partition
stringclasses
3 values
func_name
stringlengths
1
134
docstring
stringlengths
1
46.9k
path
stringlengths
4
223
original_string
stringlengths
75
104k
code
stringlengths
75
104k
docstring_tokens
listlengths
1
1.97k
repo
stringlengths
7
55
language
stringclasses
1 value
url
stringlengths
87
315
code_tokens
listlengths
19
28.4k
sha
stringlengths
40
40
test
error_parsing
Print any parsing error and exit with status -1
mongotail/err.py
def error_parsing(msg="unknown options"): """ Print any parsing error and exit with status -1 """ sys.stderr.write("Error parsing command line: %s\ntry 'mongotail --help' for more information\n" % msg) sys.stderr.flush() exit(EINVAL)
def error_parsing(msg="unknown options"): """ Print any parsing error and exit with status -1 """ sys.stderr.write("Error parsing command line: %s\ntry 'mongotail --help' for more information\n" % msg) sys.stderr.flush() exit(EINVAL)
[ "Print", "any", "parsing", "error", "and", "exit", "with", "status", "-", "1" ]
mrsarm/mongotail
python
https://github.com/mrsarm/mongotail/blob/82ba74e32eff92faa320833a8d19c58555f9cd49/mongotail/err.py#L42-L48
[ "def", "error_parsing", "(", "msg", "=", "\"unknown options\"", ")", ":", "sys", ".", "stderr", ".", "write", "(", "\"Error parsing command line: %s\\ntry 'mongotail --help' for more information\\n\"", "%", "msg", ")", "sys", ".", "stderr", ".", "flush", "(", ")", "exit", "(", "EINVAL", ")" ]
82ba74e32eff92faa320833a8d19c58555f9cd49
test
Menu.get_product_by_name
Gets a Item from the Menu by name. Note that the name is not case-sensitive but must be spelt correctly. :param string name: The name of the item. :raises StopIteration: Raises exception if no item is found. :return: An item object matching the search. :rtype: Item
dominos/models.py
def get_product_by_name(self, name): ''' Gets a Item from the Menu by name. Note that the name is not case-sensitive but must be spelt correctly. :param string name: The name of the item. :raises StopIteration: Raises exception if no item is found. :return: An item object matching the search. :rtype: Item ''' return next(i for i in self.items if i.name.lower() == name.lower())
def get_product_by_name(self, name): ''' Gets a Item from the Menu by name. Note that the name is not case-sensitive but must be spelt correctly. :param string name: The name of the item. :raises StopIteration: Raises exception if no item is found. :return: An item object matching the search. :rtype: Item ''' return next(i for i in self.items if i.name.lower() == name.lower())
[ "Gets", "a", "Item", "from", "the", "Menu", "by", "name", ".", "Note", "that", "the", "name", "is", "not", "case", "-", "sensitive", "but", "must", "be", "spelt", "correctly", "." ]
tomasbasham/dominos
python
https://github.com/tomasbasham/dominos/blob/59729a8bdca0ae30a84115a0e93e9b1f259faf0e/dominos/models.py#L59-L69
[ "def", "get_product_by_name", "(", "self", ",", "name", ")", ":", "return", "next", "(", "i", "for", "i", "in", "self", ".", "items", "if", "i", ".", "name", ".", "lower", "(", ")", "==", "name", ".", "lower", "(", ")", ")" ]
59729a8bdca0ae30a84115a0e93e9b1f259faf0e
test
Client.new_session
Clear out the current session on the remote and setup a new one. :return: A response from having expired the current session. :rtype: requests.Response
dominos/api.py
def new_session(self, session): ''' Clear out the current session on the remote and setup a new one. :return: A response from having expired the current session. :rtype: requests.Response ''' response = self.__get('/Home/SessionExpire') self.session = update_session_headers(session) return response
def new_session(self, session): ''' Clear out the current session on the remote and setup a new one. :return: A response from having expired the current session. :rtype: requests.Response ''' response = self.__get('/Home/SessionExpire') self.session = update_session_headers(session) return response
[ "Clear", "out", "the", "current", "session", "on", "the", "remote", "and", "setup", "a", "new", "one", "." ]
tomasbasham/dominos
python
https://github.com/tomasbasham/dominos/blob/59729a8bdca0ae30a84115a0e93e9b1f259faf0e/dominos/api.py#L31-L41
[ "def", "new_session", "(", "self", ",", "session", ")", ":", "response", "=", "self", ".", "__get", "(", "'/Home/SessionExpire'", ")", "self", ".", "session", "=", "update_session_headers", "(", "session", ")", "return", "response" ]
59729a8bdca0ae30a84115a0e93e9b1f259faf0e
test
Client.reset_store
Clears out the current store and gets a cookie. Set the cross site request forgery token for each subsequent request. :return: A response having cleared the current store. :rtype: requests.Response
dominos/api.py
def reset_store(self): ''' Clears out the current store and gets a cookie. Set the cross site request forgery token for each subsequent request. :return: A response having cleared the current store. :rtype: requests.Response ''' response = self.__get('/Store/Reset') token = self.session.cookies['XSRF-TOKEN'] self.session.headers.update({'X-XSRF-TOKEN': token}) return response
def reset_store(self): ''' Clears out the current store and gets a cookie. Set the cross site request forgery token for each subsequent request. :return: A response having cleared the current store. :rtype: requests.Response ''' response = self.__get('/Store/Reset') token = self.session.cookies['XSRF-TOKEN'] self.session.headers.update({'X-XSRF-TOKEN': token}) return response
[ "Clears", "out", "the", "current", "store", "and", "gets", "a", "cookie", ".", "Set", "the", "cross", "site", "request", "forgery", "token", "for", "each", "subsequent", "request", "." ]
tomasbasham/dominos
python
https://github.com/tomasbasham/dominos/blob/59729a8bdca0ae30a84115a0e93e9b1f259faf0e/dominos/api.py#L43-L56
[ "def", "reset_store", "(", "self", ")", ":", "response", "=", "self", ".", "__get", "(", "'/Store/Reset'", ")", "token", "=", "self", ".", "session", ".", "cookies", "[", "'XSRF-TOKEN'", "]", "self", ".", "session", ".", "headers", ".", "update", "(", "{", "'X-XSRF-TOKEN'", ":", "token", "}", ")", "return", "response" ]
59729a8bdca0ae30a84115a0e93e9b1f259faf0e
test
Client.get_stores
Search for dominos pizza stores using a search term. :param string search: Search term. :return: A list of nearby stores matching the search term. :rtype: list
dominos/api.py
def get_stores(self, search_term): ''' Search for dominos pizza stores using a search term. :param string search: Search term. :return: A list of nearby stores matching the search term. :rtype: list ''' params = {'SearchText': search_term} response = self.__get('/storefindermap/storesearch', params=params) return Stores(response.json())
def get_stores(self, search_term): ''' Search for dominos pizza stores using a search term. :param string search: Search term. :return: A list of nearby stores matching the search term. :rtype: list ''' params = {'SearchText': search_term} response = self.__get('/storefindermap/storesearch', params=params) return Stores(response.json())
[ "Search", "for", "dominos", "pizza", "stores", "using", "a", "search", "term", "." ]
tomasbasham/dominos
python
https://github.com/tomasbasham/dominos/blob/59729a8bdca0ae30a84115a0e93e9b1f259faf0e/dominos/api.py#L58-L69
[ "def", "get_stores", "(", "self", ",", "search_term", ")", ":", "params", "=", "{", "'SearchText'", ":", "search_term", "}", "response", "=", "self", ".", "__get", "(", "'/storefindermap/storesearch'", ",", "params", "=", "params", ")", "return", "Stores", "(", "response", ".", "json", "(", ")", ")" ]
59729a8bdca0ae30a84115a0e93e9b1f259faf0e
test
Client.set_delivery_system
Set local cookies by initialising the delivery system on the remote. Requires a store ID and a delivery postcode. :param Store store: Store id. :param string postcode: A postcode. :return: A response having initialised the delivery system. :rtype: requests.Response
dominos/api.py
def set_delivery_system(self, store, postcode, fulfilment_method=FULFILMENT_METHOD.DELIVERY): ''' Set local cookies by initialising the delivery system on the remote. Requires a store ID and a delivery postcode. :param Store store: Store id. :param string postcode: A postcode. :return: A response having initialised the delivery system. :rtype: requests.Response ''' method = 'delivery' if fulfilment_method == FULFILMENT_METHOD.DELIVERY else 'collection' params = { 'fulfilmentMethod': method, 'postcode': postcode, 'storeid': store.store_id } return self.__post('/Journey/Initialize', json=params)
def set_delivery_system(self, store, postcode, fulfilment_method=FULFILMENT_METHOD.DELIVERY): ''' Set local cookies by initialising the delivery system on the remote. Requires a store ID and a delivery postcode. :param Store store: Store id. :param string postcode: A postcode. :return: A response having initialised the delivery system. :rtype: requests.Response ''' method = 'delivery' if fulfilment_method == FULFILMENT_METHOD.DELIVERY else 'collection' params = { 'fulfilmentMethod': method, 'postcode': postcode, 'storeid': store.store_id } return self.__post('/Journey/Initialize', json=params)
[ "Set", "local", "cookies", "by", "initialising", "the", "delivery", "system", "on", "the", "remote", ".", "Requires", "a", "store", "ID", "and", "a", "delivery", "postcode", "." ]
tomasbasham/dominos
python
https://github.com/tomasbasham/dominos/blob/59729a8bdca0ae30a84115a0e93e9b1f259faf0e/dominos/api.py#L82-L100
[ "def", "set_delivery_system", "(", "self", ",", "store", ",", "postcode", ",", "fulfilment_method", "=", "FULFILMENT_METHOD", ".", "DELIVERY", ")", ":", "method", "=", "'delivery'", "if", "fulfilment_method", "==", "FULFILMENT_METHOD", ".", "DELIVERY", "else", "'collection'", "params", "=", "{", "'fulfilmentMethod'", ":", "method", ",", "'postcode'", ":", "postcode", ",", "'storeid'", ":", "store", ".", "store_id", "}", "return", "self", ".", "__post", "(", "'/Journey/Initialize'", ",", "json", "=", "params", ")" ]
59729a8bdca0ae30a84115a0e93e9b1f259faf0e
test
Client.get_menu
Retrieve the menu from the selected store. :param Store store: A store. :return: The store menu. :rtype: Menu
dominos/api.py
def get_menu(self, store): ''' Retrieve the menu from the selected store. :param Store store: A store. :return: The store menu. :rtype: Menu ''' params = { 'collectionOnly': not store.delivery_available, 'menuVersion': store.menu_version, 'storeId': store.store_id, } response = self.__get('/ProductCatalog/GetStoreCatalog', params=params) return Menu(response.json())
