partition
stringclasses
3 values
func_name
stringlengths
1
134
docstring
stringlengths
1
46.9k
path
stringlengths
4
223
original_string
stringlengths
75
104k
code
stringlengths
75
104k
docstring_tokens
listlengths
1
1.97k
repo
stringlengths
7
55
language
stringclasses
1 value
url
stringlengths
87
315
code_tokens
listlengths
19
28.4k
sha
stringlengths
40
40
valid
CSP.suppose
Start accumulating inferences from assuming var=value.
aima/csp.py
def suppose(self, var, value): "Start accumulating inferences from assuming var=value." self.support_pruning() removals = [(var, a) for a in self.curr_domains[var] if a != value] self.curr_domains[var] = [value] return removals
def suppose(self, var, value): "Start accumulating inferences from assuming var=value." self.support_pruning() removals = [(var, a) for a in self.curr_domains[var] if a != value] self.curr_domains[var] = [value] return removals
[ "Start", "accumulating", "inferences", "from", "assuming", "var", "=", "value", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/csp.py#L111-L116
[ "def", "suppose", "(", "self", ",", "var", ",", "value", ")", ":", "self", ".", "support_pruning", "(", ")", "removals", "=", "[", "(", "var", ",", "a", ")", "for", "a", "in", "self", ".", "curr_domains", "[", "var", "]", "if", "a", "!=", "value", "]", "self", ".", "curr_domains", "[", "var", "]", "=", "[", "value", "]", "return", "removals" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
CSP.prune
Rule out var=value.
aima/csp.py
def prune(self, var, value, removals): "Rule out var=value." self.curr_domains[var].remove(value) if removals is not None: removals.append((var, value))
def prune(self, var, value, removals): "Rule out var=value." self.curr_domains[var].remove(value) if removals is not None: removals.append((var, value))
[ "Rule", "out", "var", "=", "value", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/csp.py#L118-L121
[ "def", "prune", "(", "self", ",", "var", ",", "value", ",", "removals", ")", ":", "self", ".", "curr_domains", "[", "var", "]", ".", "remove", "(", "value", ")", "if", "removals", "is", "not", "None", ":", "removals", ".", "append", "(", "(", "var", ",", "value", ")", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
CSP.infer_assignment
Return the partial assignment implied by the current inferences.
aima/csp.py
def infer_assignment(self): "Return the partial assignment implied by the current inferences." self.support_pruning() return dict((v, self.curr_domains[v][0]) for v in self.vars if 1 == len(self.curr_domains[v]))
def infer_assignment(self): "Return the partial assignment implied by the current inferences." self.support_pruning() return dict((v, self.curr_domains[v][0]) for v in self.vars if 1 == len(self.curr_domains[v]))
[ "Return", "the", "partial", "assignment", "implied", "by", "the", "current", "inferences", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/csp.py#L127-L131
[ "def", "infer_assignment", "(", "self", ")", ":", "self", ".", "support_pruning", "(", ")", "return", "dict", "(", "(", "v", ",", "self", ".", "curr_domains", "[", "v", "]", "[", "0", "]", ")", "for", "v", "in", "self", ".", "vars", "if", "1", "==", "len", "(", "self", ".", "curr_domains", "[", "v", "]", ")", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
CSP.restore
Undo a supposition and all inferences from it.
aima/csp.py
def restore(self, removals): "Undo a supposition and all inferences from it." for B, b in removals: self.curr_domains[B].append(b)
def restore(self, removals): "Undo a supposition and all inferences from it." for B, b in removals: self.curr_domains[B].append(b)
[ "Undo", "a", "supposition", "and", "all", "inferences", "from", "it", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/csp.py#L133-L136
[ "def", "restore", "(", "self", ",", "removals", ")", ":", "for", "B", ",", "b", "in", "removals", ":", "self", ".", "curr_domains", "[", "B", "]", ".", "append", "(", "b", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
CSP.conflicted_vars
Return a list of variables in current assignment that are in conflict
aima/csp.py
def conflicted_vars(self, current): "Return a list of variables in current assignment that are in conflict" return [var for var in self.vars if self.nconflicts(var, current[var], current) > 0]
def conflicted_vars(self, current): "Return a list of variables in current assignment that are in conflict" return [var for var in self.vars if self.nconflicts(var, current[var], current) > 0]
[ "Return", "a", "list", "of", "variables", "in", "current", "assignment", "that", "are", "in", "conflict" ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/csp.py#L140-L143
[ "def", "conflicted_vars", "(", "self", ",", "current", ")", ":", "return", "[", "var", "for", "var", "in", "self", ".", "vars", "if", "self", ".", "nconflicts", "(", "var", ",", "current", "[", "var", "]", ",", "current", ")", ">", "0", "]" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
NQueensCSP.nconflicts
The number of conflicts, as recorded with each assignment. Count conflicts in row and in up, down diagonals. If there is a queen there, it can't conflict with itself, so subtract 3.
aima/csp.py
def nconflicts(self, var, val, assignment): """The number of conflicts, as recorded with each assignment. Count conflicts in row and in up, down diagonals. If there is a queen there, it can't conflict with itself, so subtract 3.""" n = len(self.vars) c = self.rows[val] + self.downs[var+val] + self.ups[var-val+n-1] if assignment.get(var, None) == val: c -= 3 return c
def nconflicts(self, var, val, assignment): """The number of conflicts, as recorded with each assignment. Count conflicts in row and in up, down diagonals. If there is a queen there, it can't conflict with itself, so subtract 3.""" n = len(self.vars) c = self.rows[val] + self.downs[var+val] + self.ups[var-val+n-1] if assignment.get(var, None) == val: c -= 3 return c
[ "The", "number", "of", "conflicts", "as", "recorded", "with", "each", "assignment", ".", "Count", "conflicts", "in", "row", "and", "in", "up", "down", "diagonals", ".", "If", "there", "is", "a", "queen", "there", "it", "can", "t", "conflict", "with", "itself", "so", "subtract", "3", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/csp.py#L422-L430
[ "def", "nconflicts", "(", "self", ",", "var", ",", "val", ",", "assignment", ")", ":", "n", "=", "len", "(", "self", ".", "vars", ")", "c", "=", "self", ".", "rows", "[", "val", "]", "+", "self", ".", "downs", "[", "var", "+", "val", "]", "+", "self", ".", "ups", "[", "var", "-", "val", "+", "n", "-", "1", "]", "if", "assignment", ".", "get", "(", "var", ",", "None", ")", "==", "val", ":", "c", "-=", "3", "return", "c" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
NQueensCSP.assign
Assign var, and keep track of conflicts.
aima/csp.py
def assign(self, var, val, assignment): "Assign var, and keep track of conflicts." oldval = assignment.get(var, None) if val != oldval: if oldval is not None: # Remove old val if there was one self.record_conflict(assignment, var, oldval, -1) self.record_conflict(assignment, var, val, +1) CSP.assign(self, var, val, assignment)
def assign(self, var, val, assignment): "Assign var, and keep track of conflicts." oldval = assignment.get(var, None) if val != oldval: if oldval is not None: # Remove old val if there was one self.record_conflict(assignment, var, oldval, -1) self.record_conflict(assignment, var, val, +1) CSP.assign(self, var, val, assignment)
[ "Assign", "var", "and", "keep", "track", "of", "conflicts", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/csp.py#L432-L439
[ "def", "assign", "(", "self", ",", "var", ",", "val", ",", "assignment", ")", ":", "oldval", "=", "assignment", ".", "get", "(", "var", ",", "None", ")", "if", "val", "!=", "oldval", ":", "if", "oldval", "is", "not", "None", ":", "# Remove old val if there was one", "self", ".", "record_conflict", "(", "assignment", ",", "var", ",", "oldval", ",", "-", "1", ")", "self", ".", "record_conflict", "(", "assignment", ",", "var", ",", "val", ",", "+", "1", ")", "CSP", ".", "assign", "(", "self", ",", "var", ",", "val", ",", "assignment", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
NQueensCSP.unassign
Remove var from assignment (if it is there) and track conflicts.
aima/csp.py
def unassign(self, var, assignment): "Remove var from assignment (if it is there) and track conflicts." if var in assignment: self.record_conflict(assignment, var, assignment[var], -1) CSP.unassign(self, var, assignment)
def unassign(self, var, assignment): "Remove var from assignment (if it is there) and track conflicts." if var in assignment: self.record_conflict(assignment, var, assignment[var], -1) CSP.unassign(self, var, assignment)
[ "Remove", "var", "from", "assignment", "(", "if", "it", "is", "there", ")", "and", "track", "conflicts", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/csp.py#L441-L445
[ "def", "unassign", "(", "self", ",", "var", ",", "assignment", ")", ":", "if", "var", "in", "assignment", ":", "self", ".", "record_conflict", "(", "assignment", ",", "var", ",", "assignment", "[", "var", "]", ",", "-", "1", ")", "CSP", ".", "unassign", "(", "self", ",", "var", ",", "assignment", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
NQueensCSP.record_conflict
Record conflicts caused by addition or deletion of a Queen.
aima/csp.py
def record_conflict(self, assignment, var, val, delta): "Record conflicts caused by addition or deletion of a Queen." n = len(self.vars) self.rows[val] += delta self.downs[var + val] += delta self.ups[var - val + n - 1] += delta
def record_conflict(self, assignment, var, val, delta): "Record conflicts caused by addition or deletion of a Queen." n = len(self.vars) self.rows[val] += delta self.downs[var + val] += delta self.ups[var - val + n - 1] += delta
[ "Record", "conflicts", "caused", "by", "addition", "or", "deletion", "of", "a", "Queen", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/csp.py#L447-L452
[ "def", "record_conflict", "(", "self", ",", "assignment", ",", "var", ",", "val", ",", "delta", ")", ":", "n", "=", "len", "(", "self", ".", "vars", ")", "self", ".", "rows", "[", "val", "]", "+=", "delta", "self", ".", "downs", "[", "var", "+", "val", "]", "+=", "delta", "self", ".", "ups", "[", "var", "-", "val", "+", "n", "-", "1", "]", "+=", "delta" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
NQueensCSP.display
Print the queens and the nconflicts values (for debugging).
aima/csp.py
def display(self, assignment): "Print the queens and the nconflicts values (for debugging)." n = len(self.vars) for val in range(n): for var in range(n): if assignment.get(var,'') == val: ch = 'Q' elif (var+val) % 2 == 0: ch = '.' else: ch = '-' print ch, print ' ', for var in range(n): if assignment.get(var,'') == val: ch = '*' else: ch = ' ' print str(self.nconflicts(var, val, assignment))+ch, print
def display(self, assignment): "Print the queens and the nconflicts values (for debugging)." n = len(self.vars) for val in range(n): for var in range(n): if assignment.get(var,'') == val: ch = 'Q' elif (var+val) % 2 == 0: ch = '.' else: ch = '-' print ch, print ' ', for var in range(n): if assignment.get(var,'') == val: ch = '*' else: ch = ' ' print str(self.nconflicts(var, val, assignment))+ch, print
[ "Print", "the", "queens", "and", "the", "nconflicts", "values", "(", "for", "debugging", ")", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/csp.py#L454-L468
[ "def", "display", "(", "self", ",", "assignment", ")", ":", "n", "=", "len", "(", "self", ".", "vars", ")", "for", "val", "in", "range", "(", "n", ")", ":", "for", "var", "in", "range", "(", "n", ")", ":", "if", "assignment", ".", "get", "(", "var", ",", "''", ")", "==", "val", ":", "ch", "=", "'Q'", "elif", "(", "var", "+", "val", ")", "%", "2", "==", "0", ":", "ch", "=", "'.'", "else", ":", "ch", "=", "'-'", "print", "ch", ",", "print", "' '", ",", "for", "var", "in", "range", "(", "n", ")", ":", "if", "assignment", ".", "get", "(", "var", ",", "''", ")", "==", "val", ":", "ch", "=", "'*'", "else", ":", "ch", "=", "' '", "print", "str", "(", "self", ".", "nconflicts", "(", "var", ",", "val", ",", "assignment", ")", ")", "+", "ch", ",", "print" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
viterbi_segment
Find the best segmentation of the string of characters, given the UnigramTextModel P.
aima/text.py
def viterbi_segment(text, P): """Find the best segmentation of the string of characters, given the UnigramTextModel P.""" # best[i] = best probability for text[0:i] # words[i] = best word ending at position i n = len(text) words = [''] + list(text) best = [1.0] + [0.0] * n ## Fill in the vectors best, words via dynamic programming for i in range(n+1): for j in range(0, i): w = text[j:i] if P[w] * best[i - len(w)] >= best[i]: best[i] = P[w] * best[i - len(w)] words[i] = w ## Now recover the sequence of best words sequence = []; i = len(words)-1 while i > 0: sequence[0:0] = [words[i]] i = i - len(words[i]) ## Return sequence of best words and overall probability return sequence, best[-1]
def viterbi_segment(text, P): """Find the best segmentation of the string of characters, given the UnigramTextModel P.""" # best[i] = best probability for text[0:i] # words[i] = best word ending at position i n = len(text) words = [''] + list(text) best = [1.0] + [0.0] * n ## Fill in the vectors best, words via dynamic programming for i in range(n+1): for j in range(0, i): w = text[j:i] if P[w] * best[i - len(w)] >= best[i]: best[i] = P[w] * best[i - len(w)] words[i] = w ## Now recover the sequence of best words sequence = []; i = len(words)-1 while i > 0: sequence[0:0] = [words[i]] i = i - len(words[i]) ## Return sequence of best words and overall probability return sequence, best[-1]
[ "Find", "the", "best", "segmentation", "of", "the", "string", "of", "characters", "given", "the", "UnigramTextModel", "P", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/text.py#L67-L88
[ "def", "viterbi_segment", "(", "text", ",", "P", ")", ":", "# best[i] = best probability for text[0:i]", "# words[i] = best word ending at position i", "n", "=", "len", "(", "text", ")", "words", "=", "[", "''", "]", "+", "list", "(", "text", ")", "best", "=", "[", "1.0", "]", "+", "[", "0.0", "]", "*", "n", "## Fill in the vectors best, words via dynamic programming", "for", "i", "in", "range", "(", "n", "+", "1", ")", ":", "for", "j", "in", "range", "(", "0", ",", "i", ")", ":", "w", "=", "text", "[", "j", ":", "i", "]", "if", "P", "[", "w", "]", "*", "best", "[", "i", "-", "len", "(", "w", ")", "]", ">=", "best", "[", "i", "]", ":", "best", "[", "i", "]", "=", "P", "[", "w", "]", "*", "best", "[", "i", "-", "len", "(", "w", ")", "]", "words", "[", "i", "]", "=", "w", "## Now recover the sequence of best words", "sequence", "=", "[", "]", "i", "=", "len", "(", "words", ")", "-", "1", "while", "i", ">", "0", ":", "sequence", "[", "0", ":", "0", "]", "=", "[", "words", "[", "i", "]", "]", "i", "=", "i", "-", "len", "(", "words", "[", "i", "]", ")", "## Return sequence of best words and overall probability", "return", "sequence", ",", "best", "[", "-", "1", "]" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
encode
Encodes text, using a code which is a permutation of the alphabet.
aima/text.py
def encode(plaintext, code): "Encodes text, using a code which is a permutation of the alphabet." from string import maketrans trans = maketrans(alphabet + alphabet.upper(), code + code.upper()) return plaintext.translate(trans)
def encode(plaintext, code): "Encodes text, using a code which is a permutation of the alphabet." from string import maketrans trans = maketrans(alphabet + alphabet.upper(), code + code.upper()) return plaintext.translate(trans)
[ "Encodes", "text", "using", "a", "code", "which", "is", "a", "permutation", "of", "the", "alphabet", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/text.py#L213-L217
[ "def", "encode", "(", "plaintext", ",", "code", ")", ":", "from", "string", "import", "maketrans", "trans", "=", "maketrans", "(", "alphabet", "+", "alphabet", ".", "upper", "(", ")", ",", "code", "+", "code", ".", "upper", "(", ")", ")", "return", "plaintext", ".", "translate", "(", "trans", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
NgramTextModel.add
Count 1 for P[(w1, ..., wn)] and for P(wn | (w1, ..., wn-1)
aima/text.py
def add(self, ngram): """Count 1 for P[(w1, ..., wn)] and for P(wn | (w1, ..., wn-1)""" CountingProbDist.add(self, ngram) self.cond_prob[ngram[:-1]].add(ngram[-1])
def add(self, ngram): """Count 1 for P[(w1, ..., wn)] and for P(wn | (w1, ..., wn-1)""" CountingProbDist.add(self, ngram) self.cond_prob[ngram[:-1]].add(ngram[-1])
[ "Count", "1", "for", "P", "[", "(", "w1", "...", "wn", ")", "]", "and", "for", "P", "(", "wn", "|", "(", "w1", "...", "wn", "-", "1", ")" ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/text.py#L37-L40
[ "def", "add", "(", "self", ",", "ngram", ")", ":", "CountingProbDist", ".", "add", "(", "self", ",", "ngram", ")", "self", ".", "cond_prob", "[", "ngram", "[", ":", "-", "1", "]", "]", ".", "add", "(", "ngram", "[", "-", "1", "]", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
NgramTextModel.add_sequence
Add each of the tuple words[i:i+n], using a sliding window. Prefix some copies of the empty word, '', to make the start work.
aima/text.py
def add_sequence(self, words): """Add each of the tuple words[i:i+n], using a sliding window. Prefix some copies of the empty word, '', to make the start work.""" n = self.n words = ['',] * (n-1) + words for i in range(len(words)-n): self.add(tuple(words[i:i+n]))
def add_sequence(self, words): """Add each of the tuple words[i:i+n], using a sliding window. Prefix some copies of the empty word, '', to make the start work.""" n = self.n words = ['',] * (n-1) + words for i in range(len(words)-n): self.add(tuple(words[i:i+n]))
[ "Add", "each", "of", "the", "tuple", "words", "[", "i", ":", "i", "+", "n", "]", "using", "a", "sliding", "window", ".", "Prefix", "some", "copies", "of", "the", "empty", "word", "to", "make", "the", "start", "work", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/text.py#L42-L48
[ "def", "add_sequence", "(", "self", ",", "words", ")", ":", "n", "=", "self", ".", "n", "words", "=", "[", "''", ",", "]", "*", "(", "n", "-", "1", ")", "+", "words", "for", "i", "in", "range", "(", "len", "(", "words", ")", "-", "n", ")", ":", "self", ".", "add", "(", "tuple", "(", "words", "[", "i", ":", "i", "+", "n", "]", ")", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
NgramTextModel.samples
Build up a random sample of text nwords words long, using the conditional probability given the n-1 preceding words.
