partition
stringclasses
3 values
func_name
stringlengths
1
134
docstring
stringlengths
1
46.9k
path
stringlengths
4
223
original_string
stringlengths
75
104k
code
stringlengths
75
104k
docstring_tokens
listlengths
1
1.97k
repo
stringlengths
7
55
language
stringclasses
1 value
url
stringlengths
87
315
code_tokens
listlengths
19
28.4k
sha
stringlengths
40
40
valid
Hiveplot.connect
Draw edges as Bézier curves. Start and end points map to the coordinates of the given nodes which in turn are set when adding nodes to an axis with the Axis.add_node() method, by using the placement information of the axis and a specified offset from its start point. Control points are set at the same distance from the start (or end) point of an axis as their corresponding nodes, but along an invisible axis that shares its origin but diverges by a given angle. Parameters ---------- axis0 : source Axis object n0_index : key of source node in nodes dictionary of axis0 source_angle : angle of departure for invisible axis that diverges from axis0 and holds first control points axis1 : target Axis object n1_index : key of target node in nodes dictionary of axis1 target_angle : angle of departure for invisible axis that diverges from axis1 and holds second control points kwargs : extra SVG attributes for path element, optional Set or change attributes using key=value
pyveplot/__init__.py
def connect(self, axis0, n0_index, source_angle, axis1, n1_index, target_angle, **kwargs): """Draw edges as Bézier curves. Start and end points map to the coordinates of the given nodes which in turn are set when adding nodes to an axis with the Axis.add_node() method, by using the placement information of the axis and a specified offset from its start point. Control points are set at the same distance from the start (or end) point of an axis as their corresponding nodes, but along an invisible axis that shares its origin but diverges by a given angle. Parameters ---------- axis0 : source Axis object n0_index : key of source node in nodes dictionary of axis0 source_angle : angle of departure for invisible axis that diverges from axis0 and holds first control points axis1 : target Axis object n1_index : key of target node in nodes dictionary of axis1 target_angle : angle of departure for invisible axis that diverges from axis1 and holds second control points kwargs : extra SVG attributes for path element, optional Set or change attributes using key=value """ n0 = axis0.nodes[n0_index] n1 = axis1.nodes[n1_index] pth = self.dwg.path(d="M %s %s" % (n0.x, n0.y), fill='none', **kwargs) # source # compute source control point alfa = axis0.angle() + radians(source_angle) length = sqrt( ((n0.x - axis0.start[0])**2) + ((n0.y-axis0.start[1])**2)) x = axis0.start[0] + length * cos(alfa); y = axis0.start[1] + length * sin(alfa); pth.push("C %s %s" % (x, y)) # first control point in path # compute target control point alfa = axis1.angle() + radians(target_angle) length = sqrt( ((n1.x - axis1.start[0])**2) + ((n1.y-axis1.start[1])**2)) x = axis1.start[0] + length * cos(alfa); y = axis1.start[1] + length * sin(alfa); pth.push("%s %s" % (x, y)) # second control point in path pth.push("%s %s" % (n1.x, n1.y)) # target self.dwg.add(pth)
def connect(self, axis0, n0_index, source_angle, axis1, n1_index, target_angle, **kwargs): """Draw edges as Bézier curves. Start and end points map to the coordinates of the given nodes which in turn are set when adding nodes to an axis with the Axis.add_node() method, by using the placement information of the axis and a specified offset from its start point. Control points are set at the same distance from the start (or end) point of an axis as their corresponding nodes, but along an invisible axis that shares its origin but diverges by a given angle. Parameters ---------- axis0 : source Axis object n0_index : key of source node in nodes dictionary of axis0 source_angle : angle of departure for invisible axis that diverges from axis0 and holds first control points axis1 : target Axis object n1_index : key of target node in nodes dictionary of axis1 target_angle : angle of departure for invisible axis that diverges from axis1 and holds second control points kwargs : extra SVG attributes for path element, optional Set or change attributes using key=value """ n0 = axis0.nodes[n0_index] n1 = axis1.nodes[n1_index] pth = self.dwg.path(d="M %s %s" % (n0.x, n0.y), fill='none', **kwargs) # source # compute source control point alfa = axis0.angle() + radians(source_angle) length = sqrt( ((n0.x - axis0.start[0])**2) + ((n0.y-axis0.start[1])**2)) x = axis0.start[0] + length * cos(alfa); y = axis0.start[1] + length * sin(alfa); pth.push("C %s %s" % (x, y)) # first control point in path # compute target control point alfa = axis1.angle() + radians(target_angle) length = sqrt( ((n1.x - axis1.start[0])**2) + ((n1.y-axis1.start[1])**2)) x = axis1.start[0] + length * cos(alfa); y = axis1.start[1] + length * sin(alfa); pth.push("%s %s" % (x, y)) # second control point in path pth.push("%s %s" % (n1.x, n1.y)) # target self.dwg.add(pth)
[ "Draw", "edges", "as", "Bézier", "curves", "." ]
rgarcia-herrera/pyveplot
python
https://github.com/rgarcia-herrera/pyveplot/blob/57ceadcca47e79c94ee22efc9ba1e4962f462015/pyveplot/__init__.py#L74-L121
[ "def", "connect", "(", "self", ",", "axis0", ",", "n0_index", ",", "source_angle", ",", "axis1", ",", "n1_index", ",", "target_angle", ",", "*", "*", "kwargs", ")", ":", "n0", "=", "axis0", ".", "nodes", "[", "n0_index", "]", "n1", "=", "axis1", ".", "nodes", "[", "n1_index", "]", "pth", "=", "self", ".", "dwg", ".", "path", "(", "d", "=", "\"M %s %s\"", "%", "(", "n0", ".", "x", ",", "n0", ".", "y", ")", ",", "fill", "=", "'none'", ",", "*", "*", "kwargs", ")", "# source", "# compute source control point", "alfa", "=", "axis0", ".", "angle", "(", ")", "+", "radians", "(", "source_angle", ")", "length", "=", "sqrt", "(", "(", "(", "n0", ".", "x", "-", "axis0", ".", "start", "[", "0", "]", ")", "**", "2", ")", "+", "(", "(", "n0", ".", "y", "-", "axis0", ".", "start", "[", "1", "]", ")", "**", "2", ")", ")", "x", "=", "axis0", ".", "start", "[", "0", "]", "+", "length", "*", "cos", "(", "alfa", ")", "y", "=", "axis0", ".", "start", "[", "1", "]", "+", "length", "*", "sin", "(", "alfa", ")", "pth", ".", "push", "(", "\"C %s %s\"", "%", "(", "x", ",", "y", ")", ")", "# first control point in path", "# compute target control point", "alfa", "=", "axis1", ".", "angle", "(", ")", "+", "radians", "(", "target_angle", ")", "length", "=", "sqrt", "(", "(", "(", "n1", ".", "x", "-", "axis1", ".", "start", "[", "0", "]", ")", "**", "2", ")", "+", "(", "(", "n1", ".", "y", "-", "axis1", ".", "start", "[", "1", "]", ")", "**", "2", ")", ")", "x", "=", "axis1", ".", "start", "[", "0", "]", "+", "length", "*", "cos", "(", "alfa", ")", "y", "=", "axis1", ".", "start", "[", "1", "]", "+", "length", "*", "sin", "(", "alfa", ")", "pth", ".", "push", "(", "\"%s %s\"", "%", "(", "x", ",", "y", ")", ")", "# second control point in path", "pth", ".", "push", "(", "\"%s %s\"", "%", "(", "n1", ".", "x", ",", "n1", ".", "y", ")", ")", "# target", "self", ".", "dwg", ".", "add", "(", "pth", ")" ]
57ceadcca47e79c94ee22efc9ba1e4962f462015
valid
Axis.add_node
Add a Node object to nodes dictionary, calculating its coordinates using offset Parameters ---------- node : a Node object offset : float number between 0 and 1 that sets the distance from the start point at which the node will be placed
pyveplot/__init__.py
def add_node(self, node, offset): """Add a Node object to nodes dictionary, calculating its coordinates using offset Parameters ---------- node : a Node object offset : float number between 0 and 1 that sets the distance from the start point at which the node will be placed """ # calculate x,y from offset considering axis start and end points width = self.end[0] - self.start[0] height = self.end[1] - self.start[1] node.x = self.start[0] + (width * offset) node.y = self.start[1] + (height * offset) self.nodes[node.ID] = node
def add_node(self, node, offset): """Add a Node object to nodes dictionary, calculating its coordinates using offset Parameters ---------- node : a Node object offset : float number between 0 and 1 that sets the distance from the start point at which the node will be placed """ # calculate x,y from offset considering axis start and end points width = self.end[0] - self.start[0] height = self.end[1] - self.start[1] node.x = self.start[0] + (width * offset) node.y = self.start[1] + (height * offset) self.nodes[node.ID] = node
[ "Add", "a", "Node", "object", "to", "nodes", "dictionary", "calculating", "its", "coordinates", "using", "offset" ]
rgarcia-herrera/pyveplot
python
https://github.com/rgarcia-herrera/pyveplot/blob/57ceadcca47e79c94ee22efc9ba1e4962f462015/pyveplot/__init__.py#L158-L174
[ "def", "add_node", "(", "self", ",", "node", ",", "offset", ")", ":", "# calculate x,y from offset considering axis start and end points", "width", "=", "self", ".", "end", "[", "0", "]", "-", "self", ".", "start", "[", "0", "]", "height", "=", "self", ".", "end", "[", "1", "]", "-", "self", ".", "start", "[", "1", "]", "node", ".", "x", "=", "self", ".", "start", "[", "0", "]", "+", "(", "width", "*", "offset", ")", "node", ".", "y", "=", "self", ".", "start", "[", "1", "]", "+", "(", "height", "*", "offset", ")", "self", ".", "nodes", "[", "node", ".", "ID", "]", "=", "node" ]
57ceadcca47e79c94ee22efc9ba1e4962f462015
valid
get_settings_path
Hunt down the settings.py module by going up the FS path
nosedjango/nosedjango.py
def get_settings_path(settings_module): ''' Hunt down the settings.py module by going up the FS path ''' cwd = os.getcwd() settings_filename = '%s.py' % ( settings_module.split('.')[-1] ) while cwd: if settings_filename in os.listdir(cwd): break cwd = os.path.split(cwd)[0] if os.name == 'nt' and NT_ROOT.match(cwd): return None elif cwd == '/': return None return cwd
def get_settings_path(settings_module): ''' Hunt down the settings.py module by going up the FS path ''' cwd = os.getcwd() settings_filename = '%s.py' % ( settings_module.split('.')[-1] ) while cwd: if settings_filename in os.listdir(cwd): break cwd = os.path.split(cwd)[0] if os.name == 'nt' and NT_ROOT.match(cwd): return None elif cwd == '/': return None return cwd
[ "Hunt", "down", "the", "settings", ".", "py", "module", "by", "going", "up", "the", "FS", "path" ]
nosedjango/nosedjango
python
https://github.com/nosedjango/nosedjango/blob/cd4d06857c88291769bc38e5c9573f43b7ffcd6a/nosedjango/nosedjango.py#L29-L45
[ "def", "get_settings_path", "(", "settings_module", ")", ":", "cwd", "=", "os", ".", "getcwd", "(", ")", "settings_filename", "=", "'%s.py'", "%", "(", "settings_module", ".", "split", "(", "'.'", ")", "[", "-", "1", "]", ")", "while", "cwd", ":", "if", "settings_filename", "in", "os", ".", "listdir", "(", "cwd", ")", ":", "break", "cwd", "=", "os", ".", "path", ".", "split", "(", "cwd", ")", "[", "0", "]", "if", "os", ".", "name", "==", "'nt'", "and", "NT_ROOT", ".", "match", "(", "cwd", ")", ":", "return", "None", "elif", "cwd", "==", "'/'", ":", "return", "None", "return", "cwd" ]
cd4d06857c88291769bc38e5c9573f43b7ffcd6a
valid
NoseDjango.begin
Create the test database and schema, if needed, and switch the connection over to that database. Then call install() to install all apps listed in the loaded settings module.
nosedjango/nosedjango.py
def begin(self): """ Create the test database and schema, if needed, and switch the connection over to that database. Then call install() to install all apps listed in the loaded settings module. """ for plugin in self.nose_config.plugins.plugins: if getattr(plugin, 'django_plugin', False): self.django_plugins.append(plugin) os.environ['DJANGO_SETTINGS_MODULE'] = self.settings_module if self.conf.addPaths: map(add_path, self.conf.where) try: __import__(self.settings_module) self.settings_path = self.settings_module except ImportError: # Settings module is not found in PYTHONPATH. Try to do # some funky backwards crawling in directory tree, ie. add # the working directory (and any package parents) to # sys.path before trying to import django modules; # otherwise, they won't be able to find project.settings # if the working dir is project/ or project/.. self.settings_path = get_settings_path(self.settings_module) if not self.settings_path: # short circuit if no settings file can be found raise RuntimeError("Can't find Django settings file!") add_path(self.settings_path) sys.path.append(self.settings_path) from django.conf import settings # Some Django code paths evaluate differently # between DEBUG and not DEBUG. Example of this include the url # dispatcher when 404's are hit. Django's own test runner forces DEBUG # to be off. settings.DEBUG = False self.call_plugins_method('beforeConnectionSetup', settings) from django.core import management from django.test.utils import setup_test_environment if hasattr(settings, 'DATABASES'): self.old_db = settings.DATABASES['default']['NAME'] else: self.old_db = settings.DATABASE_NAME from django.db import connections self._monkeypatch_test_classes() for connection in connections.all(): self.call_plugins_method( 'beforeTestSetup', settings, setup_test_environment, connection) try: setup_test_environment() except RuntimeError: # Django 1.11 + multiprocess this happens. pass import django if hasattr(django, 'setup'): django.setup() self.call_plugins_method('afterTestSetup', settings) management.get_commands() # Ensure that nothing (eg. South) steals away our syncdb command if self.django_version < self.DJANGO_1_7: management._commands['syncdb'] = 'django.core' for connection in connections.all(): self.call_plugins_method( 'beforeTestDb', settings, connection, management) connection.creation.create_test_db( verbosity=self.verbosity, autoclobber=True, ) logger.debug("Running syncdb") self._num_syncdb_calls += 1 self.call_plugins_method('afterTestDb', settings, connection) self.store_original_transaction_methods()
def begin(self): """ Create the test database and schema, if needed, and switch the connection over to that database. Then call install() to install all apps listed in the loaded settings module. """ for plugin in self.nose_config.plugins.plugins: if getattr(plugin, 'django_plugin', False): self.django_plugins.append(plugin) os.environ['DJANGO_SETTINGS_MODULE'] = self.settings_module if self.conf.addPaths: map(add_path, self.conf.where) try: __import__(self.settings_module) self.settings_path = self.settings_module except ImportError: # Settings module is not found in PYTHONPATH. Try to do # some funky backwards crawling in directory tree, ie. add # the working directory (and any package parents) to # sys.path before trying to import django modules; # otherwise, they won't be able to find project.settings # if the working dir is project/ or project/.. self.settings_path = get_settings_path(self.settings_module) if not self.settings_path: # short circuit if no settings file can be found raise RuntimeError("Can't find Django settings file!") add_path(self.settings_path) sys.path.append(self.settings_path) from django.conf import settings # Some Django code paths evaluate differently # between DEBUG and not DEBUG. Example of this include the url # dispatcher when 404's are hit. Django's own test runner forces DEBUG # to be off. settings.DEBUG = False self.call_plugins_method('beforeConnectionSetup', settings) from django.core import management from django.test.utils import setup_test_environment if hasattr(settings, 'DATABASES'): self.old_db = settings.DATABASES['default']['NAME'] else: self.old_db = settings.DATABASE_NAME from django.db import connections self._monkeypatch_test_classes() for connection in connections.all(): self.call_plugins_method( 'beforeTestSetup', settings, setup_test_environment, connection) try: setup_test_environment() except RuntimeError: # Django 1.11 + multiprocess this happens. pass import django if hasattr(django, 'setup'): django.setup() self.call_plugins_method('afterTestSetup', settings) management.get_commands() # Ensure that nothing (eg. South) steals away our syncdb command if self.django_version < self.DJANGO_1_7: management._commands['syncdb'] = 'django.core' for connection in connections.all(): self.call_plugins_method( 'beforeTestDb', settings, connection, management) connection.creation.create_test_db( verbosity=self.verbosity, autoclobber=True, ) logger.debug("Running syncdb") self._num_syncdb_calls += 1 self.call_plugins_method('afterTestDb', settings, connection) self.store_original_transaction_methods()
[ "Create", "the", "test", "database", "and", "schema", "if", "needed", "and", "switch", "the", "connection", "over", "to", "that", "database", ".", "Then", "call", "install", "()", "to", "install", "all", "apps", "listed", "in", "the", "loaded", "settings", "module", "." ]
nosedjango/nosedjango
python
https://github.com/nosedjango/nosedjango/blob/cd4d06857c88291769bc38e5c9573f43b7ffcd6a/nosedjango/nosedjango.py#L232-L317
[ "def", "begin", "(", "self", ")", ":", "for", "plugin", "in", "self", ".", "nose_config", ".", "plugins", ".", "plugins", ":", "if", "getattr", "(", "plugin", ",", "'django_plugin'", ",", "False", ")", ":", "self", ".", "django_plugins", ".", "append", "(", "plugin", ")", "os", ".", "environ", "[", "'DJANGO_SETTINGS_MODULE'", "]", "=", "self", ".", "settings_module", "if", "self", ".", "conf", ".", "addPaths", ":", "map", "(", "add_path", ",", "self", ".", "conf", ".", "where", ")", "try", ":", "__import__", "(", "self", ".", "settings_module", ")", "self", ".", "settings_path", "=", "self", ".", "settings_module", "except", "ImportError", ":", "# Settings module is not found in PYTHONPATH. Try to do", "# some funky backwards crawling in directory tree, ie. add", "# the working directory (and any package parents) to", "# sys.path before trying to import django modules;", "# otherwise, they won't be able to find project.settings", "# if the working dir is project/ or project/..", "self", ".", "settings_path", "=", "get_settings_path", "(", "self", ".", "settings_module", ")", "if", "not", "self", ".", "settings_path", ":", "# short circuit if no settings file can be found", "raise", "RuntimeError", "(", "\"Can't find Django settings file!\"", ")", "add_path", "(", "self", ".", "settings_path", ")", "sys", ".", "path", ".", "append", "(", "self", ".", "settings_path", ")", "from", "django", ".", "conf", "import", "settings", "# Some Django code paths evaluate differently", "# between DEBUG and not DEBUG. Example of this include the url", "# dispatcher when 404's are hit. Django's own test runner forces DEBUG", "# to be off.", "settings", ".", "DEBUG", "=", "False", "self", ".", "call_plugins_method", "(", "'beforeConnectionSetup'", ",", "settings", ")", "from", "django", ".", "core", "import", "management", "from", "django", ".", "test", ".", "utils", "import", "setup_test_environment", "if", "hasattr", "(", "settings", ",", "'DATABASES'", ")", ":", "self", ".", "old_db", "=", "settings", ".", "DATABASES", "[", "'default'", "]", "[", "'NAME'", "]", "else", ":", "self", ".", "old_db", "=", "settings", ".", "DATABASE_NAME", "from", "django", ".", "db", "import", "connections", "self", ".", "_monkeypatch_test_classes", "(", ")", "for", "connection", "in", "connections", ".", "all", "(", ")", ":", "self", ".", "call_plugins_method", "(", "'beforeTestSetup'", ",", "settings", ",", "setup_test_environment", ",", "connection", ")", "try", ":", "setup_test_environment", "(", ")", "except", "RuntimeError", ":", "# Django 1.11 + multiprocess this happens.", "pass", "import", "django", "if", "hasattr", "(", "django", ",", "'setup'", ")", ":", "django", ".", "setup", "(", ")", "self", ".", "call_plugins_method", "(", "'afterTestSetup'", ",", "settings", ")", "management", ".", "get_commands", "(", ")", "# Ensure that nothing (eg. South) steals away our syncdb command", "if", "self", ".", "django_version", "<", "self", ".", "DJANGO_1_7", ":", "management", ".", "_commands", "[", "'syncdb'", "]", "=", "'django.core'", "for", "connection", "in", "connections", ".", "all", "(", ")", ":", "self", ".", "call_plugins_method", "(", "'beforeTestDb'", ",", "settings", ",", "connection", ",", "management", ")", "connection", ".", "creation", ".", "create_test_db", "(", "verbosity", "=", "self", ".", "verbosity", ",", "autoclobber", "=", "True", ",", ")", "logger", ".", "debug", "(", "\"Running syncdb\"", ")", "self", ".", "_num_syncdb_calls", "+=", "1", "self", ".", "call_plugins_method", "(", "'afterTestDb'", ",", "settings", ",", "connection", ")", "self", ".", "store_original_transaction_methods", "(", ")" ]
cd4d06857c88291769bc38e5c9573f43b7ffcd6a
valid
NoseDjango._should_use_transaction_isolation
Determine if the given test supports transaction management for database rollback test isolation and also whether or not the test has opted out of that support. Transactions make database rollback much quicker when supported, with the caveat that any tests that are explicitly testing transactions won't work properly and any tests that depend on external access to the test database won't be able to view data created/altered during the test.
nosedjango/nosedjango.py
def _should_use_transaction_isolation(self, test, settings): """ Determine if the given test supports transaction management for database rollback test isolation and also whether or not the test has opted out of that support. Transactions make database rollback much quicker when supported, with the caveat that any tests that are explicitly testing transactions won't work properly and any tests that depend on external access to the test database won't be able to view data created/altered during the test. """ if not getattr(test.context, 'use_transaction_isolation', True): # The test explicitly says not to use transaction isolation return False if getattr(settings, 'DISABLE_TRANSACTION_MANAGEMENT', False): # Do not use transactions if user has forbidden usage. return False if hasattr(settings, 'DATABASE_SUPPORTS_TRANSACTIONS'): if not settings.DATABASE_SUPPORTS_TRANSACTIONS: # The DB doesn't support transactions. Don't try it return False return True
def _should_use_transaction_isolation(self, test, settings): """ Determine if the given test supports transaction management for database rollback test isolation and also whether or not the test has opted out of that support. Transactions make database rollback much quicker when supported, with the caveat that any tests that are explicitly testing transactions won't work properly and any tests that depend on external access to the test database won't be able to view data created/altered during the test. """ if not getattr(test.context, 'use_transaction_isolation', True): # The test explicitly says not to use transaction isolation return False if getattr(settings, 'DISABLE_TRANSACTION_MANAGEMENT', False): # Do not use transactions if user has forbidden usage. return False if hasattr(settings, 'DATABASE_SUPPORTS_TRANSACTIONS'): if not settings.DATABASE_SUPPORTS_TRANSACTIONS: # The DB doesn't support transactions. Don't try it return False return True
[ "Determine", "if", "the", "given", "test", "supports", "transaction", "management", "for", "database", "rollback", "test", "isolation", "and", "also", "whether", "or", "not", "the", "test", "has", "opted", "out", "of", "that", "support", "." ]
nosedjango/nosedjango
python
https://github.com/nosedjango/nosedjango/blob/cd4d06857c88291769bc38e5c9573f43b7ffcd6a/nosedjango/nosedjango.py#L319-L342
[ "def", "_should_use_transaction_isolation", "(", "self", ",", "test", ",", "settings", ")", ":", "if", "not", "getattr", "(", "test", ".", "context", ",", "'use_transaction_isolation'", ",", "True", ")", ":", "# The test explicitly says not to use transaction isolation", "return", "False", "if", "getattr", "(", "settings", ",", "'DISABLE_TRANSACTION_MANAGEMENT'", ",", "False", ")", ":", "# Do not use transactions if user has forbidden usage.", "return", "False", "if", "hasattr", "(", "settings", ",", "'DATABASE_SUPPORTS_TRANSACTIONS'", ")", ":", "if", "not", "settings", ".", "DATABASE_SUPPORTS_TRANSACTIONS", ":", "# The DB doesn't support transactions. Don't try it", "return", "False", "return", "True" ]
cd4d06857c88291769bc38e5c9573f43b7ffcd6a
valid
NoseDjango.finalize
Clean up any created database and schema.
nosedjango/nosedjango.py
def finalize(self, result=None): """ Clean up any created database and schema. """ if not self.settings_path: # short circuit if no settings file can be found return from django.test.utils import teardown_test_environment from django.db import connection from django.conf import settings self.call_plugins_method('beforeDestroyTestDb', settings, connection) try: connection.creation.destroy_test_db( self.old_db, verbosity=self.verbosity, ) except Exception: # If we can't tear down the test DB, don't worry about it. pass self.call_plugins_method('afterDestroyTestDb', settings, connection) self.call_plugins_method( 'beforeTeardownTestEnv', settings, teardown_test_environment) teardown_test_environment() self.call_plugins_method('afterTeardownTestEnv', settings)
def finalize(self, result=None): """ Clean up any created database and schema. """ if not self.settings_path: # short circuit if no settings file can be found return from django.test.utils import teardown_test_environment from django.db import connection from django.conf import settings self.call_plugins_method('beforeDestroyTestDb', settings, connection) try: connection.creation.destroy_test_db( self.old_db, verbosity=self.verbosity, ) except Exception: # If we can't tear down the test DB, don't worry about it. pass self.call_plugins_method('afterDestroyTestDb', settings, connection) self.call_plugins_method( 'beforeTeardownTestEnv', settings, teardown_test_environment) teardown_test_environment() self.call_plugins_method('afterTeardownTestEnv', settings)
[ "Clean", "up", "any", "created", "database", "and", "schema", "." ]
nosedjango/nosedjango
python
https://github.com/nosedjango/nosedjango/blob/cd4d06857c88291769bc38e5c9573f43b7ffcd6a/nosedjango/nosedjango.py#L508-L534
[ "def", "finalize", "(", "self", ",", "result", "=", "None", ")", ":", "if", "not", "self", ".", "settings_path", ":", "# short circuit if no settings file can be found", "return", "from", "django", ".", "test", ".", "utils", "import", "teardown_test_environment", "from", "django", ".", "db", "import", "connection", "from", "django", ".", "conf", "import", "settings", "self", ".", "call_plugins_method", "(", "'beforeDestroyTestDb'", ",", "settings", ",", "connection", ")", "try", ":", "connection", ".", "creation", ".", "destroy_test_db", "(", "self", ".", "old_db", ",", "verbosity", "=", "self", ".", "verbosity", ",", ")", "except", "Exception", ":", "# If we can't tear down the test DB, don't worry about it.", "pass", "self", ".", "call_plugins_method", "(", "'afterDestroyTestDb'", ",", "settings", ",", "connection", ")", "self", ".", "call_plugins_method", "(", "'beforeTeardownTestEnv'", ",", "settings", ",", "teardown_test_environment", ")", "teardown_test_environment", "(", ")", "self", ".", "call_plugins_method", "(", "'afterTeardownTestEnv'", ",", "settings", ")" ]
cd4d06857c88291769bc38e5c9573f43b7ffcd6a
valid
norm
Truncates field to 0,1; then normalizes to a uin8 on [0,255]
peri/viz/render.py
def norm(field, vmin=0, vmax=255): """Truncates field to 0,1; then normalizes to a uin8 on [0,255]""" field = 255*np.clip(field, 0, 1) field = field.astype('uint8') return field
def norm(field, vmin=0, vmax=255): """Truncates field to 0,1; then normalizes to a uin8 on [0,255]""" field = 255*np.clip(field, 0, 1) field = field.astype('uint8') return field
[ "Truncates", "field", "to", "0", "1", ";", "then", "normalizes", "to", "a", "uin8", "on", "[", "0", "255", "]" ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/viz/render.py#L12-L16
[ "def", "norm", "(", "field", ",", "vmin", "=", "0", ",", "vmax", "=", "255", ")", ":", "field", "=", "255", "*", "np", ".", "clip", "(", "field", ",", "0", ",", "1", ")", "field", "=", "field", ".", "astype", "(", "'uint8'", ")", "return", "field" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
extract_field
Given a state, extracts a field. Extracted value depends on the value of field: 'exp-particles' : The inverted data in the regions of the particles, zeros otherwise -- i.e. particles + noise. 'exp-platonic' : Same as above, but nonzero in the region of the entire platonic image -- i.e. platonic + noise. 'sim-particles' : Just the particles image; no noise from the data. 'sim-platonic' : Just the platonic image; no noise from the data.
peri/viz/render.py
def extract_field(state, field='exp-particles'): """ Given a state, extracts a field. Extracted value depends on the value of field: 'exp-particles' : The inverted data in the regions of the particles, zeros otherwise -- i.e. particles + noise. 'exp-platonic' : Same as above, but nonzero in the region of the entire platonic image -- i.e. platonic + noise. 'sim-particles' : Just the particles image; no noise from the data. 'sim-platonic' : Just the platonic image; no noise from the data. """ es, pp = field.split('-') #exp vs sim, particles vs platonic #1. The weights for the field, based off the platonic vs particles if pp == 'particles': o = state.get('obj') if isinstance(o, peri.comp.comp.ComponentCollection): wts = 0*o.get()[state.inner] for c in o.comps: if isinstance(c, peri.comp.objs.PlatonicSpheresCollection): wts += c.get()[state.inner] else: wts = o.get()[state.inner] elif pp == 'platonic': wts = state.get('obj').get()[state.inner] else: raise ValueError('Not a proper field.') #2. Exp vs sim-like data if es == 'exp': out = (1-state.data) * (wts > 1e-5) elif es == 'sim': out = wts else: raise ValueError('Not a proper field.') return norm(clip(roll(out)))
def extract_field(state, field='exp-particles'): """ Given a state, extracts a field. Extracted value depends on the value of field: 'exp-particles' : The inverted data in the regions of the particles, zeros otherwise -- i.e. particles + noise. 'exp-platonic' : Same as above, but nonzero in the region of the entire platonic image -- i.e. platonic + noise. 'sim-particles' : Just the particles image; no noise from the data. 'sim-platonic' : Just the platonic image; no noise from the data. """ es, pp = field.split('-') #exp vs sim, particles vs platonic #1. The weights for the field, based off the platonic vs particles if pp == 'particles': o = state.get('obj') if isinstance(o, peri.comp.comp.ComponentCollection): wts = 0*o.get()[state.inner] for c in o.comps: if isinstance(c, peri.comp.objs.PlatonicSpheresCollection): wts += c.get()[state.inner] else: wts = o.get()[state.inner] elif pp == 'platonic': wts = state.get('obj').get()[state.inner] else: raise ValueError('Not a proper field.') #2. Exp vs sim-like data if es == 'exp': out = (1-state.data) * (wts > 1e-5) elif es == 'sim': out = wts else: raise ValueError('Not a proper field.') return norm(clip(roll(out)))
[ "Given", "a", "state", "extracts", "a", "field", ".", "Extracted", "value", "depends", "on", "the", "value", "of", "field", ":", "exp", "-", "particles", ":", "The", "inverted", "data", "in", "the", "regions", "of", "the", "particles", "zeros", "otherwise", "--", "i", ".", "e", ".", "particles", "+", "noise", ".", "exp", "-", "platonic", ":", "Same", "as", "above", "but", "nonzero", "in", "the", "region", "of", "the", "entire", "platonic", "image", "--", "i", ".", "e", ".", "platonic", "+", "noise", ".", "sim", "-", "particles", ":", "Just", "the", "particles", "image", ";", "no", "noise", "from", "the", "data", ".", "sim", "-", "platonic", ":", "Just", "the", "platonic", "image", ";", "no", "noise", "from", "the", "data", "." ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/viz/render.py#L24-L57
[ "def", "extract_field", "(", "state", ",", "field", "=", "'exp-particles'", ")", ":", "es", ",", "pp", "=", "field", ".", "split", "(", "'-'", ")", "#exp vs sim, particles vs platonic", "#1. The weights for the field, based off the platonic vs particles", "if", "pp", "==", "'particles'", ":", "o", "=", "state", ".", "get", "(", "'obj'", ")", "if", "isinstance", "(", "o", ",", "peri", ".", "comp", ".", "comp", ".", "ComponentCollection", ")", ":", "wts", "=", "0", "*", "o", ".", "get", "(", ")", "[", "state", ".", "inner", "]", "for", "c", "in", "o", ".", "comps", ":", "if", "isinstance", "(", "c", ",", "peri", ".", "comp", ".", "objs", ".", "PlatonicSpheresCollection", ")", ":", "wts", "+=", "c", ".", "get", "(", ")", "[", "state", ".", "inner", "]", "else", ":", "wts", "=", "o", ".", "get", "(", ")", "[", "state", ".", "inner", "]", "elif", "pp", "==", "'platonic'", ":", "wts", "=", "state", ".", "get", "(", "'obj'", ")", ".", "get", "(", ")", "[", "state", ".", "inner", "]", "else", ":", "raise", "ValueError", "(", "'Not a proper field.'", ")", "#2. Exp vs sim-like data", "if", "es", "==", "'exp'", ":", "out", "=", "(", "1", "-", "state", ".", "data", ")", "*", "(", "wts", ">", "1e-5", ")", "elif", "es", "==", "'sim'", ":", "out", "=", "wts", "else", ":", "raise", "ValueError", "(", "'Not a proper field.'", ")", "return", "norm", "(", "clip", "(", "roll", "(", "out", ")", ")", ")" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
volume_render
Uses vtk to make render an image of a field, with control over the camera angle and colormap. Input Parameters ---------------- field : np.ndarray 3D array of the field to render. outfile : string The save name of the image. maxopacity : Float Default is 1.0 cmap : matplotlib colormap string Passed to cmap2colorfunc. Default is bone. size : 2-element list-like of ints or Int The size of the final rendered image. elevation : Numeric The elevation of the camera angle, in degrees. Default is 45 azimuth : Numeric The azimuth of the camera angle, in degrees. Default is 45 bkg : Tuple of floats 3-element tuple of floats on [0,1] of the background image color. Default is (0., 0., 0.).