def get_menu(self, store): ''' Retrieve the menu from the selected store. :param Store store: A store. :return: The store menu. :rtype: Menu ''' params = { 'collectionOnly': not store.delivery_available, 'menuVersion': store.menu_version, 'storeId': store.store_id, } response = self.__get('/ProductCatalog/GetStoreCatalog', params=params) return Menu(response.json())
[ "Retrieve", "the", "menu", "from", "the", "selected", "store", "." ]
tomasbasham/dominos
python
https://github.com/tomasbasham/dominos/blob/59729a8bdca0ae30a84115a0e93e9b1f259faf0e/dominos/api.py#L102-L117
[ "def", "get_menu", "(", "self", ",", "store", ")", ":", "params", "=", "{", "'collectionOnly'", ":", "not", "store", ".", "delivery_available", ",", "'menuVersion'", ":", "store", ".", "menu_version", ",", "'storeId'", ":", "store", ".", "store_id", ",", "}", "response", "=", "self", ".", "__get", "(", "'/ProductCatalog/GetStoreCatalog'", ",", "params", "=", "params", ")", "return", "Menu", "(", "response", ".", "json", "(", ")", ")" ]
59729a8bdca0ae30a84115a0e93e9b1f259faf0e
test
Client.add_item_to_basket
Add an item to the current basket. :param Item item: Item from menu. :param int variant: Item SKU id. Ignored if the item is a side. :param int quantity: The quantity of item to be added. :return: A response having added an item to the current basket. :rtype: requests.Response
dominos/api.py
def add_item_to_basket(self, item, variant=VARIANT.MEDIUM, quantity=1): ''' Add an item to the current basket. :param Item item: Item from menu. :param int variant: Item SKU id. Ignored if the item is a side. :param int quantity: The quantity of item to be added. :return: A response having added an item to the current basket. :rtype: requests.Response ''' item_type = item.type if item_type == 'Pizza': return self.add_pizza_to_basket(item, variant, quantity) elif item_type == 'Side': return self.add_side_to_basket(item, quantity) return None
def add_item_to_basket(self, item, variant=VARIANT.MEDIUM, quantity=1): ''' Add an item to the current basket. :param Item item: Item from menu. :param int variant: Item SKU id. Ignored if the item is a side. :param int quantity: The quantity of item to be added. :return: A response having added an item to the current basket. :rtype: requests.Response ''' item_type = item.type if item_type == 'Pizza': return self.add_pizza_to_basket(item, variant, quantity) elif item_type == 'Side': return self.add_side_to_basket(item, quantity) return None
[ "Add", "an", "item", "to", "the", "current", "basket", "." ]
tomasbasham/dominos
python
https://github.com/tomasbasham/dominos/blob/59729a8bdca0ae30a84115a0e93e9b1f259faf0e/dominos/api.py#L129-L145
[ "def", "add_item_to_basket", "(", "self", ",", "item", ",", "variant", "=", "VARIANT", ".", "MEDIUM", ",", "quantity", "=", "1", ")", ":", "item_type", "=", "item", ".", "type", "if", "item_type", "==", "'Pizza'", ":", "return", "self", ".", "add_pizza_to_basket", "(", "item", ",", "variant", ",", "quantity", ")", "elif", "item_type", "==", "'Side'", ":", "return", "self", ".", "add_side_to_basket", "(", "item", ",", "quantity", ")", "return", "None" ]
59729a8bdca0ae30a84115a0e93e9b1f259faf0e
test
Client.add_pizza_to_basket
Add a pizza to the current basket. :param Item item: Item from menu. :param int variant: Item SKU id. Some defaults are defined in the VARIANT enum. :param int quantity: The quantity of pizza to be added. :return: A response having added a pizza to the current basket. :rtype: requests.Response
dominos/api.py
def add_pizza_to_basket(self, item, variant=VARIANT.MEDIUM, quantity=1): ''' Add a pizza to the current basket. :param Item item: Item from menu. :param int variant: Item SKU id. Some defaults are defined in the VARIANT enum. :param int quantity: The quantity of pizza to be added. :return: A response having added a pizza to the current basket. :rtype: requests.Response ''' item_variant = item[variant] ingredients = item_variant['ingredients'].update([36, 42]) params = { 'stepId': 0, 'quantity': quantity, 'sizeId': variant, 'productId': item.item_id, 'ingredients': ingredients, 'productIdHalfTwo': 0, 'ingredientsHalfTwo': [], 'recipeReferrer': 0 } return self.__post('/Basket/AddPizza', json=params)
def add_pizza_to_basket(self, item, variant=VARIANT.MEDIUM, quantity=1): ''' Add a pizza to the current basket. :param Item item: Item from menu. :param int variant: Item SKU id. Some defaults are defined in the VARIANT enum. :param int quantity: The quantity of pizza to be added. :return: A response having added a pizza to the current basket. :rtype: requests.Response ''' item_variant = item[variant] ingredients = item_variant['ingredients'].update([36, 42]) params = { 'stepId': 0, 'quantity': quantity, 'sizeId': variant, 'productId': item.item_id, 'ingredients': ingredients, 'productIdHalfTwo': 0, 'ingredientsHalfTwo': [], 'recipeReferrer': 0 } return self.__post('/Basket/AddPizza', json=params)
[ "Add", "a", "pizza", "to", "the", "current", "basket", "." ]
tomasbasham/dominos
python
https://github.com/tomasbasham/dominos/blob/59729a8bdca0ae30a84115a0e93e9b1f259faf0e/dominos/api.py#L147-L171
[ "def", "add_pizza_to_basket", "(", "self", ",", "item", ",", "variant", "=", "VARIANT", ".", "MEDIUM", ",", "quantity", "=", "1", ")", ":", "item_variant", "=", "item", "[", "variant", "]", "ingredients", "=", "item_variant", "[", "'ingredients'", "]", ".", "update", "(", "[", "36", ",", "42", "]", ")", "params", "=", "{", "'stepId'", ":", "0", ",", "'quantity'", ":", "quantity", ",", "'sizeId'", ":", "variant", ",", "'productId'", ":", "item", ".", "item_id", ",", "'ingredients'", ":", "ingredients", ",", "'productIdHalfTwo'", ":", "0", ",", "'ingredientsHalfTwo'", ":", "[", "]", ",", "'recipeReferrer'", ":", "0", "}", "return", "self", ".", "__post", "(", "'/Basket/AddPizza'", ",", "json", "=", "params", ")" ]
59729a8bdca0ae30a84115a0e93e9b1f259faf0e
test
Client.add_side_to_basket
Add a side to the current basket. :param Item item: Item from menu. :param int quantity: The quantity of side to be added. :return: A response having added a side to the current basket. :rtype: requests.Response
dominos/api.py
def add_side_to_basket(self, item, quantity=1): ''' Add a side to the current basket. :param Item item: Item from menu. :param int quantity: The quantity of side to be added. :return: A response having added a side to the current basket. :rtype: requests.Response ''' item_variant = item[VARIANT.PERSONAL] params = { 'productSkuId': item_variant['productSkuId'], 'quantity': quantity, 'ComplimentaryItems': [] } return self.__post('/Basket/AddProduct', json=params)
def add_side_to_basket(self, item, quantity=1): ''' Add a side to the current basket. :param Item item: Item from menu. :param int quantity: The quantity of side to be added. :return: A response having added a side to the current basket. :rtype: requests.Response ''' item_variant = item[VARIANT.PERSONAL] params = { 'productSkuId': item_variant['productSkuId'], 'quantity': quantity, 'ComplimentaryItems': [] } return self.__post('/Basket/AddProduct', json=params)
[ "Add", "a", "side", "to", "the", "current", "basket", "." ]
tomasbasham/dominos
python
https://github.com/tomasbasham/dominos/blob/59729a8bdca0ae30a84115a0e93e9b1f259faf0e/dominos/api.py#L173-L190
[ "def", "add_side_to_basket", "(", "self", ",", "item", ",", "quantity", "=", "1", ")", ":", "item_variant", "=", "item", "[", "VARIANT", ".", "PERSONAL", "]", "params", "=", "{", "'productSkuId'", ":", "item_variant", "[", "'productSkuId'", "]", ",", "'quantity'", ":", "quantity", ",", "'ComplimentaryItems'", ":", "[", "]", "}", "return", "self", ".", "__post", "(", "'/Basket/AddProduct'", ",", "json", "=", "params", ")" ]
59729a8bdca0ae30a84115a0e93e9b1f259faf0e
test
Client.remove_item_from_basket
Remove an item from the current basket. :param int idx: Basket item id. :return: A response having removed an item from the current basket. :rtype: requests.Response
dominos/api.py
def remove_item_from_basket(self, idx): ''' Remove an item from the current basket. :param int idx: Basket item id. :return: A response having removed an item from the current basket. :rtype: requests.Response ''' params = { 'basketItemId': idx, 'wizardItemDelete': False } return self.__post('/Basket/RemoveBasketItem', json=params)
def remove_item_from_basket(self, idx): ''' Remove an item from the current basket. :param int idx: Basket item id. :return: A response having removed an item from the current basket. :rtype: requests.Response ''' params = { 'basketItemId': idx, 'wizardItemDelete': False } return self.__post('/Basket/RemoveBasketItem', json=params)
[ "Remove", "an", "item", "from", "the", "current", "basket", "." ]
tomasbasham/dominos
python
https://github.com/tomasbasham/dominos/blob/59729a8bdca0ae30a84115a0e93e9b1f259faf0e/dominos/api.py#L192-L205
[ "def", "remove_item_from_basket", "(", "self", ",", "idx", ")", ":", "params", "=", "{", "'basketItemId'", ":", "idx", ",", "'wizardItemDelete'", ":", "False", "}", "return", "self", ".", "__post", "(", "'/Basket/RemoveBasketItem'", ",", "json", "=", "params", ")" ]
59729a8bdca0ae30a84115a0e93e9b1f259faf0e
test
Client.set_payment_method
Select the payment method going to be used to make a purchase. :param int method: Payment method id. :return: A response having set the payment option. :rtype: requests.Response
dominos/api.py
def set_payment_method(self, method=PAYMENT_METHOD.CASH_ON_DELIVERY): ''' Select the payment method going to be used to make a purchase. :param int method: Payment method id. :return: A response having set the payment option. :rtype: requests.Response ''' params = {'paymentMethod': method} return self.__post('/PaymentOptions/SetPaymentMethod', json=params)
def set_payment_method(self, method=PAYMENT_METHOD.CASH_ON_DELIVERY): ''' Select the payment method going to be used to make a purchase. :param int method: Payment method id. :return: A response having set the payment option. :rtype: requests.Response ''' params = {'paymentMethod': method} return self.__post('/PaymentOptions/SetPaymentMethod', json=params)
[ "Select", "the", "payment", "method", "going", "to", "be", "used", "to", "make", "a", "purchase", "." ]