aima/text.py
def samples(self, nwords): """Build up a random sample of text nwords words long, using the conditional probability given the n-1 preceding words.""" n = self.n nminus1gram = ('',) * (n-1) output = [] for i in range(nwords): if nminus1gram not in self.cond_prob: nminus1gram = ('',) * (n-1) # Cannot continue, so restart. wn = self.cond_prob[nminus1gram].sample() output.append(wn) nminus1gram = nminus1gram[1:] + (wn,) return ' '.join(output)
def samples(self, nwords): """Build up a random sample of text nwords words long, using the conditional probability given the n-1 preceding words.""" n = self.n nminus1gram = ('',) * (n-1) output = [] for i in range(nwords): if nminus1gram not in self.cond_prob: nminus1gram = ('',) * (n-1) # Cannot continue, so restart. wn = self.cond_prob[nminus1gram].sample() output.append(wn) nminus1gram = nminus1gram[1:] + (wn,) return ' '.join(output)
[ "Build", "up", "a", "random", "sample", "of", "text", "nwords", "words", "long", "using", "the", "conditional", "probability", "given", "the", "n", "-", "1", "preceding", "words", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/text.py#L50-L62
[ "def", "samples", "(", "self", ",", "nwords", ")", ":", "n", "=", "self", ".", "n", "nminus1gram", "=", "(", "''", ",", ")", "*", "(", "n", "-", "1", ")", "output", "=", "[", "]", "for", "i", "in", "range", "(", "nwords", ")", ":", "if", "nminus1gram", "not", "in", "self", ".", "cond_prob", ":", "nminus1gram", "=", "(", "''", ",", ")", "*", "(", "n", "-", "1", ")", "# Cannot continue, so restart.", "wn", "=", "self", ".", "cond_prob", "[", "nminus1gram", "]", ".", "sample", "(", ")", "output", ".", "append", "(", "wn", ")", "nminus1gram", "=", "nminus1gram", "[", "1", ":", "]", "+", "(", "wn", ",", ")", "return", "' '", ".", "join", "(", "output", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
IRSystem.index_collection
Index a whole collection of files.
aima/text.py
def index_collection(self, filenames): "Index a whole collection of files." for filename in filenames: self.index_document(open(filename).read(), filename)
def index_collection(self, filenames): "Index a whole collection of files." for filename in filenames: self.index_document(open(filename).read(), filename)
[ "Index", "a", "whole", "collection", "of", "files", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/text.py#L110-L113
[ "def", "index_collection", "(", "self", ",", "filenames", ")", ":", "for", "filename", "in", "filenames", ":", "self", ".", "index_document", "(", "open", "(", "filename", ")", ".", "read", "(", ")", ",", "filename", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
IRSystem.index_document
Index the text of a document.
aima/text.py
def index_document(self, text, url): "Index the text of a document." ## For now, use first line for title title = text[:text.index('\n')].strip() docwords = words(text) docid = len(self.documents) self.documents.append(Document(title, url, len(docwords))) for word in docwords: if word not in self.stopwords: self.index[word][docid] += 1
def index_document(self, text, url): "Index the text of a document." ## For now, use first line for title title = text[:text.index('\n')].strip() docwords = words(text) docid = len(self.documents) self.documents.append(Document(title, url, len(docwords))) for word in docwords: if word not in self.stopwords: self.index[word][docid] += 1
[ "Index", "the", "text", "of", "a", "document", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/text.py#L115-L124
[ "def", "index_document", "(", "self", ",", "text", ",", "url", ")", ":", "## For now, use first line for title", "title", "=", "text", "[", ":", "text", ".", "index", "(", "'\\n'", ")", "]", ".", "strip", "(", ")", "docwords", "=", "words", "(", "text", ")", "docid", "=", "len", "(", "self", ".", "documents", ")", "self", ".", "documents", ".", "append", "(", "Document", "(", "title", ",", "url", ",", "len", "(", "docwords", ")", ")", ")", "for", "word", "in", "docwords", ":", "if", "word", "not", "in", "self", ".", "stopwords", ":", "self", ".", "index", "[", "word", "]", "[", "docid", "]", "+=", "1" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
IRSystem.query
Return a list of n (score, docid) pairs for the best matches. Also handle the special syntax for 'learn: command'.
aima/text.py
def query(self, query_text, n=10): """Return a list of n (score, docid) pairs for the best matches. Also handle the special syntax for 'learn: command'.""" if query_text.startswith("learn:"): doctext = os.popen(query_text[len("learn:"):], 'r').read() self.index_document(doctext, query_text) return [] qwords = [w for w in words(query_text) if w not in self.stopwords] shortest = argmin(qwords, lambda w: len(self.index[w])) docs = self.index[shortest] results = [(sum([self.score(w, d) for w in qwords]), d) for d in docs] results.sort(); results.reverse() return results[:n]
def query(self, query_text, n=10): """Return a list of n (score, docid) pairs for the best matches. Also handle the special syntax for 'learn: command'.""" if query_text.startswith("learn:"): doctext = os.popen(query_text[len("learn:"):], 'r').read() self.index_document(doctext, query_text) return [] qwords = [w for w in words(query_text) if w not in self.stopwords] shortest = argmin(qwords, lambda w: len(self.index[w])) docs = self.index[shortest] results = [(sum([self.score(w, d) for w in qwords]), d) for d in docs] results.sort(); results.reverse() return results[:n]
[ "Return", "a", "list", "of", "n", "(", "score", "docid", ")", "pairs", "for", "the", "best", "matches", ".", "Also", "handle", "the", "special", "syntax", "for", "learn", ":", "command", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/text.py#L126-L138
[ "def", "query", "(", "self", ",", "query_text", ",", "n", "=", "10", ")", ":", "if", "query_text", ".", "startswith", "(", "\"learn:\"", ")", ":", "doctext", "=", "os", ".", "popen", "(", "query_text", "[", "len", "(", "\"learn:\"", ")", ":", "]", ",", "'r'", ")", ".", "read", "(", ")", "self", ".", "index_document", "(", "doctext", ",", "query_text", ")", "return", "[", "]", "qwords", "=", "[", "w", "for", "w", "in", "words", "(", "query_text", ")", "if", "w", "not", "in", "self", ".", "stopwords", "]", "shortest", "=", "argmin", "(", "qwords", ",", "lambda", "w", ":", "len", "(", "self", ".", "index", "[", "w", "]", ")", ")", "docs", "=", "self", ".", "index", "[", "shortest", "]", "results", "=", "[", "(", "sum", "(", "[", "self", ".", "score", "(", "w", ",", "d", ")", "for", "w", "in", "qwords", "]", ")", ",", "d", ")", "for", "d", "in", "docs", "]", "results", ".", "sort", "(", ")", "results", ".", "reverse", "(", ")", "return", "results", "[", ":", "n", "]" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
IRSystem.score
Compute a score for this word on this docid.
aima/text.py
def score(self, word, docid): "Compute a score for this word on this docid." ## There are many options; here we take a very simple approach return (math.log(1 + self.index[word][docid]) / math.log(1 + self.documents[docid].nwords))
def score(self, word, docid): "Compute a score for this word on this docid." ## There are many options; here we take a very simple approach return (math.log(1 + self.index[word][docid]) / math.log(1 + self.documents[docid].nwords))
[ "Compute", "a", "score", "for", "this", "word", "on", "this", "docid", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/text.py#L140-L144
[ "def", "score", "(", "self", ",", "word", ",", "docid", ")", ":", "## There are many options; here we take a very simple approach", "return", "(", "math", ".", "log", "(", "1", "+", "self", ".", "index", "[", "word", "]", "[", "docid", "]", ")", "/", "math", ".", "log", "(", "1", "+", "self", ".", "documents", "[", "docid", "]", ".", "nwords", ")", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
IRSystem.present
Present the results as a list.
aima/text.py
def present(self, results): "Present the results as a list." for (score, d) in results: doc = self.documents[d] print ("%5.2f|%25s | %s" % (100 * score, doc.url, doc.title[:45].expandtabs()))
def present(self, results): "Present the results as a list." for (score, d) in results: doc = self.documents[d] print ("%5.2f|%25s | %s" % (100 * score, doc.url, doc.title[:45].expandtabs()))
[ "Present", "the", "results", "as", "a", "list", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/text.py#L146-L151
[ "def", "present", "(", "self", ",", "results", ")", ":", "for", "(", "score", ",", "d", ")", "in", "results", ":", "doc", "=", "self", ".", "documents", "[", "d", "]", "print", "(", "\"%5.2f|%25s | %s\"", "%", "(", "100", "*", "score", ",", "doc", ".", "url", ",", "doc", ".", "title", "[", ":", "45", "]", ".", "expandtabs", "(", ")", ")", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
IRSystem.present_results
Get results for the query and present them.
aima/text.py
def present_results(self, query_text, n=10): "Get results for the query and present them." self.present(self.query(query_text, n))
def present_results(self, query_text, n=10): "Get results for the query and present them." self.present(self.query(query_text, n))
[ "Get", "results", "for", "the", "query", "and", "present", "them", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/text.py#L153-L155
[ "def", "present_results", "(", "self", ",", "query_text", ",", "n", "=", "10", ")", ":", "self", ".", "present", "(", "self", ".", "query", "(", "query_text", ",", "n", ")", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
ShiftDecoder.score
Return a score for text based on how common letters pairs are.
aima/text.py
def score(self, plaintext): "Return a score for text based on how common letters pairs are." s = 1.0 for bi in bigrams(plaintext): s = s * self.P2[bi] return s
def score(self, plaintext): "Return a score for text based on how common letters pairs are." s = 1.0 for bi in bigrams(plaintext): s = s * self.P2[bi] return s
[ "Return", "a", "score", "for", "text", "based", "on", "how", "common", "letters", "pairs", "are", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/text.py#L240-L245
[ "def", "score", "(", "self", ",", "plaintext", ")", ":", "s", "=", "1.0", "for", "bi", "in", "bigrams", "(", "plaintext", ")", ":", "s", "=", "s", "*", "self", ".", "P2", "[", "bi", "]", "return", "s" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
PermutationDecoder.decode
Search for a decoding of the ciphertext.
aima/text.py
def decode(self, ciphertext): "Search for a decoding of the ciphertext." self.ciphertext = ciphertext problem = PermutationDecoderProblem(decoder=self) return search.best_first_tree_search( problem, lambda node: self.score(node.state))
def decode(self, ciphertext): "Search for a decoding of the ciphertext." self.ciphertext = ciphertext problem = PermutationDecoderProblem(decoder=self) return search.best_first_tree_search( problem, lambda node: self.score(node.state))
[ "Search", "for", "a", "decoding", "of", "the", "ciphertext", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/text.py#L276-L281
[ "def", "decode", "(", "self", ",", "ciphertext", ")", ":", "self", ".", "ciphertext", "=", "ciphertext", "problem", "=", "PermutationDecoderProblem", "(", "decoder", "=", "self", ")", "return", "search", ".", "best_first_tree_search", "(", "problem", ",", "lambda", "node", ":", "self", ".", "score", "(", "node", ".", "state", ")", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
PermutationDecoder.score
Score is product of word scores, unigram scores, and bigram scores. This can get very small, so we use logs and exp.
aima/text.py
def score(self, code): """Score is product of word scores, unigram scores, and bigram scores. This can get very small, so we use logs and exp.""" text = permutation_decode(self.ciphertext, code) logP = (sum([log(self.Pwords[word]) for word in words(text)]) + sum([log(self.P1[c]) for c in text]) + sum([log(self.P2[b]) for b in bigrams(text)])) return exp(logP)
def score(self, code): """Score is product of word scores, unigram scores, and bigram scores. This can get very small, so we use logs and exp.""" text = permutation_decode(self.ciphertext, code) logP = (sum([log(self.Pwords[word]) for word in words(text)]) + sum([log(self.P1[c]) for c in text]) + sum([log(self.P2[b]) for b in bigrams(text)])) return exp(logP)
[ "Score", "is", "product", "of", "word", "scores", "unigram", "scores", "and", "bigram", "scores", ".", "This", "can", "get", "very", "small", "so", "we", "use", "logs", "and", "exp", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/text.py#L283-L290
[ "def", "score", "(", "self", ",", "code", ")", ":", "text", "=", "permutation_decode", "(", "self", ".", "ciphertext", ",", "code", ")", "logP", "=", "(", "sum", "(", "[", "log", "(", "self", ".", "Pwords", "[", "word", "]", ")", "for", "word", "in", "words", "(", "text", ")", "]", ")", "+", "sum", "(", "[", "log", "(", "self", ".", "P1", "[", "c", "]", ")", "for", "c", "in", "text", "]", ")", "+", "sum", "(", "[", "log", "(", "self", ".", "P2", "[", "b", "]", ")", "for", "b", "in", "bigrams", "(", "text", ")", "]", ")", ")", "return", "exp", "(", "logP", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
GetSettings.get_value
Returns a ``SettingDict`` object.
model_settings/templatetags/model_settings_tags.py
def get_value(self, context, default): """ Returns a ``SettingDict`` object. """ if default is None: settings = self.setting_model.objects.as_dict() else: settings = self.setting_model.objects.as_dict(default=default) return settings
def get_value(self, context, default): """ Returns a ``SettingDict`` object. """ if default is None: settings = self.setting_model.objects.as_dict() else: settings = self.setting_model.objects.as_dict(default=default) return settings
[ "Returns", "a", "SettingDict", "object", "." ]
ixc/django-model-settings
python
https://github.com/ixc/django-model-settings/blob/654233bf7f13619e4531741f9158e7034eac031b/model_settings/templatetags/model_settings_tags.py#L33-L41
[ "def", "get_value", "(", "self", ",", "context", ",", "default", ")", ":", "if", "default", "is", "None", ":", "settings", "=", "self", ".", "setting_model", ".", "objects", ".", "as_dict", "(", ")", "else", ":", "settings", "=", "self", ".", "setting_model", ".", "objects", ".", "as_dict", "(", "default", "=", "default", ")", "return", "settings" ]
654233bf7f13619e4531741f9158e7034eac031b
valid
GetSetting.get_value
Returns the value of the named setting.
model_settings/templatetags/model_settings_tags.py
def get_value(self, context, name, default): """ Returns the value of the named setting. """ settings = self.setting_model.objects.filter(name=name) if default is None: settings = settings.as_dict() else: settings = settings.as_dict(default=default) value = settings[name] return value
def get_value(self, context, name, default): """ Returns the value of the named setting. """ settings = self.setting_model.objects.filter(name=name) if default is None: settings = settings.as_dict() else: settings = settings.as_dict(default=default) value = settings[name] return value
[ "Returns", "the", "value", "of", "the", "named", "setting", "." ]
ixc/django-model-settings
python
https://github.com/ixc/django-model-settings/blob/654233bf7f13619e4531741f9158e7034eac031b/model_settings/templatetags/model_settings_tags.py#L68-L78
[ "def", "get_value", "(", "self", ",", "context", ",", "name", ",", "default", ")", ":", "settings", "=", "self", ".", "setting_model", ".", "objects", ".", "filter", "(", "name", "=", "name", ")", "if", "default", "is", "None", ":", "settings", "=", "settings", ".", "as_dict", "(", ")", "else", ":", "settings", "=", "settings", ".", "as_dict", "(", "default", "=", "default", ")", "value", "=", "settings", "[", "name", "]", "return", "value" ]
654233bf7f13619e4531741f9158e7034eac031b
valid
BlockSetting.render_tag
Returns the value of the named setting.
model_settings/templatetags/model_settings_tags.py
def render_tag(self, context, name, nodelist): """ Returns the value of the named setting. """ # Use `try` and `except` instead of `setdefault()` so we can skip # rendering the nodelist when the setting already exists. settings = self.setting_model.objects.filter(name=name).as_dict() try: value = settings[name] except KeyError: value = settings[name] = nodelist.render(context) return value
def render_tag(self, context, name, nodelist): """ Returns the value of the named setting. """ # Use `try` and `except` instead of `setdefault()` so we can skip # rendering the nodelist when the setting already exists. settings = self.setting_model.objects.filter(name=name).as_dict() try: value = settings[name] except KeyError: value = settings[name] = nodelist.render(context) return value
[ "Returns", "the", "value", "of", "the", "named", "setting", "." ]
ixc/django-model-settings
python
https://github.com/ixc/django-model-settings/blob/654233bf7f13619e4531741f9158e7034eac031b/model_settings/templatetags/model_settings_tags.py#L102-L113
[ "def", "render_tag", "(", "self", ",", "context", ",", "name", ",", "nodelist", ")", ":", "# Use `try` and `except` instead of `setdefault()` so we can skip", "# rendering the nodelist when the setting already exists.", "settings", "=", "self", ".", "setting_model", ".", "objects", ".", "filter", "(", "name", "=", "name", ")", ".", "as_dict", "(", ")", "try", ":", "value", "=", "settings", "[", "name", "]", "except", "KeyError", ":", "value", "=", "settings", "[", "name", "]", "=", "nodelist", ".", "render", "(", "context", ")", "return", "value" ]
654233bf7f13619e4531741f9158e7034eac031b
valid
value_iteration
Solving an MDP by value iteration. [Fig. 17.4]
aima/mdp.py
def value_iteration(mdp, epsilon=0.001): "Solving an MDP by value iteration. [Fig. 17.4]" U1 = dict([(s, 0) for s in mdp.states]) R, T, gamma = mdp.R, mdp.T, mdp.gamma while True: U = U1.copy() delta = 0 for s in mdp.states: U1[s] = R(s) + gamma * max([sum([p * U[s1] for (p, s1) in T(s, a)]) for a in mdp.actions(s)]) delta = max(delta, abs(U1[s] - U[s])) if delta < epsilon * (1 - gamma) / gamma: return U
def value_iteration(mdp, epsilon=0.001): "Solving an MDP by value iteration. [Fig. 17.4]" U1 = dict([(s, 0) for s in mdp.states]) R, T, gamma = mdp.R, mdp.T, mdp.gamma while True: U = U1.copy() delta = 0 for s in mdp.states: U1[s] = R(s) + gamma * max([sum([p * U[s1] for (p, s1) in T(s, a)]) for a in mdp.actions(s)]) delta = max(delta, abs(U1[s] - U[s])) if delta < epsilon * (1 - gamma) / gamma: return U
[ "Solving", "an", "MDP", "by", "value", "iteration", ".", "[", "Fig", ".", "17", ".", "4", "]" ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/mdp.py#L90-L102
[ "def", "value_iteration", "(", "mdp", ",", "epsilon", "=", "0.001", ")", ":", "U1", "=", "dict", "(", "[", "(", "s", ",", "0", ")", "for", "s", "in", "mdp", ".", "states", "]", ")", "R", ",", "T", ",", "gamma", "=", "mdp", ".", "R", ",", "mdp", ".", "T", ",", "mdp", ".", "gamma", "while", "True", ":", "U", "=", "U1", ".", "copy", "(", ")", "delta", "=", "0", "for", "s", "in", "mdp", ".", "states", ":", "U1", "[", "s", "]", "=", "R", "(", "s", ")", "+", "gamma", "*", "max", "(", "[", "sum", "(", "[", "p", "*", "U", "[", "s1", "]", "for", "(", "p", ",", "s1", ")", "in", "T", "(", "s", ",", "a", ")", "]", ")", "for", "a", "in", "mdp", ".", "actions", "(", "s", ")", "]", ")", "delta", "=", "max", "(", "delta", ",", "abs", "(", "U1", "[", "s", "]", "-", "U", "[", "s", "]", ")", ")", "if", "delta", "<", "epsilon", "*", "(", "1", "-", "gamma", ")", "/", "gamma", ":", "return", "U" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
best_policy
Given an MDP and a utility function U, determine the best policy, as a mapping from state to action. (Equation 17.4)
aima/mdp.py
def best_policy(mdp, U): """Given an MDP and a utility function U, determine the best policy, as a mapping from state to action. (Equation 17.4)""" pi = {} for s in mdp.states: pi[s] = argmax(mdp.actions(s), lambda a:expected_utility(a, s, U, mdp)) return pi
def best_policy(mdp, U): """Given an MDP and a utility function U, determine the best policy, as a mapping from state to action. (Equation 17.4)""" pi = {} for s in mdp.states: pi[s] = argmax(mdp.actions(s), lambda a:expected_utility(a, s, U, mdp)) return pi
[ "Given", "an", "MDP", "and", "a", "utility", "function", "U", "determine", "the", "best", "policy", "as", "a", "mapping", "from", "state", "to", "action", ".", "(", "Equation", "17", ".", "4", ")" ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/mdp.py#L104-L110
[ "def", "best_policy", "(", "mdp", ",", "U", ")", ":", "pi", "=", "{", "}", "for", "s", "in", "mdp", ".", "states", ":", "pi", "[", "s", "]", "=", "argmax", "(", "mdp", ".", "actions", "(", "s", ")", ",", "lambda", "a", ":", "expected_utility", "(", "a", ",", "s", ",", "U", ",", "mdp", ")", ")", "return", "pi" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
expected_utility
The expected utility of doing a in state s, according to the MDP and U.
