", "and", "end_group", "==", "0", ":", "if", "self", ".", "has_edge_within_group", "(", "start_group", ")", ":", "start_angle", "=", "correct_negative_angle", "(", "start_angle", "+", "self", ".", "minor_angle", ")", "if", "self", ".", "has_edge_within_group", "(", "end_group", ")", ":", "end_angle", "=", "correct_negative_angle", "(", "end_angle", "-", "self", ".", "minor_angle", ")", "elif", "start_group", "<", "end_group", ":", "if", "self", ".", "has_edge_within_group", "(", "end_group", ")", ":", "end_angle", "=", "correct_negative_angle", "(", "end_angle", "-", "self", ".", "minor_angle", ")", "if", "self", ".", "has_edge_within_group", "(", "start_group", ")", ":", "start_angle", "=", "correct_negative_angle", "(", "start_angle", "+", "self", ".", "minor_angle", ")", "elif", "end_group", "<", "start_group", ":", "if", "self", ".", "has_edge_within_group", "(", "start_group", ")", ":", "start_angle", "=", "correct_negative_angle", "(", "start_angle", "-", "self", ".", "minor_angle", ")", "if", "self", ".", "has_edge_within_group", "(", "end_group", ")", ":", "end_angle", "=", "correct_negative_angle", "(", "end_angle", "+", "self", ".", "minor_angle", ")", "return", "start_angle", ",", "end_angle" ]
f465a7118b7f005c83ab054d400deb02bd9f7410
valid
HivePlot.correct_angles
This function corrects for the following problems in the edges:
hiveplot/hiveplot.py
def correct_angles(self, start_angle, end_angle): """ This function corrects for the following problems in the edges: """ # Edges going the anti-clockwise direction involves angle = 0. if start_angle == 0 and (end_angle - start_angle > np.pi): start_angle = np.pi * 2 if end_angle == 0 and (end_angle - start_angle < -np.pi): end_angle = np.pi * 2 # Case when start_angle == end_angle: if start_angle == end_angle: start_angle = start_angle - self.minor_angle end_angle = end_angle + self.minor_angle return start_angle, end_angle
def correct_angles(self, start_angle, end_angle): """ This function corrects for the following problems in the edges: """ # Edges going the anti-clockwise direction involves angle = 0. if start_angle == 0 and (end_angle - start_angle > np.pi): start_angle = np.pi * 2 if end_angle == 0 and (end_angle - start_angle < -np.pi): end_angle = np.pi * 2 # Case when start_angle == end_angle: if start_angle == end_angle: start_angle = start_angle - self.minor_angle end_angle = end_angle + self.minor_angle return start_angle, end_angle
[ "This", "function", "corrects", "for", "the", "following", "problems", "in", "the", "edges", ":" ]
ericmjl/hiveplot
python
https://github.com/ericmjl/hiveplot/blob/f465a7118b7f005c83ab054d400deb02bd9f7410/hiveplot/hiveplot.py#L338-L353
[ "def", "correct_angles", "(", "self", ",", "start_angle", ",", "end_angle", ")", ":", "# Edges going the anti-clockwise direction involves angle = 0.", "if", "start_angle", "==", "0", "and", "(", "end_angle", "-", "start_angle", ">", "np", ".", "pi", ")", ":", "start_angle", "=", "np", ".", "pi", "*", "2", "if", "end_angle", "==", "0", "and", "(", "end_angle", "-", "start_angle", "<", "-", "np", ".", "pi", ")", ":", "end_angle", "=", "np", ".", "pi", "*", "2", "# Case when start_angle == end_angle:", "if", "start_angle", "==", "end_angle", ":", "start_angle", "=", "start_angle", "-", "self", ".", "minor_angle", "end_angle", "=", "end_angle", "+", "self", ".", "minor_angle", "return", "start_angle", ",", "end_angle" ]
f465a7118b7f005c83ab054d400deb02bd9f7410
valid
Type.mods_genre
Guesses an appropriate MODS XML genre type.
