partition
stringclasses
3 values
func_name
stringlengths
1
134
docstring
stringlengths
1
46.9k
path
stringlengths
4
223
original_string
stringlengths
75
104k
code
stringlengths
75
104k
docstring_tokens
listlengths
1
1.97k
repo
stringlengths
7
55
language
stringclasses
1 value
url
stringlengths
87
315
code_tokens
listlengths
19
28.4k
sha
stringlengths
40
40
test
SolidExecutionResult.transformed_values
Return dictionary of transformed results, with keys being output names. Returns None if execution result isn't a success. Reconstructs the pipeline context to materialize values.
python_modules/dagster/dagster/core/execution.py
def transformed_values(self): '''Return dictionary of transformed results, with keys being output names. Returns None if execution result isn't a success. Reconstructs the pipeline context to materialize values. ''' if self.success and self.transforms: with self.reconstruct_context() as context: values = { result.step_output_data.output_name: self._get_value( context, result.step_output_data ) for result in self.transforms if result.is_successful_output } return values else: return None
def transformed_values(self): '''Return dictionary of transformed results, with keys being output names. Returns None if execution result isn't a success. Reconstructs the pipeline context to materialize values. ''' if self.success and self.transforms: with self.reconstruct_context() as context: values = { result.step_output_data.output_name: self._get_value( context, result.step_output_data ) for result in self.transforms if result.is_successful_output } return values else: return None
[ "Return", "dictionary", "of", "transformed", "results", "with", "keys", "being", "output", "names", ".", "Returns", "None", "if", "execution", "result", "isn", "t", "a", "success", "." ]
dagster-io/dagster
python
https://github.com/dagster-io/dagster/blob/4119f8c773089de64831b1dfb9e168e353d401dc/python_modules/dagster/dagster/core/execution.py#L222-L239
[ "def", "transformed_values", "(", "self", ")", ":", "if", "self", ".", "success", "and", "self", ".", "transforms", ":", "with", "self", ".", "reconstruct_context", "(", ")", "as", "context", ":", "values", "=", "{", "result", ".", "step_output_data", ".", "output_name", ":", "self", ".", "_get_value", "(", "context", ",", "result", ".", "step_output_data", ")", "for", "result", "in", "self", ".", "transforms", "if", "result", ".", "is_successful_output", "}", "return", "values", "else", ":", "return", "None" ]
4119f8c773089de64831b1dfb9e168e353d401dc
test
SolidExecutionResult.transformed_value
Returns transformed value either for DEFAULT_OUTPUT or for the output given as output_name. Returns None if execution result isn't a success. Reconstructs the pipeline context to materialize value.
python_modules/dagster/dagster/core/execution.py
def transformed_value(self, output_name=DEFAULT_OUTPUT): '''Returns transformed value either for DEFAULT_OUTPUT or for the output given as output_name. Returns None if execution result isn't a success. Reconstructs the pipeline context to materialize value. ''' check.str_param(output_name, 'output_name') if not self.solid.definition.has_output(output_name): raise DagsterInvariantViolationError( '{output_name} not defined in solid {solid}'.format( output_name=output_name, solid=self.solid.name ) ) if self.success: for result in self.transforms: if ( result.is_successful_output and result.step_output_data.output_name == output_name ): with self.reconstruct_context() as context: value = self._get_value(context, result.step_output_data) return value raise DagsterInvariantViolationError( ( 'Did not find result {output_name} in solid {self.solid.name} ' 'execution result' ).format(output_name=output_name, self=self) ) else: return None
def transformed_value(self, output_name=DEFAULT_OUTPUT): '''Returns transformed value either for DEFAULT_OUTPUT or for the output given as output_name. Returns None if execution result isn't a success. Reconstructs the pipeline context to materialize value. ''' check.str_param(output_name, 'output_name') if not self.solid.definition.has_output(output_name): raise DagsterInvariantViolationError( '{output_name} not defined in solid {solid}'.format( output_name=output_name, solid=self.solid.name ) ) if self.success: for result in self.transforms: if ( result.is_successful_output and result.step_output_data.output_name == output_name ): with self.reconstruct_context() as context: value = self._get_value(context, result.step_output_data) return value raise DagsterInvariantViolationError( ( 'Did not find result {output_name} in solid {self.solid.name} ' 'execution result' ).format(output_name=output_name, self=self) ) else: return None
[ "Returns", "transformed", "value", "either", "for", "DEFAULT_OUTPUT", "or", "for", "the", "output", "given", "as", "output_name", ".", "Returns", "None", "if", "execution", "result", "isn", "t", "a", "success", "." ]
dagster-io/dagster
python
https://github.com/dagster-io/dagster/blob/4119f8c773089de64831b1dfb9e168e353d401dc/python_modules/dagster/dagster/core/execution.py#L241-L273
[ "def", "transformed_value", "(", "self", ",", "output_name", "=", "DEFAULT_OUTPUT", ")", ":", "check", ".", "str_param", "(", "output_name", ",", "'output_name'", ")", "if", "not", "self", ".", "solid", ".", "definition", ".", "has_output", "(", "output_name", ")", ":", "raise", "DagsterInvariantViolationError", "(", "'{output_name} not defined in solid {solid}'", ".", "format", "(", "output_name", "=", "output_name", ",", "solid", "=", "self", ".", "solid", ".", "name", ")", ")", "if", "self", ".", "success", ":", "for", "result", "in", "self", ".", "transforms", ":", "if", "(", "result", ".", "is_successful_output", "and", "result", ".", "step_output_data", ".", "output_name", "==", "output_name", ")", ":", "with", "self", ".", "reconstruct_context", "(", ")", "as", "context", ":", "value", "=", "self", ".", "_get_value", "(", "context", ",", "result", ".", "step_output_data", ")", "return", "value", "raise", "DagsterInvariantViolationError", "(", "(", "'Did not find result {output_name} in solid {self.solid.name} '", "'execution result'", ")", ".", "format", "(", "output_name", "=", "output_name", ",", "self", "=", "self", ")", ")", "else", ":", "return", "None" ]
4119f8c773089de64831b1dfb9e168e353d401dc
test
SolidExecutionResult.failure_data
Returns the failing step's data that happened during this solid's execution, if any
python_modules/dagster/dagster/core/execution.py
def failure_data(self): '''Returns the failing step's data that happened during this solid's execution, if any''' for result in itertools.chain( self.input_expectations, self.output_expectations, self.transforms ): if result.event_type == DagsterEventType.STEP_FAILURE: return result.step_failure_data
def failure_data(self): '''Returns the failing step's data that happened during this solid's execution, if any''' for result in itertools.chain( self.input_expectations, self.output_expectations, self.transforms ): if result.event_type == DagsterEventType.STEP_FAILURE: return result.step_failure_data
[ "Returns", "the", "failing", "step", "s", "data", "that", "happened", "during", "this", "solid", "s", "execution", "if", "any" ]
dagster-io/dagster
python
https://github.com/dagster-io/dagster/blob/4119f8c773089de64831b1dfb9e168e353d401dc/python_modules/dagster/dagster/core/execution.py#L283-L289
[ "def", "failure_data", "(", "self", ")", ":", "for", "result", "in", "itertools", ".", "chain", "(", "self", ".", "input_expectations", ",", "self", ".", "output_expectations", ",", "self", ".", "transforms", ")", ":", "if", "result", ".", "event_type", "==", "DagsterEventType", ".", "STEP_FAILURE", ":", "return", "result", ".", "step_failure_data" ]
4119f8c773089de64831b1dfb9e168e353d401dc
test
NamedDict
A :py:class:`Dict` with a name allowing it to be referenced by that name.
python_modules/dagster/dagster/core/types/field_utils.py
def NamedDict(name, fields, description=None, type_attributes=DEFAULT_TYPE_ATTRIBUTES): ''' A :py:class:`Dict` with a name allowing it to be referenced by that name. ''' check_user_facing_fields_dict(fields, 'NamedDict named "{}"'.format(name)) class _NamedDict(_ConfigComposite): def __init__(self): super(_NamedDict, self).__init__( key=name, name=name, fields=fields, description=description, type_attributes=type_attributes, ) return _NamedDict
def NamedDict(name, fields, description=None, type_attributes=DEFAULT_TYPE_ATTRIBUTES): ''' A :py:class:`Dict` with a name allowing it to be referenced by that name. ''' check_user_facing_fields_dict(fields, 'NamedDict named "{}"'.format(name)) class _NamedDict(_ConfigComposite): def __init__(self): super(_NamedDict, self).__init__( key=name, name=name, fields=fields, description=description, type_attributes=type_attributes, ) return _NamedDict
[ "A", ":", "py", ":", "class", ":", "Dict", "with", "a", "name", "allowing", "it", "to", "be", "referenced", "by", "that", "name", "." ]
dagster-io/dagster
python
https://github.com/dagster-io/dagster/blob/4119f8c773089de64831b1dfb9e168e353d401dc/python_modules/dagster/dagster/core/types/field_utils.py#L242-L258
[ "def", "NamedDict", "(", "name", ",", "fields", ",", "description", "=", "None", ",", "type_attributes", "=", "DEFAULT_TYPE_ATTRIBUTES", ")", ":", "check_user_facing_fields_dict", "(", "fields", ",", "'NamedDict named \"{}\"'", ".", "format", "(", "name", ")", ")", "class", "_NamedDict", "(", "_ConfigComposite", ")", ":", "def", "__init__", "(", "self", ")", ":", "super", "(", "_NamedDict", ",", "self", ")", ".", "__init__", "(", "key", "=", "name", ",", "name", "=", "name", ",", "fields", "=", "fields", ",", "description", "=", "description", ",", "type_attributes", "=", "type_attributes", ",", ")", "return", "_NamedDict" ]
4119f8c773089de64831b1dfb9e168e353d401dc
test
Dict
Schema for configuration data with string keys and typed values via :py:class:`Field` . Args: fields (Dict[str, Field])
python_modules/dagster/dagster/core/types/field_utils.py
def Dict(fields): ''' Schema for configuration data with string keys and typed values via :py:class:`Field` . Args: fields (Dict[str, Field]) ''' check_user_facing_fields_dict(fields, 'Dict') class _Dict(_ConfigComposite): def __init__(self): key = 'Dict.' + str(DictCounter.get_next_count()) super(_Dict, self).__init__( name=None, key=key, fields=fields, description='A configuration dictionary with typed fields', type_attributes=ConfigTypeAttributes(is_builtin=True), ) return _Dict
def Dict(fields): ''' Schema for configuration data with string keys and typed values via :py:class:`Field` . Args: fields (Dict[str, Field]) ''' check_user_facing_fields_dict(fields, 'Dict') class _Dict(_ConfigComposite): def __init__(self): key = 'Dict.' + str(DictCounter.get_next_count()) super(_Dict, self).__init__( name=None, key=key, fields=fields, description='A configuration dictionary with typed fields', type_attributes=ConfigTypeAttributes(is_builtin=True), ) return _Dict
[ "Schema", "for", "configuration", "data", "with", "string", "keys", "and", "typed", "values", "via", ":", "py", ":", "class", ":", "Field", "." ]
dagster-io/dagster
python
https://github.com/dagster-io/dagster/blob/4119f8c773089de64831b1dfb9e168e353d401dc/python_modules/dagster/dagster/core/types/field_utils.py#L261-L281
[ "def", "Dict", "(", "fields", ")", ":", "check_user_facing_fields_dict", "(", "fields", ",", "'Dict'", ")", "class", "_Dict", "(", "_ConfigComposite", ")", ":", "def", "__init__", "(", "self", ")", ":", "key", "=", "'Dict.'", "+", "str", "(", "DictCounter", ".", "get_next_count", "(", ")", ")", "super", "(", "_Dict", ",", "self", ")", ".", "__init__", "(", "name", "=", "None", ",", "key", "=", "key", ",", "fields", "=", "fields", ",", "description", "=", "'A configuration dictionary with typed fields'", ",", "type_attributes", "=", "ConfigTypeAttributes", "(", "is_builtin", "=", "True", ")", ",", ")", "return", "_Dict" ]
4119f8c773089de64831b1dfb9e168e353d401dc
test
PermissiveDict
A permissive dict will permit the user to partially specify the permitted fields. Any fields that are specified and passed in will be type checked. Other fields will be allowed, but will be ignored by the type checker.
python_modules/dagster/dagster/core/types/field_utils.py
def PermissiveDict(fields=None): '''A permissive dict will permit the user to partially specify the permitted fields. Any fields that are specified and passed in will be type checked. Other fields will be allowed, but will be ignored by the type checker. ''' if fields: check_user_facing_fields_dict(fields, 'PermissiveDict') class _PermissiveDict(_ConfigComposite): def __init__(self): key = 'PermissiveDict.' + str(DictCounter.get_next_count()) super(_PermissiveDict, self).__init__( name=None, key=key, fields=fields or dict(), description='A configuration dictionary with typed fields', type_attributes=ConfigTypeAttributes(is_builtin=True), ) @property def is_permissive_composite(self): return True return _PermissiveDict
def PermissiveDict(fields=None): '''A permissive dict will permit the user to partially specify the permitted fields. Any fields that are specified and passed in will be type checked. Other fields will be allowed, but will be ignored by the type checker. ''' if fields: check_user_facing_fields_dict(fields, 'PermissiveDict') class _PermissiveDict(_ConfigComposite): def __init__(self): key = 'PermissiveDict.' + str(DictCounter.get_next_count()) super(_PermissiveDict, self).__init__( name=None, key=key, fields=fields or dict(), description='A configuration dictionary with typed fields', type_attributes=ConfigTypeAttributes(is_builtin=True), ) @property def is_permissive_composite(self): return True return _PermissiveDict
[ "A", "permissive", "dict", "will", "permit", "the", "user", "to", "partially", "specify", "the", "permitted", "fields", ".", "Any", "fields", "that", "are", "specified", "and", "passed", "in", "will", "be", "type", "checked", ".", "Other", "fields", "will", "be", "allowed", "but", "will", "be", "ignored", "by", "the", "type", "checker", "." ]
dagster-io/dagster
python
https://github.com/dagster-io/dagster/blob/4119f8c773089de64831b1dfb9e168e353d401dc/python_modules/dagster/dagster/core/types/field_utils.py#L284-L308
[ "def", "PermissiveDict", "(", "fields", "=", "None", ")", ":", "if", "fields", ":", "check_user_facing_fields_dict", "(", "fields", ",", "'PermissiveDict'", ")", "class", "_PermissiveDict", "(", "_ConfigComposite", ")", ":", "def", "__init__", "(", "self", ")", ":", "key", "=", "'PermissiveDict.'", "+", "str", "(", "DictCounter", ".", "get_next_count", "(", ")", ")", "super", "(", "_PermissiveDict", ",", "self", ")", ".", "__init__", "(", "name", "=", "None", ",", "key", "=", "key", ",", "fields", "=", "fields", "or", "dict", "(", ")", ",", "description", "=", "'A configuration dictionary with typed fields'", ",", "type_attributes", "=", "ConfigTypeAttributes", "(", "is_builtin", "=", "True", ")", ",", ")", "@", "property", "def", "is_permissive_composite", "(", "self", ")", ":", "return", "True", "return", "_PermissiveDict" ]
4119f8c773089de64831b1dfb9e168e353d401dc
test
Selector
Selectors are used when you want to be able present several different options to the user but force them to select one. For example, it would not make much sense to allow them to say that a single input should be sourced from a csv and a parquet file: They must choose. Note that in other type systems this might be called an "input union." Args: fields (Dict[str, Field]):
python_modules/dagster/dagster/core/types/field_utils.py
def Selector(fields): '''Selectors are used when you want to be able present several different options to the user but force them to select one. For example, it would not make much sense to allow them to say that a single input should be sourced from a csv and a parquet file: They must choose. Note that in other type systems this might be called an "input union." Args: fields (Dict[str, Field]): ''' check_user_facing_fields_dict(fields, 'Selector') class _Selector(_ConfigSelector): def __init__(self): key = 'Selector.' + str(DictCounter.get_next_count()) super(_Selector, self).__init__( key=key, name=None, fields=fields, # description='A configuration dictionary with typed fields', type_attributes=ConfigTypeAttributes(is_builtin=True), ) return _Selector
def Selector(fields): '''Selectors are used when you want to be able present several different options to the user but force them to select one. For example, it would not make much sense to allow them to say that a single input should be sourced from a csv and a parquet file: They must choose. Note that in other type systems this might be called an "input union." Args: fields (Dict[str, Field]): ''' check_user_facing_fields_dict(fields, 'Selector') class _Selector(_ConfigSelector): def __init__(self): key = 'Selector.' + str(DictCounter.get_next_count()) super(_Selector, self).__init__( key=key, name=None, fields=fields, # description='A configuration dictionary with typed fields', type_attributes=ConfigTypeAttributes(is_builtin=True), ) return _Selector
[ "Selectors", "are", "used", "when", "you", "want", "to", "be", "able", "present", "several", "different", "options", "to", "the", "user", "but", "force", "them", "to", "select", "one", ".", "For", "example", "it", "would", "not", "make", "much", "sense", "to", "allow", "them", "to", "say", "that", "a", "single", "input", "should", "be", "sourced", "from", "a", "csv", "and", "a", "parquet", "file", ":", "They", "must", "choose", "." ]
dagster-io/dagster
python
https://github.com/dagster-io/dagster/blob/4119f8c773089de64831b1dfb9e168e353d401dc/python_modules/dagster/dagster/core/types/field_utils.py#L311-L335
[ "def", "Selector", "(", "fields", ")", ":", "check_user_facing_fields_dict", "(", "fields", ",", "'Selector'", ")", "class", "_Selector", "(", "_ConfigSelector", ")", ":", "def", "__init__", "(", "self", ")", ":", "key", "=", "'Selector.'", "+", "str", "(", "DictCounter", ".", "get_next_count", "(", ")", ")", "super", "(", "_Selector", ",", "self", ")", ".", "__init__", "(", "key", "=", "key", ",", "name", "=", "None", ",", "fields", "=", "fields", ",", "# description='A configuration dictionary with typed fields',", "type_attributes", "=", "ConfigTypeAttributes", "(", "is_builtin", "=", "True", ")", ",", ")", "return", "_Selector" ]
4119f8c773089de64831b1dfb9e168e353d401dc
test
NamedSelector
A :py:class`Selector` with a name, allowing it to be referenced by that name. Args: name (str): fields (Dict[str, Field])
python_modules/dagster/dagster/core/types/field_utils.py
def NamedSelector(name, fields, description=None, type_attributes=DEFAULT_TYPE_ATTRIBUTES): ''' A :py:class`Selector` with a name, allowing it to be referenced by that name. Args: name (str): fields (Dict[str, Field]) ''' check.str_param(name, 'name') check_user_facing_fields_dict(fields, 'NamedSelector named "{}"'.format(name)) class _NamedSelector(_ConfigSelector): def __init__(self): super(_NamedSelector, self).__init__( key=name, name=name, fields=fields, description=description, type_attributes=type_attributes, ) return _NamedSelector
def NamedSelector(name, fields, description=None, type_attributes=DEFAULT_TYPE_ATTRIBUTES): ''' A :py:class`Selector` with a name, allowing it to be referenced by that name. Args: name (str): fields (Dict[str, Field]) ''' check.str_param(name, 'name') check_user_facing_fields_dict(fields, 'NamedSelector named "{}"'.format(name)) class _NamedSelector(_ConfigSelector): def __init__(self): super(_NamedSelector, self).__init__( key=name, name=name, fields=fields, description=description, type_attributes=type_attributes, ) return _NamedSelector
[ "A", ":", "py", ":", "class", "Selector", "with", "a", "name", "allowing", "it", "to", "be", "referenced", "by", "that", "name", ".", "Args", ":", "name", "(", "str", ")", ":", "fields", "(", "Dict", "[", "str", "Field", "]", ")" ]
dagster-io/dagster
python
https://github.com/dagster-io/dagster/blob/4119f8c773089de64831b1dfb9e168e353d401dc/python_modules/dagster/dagster/core/types/field_utils.py#L338-L359
[ "def", "NamedSelector", "(", "name", ",", "fields", ",", "description", "=", "None", ",", "type_attributes", "=", "DEFAULT_TYPE_ATTRIBUTES", ")", ":", "check", ".", "str_param", "(", "name", ",", "'name'", ")", "check_user_facing_fields_dict", "(", "fields", ",", "'NamedSelector named \"{}\"'", ".", "format", "(", "name", ")", ")", "class", "_NamedSelector", "(", "_ConfigSelector", ")", ":", "def", "__init__", "(", "self", ")", ":", "super", "(", "_NamedSelector", ",", "self", ")", ".", "__init__", "(", "key", "=", "name", ",", "name", "=", "name", ",", "fields", "=", "fields", ",", "description", "=", "description", ",", "type_attributes", "=", "type_attributes", ",", ")", "return", "_NamedSelector" ]
4119f8c773089de64831b1dfb9e168e353d401dc
test
_is_valid_dataset
Datasets must be of form "project.dataset" or "dataset"
python_modules/libraries/dagster-gcp/dagster_gcp/types.py
def _is_valid_dataset(config_value): '''Datasets must be of form "project.dataset" or "dataset" ''' return re.match( # regex matches: project.table -- OR -- table r'^' + RE_PROJECT + r'\.' + RE_DS_TABLE + r'$|^' + RE_DS_TABLE + r'$', config_value, )
def _is_valid_dataset(config_value): '''Datasets must be of form "project.dataset" or "dataset" ''' return re.match( # regex matches: project.table -- OR -- table r'^' + RE_PROJECT + r'\.' + RE_DS_TABLE + r'$|^' + RE_DS_TABLE + r'$', config_value, )
[ "Datasets", "must", "be", "of", "form", "project", ".", "dataset", "or", "dataset" ]
dagster-io/dagster
python
https://github.com/dagster-io/dagster/blob/4119f8c773089de64831b1dfb9e168e353d401dc/python_modules/libraries/dagster-gcp/dagster_gcp/types.py#L86-L93
[ "def", "_is_valid_dataset", "(", "config_value", ")", ":", "return", "re", ".", "match", "(", "# regex matches: project.table -- OR -- table", "r'^'", "+", "RE_PROJECT", "+", "r'\\.'", "+", "RE_DS_TABLE", "+", "r'$|^'", "+", "RE_DS_TABLE", "+", "r'$'", ",", "config_value", ",", ")" ]
4119f8c773089de64831b1dfb9e168e353d401dc
test
_is_valid_table
Tables must be of form "project.dataset.table" or "dataset.table"
python_modules/libraries/dagster-gcp/dagster_gcp/types.py
def _is_valid_table(config_value): '''Tables must be of form "project.dataset.table" or "dataset.table" ''' return re.match( r'^' + RE_PROJECT # project + r'\.' # . + RE_DS_TABLE # dataset + r'\.' # . + RE_DS_TABLE # table + r'$|^' # -- OR -- + RE_DS_TABLE # dataset + r'\.' # . + RE_DS_TABLE # table + r'$', config_value, )
def _is_valid_table(config_value): '''Tables must be of form "project.dataset.table" or "dataset.table" ''' return re.match( r'^' + RE_PROJECT # project + r'\.' # . + RE_DS_TABLE # dataset + r'\.' # . + RE_DS_TABLE # table + r'$|^' # -- OR -- + RE_DS_TABLE # dataset + r'\.' # . + RE_DS_TABLE # table + r'$', config_value, )
[ "Tables", "must", "be", "of", "form", "project", ".", "dataset", ".", "table", "or", "dataset", ".", "table" ]
dagster-io/dagster
python
https://github.com/dagster-io/dagster/blob/4119f8c773089de64831b1dfb9e168e353d401dc/python_modules/libraries/dagster-gcp/dagster_gcp/types.py#L96-L112
[ "def", "_is_valid_table", "(", "config_value", ")", ":", "return", "re", ".", "match", "(", "r'^'", "+", "RE_PROJECT", "# project", "+", "r'\\.'", "# .", "+", "RE_DS_TABLE", "# dataset", "+", "r'\\.'", "# .", "+", "RE_DS_TABLE", "# table", "+", "r'$|^'", "# -- OR --", "+", "RE_DS_TABLE", "# dataset", "+", "r'\\.'", "# .", "+", "RE_DS_TABLE", "# table", "+", "r'$'", ",", "config_value", ",", ")" ]
4119f8c773089de64831b1dfb9e168e353d401dc
test
_execute_core_transform
Execute the user-specified transform for the solid. Wrap in an error boundary and do all relevant logging and metrics tracking
python_modules/dagster/dagster/core/execution_plan/transform.py
def _execute_core_transform(transform_context, inputs): ''' Execute the user-specified transform for the solid. Wrap in an error boundary and do all relevant logging and metrics tracking ''' check.inst_param(transform_context, 'transform_context', SystemTransformExecutionContext) check.dict_param(inputs, 'inputs', key_type=str) step = transform_context.step solid = step.solid transform_context.log.debug( 'Executing core transform for solid {solid}.'.format(solid=solid.name) ) all_results = [] for step_output in _yield_transform_results(transform_context, inputs): yield step_output if isinstance(step_output, StepOutputValue): all_results.append(step_output) if len(all_results) != len(solid.definition.output_defs): emitted_result_names = {r.output_name for r in all_results} solid_output_names = {output_def.name for output_def in solid.definition.output_defs} omitted_outputs = solid_output_names.difference(emitted_result_names) transform_context.log.info( 'Solid {solid} did not fire outputs {outputs}'.format( solid=solid.name, outputs=repr(omitted_outputs) ) )
def _execute_core_transform(transform_context, inputs): ''' Execute the user-specified transform for the solid. Wrap in an error boundary and do all relevant logging and metrics tracking ''' check.inst_param(transform_context, 'transform_context', SystemTransformExecutionContext) check.dict_param(inputs, 'inputs', key_type=str) step = transform_context.step solid = step.solid transform_context.log.debug( 'Executing core transform for solid {solid}.'.format(solid=solid.name) ) all_results = [] for step_output in _yield_transform_results(transform_context, inputs): yield step_output if isinstance(step_output, StepOutputValue): all_results.append(step_output) if len(all_results) != len(solid.definition.output_defs): emitted_result_names = {r.output_name for r in all_results} solid_output_names = {output_def.name for output_def in solid.definition.output_defs} omitted_outputs = solid_output_names.difference(emitted_result_names) transform_context.log.info( 'Solid {solid} did not fire outputs {outputs}'.format( solid=solid.name, outputs=repr(omitted_outputs) ) )
[ "Execute", "the", "user", "-", "specified", "transform", "for", "the", "solid", ".", "Wrap", "in", "an", "error", "boundary", "and", "do", "all", "relevant", "logging", "and", "metrics", "tracking" ]
dagster-io/dagster
python
https://github.com/dagster-io/dagster/blob/4119f8c773089de64831b1dfb9e168e353d401dc/python_modules/dagster/dagster/core/execution_plan/transform.py#L73-L102
[ "def", "_execute_core_transform", "(", "transform_context", ",", "inputs", ")", ":", "check", ".", "inst_param", "(", "transform_context", ",", "'transform_context'", ",", "SystemTransformExecutionContext", ")", "check", ".", "dict_param", "(", "inputs", ",", "'inputs'", ",", "key_type", "=", "str", ")", "step", "=", "transform_context", ".", "step", "solid", "=", "step", ".", "solid", "transform_context", ".", "log", ".", "debug", "(", "'Executing core transform for solid {solid}.'", ".", "format", "(", "solid", "=", "solid", ".", "name", ")", ")", "all_results", "=", "[", "]", "for", "step_output", "in", "_yield_transform_results", "(", "transform_context", ",", "inputs", ")", ":", "yield", "step_output", "if", "isinstance", "(", "step_output", ",", "StepOutputValue", ")", ":", "all_results", ".", "append", "(", "step_output", ")", "if", "len", "(", "all_results", ")", "!=", "len", "(", "solid", ".", "definition", ".", "output_defs", ")", ":", "emitted_result_names", "=", "{", "r", ".", "output_name", "for", "r", "in", "all_results", "}", "solid_output_names", "=", "{", "output_def", ".", "name", "for", "output_def", "in", "solid", ".", "definition", ".", "output_defs", "}", "omitted_outputs", "=", "solid_output_names", ".", "difference", "(", "emitted_result_names", ")", "transform_context", ".", "log", ".", "info", "(", "'Solid {solid} did not fire outputs {outputs}'", ".", "format", "(", "solid", "=", "solid", ".", "name", ",", "outputs", "=", "repr", "(", "omitted_outputs", ")", ")", ")" ]
4119f8c773089de64831b1dfb9e168e353d401dc
test
dagster_type
Decorator version of as_dagster_type. See documentation for :py:func:`as_dagster_type` .
python_modules/dagster/dagster/core/types/decorator.py
def dagster_type( name=None, description=None, input_schema=None, output_schema=None, serialization_strategy=None, storage_plugins=None, ): ''' Decorator version of as_dagster_type. See documentation for :py:func:`as_dagster_type` . ''' def _with_args(bare_cls): check.type_param(bare_cls, 'bare_cls') new_name = name if name else bare_cls.__name__ return _decorate_as_dagster_type( bare_cls=bare_cls, key=new_name, name=new_name, description=description, input_schema=input_schema, output_schema=output_schema, serialization_strategy=serialization_strategy, storage_plugins=storage_plugins, ) # check for no args, no parens case if callable(name): klass = name new_name = klass.__name__ return _decorate_as_dagster_type( bare_cls=klass, key=new_name, name=new_name, description=None ) return _with_args
def dagster_type( name=None, description=None, input_schema=None, output_schema=None, serialization_strategy=None, storage_plugins=None, ): ''' Decorator version of as_dagster_type. See documentation for :py:func:`as_dagster_type` . ''' def _with_args(bare_cls): check.type_param(bare_cls, 'bare_cls') new_name = name if name else bare_cls.__name__ return _decorate_as_dagster_type( bare_cls=bare_cls, key=new_name, name=new_name, description=description, input_schema=input_schema, output_schema=output_schema, serialization_strategy=serialization_strategy, storage_plugins=storage_plugins, ) # check for no args, no parens case if callable(name): klass = name new_name = klass.__name__ return _decorate_as_dagster_type( bare_cls=klass, key=new_name, name=new_name, description=None ) return _with_args
[ "Decorator", "version", "of", "as_dagster_type", ".", "See", "documentation", "for", ":", "py", ":", "func", ":", "as_dagster_type", "." ]
dagster-io/dagster
python
https://github.com/dagster-io/dagster/blob/4119f8c773089de64831b1dfb9e168e353d401dc/python_modules/dagster/dagster/core/types/decorator.py#L42-L76
[ "def", "dagster_type", "(", "name", "=", "None", ",", "description", "=", "None", ",", "input_schema", "=", "None", ",", "output_schema", "=", "None", ",", "serialization_strategy", "=", "None", ",", "storage_plugins", "=", "None", ",", ")", ":", "def", "_with_args", "(", "bare_cls", ")", ":", "check", ".", "type_param", "(", "bare_cls", ",", "'bare_cls'", ")", "new_name", "=", "name", "if", "name", "else", "bare_cls", ".", "__name__", "return", "_decorate_as_dagster_type", "(", "bare_cls", "=", "bare_cls", ",", "key", "=", "new_name", ",", "name", "=", "new_name", ",", "description", "=", "description", ",", "input_schema", "=", "input_schema", ",", "output_schema", "=", "output_schema", ",", "serialization_strategy", "=", "serialization_strategy", ",", "storage_plugins", "=", "storage_plugins", ",", ")", "# check for no args, no parens case", "if", "callable", "(", "name", ")", ":", "klass", "=", "name", "new_name", "=", "klass", ".", "__name__", "return", "_decorate_as_dagster_type", "(", "bare_cls", "=", "klass", ",", "key", "=", "new_name", ",", "name", "=", "new_name", ",", "description", "=", "None", ")", "return", "_with_args" ]
4119f8c773089de64831b1dfb9e168e353d401dc
test
as_dagster_type
Takes a python cls and creates a type for it in the Dagster domain. Args: existing_type (cls) The python type you want to project in to the Dagster type system. name (Optional[str]): description (Optiona[str]): input_schema (Optional[InputSchema]): An instance of a class that inherits from :py:class:`InputSchema` that can map config data to a value of this type. output_schema (Optiona[OutputSchema]): An instance of a class that inherits from :py:class:`OutputSchema` that can map config data to persisting values of this type. serialization_strategy (Optional[SerializationStrategy]): The default behavior for how to serialize this value for persisting between execution steps. storage_plugins (Optional[Dict[RunStorageMode, TypeStoragePlugin]]): Storage type specific overrides for the serialization strategy. This allows for storage specific optimzations such as effecient distributed storage on S3.