aima/mdp.py
def expected_utility(a, s, U, mdp): "The expected utility of doing a in state s, according to the MDP and U." return sum([p * U[s1] for (p, s1) in mdp.T(s, a)])
def expected_utility(a, s, U, mdp): "The expected utility of doing a in state s, according to the MDP and U." return sum([p * U[s1] for (p, s1) in mdp.T(s, a)])
[ "The", "expected", "utility", "of", "doing", "a", "in", "state", "s", "according", "to", "the", "MDP", "and", "U", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/mdp.py#L112-L114
[ "def", "expected_utility", "(", "a", ",", "s", ",", "U", ",", "mdp", ")", ":", "return", "sum", "(", "[", "p", "*", "U", "[", "s1", "]", "for", "(", "p", ",", "s1", ")", "in", "mdp", ".", "T", "(", "s", ",", "a", ")", "]", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
policy_iteration
Solve an MDP by policy iteration [Fig. 17.7]
aima/mdp.py
def policy_iteration(mdp): "Solve an MDP by policy iteration [Fig. 17.7]" U = dict([(s, 0) for s in mdp.states]) pi = dict([(s, random.choice(mdp.actions(s))) for s in mdp.states]) while True: U = policy_evaluation(pi, U, mdp) unchanged = True for s in mdp.states: a = argmax(mdp.actions(s), lambda a: expected_utility(a,s,U,mdp)) if a != pi[s]: pi[s] = a unchanged = False if unchanged: return pi
def policy_iteration(mdp): "Solve an MDP by policy iteration [Fig. 17.7]" U = dict([(s, 0) for s in mdp.states]) pi = dict([(s, random.choice(mdp.actions(s))) for s in mdp.states]) while True: U = policy_evaluation(pi, U, mdp) unchanged = True for s in mdp.states: a = argmax(mdp.actions(s), lambda a: expected_utility(a,s,U,mdp)) if a != pi[s]: pi[s] = a unchanged = False if unchanged: return pi
[ "Solve", "an", "MDP", "by", "policy", "iteration", "[", "Fig", ".", "17", ".", "7", "]" ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/mdp.py#L118-L131
[ "def", "policy_iteration", "(", "mdp", ")", ":", "U", "=", "dict", "(", "[", "(", "s", ",", "0", ")", "for", "s", "in", "mdp", ".", "states", "]", ")", "pi", "=", "dict", "(", "[", "(", "s", ",", "random", ".", "choice", "(", "mdp", ".", "actions", "(", "s", ")", ")", ")", "for", "s", "in", "mdp", ".", "states", "]", ")", "while", "True", ":", "U", "=", "policy_evaluation", "(", "pi", ",", "U", ",", "mdp", ")", "unchanged", "=", "True", "for", "s", "in", "mdp", ".", "states", ":", "a", "=", "argmax", "(", "mdp", ".", "actions", "(", "s", ")", ",", "lambda", "a", ":", "expected_utility", "(", "a", ",", "s", ",", "U", ",", "mdp", ")", ")", "if", "a", "!=", "pi", "[", "s", "]", ":", "pi", "[", "s", "]", "=", "a", "unchanged", "=", "False", "if", "unchanged", ":", "return", "pi" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
policy_evaluation
Return an updated utility mapping U from each state in the MDP to its utility, using an approximation (modified policy iteration).
aima/mdp.py
def policy_evaluation(pi, U, mdp, k=20): """Return an updated utility mapping U from each state in the MDP to its utility, using an approximation (modified policy iteration).""" R, T, gamma = mdp.R, mdp.T, mdp.gamma for i in range(k): for s in mdp.states: U[s] = R(s) + gamma * sum([p * U[s1] for (p, s1) in T(s, pi[s])]) return U
def policy_evaluation(pi, U, mdp, k=20): """Return an updated utility mapping U from each state in the MDP to its utility, using an approximation (modified policy iteration).""" R, T, gamma = mdp.R, mdp.T, mdp.gamma for i in range(k): for s in mdp.states: U[s] = R(s) + gamma * sum([p * U[s1] for (p, s1) in T(s, pi[s])]) return U
[ "Return", "an", "updated", "utility", "mapping", "U", "from", "each", "state", "in", "the", "MDP", "to", "its", "utility", "using", "an", "approximation", "(", "modified", "policy", "iteration", ")", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/mdp.py#L133-L140
[ "def", "policy_evaluation", "(", "pi", ",", "U", ",", "mdp", ",", "k", "=", "20", ")", ":", "R", ",", "T", ",", "gamma", "=", "mdp", ".", "R", ",", "mdp", ".", "T", ",", "mdp", ".", "gamma", "for", "i", "in", "range", "(", "k", ")", ":", "for", "s", "in", "mdp", ".", "states", ":", "U", "[", "s", "]", "=", "R", "(", "s", ")", "+", "gamma", "*", "sum", "(", "[", "p", "*", "U", "[", "s1", "]", "for", "(", "p", ",", "s1", ")", "in", "T", "(", "s", ",", "pi", "[", "s", "]", ")", "]", ")", "return", "U" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
GridMDP.go
Return the state that results from going in this direction.
aima/mdp.py
def go(self, state, direction): "Return the state that results from going in this direction." state1 = vector_add(state, direction) return if_(state1 in self.states, state1, state)
def go(self, state, direction): "Return the state that results from going in this direction." state1 = vector_add(state, direction) return if_(state1 in self.states, state1, state)
[ "Return", "the", "state", "that", "results", "from", "going", "in", "this", "direction", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/mdp.py#L66-L69
[ "def", "go", "(", "self", ",", "state", ",", "direction", ")", ":", "state1", "=", "vector_add", "(", "state", ",", "direction", ")", "return", "if_", "(", "state1", "in", "self", ".", "states", ",", "state1", ",", "state", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
GridMDP.to_grid
Convert a mapping from (x, y) to v into a [[..., v, ...]] grid.
aima/mdp.py
def to_grid(self, mapping): """Convert a mapping from (x, y) to v into a [[..., v, ...]] grid.""" return list(reversed([[mapping.get((x,y), None) for x in range(self.cols)] for y in range(self.rows)]))
def to_grid(self, mapping): """Convert a mapping from (x, y) to v into a [[..., v, ...]] grid.""" return list(reversed([[mapping.get((x,y), None) for x in range(self.cols)] for y in range(self.rows)]))
[ "Convert", "a", "mapping", "from", "(", "x", "y", ")", "to", "v", "into", "a", "[[", "...", "v", "...", "]]", "grid", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/mdp.py#L71-L75
[ "def", "to_grid", "(", "self", ",", "mapping", ")", ":", "return", "list", "(", "reversed", "(", "[", "[", "mapping", ".", "get", "(", "(", "x", ",", "y", ")", ",", "None", ")", "for", "x", "in", "range", "(", "self", ".", "cols", ")", "]", "for", "y", "in", "range", "(", "self", ".", "rows", ")", "]", ")", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
SettingQuerySet.as_dict
Returns a ``SettingDict`` object for this queryset.
model_settings/models.py
def as_dict(self, default=None): """ Returns a ``SettingDict`` object for this queryset. """ settings = SettingDict(queryset=self, default=default) return settings
def as_dict(self, default=None): """ Returns a ``SettingDict`` object for this queryset. """ settings = SettingDict(queryset=self, default=default) return settings
[ "Returns", "a", "SettingDict", "object", "for", "this", "queryset", "." ]
ixc/django-model-settings
python
https://github.com/ixc/django-model-settings/blob/654233bf7f13619e4531741f9158e7034eac031b/model_settings/models.py#L25-L30
[ "def", "as_dict", "(", "self", ",", "default", "=", "None", ")", ":", "settings", "=", "SettingDict", "(", "queryset", "=", "self", ",", "default", "=", "default", ")", "return", "settings" ]
654233bf7f13619e4531741f9158e7034eac031b
valid
SettingQuerySet.create
Creates and returns an object of the appropriate type for ``value``.
model_settings/models.py
def create(self, name, value): """ Creates and returns an object of the appropriate type for ``value``. """ if value is None: raise ValueError('Setting value cannot be `None`.') model = Setting.get_model_for_value(value) # Call `create()` method on the super class to avoid recursion. obj = super(SettingQuerySet, model.objects.all()) \ .create(name=name, value=value) return obj
def create(self, name, value): """ Creates and returns an object of the appropriate type for ``value``. """ if value is None: raise ValueError('Setting value cannot be `None`.') model = Setting.get_model_for_value(value) # Call `create()` method on the super class to avoid recursion. obj = super(SettingQuerySet, model.objects.all()) \ .create(name=name, value=value) return obj
[ "Creates", "and", "returns", "an", "object", "of", "the", "appropriate", "type", "for", "value", "." ]
ixc/django-model-settings
python
https://github.com/ixc/django-model-settings/blob/654233bf7f13619e4531741f9158e7034eac031b/model_settings/models.py#L32-L42
[ "def", "create", "(", "self", ",", "name", ",", "value", ")", ":", "if", "value", "is", "None", ":", "raise", "ValueError", "(", "'Setting value cannot be `None`.'", ")", "model", "=", "Setting", ".", "get_model_for_value", "(", "value", ")", "# Call `create()` method on the super class to avoid recursion.", "obj", "=", "super", "(", "SettingQuerySet", ",", "model", ".", "objects", ".", "all", "(", ")", ")", ".", "create", "(", "name", "=", "name", ",", "value", "=", "value", ")", "return", "obj" ]
654233bf7f13619e4531741f9158e7034eac031b
valid
SettingModel.get_model_for_value
Iterates through setting value subclasses, returning one that is compatible with the type of ``value``. Calls ``is_compatible()`` on each subclass.
model_settings/models.py
def get_model_for_value(cls, value): """ Iterates through setting value subclasses, returning one that is compatible with the type of ``value``. Calls ``is_compatible()`` on each subclass. """ for related_object in get_all_related_objects(cls._meta): model = getattr(related_object, 'related_model', related_object.model) if issubclass(model, cls): if model.is_compatible(value): return model raise ValueError( 'No compatible `SettingValueModel` subclass for %r' % value)
def get_model_for_value(cls, value): """ Iterates through setting value subclasses, returning one that is compatible with the type of ``value``. Calls ``is_compatible()`` on each subclass. """ for related_object in get_all_related_objects(cls._meta): model = getattr(related_object, 'related_model', related_object.model) if issubclass(model, cls): if model.is_compatible(value): return model raise ValueError( 'No compatible `SettingValueModel` subclass for %r' % value)
[ "Iterates", "through", "setting", "value", "subclasses", "returning", "one", "that", "is", "compatible", "with", "the", "type", "of", "value", ".", "Calls", "is_compatible", "()", "on", "each", "subclass", "." ]
ixc/django-model-settings
python
https://github.com/ixc/django-model-settings/blob/654233bf7f13619e4531741f9158e7034eac031b/model_settings/models.py#L67-L79
[ "def", "get_model_for_value", "(", "cls", ",", "value", ")", ":", "for", "related_object", "in", "get_all_related_objects", "(", "cls", ".", "_meta", ")", ":", "model", "=", "getattr", "(", "related_object", ",", "'related_model'", ",", "related_object", ".", "model", ")", "if", "issubclass", "(", "model", ",", "cls", ")", ":", "if", "model", ".", "is_compatible", "(", "value", ")", ":", "return", "model", "raise", "ValueError", "(", "'No compatible `SettingValueModel` subclass for %r'", "%", "value", ")" ]
654233bf7f13619e4531741f9158e7034eac031b
valid
SettingValueModel.is_compatible
Returns ``True`` if this model should be used to store ``value``. Checks if ``value`` is an instance of ``value_type``. Override this method if you need more advanced behaviour. For example, to distinguish between single and multi-line text.
model_settings/models.py
def is_compatible(cls, value): """ Returns ``True`` if this model should be used to store ``value``. Checks if ``value`` is an instance of ``value_type``. Override this method if you need more advanced behaviour. For example, to distinguish between single and multi-line text. """ if not hasattr(cls, 'value_type'): raise NotImplementedError( 'You must define a `value_type` attribute or override the ' '`is_compatible()` method on `SettingValueModel` subclasses.') return isinstance(value, cls.value_type)
def is_compatible(cls, value): """ Returns ``True`` if this model should be used to store ``value``. Checks if ``value`` is an instance of ``value_type``. Override this method if you need more advanced behaviour. For example, to distinguish between single and multi-line text. """ if not hasattr(cls, 'value_type'): raise NotImplementedError( 'You must define a `value_type` attribute or override the ' '`is_compatible()` method on `SettingValueModel` subclasses.') return isinstance(value, cls.value_type)
[ "Returns", "True", "if", "this", "model", "should", "be", "used", "to", "store", "value", "." ]
ixc/django-model-settings
python
https://github.com/ixc/django-model-settings/blob/654233bf7f13619e4531741f9158e7034eac031b/model_settings/models.py#L97-L109
[ "def", "is_compatible", "(", "cls", ",", "value", ")", ":", "if", "not", "hasattr", "(", "cls", ",", "'value_type'", ")", ":", "raise", "NotImplementedError", "(", "'You must define a `value_type` attribute or override the '", "'`is_compatible()` method on `SettingValueModel` subclasses.'", ")", "return", "isinstance", "(", "value", ",", "cls", ".", "value_type", ")" ]
654233bf7f13619e4531741f9158e7034eac031b
valid
tree_search
Search through the successors of a problem to find a goal. The argument frontier should be an empty queue. Don't worry about repeated paths to a state. [Fig. 3.7]
aima/search.py
def tree_search(problem, frontier): """Search through the successors of a problem to find a goal. The argument frontier should be an empty queue. Don't worry about repeated paths to a state. [Fig. 3.7]""" frontier.append(Node(problem.initial)) while frontier: node = frontier.pop() if problem.goal_test(node.state): return node frontier.extend(node.expand(problem)) return None
def tree_search(problem, frontier): """Search through the successors of a problem to find a goal. The argument frontier should be an empty queue. Don't worry about repeated paths to a state. [Fig. 3.7]""" frontier.append(Node(problem.initial)) while frontier: node = frontier.pop() if problem.goal_test(node.state): return node frontier.extend(node.expand(problem)) return None
[ "Search", "through", "the", "successors", "of", "a", "problem", "to", "find", "a", "goal", ".", "The", "argument", "frontier", "should", "be", "an", "empty", "queue", ".", "Don", "t", "worry", "about", "repeated", "paths", "to", "a", "state", ".", "[", "Fig", ".", "3", ".", "7", "]" ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/search.py#L151-L161
[ "def", "tree_search", "(", "problem", ",", "frontier", ")", ":", "frontier", ".", "append", "(", "Node", "(", "problem", ".", "initial", ")", ")", "while", "frontier", ":", "node", "=", "frontier", ".", "pop", "(", ")", "if", "problem", ".", "goal_test", "(", "node", ".", "state", ")", ":", "return", "node", "frontier", ".", "extend", "(", "node", ".", "expand", "(", "problem", ")", ")", "return", "None" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
graph_search
Search through the successors of a problem to find a goal. The argument frontier should be an empty queue. If two paths reach a state, only use the first one. [Fig. 3.7]
aima/search.py
def graph_search(problem, frontier): """Search through the successors of a problem to find a goal. The argument frontier should be an empty queue. If two paths reach a state, only use the first one. [Fig. 3.7]""" frontier.append(Node(problem.initial)) explored = set() while frontier: node = frontier.pop() if problem.goal_test(node.state): return node explored.add(node.state) frontier.extend(child for child in node.expand(problem) if child.state not in explored and child not in frontier) return None
def graph_search(problem, frontier): """Search through the successors of a problem to find a goal. The argument frontier should be an empty queue. If two paths reach a state, only use the first one. [Fig. 3.7]""" frontier.append(Node(problem.initial)) explored = set() while frontier: node = frontier.pop() if problem.goal_test(node.state): return node explored.add(node.state) frontier.extend(child for child in node.expand(problem) if child.state not in explored and child not in frontier) return None
[ "Search", "through", "the", "successors", "of", "a", "problem", "to", "find", "a", "goal", ".", "The", "argument", "frontier", "should", "be", "an", "empty", "queue", ".", "If", "two", "paths", "reach", "a", "state", "only", "use", "the", "first", "one", ".", "[", "Fig", ".", "3", ".", "7", "]" ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/search.py#L163-L177
[ "def", "graph_search", "(", "problem", ",", "frontier", ")", ":", "frontier", ".", "append", "(", "Node", "(", "problem", ".", "initial", ")", ")", "explored", "=", "set", "(", ")", "while", "frontier", ":", "node", "=", "frontier", ".", "pop", "(", ")", "if", "problem", ".", "goal_test", "(", "node", ".", "state", ")", ":", "return", "node", "explored", ".", "add", "(", "node", ".", "state", ")", "frontier", ".", "extend", "(", "child", "for", "child", "in", "node", ".", "expand", "(", "problem", ")", "if", "child", ".", "state", "not", "in", "explored", "and", "child", "not", "in", "frontier", ")", "return", "None" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
breadth_first_search
[Fig. 3.11]
aima/search.py
def breadth_first_search(problem): "[Fig. 3.11]" node = Node(problem.initial) if problem.goal_test(node.state): return node frontier = FIFOQueue() frontier.append(node) explored = set() while frontier: node = frontier.pop() explored.add(node.state) for child in node.expand(problem): if child.state not in explored and child not in frontier: if problem.goal_test(child.state): return child frontier.append(child) return None
def breadth_first_search(problem): "[Fig. 3.11]" node = Node(problem.initial) if problem.goal_test(node.state): return node frontier = FIFOQueue() frontier.append(node) explored = set() while frontier: node = frontier.pop() explored.add(node.state) for child in node.expand(problem): if child.state not in explored and child not in frontier: if problem.goal_test(child.state): return child frontier.append(child) return None
[ "[", "Fig", ".", "3", ".", "11", "]" ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/search.py#L191-L207
[ "def", "breadth_first_search", "(", "problem", ")", ":", "node", "=", "Node", "(", "problem", ".", "initial", ")", "if", "problem", ".", "goal_test", "(", "node", ".", "state", ")", ":", "return", "node", "frontier", "=", "FIFOQueue", "(", ")", "frontier", ".", "append", "(", "node", ")", "explored", "=", "set", "(", ")", "while", "frontier", ":", "node", "=", "frontier", ".", "pop", "(", ")", "explored", ".", "add", "(", "node", ".", "state", ")", "for", "child", "in", "node", ".", "expand", "(", "problem", ")", ":", "if", "child", ".", "state", "not", "in", "explored", "and", "child", "not", "in", "frontier", ":", "if", "problem", ".", "goal_test", "(", "child", ".", "state", ")", ":", "return", "child", "frontier", ".", "append", "(", "child", ")", "return", "None" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
best_first_graph_search
Search the nodes with the lowest f scores first. You specify the function f(node) that you want to minimize; for example, if f is a heuristic estimate to the goal, then we have greedy best first search; if f is node.depth then we have breadth-first search. There is a subtlety: the line "f = memoize(f, 'f')" means that the f values will be cached on the nodes as they are computed. So after doing a best first search you can examine the f values of the path returned.