peri/viz/render.py
def volume_render(field, outfile, maxopacity=1.0, cmap='bone', size=600, elevation=45, azimuth=45, bkg=(0.0, 0.0, 0.0), opacitycut=0.35, offscreen=False, rayfunction='smart'): """ Uses vtk to make render an image of a field, with control over the camera angle and colormap. Input Parameters ---------------- field : np.ndarray 3D array of the field to render. outfile : string The save name of the image. maxopacity : Float Default is 1.0 cmap : matplotlib colormap string Passed to cmap2colorfunc. Default is bone. size : 2-element list-like of ints or Int The size of the final rendered image. elevation : Numeric The elevation of the camera angle, in degrees. Default is 45 azimuth : Numeric The azimuth of the camera angle, in degrees. Default is 45 bkg : Tuple of floats 3-element tuple of floats on [0,1] of the background image color. Default is (0., 0., 0.). """ sh = field.shape dataImporter = vtk.vtkImageImport() dataImporter.SetDataScalarTypeToUnsignedChar() data_string = field.tostring() dataImporter.SetNumberOfScalarComponents(1) dataImporter.CopyImportVoidPointer(data_string, len(data_string)) dataImporter.SetDataExtent(0, sh[2]-1, 0, sh[1]-1, 0, sh[0]-1) dataImporter.SetWholeExtent(0, sh[2]-1, 0, sh[1]-1, 0, sh[0]-1) alphaChannelFunc = vtk.vtkPiecewiseFunction() alphaChannelFunc.AddPoint(0, 0.0) alphaChannelFunc.AddPoint(int(255*opacitycut), maxopacity) volumeProperty = vtk.vtkVolumeProperty() colorFunc = cmap2colorfunc(cmap) volumeProperty.SetColor(colorFunc) volumeProperty.SetScalarOpacity(alphaChannelFunc) volumeMapper = vtk.vtkVolumeRayCastMapper() if rayfunction == 'mip': comp = vtk.vtkVolumeRayCastMIPFunction() comp.SetMaximizeMethodToOpacity() elif rayfunction == 'avg': comp = vtk.vtkVolumeRayCastCompositeFunction() elif rayfunction == 'iso': comp = vtk.vtkVolumeRayCastIsosurfaceFunction() comp.SetIsoValue(maxopacity/2) else: comp = vtk.vtkVolumeRayCastIsosurfaceFunction() volumeMapper.SetSampleDistance(0.1) volumeMapper.SetVolumeRayCastFunction(comp) if rayfunction == 'smart': volumeMapper = vtk.vtkSmartVolumeMapper() volumeMapper.SetInputConnection(dataImporter.GetOutputPort()) volume = vtk.vtkVolume() volume.SetMapper(volumeMapper) volume.SetProperty(volumeProperty) light = vtk.vtkLight() light.SetLightType(vtk.VTK_LIGHT_TYPE_HEADLIGHT) light.SetIntensity(5.5) light.SwitchOn() renderer = vtk.vtkRenderer() renderWin = vtk.vtkRenderWindow() renderWin.AddRenderer(renderer) renderWin.SetOffScreenRendering(1); if not hasattr(size, '__iter__'): size = (size, size) renderer.AddVolume(volume) renderer.AddLight(light) renderer.SetBackground(*bkg) renderWin.SetSize(*size) if offscreen: renderWin.SetOffScreenRendering(1) def exitCheck(obj, event): if obj.GetEventPending() != 0: obj.SetAbortRender(1) renderWin.AddObserver("AbortCheckEvent", exitCheck) renderInteractor = vtk.vtkRenderWindowInteractor() renderInteractor.Initialize() renderWin.Render() renderInteractor.Start() #writer = vtk.vtkFFMPEGWriter() #writer.SetQuality(2) #writer.SetRate(24) #w2i = vtk.vtkWindowToImageFilter() #w2i.SetInput(renderWin) #writer.SetInputConnection(w2i.GetOutputPort()) #writer.SetFileName('movie.avi') #writer.Start() #writer.End() writer = vtk.vtkPNGWriter() w2i = vtk.vtkWindowToImageFilter() w2i.SetInput(renderWin) writer.SetInputConnection(w2i.GetOutputPort()) renderWin.Render() ac = renderer.GetActiveCamera() ac.Elevation(elevation) ac.Azimuth(azimuth) renderer.ResetCameraClippingRange() renderWin.Render() w2i.Modified() writer.SetFileName(outfile) writer.Write()
def volume_render(field, outfile, maxopacity=1.0, cmap='bone', size=600, elevation=45, azimuth=45, bkg=(0.0, 0.0, 0.0), opacitycut=0.35, offscreen=False, rayfunction='smart'): """ Uses vtk to make render an image of a field, with control over the camera angle and colormap. Input Parameters ---------------- field : np.ndarray 3D array of the field to render. outfile : string The save name of the image. maxopacity : Float Default is 1.0 cmap : matplotlib colormap string Passed to cmap2colorfunc. Default is bone. size : 2-element list-like of ints or Int The size of the final rendered image. elevation : Numeric The elevation of the camera angle, in degrees. Default is 45 azimuth : Numeric The azimuth of the camera angle, in degrees. Default is 45 bkg : Tuple of floats 3-element tuple of floats on [0,1] of the background image color. Default is (0., 0., 0.). """ sh = field.shape dataImporter = vtk.vtkImageImport() dataImporter.SetDataScalarTypeToUnsignedChar() data_string = field.tostring() dataImporter.SetNumberOfScalarComponents(1) dataImporter.CopyImportVoidPointer(data_string, len(data_string)) dataImporter.SetDataExtent(0, sh[2]-1, 0, sh[1]-1, 0, sh[0]-1) dataImporter.SetWholeExtent(0, sh[2]-1, 0, sh[1]-1, 0, sh[0]-1) alphaChannelFunc = vtk.vtkPiecewiseFunction() alphaChannelFunc.AddPoint(0, 0.0) alphaChannelFunc.AddPoint(int(255*opacitycut), maxopacity) volumeProperty = vtk.vtkVolumeProperty() colorFunc = cmap2colorfunc(cmap) volumeProperty.SetColor(colorFunc) volumeProperty.SetScalarOpacity(alphaChannelFunc) volumeMapper = vtk.vtkVolumeRayCastMapper() if rayfunction == 'mip': comp = vtk.vtkVolumeRayCastMIPFunction() comp.SetMaximizeMethodToOpacity() elif rayfunction == 'avg': comp = vtk.vtkVolumeRayCastCompositeFunction() elif rayfunction == 'iso': comp = vtk.vtkVolumeRayCastIsosurfaceFunction() comp.SetIsoValue(maxopacity/2) else: comp = vtk.vtkVolumeRayCastIsosurfaceFunction() volumeMapper.SetSampleDistance(0.1) volumeMapper.SetVolumeRayCastFunction(comp) if rayfunction == 'smart': volumeMapper = vtk.vtkSmartVolumeMapper() volumeMapper.SetInputConnection(dataImporter.GetOutputPort()) volume = vtk.vtkVolume() volume.SetMapper(volumeMapper) volume.SetProperty(volumeProperty) light = vtk.vtkLight() light.SetLightType(vtk.VTK_LIGHT_TYPE_HEADLIGHT) light.SetIntensity(5.5) light.SwitchOn() renderer = vtk.vtkRenderer() renderWin = vtk.vtkRenderWindow() renderWin.AddRenderer(renderer) renderWin.SetOffScreenRendering(1); if not hasattr(size, '__iter__'): size = (size, size) renderer.AddVolume(volume) renderer.AddLight(light) renderer.SetBackground(*bkg) renderWin.SetSize(*size) if offscreen: renderWin.SetOffScreenRendering(1) def exitCheck(obj, event): if obj.GetEventPending() != 0: obj.SetAbortRender(1) renderWin.AddObserver("AbortCheckEvent", exitCheck) renderInteractor = vtk.vtkRenderWindowInteractor() renderInteractor.Initialize() renderWin.Render() renderInteractor.Start() #writer = vtk.vtkFFMPEGWriter() #writer.SetQuality(2) #writer.SetRate(24) #w2i = vtk.vtkWindowToImageFilter() #w2i.SetInput(renderWin) #writer.SetInputConnection(w2i.GetOutputPort()) #writer.SetFileName('movie.avi') #writer.Start() #writer.End() writer = vtk.vtkPNGWriter() w2i = vtk.vtkWindowToImageFilter() w2i.SetInput(renderWin) writer.SetInputConnection(w2i.GetOutputPort()) renderWin.Render() ac = renderer.GetActiveCamera() ac.Elevation(elevation) ac.Azimuth(azimuth) renderer.ResetCameraClippingRange() renderWin.Render() w2i.Modified() writer.SetFileName(outfile) writer.Write()
[ "Uses", "vtk", "to", "make", "render", "an", "image", "of", "a", "field", "with", "control", "over", "the", "camera", "angle", "and", "colormap", "." ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/viz/render.py#L68-L192
[ "def", "volume_render", "(", "field", ",", "outfile", ",", "maxopacity", "=", "1.0", ",", "cmap", "=", "'bone'", ",", "size", "=", "600", ",", "elevation", "=", "45", ",", "azimuth", "=", "45", ",", "bkg", "=", "(", "0.0", ",", "0.0", ",", "0.0", ")", ",", "opacitycut", "=", "0.35", ",", "offscreen", "=", "False", ",", "rayfunction", "=", "'smart'", ")", ":", "sh", "=", "field", ".", "shape", "dataImporter", "=", "vtk", ".", "vtkImageImport", "(", ")", "dataImporter", ".", "SetDataScalarTypeToUnsignedChar", "(", ")", "data_string", "=", "field", ".", "tostring", "(", ")", "dataImporter", ".", "SetNumberOfScalarComponents", "(", "1", ")", "dataImporter", ".", "CopyImportVoidPointer", "(", "data_string", ",", "len", "(", "data_string", ")", ")", "dataImporter", ".", "SetDataExtent", "(", "0", ",", "sh", "[", "2", "]", "-", "1", ",", "0", ",", "sh", "[", "1", "]", "-", "1", ",", "0", ",", "sh", "[", "0", "]", "-", "1", ")", "dataImporter", ".", "SetWholeExtent", "(", "0", ",", "sh", "[", "2", "]", "-", "1", ",", "0", ",", "sh", "[", "1", "]", "-", "1", ",", "0", ",", "sh", "[", "0", "]", "-", "1", ")", "alphaChannelFunc", "=", "vtk", ".", "vtkPiecewiseFunction", "(", ")", "alphaChannelFunc", ".", "AddPoint", "(", "0", ",", "0.0", ")", "alphaChannelFunc", ".", "AddPoint", "(", "int", "(", "255", "*", "opacitycut", ")", ",", "maxopacity", ")", "volumeProperty", "=", "vtk", ".", "vtkVolumeProperty", "(", ")", "colorFunc", "=", "cmap2colorfunc", "(", "cmap", ")", "volumeProperty", ".", "SetColor", "(", "colorFunc", ")", "volumeProperty", ".", "SetScalarOpacity", "(", "alphaChannelFunc", ")", "volumeMapper", "=", "vtk", ".", "vtkVolumeRayCastMapper", "(", ")", "if", "rayfunction", "==", "'mip'", ":", "comp", "=", "vtk", ".", "vtkVolumeRayCastMIPFunction", "(", ")", "comp", ".", "SetMaximizeMethodToOpacity", "(", ")", "elif", "rayfunction", "==", "'avg'", ":", "comp", "=", "vtk", ".", "vtkVolumeRayCastCompositeFunction", "(", ")", "elif", "rayfunction", "==", "'iso'", ":", "comp", "=", "vtk", ".", "vtkVolumeRayCastIsosurfaceFunction", "(", ")", "comp", ".", "SetIsoValue", "(", "maxopacity", "/", "2", ")", "else", ":", "comp", "=", "vtk", ".", "vtkVolumeRayCastIsosurfaceFunction", "(", ")", "volumeMapper", ".", "SetSampleDistance", "(", "0.1", ")", "volumeMapper", ".", "SetVolumeRayCastFunction", "(", "comp", ")", "if", "rayfunction", "==", "'smart'", ":", "volumeMapper", "=", "vtk", ".", "vtkSmartVolumeMapper", "(", ")", "volumeMapper", ".", "SetInputConnection", "(", "dataImporter", ".", "GetOutputPort", "(", ")", ")", "volume", "=", "vtk", ".", "vtkVolume", "(", ")", "volume", ".", "SetMapper", "(", "volumeMapper", ")", "volume", ".", "SetProperty", "(", "volumeProperty", ")", "light", "=", "vtk", ".", "vtkLight", "(", ")", "light", ".", "SetLightType", "(", "vtk", ".", "VTK_LIGHT_TYPE_HEADLIGHT", ")", "light", ".", "SetIntensity", "(", "5.5", ")", "light", ".", "SwitchOn", "(", ")", "renderer", "=", "vtk", ".", "vtkRenderer", "(", ")", "renderWin", "=", "vtk", ".", "vtkRenderWindow", "(", ")", "renderWin", ".", "AddRenderer", "(", "renderer", ")", "renderWin", ".", "SetOffScreenRendering", "(", "1", ")", "if", "not", "hasattr", "(", "size", ",", "'__iter__'", ")", ":", "size", "=", "(", "size", ",", "size", ")", "renderer", ".", "AddVolume", "(", "volume", ")", "renderer", ".", "AddLight", "(", "light", ")", "renderer", ".", "SetBackground", "(", "*", "bkg", ")", "renderWin", ".", "SetSize", "(", "*", "size", ")", "if", "offscreen", ":", "renderWin", ".", "SetOffScreenRendering", "(", "1", ")", "def", "exitCheck", "(", "obj", ",", "event", ")", ":", "if", "obj", ".", "GetEventPending", "(", ")", "!=", "0", ":", "obj", ".", "SetAbortRender", "(", "1", ")", "renderWin", ".", "AddObserver", "(", "\"AbortCheckEvent\"", ",", "exitCheck", ")", "renderInteractor", "=", "vtk", ".", "vtkRenderWindowInteractor", "(", ")", "renderInteractor", ".", "Initialize", "(", ")", "renderWin", ".", "Render", "(", ")", "renderInteractor", ".", "Start", "(", ")", "#writer = vtk.vtkFFMPEGWriter()", "#writer.SetQuality(2)", "#writer.SetRate(24)", "#w2i = vtk.vtkWindowToImageFilter()", "#w2i.SetInput(renderWin)", "#writer.SetInputConnection(w2i.GetOutputPort())", "#writer.SetFileName('movie.avi')", "#writer.Start()", "#writer.End()", "writer", "=", "vtk", ".", "vtkPNGWriter", "(", ")", "w2i", "=", "vtk", ".", "vtkWindowToImageFilter", "(", ")", "w2i", ".", "SetInput", "(", "renderWin", ")", "writer", ".", "SetInputConnection", "(", "w2i", ".", "GetOutputPort", "(", ")", ")", "renderWin", ".", "Render", "(", ")", "ac", "=", "renderer", ".", "GetActiveCamera", "(", ")", "ac", ".", "Elevation", "(", "elevation", ")", "ac", ".", "Azimuth", "(", "azimuth", ")", "renderer", ".", "ResetCameraClippingRange", "(", ")", "renderWin", ".", "Render", "(", ")", "w2i", ".", "Modified", "(", ")", "writer", ".", "SetFileName", "(", "outfile", ")", "writer", ".", "Write", "(", ")" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
make_clean_figure
Makes a `matplotlib.pyplot.Figure` without tooltips or keybindings Parameters ---------- figsize : tuple Figsize as passed to `matplotlib.pyplot.figure` remove_tooltips, remove_keybindings : bool Set to True to remove the tooltips bar or any key bindings, respectively. Default is False Returns ------- fig : `matplotlib.pyplot.Figure`
peri/viz/interaction.py
def make_clean_figure(figsize, remove_tooltips=False, remove_keybindings=False): """ Makes a `matplotlib.pyplot.Figure` without tooltips or keybindings Parameters ---------- figsize : tuple Figsize as passed to `matplotlib.pyplot.figure` remove_tooltips, remove_keybindings : bool Set to True to remove the tooltips bar or any key bindings, respectively. Default is False Returns ------- fig : `matplotlib.pyplot.Figure` """ tooltip = mpl.rcParams['toolbar'] if remove_tooltips: mpl.rcParams['toolbar'] = 'None' fig = pl.figure(figsize=figsize) mpl.rcParams['toolbar'] = tooltip if remove_keybindings: fig.canvas.mpl_disconnect(fig.canvas.manager.key_press_handler_id) return fig
def make_clean_figure(figsize, remove_tooltips=False, remove_keybindings=False): """ Makes a `matplotlib.pyplot.Figure` without tooltips or keybindings Parameters ---------- figsize : tuple Figsize as passed to `matplotlib.pyplot.figure` remove_tooltips, remove_keybindings : bool Set to True to remove the tooltips bar or any key bindings, respectively. Default is False Returns ------- fig : `matplotlib.pyplot.Figure` """ tooltip = mpl.rcParams['toolbar'] if remove_tooltips: mpl.rcParams['toolbar'] = 'None' fig = pl.figure(figsize=figsize) mpl.rcParams['toolbar'] = tooltip if remove_keybindings: fig.canvas.mpl_disconnect(fig.canvas.manager.key_press_handler_id) return fig
[ "Makes", "a", "matplotlib", ".", "pyplot", ".", "Figure", "without", "tooltips", "or", "keybindings" ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/viz/interaction.py#L14-L37
[ "def", "make_clean_figure", "(", "figsize", ",", "remove_tooltips", "=", "False", ",", "remove_keybindings", "=", "False", ")", ":", "tooltip", "=", "mpl", ".", "rcParams", "[", "'toolbar'", "]", "if", "remove_tooltips", ":", "mpl", ".", "rcParams", "[", "'toolbar'", "]", "=", "'None'", "fig", "=", "pl", ".", "figure", "(", "figsize", "=", "figsize", ")", "mpl", ".", "rcParams", "[", "'toolbar'", "]", "=", "tooltip", "if", "remove_keybindings", ":", "fig", ".", "canvas", ".", "mpl_disconnect", "(", "fig", ".", "canvas", ".", "manager", ".", "key_press_handler_id", ")", "return", "fig" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
OrthoPrefeature._particle_func
Draws a gaussian, range is (0,1]. Coords = [3,n]
peri/viz/interaction.py
def _particle_func(self, coords, pos, wid): """Draws a gaussian, range is (0,1]. Coords = [3,n]""" dx, dy, dz = [c - p for c,p in zip(coords, pos)] dr2 = dx*dx + dy*dy + dz*dz return np.exp(-dr2/(2*wid*wid))
def _particle_func(self, coords, pos, wid): """Draws a gaussian, range is (0,1]. Coords = [3,n]""" dx, dy, dz = [c - p for c,p in zip(coords, pos)] dr2 = dx*dx + dy*dy + dz*dz return np.exp(-dr2/(2*wid*wid))
[ "Draws", "a", "gaussian", "range", "is", "(", "0", "1", "]", ".", "Coords", "=", "[", "3", "n", "]" ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/viz/interaction.py#L634-L638
[ "def", "_particle_func", "(", "self", ",", "coords", ",", "pos", ",", "wid", ")", ":", "dx", ",", "dy", ",", "dz", "=", "[", "c", "-", "p", "for", "c", ",", "p", "in", "zip", "(", "coords", ",", "pos", ")", "]", "dr2", "=", "dx", "*", "dx", "+", "dy", "*", "dy", "+", "dz", "*", "dz", "return", "np", ".", "exp", "(", "-", "dr2", "/", "(", "2", "*", "wid", "*", "wid", ")", ")" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
OrthoPrefeature.update_field
updates self.field
peri/viz/interaction.py
def update_field(self, poses=None): """updates self.field""" m = np.clip(self.particle_field, 0, 1) part_color = np.zeros(self._image.shape) for a in range(4): part_color[:,:,:,a] = self.part_col[a] self.field = np.zeros(self._image.shape) for a in range(4): self.field[:,:,:,a] = m*part_color[:,:,:,a] + (1-m) * self._image[:,:,:,a]
def update_field(self, poses=None): """updates self.field""" m = np.clip(self.particle_field, 0, 1) part_color = np.zeros(self._image.shape) for a in range(4): part_color[:,:,:,a] = self.part_col[a] self.field = np.zeros(self._image.shape) for a in range(4): self.field[:,:,:,a] = m*part_color[:,:,:,a] + (1-m) * self._image[:,:,:,a]
[ "updates", "self", ".", "field" ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/viz/interaction.py#L656-L663
[ "def", "update_field", "(", "self", ",", "poses", "=", "None", ")", ":", "m", "=", "np", ".", "clip", "(", "self", ".", "particle_field", ",", "0", ",", "1", ")", "part_color", "=", "np", ".", "zeros", "(", "self", ".", "_image", ".", "shape", ")", "for", "a", "in", "range", "(", "4", ")", ":", "part_color", "[", ":", ",", ":", ",", ":", ",", "a", "]", "=", "self", ".", "part_col", "[", "a", "]", "self", ".", "field", "=", "np", ".", "zeros", "(", "self", ".", "_image", ".", "shape", ")", "for", "a", "in", "range", "(", "4", ")", ":", "self", ".", "field", "[", ":", ",", ":", ",", ":", ",", "a", "]", "=", "m", "*", "part_color", "[", ":", ",", ":", ",", ":", ",", "a", "]", "+", "(", "1", "-", "m", ")", "*", "self", ".", "_image", "[", ":", ",", ":", ",", ":", ",", "a", "]" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
OrthoPrefeature._remove_closest_particle
removes the closest particle in self.pos to ``p``
peri/viz/interaction.py
def _remove_closest_particle(self, p): """removes the closest particle in self.pos to ``p``""" #1. find closest pos: dp = self.pos - p dist2 = (dp*dp).sum(axis=1) ind = dist2.argmin() rp = self.pos[ind].copy() #2. delete self.pos = np.delete(self.pos, ind, axis=0) return rp
def _remove_closest_particle(self, p): """removes the closest particle in self.pos to ``p``""" #1. find closest pos: dp = self.pos - p dist2 = (dp*dp).sum(axis=1) ind = dist2.argmin() rp = self.pos[ind].copy() #2. delete self.pos = np.delete(self.pos, ind, axis=0) return rp
[ "removes", "the", "closest", "particle", "in", "self", ".", "pos", "to", "p" ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/viz/interaction.py#L778-L787
[ "def", "_remove_closest_particle", "(", "self", ",", "p", ")", ":", "#1. find closest pos:", "dp", "=", "self", ".", "pos", "-", "p", "dist2", "=", "(", "dp", "*", "dp", ")", ".", "sum", "(", "axis", "=", "1", ")", "ind", "=", "dist2", ".", "argmin", "(", ")", "rp", "=", "self", ".", "pos", "[", "ind", "]", ".", "copy", "(", ")", "#2. delete", "self", ".", "pos", "=", "np", ".", "delete", "(", "self", ".", "pos", ",", "ind", ",", "axis", "=", "0", ")", "return", "rp" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
diffusion
See `diffusion_correlated` for information related to units, etc
scripts/does_matter/brownian-motion.py
def diffusion(diffusion_constant=0.2, exposure_time=0.05, samples=200): """ See `diffusion_correlated` for information related to units, etc """ radius = 5 psfsize = np.array([2.0, 1.0, 3.0]) # create a base image of one particle s0 = init.create_single_particle_state(imsize=4*radius, radius=radius, psfargs={'params': psfsize, 'error': 1e-6}) # add up a bunch of trajectories finalimage = 0*s0.get_model_image()[s0.inner] position = 0*s0.obj.pos[0] for i in xrange(samples): offset = np.sqrt(6*diffusion_constant*exposure_time)*np.random.randn(3) s0.obj.pos[0] = np.array(s0.image.shape)/2 + offset s0.reset() finalimage += s0.get_model_image()[s0.inner] position += s0.obj.pos[0] finalimage /= float(samples) position /= float(samples) # place that into a new image at the expected parameters s = init.create_single_particle_state(imsize=4*radius, sigma=0.05, radius=radius, psfargs={'params': psfsize, 'error': 1e-6}) s.reset() # measure the true inferred parameters return s, finalimage, position
def diffusion(diffusion_constant=0.2, exposure_time=0.05, samples=200): """ See `diffusion_correlated` for information related to units, etc """ radius = 5 psfsize = np.array([2.0, 1.0, 3.0]) # create a base image of one particle s0 = init.create_single_particle_state(imsize=4*radius, radius=radius, psfargs={'params': psfsize, 'error': 1e-6}) # add up a bunch of trajectories finalimage = 0*s0.get_model_image()[s0.inner] position = 0*s0.obj.pos[0] for i in xrange(samples): offset = np.sqrt(6*diffusion_constant*exposure_time)*np.random.randn(3) s0.obj.pos[0] = np.array(s0.image.shape)/2 + offset s0.reset() finalimage += s0.get_model_image()[s0.inner] position += s0.obj.pos[0] finalimage /= float(samples) position /= float(samples) # place that into a new image at the expected parameters s = init.create_single_particle_state(imsize=4*radius, sigma=0.05, radius=radius, psfargs={'params': psfsize, 'error': 1e-6}) s.reset() # measure the true inferred parameters return s, finalimage, position
[ "See", "diffusion_correlated", "for", "information", "related", "to", "units", "etc" ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/scripts/does_matter/brownian-motion.py#L11-L43
[ "def", "diffusion", "(", "diffusion_constant", "=", "0.2", ",", "exposure_time", "=", "0.05", ",", "samples", "=", "200", ")", ":", "radius", "=", "5", "psfsize", "=", "np", ".", "array", "(", "[", "2.0", ",", "1.0", ",", "3.0", "]", ")", "# create a base image of one particle", "s0", "=", "init", ".", "create_single_particle_state", "(", "imsize", "=", "4", "*", "radius", ",", "radius", "=", "radius", ",", "psfargs", "=", "{", "'params'", ":", "psfsize", ",", "'error'", ":", "1e-6", "}", ")", "# add up a bunch of trajectories", "finalimage", "=", "0", "*", "s0", ".", "get_model_image", "(", ")", "[", "s0", ".", "inner", "]", "position", "=", "0", "*", "s0", ".", "obj", ".", "pos", "[", "0", "]", "for", "i", "in", "xrange", "(", "samples", ")", ":", "offset", "=", "np", ".", "sqrt", "(", "6", "*", "diffusion_constant", "*", "exposure_time", ")", "*", "np", ".", "random", ".", "randn", "(", "3", ")", "s0", ".", "obj", ".", "pos", "[", "0", "]", "=", "np", ".", "array", "(", "s0", ".", "image", ".", "shape", ")", "/", "2", "+", "offset", "s0", ".", "reset", "(", ")", "finalimage", "+=", "s0", ".", "get_model_image", "(", ")", "[", "s0", ".", "inner", "]", "position", "+=", "s0", ".", "obj", ".", "pos", "[", "0", "]", "finalimage", "/=", "float", "(", "samples", ")", "position", "/=", "float", "(", "samples", ")", "# place that into a new image at the expected parameters", "s", "=", "init", ".", "create_single_particle_state", "(", "imsize", "=", "4", "*", "radius", ",", "sigma", "=", "0.05", ",", "radius", "=", "radius", ",", "psfargs", "=", "{", "'params'", ":", "psfsize", ",", "'error'", ":", "1e-6", "}", ")", "s", ".", "reset", "(", ")", "# measure the true inferred parameters", "return", "s", ",", "finalimage", ",", "position" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
diffusion_correlated
Calculate the (perhaps) correlated diffusion effect between particles during the exposure time of the confocal microscope. diffusion_constant is in terms of seconds and pixel sizes exposure_time is in seconds 1 micron radius particle: D = kT / (6 a\pi\eta) for 80/20 g/w (60 mPas), 3600 nm^2/sec ~ 0.15 px^2/sec for 100 % w (0.9 mPas), ~ 10.1 px^2/sec a full 60 layer scan takes 0.1 sec, so a particle is 0.016 sec exposure
scripts/does_matter/brownian-motion.py
def diffusion_correlated(diffusion_constant=0.2, exposure_time=0.05, samples=40, phi=0.25): """ Calculate the (perhaps) correlated diffusion effect between particles during the exposure time of the confocal microscope. diffusion_constant is in terms of seconds and pixel sizes exposure_time is in seconds 1 micron radius particle: D = kT / (6 a\pi\eta) for 80/20 g/w (60 mPas), 3600 nm^2/sec ~ 0.15 px^2/sec for 100 % w (0.9 mPas), ~ 10.1 px^2/sec a full 60 layer scan takes 0.1 sec, so a particle is 0.016 sec exposure """ radius = 5 psfsize = np.array([2.0, 1.0, 3.0])/2 pos, rad, tile = nbody.initialize_particles(N=50, phi=phi, polydispersity=0.0) sim = nbody.BrownianHardSphereSimulation( pos, rad, tile, D=diffusion_constant, dt=exposure_time/samples ) sim.dt = 1e-2 sim.relax(2000) sim.dt = exposure_time/samples # move the center to index 0 for easier analysis later c = ((sim.pos - sim.tile.center())**2).sum(axis=-1).argmin() pc = sim.pos[c].copy() sim.pos[c] = sim.pos[0] sim.pos[0] = pc # which particles do we want to simulate motion for? particle # zero and its neighbors mask = np.zeros_like(sim.rad).astype('bool') neigh = sim.neighbors(3*radius, 0) for i in neigh+[0]: mask[i] = True img = np.zeros(sim.tile.shape) s0 = runner.create_state(img, sim.pos, sim.rad, ignoreimage=True) # add up a bunch of trajectories finalimage = 0*s0.get_model_image()[s0.inner] position = 0*s0.obj.pos for i in xrange(samples): sim.step(1, mask=mask) s0.obj.pos = sim.pos.copy() + s0.pad s0.reset() finalimage += s0.get_model_image()[s0.inner] position += s0.obj.pos finalimage /= float(samples) position /= float(samples) # place that into a new image at the expected parameters s = runner.create_state(img, sim.pos, sim.rad, ignoreimage=True) s.reset() # measure the true inferred parameters return s, finalimage, position
def diffusion_correlated(diffusion_constant=0.2, exposure_time=0.05, samples=40, phi=0.25): """ Calculate the (perhaps) correlated diffusion effect between particles during the exposure time of the confocal microscope. diffusion_constant is in terms of seconds and pixel sizes exposure_time is in seconds 1 micron radius particle: D = kT / (6 a\pi\eta) for 80/20 g/w (60 mPas), 3600 nm^2/sec ~ 0.15 px^2/sec for 100 % w (0.9 mPas), ~ 10.1 px^2/sec a full 60 layer scan takes 0.1 sec, so a particle is 0.016 sec exposure """ radius = 5 psfsize = np.array([2.0, 1.0, 3.0])/2 pos, rad, tile = nbody.initialize_particles(N=50, phi=phi, polydispersity=0.0) sim = nbody.BrownianHardSphereSimulation( pos, rad, tile, D=diffusion_constant, dt=exposure_time/samples ) sim.dt = 1e-2 sim.relax(2000) sim.dt = exposure_time/samples # move the center to index 0 for easier analysis later c = ((sim.pos - sim.tile.center())**2).sum(axis=-1).argmin() pc = sim.pos[c].copy() sim.pos[c] = sim.pos[0] sim.pos[0] = pc # which particles do we want to simulate motion for? particle # zero and its neighbors mask = np.zeros_like(sim.rad).astype('bool') neigh = sim.neighbors(3*radius, 0) for i in neigh+[0]: mask[i] = True img = np.zeros(sim.tile.shape) s0 = runner.create_state(img, sim.pos, sim.rad, ignoreimage=True) # add up a bunch of trajectories finalimage = 0*s0.get_model_image()[s0.inner] position = 0*s0.obj.pos for i in xrange(samples): sim.step(1, mask=mask) s0.obj.pos = sim.pos.copy() + s0.pad s0.reset() finalimage += s0.get_model_image()[s0.inner] position += s0.obj.pos finalimage /= float(samples) position /= float(samples) # place that into a new image at the expected parameters s = runner.create_state(img, sim.pos, sim.rad, ignoreimage=True) s.reset() # measure the true inferred parameters return s, finalimage, position
[ "Calculate", "the", "(", "perhaps", ")", "correlated", "diffusion", "effect", "between", "particles", "during", "the", "exposure", "time", "of", "the", "confocal", "microscope", ".", "diffusion_constant", "is", "in", "terms", "of", "seconds", "and", "pixel", "sizes", "exposure_time", "is", "in", "seconds" ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/scripts/does_matter/brownian-motion.py#L45-L105
[ "def", "diffusion_correlated", "(", "diffusion_constant", "=", "0.2", ",", "exposure_time", "=", "0.05", ",", "samples", "=", "40", ",", "phi", "=", "0.25", ")", ":", "radius", "=", "5", "psfsize", "=", "np", ".", "array", "(", "[", "2.0", ",", "1.0", ",", "3.0", "]", ")", "/", "2", "pos", ",", "rad", ",", "tile", "=", "nbody", ".", "initialize_particles", "(", "N", "=", "50", ",", "phi", "=", "phi", ",", "polydispersity", "=", "0.0", ")", "sim", "=", "nbody", ".", "BrownianHardSphereSimulation", "(", "pos", ",", "rad", ",", "tile", ",", "D", "=", "diffusion_constant", ",", "dt", "=", "exposure_time", "/", "samples", ")", "sim", ".", "dt", "=", "1e-2", "sim", ".", "relax", "(", "2000", ")", "sim", ".", "dt", "=", "exposure_time", "/", "samples", "# move the center to index 0 for easier analysis later", "c", "=", "(", "(", "sim", ".", "pos", "-", "sim", ".", "tile", ".", "center", "(", ")", ")", "**", "2", ")", ".", "sum", "(", "axis", "=", "-", "1", ")", ".", "argmin", "(", ")", "pc", "=", "sim", ".", "pos", "[", "c", "]", ".", "copy", "(", ")", "sim", ".", "pos", "[", "c", "]", "=", "sim", ".", "pos", "[", "0", "]", "sim", ".", "pos", "[", "0", "]", "=", "pc", "# which particles do we want to simulate motion for? particle", "# zero and its neighbors", "mask", "=", "np", ".", "zeros_like", "(", "sim", ".", "rad", ")", ".", "astype", "(", "'bool'", ")", "neigh", "=", "sim", ".", "neighbors", "(", "3", "*", "radius", ",", "0", ")", "for", "i", "in", "neigh", "+", "[", "0", "]", ":", "mask", "[", "i", "]", "=", "True", "img", "=", "np", ".", "zeros", "(", "sim", ".", "tile", ".", "shape", ")", "s0", "=", "runner", ".", "create_state", "(", "img", ",", "sim", ".", "pos", ",", "sim", ".", "rad", ",", "ignoreimage", "=", "True", ")", "# add up a bunch of trajectories", "finalimage", "=", "0", "*", "s0", ".", "get_model_image", "(", ")", "[", "s0", ".", "inner", "]", "position", "=", "0", "*", "s0", ".", "obj", ".", "pos", "for", "i", "in", "xrange", "(", "samples", ")", ":", "sim", ".", "step", "(", "1", ",", "mask", "=", "mask", ")", "s0", ".", "obj", ".", "pos", "=", "sim", ".", "pos", ".", "copy", "(", ")", "+", "s0", ".", "pad", "s0", ".", "reset", "(", ")", "finalimage", "+=", "s0", ".", "get_model_image", "(", ")", "[", "s0", ".", "inner", "]", "position", "+=", "s0", ".", "obj", ".", "pos", "finalimage", "/=", "float", "(", "samples", ")", "position", "/=", "float", "(", "samples", ")", "# place that into a new image at the expected parameters", "s", "=", "runner", ".", "create_state", "(", "img", ",", "sim", ".", "pos", ",", "sim", ".", "rad", ",", "ignoreimage", "=", "True", ")", "s", ".", "reset", "(", ")", "# measure the true inferred parameters", "return", "s", ",", "finalimage", ",", "position" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
dorun
we want to display the errors introduced by pixelation so we plot: * CRB, sampled error vs exposure time a = dorun(ntimes=10, samples=5, noise_samples=5, sweeps=20, burn=8)
scripts/does_matter/brownian-motion.py
def dorun(SNR=20, ntimes=20, samples=10, noise_samples=10, sweeps=20, burn=10, correlated=False): """ we want to display the errors introduced by pixelation so we plot: * CRB, sampled error vs exposure time a = dorun(ntimes=10, samples=5, noise_samples=5, sweeps=20, burn=8) """ if not correlated: times = np.logspace(-3, 0, ntimes) else: times = np.logspace(np.log10(0.05), np.log10(30), ntimes) crbs, vals, errs, poss = [], [], [], [] for i,t in enumerate(times): print '###### time', i, t for j in xrange(samples): print 'image', j, '|', if not correlated: s,im,pos = diffusion(diffusion_constant=0.2, exposure_time=t) else: s,im,pos = diffusion_correlated(diffusion_constant=0.2, exposure_time=t) # typical image common.set_image(s, im, 1.0/SNR) crbs.append(common.crb(s)) val, err = common.sample(s, im, 1.0/SNR, N=noise_samples, sweeps=sweeps, burn=burn) poss.append(pos) vals.append(val) errs.append(err) shape0 = (ntimes, samples, -1) shape1 = (ntimes, samples, noise_samples, -1) crbs = np.array(crbs).reshape(shape0) vals = np.array(vals).reshape(shape1) errs = np.array(errs).reshape(shape1) poss = np.array(poss).reshape(shape0) return [crbs, vals, errs, poss, times]
def dorun(SNR=20, ntimes=20, samples=10, noise_samples=10, sweeps=20, burn=10, correlated=False): """ we want to display the errors introduced by pixelation so we plot: * CRB, sampled error vs exposure time a = dorun(ntimes=10, samples=5, noise_samples=5, sweeps=20, burn=8) """ if not correlated: times = np.logspace(-3, 0, ntimes) else: times = np.logspace(np.log10(0.05), np.log10(30), ntimes) crbs, vals, errs, poss = [], [], [], [] for i,t in enumerate(times): print '###### time', i, t for j in xrange(samples): print 'image', j, '|', if not correlated: s,im,pos = diffusion(diffusion_constant=0.2, exposure_time=t) else: s,im,pos = diffusion_correlated(diffusion_constant=0.2, exposure_time=t) # typical image common.set_image(s, im, 1.0/SNR) crbs.append(common.crb(s)) val, err = common.sample(s, im, 1.0/SNR, N=noise_samples, sweeps=sweeps, burn=burn) poss.append(pos) vals.append(val) errs.append(err) shape0 = (ntimes, samples, -1) shape1 = (ntimes, samples, noise_samples, -1) crbs = np.array(crbs).reshape(shape0) vals = np.array(vals).reshape(shape1) errs = np.array(errs).reshape(shape1) poss = np.array(poss).reshape(shape0) return [crbs, vals, errs, poss, times]
[ "we", "want", "to", "display", "the", "errors", "introduced", "by", "pixelation", "so", "we", "plot", ":", "*", "CRB", "sampled", "error", "vs", "exposure", "time" ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/scripts/does_matter/brownian-motion.py#L107-L150
[ "def", "dorun", "(", "SNR", "=", "20", ",", "ntimes", "=", "20", ",", "samples", "=", "10", ",", "noise_samples", "=", "10", ",", "sweeps", "=", "20", ",", "burn", "=", "10", ",", "correlated", "=", "False", ")", ":", "if", "not", "correlated", ":", "times", "=", "np", ".", "logspace", "(", "-", "3", ",", "0", ",", "ntimes", ")", "else", ":", "times", "=", "np", ".", "logspace", "(", "np", ".", "log10", "(", "0.05", ")", ",", "np", ".", "log10", "(", "30", ")", ",", "ntimes", ")", "crbs", ",", "vals", ",", "errs", ",", "poss", "=", "[", "]", ",", "[", "]", ",", "[", "]", ",", "[", "]", "for", "i", ",", "t", "in", "enumerate", "(", "times", ")", ":", "print", "'###### time'", ",", "i", ",", "t", "for", "j", "in", "xrange", "(", "samples", ")", ":", "print", "'image'", ",", "j", ",", "'|'", ",", "if", "not", "correlated", ":", "s", ",", "im", ",", "pos", "=", "diffusion", "(", "diffusion_constant", "=", "0.2", ",", "exposure_time", "=", "t", ")", "else", ":", "s", ",", "im", ",", "pos", "=", "diffusion_correlated", "(", "diffusion_constant", "=", "0.2", ",", "exposure_time", "=", "t", ")", "# typical image", "common", ".", "set_image", "(", "s", ",", "im", ",", "1.0", "/", "SNR", ")", "crbs", ".", "append", "(", "common", ".", "crb", "(", "s", ")", ")", "val", ",", "err", "=", "common", ".", "sample", "(", "s", ",", "im", ",", "1.0", "/", "SNR", ",", "N", "=", "noise_samples", ",", "sweeps", "=", "sweeps", ",", "burn", "=", "burn", ")", "poss", ".", "append", "(", "pos", ")", "vals", ".", "append", "(", "val", ")", "errs", ".", "append", "(", "err", ")", "shape0", "=", "(", "ntimes", ",", "samples", ",", "-", "1", ")", "shape1", "=", "(", "ntimes", ",", "samples", ",", "noise_samples", ",", "-", "1", ")", "crbs", "=", "np", ".", "array", "(", "crbs", ")", ".", "reshape", "(", "shape0", ")", "vals", "=", "np", ".", "array", "(", "vals", ")", ".", "reshape", "(", "shape1", ")", "errs", "=", "np", ".", "array", "(", "errs", ")", ".", "reshape", "(", "shape1", ")", "poss", "=", "np", ".", "array", "(", "poss", ")", ".", "reshape", "(", "shape0", ")", "return", "[", "crbs", ",", "vals", ",", "errs", ",", "poss", ",", "times", "]" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
feature_guess
Makes a guess at particle positions using heuristic centroid methods. Parameters ---------- st : :class:`peri.states.State` The state to check adding particles to. rad : Float The feature size for featuring. invert : {'guess', True, False}, optional Whether to invert the image; set to True for there are dark particles on a bright background, False for bright particles. The default is to guess from the state's current particles. minmass : Float or None, optional The minimum mass/masscut of a particle. Default is ``None`` = calculated internally. use_tp : Bool, optional Whether or not to use trackpy. Default is ``False``, since trackpy cuts out particles at the edge. trim_edge : Bool, optional Whether to trim particles at the edge pixels of the image. Can be useful for initial featuring but is bad for adding missing particles as they are frequently at the edge. Default is ``False``. Returns ------- guess : [N,3] numpy.ndarray The featured positions of the particles, sorted in order of decreasing feature mass. npart : Int The number of added particles.
peri/opt/addsubtract.py
def feature_guess(st, rad, invert='guess', minmass=None, use_tp=False, trim_edge=False, **kwargs): """ Makes a guess at particle positions using heuristic centroid methods. Parameters ---------- st : :class:`peri.states.State` The state to check adding particles to. rad : Float The feature size for featuring. invert : {'guess', True, False}, optional Whether to invert the image; set to True for there are dark particles on a bright background, False for bright particles. The default is to guess from the state's current particles. minmass : Float or None, optional The minimum mass/masscut of a particle. Default is ``None`` = calculated internally. use_tp : Bool, optional Whether or not to use trackpy. Default is ``False``, since trackpy cuts out particles at the edge. trim_edge : Bool, optional Whether to trim particles at the edge pixels of the image. Can be useful for initial featuring but is bad for adding missing particles as they are frequently at the edge. Default is ``False``. Returns ------- guess : [N,3] numpy.ndarray The featured positions of the particles, sorted in order of decreasing feature mass. npart : Int The number of added particles. """ # FIXME does not use the **kwargs, but needs b/c called with wrong kwargs if invert == 'guess': invert = guess_invert(st) if invert: im = 1 - st.residuals else: im = st.residuals return _feature_guess(im, rad, minmass=minmass, use_tp=use_tp, trim_edge=trim_edge)
def feature_guess(st, rad, invert='guess', minmass=None, use_tp=False, trim_edge=False, **kwargs): """ Makes a guess at particle positions using heuristic centroid methods. Parameters ---------- st : :class:`peri.states.State` The state to check adding particles to. rad : Float The feature size for featuring. invert : {'guess', True, False}, optional Whether to invert the image; set to True for there are dark particles on a bright background, False for bright particles. The default is to guess from the state's current particles. minmass : Float or None, optional The minimum mass/masscut of a particle. Default is ``None`` = calculated internally. use_tp : Bool, optional Whether or not to use trackpy. Default is ``False``, since trackpy cuts out particles at the edge. trim_edge : Bool, optional Whether to trim particles at the edge pixels of the image. Can be useful for initial featuring but is bad for adding missing particles as they are frequently at the edge. Default is ``False``. Returns ------- guess : [N,3] numpy.ndarray The featured positions of the particles, sorted in order of decreasing feature mass. npart : Int The number of added particles. """ # FIXME does not use the **kwargs, but needs b/c called with wrong kwargs if invert == 'guess': invert = guess_invert(st) if invert: im = 1 - st.residuals else: im = st.residuals return _feature_guess(im, rad, minmass=minmass, use_tp=use_tp, trim_edge=trim_edge)
[ "Makes", "a", "guess", "at", "particle", "positions", "using", "heuristic", "centroid", "methods", "." ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/opt/addsubtract.py#L14-L56
[ "def", "feature_guess", "(", "st", ",", "rad", ",", "invert", "=", "'guess'", ",", "minmass", "=", "None", ",", "use_tp", "=", "False", ",", "trim_edge", "=", "False", ",", "*", "*", "kwargs", ")", ":", "# FIXME does not use the **kwargs, but needs b/c called with wrong kwargs", "if", "invert", "==", "'guess'", ":", "invert", "=", "guess_invert", "(", "st", ")", "if", "invert", ":", "im", "=", "1", "-", "st", ".", "residuals", "else", ":", "im", "=", "st", ".", "residuals", "return", "_feature_guess", "(", "im", ",", "rad", ",", "minmass", "=", "minmass", ",", "use_tp", "=", "use_tp", ",", "trim_edge", "=", "trim_edge", ")" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
_feature_guess
Workhorse of feature_guess
peri/opt/addsubtract.py
def _feature_guess(im, rad, minmass=None, use_tp=False, trim_edge=False): """Workhorse of feature_guess""" if minmass is None: # we use 1% of the feature size mass as a cutoff; # it's easier to remove than to add minmass = rad**3 * 4/3.*np.pi * 0.01 # 0.03 is a magic number; works well if use_tp: diameter = np.ceil(2*rad) diameter += 1-(diameter % 2) df = peri.trackpy.locate(im, int(diameter), minmass=minmass) npart = np.array(df['mass']).size guess = np.zeros([npart, 3]) guess[:, 0] = df['z'] guess[:, 1] = df['y'] guess[:, 2] = df['x'] mass = df['mass'] else: guess, mass = initializers.local_max_featuring( im, radius=rad, minmass=minmass, trim_edge=trim_edge) npart = guess.shape[0] # I want to return these sorted by mass: inds = np.argsort(mass)[::-1] # biggest mass first return guess[inds].copy(), npart
def _feature_guess(im, rad, minmass=None, use_tp=False, trim_edge=False): """Workhorse of feature_guess""" if minmass is None: # we use 1% of the feature size mass as a cutoff; # it's easier to remove than to add minmass = rad**3 * 4/3.*np.pi * 0.01 # 0.03 is a magic number; works well if use_tp: diameter = np.ceil(2*rad) diameter += 1-(diameter % 2) df = peri.trackpy.locate(im, int(diameter), minmass=minmass) npart = np.array(df['mass']).size guess = np.zeros([npart, 3]) guess[:, 0] = df['z'] guess[:, 1] = df['y'] guess[:, 2] = df['x'] mass = df['mass'] else: guess, mass = initializers.local_max_featuring( im, radius=rad, minmass=minmass, trim_edge=trim_edge) npart = guess.shape[0] # I want to return these sorted by mass: inds = np.argsort(mass)[::-1] # biggest mass first return guess[inds].copy(), npart
[ "Workhorse", "of", "feature_guess" ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/opt/addsubtract.py#L59-L82
[ "def", "_feature_guess", "(", "im", ",", "rad", ",", "minmass", "=", "None", ",", "use_tp", "=", "False", ",", "trim_edge", "=", "False", ")", ":", "if", "minmass", "is", "None", ":", "# we use 1% of the feature size mass as a cutoff;", "# it's easier to remove than to add", "minmass", "=", "rad", "**", "3", "*", "4", "/", "3.", "*", "np", ".", "pi", "*", "0.01", "# 0.03 is a magic number; works well", "if", "use_tp", ":", "diameter", "=", "np", ".", "ceil", "(", "2", "*", "rad", ")", "diameter", "+=", "1", "-", "(", "diameter", "%", "2", ")", "df", "=", "peri", ".", "trackpy", ".", "locate", "(", "im", ",", "int", "(", "diameter", ")", ",", "minmass", "=", "minmass", ")", "npart", "=", "np", ".", "array", "(", "df", "[", "'mass'", "]", ")", ".", "size", "guess", "=", "np", ".", "zeros", "(", "[", "npart", ",", "3", "]", ")", "guess", "[", ":", ",", "0", "]", "=", "df", "[", "'z'", "]", "guess", "[", ":", ",", "1", "]", "=", "df", "[", "'y'", "]", "guess", "[", ":", ",", "2", "]", "=", "df", "[", "'x'", "]", "mass", "=", "df", "[", "'mass'", "]", "else", ":", "guess", ",", "mass", "=", "initializers", ".", "local_max_featuring", "(", "im", ",", "radius", "=", "rad", ",", "minmass", "=", "minmass", ",", "trim_edge", "=", "trim_edge", ")", "npart", "=", "guess", ".", "shape", "[", "0", "]", "# I want to return these sorted by mass:", "inds", "=", "np", ".", "argsort", "(", "mass", ")", "[", ":", ":", "-", "1", "]", "# biggest mass first", "return", "guess", "[", "inds", "]", ".", "copy", "(", ")", ",", "npart" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
check_add_particles
Checks whether to add particles at a given position by seeing if adding the particle improves the fit of the state. Parameters ---------- st : :class:`peri.states.State` The state to check adding particles to. guess : [N,3] list-like The positions of particles to check to add. rad : {Float, ``'calc'``}, optional. The radius of the newly-added particles. Default is ``'calc'``, which uses the states current radii's median. do_opt : Bool, optional Whether to optimize the particle position before checking if it should be kept. Default is True (optimizes position). im_change_frac : Float How good the change in error needs to be relative to the change in the difference image. Default is 0.2; i.e. if the error does not decrease by 20% of the change in the difference image, do not add the particle. min_derr : Float or '3sig' The minimal improvement in error to add a particle. Default is ``'3sig' = 3*st.sigma``. Returns ------- accepts : Int The number of added particles new_poses : [N,3] list List of the positions of the added particles. If ``do_opt==True``, then these positions will differ from the input 'guess'.