python_modules/dagster/dagster/core/types/decorator.py
def as_dagster_type( existing_type, name=None, description=None, input_schema=None, output_schema=None, serialization_strategy=None, storage_plugins=None, ): ''' Takes a python cls and creates a type for it in the Dagster domain. Args: existing_type (cls) The python type you want to project in to the Dagster type system. name (Optional[str]): description (Optiona[str]): input_schema (Optional[InputSchema]): An instance of a class that inherits from :py:class:`InputSchema` that can map config data to a value of this type. output_schema (Optiona[OutputSchema]): An instance of a class that inherits from :py:class:`OutputSchema` that can map config data to persisting values of this type. serialization_strategy (Optional[SerializationStrategy]): The default behavior for how to serialize this value for persisting between execution steps. storage_plugins (Optional[Dict[RunStorageMode, TypeStoragePlugin]]): Storage type specific overrides for the serialization strategy. This allows for storage specific optimzations such as effecient distributed storage on S3. ''' check.type_param(existing_type, 'existing_type') check.opt_str_param(name, 'name') check.opt_str_param(description, 'description') check.opt_inst_param(input_schema, 'input_schema', InputSchema) check.opt_inst_param(output_schema, 'output_schema', OutputSchema) check.opt_inst_param(serialization_strategy, 'serialization_strategy', SerializationStrategy) storage_plugins = check.opt_dict_param(storage_plugins, 'storage_plugins') if serialization_strategy is None: serialization_strategy = PickleSerializationStrategy() name = existing_type.__name__ if name is None else name return _decorate_as_dagster_type( existing_type, key=name, name=name, description=description, input_schema=input_schema, output_schema=output_schema, serialization_strategy=serialization_strategy, storage_plugins=storage_plugins, )
def as_dagster_type( existing_type, name=None, description=None, input_schema=None, output_schema=None, serialization_strategy=None, storage_plugins=None, ): ''' Takes a python cls and creates a type for it in the Dagster domain. Args: existing_type (cls) The python type you want to project in to the Dagster type system. name (Optional[str]): description (Optiona[str]): input_schema (Optional[InputSchema]): An instance of a class that inherits from :py:class:`InputSchema` that can map config data to a value of this type. output_schema (Optiona[OutputSchema]): An instance of a class that inherits from :py:class:`OutputSchema` that can map config data to persisting values of this type. serialization_strategy (Optional[SerializationStrategy]): The default behavior for how to serialize this value for persisting between execution steps. storage_plugins (Optional[Dict[RunStorageMode, TypeStoragePlugin]]): Storage type specific overrides for the serialization strategy. This allows for storage specific optimzations such as effecient distributed storage on S3. ''' check.type_param(existing_type, 'existing_type') check.opt_str_param(name, 'name') check.opt_str_param(description, 'description') check.opt_inst_param(input_schema, 'input_schema', InputSchema) check.opt_inst_param(output_schema, 'output_schema', OutputSchema) check.opt_inst_param(serialization_strategy, 'serialization_strategy', SerializationStrategy) storage_plugins = check.opt_dict_param(storage_plugins, 'storage_plugins') if serialization_strategy is None: serialization_strategy = PickleSerializationStrategy() name = existing_type.__name__ if name is None else name return _decorate_as_dagster_type( existing_type, key=name, name=name, description=description, input_schema=input_schema, output_schema=output_schema, serialization_strategy=serialization_strategy, storage_plugins=storage_plugins, )
[ "Takes", "a", "python", "cls", "and", "creates", "a", "type", "for", "it", "in", "the", "Dagster", "domain", "." ]
dagster-io/dagster
python
https://github.com/dagster-io/dagster/blob/4119f8c773089de64831b1dfb9e168e353d401dc/python_modules/dagster/dagster/core/types/decorator.py#L98-L154
[ "def", "as_dagster_type", "(", "existing_type", ",", "name", "=", "None", ",", "description", "=", "None", ",", "input_schema", "=", "None", ",", "output_schema", "=", "None", ",", "serialization_strategy", "=", "None", ",", "storage_plugins", "=", "None", ",", ")", ":", "check", ".", "type_param", "(", "existing_type", ",", "'existing_type'", ")", "check", ".", "opt_str_param", "(", "name", ",", "'name'", ")", "check", ".", "opt_str_param", "(", "description", ",", "'description'", ")", "check", ".", "opt_inst_param", "(", "input_schema", ",", "'input_schema'", ",", "InputSchema", ")", "check", ".", "opt_inst_param", "(", "output_schema", ",", "'output_schema'", ",", "OutputSchema", ")", "check", ".", "opt_inst_param", "(", "serialization_strategy", ",", "'serialization_strategy'", ",", "SerializationStrategy", ")", "storage_plugins", "=", "check", ".", "opt_dict_param", "(", "storage_plugins", ",", "'storage_plugins'", ")", "if", "serialization_strategy", "is", "None", ":", "serialization_strategy", "=", "PickleSerializationStrategy", "(", ")", "name", "=", "existing_type", ".", "__name__", "if", "name", "is", "None", "else", "name", "return", "_decorate_as_dagster_type", "(", "existing_type", ",", "key", "=", "name", ",", "name", "=", "name", ",", "description", "=", "description", ",", "input_schema", "=", "input_schema", ",", "output_schema", "=", "output_schema", ",", "serialization_strategy", "=", "serialization_strategy", ",", "storage_plugins", "=", "storage_plugins", ",", ")" ]
4119f8c773089de64831b1dfb9e168e353d401dc
test
resource
A decorator for creating a resource. The decorated function will be used as the resource_fn in a ResourceDefinition.
python_modules/dagster/dagster/core/definitions/resource.py
def resource(config_field=None, description=None): '''A decorator for creating a resource. The decorated function will be used as the resource_fn in a ResourceDefinition. ''' # This case is for when decorator is used bare, without arguments. # E.g. @resource versus @resource() if callable(config_field): return ResourceDefinition(resource_fn=config_field) def _wrap(resource_fn): return ResourceDefinition(resource_fn, config_field, description) return _wrap
def resource(config_field=None, description=None): '''A decorator for creating a resource. The decorated function will be used as the resource_fn in a ResourceDefinition. ''' # This case is for when decorator is used bare, without arguments. # E.g. @resource versus @resource() if callable(config_field): return ResourceDefinition(resource_fn=config_field) def _wrap(resource_fn): return ResourceDefinition(resource_fn, config_field, description) return _wrap
[ "A", "decorator", "for", "creating", "a", "resource", ".", "The", "decorated", "function", "will", "be", "used", "as", "the", "resource_fn", "in", "a", "ResourceDefinition", "." ]
dagster-io/dagster
python
https://github.com/dagster-io/dagster/blob/4119f8c773089de64831b1dfb9e168e353d401dc/python_modules/dagster/dagster/core/definitions/resource.py#L41-L54
[ "def", "resource", "(", "config_field", "=", "None", ",", "description", "=", "None", ")", ":", "# This case is for when decorator is used bare, without arguments.", "# E.g. @resource versus @resource()", "if", "callable", "(", "config_field", ")", ":", "return", "ResourceDefinition", "(", "resource_fn", "=", "config_field", ")", "def", "_wrap", "(", "resource_fn", ")", ":", "return", "ResourceDefinition", "(", "resource_fn", ",", "config_field", ",", "description", ")", "return", "_wrap" ]
4119f8c773089de64831b1dfb9e168e353d401dc
test
run_spark_subprocess
See https://bit.ly/2OpksJC for source of the subprocess stdout/stderr capture pattern in this function.
python_modules/libraries/dagster-spark/dagster_spark/utils.py
def run_spark_subprocess(cmd, logger): """See https://bit.ly/2OpksJC for source of the subprocess stdout/stderr capture pattern in this function. """ # Spark sometimes logs in log4j format. In those cases, we detect and parse. # Example log line from Spark that this is intended to match: # 2019-03-27 16:00:19 INFO ContextHandler:781 - Started o.s.j.s.ServletContextHandler... log4j_regex = r'^(\d{4}\-\d{2}\-\d{2} \d{2}:\d{2}:\d{2}) ([A-Z]{3,5})(.*?)$' def reader(pipe, pipe_name, p, msg_queue): try: with pipe: while p.poll() is None: for line in pipe.readlines(): match = re.match(log4j_regex, line) if match: line = match.groups()[2] msg_queue.put((pipe_name, line)) finally: # Use None as sentinel for done state, detected by iter() below msg_queue.put(None) p = subprocess.Popen( ' '.join(cmd), stdout=subprocess.PIPE, stderr=subprocess.PIPE, bufsize=0, universal_newlines=True, shell=True, ) q = queue.Queue() Thread(target=reader, args=[p.stdout, 'stdout', p, q]).start() Thread(target=reader, args=[p.stderr, 'stderr', p, q]).start() for _ in range(2): # There will be two None sentinels, one for each stream for pipe_name, line in iter(q.get, None): if pipe_name == 'stdout': logger.info(line) elif pipe_name == 'stderr': logger.error(line) p.wait() return p.returncode
def run_spark_subprocess(cmd, logger): """See https://bit.ly/2OpksJC for source of the subprocess stdout/stderr capture pattern in this function. """ # Spark sometimes logs in log4j format. In those cases, we detect and parse. # Example log line from Spark that this is intended to match: # 2019-03-27 16:00:19 INFO ContextHandler:781 - Started o.s.j.s.ServletContextHandler... log4j_regex = r'^(\d{4}\-\d{2}\-\d{2} \d{2}:\d{2}:\d{2}) ([A-Z]{3,5})(.*?)$' def reader(pipe, pipe_name, p, msg_queue): try: with pipe: while p.poll() is None: for line in pipe.readlines(): match = re.match(log4j_regex, line) if match: line = match.groups()[2] msg_queue.put((pipe_name, line)) finally: # Use None as sentinel for done state, detected by iter() below msg_queue.put(None) p = subprocess.Popen( ' '.join(cmd), stdout=subprocess.PIPE, stderr=subprocess.PIPE, bufsize=0, universal_newlines=True, shell=True, ) q = queue.Queue() Thread(target=reader, args=[p.stdout, 'stdout', p, q]).start() Thread(target=reader, args=[p.stderr, 'stderr', p, q]).start() for _ in range(2): # There will be two None sentinels, one for each stream for pipe_name, line in iter(q.get, None): if pipe_name == 'stdout': logger.info(line) elif pipe_name == 'stderr': logger.error(line) p.wait() return p.returncode
[ "See", "https", ":", "//", "bit", ".", "ly", "/", "2OpksJC", "for", "source", "of", "the", "subprocess", "stdout", "/", "stderr", "capture", "pattern", "in", "this", "function", "." ]
dagster-io/dagster
python
https://github.com/dagster-io/dagster/blob/4119f8c773089de64831b1dfb9e168e353d401dc/python_modules/libraries/dagster-spark/dagster_spark/utils.py#L9-L51
[ "def", "run_spark_subprocess", "(", "cmd", ",", "logger", ")", ":", "# Spark sometimes logs in log4j format. In those cases, we detect and parse.", "# Example log line from Spark that this is intended to match:", "# 2019-03-27 16:00:19 INFO ContextHandler:781 - Started o.s.j.s.ServletContextHandler...", "log4j_regex", "=", "r'^(\\d{4}\\-\\d{2}\\-\\d{2} \\d{2}:\\d{2}:\\d{2}) ([A-Z]{3,5})(.*?)$'", "def", "reader", "(", "pipe", ",", "pipe_name", ",", "p", ",", "msg_queue", ")", ":", "try", ":", "with", "pipe", ":", "while", "p", ".", "poll", "(", ")", "is", "None", ":", "for", "line", "in", "pipe", ".", "readlines", "(", ")", ":", "match", "=", "re", ".", "match", "(", "log4j_regex", ",", "line", ")", "if", "match", ":", "line", "=", "match", ".", "groups", "(", ")", "[", "2", "]", "msg_queue", ".", "put", "(", "(", "pipe_name", ",", "line", ")", ")", "finally", ":", "# Use None as sentinel for done state, detected by iter() below", "msg_queue", ".", "put", "(", "None", ")", "p", "=", "subprocess", ".", "Popen", "(", "' '", ".", "join", "(", "cmd", ")", ",", "stdout", "=", "subprocess", ".", "PIPE", ",", "stderr", "=", "subprocess", ".", "PIPE", ",", "bufsize", "=", "0", ",", "universal_newlines", "=", "True", ",", "shell", "=", "True", ",", ")", "q", "=", "queue", ".", "Queue", "(", ")", "Thread", "(", "target", "=", "reader", ",", "args", "=", "[", "p", ".", "stdout", ",", "'stdout'", ",", "p", ",", "q", "]", ")", ".", "start", "(", ")", "Thread", "(", "target", "=", "reader", ",", "args", "=", "[", "p", ".", "stderr", ",", "'stderr'", ",", "p", ",", "q", "]", ")", ".", "start", "(", ")", "for", "_", "in", "range", "(", "2", ")", ":", "# There will be two None sentinels, one for each stream", "for", "pipe_name", ",", "line", "in", "iter", "(", "q", ".", "get", ",", "None", ")", ":", "if", "pipe_name", "==", "'stdout'", ":", "logger", ".", "info", "(", "line", ")", "elif", "pipe_name", "==", "'stderr'", ":", "logger", ".", "error", "(", "line", ")", "p", ".", "wait", "(", ")", "return", "p", ".", "returncode" ]
4119f8c773089de64831b1dfb9e168e353d401dc
test
parse_spark_config
For each key-value pair in spark conf, we need to pass to CLI in format: --conf "key=value"
python_modules/libraries/dagster-spark/dagster_spark/utils.py
def parse_spark_config(spark_conf): '''For each key-value pair in spark conf, we need to pass to CLI in format: --conf "key=value" ''' spark_conf_list = flatten_dict(spark_conf) return list( itertools.chain.from_iterable([('--conf', '{}={}'.format(*c)) for c in spark_conf_list]) )
def parse_spark_config(spark_conf): '''For each key-value pair in spark conf, we need to pass to CLI in format: --conf "key=value" ''' spark_conf_list = flatten_dict(spark_conf) return list( itertools.chain.from_iterable([('--conf', '{}={}'.format(*c)) for c in spark_conf_list]) )
[ "For", "each", "key", "-", "value", "pair", "in", "spark", "conf", "we", "need", "to", "pass", "to", "CLI", "in", "format", ":" ]
dagster-io/dagster
python
https://github.com/dagster-io/dagster/blob/4119f8c773089de64831b1dfb9e168e353d401dc/python_modules/libraries/dagster-spark/dagster_spark/utils.py#L74-L83
[ "def", "parse_spark_config", "(", "spark_conf", ")", ":", "spark_conf_list", "=", "flatten_dict", "(", "spark_conf", ")", "return", "list", "(", "itertools", ".", "chain", ".", "from_iterable", "(", "[", "(", "'--conf'", ",", "'{}={}'", ".", "format", "(", "*", "c", ")", ")", "for", "c", "in", "spark_conf_list", "]", ")", ")" ]
4119f8c773089de64831b1dfb9e168e353d401dc
test
SystemNamedDict
A SystemNamedDict object is simply a NamedDict intended for internal (dagster) use.
python_modules/dagster/dagster/core/definitions/environment_configs.py
def SystemNamedDict(name, fields, description=None): '''A SystemNamedDict object is simply a NamedDict intended for internal (dagster) use. ''' return NamedDict(name, fields, description, ConfigTypeAttributes(is_system_config=True))
def SystemNamedDict(name, fields, description=None): '''A SystemNamedDict object is simply a NamedDict intended for internal (dagster) use. ''' return NamedDict(name, fields, description, ConfigTypeAttributes(is_system_config=True))
[ "A", "SystemNamedDict", "object", "is", "simply", "a", "NamedDict", "intended", "for", "internal", "(", "dagster", ")", "use", "." ]
dagster-io/dagster
python
https://github.com/dagster-io/dagster/blob/4119f8c773089de64831b1dfb9e168e353d401dc/python_modules/dagster/dagster/core/definitions/environment_configs.py#L26-L29
[ "def", "SystemNamedDict", "(", "name", ",", "fields", ",", "description", "=", "None", ")", ":", "return", "NamedDict", "(", "name", ",", "fields", ",", "description", ",", "ConfigTypeAttributes", "(", "is_system_config", "=", "True", ")", ")" ]
4119f8c773089de64831b1dfb9e168e353d401dc
test
PagerDutyService.EventV2_create
Events API v2 enables you to add PagerDuty's advanced event and incident management functionality to any system that can make an outbound HTTP connection. Arguments: summary {string} -- A high-level, text summary message of the event. Will be used to construct an alert's description. Example: "PING OK - Packet loss = 0%, RTA = 1.41 ms" "Host 'acme-andromeda-sv1-c40 :: 179.21.24.50' is DOWN" source {string} -- Specific human-readable unique identifier, such as a hostname, for the system having the problem. Examples: "prod05.theseus.acme-widgets.com" "171.26.23.22" "aws:elasticache:us-east-1:852511987:cluster/api-stats-prod-003" "9c09acd49a25" severity {string} -- How impacted the affected system is. Displayed to users in lists and influences the priority of any created incidents. Must be one of {info, warning, error, critical} Keyword Arguments: event_action {str} -- There are three types of events that PagerDuty recognizes, and are used to represent different types of activity in your monitored systems. (default: 'trigger') * trigger: When PagerDuty receives a trigger event, it will either open a new alert, or add a new trigger log entry to an existing alert, depending on the provided dedup_key. Your monitoring tools should send PagerDuty a trigger when a new problem has been detected. You may send additional triggers when a previously detected problem has occurred again. * acknowledge: acknowledge events cause the referenced incident to enter the acknowledged state. While an incident is acknowledged, it won't generate any additional notifications, even if it receives new trigger events. Your monitoring tools should send PagerDuty an acknowledge event when they know someone is presently working on the problem. * resolve: resolve events cause the referenced incident to enter the resolved state. Once an incident is resolved, it won't generate any additional notifications. New trigger events with the same dedup_key as a resolved incident won't re-open the incident. Instead, a new incident will be created. Your monitoring tools should send PagerDuty a resolve event when the problem that caused the initial trigger event has been fixed. dedup_key {string} -- Deduplication key for correlating triggers and resolves. The maximum permitted length of this property is 255 characters. timestamp {string} -- Timestamp (ISO 8601). When the upstream system detected / created the event. This is useful if a system batches or holds events before sending them to PagerDuty. Optional - Will be auto-generated by PagerDuty if not provided. Example: 2015-07-17T08:42:58.315+0000 component {string} -- The part or component of the affected system that is broken. Examples: "keepalive" "webping" "mysql" "wqueue" group {string} -- A cluster or grouping of sources. For example, sources “prod-datapipe-02” and “prod-datapipe-03” might both be part of “prod-datapipe” Examples: "prod-datapipe" "www" "web_stack" event_class {string} -- The class/type of the event. Examples: "High CPU" "Latency" "500 Error" custom_details {Dict[str, str]} -- Additional details about the event and affected system. Example: {"ping time": "1500ms", "load avg": 0.75 }
python_modules/libraries/dagster-pagerduty/dagster_pagerduty/resources.py
def EventV2_create( self, summary, source, severity, event_action='trigger', dedup_key=None, timestamp=None, component=None, group=None, event_class=None, custom_details=None, ): '''Events API v2 enables you to add PagerDuty's advanced event and incident management functionality to any system that can make an outbound HTTP connection. Arguments: summary {string} -- A high-level, text summary message of the event. Will be used to construct an alert's description. Example: "PING OK - Packet loss = 0%, RTA = 1.41 ms" "Host 'acme-andromeda-sv1-c40 :: 179.21.24.50' is DOWN" source {string} -- Specific human-readable unique identifier, such as a hostname, for the system having the problem. Examples: "prod05.theseus.acme-widgets.com" "171.26.23.22" "aws:elasticache:us-east-1:852511987:cluster/api-stats-prod-003" "9c09acd49a25" severity {string} -- How impacted the affected system is. Displayed to users in lists and influences the priority of any created incidents. Must be one of {info, warning, error, critical} Keyword Arguments: event_action {str} -- There are three types of events that PagerDuty recognizes, and are used to represent different types of activity in your monitored systems. (default: 'trigger') * trigger: When PagerDuty receives a trigger event, it will either open a new alert, or add a new trigger log entry to an existing alert, depending on the provided dedup_key. Your monitoring tools should send PagerDuty a trigger when a new problem has been detected. You may send additional triggers when a previously detected problem has occurred again. * acknowledge: acknowledge events cause the referenced incident to enter the acknowledged state. While an incident is acknowledged, it won't generate any additional notifications, even if it receives new trigger events. Your monitoring tools should send PagerDuty an acknowledge event when they know someone is presently working on the problem. * resolve: resolve events cause the referenced incident to enter the resolved state. Once an incident is resolved, it won't generate any additional notifications. New trigger events with the same dedup_key as a resolved incident won't re-open the incident. Instead, a new incident will be created. Your monitoring tools should send PagerDuty a resolve event when the problem that caused the initial trigger event has been fixed. dedup_key {string} -- Deduplication key for correlating triggers and resolves. The maximum permitted length of this property is 255 characters. timestamp {string} -- Timestamp (ISO 8601). When the upstream system detected / created the event. This is useful if a system batches or holds events before sending them to PagerDuty. Optional - Will be auto-generated by PagerDuty if not provided. Example: 2015-07-17T08:42:58.315+0000 component {string} -- The part or component of the affected system that is broken. Examples: "keepalive" "webping" "mysql" "wqueue" group {string} -- A cluster or grouping of sources. For example, sources “prod-datapipe-02” and “prod-datapipe-03” might both be part of “prod-datapipe” Examples: "prod-datapipe" "www" "web_stack" event_class {string} -- The class/type of the event. Examples: "High CPU" "Latency" "500 Error" custom_details {Dict[str, str]} -- Additional details about the event and affected system. Example: {"ping time": "1500ms", "load avg": 0.75 } ''' data = { 'routing_key': self.routing_key, 'event_action': event_action, 'payload': {'summary': summary, 'source': source, 'severity': severity}, } if dedup_key is not None: data['dedup_key'] = dedup_key if timestamp is not None: data['payload']['timestamp'] = timestamp if component is not None: data['payload']['component'] = component if group is not None: data['payload']['group'] = group if event_class is not None: data['payload']['class'] = event_class if custom_details is not None: data['payload']['custom_details'] = custom_details return pypd.EventV2.create(data=data)
def EventV2_create( self, summary, source, severity, event_action='trigger', dedup_key=None, timestamp=None, component=None, group=None, event_class=None, custom_details=None, ): '''Events API v2 enables you to add PagerDuty's advanced event and incident management functionality to any system that can make an outbound HTTP connection. Arguments: summary {string} -- A high-level, text summary message of the event. Will be used to construct an alert's description. Example: "PING OK - Packet loss = 0%, RTA = 1.41 ms" "Host 'acme-andromeda-sv1-c40 :: 179.21.24.50' is DOWN" source {string} -- Specific human-readable unique identifier, such as a hostname, for the system having the problem. Examples: "prod05.theseus.acme-widgets.com" "171.26.23.22" "aws:elasticache:us-east-1:852511987:cluster/api-stats-prod-003" "9c09acd49a25" severity {string} -- How impacted the affected system is. Displayed to users in lists and influences the priority of any created incidents. Must be one of {info, warning, error, critical} Keyword Arguments: event_action {str} -- There are three types of events that PagerDuty recognizes, and are used to represent different types of activity in your monitored systems. (default: 'trigger') * trigger: When PagerDuty receives a trigger event, it will either open a new alert, or add a new trigger log entry to an existing alert, depending on the provided dedup_key. Your monitoring tools should send PagerDuty a trigger when a new problem has been detected. You may send additional triggers when a previously detected problem has occurred again. * acknowledge: acknowledge events cause the referenced incident to enter the acknowledged state. While an incident is acknowledged, it won't generate any additional notifications, even if it receives new trigger events. Your monitoring tools should send PagerDuty an acknowledge event when they know someone is presently working on the problem. * resolve: resolve events cause the referenced incident to enter the resolved state. Once an incident is resolved, it won't generate any additional notifications. New trigger events with the same dedup_key as a resolved incident won't re-open the incident. Instead, a new incident will be created. Your monitoring tools should send PagerDuty a resolve event when the problem that caused the initial trigger event has been fixed. dedup_key {string} -- Deduplication key for correlating triggers and resolves. The maximum permitted length of this property is 255 characters. timestamp {string} -- Timestamp (ISO 8601). When the upstream system detected / created the event. This is useful if a system batches or holds events before sending them to PagerDuty. Optional - Will be auto-generated by PagerDuty if not provided. Example: 2015-07-17T08:42:58.315+0000 component {string} -- The part or component of the affected system that is broken. Examples: "keepalive" "webping" "mysql" "wqueue" group {string} -- A cluster or grouping of sources. For example, sources “prod-datapipe-02” and “prod-datapipe-03” might both be part of “prod-datapipe” Examples: "prod-datapipe" "www" "web_stack" event_class {string} -- The class/type of the event. Examples: "High CPU" "Latency" "500 Error" custom_details {Dict[str, str]} -- Additional details about the event and affected system. Example: {"ping time": "1500ms", "load avg": 0.75 } ''' data = { 'routing_key': self.routing_key, 'event_action': event_action, 'payload': {'summary': summary, 'source': source, 'severity': severity}, } if dedup_key is not None: data['dedup_key'] = dedup_key if timestamp is not None: data['payload']['timestamp'] = timestamp if component is not None: data['payload']['component'] = component if group is not None: data['payload']['group'] = group if event_class is not None: data['payload']['class'] = event_class if custom_details is not None: data['payload']['custom_details'] = custom_details return pypd.EventV2.create(data=data)
[ "Events", "API", "v2", "enables", "you", "to", "add", "PagerDuty", "s", "advanced", "event", "and", "incident", "management", "functionality", "to", "any", "system", "that", "can", "make", "an", "outbound", "HTTP", "connection", "." ]
dagster-io/dagster
python
https://github.com/dagster-io/dagster/blob/4119f8c773089de64831b1dfb9e168e353d401dc/python_modules/libraries/dagster-pagerduty/dagster_pagerduty/resources.py#L21-L148
[ "def", "EventV2_create", "(", "self", ",", "summary", ",", "source", ",", "severity", ",", "event_action", "=", "'trigger'", ",", "dedup_key", "=", "None", ",", "timestamp", "=", "None", ",", "component", "=", "None", ",", "group", "=", "None", ",", "event_class", "=", "None", ",", "custom_details", "=", "None", ",", ")", ":", "data", "=", "{", "'routing_key'", ":", "self", ".", "routing_key", ",", "'event_action'", ":", "event_action", ",", "'payload'", ":", "{", "'summary'", ":", "summary", ",", "'source'", ":", "source", ",", "'severity'", ":", "severity", "}", ",", "}", "if", "dedup_key", "is", "not", "None", ":", "data", "[", "'dedup_key'", "]", "=", "dedup_key", "if", "timestamp", "is", "not", "None", ":", "data", "[", "'payload'", "]", "[", "'timestamp'", "]", "=", "timestamp", "if", "component", "is", "not", "None", ":", "data", "[", "'payload'", "]", "[", "'component'", "]", "=", "component", "if", "group", "is", "not", "None", ":", "data", "[", "'payload'", "]", "[", "'group'", "]", "=", "group", "if", "event_class", "is", "not", "None", ":", "data", "[", "'payload'", "]", "[", "'class'", "]", "=", "event_class", "if", "custom_details", "is", "not", "None", ":", "data", "[", "'payload'", "]", "[", "'custom_details'", "]", "=", "custom_details", "return", "pypd", ".", "EventV2", ".", "create", "(", "data", "=", "data", ")" ]
4119f8c773089de64831b1dfb9e168e353d401dc
test
coalesce_execution_steps
Groups execution steps by solid, in topological order of the solids.
python_modules/dagster-airflow/dagster_airflow/compile.py
def coalesce_execution_steps(execution_plan): '''Groups execution steps by solid, in topological order of the solids.''' solid_order = _coalesce_solid_order(execution_plan) steps = defaultdict(list) for solid_name, solid_steps in itertools.groupby( execution_plan.topological_steps(), lambda x: x.solid_name ): steps[solid_name] += list(solid_steps) return OrderedDict([(solid_name, steps[solid_name]) for solid_name in solid_order])
def coalesce_execution_steps(execution_plan): '''Groups execution steps by solid, in topological order of the solids.''' solid_order = _coalesce_solid_order(execution_plan) steps = defaultdict(list) for solid_name, solid_steps in itertools.groupby( execution_plan.topological_steps(), lambda x: x.solid_name ): steps[solid_name] += list(solid_steps) return OrderedDict([(solid_name, steps[solid_name]) for solid_name in solid_order])
[ "Groups", "execution", "steps", "by", "solid", "in", "topological", "order", "of", "the", "solids", "." ]
dagster-io/dagster
python
https://github.com/dagster-io/dagster/blob/4119f8c773089de64831b1dfb9e168e353d401dc/python_modules/dagster-airflow/dagster_airflow/compile.py#L16-L28
[ "def", "coalesce_execution_steps", "(", "execution_plan", ")", ":", "solid_order", "=", "_coalesce_solid_order", "(", "execution_plan", ")", "steps", "=", "defaultdict", "(", "list", ")", "for", "solid_name", ",", "solid_steps", "in", "itertools", ".", "groupby", "(", "execution_plan", ".", "topological_steps", "(", ")", ",", "lambda", "x", ":", "x", ".", "solid_name", ")", ":", "steps", "[", "solid_name", "]", "+=", "list", "(", "solid_steps", ")", "return", "OrderedDict", "(", "[", "(", "solid_name", ",", "steps", "[", "solid_name", "]", ")", "for", "solid_name", "in", "solid_order", "]", ")" ]
4119f8c773089de64831b1dfb9e168e353d401dc
test
DatabaseWrapper.get_connection_params
Default method to acquire database connection parameters. Sets connection parameters to match settings.py, and sets default values to blank fields.
djongo/base.py
def get_connection_params(self): """ Default method to acquire database connection parameters. Sets connection parameters to match settings.py, and sets default values to blank fields. """ valid_settings = { 'NAME': 'name', 'HOST': 'host', 'PORT': 'port', 'USER': 'username', 'PASSWORD': 'password', 'AUTH_SOURCE': 'authSource', 'AUTH_MECHANISM': 'authMechanism', 'ENFORCE_SCHEMA': 'enforce_schema', 'REPLICASET': 'replicaset', 'SSL': 'ssl', 'SSL_CERTFILE': 'ssl_certfile', 'SSL_CA_CERTS': 'ssl_ca_certs', 'READ_PREFERENCE': 'read_preference' } connection_params = { 'name': 'djongo_test', 'enforce_schema': True } for setting_name, kwarg in valid_settings.items(): try: setting = self.settings_dict[setting_name] except KeyError: continue if setting or setting is False: connection_params[kwarg] = setting return connection_params
def get_connection_params(self): """ Default method to acquire database connection parameters. Sets connection parameters to match settings.py, and sets default values to blank fields. """ valid_settings = { 'NAME': 'name', 'HOST': 'host', 'PORT': 'port', 'USER': 'username', 'PASSWORD': 'password', 'AUTH_SOURCE': 'authSource', 'AUTH_MECHANISM': 'authMechanism', 'ENFORCE_SCHEMA': 'enforce_schema', 'REPLICASET': 'replicaset', 'SSL': 'ssl', 'SSL_CERTFILE': 'ssl_certfile', 'SSL_CA_CERTS': 'ssl_ca_certs', 'READ_PREFERENCE': 'read_preference' } connection_params = { 'name': 'djongo_test', 'enforce_schema': True } for setting_name, kwarg in valid_settings.items(): try: setting = self.settings_dict[setting_name] except KeyError: continue if setting or setting is False: connection_params[kwarg] = setting return connection_params
[ "Default", "method", "to", "acquire", "database", "connection", "parameters", "." ]
nesdis/djongo
python
https://github.com/nesdis/djongo/blob/7f9d79455cf030cb5eee0b822502c50a0d9d3abb/djongo/base.py#L122-L157
[ "def", "get_connection_params", "(", "self", ")", ":", "valid_settings", "=", "{", "'NAME'", ":", "'name'", ",", "'HOST'", ":", "'host'", ",", "'PORT'", ":", "'port'", ",", "'USER'", ":", "'username'", ",", "'PASSWORD'", ":", "'password'", ",", "'AUTH_SOURCE'", ":", "'authSource'", ",", "'AUTH_MECHANISM'", ":", "'authMechanism'", ",", "'ENFORCE_SCHEMA'", ":", "'enforce_schema'", ",", "'REPLICASET'", ":", "'replicaset'", ",", "'SSL'", ":", "'ssl'", ",", "'SSL_CERTFILE'", ":", "'ssl_certfile'", ",", "'SSL_CA_CERTS'", ":", "'ssl_ca_certs'", ",", "'READ_PREFERENCE'", ":", "'read_preference'", "}", "connection_params", "=", "{", "'name'", ":", "'djongo_test'", ",", "'enforce_schema'", ":", "True", "}", "for", "setting_name", ",", "kwarg", "in", "valid_settings", ".", "items", "(", ")", ":", "try", ":", "setting", "=", "self", ".", "settings_dict", "[", "setting_name", "]", "except", "KeyError", ":", "continue", "if", "setting", "or", "setting", "is", "False", ":", "connection_params", "[", "kwarg", "]", "=", "setting", "return", "connection_params" ]
7f9d79455cf030cb5eee0b822502c50a0d9d3abb
test
DatabaseWrapper.get_new_connection
Receives a dictionary connection_params to setup a connection to the database. Dictionary correct setup is made through the get_connection_params method. TODO: This needs to be made more generic to accept other MongoClient parameters.
djongo/base.py
def get_new_connection(self, connection_params): """ Receives a dictionary connection_params to setup a connection to the database. Dictionary correct setup is made through the get_connection_params method. TODO: This needs to be made more generic to accept other MongoClient parameters. """ name = connection_params.pop('name') es = connection_params.pop('enforce_schema') connection_params['document_class'] = OrderedDict # connection_params['tz_aware'] = True # To prevent leaving unclosed connections behind, # client_conn must be closed before a new connection # is created. if self.client_connection is not None: self.client_connection.close() self.client_connection = Database.connect(**connection_params) database = self.client_connection[name] self.djongo_connection = DjongoClient(database, es) return self.client_connection[name]
def get_new_connection(self, connection_params): """ Receives a dictionary connection_params to setup a connection to the database. Dictionary correct setup is made through the get_connection_params method. TODO: This needs to be made more generic to accept other MongoClient parameters. """ name = connection_params.pop('name') es = connection_params.pop('enforce_schema') connection_params['document_class'] = OrderedDict # connection_params['tz_aware'] = True # To prevent leaving unclosed connections behind, # client_conn must be closed before a new connection # is created. if self.client_connection is not None: self.client_connection.close() self.client_connection = Database.connect(**connection_params) database = self.client_connection[name] self.djongo_connection = DjongoClient(database, es) return self.client_connection[name]
[ "Receives", "a", "dictionary", "connection_params", "to", "setup", "a", "connection", "to", "the", "database", "." ]
nesdis/djongo
python
https://github.com/nesdis/djongo/blob/7f9d79455cf030cb5eee0b822502c50a0d9d3abb/djongo/base.py#L159-L185
[ "def", "get_new_connection", "(", "self", ",", "connection_params", ")", ":", "name", "=", "connection_params", ".", "pop", "(", "'name'", ")", "es", "=", "connection_params", ".", "pop", "(", "'enforce_schema'", ")", "connection_params", "[", "'document_class'", "]", "=", "OrderedDict", "# connection_params['tz_aware'] = True", "# To prevent leaving unclosed connections behind,", "# client_conn must be closed before a new connection", "# is created.", "if", "self", ".", "client_connection", "is", "not", "None", ":", "self", ".", "client_connection", ".", "close", "(", ")", "self", ".", "client_connection", "=", "Database", ".", "connect", "(", "*", "*", "connection_params", ")", "database", "=", "self", ".", "client_connection", "[", "name", "]", "self", ".", "djongo_connection", "=", "DjongoClient", "(", "database", ",", "es", ")", "return", "self", ".", "client_connection", "[", "name", "]" ]
7f9d79455cf030cb5eee0b822502c50a0d9d3abb
test
DatabaseWrapper.create_cursor
Returns an active connection cursor to the database.
djongo/base.py
def create_cursor(self, name=None): """ Returns an active connection cursor to the database. """ return Cursor(self.client_connection, self.connection, self.djongo_connection)
def create_cursor(self, name=None): """ Returns an active connection cursor to the database. """ return Cursor(self.client_connection, self.connection, self.djongo_connection)
[ "Returns", "an", "active", "connection", "cursor", "to", "the", "database", "." ]
nesdis/djongo
python
https://github.com/nesdis/djongo/blob/7f9d79455cf030cb5eee0b822502c50a0d9d3abb/djongo/base.py#L199-L203
[ "def", "create_cursor", "(", "self", ",", "name", "=", "None", ")", ":", "return", "Cursor", "(", "self", ".", "client_connection", ",", "self", ".", "connection", ",", "self", ".", "djongo_connection", ")" ]
7f9d79455cf030cb5eee0b822502c50a0d9d3abb
test
DatabaseWrapper._close
Closes the client connection to the database.