aima/search.py
def best_first_graph_search(problem, f): """Search the nodes with the lowest f scores first. You specify the function f(node) that you want to minimize; for example, if f is a heuristic estimate to the goal, then we have greedy best first search; if f is node.depth then we have breadth-first search. There is a subtlety: the line "f = memoize(f, 'f')" means that the f values will be cached on the nodes as they are computed. So after doing a best first search you can examine the f values of the path returned.""" f = memoize(f, 'f') node = Node(problem.initial) if problem.goal_test(node.state): return node frontier = PriorityQueue(min, f) frontier.append(node) explored = set() while frontier: node = frontier.pop() if problem.goal_test(node.state): return node explored.add(node.state) for child in node.expand(problem): if child.state not in explored and child not in frontier: frontier.append(child) elif child in frontier: incumbent = frontier[child] if f(child) < f(incumbent): del frontier[incumbent] frontier.append(child) return None
def best_first_graph_search(problem, f): """Search the nodes with the lowest f scores first. You specify the function f(node) that you want to minimize; for example, if f is a heuristic estimate to the goal, then we have greedy best first search; if f is node.depth then we have breadth-first search. There is a subtlety: the line "f = memoize(f, 'f')" means that the f values will be cached on the nodes as they are computed. So after doing a best first search you can examine the f values of the path returned.""" f = memoize(f, 'f') node = Node(problem.initial) if problem.goal_test(node.state): return node frontier = PriorityQueue(min, f) frontier.append(node) explored = set() while frontier: node = frontier.pop() if problem.goal_test(node.state): return node explored.add(node.state) for child in node.expand(problem): if child.state not in explored and child not in frontier: frontier.append(child) elif child in frontier: incumbent = frontier[child] if f(child) < f(incumbent): del frontier[incumbent] frontier.append(child) return None
[ "Search", "the", "nodes", "with", "the", "lowest", "f", "scores", "first", ".", "You", "specify", "the", "function", "f", "(", "node", ")", "that", "you", "want", "to", "minimize", ";", "for", "example", "if", "f", "is", "a", "heuristic", "estimate", "to", "the", "goal", "then", "we", "have", "greedy", "best", "first", "search", ";", "if", "f", "is", "node", ".", "depth", "then", "we", "have", "breadth", "-", "first", "search", ".", "There", "is", "a", "subtlety", ":", "the", "line", "f", "=", "memoize", "(", "f", "f", ")", "means", "that", "the", "f", "values", "will", "be", "cached", "on", "the", "nodes", "as", "they", "are", "computed", ".", "So", "after", "doing", "a", "best", "first", "search", "you", "can", "examine", "the", "f", "values", "of", "the", "path", "returned", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/search.py#L209-L237
[ "def", "best_first_graph_search", "(", "problem", ",", "f", ")", ":", "f", "=", "memoize", "(", "f", ",", "'f'", ")", "node", "=", "Node", "(", "problem", ".", "initial", ")", "if", "problem", ".", "goal_test", "(", "node", ".", "state", ")", ":", "return", "node", "frontier", "=", "PriorityQueue", "(", "min", ",", "f", ")", "frontier", ".", "append", "(", "node", ")", "explored", "=", "set", "(", ")", "while", "frontier", ":", "node", "=", "frontier", ".", "pop", "(", ")", "if", "problem", ".", "goal_test", "(", "node", ".", "state", ")", ":", "return", "node", "explored", ".", "add", "(", "node", ".", "state", ")", "for", "child", "in", "node", ".", "expand", "(", "problem", ")", ":", "if", "child", ".", "state", "not", "in", "explored", "and", "child", "not", "in", "frontier", ":", "frontier", ".", "append", "(", "child", ")", "elif", "child", "in", "frontier", ":", "incumbent", "=", "frontier", "[", "child", "]", "if", "f", "(", "child", ")", "<", "f", "(", "incumbent", ")", ":", "del", "frontier", "[", "incumbent", "]", "frontier", ".", "append", "(", "child", ")", "return", "None" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
depth_limited_search
[Fig. 3.17]
aima/search.py
def depth_limited_search(problem, limit=50): "[Fig. 3.17]" def recursive_dls(node, problem, limit): if problem.goal_test(node.state): return node elif node.depth == limit: return 'cutoff' else: cutoff_occurred = False for child in node.expand(problem): result = recursive_dls(child, problem, limit) if result == 'cutoff': cutoff_occurred = True elif result is not None: return result return if_(cutoff_occurred, 'cutoff', None) # Body of depth_limited_search: return recursive_dls(Node(problem.initial), problem, limit)
def depth_limited_search(problem, limit=50): "[Fig. 3.17]" def recursive_dls(node, problem, limit): if problem.goal_test(node.state): return node elif node.depth == limit: return 'cutoff' else: cutoff_occurred = False for child in node.expand(problem): result = recursive_dls(child, problem, limit) if result == 'cutoff': cutoff_occurred = True elif result is not None: return result return if_(cutoff_occurred, 'cutoff', None) # Body of depth_limited_search: return recursive_dls(Node(problem.initial), problem, limit)
[ "[", "Fig", ".", "3", ".", "17", "]" ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/search.py#L243-L261
[ "def", "depth_limited_search", "(", "problem", ",", "limit", "=", "50", ")", ":", "def", "recursive_dls", "(", "node", ",", "problem", ",", "limit", ")", ":", "if", "problem", ".", "goal_test", "(", "node", ".", "state", ")", ":", "return", "node", "elif", "node", ".", "depth", "==", "limit", ":", "return", "'cutoff'", "else", ":", "cutoff_occurred", "=", "False", "for", "child", "in", "node", ".", "expand", "(", "problem", ")", ":", "result", "=", "recursive_dls", "(", "child", ",", "problem", ",", "limit", ")", "if", "result", "==", "'cutoff'", ":", "cutoff_occurred", "=", "True", "elif", "result", "is", "not", "None", ":", "return", "result", "return", "if_", "(", "cutoff_occurred", ",", "'cutoff'", ",", "None", ")", "# Body of depth_limited_search:", "return", "recursive_dls", "(", "Node", "(", "problem", ".", "initial", ")", ",", "problem", ",", "limit", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
iterative_deepening_search
[Fig. 3.18]
aima/search.py
def iterative_deepening_search(problem): "[Fig. 3.18]" for depth in xrange(sys.maxint): result = depth_limited_search(problem, depth) if result != 'cutoff': return result
def iterative_deepening_search(problem): "[Fig. 3.18]" for depth in xrange(sys.maxint): result = depth_limited_search(problem, depth) if result != 'cutoff': return result
[ "[", "Fig", ".", "3", ".", "18", "]" ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/search.py#L263-L268
[ "def", "iterative_deepening_search", "(", "problem", ")", ":", "for", "depth", "in", "xrange", "(", "sys", ".", "maxint", ")", ":", "result", "=", "depth_limited_search", "(", "problem", ",", "depth", ")", "if", "result", "!=", "'cutoff'", ":", "return", "result" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
astar_search
A* search is best-first graph search with f(n) = g(n)+h(n). You need to specify the h function when you call astar_search, or else in your Problem subclass.
aima/search.py
def astar_search(problem, h=None): """A* search is best-first graph search with f(n) = g(n)+h(n). You need to specify the h function when you call astar_search, or else in your Problem subclass.""" h = memoize(h or problem.h, 'h') return best_first_graph_search(problem, lambda n: n.path_cost + h(n))
def astar_search(problem, h=None): """A* search is best-first graph search with f(n) = g(n)+h(n). You need to specify the h function when you call astar_search, or else in your Problem subclass.""" h = memoize(h or problem.h, 'h') return best_first_graph_search(problem, lambda n: n.path_cost + h(n))
[ "A", "*", "search", "is", "best", "-", "first", "graph", "search", "with", "f", "(", "n", ")", "=", "g", "(", "n", ")", "+", "h", "(", "n", ")", ".", "You", "need", "to", "specify", "the", "h", "function", "when", "you", "call", "astar_search", "or", "else", "in", "your", "Problem", "subclass", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/search.py#L276-L281
[ "def", "astar_search", "(", "problem", ",", "h", "=", "None", ")", ":", "h", "=", "memoize", "(", "h", "or", "problem", ".", "h", ",", "'h'", ")", "return", "best_first_graph_search", "(", "problem", ",", "lambda", "n", ":", "n", ".", "path_cost", "+", "h", "(", "n", ")", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
recursive_best_first_search
[Fig. 3.26]
aima/search.py
def recursive_best_first_search(problem, h=None): "[Fig. 3.26]" h = memoize(h or problem.h, 'h') def RBFS(problem, node, flimit): if problem.goal_test(node.state): return node, 0 # (The second value is immaterial) successors = node.expand(problem) if len(successors) == 0: return None, infinity for s in successors: s.f = max(s.path_cost + h(s), node.f) while True: successors.sort(lambda x,y: cmp(x.f, y.f)) # Order by lowest f value best = successors[0] if best.f > flimit: return None, best.f if len(successors) > 1: alternative = successors[1].f else: alternative = infinity result, best.f = RBFS(problem, best, min(flimit, alternative)) if result is not None: return result, best.f node = Node(problem.initial) node.f = h(node) result, bestf = RBFS(problem, node, infinity) return result
def recursive_best_first_search(problem, h=None): "[Fig. 3.26]" h = memoize(h or problem.h, 'h') def RBFS(problem, node, flimit): if problem.goal_test(node.state): return node, 0 # (The second value is immaterial) successors = node.expand(problem) if len(successors) == 0: return None, infinity for s in successors: s.f = max(s.path_cost + h(s), node.f) while True: successors.sort(lambda x,y: cmp(x.f, y.f)) # Order by lowest f value best = successors[0] if best.f > flimit: return None, best.f if len(successors) > 1: alternative = successors[1].f else: alternative = infinity result, best.f = RBFS(problem, best, min(flimit, alternative)) if result is not None: return result, best.f node = Node(problem.initial) node.f = h(node) result, bestf = RBFS(problem, node, infinity) return result
[ "[", "Fig", ".", "3", ".", "26", "]" ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/search.py#L286-L314
[ "def", "recursive_best_first_search", "(", "problem", ",", "h", "=", "None", ")", ":", "h", "=", "memoize", "(", "h", "or", "problem", ".", "h", ",", "'h'", ")", "def", "RBFS", "(", "problem", ",", "node", ",", "flimit", ")", ":", "if", "problem", ".", "goal_test", "(", "node", ".", "state", ")", ":", "return", "node", ",", "0", "# (The second value is immaterial)", "successors", "=", "node", ".", "expand", "(", "problem", ")", "if", "len", "(", "successors", ")", "==", "0", ":", "return", "None", ",", "infinity", "for", "s", "in", "successors", ":", "s", ".", "f", "=", "max", "(", "s", ".", "path_cost", "+", "h", "(", "s", ")", ",", "node", ".", "f", ")", "while", "True", ":", "successors", ".", "sort", "(", "lambda", "x", ",", "y", ":", "cmp", "(", "x", ".", "f", ",", "y", ".", "f", ")", ")", "# Order by lowest f value", "best", "=", "successors", "[", "0", "]", "if", "best", ".", "f", ">", "flimit", ":", "return", "None", ",", "best", ".", "f", "if", "len", "(", "successors", ")", ">", "1", ":", "alternative", "=", "successors", "[", "1", "]", ".", "f", "else", ":", "alternative", "=", "infinity", "result", ",", "best", ".", "f", "=", "RBFS", "(", "problem", ",", "best", ",", "min", "(", "flimit", ",", "alternative", ")", ")", "if", "result", "is", "not", "None", ":", "return", "result", ",", "best", ".", "f", "node", "=", "Node", "(", "problem", ".", "initial", ")", "node", ".", "f", "=", "h", "(", "node", ")", "result", ",", "bestf", "=", "RBFS", "(", "problem", ",", "node", ",", "infinity", ")", "return", "result" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
hill_climbing
From the initial node, keep choosing the neighbor with highest value, stopping when no neighbor is better. [Fig. 4.2]
aima/search.py
def hill_climbing(problem): """From the initial node, keep choosing the neighbor with highest value, stopping when no neighbor is better. [Fig. 4.2]""" current = Node(problem.initial) while True: neighbors = current.expand(problem) if not neighbors: break neighbor = argmax_random_tie(neighbors, lambda node: problem.value(node.state)) if problem.value(neighbor.state) <= problem.value(current.state): break current = neighbor return current.state
def hill_climbing(problem): """From the initial node, keep choosing the neighbor with highest value, stopping when no neighbor is better. [Fig. 4.2]""" current = Node(problem.initial) while True: neighbors = current.expand(problem) if not neighbors: break neighbor = argmax_random_tie(neighbors, lambda node: problem.value(node.state)) if problem.value(neighbor.state) <= problem.value(current.state): break current = neighbor return current.state
[ "From", "the", "initial", "node", "keep", "choosing", "the", "neighbor", "with", "highest", "value", "stopping", "when", "no", "neighbor", "is", "better", ".", "[", "Fig", ".", "4", ".", "2", "]" ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/search.py#L316-L329
[ "def", "hill_climbing", "(", "problem", ")", ":", "current", "=", "Node", "(", "problem", ".", "initial", ")", "while", "True", ":", "neighbors", "=", "current", ".", "expand", "(", "problem", ")", "if", "not", "neighbors", ":", "break", "neighbor", "=", "argmax_random_tie", "(", "neighbors", ",", "lambda", "node", ":", "problem", ".", "value", "(", "node", ".", "state", ")", ")", "if", "problem", ".", "value", "(", "neighbor", ".", "state", ")", "<=", "problem", ".", "value", "(", "current", ".", "state", ")", ":", "break", "current", "=", "neighbor", "return", "current", ".", "state" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
exp_schedule
One possible schedule function for simulated annealing
aima/search.py
def exp_schedule(k=20, lam=0.005, limit=100): "One possible schedule function for simulated annealing" return lambda t: if_(t < limit, k * math.exp(-lam * t), 0)
def exp_schedule(k=20, lam=0.005, limit=100): "One possible schedule function for simulated annealing" return lambda t: if_(t < limit, k * math.exp(-lam * t), 0)
[ "One", "possible", "schedule", "function", "for", "simulated", "annealing" ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/search.py#L331-L333
[ "def", "exp_schedule", "(", "k", "=", "20", ",", "lam", "=", "0.005", ",", "limit", "=", "100", ")", ":", "return", "lambda", "t", ":", "if_", "(", "t", "<", "limit", ",", "k", "*", "math", ".", "exp", "(", "-", "lam", "*", "t", ")", ",", "0", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
simulated_annealing
[Fig. 4.5]
aima/search.py
def simulated_annealing(problem, schedule=exp_schedule()): "[Fig. 4.5]" current = Node(problem.initial) for t in xrange(sys.maxint): T = schedule(t) if T == 0: return current neighbors = current.expand(problem) if not neighbors: return current next = random.choice(neighbors) delta_e = problem.value(next.state) - problem.value(current.state) if delta_e > 0 or probability(math.exp(delta_e/T)): current = next
def simulated_annealing(problem, schedule=exp_schedule()): "[Fig. 4.5]" current = Node(problem.initial) for t in xrange(sys.maxint): T = schedule(t) if T == 0: return current neighbors = current.expand(problem) if not neighbors: return current next = random.choice(neighbors) delta_e = problem.value(next.state) - problem.value(current.state) if delta_e > 0 or probability(math.exp(delta_e/T)): current = next
[ "[", "Fig", ".", "4", ".", "5", "]" ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/search.py#L335-L348
[ "def", "simulated_annealing", "(", "problem", ",", "schedule", "=", "exp_schedule", "(", ")", ")", ":", "current", "=", "Node", "(", "problem", ".", "initial", ")", "for", "t", "in", "xrange", "(", "sys", ".", "maxint", ")", ":", "T", "=", "schedule", "(", "t", ")", "if", "T", "==", "0", ":", "return", "current", "neighbors", "=", "current", ".", "expand", "(", "problem", ")", "if", "not", "neighbors", ":", "return", "current", "next", "=", "random", ".", "choice", "(", "neighbors", ")", "delta_e", "=", "problem", ".", "value", "(", "next", ".", "state", ")", "-", "problem", ".", "value", "(", "current", ".", "state", ")", "if", "delta_e", ">", "0", "or", "probability", "(", "math", ".", "exp", "(", "delta_e", "/", "T", ")", ")", ":", "current", "=", "next" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
genetic_search
Call genetic_algorithm on the appropriate parts of a problem. This requires the problem to have states that can mate and mutate, plus a value method that scores states.
aima/search.py
def genetic_search(problem, fitness_fn, ngen=1000, pmut=0.1, n=20): """Call genetic_algorithm on the appropriate parts of a problem. This requires the problem to have states that can mate and mutate, plus a value method that scores states.""" s = problem.initial_state states = [problem.result(s, a) for a in problem.actions(s)] random.shuffle(states) return genetic_algorithm(states[:n], problem.value, ngen, pmut)
def genetic_search(problem, fitness_fn, ngen=1000, pmut=0.1, n=20): """Call genetic_algorithm on the appropriate parts of a problem. This requires the problem to have states that can mate and mutate, plus a value method that scores states.""" s = problem.initial_state states = [problem.result(s, a) for a in problem.actions(s)] random.shuffle(states) return genetic_algorithm(states[:n], problem.value, ngen, pmut)
[ "Call", "genetic_algorithm", "on", "the", "appropriate", "parts", "of", "a", "problem", ".", "This", "requires", "the", "problem", "to", "have", "states", "that", "can", "mate", "and", "mutate", "plus", "a", "value", "method", "that", "scores", "states", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/search.py#L365-L372
[ "def", "genetic_search", "(", "problem", ",", "fitness_fn", ",", "ngen", "=", "1000", ",", "pmut", "=", "0.1", ",", "n", "=", "20", ")", ":", "s", "=", "problem", ".", "initial_state", "states", "=", "[", "problem", ".", "result", "(", "s", ",", "a", ")", "for", "a", "in", "problem", ".", "actions", "(", "s", ")", "]", "random", ".", "shuffle", "(", "states", ")", "return", "genetic_algorithm", "(", "states", "[", ":", "n", "]", ",", "problem", ".", "value", ",", "ngen", ",", "pmut", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
genetic_algorithm
[Fig. 4.8]
aima/search.py
def genetic_algorithm(population, fitness_fn, ngen=1000, pmut=0.1): "[Fig. 4.8]" for i in range(ngen): new_population = [] for i in len(population): fitnesses = map(fitness_fn, population) p1, p2 = weighted_sample_with_replacement(population, fitnesses, 2) child = p1.mate(p2) if random.uniform(0, 1) < pmut: child.mutate() new_population.append(child) population = new_population return argmax(population, fitness_fn)
def genetic_algorithm(population, fitness_fn, ngen=1000, pmut=0.1): "[Fig. 4.8]" for i in range(ngen): new_population = [] for i in len(population): fitnesses = map(fitness_fn, population) p1, p2 = weighted_sample_with_replacement(population, fitnesses, 2) child = p1.mate(p2) if random.uniform(0, 1) < pmut: child.mutate() new_population.append(child) population = new_population return argmax(population, fitness_fn)
[ "[", "Fig", ".", "4", ".", "8", "]" ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/search.py#L374-L386
[ "def", "genetic_algorithm", "(", "population", ",", "fitness_fn", ",", "ngen", "=", "1000", ",", "pmut", "=", "0.1", ")", ":", "for", "i", "in", "range", "(", "ngen", ")", ":", "new_population", "=", "[", "]", "for", "i", "in", "len", "(", "population", ")", ":", "fitnesses", "=", "map", "(", "fitness_fn", ",", "population", ")", "p1", ",", "p2", "=", "weighted_sample_with_replacement", "(", "population", ",", "fitnesses", ",", "2", ")", "child", "=", "p1", ".", "mate", "(", "p2", ")", "if", "random", ".", "uniform", "(", "0", ",", "1", ")", "<", "pmut", ":", "child", ".", "mutate", "(", ")", "new_population", ".", "append", "(", "child", ")", "population", "=", "new_population", "return", "argmax", "(", "population", ",", "fitness_fn", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
RandomGraph
Construct a random graph, with the specified nodes, and random links. The nodes are laid out randomly on a (width x height) rectangle. Then each node is connected to the min_links nearest neighbors. Because inverse links are added, some nodes will have more connections. The distance between nodes is the hypotenuse times curvature(), where curvature() defaults to a random number between 1.1 and 1.5.