publications/models/type.py
def mods_genre(self): """ Guesses an appropriate MODS XML genre type. """ type2genre = { 'conference': 'conference publication', 'book chapter': 'bibliography', 'unpublished': 'article' } tp = str(self.type).lower() return type2genre.get(tp, tp)
def mods_genre(self): """ Guesses an appropriate MODS XML genre type. """ type2genre = { 'conference': 'conference publication', 'book chapter': 'bibliography', 'unpublished': 'article' } tp = str(self.type).lower() return type2genre.get(tp, tp)
[ "Guesses", "an", "appropriate", "MODS", "XML", "genre", "type", "." ]
lucastheis/django-publications
python
https://github.com/lucastheis/django-publications/blob/5a75cf88cf794937711b6850ff2acb07fe005f08/publications/models/type.py#L66-L77
[ "def", "mods_genre", "(", "self", ")", ":", "type2genre", "=", "{", "'conference'", ":", "'conference publication'", ",", "'book chapter'", ":", "'bibliography'", ",", "'unpublished'", ":", "'article'", "}", "tp", "=", "str", "(", "self", ".", "type", ")", ".", "lower", "(", ")", "return", "type2genre", ".", "get", "(", "tp", ",", "tp", ")" ]
5a75cf88cf794937711b6850ff2acb07fe005f08
valid
Publication._produce_author_lists
Parse authors string to create lists of authors.
publications/models/publication.py
def _produce_author_lists(self): """ Parse authors string to create lists of authors. """ # post-process author names self.authors = self.authors.replace(', and ', ', ') self.authors = self.authors.replace(',and ', ', ') self.authors = self.authors.replace(' and ', ', ') self.authors = self.authors.replace(';', ',') # list of authors self.authors_list = [author.strip() for author in self.authors.split(',')] # simplified representation of author names self.authors_list_simple = [] # author names represented as a tuple of given and family name self.authors_list_split = [] # tests if title already ends with a punctuation mark self.title_ends_with_punct = self.title[-1] in ['.', '!', '?'] \ if len(self.title) > 0 else False suffixes = ['I', 'II', 'III', 'IV', 'V', 'VI', 'VII', 'VIII', "Jr.", "Sr."] prefixes = ['Dr.'] prepositions = ['van', 'von', 'der', 'de', 'den'] # further post-process author names for i, author in enumerate(self.authors_list): if author == '': continue names = author.split(' ') # check if last string contains initials if (len(names[-1]) <= 3) \ and names[-1] not in suffixes \ and all(c in ascii_uppercase for c in names[-1]): # turn "Gauss CF" into "C. F. Gauss" names = [c + '.' for c in names[-1]] + names[:-1] # number of suffixes num_suffixes = 0 for name in names[::-1]: if name in suffixes: num_suffixes += 1 else: break # abbreviate names for j, name in enumerate(names[:-1 - num_suffixes]): # don't try to abbreviate these if j == 0 and name in prefixes: continue if j > 0 and name in prepositions: continue if (len(name) > 2) or (len(name) and (name[-1] != '.')): k = name.find('-') if 0 < k + 1 < len(name): # take care of dash names[j] = name[0] + '.-' + name[k + 1] + '.' else: names[j] = name[0] + '.' if len(names): self.authors_list[i] = ' '.join(names) # create simplified/normalized representation of author name if len(names) > 1: for name in names[0].split('-'): name_simple = self.simplify_name(' '.join([name, names[-1]])) self.authors_list_simple.append(name_simple) else: self.authors_list_simple.append(self.simplify_name(names[0])) # number of prepositions num_prepositions = 0 for name in names: if name in prepositions: num_prepositions += 1 # splitting point sp = 1 + num_suffixes + num_prepositions self.authors_list_split.append( (' '.join(names[:-sp]), ' '.join(names[-sp:]))) # list of authors in BibTex format self.authors_bibtex = ' and '.join(self.authors_list) # overwrite authors string if len(self.authors_list) > 2: self.authors = ', and '.join([ ', '.join(self.authors_list[:-1]), self.authors_list[-1]]) elif len(self.authors_list) > 1: self.authors = ' and '.join(self.authors_list) else: self.authors = self.authors_list[0]