djongo/base.py
def _close(self): """ Closes the client connection to the database. """ if self.connection: with self.wrap_database_errors: self.connection.client.close()
def _close(self): """ Closes the client connection to the database. """ if self.connection: with self.wrap_database_errors: self.connection.client.close()
[ "Closes", "the", "client", "connection", "to", "the", "database", "." ]
nesdis/djongo
python
https://github.com/nesdis/djongo/blob/7f9d79455cf030cb5eee0b822502c50a0d9d3abb/djongo/base.py#L205-L211
[ "def", "_close", "(", "self", ")", ":", "if", "self", ".", "connection", ":", "with", "self", ".", "wrap_database_errors", ":", "self", ".", "connection", ".", "client", ".", "close", "(", ")" ]
7f9d79455cf030cb5eee0b822502c50a0d9d3abb
test
make_mdl
Builds an instance of model from the model_dict.
djongo/models/fields.py
def make_mdl(model, model_dict): """ Builds an instance of model from the model_dict. """ for field_name in model_dict: field = model._meta.get_field(field_name) model_dict[field_name] = field.to_python(model_dict[field_name]) return model(**model_dict)
def make_mdl(model, model_dict): """ Builds an instance of model from the model_dict. """ for field_name in model_dict: field = model._meta.get_field(field_name) model_dict[field_name] = field.to_python(model_dict[field_name]) return model(**model_dict)
[ "Builds", "an", "instance", "of", "model", "from", "the", "model_dict", "." ]
nesdis/djongo
python
https://github.com/nesdis/djongo/blob/7f9d79455cf030cb5eee0b822502c50a0d9d3abb/djongo/models/fields.py#L35-L43
[ "def", "make_mdl", "(", "model", ",", "model_dict", ")", ":", "for", "field_name", "in", "model_dict", ":", "field", "=", "model", ".", "_meta", ".", "get_field", "(", "field_name", ")", "model_dict", "[", "field_name", "]", "=", "field", ".", "to_python", "(", "model_dict", "[", "field_name", "]", ")", "return", "model", "(", "*", "*", "model_dict", ")" ]
7f9d79455cf030cb5eee0b822502c50a0d9d3abb
test
ArrayModelField.to_python
Overrides standard to_python method from django models to allow correct translation of Mongo array to a python list.
djongo/models/fields.py
def to_python(self, value): """ Overrides standard to_python method from django models to allow correct translation of Mongo array to a python list. """ if value is None: return value assert isinstance(value, list) ret = [] for mdl_dict in value: if isinstance(mdl_dict, self.model_container): ret.append(mdl_dict) continue mdl = make_mdl(self.model_container, mdl_dict) ret.append(mdl) return ret
def to_python(self, value): """ Overrides standard to_python method from django models to allow correct translation of Mongo array to a python list. """ if value is None: return value assert isinstance(value, list) ret = [] for mdl_dict in value: if isinstance(mdl_dict, self.model_container): ret.append(mdl_dict) continue mdl = make_mdl(self.model_container, mdl_dict) ret.append(mdl) return ret
[ "Overrides", "standard", "to_python", "method", "from", "django", "models", "to", "allow", "correct", "translation", "of", "Mongo", "array", "to", "a", "python", "list", "." ]
nesdis/djongo
python
https://github.com/nesdis/djongo/blob/7f9d79455cf030cb5eee0b822502c50a0d9d3abb/djongo/models/fields.py#L224-L241
[ "def", "to_python", "(", "self", ",", "value", ")", ":", "if", "value", "is", "None", ":", "return", "value", "assert", "isinstance", "(", "value", ",", "list", ")", "ret", "=", "[", "]", "for", "mdl_dict", "in", "value", ":", "if", "isinstance", "(", "mdl_dict", ",", "self", ".", "model_container", ")", ":", "ret", ".", "append", "(", "mdl_dict", ")", "continue", "mdl", "=", "make_mdl", "(", "self", ".", "model_container", ",", "mdl_dict", ")", "ret", ".", "append", "(", "mdl", ")", "return", "ret" ]
7f9d79455cf030cb5eee0b822502c50a0d9d3abb
test
ArrayModelField.formfield
Returns the formfield for the array.
djongo/models/fields.py
def formfield(self, **kwargs): """ Returns the formfield for the array. """ defaults = { 'form_class': ArrayFormField, 'model_container': self.model_container, 'model_form_class': self.model_form_class, 'name': self.attname, 'mdl_form_kw_l': self.model_form_kwargs_l } defaults.update(kwargs) return super().formfield(**defaults)
def formfield(self, **kwargs): """ Returns the formfield for the array. """ defaults = { 'form_class': ArrayFormField, 'model_container': self.model_container, 'model_form_class': self.model_form_class, 'name': self.attname, 'mdl_form_kw_l': self.model_form_kwargs_l } defaults.update(kwargs) return super().formfield(**defaults)
[ "Returns", "the", "formfield", "for", "the", "array", "." ]
nesdis/djongo
python
https://github.com/nesdis/djongo/blob/7f9d79455cf030cb5eee0b822502c50a0d9d3abb/djongo/models/fields.py#L243-L256
[ "def", "formfield", "(", "self", ",", "*", "*", "kwargs", ")", ":", "defaults", "=", "{", "'form_class'", ":", "ArrayFormField", ",", "'model_container'", ":", "self", ".", "model_container", ",", "'model_form_class'", ":", "self", ".", "model_form_class", ",", "'name'", ":", "self", ".", "attname", ",", "'mdl_form_kw_l'", ":", "self", ".", "model_form_kwargs_l", "}", "defaults", ".", "update", "(", "kwargs", ")", "return", "super", "(", ")", ".", "formfield", "(", "*", "*", "defaults", ")" ]
7f9d79455cf030cb5eee0b822502c50a0d9d3abb
test
EmbeddedModelField.to_python
Overrides Django's default to_python to allow correct translation to instance.
djongo/models/fields.py
def to_python(self, value): """ Overrides Django's default to_python to allow correct translation to instance. """ if value is None or isinstance(value, self.model_container): return value assert isinstance(value, dict) instance = make_mdl(self.model_container, value) return instance
def to_python(self, value): """ Overrides Django's default to_python to allow correct translation to instance. """ if value is None or isinstance(value, self.model_container): return value assert isinstance(value, dict) instance = make_mdl(self.model_container, value) return instance
[ "Overrides", "Django", "s", "default", "to_python", "to", "allow", "correct", "translation", "to", "instance", "." ]
nesdis/djongo
python
https://github.com/nesdis/djongo/blob/7f9d79455cf030cb5eee0b822502c50a0d9d3abb/djongo/models/fields.py#L507-L517
[ "def", "to_python", "(", "self", ",", "value", ")", ":", "if", "value", "is", "None", "or", "isinstance", "(", "value", ",", "self", ".", "model_container", ")", ":", "return", "value", "assert", "isinstance", "(", "value", ",", "dict", ")", "instance", "=", "make_mdl", "(", "self", ".", "model_container", ",", "value", ")", "return", "instance" ]
7f9d79455cf030cb5eee0b822502c50a0d9d3abb
test
ArrayReferenceManagerMixin._apply_rel_filters
Filter the queryset for the instance this manager is bound to.
djongo/models/fields.py
def _apply_rel_filters(self, queryset): """ Filter the queryset for the instance this manager is bound to. """ queryset._add_hints(instance=self.instance) if self._db: queryset = queryset.using(self._db) queryset = queryset.filter(**self.core_filters) return queryset
def _apply_rel_filters(self, queryset): """ Filter the queryset for the instance this manager is bound to. """ queryset._add_hints(instance=self.instance) if self._db: queryset = queryset.using(self._db) queryset = queryset.filter(**self.core_filters) return queryset
[ "Filter", "the", "queryset", "for", "the", "instance", "this", "manager", "is", "bound", "to", "." ]
nesdis/djongo
python
https://github.com/nesdis/djongo/blob/7f9d79455cf030cb5eee0b822502c50a0d9d3abb/djongo/models/fields.py#L675-L684
[ "def", "_apply_rel_filters", "(", "self", ",", "queryset", ")", ":", "queryset", ".", "_add_hints", "(", "instance", "=", "self", ".", "instance", ")", "if", "self", ".", "_db", ":", "queryset", "=", "queryset", ".", "using", "(", "self", ".", "_db", ")", "queryset", "=", "queryset", ".", "filter", "(", "*", "*", "self", ".", "core_filters", ")", "return", "queryset" ]
7f9d79455cf030cb5eee0b822502c50a0d9d3abb
test
_compute_nfp_uniform
Computes the expected number of false positives caused by using u to approximate set sizes in the interval [l, u], assuming uniform distribution of set sizes within the interval. Args: l: the lower bound on set sizes. u: the upper bound on set sizes. cum_counts: the complete cummulative distribution of set sizes. sizes: the complete domain of set sizes. Return (float): the expected number of false positives.
datasketch/lshensemble_partition.py
def _compute_nfp_uniform(l, u, cum_counts, sizes): """Computes the expected number of false positives caused by using u to approximate set sizes in the interval [l, u], assuming uniform distribution of set sizes within the interval. Args: l: the lower bound on set sizes. u: the upper bound on set sizes. cum_counts: the complete cummulative distribution of set sizes. sizes: the complete domain of set sizes. Return (float): the expected number of false positives. """ if l > u: raise ValueError("l must be less or equal to u") if l == 0: n = cum_counts[u] else: n = cum_counts[u]-cum_counts[l-1] return n * float(sizes[u] - sizes[l]) / float(2*sizes[u])
def _compute_nfp_uniform(l, u, cum_counts, sizes): """Computes the expected number of false positives caused by using u to approximate set sizes in the interval [l, u], assuming uniform distribution of set sizes within the interval. Args: l: the lower bound on set sizes. u: the upper bound on set sizes. cum_counts: the complete cummulative distribution of set sizes. sizes: the complete domain of set sizes. Return (float): the expected number of false positives. """ if l > u: raise ValueError("l must be less or equal to u") if l == 0: n = cum_counts[u] else: n = cum_counts[u]-cum_counts[l-1] return n * float(sizes[u] - sizes[l]) / float(2*sizes[u])
[ "Computes", "the", "expected", "number", "of", "false", "positives", "caused", "by", "using", "u", "to", "approximate", "set", "sizes", "in", "the", "interval", "[", "l", "u", "]", "assuming", "uniform", "distribution", "of", "set", "sizes", "within", "the", "interval", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/lshensemble_partition.py#L13-L32
[ "def", "_compute_nfp_uniform", "(", "l", ",", "u", ",", "cum_counts", ",", "sizes", ")", ":", "if", "l", ">", "u", ":", "raise", "ValueError", "(", "\"l must be less or equal to u\"", ")", "if", "l", "==", "0", ":", "n", "=", "cum_counts", "[", "u", "]", "else", ":", "n", "=", "cum_counts", "[", "u", "]", "-", "cum_counts", "[", "l", "-", "1", "]", "return", "n", "*", "float", "(", "sizes", "[", "u", "]", "-", "sizes", "[", "l", "]", ")", "/", "float", "(", "2", "*", "sizes", "[", "u", "]", ")" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
_compute_nfps_uniform
Computes the matrix of expected false positives for all possible sub-intervals of the complete domain of set sizes, assuming uniform distribution of set_sizes within each sub-intervals. Args: cum_counts: the complete cummulative distribution of set sizes. sizes: the complete domain of set sizes. Return (np.array): the 2-D array of expected number of false positives for every pair of [l, u] interval, where l is axis-0 and u is axis-1.
datasketch/lshensemble_partition.py
def _compute_nfps_uniform(cum_counts, sizes): """Computes the matrix of expected false positives for all possible sub-intervals of the complete domain of set sizes, assuming uniform distribution of set_sizes within each sub-intervals. Args: cum_counts: the complete cummulative distribution of set sizes. sizes: the complete domain of set sizes. Return (np.array): the 2-D array of expected number of false positives for every pair of [l, u] interval, where l is axis-0 and u is axis-1. """ nfps = np.zeros((len(sizes), len(sizes))) # All u an l are inclusive bounds for intervals. # Compute p = 1, the NFPs for l in range(len(sizes)): for u in range(l, len(sizes)): nfps[l, u] = _compute_nfp_uniform(l, u, cum_counts, sizes) return nfps
def _compute_nfps_uniform(cum_counts, sizes): """Computes the matrix of expected false positives for all possible sub-intervals of the complete domain of set sizes, assuming uniform distribution of set_sizes within each sub-intervals. Args: cum_counts: the complete cummulative distribution of set sizes. sizes: the complete domain of set sizes. Return (np.array): the 2-D array of expected number of false positives for every pair of [l, u] interval, where l is axis-0 and u is axis-1. """ nfps = np.zeros((len(sizes), len(sizes))) # All u an l are inclusive bounds for intervals. # Compute p = 1, the NFPs for l in range(len(sizes)): for u in range(l, len(sizes)): nfps[l, u] = _compute_nfp_uniform(l, u, cum_counts, sizes) return nfps
[ "Computes", "the", "matrix", "of", "expected", "false", "positives", "for", "all", "possible", "sub", "-", "intervals", "of", "the", "complete", "domain", "of", "set", "sizes", "assuming", "uniform", "distribution", "of", "set_sizes", "within", "each", "sub", "-", "intervals", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/lshensemble_partition.py#L35-L54
[ "def", "_compute_nfps_uniform", "(", "cum_counts", ",", "sizes", ")", ":", "nfps", "=", "np", ".", "zeros", "(", "(", "len", "(", "sizes", ")", ",", "len", "(", "sizes", ")", ")", ")", "# All u an l are inclusive bounds for intervals.", "# Compute p = 1, the NFPs", "for", "l", "in", "range", "(", "len", "(", "sizes", ")", ")", ":", "for", "u", "in", "range", "(", "l", ",", "len", "(", "sizes", ")", ")", ":", "nfps", "[", "l", ",", "u", "]", "=", "_compute_nfp_uniform", "(", "l", ",", "u", ",", "cum_counts", ",", "sizes", ")", "return", "nfps" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
_compute_nfp_real
Computes the expected number of false positives caused by using u to approximate set sizes in the interval [l, u], using the real set size distribution. Args: l: the lower bound on set sizes. u: the upper bound on set sizes. counts: the complete distribution of set sizes. sizes: the complete domain of set sizes. Return (float): the expected number of false positives.
datasketch/lshensemble_partition.py
def _compute_nfp_real(l, u, counts, sizes): """Computes the expected number of false positives caused by using u to approximate set sizes in the interval [l, u], using the real set size distribution. Args: l: the lower bound on set sizes. u: the upper bound on set sizes. counts: the complete distribution of set sizes. sizes: the complete domain of set sizes. Return (float): the expected number of false positives. """ if l > u: raise ValueError("l must be less or equal to u") return np.sum((float(sizes[u])-sizes[l:u+1])/float(sizes[u])*counts[l:u+1])
def _compute_nfp_real(l, u, counts, sizes): """Computes the expected number of false positives caused by using u to approximate set sizes in the interval [l, u], using the real set size distribution. Args: l: the lower bound on set sizes. u: the upper bound on set sizes. counts: the complete distribution of set sizes. sizes: the complete domain of set sizes. Return (float): the expected number of false positives. """ if l > u: raise ValueError("l must be less or equal to u") return np.sum((float(sizes[u])-sizes[l:u+1])/float(sizes[u])*counts[l:u+1])
[ "Computes", "the", "expected", "number", "of", "false", "positives", "caused", "by", "using", "u", "to", "approximate", "set", "sizes", "in", "the", "interval", "[", "l", "u", "]", "using", "the", "real", "set", "size", "distribution", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/lshensemble_partition.py#L57-L72
[ "def", "_compute_nfp_real", "(", "l", ",", "u", ",", "counts", ",", "sizes", ")", ":", "if", "l", ">", "u", ":", "raise", "ValueError", "(", "\"l must be less or equal to u\"", ")", "return", "np", ".", "sum", "(", "(", "float", "(", "sizes", "[", "u", "]", ")", "-", "sizes", "[", "l", ":", "u", "+", "1", "]", ")", "/", "float", "(", "sizes", "[", "u", "]", ")", "*", "counts", "[", "l", ":", "u", "+", "1", "]", ")" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
_compute_nfps_real
Computes the matrix of expected false positives for all possible sub-intervals of the complete domain of set sizes. Args: counts: the complete distribution of set sizes. sizes: the complete domain of set sizes. Return (np.array): the 2-D array of expected number of false positives for every pair of [l, u] interval, where l is axis-0 and u is axis-1.
datasketch/lshensemble_partition.py
def _compute_nfps_real(counts, sizes): """Computes the matrix of expected false positives for all possible sub-intervals of the complete domain of set sizes. Args: counts: the complete distribution of set sizes. sizes: the complete domain of set sizes. Return (np.array): the 2-D array of expected number of false positives for every pair of [l, u] interval, where l is axis-0 and u is axis-1. """ nfps = np.zeros((len(sizes), len(sizes))) # All u an l are inclusive bounds for intervals. # Compute p = 1, the NFPs for l in range(len(sizes)): for u in range(l, len(sizes)): nfps[l, u] = _compute_nfp_real(l, u, counts, sizes) return nfps
def _compute_nfps_real(counts, sizes): """Computes the matrix of expected false positives for all possible sub-intervals of the complete domain of set sizes. Args: counts: the complete distribution of set sizes. sizes: the complete domain of set sizes. Return (np.array): the 2-D array of expected number of false positives for every pair of [l, u] interval, where l is axis-0 and u is axis-1. """ nfps = np.zeros((len(sizes), len(sizes))) # All u an l are inclusive bounds for intervals. # Compute p = 1, the NFPs for l in range(len(sizes)): for u in range(l, len(sizes)): nfps[l, u] = _compute_nfp_real(l, u, counts, sizes) return nfps
[ "Computes", "the", "matrix", "of", "expected", "false", "positives", "for", "all", "possible", "sub", "-", "intervals", "of", "the", "complete", "domain", "of", "set", "sizes", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/lshensemble_partition.py#L75-L93
[ "def", "_compute_nfps_real", "(", "counts", ",", "sizes", ")", ":", "nfps", "=", "np", ".", "zeros", "(", "(", "len", "(", "sizes", ")", ",", "len", "(", "sizes", ")", ")", ")", "# All u an l are inclusive bounds for intervals.", "# Compute p = 1, the NFPs", "for", "l", "in", "range", "(", "len", "(", "sizes", ")", ")", ":", "for", "u", "in", "range", "(", "l", ",", "len", "(", "sizes", ")", ")", ":", "nfps", "[", "l", ",", "u", "]", "=", "_compute_nfp_real", "(", "l", ",", "u", ",", "counts", ",", "sizes", ")", "return", "nfps" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
_compute_best_partitions
Computes the optimal partitions given the size distributions and computed number of expected false positives for all sub-intervals. Args: num_part (int): The number of partitions to create. sizes (numpy.array): The complete domain of set sizes in sorted order. nfps (numpy.array): The computed number of expected false positives for all sub-intervals; axis-0 is for the indexes of lower bounds and axis-1 is for the indexes of upper bounds. Returns: partitions (list): list of lower and upper bounds of set sizes for all partitions. total_nfps (float): total number of expected false positives from all partitions. cost (numpy.array): a N x p-1 matrix of the computed optimal NFPs for all sub-problems given upper bound set size and number of partitions.
datasketch/lshensemble_partition.py
def _compute_best_partitions(num_part, sizes, nfps): """Computes the optimal partitions given the size distributions and computed number of expected false positives for all sub-intervals. Args: num_part (int): The number of partitions to create. sizes (numpy.array): The complete domain of set sizes in sorted order. nfps (numpy.array): The computed number of expected false positives for all sub-intervals; axis-0 is for the indexes of lower bounds and axis-1 is for the indexes of upper bounds. Returns: partitions (list): list of lower and upper bounds of set sizes for all partitions. total_nfps (float): total number of expected false positives from all partitions. cost (numpy.array): a N x p-1 matrix of the computed optimal NFPs for all sub-problems given upper bound set size and number of partitions. """ if num_part < 2: raise ValueError("num_part cannot be less than 2") if num_part > len(sizes): raise ValueError("num_part cannot be greater than the domain size of " "all set sizes") # If number of partitions is 2, then simply find the upper bound # of the first partition. if num_part == 2: total_nfps, u = min((nfps[0, u1]+nfps[u1+1, len(sizes)-1], u1) for u1 in range(0, len(sizes)-1)) return [(sizes[0], sizes[u]), (sizes[u+1], sizes[-1]),], \ total_nfps, None # Initialize subproblem total NFPs. cost = np.zeros((len(sizes), num_part-2)) # Note: p is the number of partitions in the subproblem. # p2i translates the number of partition into the index in the matrix. p2i = lambda p : p - 2 # Compute p >= 2 until before p = num_part. for p in range(2, num_part): # Compute best partition for subproblems with increasing # max index u, starting from the smallest possible u given the p. # The smallest possible u can be considered as the max index that # generates p partitions each with only one size. for u in range(p-1, len(sizes)): if p == 2: cost[u, p2i(p)] = min(nfps[0, u1]+nfps[u1+1,u] for u1 in range(u)) else: cost[u, p2i(p)] = min(cost[u1, p2i(p-1)] + nfps[u1+1, u] for u1 in range((p-1)-1, u)) p = num_part # Find the optimal upper bound index of the 2nd right-most partition given # the number of partitions (p). total_nfps, u = min((cost[u1, p2i(p-1)]+nfps[u1+1, len(sizes)-1], u1) for u1 in range((p-1)-1, len(sizes)-1)) partitions = [(sizes[u+1], sizes[-1]),] p -= 1 # Back track to find the best partitions. while p > 1: # Find the optimal upper bound index of the 2nd right-most partition # givne the number of partitions (p) and upper bound index (u) in this # sub-problem. _, u1_best = min((cost[u1, p2i(p)]+nfps[u1+1, u], u1) for u1 in range((p-1)-1, u)) partitions.insert(0, (sizes[u1_best+1], sizes[u])) u = u1_best p -= 1 partitions.insert(0, (sizes[0], sizes[u])) return [partitions, total_nfps, cost]
def _compute_best_partitions(num_part, sizes, nfps): """Computes the optimal partitions given the size distributions and computed number of expected false positives for all sub-intervals. Args: num_part (int): The number of partitions to create. sizes (numpy.array): The complete domain of set sizes in sorted order. nfps (numpy.array): The computed number of expected false positives for all sub-intervals; axis-0 is for the indexes of lower bounds and axis-1 is for the indexes of upper bounds. Returns: partitions (list): list of lower and upper bounds of set sizes for all partitions. total_nfps (float): total number of expected false positives from all partitions. cost (numpy.array): a N x p-1 matrix of the computed optimal NFPs for all sub-problems given upper bound set size and number of partitions. """ if num_part < 2: raise ValueError("num_part cannot be less than 2") if num_part > len(sizes): raise ValueError("num_part cannot be greater than the domain size of " "all set sizes") # If number of partitions is 2, then simply find the upper bound # of the first partition. if num_part == 2: total_nfps, u = min((nfps[0, u1]+nfps[u1+1, len(sizes)-1], u1) for u1 in range(0, len(sizes)-1)) return [(sizes[0], sizes[u]), (sizes[u+1], sizes[-1]),], \ total_nfps, None # Initialize subproblem total NFPs. cost = np.zeros((len(sizes), num_part-2)) # Note: p is the number of partitions in the subproblem. # p2i translates the number of partition into the index in the matrix. p2i = lambda p : p - 2 # Compute p >= 2 until before p = num_part. for p in range(2, num_part): # Compute best partition for subproblems with increasing # max index u, starting from the smallest possible u given the p. # The smallest possible u can be considered as the max index that # generates p partitions each with only one size. for u in range(p-1, len(sizes)): if p == 2: cost[u, p2i(p)] = min(nfps[0, u1]+nfps[u1+1,u] for u1 in range(u)) else: cost[u, p2i(p)] = min(cost[u1, p2i(p-1)] + nfps[u1+1, u] for u1 in range((p-1)-1, u)) p = num_part # Find the optimal upper bound index of the 2nd right-most partition given # the number of partitions (p). total_nfps, u = min((cost[u1, p2i(p-1)]+nfps[u1+1, len(sizes)-1], u1) for u1 in range((p-1)-1, len(sizes)-1)) partitions = [(sizes[u+1], sizes[-1]),] p -= 1 # Back track to find the best partitions. while p > 1: # Find the optimal upper bound index of the 2nd right-most partition # givne the number of partitions (p) and upper bound index (u) in this # sub-problem. _, u1_best = min((cost[u1, p2i(p)]+nfps[u1+1, u], u1) for u1 in range((p-1)-1, u)) partitions.insert(0, (sizes[u1_best+1], sizes[u])) u = u1_best p -= 1 partitions.insert(0, (sizes[0], sizes[u])) return [partitions, total_nfps, cost]
[ "Computes", "the", "optimal", "partitions", "given", "the", "size", "distributions", "and", "computed", "number", "of", "expected", "false", "positives", "for", "all", "sub", "-", "intervals", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/lshensemble_partition.py#L96-L168
[ "def", "_compute_best_partitions", "(", "num_part", ",", "sizes", ",", "nfps", ")", ":", "if", "num_part", "<", "2", ":", "raise", "ValueError", "(", "\"num_part cannot be less than 2\"", ")", "if", "num_part", ">", "len", "(", "sizes", ")", ":", "raise", "ValueError", "(", "\"num_part cannot be greater than the domain size of \"", "\"all set sizes\"", ")", "# If number of partitions is 2, then simply find the upper bound", "# of the first partition.", "if", "num_part", "==", "2", ":", "total_nfps", ",", "u", "=", "min", "(", "(", "nfps", "[", "0", ",", "u1", "]", "+", "nfps", "[", "u1", "+", "1", ",", "len", "(", "sizes", ")", "-", "1", "]", ",", "u1", ")", "for", "u1", "in", "range", "(", "0", ",", "len", "(", "sizes", ")", "-", "1", ")", ")", "return", "[", "(", "sizes", "[", "0", "]", ",", "sizes", "[", "u", "]", ")", ",", "(", "sizes", "[", "u", "+", "1", "]", ",", "sizes", "[", "-", "1", "]", ")", ",", "]", ",", "total_nfps", ",", "None", "# Initialize subproblem total NFPs.", "cost", "=", "np", ".", "zeros", "(", "(", "len", "(", "sizes", ")", ",", "num_part", "-", "2", ")", ")", "# Note: p is the number of partitions in the subproblem.", "# p2i translates the number of partition into the index in the matrix.", "p2i", "=", "lambda", "p", ":", "p", "-", "2", "# Compute p >= 2 until before p = num_part.", "for", "p", "in", "range", "(", "2", ",", "num_part", ")", ":", "# Compute best partition for subproblems with increasing", "# max index u, starting from the smallest possible u given the p.", "# The smallest possible u can be considered as the max index that", "# generates p partitions each with only one size.", "for", "u", "in", "range", "(", "p", "-", "1", ",", "len", "(", "sizes", ")", ")", ":", "if", "p", "==", "2", ":", "cost", "[", "u", ",", "p2i", "(", "p", ")", "]", "=", "min", "(", "nfps", "[", "0", ",", "u1", "]", "+", "nfps", "[", "u1", "+", "1", ",", "u", "]", "for", "u1", "in", "range", "(", "u", ")", ")", "else", ":", "cost", "[", "u", ",", "p2i", "(", "p", ")", "]", "=", "min", "(", "cost", "[", "u1", ",", "p2i", "(", "p", "-", "1", ")", "]", "+", "nfps", "[", "u1", "+", "1", ",", "u", "]", "for", "u1", "in", "range", "(", "(", "p", "-", "1", ")", "-", "1", ",", "u", ")", ")", "p", "=", "num_part", "# Find the optimal upper bound index of the 2nd right-most partition given", "# the number of partitions (p).", "total_nfps", ",", "u", "=", "min", "(", "(", "cost", "[", "u1", ",", "p2i", "(", "p", "-", "1", ")", "]", "+", "nfps", "[", "u1", "+", "1", ",", "len", "(", "sizes", ")", "-", "1", "]", ",", "u1", ")", "for", "u1", "in", "range", "(", "(", "p", "-", "1", ")", "-", "1", ",", "len", "(", "sizes", ")", "-", "1", ")", ")", "partitions", "=", "[", "(", "sizes", "[", "u", "+", "1", "]", ",", "sizes", "[", "-", "1", "]", ")", ",", "]", "p", "-=", "1", "# Back track to find the best partitions.", "while", "p", ">", "1", ":", "# Find the optimal upper bound index of the 2nd right-most partition", "# givne the number of partitions (p) and upper bound index (u) in this", "# sub-problem.", "_", ",", "u1_best", "=", "min", "(", "(", "cost", "[", "u1", ",", "p2i", "(", "p", ")", "]", "+", "nfps", "[", "u1", "+", "1", ",", "u", "]", ",", "u1", ")", "for", "u1", "in", "range", "(", "(", "p", "-", "1", ")", "-", "1", ",", "u", ")", ")", "partitions", ".", "insert", "(", "0", ",", "(", "sizes", "[", "u1_best", "+", "1", "]", ",", "sizes", "[", "u", "]", ")", ")", "u", "=", "u1_best", "p", "-=", "1", "partitions", ".", "insert", "(", "0", ",", "(", "sizes", "[", "0", "]", ",", "sizes", "[", "u", "]", ")", ")", "return", "[", "partitions", ",", "total_nfps", ",", "cost", "]" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
optimal_partitions
Compute the optimal partitions given a distribution of set sizes. Args: sizes (numpy.array): The complete domain of set sizes in ascending order. counts (numpy.array): The frequencies of all set sizes in the same order as `sizes`. num_part (int): The number of partitions to create. Returns: list: A list of partitions in the form of `(lower, upper)` tuples, where `lower` and `upper` are lower and upper bound (inclusive) set sizes of each partition.
datasketch/lshensemble_partition.py
def optimal_partitions(sizes, counts, num_part): """Compute the optimal partitions given a distribution of set sizes. Args: sizes (numpy.array): The complete domain of set sizes in ascending order. counts (numpy.array): The frequencies of all set sizes in the same order as `sizes`. num_part (int): The number of partitions to create. Returns: list: A list of partitions in the form of `(lower, upper)` tuples, where `lower` and `upper` are lower and upper bound (inclusive) set sizes of each partition. """ if num_part < 2: return [(sizes[0], sizes[-1])] if num_part >= len(sizes): partitions = [(x, x) for x in sizes] return partitions nfps = _compute_nfps_real(counts, sizes) partitions, _, _ = _compute_best_partitions(num_part, sizes, nfps) return partitions
def optimal_partitions(sizes, counts, num_part): """Compute the optimal partitions given a distribution of set sizes. Args: sizes (numpy.array): The complete domain of set sizes in ascending order. counts (numpy.array): The frequencies of all set sizes in the same order as `sizes`. num_part (int): The number of partitions to create. Returns: list: A list of partitions in the form of `(lower, upper)` tuples, where `lower` and `upper` are lower and upper bound (inclusive) set sizes of each partition. """ if num_part < 2: return [(sizes[0], sizes[-1])] if num_part >= len(sizes): partitions = [(x, x) for x in sizes] return partitions nfps = _compute_nfps_real(counts, sizes) partitions, _, _ = _compute_best_partitions(num_part, sizes, nfps) return partitions
[ "Compute", "the", "optimal", "partitions", "given", "a", "distribution", "of", "set", "sizes", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/lshensemble_partition.py#L172-L194
[ "def", "optimal_partitions", "(", "sizes", ",", "counts", ",", "num_part", ")", ":", "if", "num_part", "<", "2", ":", "return", "[", "(", "sizes", "[", "0", "]", ",", "sizes", "[", "-", "1", "]", ")", "]", "if", "num_part", ">=", "len", "(", "sizes", ")", ":", "partitions", "=", "[", "(", "x", ",", "x", ")", "for", "x", "in", "sizes", "]", "return", "partitions", "nfps", "=", "_compute_nfps_real", "(", "counts", ",", "sizes", ")", "partitions", ",", "_", ",", "_", "=", "_compute_best_partitions", "(", "num_part", ",", "sizes", ",", "nfps", ")", "return", "partitions" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
bBitMinHash.jaccard
Estimate the Jaccard similarity (resemblance) between this b-bit MinHash and the other.