tomasbasham/dominos
python
https://github.com/tomasbasham/dominos/blob/59729a8bdca0ae30a84115a0e93e9b1f259faf0e/dominos/api.py#L207-L216
[ "def", "set_payment_method", "(", "self", ",", "method", "=", "PAYMENT_METHOD", ".", "CASH_ON_DELIVERY", ")", ":", "params", "=", "{", "'paymentMethod'", ":", "method", "}", "return", "self", ".", "__post", "(", "'/PaymentOptions/SetPaymentMethod'", ",", "json", "=", "params", ")" ]
59729a8bdca0ae30a84115a0e93e9b1f259faf0e
test
Client.process_payment
Proceed with payment using the payment method selected earlier. :return: A response having processes the payment. :rtype: requests.Response
dominos/api.py
def process_payment(self): ''' Proceed with payment using the payment method selected earlier. :return: A response having processes the payment. :rtype: requests.Response ''' params = { '__RequestVerificationToken': self.session.cookies, 'method': 'submit' } return self.__post('/PaymentOptions/Proceed', json=params)
def process_payment(self): ''' Proceed with payment using the payment method selected earlier. :return: A response having processes the payment. :rtype: requests.Response ''' params = { '__RequestVerificationToken': self.session.cookies, 'method': 'submit' } return self.__post('/PaymentOptions/Proceed', json=params)
[ "Proceed", "with", "payment", "using", "the", "payment", "method", "selected", "earlier", "." ]
tomasbasham/dominos
python
https://github.com/tomasbasham/dominos/blob/59729a8bdca0ae30a84115a0e93e9b1f259faf0e/dominos/api.py#L224-L236
[ "def", "process_payment", "(", "self", ")", ":", "params", "=", "{", "'__RequestVerificationToken'", ":", "self", ".", "session", ".", "cookies", ",", "'method'", ":", "'submit'", "}", "return", "self", ".", "__post", "(", "'/PaymentOptions/Proceed'", ",", "json", "=", "params", ")" ]
59729a8bdca0ae30a84115a0e93e9b1f259faf0e
test
Client.__get
Make a HTTP GET request to the Dominos UK API with the given parameters for the current session. :param string path: The API endpoint path. :params list kargs: A list of arguments. :return: A response from the Dominos UK API. :rtype: response.Response
dominos/api.py
def __get(self, path, **kargs): ''' Make a HTTP GET request to the Dominos UK API with the given parameters for the current session. :param string path: The API endpoint path. :params list kargs: A list of arguments. :return: A response from the Dominos UK API. :rtype: response.Response ''' return self.__call_api(self.session.get, path, **kargs)
def __get(self, path, **kargs): ''' Make a HTTP GET request to the Dominos UK API with the given parameters for the current session. :param string path: The API endpoint path. :params list kargs: A list of arguments. :return: A response from the Dominos UK API. :rtype: response.Response ''' return self.__call_api(self.session.get, path, **kargs)
[ "Make", "a", "HTTP", "GET", "request", "to", "the", "Dominos", "UK", "API", "with", "the", "given", "parameters", "for", "the", "current", "session", "." ]
tomasbasham/dominos
python
https://github.com/tomasbasham/dominos/blob/59729a8bdca0ae30a84115a0e93e9b1f259faf0e/dominos/api.py#L238-L248
[ "def", "__get", "(", "self", ",", "path", ",", "*", "*", "kargs", ")", ":", "return", "self", ".", "__call_api", "(", "self", ".", "session", ".", "get", ",", "path", ",", "*", "*", "kargs", ")" ]
59729a8bdca0ae30a84115a0e93e9b1f259faf0e
test
Client.__post
Make a HTTP POST request to the Dominos UK API with the given parameters for the current session. :param string path: The API endpoint path. :params list kargs: A list of arguments. :return: A response from the Dominos UK API. :rtype: response.Response
dominos/api.py
def __post(self, path, **kargs): ''' Make a HTTP POST request to the Dominos UK API with the given parameters for the current session. :param string path: The API endpoint path. :params list kargs: A list of arguments. :return: A response from the Dominos UK API. :rtype: response.Response ''' return self.__call_api(self.session.post, path, **kargs)
def __post(self, path, **kargs): ''' Make a HTTP POST request to the Dominos UK API with the given parameters for the current session. :param string path: The API endpoint path. :params list kargs: A list of arguments. :return: A response from the Dominos UK API. :rtype: response.Response ''' return self.__call_api(self.session.post, path, **kargs)
[ "Make", "a", "HTTP", "POST", "request", "to", "the", "Dominos", "UK", "API", "with", "the", "given", "parameters", "for", "the", "current", "session", "." ]
tomasbasham/dominos
python
https://github.com/tomasbasham/dominos/blob/59729a8bdca0ae30a84115a0e93e9b1f259faf0e/dominos/api.py#L250-L260
[ "def", "__post", "(", "self", ",", "path", ",", "*", "*", "kargs", ")", ":", "return", "self", ".", "__call_api", "(", "self", ".", "session", ".", "post", ",", "path", ",", "*", "*", "kargs", ")" ]
59729a8bdca0ae30a84115a0e93e9b1f259faf0e
test
Client.__call_api
Make a HTTP request to the Dominos UK API with the given parameters for the current session. :param verb func: HTTP method on the session. :param string path: The API endpoint path. :params list kargs: A list of arguments. :return: A response from the Dominos UK API. :rtype: response.Response
dominos/api.py
def __call_api(self, verb, path, **kargs): ''' Make a HTTP request to the Dominos UK API with the given parameters for the current session. :param verb func: HTTP method on the session. :param string path: The API endpoint path. :params list kargs: A list of arguments. :return: A response from the Dominos UK API. :rtype: response.Response ''' response = verb(self.__url(path), **kargs) if response.status_code != 200: raise ApiError('{}: {}'.format(response.status_code, response)) return response
def __call_api(self, verb, path, **kargs): ''' Make a HTTP request to the Dominos UK API with the given parameters for the current session. :param verb func: HTTP method on the session. :param string path: The API endpoint path. :params list kargs: A list of arguments. :return: A response from the Dominos UK API. :rtype: response.Response ''' response = verb(self.__url(path), **kargs) if response.status_code != 200: raise ApiError('{}: {}'.format(response.status_code, response)) return response
[ "Make", "a", "HTTP", "request", "to", "the", "Dominos", "UK", "API", "with", "the", "given", "parameters", "for", "the", "current", "session", "." ]
tomasbasham/dominos
python
https://github.com/tomasbasham/dominos/blob/59729a8bdca0ae30a84115a0e93e9b1f259faf0e/dominos/api.py#L264-L280
[ "def", "__call_api", "(", "self", ",", "verb", ",", "path", ",", "*", "*", "kargs", ")", ":", "response", "=", "verb", "(", "self", ".", "__url", "(", "path", ")", ",", "*", "*", "kargs", ")", "if", "response", ".", "status_code", "!=", "200", ":", "raise", "ApiError", "(", "'{}: {}'", ".", "format", "(", "response", ".", "status_code", ",", "response", ")", ")", "return", "response" ]
59729a8bdca0ae30a84115a0e93e9b1f259faf0e
test
CursesMenu.append_item
Add an item to the end of the menu before the exit item :param MenuItem item: The item to be added
cursesmenu/curses_menu.py
def append_item(self, item): """ Add an item to the end of the menu before the exit item :param MenuItem item: The item to be added """ did_remove = self.remove_exit() item.menu = self self.items.append(item) if did_remove: self.add_exit() if self.screen: max_row, max_cols = self.screen.getmaxyx() if max_row < 6 + len(self.items): self.screen.resize(6 + len(self.items), max_cols) self.draw()
def append_item(self, item): """ Add an item to the end of the menu before the exit item :param MenuItem item: The item to be added """ did_remove = self.remove_exit() item.menu = self self.items.append(item) if did_remove: self.add_exit() if self.screen: max_row, max_cols = self.screen.getmaxyx() if max_row < 6 + len(self.items): self.screen.resize(6 + len(self.items), max_cols) self.draw()
[ "Add", "an", "item", "to", "the", "end", "of", "the", "menu", "before", "the", "exit", "item" ]
pmbarrett314/curses-menu
python
https://github.com/pmbarrett314/curses-menu/blob/c76fc00ab9d518eab275e55434fc2941f49c6b30/cursesmenu/curses_menu.py#L88-L103
[ "def", "append_item", "(", "self", ",", "item", ")", ":", "did_remove", "=", "self", ".", "remove_exit", "(", ")", "item", ".", "menu", "=", "self", "self", ".", "items", ".", "append", "(", "item", ")", "if", "did_remove", ":", "self", ".", "add_exit", "(", ")", "if", "self", ".", "screen", ":", "max_row", ",", "max_cols", "=", "self", ".", "screen", ".", "getmaxyx", "(", ")", "if", "max_row", "<", "6", "+", "len", "(", "self", ".", "items", ")", ":", "self", ".", "screen", ".", "resize", "(", "6", "+", "len", "(", "self", ".", "items", ")", ",", "max_cols", ")", "self", ".", "draw", "(", ")" ]
c76fc00ab9d518eab275e55434fc2941f49c6b30
test
CursesMenu.add_exit
Add the exit item if necessary. Used to make sure there aren't multiple exit items :return: True if item needed to be added, False otherwise :rtype: bool
cursesmenu/curses_menu.py
def add_exit(self): """ Add the exit item if necessary. Used to make sure there aren't multiple exit items :return: True if item needed to be added, False otherwise :rtype: bool """ if self.items: if self.items[-1] is not self.exit_item: self.items.append(self.exit_item) return True return False
def add_exit(self): """ Add the exit item if necessary. Used to make sure there aren't multiple exit items :return: True if item needed to be added, False otherwise :rtype: bool """ if self.items: if self.items[-1] is not self.exit_item: self.items.append(self.exit_item) return True return False
[ "Add", "the", "exit", "item", "if", "necessary", ".", "Used", "to", "make", "sure", "there", "aren", "t", "multiple", "exit", "items" ]
pmbarrett314/curses-menu
python
https://github.com/pmbarrett314/curses-menu/blob/c76fc00ab9d518eab275e55434fc2941f49c6b30/cursesmenu/curses_menu.py#L105-L116
[ "def", "add_exit", "(", "self", ")", ":", "if", "self", ".", "items", ":", "if", "self", ".", "items", "[", "-", "1", "]", "is", "not", "self", ".", "exit_item", ":", "self", ".", "items", ".", "append", "(", "self", ".", "exit_item", ")", "return", "True", "return", "False" ]
c76fc00ab9d518eab275e55434fc2941f49c6b30
test
CursesMenu.draw
Redraws the menu and refreshes the screen. Should be called whenever something changes that needs to be redrawn.