peri/opt/addsubtract.py
def check_add_particles(st, guess, rad='calc', do_opt=True, im_change_frac=0.2, min_derr='3sig', **kwargs): """ Checks whether to add particles at a given position by seeing if adding the particle improves the fit of the state. Parameters ---------- st : :class:`peri.states.State` The state to check adding particles to. guess : [N,3] list-like The positions of particles to check to add. rad : {Float, ``'calc'``}, optional. The radius of the newly-added particles. Default is ``'calc'``, which uses the states current radii's median. do_opt : Bool, optional Whether to optimize the particle position before checking if it should be kept. Default is True (optimizes position). im_change_frac : Float How good the change in error needs to be relative to the change in the difference image. Default is 0.2; i.e. if the error does not decrease by 20% of the change in the difference image, do not add the particle. min_derr : Float or '3sig' The minimal improvement in error to add a particle. Default is ``'3sig' = 3*st.sigma``. Returns ------- accepts : Int The number of added particles new_poses : [N,3] list List of the positions of the added particles. If ``do_opt==True``, then these positions will differ from the input 'guess'. """ # FIXME does not use the **kwargs, but needs b/c called with wrong kwargs if min_derr == '3sig': min_derr = 3 * st.sigma accepts = 0 new_poses = [] if rad == 'calc': rad = guess_add_radii(st) message = ('-'*30 + 'ADDING' + '-'*30 + '\n Z\t Y\t X\t R\t|\t ERR0\t\t ERR1') with log.noformat(): CLOG.info(message) for a in range(guess.shape[0]): p0 = guess[a] absent_err = st.error absent_d = st.residuals.copy() ind = st.obj_add_particle(p0, rad) if do_opt: # the slowest part of this opt.do_levmarq_particles( st, ind, damping=1.0, max_iter=1, run_length=3, eig_update=False, include_rad=False) present_err = st.error present_d = st.residuals.copy() dont_kill = should_particle_exist( absent_err, present_err, absent_d, present_d, im_change_frac=im_change_frac, min_derr=min_derr) if dont_kill: accepts += 1 p = tuple(st.obj_get_positions()[ind].ravel()) r = tuple(st.obj_get_radii()[ind].ravel()) new_poses.append(p) part_msg = '%2.2f\t%3.2f\t%3.2f\t%3.2f\t|\t%4.3f \t%4.3f' % ( p + r + (absent_err, st.error)) with log.noformat(): CLOG.info(part_msg) else: st.obj_remove_particle(ind) if np.abs(absent_err - st.error) > 1e-4: raise RuntimeError('updates not exact?') return accepts, new_poses
def check_add_particles(st, guess, rad='calc', do_opt=True, im_change_frac=0.2, min_derr='3sig', **kwargs): """ Checks whether to add particles at a given position by seeing if adding the particle improves the fit of the state. Parameters ---------- st : :class:`peri.states.State` The state to check adding particles to. guess : [N,3] list-like The positions of particles to check to add. rad : {Float, ``'calc'``}, optional. The radius of the newly-added particles. Default is ``'calc'``, which uses the states current radii's median. do_opt : Bool, optional Whether to optimize the particle position before checking if it should be kept. Default is True (optimizes position). im_change_frac : Float How good the change in error needs to be relative to the change in the difference image. Default is 0.2; i.e. if the error does not decrease by 20% of the change in the difference image, do not add the particle. min_derr : Float or '3sig' The minimal improvement in error to add a particle. Default is ``'3sig' = 3*st.sigma``. Returns ------- accepts : Int The number of added particles new_poses : [N,3] list List of the positions of the added particles. If ``do_opt==True``, then these positions will differ from the input 'guess'. """ # FIXME does not use the **kwargs, but needs b/c called with wrong kwargs if min_derr == '3sig': min_derr = 3 * st.sigma accepts = 0 new_poses = [] if rad == 'calc': rad = guess_add_radii(st) message = ('-'*30 + 'ADDING' + '-'*30 + '\n Z\t Y\t X\t R\t|\t ERR0\t\t ERR1') with log.noformat(): CLOG.info(message) for a in range(guess.shape[0]): p0 = guess[a] absent_err = st.error absent_d = st.residuals.copy() ind = st.obj_add_particle(p0, rad) if do_opt: # the slowest part of this opt.do_levmarq_particles( st, ind, damping=1.0, max_iter=1, run_length=3, eig_update=False, include_rad=False) present_err = st.error present_d = st.residuals.copy() dont_kill = should_particle_exist( absent_err, present_err, absent_d, present_d, im_change_frac=im_change_frac, min_derr=min_derr) if dont_kill: accepts += 1 p = tuple(st.obj_get_positions()[ind].ravel()) r = tuple(st.obj_get_radii()[ind].ravel()) new_poses.append(p) part_msg = '%2.2f\t%3.2f\t%3.2f\t%3.2f\t|\t%4.3f \t%4.3f' % ( p + r + (absent_err, st.error)) with log.noformat(): CLOG.info(part_msg) else: st.obj_remove_particle(ind) if np.abs(absent_err - st.error) > 1e-4: raise RuntimeError('updates not exact?') return accepts, new_poses
[ "Checks", "whether", "to", "add", "particles", "at", "a", "given", "position", "by", "seeing", "if", "adding", "the", "particle", "improves", "the", "fit", "of", "the", "state", "." ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/opt/addsubtract.py#L85-L159
[ "def", "check_add_particles", "(", "st", ",", "guess", ",", "rad", "=", "'calc'", ",", "do_opt", "=", "True", ",", "im_change_frac", "=", "0.2", ",", "min_derr", "=", "'3sig'", ",", "*", "*", "kwargs", ")", ":", "# FIXME does not use the **kwargs, but needs b/c called with wrong kwargs", "if", "min_derr", "==", "'3sig'", ":", "min_derr", "=", "3", "*", "st", ".", "sigma", "accepts", "=", "0", "new_poses", "=", "[", "]", "if", "rad", "==", "'calc'", ":", "rad", "=", "guess_add_radii", "(", "st", ")", "message", "=", "(", "'-'", "*", "30", "+", "'ADDING'", "+", "'-'", "*", "30", "+", "'\\n Z\\t Y\\t X\\t R\\t|\\t ERR0\\t\\t ERR1'", ")", "with", "log", ".", "noformat", "(", ")", ":", "CLOG", ".", "info", "(", "message", ")", "for", "a", "in", "range", "(", "guess", ".", "shape", "[", "0", "]", ")", ":", "p0", "=", "guess", "[", "a", "]", "absent_err", "=", "st", ".", "error", "absent_d", "=", "st", ".", "residuals", ".", "copy", "(", ")", "ind", "=", "st", ".", "obj_add_particle", "(", "p0", ",", "rad", ")", "if", "do_opt", ":", "# the slowest part of this", "opt", ".", "do_levmarq_particles", "(", "st", ",", "ind", ",", "damping", "=", "1.0", ",", "max_iter", "=", "1", ",", "run_length", "=", "3", ",", "eig_update", "=", "False", ",", "include_rad", "=", "False", ")", "present_err", "=", "st", ".", "error", "present_d", "=", "st", ".", "residuals", ".", "copy", "(", ")", "dont_kill", "=", "should_particle_exist", "(", "absent_err", ",", "present_err", ",", "absent_d", ",", "present_d", ",", "im_change_frac", "=", "im_change_frac", ",", "min_derr", "=", "min_derr", ")", "if", "dont_kill", ":", "accepts", "+=", "1", "p", "=", "tuple", "(", "st", ".", "obj_get_positions", "(", ")", "[", "ind", "]", ".", "ravel", "(", ")", ")", "r", "=", "tuple", "(", "st", ".", "obj_get_radii", "(", ")", "[", "ind", "]", ".", "ravel", "(", ")", ")", "new_poses", ".", "append", "(", "p", ")", "part_msg", "=", "'%2.2f\\t%3.2f\\t%3.2f\\t%3.2f\\t|\\t%4.3f \\t%4.3f'", "%", "(", "p", "+", "r", "+", "(", "absent_err", ",", "st", ".", "error", ")", ")", "with", "log", ".", "noformat", "(", ")", ":", "CLOG", ".", "info", "(", "part_msg", ")", "else", ":", "st", ".", "obj_remove_particle", "(", "ind", ")", "if", "np", ".", "abs", "(", "absent_err", "-", "st", ".", "error", ")", ">", "1e-4", ":", "raise", "RuntimeError", "(", "'updates not exact?'", ")", "return", "accepts", ",", "new_poses" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
check_remove_particle
Checks whether to remove particle 'ind' from state 'st'. If removing the particle increases the error by less than max( min_derr, change in image * im_change_frac), then the particle is removed. Parameters ---------- st : :class:`peri.states.State` The state to check adding particles to. ind : Int The index of the particle to check to remove. im_change_frac : Float How good the change in error needs to be relative to the change in the difference image. Default is 0.2; i.e. if the error does not decrease by 20% of the change in the difference image, do not add the particle. min_derr : Float or '3sig' The minimal improvement in error to add a particle. Default is ``'3sig' = 3*st.sigma``. Returns ------- killed : Bool Whether the particle was removed. p : Tuple The position of the removed particle. r : Tuple The radius of the removed particle.
peri/opt/addsubtract.py
def check_remove_particle(st, ind, im_change_frac=0.2, min_derr='3sig', **kwargs): """ Checks whether to remove particle 'ind' from state 'st'. If removing the particle increases the error by less than max( min_derr, change in image * im_change_frac), then the particle is removed. Parameters ---------- st : :class:`peri.states.State` The state to check adding particles to. ind : Int The index of the particle to check to remove. im_change_frac : Float How good the change in error needs to be relative to the change in the difference image. Default is 0.2; i.e. if the error does not decrease by 20% of the change in the difference image, do not add the particle. min_derr : Float or '3sig' The minimal improvement in error to add a particle. Default is ``'3sig' = 3*st.sigma``. Returns ------- killed : Bool Whether the particle was removed. p : Tuple The position of the removed particle. r : Tuple The radius of the removed particle. """ # FIXME does not use the **kwargs, but needs b/c called with wrong kwargs if min_derr == '3sig': min_derr = 3 * st.sigma present_err = st.error present_d = st.residuals.copy() p, r = st.obj_remove_particle(ind) p = p[0] r = r[0] absent_err = st.error absent_d = st.residuals.copy() if should_particle_exist(absent_err, present_err, absent_d, present_d, im_change_frac=im_change_frac, min_derr=min_derr): st.obj_add_particle(p, r) killed = False else: killed = True return killed, tuple(p), (r,)
def check_remove_particle(st, ind, im_change_frac=0.2, min_derr='3sig', **kwargs): """ Checks whether to remove particle 'ind' from state 'st'. If removing the particle increases the error by less than max( min_derr, change in image * im_change_frac), then the particle is removed. Parameters ---------- st : :class:`peri.states.State` The state to check adding particles to. ind : Int The index of the particle to check to remove. im_change_frac : Float How good the change in error needs to be relative to the change in the difference image. Default is 0.2; i.e. if the error does not decrease by 20% of the change in the difference image, do not add the particle. min_derr : Float or '3sig' The minimal improvement in error to add a particle. Default is ``'3sig' = 3*st.sigma``. Returns ------- killed : Bool Whether the particle was removed. p : Tuple The position of the removed particle. r : Tuple The radius of the removed particle. """ # FIXME does not use the **kwargs, but needs b/c called with wrong kwargs if min_derr == '3sig': min_derr = 3 * st.sigma present_err = st.error present_d = st.residuals.copy() p, r = st.obj_remove_particle(ind) p = p[0] r = r[0] absent_err = st.error absent_d = st.residuals.copy() if should_particle_exist(absent_err, present_err, absent_d, present_d, im_change_frac=im_change_frac, min_derr=min_derr): st.obj_add_particle(p, r) killed = False else: killed = True return killed, tuple(p), (r,)
[ "Checks", "whether", "to", "remove", "particle", "ind", "from", "state", "st", ".", "If", "removing", "the", "particle", "increases", "the", "error", "by", "less", "than", "max", "(", "min_derr", "change", "in", "image", "*", "im_change_frac", ")", "then", "the", "particle", "is", "removed", "." ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/opt/addsubtract.py#L162-L210
[ "def", "check_remove_particle", "(", "st", ",", "ind", ",", "im_change_frac", "=", "0.2", ",", "min_derr", "=", "'3sig'", ",", "*", "*", "kwargs", ")", ":", "# FIXME does not use the **kwargs, but needs b/c called with wrong kwargs", "if", "min_derr", "==", "'3sig'", ":", "min_derr", "=", "3", "*", "st", ".", "sigma", "present_err", "=", "st", ".", "error", "present_d", "=", "st", ".", "residuals", ".", "copy", "(", ")", "p", ",", "r", "=", "st", ".", "obj_remove_particle", "(", "ind", ")", "p", "=", "p", "[", "0", "]", "r", "=", "r", "[", "0", "]", "absent_err", "=", "st", ".", "error", "absent_d", "=", "st", ".", "residuals", ".", "copy", "(", ")", "if", "should_particle_exist", "(", "absent_err", ",", "present_err", ",", "absent_d", ",", "present_d", ",", "im_change_frac", "=", "im_change_frac", ",", "min_derr", "=", "min_derr", ")", ":", "st", ".", "obj_add_particle", "(", "p", ",", "r", ")", "killed", "=", "False", "else", ":", "killed", "=", "True", "return", "killed", ",", "tuple", "(", "p", ")", ",", "(", "r", ",", ")" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
should_particle_exist
Checks whether or not adding a particle should be present. Parameters ---------- absent_err : Float The state error without the particle. present_err : Float The state error with the particle. absent_d : numpy.ndarray The state residuals without the particle. present_d : numpy.ndarray The state residuals with the particle. im_change_frac : Float, optional How good the change in error needs to be relative to the change in the residuals. Default is 0.2; i.e. return False if the error does not decrease by 0.2 x the change in the residuals. min_derr : Float, optional The minimal improvement in error. Default is 0.1 Returns ------- Bool True if the errors is better with the particle present.
peri/opt/addsubtract.py
def should_particle_exist(absent_err, present_err, absent_d, present_d, im_change_frac=0.2, min_derr=0.1): """ Checks whether or not adding a particle should be present. Parameters ---------- absent_err : Float The state error without the particle. present_err : Float The state error with the particle. absent_d : numpy.ndarray The state residuals without the particle. present_d : numpy.ndarray The state residuals with the particle. im_change_frac : Float, optional How good the change in error needs to be relative to the change in the residuals. Default is 0.2; i.e. return False if the error does not decrease by 0.2 x the change in the residuals. min_derr : Float, optional The minimal improvement in error. Default is 0.1 Returns ------- Bool True if the errors is better with the particle present. """ delta_im = np.ravel(present_d - absent_d) im_change = np.dot(delta_im, delta_im) err_cutoff = max([im_change_frac * im_change, min_derr]) return (absent_err - present_err) >= err_cutoff
def should_particle_exist(absent_err, present_err, absent_d, present_d, im_change_frac=0.2, min_derr=0.1): """ Checks whether or not adding a particle should be present. Parameters ---------- absent_err : Float The state error without the particle. present_err : Float The state error with the particle. absent_d : numpy.ndarray The state residuals without the particle. present_d : numpy.ndarray The state residuals with the particle. im_change_frac : Float, optional How good the change in error needs to be relative to the change in the residuals. Default is 0.2; i.e. return False if the error does not decrease by 0.2 x the change in the residuals. min_derr : Float, optional The minimal improvement in error. Default is 0.1 Returns ------- Bool True if the errors is better with the particle present. """ delta_im = np.ravel(present_d - absent_d) im_change = np.dot(delta_im, delta_im) err_cutoff = max([im_change_frac * im_change, min_derr]) return (absent_err - present_err) >= err_cutoff
[ "Checks", "whether", "or", "not", "adding", "a", "particle", "should", "be", "present", "." ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/opt/addsubtract.py#L213-L243
[ "def", "should_particle_exist", "(", "absent_err", ",", "present_err", ",", "absent_d", ",", "present_d", ",", "im_change_frac", "=", "0.2", ",", "min_derr", "=", "0.1", ")", ":", "delta_im", "=", "np", ".", "ravel", "(", "present_d", "-", "absent_d", ")", "im_change", "=", "np", ".", "dot", "(", "delta_im", ",", "delta_im", ")", "err_cutoff", "=", "max", "(", "[", "im_change_frac", "*", "im_change", ",", "min_derr", "]", ")", "return", "(", "absent_err", "-", "present_err", ")", ">=", "err_cutoff" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
add_missing_particles
Attempts to add missing particles to the state. Operates by: (1) featuring the difference image using feature_guess, (2) attempting to add the featured positions using check_add_particles. Parameters ---------- st : :class:`peri.states.State` The state to check adding particles to. rad : Float or 'calc', optional The radius of the newly-added particles and of the feature size for featuring. Default is 'calc', which uses the median of the state's current radii. tries : Int, optional How many particles to attempt to add. Only tries to add the first ``tries`` particles, in order of mass. Default is 50. Other Parameters ---------------- invert : Bool, optional Whether to invert the image. Default is ``True``, i.e. dark particles minmass : Float or None, optionals The minimum mass/masscut of a particle. Default is ``None``=calcualted by ``feature_guess``. use_tp : Bool, optional Whether to use trackpy in feature_guess. Default is False, since trackpy cuts out particles at the edge. do_opt : Bool, optional Whether to optimize the particle position before checking if it should be kept. Default is True (optimizes position). im_change_frac : Float, optional How good the change in error needs to be relative to the change in the difference image. Default is 0.2; i.e. if the error does not decrease by 20% of the change in the difference image, do not add the particle. min_derr : Float or '3sig', optional The minimal improvement in error to add a particle. Default is ``'3sig' = 3*st.sigma``. Returns ------- accepts : Int The number of added particles new_poses : [N,3] list List of the positions of the added particles. If ``do_opt==True``, then these positions will differ from the input 'guess'.
peri/opt/addsubtract.py
def add_missing_particles(st, rad='calc', tries=50, **kwargs): """ Attempts to add missing particles to the state. Operates by: (1) featuring the difference image using feature_guess, (2) attempting to add the featured positions using check_add_particles. Parameters ---------- st : :class:`peri.states.State` The state to check adding particles to. rad : Float or 'calc', optional The radius of the newly-added particles and of the feature size for featuring. Default is 'calc', which uses the median of the state's current radii. tries : Int, optional How many particles to attempt to add. Only tries to add the first ``tries`` particles, in order of mass. Default is 50. Other Parameters ---------------- invert : Bool, optional Whether to invert the image. Default is ``True``, i.e. dark particles minmass : Float or None, optionals The minimum mass/masscut of a particle. Default is ``None``=calcualted by ``feature_guess``. use_tp : Bool, optional Whether to use trackpy in feature_guess. Default is False, since trackpy cuts out particles at the edge. do_opt : Bool, optional Whether to optimize the particle position before checking if it should be kept. Default is True (optimizes position). im_change_frac : Float, optional How good the change in error needs to be relative to the change in the difference image. Default is 0.2; i.e. if the error does not decrease by 20% of the change in the difference image, do not add the particle. min_derr : Float or '3sig', optional The minimal improvement in error to add a particle. Default is ``'3sig' = 3*st.sigma``. Returns ------- accepts : Int The number of added particles new_poses : [N,3] list List of the positions of the added particles. If ``do_opt==True``, then these positions will differ from the input 'guess'. """ if rad == 'calc': rad = guess_add_radii(st) guess, npart = feature_guess(st, rad, **kwargs) tries = np.min([tries, npart]) accepts, new_poses = check_add_particles( st, guess[:tries], rad=rad, **kwargs) return accepts, new_poses
def add_missing_particles(st, rad='calc', tries=50, **kwargs): """ Attempts to add missing particles to the state. Operates by: (1) featuring the difference image using feature_guess, (2) attempting to add the featured positions using check_add_particles. Parameters ---------- st : :class:`peri.states.State` The state to check adding particles to. rad : Float or 'calc', optional The radius of the newly-added particles and of the feature size for featuring. Default is 'calc', which uses the median of the state's current radii. tries : Int, optional How many particles to attempt to add. Only tries to add the first ``tries`` particles, in order of mass. Default is 50. Other Parameters ---------------- invert : Bool, optional Whether to invert the image. Default is ``True``, i.e. dark particles minmass : Float or None, optionals The minimum mass/masscut of a particle. Default is ``None``=calcualted by ``feature_guess``. use_tp : Bool, optional Whether to use trackpy in feature_guess. Default is False, since trackpy cuts out particles at the edge. do_opt : Bool, optional Whether to optimize the particle position before checking if it should be kept. Default is True (optimizes position). im_change_frac : Float, optional How good the change in error needs to be relative to the change in the difference image. Default is 0.2; i.e. if the error does not decrease by 20% of the change in the difference image, do not add the particle. min_derr : Float or '3sig', optional The minimal improvement in error to add a particle. Default is ``'3sig' = 3*st.sigma``. Returns ------- accepts : Int The number of added particles new_poses : [N,3] list List of the positions of the added particles. If ``do_opt==True``, then these positions will differ from the input 'guess'. """ if rad == 'calc': rad = guess_add_radii(st) guess, npart = feature_guess(st, rad, **kwargs) tries = np.min([tries, npart]) accepts, new_poses = check_add_particles( st, guess[:tries], rad=rad, **kwargs) return accepts, new_poses
[ "Attempts", "to", "add", "missing", "particles", "to", "the", "state", "." ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/opt/addsubtract.py#L246-L306
[ "def", "add_missing_particles", "(", "st", ",", "rad", "=", "'calc'", ",", "tries", "=", "50", ",", "*", "*", "kwargs", ")", ":", "if", "rad", "==", "'calc'", ":", "rad", "=", "guess_add_radii", "(", "st", ")", "guess", ",", "npart", "=", "feature_guess", "(", "st", ",", "rad", ",", "*", "*", "kwargs", ")", "tries", "=", "np", ".", "min", "(", "[", "tries", ",", "npart", "]", ")", "accepts", ",", "new_poses", "=", "check_add_particles", "(", "st", ",", "guess", "[", ":", "tries", "]", ",", "rad", "=", "rad", ",", "*", "*", "kwargs", ")", "return", "accepts", ",", "new_poses" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
remove_bad_particles
Removes improperly-featured particles from the state, based on a combination of particle size and the change in error on removal. Parameters ----------- st : :class:`peri.states.State` The state to remove bad particles from. min_rad : Float, optional All particles with radius below min_rad are automatically deleted. Set to 'calc' to make it the median rad - 25* radius std. Default is 'calc'. max_rad : Float, optional All particles with radius above max_rad are automatically deleted. Set to 'calc' to make it the median rad + 15* radius std. Default is 'calc'. min_edge_dist : Float, optional All particles within min_edge_dist of the (padded) image edges are automatically deleted. Default is 2.0 check_rad_cutoff : 2-element list of floats, optional Particles with radii < check_rad_cutoff[0] or > check_rad_cutoff[1] are checked if they should be deleted. Set to 'calc' to make it the median rad +- 3.5 * radius std. Default is [3.5, 15]. check_outside_im : Bool, optional If True, checks if particles located outside the unpadded image should be deleted. Default is True. tries : Int, optional The maximum number of particles with radii < check_rad_cutoff to try to remove. Checks in increasing order of radius size. Default is 50. im_change_frac : Float, , optional Number between 0 and 1. If removing a particle decreases the error by less than im_change_frac*the change in the image, then the particle is deleted. Default is 0.2 Returns ------- removed: Int The cumulative number of particles removed.
peri/opt/addsubtract.py
def remove_bad_particles(st, min_rad='calc', max_rad='calc', min_edge_dist=2.0, check_rad_cutoff=[3.5, 15], check_outside_im=True, tries=50, im_change_frac=0.2, **kwargs): """ Removes improperly-featured particles from the state, based on a combination of particle size and the change in error on removal. Parameters ----------- st : :class:`peri.states.State` The state to remove bad particles from. min_rad : Float, optional All particles with radius below min_rad are automatically deleted. Set to 'calc' to make it the median rad - 25* radius std. Default is 'calc'. max_rad : Float, optional All particles with radius above max_rad are automatically deleted. Set to 'calc' to make it the median rad + 15* radius std. Default is 'calc'. min_edge_dist : Float, optional All particles within min_edge_dist of the (padded) image edges are automatically deleted. Default is 2.0 check_rad_cutoff : 2-element list of floats, optional Particles with radii < check_rad_cutoff[0] or > check_rad_cutoff[1] are checked if they should be deleted. Set to 'calc' to make it the median rad +- 3.5 * radius std. Default is [3.5, 15]. check_outside_im : Bool, optional If True, checks if particles located outside the unpadded image should be deleted. Default is True. tries : Int, optional The maximum number of particles with radii < check_rad_cutoff to try to remove. Checks in increasing order of radius size. Default is 50. im_change_frac : Float, , optional Number between 0 and 1. If removing a particle decreases the error by less than im_change_frac*the change in the image, then the particle is deleted. Default is 0.2 Returns ------- removed: Int The cumulative number of particles removed. """ is_near_im_edge = lambda pos, pad: (((pos + st.pad) < pad) | (pos > np.array(st.ishape.shape) + st.pad - pad)).any(axis=1) # returns True if the position is within 'pad' of the _outer_ image edge removed = 0 attempts = 0 n_tot_part = st.obj_get_positions().shape[0] q10 = int(0.1 * n_tot_part) # 10% quartile r_sig = np.sort(st.obj_get_radii())[q10:-q10].std() r_med = np.median(st.obj_get_radii()) if max_rad == 'calc': max_rad = r_med + 15*r_sig if min_rad == 'calc': min_rad = r_med - 25*r_sig if check_rad_cutoff == 'calc': check_rad_cutoff = [r_med - 7.5*r_sig, r_med + 7.5*r_sig] # 1. Automatic deletion: rad_wrong_size = np.nonzero( (st.obj_get_radii() < min_rad) | (st.obj_get_radii() > max_rad))[0] near_im_edge = np.nonzero(is_near_im_edge(st.obj_get_positions(), min_edge_dist - st.pad))[0] delete_inds = np.unique(np.append(rad_wrong_size, near_im_edge)).tolist() delete_poses = st.obj_get_positions()[delete_inds].tolist() message = ('-'*27 + 'SUBTRACTING' + '-'*28 + '\n Z\t Y\t X\t R\t|\t ERR0\t\t ERR1') with log.noformat(): CLOG.info(message) for pos in delete_poses: ind = st.obj_closest_particle(pos) old_err = st.error p, r = st.obj_remove_particle(ind) p = p[0] r = r[0] part_msg = '%2.2f\t%3.2f\t%3.2f\t%3.2f\t|\t%4.3f \t%4.3f' % ( tuple(p) + (r,) + (old_err, st.error)) with log.noformat(): CLOG.info(part_msg) removed += 1 # 2. Conditional deletion: check_rad_inds = np.nonzero((st.obj_get_radii() < check_rad_cutoff[0]) | (st.obj_get_radii() > check_rad_cutoff[1]))[0] if check_outside_im: check_edge_inds = np.nonzero( is_near_im_edge(st.obj_get_positions(), st.pad))[0] check_inds = np.unique(np.append(check_rad_inds, check_edge_inds)) else: check_inds = check_rad_inds check_inds = check_inds[np.argsort(st.obj_get_radii()[check_inds])] tries = np.min([tries, check_inds.size]) check_poses = st.obj_get_positions()[check_inds[:tries]].copy() for pos in check_poses: old_err = st.error ind = st.obj_closest_particle(pos) killed, p, r = check_remove_particle( st, ind, im_change_frac=im_change_frac) if killed: removed += 1 check_inds[check_inds > ind] -= 1 # cleaning up indices.... delete_poses.append(pos) part_msg = '%2.2f\t%3.2f\t%3.2f\t%3.2f\t|\t%4.3f \t%4.3f' % ( p + r + (old_err, st.error)) with log.noformat(): CLOG.info(part_msg) return removed, delete_poses
def remove_bad_particles(st, min_rad='calc', max_rad='calc', min_edge_dist=2.0, check_rad_cutoff=[3.5, 15], check_outside_im=True, tries=50, im_change_frac=0.2, **kwargs): """ Removes improperly-featured particles from the state, based on a combination of particle size and the change in error on removal. Parameters ----------- st : :class:`peri.states.State` The state to remove bad particles from. min_rad : Float, optional All particles with radius below min_rad are automatically deleted. Set to 'calc' to make it the median rad - 25* radius std. Default is 'calc'. max_rad : Float, optional All particles with radius above max_rad are automatically deleted. Set to 'calc' to make it the median rad + 15* radius std. Default is 'calc'. min_edge_dist : Float, optional All particles within min_edge_dist of the (padded) image edges are automatically deleted. Default is 2.0 check_rad_cutoff : 2-element list of floats, optional Particles with radii < check_rad_cutoff[0] or > check_rad_cutoff[1] are checked if they should be deleted. Set to 'calc' to make it the median rad +- 3.5 * radius std. Default is [3.5, 15]. check_outside_im : Bool, optional If True, checks if particles located outside the unpadded image should be deleted. Default is True. tries : Int, optional The maximum number of particles with radii < check_rad_cutoff to try to remove. Checks in increasing order of radius size. Default is 50. im_change_frac : Float, , optional Number between 0 and 1. If removing a particle decreases the error by less than im_change_frac*the change in the image, then the particle is deleted. Default is 0.2 Returns ------- removed: Int The cumulative number of particles removed. """ is_near_im_edge = lambda pos, pad: (((pos + st.pad) < pad) | (pos > np.array(st.ishape.shape) + st.pad - pad)).any(axis=1) # returns True if the position is within 'pad' of the _outer_ image edge removed = 0 attempts = 0 n_tot_part = st.obj_get_positions().shape[0] q10 = int(0.1 * n_tot_part) # 10% quartile r_sig = np.sort(st.obj_get_radii())[q10:-q10].std() r_med = np.median(st.obj_get_radii()) if max_rad == 'calc': max_rad = r_med + 15*r_sig if min_rad == 'calc': min_rad = r_med - 25*r_sig if check_rad_cutoff == 'calc': check_rad_cutoff = [r_med - 7.5*r_sig, r_med + 7.5*r_sig] # 1. Automatic deletion: rad_wrong_size = np.nonzero( (st.obj_get_radii() < min_rad) | (st.obj_get_radii() > max_rad))[0] near_im_edge = np.nonzero(is_near_im_edge(st.obj_get_positions(), min_edge_dist - st.pad))[0] delete_inds = np.unique(np.append(rad_wrong_size, near_im_edge)).tolist() delete_poses = st.obj_get_positions()[delete_inds].tolist() message = ('-'*27 + 'SUBTRACTING' + '-'*28 + '\n Z\t Y\t X\t R\t|\t ERR0\t\t ERR1') with log.noformat(): CLOG.info(message) for pos in delete_poses: ind = st.obj_closest_particle(pos) old_err = st.error p, r = st.obj_remove_particle(ind) p = p[0] r = r[0] part_msg = '%2.2f\t%3.2f\t%3.2f\t%3.2f\t|\t%4.3f \t%4.3f' % ( tuple(p) + (r,) + (old_err, st.error)) with log.noformat(): CLOG.info(part_msg) removed += 1 # 2. Conditional deletion: check_rad_inds = np.nonzero((st.obj_get_radii() < check_rad_cutoff[0]) | (st.obj_get_radii() > check_rad_cutoff[1]))[0] if check_outside_im: check_edge_inds = np.nonzero( is_near_im_edge(st.obj_get_positions(), st.pad))[0] check_inds = np.unique(np.append(check_rad_inds, check_edge_inds)) else: check_inds = check_rad_inds check_inds = check_inds[np.argsort(st.obj_get_radii()[check_inds])] tries = np.min([tries, check_inds.size]) check_poses = st.obj_get_positions()[check_inds[:tries]].copy() for pos in check_poses: old_err = st.error ind = st.obj_closest_particle(pos) killed, p, r = check_remove_particle( st, ind, im_change_frac=im_change_frac) if killed: removed += 1 check_inds[check_inds > ind] -= 1 # cleaning up indices.... delete_poses.append(pos) part_msg = '%2.2f\t%3.2f\t%3.2f\t%3.2f\t|\t%4.3f \t%4.3f' % ( p + r + (old_err, st.error)) with log.noformat(): CLOG.info(part_msg) return removed, delete_poses
[ "Removes", "improperly", "-", "featured", "particles", "from", "the", "state", "based", "on", "a", "combination", "of", "particle", "size", "and", "the", "change", "in", "error", "on", "removal", "." ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/opt/addsubtract.py#L309-L425
[ "def", "remove_bad_particles", "(", "st", ",", "min_rad", "=", "'calc'", ",", "max_rad", "=", "'calc'", ",", "min_edge_dist", "=", "2.0", ",", "check_rad_cutoff", "=", "[", "3.5", ",", "15", "]", ",", "check_outside_im", "=", "True", ",", "tries", "=", "50", ",", "im_change_frac", "=", "0.2", ",", "*", "*", "kwargs", ")", ":", "is_near_im_edge", "=", "lambda", "pos", ",", "pad", ":", "(", "(", "(", "pos", "+", "st", ".", "pad", ")", "<", "pad", ")", "|", "(", "pos", ">", "np", ".", "array", "(", "st", ".", "ishape", ".", "shape", ")", "+", "st", ".", "pad", "-", "pad", ")", ")", ".", "any", "(", "axis", "=", "1", ")", "# returns True if the position is within 'pad' of the _outer_ image edge", "removed", "=", "0", "attempts", "=", "0", "n_tot_part", "=", "st", ".", "obj_get_positions", "(", ")", ".", "shape", "[", "0", "]", "q10", "=", "int", "(", "0.1", "*", "n_tot_part", ")", "# 10% quartile", "r_sig", "=", "np", ".", "sort", "(", "st", ".", "obj_get_radii", "(", ")", ")", "[", "q10", ":", "-", "q10", "]", ".", "std", "(", ")", "r_med", "=", "np", ".", "median", "(", "st", ".", "obj_get_radii", "(", ")", ")", "if", "max_rad", "==", "'calc'", ":", "max_rad", "=", "r_med", "+", "15", "*", "r_sig", "if", "min_rad", "==", "'calc'", ":", "min_rad", "=", "r_med", "-", "25", "*", "r_sig", "if", "check_rad_cutoff", "==", "'calc'", ":", "check_rad_cutoff", "=", "[", "r_med", "-", "7.5", "*", "r_sig", ",", "r_med", "+", "7.5", "*", "r_sig", "]", "# 1. Automatic deletion:", "rad_wrong_size", "=", "np", ".", "nonzero", "(", "(", "st", ".", "obj_get_radii", "(", ")", "<", "min_rad", ")", "|", "(", "st", ".", "obj_get_radii", "(", ")", ">", "max_rad", ")", ")", "[", "0", "]", "near_im_edge", "=", "np", ".", "nonzero", "(", "is_near_im_edge", "(", "st", ".", "obj_get_positions", "(", ")", ",", "min_edge_dist", "-", "st", ".", "pad", ")", ")", "[", "0", "]", "delete_inds", "=", "np", ".", "unique", "(", "np", ".", "append", "(", "rad_wrong_size", ",", "near_im_edge", ")", ")", ".", "tolist", "(", ")", "delete_poses", "=", "st", ".", "obj_get_positions", "(", ")", "[", "delete_inds", "]", ".", "tolist", "(", ")", "message", "=", "(", "'-'", "*", "27", "+", "'SUBTRACTING'", "+", "'-'", "*", "28", "+", "'\\n Z\\t Y\\t X\\t R\\t|\\t ERR0\\t\\t ERR1'", ")", "with", "log", ".", "noformat", "(", ")", ":", "CLOG", ".", "info", "(", "message", ")", "for", "pos", "in", "delete_poses", ":", "ind", "=", "st", ".", "obj_closest_particle", "(", "pos", ")", "old_err", "=", "st", ".", "error", "p", ",", "r", "=", "st", ".", "obj_remove_particle", "(", "ind", ")", "p", "=", "p", "[", "0", "]", "r", "=", "r", "[", "0", "]", "part_msg", "=", "'%2.2f\\t%3.2f\\t%3.2f\\t%3.2f\\t|\\t%4.3f \\t%4.3f'", "%", "(", "tuple", "(", "p", ")", "+", "(", "r", ",", ")", "+", "(", "old_err", ",", "st", ".", "error", ")", ")", "with", "log", ".", "noformat", "(", ")", ":", "CLOG", ".", "info", "(", "part_msg", ")", "removed", "+=", "1", "# 2. Conditional deletion:", "check_rad_inds", "=", "np", ".", "nonzero", "(", "(", "st", ".", "obj_get_radii", "(", ")", "<", "check_rad_cutoff", "[", "0", "]", ")", "|", "(", "st", ".", "obj_get_radii", "(", ")", ">", "check_rad_cutoff", "[", "1", "]", ")", ")", "[", "0", "]", "if", "check_outside_im", ":", "check_edge_inds", "=", "np", ".", "nonzero", "(", "is_near_im_edge", "(", "st", ".", "obj_get_positions", "(", ")", ",", "st", ".", "pad", ")", ")", "[", "0", "]", "check_inds", "=", "np", ".", "unique", "(", "np", ".", "append", "(", "check_rad_inds", ",", "check_edge_inds", ")", ")", "else", ":", "check_inds", "=", "check_rad_inds", "check_inds", "=", "check_inds", "[", "np", ".", "argsort", "(", "st", ".", "obj_get_radii", "(", ")", "[", "check_inds", "]", ")", "]", "tries", "=", "np", ".", "min", "(", "[", "tries", ",", "check_inds", ".", "size", "]", ")", "check_poses", "=", "st", ".", "obj_get_positions", "(", ")", "[", "check_inds", "[", ":", "tries", "]", "]", ".", "copy", "(", ")", "for", "pos", "in", "check_poses", ":", "old_err", "=", "st", ".", "error", "ind", "=", "st", ".", "obj_closest_particle", "(", "pos", ")", "killed", ",", "p", ",", "r", "=", "check_remove_particle", "(", "st", ",", "ind", ",", "im_change_frac", "=", "im_change_frac", ")", "if", "killed", ":", "removed", "+=", "1", "check_inds", "[", "check_inds", ">", "ind", "]", "-=", "1", "# cleaning up indices....", "delete_poses", ".", "append", "(", "pos", ")", "part_msg", "=", "'%2.2f\\t%3.2f\\t%3.2f\\t%3.2f\\t|\\t%4.3f \\t%4.3f'", "%", "(", "p", "+", "r", "+", "(", "old_err", ",", "st", ".", "error", ")", ")", "with", "log", ".", "noformat", "(", ")", ":", "CLOG", ".", "info", "(", "part_msg", ")", "return", "removed", ",", "delete_poses" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
add_subtract
Automatically adds and subtracts missing & extra particles. Operates by removing bad particles then adding missing particles on repeat, until either no particles are added/removed or after `max_iter` attempts. Parameters ---------- st: :class:`peri.states.State` The state to add and subtract particles to. max_iter : Int, optional The maximum number of add-subtract loops to use. Default is 7. Terminates after either max_iter loops or when nothing has changed. max_npart : Int or 'calc', optional The maximum number of particles to add before optimizing the non-psf globals. Default is ``'calc'``, which uses 5% of the initial number of particles. max_mem : Int, optional The maximum memory to use for optimization after adding max_npart particles. Default is 2e8. always_check_remove : Bool, optional Set to True to always check whether to remove particles. If ``False``, only checks for removal while particles were removed on the previous attempt. Default is False. Other Parameters ---------------- invert : Bool, optional ``True`` if the particles are dark on a bright background, ``False`` if they are bright on a dark background. Default is ``True``. min_rad : Float, optional Particles with radius below ``min_rad`` are automatically deleted. Default is ``'calc'`` = median rad - 25* radius std. max_rad : Float, optional Particles with radius above ``max_rad`` are automatically deleted. Default is ``'calc'`` = median rad + 15* radius std, but you should change this for your particle sizes. min_edge_dist : Float, optional Particles closer to the edge of the padded image than this are automatically deleted. Default is 2.0. check_rad_cutoff : 2-element float list. Particles with ``radii < check_rad_cutoff[0]`` or ``> check...[1]`` are checked if they should be deleted (not automatic). Default is ``[3.5, 15]``. check_outside_im : Bool, optional Set to True to check whether to delete particles whose positions are outside the un-padded image. rad : Float, optional The initial radius for added particles; added particles radii are not fit until the end of ``add_subtract``. Default is ``'calc'``, which uses the median radii of active particles. tries : Int, optional The number of particles to attempt to remove or add, per iteration. Default is 50. im_change_frac : Float, optional How good the change in error needs to be relative to the change in the difference image. Default is 0.2; i.e. if the error does not decrease by 20% of the change in the difference image, do not add the particle. min_derr : Float, optional The minimum change in the state's error to keep a particle in the image. Default is ``'3sig'`` which uses ``3*st.sigma``. do_opt : Bool, optional Set to False to avoid optimizing particle positions after adding. minmass : Float, optional The minimum mass for a particle to be identified as a feature, as used by trackpy. Defaults to a decent guess. use_tp : Bool, optional Set to True to use trackpy to find missing particles inside the image. Not recommended since trackpy deliberately cuts out particles at the edge of the image. Default is ``False``. Returns ------- total_changed : Int The total number of adds and subtracts done on the data. Not the same as ``changed_inds.size`` since the same particle or particle index can be added/subtracted multiple times. added_positions : [N_added,3] numpy.ndarray The positions of particles that have been added at any point in the add-subtract cycle. removed_positions : [N_added,3] numpy.ndarray The positions of particles that have been removed at any point in the add-subtract cycle. Notes ------ Occasionally after the intial featuring a cluster of particles is featured as 1 big particle. To fix these mistakes, it helps to set max_rad to a physical value. This removes the big particle and allows it to be re-featured by (several passes of) the adds. The added/removed positions returned are whether or not the position has been added or removed ever. It's possible that a position is added, then removed during a later iteration.