datasketch/b_bit_minhash.py
def jaccard(self, other): ''' Estimate the Jaccard similarity (resemblance) between this b-bit MinHash and the other. ''' if self.b != other.b: raise ValueError("Cannot compare two b-bit MinHashes with different\ b values") if self.seed != other.seed: raise ValueError("Cannot compare two b-bit MinHashes with different\ set of permutations") intersection = np.count_nonzero(self.hashvalues==other.hashvalues) raw_est = float(intersection) / float(self.hashvalues.size) a1 = self._calc_a(self.r, self.b) a2 = self._calc_a(other.r, other.b) c1, c2 = self._calc_c(a1, a2, self.r, other.r) return (raw_est - c1) / (1 - c2)
def jaccard(self, other): ''' Estimate the Jaccard similarity (resemblance) between this b-bit MinHash and the other. ''' if self.b != other.b: raise ValueError("Cannot compare two b-bit MinHashes with different\ b values") if self.seed != other.seed: raise ValueError("Cannot compare two b-bit MinHashes with different\ set of permutations") intersection = np.count_nonzero(self.hashvalues==other.hashvalues) raw_est = float(intersection) / float(self.hashvalues.size) a1 = self._calc_a(self.r, self.b) a2 = self._calc_a(other.r, other.b) c1, c2 = self._calc_c(a1, a2, self.r, other.r) return (raw_est - c1) / (1 - c2)
[ "Estimate", "the", "Jaccard", "similarity", "(", "resemblance", ")", "between", "this", "b", "-", "bit", "MinHash", "and", "the", "other", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/b_bit_minhash.py#L57-L73
[ "def", "jaccard", "(", "self", ",", "other", ")", ":", "if", "self", ".", "b", "!=", "other", ".", "b", ":", "raise", "ValueError", "(", "\"Cannot compare two b-bit MinHashes with different\\\n b values\"", ")", "if", "self", ".", "seed", "!=", "other", ".", "seed", ":", "raise", "ValueError", "(", "\"Cannot compare two b-bit MinHashes with different\\\n set of permutations\"", ")", "intersection", "=", "np", ".", "count_nonzero", "(", "self", ".", "hashvalues", "==", "other", ".", "hashvalues", ")", "raw_est", "=", "float", "(", "intersection", ")", "/", "float", "(", "self", ".", "hashvalues", ".", "size", ")", "a1", "=", "self", ".", "_calc_a", "(", "self", ".", "r", ",", "self", ".", "b", ")", "a2", "=", "self", ".", "_calc_a", "(", "other", ".", "r", ",", "other", ".", "b", ")", "c1", ",", "c2", "=", "self", ".", "_calc_c", "(", "a1", ",", "a2", ",", "self", ".", "r", ",", "other", ".", "r", ")", "return", "(", "raw_est", "-", "c1", ")", "/", "(", "1", "-", "c2", ")" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
bBitMinHash._calc_a
Compute the function A(r, b)
datasketch/b_bit_minhash.py
def _calc_a(self, r, b): ''' Compute the function A(r, b) ''' if r == 0.0: # Find the limit of A(r, b) as r -> 0. return 1.0 / (1 << b) return r * (1 - r) ** (2 ** b - 1) / (1 - (1 - r) ** (2 * b))
def _calc_a(self, r, b): ''' Compute the function A(r, b) ''' if r == 0.0: # Find the limit of A(r, b) as r -> 0. return 1.0 / (1 << b) return r * (1 - r) ** (2 ** b - 1) / (1 - (1 - r) ** (2 * b))
[ "Compute", "the", "function", "A", "(", "r", "b", ")" ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/b_bit_minhash.py#L129-L136
[ "def", "_calc_a", "(", "self", ",", "r", ",", "b", ")", ":", "if", "r", "==", "0.0", ":", "# Find the limit of A(r, b) as r -> 0.", "return", "1.0", "/", "(", "1", "<<", "b", ")", "return", "r", "*", "(", "1", "-", "r", ")", "**", "(", "2", "**", "b", "-", "1", ")", "/", "(", "1", "-", "(", "1", "-", "r", ")", "**", "(", "2", "*", "b", ")", ")" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
bBitMinHash._calc_c
Compute the functions C1 and C2
datasketch/b_bit_minhash.py
def _calc_c(self, a1, a2, r1, r2): ''' Compute the functions C1 and C2 ''' if r1 == 0.0 and r2 == 0.0: # Find the limits of C1 and C2 as r1 -> 0 and r2 -> 0 # Since the b-value must be the same and r1 = r2, # we have A1(r1, b1) = A2(r2, b2) = A, # then the limits for both C1 and C2 are A. return a1, a2 div = 1 / (r1 + r2) c1 = (a1 * r2 + a2 * r1) * div c2 = (a1 * r1 + a2 * r2) * div return c1, c2
def _calc_c(self, a1, a2, r1, r2): ''' Compute the functions C1 and C2 ''' if r1 == 0.0 and r2 == 0.0: # Find the limits of C1 and C2 as r1 -> 0 and r2 -> 0 # Since the b-value must be the same and r1 = r2, # we have A1(r1, b1) = A2(r2, b2) = A, # then the limits for both C1 and C2 are A. return a1, a2 div = 1 / (r1 + r2) c1 = (a1 * r2 + a2 * r1) * div c2 = (a1 * r1 + a2 * r2) * div return c1, c2
[ "Compute", "the", "functions", "C1", "and", "C2" ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/b_bit_minhash.py#L138-L151
[ "def", "_calc_c", "(", "self", ",", "a1", ",", "a2", ",", "r1", ",", "r2", ")", ":", "if", "r1", "==", "0.0", "and", "r2", "==", "0.0", ":", "# Find the limits of C1 and C2 as r1 -> 0 and r2 -> 0", "# Since the b-value must be the same and r1 = r2,", "# we have A1(r1, b1) = A2(r2, b2) = A,", "# then the limits for both C1 and C2 are A.", "return", "a1", ",", "a2", "div", "=", "1", "/", "(", "r1", "+", "r2", ")", "c1", "=", "(", "a1", "*", "r2", "+", "a2", "*", "r1", ")", "*", "div", "c2", "=", "(", "a1", "*", "r1", "+", "a2", "*", "r2", ")", "*", "div", "return", "c1", ",", "c2" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
LeanMinHash._initialize_slots
Initialize the slots of the LeanMinHash. Args: seed (int): The random seed controls the set of random permutation functions generated for this LeanMinHash. hashvalues: The hash values is the internal state of the LeanMinHash.
datasketch/lean_minhash.py
def _initialize_slots(self, seed, hashvalues): '''Initialize the slots of the LeanMinHash. Args: seed (int): The random seed controls the set of random permutation functions generated for this LeanMinHash. hashvalues: The hash values is the internal state of the LeanMinHash. ''' self.seed = seed self.hashvalues = self._parse_hashvalues(hashvalues)
def _initialize_slots(self, seed, hashvalues): '''Initialize the slots of the LeanMinHash. Args: seed (int): The random seed controls the set of random permutation functions generated for this LeanMinHash. hashvalues: The hash values is the internal state of the LeanMinHash. ''' self.seed = seed self.hashvalues = self._parse_hashvalues(hashvalues)
[ "Initialize", "the", "slots", "of", "the", "LeanMinHash", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/lean_minhash.py#L51-L60
[ "def", "_initialize_slots", "(", "self", ",", "seed", ",", "hashvalues", ")", ":", "self", ".", "seed", "=", "seed", "self", ".", "hashvalues", "=", "self", ".", "_parse_hashvalues", "(", "hashvalues", ")" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
LeanMinHash.bytesize
Compute the byte size after serialization. Args: byteorder (str, optional): This is byte order of the serialized data. Use one of the `byte order characters <https://docs.python.org/3/library/struct.html#byte-order-size-and-alignment>`_: ``@``, ``=``, ``<``, ``>``, and ``!``. Default is ``@`` -- the native order. Returns: int: Size in number of bytes after serialization.
datasketch/lean_minhash.py
def bytesize(self, byteorder='@'): '''Compute the byte size after serialization. Args: byteorder (str, optional): This is byte order of the serialized data. Use one of the `byte order characters <https://docs.python.org/3/library/struct.html#byte-order-size-and-alignment>`_: ``@``, ``=``, ``<``, ``>``, and ``!``. Default is ``@`` -- the native order. Returns: int: Size in number of bytes after serialization. ''' # Use 8 bytes to store the seed integer seed_size = struct.calcsize(byteorder+'q') # Use 4 bytes to store the number of hash values length_size = struct.calcsize(byteorder+'i') # Use 4 bytes to store each hash value as we are using the lower 32 bit hashvalue_size = struct.calcsize(byteorder+'I') return seed_size + length_size + len(self) * hashvalue_size
def bytesize(self, byteorder='@'): '''Compute the byte size after serialization. Args: byteorder (str, optional): This is byte order of the serialized data. Use one of the `byte order characters <https://docs.python.org/3/library/struct.html#byte-order-size-and-alignment>`_: ``@``, ``=``, ``<``, ``>``, and ``!``. Default is ``@`` -- the native order. Returns: int: Size in number of bytes after serialization. ''' # Use 8 bytes to store the seed integer seed_size = struct.calcsize(byteorder+'q') # Use 4 bytes to store the number of hash values length_size = struct.calcsize(byteorder+'i') # Use 4 bytes to store each hash value as we are using the lower 32 bit hashvalue_size = struct.calcsize(byteorder+'I') return seed_size + length_size + len(self) * hashvalue_size
[ "Compute", "the", "byte", "size", "after", "serialization", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/lean_minhash.py#L76-L95
[ "def", "bytesize", "(", "self", ",", "byteorder", "=", "'@'", ")", ":", "# Use 8 bytes to store the seed integer", "seed_size", "=", "struct", ".", "calcsize", "(", "byteorder", "+", "'q'", ")", "# Use 4 bytes to store the number of hash values", "length_size", "=", "struct", ".", "calcsize", "(", "byteorder", "+", "'i'", ")", "# Use 4 bytes to store each hash value as we are using the lower 32 bit", "hashvalue_size", "=", "struct", ".", "calcsize", "(", "byteorder", "+", "'I'", ")", "return", "seed_size", "+", "length_size", "+", "len", "(", "self", ")", "*", "hashvalue_size" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
LeanMinHash.serialize
Serialize this lean MinHash and store the result in an allocated buffer. Args: buf (buffer): `buf` must implement the `buffer`_ interface. One such example is the built-in `bytearray`_ class. byteorder (str, optional): This is byte order of the serialized data. Use one of the `byte order characters <https://docs.python.org/3/library/struct.html#byte-order-size-and-alignment>`_: ``@``, ``=``, ``<``, ``>``, and ``!``. Default is ``@`` -- the native order. This is preferred over using `pickle`_ if the serialized lean MinHash needs to be used by another program in a different programming language. The serialization schema: 1. The first 8 bytes is the seed integer 2. The next 4 bytes is the number of hash values 3. The rest is the serialized hash values, each uses 4 bytes Example: To serialize a single lean MinHash into a `bytearray`_ buffer. .. code-block:: python buf = bytearray(lean_minhash.bytesize()) lean_minhash.serialize(buf) To serialize multiple lean MinHash into a `bytearray`_ buffer. .. code-block:: python # assuming lean_minhashs is a list of LeanMinHash with the same size size = lean_minhashs[0].bytesize() buf = bytearray(size*len(lean_minhashs)) for i, lean_minhash in enumerate(lean_minhashs): lean_minhash.serialize(buf[i*size:]) .. _`buffer`: https://docs.python.org/3/c-api/buffer.html .. _`bytearray`: https://docs.python.org/3.6/library/functions.html#bytearray .. _`byteorder`: https://docs.python.org/3/library/struct.html
datasketch/lean_minhash.py
def serialize(self, buf, byteorder='@'): ''' Serialize this lean MinHash and store the result in an allocated buffer. Args: buf (buffer): `buf` must implement the `buffer`_ interface. One such example is the built-in `bytearray`_ class. byteorder (str, optional): This is byte order of the serialized data. Use one of the `byte order characters <https://docs.python.org/3/library/struct.html#byte-order-size-and-alignment>`_: ``@``, ``=``, ``<``, ``>``, and ``!``. Default is ``@`` -- the native order. This is preferred over using `pickle`_ if the serialized lean MinHash needs to be used by another program in a different programming language. The serialization schema: 1. The first 8 bytes is the seed integer 2. The next 4 bytes is the number of hash values 3. The rest is the serialized hash values, each uses 4 bytes Example: To serialize a single lean MinHash into a `bytearray`_ buffer. .. code-block:: python buf = bytearray(lean_minhash.bytesize()) lean_minhash.serialize(buf) To serialize multiple lean MinHash into a `bytearray`_ buffer. .. code-block:: python # assuming lean_minhashs is a list of LeanMinHash with the same size size = lean_minhashs[0].bytesize() buf = bytearray(size*len(lean_minhashs)) for i, lean_minhash in enumerate(lean_minhashs): lean_minhash.serialize(buf[i*size:]) .. _`buffer`: https://docs.python.org/3/c-api/buffer.html .. _`bytearray`: https://docs.python.org/3.6/library/functions.html#bytearray .. _`byteorder`: https://docs.python.org/3/library/struct.html ''' if len(buf) < self.bytesize(): raise ValueError("The buffer does not have enough space\ for holding this MinHash.") fmt = "%sqi%dI" % (byteorder, len(self)) struct.pack_into(fmt, buf, 0, self.seed, len(self), *self.hashvalues)
def serialize(self, buf, byteorder='@'): ''' Serialize this lean MinHash and store the result in an allocated buffer. Args: buf (buffer): `buf` must implement the `buffer`_ interface. One such example is the built-in `bytearray`_ class. byteorder (str, optional): This is byte order of the serialized data. Use one of the `byte order characters <https://docs.python.org/3/library/struct.html#byte-order-size-and-alignment>`_: ``@``, ``=``, ``<``, ``>``, and ``!``. Default is ``@`` -- the native order. This is preferred over using `pickle`_ if the serialized lean MinHash needs to be used by another program in a different programming language. The serialization schema: 1. The first 8 bytes is the seed integer 2. The next 4 bytes is the number of hash values 3. The rest is the serialized hash values, each uses 4 bytes Example: To serialize a single lean MinHash into a `bytearray`_ buffer. .. code-block:: python buf = bytearray(lean_minhash.bytesize()) lean_minhash.serialize(buf) To serialize multiple lean MinHash into a `bytearray`_ buffer. .. code-block:: python # assuming lean_minhashs is a list of LeanMinHash with the same size size = lean_minhashs[0].bytesize() buf = bytearray(size*len(lean_minhashs)) for i, lean_minhash in enumerate(lean_minhashs): lean_minhash.serialize(buf[i*size:]) .. _`buffer`: https://docs.python.org/3/c-api/buffer.html .. _`bytearray`: https://docs.python.org/3.6/library/functions.html#bytearray .. _`byteorder`: https://docs.python.org/3/library/struct.html ''' if len(buf) < self.bytesize(): raise ValueError("The buffer does not have enough space\ for holding this MinHash.") fmt = "%sqi%dI" % (byteorder, len(self)) struct.pack_into(fmt, buf, 0, self.seed, len(self), *self.hashvalues)
[ "Serialize", "this", "lean", "MinHash", "and", "store", "the", "result", "in", "an", "allocated", "buffer", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/lean_minhash.py#L97-L145
[ "def", "serialize", "(", "self", ",", "buf", ",", "byteorder", "=", "'@'", ")", ":", "if", "len", "(", "buf", ")", "<", "self", ".", "bytesize", "(", ")", ":", "raise", "ValueError", "(", "\"The buffer does not have enough space\\\n for holding this MinHash.\"", ")", "fmt", "=", "\"%sqi%dI\"", "%", "(", "byteorder", ",", "len", "(", "self", ")", ")", "struct", ".", "pack_into", "(", "fmt", ",", "buf", ",", "0", ",", "self", ".", "seed", ",", "len", "(", "self", ")", ",", "*", "self", ".", "hashvalues", ")" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
LeanMinHash.deserialize
Deserialize a lean MinHash from a buffer. Args: buf (buffer): `buf` must implement the `buffer`_ interface. One such example is the built-in `bytearray`_ class. byteorder (str. optional): This is byte order of the serialized data. Use one of the `byte order characters <https://docs.python.org/3/library/struct.html#byte-order-size-and-alignment>`_: ``@``, ``=``, ``<``, ``>``, and ``!``. Default is ``@`` -- the native order. Return: datasketch.LeanMinHash: The deserialized lean MinHash Example: To deserialize a lean MinHash from a buffer. .. code-block:: python lean_minhash = LeanMinHash.deserialize(buf)
datasketch/lean_minhash.py
def deserialize(cls, buf, byteorder='@'): ''' Deserialize a lean MinHash from a buffer. Args: buf (buffer): `buf` must implement the `buffer`_ interface. One such example is the built-in `bytearray`_ class. byteorder (str. optional): This is byte order of the serialized data. Use one of the `byte order characters <https://docs.python.org/3/library/struct.html#byte-order-size-and-alignment>`_: ``@``, ``=``, ``<``, ``>``, and ``!``. Default is ``@`` -- the native order. Return: datasketch.LeanMinHash: The deserialized lean MinHash Example: To deserialize a lean MinHash from a buffer. .. code-block:: python lean_minhash = LeanMinHash.deserialize(buf) ''' fmt_seed_size = "%sqi" % byteorder fmt_hash = byteorder + "%dI" try: seed, num_perm = struct.unpack_from(fmt_seed_size, buf, 0) except TypeError: seed, num_perm = struct.unpack_from(fmt_seed_size, buffer(buf), 0) offset = struct.calcsize(fmt_seed_size) try: hashvalues = struct.unpack_from(fmt_hash % num_perm, buf, offset) except TypeError: hashvalues = struct.unpack_from(fmt_hash % num_perm, buffer(buf), offset) lmh = object.__new__(LeanMinHash) lmh._initialize_slots(seed, hashvalues) return lmh
def deserialize(cls, buf, byteorder='@'): ''' Deserialize a lean MinHash from a buffer. Args: buf (buffer): `buf` must implement the `buffer`_ interface. One such example is the built-in `bytearray`_ class. byteorder (str. optional): This is byte order of the serialized data. Use one of the `byte order characters <https://docs.python.org/3/library/struct.html#byte-order-size-and-alignment>`_: ``@``, ``=``, ``<``, ``>``, and ``!``. Default is ``@`` -- the native order. Return: datasketch.LeanMinHash: The deserialized lean MinHash Example: To deserialize a lean MinHash from a buffer. .. code-block:: python lean_minhash = LeanMinHash.deserialize(buf) ''' fmt_seed_size = "%sqi" % byteorder fmt_hash = byteorder + "%dI" try: seed, num_perm = struct.unpack_from(fmt_seed_size, buf, 0) except TypeError: seed, num_perm = struct.unpack_from(fmt_seed_size, buffer(buf), 0) offset = struct.calcsize(fmt_seed_size) try: hashvalues = struct.unpack_from(fmt_hash % num_perm, buf, offset) except TypeError: hashvalues = struct.unpack_from(fmt_hash % num_perm, buffer(buf), offset) lmh = object.__new__(LeanMinHash) lmh._initialize_slots(seed, hashvalues) return lmh
[ "Deserialize", "a", "lean", "MinHash", "from", "a", "buffer", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/lean_minhash.py#L148-L184
[ "def", "deserialize", "(", "cls", ",", "buf", ",", "byteorder", "=", "'@'", ")", ":", "fmt_seed_size", "=", "\"%sqi\"", "%", "byteorder", "fmt_hash", "=", "byteorder", "+", "\"%dI\"", "try", ":", "seed", ",", "num_perm", "=", "struct", ".", "unpack_from", "(", "fmt_seed_size", ",", "buf", ",", "0", ")", "except", "TypeError", ":", "seed", ",", "num_perm", "=", "struct", ".", "unpack_from", "(", "fmt_seed_size", ",", "buffer", "(", "buf", ")", ",", "0", ")", "offset", "=", "struct", ".", "calcsize", "(", "fmt_seed_size", ")", "try", ":", "hashvalues", "=", "struct", ".", "unpack_from", "(", "fmt_hash", "%", "num_perm", ",", "buf", ",", "offset", ")", "except", "TypeError", ":", "hashvalues", "=", "struct", ".", "unpack_from", "(", "fmt_hash", "%", "num_perm", ",", "buffer", "(", "buf", ")", ",", "offset", ")", "lmh", "=", "object", ".", "__new__", "(", "LeanMinHash", ")", "lmh", ".", "_initialize_slots", "(", "seed", ",", "hashvalues", ")", "return", "lmh" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
MinHash.update
Update this MinHash with a new value. The value will be hashed using the hash function specified by the `hashfunc` argument in the constructor. Args: b: The value to be hashed using the hash function specified. Example: To update with a new string value (using the default SHA1 hash function, which requires bytes as input): .. code-block:: python minhash = Minhash() minhash.update("new value".encode('utf-8')) We can also use a different hash function, for example, `pyfarmhash`: .. code-block:: python import farmhash def _hash_32(b): return farmhash.hash32(b) minhash = MinHash(hashfunc=_hash_32) minhash.update("new value")
datasketch/minhash.py
def update(self, b): '''Update this MinHash with a new value. The value will be hashed using the hash function specified by the `hashfunc` argument in the constructor. Args: b: The value to be hashed using the hash function specified. Example: To update with a new string value (using the default SHA1 hash function, which requires bytes as input): .. code-block:: python minhash = Minhash() minhash.update("new value".encode('utf-8')) We can also use a different hash function, for example, `pyfarmhash`: .. code-block:: python import farmhash def _hash_32(b): return farmhash.hash32(b) minhash = MinHash(hashfunc=_hash_32) minhash.update("new value") ''' hv = self.hashfunc(b) a, b = self.permutations phv = np.bitwise_and((a * hv + b) % _mersenne_prime, np.uint64(_max_hash)) self.hashvalues = np.minimum(phv, self.hashvalues)
def update(self, b): '''Update this MinHash with a new value. The value will be hashed using the hash function specified by the `hashfunc` argument in the constructor. Args: b: The value to be hashed using the hash function specified. Example: To update with a new string value (using the default SHA1 hash function, which requires bytes as input): .. code-block:: python minhash = Minhash() minhash.update("new value".encode('utf-8')) We can also use a different hash function, for example, `pyfarmhash`: .. code-block:: python import farmhash def _hash_32(b): return farmhash.hash32(b) minhash = MinHash(hashfunc=_hash_32) minhash.update("new value") ''' hv = self.hashfunc(b) a, b = self.permutations phv = np.bitwise_and((a * hv + b) % _mersenne_prime, np.uint64(_max_hash)) self.hashvalues = np.minimum(phv, self.hashvalues)
[ "Update", "this", "MinHash", "with", "a", "new", "value", ".", "The", "value", "will", "be", "hashed", "using", "the", "hash", "function", "specified", "by", "the", "hashfunc", "argument", "in", "the", "constructor", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/minhash.py#L105-L135
[ "def", "update", "(", "self", ",", "b", ")", ":", "hv", "=", "self", ".", "hashfunc", "(", "b", ")", "a", ",", "b", "=", "self", ".", "permutations", "phv", "=", "np", ".", "bitwise_and", "(", "(", "a", "*", "hv", "+", "b", ")", "%", "_mersenne_prime", ",", "np", ".", "uint64", "(", "_max_hash", ")", ")", "self", ".", "hashvalues", "=", "np", ".", "minimum", "(", "phv", ",", "self", ".", "hashvalues", ")" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
MinHash.jaccard
Estimate the `Jaccard similarity`_ (resemblance) between the sets represented by this MinHash and the other. Args: other (datasketch.MinHash): The other MinHash. Returns: float: The Jaccard similarity, which is between 0.0 and 1.0.
datasketch/minhash.py
def jaccard(self, other): '''Estimate the `Jaccard similarity`_ (resemblance) between the sets represented by this MinHash and the other. Args: other (datasketch.MinHash): The other MinHash. Returns: float: The Jaccard similarity, which is between 0.0 and 1.0. ''' if other.seed != self.seed: raise ValueError("Cannot compute Jaccard given MinHash with\ different seeds") if len(self) != len(other): raise ValueError("Cannot compute Jaccard given MinHash with\ different numbers of permutation functions") return np.float(np.count_nonzero(self.hashvalues==other.hashvalues)) /\ np.float(len(self))
def jaccard(self, other): '''Estimate the `Jaccard similarity`_ (resemblance) between the sets represented by this MinHash and the other. Args: other (datasketch.MinHash): The other MinHash. Returns: float: The Jaccard similarity, which is between 0.0 and 1.0. ''' if other.seed != self.seed: raise ValueError("Cannot compute Jaccard given MinHash with\ different seeds") if len(self) != len(other): raise ValueError("Cannot compute Jaccard given MinHash with\ different numbers of permutation functions") return np.float(np.count_nonzero(self.hashvalues==other.hashvalues)) /\ np.float(len(self))
[ "Estimate", "the", "Jaccard", "similarity", "_", "(", "resemblance", ")", "between", "the", "sets", "represented", "by", "this", "MinHash", "and", "the", "other", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/minhash.py#L137-L154
[ "def", "jaccard", "(", "self", ",", "other", ")", ":", "if", "other", ".", "seed", "!=", "self", ".", "seed", ":", "raise", "ValueError", "(", "\"Cannot compute Jaccard given MinHash with\\\n different seeds\"", ")", "if", "len", "(", "self", ")", "!=", "len", "(", "other", ")", ":", "raise", "ValueError", "(", "\"Cannot compute Jaccard given MinHash with\\\n different numbers of permutation functions\"", ")", "return", "np", ".", "float", "(", "np", ".", "count_nonzero", "(", "self", ".", "hashvalues", "==", "other", ".", "hashvalues", ")", ")", "/", "np", ".", "float", "(", "len", "(", "self", ")", ")" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
MinHash.count
Estimate the cardinality count based on the technique described in `this paper <http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=365694>`_. Returns: int: The estimated cardinality of the set represented by this MinHash.
datasketch/minhash.py
def count(self): '''Estimate the cardinality count based on the technique described in `this paper <http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=365694>`_. Returns: int: The estimated cardinality of the set represented by this MinHash. ''' k = len(self) return np.float(k) / np.sum(self.hashvalues / np.float(_max_hash)) - 1.0
def count(self): '''Estimate the cardinality count based on the technique described in `this paper <http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=365694>`_. Returns: int: The estimated cardinality of the set represented by this MinHash. ''' k = len(self) return np.float(k) / np.sum(self.hashvalues / np.float(_max_hash)) - 1.0
[ "Estimate", "the", "cardinality", "count", "based", "on", "the", "technique", "described", "in", "this", "paper", "<http", ":", "//", "ieeexplore", ".", "ieee", ".", "org", "/", "stamp", "/", "stamp", ".", "jsp?arnumber", "=", "365694", ">", "_", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/minhash.py#L156-L164
[ "def", "count", "(", "self", ")", ":", "k", "=", "len", "(", "self", ")", "return", "np", ".", "float", "(", "k", ")", "/", "np", ".", "sum", "(", "self", ".", "hashvalues", "/", "np", ".", "float", "(", "_max_hash", ")", ")", "-", "1.0" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
MinHash.merge
Merge the other MinHash with this one, making this one the union of both. Args: other (datasketch.MinHash): The other MinHash.
datasketch/minhash.py
def merge(self, other): '''Merge the other MinHash with this one, making this one the union of both. Args: other (datasketch.MinHash): The other MinHash. ''' if other.seed != self.seed: raise ValueError("Cannot merge MinHash with\ different seeds") if len(self) != len(other): raise ValueError("Cannot merge MinHash with\ different numbers of permutation functions") self.hashvalues = np.minimum(other.hashvalues, self.hashvalues)
def merge(self, other): '''Merge the other MinHash with this one, making this one the union of both. Args: other (datasketch.MinHash): The other MinHash. ''' if other.seed != self.seed: raise ValueError("Cannot merge MinHash with\ different seeds") if len(self) != len(other): raise ValueError("Cannot merge MinHash with\ different numbers of permutation functions") self.hashvalues = np.minimum(other.hashvalues, self.hashvalues)
[ "Merge", "the", "other", "MinHash", "with", "this", "one", "making", "this", "one", "the", "union", "of", "both", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/minhash.py#L166-L179
[ "def", "merge", "(", "self", ",", "other", ")", ":", "if", "other", ".", "seed", "!=", "self", ".", "seed", ":", "raise", "ValueError", "(", "\"Cannot merge MinHash with\\\n different seeds\"", ")", "if", "len", "(", "self", ")", "!=", "len", "(", "other", ")", ":", "raise", "ValueError", "(", "\"Cannot merge MinHash with\\\n different numbers of permutation functions\"", ")", "self", ".", "hashvalues", "=", "np", ".", "minimum", "(", "other", ".", "hashvalues", ",", "self", ".", "hashvalues", ")" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
MinHash.copy
:returns: datasketch.MinHash -- A copy of this MinHash by exporting its state.
datasketch/minhash.py
def copy(self): ''' :returns: datasketch.MinHash -- A copy of this MinHash by exporting its state. ''' return MinHash(seed=self.seed, hashfunc=self.hashfunc, hashvalues=self.digest(), permutations=self.permutations)
def copy(self): ''' :returns: datasketch.MinHash -- A copy of this MinHash by exporting its state. ''' return MinHash(seed=self.seed, hashfunc=self.hashfunc, hashvalues=self.digest(), permutations=self.permutations)
[ ":", "returns", ":", "datasketch", ".", "MinHash", "--", "A", "copy", "of", "this", "MinHash", "by", "exporting", "its", "state", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/minhash.py#L207-L213
[ "def", "copy", "(", "self", ")", ":", "return", "MinHash", "(", "seed", "=", "self", ".", "seed", ",", "hashfunc", "=", "self", ".", "hashfunc", ",", "hashvalues", "=", "self", ".", "digest", "(", ")", ",", "permutations", "=", "self", ".", "permutations", ")" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
MinHash.union
Create a MinHash which is the union of the MinHash objects passed as arguments. Args: *mhs: The MinHash objects to be united. The argument list length is variable, but must be at least 2. Returns: datasketch.MinHash: A new union MinHash.
datasketch/minhash.py
def union(cls, *mhs): '''Create a MinHash which is the union of the MinHash objects passed as arguments. Args: *mhs: The MinHash objects to be united. The argument list length is variable, but must be at least 2. Returns: datasketch.MinHash: A new union MinHash. ''' if len(mhs) < 2: raise ValueError("Cannot union less than 2 MinHash") num_perm = len(mhs[0]) seed = mhs[0].seed if any((seed != m.seed or num_perm != len(m)) for m in mhs): raise ValueError("The unioning MinHash must have the\ same seed and number of permutation functions") hashvalues = np.minimum.reduce([m.hashvalues for m in mhs]) permutations = mhs[0].permutations return cls(num_perm=num_perm, seed=seed, hashvalues=hashvalues, permutations=permutations)
def union(cls, *mhs): '''Create a MinHash which is the union of the MinHash objects passed as arguments. Args: *mhs: The MinHash objects to be united. The argument list length is variable, but must be at least 2. Returns: datasketch.MinHash: A new union MinHash. ''' if len(mhs) < 2: raise ValueError("Cannot union less than 2 MinHash") num_perm = len(mhs[0]) seed = mhs[0].seed if any((seed != m.seed or num_perm != len(m)) for m in mhs): raise ValueError("The unioning MinHash must have the\ same seed and number of permutation functions") hashvalues = np.minimum.reduce([m.hashvalues for m in mhs]) permutations = mhs[0].permutations return cls(num_perm=num_perm, seed=seed, hashvalues=hashvalues, permutations=permutations)
[ "Create", "a", "MinHash", "which", "is", "the", "union", "of", "the", "MinHash", "objects", "passed", "as", "arguments", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/minhash.py#L230-L250
[ "def", "union", "(", "cls", ",", "*", "mhs", ")", ":", "if", "len", "(", "mhs", ")", "<", "2", ":", "raise", "ValueError", "(", "\"Cannot union less than 2 MinHash\"", ")", "num_perm", "=", "len", "(", "mhs", "[", "0", "]", ")", "seed", "=", "mhs", "[", "0", "]", ".", "seed", "if", "any", "(", "(", "seed", "!=", "m", ".", "seed", "or", "num_perm", "!=", "len", "(", "m", ")", ")", "for", "m", "in", "mhs", ")", ":", "raise", "ValueError", "(", "\"The unioning MinHash must have the\\\n same seed and number of permutation functions\"", ")", "hashvalues", "=", "np", ".", "minimum", ".", "reduce", "(", "[", "m", ".", "hashvalues", "for", "m", "in", "mhs", "]", ")", "permutations", "=", "mhs", "[", "0", "]", ".", "permutations", "return", "cls", "(", "num_perm", "=", "num_perm", ",", "seed", "=", "seed", ",", "hashvalues", "=", "hashvalues", ",", "permutations", "=", "permutations", ")" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
_false_positive_probability
Compute the false positive probability given the containment threshold. xq is the ratio of x/q.
datasketch/lshensemble.py
def _false_positive_probability(threshold, b, r, xq): ''' Compute the false positive probability given the containment threshold. xq is the ratio of x/q. ''' _probability = lambda t : 1 - (1 - (t/(1 + xq - t))**float(r))**float(b) if xq >= threshold: a, err = integrate(_probability, 0.0, threshold) return a a, err = integrate(_probability, 0.0, xq) return a
def _false_positive_probability(threshold, b, r, xq): ''' Compute the false positive probability given the containment threshold. xq is the ratio of x/q. ''' _probability = lambda t : 1 - (1 - (t/(1 + xq - t))**float(r))**float(b) if xq >= threshold: a, err = integrate(_probability, 0.0, threshold) return a a, err = integrate(_probability, 0.0, xq) return a
[ "Compute", "the", "false", "positive", "probability", "given", "the", "containment", "threshold", ".", "xq", "is", "the", "ratio", "of", "x", "/", "q", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/lshensemble.py#L7-L17
[ "def", "_false_positive_probability", "(", "threshold", ",", "b", ",", "r", ",", "xq", ")", ":", "_probability", "=", "lambda", "t", ":", "1", "-", "(", "1", "-", "(", "t", "/", "(", "1", "+", "xq", "-", "t", ")", ")", "**", "float", "(", "r", ")", ")", "**", "float", "(", "b", ")", "if", "xq", ">=", "threshold", ":", "a", ",", "err", "=", "integrate", "(", "_probability", ",", "0.0", ",", "threshold", ")", "return", "a", "a", ",", "err", "=", "integrate", "(", "_probability", ",", "0.0", ",", "xq", ")", "return", "a" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
_optimal_param
Compute the optimal parameters that minimizes the weighted sum of probabilities of false positive and false negative. xq is the ratio of x/q.
datasketch/lshensemble.py
def _optimal_param(threshold, num_perm, max_r, xq, false_positive_weight, false_negative_weight): ''' Compute the optimal parameters that minimizes the weighted sum of probabilities of false positive and false negative. xq is the ratio of x/q. ''' min_error = float("inf") opt = (0, 0) for b in range(1, num_perm+1): for r in range(1, max_r+1): if b*r > num_perm: continue fp = _false_positive_probability(threshold, b, r, xq) fn = _false_negative_probability(threshold, b, r, xq) error = fp*false_positive_weight + fn*false_negative_weight if error < min_error: min_error = error opt = (b, r) return opt
def _optimal_param(threshold, num_perm, max_r, xq, false_positive_weight, false_negative_weight): ''' Compute the optimal parameters that minimizes the weighted sum of probabilities of false positive and false negative. xq is the ratio of x/q. ''' min_error = float("inf") opt = (0, 0) for b in range(1, num_perm+1): for r in range(1, max_r+1): if b*r > num_perm: continue fp = _false_positive_probability(threshold, b, r, xq) fn = _false_negative_probability(threshold, b, r, xq) error = fp*false_positive_weight + fn*false_negative_weight if error < min_error: min_error = error opt = (b, r) return opt
[ "Compute", "the", "optimal", "parameters", "that", "minimizes", "the", "weighted", "sum", "of", "probabilities", "of", "false", "positive", "and", "false", "negative", ".", "xq", "is", "the", "ratio", "of", "x", "/", "q", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/lshensemble.py#L34-L53
[ "def", "_optimal_param", "(", "threshold", ",", "num_perm", ",", "max_r", ",", "xq", ",", "false_positive_weight", ",", "false_negative_weight", ")", ":", "min_error", "=", "float", "(", "\"inf\"", ")", "opt", "=", "(", "0", ",", "0", ")", "for", "b", "in", "range", "(", "1", ",", "num_perm", "+", "1", ")", ":", "for", "r", "in", "range", "(", "1", ",", "max_r", "+", "1", ")", ":", "if", "b", "*", "r", ">", "num_perm", ":", "continue", "fp", "=", "_false_positive_probability", "(", "threshold", ",", "b", ",", "r", ",", "xq", ")", "fn", "=", "_false_negative_probability", "(", "threshold", ",", "b", ",", "r", ",", "xq", ")", "error", "=", "fp", "*", "false_positive_weight", "+", "fn", "*", "false_negative_weight", "if", "error", "<", "min_error", ":", "min_error", "=", "error", "opt", "=", "(", "b", ",", "r", ")", "return", "opt" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
MinHashLSHEnsemble.index
Index all sets given their keys, MinHashes, and sizes. It can be called only once after the index is created. Args: entries (`iterable` of `tuple`): An iterable of tuples, each must be in the form of `(key, minhash, size)`, where `key` is the unique identifier of a set, `minhash` is the MinHash of the set, and `size` is the size or number of unique items in the set. Note: `size` must be positive.