aima/search.py
def RandomGraph(nodes=range(10), min_links=2, width=400, height=300, curvature=lambda: random.uniform(1.1, 1.5)): """Construct a random graph, with the specified nodes, and random links. The nodes are laid out randomly on a (width x height) rectangle. Then each node is connected to the min_links nearest neighbors. Because inverse links are added, some nodes will have more connections. The distance between nodes is the hypotenuse times curvature(), where curvature() defaults to a random number between 1.1 and 1.5.""" g = UndirectedGraph() g.locations = {} ## Build the cities for node in nodes: g.locations[node] = (random.randrange(width), random.randrange(height)) ## Build roads from each city to at least min_links nearest neighbors. for i in range(min_links): for node in nodes: if len(g.get(node)) < min_links: here = g.locations[node] def distance_to_node(n): if n is node or g.get(node,n): return infinity return distance(g.locations[n], here) neighbor = argmin(nodes, distance_to_node) d = distance(g.locations[neighbor], here) * curvature() g.connect(node, neighbor, int(d)) return g
def RandomGraph(nodes=range(10), min_links=2, width=400, height=300, curvature=lambda: random.uniform(1.1, 1.5)): """Construct a random graph, with the specified nodes, and random links. The nodes are laid out randomly on a (width x height) rectangle. Then each node is connected to the min_links nearest neighbors. Because inverse links are added, some nodes will have more connections. The distance between nodes is the hypotenuse times curvature(), where curvature() defaults to a random number between 1.1 and 1.5.""" g = UndirectedGraph() g.locations = {} ## Build the cities for node in nodes: g.locations[node] = (random.randrange(width), random.randrange(height)) ## Build roads from each city to at least min_links nearest neighbors. for i in range(min_links): for node in nodes: if len(g.get(node)) < min_links: here = g.locations[node] def distance_to_node(n): if n is node or g.get(node,n): return infinity return distance(g.locations[n], here) neighbor = argmin(nodes, distance_to_node) d = distance(g.locations[neighbor], here) * curvature() g.connect(node, neighbor, int(d)) return g
[ "Construct", "a", "random", "graph", "with", "the", "specified", "nodes", "and", "random", "links", ".", "The", "nodes", "are", "laid", "out", "randomly", "on", "a", "(", "width", "x", "height", ")", "rectangle", ".", "Then", "each", "node", "is", "connected", "to", "the", "min_links", "nearest", "neighbors", ".", "Because", "inverse", "links", "are", "added", "some", "nodes", "will", "have", "more", "connections", ".", "The", "distance", "between", "nodes", "is", "the", "hypotenuse", "times", "curvature", "()", "where", "curvature", "()", "defaults", "to", "a", "random", "number", "between", "1", ".", "1", "and", "1", ".", "5", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/search.py#L459-L483
[ "def", "RandomGraph", "(", "nodes", "=", "range", "(", "10", ")", ",", "min_links", "=", "2", ",", "width", "=", "400", ",", "height", "=", "300", ",", "curvature", "=", "lambda", ":", "random", ".", "uniform", "(", "1.1", ",", "1.5", ")", ")", ":", "g", "=", "UndirectedGraph", "(", ")", "g", ".", "locations", "=", "{", "}", "## Build the cities", "for", "node", "in", "nodes", ":", "g", ".", "locations", "[", "node", "]", "=", "(", "random", ".", "randrange", "(", "width", ")", ",", "random", ".", "randrange", "(", "height", ")", ")", "## Build roads from each city to at least min_links nearest neighbors.", "for", "i", "in", "range", "(", "min_links", ")", ":", "for", "node", "in", "nodes", ":", "if", "len", "(", "g", ".", "get", "(", "node", ")", ")", "<", "min_links", ":", "here", "=", "g", ".", "locations", "[", "node", "]", "def", "distance_to_node", "(", "n", ")", ":", "if", "n", "is", "node", "or", "g", ".", "get", "(", "node", ",", "n", ")", ":", "return", "infinity", "return", "distance", "(", "g", ".", "locations", "[", "n", "]", ",", "here", ")", "neighbor", "=", "argmin", "(", "nodes", ",", "distance_to_node", ")", "d", "=", "distance", "(", "g", ".", "locations", "[", "neighbor", "]", ",", "here", ")", "*", "curvature", "(", ")", "g", ".", "connect", "(", "node", ",", "neighbor", ",", "int", "(", "d", ")", ")", "return", "g" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
random_boggle
Return a random Boggle board of size n x n. We represent a board as a linear list of letters.
aima/search.py
def random_boggle(n=4): """Return a random Boggle board of size n x n. We represent a board as a linear list of letters.""" cubes = [cubes16[i % 16] for i in range(n*n)] random.shuffle(cubes) return map(random.choice, cubes)
def random_boggle(n=4): """Return a random Boggle board of size n x n. We represent a board as a linear list of letters.""" cubes = [cubes16[i % 16] for i in range(n*n)] random.shuffle(cubes) return map(random.choice, cubes)
[ "Return", "a", "random", "Boggle", "board", "of", "size", "n", "x", "n", ".", "We", "represent", "a", "board", "as", "a", "linear", "list", "of", "letters", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/search.py#L601-L606
[ "def", "random_boggle", "(", "n", "=", "4", ")", ":", "cubes", "=", "[", "cubes16", "[", "i", "%", "16", "]", "for", "i", "in", "range", "(", "n", "*", "n", ")", "]", "random", ".", "shuffle", "(", "cubes", ")", "return", "map", "(", "random", ".", "choice", ",", "cubes", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
print_boggle
Print the board in a 2-d array.
aima/search.py
def print_boggle(board): "Print the board in a 2-d array." n2 = len(board); n = exact_sqrt(n2) for i in range(n2): if i % n == 0 and i > 0: print if board[i] == 'Q': print 'Qu', else: print str(board[i]) + ' ', print
def print_boggle(board): "Print the board in a 2-d array." n2 = len(board); n = exact_sqrt(n2) for i in range(n2): if i % n == 0 and i > 0: print if board[i] == 'Q': print 'Qu', else: print str(board[i]) + ' ', print
[ "Print", "the", "board", "in", "a", "2", "-", "d", "array", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/search.py#L613-L620
[ "def", "print_boggle", "(", "board", ")", ":", "n2", "=", "len", "(", "board", ")", "n", "=", "exact_sqrt", "(", "n2", ")", "for", "i", "in", "range", "(", "n2", ")", ":", "if", "i", "%", "n", "==", "0", "and", "i", ">", "0", ":", "print", "if", "board", "[", "i", "]", "==", "'Q'", ":", "print", "'Qu'", ",", "else", ":", "print", "str", "(", "board", "[", "i", "]", ")", "+", "' '", ",", "print" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
boggle_neighbors
Return a list of lists, where the i-th element is the list of indexes for the neighbors of square i.
aima/search.py
def boggle_neighbors(n2, cache={}): """Return a list of lists, where the i-th element is the list of indexes for the neighbors of square i.""" if cache.get(n2): return cache.get(n2) n = exact_sqrt(n2) neighbors = [None] * n2 for i in range(n2): neighbors[i] = [] on_top = i < n on_bottom = i >= n2 - n on_left = i % n == 0 on_right = (i+1) % n == 0 if not on_top: neighbors[i].append(i - n) if not on_left: neighbors[i].append(i - n - 1) if not on_right: neighbors[i].append(i - n + 1) if not on_bottom: neighbors[i].append(i + n) if not on_left: neighbors[i].append(i + n - 1) if not on_right: neighbors[i].append(i + n + 1) if not on_left: neighbors[i].append(i - 1) if not on_right: neighbors[i].append(i + 1) cache[n2] = neighbors return neighbors
def boggle_neighbors(n2, cache={}): """Return a list of lists, where the i-th element is the list of indexes for the neighbors of square i.""" if cache.get(n2): return cache.get(n2) n = exact_sqrt(n2) neighbors = [None] * n2 for i in range(n2): neighbors[i] = [] on_top = i < n on_bottom = i >= n2 - n on_left = i % n == 0 on_right = (i+1) % n == 0 if not on_top: neighbors[i].append(i - n) if not on_left: neighbors[i].append(i - n - 1) if not on_right: neighbors[i].append(i - n + 1) if not on_bottom: neighbors[i].append(i + n) if not on_left: neighbors[i].append(i + n - 1) if not on_right: neighbors[i].append(i + n + 1) if not on_left: neighbors[i].append(i - 1) if not on_right: neighbors[i].append(i + 1) cache[n2] = neighbors return neighbors
[ "Return", "a", "list", "of", "lists", "where", "the", "i", "-", "th", "element", "is", "the", "list", "of", "indexes", "for", "the", "neighbors", "of", "square", "i", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/search.py#L622-L646
[ "def", "boggle_neighbors", "(", "n2", ",", "cache", "=", "{", "}", ")", ":", "if", "cache", ".", "get", "(", "n2", ")", ":", "return", "cache", ".", "get", "(", "n2", ")", "n", "=", "exact_sqrt", "(", "n2", ")", "neighbors", "=", "[", "None", "]", "*", "n2", "for", "i", "in", "range", "(", "n2", ")", ":", "neighbors", "[", "i", "]", "=", "[", "]", "on_top", "=", "i", "<", "n", "on_bottom", "=", "i", ">=", "n2", "-", "n", "on_left", "=", "i", "%", "n", "==", "0", "on_right", "=", "(", "i", "+", "1", ")", "%", "n", "==", "0", "if", "not", "on_top", ":", "neighbors", "[", "i", "]", ".", "append", "(", "i", "-", "n", ")", "if", "not", "on_left", ":", "neighbors", "[", "i", "]", ".", "append", "(", "i", "-", "n", "-", "1", ")", "if", "not", "on_right", ":", "neighbors", "[", "i", "]", ".", "append", "(", "i", "-", "n", "+", "1", ")", "if", "not", "on_bottom", ":", "neighbors", "[", "i", "]", ".", "append", "(", "i", "+", "n", ")", "if", "not", "on_left", ":", "neighbors", "[", "i", "]", ".", "append", "(", "i", "+", "n", "-", "1", ")", "if", "not", "on_right", ":", "neighbors", "[", "i", "]", ".", "append", "(", "i", "+", "n", "+", "1", ")", "if", "not", "on_left", ":", "neighbors", "[", "i", "]", ".", "append", "(", "i", "-", "1", ")", "if", "not", "on_right", ":", "neighbors", "[", "i", "]", ".", "append", "(", "i", "+", "1", ")", "cache", "[", "n2", "]", "=", "neighbors", "return", "neighbors" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
exact_sqrt
If n2 is a perfect square, return its square root, else raise error.
aima/search.py
def exact_sqrt(n2): "If n2 is a perfect square, return its square root, else raise error." n = int(math.sqrt(n2)) assert n * n == n2 return n
def exact_sqrt(n2): "If n2 is a perfect square, return its square root, else raise error." n = int(math.sqrt(n2)) assert n * n == n2 return n
[ "If", "n2", "is", "a", "perfect", "square", "return", "its", "square", "root", "else", "raise", "error", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/search.py#L648-L652
[ "def", "exact_sqrt", "(", "n2", ")", ":", "n", "=", "int", "(", "math", ".", "sqrt", "(", "n2", ")", ")", "assert", "n", "*", "n", "==", "n2", "return", "n" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
boggle_hill_climbing
Solve inverse Boggle by hill-climbing: find a high-scoring board by starting with a random one and changing it.
aima/search.py
def boggle_hill_climbing(board=None, ntimes=100, verbose=True): """Solve inverse Boggle by hill-climbing: find a high-scoring board by starting with a random one and changing it.""" finder = BoggleFinder() if board is None: board = random_boggle() best = len(finder.set_board(board)) for _ in range(ntimes): i, oldc = mutate_boggle(board) new = len(finder.set_board(board)) if new > best: best = new if verbose: print best, _, board else: board[i] = oldc ## Change back if verbose: print_boggle(board) return board, best
def boggle_hill_climbing(board=None, ntimes=100, verbose=True): """Solve inverse Boggle by hill-climbing: find a high-scoring board by starting with a random one and changing it.""" finder = BoggleFinder() if board is None: board = random_boggle() best = len(finder.set_board(board)) for _ in range(ntimes): i, oldc = mutate_boggle(board) new = len(finder.set_board(board)) if new > best: best = new if verbose: print best, _, board else: board[i] = oldc ## Change back if verbose: print_boggle(board) return board, best
[ "Solve", "inverse", "Boggle", "by", "hill", "-", "climbing", ":", "find", "a", "high", "-", "scoring", "board", "by", "starting", "with", "a", "random", "one", "and", "changing", "it", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/search.py#L749-L766
[ "def", "boggle_hill_climbing", "(", "board", "=", "None", ",", "ntimes", "=", "100", ",", "verbose", "=", "True", ")", ":", "finder", "=", "BoggleFinder", "(", ")", "if", "board", "is", "None", ":", "board", "=", "random_boggle", "(", ")", "best", "=", "len", "(", "finder", ".", "set_board", "(", "board", ")", ")", "for", "_", "in", "range", "(", "ntimes", ")", ":", "i", ",", "oldc", "=", "mutate_boggle", "(", "board", ")", "new", "=", "len", "(", "finder", ".", "set_board", "(", "board", ")", ")", "if", "new", ">", "best", ":", "best", "=", "new", "if", "verbose", ":", "print", "best", ",", "_", ",", "board", "else", ":", "board", "[", "i", "]", "=", "oldc", "## Change back", "if", "verbose", ":", "print_boggle", "(", "board", ")", "return", "board", ",", "best" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
compare_graph_searchers
Prints a table of results like this: >>> compare_graph_searchers() Searcher Romania(A, B) Romania(O, N) Australia breadth_first_tree_search < 21/ 22/ 59/B> <1158/1159/3288/N> < 7/ 8/ 22/WA> breadth_first_search < 7/ 11/ 18/B> < 19/ 20/ 45/N> < 2/ 6/ 8/WA> depth_first_graph_search < 8/ 9/ 20/B> < 16/ 17/ 38/N> < 4/ 5/ 11/WA> iterative_deepening_search < 11/ 33/ 31/B> < 656/1815/1812/N> < 3/ 11/ 11/WA> depth_limited_search < 54/ 65/ 185/B> < 387/1012/1125/N> < 50/ 54/ 200/WA> recursive_best_first_search < 5/ 6/ 15/B> <5887/5888/16532/N> < 11/ 12/ 43/WA>
aima/search.py
def compare_graph_searchers(): """Prints a table of results like this: >>> compare_graph_searchers() Searcher Romania(A, B) Romania(O, N) Australia breadth_first_tree_search < 21/ 22/ 59/B> <1158/1159/3288/N> < 7/ 8/ 22/WA> breadth_first_search < 7/ 11/ 18/B> < 19/ 20/ 45/N> < 2/ 6/ 8/WA> depth_first_graph_search < 8/ 9/ 20/B> < 16/ 17/ 38/N> < 4/ 5/ 11/WA> iterative_deepening_search < 11/ 33/ 31/B> < 656/1815/1812/N> < 3/ 11/ 11/WA> depth_limited_search < 54/ 65/ 185/B> < 387/1012/1125/N> < 50/ 54/ 200/WA> recursive_best_first_search < 5/ 6/ 15/B> <5887/5888/16532/N> < 11/ 12/ 43/WA>""" compare_searchers(problems=[GraphProblem('A', 'B', romania), GraphProblem('O', 'N', romania), GraphProblem('Q', 'WA', australia)], header=['Searcher', 'Romania(A, B)', 'Romania(O, N)', 'Australia'])
def compare_graph_searchers(): """Prints a table of results like this: >>> compare_graph_searchers() Searcher Romania(A, B) Romania(O, N) Australia breadth_first_tree_search < 21/ 22/ 59/B> <1158/1159/3288/N> < 7/ 8/ 22/WA> breadth_first_search < 7/ 11/ 18/B> < 19/ 20/ 45/N> < 2/ 6/ 8/WA> depth_first_graph_search < 8/ 9/ 20/B> < 16/ 17/ 38/N> < 4/ 5/ 11/WA> iterative_deepening_search < 11/ 33/ 31/B> < 656/1815/1812/N> < 3/ 11/ 11/WA> depth_limited_search < 54/ 65/ 185/B> < 387/1012/1125/N> < 50/ 54/ 200/WA> recursive_best_first_search < 5/ 6/ 15/B> <5887/5888/16532/N> < 11/ 12/ 43/WA>""" compare_searchers(problems=[GraphProblem('A', 'B', romania), GraphProblem('O', 'N', romania), GraphProblem('Q', 'WA', australia)], header=['Searcher', 'Romania(A, B)', 'Romania(O, N)', 'Australia'])
[ "Prints", "a", "table", "of", "results", "like", "this", ":", ">>>", "compare_graph_searchers", "()", "Searcher", "Romania", "(", "A", "B", ")", "Romania", "(", "O", "N", ")", "Australia", "breadth_first_tree_search", "<", "21", "/", "22", "/", "59", "/", "B", ">", "<1158", "/", "1159", "/", "3288", "/", "N", ">", "<", "7", "/", "8", "/", "22", "/", "WA", ">", "breadth_first_search", "<", "7", "/", "11", "/", "18", "/", "B", ">", "<", "19", "/", "20", "/", "45", "/", "N", ">", "<", "2", "/", "6", "/", "8", "/", "WA", ">", "depth_first_graph_search", "<", "8", "/", "9", "/", "20", "/", "B", ">", "<", "16", "/", "17", "/", "38", "/", "N", ">", "<", "4", "/", "5", "/", "11", "/", "WA", ">", "iterative_deepening_search", "<", "11", "/", "33", "/", "31", "/", "B", ">", "<", "656", "/", "1815", "/", "1812", "/", "N", ">", "<", "3", "/", "11", "/", "11", "/", "WA", ">", "depth_limited_search", "<", "54", "/", "65", "/", "185", "/", "B", ">", "<", "387", "/", "1012", "/", "1125", "/", "N", ">", "<", "50", "/", "54", "/", "200", "/", "WA", ">", "recursive_best_first_search", "<", "5", "/", "6", "/", "15", "/", "B", ">", "<5887", "/", "5888", "/", "16532", "/", "N", ">", "<", "11", "/", "12", "/", "43", "/", "WA", ">" ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/search.py#L835-L848
[ "def", "compare_graph_searchers", "(", ")", ":", "compare_searchers", "(", "problems", "=", "[", "GraphProblem", "(", "'A'", ",", "'B'", ",", "romania", ")", ",", "GraphProblem", "(", "'O'", ",", "'N'", ",", "romania", ")", ",", "GraphProblem", "(", "'Q'", ",", "'WA'", ",", "australia", ")", "]", ",", "header", "=", "[", "'Searcher'", ",", "'Romania(A, B)'", ",", "'Romania(O, N)'", ",", "'Australia'", "]", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
Node.expand
List the nodes reachable in one step from this node.