peri/opt/addsubtract.py
def add_subtract(st, max_iter=7, max_npart='calc', max_mem=2e8, always_check_remove=False, **kwargs): """ Automatically adds and subtracts missing & extra particles. Operates by removing bad particles then adding missing particles on repeat, until either no particles are added/removed or after `max_iter` attempts. Parameters ---------- st: :class:`peri.states.State` The state to add and subtract particles to. max_iter : Int, optional The maximum number of add-subtract loops to use. Default is 7. Terminates after either max_iter loops or when nothing has changed. max_npart : Int or 'calc', optional The maximum number of particles to add before optimizing the non-psf globals. Default is ``'calc'``, which uses 5% of the initial number of particles. max_mem : Int, optional The maximum memory to use for optimization after adding max_npart particles. Default is 2e8. always_check_remove : Bool, optional Set to True to always check whether to remove particles. If ``False``, only checks for removal while particles were removed on the previous attempt. Default is False. Other Parameters ---------------- invert : Bool, optional ``True`` if the particles are dark on a bright background, ``False`` if they are bright on a dark background. Default is ``True``. min_rad : Float, optional Particles with radius below ``min_rad`` are automatically deleted. Default is ``'calc'`` = median rad - 25* radius std. max_rad : Float, optional Particles with radius above ``max_rad`` are automatically deleted. Default is ``'calc'`` = median rad + 15* radius std, but you should change this for your particle sizes. min_edge_dist : Float, optional Particles closer to the edge of the padded image than this are automatically deleted. Default is 2.0. check_rad_cutoff : 2-element float list. Particles with ``radii < check_rad_cutoff[0]`` or ``> check...[1]`` are checked if they should be deleted (not automatic). Default is ``[3.5, 15]``. check_outside_im : Bool, optional Set to True to check whether to delete particles whose positions are outside the un-padded image. rad : Float, optional The initial radius for added particles; added particles radii are not fit until the end of ``add_subtract``. Default is ``'calc'``, which uses the median radii of active particles. tries : Int, optional The number of particles to attempt to remove or add, per iteration. Default is 50. im_change_frac : Float, optional How good the change in error needs to be relative to the change in the difference image. Default is 0.2; i.e. if the error does not decrease by 20% of the change in the difference image, do not add the particle. min_derr : Float, optional The minimum change in the state's error to keep a particle in the image. Default is ``'3sig'`` which uses ``3*st.sigma``. do_opt : Bool, optional Set to False to avoid optimizing particle positions after adding. minmass : Float, optional The minimum mass for a particle to be identified as a feature, as used by trackpy. Defaults to a decent guess. use_tp : Bool, optional Set to True to use trackpy to find missing particles inside the image. Not recommended since trackpy deliberately cuts out particles at the edge of the image. Default is ``False``. Returns ------- total_changed : Int The total number of adds and subtracts done on the data. Not the same as ``changed_inds.size`` since the same particle or particle index can be added/subtracted multiple times. added_positions : [N_added,3] numpy.ndarray The positions of particles that have been added at any point in the add-subtract cycle. removed_positions : [N_added,3] numpy.ndarray The positions of particles that have been removed at any point in the add-subtract cycle. Notes ------ Occasionally after the intial featuring a cluster of particles is featured as 1 big particle. To fix these mistakes, it helps to set max_rad to a physical value. This removes the big particle and allows it to be re-featured by (several passes of) the adds. The added/removed positions returned are whether or not the position has been added or removed ever. It's possible that a position is added, then removed during a later iteration. """ if max_npart == 'calc': max_npart = 0.05 * st.obj_get_positions().shape[0] total_changed = 0 _change_since_opt = 0 removed_poses = [] added_poses0 = [] added_poses = [] nr = 1 # Check removal on the first loop for _ in range(max_iter): if (nr != 0) or (always_check_remove): nr, rposes = remove_bad_particles(st, **kwargs) na, aposes = add_missing_particles(st, **kwargs) current_changed = na + nr removed_poses.extend(rposes) added_poses0.extend(aposes) total_changed += current_changed _change_since_opt += current_changed if current_changed == 0: break elif _change_since_opt > max_npart: _change_since_opt *= 0 CLOG.info('Start add_subtract optimization.') opt.do_levmarq(st, opt.name_globals(st, remove_params=st.get( 'psf').params), max_iter=1, run_length=4, num_eig_dirs=3, max_mem=max_mem, eig_update_frequency=2, rz_order=0, use_accel=True) CLOG.info('After optimization:\t{:.6}'.format(st.error)) # Optimize the added particles' radii: for p in added_poses0: i = st.obj_closest_particle(p) opt.do_levmarq_particles(st, np.array([i]), max_iter=2, damping=0.3) added_poses.append(st.obj_get_positions()[i]) return total_changed, np.array(removed_poses), np.array(added_poses)
def add_subtract(st, max_iter=7, max_npart='calc', max_mem=2e8, always_check_remove=False, **kwargs): """ Automatically adds and subtracts missing & extra particles. Operates by removing bad particles then adding missing particles on repeat, until either no particles are added/removed or after `max_iter` attempts. Parameters ---------- st: :class:`peri.states.State` The state to add and subtract particles to. max_iter : Int, optional The maximum number of add-subtract loops to use. Default is 7. Terminates after either max_iter loops or when nothing has changed. max_npart : Int or 'calc', optional The maximum number of particles to add before optimizing the non-psf globals. Default is ``'calc'``, which uses 5% of the initial number of particles. max_mem : Int, optional The maximum memory to use for optimization after adding max_npart particles. Default is 2e8. always_check_remove : Bool, optional Set to True to always check whether to remove particles. If ``False``, only checks for removal while particles were removed on the previous attempt. Default is False. Other Parameters ---------------- invert : Bool, optional ``True`` if the particles are dark on a bright background, ``False`` if they are bright on a dark background. Default is ``True``. min_rad : Float, optional Particles with radius below ``min_rad`` are automatically deleted. Default is ``'calc'`` = median rad - 25* radius std. max_rad : Float, optional Particles with radius above ``max_rad`` are automatically deleted. Default is ``'calc'`` = median rad + 15* radius std, but you should change this for your particle sizes. min_edge_dist : Float, optional Particles closer to the edge of the padded image than this are automatically deleted. Default is 2.0. check_rad_cutoff : 2-element float list. Particles with ``radii < check_rad_cutoff[0]`` or ``> check...[1]`` are checked if they should be deleted (not automatic). Default is ``[3.5, 15]``. check_outside_im : Bool, optional Set to True to check whether to delete particles whose positions are outside the un-padded image. rad : Float, optional The initial radius for added particles; added particles radii are not fit until the end of ``add_subtract``. Default is ``'calc'``, which uses the median radii of active particles. tries : Int, optional The number of particles to attempt to remove or add, per iteration. Default is 50. im_change_frac : Float, optional How good the change in error needs to be relative to the change in the difference image. Default is 0.2; i.e. if the error does not decrease by 20% of the change in the difference image, do not add the particle. min_derr : Float, optional The minimum change in the state's error to keep a particle in the image. Default is ``'3sig'`` which uses ``3*st.sigma``. do_opt : Bool, optional Set to False to avoid optimizing particle positions after adding. minmass : Float, optional The minimum mass for a particle to be identified as a feature, as used by trackpy. Defaults to a decent guess. use_tp : Bool, optional Set to True to use trackpy to find missing particles inside the image. Not recommended since trackpy deliberately cuts out particles at the edge of the image. Default is ``False``. Returns ------- total_changed : Int The total number of adds and subtracts done on the data. Not the same as ``changed_inds.size`` since the same particle or particle index can be added/subtracted multiple times. added_positions : [N_added,3] numpy.ndarray The positions of particles that have been added at any point in the add-subtract cycle. removed_positions : [N_added,3] numpy.ndarray The positions of particles that have been removed at any point in the add-subtract cycle. Notes ------ Occasionally after the intial featuring a cluster of particles is featured as 1 big particle. To fix these mistakes, it helps to set max_rad to a physical value. This removes the big particle and allows it to be re-featured by (several passes of) the adds. The added/removed positions returned are whether or not the position has been added or removed ever. It's possible that a position is added, then removed during a later iteration. """ if max_npart == 'calc': max_npart = 0.05 * st.obj_get_positions().shape[0] total_changed = 0 _change_since_opt = 0 removed_poses = [] added_poses0 = [] added_poses = [] nr = 1 # Check removal on the first loop for _ in range(max_iter): if (nr != 0) or (always_check_remove): nr, rposes = remove_bad_particles(st, **kwargs) na, aposes = add_missing_particles(st, **kwargs) current_changed = na + nr removed_poses.extend(rposes) added_poses0.extend(aposes) total_changed += current_changed _change_since_opt += current_changed if current_changed == 0: break elif _change_since_opt > max_npart: _change_since_opt *= 0 CLOG.info('Start add_subtract optimization.') opt.do_levmarq(st, opt.name_globals(st, remove_params=st.get( 'psf').params), max_iter=1, run_length=4, num_eig_dirs=3, max_mem=max_mem, eig_update_frequency=2, rz_order=0, use_accel=True) CLOG.info('After optimization:\t{:.6}'.format(st.error)) # Optimize the added particles' radii: for p in added_poses0: i = st.obj_closest_particle(p) opt.do_levmarq_particles(st, np.array([i]), max_iter=2, damping=0.3) added_poses.append(st.obj_get_positions()[i]) return total_changed, np.array(removed_poses), np.array(added_poses)
[ "Automatically", "adds", "and", "subtracts", "missing", "&", "extra", "particles", "." ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/opt/addsubtract.py#L428-L569
[ "def", "add_subtract", "(", "st", ",", "max_iter", "=", "7", ",", "max_npart", "=", "'calc'", ",", "max_mem", "=", "2e8", ",", "always_check_remove", "=", "False", ",", "*", "*", "kwargs", ")", ":", "if", "max_npart", "==", "'calc'", ":", "max_npart", "=", "0.05", "*", "st", ".", "obj_get_positions", "(", ")", ".", "shape", "[", "0", "]", "total_changed", "=", "0", "_change_since_opt", "=", "0", "removed_poses", "=", "[", "]", "added_poses0", "=", "[", "]", "added_poses", "=", "[", "]", "nr", "=", "1", "# Check removal on the first loop", "for", "_", "in", "range", "(", "max_iter", ")", ":", "if", "(", "nr", "!=", "0", ")", "or", "(", "always_check_remove", ")", ":", "nr", ",", "rposes", "=", "remove_bad_particles", "(", "st", ",", "*", "*", "kwargs", ")", "na", ",", "aposes", "=", "add_missing_particles", "(", "st", ",", "*", "*", "kwargs", ")", "current_changed", "=", "na", "+", "nr", "removed_poses", ".", "extend", "(", "rposes", ")", "added_poses0", ".", "extend", "(", "aposes", ")", "total_changed", "+=", "current_changed", "_change_since_opt", "+=", "current_changed", "if", "current_changed", "==", "0", ":", "break", "elif", "_change_since_opt", ">", "max_npart", ":", "_change_since_opt", "*=", "0", "CLOG", ".", "info", "(", "'Start add_subtract optimization.'", ")", "opt", ".", "do_levmarq", "(", "st", ",", "opt", ".", "name_globals", "(", "st", ",", "remove_params", "=", "st", ".", "get", "(", "'psf'", ")", ".", "params", ")", ",", "max_iter", "=", "1", ",", "run_length", "=", "4", ",", "num_eig_dirs", "=", "3", ",", "max_mem", "=", "max_mem", ",", "eig_update_frequency", "=", "2", ",", "rz_order", "=", "0", ",", "use_accel", "=", "True", ")", "CLOG", ".", "info", "(", "'After optimization:\\t{:.6}'", ".", "format", "(", "st", ".", "error", ")", ")", "# Optimize the added particles' radii:", "for", "p", "in", "added_poses0", ":", "i", "=", "st", ".", "obj_closest_particle", "(", "p", ")", "opt", ".", "do_levmarq_particles", "(", "st", ",", "np", ".", "array", "(", "[", "i", "]", ")", ",", "max_iter", "=", "2", ",", "damping", "=", "0.3", ")", "added_poses", ".", "append", "(", "st", ".", "obj_get_positions", "(", ")", "[", "i", "]", ")", "return", "total_changed", ",", "np", ".", "array", "(", "removed_poses", ")", ",", "np", ".", "array", "(", "added_poses", ")" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
identify_misfeatured_regions
Identifies regions of missing/misfeatured particles based on the residuals' local deviation from uniform Gaussian noise. Parameters ---------- st : :class:`peri.states.State` The state in which to identify mis-featured regions. filter_size : Int, best if odd. The size of the filter for calculating the local standard deviation; should approximately be the size of a poorly featured region in each dimension. Default is 5. sigma_cutoff : Float or `otsu`, optional The max allowed deviation of the residuals from what is expected, in units of the residuals' standard deviation. Lower means more sensitive, higher = less sensitive. Default is 8.0, i.e. one pixel out of every 7*10^11 is mis-identified randomly. In practice the noise is not Gaussian so there are still some regions mis-identified as improperly featured. Set to ```otsu``` to calculate this number based on an automatic Otsu threshold. Returns ------- tiles : List of :class:`peri.util.Tile` Each tile is the smallest bounding tile that contains an improperly featured region. The list is sorted by the tile's volume. Notes ----- Algorithm is 1. Create a field of the local standard deviation, as measured over a hypercube of size filter_size. 2. Find the maximum reasonable value of the field. [The field should be a random variable with mean of r.std() and standard deviation of ~r.std() / sqrt(N), where r is the residuals and N is the number of pixels in the hypercube.] 3. Label & Identify the misfeatured regions as portions where the local error is too large. 4. Parse the misfeatured regions into tiles. 5. Return the sorted tiles. The Otsu option to calculate the sigma cutoff works well for images that actually contain missing particles, returning a number similar to one calculated with a sigma cutoff. However, if the image is well-featured with Gaussian residuals, then the Otsu threshold splits the Gaussian down the middle instead of at the tails, which is very bad. So use with caution.
peri/opt/addsubtract.py
def identify_misfeatured_regions(st, filter_size=5, sigma_cutoff=8.): """ Identifies regions of missing/misfeatured particles based on the residuals' local deviation from uniform Gaussian noise. Parameters ---------- st : :class:`peri.states.State` The state in which to identify mis-featured regions. filter_size : Int, best if odd. The size of the filter for calculating the local standard deviation; should approximately be the size of a poorly featured region in each dimension. Default is 5. sigma_cutoff : Float or `otsu`, optional The max allowed deviation of the residuals from what is expected, in units of the residuals' standard deviation. Lower means more sensitive, higher = less sensitive. Default is 8.0, i.e. one pixel out of every 7*10^11 is mis-identified randomly. In practice the noise is not Gaussian so there are still some regions mis-identified as improperly featured. Set to ```otsu``` to calculate this number based on an automatic Otsu threshold. Returns ------- tiles : List of :class:`peri.util.Tile` Each tile is the smallest bounding tile that contains an improperly featured region. The list is sorted by the tile's volume. Notes ----- Algorithm is 1. Create a field of the local standard deviation, as measured over a hypercube of size filter_size. 2. Find the maximum reasonable value of the field. [The field should be a random variable with mean of r.std() and standard deviation of ~r.std() / sqrt(N), where r is the residuals and N is the number of pixels in the hypercube.] 3. Label & Identify the misfeatured regions as portions where the local error is too large. 4. Parse the misfeatured regions into tiles. 5. Return the sorted tiles. The Otsu option to calculate the sigma cutoff works well for images that actually contain missing particles, returning a number similar to one calculated with a sigma cutoff. However, if the image is well-featured with Gaussian residuals, then the Otsu threshold splits the Gaussian down the middle instead of at the tails, which is very bad. So use with caution. """ # 1. Field of local std r = st.residuals weights = np.ones([filter_size]*len(r.shape), dtype='float') weights /= weights.sum() f = np.sqrt(nd.filters.convolve(r*r, weights, mode='reflect')) # 2. Maximal reasonable value of the field. if sigma_cutoff == 'otsu': max_ok = initializers.otsu_threshold(f) else: # max_ok = f.mean() * (1 + sigma_cutoff / np.sqrt(weights.size)) max_ok = f.mean() + sigma_cutoff * f.std() # 3. Label & Identify bad = f > max_ok labels, n = nd.measurements.label(bad) inds = [] for i in range(1, n+1): inds.append(np.nonzero(labels == i)) # 4. Parse into tiles tiles = [Tile(np.min(ind, axis=1), np.max(ind, axis=1)+1) for ind in inds] # 5. Sort and return volumes = [t.volume for t in tiles] return [tiles[i] for i in np.argsort(volumes)[::-1]]
def identify_misfeatured_regions(st, filter_size=5, sigma_cutoff=8.): """ Identifies regions of missing/misfeatured particles based on the residuals' local deviation from uniform Gaussian noise. Parameters ---------- st : :class:`peri.states.State` The state in which to identify mis-featured regions. filter_size : Int, best if odd. The size of the filter for calculating the local standard deviation; should approximately be the size of a poorly featured region in each dimension. Default is 5. sigma_cutoff : Float or `otsu`, optional The max allowed deviation of the residuals from what is expected, in units of the residuals' standard deviation. Lower means more sensitive, higher = less sensitive. Default is 8.0, i.e. one pixel out of every 7*10^11 is mis-identified randomly. In practice the noise is not Gaussian so there are still some regions mis-identified as improperly featured. Set to ```otsu``` to calculate this number based on an automatic Otsu threshold. Returns ------- tiles : List of :class:`peri.util.Tile` Each tile is the smallest bounding tile that contains an improperly featured region. The list is sorted by the tile's volume. Notes ----- Algorithm is 1. Create a field of the local standard deviation, as measured over a hypercube of size filter_size. 2. Find the maximum reasonable value of the field. [The field should be a random variable with mean of r.std() and standard deviation of ~r.std() / sqrt(N), where r is the residuals and N is the number of pixels in the hypercube.] 3. Label & Identify the misfeatured regions as portions where the local error is too large. 4. Parse the misfeatured regions into tiles. 5. Return the sorted tiles. The Otsu option to calculate the sigma cutoff works well for images that actually contain missing particles, returning a number similar to one calculated with a sigma cutoff. However, if the image is well-featured with Gaussian residuals, then the Otsu threshold splits the Gaussian down the middle instead of at the tails, which is very bad. So use with caution. """ # 1. Field of local std r = st.residuals weights = np.ones([filter_size]*len(r.shape), dtype='float') weights /= weights.sum() f = np.sqrt(nd.filters.convolve(r*r, weights, mode='reflect')) # 2. Maximal reasonable value of the field. if sigma_cutoff == 'otsu': max_ok = initializers.otsu_threshold(f) else: # max_ok = f.mean() * (1 + sigma_cutoff / np.sqrt(weights.size)) max_ok = f.mean() + sigma_cutoff * f.std() # 3. Label & Identify bad = f > max_ok labels, n = nd.measurements.label(bad) inds = [] for i in range(1, n+1): inds.append(np.nonzero(labels == i)) # 4. Parse into tiles tiles = [Tile(np.min(ind, axis=1), np.max(ind, axis=1)+1) for ind in inds] # 5. Sort and return volumes = [t.volume for t in tiles] return [tiles[i] for i in np.argsort(volumes)[::-1]]
[ "Identifies", "regions", "of", "missing", "/", "misfeatured", "particles", "based", "on", "the", "residuals", "local", "deviation", "from", "uniform", "Gaussian", "noise", "." ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/opt/addsubtract.py#L572-L647
[ "def", "identify_misfeatured_regions", "(", "st", ",", "filter_size", "=", "5", ",", "sigma_cutoff", "=", "8.", ")", ":", "# 1. Field of local std", "r", "=", "st", ".", "residuals", "weights", "=", "np", ".", "ones", "(", "[", "filter_size", "]", "*", "len", "(", "r", ".", "shape", ")", ",", "dtype", "=", "'float'", ")", "weights", "/=", "weights", ".", "sum", "(", ")", "f", "=", "np", ".", "sqrt", "(", "nd", ".", "filters", ".", "convolve", "(", "r", "*", "r", ",", "weights", ",", "mode", "=", "'reflect'", ")", ")", "# 2. Maximal reasonable value of the field.", "if", "sigma_cutoff", "==", "'otsu'", ":", "max_ok", "=", "initializers", ".", "otsu_threshold", "(", "f", ")", "else", ":", "# max_ok = f.mean() * (1 + sigma_cutoff / np.sqrt(weights.size))", "max_ok", "=", "f", ".", "mean", "(", ")", "+", "sigma_cutoff", "*", "f", ".", "std", "(", ")", "# 3. Label & Identify", "bad", "=", "f", ">", "max_ok", "labels", ",", "n", "=", "nd", ".", "measurements", ".", "label", "(", "bad", ")", "inds", "=", "[", "]", "for", "i", "in", "range", "(", "1", ",", "n", "+", "1", ")", ":", "inds", ".", "append", "(", "np", ".", "nonzero", "(", "labels", "==", "i", ")", ")", "# 4. Parse into tiles", "tiles", "=", "[", "Tile", "(", "np", ".", "min", "(", "ind", ",", "axis", "=", "1", ")", ",", "np", ".", "max", "(", "ind", ",", "axis", "=", "1", ")", "+", "1", ")", "for", "ind", "in", "inds", "]", "# 5. Sort and return", "volumes", "=", "[", "t", ".", "volume", "for", "t", "in", "tiles", "]", "return", "[", "tiles", "[", "i", "]", "for", "i", "in", "np", ".", "argsort", "(", "volumes", ")", "[", ":", ":", "-", "1", "]", "]" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
add_subtract_misfeatured_tile
Automatically adds and subtracts missing & extra particles in a region of poor fit. Parameters ---------- st: :class:`peri.states.State` The state to add and subtract particles to. tile : :class:`peri.util.Tile` The poorly-fit region to examine. rad : Float or 'calc', optional The initial radius for added particles; added particles radii are not fit until the end of add_subtract. Default is ``'calc'``, which uses the median radii of active particles. max_iter : Int, optional The maximum number of loops for attempted adds at one tile location. Default is 3. invert : {'guess', True, False}, optional Whether to invert the image for feature_guess -- True for dark particles on a bright background, False for bright particles. The default is to guess from the state's current particles. max_allowed_remove : Int, optional The maximum number of particles to remove. If the misfeatured tile contains more than this many particles, raises an error. If it contains more than half as many particles, logs a warning. If more than this many particles are added, they are optimized in blocks of ``max_allowed_remove``. Default is 20. Other Parameters ---------------- im_change_frac : Float on [0, 1], optional. If adding or removing a particle decreases the error less than ``im_change_frac``*the change in the image, the particle is deleted. Default is 0.2. min_derr : {Float, ``'3sig'``}, optional The minimum change in the state's error to keep a particle in the image. Default is ``'3sig'`` which uses ``3*st.sigma``. do_opt : Bool, optional Set to False to avoid optimizing particle positions after adding them. Default is True. minmass : Float, optional The minimum mass for a particle to be identified as a feature, as used by trackpy. Defaults to a decent guess. use_tp : Bool, optional Set to True to use trackpy to find missing particles inside the image. Not recommended since trackpy deliberately cuts out particles at the edge of the image. Default is False. Outputs ------- n_added : Int The change in the number of particles, i.e. ``n_added-n_subtracted`` ainds: List of ints The indices of the added particles. Notes -------- The added/removed positions returned are whether or not the position has been added or removed ever. It's possible/probably that a position is added, then removed during a later iteration. Algorithm is: 1. Remove all particles within the tile. 2. Feature and add particles to the tile. 3. Optimize the added particles positions only. 4. Run 2-3 until no particles have been added. 5. Optimize added particle radii Because all the particles are removed within a tile, it is important to set max_allowed_remove to a reasonable value. Otherwise, if the tile is the size of the image it can take a long time to remove all the particles and re-add them.
peri/opt/addsubtract.py
def add_subtract_misfeatured_tile( st, tile, rad='calc', max_iter=3, invert='guess', max_allowed_remove=20, minmass=None, use_tp=False, **kwargs): """ Automatically adds and subtracts missing & extra particles in a region of poor fit. Parameters ---------- st: :class:`peri.states.State` The state to add and subtract particles to. tile : :class:`peri.util.Tile` The poorly-fit region to examine. rad : Float or 'calc', optional The initial radius for added particles; added particles radii are not fit until the end of add_subtract. Default is ``'calc'``, which uses the median radii of active particles. max_iter : Int, optional The maximum number of loops for attempted adds at one tile location. Default is 3. invert : {'guess', True, False}, optional Whether to invert the image for feature_guess -- True for dark particles on a bright background, False for bright particles. The default is to guess from the state's current particles. max_allowed_remove : Int, optional The maximum number of particles to remove. If the misfeatured tile contains more than this many particles, raises an error. If it contains more than half as many particles, logs a warning. If more than this many particles are added, they are optimized in blocks of ``max_allowed_remove``. Default is 20. Other Parameters ---------------- im_change_frac : Float on [0, 1], optional. If adding or removing a particle decreases the error less than ``im_change_frac``*the change in the image, the particle is deleted. Default is 0.2. min_derr : {Float, ``'3sig'``}, optional The minimum change in the state's error to keep a particle in the image. Default is ``'3sig'`` which uses ``3*st.sigma``. do_opt : Bool, optional Set to False to avoid optimizing particle positions after adding them. Default is True. minmass : Float, optional The minimum mass for a particle to be identified as a feature, as used by trackpy. Defaults to a decent guess. use_tp : Bool, optional Set to True to use trackpy to find missing particles inside the image. Not recommended since trackpy deliberately cuts out particles at the edge of the image. Default is False. Outputs ------- n_added : Int The change in the number of particles, i.e. ``n_added-n_subtracted`` ainds: List of ints The indices of the added particles. Notes -------- The added/removed positions returned are whether or not the position has been added or removed ever. It's possible/probably that a position is added, then removed during a later iteration. Algorithm is: 1. Remove all particles within the tile. 2. Feature and add particles to the tile. 3. Optimize the added particles positions only. 4. Run 2-3 until no particles have been added. 5. Optimize added particle radii Because all the particles are removed within a tile, it is important to set max_allowed_remove to a reasonable value. Otherwise, if the tile is the size of the image it can take a long time to remove all the particles and re-add them. """ if rad == 'calc': rad = guess_add_radii(st) if invert == 'guess': invert = guess_invert(st) # 1. Remove all possibly bad particles within the tile. initial_error = np.copy(st.error) rinds = np.nonzero(tile.contains(st.obj_get_positions()))[0] if rinds.size >= max_allowed_remove: CLOG.fatal('Misfeatured region too large!') raise RuntimeError elif rinds.size >= max_allowed_remove/2: CLOG.warn('Large misfeatured regions.') elif rinds.size > 0: rpos, rrad = st.obj_remove_particle(rinds) # 2-4. Feature & add particles to the tile, optimize, run until none added n_added = -rinds.size added_poses = [] for _ in range(max_iter): if invert: im = 1 - st.residuals[tile.slicer] else: im = st.residuals[tile.slicer] guess, _ = _feature_guess(im, rad, minmass=minmass, use_tp=use_tp) accepts, poses = check_add_particles( st, guess+tile.l, rad=rad, do_opt=True, **kwargs) added_poses.extend(poses) n_added += accepts if accepts == 0: break else: # for-break-else CLOG.warn('Runaway adds or insufficient max_iter') # 5. Optimize added pos + rad: ainds = [] for p in added_poses: ainds.append(st.obj_closest_particle(p)) if len(ainds) > max_allowed_remove: for i in range(0, len(ainds), max_allowed_remove): opt.do_levmarq_particles( st, np.array(ainds[i:i + max_allowed_remove]), include_rad=True, max_iter=3) elif len(ainds) > 0: opt.do_levmarq_particles(st, ainds, include_rad=True, max_iter=3) # 6. Ensure that current error after add-subtracting is lower than initial did_something = (rinds.size > 0) or (len(ainds) > 0) if did_something & (st.error > initial_error): CLOG.info('Failed addsub, Tile {} -> {}'.format( tile.l.tolist(), tile.r.tolist())) if len(ainds) > 0: _ = st.obj_remove_particle(ainds) if rinds.size > 0: for p, r in zip(rpos.reshape(-1, 3), rrad.reshape(-1)): _ = st.obj_add_particle(p, r) n_added = 0 ainds = [] return n_added, ainds
def add_subtract_misfeatured_tile( st, tile, rad='calc', max_iter=3, invert='guess', max_allowed_remove=20, minmass=None, use_tp=False, **kwargs): """ Automatically adds and subtracts missing & extra particles in a region of poor fit. Parameters ---------- st: :class:`peri.states.State` The state to add and subtract particles to. tile : :class:`peri.util.Tile` The poorly-fit region to examine. rad : Float or 'calc', optional The initial radius for added particles; added particles radii are not fit until the end of add_subtract. Default is ``'calc'``, which uses the median radii of active particles. max_iter : Int, optional The maximum number of loops for attempted adds at one tile location. Default is 3. invert : {'guess', True, False}, optional Whether to invert the image for feature_guess -- True for dark particles on a bright background, False for bright particles. The default is to guess from the state's current particles. max_allowed_remove : Int, optional The maximum number of particles to remove. If the misfeatured tile contains more than this many particles, raises an error. If it contains more than half as many particles, logs a warning. If more than this many particles are added, they are optimized in blocks of ``max_allowed_remove``. Default is 20. Other Parameters ---------------- im_change_frac : Float on [0, 1], optional. If adding or removing a particle decreases the error less than ``im_change_frac``*the change in the image, the particle is deleted. Default is 0.2. min_derr : {Float, ``'3sig'``}, optional The minimum change in the state's error to keep a particle in the image. Default is ``'3sig'`` which uses ``3*st.sigma``. do_opt : Bool, optional Set to False to avoid optimizing particle positions after adding them. Default is True. minmass : Float, optional The minimum mass for a particle to be identified as a feature, as used by trackpy. Defaults to a decent guess. use_tp : Bool, optional Set to True to use trackpy to find missing particles inside the image. Not recommended since trackpy deliberately cuts out particles at the edge of the image. Default is False. Outputs ------- n_added : Int The change in the number of particles, i.e. ``n_added-n_subtracted`` ainds: List of ints The indices of the added particles. Notes -------- The added/removed positions returned are whether or not the position has been added or removed ever. It's possible/probably that a position is added, then removed during a later iteration. Algorithm is: 1. Remove all particles within the tile. 2. Feature and add particles to the tile. 3. Optimize the added particles positions only. 4. Run 2-3 until no particles have been added. 5. Optimize added particle radii Because all the particles are removed within a tile, it is important to set max_allowed_remove to a reasonable value. Otherwise, if the tile is the size of the image it can take a long time to remove all the particles and re-add them. """ if rad == 'calc': rad = guess_add_radii(st) if invert == 'guess': invert = guess_invert(st) # 1. Remove all possibly bad particles within the tile. initial_error = np.copy(st.error) rinds = np.nonzero(tile.contains(st.obj_get_positions()))[0] if rinds.size >= max_allowed_remove: CLOG.fatal('Misfeatured region too large!') raise RuntimeError elif rinds.size >= max_allowed_remove/2: CLOG.warn('Large misfeatured regions.') elif rinds.size > 0: rpos, rrad = st.obj_remove_particle(rinds) # 2-4. Feature & add particles to the tile, optimize, run until none added n_added = -rinds.size added_poses = [] for _ in range(max_iter): if invert: im = 1 - st.residuals[tile.slicer] else: im = st.residuals[tile.slicer] guess, _ = _feature_guess(im, rad, minmass=minmass, use_tp=use_tp) accepts, poses = check_add_particles( st, guess+tile.l, rad=rad, do_opt=True, **kwargs) added_poses.extend(poses) n_added += accepts if accepts == 0: break else: # for-break-else CLOG.warn('Runaway adds or insufficient max_iter') # 5. Optimize added pos + rad: ainds = [] for p in added_poses: ainds.append(st.obj_closest_particle(p)) if len(ainds) > max_allowed_remove: for i in range(0, len(ainds), max_allowed_remove): opt.do_levmarq_particles( st, np.array(ainds[i:i + max_allowed_remove]), include_rad=True, max_iter=3) elif len(ainds) > 0: opt.do_levmarq_particles(st, ainds, include_rad=True, max_iter=3) # 6. Ensure that current error after add-subtracting is lower than initial did_something = (rinds.size > 0) or (len(ainds) > 0) if did_something & (st.error > initial_error): CLOG.info('Failed addsub, Tile {} -> {}'.format( tile.l.tolist(), tile.r.tolist())) if len(ainds) > 0: _ = st.obj_remove_particle(ainds) if rinds.size > 0: for p, r in zip(rpos.reshape(-1, 3), rrad.reshape(-1)): _ = st.obj_add_particle(p, r) n_added = 0 ainds = [] return n_added, ainds
[ "Automatically", "adds", "and", "subtracts", "missing", "&", "extra", "particles", "in", "a", "region", "of", "poor", "fit", "." ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/opt/addsubtract.py#L650-L786
[ "def", "add_subtract_misfeatured_tile", "(", "st", ",", "tile", ",", "rad", "=", "'calc'", ",", "max_iter", "=", "3", ",", "invert", "=", "'guess'", ",", "max_allowed_remove", "=", "20", ",", "minmass", "=", "None", ",", "use_tp", "=", "False", ",", "*", "*", "kwargs", ")", ":", "if", "rad", "==", "'calc'", ":", "rad", "=", "guess_add_radii", "(", "st", ")", "if", "invert", "==", "'guess'", ":", "invert", "=", "guess_invert", "(", "st", ")", "# 1. Remove all possibly bad particles within the tile.", "initial_error", "=", "np", ".", "copy", "(", "st", ".", "error", ")", "rinds", "=", "np", ".", "nonzero", "(", "tile", ".", "contains", "(", "st", ".", "obj_get_positions", "(", ")", ")", ")", "[", "0", "]", "if", "rinds", ".", "size", ">=", "max_allowed_remove", ":", "CLOG", ".", "fatal", "(", "'Misfeatured region too large!'", ")", "raise", "RuntimeError", "elif", "rinds", ".", "size", ">=", "max_allowed_remove", "/", "2", ":", "CLOG", ".", "warn", "(", "'Large misfeatured regions.'", ")", "elif", "rinds", ".", "size", ">", "0", ":", "rpos", ",", "rrad", "=", "st", ".", "obj_remove_particle", "(", "rinds", ")", "# 2-4. Feature & add particles to the tile, optimize, run until none added", "n_added", "=", "-", "rinds", ".", "size", "added_poses", "=", "[", "]", "for", "_", "in", "range", "(", "max_iter", ")", ":", "if", "invert", ":", "im", "=", "1", "-", "st", ".", "residuals", "[", "tile", ".", "slicer", "]", "else", ":", "im", "=", "st", ".", "residuals", "[", "tile", ".", "slicer", "]", "guess", ",", "_", "=", "_feature_guess", "(", "im", ",", "rad", ",", "minmass", "=", "minmass", ",", "use_tp", "=", "use_tp", ")", "accepts", ",", "poses", "=", "check_add_particles", "(", "st", ",", "guess", "+", "tile", ".", "l", ",", "rad", "=", "rad", ",", "do_opt", "=", "True", ",", "*", "*", "kwargs", ")", "added_poses", ".", "extend", "(", "poses", ")", "n_added", "+=", "accepts", "if", "accepts", "==", "0", ":", "break", "else", ":", "# for-break-else", "CLOG", ".", "warn", "(", "'Runaway adds or insufficient max_iter'", ")", "# 5. Optimize added pos + rad:", "ainds", "=", "[", "]", "for", "p", "in", "added_poses", ":", "ainds", ".", "append", "(", "st", ".", "obj_closest_particle", "(", "p", ")", ")", "if", "len", "(", "ainds", ")", ">", "max_allowed_remove", ":", "for", "i", "in", "range", "(", "0", ",", "len", "(", "ainds", ")", ",", "max_allowed_remove", ")", ":", "opt", ".", "do_levmarq_particles", "(", "st", ",", "np", ".", "array", "(", "ainds", "[", "i", ":", "i", "+", "max_allowed_remove", "]", ")", ",", "include_rad", "=", "True", ",", "max_iter", "=", "3", ")", "elif", "len", "(", "ainds", ")", ">", "0", ":", "opt", ".", "do_levmarq_particles", "(", "st", ",", "ainds", ",", "include_rad", "=", "True", ",", "max_iter", "=", "3", ")", "# 6. Ensure that current error after add-subtracting is lower than initial", "did_something", "=", "(", "rinds", ".", "size", ">", "0", ")", "or", "(", "len", "(", "ainds", ")", ">", "0", ")", "if", "did_something", "&", "(", "st", ".", "error", ">", "initial_error", ")", ":", "CLOG", ".", "info", "(", "'Failed addsub, Tile {} -> {}'", ".", "format", "(", "tile", ".", "l", ".", "tolist", "(", ")", ",", "tile", ".", "r", ".", "tolist", "(", ")", ")", ")", "if", "len", "(", "ainds", ")", ">", "0", ":", "_", "=", "st", ".", "obj_remove_particle", "(", "ainds", ")", "if", "rinds", ".", "size", ">", "0", ":", "for", "p", ",", "r", "in", "zip", "(", "rpos", ".", "reshape", "(", "-", "1", ",", "3", ")", ",", "rrad", ".", "reshape", "(", "-", "1", ")", ")", ":", "_", "=", "st", ".", "obj_add_particle", "(", "p", ",", "r", ")", "n_added", "=", "0", "ainds", "=", "[", "]", "return", "n_added", ",", "ainds" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
add_subtract_locally
Automatically adds and subtracts missing particles based on local regions of poor fit. Calls identify_misfeatured_regions to identify regions, then add_subtract_misfeatured_tile on the tiles in order of size until region_depth tiles have been checked without adding any particles. Parameters ---------- st: :class:`peri.states.State` The state to add and subtract particles to. region_depth : Int The minimum amount of regions to try; the algorithm terminates if region_depth regions have been tried without adding particles. Other Parameters ---------------- filter_size : Int, optional The size of the filter for calculating the local standard deviation; should approximately be the size of a poorly featured region in each dimension. Best if odd. Default is 5. sigma_cutoff : Float, optional The max allowed deviation of the residuals from what is expected, in units of the residuals' standard deviation. Lower means more sensitive, higher = less sensitive. Default is 8.0, i.e. one pixel out of every ``7*10^11`` is mis-identified randomly. In practice the noise is not Gaussian so there are still some regions mis- identified as improperly featured. rad : Float or 'calc', optional The initial radius for added particles; added particles radii are not fit until the end of add_subtract. Default is ``'calc'``, which uses the median radii of active particles. max_iter : Int, optional The maximum number of loops for attempted adds at one tile location. Default is 3. invert : Bool, optional Whether to invert the image for feature_guess. Default is ``True``, i.e. dark particles on bright background. max_allowed_remove : Int, optional The maximum number of particles to remove. If the misfeatured tile contains more than this many particles, raises an error. If it contains more than half as many particles, throws a warning. If more than this many particles are added, they are optimized in blocks of ``max_allowed_remove``. Default is 20. im_change_frac : Float, between 0 and 1. If adding or removing a particle decreases the error less than ``im_change_frac *`` the change in the image, the particle is deleted. Default is 0.2. min_derr : Float The minimum change in the state's error to keep a particle in the image. Default is ``'3sig'`` which uses ``3*st.sigma``. do_opt : Bool, optional Set to False to avoid optimizing particle positions after adding them. Default is True minmass : Float, optional The minimum mass for a particle to be identified as a feature, as used by trackpy. Defaults to a decent guess. use_tp : Bool, optional Set to True to use trackpy to find missing particles inside the image. Not recommended since trackpy deliberately cuts out particles at the edge of the image. Default is False. max_allowed_remove : Int, optional The maximum number of particles to remove. If the misfeatured tile contains more than this many particles, raises an error. If it contains more than half as many particles, throws a warning. If more than this many particles are added, they are optimized in blocks of ``max_allowed_remove``. Default is 20. Returns ------- n_added : Int The change in the number of particles; i.e the number added - number removed. new_poses : List [N,3] element list of the added particle positions. Notes ----- Algorithm Description 1. Identify mis-featured regions by how much the local residuals deviate from the global residuals, as measured by the standard deviation of both. 2. Loop over each of those regions, and: a. Remove every particle in the current region. b. Try to add particles in the current region until no more can be added while adequately decreasing the error. c. Terminate if at least region_depth regions have been checked without successfully adding a particle. Because this algorithm is more judicious about chooosing regions to check, and more aggressive about removing particles in those regions, it runs faster and does a better job than the (global) add_subtract. However, this function usually does not work better as an initial add- subtract on an image, since (1) it doesn't check for removing small/big particles per se, and (2) when the poorly-featured regions of the image are large or when the fit is bad, it will remove essentially all of the particles, taking a long time. As a result, it's usually best to do a normal add_subtract first and using this function for tough missing or double-featured particles.
peri/opt/addsubtract.py
def add_subtract_locally(st, region_depth=3, filter_size=5, sigma_cutoff=8, **kwargs): """ Automatically adds and subtracts missing particles based on local regions of poor fit. Calls identify_misfeatured_regions to identify regions, then add_subtract_misfeatured_tile on the tiles in order of size until region_depth tiles have been checked without adding any particles. Parameters ---------- st: :class:`peri.states.State` The state to add and subtract particles to. region_depth : Int The minimum amount of regions to try; the algorithm terminates if region_depth regions have been tried without adding particles. Other Parameters ---------------- filter_size : Int, optional The size of the filter for calculating the local standard deviation; should approximately be the size of a poorly featured region in each dimension. Best if odd. Default is 5. sigma_cutoff : Float, optional The max allowed deviation of the residuals from what is expected, in units of the residuals' standard deviation. Lower means more sensitive, higher = less sensitive. Default is 8.0, i.e. one pixel out of every ``7*10^11`` is mis-identified randomly. In practice the noise is not Gaussian so there are still some regions mis- identified as improperly featured. rad : Float or 'calc', optional The initial radius for added particles; added particles radii are not fit until the end of add_subtract. Default is ``'calc'``, which uses the median radii of active particles. max_iter : Int, optional The maximum number of loops for attempted adds at one tile location. Default is 3. invert : Bool, optional Whether to invert the image for feature_guess. Default is ``True``, i.e. dark particles on bright background. max_allowed_remove : Int, optional The maximum number of particles to remove. If the misfeatured tile contains more than this many particles, raises an error. If it contains more than half as many particles, throws a warning. If more than this many particles are added, they are optimized in blocks of ``max_allowed_remove``. Default is 20. im_change_frac : Float, between 0 and 1. If adding or removing a particle decreases the error less than ``im_change_frac *`` the change in the image, the particle is deleted. Default is 0.2. min_derr : Float The minimum change in the state's error to keep a particle in the image. Default is ``'3sig'`` which uses ``3*st.sigma``. do_opt : Bool, optional Set to False to avoid optimizing particle positions after adding them. Default is True minmass : Float, optional The minimum mass for a particle to be identified as a feature, as used by trackpy. Defaults to a decent guess. use_tp : Bool, optional Set to True to use trackpy to find missing particles inside the image. Not recommended since trackpy deliberately cuts out particles at the edge of the image. Default is False. max_allowed_remove : Int, optional The maximum number of particles to remove. If the misfeatured tile contains more than this many particles, raises an error. If it contains more than half as many particles, throws a warning. If more than this many particles are added, they are optimized in blocks of ``max_allowed_remove``. Default is 20. Returns ------- n_added : Int The change in the number of particles; i.e the number added - number removed. new_poses : List [N,3] element list of the added particle positions. Notes ----- Algorithm Description 1. Identify mis-featured regions by how much the local residuals deviate from the global residuals, as measured by the standard deviation of both. 2. Loop over each of those regions, and: a. Remove every particle in the current region. b. Try to add particles in the current region until no more can be added while adequately decreasing the error. c. Terminate if at least region_depth regions have been checked without successfully adding a particle. Because this algorithm is more judicious about chooosing regions to check, and more aggressive about removing particles in those regions, it runs faster and does a better job than the (global) add_subtract. However, this function usually does not work better as an initial add- subtract on an image, since (1) it doesn't check for removing small/big particles per se, and (2) when the poorly-featured regions of the image are large or when the fit is bad, it will remove essentially all of the particles, taking a long time. As a result, it's usually best to do a normal add_subtract first and using this function for tough missing or double-featured particles. """ # 1. Find regions of poor tiles: tiles = identify_misfeatured_regions( st, filter_size=filter_size, sigma_cutoff=sigma_cutoff) # 2. Add and subtract in the regions: n_empty = 0 n_added = 0 new_poses = [] for t in tiles: curn, curinds = add_subtract_misfeatured_tile(st, t, **kwargs) if curn == 0: n_empty += 1 else: n_added += curn new_poses.extend(st.obj_get_positions()[curinds]) if n_empty > region_depth: break # some message or something? else: # for-break-else pass # CLOG.info('All regions contained particles.') # something else?? this is not quite true return n_added, new_poses
def add_subtract_locally(st, region_depth=3, filter_size=5, sigma_cutoff=8, **kwargs): """ Automatically adds and subtracts missing particles based on local regions of poor fit. Calls identify_misfeatured_regions to identify regions, then add_subtract_misfeatured_tile on the tiles in order of size until region_depth tiles have been checked without adding any particles. Parameters ---------- st: :class:`peri.states.State` The state to add and subtract particles to. region_depth : Int The minimum amount of regions to try; the algorithm terminates if region_depth regions have been tried without adding particles. Other Parameters ---------------- filter_size : Int, optional The size of the filter for calculating the local standard deviation; should approximately be the size of a poorly featured region in each dimension. Best if odd. Default is 5. sigma_cutoff : Float, optional The max allowed deviation of the residuals from what is expected, in units of the residuals' standard deviation. Lower means more sensitive, higher = less sensitive. Default is 8.0, i.e. one pixel out of every ``7*10^11`` is mis-identified randomly. In practice the noise is not Gaussian so there are still some regions mis- identified as improperly featured. rad : Float or 'calc', optional The initial radius for added particles; added particles radii are not fit until the end of add_subtract. Default is ``'calc'``, which uses the median radii of active particles. max_iter : Int, optional The maximum number of loops for attempted adds at one tile location. Default is 3. invert : Bool, optional Whether to invert the image for feature_guess. Default is ``True``, i.e. dark particles on bright background. max_allowed_remove : Int, optional The maximum number of particles to remove. If the misfeatured tile contains more than this many particles, raises an error. If it contains more than half as many particles, throws a warning. If more than this many particles are added, they are optimized in blocks of ``max_allowed_remove``. Default is 20. im_change_frac : Float, between 0 and 1. If adding or removing a particle decreases the error less than ``im_change_frac *`` the change in the image, the particle is deleted. Default is 0.2. min_derr : Float The minimum change in the state's error to keep a particle in the image. Default is ``'3sig'`` which uses ``3*st.sigma``. do_opt : Bool, optional Set to False to avoid optimizing particle positions after adding them. Default is True minmass : Float, optional The minimum mass for a particle to be identified as a feature, as used by trackpy. Defaults to a decent guess. use_tp : Bool, optional Set to True to use trackpy to find missing particles inside the image. Not recommended since trackpy deliberately cuts out particles at the edge of the image. Default is False. max_allowed_remove : Int, optional The maximum number of particles to remove. If the misfeatured tile contains more than this many particles, raises an error. If it contains more than half as many particles, throws a warning. If more than this many particles are added, they are optimized in blocks of ``max_allowed_remove``. Default is 20. Returns ------- n_added : Int The change in the number of particles; i.e the number added - number removed. new_poses : List [N,3] element list of the added particle positions. Notes ----- Algorithm Description 1. Identify mis-featured regions by how much the local residuals deviate from the global residuals, as measured by the standard deviation of both. 2. Loop over each of those regions, and: a. Remove every particle in the current region. b. Try to add particles in the current region until no more can be added while adequately decreasing the error. c. Terminate if at least region_depth regions have been checked without successfully adding a particle. Because this algorithm is more judicious about chooosing regions to check, and more aggressive about removing particles in those regions, it runs faster and does a better job than the (global) add_subtract. However, this function usually does not work better as an initial add- subtract on an image, since (1) it doesn't check for removing small/big particles per se, and (2) when the poorly-featured regions of the image are large or when the fit is bad, it will remove essentially all of the particles, taking a long time. As a result, it's usually best to do a normal add_subtract first and using this function for tough missing or double-featured particles. """ # 1. Find regions of poor tiles: tiles = identify_misfeatured_regions( st, filter_size=filter_size, sigma_cutoff=sigma_cutoff) # 2. Add and subtract in the regions: n_empty = 0 n_added = 0 new_poses = [] for t in tiles: curn, curinds = add_subtract_misfeatured_tile(st, t, **kwargs) if curn == 0: n_empty += 1 else: n_added += curn new_poses.extend(st.obj_get_positions()[curinds]) if n_empty > region_depth: break # some message or something? else: # for-break-else pass # CLOG.info('All regions contained particles.') # something else?? this is not quite true return n_added, new_poses
[ "Automatically", "adds", "and", "subtracts", "missing", "particles", "based", "on", "local", "regions", "of", "poor", "fit", "." ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/opt/addsubtract.py#L789-L914
[ "def", "add_subtract_locally", "(", "st", ",", "region_depth", "=", "3", ",", "filter_size", "=", "5", ",", "sigma_cutoff", "=", "8", ",", "*", "*", "kwargs", ")", ":", "# 1. Find regions of poor tiles:", "tiles", "=", "identify_misfeatured_regions", "(", "st", ",", "filter_size", "=", "filter_size", ",", "sigma_cutoff", "=", "sigma_cutoff", ")", "# 2. Add and subtract in the regions:", "n_empty", "=", "0", "n_added", "=", "0", "new_poses", "=", "[", "]", "for", "t", "in", "tiles", ":", "curn", ",", "curinds", "=", "add_subtract_misfeatured_tile", "(", "st", ",", "t", ",", "*", "*", "kwargs", ")", "if", "curn", "==", "0", ":", "n_empty", "+=", "1", "else", ":", "n_added", "+=", "curn", "new_poses", ".", "extend", "(", "st", ".", "obj_get_positions", "(", ")", "[", "curinds", "]", ")", "if", "n_empty", ">", "region_depth", ":", "break", "# some message or something?", "else", ":", "# for-break-else", "pass", "# CLOG.info('All regions contained particles.')", "# something else?? this is not quite true", "return", "n_added", ",", "new_poses" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
guess_invert
Guesses whether particles are bright on a dark bkg or vice-versa Works by checking whether the intensity at the particle centers is brighter or darker than the average intensity of the image, by comparing the median intensities of each. Parameters ---------- st : :class:`peri.states.ImageState` Returns ------- invert : bool Whether to invert the image for featuring.