datasketch/lshensemble.py
def index(self, entries): ''' Index all sets given their keys, MinHashes, and sizes. It can be called only once after the index is created. Args: entries (`iterable` of `tuple`): An iterable of tuples, each must be in the form of `(key, minhash, size)`, where `key` is the unique identifier of a set, `minhash` is the MinHash of the set, and `size` is the size or number of unique items in the set. Note: `size` must be positive. ''' if not self.is_empty(): raise ValueError("Cannot call index again on a non-empty index") if not isinstance(entries, list): queue = deque([]) for key, minhash, size in entries: if size <= 0: raise ValueError("Set size must be positive") queue.append((key, minhash, size)) entries = list(queue) if len(entries) == 0: raise ValueError("entries is empty") # Create optimal partitions. sizes, counts = np.array(sorted( Counter(e[2] for e in entries).most_common())).T partitions = optimal_partitions(sizes, counts, len(self.indexes)) for i, (lower, upper) in enumerate(partitions): self.lowers[i], self.uppers[i] = lower, upper # Insert into partitions. entries.sort(key=lambda e : e[2]) curr_part = 0 for key, minhash, size in entries: if size > self.uppers[curr_part]: curr_part += 1 for r in self.indexes[curr_part]: self.indexes[curr_part][r].insert(key, minhash)
def index(self, entries): ''' Index all sets given their keys, MinHashes, and sizes. It can be called only once after the index is created. Args: entries (`iterable` of `tuple`): An iterable of tuples, each must be in the form of `(key, minhash, size)`, where `key` is the unique identifier of a set, `minhash` is the MinHash of the set, and `size` is the size or number of unique items in the set. Note: `size` must be positive. ''' if not self.is_empty(): raise ValueError("Cannot call index again on a non-empty index") if not isinstance(entries, list): queue = deque([]) for key, minhash, size in entries: if size <= 0: raise ValueError("Set size must be positive") queue.append((key, minhash, size)) entries = list(queue) if len(entries) == 0: raise ValueError("entries is empty") # Create optimal partitions. sizes, counts = np.array(sorted( Counter(e[2] for e in entries).most_common())).T partitions = optimal_partitions(sizes, counts, len(self.indexes)) for i, (lower, upper) in enumerate(partitions): self.lowers[i], self.uppers[i] = lower, upper # Insert into partitions. entries.sort(key=lambda e : e[2]) curr_part = 0 for key, minhash, size in entries: if size > self.uppers[curr_part]: curr_part += 1 for r in self.indexes[curr_part]: self.indexes[curr_part][r].insert(key, minhash)
[ "Index", "all", "sets", "given", "their", "keys", "MinHashes", "and", "sizes", ".", "It", "can", "be", "called", "only", "once", "after", "the", "index", "is", "created", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/lshensemble.py#L139-L177
[ "def", "index", "(", "self", ",", "entries", ")", ":", "if", "not", "self", ".", "is_empty", "(", ")", ":", "raise", "ValueError", "(", "\"Cannot call index again on a non-empty index\"", ")", "if", "not", "isinstance", "(", "entries", ",", "list", ")", ":", "queue", "=", "deque", "(", "[", "]", ")", "for", "key", ",", "minhash", ",", "size", "in", "entries", ":", "if", "size", "<=", "0", ":", "raise", "ValueError", "(", "\"Set size must be positive\"", ")", "queue", ".", "append", "(", "(", "key", ",", "minhash", ",", "size", ")", ")", "entries", "=", "list", "(", "queue", ")", "if", "len", "(", "entries", ")", "==", "0", ":", "raise", "ValueError", "(", "\"entries is empty\"", ")", "# Create optimal partitions.", "sizes", ",", "counts", "=", "np", ".", "array", "(", "sorted", "(", "Counter", "(", "e", "[", "2", "]", "for", "e", "in", "entries", ")", ".", "most_common", "(", ")", ")", ")", ".", "T", "partitions", "=", "optimal_partitions", "(", "sizes", ",", "counts", ",", "len", "(", "self", ".", "indexes", ")", ")", "for", "i", ",", "(", "lower", ",", "upper", ")", "in", "enumerate", "(", "partitions", ")", ":", "self", ".", "lowers", "[", "i", "]", ",", "self", ".", "uppers", "[", "i", "]", "=", "lower", ",", "upper", "# Insert into partitions.", "entries", ".", "sort", "(", "key", "=", "lambda", "e", ":", "e", "[", "2", "]", ")", "curr_part", "=", "0", "for", "key", ",", "minhash", ",", "size", "in", "entries", ":", "if", "size", ">", "self", ".", "uppers", "[", "curr_part", "]", ":", "curr_part", "+=", "1", "for", "r", "in", "self", ".", "indexes", "[", "curr_part", "]", ":", "self", ".", "indexes", "[", "curr_part", "]", "[", "r", "]", ".", "insert", "(", "key", ",", "minhash", ")" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
MinHashLSHEnsemble.query
Giving the MinHash and size of the query set, retrieve keys that references sets with containment with respect to the query set greater than the threshold. Args: minhash (datasketch.MinHash): The MinHash of the query set. size (int): The size (number of unique items) of the query set. Returns: `iterator` of keys.
datasketch/lshensemble.py
def query(self, minhash, size): ''' Giving the MinHash and size of the query set, retrieve keys that references sets with containment with respect to the query set greater than the threshold. Args: minhash (datasketch.MinHash): The MinHash of the query set. size (int): The size (number of unique items) of the query set. Returns: `iterator` of keys. ''' for i, index in enumerate(self.indexes): u = self.uppers[i] if u is None: continue b, r = self._get_optimal_param(u, size) for key in index[r]._query_b(minhash, b): yield key
def query(self, minhash, size): ''' Giving the MinHash and size of the query set, retrieve keys that references sets with containment with respect to the query set greater than the threshold. Args: minhash (datasketch.MinHash): The MinHash of the query set. size (int): The size (number of unique items) of the query set. Returns: `iterator` of keys. ''' for i, index in enumerate(self.indexes): u = self.uppers[i] if u is None: continue b, r = self._get_optimal_param(u, size) for key in index[r]._query_b(minhash, b): yield key
[ "Giving", "the", "MinHash", "and", "size", "of", "the", "query", "set", "retrieve", "keys", "that", "references", "sets", "with", "containment", "with", "respect", "to", "the", "query", "set", "greater", "than", "the", "threshold", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/lshensemble.py#L179-L198
[ "def", "query", "(", "self", ",", "minhash", ",", "size", ")", ":", "for", "i", ",", "index", "in", "enumerate", "(", "self", ".", "indexes", ")", ":", "u", "=", "self", ".", "uppers", "[", "i", "]", "if", "u", "is", "None", ":", "continue", "b", ",", "r", "=", "self", ".", "_get_optimal_param", "(", "u", ",", "size", ")", "for", "key", "in", "index", "[", "r", "]", ".", "_query_b", "(", "minhash", ",", "b", ")", ":", "yield", "key" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
MinHashLSHEnsemble.is_empty
Returns: bool: Check if the index is empty.
datasketch/lshensemble.py
def is_empty(self): ''' Returns: bool: Check if the index is empty. ''' return all(all(index[r].is_empty() for r in index) for index in self.indexes)
def is_empty(self): ''' Returns: bool: Check if the index is empty. ''' return all(all(index[r].is_empty() for r in index) for index in self.indexes)
[ "Returns", ":", "bool", ":", "Check", "if", "the", "index", "is", "empty", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/lshensemble.py#L211-L217
[ "def", "is_empty", "(", "self", ")", ":", "return", "all", "(", "all", "(", "index", "[", "r", "]", ".", "is_empty", "(", ")", "for", "r", "in", "index", ")", "for", "index", "in", "self", ".", "indexes", ")" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
WeightedMinHash.jaccard
Estimate the `weighted Jaccard similarity`_ between the multi-sets represented by this weighted MinHash and the other. Args: other (datasketch.WeightedMinHash): The other weighted MinHash. Returns: float: The weighted Jaccard similarity between 0.0 and 1.0. .. _`weighted Jaccard similarity`: http://mathoverflow.net/questions/123339/weighted-jaccard-similarity
datasketch/weighted_minhash.py
def jaccard(self, other): '''Estimate the `weighted Jaccard similarity`_ between the multi-sets represented by this weighted MinHash and the other. Args: other (datasketch.WeightedMinHash): The other weighted MinHash. Returns: float: The weighted Jaccard similarity between 0.0 and 1.0. .. _`weighted Jaccard similarity`: http://mathoverflow.net/questions/123339/weighted-jaccard-similarity ''' if other.seed != self.seed: raise ValueError("Cannot compute Jaccard given WeightedMinHash objects with\ different seeds") if len(self) != len(other): raise ValueError("Cannot compute Jaccard given WeightedMinHash objects with\ different numbers of hash values") # Check how many pairs of (k, t) hashvalues are equal intersection = 0 for this, that in zip(self.hashvalues, other.hashvalues): if np.array_equal(this, that): intersection += 1 return float(intersection) / float(len(self))
def jaccard(self, other): '''Estimate the `weighted Jaccard similarity`_ between the multi-sets represented by this weighted MinHash and the other. Args: other (datasketch.WeightedMinHash): The other weighted MinHash. Returns: float: The weighted Jaccard similarity between 0.0 and 1.0. .. _`weighted Jaccard similarity`: http://mathoverflow.net/questions/123339/weighted-jaccard-similarity ''' if other.seed != self.seed: raise ValueError("Cannot compute Jaccard given WeightedMinHash objects with\ different seeds") if len(self) != len(other): raise ValueError("Cannot compute Jaccard given WeightedMinHash objects with\ different numbers of hash values") # Check how many pairs of (k, t) hashvalues are equal intersection = 0 for this, that in zip(self.hashvalues, other.hashvalues): if np.array_equal(this, that): intersection += 1 return float(intersection) / float(len(self))
[ "Estimate", "the", "weighted", "Jaccard", "similarity", "_", "between", "the", "multi", "-", "sets", "represented", "by", "this", "weighted", "MinHash", "and", "the", "other", ".", "Args", ":", "other", "(", "datasketch", ".", "WeightedMinHash", ")", ":", "The", "other", "weighted", "MinHash", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/weighted_minhash.py#L22-L45
[ "def", "jaccard", "(", "self", ",", "other", ")", ":", "if", "other", ".", "seed", "!=", "self", ".", "seed", ":", "raise", "ValueError", "(", "\"Cannot compute Jaccard given WeightedMinHash objects with\\\n different seeds\"", ")", "if", "len", "(", "self", ")", "!=", "len", "(", "other", ")", ":", "raise", "ValueError", "(", "\"Cannot compute Jaccard given WeightedMinHash objects with\\\n different numbers of hash values\"", ")", "# Check how many pairs of (k, t) hashvalues are equal", "intersection", "=", "0", "for", "this", ",", "that", "in", "zip", "(", "self", ".", "hashvalues", ",", "other", ".", "hashvalues", ")", ":", "if", "np", ".", "array_equal", "(", "this", ",", "that", ")", ":", "intersection", "+=", "1", "return", "float", "(", "intersection", ")", "/", "float", "(", "len", "(", "self", ")", ")" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
WeightedMinHashGenerator.minhash
Create a new weighted MinHash given a weighted Jaccard vector. Each dimension is an integer frequency of the corresponding element in the multi-set represented by the vector. Args: v (numpy.array): The Jaccard vector.
datasketch/weighted_minhash.py
def minhash(self, v): '''Create a new weighted MinHash given a weighted Jaccard vector. Each dimension is an integer frequency of the corresponding element in the multi-set represented by the vector. Args: v (numpy.array): The Jaccard vector. ''' if not isinstance(v, collections.Iterable): raise TypeError("Input vector must be an iterable") if not len(v) == self.dim: raise ValueError("Input dimension mismatch, expecting %d" % self.dim) if not isinstance(v, np.ndarray): v = np.array(v, dtype=np.float32) elif v.dtype != np.float32: v = v.astype(np.float32) hashvalues = np.zeros((self.sample_size, 2), dtype=np.int) vzeros = (v == 0) if vzeros.all(): raise ValueError("Input is all zeros") v[vzeros] = np.nan vlog = np.log(v) for i in range(self.sample_size): t = np.floor((vlog / self.rs[i]) + self.betas[i]) ln_y = (t - self.betas[i]) * self.rs[i] ln_a = self.ln_cs[i] - ln_y - self.rs[i] k = np.nanargmin(ln_a) hashvalues[i][0], hashvalues[i][1] = k, int(t[k]) return WeightedMinHash(self.seed, hashvalues)
def minhash(self, v): '''Create a new weighted MinHash given a weighted Jaccard vector. Each dimension is an integer frequency of the corresponding element in the multi-set represented by the vector. Args: v (numpy.array): The Jaccard vector. ''' if not isinstance(v, collections.Iterable): raise TypeError("Input vector must be an iterable") if not len(v) == self.dim: raise ValueError("Input dimension mismatch, expecting %d" % self.dim) if not isinstance(v, np.ndarray): v = np.array(v, dtype=np.float32) elif v.dtype != np.float32: v = v.astype(np.float32) hashvalues = np.zeros((self.sample_size, 2), dtype=np.int) vzeros = (v == 0) if vzeros.all(): raise ValueError("Input is all zeros") v[vzeros] = np.nan vlog = np.log(v) for i in range(self.sample_size): t = np.floor((vlog / self.rs[i]) + self.betas[i]) ln_y = (t - self.betas[i]) * self.rs[i] ln_a = self.ln_cs[i] - ln_y - self.rs[i] k = np.nanargmin(ln_a) hashvalues[i][0], hashvalues[i][1] = k, int(t[k]) return WeightedMinHash(self.seed, hashvalues)
[ "Create", "a", "new", "weighted", "MinHash", "given", "a", "weighted", "Jaccard", "vector", ".", "Each", "dimension", "is", "an", "integer", "frequency", "of", "the", "corresponding", "element", "in", "the", "multi", "-", "set", "represented", "by", "the", "vector", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/weighted_minhash.py#L107-L136
[ "def", "minhash", "(", "self", ",", "v", ")", ":", "if", "not", "isinstance", "(", "v", ",", "collections", ".", "Iterable", ")", ":", "raise", "TypeError", "(", "\"Input vector must be an iterable\"", ")", "if", "not", "len", "(", "v", ")", "==", "self", ".", "dim", ":", "raise", "ValueError", "(", "\"Input dimension mismatch, expecting %d\"", "%", "self", ".", "dim", ")", "if", "not", "isinstance", "(", "v", ",", "np", ".", "ndarray", ")", ":", "v", "=", "np", ".", "array", "(", "v", ",", "dtype", "=", "np", ".", "float32", ")", "elif", "v", ".", "dtype", "!=", "np", ".", "float32", ":", "v", "=", "v", ".", "astype", "(", "np", ".", "float32", ")", "hashvalues", "=", "np", ".", "zeros", "(", "(", "self", ".", "sample_size", ",", "2", ")", ",", "dtype", "=", "np", ".", "int", ")", "vzeros", "=", "(", "v", "==", "0", ")", "if", "vzeros", ".", "all", "(", ")", ":", "raise", "ValueError", "(", "\"Input is all zeros\"", ")", "v", "[", "vzeros", "]", "=", "np", ".", "nan", "vlog", "=", "np", ".", "log", "(", "v", ")", "for", "i", "in", "range", "(", "self", ".", "sample_size", ")", ":", "t", "=", "np", ".", "floor", "(", "(", "vlog", "/", "self", ".", "rs", "[", "i", "]", ")", "+", "self", ".", "betas", "[", "i", "]", ")", "ln_y", "=", "(", "t", "-", "self", ".", "betas", "[", "i", "]", ")", "*", "self", ".", "rs", "[", "i", "]", "ln_a", "=", "self", ".", "ln_cs", "[", "i", "]", "-", "ln_y", "-", "self", ".", "rs", "[", "i", "]", "k", "=", "np", ".", "nanargmin", "(", "ln_a", ")", "hashvalues", "[", "i", "]", "[", "0", "]", ",", "hashvalues", "[", "i", "]", "[", "1", "]", "=", "k", ",", "int", "(", "t", "[", "k", "]", ")", "return", "WeightedMinHash", "(", "self", ".", "seed", ",", "hashvalues", ")" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
MinHashLSH.insert
Insert a key to the index, together with a MinHash (or weighted MinHash) of the set referenced by the key. :param str key: The identifier of the set. :param datasketch.MinHash minhash: The MinHash of the set. :param bool check_duplication: To avoid duplicate keys in the storage (`default=True`). It's recommended to not change the default, but if you want to avoid the overhead during insert you can set `check_duplication = False`.
datasketch/lsh.py
def insert(self, key, minhash, check_duplication=True): ''' Insert a key to the index, together with a MinHash (or weighted MinHash) of the set referenced by the key. :param str key: The identifier of the set. :param datasketch.MinHash minhash: The MinHash of the set. :param bool check_duplication: To avoid duplicate keys in the storage (`default=True`). It's recommended to not change the default, but if you want to avoid the overhead during insert you can set `check_duplication = False`. ''' self._insert(key, minhash, check_duplication=check_duplication, buffer=False)
def insert(self, key, minhash, check_duplication=True): ''' Insert a key to the index, together with a MinHash (or weighted MinHash) of the set referenced by the key. :param str key: The identifier of the set. :param datasketch.MinHash minhash: The MinHash of the set. :param bool check_duplication: To avoid duplicate keys in the storage (`default=True`). It's recommended to not change the default, but if you want to avoid the overhead during insert you can set `check_duplication = False`. ''' self._insert(key, minhash, check_duplication=check_duplication, buffer=False)
[ "Insert", "a", "key", "to", "the", "index", "together", "with", "a", "MinHash", "(", "or", "weighted", "MinHash", ")", "of", "the", "set", "referenced", "by", "the", "key", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/lsh.py#L136-L149
[ "def", "insert", "(", "self", ",", "key", ",", "minhash", ",", "check_duplication", "=", "True", ")", ":", "self", ".", "_insert", "(", "key", ",", "minhash", ",", "check_duplication", "=", "check_duplication", ",", "buffer", "=", "False", ")" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
MinHashLSH.remove
Remove the key from the index. Args: key (hashable): The unique identifier of a set.
datasketch/lsh.py
def remove(self, key): ''' Remove the key from the index. Args: key (hashable): The unique identifier of a set. ''' if self.prepickle: key = pickle.dumps(key) if key not in self.keys: raise ValueError("The given key does not exist") for H, hashtable in zip(self.keys[key], self.hashtables): hashtable.remove_val(H, key) if not hashtable.get(H): hashtable.remove(H) self.keys.remove(key)
def remove(self, key): ''' Remove the key from the index. Args: key (hashable): The unique identifier of a set. ''' if self.prepickle: key = pickle.dumps(key) if key not in self.keys: raise ValueError("The given key does not exist") for H, hashtable in zip(self.keys[key], self.hashtables): hashtable.remove_val(H, key) if not hashtable.get(H): hashtable.remove(H) self.keys.remove(key)
[ "Remove", "the", "key", "from", "the", "index", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/lsh.py#L213-L229
[ "def", "remove", "(", "self", ",", "key", ")", ":", "if", "self", ".", "prepickle", ":", "key", "=", "pickle", ".", "dumps", "(", "key", ")", "if", "key", "not", "in", "self", ".", "keys", ":", "raise", "ValueError", "(", "\"The given key does not exist\"", ")", "for", "H", ",", "hashtable", "in", "zip", "(", "self", ".", "keys", "[", "key", "]", ",", "self", ".", "hashtables", ")", ":", "hashtable", ".", "remove_val", "(", "H", ",", "key", ")", "if", "not", "hashtable", ".", "get", "(", "H", ")", ":", "hashtable", ".", "remove", "(", "H", ")", "self", ".", "keys", ".", "remove", "(", "key", ")" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
MinHashLSH.get_subset_counts
Returns the bucket allocation counts (see :func:`~datasketch.MinHashLSH.get_counts` above) restricted to the list of keys given. Args: keys (hashable) : the keys for which to get the bucket allocation counts
datasketch/lsh.py
def get_subset_counts(self, *keys): ''' Returns the bucket allocation counts (see :func:`~datasketch.MinHashLSH.get_counts` above) restricted to the list of keys given. Args: keys (hashable) : the keys for which to get the bucket allocation counts ''' if self.prepickle: key_set = [pickle.dumps(key) for key in set(keys)] else: key_set = list(set(keys)) hashtables = [unordered_storage({'type': 'dict'}) for _ in range(self.b)] Hss = self.keys.getmany(*key_set) for key, Hs in zip(key_set, Hss): for H, hashtable in zip(Hs, hashtables): hashtable.insert(H, key) return [hashtable.itemcounts() for hashtable in hashtables]
def get_subset_counts(self, *keys): ''' Returns the bucket allocation counts (see :func:`~datasketch.MinHashLSH.get_counts` above) restricted to the list of keys given. Args: keys (hashable) : the keys for which to get the bucket allocation counts ''' if self.prepickle: key_set = [pickle.dumps(key) for key in set(keys)] else: key_set = list(set(keys)) hashtables = [unordered_storage({'type': 'dict'}) for _ in range(self.b)] Hss = self.keys.getmany(*key_set) for key, Hs in zip(key_set, Hss): for H, hashtable in zip(Hs, hashtables): hashtable.insert(H, key) return [hashtable.itemcounts() for hashtable in hashtables]
[ "Returns", "the", "bucket", "allocation", "counts", "(", "see", ":", "func", ":", "~datasketch", ".", "MinHashLSH", ".", "get_counts", "above", ")", "restricted", "to", "the", "list", "of", "keys", "given", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/lsh.py#L268-L287
[ "def", "get_subset_counts", "(", "self", ",", "*", "keys", ")", ":", "if", "self", ".", "prepickle", ":", "key_set", "=", "[", "pickle", ".", "dumps", "(", "key", ")", "for", "key", "in", "set", "(", "keys", ")", "]", "else", ":", "key_set", "=", "list", "(", "set", "(", "keys", ")", ")", "hashtables", "=", "[", "unordered_storage", "(", "{", "'type'", ":", "'dict'", "}", ")", "for", "_", "in", "range", "(", "self", ".", "b", ")", "]", "Hss", "=", "self", ".", "keys", ".", "getmany", "(", "*", "key_set", ")", "for", "key", ",", "Hs", "in", "zip", "(", "key_set", ",", "Hss", ")", ":", "for", "H", ",", "hashtable", "in", "zip", "(", "Hs", ",", "hashtables", ")", ":", "hashtable", ".", "insert", "(", "H", ",", "key", ")", "return", "[", "hashtable", ".", "itemcounts", "(", ")", "for", "hashtable", "in", "hashtables", "]" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
HyperLogLog.update
Update the HyperLogLog with a new data value in bytes. The value will be hashed using the hash function specified by the `hashfunc` argument in the constructor. Args: b: The value to be hashed using the hash function specified. Example: To update with a new string value (using the default SHA1 hash function, which requires bytes as input): .. code-block:: python hll = HyperLogLog() hll.update("new value".encode('utf-8')) We can also use a different hash function, for example, `pyfarmhash`: .. code-block:: python import farmhash def _hash_32(b): return farmhash.hash32(b) hll = HyperLogLog(hashfunc=_hash_32) hll.update("new value")
datasketch/hyperloglog.py
def update(self, b): ''' Update the HyperLogLog with a new data value in bytes. The value will be hashed using the hash function specified by the `hashfunc` argument in the constructor. Args: b: The value to be hashed using the hash function specified. Example: To update with a new string value (using the default SHA1 hash function, which requires bytes as input): .. code-block:: python hll = HyperLogLog() hll.update("new value".encode('utf-8')) We can also use a different hash function, for example, `pyfarmhash`: .. code-block:: python import farmhash def _hash_32(b): return farmhash.hash32(b) hll = HyperLogLog(hashfunc=_hash_32) hll.update("new value") ''' # Digest the hash object to get the hash value hv = self.hashfunc(b) # Get the index of the register using the first p bits of the hash reg_index = hv & (self.m - 1) # Get the rest of the hash bits = hv >> self.p # Update the register self.reg[reg_index] = max(self.reg[reg_index], self._get_rank(bits))
def update(self, b): ''' Update the HyperLogLog with a new data value in bytes. The value will be hashed using the hash function specified by the `hashfunc` argument in the constructor. Args: b: The value to be hashed using the hash function specified. Example: To update with a new string value (using the default SHA1 hash function, which requires bytes as input): .. code-block:: python hll = HyperLogLog() hll.update("new value".encode('utf-8')) We can also use a different hash function, for example, `pyfarmhash`: .. code-block:: python import farmhash def _hash_32(b): return farmhash.hash32(b) hll = HyperLogLog(hashfunc=_hash_32) hll.update("new value") ''' # Digest the hash object to get the hash value hv = self.hashfunc(b) # Get the index of the register using the first p bits of the hash reg_index = hv & (self.m - 1) # Get the rest of the hash bits = hv >> self.p # Update the register self.reg[reg_index] = max(self.reg[reg_index], self._get_rank(bits))
[ "Update", "the", "HyperLogLog", "with", "a", "new", "data", "value", "in", "bytes", ".", "The", "value", "will", "be", "hashed", "using", "the", "hash", "function", "specified", "by", "the", "hashfunc", "argument", "in", "the", "constructor", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/hyperloglog.py#L89-L124
[ "def", "update", "(", "self", ",", "b", ")", ":", "# Digest the hash object to get the hash value", "hv", "=", "self", ".", "hashfunc", "(", "b", ")", "# Get the index of the register using the first p bits of the hash", "reg_index", "=", "hv", "&", "(", "self", ".", "m", "-", "1", ")", "# Get the rest of the hash", "bits", "=", "hv", ">>", "self", ".", "p", "# Update the register", "self", ".", "reg", "[", "reg_index", "]", "=", "max", "(", "self", ".", "reg", "[", "reg_index", "]", ",", "self", ".", "_get_rank", "(", "bits", ")", ")" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
HyperLogLog.count
Estimate the cardinality of the data values seen so far. Returns: int: The estimated cardinality.
datasketch/hyperloglog.py
def count(self): ''' Estimate the cardinality of the data values seen so far. Returns: int: The estimated cardinality. ''' # Use HyperLogLog estimation function e = self.alpha * float(self.m ** 2) / np.sum(2.0**(-self.reg)) # Small range correction if e <= (5.0 / 2.0) * self.m: num_zero = self.m - np.count_nonzero(self.reg) return self._linearcounting(num_zero) # Normal range, no correction if e <= (1.0 / 30.0) * (1 << 32): return e # Large range correction return self._largerange_correction(e)
def count(self): ''' Estimate the cardinality of the data values seen so far. Returns: int: The estimated cardinality. ''' # Use HyperLogLog estimation function e = self.alpha * float(self.m ** 2) / np.sum(2.0**(-self.reg)) # Small range correction if e <= (5.0 / 2.0) * self.m: num_zero = self.m - np.count_nonzero(self.reg) return self._linearcounting(num_zero) # Normal range, no correction if e <= (1.0 / 30.0) * (1 << 32): return e # Large range correction return self._largerange_correction(e)
[ "Estimate", "the", "cardinality", "of", "the", "data", "values", "seen", "so", "far", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/hyperloglog.py#L126-L143
[ "def", "count", "(", "self", ")", ":", "# Use HyperLogLog estimation function", "e", "=", "self", ".", "alpha", "*", "float", "(", "self", ".", "m", "**", "2", ")", "/", "np", ".", "sum", "(", "2.0", "**", "(", "-", "self", ".", "reg", ")", ")", "# Small range correction", "if", "e", "<=", "(", "5.0", "/", "2.0", ")", "*", "self", ".", "m", ":", "num_zero", "=", "self", ".", "m", "-", "np", ".", "count_nonzero", "(", "self", ".", "reg", ")", "return", "self", ".", "_linearcounting", "(", "num_zero", ")", "# Normal range, no correction", "if", "e", "<=", "(", "1.0", "/", "30.0", ")", "*", "(", "1", "<<", "32", ")", ":", "return", "e", "# Large range correction", "return", "self", ".", "_largerange_correction", "(", "e", ")" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
HyperLogLog.merge
Merge the other HyperLogLog with this one, making this the union of the two. Args: other (datasketch.HyperLogLog):
datasketch/hyperloglog.py
def merge(self, other): ''' Merge the other HyperLogLog with this one, making this the union of the two. Args: other (datasketch.HyperLogLog): ''' if self.m != other.m or self.p != other.p: raise ValueError("Cannot merge HyperLogLog with different\ precisions.") self.reg = np.maximum(self.reg, other.reg)
def merge(self, other): ''' Merge the other HyperLogLog with this one, making this the union of the two. Args: other (datasketch.HyperLogLog): ''' if self.m != other.m or self.p != other.p: raise ValueError("Cannot merge HyperLogLog with different\ precisions.") self.reg = np.maximum(self.reg, other.reg)
[ "Merge", "the", "other", "HyperLogLog", "with", "this", "one", "making", "this", "the", "union", "of", "the", "two", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/hyperloglog.py#L145-L156
[ "def", "merge", "(", "self", ",", "other", ")", ":", "if", "self", ".", "m", "!=", "other", ".", "m", "or", "self", ".", "p", "!=", "other", ".", "p", ":", "raise", "ValueError", "(", "\"Cannot merge HyperLogLog with different\\\n precisions.\"", ")", "self", ".", "reg", "=", "np", ".", "maximum", "(", "self", ".", "reg", ",", "other", ".", "reg", ")" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
HyperLogLog.clear
Reset the current HyperLogLog to empty.
datasketch/hyperloglog.py
def clear(self): ''' Reset the current HyperLogLog to empty. ''' self.reg = np.zeros((self.m,), dtype=np.int8)
def clear(self): ''' Reset the current HyperLogLog to empty. ''' self.reg = np.zeros((self.m,), dtype=np.int8)
[ "Reset", "the", "current", "HyperLogLog", "to", "empty", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/hyperloglog.py#L184-L188
[ "def", "clear", "(", "self", ")", ":", "self", ".", "reg", "=", "np", ".", "zeros", "(", "(", "self", ".", "m", ",", ")", ",", "dtype", "=", "np", ".", "int8", ")" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
apk
Computes the average precision at k. This function computes the average prescision at k between two lists of items. Parameters ---------- actual : list A list of elements that are to be predicted (order doesn't matter) predicted : list A list of predicted elements (order does matter) k : int, optional The maximum number of predicted elements Returns ------- score : double The average precision at k over the input lists
benchmark/average_precision.py
def apk(actual, predicted, k=10): """ Computes the average precision at k. This function computes the average prescision at k between two lists of items. Parameters ---------- actual : list A list of elements that are to be predicted (order doesn't matter) predicted : list A list of predicted elements (order does matter) k : int, optional The maximum number of predicted elements Returns ------- score : double The average precision at k over the input lists """ if len(predicted)>k: predicted = predicted[:k] score = 0.0 num_hits = 0.0 for i,p in enumerate(predicted): if p in actual and p not in predicted[:i]: num_hits += 1.0 score += num_hits / (i+1.0) if len(actual) == 0: return 0.0 return score / min(len(actual), k)
def apk(actual, predicted, k=10): """ Computes the average precision at k. This function computes the average prescision at k between two lists of items. Parameters ---------- actual : list A list of elements that are to be predicted (order doesn't matter) predicted : list A list of predicted elements (order does matter) k : int, optional The maximum number of predicted elements Returns ------- score : double The average precision at k over the input lists """ if len(predicted)>k: predicted = predicted[:k] score = 0.0 num_hits = 0.0 for i,p in enumerate(predicted): if p in actual and p not in predicted[:i]: num_hits += 1.0 score += num_hits / (i+1.0) if len(actual) == 0: return 0.0 return score / min(len(actual), k)
[ "Computes", "the", "average", "precision", "at", "k", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/benchmark/average_precision.py#L3-L39
[ "def", "apk", "(", "actual", ",", "predicted", ",", "k", "=", "10", ")", ":", "if", "len", "(", "predicted", ")", ">", "k", ":", "predicted", "=", "predicted", "[", ":", "k", "]", "score", "=", "0.0", "num_hits", "=", "0.0", "for", "i", ",", "p", "in", "enumerate", "(", "predicted", ")", ":", "if", "p", "in", "actual", "and", "p", "not", "in", "predicted", "[", ":", "i", "]", ":", "num_hits", "+=", "1.0", "score", "+=", "num_hits", "/", "(", "i", "+", "1.0", ")", "if", "len", "(", "actual", ")", "==", "0", ":", "return", "0.0", "return", "score", "/", "min", "(", "len", "(", "actual", ")", ",", "k", ")" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
mapk
Computes the mean average precision at k. This function computes the mean average prescision at k between two lists of lists of items. Parameters ---------- actual : list A list of lists of elements that are to be predicted (order doesn't matter in the lists) predicted : list A list of lists of predicted elements (order matters in the lists) k : int, optional The maximum number of predicted elements Returns ------- score : double The mean average precision at k over the input lists
benchmark/average_precision.py
def mapk(actual, predicted, k=10): """ Computes the mean average precision at k. This function computes the mean average prescision at k between two lists of lists of items. Parameters ---------- actual : list A list of lists of elements that are to be predicted (order doesn't matter in the lists) predicted : list A list of lists of predicted elements (order matters in the lists) k : int, optional The maximum number of predicted elements Returns ------- score : double The mean average precision at k over the input lists """ return np.mean([apk(a,p,k) for a,p in zip(actual, predicted)])
def mapk(actual, predicted, k=10): """ Computes the mean average precision at k. This function computes the mean average prescision at k between two lists of lists of items. Parameters ---------- actual : list A list of lists of elements that are to be predicted (order doesn't matter in the lists) predicted : list A list of lists of predicted elements (order matters in the lists) k : int, optional The maximum number of predicted elements Returns ------- score : double The mean average precision at k over the input lists """ return np.mean([apk(a,p,k) for a,p in zip(actual, predicted)])
[ "Computes", "the", "mean", "average", "precision", "at", "k", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/benchmark/average_precision.py#L41-L65
[ "def", "mapk", "(", "actual", ",", "predicted", ",", "k", "=", "10", ")", ":", "return", "np", ".", "mean", "(", "[", "apk", "(", "a", ",", "p", ",", "k", ")", "for", "a", ",", "p", "in", "zip", "(", "actual", ",", "predicted", ")", "]", ")" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
MinHashLSHForest.add
Add a unique key, together with a MinHash (or weighted MinHash) of the set referenced by the key. Note: The key won't be searchbale until the :func:`datasketch.MinHashLSHForest.index` method is called. Args: key (hashable): The unique identifier of the set. minhash (datasketch.MinHash): The MinHash of the set.