aima/search.py
def expand(self, problem): "List the nodes reachable in one step from this node." return [self.child_node(problem, action) for action in problem.actions(self.state)]
def expand(self, problem): "List the nodes reachable in one step from this node." return [self.child_node(problem, action) for action in problem.actions(self.state)]
[ "List", "the", "nodes", "reachable", "in", "one", "step", "from", "this", "node", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/search.py#L86-L89
[ "def", "expand", "(", "self", ",", "problem", ")", ":", "return", "[", "self", ".", "child_node", "(", "problem", ",", "action", ")", "for", "action", "in", "problem", ".", "actions", "(", "self", ".", "state", ")", "]" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
Node.child_node
Fig. 3.10
aima/search.py
def child_node(self, problem, action): "Fig. 3.10" next = problem.result(self.state, action) return Node(next, self, action, problem.path_cost(self.path_cost, self.state, action, next))
def child_node(self, problem, action): "Fig. 3.10" next = problem.result(self.state, action) return Node(next, self, action, problem.path_cost(self.path_cost, self.state, action, next))
[ "Fig", ".", "3", ".", "10" ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/search.py#L91-L95
[ "def", "child_node", "(", "self", ",", "problem", ",", "action", ")", ":", "next", "=", "problem", ".", "result", "(", "self", ".", "state", ",", "action", ")", "return", "Node", "(", "next", ",", "self", ",", "action", ",", "problem", ".", "path_cost", "(", "self", ".", "path_cost", ",", "self", ".", "state", ",", "action", ",", "next", ")", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
Node.path
Return a list of nodes forming the path from the root to this node.
aima/search.py
def path(self): "Return a list of nodes forming the path from the root to this node." node, path_back = self, [] while node: path_back.append(node) node = node.parent return list(reversed(path_back))
def path(self): "Return a list of nodes forming the path from the root to this node." node, path_back = self, [] while node: path_back.append(node) node = node.parent return list(reversed(path_back))
[ "Return", "a", "list", "of", "nodes", "forming", "the", "path", "from", "the", "root", "to", "this", "node", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/search.py#L101-L107
[ "def", "path", "(", "self", ")", ":", "node", ",", "path_back", "=", "self", ",", "[", "]", "while", "node", ":", "path_back", ".", "append", "(", "node", ")", "node", "=", "node", ".", "parent", "return", "list", "(", "reversed", "(", "path_back", ")", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
GAState.mate
Return a new individual crossing self and other.
aima/search.py
def mate(self, other): "Return a new individual crossing self and other." c = random.randrange(len(self.genes)) return self.__class__(self.genes[:c] + other.genes[c:])
def mate(self, other): "Return a new individual crossing self and other." c = random.randrange(len(self.genes)) return self.__class__(self.genes[:c] + other.genes[c:])
[ "Return", "a", "new", "individual", "crossing", "self", "and", "other", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/search.py#L393-L396
[ "def", "mate", "(", "self", ",", "other", ")", ":", "c", "=", "random", ".", "randrange", "(", "len", "(", "self", ".", "genes", ")", ")", "return", "self", ".", "__class__", "(", "self", ".", "genes", "[", ":", "c", "]", "+", "other", ".", "genes", "[", "c", ":", "]", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
Graph.make_undirected
Make a digraph into an undirected graph by adding symmetric edges.
aima/search.py
def make_undirected(self): "Make a digraph into an undirected graph by adding symmetric edges." for a in self.dict.keys(): for (b, distance) in self.dict[a].items(): self.connect1(b, a, distance)
def make_undirected(self): "Make a digraph into an undirected graph by adding symmetric edges." for a in self.dict.keys(): for (b, distance) in self.dict[a].items(): self.connect1(b, a, distance)
[ "Make", "a", "digraph", "into", "an", "undirected", "graph", "by", "adding", "symmetric", "edges", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/search.py#L427-L431
[ "def", "make_undirected", "(", "self", ")", ":", "for", "a", "in", "self", ".", "dict", ".", "keys", "(", ")", ":", "for", "(", "b", ",", "distance", ")", "in", "self", ".", "dict", "[", "a", "]", ".", "items", "(", ")", ":", "self", ".", "connect1", "(", "b", ",", "a", ",", "distance", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
Graph.connect
Add a link from A and B of given distance, and also add the inverse link if the graph is undirected.
aima/search.py
def connect(self, A, B, distance=1): """Add a link from A and B of given distance, and also add the inverse link if the graph is undirected.""" self.connect1(A, B, distance) if not self.directed: self.connect1(B, A, distance)
def connect(self, A, B, distance=1): """Add a link from A and B of given distance, and also add the inverse link if the graph is undirected.""" self.connect1(A, B, distance) if not self.directed: self.connect1(B, A, distance)
[ "Add", "a", "link", "from", "A", "and", "B", "of", "given", "distance", "and", "also", "add", "the", "inverse", "link", "if", "the", "graph", "is", "undirected", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/search.py#L433-L437
[ "def", "connect", "(", "self", ",", "A", ",", "B", ",", "distance", "=", "1", ")", ":", "self", ".", "connect1", "(", "A", ",", "B", ",", "distance", ")", "if", "not", "self", ".", "directed", ":", "self", ".", "connect1", "(", "B", ",", "A", ",", "distance", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
Graph.connect1
Add a link from A to B of given distance, in one direction only.
aima/search.py
def connect1(self, A, B, distance): "Add a link from A to B of given distance, in one direction only." self.dict.setdefault(A,{})[B] = distance
def connect1(self, A, B, distance): "Add a link from A to B of given distance, in one direction only." self.dict.setdefault(A,{})[B] = distance
[ "Add", "a", "link", "from", "A", "to", "B", "of", "given", "distance", "in", "one", "direction", "only", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/search.py#L439-L441
[ "def", "connect1", "(", "self", ",", "A", ",", "B", ",", "distance", ")", ":", "self", ".", "dict", ".", "setdefault", "(", "A", ",", "{", "}", ")", "[", "B", "]", "=", "distance" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
Graph.get
Return a link distance or a dict of {node: distance} entries. .get(a,b) returns the distance or None; .get(a) returns a dict of {node: distance} entries, possibly {}.
aima/search.py
def get(self, a, b=None): """Return a link distance or a dict of {node: distance} entries. .get(a,b) returns the distance or None; .get(a) returns a dict of {node: distance} entries, possibly {}.""" links = self.dict.setdefault(a, {}) if b is None: return links else: return links.get(b)
def get(self, a, b=None): """Return a link distance or a dict of {node: distance} entries. .get(a,b) returns the distance or None; .get(a) returns a dict of {node: distance} entries, possibly {}.""" links = self.dict.setdefault(a, {}) if b is None: return links else: return links.get(b)
[ "Return", "a", "link", "distance", "or", "a", "dict", "of", "{", "node", ":", "distance", "}", "entries", ".", ".", "get", "(", "a", "b", ")", "returns", "the", "distance", "or", "None", ";", ".", "get", "(", "a", ")", "returns", "a", "dict", "of", "{", "node", ":", "distance", "}", "entries", "possibly", "{}", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/search.py#L443-L449
[ "def", "get", "(", "self", ",", "a", ",", "b", "=", "None", ")", ":", "links", "=", "self", ".", "dict", ".", "setdefault", "(", "a", ",", "{", "}", ")", "if", "b", "is", "None", ":", "return", "links", "else", ":", "return", "links", ".", "get", "(", "b", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
GraphProblem.h
h function is straight-line distance from a node's state to goal.
aima/search.py
def h(self, node): "h function is straight-line distance from a node's state to goal." locs = getattr(self.graph, 'locations', None) if locs: return int(distance(locs[node.state], locs[self.goal])) else: return infinity
def h(self, node): "h function is straight-line distance from a node's state to goal." locs = getattr(self.graph, 'locations', None) if locs: return int(distance(locs[node.state], locs[self.goal])) else: return infinity
[ "h", "function", "is", "straight", "-", "line", "distance", "from", "a", "node", "s", "state", "to", "goal", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/search.py#L532-L538
[ "def", "h", "(", "self", ",", "node", ")", ":", "locs", "=", "getattr", "(", "self", ".", "graph", ",", "'locations'", ",", "None", ")", "if", "locs", ":", "return", "int", "(", "distance", "(", "locs", "[", "node", ".", "state", "]", ",", "locs", "[", "self", ".", "goal", "]", ")", ")", "else", ":", "return", "infinity" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
NQueensProblem.actions
In the leftmost empty column, try all non-conflicting rows.
aima/search.py
def actions(self, state): "In the leftmost empty column, try all non-conflicting rows." if state[-1] is not None: return [] # All columns filled; no successors else: col = state.index(None) return [row for row in range(self.N) if not self.conflicted(state, row, col)]
def actions(self, state): "In the leftmost empty column, try all non-conflicting rows." if state[-1] is not None: return [] # All columns filled; no successors else: col = state.index(None) return [row for row in range(self.N) if not self.conflicted(state, row, col)]
[ "In", "the", "leftmost", "empty", "column", "try", "all", "non", "-", "conflicting", "rows", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/search.py#L555-L562
[ "def", "actions", "(", "self", ",", "state", ")", ":", "if", "state", "[", "-", "1", "]", "is", "not", "None", ":", "return", "[", "]", "# All columns filled; no successors", "else", ":", "col", "=", "state", ".", "index", "(", "None", ")", "return", "[", "row", "for", "row", "in", "range", "(", "self", ".", "N", ")", "if", "not", "self", ".", "conflicted", "(", "state", ",", "row", ",", "col", ")", "]" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
NQueensProblem.result
Place the next queen at the given row.
aima/search.py
def result(self, state, row): "Place the next queen at the given row." col = state.index(None) new = state[:] new[col] = row return new
def result(self, state, row): "Place the next queen at the given row." col = state.index(None) new = state[:] new[col] = row return new
[ "Place", "the", "next", "queen", "at", "the", "given", "row", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/search.py#L564-L569
[ "def", "result", "(", "self", ",", "state", ",", "row", ")", ":", "col", "=", "state", ".", "index", "(", "None", ")", "new", "=", "state", "[", ":", "]", "new", "[", "col", "]", "=", "row", "return", "new" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
NQueensProblem.conflicted
Would placing a queen at (row, col) conflict with anything?
aima/search.py
def conflicted(self, state, row, col): "Would placing a queen at (row, col) conflict with anything?" return any(self.conflict(row, col, state[c], c) for c in range(col))
def conflicted(self, state, row, col): "Would placing a queen at (row, col) conflict with anything?" return any(self.conflict(row, col, state[c], c) for c in range(col))
[ "Would", "placing", "a", "queen", "at", "(", "row", "col", ")", "conflict", "with", "anything?" ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/search.py#L571-L574
[ "def", "conflicted", "(", "self", ",", "state", ",", "row", ",", "col", ")", ":", "return", "any", "(", "self", ".", "conflict", "(", "row", ",", "col", ",", "state", "[", "c", "]", ",", "c", ")", "for", "c", "in", "range", "(", "col", ")", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
NQueensProblem.conflict
Would putting two queens in (row1, col1) and (row2, col2) conflict?
aima/search.py
def conflict(self, row1, col1, row2, col2): "Would putting two queens in (row1, col1) and (row2, col2) conflict?" return (row1 == row2 ## same row or col1 == col2 ## same column or row1-col1 == row2-col2 ## same \ diagonal or row1+col1 == row2+col2)
def conflict(self, row1, col1, row2, col2): "Would putting two queens in (row1, col1) and (row2, col2) conflict?" return (row1 == row2 ## same row or col1 == col2 ## same column or row1-col1 == row2-col2 ## same \ diagonal or row1+col1 == row2+col2)
[ "Would", "putting", "two", "queens", "in", "(", "row1", "col1", ")", "and", "(", "row2", "col2", ")", "conflict?" ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/search.py#L576-L581
[ "def", "conflict", "(", "self", ",", "row1", ",", "col1", ",", "row2", ",", "col2", ")", ":", "return", "(", "row1", "==", "row2", "## same row", "or", "col1", "==", "col2", "## same column", "or", "row1", "-", "col1", "==", "row2", "-", "col2", "## same \\ diagonal", "or", "row1", "+", "col1", "==", "row2", "+", "col2", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
Wordlist.lookup
See if prefix is in dictionary, as a full word or as a prefix. Return two values: the first is the lowest i such that words[i].startswith(prefix), or is None; the second is True iff prefix itself is in the Wordlist.
aima/search.py
def lookup(self, prefix, lo=0, hi=None): """See if prefix is in dictionary, as a full word or as a prefix. Return two values: the first is the lowest i such that words[i].startswith(prefix), or is None; the second is True iff prefix itself is in the Wordlist.""" words = self.words if hi is None: hi = len(words) i = bisect.bisect_left(words, prefix, lo, hi) if i < len(words) and words[i].startswith(prefix): return i, (words[i] == prefix) else: return None, False
def lookup(self, prefix, lo=0, hi=None): """See if prefix is in dictionary, as a full word or as a prefix. Return two values: the first is the lowest i such that words[i].startswith(prefix), or is None; the second is True iff prefix itself is in the Wordlist.""" words = self.words if hi is None: hi = len(words) i = bisect.bisect_left(words, prefix, lo, hi) if i < len(words) and words[i].startswith(prefix): return i, (words[i] == prefix) else: return None, False
[ "See", "if", "prefix", "is", "in", "dictionary", "as", "a", "full", "word", "or", "as", "a", "prefix", ".", "Return", "two", "values", ":", "the", "first", "is", "the", "lowest", "i", "such", "that", "words", "[", "i", "]", ".", "startswith", "(", "prefix", ")", "or", "is", "None", ";", "the", "second", "is", "True", "iff", "prefix", "itself", "is", "in", "the", "Wordlist", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/search.py#L670-L681
[ "def", "lookup", "(", "self", ",", "prefix", ",", "lo", "=", "0", ",", "hi", "=", "None", ")", ":", "words", "=", "self", ".", "words", "if", "hi", "is", "None", ":", "hi", "=", "len", "(", "words", ")", "i", "=", "bisect", ".", "bisect_left", "(", "words", ",", "prefix", ",", "lo", ",", "hi", ")", "if", "i", "<", "len", "(", "words", ")", "and", "words", "[", "i", "]", ".", "startswith", "(", "prefix", ")", ":", "return", "i", ",", "(", "words", "[", "i", "]", "==", "prefix", ")", "else", ":", "return", "None", ",", "False" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
BoggleFinder.set_board
Set the board, and find all the words in it.
aima/search.py
def set_board(self, board=None): "Set the board, and find all the words in it." if board is None: board = random_boggle() self.board = board self.neighbors = boggle_neighbors(len(board)) self.found = {} for i in range(len(board)): lo, hi = self.wordlist.bounds[board[i]] self.find(lo, hi, i, [], '') return self
def set_board(self, board=None): "Set the board, and find all the words in it." if board is None: board = random_boggle() self.board = board self.neighbors = boggle_neighbors(len(board)) self.found = {} for i in range(len(board)): lo, hi = self.wordlist.bounds[board[i]] self.find(lo, hi, i, [], '') return self
[ "Set", "the", "board", "and", "find", "all", "the", "words", "in", "it", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/search.py#L703-L713
[ "def", "set_board", "(", "self", ",", "board", "=", "None", ")", ":", "if", "board", "is", "None", ":", "board", "=", "random_boggle", "(", ")", "self", ".", "board", "=", "board", "self", ".", "neighbors", "=", "boggle_neighbors", "(", "len", "(", "board", ")", ")", "self", ".", "found", "=", "{", "}", "for", "i", "in", "range", "(", "len", "(", "board", ")", ")", ":", "lo", ",", "hi", "=", "self", ".", "wordlist", ".", "bounds", "[", "board", "[", "i", "]", "]", "self", ".", "find", "(", "lo", ",", "hi", ",", "i", ",", "[", "]", ",", "''", ")", "return", "self" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
BoggleFinder.find
Looking in square i, find the words that continue the prefix, considering the entries in self.wordlist.words[lo:hi], and not revisiting the squares in visited.
aima/search.py
def find(self, lo, hi, i, visited, prefix): """Looking in square i, find the words that continue the prefix, considering the entries in self.wordlist.words[lo:hi], and not revisiting the squares in visited.""" if i in visited: return wordpos, is_word = self.wordlist.lookup(prefix, lo, hi) if wordpos is not None: if is_word: self.found[prefix] = True visited.append(i) c = self.board[i] if c == 'Q': c = 'QU' prefix += c for j in self.neighbors[i]: self.find(wordpos, hi, j, visited, prefix) visited.pop()
def find(self, lo, hi, i, visited, prefix): """Looking in square i, find the words that continue the prefix, considering the entries in self.wordlist.words[lo:hi], and not revisiting the squares in visited.""" if i in visited: return wordpos, is_word = self.wordlist.lookup(prefix, lo, hi) if wordpos is not None: if is_word: self.found[prefix] = True visited.append(i) c = self.board[i] if c == 'Q': c = 'QU' prefix += c for j in self.neighbors[i]: self.find(wordpos, hi, j, visited, prefix) visited.pop()
[ "Looking", "in", "square", "i", "find", "the", "words", "that", "continue", "the", "prefix", "considering", "the", "entries", "in", "self", ".", "wordlist", ".", "words", "[", "lo", ":", "hi", "]", "and", "not", "revisiting", "the", "squares", "in", "visited", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/search.py#L715-L731
[ "def", "find", "(", "self", ",", "lo", ",", "hi", ",", "i", ",", "visited", ",", "prefix", ")", ":", "if", "i", "in", "visited", ":", "return", "wordpos", ",", "is_word", "=", "self", ".", "wordlist", ".", "lookup", "(", "prefix", ",", "lo", ",", "hi", ")", "if", "wordpos", "is", "not", "None", ":", "if", "is_word", ":", "self", ".", "found", "[", "prefix", "]", "=", "True", "visited", ".", "append", "(", "i", ")", "c", "=", "self", ".", "board", "[", "i", "]", "if", "c", "==", "'Q'", ":", "c", "=", "'QU'", "prefix", "+=", "c", "for", "j", "in", "self", ".", "neighbors", "[", "i", "]", ":", "self", ".", "find", "(", "wordpos", ",", "hi", ",", "j", ",", "visited", ",", "prefix", ")", "visited", ".", "pop", "(", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
BoggleFinder.score
The total score for the words found, according to the rules.
aima/search.py
def score(self): "The total score for the words found, according to the rules." return sum([self.scores[len(w)] for w in self.words()])
def score(self): "The total score for the words found, according to the rules." return sum([self.scores[len(w)] for w in self.words()])
[ "The", "total", "score", "for", "the", "words", "found", "according", "to", "the", "rules", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/search.py#L739-L741
[ "def", "score", "(", "self", ")", ":", "return", "sum", "(", "[", "self", ".", "scores", "[", "len", "(", "w", ")", "]", "for", "w", "in", "self", ".", "words", "(", ")", "]", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
TraceAgent
Wrap the agent's program to print its input and output. This will let you see what the agent is doing in the environment.