peri/opt/addsubtract.py
def guess_invert(st): """Guesses whether particles are bright on a dark bkg or vice-versa Works by checking whether the intensity at the particle centers is brighter or darker than the average intensity of the image, by comparing the median intensities of each. Parameters ---------- st : :class:`peri.states.ImageState` Returns ------- invert : bool Whether to invert the image for featuring. """ pos = st.obj_get_positions() pxinds_ar = np.round(pos).astype('int') inim = st.ishape.translate(-st.pad).contains(pxinds_ar) pxinds_tuple = tuple(pxinds_ar[inim].T) pxvals = st.data[pxinds_tuple] invert = np.median(pxvals) < np.median(st.data) # invert if dark particles return invert
def guess_invert(st): """Guesses whether particles are bright on a dark bkg or vice-versa Works by checking whether the intensity at the particle centers is brighter or darker than the average intensity of the image, by comparing the median intensities of each. Parameters ---------- st : :class:`peri.states.ImageState` Returns ------- invert : bool Whether to invert the image for featuring. """ pos = st.obj_get_positions() pxinds_ar = np.round(pos).astype('int') inim = st.ishape.translate(-st.pad).contains(pxinds_ar) pxinds_tuple = tuple(pxinds_ar[inim].T) pxvals = st.data[pxinds_tuple] invert = np.median(pxvals) < np.median(st.data) # invert if dark particles return invert
[ "Guesses", "whether", "particles", "are", "bright", "on", "a", "dark", "bkg", "or", "vice", "-", "versa" ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/opt/addsubtract.py#L917-L939
[ "def", "guess_invert", "(", "st", ")", ":", "pos", "=", "st", ".", "obj_get_positions", "(", ")", "pxinds_ar", "=", "np", ".", "round", "(", "pos", ")", ".", "astype", "(", "'int'", ")", "inim", "=", "st", ".", "ishape", ".", "translate", "(", "-", "st", ".", "pad", ")", ".", "contains", "(", "pxinds_ar", ")", "pxinds_tuple", "=", "tuple", "(", "pxinds_ar", "[", "inim", "]", ".", "T", ")", "pxvals", "=", "st", ".", "data", "[", "pxinds_tuple", "]", "invert", "=", "np", ".", "median", "(", "pxvals", ")", "<", "np", ".", "median", "(", "st", ".", "data", ")", "# invert if dark particles", "return", "invert" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
load_wisdom
Prime FFTW with knowledge of which FFTs are best on this machine by loading 'wisdom' from the file ``wisdomfile``
peri/fft.py
def load_wisdom(wisdomfile): """ Prime FFTW with knowledge of which FFTs are best on this machine by loading 'wisdom' from the file ``wisdomfile`` """ if wisdomfile is None: return try: pyfftw.import_wisdom(pickle.load(open(wisdomfile, 'rb'))) except (IOError, TypeError) as e: log.warn("No wisdom present, generating some at %r" % wisdomfile) save_wisdom(wisdomfile)
def load_wisdom(wisdomfile): """ Prime FFTW with knowledge of which FFTs are best on this machine by loading 'wisdom' from the file ``wisdomfile`` """ if wisdomfile is None: return try: pyfftw.import_wisdom(pickle.load(open(wisdomfile, 'rb'))) except (IOError, TypeError) as e: log.warn("No wisdom present, generating some at %r" % wisdomfile) save_wisdom(wisdomfile)
[ "Prime", "FFTW", "with", "knowledge", "of", "which", "FFTs", "are", "best", "on", "this", "machine", "by", "loading", "wisdom", "from", "the", "file", "wisdomfile" ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/fft.py#L48-L60
[ "def", "load_wisdom", "(", "wisdomfile", ")", ":", "if", "wisdomfile", "is", "None", ":", "return", "try", ":", "pyfftw", ".", "import_wisdom", "(", "pickle", ".", "load", "(", "open", "(", "wisdomfile", ",", "'rb'", ")", ")", ")", "except", "(", "IOError", ",", "TypeError", ")", "as", "e", ":", "log", ".", "warn", "(", "\"No wisdom present, generating some at %r\"", "%", "wisdomfile", ")", "save_wisdom", "(", "wisdomfile", ")" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
save_wisdom
Save the acquired 'wisdom' generated by FFTW to file so that future initializations of FFTW will be faster.
peri/fft.py
def save_wisdom(wisdomfile): """ Save the acquired 'wisdom' generated by FFTW to file so that future initializations of FFTW will be faster. """ if wisdomfile is None: return if wisdomfile: pickle.dump( pyfftw.export_wisdom(), open(wisdomfile, 'wb'), protocol=2 )
def save_wisdom(wisdomfile): """ Save the acquired 'wisdom' generated by FFTW to file so that future initializations of FFTW will be faster. """ if wisdomfile is None: return if wisdomfile: pickle.dump( pyfftw.export_wisdom(), open(wisdomfile, 'wb'), protocol=2 )
[ "Save", "the", "acquired", "wisdom", "generated", "by", "FFTW", "to", "file", "so", "that", "future", "initializations", "of", "FFTW", "will", "be", "faster", "." ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/fft.py#L62-L74
[ "def", "save_wisdom", "(", "wisdomfile", ")", ":", "if", "wisdomfile", "is", "None", ":", "return", "if", "wisdomfile", ":", "pickle", ".", "dump", "(", "pyfftw", ".", "export_wisdom", "(", ")", ",", "open", "(", "wisdomfile", ",", "'wb'", ")", ",", "protocol", "=", "2", ")" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
tile_overlap
How much of inner is in outer by volume
peri/opt/tiling.py
def tile_overlap(inner, outer, norm=False): """ How much of inner is in outer by volume """ div = 1.0/inner.volume if norm else 1.0 return div*(inner.volume - util.Tile.intersection(inner, outer).volume)
def tile_overlap(inner, outer, norm=False): """ How much of inner is in outer by volume """ div = 1.0/inner.volume if norm else 1.0 return div*(inner.volume - util.Tile.intersection(inner, outer).volume)
[ "How", "much", "of", "inner", "is", "in", "outer", "by", "volume" ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/opt/tiling.py#L23-L26
[ "def", "tile_overlap", "(", "inner", ",", "outer", ",", "norm", "=", "False", ")", ":", "div", "=", "1.0", "/", "inner", ".", "volume", "if", "norm", "else", "1.0", "return", "div", "*", "(", "inner", ".", "volume", "-", "util", ".", "Tile", ".", "intersection", "(", "inner", ",", "outer", ")", ".", "volume", ")" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
closest_uniform_tile
Given a tiling of space (by state, shift, and size), find the closest tile to another external tile
peri/opt/tiling.py
def closest_uniform_tile(s, shift, size, other): """ Given a tiling of space (by state, shift, and size), find the closest tile to another external tile """ region = util.Tile(size, dim=s.dim, dtype='float').translate(shift - s.pad) vec = np.round((other.center - region.center) / region.shape) return region.translate(region.shape * vec)
def closest_uniform_tile(s, shift, size, other): """ Given a tiling of space (by state, shift, and size), find the closest tile to another external tile """ region = util.Tile(size, dim=s.dim, dtype='float').translate(shift - s.pad) vec = np.round((other.center - region.center) / region.shape) return region.translate(region.shape * vec)
[ "Given", "a", "tiling", "of", "space", "(", "by", "state", "shift", "and", "size", ")", "find", "the", "closest", "tile", "to", "another", "external", "tile" ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/opt/tiling.py#L45-L52
[ "def", "closest_uniform_tile", "(", "s", ",", "shift", ",", "size", ",", "other", ")", ":", "region", "=", "util", ".", "Tile", "(", "size", ",", "dim", "=", "s", ".", "dim", ",", "dtype", "=", "'float'", ")", ".", "translate", "(", "shift", "-", "s", ".", "pad", ")", "vec", "=", "np", ".", "round", "(", "(", "other", ".", "center", "-", "region", ".", "center", ")", "/", "region", ".", "shape", ")", "return", "region", ".", "translate", "(", "region", ".", "shape", "*", "vec", ")" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
separate_particles_into_groups
Given a state, returns a list of groups of particles. Each group of particles are located near each other in the image. Every particle located in the desired region is contained in exactly 1 group. Parameters: ----------- s : state The PERI state to find particles in. region_size: int or list of ints The size of the box. Groups particles into boxes of shape region_size. If region_size is a scalar, the box is a cube of length region_size. Default is 40. bounds: 2-element list-like of 3-element lists. The sub-region of the image over which to look for particles. bounds[0]: The lower-left corner of the image region. bounds[1]: The upper-right corner of the image region. Default (None -> ([0,0,0], s.oshape.shape)) is a box of the entire image size, i.e. the default places every particle in the image somewhere in the groups. Returns: ----------- particle_groups: list Each element of particle_groups is an int numpy.ndarray of the group of nearby particles. Only contains groups with a nonzero number of particles, so the elements don't necessarily correspond to a given image region.
peri/opt/tiling.py
def separate_particles_into_groups(s, region_size=40, bounds=None): """ Given a state, returns a list of groups of particles. Each group of particles are located near each other in the image. Every particle located in the desired region is contained in exactly 1 group. Parameters: ----------- s : state The PERI state to find particles in. region_size: int or list of ints The size of the box. Groups particles into boxes of shape region_size. If region_size is a scalar, the box is a cube of length region_size. Default is 40. bounds: 2-element list-like of 3-element lists. The sub-region of the image over which to look for particles. bounds[0]: The lower-left corner of the image region. bounds[1]: The upper-right corner of the image region. Default (None -> ([0,0,0], s.oshape.shape)) is a box of the entire image size, i.e. the default places every particle in the image somewhere in the groups. Returns: ----------- particle_groups: list Each element of particle_groups is an int numpy.ndarray of the group of nearby particles. Only contains groups with a nonzero number of particles, so the elements don't necessarily correspond to a given image region. """ imtile = ( s.oshape.translate(-s.pad) if bounds is None else util.Tile(bounds[0], bounds[1]) ) # does all particle including out of image, is that correct? region = util.Tile(region_size, dim=s.dim) trange = np.ceil(imtile.shape.astype('float') / region.shape) translations = util.Tile(trange).coords(form='vector') translations = translations.reshape(-1, translations.shape[-1]) groups = [] positions = s.obj_get_positions() for v in translations: tmptile = region.copy().translate(region.shape * v - s.pad) groups.append(find_particles_in_tile(positions, tmptile)) return [g for g in groups if len(g) > 0]
def separate_particles_into_groups(s, region_size=40, bounds=None): """ Given a state, returns a list of groups of particles. Each group of particles are located near each other in the image. Every particle located in the desired region is contained in exactly 1 group. Parameters: ----------- s : state The PERI state to find particles in. region_size: int or list of ints The size of the box. Groups particles into boxes of shape region_size. If region_size is a scalar, the box is a cube of length region_size. Default is 40. bounds: 2-element list-like of 3-element lists. The sub-region of the image over which to look for particles. bounds[0]: The lower-left corner of the image region. bounds[1]: The upper-right corner of the image region. Default (None -> ([0,0,0], s.oshape.shape)) is a box of the entire image size, i.e. the default places every particle in the image somewhere in the groups. Returns: ----------- particle_groups: list Each element of particle_groups is an int numpy.ndarray of the group of nearby particles. Only contains groups with a nonzero number of particles, so the elements don't necessarily correspond to a given image region. """ imtile = ( s.oshape.translate(-s.pad) if bounds is None else util.Tile(bounds[0], bounds[1]) ) # does all particle including out of image, is that correct? region = util.Tile(region_size, dim=s.dim) trange = np.ceil(imtile.shape.astype('float') / region.shape) translations = util.Tile(trange).coords(form='vector') translations = translations.reshape(-1, translations.shape[-1]) groups = [] positions = s.obj_get_positions() for v in translations: tmptile = region.copy().translate(region.shape * v - s.pad) groups.append(find_particles_in_tile(positions, tmptile)) return [g for g in groups if len(g) > 0]
[ "Given", "a", "state", "returns", "a", "list", "of", "groups", "of", "particles", ".", "Each", "group", "of", "particles", "are", "located", "near", "each", "other", "in", "the", "image", ".", "Every", "particle", "located", "in", "the", "desired", "region", "is", "contained", "in", "exactly", "1", "group", "." ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/opt/tiling.py#L170-L220
[ "def", "separate_particles_into_groups", "(", "s", ",", "region_size", "=", "40", ",", "bounds", "=", "None", ")", ":", "imtile", "=", "(", "s", ".", "oshape", ".", "translate", "(", "-", "s", ".", "pad", ")", "if", "bounds", "is", "None", "else", "util", ".", "Tile", "(", "bounds", "[", "0", "]", ",", "bounds", "[", "1", "]", ")", ")", "# does all particle including out of image, is that correct?", "region", "=", "util", ".", "Tile", "(", "region_size", ",", "dim", "=", "s", ".", "dim", ")", "trange", "=", "np", ".", "ceil", "(", "imtile", ".", "shape", ".", "astype", "(", "'float'", ")", "/", "region", ".", "shape", ")", "translations", "=", "util", ".", "Tile", "(", "trange", ")", ".", "coords", "(", "form", "=", "'vector'", ")", "translations", "=", "translations", ".", "reshape", "(", "-", "1", ",", "translations", ".", "shape", "[", "-", "1", "]", ")", "groups", "=", "[", "]", "positions", "=", "s", ".", "obj_get_positions", "(", ")", "for", "v", "in", "translations", ":", "tmptile", "=", "region", ".", "copy", "(", ")", ".", "translate", "(", "region", ".", "shape", "*", "v", "-", "s", ".", "pad", ")", "groups", ".", "append", "(", "find_particles_in_tile", "(", "positions", ",", "tmptile", ")", ")", "return", "[", "g", "for", "g", "in", "groups", "if", "len", "(", "g", ")", ">", "0", "]" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
create_comparison_state
Take a platonic image and position and create a state which we can use to sample the error for peri. Also return the blurred platonic image so we can vary the noise on it later
scripts/does_matter/platonic-form.py
def create_comparison_state(image, position, radius=5.0, snr=20, method='constrained-cubic', extrapad=2, zscale=1.0): """ Take a platonic image and position and create a state which we can use to sample the error for peri. Also return the blurred platonic image so we can vary the noise on it later """ # first pad the image slightly since they are pretty small image = common.pad(image, extrapad, 0) # place that into a new image at the expected parameters s = init.create_single_particle_state(imsize=np.array(image.shape), sigma=1.0/snr, radius=radius, psfargs={'params': np.array([2.0, 1.0, 3.0]), 'error': 1e-6, 'threads': 2}, objargs={'method': method}, stateargs={'sigmapad': False, 'pad': 4, 'zscale': zscale}) s.obj.pos[0] = position + s.pad + extrapad s.reset() s.model_to_true_image() timage = 1-np.pad(image, s.pad, mode='constant', constant_values=0) timage = s.psf.execute(timage) return s, timage[s.inner]
def create_comparison_state(image, position, radius=5.0, snr=20, method='constrained-cubic', extrapad=2, zscale=1.0): """ Take a platonic image and position and create a state which we can use to sample the error for peri. Also return the blurred platonic image so we can vary the noise on it later """ # first pad the image slightly since they are pretty small image = common.pad(image, extrapad, 0) # place that into a new image at the expected parameters s = init.create_single_particle_state(imsize=np.array(image.shape), sigma=1.0/snr, radius=radius, psfargs={'params': np.array([2.0, 1.0, 3.0]), 'error': 1e-6, 'threads': 2}, objargs={'method': method}, stateargs={'sigmapad': False, 'pad': 4, 'zscale': zscale}) s.obj.pos[0] = position + s.pad + extrapad s.reset() s.model_to_true_image() timage = 1-np.pad(image, s.pad, mode='constant', constant_values=0) timage = s.psf.execute(timage) return s, timage[s.inner]
[ "Take", "a", "platonic", "image", "and", "position", "and", "create", "a", "state", "which", "we", "can", "use", "to", "sample", "the", "error", "for", "peri", ".", "Also", "return", "the", "blurred", "platonic", "image", "so", "we", "can", "vary", "the", "noise", "on", "it", "later" ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/scripts/does_matter/platonic-form.py#L10-L30
[ "def", "create_comparison_state", "(", "image", ",", "position", ",", "radius", "=", "5.0", ",", "snr", "=", "20", ",", "method", "=", "'constrained-cubic'", ",", "extrapad", "=", "2", ",", "zscale", "=", "1.0", ")", ":", "# first pad the image slightly since they are pretty small", "image", "=", "common", ".", "pad", "(", "image", ",", "extrapad", ",", "0", ")", "# place that into a new image at the expected parameters", "s", "=", "init", ".", "create_single_particle_state", "(", "imsize", "=", "np", ".", "array", "(", "image", ".", "shape", ")", ",", "sigma", "=", "1.0", "/", "snr", ",", "radius", "=", "radius", ",", "psfargs", "=", "{", "'params'", ":", "np", ".", "array", "(", "[", "2.0", ",", "1.0", ",", "3.0", "]", ")", ",", "'error'", ":", "1e-6", ",", "'threads'", ":", "2", "}", ",", "objargs", "=", "{", "'method'", ":", "method", "}", ",", "stateargs", "=", "{", "'sigmapad'", ":", "False", ",", "'pad'", ":", "4", ",", "'zscale'", ":", "zscale", "}", ")", "s", ".", "obj", ".", "pos", "[", "0", "]", "=", "position", "+", "s", ".", "pad", "+", "extrapad", "s", ".", "reset", "(", ")", "s", ".", "model_to_true_image", "(", ")", "timage", "=", "1", "-", "np", ".", "pad", "(", "image", ",", "s", ".", "pad", ",", "mode", "=", "'constant'", ",", "constant_values", "=", "0", ")", "timage", "=", "s", ".", "psf", ".", "execute", "(", "timage", ")", "return", "s", ",", "timage", "[", "s", ".", "inner", "]" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
dorun
platonics = create_many_platonics(N=50) dorun(platonics)
scripts/does_matter/platonic-form.py
def dorun(method, platonics=None, nsnrs=20, noise_samples=30, sweeps=30, burn=15): """ platonics = create_many_platonics(N=50) dorun(platonics) """ sigmas = np.logspace(np.log10(1.0/2048), 0, nsnrs) crbs, vals, errs, poss = [], [], [], [] for sigma in sigmas: print "#### sigma:", sigma for i, (image, pos) in enumerate(platonics): print 'image', i, '|', s,im = create_comparison_state(image, pos, method=method) # typical image set_image(s, im, sigma) crbs.append(crb(s)) val, err = sample(s, im, sigma, N=noise_samples, sweeps=sweeps, burn=burn) poss.append(pos) vals.append(val) errs.append(err) shape0 = (nsnrs, len(platonics), -1) shape1 = (nsnrs, len(platonics), noise_samples, -1) crbs = np.array(crbs).reshape(shape0) vals = np.array(vals).reshape(shape1) errs = np.array(errs).reshape(shape1) poss = np.array(poss).reshape(shape0) return [crbs, vals, errs, poss, sigmas]
def dorun(method, platonics=None, nsnrs=20, noise_samples=30, sweeps=30, burn=15): """ platonics = create_many_platonics(N=50) dorun(platonics) """ sigmas = np.logspace(np.log10(1.0/2048), 0, nsnrs) crbs, vals, errs, poss = [], [], [], [] for sigma in sigmas: print "#### sigma:", sigma for i, (image, pos) in enumerate(platonics): print 'image', i, '|', s,im = create_comparison_state(image, pos, method=method) # typical image set_image(s, im, sigma) crbs.append(crb(s)) val, err = sample(s, im, sigma, N=noise_samples, sweeps=sweeps, burn=burn) poss.append(pos) vals.append(val) errs.append(err) shape0 = (nsnrs, len(platonics), -1) shape1 = (nsnrs, len(platonics), noise_samples, -1) crbs = np.array(crbs).reshape(shape0) vals = np.array(vals).reshape(shape1) errs = np.array(errs).reshape(shape1) poss = np.array(poss).reshape(shape0) return [crbs, vals, errs, poss, sigmas]
[ "platonics", "=", "create_many_platonics", "(", "N", "=", "50", ")", "dorun", "(", "platonics", ")" ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/scripts/does_matter/platonic-form.py#L32-L65
[ "def", "dorun", "(", "method", ",", "platonics", "=", "None", ",", "nsnrs", "=", "20", ",", "noise_samples", "=", "30", ",", "sweeps", "=", "30", ",", "burn", "=", "15", ")", ":", "sigmas", "=", "np", ".", "logspace", "(", "np", ".", "log10", "(", "1.0", "/", "2048", ")", ",", "0", ",", "nsnrs", ")", "crbs", ",", "vals", ",", "errs", ",", "poss", "=", "[", "]", ",", "[", "]", ",", "[", "]", ",", "[", "]", "for", "sigma", "in", "sigmas", ":", "print", "\"#### sigma:\"", ",", "sigma", "for", "i", ",", "(", "image", ",", "pos", ")", "in", "enumerate", "(", "platonics", ")", ":", "print", "'image'", ",", "i", ",", "'|'", ",", "s", ",", "im", "=", "create_comparison_state", "(", "image", ",", "pos", ",", "method", "=", "method", ")", "# typical image", "set_image", "(", "s", ",", "im", ",", "sigma", ")", "crbs", ".", "append", "(", "crb", "(", "s", ")", ")", "val", ",", "err", "=", "sample", "(", "s", ",", "im", ",", "sigma", ",", "N", "=", "noise_samples", ",", "sweeps", "=", "sweeps", ",", "burn", "=", "burn", ")", "poss", ".", "append", "(", "pos", ")", "vals", ".", "append", "(", "val", ")", "errs", ".", "append", "(", "err", ")", "shape0", "=", "(", "nsnrs", ",", "len", "(", "platonics", ")", ",", "-", "1", ")", "shape1", "=", "(", "nsnrs", ",", "len", "(", "platonics", ")", ",", "noise_samples", ",", "-", "1", ")", "crbs", "=", "np", ".", "array", "(", "crbs", ")", ".", "reshape", "(", "shape0", ")", "vals", "=", "np", ".", "array", "(", "vals", ")", ".", "reshape", "(", "shape1", ")", "errs", "=", "np", ".", "array", "(", "errs", ")", ".", "reshape", "(", "shape1", ")", "poss", "=", "np", ".", "array", "(", "poss", ")", ".", "reshape", "(", "shape0", ")", "return", "[", "crbs", ",", "vals", ",", "errs", ",", "poss", ",", "sigmas", "]" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
perfect_platonic_per_pixel
Create a perfect platonic sphere of a given radius R by supersampling by a factor scale on a grid of size N. Scale must be odd. We are able to perfectly position these particles up to 1/scale. Therefore, let's only allow those types of shifts for now, but return the actual position used for the placement.
scripts/does_matter/common.py
def perfect_platonic_per_pixel(N, R, scale=11, pos=None, zscale=1.0, returnpix=None): """ Create a perfect platonic sphere of a given radius R by supersampling by a factor scale on a grid of size N. Scale must be odd. We are able to perfectly position these particles up to 1/scale. Therefore, let's only allow those types of shifts for now, but return the actual position used for the placement. """ # enforce odd scale size if scale % 2 != 1: scale += 1 if pos is None: # place the default position in the center of the grid pos = np.array([(N-1)/2.0]*3) # limit positions to those that are exact on the size 1./scale # positions have the form (d = divisions): # p = N + m/d s = 1.0/scale f = zscale**2 i = pos.astype('int') p = i + s*((pos - i)/s).astype('int') pos = p + 1e-10 # unfortunately needed to break ties # make the output arrays image = np.zeros((N,)*3) x,y,z = np.meshgrid(*(xrange(N),)*3, indexing='ij') # for each real pixel in the image, integrate a bunch of superres pixels for x0,y0,z0 in zip(x.flatten(),y.flatten(),z.flatten()): # short-circuit things that are just too far away! ddd = np.sqrt(f*(x0-pos[0])**2 + (y0-pos[1])**2 + (z0-pos[2])**2) if ddd > R + 4: image[x0,y0,z0] = 0.0 continue # otherwise, build the local mesh and count the volume xp,yp,zp = np.meshgrid( *(np.linspace(i-0.5+s/2, i+0.5-s/2, scale, endpoint=True) for i in (x0,y0,z0)), indexing='ij' ) ddd = np.sqrt(f*(xp-pos[0])**2 + (yp-pos[1])**2 + (zp-pos[2])**2) if returnpix is not None and returnpix == [x0,y0,z0]: outpix = 1.0 * (ddd < R) vol = (1.0*(ddd < R) + 0.0*(ddd == R)).sum() image[x0,y0,z0] = vol / float(scale**3) #vol_true = 4./3*np.pi*R**3 #vol_real = image.sum() #print vol_true, vol_real, (vol_true - vol_real)/vol_true if returnpix: return image, pos, outpix return image, pos
def perfect_platonic_per_pixel(N, R, scale=11, pos=None, zscale=1.0, returnpix=None): """ Create a perfect platonic sphere of a given radius R by supersampling by a factor scale on a grid of size N. Scale must be odd. We are able to perfectly position these particles up to 1/scale. Therefore, let's only allow those types of shifts for now, but return the actual position used for the placement. """ # enforce odd scale size if scale % 2 != 1: scale += 1 if pos is None: # place the default position in the center of the grid pos = np.array([(N-1)/2.0]*3) # limit positions to those that are exact on the size 1./scale # positions have the form (d = divisions): # p = N + m/d s = 1.0/scale f = zscale**2 i = pos.astype('int') p = i + s*((pos - i)/s).astype('int') pos = p + 1e-10 # unfortunately needed to break ties # make the output arrays image = np.zeros((N,)*3) x,y,z = np.meshgrid(*(xrange(N),)*3, indexing='ij') # for each real pixel in the image, integrate a bunch of superres pixels for x0,y0,z0 in zip(x.flatten(),y.flatten(),z.flatten()): # short-circuit things that are just too far away! ddd = np.sqrt(f*(x0-pos[0])**2 + (y0-pos[1])**2 + (z0-pos[2])**2) if ddd > R + 4: image[x0,y0,z0] = 0.0 continue # otherwise, build the local mesh and count the volume xp,yp,zp = np.meshgrid( *(np.linspace(i-0.5+s/2, i+0.5-s/2, scale, endpoint=True) for i in (x0,y0,z0)), indexing='ij' ) ddd = np.sqrt(f*(xp-pos[0])**2 + (yp-pos[1])**2 + (zp-pos[2])**2) if returnpix is not None and returnpix == [x0,y0,z0]: outpix = 1.0 * (ddd < R) vol = (1.0*(ddd < R) + 0.0*(ddd == R)).sum() image[x0,y0,z0] = vol / float(scale**3) #vol_true = 4./3*np.pi*R**3 #vol_real = image.sum() #print vol_true, vol_real, (vol_true - vol_real)/vol_true if returnpix: return image, pos, outpix return image, pos
[ "Create", "a", "perfect", "platonic", "sphere", "of", "a", "given", "radius", "R", "by", "supersampling", "by", "a", "factor", "scale", "on", "a", "grid", "of", "size", "N", ".", "Scale", "must", "be", "odd", "." ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/scripts/does_matter/common.py#L68-L127
[ "def", "perfect_platonic_per_pixel", "(", "N", ",", "R", ",", "scale", "=", "11", ",", "pos", "=", "None", ",", "zscale", "=", "1.0", ",", "returnpix", "=", "None", ")", ":", "# enforce odd scale size", "if", "scale", "%", "2", "!=", "1", ":", "scale", "+=", "1", "if", "pos", "is", "None", ":", "# place the default position in the center of the grid", "pos", "=", "np", ".", "array", "(", "[", "(", "N", "-", "1", ")", "/", "2.0", "]", "*", "3", ")", "# limit positions to those that are exact on the size 1./scale", "# positions have the form (d = divisions):", "# p = N + m/d", "s", "=", "1.0", "/", "scale", "f", "=", "zscale", "**", "2", "i", "=", "pos", ".", "astype", "(", "'int'", ")", "p", "=", "i", "+", "s", "*", "(", "(", "pos", "-", "i", ")", "/", "s", ")", ".", "astype", "(", "'int'", ")", "pos", "=", "p", "+", "1e-10", "# unfortunately needed to break ties", "# make the output arrays", "image", "=", "np", ".", "zeros", "(", "(", "N", ",", ")", "*", "3", ")", "x", ",", "y", ",", "z", "=", "np", ".", "meshgrid", "(", "*", "(", "xrange", "(", "N", ")", ",", ")", "*", "3", ",", "indexing", "=", "'ij'", ")", "# for each real pixel in the image, integrate a bunch of superres pixels", "for", "x0", ",", "y0", ",", "z0", "in", "zip", "(", "x", ".", "flatten", "(", ")", ",", "y", ".", "flatten", "(", ")", ",", "z", ".", "flatten", "(", ")", ")", ":", "# short-circuit things that are just too far away!", "ddd", "=", "np", ".", "sqrt", "(", "f", "*", "(", "x0", "-", "pos", "[", "0", "]", ")", "**", "2", "+", "(", "y0", "-", "pos", "[", "1", "]", ")", "**", "2", "+", "(", "z0", "-", "pos", "[", "2", "]", ")", "**", "2", ")", "if", "ddd", ">", "R", "+", "4", ":", "image", "[", "x0", ",", "y0", ",", "z0", "]", "=", "0.0", "continue", "# otherwise, build the local mesh and count the volume", "xp", ",", "yp", ",", "zp", "=", "np", ".", "meshgrid", "(", "*", "(", "np", ".", "linspace", "(", "i", "-", "0.5", "+", "s", "/", "2", ",", "i", "+", "0.5", "-", "s", "/", "2", ",", "scale", ",", "endpoint", "=", "True", ")", "for", "i", "in", "(", "x0", ",", "y0", ",", "z0", ")", ")", ",", "indexing", "=", "'ij'", ")", "ddd", "=", "np", ".", "sqrt", "(", "f", "*", "(", "xp", "-", "pos", "[", "0", "]", ")", "**", "2", "+", "(", "yp", "-", "pos", "[", "1", "]", ")", "**", "2", "+", "(", "zp", "-", "pos", "[", "2", "]", ")", "**", "2", ")", "if", "returnpix", "is", "not", "None", "and", "returnpix", "==", "[", "x0", ",", "y0", ",", "z0", "]", ":", "outpix", "=", "1.0", "*", "(", "ddd", "<", "R", ")", "vol", "=", "(", "1.0", "*", "(", "ddd", "<", "R", ")", "+", "0.0", "*", "(", "ddd", "==", "R", ")", ")", ".", "sum", "(", ")", "image", "[", "x0", ",", "y0", ",", "z0", "]", "=", "vol", "/", "float", "(", "scale", "**", "3", ")", "#vol_true = 4./3*np.pi*R**3", "#vol_real = image.sum()", "#print vol_true, vol_real, (vol_true - vol_real)/vol_true", "if", "returnpix", ":", "return", "image", ",", "pos", ",", "outpix", "return", "image", ",", "pos" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
translate_fourier
Translate an image in fourier-space with plane waves
scripts/does_matter/common.py
def translate_fourier(image, dx): """ Translate an image in fourier-space with plane waves """ N = image.shape[0] f = 2*np.pi*np.fft.fftfreq(N) kx,ky,kz = np.meshgrid(*(f,)*3, indexing='ij') kv = np.array([kx,ky,kz]).T q = np.fft.fftn(image)*np.exp(-1.j*(kv*dx).sum(axis=-1)).T return np.real(np.fft.ifftn(q))
def translate_fourier(image, dx): """ Translate an image in fourier-space with plane waves """ N = image.shape[0] f = 2*np.pi*np.fft.fftfreq(N) kx,ky,kz = np.meshgrid(*(f,)*3, indexing='ij') kv = np.array([kx,ky,kz]).T q = np.fft.fftn(image)*np.exp(-1.j*(kv*dx).sum(axis=-1)).T return np.real(np.fft.ifftn(q))
[ "Translate", "an", "image", "in", "fourier", "-", "space", "with", "plane", "waves" ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/scripts/does_matter/common.py#L129-L138
[ "def", "translate_fourier", "(", "image", ",", "dx", ")", ":", "N", "=", "image", ".", "shape", "[", "0", "]", "f", "=", "2", "*", "np", ".", "pi", "*", "np", ".", "fft", ".", "fftfreq", "(", "N", ")", "kx", ",", "ky", ",", "kz", "=", "np", ".", "meshgrid", "(", "*", "(", "f", ",", ")", "*", "3", ",", "indexing", "=", "'ij'", ")", "kv", "=", "np", ".", "array", "(", "[", "kx", ",", "ky", ",", "kz", "]", ")", ".", "T", "q", "=", "np", ".", "fft", ".", "fftn", "(", "image", ")", "*", "np", ".", "exp", "(", "-", "1.j", "*", "(", "kv", "*", "dx", ")", ".", "sum", "(", "axis", "=", "-", "1", ")", ")", ".", "T", "return", "np", ".", "real", "(", "np", ".", "fft", ".", "ifftn", "(", "q", ")", ")" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
doplot
Standardizing the plot format of the does_matter section. See any of the accompaning files to see how to use this generalized plot. image0 : ground true image1 : difference image xs : list of x values for the plots crbs : list of lines of values of the crbs errors : list of lines of errors labels : legend labels for each curve
scripts/does_matter/common.py
def doplot(image0, image1, xs, crbs, errors, labels, diff_image_scale=0.1, dolabels=True, multiple_crbs=True, xlim=None, ylim=None, highlight=None, detailed_labels=False, xlabel="", title=""): """ Standardizing the plot format of the does_matter section. See any of the accompaning files to see how to use this generalized plot. image0 : ground true image1 : difference image xs : list of x values for the plots crbs : list of lines of values of the crbs errors : list of lines of errors labels : legend labels for each curve """ if len(crbs) != len(errors) or len(crbs) != len(labels): raise IndexError, "lengths are not consistent" fig = pl.figure(figsize=(14,7)) ax = fig.add_axes([0.43, 0.15, 0.52, 0.75]) gs = ImageGrid(fig, rect=[0.05, 0.05, 0.25, 0.90], nrows_ncols=(2,1), axes_pad=0.25, cbar_location='right', cbar_mode='each', cbar_size='10%', cbar_pad=0.04) diffm = diff_image_scale*np.ceil(np.abs(image1).max()/diff_image_scale) im0 = gs[0].imshow(image0, vmin=0, vmax=1, cmap='bone_r') im1 = gs[1].imshow(image1, vmin=-diffm, vmax=diffm, cmap='RdBu') cb0 = pl.colorbar(im0, cax=gs[0].cax, ticks=[0,1]) cb1 = pl.colorbar(im1, cax=gs[1].cax, ticks=[-diffm,diffm]) cb0.ax.set_yticklabels(['0', '1']) cb1.ax.set_yticklabels(['-%0.1f' % diffm, '%0.1f' % diffm]) image_names = ["Reference", "Difference"] for i in xrange(2): gs[i].set_xticks([]) gs[i].set_yticks([]) gs[i].set_ylabel(image_names[i]) if dolabels: lbl(gs[i], figlbl[i]) symbols = ['o', '^', 'D', '>'] for i in xrange(len(labels)): c = COLORS[i] if multiple_crbs or i == 0: if multiple_crbs: label = labels[i] if (i != 0 and not detailed_labels) else '%s CRB' % labels[i] else: label = 'CRB' ax.plot(xs[i], crbs[i], '-', c=c, lw=3, label=label) label = labels[i] if (i != 0 and not detailed_labels) else '%s Error' % labels[i] ax.plot(xs[i], errors[i], symbols[i], ls='--', lw=2, c=c, label=label, ms=12) if dolabels: lbl(ax, 'D') ax.loglog() if xlim: ax.set_xlim(xlim) if ylim: ax.set_ylim(ylim) ax.legend(loc='upper left', ncol=2, prop={'size': 18}, numpoints=1) ax.set_xlabel(xlabel) ax.set_ylabel(r"Position CRB, Error") ax.grid(False, which='both', axis='both') ax.set_title(title) return gs, ax
def doplot(image0, image1, xs, crbs, errors, labels, diff_image_scale=0.1, dolabels=True, multiple_crbs=True, xlim=None, ylim=None, highlight=None, detailed_labels=False, xlabel="", title=""): """ Standardizing the plot format of the does_matter section. See any of the accompaning files to see how to use this generalized plot. image0 : ground true image1 : difference image xs : list of x values for the plots crbs : list of lines of values of the crbs errors : list of lines of errors labels : legend labels for each curve """ if len(crbs) != len(errors) or len(crbs) != len(labels): raise IndexError, "lengths are not consistent" fig = pl.figure(figsize=(14,7)) ax = fig.add_axes([0.43, 0.15, 0.52, 0.75]) gs = ImageGrid(fig, rect=[0.05, 0.05, 0.25, 0.90], nrows_ncols=(2,1), axes_pad=0.25, cbar_location='right', cbar_mode='each', cbar_size='10%', cbar_pad=0.04) diffm = diff_image_scale*np.ceil(np.abs(image1).max()/diff_image_scale) im0 = gs[0].imshow(image0, vmin=0, vmax=1, cmap='bone_r') im1 = gs[1].imshow(image1, vmin=-diffm, vmax=diffm, cmap='RdBu') cb0 = pl.colorbar(im0, cax=gs[0].cax, ticks=[0,1]) cb1 = pl.colorbar(im1, cax=gs[1].cax, ticks=[-diffm,diffm]) cb0.ax.set_yticklabels(['0', '1']) cb1.ax.set_yticklabels(['-%0.1f' % diffm, '%0.1f' % diffm]) image_names = ["Reference", "Difference"] for i in xrange(2): gs[i].set_xticks([]) gs[i].set_yticks([]) gs[i].set_ylabel(image_names[i]) if dolabels: lbl(gs[i], figlbl[i]) symbols = ['o', '^', 'D', '>'] for i in xrange(len(labels)): c = COLORS[i] if multiple_crbs or i == 0: if multiple_crbs: label = labels[i] if (i != 0 and not detailed_labels) else '%s CRB' % labels[i] else: label = 'CRB' ax.plot(xs[i], crbs[i], '-', c=c, lw=3, label=label) label = labels[i] if (i != 0 and not detailed_labels) else '%s Error' % labels[i] ax.plot(xs[i], errors[i], symbols[i], ls='--', lw=2, c=c, label=label, ms=12) if dolabels: lbl(ax, 'D') ax.loglog() if xlim: ax.set_xlim(xlim) if ylim: ax.set_ylim(ylim) ax.legend(loc='upper left', ncol=2, prop={'size': 18}, numpoints=1) ax.set_xlabel(xlabel) ax.set_ylabel(r"Position CRB, Error") ax.grid(False, which='both', axis='both') ax.set_title(title) return gs, ax
[ "Standardizing", "the", "plot", "format", "of", "the", "does_matter", "section", ".", "See", "any", "of", "the", "accompaning", "files", "to", "see", "how", "to", "use", "this", "generalized", "plot", "." ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/scripts/does_matter/common.py#L165-L233
[ "def", "doplot", "(", "image0", ",", "image1", ",", "xs", ",", "crbs", ",", "errors", ",", "labels", ",", "diff_image_scale", "=", "0.1", ",", "dolabels", "=", "True", ",", "multiple_crbs", "=", "True", ",", "xlim", "=", "None", ",", "ylim", "=", "None", ",", "highlight", "=", "None", ",", "detailed_labels", "=", "False", ",", "xlabel", "=", "\"\"", ",", "title", "=", "\"\"", ")", ":", "if", "len", "(", "crbs", ")", "!=", "len", "(", "errors", ")", "or", "len", "(", "crbs", ")", "!=", "len", "(", "labels", ")", ":", "raise", "IndexError", ",", "\"lengths are not consistent\"", "fig", "=", "pl", ".", "figure", "(", "figsize", "=", "(", "14", ",", "7", ")", ")", "ax", "=", "fig", ".", "add_axes", "(", "[", "0.43", ",", "0.15", ",", "0.52", ",", "0.75", "]", ")", "gs", "=", "ImageGrid", "(", "fig", ",", "rect", "=", "[", "0.05", ",", "0.05", ",", "0.25", ",", "0.90", "]", ",", "nrows_ncols", "=", "(", "2", ",", "1", ")", ",", "axes_pad", "=", "0.25", ",", "cbar_location", "=", "'right'", ",", "cbar_mode", "=", "'each'", ",", "cbar_size", "=", "'10%'", ",", "cbar_pad", "=", "0.04", ")", "diffm", "=", "diff_image_scale", "*", "np", ".", "ceil", "(", "np", ".", "abs", "(", "image1", ")", ".", "max", "(", ")", "/", "diff_image_scale", ")", "im0", "=", "gs", "[", "0", "]", ".", "imshow", "(", "image0", ",", "vmin", "=", "0", ",", "vmax", "=", "1", ",", "cmap", "=", "'bone_r'", ")", "im1", "=", "gs", "[", "1", "]", ".", "imshow", "(", "image1", ",", "vmin", "=", "-", "diffm", ",", "vmax", "=", "diffm", ",", "cmap", "=", "'RdBu'", ")", "cb0", "=", "pl", ".", "colorbar", "(", "im0", ",", "cax", "=", "gs", "[", "0", "]", ".", "cax", ",", "ticks", "=", "[", "0", ",", "1", "]", ")", "cb1", "=", "pl", ".", "colorbar", "(", "im1", ",", "cax", "=", "gs", "[", "1", "]", ".", "cax", ",", "ticks", "=", "[", "-", "diffm", ",", "diffm", "]", ")", "cb0", ".", "ax", ".", "set_yticklabels", "(", "[", "'0'", ",", "'1'", "]", ")", "cb1", ".", "ax", ".", "set_yticklabels", "(", "[", "'-%0.1f'", "%", "diffm", ",", "'%0.1f'", "%", "diffm", "]", ")", "image_names", "=", "[", "\"Reference\"", ",", "\"Difference\"", "]", "for", "i", "in", "xrange", "(", "2", ")", ":", "gs", "[", "i", "]", ".", "set_xticks", "(", "[", "]", ")", "gs", "[", "i", "]", ".", "set_yticks", "(", "[", "]", ")", "gs", "[", "i", "]", ".", "set_ylabel", "(", "image_names", "[", "i", "]", ")", "if", "dolabels", ":", "lbl", "(", "gs", "[", "i", "]", ",", "figlbl", "[", "i", "]", ")", "symbols", "=", "[", "'o'", ",", "'^'", ",", "'D'", ",", "'>'", "]", "for", "i", "in", "xrange", "(", "len", "(", "labels", ")", ")", ":", "c", "=", "COLORS", "[", "i", "]", "if", "multiple_crbs", "or", "i", "==", "0", ":", "if", "multiple_crbs", ":", "label", "=", "labels", "[", "i", "]", "if", "(", "i", "!=", "0", "and", "not", "detailed_labels", ")", "else", "'%s CRB'", "%", "labels", "[", "i", "]", "else", ":", "label", "=", "'CRB'", "ax", ".", "plot", "(", "xs", "[", "i", "]", ",", "crbs", "[", "i", "]", ",", "'-'", ",", "c", "=", "c", ",", "lw", "=", "3", ",", "label", "=", "label", ")", "label", "=", "labels", "[", "i", "]", "if", "(", "i", "!=", "0", "and", "not", "detailed_labels", ")", "else", "'%s Error'", "%", "labels", "[", "i", "]", "ax", ".", "plot", "(", "xs", "[", "i", "]", ",", "errors", "[", "i", "]", ",", "symbols", "[", "i", "]", ",", "ls", "=", "'--'", ",", "lw", "=", "2", ",", "c", "=", "c", ",", "label", "=", "label", ",", "ms", "=", "12", ")", "if", "dolabels", ":", "lbl", "(", "ax", ",", "'D'", ")", "ax", ".", "loglog", "(", ")", "if", "xlim", ":", "ax", ".", "set_xlim", "(", "xlim", ")", "if", "ylim", ":", "ax", ".", "set_ylim", "(", "ylim", ")", "ax", ".", "legend", "(", "loc", "=", "'upper left'", ",", "ncol", "=", "2", ",", "prop", "=", "{", "'size'", ":", "18", "}", ",", "numpoints", "=", "1", ")", "ax", ".", "set_xlabel", "(", "xlabel", ")", "ax", ".", "set_ylabel", "(", "r\"Position CRB, Error\"", ")", "ax", ".", "grid", "(", "False", ",", "which", "=", "'both'", ",", "axis", "=", "'both'", ")", "ax", ".", "set_title", "(", "title", ")", "return", "gs", ",", "ax" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
users
Load default users and groups.