cursesmenu/curses_menu.py
def draw(self): """ Redraws the menu and refreshes the screen. Should be called whenever something changes that needs to be redrawn. """ self.screen.border(0) if self.title is not None: self.screen.addstr(2, 2, self.title, curses.A_STANDOUT) if self.subtitle is not None: self.screen.addstr(4, 2, self.subtitle, curses.A_BOLD) for index, item in enumerate(self.items): if self.current_option == index: text_style = self.highlight else: text_style = self.normal self.screen.addstr(5 + index, 4, item.show(index), text_style) screen_rows, screen_cols = CursesMenu.stdscr.getmaxyx() top_row = 0 if 6 + len(self.items) > screen_rows: if screen_rows + self.current_option < 6 + len(self.items): top_row = self.current_option else: top_row = 6 + len(self.items) - screen_rows self.screen.refresh(top_row, 0, 0, 0, screen_rows - 1, screen_cols - 1)
def draw(self): """ Redraws the menu and refreshes the screen. Should be called whenever something changes that needs to be redrawn. """ self.screen.border(0) if self.title is not None: self.screen.addstr(2, 2, self.title, curses.A_STANDOUT) if self.subtitle is not None: self.screen.addstr(4, 2, self.subtitle, curses.A_BOLD) for index, item in enumerate(self.items): if self.current_option == index: text_style = self.highlight else: text_style = self.normal self.screen.addstr(5 + index, 4, item.show(index), text_style) screen_rows, screen_cols = CursesMenu.stdscr.getmaxyx() top_row = 0 if 6 + len(self.items) > screen_rows: if screen_rows + self.current_option < 6 + len(self.items): top_row = self.current_option else: top_row = 6 + len(self.items) - screen_rows self.screen.refresh(top_row, 0, 0, 0, screen_rows - 1, screen_cols - 1)
[ "Redraws", "the", "menu", "and", "refreshes", "the", "screen", ".", "Should", "be", "called", "whenever", "something", "changes", "that", "needs", "to", "be", "redrawn", "." ]
pmbarrett314/curses-menu
python
https://github.com/pmbarrett314/curses-menu/blob/c76fc00ab9d518eab275e55434fc2941f49c6b30/cursesmenu/curses_menu.py#L195-L221
[ "def", "draw", "(", "self", ")", ":", "self", ".", "screen", ".", "border", "(", "0", ")", "if", "self", ".", "title", "is", "not", "None", ":", "self", ".", "screen", ".", "addstr", "(", "2", ",", "2", ",", "self", ".", "title", ",", "curses", ".", "A_STANDOUT", ")", "if", "self", ".", "subtitle", "is", "not", "None", ":", "self", ".", "screen", ".", "addstr", "(", "4", ",", "2", ",", "self", ".", "subtitle", ",", "curses", ".", "A_BOLD", ")", "for", "index", ",", "item", "in", "enumerate", "(", "self", ".", "items", ")", ":", "if", "self", ".", "current_option", "==", "index", ":", "text_style", "=", "self", ".", "highlight", "else", ":", "text_style", "=", "self", ".", "normal", "self", ".", "screen", ".", "addstr", "(", "5", "+", "index", ",", "4", ",", "item", ".", "show", "(", "index", ")", ",", "text_style", ")", "screen_rows", ",", "screen_cols", "=", "CursesMenu", ".", "stdscr", ".", "getmaxyx", "(", ")", "top_row", "=", "0", "if", "6", "+", "len", "(", "self", ".", "items", ")", ">", "screen_rows", ":", "if", "screen_rows", "+", "self", ".", "current_option", "<", "6", "+", "len", "(", "self", ".", "items", ")", ":", "top_row", "=", "self", ".", "current_option", "else", ":", "top_row", "=", "6", "+", "len", "(", "self", ".", "items", ")", "-", "screen_rows", "self", ".", "screen", ".", "refresh", "(", "top_row", ",", "0", ",", "0", ",", "0", ",", "screen_rows", "-", "1", ",", "screen_cols", "-", "1", ")" ]
c76fc00ab9d518eab275e55434fc2941f49c6b30
test
CursesMenu.process_user_input
Gets the next single character and decides what to do with it
cursesmenu/curses_menu.py
def process_user_input(self): """ Gets the next single character and decides what to do with it """ user_input = self.get_input() go_to_max = ord("9") if len(self.items) >= 9 else ord(str(len(self.items))) if ord('1') <= user_input <= go_to_max: self.go_to(user_input - ord('0') - 1) elif user_input == curses.KEY_DOWN: self.go_down() elif user_input == curses.KEY_UP: self.go_up() elif user_input == ord("\n"): self.select() return user_input
def process_user_input(self): """ Gets the next single character and decides what to do with it """ user_input = self.get_input() go_to_max = ord("9") if len(self.items) >= 9 else ord(str(len(self.items))) if ord('1') <= user_input <= go_to_max: self.go_to(user_input - ord('0') - 1) elif user_input == curses.KEY_DOWN: self.go_down() elif user_input == curses.KEY_UP: self.go_up() elif user_input == ord("\n"): self.select() return user_input
[ "Gets", "the", "next", "single", "character", "and", "decides", "what", "to", "do", "with", "it" ]
pmbarrett314/curses-menu
python
https://github.com/pmbarrett314/curses-menu/blob/c76fc00ab9d518eab275e55434fc2941f49c6b30/cursesmenu/curses_menu.py#L274-L291
[ "def", "process_user_input", "(", "self", ")", ":", "user_input", "=", "self", ".", "get_input", "(", ")", "go_to_max", "=", "ord", "(", "\"9\"", ")", "if", "len", "(", "self", ".", "items", ")", ">=", "9", "else", "ord", "(", "str", "(", "len", "(", "self", ".", "items", ")", ")", ")", "if", "ord", "(", "'1'", ")", "<=", "user_input", "<=", "go_to_max", ":", "self", ".", "go_to", "(", "user_input", "-", "ord", "(", "'0'", ")", "-", "1", ")", "elif", "user_input", "==", "curses", ".", "KEY_DOWN", ":", "self", ".", "go_down", "(", ")", "elif", "user_input", "==", "curses", ".", "KEY_UP", ":", "self", ".", "go_up", "(", ")", "elif", "user_input", "==", "ord", "(", "\"\\n\"", ")", ":", "self", ".", "select", "(", ")", "return", "user_input" ]
c76fc00ab9d518eab275e55434fc2941f49c6b30
test
CursesMenu.select
Select the current item and run it
cursesmenu/curses_menu.py
def select(self): """ Select the current item and run it """ self.selected_option = self.current_option self.selected_item.set_up() self.selected_item.action() self.selected_item.clean_up() self.returned_value = self.selected_item.get_return() self.should_exit = self.selected_item.should_exit if not self.should_exit: self.draw()
def select(self): """ Select the current item and run it """ self.selected_option = self.current_option self.selected_item.set_up() self.selected_item.action() self.selected_item.clean_up() self.returned_value = self.selected_item.get_return() self.should_exit = self.selected_item.should_exit if not self.should_exit: self.draw()
[ "Select", "the", "current", "item", "and", "run", "it" ]
pmbarrett314/curses-menu
python
https://github.com/pmbarrett314/curses-menu/blob/c76fc00ab9d518eab275e55434fc2941f49c6b30/cursesmenu/curses_menu.py#L323-L335
[ "def", "select", "(", "self", ")", ":", "self", ".", "selected_option", "=", "self", ".", "current_option", "self", ".", "selected_item", ".", "set_up", "(", ")", "self", ".", "selected_item", ".", "action", "(", ")", "self", ".", "selected_item", ".", "clean_up", "(", ")", "self", ".", "returned_value", "=", "self", ".", "selected_item", ".", "get_return", "(", ")", "self", ".", "should_exit", "=", "self", ".", "selected_item", ".", "should_exit", "if", "not", "self", ".", "should_exit", ":", "self", ".", "draw", "(", ")" ]
c76fc00ab9d518eab275e55434fc2941f49c6b30
test
ExitItem.show
This class overrides this method
cursesmenu/curses_menu.py
def show(self, index): """ This class overrides this method """ if self.menu and self.menu.parent: self.text = "Return to %s menu" % self.menu.parent.title else: self.text = "Exit" return super(ExitItem, self).show(index)
def show(self, index): """ This class overrides this method """ if self.menu and self.menu.parent: self.text = "Return to %s menu" % self.menu.parent.title else: self.text = "Exit" return super(ExitItem, self).show(index)
[ "This", "class", "overrides", "this", "method" ]
pmbarrett314/curses-menu
python
https://github.com/pmbarrett314/curses-menu/blob/c76fc00ab9d518eab275e55434fc2941f49c6b30/cursesmenu/curses_menu.py#L424-L432
[ "def", "show", "(", "self", ",", "index", ")", ":", "if", "self", ".", "menu", "and", "self", ".", "menu", ".", "parent", ":", "self", ".", "text", "=", "\"Return to %s menu\"", "%", "self", ".", "menu", ".", "parent", ".", "title", "else", ":", "self", ".", "text", "=", "\"Exit\"", "return", "super", "(", "ExitItem", ",", "self", ")", ".", "show", "(", "index", ")" ]
c76fc00ab9d518eab275e55434fc2941f49c6b30
test
FunctionItem.action
This class overrides this method
cursesmenu/items/function_item.py
def action(self): """ This class overrides this method """ self.return_value = self.function(*self.args, **self.kwargs)
def action(self): """ This class overrides this method """ self.return_value = self.function(*self.args, **self.kwargs)
[ "This", "class", "overrides", "this", "method" ]
pmbarrett314/curses-menu
python
https://github.com/pmbarrett314/curses-menu/blob/c76fc00ab9d518eab275e55434fc2941f49c6b30/cursesmenu/items/function_item.py#L31-L35
[ "def", "action", "(", "self", ")", ":", "self", ".", "return_value", "=", "self", ".", "function", "(", "*", "self", ".", "args", ",", "*", "*", "self", ".", "kwargs", ")" ]