aima/agents.py
def TraceAgent(agent): """Wrap the agent's program to print its input and output. This will let you see what the agent is doing in the environment.""" old_program = agent.program def new_program(percept): action = old_program(percept) print '%s perceives %s and does %s' % (agent, percept, action) return action agent.program = new_program return agent
def TraceAgent(agent): """Wrap the agent's program to print its input and output. This will let you see what the agent is doing in the environment.""" old_program = agent.program def new_program(percept): action = old_program(percept) print '%s perceives %s and does %s' % (agent, percept, action) return action agent.program = new_program return agent
[ "Wrap", "the", "agent", "s", "program", "to", "print", "its", "input", "and", "output", ".", "This", "will", "let", "you", "see", "what", "the", "agent", "is", "doing", "in", "the", "environment", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/agents.py#L91-L100
[ "def", "TraceAgent", "(", "agent", ")", ":", "old_program", "=", "agent", ".", "program", "def", "new_program", "(", "percept", ")", ":", "action", "=", "old_program", "(", "percept", ")", "print", "'%s perceives %s and does %s'", "%", "(", "agent", ",", "percept", ",", "action", ")", "return", "action", "agent", ".", "program", "=", "new_program", "return", "agent" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
TableDrivenAgentProgram
This agent selects an action based on the percept sequence. It is practical only for tiny domains. To customize it, provide as table a dictionary of all {percept_sequence:action} pairs. [Fig. 2.7]
aima/agents.py
def TableDrivenAgentProgram(table): """This agent selects an action based on the percept sequence. It is practical only for tiny domains. To customize it, provide as table a dictionary of all {percept_sequence:action} pairs. [Fig. 2.7]""" percepts = [] def program(percept): percepts.append(percept) action = table.get(tuple(percepts)) return action return program
def TableDrivenAgentProgram(table): """This agent selects an action based on the percept sequence. It is practical only for tiny domains. To customize it, provide as table a dictionary of all {percept_sequence:action} pairs. [Fig. 2.7]""" percepts = [] def program(percept): percepts.append(percept) action = table.get(tuple(percepts)) return action return program
[ "This", "agent", "selects", "an", "action", "based", "on", "the", "percept", "sequence", ".", "It", "is", "practical", "only", "for", "tiny", "domains", ".", "To", "customize", "it", "provide", "as", "table", "a", "dictionary", "of", "all", "{", "percept_sequence", ":", "action", "}", "pairs", ".", "[", "Fig", ".", "2", ".", "7", "]" ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/agents.py#L104-L114
[ "def", "TableDrivenAgentProgram", "(", "table", ")", ":", "percepts", "=", "[", "]", "def", "program", "(", "percept", ")", ":", "percepts", ".", "append", "(", "percept", ")", "action", "=", "table", ".", "get", "(", "tuple", "(", "percepts", ")", ")", "return", "action", "return", "program" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
SimpleReflexAgentProgram
This agent takes action based solely on the percept. [Fig. 2.10]
aima/agents.py
def SimpleReflexAgentProgram(rules, interpret_input): "This agent takes action based solely on the percept. [Fig. 2.10]" def program(percept): state = interpret_input(percept) rule = rule_match(state, rules) action = rule.action return action return program
def SimpleReflexAgentProgram(rules, interpret_input): "This agent takes action based solely on the percept. [Fig. 2.10]" def program(percept): state = interpret_input(percept) rule = rule_match(state, rules) action = rule.action return action return program
[ "This", "agent", "takes", "action", "based", "solely", "on", "the", "percept", ".", "[", "Fig", ".", "2", ".", "10", "]" ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/agents.py#L122-L129
[ "def", "SimpleReflexAgentProgram", "(", "rules", ",", "interpret_input", ")", ":", "def", "program", "(", "percept", ")", ":", "state", "=", "interpret_input", "(", "percept", ")", "rule", "=", "rule_match", "(", "state", ",", "rules", ")", "action", "=", "rule", ".", "action", "return", "action", "return", "program" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
ModelBasedReflexAgentProgram
This agent takes action based on the percept and state. [Fig. 2.12]
aima/agents.py
def ModelBasedReflexAgentProgram(rules, update_state): "This agent takes action based on the percept and state. [Fig. 2.12]" def program(percept): program.state = update_state(program.state, program.action, percept) rule = rule_match(program.state, rules) action = rule.action return action program.state = program.action = None return program
def ModelBasedReflexAgentProgram(rules, update_state): "This agent takes action based on the percept and state. [Fig. 2.12]" def program(percept): program.state = update_state(program.state, program.action, percept) rule = rule_match(program.state, rules) action = rule.action return action program.state = program.action = None return program
[ "This", "agent", "takes", "action", "based", "on", "the", "percept", "and", "state", ".", "[", "Fig", ".", "2", ".", "12", "]" ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/agents.py#L131-L139
[ "def", "ModelBasedReflexAgentProgram", "(", "rules", ",", "update_state", ")", ":", "def", "program", "(", "percept", ")", ":", "program", ".", "state", "=", "update_state", "(", "program", ".", "state", ",", "program", ".", "action", ",", "percept", ")", "rule", "=", "rule_match", "(", "program", ".", "state", ",", "rules", ")", "action", "=", "rule", ".", "action", "return", "action", "program", ".", "state", "=", "program", ".", "action", "=", "None", "return", "program" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
TableDrivenVacuumAgent
[Fig. 2.3]
aima/agents.py
def TableDrivenVacuumAgent(): "[Fig. 2.3]" table = {((loc_A, 'Clean'),): 'Right', ((loc_A, 'Dirty'),): 'Suck', ((loc_B, 'Clean'),): 'Left', ((loc_B, 'Dirty'),): 'Suck', ((loc_A, 'Clean'), (loc_A, 'Clean')): 'Right', ((loc_A, 'Clean'), (loc_A, 'Dirty')): 'Suck', # ... ((loc_A, 'Clean'), (loc_A, 'Clean'), (loc_A, 'Clean')): 'Right', ((loc_A, 'Clean'), (loc_A, 'Clean'), (loc_A, 'Dirty')): 'Suck', # ... } return Agent(TableDrivenAgentProgram(table))
def TableDrivenVacuumAgent(): "[Fig. 2.3]" table = {((loc_A, 'Clean'),): 'Right', ((loc_A, 'Dirty'),): 'Suck', ((loc_B, 'Clean'),): 'Left', ((loc_B, 'Dirty'),): 'Suck', ((loc_A, 'Clean'), (loc_A, 'Clean')): 'Right', ((loc_A, 'Clean'), (loc_A, 'Dirty')): 'Suck', # ... ((loc_A, 'Clean'), (loc_A, 'Clean'), (loc_A, 'Clean')): 'Right', ((loc_A, 'Clean'), (loc_A, 'Clean'), (loc_A, 'Dirty')): 'Suck', # ... } return Agent(TableDrivenAgentProgram(table))
[ "[", "Fig", ".", "2", ".", "3", "]" ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/agents.py#L157-L170
[ "def", "TableDrivenVacuumAgent", "(", ")", ":", "table", "=", "{", "(", "(", "loc_A", ",", "'Clean'", ")", ",", ")", ":", "'Right'", ",", "(", "(", "loc_A", ",", "'Dirty'", ")", ",", ")", ":", "'Suck'", ",", "(", "(", "loc_B", ",", "'Clean'", ")", ",", ")", ":", "'Left'", ",", "(", "(", "loc_B", ",", "'Dirty'", ")", ",", ")", ":", "'Suck'", ",", "(", "(", "loc_A", ",", "'Clean'", ")", ",", "(", "loc_A", ",", "'Clean'", ")", ")", ":", "'Right'", ",", "(", "(", "loc_A", ",", "'Clean'", ")", ",", "(", "loc_A", ",", "'Dirty'", ")", ")", ":", "'Suck'", ",", "# ...", "(", "(", "loc_A", ",", "'Clean'", ")", ",", "(", "loc_A", ",", "'Clean'", ")", ",", "(", "loc_A", ",", "'Clean'", ")", ")", ":", "'Right'", ",", "(", "(", "loc_A", ",", "'Clean'", ")", ",", "(", "loc_A", ",", "'Clean'", ")", ",", "(", "loc_A", ",", "'Dirty'", ")", ")", ":", "'Suck'", ",", "# ...", "}", "return", "Agent", "(", "TableDrivenAgentProgram", "(", "table", ")", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
ReflexVacuumAgent
A reflex agent for the two-state vacuum environment. [Fig. 2.8]
aima/agents.py
def ReflexVacuumAgent(): "A reflex agent for the two-state vacuum environment. [Fig. 2.8]" def program((location, status)): if status == 'Dirty': return 'Suck' elif location == loc_A: return 'Right' elif location == loc_B: return 'Left' return Agent(program)
def ReflexVacuumAgent(): "A reflex agent for the two-state vacuum environment. [Fig. 2.8]" def program((location, status)): if status == 'Dirty': return 'Suck' elif location == loc_A: return 'Right' elif location == loc_B: return 'Left' return Agent(program)
[ "A", "reflex", "agent", "for", "the", "two", "-", "state", "vacuum", "environment", ".", "[", "Fig", ".", "2", ".", "8", "]" ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/agents.py#L173-L179
[ "def", "ReflexVacuumAgent", "(", ")", ":", "def", "program", "(", "(", "location", ",", "status", ")", ")", ":", "if", "status", "==", "'Dirty'", ":", "return", "'Suck'", "elif", "location", "==", "loc_A", ":", "return", "'Right'", "elif", "location", "==", "loc_B", ":", "return", "'Left'", "return", "Agent", "(", "program", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
ModelBasedVacuumAgent
An agent that keeps track of what locations are clean or dirty.
aima/agents.py
def ModelBasedVacuumAgent(): "An agent that keeps track of what locations are clean or dirty." model = {loc_A: None, loc_B: None} def program((location, status)): "Same as ReflexVacuumAgent, except if everything is clean, do NoOp." model[location] = status ## Update the model here if model[loc_A] == model[loc_B] == 'Clean': return 'NoOp' elif status == 'Dirty': return 'Suck' elif location == loc_A: return 'Right' elif location == loc_B: return 'Left' return Agent(program)
def ModelBasedVacuumAgent(): "An agent that keeps track of what locations are clean or dirty." model = {loc_A: None, loc_B: None} def program((location, status)): "Same as ReflexVacuumAgent, except if everything is clean, do NoOp." model[location] = status ## Update the model here if model[loc_A] == model[loc_B] == 'Clean': return 'NoOp' elif status == 'Dirty': return 'Suck' elif location == loc_A: return 'Right' elif location == loc_B: return 'Left' return Agent(program)
[ "An", "agent", "that", "keeps", "track", "of", "what", "locations", "are", "clean", "or", "dirty", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/agents.py#L181-L191
[ "def", "ModelBasedVacuumAgent", "(", ")", ":", "model", "=", "{", "loc_A", ":", "None", ",", "loc_B", ":", "None", "}", "def", "program", "(", "(", "location", ",", "status", ")", ")", ":", "\"Same as ReflexVacuumAgent, except if everything is clean, do NoOp.\"", "model", "[", "location", "]", "=", "status", "## Update the model here", "if", "model", "[", "loc_A", "]", "==", "model", "[", "loc_B", "]", "==", "'Clean'", ":", "return", "'NoOp'", "elif", "status", "==", "'Dirty'", ":", "return", "'Suck'", "elif", "location", "==", "loc_A", ":", "return", "'Right'", "elif", "location", "==", "loc_B", ":", "return", "'Left'", "return", "Agent", "(", "program", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
compare_agents
See how well each of several agents do in n instances of an environment. Pass in a factory (constructor) for environments, and several for agents. Create n instances of the environment, and run each agent in copies of each one for steps. Return a list of (agent, average-score) tuples.
aima/agents.py
def compare_agents(EnvFactory, AgentFactories, n=10, steps=1000): """See how well each of several agents do in n instances of an environment. Pass in a factory (constructor) for environments, and several for agents. Create n instances of the environment, and run each agent in copies of each one for steps. Return a list of (agent, average-score) tuples.""" envs = [EnvFactory() for i in range(n)] return [(A, test_agent(A, steps, copy.deepcopy(envs))) for A in AgentFactories]
def compare_agents(EnvFactory, AgentFactories, n=10, steps=1000): """See how well each of several agents do in n instances of an environment. Pass in a factory (constructor) for environments, and several for agents. Create n instances of the environment, and run each agent in copies of each one for steps. Return a list of (agent, average-score) tuples.""" envs = [EnvFactory() for i in range(n)] return [(A, test_agent(A, steps, copy.deepcopy(envs))) for A in AgentFactories]
[ "See", "how", "well", "each", "of", "several", "agents", "do", "in", "n", "instances", "of", "an", "environment", ".", "Pass", "in", "a", "factory", "(", "constructor", ")", "for", "environments", "and", "several", "for", "agents", ".", "Create", "n", "instances", "of", "the", "environment", "and", "run", "each", "agent", "in", "copies", "of", "each", "one", "for", "steps", ".", "Return", "a", "list", "of", "(", "agent", "average", "-", "score", ")", "tuples", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/agents.py#L491-L498
[ "def", "compare_agents", "(", "EnvFactory", ",", "AgentFactories", ",", "n", "=", "10", ",", "steps", "=", "1000", ")", ":", "envs", "=", "[", "EnvFactory", "(", ")", "for", "i", "in", "range", "(", "n", ")", "]", "return", "[", "(", "A", ",", "test_agent", "(", "A", ",", "steps", ",", "copy", ".", "deepcopy", "(", "envs", ")", ")", ")", "for", "A", "in", "AgentFactories", "]" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
Environment.step
Run the environment for one time step. If the actions and exogenous changes are independent, this method will do. If there are interactions between them, you'll need to override this method.
aima/agents.py
def step(self): """Run the environment for one time step. If the actions and exogenous changes are independent, this method will do. If there are interactions between them, you'll need to override this method.""" if not self.is_done(): actions = [agent.program(self.percept(agent)) for agent in self.agents] for (agent, action) in zip(self.agents, actions): self.execute_action(agent, action) self.exogenous_change()
def step(self): """Run the environment for one time step. If the actions and exogenous changes are independent, this method will do. If there are interactions between them, you'll need to override this method.""" if not self.is_done(): actions = [agent.program(self.percept(agent)) for agent in self.agents] for (agent, action) in zip(self.agents, actions): self.execute_action(agent, action) self.exogenous_change()
[ "Run", "the", "environment", "for", "one", "time", "step", ".", "If", "the", "actions", "and", "exogenous", "changes", "are", "independent", "this", "method", "will", "do", ".", "If", "there", "are", "interactions", "between", "them", "you", "ll", "need", "to", "override", "this", "method", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/agents.py#L234-L244
[ "def", "step", "(", "self", ")", ":", "if", "not", "self", ".", "is_done", "(", ")", ":", "actions", "=", "[", "agent", ".", "program", "(", "self", ".", "percept", "(", "agent", ")", ")", "for", "agent", "in", "self", ".", "agents", "]", "for", "(", "agent", ",", "action", ")", "in", "zip", "(", "self", ".", "agents", ",", "actions", ")", ":", "self", ".", "execute_action", "(", "agent", ",", "action", ")", "self", ".", "exogenous_change", "(", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
Environment.run
Run the Environment for given number of time steps.
aima/agents.py
def run(self, steps=1000): "Run the Environment for given number of time steps." for step in range(steps): if self.is_done(): return self.step()
def run(self, steps=1000): "Run the Environment for given number of time steps." for step in range(steps): if self.is_done(): return self.step()
[ "Run", "the", "Environment", "for", "given", "number", "of", "time", "steps", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/agents.py#L246-L250
[ "def", "run", "(", "self", ",", "steps", "=", "1000", ")", ":", "for", "step", "in", "range", "(", "steps", ")", ":", "if", "self", ".", "is_done", "(", ")", ":", "return", "self", ".", "step", "(", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
Environment.list_things_at
Return all things exactly at a given location.
aima/agents.py
def list_things_at(self, location, tclass=Thing): "Return all things exactly at a given location." return [thing for thing in self.things if thing.location == location and isinstance(thing, tclass)]
def list_things_at(self, location, tclass=Thing): "Return all things exactly at a given location." return [thing for thing in self.things if thing.location == location and isinstance(thing, tclass)]
[ "Return", "all", "things", "exactly", "at", "a", "given", "location", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/agents.py#L252-L255
[ "def", "list_things_at", "(", "self", ",", "location", ",", "tclass", "=", "Thing", ")", ":", "return", "[", "thing", "for", "thing", "in", "self", ".", "things", "if", "thing", ".", "location", "==", "location", "and", "isinstance", "(", "thing", ",", "tclass", ")", "]" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
Environment.add_thing
Add a thing to the environment, setting its location. For convenience, if thing is an agent program we make a new agent for it. (Shouldn't need to override this.
aima/agents.py
def add_thing(self, thing, location=None): """Add a thing to the environment, setting its location. For convenience, if thing is an agent program we make a new agent for it. (Shouldn't need to override this.""" if not isinstance(thing, Thing): thing = Agent(thing) assert thing not in self.things, "Don't add the same thing twice" thing.location = location or self.default_location(thing) self.things.append(thing) if isinstance(thing, Agent): thing.performance = 0 self.agents.append(thing)
def add_thing(self, thing, location=None): """Add a thing to the environment, setting its location. For convenience, if thing is an agent program we make a new agent for it. (Shouldn't need to override this.""" if not isinstance(thing, Thing): thing = Agent(thing) assert thing not in self.things, "Don't add the same thing twice" thing.location = location or self.default_location(thing) self.things.append(thing) if isinstance(thing, Agent): thing.performance = 0 self.agents.append(thing)
[ "Add", "a", "thing", "to", "the", "environment", "setting", "its", "location", ".", "For", "convenience", "if", "thing", "is", "an", "agent", "program", "we", "make", "a", "new", "agent", "for", "it", ".", "(", "Shouldn", "t", "need", "to", "override", "this", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/agents.py#L262-L273
[ "def", "add_thing", "(", "self", ",", "thing", ",", "location", "=", "None", ")", ":", "if", "not", "isinstance", "(", "thing", ",", "Thing", ")", ":", "thing", "=", "Agent", "(", "thing", ")", "assert", "thing", "not", "in", "self", ".", "things", ",", "\"Don't add the same thing twice\"", "thing", ".", "location", "=", "location", "or", "self", ".", "default_location", "(", "thing", ")", "self", ".", "things", ".", "append", "(", "thing", ")", "if", "isinstance", "(", "thing", ",", "Agent", ")", ":", "thing", ".", "performance", "=", "0", "self", ".", "agents", ".", "append", "(", "thing", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
Environment.delete_thing
Remove a thing from the environment.