examples/app.py
def users(): """Load default users and groups.""" from invenio_groups.models import Group, Membership, \ PrivacyPolicy, SubscriptionPolicy admin = accounts.datastore.create_user( email='admin@inveniosoftware.org', password=encrypt_password('123456'), active=True, ) reader = accounts.datastore.create_user( email='reader@inveniosoftware.org', password=encrypt_password('123456'), active=True, ) admins = Group.create(name='admins', admins=[admin]) for i in range(10): Group.create(name='group-{0}'.format(i), admins=[admin]) Membership.create(admins, reader) db.session.commit()
def users(): """Load default users and groups.""" from invenio_groups.models import Group, Membership, \ PrivacyPolicy, SubscriptionPolicy admin = accounts.datastore.create_user( email='admin@inveniosoftware.org', password=encrypt_password('123456'), active=True, ) reader = accounts.datastore.create_user( email='reader@inveniosoftware.org', password=encrypt_password('123456'), active=True, ) admins = Group.create(name='admins', admins=[admin]) for i in range(10): Group.create(name='group-{0}'.format(i), admins=[admin]) Membership.create(admins, reader) db.session.commit()
[ "Load", "default", "users", "and", "groups", "." ]
inveniosoftware-contrib/invenio-groups
python
https://github.com/inveniosoftware-contrib/invenio-groups/blob/109481d6b02701db00b72223dd4a65e167c589a6/examples/app.py#L83-L103
[ "def", "users", "(", ")", ":", "from", "invenio_groups", ".", "models", "import", "Group", ",", "Membership", ",", "PrivacyPolicy", ",", "SubscriptionPolicy", "admin", "=", "accounts", ".", "datastore", ".", "create_user", "(", "email", "=", "'admin@inveniosoftware.org'", ",", "password", "=", "encrypt_password", "(", "'123456'", ")", ",", "active", "=", "True", ",", ")", "reader", "=", "accounts", ".", "datastore", ".", "create_user", "(", "email", "=", "'reader@inveniosoftware.org'", ",", "password", "=", "encrypt_password", "(", "'123456'", ")", ",", "active", "=", "True", ",", ")", "admins", "=", "Group", ".", "create", "(", "name", "=", "'admins'", ",", "admins", "=", "[", "admin", "]", ")", "for", "i", "in", "range", "(", "10", ")", ":", "Group", ".", "create", "(", "name", "=", "'group-{0}'", ".", "format", "(", "i", ")", ",", "admins", "=", "[", "admin", "]", ")", "Membership", ".", "create", "(", "admins", ",", "reader", ")", "db", ".", "session", ".", "commit", "(", ")" ]
109481d6b02701db00b72223dd4a65e167c589a6
valid
HardSphereOverlapNaive._calculate
# This is equivalent for i in range(self.N-1): for j in range(i+1, self.N): d = ((self.zscale*(self.pos[i] - self.pos[j]))**2).sum(axis=-1) r = (self.rad[i] + self.rad[j])**2 cost = self.prior_func(d - r) self.logpriors[i] += cost self.logpriors[j] += cost
peri/priors/overlap.py
def _calculate(self): self.logpriors = np.zeros_like(self.rad) for i in range(self.N-1): o = np.arange(i+1, self.N) dist = ((self.zscale*(self.pos[i] - self.pos[o]))**2).sum(axis=-1) dist0 = (self.rad[i] + self.rad[o])**2 update = self.prior_func(dist - dist0) self.logpriors[i] += np.sum(update) self.logpriors[o] += update """ # This is equivalent for i in range(self.N-1): for j in range(i+1, self.N): d = ((self.zscale*(self.pos[i] - self.pos[j]))**2).sum(axis=-1) r = (self.rad[i] + self.rad[j])**2 cost = self.prior_func(d - r) self.logpriors[i] += cost self.logpriors[j] += cost """
def _calculate(self): self.logpriors = np.zeros_like(self.rad) for i in range(self.N-1): o = np.arange(i+1, self.N) dist = ((self.zscale*(self.pos[i] - self.pos[o]))**2).sum(axis=-1) dist0 = (self.rad[i] + self.rad[o])**2 update = self.prior_func(dist - dist0) self.logpriors[i] += np.sum(update) self.logpriors[o] += update """ # This is equivalent for i in range(self.N-1): for j in range(i+1, self.N): d = ((self.zscale*(self.pos[i] - self.pos[j]))**2).sum(axis=-1) r = (self.rad[i] + self.rad[j])**2 cost = self.prior_func(d - r) self.logpriors[i] += cost self.logpriors[j] += cost """
[ "#", "This", "is", "equivalent", "for", "i", "in", "range", "(", "self", ".", "N", "-", "1", ")", ":", "for", "j", "in", "range", "(", "i", "+", "1", "self", ".", "N", ")", ":", "d", "=", "((", "self", ".", "zscale", "*", "(", "self", ".", "pos", "[", "i", "]", "-", "self", ".", "pos", "[", "j", "]", "))", "**", "2", ")", ".", "sum", "(", "axis", "=", "-", "1", ")", "r", "=", "(", "self", ".", "rad", "[", "i", "]", "+", "self", ".", "rad", "[", "j", "]", ")", "**", "2" ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/priors/overlap.py#L21-L44
[ "def", "_calculate", "(", "self", ")", ":", "self", ".", "logpriors", "=", "np", ".", "zeros_like", "(", "self", ".", "rad", ")", "for", "i", "in", "range", "(", "self", ".", "N", "-", "1", ")", ":", "o", "=", "np", ".", "arange", "(", "i", "+", "1", ",", "self", ".", "N", ")", "dist", "=", "(", "(", "self", ".", "zscale", "*", "(", "self", ".", "pos", "[", "i", "]", "-", "self", ".", "pos", "[", "o", "]", ")", ")", "**", "2", ")", ".", "sum", "(", "axis", "=", "-", "1", ")", "dist0", "=", "(", "self", ".", "rad", "[", "i", "]", "+", "self", ".", "rad", "[", "o", "]", ")", "**", "2", "update", "=", "self", ".", "prior_func", "(", "dist", "-", "dist0", ")", "self", ".", "logpriors", "[", "i", "]", "+=", "np", ".", "sum", "(", "update", ")", "self", ".", "logpriors", "[", "o", "]", "+=", "update" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
BarnesInterpolation1D._weight
weighting function for Barnes
peri/interpolation.py
def _weight(self, rsq, sigma=None): """weighting function for Barnes""" sigma = sigma or self.filter_size if not self.clip: o = np.exp(-rsq / (2*sigma**2)) else: o = np.zeros(rsq.shape, dtype='float') m = (rsq < self.clipsize**2) o[m] = np.exp(-rsq[m] / (2*sigma**2)) return o
def _weight(self, rsq, sigma=None): """weighting function for Barnes""" sigma = sigma or self.filter_size if not self.clip: o = np.exp(-rsq / (2*sigma**2)) else: o = np.zeros(rsq.shape, dtype='float') m = (rsq < self.clipsize**2) o[m] = np.exp(-rsq[m] / (2*sigma**2)) return o
[ "weighting", "function", "for", "Barnes" ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/interpolation.py#L92-L102
[ "def", "_weight", "(", "self", ",", "rsq", ",", "sigma", "=", "None", ")", ":", "sigma", "=", "sigma", "or", "self", ".", "filter_size", "if", "not", "self", ".", "clip", ":", "o", "=", "np", ".", "exp", "(", "-", "rsq", "/", "(", "2", "*", "sigma", "**", "2", ")", ")", "else", ":", "o", "=", "np", ".", "zeros", "(", "rsq", ".", "shape", ",", "dtype", "=", "'float'", ")", "m", "=", "(", "rsq", "<", "self", ".", "clipsize", "**", "2", ")", "o", "[", "m", "]", "=", "np", ".", "exp", "(", "-", "rsq", "[", "m", "]", "/", "(", "2", "*", "sigma", "**", "2", ")", ")", "return", "o" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
BarnesInterpolation1D._eval_firstorder
The first-order Barnes approximation
peri/interpolation.py
def _eval_firstorder(self, rvecs, data, sigma): """The first-order Barnes approximation""" if not self.blocksize: dist_between_points = self._distance_matrix(rvecs, self.x) gaussian_weights = self._weight(dist_between_points, sigma=sigma) return gaussian_weights.dot(data) / gaussian_weights.sum(axis=1) else: # Now rather than calculating the distance matrix all at once, # we do it in chunks over rvecs ans = np.zeros(rvecs.shape[0], dtype='float') bs = self.blocksize for a in range(0, rvecs.shape[0], bs): dist = self._distance_matrix(rvecs[a:a+bs], self.x) weights = self._weight(dist, sigma=sigma) ans[a:a+bs] += weights.dot(data) / weights.sum(axis=1) return ans
def _eval_firstorder(self, rvecs, data, sigma): """The first-order Barnes approximation""" if not self.blocksize: dist_between_points = self._distance_matrix(rvecs, self.x) gaussian_weights = self._weight(dist_between_points, sigma=sigma) return gaussian_weights.dot(data) / gaussian_weights.sum(axis=1) else: # Now rather than calculating the distance matrix all at once, # we do it in chunks over rvecs ans = np.zeros(rvecs.shape[0], dtype='float') bs = self.blocksize for a in range(0, rvecs.shape[0], bs): dist = self._distance_matrix(rvecs[a:a+bs], self.x) weights = self._weight(dist, sigma=sigma) ans[a:a+bs] += weights.dot(data) / weights.sum(axis=1) return ans
[ "The", "first", "-", "order", "Barnes", "approximation" ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/interpolation.py#L113-L128
[ "def", "_eval_firstorder", "(", "self", ",", "rvecs", ",", "data", ",", "sigma", ")", ":", "if", "not", "self", ".", "blocksize", ":", "dist_between_points", "=", "self", ".", "_distance_matrix", "(", "rvecs", ",", "self", ".", "x", ")", "gaussian_weights", "=", "self", ".", "_weight", "(", "dist_between_points", ",", "sigma", "=", "sigma", ")", "return", "gaussian_weights", ".", "dot", "(", "data", ")", "/", "gaussian_weights", ".", "sum", "(", "axis", "=", "1", ")", "else", ":", "# Now rather than calculating the distance matrix all at once,", "# we do it in chunks over rvecs", "ans", "=", "np", ".", "zeros", "(", "rvecs", ".", "shape", "[", "0", "]", ",", "dtype", "=", "'float'", ")", "bs", "=", "self", ".", "blocksize", "for", "a", "in", "range", "(", "0", ",", "rvecs", ".", "shape", "[", "0", "]", ",", "bs", ")", ":", "dist", "=", "self", ".", "_distance_matrix", "(", "rvecs", "[", "a", ":", "a", "+", "bs", "]", ",", "self", ".", "x", ")", "weights", "=", "self", ".", "_weight", "(", "dist", ",", "sigma", "=", "sigma", ")", "ans", "[", "a", ":", "a", "+", "bs", "]", "+=", "weights", ".", "dot", "(", "data", ")", "/", "weights", ".", "sum", "(", "axis", "=", "1", ")", "return", "ans" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
BarnesInterpolation1D._newcall
Correct, normalized version of Barnes
peri/interpolation.py
def _newcall(self, rvecs): """Correct, normalized version of Barnes""" # 1. Initial guess for output: sigma = 1*self.filter_size out = self._eval_firstorder(rvecs, self.d, sigma) # 2. There are differences between 0th order at the points and # the passed data, so we iterate to remove: ondata = self._eval_firstorder(self.x, self.d, sigma) for i in range(self.iterations): out += self._eval_firstorder(rvecs, self.d-ondata, sigma) ondata += self._eval_firstorder(self.x, self.d-ondata, sigma) sigma *= self.damp return out
def _newcall(self, rvecs): """Correct, normalized version of Barnes""" # 1. Initial guess for output: sigma = 1*self.filter_size out = self._eval_firstorder(rvecs, self.d, sigma) # 2. There are differences between 0th order at the points and # the passed data, so we iterate to remove: ondata = self._eval_firstorder(self.x, self.d, sigma) for i in range(self.iterations): out += self._eval_firstorder(rvecs, self.d-ondata, sigma) ondata += self._eval_firstorder(self.x, self.d-ondata, sigma) sigma *= self.damp return out
[ "Correct", "normalized", "version", "of", "Barnes" ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/interpolation.py#L130-L142
[ "def", "_newcall", "(", "self", ",", "rvecs", ")", ":", "# 1. Initial guess for output:", "sigma", "=", "1", "*", "self", ".", "filter_size", "out", "=", "self", ".", "_eval_firstorder", "(", "rvecs", ",", "self", ".", "d", ",", "sigma", ")", "# 2. There are differences between 0th order at the points and", "# the passed data, so we iterate to remove:", "ondata", "=", "self", ".", "_eval_firstorder", "(", "self", ".", "x", ",", "self", ".", "d", ",", "sigma", ")", "for", "i", "in", "range", "(", "self", ".", "iterations", ")", ":", "out", "+=", "self", ".", "_eval_firstorder", "(", "rvecs", ",", "self", ".", "d", "-", "ondata", ",", "sigma", ")", "ondata", "+=", "self", ".", "_eval_firstorder", "(", "self", ".", "x", ",", "self", ".", "d", "-", "ondata", ",", "sigma", ")", "sigma", "*=", "self", ".", "damp", "return", "out" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
BarnesInterpolation1D._oldcall
Barnes w/o normalizing the weights
peri/interpolation.py
def _oldcall(self, rvecs): """Barnes w/o normalizing the weights""" g = self.filter_size dist0 = self._distance_matrix(self.x, self.x) dist1 = self._distance_matrix(rvecs, self.x) tmp = self._weight(dist0, g).dot(self.d) out = self._weight(dist1, g).dot(self.d) for i in range(self.iterations): out = out + self._weight(dist1, g).dot(self.d - tmp) tmp = tmp + self._weight(dist0, g).dot(self.d - tmp) g *= self.damp return out
def _oldcall(self, rvecs): """Barnes w/o normalizing the weights""" g = self.filter_size dist0 = self._distance_matrix(self.x, self.x) dist1 = self._distance_matrix(rvecs, self.x) tmp = self._weight(dist0, g).dot(self.d) out = self._weight(dist1, g).dot(self.d) for i in range(self.iterations): out = out + self._weight(dist1, g).dot(self.d - tmp) tmp = tmp + self._weight(dist0, g).dot(self.d - tmp) g *= self.damp return out
[ "Barnes", "w", "/", "o", "normalizing", "the", "weights" ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/interpolation.py#L144-L158
[ "def", "_oldcall", "(", "self", ",", "rvecs", ")", ":", "g", "=", "self", ".", "filter_size", "dist0", "=", "self", ".", "_distance_matrix", "(", "self", ".", "x", ",", "self", ".", "x", ")", "dist1", "=", "self", ".", "_distance_matrix", "(", "rvecs", ",", "self", ".", "x", ")", "tmp", "=", "self", ".", "_weight", "(", "dist0", ",", "g", ")", ".", "dot", "(", "self", ".", "d", ")", "out", "=", "self", ".", "_weight", "(", "dist1", ",", "g", ")", ".", "dot", "(", "self", ".", "d", ")", "for", "i", "in", "range", "(", "self", ".", "iterations", ")", ":", "out", "=", "out", "+", "self", ".", "_weight", "(", "dist1", ",", "g", ")", ".", "dot", "(", "self", ".", "d", "-", "tmp", ")", "tmp", "=", "tmp", "+", "self", ".", "_weight", "(", "dist0", ",", "g", ")", ".", "dot", "(", "self", ".", "d", "-", "tmp", ")", "g", "*=", "self", ".", "damp", "return", "out" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
BarnesInterpolationND._distance_matrix
Pairwise distance between each point in `a` and each point in `b`
peri/interpolation.py
def _distance_matrix(self, a, b): """Pairwise distance between each point in `a` and each point in `b`""" def sq(x): return (x * x) # matrix = np.sum(map(lambda a,b: sq(a[:,None] - b[None,:]), a.T, # b.T), axis=0) # A faster version than above: matrix = sq(a[:, 0][:, None] - b[:, 0][None, :]) for x, y in zip(a.T[1:], b.T[1:]): matrix += sq(x[:, None] - y[None, :]) return matrix
def _distance_matrix(self, a, b): """Pairwise distance between each point in `a` and each point in `b`""" def sq(x): return (x * x) # matrix = np.sum(map(lambda a,b: sq(a[:,None] - b[None,:]), a.T, # b.T), axis=0) # A faster version than above: matrix = sq(a[:, 0][:, None] - b[:, 0][None, :]) for x, y in zip(a.T[1:], b.T[1:]): matrix += sq(x[:, None] - y[None, :]) return matrix
[ "Pairwise", "distance", "between", "each", "point", "in", "a", "and", "each", "point", "in", "b" ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/interpolation.py#L192-L201
[ "def", "_distance_matrix", "(", "self", ",", "a", ",", "b", ")", ":", "def", "sq", "(", "x", ")", ":", "return", "(", "x", "*", "x", ")", "# matrix = np.sum(map(lambda a,b: sq(a[:,None] - b[None,:]), a.T,", "# b.T), axis=0)", "# A faster version than above:", "matrix", "=", "sq", "(", "a", "[", ":", ",", "0", "]", "[", ":", ",", "None", "]", "-", "b", "[", ":", ",", "0", "]", "[", "None", ",", ":", "]", ")", "for", "x", ",", "y", "in", "zip", "(", "a", ".", "T", "[", "1", ":", "]", ",", "b", ".", "T", "[", "1", ":", "]", ")", ":", "matrix", "+=", "sq", "(", "x", "[", ":", ",", "None", "]", "-", "y", "[", "None", ",", ":", "]", ")", "return", "matrix" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
ChebyshevInterpolation1D._x2c
Convert windowdow coordinates to cheb coordinates [-1,1]
peri/interpolation.py
def _x2c(self, x): """ Convert windowdow coordinates to cheb coordinates [-1,1] """ return ((2 * x - self.window[1] - self.window[0]) / (self.window[1] - self.window[0]))
def _x2c(self, x): """ Convert windowdow coordinates to cheb coordinates [-1,1] """ return ((2 * x - self.window[1] - self.window[0]) / (self.window[1] - self.window[0]))
[ "Convert", "windowdow", "coordinates", "to", "cheb", "coordinates", "[", "-", "1", "1", "]" ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/interpolation.py#L246-L249
[ "def", "_x2c", "(", "self", ",", "x", ")", ":", "return", "(", "(", "2", "*", "x", "-", "self", ".", "window", "[", "1", "]", "-", "self", ".", "window", "[", "0", "]", ")", "/", "(", "self", ".", "window", "[", "1", "]", "-", "self", ".", "window", "[", "0", "]", ")", ")" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
ChebyshevInterpolation1D._c2x
Convert cheb coordinates to windowdow coordinates
peri/interpolation.py
def _c2x(self, c): """ Convert cheb coordinates to windowdow coordinates """ return 0.5 * (self.window[0] + self.window[1] + c * (self.window[1] - self.window[0]))
def _c2x(self, c): """ Convert cheb coordinates to windowdow coordinates """ return 0.5 * (self.window[0] + self.window[1] + c * (self.window[1] - self.window[0]))
[ "Convert", "cheb", "coordinates", "to", "windowdow", "coordinates" ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/interpolation.py#L251-L254
[ "def", "_c2x", "(", "self", ",", "c", ")", ":", "return", "0.5", "*", "(", "self", ".", "window", "[", "0", "]", "+", "self", ".", "window", "[", "1", "]", "+", "c", "*", "(", "self", ".", "window", "[", "1", "]", "-", "self", ".", "window", "[", "0", "]", ")", ")" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
ChebyshevInterpolation1D._construct_coefficients
Calculate the coefficients based on the func, degree, and interpolating points. _coeffs is a [order, N,M,....] array Notes ----- Moved the -c0 to the coefficients defintion app -= 0.5 * self._coeffs[0] -- moving this to the coefficients
peri/interpolation.py
def _construct_coefficients(self): """Calculate the coefficients based on the func, degree, and interpolating points. _coeffs is a [order, N,M,....] array Notes ----- Moved the -c0 to the coefficients defintion app -= 0.5 * self._coeffs[0] -- moving this to the coefficients """ coeffs = [0]*self.degree N = float(self.evalpts) lvals = np.arange(self.evalpts).astype('float') xpts = self._c2x(np.cos(np.pi*(lvals + 0.5)/N)) fpts = np.rollaxis(self.func(xpts, *self.args), -1) for a in range(self.degree): inner = [ fpts[b] * np.cos(np.pi*a*(lvals[b]+0.5)/N) for b in range(self.evalpts) ] coeffs[a] = 2.0/N * np.sum(inner, axis=0) coeffs[0] *= 0.5 self._coeffs = np.array(coeffs)
def _construct_coefficients(self): """Calculate the coefficients based on the func, degree, and interpolating points. _coeffs is a [order, N,M,....] array Notes ----- Moved the -c0 to the coefficients defintion app -= 0.5 * self._coeffs[0] -- moving this to the coefficients """ coeffs = [0]*self.degree N = float(self.evalpts) lvals = np.arange(self.evalpts).astype('float') xpts = self._c2x(np.cos(np.pi*(lvals + 0.5)/N)) fpts = np.rollaxis(self.func(xpts, *self.args), -1) for a in range(self.degree): inner = [ fpts[b] * np.cos(np.pi*a*(lvals[b]+0.5)/N) for b in range(self.evalpts) ] coeffs[a] = 2.0/N * np.sum(inner, axis=0) coeffs[0] *= 0.5 self._coeffs = np.array(coeffs)
[ "Calculate", "the", "coefficients", "based", "on", "the", "func", "degree", "and", "interpolating", "points", ".", "_coeffs", "is", "a", "[", "order", "N", "M", "....", "]", "array" ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/interpolation.py#L256-L282
[ "def", "_construct_coefficients", "(", "self", ")", ":", "coeffs", "=", "[", "0", "]", "*", "self", ".", "degree", "N", "=", "float", "(", "self", ".", "evalpts", ")", "lvals", "=", "np", ".", "arange", "(", "self", ".", "evalpts", ")", ".", "astype", "(", "'float'", ")", "xpts", "=", "self", ".", "_c2x", "(", "np", ".", "cos", "(", "np", ".", "pi", "*", "(", "lvals", "+", "0.5", ")", "/", "N", ")", ")", "fpts", "=", "np", ".", "rollaxis", "(", "self", ".", "func", "(", "xpts", ",", "*", "self", ".", "args", ")", ",", "-", "1", ")", "for", "a", "in", "range", "(", "self", ".", "degree", ")", ":", "inner", "=", "[", "fpts", "[", "b", "]", "*", "np", ".", "cos", "(", "np", ".", "pi", "*", "a", "*", "(", "lvals", "[", "b", "]", "+", "0.5", ")", "/", "N", ")", "for", "b", "in", "range", "(", "self", ".", "evalpts", ")", "]", "coeffs", "[", "a", "]", "=", "2.0", "/", "N", "*", "np", ".", "sum", "(", "inner", ",", "axis", "=", "0", ")", "coeffs", "[", "0", "]", "*=", "0.5", "self", ".", "_coeffs", "=", "np", ".", "array", "(", "coeffs", ")" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
ChebyshevInterpolation1D.tk
Evaluates an individual Chebyshev polynomial `k` in coordinate space with proper transformation given the window
peri/interpolation.py
def tk(self, k, x): """ Evaluates an individual Chebyshev polynomial `k` in coordinate space with proper transformation given the window """ weights = np.diag(np.ones(k+1))[k] return np.polynomial.chebyshev.chebval(self._x2c(x), weights)
def tk(self, k, x): """ Evaluates an individual Chebyshev polynomial `k` in coordinate space with proper transformation given the window """ weights = np.diag(np.ones(k+1))[k] return np.polynomial.chebyshev.chebval(self._x2c(x), weights)
[ "Evaluates", "an", "individual", "Chebyshev", "polynomial", "k", "in", "coordinate", "space", "with", "proper", "transformation", "given", "the", "window" ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/interpolation.py#L297-L303
[ "def", "tk", "(", "self", ",", "k", ",", "x", ")", ":", "weights", "=", "np", ".", "diag", "(", "np", ".", "ones", "(", "k", "+", "1", ")", ")", "[", "k", "]", "return", "np", ".", "polynomial", ".", "chebyshev", ".", "chebval", "(", "self", ".", "_x2c", "(", "x", ")", ",", "weights", ")" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
resolve_admin_type
Determine admin type.
invenio_groups/models.py
def resolve_admin_type(admin): """Determine admin type.""" if admin is current_user or isinstance(admin, UserMixin): return 'User' else: return admin.__class__.__name__
def resolve_admin_type(admin): """Determine admin type.""" if admin is current_user or isinstance(admin, UserMixin): return 'User' else: return admin.__class__.__name__
[ "Determine", "admin", "type", "." ]
inveniosoftware-contrib/invenio-groups
python
https://github.com/inveniosoftware-contrib/invenio-groups/blob/109481d6b02701db00b72223dd4a65e167c589a6/invenio_groups/models.py#L812-L817
[ "def", "resolve_admin_type", "(", "admin", ")", ":", "if", "admin", "is", "current_user", "or", "isinstance", "(", "admin", ",", "UserMixin", ")", ":", "return", "'User'", "else", ":", "return", "admin", ".", "__class__", ".", "__name__" ]
109481d6b02701db00b72223dd4a65e167c589a6
valid
SubscriptionPolicy.validate
Validate subscription policy value.
invenio_groups/models.py
def validate(cls, policy): """Validate subscription policy value.""" return policy in [cls.OPEN, cls.APPROVAL, cls.CLOSED]
def validate(cls, policy): """Validate subscription policy value.""" return policy in [cls.OPEN, cls.APPROVAL, cls.CLOSED]
[ "Validate", "subscription", "policy", "value", "." ]
inveniosoftware-contrib/invenio-groups
python
https://github.com/inveniosoftware-contrib/invenio-groups/blob/109481d6b02701db00b72223dd4a65e167c589a6/invenio_groups/models.py#L71-L73
[ "def", "validate", "(", "cls", ",", "policy", ")", ":", "return", "policy", "in", "[", "cls", ".", "OPEN", ",", "cls", ".", "APPROVAL", ",", "cls", ".", "CLOSED", "]" ]
109481d6b02701db00b72223dd4a65e167c589a6
valid
PrivacyPolicy.validate
Validate privacy policy value.
invenio_groups/models.py
def validate(cls, policy): """Validate privacy policy value.""" return policy in [cls.PUBLIC, cls.MEMBERS, cls.ADMINS]
def validate(cls, policy): """Validate privacy policy value.""" return policy in [cls.PUBLIC, cls.MEMBERS, cls.ADMINS]
[ "Validate", "privacy", "policy", "value", "." ]
inveniosoftware-contrib/invenio-groups
python
https://github.com/inveniosoftware-contrib/invenio-groups/blob/109481d6b02701db00b72223dd4a65e167c589a6/invenio_groups/models.py#L105-L107
[ "def", "validate", "(", "cls", ",", "policy", ")", ":", "return", "policy", "in", "[", "cls", ".", "PUBLIC", ",", "cls", ".", "MEMBERS", ",", "cls", ".", "ADMINS", "]" ]
109481d6b02701db00b72223dd4a65e167c589a6
valid
MembershipState.validate
Validate state value.
invenio_groups/models.py
def validate(cls, state): """Validate state value.""" return state in [cls.ACTIVE, cls.PENDING_ADMIN, cls.PENDING_USER]
def validate(cls, state): """Validate state value.""" return state in [cls.ACTIVE, cls.PENDING_ADMIN, cls.PENDING_USER]
[ "Validate", "state", "value", "." ]
inveniosoftware-contrib/invenio-groups
python
https://github.com/inveniosoftware-contrib/invenio-groups/blob/109481d6b02701db00b72223dd4a65e167c589a6/invenio_groups/models.py#L123-L125
[ "def", "validate", "(", "cls", ",", "state", ")", ":", "return", "state", "in", "[", "cls", ".", "ACTIVE", ",", "cls", ".", "PENDING_ADMIN", ",", "cls", ".", "PENDING_USER", "]" ]
109481d6b02701db00b72223dd4a65e167c589a6
valid
Group.create
Create a new group. :param name: Name of group. Required and must be unique. :param description: Description of group. Default: ``''`` :param privacy_policy: PrivacyPolicy :param subscription_policy: SubscriptionPolicy :param admins: list of user and/or group objects. Default: ``[]`` :returns: Newly created group :raises: IntegrityError: if group with given name already exists
invenio_groups/models.py
def create(cls, name=None, description='', privacy_policy=None, subscription_policy=None, is_managed=False, admins=None): """Create a new group. :param name: Name of group. Required and must be unique. :param description: Description of group. Default: ``''`` :param privacy_policy: PrivacyPolicy :param subscription_policy: SubscriptionPolicy :param admins: list of user and/or group objects. Default: ``[]`` :returns: Newly created group :raises: IntegrityError: if group with given name already exists """ assert name assert privacy_policy is None or PrivacyPolicy.validate(privacy_policy) assert subscription_policy is None or \ SubscriptionPolicy.validate(subscription_policy) assert admins is None or isinstance(admins, list) with db.session.begin_nested(): obj = cls( name=name, description=description, privacy_policy=privacy_policy, subscription_policy=subscription_policy, is_managed=is_managed, ) db.session.add(obj) for a in admins or []: db.session.add(GroupAdmin( group=obj, admin_id=a.get_id(), admin_type=resolve_admin_type(a))) return obj
def create(cls, name=None, description='', privacy_policy=None, subscription_policy=None, is_managed=False, admins=None): """Create a new group. :param name: Name of group. Required and must be unique. :param description: Description of group. Default: ``''`` :param privacy_policy: PrivacyPolicy :param subscription_policy: SubscriptionPolicy :param admins: list of user and/or group objects. Default: ``[]`` :returns: Newly created group :raises: IntegrityError: if group with given name already exists """ assert name assert privacy_policy is None or PrivacyPolicy.validate(privacy_policy) assert subscription_policy is None or \ SubscriptionPolicy.validate(subscription_policy) assert admins is None or isinstance(admins, list) with db.session.begin_nested(): obj = cls( name=name, description=description, privacy_policy=privacy_policy, subscription_policy=subscription_policy, is_managed=is_managed, ) db.session.add(obj) for a in admins or []: db.session.add(GroupAdmin( group=obj, admin_id=a.get_id(), admin_type=resolve_admin_type(a))) return obj
[ "Create", "a", "new", "group", "." ]
inveniosoftware-contrib/invenio-groups
python
https://github.com/inveniosoftware-contrib/invenio-groups/blob/109481d6b02701db00b72223dd4a65e167c589a6/invenio_groups/models.py#L206-L239
[ "def", "create", "(", "cls", ",", "name", "=", "None", ",", "description", "=", "''", ",", "privacy_policy", "=", "None", ",", "subscription_policy", "=", "None", ",", "is_managed", "=", "False", ",", "admins", "=", "None", ")", ":", "assert", "name", "assert", "privacy_policy", "is", "None", "or", "PrivacyPolicy", ".", "validate", "(", "privacy_policy", ")", "assert", "subscription_policy", "is", "None", "or", "SubscriptionPolicy", ".", "validate", "(", "subscription_policy", ")", "assert", "admins", "is", "None", "or", "isinstance", "(", "admins", ",", "list", ")", "with", "db", ".", "session", ".", "begin_nested", "(", ")", ":", "obj", "=", "cls", "(", "name", "=", "name", ",", "description", "=", "description", ",", "privacy_policy", "=", "privacy_policy", ",", "subscription_policy", "=", "subscription_policy", ",", "is_managed", "=", "is_managed", ",", ")", "db", ".", "session", ".", "add", "(", "obj", ")", "for", "a", "in", "admins", "or", "[", "]", ":", "db", ".", "session", ".", "add", "(", "GroupAdmin", "(", "group", "=", "obj", ",", "admin_id", "=", "a", ".", "get_id", "(", ")", ",", "admin_type", "=", "resolve_admin_type", "(", "a", ")", ")", ")", "return", "obj" ]
109481d6b02701db00b72223dd4a65e167c589a6
valid
Group.delete
Delete a group and all associated memberships.
invenio_groups/models.py
def delete(self): """Delete a group and all associated memberships.""" with db.session.begin_nested(): Membership.query_by_group(self).delete() GroupAdmin.query_by_group(self).delete() GroupAdmin.query_by_admin(self).delete() db.session.delete(self)
def delete(self): """Delete a group and all associated memberships.""" with db.session.begin_nested(): Membership.query_by_group(self).delete() GroupAdmin.query_by_group(self).delete() GroupAdmin.query_by_admin(self).delete() db.session.delete(self)
[ "Delete", "a", "group", "and", "all", "associated", "memberships", "." ]
inveniosoftware-contrib/invenio-groups
python
https://github.com/inveniosoftware-contrib/invenio-groups/blob/109481d6b02701db00b72223dd4a65e167c589a6/invenio_groups/models.py#L241-L247
[ "def", "delete", "(", "self", ")", ":", "with", "db", ".", "session", ".", "begin_nested", "(", ")", ":", "Membership", ".", "query_by_group", "(", "self", ")", ".", "delete", "(", ")", "GroupAdmin", ".", "query_by_group", "(", "self", ")", ".", "delete", "(", ")", "GroupAdmin", ".", "query_by_admin", "(", "self", ")", ".", "delete", "(", ")", "db", ".", "session", ".", "delete", "(", "self", ")" ]
109481d6b02701db00b72223dd4a65e167c589a6
valid
Group.update
Update group. :param name: Name of group. :param description: Description of group. :param privacy_policy: PrivacyPolicy :param subscription_policy: SubscriptionPolicy :returns: Updated group
invenio_groups/models.py
def update(self, name=None, description=None, privacy_policy=None, subscription_policy=None, is_managed=None): """Update group. :param name: Name of group. :param description: Description of group. :param privacy_policy: PrivacyPolicy :param subscription_policy: SubscriptionPolicy :returns: Updated group """ with db.session.begin_nested(): if name is not None: self.name = name if description is not None: self.description = description if ( privacy_policy is not None and PrivacyPolicy.validate(privacy_policy) ): self.privacy_policy = privacy_policy if ( subscription_policy is not None and SubscriptionPolicy.validate(subscription_policy) ): self.subscription_policy = subscription_policy if is_managed is not None: self.is_managed = is_managed db.session.merge(self) return self
def update(self, name=None, description=None, privacy_policy=None, subscription_policy=None, is_managed=None): """Update group. :param name: Name of group. :param description: Description of group. :param privacy_policy: PrivacyPolicy :param subscription_policy: SubscriptionPolicy :returns: Updated group """ with db.session.begin_nested(): if name is not None: self.name = name if description is not None: self.description = description if ( privacy_policy is not None and PrivacyPolicy.validate(privacy_policy) ): self.privacy_policy = privacy_policy if ( subscription_policy is not None and SubscriptionPolicy.validate(subscription_policy) ): self.subscription_policy = subscription_policy if is_managed is not None: self.is_managed = is_managed db.session.merge(self) return self
[ "Update", "group", "." ]
inveniosoftware-contrib/invenio-groups
python
https://github.com/inveniosoftware-contrib/invenio-groups/blob/109481d6b02701db00b72223dd4a65e167c589a6/invenio_groups/models.py#L249-L279
[ "def", "update", "(", "self", ",", "name", "=", "None", ",", "description", "=", "None", ",", "privacy_policy", "=", "None", ",", "subscription_policy", "=", "None", ",", "is_managed", "=", "None", ")", ":", "with", "db", ".", "session", ".", "begin_nested", "(", ")", ":", "if", "name", "is", "not", "None", ":", "self", ".", "name", "=", "name", "if", "description", "is", "not", "None", ":", "self", ".", "description", "=", "description", "if", "(", "privacy_policy", "is", "not", "None", "and", "PrivacyPolicy", ".", "validate", "(", "privacy_policy", ")", ")", ":", "self", ".", "privacy_policy", "=", "privacy_policy", "if", "(", "subscription_policy", "is", "not", "None", "and", "SubscriptionPolicy", ".", "validate", "(", "subscription_policy", ")", ")", ":", "self", ".", "subscription_policy", "=", "subscription_policy", "if", "is_managed", "is", "not", "None", ":", "self", ".", "is_managed", "=", "is_managed", "db", ".", "session", ".", "merge", "(", "self", ")", "return", "self" ]
109481d6b02701db00b72223dd4a65e167c589a6
valid
Group.get_by_name
Query group by a group name. :param name: Name of a group to search for. :returns: Group object or None.
invenio_groups/models.py
def get_by_name(cls, name): """Query group by a group name. :param name: Name of a group to search for. :returns: Group object or None. """ try: return cls.query.filter_by(name=name).one() except NoResultFound: return None
def get_by_name(cls, name): """Query group by a group name. :param name: Name of a group to search for. :returns: Group object or None. """ try: return cls.query.filter_by(name=name).one() except NoResultFound: return None
[ "Query", "group", "by", "a", "group", "name", "." ]
inveniosoftware-contrib/invenio-groups
python
https://github.com/inveniosoftware-contrib/invenio-groups/blob/109481d6b02701db00b72223dd4a65e167c589a6/invenio_groups/models.py#L282-L291
[ "def", "get_by_name", "(", "cls", ",", "name", ")", ":", "try", ":", "return", "cls", ".", "query", ".", "filter_by", "(", "name", "=", "name", ")", ".", "one", "(", ")", "except", "NoResultFound", ":", "return", "None" ]
109481d6b02701db00b72223dd4a65e167c589a6
valid
Group.query_by_names
Query group by a list of group names. :param list names: List of the group names. :returns: Query object.
invenio_groups/models.py
def query_by_names(cls, names): """Query group by a list of group names. :param list names: List of the group names. :returns: Query object. """ assert isinstance(names, list) return cls.query.filter(cls.name.in_(names))
def query_by_names(cls, names): """Query group by a list of group names. :param list names: List of the group names. :returns: Query object. """ assert isinstance(names, list) return cls.query.filter(cls.name.in_(names))
[ "Query", "group", "by", "a", "list", "of", "group", "names", "." ]
inveniosoftware-contrib/invenio-groups
python
https://github.com/inveniosoftware-contrib/invenio-groups/blob/109481d6b02701db00b72223dd4a65e167c589a6/invenio_groups/models.py#L294-L301
[ "def", "query_by_names", "(", "cls", ",", "names", ")", ":", "assert", "isinstance", "(", "names", ",", "list", ")", "return", "cls", ".", "query", ".", "filter", "(", "cls", ".", "name", ".", "in_", "(", "names", ")", ")" ]
109481d6b02701db00b72223dd4a65e167c589a6
valid
Group.query_by_user
Query group by user. :param user: User object. :param bool with_pending: Whether to include pending users. :param bool eager: Eagerly fetch group members. :returns: Query object.