c76fc00ab9d518eab275e55434fc2941f49c6b30
test
CommandItem.action
This class overrides this method
cursesmenu/items/command_item.py
def action(self): """ This class overrides this method """ commandline = "{0} {1}".format(self.command, " ".join(self.arguments)) try: completed_process = subprocess.run(commandline, shell=True) self.exit_status = completed_process.returncode except AttributeError: self.exit_status = subprocess.call(commandline, shell=True)
def action(self): """ This class overrides this method """ commandline = "{0} {1}".format(self.command, " ".join(self.arguments)) try: completed_process = subprocess.run(commandline, shell=True) self.exit_status = completed_process.returncode except AttributeError: self.exit_status = subprocess.call(commandline, shell=True)
[ "This", "class", "overrides", "this", "method" ]
pmbarrett314/curses-menu
python
https://github.com/pmbarrett314/curses-menu/blob/c76fc00ab9d518eab275e55434fc2941f49c6b30/cursesmenu/items/command_item.py#L27-L36
[ "def", "action", "(", "self", ")", ":", "commandline", "=", "\"{0} {1}\"", ".", "format", "(", "self", ".", "command", ",", "\" \"", ".", "join", "(", "self", ".", "arguments", ")", ")", "try", ":", "completed_process", "=", "subprocess", ".", "run", "(", "commandline", ",", "shell", "=", "True", ")", "self", ".", "exit_status", "=", "completed_process", ".", "returncode", "except", "AttributeError", ":", "self", ".", "exit_status", "=", "subprocess", ".", "call", "(", "commandline", ",", "shell", "=", "True", ")" ]
c76fc00ab9d518eab275e55434fc2941f49c6b30
test
parse_old_menu
Take an old-style menuData dictionary and return a CursesMenu :param dict menu_data: :return: A new CursesMenu :rtype: CursesMenu
cursesmenu/old_curses_menu.py
def parse_old_menu(menu_data): """ Take an old-style menuData dictionary and return a CursesMenu :param dict menu_data: :return: A new CursesMenu :rtype: CursesMenu """ menu_title = menu_data['title'] menu = CursesMenu(menu_title) for item in menu_data["options"]: item_type = item["type"] item_title = item["title"] if item_type == menuItem.COMMAND: item_command = item["command"] menu.append_item(CommandItem(item_title, item_command, menu)) elif item_type == menuItem.FUNCTION: item_function = item["function"] menu.append_item(FunctionItem(item_title, item_function, menu)) elif item_type == menuItem.EXITMENU: menu.append_item(ExitItem(item_title, menu)) elif item_type == menuItem.NUMBER: menu.append_item(SelectionItem(item_title, menu)) elif item_type == menuItem.MENU: new_menu = parse_old_menu(item) menu.append_item(SubmenuItem(item_title, menu, new_menu)) return menu
def parse_old_menu(menu_data): """ Take an old-style menuData dictionary and return a CursesMenu :param dict menu_data: :return: A new CursesMenu :rtype: CursesMenu """ menu_title = menu_data['title'] menu = CursesMenu(menu_title) for item in menu_data["options"]: item_type = item["type"] item_title = item["title"] if item_type == menuItem.COMMAND: item_command = item["command"] menu.append_item(CommandItem(item_title, item_command, menu)) elif item_type == menuItem.FUNCTION: item_function = item["function"] menu.append_item(FunctionItem(item_title, item_function, menu)) elif item_type == menuItem.EXITMENU: menu.append_item(ExitItem(item_title, menu)) elif item_type == menuItem.NUMBER: menu.append_item(SelectionItem(item_title, menu)) elif item_type == menuItem.MENU: new_menu = parse_old_menu(item) menu.append_item(SubmenuItem(item_title, menu, new_menu)) return menu
[ "Take", "an", "old", "-", "style", "menuData", "dictionary", "and", "return", "a", "CursesMenu" ]
pmbarrett314/curses-menu
python
https://github.com/pmbarrett314/curses-menu/blob/c76fc00ab9d518eab275e55434fc2941f49c6b30/cursesmenu/old_curses_menu.py#L20-L47
[ "def", "parse_old_menu", "(", "menu_data", ")", ":", "menu_title", "=", "menu_data", "[", "'title'", "]", "menu", "=", "CursesMenu", "(", "menu_title", ")", "for", "item", "in", "menu_data", "[", "\"options\"", "]", ":", "item_type", "=", "item", "[", "\"type\"", "]", "item_title", "=", "item", "[", "\"title\"", "]", "if", "item_type", "==", "menuItem", ".", "COMMAND", ":", "item_command", "=", "item", "[", "\"command\"", "]", "menu", ".", "append_item", "(", "CommandItem", "(", "item_title", ",", "item_command", ",", "menu", ")", ")", "elif", "item_type", "==", "menuItem", ".", "FUNCTION", ":", "item_function", "=", "item", "[", "\"function\"", "]", "menu", ".", "append_item", "(", "FunctionItem", "(", "item_title", ",", "item_function", ",", "menu", ")", ")", "elif", "item_type", "==", "menuItem", ".", "EXITMENU", ":", "menu", ".", "append_item", "(", "ExitItem", "(", "item_title", ",", "menu", ")", ")", "elif", "item_type", "==", "menuItem", ".", "NUMBER", ":", "menu", ".", "append_item", "(", "SelectionItem", "(", "item_title", ",", "menu", ")", ")", "elif", "item_type", "==", "menuItem", ".", "MENU", ":", "new_menu", "=", "parse_old_menu", "(", "item", ")", "menu", ".", "append_item", "(", "SubmenuItem", "(", "item_title", ",", "menu", ",", "new_menu", ")", ")", "return", "menu" ]
c76fc00ab9d518eab275e55434fc2941f49c6b30
test
SubmenuItem.set_up
This class overrides this method
cursesmenu/items/submenu_item.py
def set_up(self): """ This class overrides this method """ self.menu.pause() curses.def_prog_mode() self.menu.clear_screen()
def set_up(self): """ This class overrides this method """ self.menu.pause() curses.def_prog_mode() self.menu.clear_screen()
[ "This", "class", "overrides", "this", "method" ]
pmbarrett314/curses-menu
python
https://github.com/pmbarrett314/curses-menu/blob/c76fc00ab9d518eab275e55434fc2941f49c6b30/cursesmenu/items/submenu_item.py#L31-L37
[ "def", "set_up", "(", "self", ")", ":", "self", ".", "menu", ".", "pause", "(", ")", "curses", ".", "def_prog_mode", "(", ")", "self", ".", "menu", ".", "clear_screen", "(", ")" ]
c76fc00ab9d518eab275e55434fc2941f49c6b30
test
SubmenuItem.clean_up
This class overrides this method
cursesmenu/items/submenu_item.py
def clean_up(self): """ This class overrides this method """ self.submenu.join() self.menu.clear_screen() curses.reset_prog_mode() curses.curs_set(1) # reset doesn't do this right curses.curs_set(0) self.menu.resume()
def clean_up(self): """ This class overrides this method """ self.submenu.join() self.menu.clear_screen() curses.reset_prog_mode() curses.curs_set(1) # reset doesn't do this right curses.curs_set(0) self.menu.resume()
[ "This", "class", "overrides", "this", "method" ]
pmbarrett314/curses-menu
python
https://github.com/pmbarrett314/curses-menu/blob/c76fc00ab9d518eab275e55434fc2941f49c6b30/cursesmenu/items/submenu_item.py#L45-L54
[ "def", "clean_up", "(", "self", ")", ":", "self", ".", "submenu", ".", "join", "(", ")", "self", ".", "menu", ".", "clear_screen", "(", ")", "curses", ".", "reset_prog_mode", "(", ")", "curses", ".", "curs_set", "(", "1", ")", "# reset doesn't do this right", "curses", ".", "curs_set", "(", "0", ")", "self", ".", "menu", ".", "resume", "(", ")" ]
c76fc00ab9d518eab275e55434fc2941f49c6b30
test
add_aggregation_columns
Add new columns containing aggregations values on existing columns --- ### Parameters *mandatory :* - `group_cols` (*str* or *list*): columns used to aggregate the data - `aggregations` (*dict*): keys are name of new columns and values are aggregation functions Examples of aggregation functions : 'sum', 'max' Available aggregation functions are listed [here]( https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html#aggregation) --- ### Example **Input** | ENTITY | YEAR | VALUE_1 | VALUE_2 | |:------:|:----:|:-------:|:-------:| | A | 2017 | 10 | 3 | | A | 2017 | 20 | 1 | | A | 2018 | 10 | 5 | | A | 2018 | 30 | 4 | | B | 2017 | 60 | 4 | | B | 2017 | 40 | 3 | | B | 2018 | 50 | 7 | | B | 2018 | 60 | 6 | ```cson add_aggregation_columns: group_cols: ['ENTITY', 'YEAR'] aggregations: sum_value1: VALUE_1: 'sum' # sum of `VALUE_1` put in `sum_value1` column max_value1: VALUE_1: 'max' # max of `VALUE_1` put in `max_value1` column mean_value2: VALUE_2: 'mean' # mean of `VALUE_2` put in `mean_value2` column ] ``` **Output** | ENTITY | YEAR | VALUE_1 | VALUE_2 | sum_value1 | max_value1 | mean_value2 | |:------:|:----:|:-------:|:-------:|:----------:|:----------:|:-----------:| | A | 2017 | 10 | 3 | 30 | 20 | 2.0 | | A | 2017 | 20 | 1 | 30 | 20 | 2.0 | | A | 2018 | 10 | 5 | 40 | 30 | 4.5 | | A | 2018 | 30 | 4 | 40 | 30 | 4.5 | | B | 2017 | 60 | 4 | 100 | 60 | 3.5 | | B | 2017 | 40 | 3 | 100 | 60 | 3.5 | | B | 2018 | 50 | 7 | 110 | 60 | 6.5 | | B | 2018 | 60 | 6 | 110 | 60 | 6.5 |
toucan_data_sdk/utils/postprocess/add_aggregation_columns.py