def _produce_author_lists(self): """ Parse authors string to create lists of authors. """ # post-process author names self.authors = self.authors.replace(', and ', ', ') self.authors = self.authors.replace(',and ', ', ') self.authors = self.authors.replace(' and ', ', ') self.authors = self.authors.replace(';', ',') # list of authors self.authors_list = [author.strip() for author in self.authors.split(',')] # simplified representation of author names self.authors_list_simple = [] # author names represented as a tuple of given and family name self.authors_list_split = [] # tests if title already ends with a punctuation mark self.title_ends_with_punct = self.title[-1] in ['.', '!', '?'] \ if len(self.title) > 0 else False suffixes = ['I', 'II', 'III', 'IV', 'V', 'VI', 'VII', 'VIII', "Jr.", "Sr."] prefixes = ['Dr.'] prepositions = ['van', 'von', 'der', 'de', 'den'] # further post-process author names for i, author in enumerate(self.authors_list): if author == '': continue names = author.split(' ') # check if last string contains initials if (len(names[-1]) <= 3) \ and names[-1] not in suffixes \ and all(c in ascii_uppercase for c in names[-1]): # turn "Gauss CF" into "C. F. Gauss" names = [c + '.' for c in names[-1]] + names[:-1] # number of suffixes num_suffixes = 0 for name in names[::-1]: if name in suffixes: num_suffixes += 1 else: break # abbreviate names for j, name in enumerate(names[:-1 - num_suffixes]): # don't try to abbreviate these if j == 0 and name in prefixes: continue if j > 0 and name in prepositions: continue if (len(name) > 2) or (len(name) and (name[-1] != '.')): k = name.find('-') if 0 < k + 1 < len(name): # take care of dash names[j] = name[0] + '.-' + name[k + 1] + '.' else: names[j] = name[0] + '.' if len(names): self.authors_list[i] = ' '.join(names) # create simplified/normalized representation of author name if len(names) > 1: for name in names[0].split('-'): name_simple = self.simplify_name(' '.join([name, names[-1]])) self.authors_list_simple.append(name_simple) else: self.authors_list_simple.append(self.simplify_name(names[0])) # number of prepositions num_prepositions = 0 for name in names: if name in prepositions: num_prepositions += 1 # splitting point sp = 1 + num_suffixes + num_prepositions self.authors_list_split.append( (' '.join(names[:-sp]), ' '.join(names[-sp:]))) # list of authors in BibTex format self.authors_bibtex = ' and '.join(self.authors_list) # overwrite authors string if len(self.authors_list) > 2: self.authors = ', and '.join([ ', '.join(self.authors_list[:-1]), self.authors_list[-1]]) elif len(self.authors_list) > 1: self.authors = ' and '.join(self.authors_list) else: self.authors = self.authors_list[0]
[ "Parse", "authors", "string", "to", "create", "lists", "of", "authors", "." ]
lucastheis/django-publications
python
https://github.com/lucastheis/django-publications/blob/5a75cf88cf794937711b6850ff2acb07fe005f08/publications/models/publication.py#L108-L207
[ "def", "_produce_author_lists", "(", "self", ")", ":", "# post-process author names", "self", ".", "authors", "=", "self", ".", "authors", ".", "replace", "(", "', and '", ",", "', '", ")", "self", ".", "authors", "=", "self", ".", "authors", ".", "replace", "(", "',and '", ",", "', '", ")", "self", ".", "authors", "=", "self", ".", "authors", ".", "replace", "(", "' and '", ",", "', '", ")", "self", ".", "authors", "=", "self", ".", "authors", ".", "replace", "(", "';'", ",", "','", ")", "# list of authors", "self", ".", "authors_list", "=", "[", "author", ".", "strip", "(", ")", "for", "author", "in", "self", ".", "authors", ".", "split", "(", "','", ")", "]", "# simplified representation of author names", "self", ".", "authors_list_simple", "=", "[", "]", "# author names represented as a tuple of given and family name", "self", ".", "authors_list_split", "=", "[", "]", "# tests if title already ends with a punctuation mark", "self", ".", "title_ends_with_punct", "=", "self", ".", "title", "[", "-", "1", "]", "in", "[", "'.'", ",", "'!'", ",", "'?'", "]", "if", "len", "(", "self", ".", "title", ")", ">", "0", "else", "False", "suffixes", "=", "[", "'I'", ",", "'II'", ",", "'III'", ",", "'IV'", ",", "'V'", ",", "'VI'", ",", "'VII'", ",", "'VIII'", ",", "\"Jr.