invenio_groups/models.py
def query_by_user(cls, user, with_pending=False, eager=False): """Query group by user. :param user: User object. :param bool with_pending: Whether to include pending users. :param bool eager: Eagerly fetch group members. :returns: Query object. """ q1 = Group.query.join(Membership).filter_by(user_id=user.get_id()) if not with_pending: q1 = q1.filter_by(state=MembershipState.ACTIVE) if eager: q1 = q1.options(joinedload(Group.members)) q2 = Group.query.join(GroupAdmin).filter_by( admin_id=user.get_id(), admin_type=resolve_admin_type(user)) if eager: q2 = q2.options(joinedload(Group.members)) query = q1.union(q2).with_entities(Group.id) return Group.query.filter(Group.id.in_(query))
def query_by_user(cls, user, with_pending=False, eager=False): """Query group by user. :param user: User object. :param bool with_pending: Whether to include pending users. :param bool eager: Eagerly fetch group members. :returns: Query object. """ q1 = Group.query.join(Membership).filter_by(user_id=user.get_id()) if not with_pending: q1 = q1.filter_by(state=MembershipState.ACTIVE) if eager: q1 = q1.options(joinedload(Group.members)) q2 = Group.query.join(GroupAdmin).filter_by( admin_id=user.get_id(), admin_type=resolve_admin_type(user)) if eager: q2 = q2.options(joinedload(Group.members)) query = q1.union(q2).with_entities(Group.id) return Group.query.filter(Group.id.in_(query))
[ "Query", "group", "by", "user", "." ]
inveniosoftware-contrib/invenio-groups
python
https://github.com/inveniosoftware-contrib/invenio-groups/blob/109481d6b02701db00b72223dd4a65e167c589a6/invenio_groups/models.py#L304-L325
[ "def", "query_by_user", "(", "cls", ",", "user", ",", "with_pending", "=", "False", ",", "eager", "=", "False", ")", ":", "q1", "=", "Group", ".", "query", ".", "join", "(", "Membership", ")", ".", "filter_by", "(", "user_id", "=", "user", ".", "get_id", "(", ")", ")", "if", "not", "with_pending", ":", "q1", "=", "q1", ".", "filter_by", "(", "state", "=", "MembershipState", ".", "ACTIVE", ")", "if", "eager", ":", "q1", "=", "q1", ".", "options", "(", "joinedload", "(", "Group", ".", "members", ")", ")", "q2", "=", "Group", ".", "query", ".", "join", "(", "GroupAdmin", ")", ".", "filter_by", "(", "admin_id", "=", "user", ".", "get_id", "(", ")", ",", "admin_type", "=", "resolve_admin_type", "(", "user", ")", ")", "if", "eager", ":", "q2", "=", "q2", ".", "options", "(", "joinedload", "(", "Group", ".", "members", ")", ")", "query", "=", "q1", ".", "union", "(", "q2", ")", ".", "with_entities", "(", "Group", ".", "id", ")", "return", "Group", ".", "query", ".", "filter", "(", "Group", ".", "id", ".", "in_", "(", "query", ")", ")" ]
109481d6b02701db00b72223dd4a65e167c589a6
valid
Group.search
Modify query as so include only specific group names. :param query: Query object. :param str q: Search string. :returs: Query object.
invenio_groups/models.py
def search(cls, query, q): """Modify query as so include only specific group names. :param query: Query object. :param str q: Search string. :returs: Query object. """ return query.filter(Group.name.like('%{0}%'.format(q)))
def search(cls, query, q): """Modify query as so include only specific group names. :param query: Query object. :param str q: Search string. :returs: Query object. """ return query.filter(Group.name.like('%{0}%'.format(q)))
[ "Modify", "query", "as", "so", "include", "only", "specific", "group", "names", "." ]
inveniosoftware-contrib/invenio-groups
python
https://github.com/inveniosoftware-contrib/invenio-groups/blob/109481d6b02701db00b72223dd4a65e167c589a6/invenio_groups/models.py#L328-L335
[ "def", "search", "(", "cls", ",", "query", ",", "q", ")", ":", "return", "query", ".", "filter", "(", "Group", ".", "name", ".", "like", "(", "'%{0}%'", ".", "format", "(", "q", ")", ")", ")" ]
109481d6b02701db00b72223dd4a65e167c589a6
valid
Group.add_member
Invite a user to a group. :param user: User to be added as a group member. :param state: MembershipState. Default: MembershipState.ACTIVE. :returns: Membership object or None.
invenio_groups/models.py
def add_member(self, user, state=MembershipState.ACTIVE): """Invite a user to a group. :param user: User to be added as a group member. :param state: MembershipState. Default: MembershipState.ACTIVE. :returns: Membership object or None. """ return Membership.create(self, user, state)
def add_member(self, user, state=MembershipState.ACTIVE): """Invite a user to a group. :param user: User to be added as a group member. :param state: MembershipState. Default: MembershipState.ACTIVE. :returns: Membership object or None. """ return Membership.create(self, user, state)
[ "Invite", "a", "user", "to", "a", "group", "." ]
inveniosoftware-contrib/invenio-groups
python
https://github.com/inveniosoftware-contrib/invenio-groups/blob/109481d6b02701db00b72223dd4a65e167c589a6/invenio_groups/models.py#L352-L359
[ "def", "add_member", "(", "self", ",", "user", ",", "state", "=", "MembershipState", ".", "ACTIVE", ")", ":", "return", "Membership", ".", "create", "(", "self", ",", "user", ",", "state", ")" ]
109481d6b02701db00b72223dd4a65e167c589a6
valid
Group.invite
Invite a user to a group (should be done by admins). Wrapper around ``add_member()`` to ensure proper membership state. :param user: User to invite. :param admin: Admin doing the action. If provided, user is only invited if the object is an admin for this group. Default: None. :returns: Newly created Membership or None.
invenio_groups/models.py
def invite(self, user, admin=None): """Invite a user to a group (should be done by admins). Wrapper around ``add_member()`` to ensure proper membership state. :param user: User to invite. :param admin: Admin doing the action. If provided, user is only invited if the object is an admin for this group. Default: None. :returns: Newly created Membership or None. """ if admin is None or self.is_admin(admin): return self.add_member(user, state=MembershipState.PENDING_USER) return None
def invite(self, user, admin=None): """Invite a user to a group (should be done by admins). Wrapper around ``add_member()`` to ensure proper membership state. :param user: User to invite. :param admin: Admin doing the action. If provided, user is only invited if the object is an admin for this group. Default: None. :returns: Newly created Membership or None. """ if admin is None or self.is_admin(admin): return self.add_member(user, state=MembershipState.PENDING_USER) return None
[ "Invite", "a", "user", "to", "a", "group", "(", "should", "be", "done", "by", "admins", ")", "." ]
inveniosoftware-contrib/invenio-groups
python
https://github.com/inveniosoftware-contrib/invenio-groups/blob/109481d6b02701db00b72223dd4a65e167c589a6/invenio_groups/models.py#L368-L380
[ "def", "invite", "(", "self", ",", "user", ",", "admin", "=", "None", ")", ":", "if", "admin", "is", "None", "or", "self", ".", "is_admin", "(", "admin", ")", ":", "return", "self", ".", "add_member", "(", "user", ",", "state", "=", "MembershipState", ".", "PENDING_USER", ")", "return", "None" ]
109481d6b02701db00b72223dd4a65e167c589a6
valid
Group.invite_by_emails
Invite users to a group by emails. :param list emails: Emails of users that shall be invited. :returns list: Newly created Memberships or Nones.
invenio_groups/models.py
def invite_by_emails(self, emails): """Invite users to a group by emails. :param list emails: Emails of users that shall be invited. :returns list: Newly created Memberships or Nones. """ assert emails is None or isinstance(emails, list) results = [] for email in emails: try: user = User.query.filter_by(email=email).one() results.append(self.invite(user)) except NoResultFound: results.append(None) return results
def invite_by_emails(self, emails): """Invite users to a group by emails. :param list emails: Emails of users that shall be invited. :returns list: Newly created Memberships or Nones. """ assert emails is None or isinstance(emails, list) results = [] for email in emails: try: user = User.query.filter_by(email=email).one() results.append(self.invite(user)) except NoResultFound: results.append(None) return results
[ "Invite", "users", "to", "a", "group", "by", "emails", "." ]
inveniosoftware-contrib/invenio-groups
python
https://github.com/inveniosoftware-contrib/invenio-groups/blob/109481d6b02701db00b72223dd4a65e167c589a6/invenio_groups/models.py#L382-L399
[ "def", "invite_by_emails", "(", "self", ",", "emails", ")", ":", "assert", "emails", "is", "None", "or", "isinstance", "(", "emails", ",", "list", ")", "results", "=", "[", "]", "for", "email", "in", "emails", ":", "try", ":", "user", "=", "User", ".", "query", ".", "filter_by", "(", "email", "=", "email", ")", ".", "one", "(", ")", "results", ".", "append", "(", "self", ".", "invite", "(", "user", ")", ")", "except", "NoResultFound", ":", "results", ".", "append", "(", "None", ")", "return", "results" ]
109481d6b02701db00b72223dd4a65e167c589a6
valid
Group.subscribe
Subscribe a user to a group (done by users). Wrapper around ``add_member()`` which checks subscription policy. :param user: User to subscribe. :returns: Newly created Membership or None.
invenio_groups/models.py
def subscribe(self, user): """Subscribe a user to a group (done by users). Wrapper around ``add_member()`` which checks subscription policy. :param user: User to subscribe. :returns: Newly created Membership or None. """ if self.subscription_policy == SubscriptionPolicy.OPEN: return self.add_member(user) elif self.subscription_policy == SubscriptionPolicy.APPROVAL: return self.add_member(user, state=MembershipState.PENDING_ADMIN) elif self.subscription_policy == SubscriptionPolicy.CLOSED: return None
def subscribe(self, user): """Subscribe a user to a group (done by users). Wrapper around ``add_member()`` which checks subscription policy. :param user: User to subscribe. :returns: Newly created Membership or None. """ if self.subscription_policy == SubscriptionPolicy.OPEN: return self.add_member(user) elif self.subscription_policy == SubscriptionPolicy.APPROVAL: return self.add_member(user, state=MembershipState.PENDING_ADMIN) elif self.subscription_policy == SubscriptionPolicy.CLOSED: return None
[ "Subscribe", "a", "user", "to", "a", "group", "(", "done", "by", "users", ")", "." ]
inveniosoftware-contrib/invenio-groups
python
https://github.com/inveniosoftware-contrib/invenio-groups/blob/109481d6b02701db00b72223dd4a65e167c589a6/invenio_groups/models.py#L401-L414
[ "def", "subscribe", "(", "self", ",", "user", ")", ":", "if", "self", ".", "subscription_policy", "==", "SubscriptionPolicy", ".", "OPEN", ":", "return", "self", ".", "add_member", "(", "user", ")", "elif", "self", ".", "subscription_policy", "==", "SubscriptionPolicy", ".", "APPROVAL", ":", "return", "self", ".", "add_member", "(", "user", ",", "state", "=", "MembershipState", ".", "PENDING_ADMIN", ")", "elif", "self", ".", "subscription_policy", "==", "SubscriptionPolicy", ".", "CLOSED", ":", "return", "None" ]
109481d6b02701db00b72223dd4a65e167c589a6
valid
Group.is_member
Verify if given user is a group member. :param user: User to be checked. :param bool with_pending: Whether to include pending users or not. :returns: True or False.
invenio_groups/models.py
def is_member(self, user, with_pending=False): """Verify if given user is a group member. :param user: User to be checked. :param bool with_pending: Whether to include pending users or not. :returns: True or False. """ m = Membership.get(self, user) if m is not None: if with_pending: return True elif m.state == MembershipState.ACTIVE: return True return False
def is_member(self, user, with_pending=False): """Verify if given user is a group member. :param user: User to be checked. :param bool with_pending: Whether to include pending users or not. :returns: True or False. """ m = Membership.get(self, user) if m is not None: if with_pending: return True elif m.state == MembershipState.ACTIVE: return True return False
[ "Verify", "if", "given", "user", "is", "a", "group", "member", "." ]
inveniosoftware-contrib/invenio-groups
python
https://github.com/inveniosoftware-contrib/invenio-groups/blob/109481d6b02701db00b72223dd4a65e167c589a6/invenio_groups/models.py#L426-L439
[ "def", "is_member", "(", "self", ",", "user", ",", "with_pending", "=", "False", ")", ":", "m", "=", "Membership", ".", "get", "(", "self", ",", "user", ")", "if", "m", "is", "not", "None", ":", "if", "with_pending", ":", "return", "True", "elif", "m", ".", "state", "==", "MembershipState", ".", "ACTIVE", ":", "return", "True", "return", "False" ]
109481d6b02701db00b72223dd4a65e167c589a6
valid
Group.can_see_members
Determine if given user can see other group members. :param user: User to be checked. :returns: True or False.
invenio_groups/models.py
def can_see_members(self, user): """Determine if given user can see other group members. :param user: User to be checked. :returns: True or False. """ if self.privacy_policy == PrivacyPolicy.PUBLIC: return True elif self.privacy_policy == PrivacyPolicy.MEMBERS: return self.is_member(user) or self.is_admin(user) elif self.privacy_policy == PrivacyPolicy.ADMINS: return self.is_admin(user)
def can_see_members(self, user): """Determine if given user can see other group members. :param user: User to be checked. :returns: True or False. """ if self.privacy_policy == PrivacyPolicy.PUBLIC: return True elif self.privacy_policy == PrivacyPolicy.MEMBERS: return self.is_member(user) or self.is_admin(user) elif self.privacy_policy == PrivacyPolicy.ADMINS: return self.is_admin(user)
[ "Determine", "if", "given", "user", "can", "see", "other", "group", "members", "." ]
inveniosoftware-contrib/invenio-groups
python
https://github.com/inveniosoftware-contrib/invenio-groups/blob/109481d6b02701db00b72223dd4a65e167c589a6/invenio_groups/models.py#L441-L452
[ "def", "can_see_members", "(", "self", ",", "user", ")", ":", "if", "self", ".", "privacy_policy", "==", "PrivacyPolicy", ".", "PUBLIC", ":", "return", "True", "elif", "self", ".", "privacy_policy", "==", "PrivacyPolicy", ".", "MEMBERS", ":", "return", "self", ".", "is_member", "(", "user", ")", "or", "self", ".", "is_admin", "(", "user", ")", "elif", "self", ".", "privacy_policy", "==", "PrivacyPolicy", ".", "ADMINS", ":", "return", "self", ".", "is_admin", "(", "user", ")" ]
109481d6b02701db00b72223dd4a65e167c589a6
valid
Group.can_invite_others
Determine if user can invite people to a group. Be aware that this check is independent from the people (users) which are going to be invited. The checked user is the one who invites someone, NOT who is going to be invited. :param user: User to be checked. :returns: True or False.
invenio_groups/models.py
def can_invite_others(self, user): """Determine if user can invite people to a group. Be aware that this check is independent from the people (users) which are going to be invited. The checked user is the one who invites someone, NOT who is going to be invited. :param user: User to be checked. :returns: True or False. """ if self.is_managed: return False elif self.is_admin(user): return True elif self.subscription_policy != SubscriptionPolicy.CLOSED: return True else: return False
def can_invite_others(self, user): """Determine if user can invite people to a group. Be aware that this check is independent from the people (users) which are going to be invited. The checked user is the one who invites someone, NOT who is going to be invited. :param user: User to be checked. :returns: True or False. """ if self.is_managed: return False elif self.is_admin(user): return True elif self.subscription_policy != SubscriptionPolicy.CLOSED: return True else: return False
[ "Determine", "if", "user", "can", "invite", "people", "to", "a", "group", "." ]
inveniosoftware-contrib/invenio-groups
python
https://github.com/inveniosoftware-contrib/invenio-groups/blob/109481d6b02701db00b72223dd4a65e167c589a6/invenio_groups/models.py#L465-L482
[ "def", "can_invite_others", "(", "self", ",", "user", ")", ":", "if", "self", ".", "is_managed", ":", "return", "False", "elif", "self", ".", "is_admin", "(", "user", ")", ":", "return", "True", "elif", "self", ".", "subscription_policy", "!=", "SubscriptionPolicy", ".", "CLOSED", ":", "return", "True", "else", ":", "return", "False" ]
109481d6b02701db00b72223dd4a65e167c589a6
valid
Membership.get
Get membership for given user and group. :param group: Group object. :param user: User object. :returns: Membership or None.
invenio_groups/models.py
def get(cls, group, user): """Get membership for given user and group. :param group: Group object. :param user: User object. :returns: Membership or None. """ try: m = cls.query.filter_by(user_id=user.get_id(), group=group).one() return m except Exception: return None
def get(cls, group, user): """Get membership for given user and group. :param group: Group object. :param user: User object. :returns: Membership or None. """ try: m = cls.query.filter_by(user_id=user.get_id(), group=group).one() return m except Exception: return None
[ "Get", "membership", "for", "given", "user", "and", "group", "." ]
inveniosoftware-contrib/invenio-groups
python
https://github.com/inveniosoftware-contrib/invenio-groups/blob/109481d6b02701db00b72223dd4a65e167c589a6/invenio_groups/models.py#L548-L559
[ "def", "get", "(", "cls", ",", "group", ",", "user", ")", ":", "try", ":", "m", "=", "cls", ".", "query", ".", "filter_by", "(", "user_id", "=", "user", ".", "get_id", "(", ")", ",", "group", "=", "group", ")", ".", "one", "(", ")", "return", "m", "except", "Exception", ":", "return", "None" ]
109481d6b02701db00b72223dd4a65e167c589a6
valid
Membership._filter
Filter a query result.
invenio_groups/models.py
def _filter(cls, query, state=MembershipState.ACTIVE, eager=None): """Filter a query result.""" query = query.filter_by(state=state) eager = eager or [] for field in eager: query = query.options(joinedload(field)) return query
def _filter(cls, query, state=MembershipState.ACTIVE, eager=None): """Filter a query result.""" query = query.filter_by(state=state) eager = eager or [] for field in eager: query = query.options(joinedload(field)) return query
[ "Filter", "a", "query", "result", "." ]
inveniosoftware-contrib/invenio-groups
python
https://github.com/inveniosoftware-contrib/invenio-groups/blob/109481d6b02701db00b72223dd4a65e167c589a6/invenio_groups/models.py#L562-L570
[ "def", "_filter", "(", "cls", ",", "query", ",", "state", "=", "MembershipState", ".", "ACTIVE", ",", "eager", "=", "None", ")", ":", "query", "=", "query", ".", "filter_by", "(", "state", "=", "state", ")", "eager", "=", "eager", "or", "[", "]", "for", "field", "in", "eager", ":", "query", "=", "query", ".", "options", "(", "joinedload", "(", "field", ")", ")", "return", "query" ]
109481d6b02701db00b72223dd4a65e167c589a6
valid
Membership.query_by_user
Get a user's memberships.
invenio_groups/models.py
def query_by_user(cls, user, **kwargs): """Get a user's memberships.""" return cls._filter( cls.query.filter_by(user_id=user.get_id()), **kwargs )
def query_by_user(cls, user, **kwargs): """Get a user's memberships.""" return cls._filter( cls.query.filter_by(user_id=user.get_id()), **kwargs )
[ "Get", "a", "user", "s", "memberships", "." ]
inveniosoftware-contrib/invenio-groups
python
https://github.com/inveniosoftware-contrib/invenio-groups/blob/109481d6b02701db00b72223dd4a65e167c589a6/invenio_groups/models.py#L573-L578
[ "def", "query_by_user", "(", "cls", ",", "user", ",", "*", "*", "kwargs", ")", ":", "return", "cls", ".", "_filter", "(", "cls", ".", "query", ".", "filter_by", "(", "user_id", "=", "user", ".", "get_id", "(", ")", ")", ",", "*", "*", "kwargs", ")" ]
109481d6b02701db00b72223dd4a65e167c589a6
valid
Membership.query_invitations
Get all invitations for given user.
invenio_groups/models.py
def query_invitations(cls, user, eager=False): """Get all invitations for given user.""" if eager: eager = [Membership.group] return cls.query_by_user(user, state=MembershipState.PENDING_USER, eager=eager)
def query_invitations(cls, user, eager=False): """Get all invitations for given user.""" if eager: eager = [Membership.group] return cls.query_by_user(user, state=MembershipState.PENDING_USER, eager=eager)
[ "Get", "all", "invitations", "for", "given", "user", "." ]
inveniosoftware-contrib/invenio-groups
python
https://github.com/inveniosoftware-contrib/invenio-groups/blob/109481d6b02701db00b72223dd4a65e167c589a6/invenio_groups/models.py#L581-L586
[ "def", "query_invitations", "(", "cls", ",", "user", ",", "eager", "=", "False", ")", ":", "if", "eager", ":", "eager", "=", "[", "Membership", ".", "group", "]", "return", "cls", ".", "query_by_user", "(", "user", ",", "state", "=", "MembershipState", ".", "PENDING_USER", ",", "eager", "=", "eager", ")" ]
109481d6b02701db00b72223dd4a65e167c589a6
valid
Membership.query_requests
Get all pending group requests.
invenio_groups/models.py
def query_requests(cls, admin, eager=False): """Get all pending group requests.""" # Get direct pending request if hasattr(admin, 'is_superadmin') and admin.is_superadmin: q1 = GroupAdmin.query.with_entities( GroupAdmin.group_id) else: q1 = GroupAdmin.query_by_admin(admin).with_entities( GroupAdmin.group_id) q2 = Membership.query.filter( Membership.state == MembershipState.PENDING_ADMIN, Membership.id_group.in_(q1), ) # Get request from admin groups your are member of q3 = Membership.query_by_user( user=admin, state=MembershipState.ACTIVE ).with_entities(Membership.id_group) q4 = GroupAdmin.query.filter( GroupAdmin.admin_type == 'Group', GroupAdmin.admin_id.in_(q3) ).with_entities(GroupAdmin.group_id) q5 = Membership.query.filter( Membership.state == MembershipState.PENDING_ADMIN, Membership.id_group.in_(q4)) query = q2.union(q5) return query
def query_requests(cls, admin, eager=False): """Get all pending group requests.""" # Get direct pending request if hasattr(admin, 'is_superadmin') and admin.is_superadmin: q1 = GroupAdmin.query.with_entities( GroupAdmin.group_id) else: q1 = GroupAdmin.query_by_admin(admin).with_entities( GroupAdmin.group_id) q2 = Membership.query.filter( Membership.state == MembershipState.PENDING_ADMIN, Membership.id_group.in_(q1), ) # Get request from admin groups your are member of q3 = Membership.query_by_user( user=admin, state=MembershipState.ACTIVE ).with_entities(Membership.id_group) q4 = GroupAdmin.query.filter( GroupAdmin.admin_type == 'Group', GroupAdmin.admin_id.in_(q3) ).with_entities(GroupAdmin.group_id) q5 = Membership.query.filter( Membership.state == MembershipState.PENDING_ADMIN, Membership.id_group.in_(q4)) query = q2.union(q5) return query
[ "Get", "all", "pending", "group", "requests", "." ]
inveniosoftware-contrib/invenio-groups
python
https://github.com/inveniosoftware-contrib/invenio-groups/blob/109481d6b02701db00b72223dd4a65e167c589a6/invenio_groups/models.py#L589-L616
[ "def", "query_requests", "(", "cls", ",", "admin", ",", "eager", "=", "False", ")", ":", "# Get direct pending request", "if", "hasattr", "(", "admin", ",", "'is_superadmin'", ")", "and", "admin", ".", "is_superadmin", ":", "q1", "=", "GroupAdmin", ".", "query", ".", "with_entities", "(", "GroupAdmin", ".", "group_id", ")", "else", ":", "q1", "=", "GroupAdmin", ".", "query_by_admin", "(", "admin", ")", ".", "with_entities", "(", "GroupAdmin", ".", "group_id", ")", "q2", "=", "Membership", ".", "query", ".", "filter", "(", "Membership", ".", "state", "==", "MembershipState", ".", "PENDING_ADMIN", ",", "Membership", ".", "id_group", ".", "in_", "(", "q1", ")", ",", ")", "# Get request from admin groups your are member of", "q3", "=", "Membership", ".", "query_by_user", "(", "user", "=", "admin", ",", "state", "=", "MembershipState", ".", "ACTIVE", ")", ".", "with_entities", "(", "Membership", ".", "id_group", ")", "q4", "=", "GroupAdmin", ".", "query", ".", "filter", "(", "GroupAdmin", ".", "admin_type", "==", "'Group'", ",", "GroupAdmin", ".", "admin_id", ".", "in_", "(", "q3", ")", ")", ".", "with_entities", "(", "GroupAdmin", ".", "group_id", ")", "q5", "=", "Membership", ".", "query", ".", "filter", "(", "Membership", ".", "state", "==", "MembershipState", ".", "PENDING_ADMIN", ",", "Membership", ".", "id_group", ".", "in_", "(", "q4", ")", ")", "query", "=", "q2", ".", "union", "(", "q5", ")", "return", "query" ]
109481d6b02701db00b72223dd4a65e167c589a6
valid
Membership.query_by_group
Get a group's members.
invenio_groups/models.py
def query_by_group(cls, group_or_id, with_invitations=False, **kwargs): """Get a group's members.""" if isinstance(group_or_id, Group): id_group = group_or_id.id else: id_group = group_or_id if not with_invitations: return cls._filter( cls.query.filter_by(id_group=id_group), **kwargs ) else: return cls.query.filter( Membership.id_group == id_group, db.or_( Membership.state == MembershipState.PENDING_USER, Membership.state == MembershipState.ACTIVE ) )
def query_by_group(cls, group_or_id, with_invitations=False, **kwargs): """Get a group's members.""" if isinstance(group_or_id, Group): id_group = group_or_id.id else: id_group = group_or_id if not with_invitations: return cls._filter( cls.query.filter_by(id_group=id_group), **kwargs ) else: return cls.query.filter( Membership.id_group == id_group, db.or_( Membership.state == MembershipState.PENDING_USER, Membership.state == MembershipState.ACTIVE ) )
[ "Get", "a", "group", "s", "members", "." ]
inveniosoftware-contrib/invenio-groups
python
https://github.com/inveniosoftware-contrib/invenio-groups/blob/109481d6b02701db00b72223dd4a65e167c589a6/invenio_groups/models.py#L619-L638
[ "def", "query_by_group", "(", "cls", ",", "group_or_id", ",", "with_invitations", "=", "False", ",", "*", "*", "kwargs", ")", ":", "if", "isinstance", "(", "group_or_id", ",", "Group", ")", ":", "id_group", "=", "group_or_id", ".", "id", "else", ":", "id_group", "=", "group_or_id", "if", "not", "with_invitations", ":", "return", "cls", ".", "_filter", "(", "cls", ".", "query", ".", "filter_by", "(", "id_group", "=", "id_group", ")", ",", "*", "*", "kwargs", ")", "else", ":", "return", "cls", ".", "query", ".", "filter", "(", "Membership", ".", "id_group", "==", "id_group", ",", "db", ".", "or_", "(", "Membership", ".", "state", "==", "MembershipState", ".", "PENDING_USER", ",", "Membership", ".", "state", "==", "MembershipState", ".", "ACTIVE", ")", ")" ]
109481d6b02701db00b72223dd4a65e167c589a6
valid
Membership.search
Modify query as so include only specific members. :param query: Query object. :param str q: Search string. :returs: Query object.
invenio_groups/models.py
def search(cls, query, q): """Modify query as so include only specific members. :param query: Query object. :param str q: Search string. :returs: Query object. """ query = query.join(User).filter( User.email.like('%{0}%'.format(q)), ) return query
def search(cls, query, q): """Modify query as so include only specific members. :param query: Query object. :param str q: Search string. :returs: Query object. """ query = query.join(User).filter( User.email.like('%{0}%'.format(q)), ) return query
[ "Modify", "query", "as", "so", "include", "only", "specific", "members", "." ]
inveniosoftware-contrib/invenio-groups
python
https://github.com/inveniosoftware-contrib/invenio-groups/blob/109481d6b02701db00b72223dd4a65e167c589a6/invenio_groups/models.py#L641-L651
[ "def", "search", "(", "cls", ",", "query", ",", "q", ")", ":", "query", "=", "query", ".", "join", "(", "User", ")", ".", "filter", "(", "User", ".", "email", ".", "like", "(", "'%{0}%'", ".", "format", "(", "q", ")", ")", ",", ")", "return", "query" ]
109481d6b02701db00b72223dd4a65e167c589a6
valid
Membership.order
Modify query as so to order the results. :param query: Query object. :param str s: Orderinig: ``asc`` or ``desc``. :returs: Query object.
invenio_groups/models.py
def order(cls, query, field, s): """Modify query as so to order the results. :param query: Query object. :param str s: Orderinig: ``asc`` or ``desc``. :returs: Query object. """ if s == 'asc': query = query.order_by(asc(field)) elif s == 'desc': query = query.order_by(desc(field)) return query
def order(cls, query, field, s): """Modify query as so to order the results. :param query: Query object. :param str s: Orderinig: ``asc`` or ``desc``. :returs: Query object. """ if s == 'asc': query = query.order_by(asc(field)) elif s == 'desc': query = query.order_by(desc(field)) return query
[ "Modify", "query", "as", "so", "to", "order", "the", "results", "." ]
inveniosoftware-contrib/invenio-groups
python
https://github.com/inveniosoftware-contrib/invenio-groups/blob/109481d6b02701db00b72223dd4a65e167c589a6/invenio_groups/models.py#L654-L665
[ "def", "order", "(", "cls", ",", "query", ",", "field", ",", "s", ")", ":", "if", "s", "==", "'asc'", ":", "query", "=", "query", ".", "order_by", "(", "asc", "(", "field", ")", ")", "elif", "s", "==", "'desc'", ":", "query", "=", "query", ".", "order_by", "(", "desc", "(", "field", ")", ")", "return", "query" ]
109481d6b02701db00b72223dd4a65e167c589a6
valid
Membership.create
Create a new membership.
invenio_groups/models.py
def create(cls, group, user, state=MembershipState.ACTIVE): """Create a new membership.""" with db.session.begin_nested(): membership = cls( user_id=user.get_id(), id_group=group.id, state=state, ) db.session.add(membership) return membership
def create(cls, group, user, state=MembershipState.ACTIVE): """Create a new membership.""" with db.session.begin_nested(): membership = cls( user_id=user.get_id(), id_group=group.id, state=state, ) db.session.add(membership) return membership
[ "Create", "a", "new", "membership", "." ]
inveniosoftware-contrib/invenio-groups
python
https://github.com/inveniosoftware-contrib/invenio-groups/blob/109481d6b02701db00b72223dd4a65e167c589a6/invenio_groups/models.py#L668-L677
[ "def", "create", "(", "cls", ",", "group", ",", "user", ",", "state", "=", "MembershipState", ".", "ACTIVE", ")", ":", "with", "db", ".", "session", ".", "begin_nested", "(", ")", ":", "membership", "=", "cls", "(", "user_id", "=", "user", ".", "get_id", "(", ")", ",", "id_group", "=", "group", ".", "id", ",", "state", "=", "state", ",", ")", "db", ".", "session", ".", "add", "(", "membership", ")", "return", "membership" ]
109481d6b02701db00b72223dd4a65e167c589a6
valid
Membership.delete
Delete membership.
invenio_groups/models.py
def delete(cls, group, user): """Delete membership.""" with db.session.begin_nested(): cls.query.filter_by(group=group, user_id=user.get_id()).delete()
def delete(cls, group, user): """Delete membership.""" with db.session.begin_nested(): cls.query.filter_by(group=group, user_id=user.get_id()).delete()
[ "Delete", "membership", "." ]
inveniosoftware-contrib/invenio-groups
python
https://github.com/inveniosoftware-contrib/invenio-groups/blob/109481d6b02701db00b72223dd4a65e167c589a6/invenio_groups/models.py#L680-L683
[ "def", "delete", "(", "cls", ",", "group", ",", "user", ")", ":", "with", "db", ".", "session", ".", "begin_nested", "(", ")", ":", "cls", ".", "query", ".", "filter_by", "(", "group", "=", "group", ",", "user_id", "=", "user", ".", "get_id", "(", ")", ")", ".", "delete", "(", ")" ]
109481d6b02701db00b72223dd4a65e167c589a6
valid
Membership.accept
Activate membership.
invenio_groups/models.py
def accept(self): """Activate membership.""" with db.session.begin_nested(): self.state = MembershipState.ACTIVE db.session.merge(self)
def accept(self): """Activate membership.""" with db.session.begin_nested(): self.state = MembershipState.ACTIVE db.session.merge(self)
[ "Activate", "membership", "." ]
inveniosoftware-contrib/invenio-groups
python
https://github.com/inveniosoftware-contrib/invenio-groups/blob/109481d6b02701db00b72223dd4a65e167c589a6/invenio_groups/models.py#L685-L689
[ "def", "accept", "(", "self", ")", ":", "with", "db", ".", "session", ".", "begin_nested", "(", ")", ":", "self", ".", "state", "=", "MembershipState", ".", "ACTIVE", "db", ".", "session", ".", "merge", "(", "self", ")" ]
109481d6b02701db00b72223dd4a65e167c589a6
valid
GroupAdmin.create
Create a new group admin. :param group: Group object. :param admin: Admin object. :returns: Newly created GroupAdmin object. :raises: IntegrityError
invenio_groups/models.py
def create(cls, group, admin): """Create a new group admin. :param group: Group object. :param admin: Admin object. :returns: Newly created GroupAdmin object. :raises: IntegrityError """ with db.session.begin_nested(): obj = cls( group=group, admin=admin, ) db.session.add(obj) return obj
def create(cls, group, admin): """Create a new group admin. :param group: Group object. :param admin: Admin object. :returns: Newly created GroupAdmin object. :raises: IntegrityError """ with db.session.begin_nested(): obj = cls( group=group, admin=admin, ) db.session.add(obj) return obj
[ "Create", "a", "new", "group", "admin", "." ]
inveniosoftware-contrib/invenio-groups
python
https://github.com/inveniosoftware-contrib/invenio-groups/blob/109481d6b02701db00b72223dd4a65e167c589a6/invenio_groups/models.py#L738-L752
[ "def", "create", "(", "cls", ",", "group", ",", "admin", ")", ":", "with", "db", ".", "session", ".", "begin_nested", "(", ")", ":", "obj", "=", "cls", "(", "group", "=", "group", ",", "admin", "=", "admin", ",", ")", "db", ".", "session", ".", "add", "(", "obj", ")", "return", "obj" ]
109481d6b02701db00b72223dd4a65e167c589a6
valid
GroupAdmin.get
Get specific GroupAdmin object.
invenio_groups/models.py
def get(cls, group, admin): """Get specific GroupAdmin object.""" try: ga = cls.query.filter_by( group=group, admin_id=admin.get_id(), admin_type=resolve_admin_type(admin)).one() return ga except Exception: return None
def get(cls, group, admin): """Get specific GroupAdmin object.""" try: ga = cls.query.filter_by( group=group, admin_id=admin.get_id(), admin_type=resolve_admin_type(admin)).one() return ga except Exception: return None
[ "Get", "specific", "GroupAdmin", "object", "." ]
inveniosoftware-contrib/invenio-groups
python
https://github.com/inveniosoftware-contrib/invenio-groups/blob/109481d6b02701db00b72223dd4a65e167c589a6/invenio_groups/models.py#L755-L763
[ "def", "get", "(", "cls", ",", "group", ",", "admin", ")", ":", "try", ":", "ga", "=", "cls", ".", "query", ".", "filter_by", "(", "group", "=", "group", ",", "admin_id", "=", "admin", ".", "get_id", "(", ")", ",", "admin_type", "=", "resolve_admin_type", "(", "admin", ")", ")", ".", "one", "(", ")", "return", "ga", "except", "Exception", ":", "return", "None" ]
109481d6b02701db00b72223dd4a65e167c589a6
valid
GroupAdmin.delete
Delete admin from group. :param group: Group object. :param admin: Admin object.
invenio_groups/models.py
def delete(cls, group, admin): """Delete admin from group. :param group: Group object. :param admin: Admin object. """ with db.session.begin_nested(): obj = cls.query.filter( cls.admin == admin, cls.group == group).one() db.session.delete(obj)
def delete(cls, group, admin): """Delete admin from group. :param group: Group object. :param admin: Admin object. """ with db.session.begin_nested(): obj = cls.query.filter( cls.admin == admin, cls.group == group).one() db.session.delete(obj)
[ "Delete", "admin", "from", "group", "." ]
inveniosoftware-contrib/invenio-groups
python
https://github.com/inveniosoftware-contrib/invenio-groups/blob/109481d6b02701db00b72223dd4a65e167c589a6/invenio_groups/models.py#L766-L775
[ "def", "delete", "(", "cls", ",", "group", ",", "admin", ")", ":", "with", "db", ".", "session", ".", "begin_nested", "(", ")", ":", "obj", "=", "cls", ".", "query", ".", "filter", "(", "cls", ".", "admin", "==", "admin", ",", "cls", ".", "group", "==", "group", ")", ".", "one", "(", ")", "db", ".", "session", ".", "delete", "(", "obj", ")" ]
109481d6b02701db00b72223dd4a65e167c589a6
valid
GroupAdmin.query_by_admin
Get all groups for for a specific admin.
invenio_groups/models.py
def query_by_admin(cls, admin): """Get all groups for for a specific admin.""" return cls.query.filter_by( admin_type=resolve_admin_type(admin), admin_id=admin.get_id())
def query_by_admin(cls, admin): """Get all groups for for a specific admin.""" return cls.query.filter_by( admin_type=resolve_admin_type(admin), admin_id=admin.get_id())
[ "Get", "all", "groups", "for", "for", "a", "specific", "admin", "." ]
inveniosoftware-contrib/invenio-groups
python
https://github.com/inveniosoftware-contrib/invenio-groups/blob/109481d6b02701db00b72223dd4a65e167c589a6/invenio_groups/models.py#L783-L786
[ "def", "query_by_admin", "(", "cls", ",", "admin", ")", ":", "return", "cls", ".", "query", ".", "filter_by", "(", "admin_type", "=", "resolve_admin_type", "(", "admin", ")", ",", "admin_id", "=", "admin", ".", "get_id", "(", ")", ")" ]
109481d6b02701db00b72223dd4a65e167c589a6
valid
GroupAdmin.query_admins_by_group_ids
Get count of admins per group.