def add_aggregation_columns( df, *, group_cols: Union[str, List[str]], aggregations: Dict[str, Agg] ): """ Add new columns containing aggregations values on existing columns --- ### Parameters *mandatory :* - `group_cols` (*str* or *list*): columns used to aggregate the data - `aggregations` (*dict*): keys are name of new columns and values are aggregation functions Examples of aggregation functions : 'sum', 'max' Available aggregation functions are listed [here]( https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html#aggregation) --- ### Example **Input** | ENTITY | YEAR | VALUE_1 | VALUE_2 | |:------:|:----:|:-------:|:-------:| | A | 2017 | 10 | 3 | | A | 2017 | 20 | 1 | | A | 2018 | 10 | 5 | | A | 2018 | 30 | 4 | | B | 2017 | 60 | 4 | | B | 2017 | 40 | 3 | | B | 2018 | 50 | 7 | | B | 2018 | 60 | 6 | ```cson add_aggregation_columns: group_cols: ['ENTITY', 'YEAR'] aggregations: sum_value1: VALUE_1: 'sum' # sum of `VALUE_1` put in `sum_value1` column max_value1: VALUE_1: 'max' # max of `VALUE_1` put in `max_value1` column mean_value2: VALUE_2: 'mean' # mean of `VALUE_2` put in `mean_value2` column ] ``` **Output** | ENTITY | YEAR | VALUE_1 | VALUE_2 | sum_value1 | max_value1 | mean_value2 | |:------:|:----:|:-------:|:-------:|:----------:|:----------:|:-----------:| | A | 2017 | 10 | 3 | 30 | 20 | 2.0 | | A | 2017 | 20 | 1 | 30 | 20 | 2.0 | | A | 2018 | 10 | 5 | 40 | 30 | 4.5 | | A | 2018 | 30 | 4 | 40 | 30 | 4.5 | | B | 2017 | 60 | 4 | 100 | 60 | 3.5 | | B | 2017 | 40 | 3 | 100 | 60 | 3.5 | | B | 2018 | 50 | 7 | 110 | 60 | 6.5 | | B | 2018 | 60 | 6 | 110 | 60 | 6.5 | """ group = df.groupby(group_cols) for new_col, aggs in aggregations.items(): assert len(aggs) == 1 (col, agg), *_ = aggs.items() df[new_col] = group[col].transform(agg) return df
def add_aggregation_columns( df, *, group_cols: Union[str, List[str]], aggregations: Dict[str, Agg] ): """ Add new columns containing aggregations values on existing columns --- ### Parameters *mandatory :* - `group_cols` (*str* or *list*): columns used to aggregate the data - `aggregations` (*dict*): keys are name of new columns and values are aggregation functions Examples of aggregation functions : 'sum', 'max' Available aggregation functions are listed [here]( https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html#aggregation) --- ### Example **Input** | ENTITY | YEAR | VALUE_1 | VALUE_2 | |:------:|:----:|:-------:|:-------:| | A | 2017 | 10 | 3 | | A | 2017 | 20 | 1 | | A | 2018 | 10 | 5 | | A | 2018 | 30 | 4 | | B | 2017 | 60 | 4 | | B | 2017 | 40 | 3 | | B | 2018 | 50 | 7 | | B | 2018 | 60 | 6 | ```cson add_aggregation_columns: group_cols: ['ENTITY', 'YEAR'] aggregations: sum_value1: VALUE_1: 'sum' # sum of `VALUE_1` put in `sum_value1` column max_value1: VALUE_1: 'max' # max of `VALUE_1` put in `max_value1` column mean_value2: VALUE_2: 'mean' # mean of `VALUE_2` put in `mean_value2` column ] ``` **Output** | ENTITY | YEAR | VALUE_1 | VALUE_2 | sum_value1 | max_value1 | mean_value2 | |:------:|:----:|:-------:|:-------:|:----------:|:----------:|:-----------:| | A | 2017 | 10 | 3 | 30 | 20 | 2.0 | | A | 2017 | 20 | 1 | 30 | 20 | 2.0 | | A | 2018 | 10 | 5 | 40 | 30 | 4.5 | | A | 2018 | 30 | 4 | 40 | 30 | 4.5 | | B | 2017 | 60 | 4 | 100 | 60 | 3.5 | | B | 2017 | 40 | 3 | 100 | 60 | 3.5 | | B | 2018 | 50 | 7 | 110 | 60 | 6.5 | | B | 2018 | 60 | 6 | 110 | 60 | 6.5 | """ group = df.groupby(group_cols) for new_col, aggs in aggregations.items(): assert len(aggs) == 1 (col, agg), *_ = aggs.items() df[new_col] = group[col].transform(agg) return df
[ "Add", "new", "columns", "containing", "aggregations", "values", "on", "existing", "columns" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/add_aggregation_columns.py#L6-L74
[ "def", "add_aggregation_columns", "(", "df", ",", "*", ",", "group_cols", ":", "Union", "[", "str", ",", "List", "[", "str", "]", "]", ",", "aggregations", ":", "Dict", "[", "str", ",", "Agg", "]", ")", ":", "group", "=", "df", ".", "groupby", "(", "group_cols", ")", "for", "new_col", ",", "aggs", "in", "aggregations", ".", "items", "(", ")", ":", "assert", "len", "(", "aggs", ")", "==", "1", "(", "col", ",", "agg", ")", ",", "", "*", "_", "=", "aggs", ".", "items", "(", ")", "df", "[", "new_col", "]", "=", "group", "[", "col", "]", ".", "transform", "(", "agg", ")", "return", "df" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
top
Get the top or flop N results based on a column value for each specified group columns --- ### Parameters *mandatory :* - `value` (*str*): column name on which you will rank the results - `limit` (*int*): Number to specify the N results you want to retrieve. Use a positive number x to retrieve the first x results. Use a negative number -x to retrieve the last x results. *optional :* - `order` (*str*): `"asc"` or `"desc"` to sort by ascending ou descending order. By default : `"asc"`. - `group` (*str*, *list of str*): name(s) of columns on which you want to perform the group operation. --- ### Example **Input** | variable | Category | value | |:--------:|:--------:|:-----:| | lili | 1 | 50 | | lili | 1 | 20 | | toto | 1 | 100 | | toto | 1 | 200 | | toto | 1 | 300 | | lala | 1 | 100 | | lala | 1 | 150 | | lala | 1 | 250 | | lala | 2 | 350 | | lala | 2 | 450 | ```cson top: value: 'value' limit: 4 order: 'asc' ``` **Output** | variable | Category | value | |:--------:|:--------:|:-----:| | lala | 1 | 250 | | toto | 1 | 300 | | lala | 2 | 350 | | lala | 2 | 450 |
toucan_data_sdk/utils/postprocess/top.py
def top( df, value: str, limit: int, order: str = 'asc', group: Union[str, List[str]] = None ): """ Get the top or flop N results based on a column value for each specified group columns --- ### Parameters *mandatory :* - `value` (*str*): column name on which you will rank the results - `limit` (*int*): Number to specify the N results you want to retrieve. Use a positive number x to retrieve the first x results. Use a negative number -x to retrieve the last x results. *optional :* - `order` (*str*): `"asc"` or `"desc"` to sort by ascending ou descending order. By default : `"asc"`. - `group` (*str*, *list of str*): name(s) of columns on which you want to perform the group operation. --- ### Example **Input** | variable | Category | value | |:--------:|:--------:|:-----:| | lili | 1 | 50 | | lili | 1 | 20 | | toto | 1 | 100 | | toto | 1 | 200 | | toto | 1 | 300 | | lala | 1 | 100 | | lala | 1 | 150 | | lala | 1 | 250 | | lala | 2 | 350 | | lala | 2 | 450 | ```cson top: value: 'value' limit: 4 order: 'asc' ``` **Output** | variable | Category | value | |:--------:|:--------:|:-----:| | lala | 1 | 250 | | toto | 1 | 300 | | lala | 2 | 350 | | lala | 2 | 450 | """ ascending = order != 'desc' limit = int(limit) filter_func = 'nlargest' if (limit > 0) ^ ascending else 'nsmallest' def _top(df): return getattr(df, filter_func)(abs(limit), value).sort_values(by=value, ascending=ascending) if group is None: df = _top(df) else: df = df.groupby(group).apply(_top) return df
def top( df, value: str, limit: int, order: str = 'asc', group: Union[str, List[str]] = None ): """ Get the top or flop N results based on a column value for each specified group columns --- ### Parameters *mandatory :* - `value` (*str*): column name on which you will rank the results - `limit` (*int*): Number to specify the N results you want to retrieve. Use a positive number x to retrieve the first x results. Use a negative number -x to retrieve the last x results. *optional :* - `order` (*str*): `"asc"` or `"desc"` to sort by ascending ou descending order. By default : `"asc"`. - `group` (*str*, *list of str*): name(s) of columns on which you want to perform the group operation. --- ### Example **Input** | variable | Category | value | |:--------:|:--------:|:-----:| | lili | 1 | 50 | | lili | 1 | 20 | | toto | 1 | 100 | | toto | 1 | 200 | | toto | 1 | 300 | | lala | 1 | 100 | | lala | 1 | 150 | | lala | 1 | 250 | | lala | 2 | 350 | | lala | 2 | 450 | ```cson top: value: 'value' limit: 4 order: 'asc' ``` **Output** | variable | Category | value | |:--------:|:--------:|:-----:| | lala | 1 | 250 | | toto | 1 | 300 | | lala | 2 | 350 | | lala | 2 | 450 | """ ascending = order != 'desc' limit = int(limit) filter_func = 'nlargest' if (limit > 0) ^ ascending else 'nsmallest' def _top(df): return getattr(df, filter_func)(abs(limit), value).sort_values(by=value, ascending=ascending) if group is None: df = _top(df) else: df = df.groupby(group).apply(_top) return df
[ "Get", "the", "top", "or", "flop", "N", "results", "based", "on", "a", "column", "value", "for", "each", "specified", "group", "columns" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/top.py#L4-L77
[ "def", "top", "(", "df", ",", "value", ":", "str", ",", "limit", ":", "int", ",", "order", ":", "str", "=", "'asc'", ",", "group", ":", "Union", "[", "str", ",", "List", "[", "str", "]", "]", "=", "None", ")", ":", "ascending", "=", "order", "!=", "'desc'", "limit", "=", "int", "(", "limit", ")", "filter_func", "=", "'nlargest'", "if", "(", "limit", ">", "0", ")", "^", "ascending", "else", "'nsmallest'", "def", "_top", "(", "df", ")", ":", "return", "getattr", "(", "df", ",", "filter_func", ")", "(", "abs", "(", "limit", ")", ",", "value", ")", ".", "sort_values", "(", "by", "=", "value", ",", "ascending", "=", "ascending", ")", "if", "group", "is", "None", ":", "df", "=", "_top", "(", "df", ")", "else", ":", "df", "=", "df", ".", "groupby", "(", "group", ")", ".", "apply", "(", "_top", ")", "return", "df" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