datasketch/lshforest.py
def add(self, key, minhash): ''' Add a unique key, together with a MinHash (or weighted MinHash) of the set referenced by the key. Note: The key won't be searchbale until the :func:`datasketch.MinHashLSHForest.index` method is called. Args: key (hashable): The unique identifier of the set. minhash (datasketch.MinHash): The MinHash of the set. ''' if len(minhash) < self.k*self.l: raise ValueError("The num_perm of MinHash out of range") if key in self.keys: raise ValueError("The given key has already been added") self.keys[key] = [self._H(minhash.hashvalues[start:end]) for start, end in self.hashranges] for H, hashtable in zip(self.keys[key], self.hashtables): hashtable[H].append(key)
def add(self, key, minhash): ''' Add a unique key, together with a MinHash (or weighted MinHash) of the set referenced by the key. Note: The key won't be searchbale until the :func:`datasketch.MinHashLSHForest.index` method is called. Args: key (hashable): The unique identifier of the set. minhash (datasketch.MinHash): The MinHash of the set. ''' if len(minhash) < self.k*self.l: raise ValueError("The num_perm of MinHash out of range") if key in self.keys: raise ValueError("The given key has already been added") self.keys[key] = [self._H(minhash.hashvalues[start:end]) for start, end in self.hashranges] for H, hashtable in zip(self.keys[key], self.hashtables): hashtable[H].append(key)
[ "Add", "a", "unique", "key", "together", "with", "a", "MinHash", "(", "or", "weighted", "MinHash", ")", "of", "the", "set", "referenced", "by", "the", "key", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/lshforest.py#L40-L60
[ "def", "add", "(", "self", ",", "key", ",", "minhash", ")", ":", "if", "len", "(", "minhash", ")", "<", "self", ".", "k", "*", "self", ".", "l", ":", "raise", "ValueError", "(", "\"The num_perm of MinHash out of range\"", ")", "if", "key", "in", "self", ".", "keys", ":", "raise", "ValueError", "(", "\"The given key has already been added\"", ")", "self", ".", "keys", "[", "key", "]", "=", "[", "self", ".", "_H", "(", "minhash", ".", "hashvalues", "[", "start", ":", "end", "]", ")", "for", "start", ",", "end", "in", "self", ".", "hashranges", "]", "for", "H", ",", "hashtable", "in", "zip", "(", "self", ".", "keys", "[", "key", "]", ",", "self", ".", "hashtables", ")", ":", "hashtable", "[", "H", "]", ".", "append", "(", "key", ")" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
MinHashLSHForest.index
Index all the keys added so far and make them searchable.
datasketch/lshforest.py
def index(self): ''' Index all the keys added so far and make them searchable. ''' for i, hashtable in enumerate(self.hashtables): self.sorted_hashtables[i] = [H for H in hashtable.keys()] self.sorted_hashtables[i].sort()
def index(self): ''' Index all the keys added so far and make them searchable. ''' for i, hashtable in enumerate(self.hashtables): self.sorted_hashtables[i] = [H for H in hashtable.keys()] self.sorted_hashtables[i].sort()
[ "Index", "all", "the", "keys", "added", "so", "far", "and", "make", "them", "searchable", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/lshforest.py#L62-L68
[ "def", "index", "(", "self", ")", ":", "for", "i", ",", "hashtable", "in", "enumerate", "(", "self", ".", "hashtables", ")", ":", "self", ".", "sorted_hashtables", "[", "i", "]", "=", "[", "H", "for", "H", "in", "hashtable", ".", "keys", "(", ")", "]", "self", ".", "sorted_hashtables", "[", "i", "]", ".", "sort", "(", ")" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
MinHashLSHForest.query
Return the approximate top-k keys that have the highest Jaccard similarities to the query set. Args: minhash (datasketch.MinHash): The MinHash of the query set. k (int): The maximum number of keys to return. Returns: `list` of at most k keys.
datasketch/lshforest.py
def query(self, minhash, k): ''' Return the approximate top-k keys that have the highest Jaccard similarities to the query set. Args: minhash (datasketch.MinHash): The MinHash of the query set. k (int): The maximum number of keys to return. Returns: `list` of at most k keys. ''' if k <= 0: raise ValueError("k must be positive") if len(minhash) < self.k*self.l: raise ValueError("The num_perm of MinHash out of range") results = set() r = self.k while r > 0: for key in self._query(minhash, r, self.l): results.add(key) if len(results) >= k: return list(results) r -= 1 return list(results)
def query(self, minhash, k): ''' Return the approximate top-k keys that have the highest Jaccard similarities to the query set. Args: minhash (datasketch.MinHash): The MinHash of the query set. k (int): The maximum number of keys to return. Returns: `list` of at most k keys. ''' if k <= 0: raise ValueError("k must be positive") if len(minhash) < self.k*self.l: raise ValueError("The num_perm of MinHash out of range") results = set() r = self.k while r > 0: for key in self._query(minhash, r, self.l): results.add(key) if len(results) >= k: return list(results) r -= 1 return list(results)
[ "Return", "the", "approximate", "top", "-", "k", "keys", "that", "have", "the", "highest", "Jaccard", "similarities", "to", "the", "query", "set", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/lshforest.py#L87-L111
[ "def", "query", "(", "self", ",", "minhash", ",", "k", ")", ":", "if", "k", "<=", "0", ":", "raise", "ValueError", "(", "\"k must be positive\"", ")", "if", "len", "(", "minhash", ")", "<", "self", ".", "k", "*", "self", ".", "l", ":", "raise", "ValueError", "(", "\"The num_perm of MinHash out of range\"", ")", "results", "=", "set", "(", ")", "r", "=", "self", ".", "k", "while", "r", ">", "0", ":", "for", "key", "in", "self", ".", "_query", "(", "minhash", ",", "r", ",", "self", ".", "l", ")", ":", "results", ".", "add", "(", "key", ")", "if", "len", "(", "results", ")", ">=", "k", ":", "return", "list", "(", "results", ")", "r", "-=", "1", "return", "list", "(", "results", ")" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
MinHashLSHForest._binary_search
https://golang.org/src/sort/search.go?s=2247:2287#L49
datasketch/lshforest.py
def _binary_search(self, n, func): ''' https://golang.org/src/sort/search.go?s=2247:2287#L49 ''' i, j = 0, n while i < j: h = int(i + (j - i) / 2) if not func(h): i = h + 1 else: j = h return i
def _binary_search(self, n, func): ''' https://golang.org/src/sort/search.go?s=2247:2287#L49 ''' i, j = 0, n while i < j: h = int(i + (j - i) / 2) if not func(h): i = h + 1 else: j = h return i
[ "https", ":", "//", "golang", ".", "org", "/", "src", "/", "sort", "/", "search", ".", "go?s", "=", "2247", ":", "2287#L49" ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/lshforest.py#L113-L124
[ "def", "_binary_search", "(", "self", ",", "n", ",", "func", ")", ":", "i", ",", "j", "=", "0", ",", "n", "while", "i", "<", "j", ":", "h", "=", "int", "(", "i", "+", "(", "j", "-", "i", ")", "/", "2", ")", "if", "not", "func", "(", "h", ")", ":", "i", "=", "h", "+", "1", "else", ":", "j", "=", "h", "return", "i" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
AsyncMinHashLSH.close
Cleanup client resources and disconnect from AsyncMinHashLSH storage.
datasketch/experimental/aio/lsh.py
async def close(self): """ Cleanup client resources and disconnect from AsyncMinHashLSH storage. """ async with self._lock: for t in self.hashtables: await t.close() if self.keys is not None: await self.keys.close() self._initialized = False
async def close(self): """ Cleanup client resources and disconnect from AsyncMinHashLSH storage. """ async with self._lock: for t in self.hashtables: await t.close() if self.keys is not None: await self.keys.close() self._initialized = False
[ "Cleanup", "client", "resources", "and", "disconnect", "from", "AsyncMinHashLSH", "storage", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/experimental/aio/lsh.py#L167-L178
[ "async", "def", "close", "(", "self", ")", ":", "async", "with", "self", ".", "_lock", ":", "for", "t", "in", "self", ".", "hashtables", ":", "await", "t", ".", "close", "(", ")", "if", "self", ".", "keys", "is", "not", "None", ":", "await", "self", ".", "keys", ".", "close", "(", ")", "self", ".", "_initialized", "=", "False" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
AsyncMinHashLSH.query
see :class:`datasketch.MinHashLSH`.
datasketch/experimental/aio/lsh.py
async def query(self, minhash): """ see :class:`datasketch.MinHashLSH`. """ if len(minhash) != self.h: raise ValueError("Expecting minhash with length %d, " "got %d" % (self.h, len(minhash))) fs = (hashtable.get(self._H(minhash.hashvalues[start:end])) for (start, end), hashtable in zip(self.hashranges, self.hashtables)) candidates = frozenset(chain.from_iterable(await asyncio.gather(*fs))) return list(candidates)
async def query(self, minhash): """ see :class:`datasketch.MinHashLSH`. """ if len(minhash) != self.h: raise ValueError("Expecting minhash with length %d, " "got %d" % (self.h, len(minhash))) fs = (hashtable.get(self._H(minhash.hashvalues[start:end])) for (start, end), hashtable in zip(self.hashranges, self.hashtables)) candidates = frozenset(chain.from_iterable(await asyncio.gather(*fs))) return list(candidates)
[ "see", ":", "class", ":", "datasketch", ".", "MinHashLSH", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/experimental/aio/lsh.py#L275-L287
[ "async", "def", "query", "(", "self", ",", "minhash", ")", ":", "if", "len", "(", "minhash", ")", "!=", "self", ".", "h", ":", "raise", "ValueError", "(", "\"Expecting minhash with length %d, \"", "\"got %d\"", "%", "(", "self", ".", "h", ",", "len", "(", "minhash", ")", ")", ")", "fs", "=", "(", "hashtable", ".", "get", "(", "self", ".", "_H", "(", "minhash", ".", "hashvalues", "[", "start", ":", "end", "]", ")", ")", "for", "(", "start", ",", "end", ")", ",", "hashtable", "in", "zip", "(", "self", ".", "hashranges", ",", "self", ".", "hashtables", ")", ")", "candidates", "=", "frozenset", "(", "chain", ".", "from_iterable", "(", "await", "asyncio", ".", "gather", "(", "*", "fs", ")", ")", ")", "return", "list", "(", "candidates", ")" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
AsyncMinHashLSH.get_counts
see :class:`datasketch.MinHashLSH`.
datasketch/experimental/aio/lsh.py
async def get_counts(self): """ see :class:`datasketch.MinHashLSH`. """ fs = (hashtable.itemcounts() for hashtable in self.hashtables) return await asyncio.gather(*fs)
async def get_counts(self): """ see :class:`datasketch.MinHashLSH`. """ fs = (hashtable.itemcounts() for hashtable in self.hashtables) return await asyncio.gather(*fs)
[ "see", ":", "class", ":", "datasketch", ".", "MinHashLSH", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/experimental/aio/lsh.py#L341-L346
[ "async", "def", "get_counts", "(", "self", ")", ":", "fs", "=", "(", "hashtable", ".", "itemcounts", "(", ")", "for", "hashtable", "in", "self", ".", "hashtables", ")", "return", "await", "asyncio", ".", "gather", "(", "*", "fs", ")" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
ordered_storage
Return ordered storage system based on the specified config. The canonical example of such a storage container is ``defaultdict(list)``. Thus, the return value of this method contains keys and values. The values are ordered lists with the last added item at the end. Args: config (dict): Defines the configurations for the storage. For in-memory storage, the config ``{'type': 'dict'}`` will suffice. For Redis storage, the type should be ``'redis'`` and the configurations for the Redis database should be supplied under the key ``'redis'``. These parameters should be in a form suitable for `redis.Redis`. The parameters may alternatively contain references to environment variables, in which case literal configuration values should be replaced by dicts of the form:: {'env': 'REDIS_HOSTNAME', 'default': 'localhost'} For a full example, see :ref:`minhash_lsh_at_scale` name (bytes, optional): A reference name for this storage container. For dict-type containers, this is ignored. For Redis containers, this name is used to prefix keys pertaining to this storage container within the database.
datasketch/storage.py
def ordered_storage(config, name=None): '''Return ordered storage system based on the specified config. The canonical example of such a storage container is ``defaultdict(list)``. Thus, the return value of this method contains keys and values. The values are ordered lists with the last added item at the end. Args: config (dict): Defines the configurations for the storage. For in-memory storage, the config ``{'type': 'dict'}`` will suffice. For Redis storage, the type should be ``'redis'`` and the configurations for the Redis database should be supplied under the key ``'redis'``. These parameters should be in a form suitable for `redis.Redis`. The parameters may alternatively contain references to environment variables, in which case literal configuration values should be replaced by dicts of the form:: {'env': 'REDIS_HOSTNAME', 'default': 'localhost'} For a full example, see :ref:`minhash_lsh_at_scale` name (bytes, optional): A reference name for this storage container. For dict-type containers, this is ignored. For Redis containers, this name is used to prefix keys pertaining to this storage container within the database. ''' tp = config['type'] if tp == 'dict': return DictListStorage(config) if tp == 'redis': return RedisListStorage(config, name=name)
def ordered_storage(config, name=None): '''Return ordered storage system based on the specified config. The canonical example of such a storage container is ``defaultdict(list)``. Thus, the return value of this method contains keys and values. The values are ordered lists with the last added item at the end. Args: config (dict): Defines the configurations for the storage. For in-memory storage, the config ``{'type': 'dict'}`` will suffice. For Redis storage, the type should be ``'redis'`` and the configurations for the Redis database should be supplied under the key ``'redis'``. These parameters should be in a form suitable for `redis.Redis`. The parameters may alternatively contain references to environment variables, in which case literal configuration values should be replaced by dicts of the form:: {'env': 'REDIS_HOSTNAME', 'default': 'localhost'} For a full example, see :ref:`minhash_lsh_at_scale` name (bytes, optional): A reference name for this storage container. For dict-type containers, this is ignored. For Redis containers, this name is used to prefix keys pertaining to this storage container within the database. ''' tp = config['type'] if tp == 'dict': return DictListStorage(config) if tp == 'redis': return RedisListStorage(config, name=name)
[ "Return", "ordered", "storage", "system", "based", "on", "the", "specified", "config", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/storage.py#L13-L46
[ "def", "ordered_storage", "(", "config", ",", "name", "=", "None", ")", ":", "tp", "=", "config", "[", "'type'", "]", "if", "tp", "==", "'dict'", ":", "return", "DictListStorage", "(", "config", ")", "if", "tp", "==", "'redis'", ":", "return", "RedisListStorage", "(", "config", ",", "name", "=", "name", ")" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
unordered_storage
Return an unordered storage system based on the specified config. The canonical example of such a storage container is ``defaultdict(set)``. Thus, the return value of this method contains keys and values. The values are unordered sets. Args: config (dict): Defines the configurations for the storage. For in-memory storage, the config ``{'type': 'dict'}`` will suffice. For Redis storage, the type should be ``'redis'`` and the configurations for the Redis database should be supplied under the key ``'redis'``. These parameters should be in a form suitable for `redis.Redis`. The parameters may alternatively contain references to environment variables, in which case literal configuration values should be replaced by dicts of the form:: {'env': 'REDIS_HOSTNAME', 'default': 'localhost'} For a full example, see :ref:`minhash_lsh_at_scale` name (bytes, optional): A reference name for this storage container. For dict-type containers, this is ignored. For Redis containers, this name is used to prefix keys pertaining to this storage container within the database.
datasketch/storage.py
def unordered_storage(config, name=None): '''Return an unordered storage system based on the specified config. The canonical example of such a storage container is ``defaultdict(set)``. Thus, the return value of this method contains keys and values. The values are unordered sets. Args: config (dict): Defines the configurations for the storage. For in-memory storage, the config ``{'type': 'dict'}`` will suffice. For Redis storage, the type should be ``'redis'`` and the configurations for the Redis database should be supplied under the key ``'redis'``. These parameters should be in a form suitable for `redis.Redis`. The parameters may alternatively contain references to environment variables, in which case literal configuration values should be replaced by dicts of the form:: {'env': 'REDIS_HOSTNAME', 'default': 'localhost'} For a full example, see :ref:`minhash_lsh_at_scale` name (bytes, optional): A reference name for this storage container. For dict-type containers, this is ignored. For Redis containers, this name is used to prefix keys pertaining to this storage container within the database. ''' tp = config['type'] if tp == 'dict': return DictSetStorage(config) if tp == 'redis': return RedisSetStorage(config, name=name)
def unordered_storage(config, name=None): '''Return an unordered storage system based on the specified config. The canonical example of such a storage container is ``defaultdict(set)``. Thus, the return value of this method contains keys and values. The values are unordered sets. Args: config (dict): Defines the configurations for the storage. For in-memory storage, the config ``{'type': 'dict'}`` will suffice. For Redis storage, the type should be ``'redis'`` and the configurations for the Redis database should be supplied under the key ``'redis'``. These parameters should be in a form suitable for `redis.Redis`. The parameters may alternatively contain references to environment variables, in which case literal configuration values should be replaced by dicts of the form:: {'env': 'REDIS_HOSTNAME', 'default': 'localhost'} For a full example, see :ref:`minhash_lsh_at_scale` name (bytes, optional): A reference name for this storage container. For dict-type containers, this is ignored. For Redis containers, this name is used to prefix keys pertaining to this storage container within the database. ''' tp = config['type'] if tp == 'dict': return DictSetStorage(config) if tp == 'redis': return RedisSetStorage(config, name=name)
[ "Return", "an", "unordered", "storage", "system", "based", "on", "the", "specified", "config", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/storage.py#L49-L81
[ "def", "unordered_storage", "(", "config", ",", "name", "=", "None", ")", ":", "tp", "=", "config", "[", "'type'", "]", "if", "tp", "==", "'dict'", ":", "return", "DictSetStorage", "(", "config", ")", "if", "tp", "==", "'redis'", ":", "return", "RedisSetStorage", "(", "config", ",", "name", "=", "name", ")" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
DictListStorage.itemcounts
Returns a dict where the keys are the keys of the container. The values are the *lengths* of the value sequences stored in this container.
datasketch/storage.py
def itemcounts(self, **kwargs): '''Returns a dict where the keys are the keys of the container. The values are the *lengths* of the value sequences stored in this container. ''' return {k: len(v) for k, v in self._dict.items()}
def itemcounts(self, **kwargs): '''Returns a dict where the keys are the keys of the container. The values are the *lengths* of the value sequences stored in this container. ''' return {k: len(v) for k, v in self._dict.items()}
[ "Returns", "a", "dict", "where", "the", "keys", "are", "the", "keys", "of", "the", "container", ".", "The", "values", "are", "the", "*", "lengths", "*", "of", "the", "value", "sequences", "stored", "in", "this", "container", "." ]
ekzhu/datasketch
python
https://github.com/ekzhu/datasketch/blob/b3e4129987890a2beb04f2c0b6dc618ae35f2e14/datasketch/storage.py#L191-L196
[ "def", "itemcounts", "(", "self", ",", "*", "*", "kwargs", ")", ":", "return", "{", "k", ":", "len", "(", "v", ")", "for", "k", ",", "v", "in", "self", ".", "_dict", ".", "items", "(", ")", "}" ]
b3e4129987890a2beb04f2c0b6dc618ae35f2e14
test
TwitterLoginSerializer.get_social_login
:param adapter: allauth.socialaccount Adapter subclass. Usually OAuthAdapter or Auth2Adapter :param app: `allauth.socialaccount.SocialApp` instance :param token: `allauth.socialaccount.SocialToken` instance :param response: Provider's response for OAuth1. Not used in the :returns: A populated instance of the `allauth.socialaccount.SocialLoginView` instance
rest_auth/social_serializers.py
def get_social_login(self, adapter, app, token, response): """ :param adapter: allauth.socialaccount Adapter subclass. Usually OAuthAdapter or Auth2Adapter :param app: `allauth.socialaccount.SocialApp` instance :param token: `allauth.socialaccount.SocialToken` instance :param response: Provider's response for OAuth1. Not used in the :returns: A populated instance of the `allauth.socialaccount.SocialLoginView` instance """ request = self._get_request() social_login = adapter.complete_login(request, app, token, response=response) social_login.token = token return social_login
def get_social_login(self, adapter, app, token, response): """ :param adapter: allauth.socialaccount Adapter subclass. Usually OAuthAdapter or Auth2Adapter :param app: `allauth.socialaccount.SocialApp` instance :param token: `allauth.socialaccount.SocialToken` instance :param response: Provider's response for OAuth1. Not used in the :returns: A populated instance of the `allauth.socialaccount.SocialLoginView` instance """ request = self._get_request() social_login = adapter.complete_login(request, app, token, response=response) social_login.token = token return social_login
[ ":", "param", "adapter", ":", "allauth", ".", "socialaccount", "Adapter", "subclass", ".", "Usually", "OAuthAdapter", "or", "Auth2Adapter", ":", "param", "app", ":", "allauth", ".", "socialaccount", ".", "SocialApp", "instance", ":", "param", "token", ":", "allauth", ".", "socialaccount", ".", "SocialToken", "instance", ":", "param", "response", ":", "Provider", "s", "response", "for", "OAuth1", ".", "Not", "used", "in", "the", ":", "returns", ":", "A", "populated", "instance", "of", "the", "allauth", ".", "socialaccount", ".", "SocialLoginView", "instance" ]
Tivix/django-rest-auth
python
https://github.com/Tivix/django-rest-auth/blob/624ad01afbc86fa15b4e652406f3bdcd01f36e00/rest_auth/social_serializers.py#L24-L38
[ "def", "get_social_login", "(", "self", ",", "adapter", ",", "app", ",", "token", ",", "response", ")", ":", "request", "=", "self", ".", "_get_request", "(", ")", "social_login", "=", "adapter", ".", "complete_login", "(", "request", ",", "app", ",", "token", ",", "response", "=", "response", ")", "social_login", ".", "token", "=", "token", "return", "social_login" ]
624ad01afbc86fa15b4e652406f3bdcd01f36e00
test
JWTSerializer.get_user
Required to allow using custom USER_DETAILS_SERIALIZER in JWTSerializer. Defining it here to avoid circular imports
rest_auth/serializers.py
def get_user(self, obj): """ Required to allow using custom USER_DETAILS_SERIALIZER in JWTSerializer. Defining it here to avoid circular imports """ rest_auth_serializers = getattr(settings, 'REST_AUTH_SERIALIZERS', {}) JWTUserDetailsSerializer = import_callable( rest_auth_serializers.get('USER_DETAILS_SERIALIZER', UserDetailsSerializer) ) user_data = JWTUserDetailsSerializer(obj['user'], context=self.context).data return user_data
def get_user(self, obj): """ Required to allow using custom USER_DETAILS_SERIALIZER in JWTSerializer. Defining it here to avoid circular imports """ rest_auth_serializers = getattr(settings, 'REST_AUTH_SERIALIZERS', {}) JWTUserDetailsSerializer = import_callable( rest_auth_serializers.get('USER_DETAILS_SERIALIZER', UserDetailsSerializer) ) user_data = JWTUserDetailsSerializer(obj['user'], context=self.context).data return user_data
[ "Required", "to", "allow", "using", "custom", "USER_DETAILS_SERIALIZER", "in", "JWTSerializer", ".", "Defining", "it", "here", "to", "avoid", "circular", "imports" ]
Tivix/django-rest-auth
python
https://github.com/Tivix/django-rest-auth/blob/624ad01afbc86fa15b4e652406f3bdcd01f36e00/rest_auth/serializers.py#L143-L153
[ "def", "get_user", "(", "self", ",", "obj", ")", ":", "rest_auth_serializers", "=", "getattr", "(", "settings", ",", "'REST_AUTH_SERIALIZERS'", ",", "{", "}", ")", "JWTUserDetailsSerializer", "=", "import_callable", "(", "rest_auth_serializers", ".", "get", "(", "'USER_DETAILS_SERIALIZER'", ",", "UserDetailsSerializer", ")", ")", "user_data", "=", "JWTUserDetailsSerializer", "(", "obj", "[", "'user'", "]", ",", "context", "=", "self", ".", "context", ")", ".", "data", "return", "user_data" ]
624ad01afbc86fa15b4e652406f3bdcd01f36e00
test
SocialConnectMixin.get_social_login
Set the social login process state to connect rather than login Refer to the implementation of get_social_login in base class and to the allauth.socialaccount.helpers module complete_social_login function.