invenio_groups/models.py
def query_admins_by_group_ids(cls, groups_ids=None): """Get count of admins per group.""" assert groups_ids is None or isinstance(groups_ids, list) query = db.session.query( Group.id, func.count(GroupAdmin.id) ).join( GroupAdmin ).group_by( Group.id ) if groups_ids: query = query.filter(Group.id.in_(groups_ids)) return query
def query_admins_by_group_ids(cls, groups_ids=None): """Get count of admins per group.""" assert groups_ids is None or isinstance(groups_ids, list) query = db.session.query( Group.id, func.count(GroupAdmin.id) ).join( GroupAdmin ).group_by( Group.id ) if groups_ids: query = query.filter(Group.id.in_(groups_ids)) return query
[ "Get", "count", "of", "admins", "per", "group", "." ]
inveniosoftware-contrib/invenio-groups
python
https://github.com/inveniosoftware-contrib/invenio-groups/blob/109481d6b02701db00b72223dd4a65e167c589a6/invenio_groups/models.py#L789-L804
[ "def", "query_admins_by_group_ids", "(", "cls", ",", "groups_ids", "=", "None", ")", ":", "assert", "groups_ids", "is", "None", "or", "isinstance", "(", "groups_ids", ",", "list", ")", "query", "=", "db", ".", "session", ".", "query", "(", "Group", ".", "id", ",", "func", ".", "count", "(", "GroupAdmin", ".", "id", ")", ")", ".", "join", "(", "GroupAdmin", ")", ".", "group_by", "(", "Group", ".", "id", ")", "if", "groups_ids", ":", "query", "=", "query", ".", "filter", "(", "Group", ".", "id", ".", "in_", "(", "groups_ids", ")", ")", "return", "query" ]
109481d6b02701db00b72223dd4a65e167c589a6
valid
Profiles.all
Get all social newtworks profiles
buffpy/managers/profiles.py
def all(self): ''' Get all social newtworks profiles ''' response = self.api.get(url=PATHS['GET_PROFILES']) for raw_profile in response: self.append(Profile(self.api, raw_profile)) return self
def all(self): ''' Get all social newtworks profiles ''' response = self.api.get(url=PATHS['GET_PROFILES']) for raw_profile in response: self.append(Profile(self.api, raw_profile)) return self
[ "Get", "all", "social", "newtworks", "profiles" ]
vtemian/buffpy
python
https://github.com/vtemian/buffpy/blob/6c9236fd3b6a8f9e2d70dbf1bc01529242b73075/buffpy/managers/profiles.py#L15-L25
[ "def", "all", "(", "self", ")", ":", "response", "=", "self", ".", "api", ".", "get", "(", "url", "=", "PATHS", "[", "'GET_PROFILES'", "]", ")", "for", "raw_profile", "in", "response", ":", "self", ".", "append", "(", "Profile", "(", "self", ".", "api", ",", "raw_profile", ")", ")", "return", "self" ]
6c9236fd3b6a8f9e2d70dbf1bc01529242b73075
valid
Profiles.filter
Based on some criteria, filter the profiles and return a new Profiles Manager containing only the chosen items If the manager doen't have any items, get all the profiles from Buffer
buffpy/managers/profiles.py
def filter(self, **kwargs): ''' Based on some criteria, filter the profiles and return a new Profiles Manager containing only the chosen items If the manager doen't have any items, get all the profiles from Buffer ''' if not len(self): self.all() new_list = filter(lambda item: [True for arg in kwargs if item[arg] == kwargs[arg]] != [], self) return Profiles(self.api, new_list)
def filter(self, **kwargs): ''' Based on some criteria, filter the profiles and return a new Profiles Manager containing only the chosen items If the manager doen't have any items, get all the profiles from Buffer ''' if not len(self): self.all() new_list = filter(lambda item: [True for arg in kwargs if item[arg] == kwargs[arg]] != [], self) return Profiles(self.api, new_list)
[ "Based", "on", "some", "criteria", "filter", "the", "profiles", "and", "return", "a", "new", "Profiles", "Manager", "containing", "only", "the", "chosen", "items" ]
vtemian/buffpy
python
https://github.com/vtemian/buffpy/blob/6c9236fd3b6a8f9e2d70dbf1bc01529242b73075/buffpy/managers/profiles.py#L27-L40
[ "def", "filter", "(", "self", ",", "*", "*", "kwargs", ")", ":", "if", "not", "len", "(", "self", ")", ":", "self", ".", "all", "(", ")", "new_list", "=", "filter", "(", "lambda", "item", ":", "[", "True", "for", "arg", "in", "kwargs", "if", "item", "[", "arg", "]", "==", "kwargs", "[", "arg", "]", "]", "!=", "[", "]", ",", "self", ")", "return", "Profiles", "(", "self", ".", "api", ",", "new_list", ")" ]
6c9236fd3b6a8f9e2d70dbf1bc01529242b73075
valid
dorun
we want to display the errors introduced by pixelation so we plot: * zero noise, cg image, fit * SNR 20, cg image, fit * CRB for both a = dorun(noise_samples=30, sweeps=24, burn=12, SNR=20)
scripts/does_matter/pixel-integration.py
def dorun(SNR=20, sweeps=20, burn=8, noise_samples=10): """ we want to display the errors introduced by pixelation so we plot: * zero noise, cg image, fit * SNR 20, cg image, fit * CRB for both a = dorun(noise_samples=30, sweeps=24, burn=12, SNR=20) """ radii = np.linspace(2,10,8, endpoint=False) crbs, vals, errs = [], [], [] for radius in radii: print 'radius', radius s,im = pxint(radius=radius, factor=4) goodstate = s.state.copy() common.set_image(s, im, 1.0/SNR) tcrb = crb(s) tval, terr = sample(s, im, 1.0/SNR, N=noise_samples, sweeps=sweeps, burn=burn) crbs.append(tcrb) vals.append(tval) errs.append(terr) return np.array(crbs), np.array(vals), np.array(errs), radii
def dorun(SNR=20, sweeps=20, burn=8, noise_samples=10): """ we want to display the errors introduced by pixelation so we plot: * zero noise, cg image, fit * SNR 20, cg image, fit * CRB for both a = dorun(noise_samples=30, sweeps=24, burn=12, SNR=20) """ radii = np.linspace(2,10,8, endpoint=False) crbs, vals, errs = [], [], [] for radius in radii: print 'radius', radius s,im = pxint(radius=radius, factor=4) goodstate = s.state.copy() common.set_image(s, im, 1.0/SNR) tcrb = crb(s) tval, terr = sample(s, im, 1.0/SNR, N=noise_samples, sweeps=sweeps, burn=burn) crbs.append(tcrb) vals.append(tval) errs.append(terr) return np.array(crbs), np.array(vals), np.array(errs), radii
[ "we", "want", "to", "display", "the", "errors", "introduced", "by", "pixelation", "so", "we", "plot", ":", "*", "zero", "noise", "cg", "image", "fit", "*", "SNR", "20", "cg", "image", "fit", "*", "CRB", "for", "both" ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/scripts/does_matter/pixel-integration.py#L52-L76
[ "def", "dorun", "(", "SNR", "=", "20", ",", "sweeps", "=", "20", ",", "burn", "=", "8", ",", "noise_samples", "=", "10", ")", ":", "radii", "=", "np", ".", "linspace", "(", "2", ",", "10", ",", "8", ",", "endpoint", "=", "False", ")", "crbs", ",", "vals", ",", "errs", "=", "[", "]", ",", "[", "]", ",", "[", "]", "for", "radius", "in", "radii", ":", "print", "'radius'", ",", "radius", "s", ",", "im", "=", "pxint", "(", "radius", "=", "radius", ",", "factor", "=", "4", ")", "goodstate", "=", "s", ".", "state", ".", "copy", "(", ")", "common", ".", "set_image", "(", "s", ",", "im", ",", "1.0", "/", "SNR", ")", "tcrb", "=", "crb", "(", "s", ")", "tval", ",", "terr", "=", "sample", "(", "s", ",", "im", ",", "1.0", "/", "SNR", ",", "N", "=", "noise_samples", ",", "sweeps", "=", "sweeps", ",", "burn", "=", "burn", ")", "crbs", ".", "append", "(", "tcrb", ")", "vals", ".", "append", "(", "tval", ")", "errs", ".", "append", "(", "terr", ")", "return", "np", ".", "array", "(", "crbs", ")", ",", "np", ".", "array", "(", "vals", ")", ",", "np", ".", "array", "(", "errs", ")", ",", "radii" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
GaussianMomentExpansion._skew
returns the kurtosis parameter for direction d, d=0 is rho, d=1 is z
peri/comp/psfs.py
def _skew(self, x, z, d=0): """ returns the kurtosis parameter for direction d, d=0 is rho, d=1 is z """ # get the top bound determined by the kurtosis kval = (np.tanh(self._poly(z, self._kurtosis_coeffs(d)))+1)/12. bdpoly = np.array([ -1.142468e+04, 3.0939485e+03, -2.0283568e+02, -2.1047846e+01, 3.79808487e+00, 1.19679781e-02 ]) top = np.polyval(bdpoly, kval) # limit the skewval to be 0 -> top val skew = self._poly(z, self._skew_coeffs(d)) skewval = top*(np.tanh(skew) + 1) - top return skewval*(3*x - x**3)
def _skew(self, x, z, d=0): """ returns the kurtosis parameter for direction d, d=0 is rho, d=1 is z """ # get the top bound determined by the kurtosis kval = (np.tanh(self._poly(z, self._kurtosis_coeffs(d)))+1)/12. bdpoly = np.array([ -1.142468e+04, 3.0939485e+03, -2.0283568e+02, -2.1047846e+01, 3.79808487e+00, 1.19679781e-02 ]) top = np.polyval(bdpoly, kval) # limit the skewval to be 0 -> top val skew = self._poly(z, self._skew_coeffs(d)) skewval = top*(np.tanh(skew) + 1) - top return skewval*(3*x - x**3)
[ "returns", "the", "kurtosis", "parameter", "for", "direction", "d", "d", "=", "0", "is", "rho", "d", "=", "1", "is", "z" ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/comp/psfs.py#L461-L475
[ "def", "_skew", "(", "self", ",", "x", ",", "z", ",", "d", "=", "0", ")", ":", "# get the top bound determined by the kurtosis", "kval", "=", "(", "np", ".", "tanh", "(", "self", ".", "_poly", "(", "z", ",", "self", ".", "_kurtosis_coeffs", "(", "d", ")", ")", ")", "+", "1", ")", "/", "12.", "bdpoly", "=", "np", ".", "array", "(", "[", "-", "1.142468e+04", ",", "3.0939485e+03", ",", "-", "2.0283568e+02", ",", "-", "2.1047846e+01", ",", "3.79808487e+00", ",", "1.19679781e-02", "]", ")", "top", "=", "np", ".", "polyval", "(", "bdpoly", ",", "kval", ")", "# limit the skewval to be 0 -> top val", "skew", "=", "self", ".", "_poly", "(", "z", ",", "self", ".", "_skew_coeffs", "(", "d", ")", ")", "skewval", "=", "top", "*", "(", "np", ".", "tanh", "(", "skew", ")", "+", "1", ")", "-", "top", "return", "skewval", "*", "(", "3", "*", "x", "-", "x", "**", "3", ")" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
GaussianMomentExpansion._kurtosis
returns the kurtosis parameter for direction d, d=0 is rho, d=1 is z
peri/comp/psfs.py
def _kurtosis(self, x, z, d=0): """ returns the kurtosis parameter for direction d, d=0 is rho, d=1 is z """ val = self._poly(z, self._kurtosis_coeffs(d)) return (np.tanh(val)+1)/12.*(3 - 6*x**2 + x**4)
def _kurtosis(self, x, z, d=0): """ returns the kurtosis parameter for direction d, d=0 is rho, d=1 is z """ val = self._poly(z, self._kurtosis_coeffs(d)) return (np.tanh(val)+1)/12.*(3 - 6*x**2 + x**4)
[ "returns", "the", "kurtosis", "parameter", "for", "direction", "d", "d", "=", "0", "is", "rho", "d", "=", "1", "is", "z" ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/peri/comp/psfs.py#L478-L481
[ "def", "_kurtosis", "(", "self", ",", "x", ",", "z", ",", "d", "=", "0", ")", ":", "val", "=", "self", ".", "_poly", "(", "z", ",", "self", ".", "_kurtosis_coeffs", "(", "d", ")", ")", "return", "(", "np", ".", "tanh", "(", "val", ")", "+", "1", ")", "/", "12.", "*", "(", "3", "-", "6", "*", "x", "**", "2", "+", "x", "**", "4", ")" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
fit_edge
axis is 'z' or 'xy' seps = np.linspace(0,2,20) 'z' seps = np.linspace(-2,2,20) 'xy'
scripts/crb/edge-particles.py
def fit_edge(separation, radius=5.0, samples=100, imsize=64, sigma=0.05, axis='z'): """ axis is 'z' or 'xy' seps = np.linspace(0,2,20) 'z' seps = np.linspace(-2,2,20) 'xy' """ terrors = [] berrors = [] crbs = [] for sep in separation: print '='*79 print 'sep =', sep, s = init.create_two_particle_state(imsize, radius=radius, delta=sep, sigma=0.05, axis='z', psfargs={'params': (2.0,1.0,4.0), 'error': 1e-8}, stateargs={'sigmapad': True, 'pad': const.PAD}) # move off of a pixel edge (cheating for trackpy) d = np.array([0,0.5,0.5]) s.obj.pos -= d s.reset() # move the particles to the edge bl = s.blocks_particle(0) s.update(bl[0], np.array([s.pad+radius])) bl = s.blocks_particle(1) s.update(bl[0], np.array([s.pad-radius])) if axis == 'z': bl = s.blocks_particle(1) s.update(bl[0], s.state[bl[0]]-sep) s.model_to_true_image() if axis == 'xy': bl = s.blocks_particle(1) s.update(bl[2], s.state[bl[2]]+sep) s.model_to_true_image() # save where the particles were originally so we can jiggle p = s.state[s.b_pos].reshape(-1,3).copy() print p[0], p[1] # calculate the CRB for this configuration bl = s.explode(s.b_pos) crbs.append(np.sqrt(np.diag(np.linalg.inv(s.fisher_information(blocks=bl)))).reshape(-1,3)) # calculate the featuring errors tmp_tp, tmp_bf = [],[] for i in xrange(samples): print i bench.jiggle_particles(s, pos=p, sig=0.3, mask=np.array([1,1,1])) t = bench.trackpy(s) b = bench.bamfpy_positions(s, sweeps=15) tmp_tp.append(bench.error(s, t)) tmp_bf.append(bench.error(s, b)) terrors.append(tmp_tp) berrors.append(tmp_bf) return np.array(crbs), np.array(terrors), np.array(berrors)
def fit_edge(separation, radius=5.0, samples=100, imsize=64, sigma=0.05, axis='z'): """ axis is 'z' or 'xy' seps = np.linspace(0,2,20) 'z' seps = np.linspace(-2,2,20) 'xy' """ terrors = [] berrors = [] crbs = [] for sep in separation: print '='*79 print 'sep =', sep, s = init.create_two_particle_state(imsize, radius=radius, delta=sep, sigma=0.05, axis='z', psfargs={'params': (2.0,1.0,4.0), 'error': 1e-8}, stateargs={'sigmapad': True, 'pad': const.PAD}) # move off of a pixel edge (cheating for trackpy) d = np.array([0,0.5,0.5]) s.obj.pos -= d s.reset() # move the particles to the edge bl = s.blocks_particle(0) s.update(bl[0], np.array([s.pad+radius])) bl = s.blocks_particle(1) s.update(bl[0], np.array([s.pad-radius])) if axis == 'z': bl = s.blocks_particle(1) s.update(bl[0], s.state[bl[0]]-sep) s.model_to_true_image() if axis == 'xy': bl = s.blocks_particle(1) s.update(bl[2], s.state[bl[2]]+sep) s.model_to_true_image() # save where the particles were originally so we can jiggle p = s.state[s.b_pos].reshape(-1,3).copy() print p[0], p[1] # calculate the CRB for this configuration bl = s.explode(s.b_pos) crbs.append(np.sqrt(np.diag(np.linalg.inv(s.fisher_information(blocks=bl)))).reshape(-1,3)) # calculate the featuring errors tmp_tp, tmp_bf = [],[] for i in xrange(samples): print i bench.jiggle_particles(s, pos=p, sig=0.3, mask=np.array([1,1,1])) t = bench.trackpy(s) b = bench.bamfpy_positions(s, sweeps=15) tmp_tp.append(bench.error(s, t)) tmp_bf.append(bench.error(s, b)) terrors.append(tmp_tp) berrors.append(tmp_bf) return np.array(crbs), np.array(terrors), np.array(berrors)
[ "axis", "is", "z", "or", "xy", "seps", "=", "np", ".", "linspace", "(", "0", "2", "20", ")", "z", "seps", "=", "np", ".", "linspace", "(", "-", "2", "2", "20", ")", "xy" ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/scripts/crb/edge-particles.py#L11-L72
[ "def", "fit_edge", "(", "separation", ",", "radius", "=", "5.0", ",", "samples", "=", "100", ",", "imsize", "=", "64", ",", "sigma", "=", "0.05", ",", "axis", "=", "'z'", ")", ":", "terrors", "=", "[", "]", "berrors", "=", "[", "]", "crbs", "=", "[", "]", "for", "sep", "in", "separation", ":", "print", "'='", "*", "79", "print", "'sep ='", ",", "sep", ",", "s", "=", "init", ".", "create_two_particle_state", "(", "imsize", ",", "radius", "=", "radius", ",", "delta", "=", "sep", ",", "sigma", "=", "0.05", ",", "axis", "=", "'z'", ",", "psfargs", "=", "{", "'params'", ":", "(", "2.0", ",", "1.0", ",", "4.0", ")", ",", "'error'", ":", "1e-8", "}", ",", "stateargs", "=", "{", "'sigmapad'", ":", "True", ",", "'pad'", ":", "const", ".", "PAD", "}", ")", "# move off of a pixel edge (cheating for trackpy)", "d", "=", "np", ".", "array", "(", "[", "0", ",", "0.5", ",", "0.5", "]", ")", "s", ".", "obj", ".", "pos", "-=", "d", "s", ".", "reset", "(", ")", "# move the particles to the edge", "bl", "=", "s", ".", "blocks_particle", "(", "0", ")", "s", ".", "update", "(", "bl", "[", "0", "]", ",", "np", ".", "array", "(", "[", "s", ".", "pad", "+", "radius", "]", ")", ")", "bl", "=", "s", ".", "blocks_particle", "(", "1", ")", "s", ".", "update", "(", "bl", "[", "0", "]", ",", "np", ".", "array", "(", "[", "s", ".", "pad", "-", "radius", "]", ")", ")", "if", "axis", "==", "'z'", ":", "bl", "=", "s", ".", "blocks_particle", "(", "1", ")", "s", ".", "update", "(", "bl", "[", "0", "]", ",", "s", ".", "state", "[", "bl", "[", "0", "]", "]", "-", "sep", ")", "s", ".", "model_to_true_image", "(", ")", "if", "axis", "==", "'xy'", ":", "bl", "=", "s", ".", "blocks_particle", "(", "1", ")", "s", ".", "update", "(", "bl", "[", "2", "]", ",", "s", ".", "state", "[", "bl", "[", "2", "]", "]", "+", "sep", ")", "s", ".", "model_to_true_image", "(", ")", "# save where the particles were originally so we can jiggle", "p", "=", "s", ".", "state", "[", "s", ".", "b_pos", "]", ".", "reshape", "(", "-", "1", ",", "3", ")", ".", "copy", "(", ")", "print", "p", "[", "0", "]", ",", "p", "[", "1", "]", "# calculate the CRB for this configuration", "bl", "=", "s", ".", "explode", "(", "s", ".", "b_pos", ")", "crbs", ".", "append", "(", "np", ".", "sqrt", "(", "np", ".", "diag", "(", "np", ".", "linalg", ".", "inv", "(", "s", ".", "fisher_information", "(", "blocks", "=", "bl", ")", ")", ")", ")", ".", "reshape", "(", "-", "1", ",", "3", ")", ")", "# calculate the featuring errors", "tmp_tp", ",", "tmp_bf", "=", "[", "]", ",", "[", "]", "for", "i", "in", "xrange", "(", "samples", ")", ":", "print", "i", "bench", ".", "jiggle_particles", "(", "s", ",", "pos", "=", "p", ",", "sig", "=", "0.3", ",", "mask", "=", "np", ".", "array", "(", "[", "1", ",", "1", ",", "1", "]", ")", ")", "t", "=", "bench", ".", "trackpy", "(", "s", ")", "b", "=", "bench", ".", "bamfpy_positions", "(", "s", ",", "sweeps", "=", "15", ")", "tmp_tp", ".", "append", "(", "bench", ".", "error", "(", "s", ",", "t", ")", ")", "tmp_bf", ".", "append", "(", "bench", ".", "error", "(", "s", ",", "b", ")", ")", "terrors", ".", "append", "(", "tmp_tp", ")", "berrors", ".", "append", "(", "tmp_bf", ")", "return", "np", ".", "array", "(", "crbs", ")", ",", "np", ".", "array", "(", "terrors", ")", ",", "np", ".", "array", "(", "berrors", ")" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
zjitter
scan jitter is in terms of the fractional pixel difference when moving the laser in the z-direction
scripts/does_matter/z-jitter.py
def zjitter(jitter=0.0, radius=5): """ scan jitter is in terms of the fractional pixel difference when moving the laser in the z-direction """ psfsize = np.array([2.0, 1.0, 3.0]) # create a base image of one particle s0 = init.create_single_particle_state(imsize=4*radius, radius=radius, psfargs={'params': psfsize, 'error': 1e-6}) sl = np.s_[s0.pad:-s0.pad,s0.pad:-s0.pad,s0.pad:-s0.pad] # add up a bunch of trajectories finalimage = 0*s0.get_model_image()[sl] position = 0*s0.obj.pos[0] for i in xrange(finalimage.shape[0]): offset = jitter*np.random.randn(3)*np.array([1,0,0]) s0.obj.pos[0] = np.array(s0.image.shape)/2 + offset s0.reset() finalimage[i] = s0.get_model_image()[sl][i] position += s0.obj.pos[0] position /= float(finalimage.shape[0]) # place that into a new image at the expected parameters s = init.create_single_particle_state(imsize=4*radius, sigma=0.05, radius=radius, psfargs={'params': psfsize, 'error': 1e-6}) s.reset() # measure the true inferred parameters return s, finalimage, position
def zjitter(jitter=0.0, radius=5): """ scan jitter is in terms of the fractional pixel difference when moving the laser in the z-direction """ psfsize = np.array([2.0, 1.0, 3.0]) # create a base image of one particle s0 = init.create_single_particle_state(imsize=4*radius, radius=radius, psfargs={'params': psfsize, 'error': 1e-6}) sl = np.s_[s0.pad:-s0.pad,s0.pad:-s0.pad,s0.pad:-s0.pad] # add up a bunch of trajectories finalimage = 0*s0.get_model_image()[sl] position = 0*s0.obj.pos[0] for i in xrange(finalimage.shape[0]): offset = jitter*np.random.randn(3)*np.array([1,0,0]) s0.obj.pos[0] = np.array(s0.image.shape)/2 + offset s0.reset() finalimage[i] = s0.get_model_image()[sl][i] position += s0.obj.pos[0] position /= float(finalimage.shape[0]) # place that into a new image at the expected parameters s = init.create_single_particle_state(imsize=4*radius, sigma=0.05, radius=radius, psfargs={'params': psfsize, 'error': 1e-6}) s.reset() # measure the true inferred parameters return s, finalimage, position
[ "scan", "jitter", "is", "in", "terms", "of", "the", "fractional", "pixel", "difference", "when", "moving", "the", "laser", "in", "the", "z", "-", "direction" ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/scripts/does_matter/z-jitter.py#L9-L41
[ "def", "zjitter", "(", "jitter", "=", "0.0", ",", "radius", "=", "5", ")", ":", "psfsize", "=", "np", ".", "array", "(", "[", "2.0", ",", "1.0", ",", "3.0", "]", ")", "# create a base image of one particle", "s0", "=", "init", ".", "create_single_particle_state", "(", "imsize", "=", "4", "*", "radius", ",", "radius", "=", "radius", ",", "psfargs", "=", "{", "'params'", ":", "psfsize", ",", "'error'", ":", "1e-6", "}", ")", "sl", "=", "np", ".", "s_", "[", "s0", ".", "pad", ":", "-", "s0", ".", "pad", ",", "s0", ".", "pad", ":", "-", "s0", ".", "pad", ",", "s0", ".", "pad", ":", "-", "s0", ".", "pad", "]", "# add up a bunch of trajectories", "finalimage", "=", "0", "*", "s0", ".", "get_model_image", "(", ")", "[", "sl", "]", "position", "=", "0", "*", "s0", ".", "obj", ".", "pos", "[", "0", "]", "for", "i", "in", "xrange", "(", "finalimage", ".", "shape", "[", "0", "]", ")", ":", "offset", "=", "jitter", "*", "np", ".", "random", ".", "randn", "(", "3", ")", "*", "np", ".", "array", "(", "[", "1", ",", "0", ",", "0", "]", ")", "s0", ".", "obj", ".", "pos", "[", "0", "]", "=", "np", ".", "array", "(", "s0", ".", "image", ".", "shape", ")", "/", "2", "+", "offset", "s0", ".", "reset", "(", ")", "finalimage", "[", "i", "]", "=", "s0", ".", "get_model_image", "(", ")", "[", "sl", "]", "[", "i", "]", "position", "+=", "s0", ".", "obj", ".", "pos", "[", "0", "]", "position", "/=", "float", "(", "finalimage", ".", "shape", "[", "0", "]", ")", "# place that into a new image at the expected parameters", "s", "=", "init", ".", "create_single_particle_state", "(", "imsize", "=", "4", "*", "radius", ",", "sigma", "=", "0.05", ",", "radius", "=", "radius", ",", "psfargs", "=", "{", "'params'", ":", "psfsize", ",", "'error'", ":", "1e-6", "}", ")", "s", ".", "reset", "(", ")", "# measure the true inferred parameters", "return", "s", ",", "finalimage", ",", "position" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
dorun
we want to display the errors introduced by pixelation so we plot: * CRB, sampled error vs exposure time a = dorun(ntimes=10, samples=5, noise_samples=5, sweeps=20, burn=8)
scripts/does_matter/z-jitter.py
def dorun(SNR=20, njitters=20, samples=10, noise_samples=10, sweeps=20, burn=10): """ we want to display the errors introduced by pixelation so we plot: * CRB, sampled error vs exposure time a = dorun(ntimes=10, samples=5, noise_samples=5, sweeps=20, burn=8) """ jitters = np.logspace(-6, np.log10(0.5), njitters) crbs, vals, errs, poss = [], [], [], [] for i,t in enumerate(jitters): print '###### jitter', i, t for j in xrange(samples): print 'image', j, '|', s,im,pos = zjitter(jitter=t) # typical image common.set_image(s, im, 1.0/SNR) crbs.append(crb(s)) val, err = sample(s, im, 1.0/SNR, N=noise_samples, sweeps=sweeps, burn=burn) poss.append(pos) vals.append(val) errs.append(err) shape0 = (njitters, samples, -1) shape1 = (njitters, samples, noise_samples, -1) crbs = np.array(crbs).reshape(shape0) vals = np.array(vals).reshape(shape1) errs = np.array(errs).reshape(shape1) poss = np.array(poss).reshape(shape0) return [crbs, vals, errs, poss, jitters]
def dorun(SNR=20, njitters=20, samples=10, noise_samples=10, sweeps=20, burn=10): """ we want to display the errors introduced by pixelation so we plot: * CRB, sampled error vs exposure time a = dorun(ntimes=10, samples=5, noise_samples=5, sweeps=20, burn=8) """ jitters = np.logspace(-6, np.log10(0.5), njitters) crbs, vals, errs, poss = [], [], [], [] for i,t in enumerate(jitters): print '###### jitter', i, t for j in xrange(samples): print 'image', j, '|', s,im,pos = zjitter(jitter=t) # typical image common.set_image(s, im, 1.0/SNR) crbs.append(crb(s)) val, err = sample(s, im, 1.0/SNR, N=noise_samples, sweeps=sweeps, burn=burn) poss.append(pos) vals.append(val) errs.append(err) shape0 = (njitters, samples, -1) shape1 = (njitters, samples, noise_samples, -1) crbs = np.array(crbs).reshape(shape0) vals = np.array(vals).reshape(shape1) errs = np.array(errs).reshape(shape1) poss = np.array(poss).reshape(shape0) return [crbs, vals, errs, poss, jitters]
[ "we", "want", "to", "display", "the", "errors", "introduced", "by", "pixelation", "so", "we", "plot", ":", "*", "CRB", "sampled", "error", "vs", "exposure", "time" ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/scripts/does_matter/z-jitter.py#L43-L78
[ "def", "dorun", "(", "SNR", "=", "20", ",", "njitters", "=", "20", ",", "samples", "=", "10", ",", "noise_samples", "=", "10", ",", "sweeps", "=", "20", ",", "burn", "=", "10", ")", ":", "jitters", "=", "np", ".", "logspace", "(", "-", "6", ",", "np", ".", "log10", "(", "0.5", ")", ",", "njitters", ")", "crbs", ",", "vals", ",", "errs", ",", "poss", "=", "[", "]", ",", "[", "]", ",", "[", "]", ",", "[", "]", "for", "i", ",", "t", "in", "enumerate", "(", "jitters", ")", ":", "print", "'###### jitter'", ",", "i", ",", "t", "for", "j", "in", "xrange", "(", "samples", ")", ":", "print", "'image'", ",", "j", ",", "'|'", ",", "s", ",", "im", ",", "pos", "=", "zjitter", "(", "jitter", "=", "t", ")", "# typical image", "common", ".", "set_image", "(", "s", ",", "im", ",", "1.0", "/", "SNR", ")", "crbs", ".", "append", "(", "crb", "(", "s", ")", ")", "val", ",", "err", "=", "sample", "(", "s", ",", "im", ",", "1.0", "/", "SNR", ",", "N", "=", "noise_samples", ",", "sweeps", "=", "sweeps", ",", "burn", "=", "burn", ")", "poss", ".", "append", "(", "pos", ")", "vals", ".", "append", "(", "val", ")", "errs", ".", "append", "(", "err", ")", "shape0", "=", "(", "njitters", ",", "samples", ",", "-", "1", ")", "shape1", "=", "(", "njitters", ",", "samples", ",", "noise_samples", ",", "-", "1", ")", "crbs", "=", "np", ".", "array", "(", "crbs", ")", ".", "reshape", "(", "shape0", ")", "vals", "=", "np", ".", "array", "(", "vals", ")", ".", "reshape", "(", "shape1", ")", "errs", "=", "np", ".", "array", "(", "errs", ")", ".", "reshape", "(", "shape1", ")", "poss", "=", "np", ".", "array", "(", "poss", ")", ".", "reshape", "(", "shape0", ")", "return", "[", "crbs", ",", "vals", ",", "errs", ",", "poss", ",", "jitters", "]" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
Update.interactions
Returns the detailed information on individual interactions with the social media update such as favorites, retweets and likes.
buffpy/models/update.py
def interactions(self): ''' Returns the detailed information on individual interactions with the social media update such as favorites, retweets and likes. ''' interactions = [] url = PATHS['GET_INTERACTIONS'] % self.id response = self.api.get(url=url) for interaction in response['interactions']: interactions.append(ResponseObject(interaction)) self.__interactions = interactions return self.__interactions
def interactions(self): ''' Returns the detailed information on individual interactions with the social media update such as favorites, retweets and likes. ''' interactions = [] url = PATHS['GET_INTERACTIONS'] % self.id response = self.api.get(url=url) for interaction in response['interactions']: interactions.append(ResponseObject(interaction)) self.__interactions = interactions return self.__interactions
[ "Returns", "the", "detailed", "information", "on", "individual", "interactions", "with", "the", "social", "media", "update", "such", "as", "favorites", "retweets", "and", "likes", "." ]
vtemian/buffpy
python
https://github.com/vtemian/buffpy/blob/6c9236fd3b6a8f9e2d70dbf1bc01529242b73075/buffpy/models/update.py#L28-L43
[ "def", "interactions", "(", "self", ")", ":", "interactions", "=", "[", "]", "url", "=", "PATHS", "[", "'GET_INTERACTIONS'", "]", "%", "self", ".", "id", "response", "=", "self", ".", "api", ".", "get", "(", "url", "=", "url", ")", "for", "interaction", "in", "response", "[", "'interactions'", "]", ":", "interactions", ".", "append", "(", "ResponseObject", "(", "interaction", ")", ")", "self", ".", "__interactions", "=", "interactions", "return", "self", ".", "__interactions" ]
6c9236fd3b6a8f9e2d70dbf1bc01529242b73075
valid
Update.edit
Edit an existing, individual status update.
buffpy/models/update.py
def edit(self, text, media=None, utc=None, now=None): ''' Edit an existing, individual status update. ''' url = PATHS['EDIT'] % self.id post_data = "text=%s&" % text if now: post_data += "now=%s&" % now if utc: post_data += "utc=%s&" % utc if media: media_format = "media[%s]=%s&" for media_type, media_item in media.iteritems(): post_data += media_format % (media_type, media_item) response = self.api.post(url=url, data=post_data) return Update(api=self.api, raw_response=response['update'])
def edit(self, text, media=None, utc=None, now=None): ''' Edit an existing, individual status update. ''' url = PATHS['EDIT'] % self.id post_data = "text=%s&" % text if now: post_data += "now=%s&" % now if utc: post_data += "utc=%s&" % utc if media: media_format = "media[%s]=%s&" for media_type, media_item in media.iteritems(): post_data += media_format % (media_type, media_item) response = self.api.post(url=url, data=post_data) return Update(api=self.api, raw_response=response['update'])
[ "Edit", "an", "existing", "individual", "status", "update", "." ]
vtemian/buffpy
python
https://github.com/vtemian/buffpy/blob/6c9236fd3b6a8f9e2d70dbf1bc01529242b73075/buffpy/models/update.py#L45-L68
[ "def", "edit", "(", "self", ",", "text", ",", "media", "=", "None", ",", "utc", "=", "None", ",", "now", "=", "None", ")", ":", "url", "=", "PATHS", "[", "'EDIT'", "]", "%", "self", ".", "id", "post_data", "=", "\"text=%s&\"", "%", "text", "if", "now", ":", "post_data", "+=", "\"now=%s&\"", "%", "now", "if", "utc", ":", "post_data", "+=", "\"utc=%s&\"", "%", "utc", "if", "media", ":", "media_format", "=", "\"media[%s]=%s&\"", "for", "media_type", ",", "media_item", "in", "media", ".", "iteritems", "(", ")", ":", "post_data", "+=", "media_format", "%", "(", "media_type", ",", "media_item", ")", "response", "=", "self", ".", "api", ".", "post", "(", "url", "=", "url", ",", "data", "=", "post_data", ")", "return", "Update", "(", "api", "=", "self", ".", "api", ",", "raw_response", "=", "response", "[", "'update'", "]", ")" ]
6c9236fd3b6a8f9e2d70dbf1bc01529242b73075
valid
Update.publish
Immediately shares a single pending update and recalculates times for updates remaining in the queue.
buffpy/models/update.py
def publish(self): ''' Immediately shares a single pending update and recalculates times for updates remaining in the queue. ''' url = PATHS['PUBLISH'] % self.id return self.api.post(url=url)
def publish(self): ''' Immediately shares a single pending update and recalculates times for updates remaining in the queue. ''' url = PATHS['PUBLISH'] % self.id return self.api.post(url=url)
[ "Immediately", "shares", "a", "single", "pending", "update", "and", "recalculates", "times", "for", "updates", "remaining", "in", "the", "queue", "." ]
vtemian/buffpy
python
https://github.com/vtemian/buffpy/blob/6c9236fd3b6a8f9e2d70dbf1bc01529242b73075/buffpy/models/update.py#L70-L77
[ "def", "publish", "(", "self", ")", ":", "url", "=", "PATHS", "[", "'PUBLISH'", "]", "%", "self", ".", "id", "return", "self", ".", "api", ".", "post", "(", "url", "=", "url", ")" ]
6c9236fd3b6a8f9e2d70dbf1bc01529242b73075
valid
Update.delete
Permanently delete an existing status update.
buffpy/models/update.py
def delete(self): ''' Permanently delete an existing status update. ''' url = PATHS['DELETE'] % self.id return self.api.post(url=url)
def delete(self): ''' Permanently delete an existing status update. ''' url = PATHS['DELETE'] % self.id return self.api.post(url=url)
[ "Permanently", "delete", "an", "existing", "status", "update", "." ]
vtemian/buffpy
python
https://github.com/vtemian/buffpy/blob/6c9236fd3b6a8f9e2d70dbf1bc01529242b73075/buffpy/models/update.py#L79-L85
[ "def", "delete", "(", "self", ")", ":", "url", "=", "PATHS", "[", "'DELETE'", "]", "%", "self", ".", "id", "return", "self", ".", "api", ".", "post", "(", "url", "=", "url", ")" ]
6c9236fd3b6a8f9e2d70dbf1bc01529242b73075
valid
Update.move_to_top
Move an existing status update to the top of the queue and recalculate times for all updates in the queue. Returns the update with its new posting time.
buffpy/models/update.py
def move_to_top(self): ''' Move an existing status update to the top of the queue and recalculate times for all updates in the queue. Returns the update with its new posting time. ''' url = PATHS['MOVE_TO_TOP'] % self.id response = self.api.post(url=url) return Update(api=self.api, raw_response=response)
def move_to_top(self): ''' Move an existing status update to the top of the queue and recalculate times for all updates in the queue. Returns the update with its new posting time. ''' url = PATHS['MOVE_TO_TOP'] % self.id response = self.api.post(url=url) return Update(api=self.api, raw_response=response)
[ "Move", "an", "existing", "status", "update", "to", "the", "top", "of", "the", "queue", "and", "recalculate", "times", "for", "all", "updates", "in", "the", "queue", ".", "Returns", "the", "update", "with", "its", "new", "posting", "time", "." ]
vtemian/buffpy
python
https://github.com/vtemian/buffpy/blob/6c9236fd3b6a8f9e2d70dbf1bc01529242b73075/buffpy/models/update.py#L87-L97
[ "def", "move_to_top", "(", "self", ")", ":", "url", "=", "PATHS", "[", "'MOVE_TO_TOP'", "]", "%", "self", ".", "id", "response", "=", "self", ".", "api", ".", "post", "(", "url", "=", "url", ")", "return", "Update", "(", "api", "=", "self", ".", "api", ",", "raw_response", "=", "response", ")" ]
6c9236fd3b6a8f9e2d70dbf1bc01529242b73075
valid
pole_removal
Remove the noise poles from a 2d noise distribution to show that affects the real-space noise picture. noise -- fftshifted 2d array of q values poles -- N,2 list of pole locations. the last index is in the order y,x as determined by mpl interactive plots for example: poles = np.array([[190,277], [227,253], [233, 256]]
scripts/figures/ilm-residuals.py
def pole_removal(noise, poles=None, sig=3): """ Remove the noise poles from a 2d noise distribution to show that affects the real-space noise picture. noise -- fftshifted 2d array of q values poles -- N,2 list of pole locations. the last index is in the order y,x as determined by mpl interactive plots for example: poles = np.array([[190,277], [227,253], [233, 256]] """ center = np.array(noise.shape)/2 v = np.rollaxis( np.array( np.meshgrid(*(np.arange(s) for s in noise.shape), indexing='ij') ), 0, 3 ).astype("float") filter = np.zeros_like(noise, dtype='float') for p in poles: for pp in [p, center - (p-center)]: dist = ((v-pp)**2).sum(axis=-1) filter += np.exp(-dist / (2*sig**2)) filter[filter > 1] = 1 return noise*(1-filter)
def pole_removal(noise, poles=None, sig=3): """ Remove the noise poles from a 2d noise distribution to show that affects the real-space noise picture. noise -- fftshifted 2d array of q values poles -- N,2 list of pole locations. the last index is in the order y,x as determined by mpl interactive plots for example: poles = np.array([[190,277], [227,253], [233, 256]] """ center = np.array(noise.shape)/2 v = np.rollaxis( np.array( np.meshgrid(*(np.arange(s) for s in noise.shape), indexing='ij') ), 0, 3 ).astype("float") filter = np.zeros_like(noise, dtype='float') for p in poles: for pp in [p, center - (p-center)]: dist = ((v-pp)**2).sum(axis=-1) filter += np.exp(-dist / (2*sig**2)) filter[filter > 1] = 1 return noise*(1-filter)
[ "Remove", "the", "noise", "poles", "from", "a", "2d", "noise", "distribution", "to", "show", "that", "affects", "the", "real", "-", "space", "noise", "picture", ".", "noise", "--", "fftshifted", "2d", "array", "of", "q", "values" ]
peri-source/peri
python
https://github.com/peri-source/peri/blob/61beed5deaaf978ab31ed716e8470d86ba639867/scripts/figures/ilm-residuals.py#L52-L79
[ "def", "pole_removal", "(", "noise", ",", "poles", "=", "None", ",", "sig", "=", "3", ")", ":", "center", "=", "np", ".", "array", "(", "noise", ".", "shape", ")", "/", "2", "v", "=", "np", ".", "rollaxis", "(", "np", ".", "array", "(", "np", ".", "meshgrid", "(", "*", "(", "np", ".", "arange", "(", "s", ")", "for", "s", "in", "noise", ".", "shape", ")", ",", "indexing", "=", "'ij'", ")", ")", ",", "0", ",", "3", ")", ".", "astype", "(", "\"float\"", ")", "filter", "=", "np", ".", "zeros_like", "(", "noise", ",", "dtype", "=", "'float'", ")", "for", "p", "in", "poles", ":", "for", "pp", "in", "[", "p", ",", "center", "-", "(", "p", "-", "center", ")", "]", ":", "dist", "=", "(", "(", "v", "-", "pp", ")", "**", "2", ")", ".", "sum", "(", "axis", "=", "-", "1", ")", "filter", "+=", "np", ".", "exp", "(", "-", "dist", "/", "(", "2", "*", "sig", "**", "2", ")", ")", "filter", "[", "filter", ">", "1", "]", "=", "1", "return", "noise", "*", "(", "1", "-", "filter", ")" ]
61beed5deaaf978ab31ed716e8470d86ba639867
valid
Updates.pending
Returns an array of updates that are currently in the buffer for an individual social media profile.
buffpy/managers/updates.py
def pending(self): ''' Returns an array of updates that are currently in the buffer for an individual social media profile. ''' pending_updates = [] url = PATHS['GET_PENDING'] % self.profile_id response = self.api.get(url=url) for update in response['updates']: pending_updates.append(Update(api=self.api, raw_response=update)) self.__pending = pending_updates return self.__pending
def pending(self): ''' Returns an array of updates that are currently in the buffer for an individual social media profile. ''' pending_updates = [] url = PATHS['GET_PENDING'] % self.profile_id response = self.api.get(url=url) for update in response['updates']: pending_updates.append(Update(api=self.api, raw_response=update)) self.__pending = pending_updates return self.__pending
[ "Returns", "an", "array", "of", "updates", "that", "are", "currently", "in", "the", "buffer", "for", "an", "individual", "social", "media", "profile", "." ]
vtemian/buffpy
python
https://github.com/vtemian/buffpy/blob/6c9236fd3b6a8f9e2d70dbf1bc01529242b73075/buffpy/managers/updates.py#L28-L43
[ "def", "pending", "(", "self", ")", ":", "pending_updates", "=", "[", "]", "url", "=", "PATHS", "[", "'GET_PENDING'", "]", "%", "self", ".", "profile_id", "response", "=", "self", ".", "api", ".", "get", "(", "url", "=", "url", ")", "for", "update", "in", "response", "[", "'updates'", "]", ":", "pending_updates", ".", "append", "(", "Update", "(", "api", "=", "self", ".", "api", ",", "raw_response", "=", "update", ")", ")", "self", ".", "__pending", "=", "pending_updates", "return", "self", ".", "__pending" ]
6c9236fd3b6a8f9e2d70dbf1bc01529242b73075
valid
Updates.sent
Returns an array of updates that have been sent from the buffer for an individual social media profile.
buffpy/managers/updates.py
def sent(self): ''' Returns an array of updates that have been sent from the buffer for an individual social media profile. ''' sent_updates = [] url = PATHS['GET_SENT'] % self.profile_id response = self.api.get(url=url) for update in response['updates']: sent_updates.append(Update(api=self.api, raw_response=update)) self.__sent = sent_updates return self.__sent
def sent(self): ''' Returns an array of updates that have been sent from the buffer for an individual social media profile. ''' sent_updates = [] url = PATHS['GET_SENT'] % self.profile_id response = self.api.get(url=url) for update in response['updates']: sent_updates.append(Update(api=self.api, raw_response=update)) self.__sent = sent_updates return self.__sent
[ "Returns", "an", "array", "of", "updates", "that", "have", "been", "sent", "from", "the", "buffer", "for", "an", "individual", "social", "media", "profile", "." ]
vtemian/buffpy
python
https://github.com/vtemian/buffpy/blob/6c9236fd3b6a8f9e2d70dbf1bc01529242b73075/buffpy/managers/updates.py#L46-L61
[ "def", "sent", "(", "self", ")", ":", "sent_updates", "=", "[", "]", "url", "=", "PATHS", "[", "'GET_SENT'", "]", "%", "self", ".", "profile_id", "response", "=", "self", ".", "api", ".", "get", "(", "url", "=", "url", ")", "for", "update", "in", "response", "[", "'updates'", "]", ":", "sent_updates", ".", "append", "(", "Update", "(", "api", "=", "self", ".", "api", ",", "raw_response", "=", "update", ")", ")", "self", ".", "__sent", "=", "sent_updates", "return", "self", ".", "__sent" ]
6c9236fd3b6a8f9e2d70dbf1bc01529242b73075
valid
Updates.shuffle
Randomize the order at which statuses for the specified social media profile will be sent out of the buffer.
buffpy/managers/updates.py
def shuffle(self, count=None, utc=None): ''' Randomize the order at which statuses for the specified social media profile will be sent out of the buffer. ''' url = PATHS['SHUFFLE'] % self.profile_id post_data = '' if count: post_data += 'count=%s&' % count if utc: post_data += 'utc=%s' % utc return self.api.post(url=url, data=post_data)
def shuffle(self, count=None, utc=None): ''' Randomize the order at which statuses for the specified social media profile will be sent out of the buffer. ''' url = PATHS['SHUFFLE'] % self.profile_id post_data = '' if count: post_data += 'count=%s&' % count if utc: post_data += 'utc=%s' % utc return self.api.post(url=url, data=post_data)
[ "Randomize", "the", "order", "at", "which", "statuses", "for", "the", "specified", "social", "media", "profile", "will", "be", "sent", "out", "of", "the", "buffer", "." ]
vtemian/buffpy
python
https://github.com/vtemian/buffpy/blob/6c9236fd3b6a8f9e2d70dbf1bc01529242b73075/buffpy/managers/updates.py#L63-L77
[ "def", "shuffle", "(", "self", ",", "count", "=", "None", ",", "utc", "=", "None", ")", ":", "url", "=", "PATHS", "[", "'SHUFFLE'", "]", "%", "self", ".", "profile_id", "post_data", "=", "''", "if", "count", ":", "post_data", "+=", "'count=%s&'", "%", "count", "if", "utc", ":", "post_data", "+=", "'utc=%s'", "%", "utc", "return", "self", ".", "api", ".", "post", "(", "url", "=", "url", ",", "data", "=", "post_data", ")" ]
6c9236fd3b6a8f9e2d70dbf1bc01529242b73075