top_group
Get the top or flop N results based on a function and a column value that agregates the input. The result is composed by all the original lines including only lines corresponding to the top groups --- ### Parameters *mandatory :* - `value` (*str*): Name of the column name on which you will rank the results. - `limit` (*int*): Number to specify the N results you want to retrieve from the sorted values. - Use a positive number x to retrieve the first x results. - Use a negative number -x to retrieve the last x results. - `aggregate_by` (*list of str*)): name(s) of columns you want to aggregate *optional :* - `order` (*str*): `"asc"` or `"desc"` to sort by ascending ou descending order. By default : `"asc"`. - `group` (*str*, *list of str*): name(s) of columns on which you want to perform the group operation. - `function` : Function to use to group over the group column --- ### Example **Input** | variable | Category | value | |:--------:|:--------:|:-----:| | lili | 1 | 50 | | lili | 1 | 20 | | toto | 1 | 100 | | toto | 1 | 200 | | toto | 1 | 300 | | lala | 1 | 100 | | lala | 1 | 150 | | lala | 1 | 250 | | lala | 2 | 350 | | lala | 2 | 450 | ```cson top_group: group: ["Category"] value: 'value' aggregate_by: ["variable"] limit: 2 order: "desc" ``` **Output** | variable | Category | value | |:--------:|:--------:|:-----:| | toto | 1 | 100 | | toto | 1 | 200 | | toto | 1 | 300 | | lala | 1 | 100 | | lala | 1 | 150 | | lala | 1 | 250 | | lala | 2 | 350 | | lala | 2 | 450 |
toucan_data_sdk/utils/postprocess/top.py
def top_group( df, aggregate_by: List[str], value: str, limit: int, order: str = 'asc', function: str = 'sum', group: Union[str, List[str]] = None ): """ Get the top or flop N results based on a function and a column value that agregates the input. The result is composed by all the original lines including only lines corresponding to the top groups --- ### Parameters *mandatory :* - `value` (*str*): Name of the column name on which you will rank the results. - `limit` (*int*): Number to specify the N results you want to retrieve from the sorted values. - Use a positive number x to retrieve the first x results. - Use a negative number -x to retrieve the last x results. - `aggregate_by` (*list of str*)): name(s) of columns you want to aggregate *optional :* - `order` (*str*): `"asc"` or `"desc"` to sort by ascending ou descending order. By default : `"asc"`. - `group` (*str*, *list of str*): name(s) of columns on which you want to perform the group operation. - `function` : Function to use to group over the group column --- ### Example **Input** | variable | Category | value | |:--------:|:--------:|:-----:| | lili | 1 | 50 | | lili | 1 | 20 | | toto | 1 | 100 | | toto | 1 | 200 | | toto | 1 | 300 | | lala | 1 | 100 | | lala | 1 | 150 | | lala | 1 | 250 | | lala | 2 | 350 | | lala | 2 | 450 | ```cson top_group: group: ["Category"] value: 'value' aggregate_by: ["variable"] limit: 2 order: "desc" ``` **Output** | variable | Category | value | |:--------:|:--------:|:-----:| | toto | 1 | 100 | | toto | 1 | 200 | | toto | 1 | 300 | | lala | 1 | 100 | | lala | 1 | 150 | | lala | 1 | 250 | | lala | 2 | 350 | | lala | 2 | 450 | """ aggregate_by = aggregate_by or [] group_top = group or [] df2 = df.groupby(group_top + aggregate_by).agg(function).reset_index() df2 = top(df2, group=group, value=value, limit=limit, order=order).reset_index(drop=True) df2 = df2[group_top + aggregate_by] df = df2.merge(df, on=group_top + aggregate_by) return df
def top_group( df, aggregate_by: List[str], value: str, limit: int, order: str = 'asc', function: str = 'sum', group: Union[str, List[str]] = None ): """ Get the top or flop N results based on a function and a column value that agregates the input. The result is composed by all the original lines including only lines corresponding to the top groups --- ### Parameters *mandatory :* - `value` (*str*): Name of the column name on which you will rank the results. - `limit` (*int*): Number to specify the N results you want to retrieve from the sorted values. - Use a positive number x to retrieve the first x results. - Use a negative number -x to retrieve the last x results. - `aggregate_by` (*list of str*)): name(s) of columns you want to aggregate *optional :* - `order` (*str*): `"asc"` or `"desc"` to sort by ascending ou descending order. By default : `"asc"`. - `group` (*str*, *list of str*): name(s) of columns on which you want to perform the group operation. - `function` : Function to use to group over the group column --- ### Example **Input** | variable | Category | value | |:--------:|:--------:|:-----:| | lili | 1 | 50 | | lili | 1 | 20 | | toto | 1 | 100 | | toto | 1 | 200 | | toto | 1 | 300 | | lala | 1 | 100 | | lala | 1 | 150 | | lala | 1 | 250 | | lala | 2 | 350 | | lala | 2 | 450 | ```cson top_group: group: ["Category"] value: 'value' aggregate_by: ["variable"] limit: 2 order: "desc" ``` **Output** | variable | Category | value | |:--------:|:--------:|:-----:| | toto | 1 | 100 | | toto | 1 | 200 | | toto | 1 | 300 | | lala | 1 | 100 | | lala | 1 | 150 | | lala | 1 | 250 | | lala | 2 | 350 | | lala | 2 | 450 | """ aggregate_by = aggregate_by or [] group_top = group or [] df2 = df.groupby(group_top + aggregate_by).agg(function).reset_index() df2 = top(df2, group=group, value=value, limit=limit, order=order).reset_index(drop=True) df2 = df2[group_top + aggregate_by] df = df2.merge(df, on=group_top + aggregate_by) return df
[ "Get", "the", "top", "or", "flop", "N", "results", "based", "on", "a", "function", "and", "a", "column", "value", "that", "agregates", "the", "input", ".", "The", "result", "is", "composed", "by", "all", "the", "original", "lines", "including", "only", "lines", "corresponding", "to", "the", "top", "groups" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/top.py#L80-L158
[ "def", "top_group", "(", "df", ",", "aggregate_by", ":", "List", "[", "str", "]", ",", "value", ":", "str", ",", "limit", ":", "int", ",", "order", ":", "str", "=", "'asc'", ",", "function", ":", "str", "=", "'sum'", ",", "group", ":", "Union", "[", "str", ",", "List", "[", "str", "]", "]", "=", "None", ")", ":", "aggregate_by", "=", "aggregate_by", "or", "[", "]", "group_top", "=", "group", "or", "[", "]", "df2", "=", "df", ".", "groupby", "(", "group_top", "+", "aggregate_by", ")", ".", "agg", "(", "function", ")", ".", "reset_index", "(", ")", "df2", "=", "top", "(", "df2", ",", "group", "=", "group", ",", "value", "=", "value", ",", "limit", "=", "limit", ",", "order", "=", "order", ")", ".", "reset_index", "(", "drop", "=", "True", ")", "df2", "=", "df2", "[", "group_top", "+", "aggregate_by", "]", "df", "=", "df2", ".", "merge", "(", "df", ",", "on", "=", "group_top", "+", "aggregate_by", ")", "return", "df" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
convert_str_to_datetime
Convert string column into datetime column --- ### Parameters *mandatory :* - `column` (*str*): name of the column to format - `format` (*str*): current format of the values (see [available formats]( https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior))
toucan_data_sdk/utils/postprocess/converter.py
def convert_str_to_datetime(df, *, column: str, format: str): """ Convert string column into datetime column --- ### Parameters *mandatory :* - `column` (*str*): name of the column to format - `format` (*str*): current format of the values (see [available formats]( https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior)) """ df[column] = pd.to_datetime(df[column], format=format) return df
def convert_str_to_datetime(df, *, column: str, format: str): """ Convert string column into datetime column --- ### Parameters *mandatory :* - `column` (*str*): name of the column to format - `format` (*str*): current format of the values (see [available formats]( https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior)) """ df[column] = pd.to_datetime(df[column], format=format) return df
[ "Convert", "string", "column", "into", "datetime", "column" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/converter.py#L4-L18
[ "def", "convert_str_to_datetime", "(", "df", ",", "*", ",", "column", ":", "str", ",", "format", ":", "str", ")", ":", "df", "[", "column", "]", "=", "pd", ".", "to_datetime", "(", "df", "[", "column", "]", ",", "format", "=", "format", ")", "return", "df" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
convert_datetime_to_str
Convert datetime column into string column --- ### Parameters *mandatory :* - column (*str*): name of the column to format - format (*str*): format of the result values (see [available formats]( https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior)) *optional :* - new_column (*str*): name of the output column. By default `column` is overwritten.