\"", ",", "\"Sr.\"", "]", "prefixes", "=", "[", "'Dr.'", "]", "prepositions", "=", "[", "'van'", ",", "'von'", ",", "'der'", ",", "'de'", ",", "'den'", "]", "# further post-process author names", "for", "i", ",", "author", "in", "enumerate", "(", "self", ".", "authors_list", ")", ":", "if", "author", "==", "''", ":", "continue", "names", "=", "author", ".", "split", "(", "' '", ")", "# check if last string contains initials", "if", "(", "len", "(", "names", "[", "-", "1", "]", ")", "<=", "3", ")", "and", "names", "[", "-", "1", "]", "not", "in", "suffixes", "and", "all", "(", "c", "in", "ascii_uppercase", "for", "c", "in", "names", "[", "-", "1", "]", ")", ":", "# turn \"Gauss CF\" into \"C. F. Gauss\"", "names", "=", "[", "c", "+", "'.'", "for", "c", "in", "names", "[", "-", "1", "]", "]", "+", "names", "[", ":", "-", "1", "]", "# number of suffixes", "num_suffixes", "=", "0", "for", "name", "in", "names", "[", ":", ":", "-", "1", "]", ":", "if", "name", "in", "suffixes", ":", "num_suffixes", "+=", "1", "else", ":", "break", "# abbreviate names", "for", "j", ",", "name", "in", "enumerate", "(", "names", "[", ":", "-", "1", "-", "num_suffixes", "]", ")", ":", "# don't try to abbreviate these", "if", "j", "==", "0", "and", "name", "in", "prefixes", ":", "continue", "if", "j", ">", "0", "and", "name", "in", "prepositions", ":", "continue", "if", "(", "len", "(", "name", ")", ">", "2", ")", "or", "(", "len", "(", "name", ")", "and", "(", "name", "[", "-", "1", "]", "!=", "'.'", ")", ")", ":", "k", "=", "name", ".", "find", "(", "'-'", ")", "if", "0", "<", "k", "+", "1", "<", "len", "(", "name", ")", ":", "# take care of dash", "names", "[", "j", "]", "=", "name", "[", "0", "]", "+", "'.-'", "+", "name", "[", "k", "+", "1", "]", "+", "'.'", "else", ":", "names", "[", "j", "]", "=", "name", "[", "0", "]", "+", "'.'", "if", "len", "(", "names", ")", ":", "self", ".", "authors_list", "[", "i", "]", "=", "' '", ".", "join", "(", "names", ")", "# create simplified/normalized representation of author name", "if", "len", "(", "names", ")", ">", "1", ":", "for", "name", "in", "names", "[", "0", "]", ".", "split", "(", "'-'", ")", ":", "name_simple", "=", "self", ".", "simplify_name", "(", "' '", ".", "join", "(", "[", "name", ",", "names", "[", "-", "1", "]", "]", ")", ")", "self", ".", "authors_list_simple", ".", "append", "(", "name_simple", ")", "else", ":", "self", ".", "authors_list_simple", ".", "append", "(", "self", ".", "simplify_name", "(", "names", "[", "0", "]", ")", ")", "# number of prepositions", "num_prepositions", "=", "0", "for", "name", "in", "names", ":", "if", "name", "in", "prepositions", ":", "num_prepositions", "+=", "1", "# splitting point", "sp", "=", "1", "+", "num_suffixes", "+", "num_prepositions", "self", ".", "authors_list_split", ".", "append", "(", "(", "' '", ".", "join", "(", "names", "[", ":", "-", "sp", "]", ")", ",", "' '", ".", "join", "(", "names", "[", "-", "sp", ":", "]", ")", ")", ")", "# list of authors in BibTex format", "self", ".", "authors_bibtex", "=", "' and '", ".", "join", "(", "self", ".", "authors_list", ")", "# overwrite authors string", "if", "len", "(", "self", ".", "authors_list", ")", ">", "2", ":", "self", ".", "authors", "=", "', and '", ".", "join", "(", "[", "', '", ".", "join", "(", "self", ".", "authors_list", "[", ":", "-", "1", "]", ")", ",", "self", ".", "authors_list", "[", "-", "1", "]", "]", ")", "elif", "len", "(", "self", ".", "authors_list", ")", ">", "1", ":", "self", ".", "authors", "=", "' and '", ".", "join", "(", "self", ".", "authors_list", ")", "else", ":", "self", ".", "authors", "=", "self", ".", "authors_list", "[", "0", "]" ]
5a75cf88cf794937711b6850ff2acb07fe005f08
valid
get_publications
Get all publications.