rest_auth/registration/serializers.py
def get_social_login(self, *args, **kwargs): """ Set the social login process state to connect rather than login Refer to the implementation of get_social_login in base class and to the allauth.socialaccount.helpers module complete_social_login function. """ social_login = super(SocialConnectMixin, self).get_social_login(*args, **kwargs) social_login.state['process'] = AuthProcess.CONNECT return social_login
def get_social_login(self, *args, **kwargs): """ Set the social login process state to connect rather than login Refer to the implementation of get_social_login in base class and to the allauth.socialaccount.helpers module complete_social_login function. """ social_login = super(SocialConnectMixin, self).get_social_login(*args, **kwargs) social_login.state['process'] = AuthProcess.CONNECT return social_login
[ "Set", "the", "social", "login", "process", "state", "to", "connect", "rather", "than", "login", "Refer", "to", "the", "implementation", "of", "get_social_login", "in", "base", "class", "and", "to", "the", "allauth", ".", "socialaccount", ".", "helpers", "module", "complete_social_login", "function", "." ]
Tivix/django-rest-auth
python
https://github.com/Tivix/django-rest-auth/blob/624ad01afbc86fa15b4e652406f3bdcd01f36e00/rest_auth/registration/serializers.py#L151-L159
[ "def", "get_social_login", "(", "self", ",", "*", "args", ",", "*", "*", "kwargs", ")", ":", "social_login", "=", "super", "(", "SocialConnectMixin", ",", "self", ")", ".", "get_social_login", "(", "*", "args", ",", "*", "*", "kwargs", ")", "social_login", ".", "state", "[", "'process'", "]", "=", "AuthProcess", ".", "CONNECT", "return", "social_login" ]
624ad01afbc86fa15b4e652406f3bdcd01f36e00
test
select_text
Select the correct text from the Japanese number, reading and alternatives
num2words/lang_JA.py
def select_text(text, reading=False, prefer=None): """Select the correct text from the Japanese number, reading and alternatives""" # select kanji number or kana reading if reading: text = text[1] else: text = text[0] # select the preferred one or the first one from multiple alternatives if not isinstance(text, strtype): common = set(text) & set(prefer or set()) if len(common) == 1: text = common.pop() else: text = text[0] return text
def select_text(text, reading=False, prefer=None): """Select the correct text from the Japanese number, reading and alternatives""" # select kanji number or kana reading if reading: text = text[1] else: text = text[0] # select the preferred one or the first one from multiple alternatives if not isinstance(text, strtype): common = set(text) & set(prefer or set()) if len(common) == 1: text = common.pop() else: text = text[0] return text
[ "Select", "the", "correct", "text", "from", "the", "Japanese", "number", "reading", "and", "alternatives" ]
savoirfairelinux/num2words
python
https://github.com/savoirfairelinux/num2words/blob/f4b2bac098ae8e4850cf2f185f6ff52a5979641f/num2words/lang_JA.py#L25-L42
[ "def", "select_text", "(", "text", ",", "reading", "=", "False", ",", "prefer", "=", "None", ")", ":", "# select kanji number or kana reading", "if", "reading", ":", "text", "=", "text", "[", "1", "]", "else", ":", "text", "=", "text", "[", "0", "]", "# select the preferred one or the first one from multiple alternatives", "if", "not", "isinstance", "(", "text", ",", "strtype", ")", ":", "common", "=", "set", "(", "text", ")", "&", "set", "(", "prefer", "or", "set", "(", ")", ")", "if", "len", "(", "common", ")", "==", "1", ":", "text", "=", "common", ".", "pop", "(", ")", "else", ":", "text", "=", "text", "[", "0", "]", "return", "text" ]
f4b2bac098ae8e4850cf2f185f6ff52a5979641f
test
rendaku_merge_pairs
Merge lpair < rpair while applying semi-irregular rendaku rules
num2words/lang_JA.py
def rendaku_merge_pairs(lpair, rpair): """Merge lpair < rpair while applying semi-irregular rendaku rules""" ltext, lnum = lpair rtext, rnum = rpair if lnum > rnum: raise ValueError if rpair == ("ひゃく", 100): if lpair == ("さん", 3): rtext = "びゃく" elif lpair == ("ろく", 6): ltext = "ろっ" rtext = "ぴゃく" elif lpair == ("はち", 8): ltext = "はっ" rtext = "ぴゃく" elif rpair == ("せん", 1000): if lpair == ("さん", 3): rtext = "ぜん" elif lpair == ("はち", 8): ltext = "はっ" elif rpair == ("ちょう", 10**12): if lpair == ("いち", 1): ltext = "いっ" elif lpair == ("はち", 8): ltext = "はっ" elif lpair == ("じゅう", 10): ltext = "じゅっ" elif rpair == ("けい", 10**16): if lpair == ("いち", 1): ltext = "いっ" elif lpair == ("ろく", 6): ltext = "ろっ" elif lpair == ("はち", 8): ltext = "はっ" elif lpair == ("じゅう", 10): ltext = "じゅっ" elif lpair == ("ひゃく", 100): ltext = "ひゃっ" return ("%s%s" % (ltext, rtext), lnum * rnum)
def rendaku_merge_pairs(lpair, rpair): """Merge lpair < rpair while applying semi-irregular rendaku rules""" ltext, lnum = lpair rtext, rnum = rpair if lnum > rnum: raise ValueError if rpair == ("ひゃく", 100): if lpair == ("さん", 3): rtext = "びゃく" elif lpair == ("ろく", 6): ltext = "ろっ" rtext = "ぴゃく" elif lpair == ("はち", 8): ltext = "はっ" rtext = "ぴゃく" elif rpair == ("せん", 1000): if lpair == ("さん", 3): rtext = "ぜん" elif lpair == ("はち", 8): ltext = "はっ" elif rpair == ("ちょう", 10**12): if lpair == ("いち", 1): ltext = "いっ" elif lpair == ("はち", 8): ltext = "はっ" elif lpair == ("じゅう", 10): ltext = "じゅっ" elif rpair == ("けい", 10**16): if lpair == ("いち", 1): ltext = "いっ" elif lpair == ("ろく", 6): ltext = "ろっ" elif lpair == ("はち", 8): ltext = "はっ" elif lpair == ("じゅう", 10): ltext = "じゅっ" elif lpair == ("ひゃく", 100): ltext = "ひゃっ" return ("%s%s" % (ltext, rtext), lnum * rnum)
[ "Merge", "lpair", "<", "rpair", "while", "applying", "semi", "-", "irregular", "rendaku", "rules" ]
savoirfairelinux/num2words
python
https://github.com/savoirfairelinux/num2words/blob/f4b2bac098ae8e4850cf2f185f6ff52a5979641f/num2words/lang_JA.py#L45-L85
[ "def", "rendaku_merge_pairs", "(", "lpair", ",", "rpair", ")", ":", "ltext", ",", "lnum", "=", "lpair", "rtext", ",", "rnum", "=", "rpair", "if", "lnum", ">", "rnum", ":", "raise", "ValueError", "if", "rpair", "==", "(", "\"ひゃく\", 100)", ":", "", "", "", "if", "lpair", "==", "(", "\"さん\", 3)", ":", "", "", "", "rtext", "=", "\"びゃく\"", "elif", "lpair", "==", "(", "\"ろく\", 6)", ":", "", "", "", "ltext", "=", "\"ろっ\"", "rtext", "=", "\"ぴゃく\"", "elif", "lpair", "==", "(", "\"はち\", 8)", ":", "", "", "", "ltext", "=", "\"はっ\"", "rtext", "=", "\"ぴゃく\"", "elif", "rpair", "==", "(", "\"せん\", 10", "0", "):", "", "", "if", "lpair", "==", "(", "\"さん\", 3)", ":", "", "", "", "rtext", "=", "\"ぜん\"", "elif", "lpair", "==", "(", "\"はち\", 8)", ":", "", "", "", "ltext", "=", "\"はっ\"", "elif", "rpair", "==", "(", "\"ちょう\", 10**", "1", "):", "", "", "", "", "if", "lpair", "==", "(", "\"いち\", 1)", ":", "", "", "", "ltext", "=", "\"いっ\"", "elif", "lpair", "==", "(", "\"はち\", 8)", ":", "", "", "", "ltext", "=", "\"はっ\"", "elif", "lpair", "==", "(", "\"じゅう\", 10):", "", "", "", "", "ltext", "=", "\"じゅっ\"", "elif", "rpair", "==", "(", "\"けい\", 10", "*", "16", "):", "", "", "", "if", "lpair", "==", "(", "\"いち\", 1)", ":", "", "", "", "ltext", "=", "\"いっ\"", "elif", "lpair", "==", "(", "\"ろく\", 6)", ":", "", "", "", "ltext", "=", "\"ろっ\"", "elif", "lpair", "==", "(", "\"はち\", 8)", ":", "", "", "", "ltext", "=", "\"はっ\"", "elif", "lpair", "==", "(", "\"じゅう\", 10):", "", "", "", "", "ltext", "=", "\"じゅっ\"", "elif", "lpair", "==", "(", "\"ひゃく\", 100)", ":", "", "", "", "ltext", "=", "\"ひゃっ\"", "return", "(", "\"%s%s\"", "%", "(", "ltext", ",", "rtext", ")", ",", "lnum", "*", "rnum", ")" ]
f4b2bac098ae8e4850cf2f185f6ff52a5979641f
test
Num2Word_ID.split_by_3
starting here, it groups the number by three from the tail '1234567' -> (('1',),('234',),('567',)) :param number:str :rtype:tuple
num2words/lang_ID.py
def split_by_3(self, number): """ starting here, it groups the number by three from the tail '1234567' -> (('1',),('234',),('567',)) :param number:str :rtype:tuple """ blocks = () length = len(number) if length < 3: blocks += ((number,),) else: len_of_first_block = length % 3 if len_of_first_block > 0: first_block = number[0:len_of_first_block], blocks += first_block, for i in range(len_of_first_block, length, 3): next_block = (number[i:i + 3],), blocks += next_block return blocks
def split_by_3(self, number): """ starting here, it groups the number by three from the tail '1234567' -> (('1',),('234',),('567',)) :param number:str :rtype:tuple """ blocks = () length = len(number) if length < 3: blocks += ((number,),) else: len_of_first_block = length % 3 if len_of_first_block > 0: first_block = number[0:len_of_first_block], blocks += first_block, for i in range(len_of_first_block, length, 3): next_block = (number[i:i + 3],), blocks += next_block return blocks
[ "starting", "here", "it", "groups", "the", "number", "by", "three", "from", "the", "tail", "1234567", "-", ">", "((", "1", ")", "(", "234", ")", "(", "567", "))", ":", "param", "number", ":", "str", ":", "rtype", ":", "tuple" ]
savoirfairelinux/num2words
python
https://github.com/savoirfairelinux/num2words/blob/f4b2bac098ae8e4850cf2f185f6ff52a5979641f/num2words/lang_ID.py#L53-L76
[ "def", "split_by_3", "(", "self", ",", "number", ")", ":", "blocks", "=", "(", ")", "length", "=", "len", "(", "number", ")", "if", "length", "<", "3", ":", "blocks", "+=", "(", "(", "number", ",", ")", ",", ")", "else", ":", "len_of_first_block", "=", "length", "%", "3", "if", "len_of_first_block", ">", "0", ":", "first_block", "=", "number", "[", "0", ":", "len_of_first_block", "]", ",", "blocks", "+=", "first_block", ",", "for", "i", "in", "range", "(", "len_of_first_block", ",", "length", ",", "3", ")", ":", "next_block", "=", "(", "number", "[", "i", ":", "i", "+", "3", "]", ",", ")", ",", "blocks", "+=", "next_block", "return", "blocks" ]
f4b2bac098ae8e4850cf2f185f6ff52a5979641f
test
Num2Word_ID.spell
it adds the list of spelling to the blocks ( ('1',),('034',)) -> (('1',['satu']),('234',['tiga', 'puluh', 'empat']) ) :param blocks: tuple :rtype: tuple
num2words/lang_ID.py
def spell(self, blocks): """ it adds the list of spelling to the blocks ( ('1',),('034',)) -> (('1',['satu']),('234',['tiga', 'puluh', 'empat']) ) :param blocks: tuple :rtype: tuple """ word_blocks = () first_block = blocks[0] if len(first_block[0]) == 1: if first_block[0] == '0': spelling = ['nol'] else: spelling = self.BASE[int(first_block[0])] elif len(first_block[0]) == 2: spelling = self.puluh(first_block[0]) else: spelling = ( self.ratus(first_block[0][0]) + self.puluh(first_block[0][1:3]) ) word_blocks += (first_block[0], spelling), for block in blocks[1:]: spelling = self.ratus(block[0][0]) + self.puluh(block[0][1:3]) block += spelling, word_blocks += block, return word_blocks
def spell(self, blocks): """ it adds the list of spelling to the blocks ( ('1',),('034',)) -> (('1',['satu']),('234',['tiga', 'puluh', 'empat']) ) :param blocks: tuple :rtype: tuple """ word_blocks = () first_block = blocks[0] if len(first_block[0]) == 1: if first_block[0] == '0': spelling = ['nol'] else: spelling = self.BASE[int(first_block[0])] elif len(first_block[0]) == 2: spelling = self.puluh(first_block[0]) else: spelling = ( self.ratus(first_block[0][0]) + self.puluh(first_block[0][1:3]) ) word_blocks += (first_block[0], spelling), for block in blocks[1:]: spelling = self.ratus(block[0][0]) + self.puluh(block[0][1:3]) block += spelling, word_blocks += block, return word_blocks
[ "it", "adds", "the", "list", "of", "spelling", "to", "the", "blocks", "(", "(", "1", ")", "(", "034", "))", "-", ">", "((", "1", "[", "satu", "]", ")", "(", "234", "[", "tiga", "puluh", "empat", "]", ")", ")", ":", "param", "blocks", ":", "tuple", ":", "rtype", ":", "tuple" ]
savoirfairelinux/num2words
python
https://github.com/savoirfairelinux/num2words/blob/f4b2bac098ae8e4850cf2f185f6ff52a5979641f/num2words/lang_ID.py#L78-L108
[ "def", "spell", "(", "self", ",", "blocks", ")", ":", "word_blocks", "=", "(", ")", "first_block", "=", "blocks", "[", "0", "]", "if", "len", "(", "first_block", "[", "0", "]", ")", "==", "1", ":", "if", "first_block", "[", "0", "]", "==", "'0'", ":", "spelling", "=", "[", "'nol'", "]", "else", ":", "spelling", "=", "self", ".", "BASE", "[", "int", "(", "first_block", "[", "0", "]", ")", "]", "elif", "len", "(", "first_block", "[", "0", "]", ")", "==", "2", ":", "spelling", "=", "self", ".", "puluh", "(", "first_block", "[", "0", "]", ")", "else", ":", "spelling", "=", "(", "self", ".", "ratus", "(", "first_block", "[", "0", "]", "[", "0", "]", ")", "+", "self", ".", "puluh", "(", "first_block", "[", "0", "]", "[", "1", ":", "3", "]", ")", ")", "word_blocks", "+=", "(", "first_block", "[", "0", "]", ",", "spelling", ")", ",", "for", "block", "in", "blocks", "[", "1", ":", "]", ":", "spelling", "=", "self", ".", "ratus", "(", "block", "[", "0", "]", "[", "0", "]", ")", "+", "self", ".", "puluh", "(", "block", "[", "0", "]", "[", "1", ":", "3", "]", ")", "block", "+=", "spelling", ",", "word_blocks", "+=", "block", ",", "return", "word_blocks" ]
f4b2bac098ae8e4850cf2f185f6ff52a5979641f
test
Num2Word_ID.join
join the words by first join lists in the tuple :param word_blocks: tuple :rtype: str
num2words/lang_ID.py
def join(self, word_blocks, float_part): """ join the words by first join lists in the tuple :param word_blocks: tuple :rtype: str """ word_list = [] length = len(word_blocks) - 1 first_block = word_blocks[0], start = 0 if length == 1 and first_block[0][0] == '1': word_list += ['seribu'] start = 1 for i in range(start, length + 1, 1): word_list += word_blocks[i][1] if not word_blocks[i][1]: continue if i == length: break word_list += [self.TENS_TO[(length - i) * 3]] return ' '.join(word_list) + float_part
def join(self, word_blocks, float_part): """ join the words by first join lists in the tuple :param word_blocks: tuple :rtype: str """ word_list = [] length = len(word_blocks) - 1 first_block = word_blocks[0], start = 0 if length == 1 and first_block[0][0] == '1': word_list += ['seribu'] start = 1 for i in range(start, length + 1, 1): word_list += word_blocks[i][1] if not word_blocks[i][1]: continue if i == length: break word_list += [self.TENS_TO[(length - i) * 3]] return ' '.join(word_list) + float_part
[ "join", "the", "words", "by", "first", "join", "lists", "in", "the", "tuple", ":", "param", "word_blocks", ":", "tuple", ":", "rtype", ":", "str" ]
savoirfairelinux/num2words
python
https://github.com/savoirfairelinux/num2words/blob/f4b2bac098ae8e4850cf2f185f6ff52a5979641f/num2words/lang_ID.py#L146-L169
[ "def", "join", "(", "self", ",", "word_blocks", ",", "float_part", ")", ":", "word_list", "=", "[", "]", "length", "=", "len", "(", "word_blocks", ")", "-", "1", "first_block", "=", "word_blocks", "[", "0", "]", ",", "start", "=", "0", "if", "length", "==", "1", "and", "first_block", "[", "0", "]", "[", "0", "]", "==", "'1'", ":", "word_list", "+=", "[", "'seribu'", "]", "start", "=", "1", "for", "i", "in", "range", "(", "start", ",", "length", "+", "1", ",", "1", ")", ":", "word_list", "+=", "word_blocks", "[", "i", "]", "[", "1", "]", "if", "not", "word_blocks", "[", "i", "]", "[", "1", "]", ":", "continue", "if", "i", "==", "length", ":", "break", "word_list", "+=", "[", "self", ".", "TENS_TO", "[", "(", "length", "-", "i", ")", "*", "3", "]", "]", "return", "' '", ".", "join", "(", "word_list", ")", "+", "float_part" ]
f4b2bac098ae8e4850cf2f185f6ff52a5979641f
test
Num2Word_Base.to_currency
Args: val: Numeric value currency (str): Currency code cents (bool): Verbose cents separator (str): Cent separator adjective (bool): Prefix currency name with adjective Returns: str: Formatted string
num2words/base.py
def to_currency(self, val, currency='EUR', cents=True, separator=',', adjective=False): """ Args: val: Numeric value currency (str): Currency code cents (bool): Verbose cents separator (str): Cent separator adjective (bool): Prefix currency name with adjective Returns: str: Formatted string """ left, right, is_negative = parse_currency_parts(val) try: cr1, cr2 = self.CURRENCY_FORMS[currency] except KeyError: raise NotImplementedError( 'Currency code "%s" not implemented for "%s"' % (currency, self.__class__.__name__)) if adjective and currency in self.CURRENCY_ADJECTIVES: cr1 = prefix_currency(self.CURRENCY_ADJECTIVES[currency], cr1) minus_str = "%s " % self.negword if is_negative else "" cents_str = self._cents_verbose(right, currency) \ if cents else self._cents_terse(right, currency) return u'%s%s %s%s %s %s' % ( minus_str, self.to_cardinal(left), self.pluralize(left, cr1), separator, cents_str, self.pluralize(right, cr2) )
def to_currency(self, val, currency='EUR', cents=True, separator=',', adjective=False): """ Args: val: Numeric value currency (str): Currency code cents (bool): Verbose cents separator (str): Cent separator adjective (bool): Prefix currency name with adjective Returns: str: Formatted string """ left, right, is_negative = parse_currency_parts(val) try: cr1, cr2 = self.CURRENCY_FORMS[currency] except KeyError: raise NotImplementedError( 'Currency code "%s" not implemented for "%s"' % (currency, self.__class__.__name__)) if adjective and currency in self.CURRENCY_ADJECTIVES: cr1 = prefix_currency(self.CURRENCY_ADJECTIVES[currency], cr1) minus_str = "%s " % self.negword if is_negative else "" cents_str = self._cents_verbose(right, currency) \ if cents else self._cents_terse(right, currency) return u'%s%s %s%s %s %s' % ( minus_str, self.to_cardinal(left), self.pluralize(left, cr1), separator, cents_str, self.pluralize(right, cr2) )
[ "Args", ":", "val", ":", "Numeric", "value", "currency", "(", "str", ")", ":", "Currency", "code", "cents", "(", "bool", ")", ":", "Verbose", "cents", "separator", "(", "str", ")", ":", "Cent", "separator", "adjective", "(", "bool", ")", ":", "Prefix", "currency", "name", "with", "adjective", "Returns", ":", "str", ":", "Formatted", "string" ]
savoirfairelinux/num2words
python
https://github.com/savoirfairelinux/num2words/blob/f4b2bac098ae8e4850cf2f185f6ff52a5979641f/num2words/base.py#L266-L303
[ "def", "to_currency", "(", "self", ",", "val", ",", "currency", "=", "'EUR'", ",", "cents", "=", "True", ",", "separator", "=", "','", ",", "adjective", "=", "False", ")", ":", "left", ",", "right", ",", "is_negative", "=", "parse_currency_parts", "(", "val", ")", "try", ":", "cr1", ",", "cr2", "=", "self", ".", "CURRENCY_FORMS", "[", "currency", "]", "except", "KeyError", ":", "raise", "NotImplementedError", "(", "'Currency code \"%s\" not implemented for \"%s\"'", "%", "(", "currency", ",", "self", ".", "__class__", ".", "__name__", ")", ")", "if", "adjective", "and", "currency", "in", "self", ".", "CURRENCY_ADJECTIVES", ":", "cr1", "=", "prefix_currency", "(", "self", ".", "CURRENCY_ADJECTIVES", "[", "currency", "]", ",", "cr1", ")", "minus_str", "=", "\"%s \"", "%", "self", ".", "negword", "if", "is_negative", "else", "\"\"", "cents_str", "=", "self", ".", "_cents_verbose", "(", "right", ",", "currency", ")", "if", "cents", "else", "self", ".", "_cents_terse", "(", "right", ",", "currency", ")", "return", "u'%s%s %s%s %s %s'", "%", "(", "minus_str", ",", "self", ".", "to_cardinal", "(", "left", ")", ",", "self", ".", "pluralize", "(", "left", ",", "cr1", ")", ",", "separator", ",", "cents_str", ",", "self", ".", "pluralize", "(", "right", ",", "cr2", ")", ")" ]
f4b2bac098ae8e4850cf2f185f6ff52a5979641f
test
parse_scoped_selector
Parse scoped selector.
gin/config_parser.py
def parse_scoped_selector(scoped_selector): """Parse scoped selector.""" # Conver Macro (%scope/name) to (scope/name/macro.value) if scoped_selector[0] == '%': if scoped_selector.endswith('.value'): err_str = '{} is invalid cannot use % and end with .value' raise ValueError(err_str.format(scoped_selector)) scoped_selector = scoped_selector[1:] + '/macro.value' scope_selector_list = scoped_selector.rsplit('/', 1) scope = ''.join(scope_selector_list[:-1]) selector = scope_selector_list[-1] return scope, selector
def parse_scoped_selector(scoped_selector): """Parse scoped selector.""" # Conver Macro (%scope/name) to (scope/name/macro.value) if scoped_selector[0] == '%': if scoped_selector.endswith('.value'): err_str = '{} is invalid cannot use % and end with .value' raise ValueError(err_str.format(scoped_selector)) scoped_selector = scoped_selector[1:] + '/macro.value' scope_selector_list = scoped_selector.rsplit('/', 1) scope = ''.join(scope_selector_list[:-1]) selector = scope_selector_list[-1] return scope, selector
[ "Parse", "scoped", "selector", "." ]
google/gin-config
python
https://github.com/google/gin-config/blob/17a170e0a6711005d1c78e67cf493dc44674d44f/gin/config_parser.py#L455-L466
[ "def", "parse_scoped_selector", "(", "scoped_selector", ")", ":", "# Conver Macro (%scope/name) to (scope/name/macro.value)", "if", "scoped_selector", "[", "0", "]", "==", "'%'", ":", "if", "scoped_selector", ".", "endswith", "(", "'.value'", ")", ":", "err_str", "=", "'{} is invalid cannot use % and end with .value'", "raise", "ValueError", "(", "err_str", ".", "format", "(", "scoped_selector", ")", ")", "scoped_selector", "=", "scoped_selector", "[", "1", ":", "]", "+", "'/macro.value'", "scope_selector_list", "=", "scoped_selector", ".", "rsplit", "(", "'/'", ",", "1", ")", "scope", "=", "''", ".", "join", "(", "scope_selector_list", "[", ":", "-", "1", "]", ")", "selector", "=", "scope_selector_list", "[", "-", "1", "]", "return", "scope", ",", "selector" ]
17a170e0a6711005d1c78e67cf493dc44674d44f
test
ConfigParser.parse_statement
Parse a single statement. Returns: Either a `BindingStatement`, `ImportStatement`, `IncludeStatement`, or `None` if no more statements can be parsed (EOF reached).
gin/config_parser.py
def parse_statement(self): """Parse a single statement. Returns: Either a `BindingStatement`, `ImportStatement`, `IncludeStatement`, or `None` if no more statements can be parsed (EOF reached). """ self._skip_whitespace_and_comments() if self._current_token.kind == tokenize.ENDMARKER: return None # Save off location, but ignore char_num for any statement-level errors. stmt_loc = self._current_location(ignore_char_num=True) binding_key_or_keyword = self._parse_selector() statement = None if self._current_token.value != '=': if binding_key_or_keyword == 'import': module = self._parse_selector(scoped=False) statement = ImportStatement(module, stmt_loc) elif binding_key_or_keyword == 'include': str_loc = self._current_location() success, filename = self._maybe_parse_basic_type() if not success or not isinstance(filename, str): self._raise_syntax_error('Expected file path as string.', str_loc) statement = IncludeStatement(filename, stmt_loc) else: self._raise_syntax_error("Expected '='.") else: # We saw an '='. self._advance_one_token() value = self.parse_value() scope, selector, arg_name = parse_binding_key(binding_key_or_keyword) statement = BindingStatement(scope, selector, arg_name, value, stmt_loc) assert statement, 'Internal parsing error.' if (self._current_token.kind != tokenize.NEWLINE and self._current_token.kind != tokenize.ENDMARKER): self._raise_syntax_error('Expected newline.') elif self._current_token.kind == tokenize.NEWLINE: self._advance_one_token() return statement
def parse_statement(self): """Parse a single statement. Returns: Either a `BindingStatement`, `ImportStatement`, `IncludeStatement`, or `None` if no more statements can be parsed (EOF reached). """ self._skip_whitespace_and_comments() if self._current_token.kind == tokenize.ENDMARKER: return None # Save off location, but ignore char_num for any statement-level errors. stmt_loc = self._current_location(ignore_char_num=True) binding_key_or_keyword = self._parse_selector() statement = None if self._current_token.value != '=': if binding_key_or_keyword == 'import': module = self._parse_selector(scoped=False) statement = ImportStatement(module, stmt_loc) elif binding_key_or_keyword == 'include': str_loc = self._current_location() success, filename = self._maybe_parse_basic_type() if not success or not isinstance(filename, str): self._raise_syntax_error('Expected file path as string.', str_loc) statement = IncludeStatement(filename, stmt_loc) else: self._raise_syntax_error("Expected '='.") else: # We saw an '='. self._advance_one_token() value = self.parse_value() scope, selector, arg_name = parse_binding_key(binding_key_or_keyword) statement = BindingStatement(scope, selector, arg_name, value, stmt_loc) assert statement, 'Internal parsing error.' if (self._current_token.kind != tokenize.NEWLINE and self._current_token.kind != tokenize.ENDMARKER): self._raise_syntax_error('Expected newline.') elif self._current_token.kind == tokenize.NEWLINE: self._advance_one_token() return statement
[ "Parse", "a", "single", "statement", "." ]
google/gin-config
python
https://github.com/google/gin-config/blob/17a170e0a6711005d1c78e67cf493dc44674d44f/gin/config_parser.py#L193-L234
[ "def", "parse_statement", "(", "self", ")", ":", "self", ".", "_skip_whitespace_and_comments", "(", ")", "if", "self", ".", "_current_token", ".", "kind", "==", "tokenize", ".", "ENDMARKER", ":", "return", "None", "# Save off location, but ignore char_num for any statement-level errors.", "stmt_loc", "=", "self", ".", "_current_location", "(", "ignore_char_num", "=", "True", ")", "binding_key_or_keyword", "=", "self", ".", "_parse_selector", "(", ")", "statement", "=", "None", "if", "self", ".", "_current_token", ".", "value", "!=", "'='", ":", "if", "binding_key_or_keyword", "==", "'import'", ":", "module", "=", "self", ".", "_parse_selector", "(", "scoped", "=", "False", ")", "statement", "=", "ImportStatement", "(", "module", ",", "stmt_loc", ")", "elif", "binding_key_or_keyword", "==", "'include'", ":", "str_loc", "=", "self", ".", "_current_location", "(", ")", "success", ",", "filename", "=", "self", ".", "_maybe_parse_basic_type", "(", ")", "if", "not", "success", "or", "not", "isinstance", "(", "filename", ",", "str", ")", ":", "self", ".", "_raise_syntax_error", "(", "'Expected file path as string.'", ",", "str_loc", ")", "statement", "=", "IncludeStatement", "(", "filename", ",", "stmt_loc", ")", "else", ":", "self", ".", "_raise_syntax_error", "(", "\"Expected '='.\"", ")", "else", ":", "# We saw an '='.", "self", ".", "_advance_one_token", "(", ")", "value", "=", "self", ".", "parse_value", "(", ")", "scope", ",", "selector", ",", "arg_name", "=", "parse_binding_key", "(", "binding_key_or_keyword", ")", "statement", "=", "BindingStatement", "(", "scope", ",", "selector", ",", "arg_name", ",", "value", ",", "stmt_loc", ")", "assert", "statement", ",", "'Internal parsing error.'", "if", "(", "self", ".", "_current_token", ".", "kind", "!=", "tokenize", ".", "NEWLINE", "and", "self", ".", "_current_token", ".", "kind", "!=", "tokenize", ".", "ENDMARKER", ")", ":", "self", ".", "_raise_syntax_error", "(", "'Expected newline.'", ")", "elif", "self", ".", "_current_token", ".", "kind", "==", "tokenize", ".", "NEWLINE", ":", "self", ".", "_advance_one_token", "(", ")", "return", "statement" ]
17a170e0a6711005d1c78e67cf493dc44674d44f
test
ConfigParser.parse_value
Parse a single literal value. Returns: The parsed value.
gin/config_parser.py
def parse_value(self): """Parse a single literal value. Returns: The parsed value. """ parsers = [ self._maybe_parse_container, self._maybe_parse_basic_type, self._maybe_parse_configurable_reference, self._maybe_parse_macro ] for parser in parsers: success, value = parser() if success: return value self._raise_syntax_error('Unable to parse value.')
def parse_value(self): """Parse a single literal value. Returns: The parsed value. """ parsers = [ self._maybe_parse_container, self._maybe_parse_basic_type, self._maybe_parse_configurable_reference, self._maybe_parse_macro ] for parser in parsers: success, value = parser() if success: return value self._raise_syntax_error('Unable to parse value.')
[ "Parse", "a", "single", "literal", "value", "." ]
google/gin-config
python
https://github.com/google/gin-config/blob/17a170e0a6711005d1c78e67cf493dc44674d44f/gin/config_parser.py#L236-L250
[ "def", "parse_value", "(", "self", ")", ":", "parsers", "=", "[", "self", ".", "_maybe_parse_container", ",", "self", ".", "_maybe_parse_basic_type", ",", "self", ".", "_maybe_parse_configurable_reference", ",", "self", ".", "_maybe_parse_macro", "]", "for", "parser", "in", "parsers", ":", "success", ",", "value", "=", "parser", "(", ")", "if", "success", ":", "return", "value", "self", ".", "_raise_syntax_error", "(", "'Unable to parse value.'", ")" ]
17a170e0a6711005d1c78e67cf493dc44674d44f
test
ConfigParser.advance_one_line
Advances to next line.
gin/config_parser.py
def advance_one_line(self): """Advances to next line.""" current_line = self._current_token.line_number while current_line == self._current_token.line_number: self._current_token = ConfigParser.Token(*next(self._token_generator))
def advance_one_line(self): """Advances to next line.""" current_line = self._current_token.line_number while current_line == self._current_token.line_number: self._current_token = ConfigParser.Token(*next(self._token_generator))
[ "Advances", "to", "next", "line", "." ]
google/gin-config
python
https://github.com/google/gin-config/blob/17a170e0a6711005d1c78e67cf493dc44674d44f/gin/config_parser.py#L260-L265
[ "def", "advance_one_line", "(", "self", ")", ":", "current_line", "=", "self", ".", "_current_token", ".", "line_number", "while", "current_line", "==", "self", ".", "_current_token", ".", "line_number", ":", "self", ".", "_current_token", "=", "ConfigParser", ".", "Token", "(", "*", "next", "(", "self", ".", "_token_generator", ")", ")" ]
17a170e0a6711005d1c78e67cf493dc44674d44f
test
ConfigParser._parse_selector
Parse a (possibly scoped) selector. A selector is a sequence of one or more valid Python-style identifiers separated by periods (see also `SelectorMap`). A scoped selector is a selector that may be preceded by scope names (separated by slashes). Args: scoped: Whether scopes are allowed. allow_periods_in_scope: Whether to allow period characters in the scope names preceding the selector. Returns: The parsed selector (as a string). Raises: SyntaxError: If the scope or selector is malformatted.
gin/config_parser.py
def _parse_selector(self, scoped=True, allow_periods_in_scope=False): """Parse a (possibly scoped) selector. A selector is a sequence of one or more valid Python-style identifiers separated by periods (see also `SelectorMap`). A scoped selector is a selector that may be preceded by scope names (separated by slashes). Args: scoped: Whether scopes are allowed. allow_periods_in_scope: Whether to allow period characters in the scope names preceding the selector. Returns: The parsed selector (as a string). Raises: SyntaxError: If the scope or selector is malformatted. """ if self._current_token.kind != tokenize.NAME: self._raise_syntax_error('Unexpected token.') begin_line_num = self._current_token.begin[0] begin_char_num = self._current_token.begin[1] end_char_num = self._current_token.end[1] line = self._current_token.line selector_parts = [] # This accepts an alternating sequence of NAME and '/' or '.' tokens. step_parity = 0 while (step_parity == 0 and self._current_token.kind == tokenize.NAME or step_parity == 1 and self._current_token.value in ('/', '.')): selector_parts.append(self._current_token.value) step_parity = not step_parity end_char_num = self._current_token.end[1] self._advance_one_token() self._skip_whitespace_and_comments() # Due to tokenization, most whitespace has been stripped already. To prevent # whitespace inside the scoped selector, we verify that it matches an # untokenized version of the selector obtained from the first through last # character positions of the consumed tokens in the line being parsed. scoped_selector = ''.join(selector_parts) untokenized_scoped_selector = line[begin_char_num:end_char_num] # Also check that it's properly formatted (e.g., no consecutive slashes). scope_re = IDENTIFIER_RE if allow_periods_in_scope: scope_re = MODULE_RE selector_re = MODULE_RE scope_parts = scoped_selector.split('/') valid_format = all(scope_re.match(scope) for scope in scope_parts[:-1]) valid_format &= bool(selector_re.match(scope_parts[-1])) valid_format &= bool(scoped or len(scope_parts) == 1) if untokenized_scoped_selector != scoped_selector or not valid_format: location = (self._filename, begin_line_num, begin_char_num + 1, line) self._raise_syntax_error('Malformatted scope or selector.', location) return scoped_selector
def _parse_selector(self, scoped=True, allow_periods_in_scope=False): """Parse a (possibly scoped) selector. A selector is a sequence of one or more valid Python-style identifiers separated by periods (see also `SelectorMap`). A scoped selector is a selector that may be preceded by scope names (separated by slashes). Args: scoped: Whether scopes are allowed. allow_periods_in_scope: Whether to allow period characters in the scope names preceding the selector. Returns: The parsed selector (as a string). Raises: SyntaxError: If the scope or selector is malformatted. """ if self._current_token.kind != tokenize.NAME: self._raise_syntax_error('Unexpected token.') begin_line_num = self._current_token.begin[0] begin_char_num = self._current_token.begin[1] end_char_num = self._current_token.end[1] line = self._current_token.line selector_parts = [] # This accepts an alternating sequence of NAME and '/' or '.' tokens. step_parity = 0 while (step_parity == 0 and self._current_token.kind == tokenize.NAME or step_parity == 1 and self._current_token.value in ('/', '.')): selector_parts.append(self._current_token.value) step_parity = not step_parity end_char_num = self._current_token.end[1] self._advance_one_token() self._skip_whitespace_and_comments() # Due to tokenization, most whitespace has been stripped already. To prevent # whitespace inside the scoped selector, we verify that it matches an # untokenized version of the selector obtained from the first through last # character positions of the consumed tokens in the line being parsed. scoped_selector = ''.join(selector_parts) untokenized_scoped_selector = line[begin_char_num:end_char_num] # Also check that it's properly formatted (e.g., no consecutive slashes). scope_re = IDENTIFIER_RE if allow_periods_in_scope: scope_re = MODULE_RE selector_re = MODULE_RE scope_parts = scoped_selector.split('/') valid_format = all(scope_re.match(scope) for scope in scope_parts[:-1]) valid_format &= bool(selector_re.match(scope_parts[-1])) valid_format &= bool(scoped or len(scope_parts) == 1) if untokenized_scoped_selector != scoped_selector or not valid_format: location = (self._filename, begin_line_num, begin_char_num + 1, line) self._raise_syntax_error('Malformatted scope or selector.', location) return scoped_selector
[ "Parse", "a", "(", "possibly", "scoped", ")", "selector", "." ]
google/gin-config
python
https://github.com/google/gin-config/blob/17a170e0a6711005d1c78e67cf493dc44674d44f/gin/config_parser.py#L297-L354
[ "def", "_parse_selector", "(", "self", ",", "scoped", "=", "True", ",", "allow_periods_in_scope", "=", "False", ")", ":", "if", "self", ".", "_current_token", ".", "kind", "!=", "tokenize", ".", "NAME", ":", "self", ".", "_raise_syntax_error", "(", "'Unexpected token.'", ")", "begin_line_num", "=", "self", ".", "_current_token", ".", "begin", "[", "0", "]", "begin_char_num", "=", "self", ".", "_current_token", ".", "begin", "[", "1", "]", "end_char_num", "=", "self", ".", "_current_token", ".", "end", "[", "1", "]", "line", "=", "self", ".", "_current_token", ".", "line", "selector_parts", "=", "[", "]", "# This accepts an alternating sequence of NAME and '/' or '.' tokens.", "step_parity", "=", "0", "while", "(", "step_parity", "==", "0", "and", "self", ".", "_current_token", ".", "kind", "==", "tokenize", ".", "NAME", "or", "step_parity", "==", "1", "and", "self", ".", "_current_token", ".", "value", "in", "(", "'/'", ",", "'.'", ")", ")", ":", "selector_parts", ".", "append", "(", "self", ".", "_current_token", ".", "value", ")", "step_parity", "=", "not", "step_parity", "end_char_num", "=", "self", ".", "_current_token", ".", "end", "[", "1", "]", "self", ".", "_advance_one_token", "(", ")", "self", ".", "_skip_whitespace_and_comments", "(", ")", "# Due to tokenization, most whitespace has been stripped already. To prevent", "# whitespace inside the scoped selector, we verify that it matches an", "# untokenized version of the selector obtained from the first through last", "# character positions of the consumed tokens in the line being parsed.", "scoped_selector", "=", "''", ".", "join", "(", "selector_parts", ")", "untokenized_scoped_selector", "=", "line", "[", "begin_char_num", ":", "end_char_num", "]", "# Also check that it's properly formatted (e.g., no consecutive slashes).", "scope_re", "=", "IDENTIFIER_RE", "if", "allow_periods_in_scope", ":", "scope_re", "=", "MODULE_RE", "selector_re", "=", "MODULE_RE", "scope_parts", "=", "scoped_selector", ".", "split", "(", "'/'", ")", "valid_format", "=", "all", "(", "scope_re", ".", "match", "(", "scope", ")", "for", "scope", "in", "scope_parts", "[", ":", "-", "1", "]", ")", "valid_format", "&=", "bool", "(", "selector_re", ".", "match", "(", "scope_parts", "[", "-", "1", "]", ")", ")", "valid_format", "&=", "bool", "(", "scoped", "or", "len", "(", "scope_parts", ")", "==", "1", ")", "if", "untokenized_scoped_selector", "!=", "scoped_selector", "or", "not", "valid_format", ":", "location", "=", "(", "self", ".", "_filename", ",", "begin_line_num", ",", "begin_char_num", "+", "1", ",", "line", ")", "self", ".", "_raise_syntax_error", "(", "'Malformatted scope or selector.'", ",", "location", ")", "return", "scoped_selector" ]
17a170e0a6711005d1c78e67cf493dc44674d44f
test
ConfigParser._maybe_parse_container
Try to parse a container type (dict, list, or tuple).
gin/config_parser.py
def _maybe_parse_container(self): """Try to parse a container type (dict, list, or tuple).""" bracket_types = { '{': ('}', dict, self._parse_dict_item), '(': (')', tuple, self.parse_value), '[': (']', list, self.parse_value) } if self._current_token.value in bracket_types: open_bracket = self._current_token.value close_bracket, type_fn, parse_item = bracket_types[open_bracket] self._advance() values = [] saw_comma = False while self._current_token.value != close_bracket: values.append(parse_item()) if self._current_token.value == ',': saw_comma = True self._advance() elif self._current_token.value != close_bracket: self._raise_syntax_error("Expected ',' or '%s'." % close_bracket) # If it's just a single value enclosed in parentheses without a trailing # comma, it's not a tuple, so just grab the value. if type_fn is tuple and len(values) == 1 and not saw_comma: type_fn = lambda x: x[0] self._advance() return True, type_fn(values) return False, None
def _maybe_parse_container(self): """Try to parse a container type (dict, list, or tuple).""" bracket_types = { '{': ('}', dict, self._parse_dict_item), '(': (')', tuple, self.parse_value), '[': (']', list, self.parse_value) } if self._current_token.value in bracket_types: open_bracket = self._current_token.value close_bracket, type_fn, parse_item = bracket_types[open_bracket] self._advance() values = [] saw_comma = False while self._current_token.value != close_bracket: values.append(parse_item()) if self._current_token.value == ',': saw_comma = True self._advance() elif self._current_token.value != close_bracket: self._raise_syntax_error("Expected ',' or '%s'." % close_bracket) # If it's just a single value enclosed in parentheses without a trailing # comma, it's not a tuple, so just grab the value. if type_fn is tuple and len(values) == 1 and not saw_comma: type_fn = lambda x: x[0] self._advance() return True, type_fn(values) return False, None
[ "Try", "to", "parse", "a", "container", "type", "(", "dict", "list", "or", "tuple", ")", "." ]
google/gin-config
python
https://github.com/google/gin-config/blob/17a170e0a6711005d1c78e67cf493dc44674d44f/gin/config_parser.py#L356-L386
[ "def", "_maybe_parse_container", "(", "self", ")", ":", "bracket_types", "=", "{", "'{'", ":", "(", "'}'", ",", "dict", ",", "self", ".", "_parse_dict_item", ")", ",", "'('", ":", "(", "')'", ",", "tuple", ",", "self", ".", "parse_value", ")", ",", "'['", ":", "(", "']'", ",", "list", ",", "self", ".", "parse_value", ")", "}", "if", "self", ".", "_current_token", ".", "value", "in", "bracket_types", ":", "open_bracket", "=", "self", ".", "_current_token", ".", "value", "close_bracket", ",", "type_fn", ",", "parse_item", "=", "bracket_types", "[", "open_bracket", "]", "self", ".", "_advance", "(", ")", "values", "=", "[", "]", "saw_comma", "=", "False", "while", "self", ".", "_current_token", ".", "value", "!=", "close_bracket", ":", "values", ".", "append", "(", "parse_item", "(", ")", ")", "if", "self", ".", "_current_token", ".", "value", "==", "','", ":", "saw_comma", "=", "True", "self", ".", "_advance", "(", ")", "elif", "self", ".", "_current_token", ".", "value", "!=", "close_bracket", ":", "self", ".", "_raise_syntax_error", "(", "\"Expected ',' or '%s'.\"", "%", "close_bracket", ")", "# If it's just a single value enclosed in parentheses without a trailing", "# comma, it's not a tuple, so just grab the value.", "if", "type_fn", "is", "tuple", "and", "len", "(", "values", ")", "==", "1", "and", "not", "saw_comma", ":", "type_fn", "=", "lambda", "x", ":", "x", "[", "0", "]", "self", ".", "_advance", "(", ")", "return", "True", ",", "type_fn", "(", "values", ")", "return", "False", ",", "None" ]
17a170e0a6711005d1c78e67cf493dc44674d44f
test
ConfigParser._maybe_parse_basic_type
Try to parse a basic type (str, bool, number).