aima/agents.py
def delete_thing(self, thing): """Remove a thing from the environment.""" try: self.things.remove(thing) except ValueError, e: print e print " in Environment delete_thing" print " Thing to be removed: %s at %s" % (thing, thing.location) print " from list: %s" % [(thing, thing.location) for thing in self.things] if thing in self.agents: self.agents.remove(thing)
def delete_thing(self, thing): """Remove a thing from the environment.""" try: self.things.remove(thing) except ValueError, e: print e print " in Environment delete_thing" print " Thing to be removed: %s at %s" % (thing, thing.location) print " from list: %s" % [(thing, thing.location) for thing in self.things] if thing in self.agents: self.agents.remove(thing)
[ "Remove", "a", "thing", "from", "the", "environment", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/agents.py#L275-L286
[ "def", "delete_thing", "(", "self", ",", "thing", ")", ":", "try", ":", "self", ".", "things", ".", "remove", "(", "thing", ")", "except", "ValueError", ",", "e", ":", "print", "e", "print", "\" in Environment delete_thing\"", "print", "\" Thing to be removed: %s at %s\"", "%", "(", "thing", ",", "thing", ".", "location", ")", "print", "\" from list: %s\"", "%", "[", "(", "thing", ",", "thing", ".", "location", ")", "for", "thing", "in", "self", ".", "things", "]", "if", "thing", "in", "self", ".", "agents", ":", "self", ".", "agents", ".", "remove", "(", "thing", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
XYEnvironment.things_near
Return all things within radius of location.
aima/agents.py
def things_near(self, location, radius=None): "Return all things within radius of location." if radius is None: radius = self.perceptible_distance radius2 = radius * radius return [thing for thing in self.things if distance2(location, thing.location) <= radius2]
def things_near(self, location, radius=None): "Return all things within radius of location." if radius is None: radius = self.perceptible_distance radius2 = radius * radius return [thing for thing in self.things if distance2(location, thing.location) <= radius2]
[ "Return", "all", "things", "within", "radius", "of", "location", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/agents.py#L301-L306
[ "def", "things_near", "(", "self", ",", "location", ",", "radius", "=", "None", ")", ":", "if", "radius", "is", "None", ":", "radius", "=", "self", ".", "perceptible_distance", "radius2", "=", "radius", "*", "radius", "return", "[", "thing", "for", "thing", "in", "self", ".", "things", "if", "distance2", "(", "location", ",", "thing", ".", "location", ")", "<=", "radius2", "]" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
XYEnvironment.percept
By default, agent perceives things within a default radius.
aima/agents.py
def percept(self, agent): "By default, agent perceives things within a default radius." return [self.thing_percept(thing, agent) for thing in self.things_near(agent.location)]
def percept(self, agent): "By default, agent perceives things within a default radius." return [self.thing_percept(thing, agent) for thing in self.things_near(agent.location)]
[ "By", "default", "agent", "perceives", "things", "within", "a", "default", "radius", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/agents.py#L310-L313
[ "def", "percept", "(", "self", ",", "agent", ")", ":", "return", "[", "self", ".", "thing_percept", "(", "thing", ",", "agent", ")", "for", "thing", "in", "self", ".", "things_near", "(", "agent", ".", "location", ")", "]" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
XYEnvironment.move_to
Move a thing to a new location.
aima/agents.py
def move_to(self, thing, destination): "Move a thing to a new location." thing.bump = self.some_things_at(destination, Obstacle) if not thing.bump: thing.location = destination for o in self.observers: o.thing_moved(thing)
def move_to(self, thing, destination): "Move a thing to a new location." thing.bump = self.some_things_at(destination, Obstacle) if not thing.bump: thing.location = destination for o in self.observers: o.thing_moved(thing)
[ "Move", "a", "thing", "to", "a", "new", "location", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/agents.py#L339-L345
[ "def", "move_to", "(", "self", ",", "thing", ",", "destination", ")", ":", "thing", ".", "bump", "=", "self", ".", "some_things_at", "(", "destination", ",", "Obstacle", ")", "if", "not", "thing", ".", "bump", ":", "thing", ".", "location", "=", "destination", "for", "o", "in", "self", ".", "observers", ":", "o", ".", "thing_moved", "(", "thing", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
XYEnvironment.add_walls
Put walls around the entire perimeter of the grid.
aima/agents.py
def add_walls(self): "Put walls around the entire perimeter of the grid." for x in range(self.width): self.add_thing(Wall(), (x, 0)) self.add_thing(Wall(), (x, self.height-1)) for y in range(self.height): self.add_thing(Wall(), (0, y)) self.add_thing(Wall(), (self.width-1, y))
def add_walls(self): "Put walls around the entire perimeter of the grid." for x in range(self.width): self.add_thing(Wall(), (x, 0)) self.add_thing(Wall(), (x, self.height-1)) for y in range(self.height): self.add_thing(Wall(), (0, y)) self.add_thing(Wall(), (self.width-1, y))
[ "Put", "walls", "around", "the", "entire", "perimeter", "of", "the", "grid", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/agents.py#L360-L367
[ "def", "add_walls", "(", "self", ")", ":", "for", "x", "in", "range", "(", "self", ".", "width", ")", ":", "self", ".", "add_thing", "(", "Wall", "(", ")", ",", "(", "x", ",", "0", ")", ")", "self", ".", "add_thing", "(", "Wall", "(", ")", ",", "(", "x", ",", "self", ".", "height", "-", "1", ")", ")", "for", "y", "in", "range", "(", "self", ".", "height", ")", ":", "self", ".", "add_thing", "(", "Wall", "(", ")", ",", "(", "0", ",", "y", ")", ")", "self", ".", "add_thing", "(", "Wall", "(", ")", ",", "(", "self", ".", "width", "-", "1", ",", "y", ")", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
VacuumEnvironment.percept
The percept is a tuple of ('Dirty' or 'Clean', 'Bump' or 'None'). Unlike the TrivialVacuumEnvironment, location is NOT perceived.
aima/agents.py
def percept(self, agent): """The percept is a tuple of ('Dirty' or 'Clean', 'Bump' or 'None'). Unlike the TrivialVacuumEnvironment, location is NOT perceived.""" status = if_(self.some_things_at(agent.location, Dirt), 'Dirty', 'Clean') bump = if_(agent.bump, 'Bump', 'None') return (status, bump)
def percept(self, agent): """The percept is a tuple of ('Dirty' or 'Clean', 'Bump' or 'None'). Unlike the TrivialVacuumEnvironment, location is NOT perceived.""" status = if_(self.some_things_at(agent.location, Dirt), 'Dirty', 'Clean') bump = if_(agent.bump, 'Bump', 'None') return (status, bump)
[ "The", "percept", "is", "a", "tuple", "of", "(", "Dirty", "or", "Clean", "Bump", "or", "None", ")", ".", "Unlike", "the", "TrivialVacuumEnvironment", "location", "is", "NOT", "perceived", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/agents.py#L410-L416
[ "def", "percept", "(", "self", ",", "agent", ")", ":", "status", "=", "if_", "(", "self", ".", "some_things_at", "(", "agent", ".", "location", ",", "Dirt", ")", ",", "'Dirty'", ",", "'Clean'", ")", "bump", "=", "if_", "(", "agent", ".", "bump", ",", "'Bump'", ",", "'None'", ")", "return", "(", "status", ",", "bump", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
TrivialVacuumEnvironment.execute_action
Change agent's location and/or location's status; track performance. Score 10 for each dirt cleaned; -1 for each move.
aima/agents.py
def execute_action(self, agent, action): """Change agent's location and/or location's status; track performance. Score 10 for each dirt cleaned; -1 for each move.""" if action == 'Right': agent.location = loc_B agent.performance -= 1 elif action == 'Left': agent.location = loc_A agent.performance -= 1 elif action == 'Suck': if self.status[agent.location] == 'Dirty': agent.performance += 10 self.status[agent.location] = 'Clean'
def execute_action(self, agent, action): """Change agent's location and/or location's status; track performance. Score 10 for each dirt cleaned; -1 for each move.""" if action == 'Right': agent.location = loc_B agent.performance -= 1 elif action == 'Left': agent.location = loc_A agent.performance -= 1 elif action == 'Suck': if self.status[agent.location] == 'Dirty': agent.performance += 10 self.status[agent.location] = 'Clean'
[ "Change", "agent", "s", "location", "and", "/", "or", "location", "s", "status", ";", "track", "performance", ".", "Score", "10", "for", "each", "dirt", "cleaned", ";", "-", "1", "for", "each", "move", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/agents.py#L450-L462
[ "def", "execute_action", "(", "self", ",", "agent", ",", "action", ")", ":", "if", "action", "==", "'Right'", ":", "agent", ".", "location", "=", "loc_B", "agent", ".", "performance", "-=", "1", "elif", "action", "==", "'Left'", ":", "agent", ".", "location", "=", "loc_A", "agent", ".", "performance", "-=", "1", "elif", "action", "==", "'Suck'", ":", "if", "self", ".", "status", "[", "agent", ".", "location", "]", "==", "'Dirty'", ":", "agent", ".", "performance", "+=", "10", "self", ".", "status", "[", "agent", ".", "location", "]", "=", "'Clean'" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
Rules
Create a dictionary mapping symbols to alternative sequences. >>> Rules(A = "B C | D E") {'A': [['B', 'C'], ['D', 'E']]}
aima/nlp.py
def Rules(**rules): """Create a dictionary mapping symbols to alternative sequences. >>> Rules(A = "B C | D E") {'A': [['B', 'C'], ['D', 'E']]} """ for (lhs, rhs) in rules.items(): rules[lhs] = [alt.strip().split() for alt in rhs.split('|')] return rules
def Rules(**rules): """Create a dictionary mapping symbols to alternative sequences. >>> Rules(A = "B C | D E") {'A': [['B', 'C'], ['D', 'E']]} """ for (lhs, rhs) in rules.items(): rules[lhs] = [alt.strip().split() for alt in rhs.split('|')] return rules
[ "Create", "a", "dictionary", "mapping", "symbols", "to", "alternative", "sequences", ".", ">>>", "Rules", "(", "A", "=", "B", "C", "|", "D", "E", ")", "{", "A", ":", "[[", "B", "C", "]", "[", "D", "E", "]]", "}" ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/nlp.py#L11-L18
[ "def", "Rules", "(", "*", "*", "rules", ")", ":", "for", "(", "lhs", ",", "rhs", ")", "in", "rules", ".", "items", "(", ")", ":", "rules", "[", "lhs", "]", "=", "[", "alt", ".", "strip", "(", ")", ".", "split", "(", ")", "for", "alt", "in", "rhs", ".", "split", "(", "'|'", ")", "]", "return", "rules" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
Lexicon
Create a dictionary mapping symbols to alternative words. >>> Lexicon(Art = "the | a | an") {'Art': ['the', 'a', 'an']}
aima/nlp.py
def Lexicon(**rules): """Create a dictionary mapping symbols to alternative words. >>> Lexicon(Art = "the | a | an") {'Art': ['the', 'a', 'an']} """ for (lhs, rhs) in rules.items(): rules[lhs] = [word.strip() for word in rhs.split('|')] return rules
def Lexicon(**rules): """Create a dictionary mapping symbols to alternative words. >>> Lexicon(Art = "the | a | an") {'Art': ['the', 'a', 'an']} """ for (lhs, rhs) in rules.items(): rules[lhs] = [word.strip() for word in rhs.split('|')] return rules
[ "Create", "a", "dictionary", "mapping", "symbols", "to", "alternative", "words", ".", ">>>", "Lexicon", "(", "Art", "=", "the", "|", "a", "|", "an", ")", "{", "Art", ":", "[", "the", "a", "an", "]", "}" ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/nlp.py#L20-L27
[ "def", "Lexicon", "(", "*", "*", "rules", ")", ":", "for", "(", "lhs", ",", "rhs", ")", "in", "rules", ".", "items", "(", ")", ":", "rules", "[", "lhs", "]", "=", "[", "word", ".", "strip", "(", ")", "for", "word", "in", "rhs", ".", "split", "(", "'|'", ")", "]", "return", "rules" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
generate_random
Replace each token in s by a random entry in grammar (recursively). This is useful for testing a grammar, e.g. generate_random(E_)
aima/nlp.py
def generate_random(grammar=E_, s='S'): """Replace each token in s by a random entry in grammar (recursively). This is useful for testing a grammar, e.g. generate_random(E_)""" import random def rewrite(tokens, into): for token in tokens: if token in grammar.rules: rewrite(random.choice(grammar.rules[token]), into) elif token in grammar.lexicon: into.append(random.choice(grammar.lexicon[token])) else: into.append(token) return into return ' '.join(rewrite(s.split(), []))
def generate_random(grammar=E_, s='S'): """Replace each token in s by a random entry in grammar (recursively). This is useful for testing a grammar, e.g. generate_random(E_)""" import random def rewrite(tokens, into): for token in tokens: if token in grammar.rules: rewrite(random.choice(grammar.rules[token]), into) elif token in grammar.lexicon: into.append(random.choice(grammar.lexicon[token])) else: into.append(token) return into return ' '.join(rewrite(s.split(), []))
[ "Replace", "each", "token", "in", "s", "by", "a", "random", "entry", "in", "grammar", "(", "recursively", ")", ".", "This", "is", "useful", "for", "testing", "a", "grammar", "e", ".", "g", ".", "generate_random", "(", "E_", ")" ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/nlp.py#L89-L104
[ "def", "generate_random", "(", "grammar", "=", "E_", ",", "s", "=", "'S'", ")", ":", "import", "random", "def", "rewrite", "(", "tokens", ",", "into", ")", ":", "for", "token", "in", "tokens", ":", "if", "token", "in", "grammar", ".", "rules", ":", "rewrite", "(", "random", ".", "choice", "(", "grammar", ".", "rules", "[", "token", "]", ")", ",", "into", ")", "elif", "token", "in", "grammar", ".", "lexicon", ":", "into", ".", "append", "(", "random", ".", "choice", "(", "grammar", ".", "lexicon", "[", "token", "]", ")", ")", "else", ":", "into", ".", "append", "(", "token", ")", "return", "into", "return", "' '", ".", "join", "(", "rewrite", "(", "s", ".", "split", "(", ")", ",", "[", "]", ")", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
Chart.parses
Return a list of parses; words can be a list or string. >>> chart = Chart(E_NP_) >>> chart.parses('happy man', 'NP') [[0, 2, 'NP', [('Adj', 'happy'), [1, 2, 'NP', [('N', 'man')], []]], []]]
aima/nlp.py
def parses(self, words, S='S'): """Return a list of parses; words can be a list or string. >>> chart = Chart(E_NP_) >>> chart.parses('happy man', 'NP') [[0, 2, 'NP', [('Adj', 'happy'), [1, 2, 'NP', [('N', 'man')], []]], []]] """ if isinstance(words, str): words = words.split() self.parse(words, S) # Return all the parses that span the whole input # 'span the whole input' => begin at 0, end at len(words) return [[i, j, S, found, []] for (i, j, lhs, found, expects) in self.chart[len(words)] # assert j == len(words) if i == 0 and lhs == S and expects == []]
def parses(self, words, S='S'): """Return a list of parses; words can be a list or string. >>> chart = Chart(E_NP_) >>> chart.parses('happy man', 'NP') [[0, 2, 'NP', [('Adj', 'happy'), [1, 2, 'NP', [('N', 'man')], []]], []]] """ if isinstance(words, str): words = words.split() self.parse(words, S) # Return all the parses that span the whole input # 'span the whole input' => begin at 0, end at len(words) return [[i, j, S, found, []] for (i, j, lhs, found, expects) in self.chart[len(words)] # assert j == len(words) if i == 0 and lhs == S and expects == []]
[ "Return", "a", "list", "of", "parses", ";", "words", "can", "be", "a", "list", "or", "string", ".", ">>>", "chart", "=", "Chart", "(", "E_NP_", ")", ">>>", "chart", ".", "parses", "(", "happy", "man", "NP", ")", "[[", "0", "2", "NP", "[", "(", "Adj", "happy", ")", "[", "1", "2", "NP", "[", "(", "N", "man", ")", "]", "[]", "]]", "[]", "]]" ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/nlp.py#L123-L137
[ "def", "parses", "(", "self", ",", "words", ",", "S", "=", "'S'", ")", ":", "if", "isinstance", "(", "words", ",", "str", ")", ":", "words", "=", "words", ".", "split", "(", ")", "self", ".", "parse", "(", "words", ",", "S", ")", "# Return all the parses that span the whole input", "# 'span the whole input' => begin at 0, end at len(words)", "return", "[", "[", "i", ",", "j", ",", "S", ",", "found", ",", "[", "]", "]", "for", "(", "i", ",", "j", ",", "lhs", ",", "found", ",", "expects", ")", "in", "self", ".", "chart", "[", "len", "(", "words", ")", "]", "# assert j == len(words)", "if", "i", "==", "0", "and", "lhs", "==", "S", "and", "expects", "==", "[", "]", "]" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
Chart.parse
Parse a list of words; according to the grammar. Leave results in the chart.
aima/nlp.py
def parse(self, words, S='S'): """Parse a list of words; according to the grammar. Leave results in the chart.""" self.chart = [[] for i in range(len(words)+1)] self.add_edge([0, 0, 'S_', [], [S]]) for i in range(len(words)): self.scanner(i, words[i]) return self.chart
def parse(self, words, S='S'): """Parse a list of words; according to the grammar. Leave results in the chart.""" self.chart = [[] for i in range(len(words)+1)] self.add_edge([0, 0, 'S_', [], [S]]) for i in range(len(words)): self.scanner(i, words[i]) return self.chart
[ "Parse", "a", "list", "of", "words", ";", "according", "to", "the", "grammar", ".", "Leave", "results", "in", "the", "chart", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/nlp.py#L139-L146
[ "def", "parse", "(", "self", ",", "words", ",", "S", "=", "'S'", ")", ":", "self", ".", "chart", "=", "[", "[", "]", "for", "i", "in", "range", "(", "len", "(", "words", ")", "+", "1", ")", "]", "self", ".", "add_edge", "(", "[", "0", ",", "0", ",", "'S_'", ",", "[", "]", ",", "[", "S", "]", "]", ")", "for", "i", "in", "range", "(", "len", "(", "words", ")", ")", ":", "self", ".", "scanner", "(", "i", ",", "words", "[", "i", "]", ")", "return", "self", ".", "chart" ]
3572b2fb92039b4a1abe384be8545560fbd3d470
valid
Chart.add_edge
Add edge to chart, and see if it extends or predicts another edge.
aima/nlp.py
def add_edge(self, edge): "Add edge to chart, and see if it extends or predicts another edge." start, end, lhs, found, expects = edge if edge not in self.chart[end]: self.chart[end].append(edge) if self.trace: print '%10s: added %s' % (caller(2), edge) if not expects: self.extender(edge) else: self.predictor(edge)
def add_edge(self, edge): "Add edge to chart, and see if it extends or predicts another edge." start, end, lhs, found, expects = edge if edge not in self.chart[end]: self.chart[end].append(edge) if self.trace: print '%10s: added %s' % (caller(2), edge) if not expects: self.extender(edge) else: self.predictor(edge)
[ "Add", "edge", "to", "chart", "and", "see", "if", "it", "extends", "or", "predicts", "another", "edge", "." ]
hobson/aima
python
https://github.com/hobson/aima/blob/3572b2fb92039b4a1abe384be8545560fbd3d470/aima/nlp.py#L148-L158
[ "def", "add_edge", "(", "self", ",", "edge", ")", ":", "start", ",", "end", ",", "lhs", ",", "found", ",", "expects", "=", "edge", "if", "edge", "not", "in", "self", ".", "chart", "[", "end", "]", ":", "self", ".", "chart", "[", "end", "]", ".", "append", "(", "edge", ")", "if", "self", ".", "trace", ":", "print", "'%10s: added %s'", "%", "(", "caller", "(", "2", ")", ",", "edge", ")", "if", "not", "expects", ":", "self", ".", "extender", "(", "edge", ")", "else", ":", "self", ".", "predictor", "(", "edge", ")" ]
3572b2fb92039b4a1abe384be8545560fbd3d470