publications/templatetags/publication_extras.py
def get_publications(context, template='publications/publications.html'): """ Get all publications. """ types = Type.objects.filter(hidden=False) publications = Publication.objects.select_related() publications = publications.filter(external=False, type__in=types) publications = publications.order_by('-year', '-month', '-id') if not publications: return '' # load custom links and files populate(publications) return render_template(template, context['request'], {'publications': publications})
def get_publications(context, template='publications/publications.html'): """ Get all publications. """ types = Type.objects.filter(hidden=False) publications = Publication.objects.select_related() publications = publications.filter(external=False, type__in=types) publications = publications.order_by('-year', '-month', '-id') if not publications: return '' # load custom links and files populate(publications) return render_template(template, context['request'], {'publications': publications})
[ "Get", "all", "publications", "." ]
lucastheis/django-publications
python
https://github.com/lucastheis/django-publications/blob/5a75cf88cf794937711b6850ff2acb07fe005f08/publications/templatetags/publication_extras.py#L31-L47
[ "def", "get_publications", "(", "context", ",", "template", "=", "'publications/publications.html'", ")", ":", "types", "=", "Type", ".", "objects", ".", "filter", "(", "hidden", "=", "False", ")", "publications", "=", "Publication", ".", "objects", ".", "select_related", "(", ")", "publications", "=", "publications", ".", "filter", "(", "external", "=", "False", ",", "type__in", "=", "types", ")", "publications", "=", "publications", ".", "order_by", "(", "'-year'", ",", "'-month'", ",", "'-id'", ")", "if", "not", "publications", ":", "return", "''", "# load custom links and files", "populate", "(", "publications", ")", "return", "render_template", "(", "template", ",", "context", "[", "'request'", "]", ",", "{", "'publications'", ":", "publications", "}", ")" ]
5a75cf88cf794937711b6850ff2acb07fe005f08
valid
get_publication
Get a single publication.
publications/templatetags/publication_extras.py
def get_publication(context, id): """ Get a single publication. """ pbl = Publication.objects.filter(pk=int(id)) if len(pbl) < 1: return '' pbl[0].links = pbl[0].customlink_set.all() pbl[0].files = pbl[0].customfile_set.all() return render_template( 'publications/publication.html', context['request'], {'publication': pbl[0]})
def get_publication(context, id): """ Get a single publication. """ pbl = Publication.objects.filter(pk=int(id)) if len(pbl) < 1: return '' pbl[0].links = pbl[0].customlink_set.all() pbl[0].files = pbl[0].customfile_set.all() return render_template( 'publications/publication.html', context['request'], {'publication': pbl[0]})
[ "Get", "a", "single", "publication", "." ]
lucastheis/django-publications
python
https://github.com/lucastheis/django-publications/blob/5a75cf88cf794937711b6850ff2acb07fe005f08/publications/templatetags/publication_extras.py#L50-L64
[ "def", "get_publication", "(", "context", ",", "id", ")", ":", "pbl", "=", "Publication", ".", "objects", ".", "filter", "(", "pk", "=", "int", "(", "id", ")", ")", "if", "len", "(", "pbl", ")", "<", "1", ":", "return", "''", "pbl", "[", "0", "]", ".", "links", "=", "pbl", "[", "0", "]", ".", "customlink_set", ".", "all", "(", ")", "pbl", "[", "0", "]", ".", "files", "=", "pbl", "[", "0", "]", ".", "customfile_set", ".", "all", "(", ")", "return", "render_template", "(", "'publications/publication.html'", ",", "context", "[", "'request'", "]", ",", "{", "'publication'", ":", "pbl", "[", "0", "]", "}", ")" ]
5a75cf88cf794937711b6850ff2acb07fe005f08
valid
get_publication_list
Get a publication list.
publications/templatetags/publication_extras.py
def get_publication_list(context, list, template='publications/publications.html'): """ Get a publication list. """ list = List.objects.filter(list__iexact=list) if not list: return '' list = list[0] publications = list.publication_set.all() publications = publications.order_by('-year', '-month', '-id') if not publications: return '' # load custom links and files populate(publications) return render_template( template, context['request'], {'list': list, 'publications': publications})
def get_publication_list(context, list, template='publications/publications.html'): """ Get a publication list. """ list = List.objects.filter(list__iexact=list) if not list: return '' list = list[0] publications = list.publication_set.all() publications = publications.order_by('-year', '-month', '-id') if not publications: return '' # load custom links and files populate(publications) return render_template( template, context['request'], {'list': list, 'publications': publications})
[ "Get", "a", "publication", "list", "." ]
lucastheis/django-publications
python
https://github.com/lucastheis/django-publications/blob/5a75cf88cf794937711b6850ff2acb07fe005f08/publications/templatetags/publication_extras.py#L67-L88
[ "def", "get_publication_list", "(", "context", ",", "list", ",", "template", "=", "'publications/publications.html'", ")", ":", "list", "=", "List", ".", "objects", ".", "filter", "(", "list__iexact", "=", "list", ")", "if", "not", "list", ":", "return", "''", "list", "=", "list", "[", "0", "]", "publications", "=", "list", ".", "publication_set", ".", "all", "(", ")", "publications", "=", "publications", ".", "order_by", "(", "'-year'", ",", "'-month'", ",", "'-id'", ")", "if", "not", "publications", ":", "return", "''", "# load custom links and files", "populate", "(", "publications", ")", "return", "render_template", "(", "template", ",", "context", "[", "'request'", "]", ",", "{", "'list'", ":", "list", ",", "'publications'", ":", "publications", "}", ")" ]
5a75cf88cf794937711b6850ff2acb07fe005f08
valid
tex_parse
Renders some basic TeX math to HTML.