gin/config_parser.py
def _maybe_parse_basic_type(self): """Try to parse a basic type (str, bool, number).""" token_value = '' # Allow a leading dash to handle negative numbers. if self._current_token.value == '-': token_value += self._current_token.value self._advance() basic_type_tokens = [tokenize.NAME, tokenize.NUMBER, tokenize.STRING] continue_parsing = self._current_token.kind in basic_type_tokens if not continue_parsing: return False, None while continue_parsing: token_value += self._current_token.value try: value = ast.literal_eval(token_value) except Exception as e: # pylint: disable=broad-except err_str = "{}\n Failed to parse token '{}'" self._raise_syntax_error(err_str.format(e, token_value)) was_string = self._current_token.kind == tokenize.STRING self._advance() is_string = self._current_token.kind == tokenize.STRING continue_parsing = was_string and is_string return True, value
def _maybe_parse_basic_type(self): """Try to parse a basic type (str, bool, number).""" token_value = '' # Allow a leading dash to handle negative numbers. if self._current_token.value == '-': token_value += self._current_token.value self._advance() basic_type_tokens = [tokenize.NAME, tokenize.NUMBER, tokenize.STRING] continue_parsing = self._current_token.kind in basic_type_tokens if not continue_parsing: return False, None while continue_parsing: token_value += self._current_token.value try: value = ast.literal_eval(token_value) except Exception as e: # pylint: disable=broad-except err_str = "{}\n Failed to parse token '{}'" self._raise_syntax_error(err_str.format(e, token_value)) was_string = self._current_token.kind == tokenize.STRING self._advance() is_string = self._current_token.kind == tokenize.STRING continue_parsing = was_string and is_string return True, value
[ "Try", "to", "parse", "a", "basic", "type", "(", "str", "bool", "number", ")", "." ]
google/gin-config
python
https://github.com/google/gin-config/blob/17a170e0a6711005d1c78e67cf493dc44674d44f/gin/config_parser.py#L388-L415
[ "def", "_maybe_parse_basic_type", "(", "self", ")", ":", "token_value", "=", "''", "# Allow a leading dash to handle negative numbers.", "if", "self", ".", "_current_token", ".", "value", "==", "'-'", ":", "token_value", "+=", "self", ".", "_current_token", ".", "value", "self", ".", "_advance", "(", ")", "basic_type_tokens", "=", "[", "tokenize", ".", "NAME", ",", "tokenize", ".", "NUMBER", ",", "tokenize", ".", "STRING", "]", "continue_parsing", "=", "self", ".", "_current_token", ".", "kind", "in", "basic_type_tokens", "if", "not", "continue_parsing", ":", "return", "False", ",", "None", "while", "continue_parsing", ":", "token_value", "+=", "self", ".", "_current_token", ".", "value", "try", ":", "value", "=", "ast", ".", "literal_eval", "(", "token_value", ")", "except", "Exception", "as", "e", ":", "# pylint: disable=broad-except", "err_str", "=", "\"{}\\n Failed to parse token '{}'\"", "self", ".", "_raise_syntax_error", "(", "err_str", ".", "format", "(", "e", ",", "token_value", ")", ")", "was_string", "=", "self", ".", "_current_token", ".", "kind", "==", "tokenize", ".", "STRING", "self", ".", "_advance", "(", ")", "is_string", "=", "self", ".", "_current_token", ".", "kind", "==", "tokenize", ".", "STRING", "continue_parsing", "=", "was_string", "and", "is_string", "return", "True", ",", "value" ]
17a170e0a6711005d1c78e67cf493dc44674d44f
test
ConfigParser._maybe_parse_configurable_reference
Try to parse a configurable reference (@[scope/name/]fn_name[()]).
gin/config_parser.py
def _maybe_parse_configurable_reference(self): """Try to parse a configurable reference (@[scope/name/]fn_name[()]).""" if self._current_token.value != '@': return False, None location = self._current_location() self._advance_one_token() scoped_name = self._parse_selector(allow_periods_in_scope=True) evaluate = False if self._current_token.value == '(': evaluate = True self._advance() if self._current_token.value != ')': self._raise_syntax_error("Expected ')'.") self._advance_one_token() self._skip_whitespace_and_comments() with utils.try_with_location(location): reference = self._delegate.configurable_reference(scoped_name, evaluate) return True, reference
def _maybe_parse_configurable_reference(self): """Try to parse a configurable reference (@[scope/name/]fn_name[()]).""" if self._current_token.value != '@': return False, None location = self._current_location() self._advance_one_token() scoped_name = self._parse_selector(allow_periods_in_scope=True) evaluate = False if self._current_token.value == '(': evaluate = True self._advance() if self._current_token.value != ')': self._raise_syntax_error("Expected ')'.") self._advance_one_token() self._skip_whitespace_and_comments() with utils.try_with_location(location): reference = self._delegate.configurable_reference(scoped_name, evaluate) return True, reference
[ "Try", "to", "parse", "a", "configurable", "reference", "(" ]
google/gin-config
python
https://github.com/google/gin-config/blob/17a170e0a6711005d1c78e67cf493dc44674d44f/gin/config_parser.py#L417-L438
[ "def", "_maybe_parse_configurable_reference", "(", "self", ")", ":", "if", "self", ".", "_current_token", ".", "value", "!=", "'@'", ":", "return", "False", ",", "None", "location", "=", "self", ".", "_current_location", "(", ")", "self", ".", "_advance_one_token", "(", ")", "scoped_name", "=", "self", ".", "_parse_selector", "(", "allow_periods_in_scope", "=", "True", ")", "evaluate", "=", "False", "if", "self", ".", "_current_token", ".", "value", "==", "'('", ":", "evaluate", "=", "True", "self", ".", "_advance", "(", ")", "if", "self", ".", "_current_token", ".", "value", "!=", "')'", ":", "self", ".", "_raise_syntax_error", "(", "\"Expected ')'.\"", ")", "self", ".", "_advance_one_token", "(", ")", "self", ".", "_skip_whitespace_and_comments", "(", ")", "with", "utils", ".", "try_with_location", "(", "location", ")", ":", "reference", "=", "self", ".", "_delegate", ".", "configurable_reference", "(", "scoped_name", ",", "evaluate", ")", "return", "True", ",", "reference" ]
17a170e0a6711005d1c78e67cf493dc44674d44f
test
ConfigParser._maybe_parse_macro
Try to parse an macro (%scope/name).
gin/config_parser.py
def _maybe_parse_macro(self): """Try to parse an macro (%scope/name).""" if self._current_token.value != '%': return False, None location = self._current_location() self._advance_one_token() scoped_name = self._parse_selector(allow_periods_in_scope=True) with utils.try_with_location(location): macro = self._delegate.macro(scoped_name) return True, macro
def _maybe_parse_macro(self): """Try to parse an macro (%scope/name).""" if self._current_token.value != '%': return False, None location = self._current_location() self._advance_one_token() scoped_name = self._parse_selector(allow_periods_in_scope=True) with utils.try_with_location(location): macro = self._delegate.macro(scoped_name) return True, macro
[ "Try", "to", "parse", "an", "macro", "(", "%scope", "/", "name", ")", "." ]
google/gin-config
python
https://github.com/google/gin-config/blob/17a170e0a6711005d1c78e67cf493dc44674d44f/gin/config_parser.py#L440-L452
[ "def", "_maybe_parse_macro", "(", "self", ")", ":", "if", "self", ".", "_current_token", ".", "value", "!=", "'%'", ":", "return", "False", ",", "None", "location", "=", "self", ".", "_current_location", "(", ")", "self", ".", "_advance_one_token", "(", ")", "scoped_name", "=", "self", ".", "_parse_selector", "(", "allow_periods_in_scope", "=", "True", ")", "with", "utils", ".", "try_with_location", "(", "location", ")", ":", "macro", "=", "self", ".", "_delegate", ".", "macro", "(", "scoped_name", ")", "return", "True", ",", "macro" ]
17a170e0a6711005d1c78e67cf493dc44674d44f
test
augment_exception_message_and_reraise
Reraises `exception`, appending `message` to its string representation.
gin/utils.py
def augment_exception_message_and_reraise(exception, message): """Reraises `exception`, appending `message` to its string representation.""" class ExceptionProxy(type(exception)): """Acts as a proxy for an exception with an augmented message.""" __module__ = type(exception).__module__ def __init__(self): pass def __getattr__(self, attr_name): return getattr(exception, attr_name) def __str__(self): return str(exception) + message ExceptionProxy.__name__ = type(exception).__name__ proxy = ExceptionProxy() if six.PY3: ExceptionProxy.__qualname__ = type(exception).__qualname__ six.raise_from(proxy.with_traceback(exception.__traceback__), None) else: six.reraise(proxy, None, sys.exc_info()[2])
def augment_exception_message_and_reraise(exception, message): """Reraises `exception`, appending `message` to its string representation.""" class ExceptionProxy(type(exception)): """Acts as a proxy for an exception with an augmented message.""" __module__ = type(exception).__module__ def __init__(self): pass def __getattr__(self, attr_name): return getattr(exception, attr_name) def __str__(self): return str(exception) + message ExceptionProxy.__name__ = type(exception).__name__ proxy = ExceptionProxy() if six.PY3: ExceptionProxy.__qualname__ = type(exception).__qualname__ six.raise_from(proxy.with_traceback(exception.__traceback__), None) else: six.reraise(proxy, None, sys.exc_info()[2])
[ "Reraises", "exception", "appending", "message", "to", "its", "string", "representation", "." ]
google/gin-config
python
https://github.com/google/gin-config/blob/17a170e0a6711005d1c78e67cf493dc44674d44f/gin/utils.py#L28-L51
[ "def", "augment_exception_message_and_reraise", "(", "exception", ",", "message", ")", ":", "class", "ExceptionProxy", "(", "type", "(", "exception", ")", ")", ":", "\"\"\"Acts as a proxy for an exception with an augmented message.\"\"\"", "__module__", "=", "type", "(", "exception", ")", ".", "__module__", "def", "__init__", "(", "self", ")", ":", "pass", "def", "__getattr__", "(", "self", ",", "attr_name", ")", ":", "return", "getattr", "(", "exception", ",", "attr_name", ")", "def", "__str__", "(", "self", ")", ":", "return", "str", "(", "exception", ")", "+", "message", "ExceptionProxy", ".", "__name__", "=", "type", "(", "exception", ")", ".", "__name__", "proxy", "=", "ExceptionProxy", "(", ")", "if", "six", ".", "PY3", ":", "ExceptionProxy", ".", "__qualname__", "=", "type", "(", "exception", ")", ".", "__qualname__", "six", ".", "raise_from", "(", "proxy", ".", "with_traceback", "(", "exception", ".", "__traceback__", ")", ",", "None", ")", "else", ":", "six", ".", "reraise", "(", "proxy", ",", "None", ",", "sys", ".", "exc_info", "(", ")", "[", "2", "]", ")" ]
17a170e0a6711005d1c78e67cf493dc44674d44f
test
GinConfigSaverHook._markdownify_operative_config_str
Convert an operative config string to markdown format.
gin/tf/utils.py
def _markdownify_operative_config_str(self, string): """Convert an operative config string to markdown format.""" # TODO: Total hack below. Implement more principled formatting. def process(line): """Convert a single line to markdown format.""" if not line.startswith('#'): return ' ' + line line = line[2:] if line.startswith('===='): return '' if line.startswith('None'): return ' # None.' if line.endswith(':'): return '#### ' + line return line output_lines = [] for line in string.splitlines(): procd_line = process(line) if procd_line is not None: output_lines.append(procd_line) return '\n'.join(output_lines)
def _markdownify_operative_config_str(self, string): """Convert an operative config string to markdown format.""" # TODO: Total hack below. Implement more principled formatting. def process(line): """Convert a single line to markdown format.""" if not line.startswith('#'): return ' ' + line line = line[2:] if line.startswith('===='): return '' if line.startswith('None'): return ' # None.' if line.endswith(':'): return '#### ' + line return line output_lines = [] for line in string.splitlines(): procd_line = process(line) if procd_line is not None: output_lines.append(procd_line) return '\n'.join(output_lines)
[ "Convert", "an", "operative", "config", "string", "to", "markdown", "format", "." ]
google/gin-config
python
https://github.com/google/gin-config/blob/17a170e0a6711005d1c78e67cf493dc44674d44f/gin/tf/utils.py#L82-L106
[ "def", "_markdownify_operative_config_str", "(", "self", ",", "string", ")", ":", "# TODO: Total hack below. Implement more principled formatting.", "def", "process", "(", "line", ")", ":", "\"\"\"Convert a single line to markdown format.\"\"\"", "if", "not", "line", ".", "startswith", "(", "'#'", ")", ":", "return", "' '", "+", "line", "line", "=", "line", "[", "2", ":", "]", "if", "line", ".", "startswith", "(", "'===='", ")", ":", "return", "''", "if", "line", ".", "startswith", "(", "'None'", ")", ":", "return", "' # None.'", "if", "line", ".", "endswith", "(", "':'", ")", ":", "return", "'#### '", "+", "line", "return", "line", "output_lines", "=", "[", "]", "for", "line", "in", "string", ".", "splitlines", "(", ")", ":", "procd_line", "=", "process", "(", "line", ")", "if", "procd_line", "is", "not", "None", ":", "output_lines", ".", "append", "(", "procd_line", ")", "return", "'\\n'", ".", "join", "(", "output_lines", ")" ]
17a170e0a6711005d1c78e67cf493dc44674d44f
test
GinConfigSaverHook.after_create_session
Writes out Gin's operative config, and maybe adds a summary of it.
gin/tf/utils.py
def after_create_session(self, session=None, coord=None): """Writes out Gin's operative config, and maybe adds a summary of it.""" config_str = config.operative_config_str() if not tf.gfile.IsDirectory(self._output_dir): tf.gfile.MakeDirs(self._output_dir) global_step_val = 0 if session is not None: global_step = tf.train.get_global_step() if global_step is not None: global_step_val = session.run(global_step) filename = '%s-%s.gin' % (self._base_name, global_step_val) config_path = os.path.join(self._output_dir, filename) with tf.gfile.GFile(config_path, 'w') as f: f.write(config_str) if self._summarize_config: md_config_str = self._markdownify_operative_config_str(config_str) summary_metadata = summary_pb2.SummaryMetadata() summary_metadata.plugin_data.plugin_name = 'text' summary_metadata.plugin_data.content = b'{}' text_tensor = tf.make_tensor_proto(md_config_str) summary = summary_pb2.Summary() summary.value.add( tag='gin/' + self._base_name, tensor=text_tensor, metadata=summary_metadata) if not self._summary_writer: # Creating the FileWriter also creates the events file, so it should be # done here (where it is most likely to only occur on chief workers), as # opposed to in the constructor. self._summary_writer = tf.summary.FileWriterCache.get(self._output_dir) self._summary_writer.add_summary(summary, global_step_val) self._summary_writer.flush()
def after_create_session(self, session=None, coord=None): """Writes out Gin's operative config, and maybe adds a summary of it.""" config_str = config.operative_config_str() if not tf.gfile.IsDirectory(self._output_dir): tf.gfile.MakeDirs(self._output_dir) global_step_val = 0 if session is not None: global_step = tf.train.get_global_step() if global_step is not None: global_step_val = session.run(global_step) filename = '%s-%s.gin' % (self._base_name, global_step_val) config_path = os.path.join(self._output_dir, filename) with tf.gfile.GFile(config_path, 'w') as f: f.write(config_str) if self._summarize_config: md_config_str = self._markdownify_operative_config_str(config_str) summary_metadata = summary_pb2.SummaryMetadata() summary_metadata.plugin_data.plugin_name = 'text' summary_metadata.plugin_data.content = b'{}' text_tensor = tf.make_tensor_proto(md_config_str) summary = summary_pb2.Summary() summary.value.add( tag='gin/' + self._base_name, tensor=text_tensor, metadata=summary_metadata) if not self._summary_writer: # Creating the FileWriter also creates the events file, so it should be # done here (where it is most likely to only occur on chief workers), as # opposed to in the constructor. self._summary_writer = tf.summary.FileWriterCache.get(self._output_dir) self._summary_writer.add_summary(summary, global_step_val) self._summary_writer.flush()
[ "Writes", "out", "Gin", "s", "operative", "config", "and", "maybe", "adds", "a", "summary", "of", "it", "." ]
google/gin-config
python
https://github.com/google/gin-config/blob/17a170e0a6711005d1c78e67cf493dc44674d44f/gin/tf/utils.py#L108-L140
[ "def", "after_create_session", "(", "self", ",", "session", "=", "None", ",", "coord", "=", "None", ")", ":", "config_str", "=", "config", ".", "operative_config_str", "(", ")", "if", "not", "tf", ".", "gfile", ".", "IsDirectory", "(", "self", ".", "_output_dir", ")", ":", "tf", ".", "gfile", ".", "MakeDirs", "(", "self", ".", "_output_dir", ")", "global_step_val", "=", "0", "if", "session", "is", "not", "None", ":", "global_step", "=", "tf", ".", "train", ".", "get_global_step", "(", ")", "if", "global_step", "is", "not", "None", ":", "global_step_val", "=", "session", ".", "run", "(", "global_step", ")", "filename", "=", "'%s-%s.gin'", "%", "(", "self", ".", "_base_name", ",", "global_step_val", ")", "config_path", "=", "os", ".", "path", ".", "join", "(", "self", ".", "_output_dir", ",", "filename", ")", "with", "tf", ".", "gfile", ".", "GFile", "(", "config_path", ",", "'w'", ")", "as", "f", ":", "f", ".", "write", "(", "config_str", ")", "if", "self", ".", "_summarize_config", ":", "md_config_str", "=", "self", ".", "_markdownify_operative_config_str", "(", "config_str", ")", "summary_metadata", "=", "summary_pb2", ".", "SummaryMetadata", "(", ")", "summary_metadata", ".", "plugin_data", ".", "plugin_name", "=", "'text'", "summary_metadata", ".", "plugin_data", ".", "content", "=", "b'{}'", "text_tensor", "=", "tf", ".", "make_tensor_proto", "(", "md_config_str", ")", "summary", "=", "summary_pb2", ".", "Summary", "(", ")", "summary", ".", "value", ".", "add", "(", "tag", "=", "'gin/'", "+", "self", ".", "_base_name", ",", "tensor", "=", "text_tensor", ",", "metadata", "=", "summary_metadata", ")", "if", "not", "self", ".", "_summary_writer", ":", "# Creating the FileWriter also creates the events file, so it should be", "# done here (where it is most likely to only occur on chief workers), as", "# opposed to in the constructor.", "self", ".", "_summary_writer", "=", "tf", ".", "summary", ".", "FileWriterCache", ".", "get", "(", "self", ".", "_output_dir", ")", "self", ".", "_summary_writer", ".", "add_summary", "(", "summary", ",", "global_step_val", ")", "self", ".", "_summary_writer", ".", "flush", "(", ")" ]
17a170e0a6711005d1c78e67cf493dc44674d44f
test
_find_class_construction_fn
Find the first __init__ or __new__ method in the given class's MRO.
gin/config.py
def _find_class_construction_fn(cls): """Find the first __init__ or __new__ method in the given class's MRO.""" for base in type.mro(cls): if '__init__' in base.__dict__: return base.__init__ if '__new__' in base.__dict__: return base.__new__
def _find_class_construction_fn(cls): """Find the first __init__ or __new__ method in the given class's MRO.""" for base in type.mro(cls): if '__init__' in base.__dict__: return base.__init__ if '__new__' in base.__dict__: return base.__new__
[ "Find", "the", "first", "__init__", "or", "__new__", "method", "in", "the", "given", "class", "s", "MRO", "." ]
google/gin-config
python
https://github.com/google/gin-config/blob/17a170e0a6711005d1c78e67cf493dc44674d44f/gin/config.py#L155-L161
[ "def", "_find_class_construction_fn", "(", "cls", ")", ":", "for", "base", "in", "type", ".", "mro", "(", "cls", ")", ":", "if", "'__init__'", "in", "base", ".", "__dict__", ":", "return", "base", ".", "__init__", "if", "'__new__'", "in", "base", ".", "__dict__", ":", "return", "base", ".", "__new__" ]
17a170e0a6711005d1c78e67cf493dc44674d44f
test
_ensure_wrappability
Make sure `fn` can be wrapped cleanly by functools.wraps.
gin/config.py
def _ensure_wrappability(fn): """Make sure `fn` can be wrapped cleanly by functools.wraps.""" # Handle "wrapped_descriptor" and "method-wrapper" types. if isinstance(fn, (type(object.__init__), type(object.__call__))): # pylint: disable=unnecessary-lambda wrappable_fn = lambda *args, **kwargs: fn(*args, **kwargs) wrappable_fn.__name__ = fn.__name__ wrappable_fn.__doc__ = fn.__doc__ wrappable_fn.__module__ = '' # These types have no __module__, sigh. wrappable_fn.__wrapped__ = fn return wrappable_fn # Otherwise we're good to go... return fn
def _ensure_wrappability(fn): """Make sure `fn` can be wrapped cleanly by functools.wraps.""" # Handle "wrapped_descriptor" and "method-wrapper" types. if isinstance(fn, (type(object.__init__), type(object.__call__))): # pylint: disable=unnecessary-lambda wrappable_fn = lambda *args, **kwargs: fn(*args, **kwargs) wrappable_fn.__name__ = fn.__name__ wrappable_fn.__doc__ = fn.__doc__ wrappable_fn.__module__ = '' # These types have no __module__, sigh. wrappable_fn.__wrapped__ = fn return wrappable_fn # Otherwise we're good to go... return fn
[ "Make", "sure", "fn", "can", "be", "wrapped", "cleanly", "by", "functools", ".", "wraps", "." ]
google/gin-config
python
https://github.com/google/gin-config/blob/17a170e0a6711005d1c78e67cf493dc44674d44f/gin/config.py#L164-L177
[ "def", "_ensure_wrappability", "(", "fn", ")", ":", "# Handle \"wrapped_descriptor\" and \"method-wrapper\" types.", "if", "isinstance", "(", "fn", ",", "(", "type", "(", "object", ".", "__init__", ")", ",", "type", "(", "object", ".", "__call__", ")", ")", ")", ":", "# pylint: disable=unnecessary-lambda", "wrappable_fn", "=", "lambda", "*", "args", ",", "*", "*", "kwargs", ":", "fn", "(", "*", "args", ",", "*", "*", "kwargs", ")", "wrappable_fn", ".", "__name__", "=", "fn", ".", "__name__", "wrappable_fn", ".", "__doc__", "=", "fn", ".", "__doc__", "wrappable_fn", ".", "__module__", "=", "''", "# These types have no __module__, sigh.", "wrappable_fn", ".", "__wrapped__", "=", "fn", "return", "wrappable_fn", "# Otherwise we're good to go...", "return", "fn" ]
17a170e0a6711005d1c78e67cf493dc44674d44f
test
_decorate_fn_or_cls
Decorate a function or class with the given decorator. When `fn_or_cls` is a function, applies `decorator` to the function and returns the (decorated) result. When `fn_or_cls` is a class and the `subclass` parameter is `False`, this will replace `fn_or_cls.__init__` with the result of applying `decorator` to it. When `fn_or_cls` is a class and `subclass` is `True`, this will subclass the class, but with `__init__` defined to be the result of applying `decorator` to `fn_or_cls.__init__`. The decorated class has metadata (docstring, name, and module information) copied over from `fn_or_cls`. The goal is to provide a decorated class the behaves as much like the original as possible, without modifying it (for example, inspection operations using `isinstance` or `issubclass` should behave the same way as on the original class). Args: decorator: The decorator to use. fn_or_cls: The function or class to decorate. subclass: Whether to decorate classes by subclassing. This argument is ignored if `fn_or_cls` is not a class. Returns: The decorated function or class.
gin/config.py
def _decorate_fn_or_cls(decorator, fn_or_cls, subclass=False): """Decorate a function or class with the given decorator. When `fn_or_cls` is a function, applies `decorator` to the function and returns the (decorated) result. When `fn_or_cls` is a class and the `subclass` parameter is `False`, this will replace `fn_or_cls.__init__` with the result of applying `decorator` to it. When `fn_or_cls` is a class and `subclass` is `True`, this will subclass the class, but with `__init__` defined to be the result of applying `decorator` to `fn_or_cls.__init__`. The decorated class has metadata (docstring, name, and module information) copied over from `fn_or_cls`. The goal is to provide a decorated class the behaves as much like the original as possible, without modifying it (for example, inspection operations using `isinstance` or `issubclass` should behave the same way as on the original class). Args: decorator: The decorator to use. fn_or_cls: The function or class to decorate. subclass: Whether to decorate classes by subclassing. This argument is ignored if `fn_or_cls` is not a class. Returns: The decorated function or class. """ if not inspect.isclass(fn_or_cls): return decorator(_ensure_wrappability(fn_or_cls)) construction_fn = _find_class_construction_fn(fn_or_cls) if subclass: class DecoratedClass(fn_or_cls): __doc__ = fn_or_cls.__doc__ __module__ = fn_or_cls.__module__ DecoratedClass.__name__ = fn_or_cls.__name__ if six.PY3: DecoratedClass.__qualname__ = fn_or_cls.__qualname__ cls = DecoratedClass else: cls = fn_or_cls decorated_fn = decorator(_ensure_wrappability(construction_fn)) if construction_fn.__name__ == '__new__': decorated_fn = staticmethod(decorated_fn) setattr(cls, construction_fn.__name__, decorated_fn) return cls
def _decorate_fn_or_cls(decorator, fn_or_cls, subclass=False): """Decorate a function or class with the given decorator. When `fn_or_cls` is a function, applies `decorator` to the function and returns the (decorated) result. When `fn_or_cls` is a class and the `subclass` parameter is `False`, this will replace `fn_or_cls.__init__` with the result of applying `decorator` to it. When `fn_or_cls` is a class and `subclass` is `True`, this will subclass the class, but with `__init__` defined to be the result of applying `decorator` to `fn_or_cls.__init__`. The decorated class has metadata (docstring, name, and module information) copied over from `fn_or_cls`. The goal is to provide a decorated class the behaves as much like the original as possible, without modifying it (for example, inspection operations using `isinstance` or `issubclass` should behave the same way as on the original class). Args: decorator: The decorator to use. fn_or_cls: The function or class to decorate. subclass: Whether to decorate classes by subclassing. This argument is ignored if `fn_or_cls` is not a class. Returns: The decorated function or class. """ if not inspect.isclass(fn_or_cls): return decorator(_ensure_wrappability(fn_or_cls)) construction_fn = _find_class_construction_fn(fn_or_cls) if subclass: class DecoratedClass(fn_or_cls): __doc__ = fn_or_cls.__doc__ __module__ = fn_or_cls.__module__ DecoratedClass.__name__ = fn_or_cls.__name__ if six.PY3: DecoratedClass.__qualname__ = fn_or_cls.__qualname__ cls = DecoratedClass else: cls = fn_or_cls decorated_fn = decorator(_ensure_wrappability(construction_fn)) if construction_fn.__name__ == '__new__': decorated_fn = staticmethod(decorated_fn) setattr(cls, construction_fn.__name__, decorated_fn) return cls
[ "Decorate", "a", "function", "or", "class", "with", "the", "given", "decorator", "." ]
google/gin-config
python
https://github.com/google/gin-config/blob/17a170e0a6711005d1c78e67cf493dc44674d44f/gin/config.py#L180-L226
[ "def", "_decorate_fn_or_cls", "(", "decorator", ",", "fn_or_cls", ",", "subclass", "=", "False", ")", ":", "if", "not", "inspect", ".", "isclass", "(", "fn_or_cls", ")", ":", "return", "decorator", "(", "_ensure_wrappability", "(", "fn_or_cls", ")", ")", "construction_fn", "=", "_find_class_construction_fn", "(", "fn_or_cls", ")", "if", "subclass", ":", "class", "DecoratedClass", "(", "fn_or_cls", ")", ":", "__doc__", "=", "fn_or_cls", ".", "__doc__", "__module__", "=", "fn_or_cls", ".", "__module__", "DecoratedClass", ".", "__name__", "=", "fn_or_cls", ".", "__name__", "if", "six", ".", "PY3", ":", "DecoratedClass", ".", "__qualname__", "=", "fn_or_cls", ".", "__qualname__", "cls", "=", "DecoratedClass", "else", ":", "cls", "=", "fn_or_cls", "decorated_fn", "=", "decorator", "(", "_ensure_wrappability", "(", "construction_fn", ")", ")", "if", "construction_fn", ".", "__name__", "==", "'__new__'", ":", "decorated_fn", "=", "staticmethod", "(", "decorated_fn", ")", "setattr", "(", "cls", ",", "construction_fn", ".", "__name__", ",", "decorated_fn", ")", "return", "cls" ]
17a170e0a6711005d1c78e67cf493dc44674d44f
test
_should_skip
Checks whether `selector` should be skipped (if unknown).
gin/config.py
def _should_skip(selector, skip_unknown): """Checks whether `selector` should be skipped (if unknown).""" _validate_skip_unknown(skip_unknown) if _REGISTRY.matching_selectors(selector): return False # Never skip known configurables. if isinstance(skip_unknown, (list, tuple, set)): return selector in skip_unknown return skip_unknown
def _should_skip(selector, skip_unknown): """Checks whether `selector` should be skipped (if unknown).""" _validate_skip_unknown(skip_unknown) if _REGISTRY.matching_selectors(selector): return False # Never skip known configurables. if isinstance(skip_unknown, (list, tuple, set)): return selector in skip_unknown return skip_unknown
[ "Checks", "whether", "selector", "should", "be", "skipped", "(", "if", "unknown", ")", "." ]
google/gin-config
python
https://github.com/google/gin-config/blob/17a170e0a6711005d1c78e67cf493dc44674d44f/gin/config.py#L382-L389
[ "def", "_should_skip", "(", "selector", ",", "skip_unknown", ")", ":", "_validate_skip_unknown", "(", "skip_unknown", ")", "if", "_REGISTRY", ".", "matching_selectors", "(", "selector", ")", ":", "return", "False", "# Never skip known configurables.", "if", "isinstance", "(", "skip_unknown", ",", "(", "list", ",", "tuple", ",", "set", ")", ")", ":", "return", "selector", "in", "skip_unknown", "return", "skip_unknown" ]
17a170e0a6711005d1c78e67cf493dc44674d44f
test
_format_value
Returns `value` in a format parseable by `parse_value`, or `None`. Simply put, This function ensures that when it returns a string value, the following will hold: parse_value(_format_value(value)) == value Args: value: The value to format. Returns: A string representation of `value` when `value` is literally representable, or `None`.
gin/config.py
def _format_value(value): """Returns `value` in a format parseable by `parse_value`, or `None`. Simply put, This function ensures that when it returns a string value, the following will hold: parse_value(_format_value(value)) == value Args: value: The value to format. Returns: A string representation of `value` when `value` is literally representable, or `None`. """ literal = repr(value) try: if parse_value(literal) == value: return literal except SyntaxError: pass return None
def _format_value(value): """Returns `value` in a format parseable by `parse_value`, or `None`. Simply put, This function ensures that when it returns a string value, the following will hold: parse_value(_format_value(value)) == value Args: value: The value to format. Returns: A string representation of `value` when `value` is literally representable, or `None`. """ literal = repr(value) try: if parse_value(literal) == value: return literal except SyntaxError: pass return None
[ "Returns", "value", "in", "a", "format", "parseable", "by", "parse_value", "or", "None", "." ]
google/gin-config
python
https://github.com/google/gin-config/blob/17a170e0a6711005d1c78e67cf493dc44674d44f/gin/config.py#L503-L524
[ "def", "_format_value", "(", "value", ")", ":", "literal", "=", "repr", "(", "value", ")", "try", ":", "if", "parse_value", "(", "literal", ")", "==", "value", ":", "return", "literal", "except", "SyntaxError", ":", "pass", "return", "None" ]
17a170e0a6711005d1c78e67cf493dc44674d44f
test
clear_config
Clears the global configuration. This clears any parameter values set by `bind_parameter` or `parse_config`, as well as the set of dynamically imported modules. It does not remove any configurable functions or classes from the registry of configurables. Args: clear_constants: Whether to clear constants created by `constant`. Defaults to False.
gin/config.py
def clear_config(clear_constants=False): """Clears the global configuration. This clears any parameter values set by `bind_parameter` or `parse_config`, as well as the set of dynamically imported modules. It does not remove any configurable functions or classes from the registry of configurables. Args: clear_constants: Whether to clear constants created by `constant`. Defaults to False. """ _set_config_is_locked(False) _CONFIG.clear() _SINGLETONS.clear() if clear_constants: _CONSTANTS.clear() else: saved_constants = _CONSTANTS.copy() _CONSTANTS.clear() # Clear then redefine constants (re-adding bindings). for name, value in six.iteritems(saved_constants): constant(name, value) _IMPORTED_MODULES.clear() _OPERATIVE_CONFIG.clear()
def clear_config(clear_constants=False): """Clears the global configuration. This clears any parameter values set by `bind_parameter` or `parse_config`, as well as the set of dynamically imported modules. It does not remove any configurable functions or classes from the registry of configurables. Args: clear_constants: Whether to clear constants created by `constant`. Defaults to False. """ _set_config_is_locked(False) _CONFIG.clear() _SINGLETONS.clear() if clear_constants: _CONSTANTS.clear() else: saved_constants = _CONSTANTS.copy() _CONSTANTS.clear() # Clear then redefine constants (re-adding bindings). for name, value in six.iteritems(saved_constants): constant(name, value) _IMPORTED_MODULES.clear() _OPERATIVE_CONFIG.clear()
[ "Clears", "the", "global", "configuration", "." ]
google/gin-config
python
https://github.com/google/gin-config/blob/17a170e0a6711005d1c78e67cf493dc44674d44f/gin/config.py#L540-L562
[ "def", "clear_config", "(", "clear_constants", "=", "False", ")", ":", "_set_config_is_locked", "(", "False", ")", "_CONFIG", ".", "clear", "(", ")", "_SINGLETONS", ".", "clear", "(", ")", "if", "clear_constants", ":", "_CONSTANTS", ".", "clear", "(", ")", "else", ":", "saved_constants", "=", "_CONSTANTS", ".", "copy", "(", ")", "_CONSTANTS", ".", "clear", "(", ")", "# Clear then redefine constants (re-adding bindings).", "for", "name", ",", "value", "in", "six", ".", "iteritems", "(", "saved_constants", ")", ":", "constant", "(", "name", ",", "value", ")", "_IMPORTED_MODULES", ".", "clear", "(", ")", "_OPERATIVE_CONFIG", ".", "clear", "(", ")" ]
17a170e0a6711005d1c78e67cf493dc44674d44f