publications/templatetags/publication_extras.py
def tex_parse(string): """ Renders some basic TeX math to HTML. """ string = string.replace('{', '').replace('}', '') def tex_replace(match): return \ sub(r'\^(\w)', r'<sup>\1</sup>', sub(r'\^\{(.*?)\}', r'<sup>\1</sup>', sub(r'\_(\w)', r'<sub>\1</sub>', sub(r'\_\{(.*?)\}', r'<sub>\1</sub>', sub(r'\\(' + GREEK_LETTERS + ')', r'&\1;', match.group(1)))))) return mark_safe(sub(r'\$([^\$]*)\$', tex_replace, escape(string)))
def tex_parse(string): """ Renders some basic TeX math to HTML. """ string = string.replace('{', '').replace('}', '') def tex_replace(match): return \ sub(r'\^(\w)', r'<sup>\1</sup>', sub(r'\^\{(.*?)\}', r'<sup>\1</sup>', sub(r'\_(\w)', r'<sub>\1</sub>', sub(r'\_\{(.*?)\}', r'<sub>\1</sub>', sub(r'\\(' + GREEK_LETTERS + ')', r'&\1;', match.group(1)))))) return mark_safe(sub(r'\$([^\$]*)\$', tex_replace, escape(string)))
[ "Renders", "some", "basic", "TeX", "math", "to", "HTML", "." ]
lucastheis/django-publications
python
https://github.com/lucastheis/django-publications/blob/5a75cf88cf794937711b6850ff2acb07fe005f08/publications/templatetags/publication_extras.py#L91-L104
[ "def", "tex_parse", "(", "string", ")", ":", "string", "=", "string", ".", "replace", "(", "'{'", ",", "''", ")", ".", "replace", "(", "'}'", ",", "''", ")", "def", "tex_replace", "(", "match", ")", ":", "return", "sub", "(", "r'\\^(\\w)'", ",", "r'<sup>\\1</sup>'", ",", "sub", "(", "r'\\^\\{(.*?)\\}'", ",", "r'<sup>\\1</sup>'", ",", "sub", "(", "r'\\_(\\w)'", ",", "r'<sub>\\1</sub>'", ",", "sub", "(", "r'\\_\\{(.*?)\\}'", ",", "r'<sub>\\1</sub>'", ",", "sub", "(", "r'\\\\('", "+", "GREEK_LETTERS", "+", "')'", ",", "r'&\\1;'", ",", "match", ".", "group", "(", "1", ")", ")", ")", ")", ")", ")", "return", "mark_safe", "(", "sub", "(", "r'\\$([^\\$]*)\\$'", ",", "tex_replace", ",", "escape", "(", "string", ")", ")", ")" ]
5a75cf88cf794937711b6850ff2acb07fe005f08
valid
parse
Takes a string in BibTex format and returns a list of BibTex entries, where each entry is a dictionary containing the entries' key-value pairs. @type string: string @param string: bibliography in BibTex format @rtype: list @return: a list of dictionaries representing a bibliography
publications/bibtex.py
def parse(string): """ Takes a string in BibTex format and returns a list of BibTex entries, where each entry is a dictionary containing the entries' key-value pairs. @type string: string @param string: bibliography in BibTex format @rtype: list @return: a list of dictionaries representing a bibliography """ # bibliography bib = [] # make sure we are dealing with unicode strings if not isinstance(string, six.text_type): string = string.decode('utf-8') # replace special characters for key, value in special_chars: string = string.replace(key, value) string = re.sub(r'\\[cuHvs]{?([a-zA-Z])}?', r'\1', string) # split into BibTex entries entries = re.findall( r'(?u)@(\w+)[ \t]?{[ \t]*([^,\s]*)[ \t]*,?\s*((?:[^=,\s]+\s*\=\s*(?:"[^"]*"|{(?:[^{}]*|{[^{}]*})*}|[^,}]*),?\s*?)+)\s*}', string) for entry in entries: # parse entry pairs = re.findall(r'(?u)([^=,\s]+)\s*\=\s*("[^"]*"|{(?:[^{}]*|{[^{}]*})*}|[^,]*)', entry[2]) # add to bibliography bib.append({'type': entry[0].lower(), 'key': entry[1]}) for key, value in pairs: # post-process key and value key = key.lower() if value and value[0] == '"' and value[-1] == '"': value = value[1:-1] if value and value[0] == '{' and value[-1] == '}': value = value[1:-1] if key not in ['booktitle', 'title']: value = value.replace('}', '').replace('{', '') else: if value.startswith('{') and value.endswith('}'): value = value[1:] value = value[:-1] value = value.strip() value = re.sub(r'\s+', ' ', value) # store pair in bibliography bib[-1][key] = value return bib
def parse(string): """ Takes a string in BibTex format and returns a list of BibTex entries, where each entry is a dictionary containing the entries' key-value pairs. @type string: string @param string: bibliography in BibTex format @rtype: list @return: a list of dictionaries representing a bibliography """ # bibliography bib = [] # make sure we are dealing with unicode strings if not isinstance(string, six.text_type): string = string.decode('utf-8') # replace special characters for key, value in special_chars: string = string.replace(key, value) string = re.sub(r'\\[cuHvs]{?([a-zA-Z])}?', r'\1', string) # split into BibTex entries entries = re.findall( r'(?u)@(\w+)[ \t]?{[ \t]*([^,\s]*)[ \t]*,?\s*((?:[^=,\s]+\s*\=\s*(?:"[^"]*"|{(?:[^{}]*|{[^{}]*})*}|[^,}]*),?\s*?)+)\s*}', string) for entry in entries: # parse entry pairs = re.findall(r'(?u)([^=,\s]+)\s*\=\s*("[^"]*"|{(?:[^{}]*|{[^{}]*})*}|[^,]*)', entry[2]) # add to bibliography bib.append({'type': entry[0].lower(), 'key': entry[1]}) for key, value in pairs: # post-process key and value key = key.lower() if value and value[0] == '"' and value[-1] == '"': value = value[1:-1] if value and value[0] == '{' and value[-1] == '}': value = value[1:-1] if key not in ['booktitle', 'title']: value = value.replace('}', '').replace('{', '') else: if value.startswith('{') and value.endswith('}'): value = value[1:] value = value[:-1] value = value.strip() value = re.sub(r'\s+', ' ', value) # store pair in bibliography bib[-1][key] = value return bib
[ "Takes", "a", "string", "in", "BibTex", "format", "and", "returns", "a", "list", "of", "BibTex", "entries", "where", "each", "entry", "is", "a", "dictionary", "containing", "the", "entries", "key", "-", "value", "pairs", "." ]
lucastheis/django-publications
python
https://github.com/lucastheis/django-publications/blob/5a75cf88cf794937711b6850ff2acb07fe005f08/publications/bibtex.py#L46-L101
[ "def", "parse", "(", "string", ")", ":", "# bibliography", "bib", "=", "[", "]", "# make sure we are dealing with unicode strings", "if", "not", "isinstance", "(", "string", ",", "six", ".", "text_type", ")", ":", "string", "=", "string", ".", "decode", "(", "'utf-8'", ")", "# replace special characters", "for", "key", ",", "value", "in", "special_chars", ":", "string", "=", "string", ".", "replace", "(", "key", ",", "value", ")", "string", "=", "re", ".", "sub", "(", "r'\\\\[cuHvs]{?([a-zA-Z])}?'", ",", "r'\\1'", ",", "string", ")", "# split into BibTex entries", "entries", "=", "re", ".", "findall", "(", "r'(?u)@(\\w+)[ \\t]?{[ \\t]*([^,\\s]*)[ \\t]*,?\\s*((?:[^=,\\s]+\\s*\\=\\s*(?:\"[^\"]*\"|{(?:[^{}]*|{[^{}]*})*}|[^,}]*),?\\s*?)+)\\s*}'", ",", "string", ")", "for", "entry", "in", "entries", ":", "# parse entry", "pairs", "=", "re", ".", "findall", "(", "r'(?u)([^=,\\s]+)\\s*\\=\\s*(\"[^\"]*\"|{(?:[^{}]*|{[^{}]*})*}|[^,]*)'", ",", "entry", "[", "2", "]", ")", "# add to bibliography", "bib", ".", "append", "(", "{", "'type'", ":", "entry", "[", "0", "]", ".", "lower", "(", ")", ",", "'key'", ":", "entry", "[", "1", "]", "}", ")", "for", "key", ",", "value", "in", "pairs", ":", "# post-process key and value", "key", "=", "key", ".", "lower", "(", ")", "if", "value", "and", "value", "[", "0", "]", "==", "'\"'", "and", "value", "[", "-", "1", "]", "==", "'\"'", ":", "value", "=", "value", "[", "1", ":", "-", "1", "]", "if", "value", "and", "value", "[", "0", "]", "==", "'{'", "and", "value", "[", "-", "1", "]", "==", "'}'", ":", "value", "=", "value", "[", "1", ":", "-", "1", "]", "if", "key", "not", "in", "[", "'booktitle'", ",", "'title'", "]", ":", "value", "=", "value", ".", "replace", "(", "'}'", ",", "''", ")", ".", "replace", "(", "'{'", ",", "''", ")", "else", ":", "if", "value", ".", "startswith", "(", "'{'", ")", "and", "value", ".", "endswith", "(", "'}'", ")", ":", "value", "=", "value", "[", "1", ":", "]", "value", "=", "value", "[", ":", "-", "1", "]", "value", "=", "value", ".", "strip", "(", ")", "value", "=", "re", ".", "sub", "(", "r'\\s+'", ",", "' '", ",", "value", ")", "# store pair in bibliography", "bib", "[", "-", "1", "]", "[", "key", "]", "=", "value", "return", "bib" ]
5a75cf88cf794937711b6850ff2acb07fe005f08
valid
OrderedModel.swap
Swap the positions of this object with a reference object.
publications/models/orderedmodel.py
def swap(self, qs): """ Swap the positions of this object with a reference object. """ try: replacement = qs[0] except IndexError: # already first/last return if not self._valid_ordering_reference(replacement): raise ValueError( "%r can only be swapped with instances of %r which %s equals %r." % ( self, self.__class__, self.order_with_respect_to, self._get_order_with_respect_to() ) ) self.order, replacement.order = replacement.order, self.order self.save() replacement.save()
def swap(self, qs): """ Swap the positions of this object with a reference object. """ try: replacement = qs[0] except IndexError: # already first/last return if not self._valid_ordering_reference(replacement): raise ValueError( "%r can only be swapped with instances of %r which %s equals %r." % ( self, self.__class__, self.order_with_respect_to, self._get_order_with_respect_to() ) ) self.order, replacement.order = replacement.order, self.order self.save() replacement.save()
[ "Swap", "the", "positions", "of", "this", "object", "with", "a", "reference", "object", "." ]
lucastheis/django-publications
python
https://github.com/lucastheis/django-publications/blob/5a75cf88cf794937711b6850ff2acb07fe005f08/publications/models/orderedmodel.py#L116-L134
[ "def", "swap", "(", "self", ",", "qs", ")", ":", "try", ":", "replacement", "=", "qs", "[", "0", "]", "except", "IndexError", ":", "# already first/last", "return", "if", "not", "self", ".", "_valid_ordering_reference", "(", "replacement", ")", ":", "raise", "ValueError", "(", "\"%r can only be swapped with instances of %r which %s equals %r.\"", "%", "(", "self", ",", "self", ".", "__class__", ",", "self", ".", "order_with_respect_to", ",", "self", ".", "_get_order_with_respect_to", "(", ")", ")", ")", "self", ".", "order", ",", "replacement", ".", "order", "=", "replacement", ".", "order", ",", "self", ".", "order", "self", ".", "save", "(", ")", "replacement", ".", "save", "(", ")" ]
5a75cf88cf794937711b6850ff2acb07fe005f08
valid
OrderedModel.up
Move this object up one position.
publications/models/orderedmodel.py
def up(self): """ Move this object up one position. """ self.swap(self.get_ordering_queryset().filter(order__lt=self.order).order_by('-order'))
def up(self): """ Move this object up one position. """ self.swap(self.get_ordering_queryset().filter(order__lt=self.order).order_by('-order'))
[ "Move", "this", "object", "up", "one", "position", "." ]
lucastheis/django-publications
python
https://github.com/lucastheis/django-publications/blob/5a75cf88cf794937711b6850ff2acb07fe005f08/publications/models/orderedmodel.py#L136-L140
[ "def", "up", "(", "self", ")", ":", "self", ".", "swap", "(", "self", ".", "get_ordering_queryset", "(", ")", ".", "filter", "(", "order__lt", "=", "self", ".", "order", ")", ".", "order_by", "(", "'-order'", ")", ")" ]
5a75cf88cf794937711b6850ff2acb07fe005f08