toucan_data_sdk/utils/postprocess/converter.py
def convert_datetime_to_str(df, *, column: str, format: str, new_column: str = None): """ Convert datetime column into string column --- ### Parameters *mandatory :* - column (*str*): name of the column to format - format (*str*): format of the result values (see [available formats]( https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior)) *optional :* - new_column (*str*): name of the output column. By default `column` is overwritten. """ new_column = new_column or column df[new_column] = df[column].dt.strftime(format) return df
def convert_datetime_to_str(df, *, column: str, format: str, new_column: str = None): """ Convert datetime column into string column --- ### Parameters *mandatory :* - column (*str*): name of the column to format - format (*str*): format of the result values (see [available formats]( https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior)) *optional :* - new_column (*str*): name of the output column. By default `column` is overwritten. """ new_column = new_column or column df[new_column] = df[column].dt.strftime(format) return df
[ "Convert", "datetime", "column", "into", "string", "column" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/converter.py#L21-L39
[ "def", "convert_datetime_to_str", "(", "df", ",", "*", ",", "column", ":", "str", ",", "format", ":", "str", ",", "new_column", ":", "str", "=", "None", ")", ":", "new_column", "=", "new_column", "or", "column", "df", "[", "new_column", "]", "=", "df", "[", "column", "]", ".", "dt", ".", "strftime", "(", "format", ")", "return", "df" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
change_date_format
Convert the format of a date --- ### Parameters *mandatory :* - `column` (*str*): name of the column to change the format - `output_format` (*str*): format of the output values (see [available formats]( https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior)) *optional :* - `input_format` (*str*): format of the input values (by default let the parser detect it) - `new_column` (*str*): name of the output column (by default overwrite `column`) - `new_time_zone` (*str*): name of new time zone (by default no time zone conversion is done) --- ### Example **Input** label | date :------:|:----: France | 2017-03-22 Europe | 2016-03-22 ```cson change_date_format: column: 'date' input_format: '%Y-%m-%d' output_format: '%Y-%m' ``` Output : label | date :------:|:----: France | 2017-03 Europe | 2016-03
toucan_data_sdk/utils/postprocess/converter.py
def change_date_format( df, *, column: str, output_format: str, input_format: str = None, new_column: str = None, new_time_zone=None ): """ Convert the format of a date --- ### Parameters *mandatory :* - `column` (*str*): name of the column to change the format - `output_format` (*str*): format of the output values (see [available formats]( https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior)) *optional :* - `input_format` (*str*): format of the input values (by default let the parser detect it) - `new_column` (*str*): name of the output column (by default overwrite `column`) - `new_time_zone` (*str*): name of new time zone (by default no time zone conversion is done) --- ### Example **Input** label | date :------:|:----: France | 2017-03-22 Europe | 2016-03-22 ```cson change_date_format: column: 'date' input_format: '%Y-%m-%d' output_format: '%Y-%m' ``` Output : label | date :------:|:----: France | 2017-03 Europe | 2016-03 """ new_column = new_column or column df[new_column] = (pd.to_datetime(df[column], format=input_format, utc=True) .dt.tz_convert(new_time_zone) .dt.strftime(output_format)) return df
def change_date_format( df, *, column: str, output_format: str, input_format: str = None, new_column: str = None, new_time_zone=None ): """ Convert the format of a date --- ### Parameters *mandatory :* - `column` (*str*): name of the column to change the format - `output_format` (*str*): format of the output values (see [available formats]( https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior)) *optional :* - `input_format` (*str*): format of the input values (by default let the parser detect it) - `new_column` (*str*): name of the output column (by default overwrite `column`) - `new_time_zone` (*str*): name of new time zone (by default no time zone conversion is done) --- ### Example **Input** label | date :------:|:----: France | 2017-03-22 Europe | 2016-03-22 ```cson change_date_format: column: 'date' input_format: '%Y-%m-%d' output_format: '%Y-%m' ``` Output : label | date :------:|:----: France | 2017-03 Europe | 2016-03 """ new_column = new_column or column df[new_column] = (pd.to_datetime(df[column], format=input_format, utc=True) .dt.tz_convert(new_time_zone) .dt.strftime(output_format)) return df
[ "Convert", "the", "format", "of", "a", "date" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/converter.py#L42-L96
[ "def", "change_date_format", "(", "df", ",", "*", ",", "column", ":", "str", ",", "output_format", ":", "str", ",", "input_format", ":", "str", "=", "None", ",", "new_column", ":", "str", "=", "None", ",", "new_time_zone", "=", "None", ")", ":", "new_column", "=", "new_column", "or", "column", "df", "[", "new_column", "]", "=", "(", "pd", ".", "to_datetime", "(", "df", "[", "column", "]", ",", "format", "=", "input_format", ",", "utc", "=", "True", ")", ".", "dt", ".", "tz_convert", "(", "new_time_zone", ")", ".", "dt", ".", "strftime", "(", "output_format", ")", ")", "return", "df" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
cast
Convert column's type into type --- ### Parameters *mandatory :* - `column` (*str*): name of the column to convert - `type` (*str*): output type. It can be : - `"int"` : integer type - `"float"` : general number type - `"str"` : text type *optional :* - `new_column` (*str*): name of the output column. By default the `column` arguments is modified. --- ### Example **Input** | Column 1 | Column 2 | Column 3 | |:-------:|:--------:|:--------:| | 'one' | '2014' | 30.0 | | 'two' | 2015.0 | '1' | | 3.1 | 2016 | 450 | ```cson postprocess: [ cast: column: 'Column 1' type: 'str' cast: column: 'Column 2' type: 'int' cast: column: 'Column 3' type: 'float' ] ``` **Output** | Column 1 | Column 2 | Column 3 | |:-------:|:------:|:--------:| | 'one' | 2014 | 30.0 | | 'two' | 2015 | 1.0 | | '3.1' | 2016 | 450.0 |
toucan_data_sdk/utils/postprocess/converter.py
def cast(df, column: str, type: str, new_column=None): """ Convert column's type into type --- ### Parameters *mandatory :* - `column` (*str*): name of the column to convert - `type` (*str*): output type. It can be : - `"int"` : integer type - `"float"` : general number type - `"str"` : text type *optional :* - `new_column` (*str*): name of the output column. By default the `column` arguments is modified. --- ### Example **Input** | Column 1 | Column 2 | Column 3 | |:-------:|:--------:|:--------:| | 'one' | '2014' | 30.0 | | 'two' | 2015.0 | '1' | | 3.1 | 2016 | 450 | ```cson postprocess: [ cast: column: 'Column 1' type: 'str' cast: column: 'Column 2' type: 'int' cast: column: 'Column 3' type: 'float' ] ``` **Output** | Column 1 | Column 2 | Column 3 | |:-------:|:------:|:--------:| | 'one' | 2014 | 30.0 | | 'two' | 2015 | 1.0 | | '3.1' | 2016 | 450.0 | """ new_column = new_column or column df[new_column] = df[column].astype(type) return df
def cast(df, column: str, type: str, new_column=None): """ Convert column's type into type --- ### Parameters *mandatory :* - `column` (*str*): name of the column to convert - `type` (*str*): output type. It can be : - `"int"` : integer type - `"float"` : general number type - `"str"` : text type *optional :* - `new_column` (*str*): name of the output column. By default the `column` arguments is modified. --- ### Example **Input** | Column 1 | Column 2 | Column 3 | |:-------:|:--------:|:--------:| | 'one' | '2014' | 30.0 | | 'two' | 2015.0 | '1' | | 3.1 | 2016 | 450 | ```cson postprocess: [ cast: column: 'Column 1' type: 'str' cast: column: 'Column 2' type: 'int' cast: column: 'Column 3' type: 'float' ] ``` **Output** | Column 1 | Column 2 | Column 3 | |:-------:|:------:|:--------:| | 'one' | 2014 | 30.0 | | 'two' | 2015 | 1.0 | | '3.1' | 2016 | 450.0 | """ new_column = new_column or column df[new_column] = df[column].astype(type) return df
[ "Convert", "column", "s", "type", "into", "type" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/converter.py#L99-L154
[ "def", "cast", "(", "df", ",", "column", ":", "str", ",", "type", ":", "str", ",", "new_column", "=", "None", ")", ":", "new_column", "=", "new_column", "or", "column", "df", "[", "new_column", "]", "=", "df", "[", "column", "]", ".", "astype", "(", "type", ")", "return", "df" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
compute_evolution_by_frequency
This function answers the question: how has a value changed on a weekly, monthly, yearly basis ? --- ### Parameters *mandatory :* - `id_cols` (*list*): name of the columns used to create each group. - `date_col` (*str or dict*): either directly the name of the column containing the date or a dictionary with: - `selector` (*str*): the name of the column - `format` (*str*): the format of the date (see [pandas doc]( https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior)) - `value_col` (*str*): name of the column containing the value to compare. *optional :* - `freq` (*int/pd.DateOffset/pd.Serie/dict*): the frequency at which we calculate evolutions - `method` (*str*): either `"abs"` for absolute values or `"pct"` for the evolution in percentage of previous value. - `offseted_suffix` (*str*): suffix of the offseted column. By default, `"_offseted"`. - `evolution_col_name` (*str*): name given to the evolution column. By default, `"evolution_computed"`. - `missing_date_as_zero` (*boolean*): add missing date with zero value. - `raise_duplicate_error` (*boolean*): raise an error when the dataset has duplicated values with the given `id_cols`. - `format` (*str*): `'df'` # Do not change it !!! --- ### Example **Input** | id_cols | value_col | date_col| |:---------:|:------------:|:----------:| | A | 20 | 2010| | | 7 | 2011| | B | 200 | 2010| | | 220 | 2011| | C | 100 | 2011| ```cson compute_evolution_by_frequency: id_cols: "id_cols" date_col: "date_col" value_col: "value_col" ``` **Output** | id_cols | value_col | date_col| evolution| |:---------:|:------------:|:----------:|:---------:| | A | 20 | 2010| null| | | 7 | 2011| -13| | B | 200 | 2010| null| | | 220 | 2011| 20| | C | 100 | 2011| null|
toucan_data_sdk/utils/generic/compute_evolution.py
def compute_evolution_by_frequency( df, id_cols: List[str], date_col: Union[str, Dict[str, str]], value_col: str, freq=1, method: str = 'abs', format: str = 'column', offseted_suffix: str = '_offseted', evolution_col_name: str = 'evolution_computed', missing_date_as_zero: bool = False, raise_duplicate_error: bool = True ): """ This function answers the question: how has a value changed on a weekly, monthly, yearly basis ? --- ### Parameters *mandatory :* - `id_cols` (*list*): name of the columns used to create each group. - `date_col` (*str or dict*): either directly the name of the column containing the date or a dictionary with: - `selector` (*str*): the name of the column - `format` (*str*): the format of the date (see [pandas doc]( https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior)) - `value_col` (*str*): name of the column containing the value to compare. *optional :* - `freq` (*int/pd.DateOffset/pd.Serie/dict*): the frequency at which we calculate evolutions - `method` (*str*): either `"abs"` for absolute values or `"pct"` for the evolution in percentage of previous value. - `offseted_suffix` (*str*): suffix of the offseted column. By default, `"_offseted"`. - `evolution_col_name` (*str*): name given to the evolution column. By default, `"evolution_computed"`. - `missing_date_as_zero` (*boolean*): add missing date with zero value. - `raise_duplicate_error` (*boolean*): raise an error when the dataset has duplicated values with the given `id_cols`. - `format` (*str*): `'df'` # Do not change it !!! --- ### Example **Input** | id_cols | value_col | date_col| |:---------:|:------------:|:----------:| | A | 20 | 2010| | | 7 | 2011| | B | 200 | 2010| | | 220 | 2011| | C | 100 | 2011| ```cson compute_evolution_by_frequency: id_cols: "id_cols" date_col: "date_col" value_col: "value_col" ``` **Output** | id_cols | value_col | date_col| evolution| |:---------:|:------------:|:----------:|:---------:| | A | 20 | 2010| null| | | 7 | 2011| -13| | B | 200 | 2010| null| | | 220 | 2011| 20| | C | 100 | 2011| null| """ if missing_date_as_zero: how = 'outer' fillna = 0 else: how = 'left' fillna = None return __compute_evolution( df=df, id_cols=id_cols, value_col=value_col, date_col=date_col, freq=freq, method=method, format=format, offseted_suffix=offseted_suffix, evolution_col_name=evolution_col_name, how=how, fillna=fillna, raise_duplicate_error=raise_duplicate_error )
def compute_evolution_by_frequency( df, id_cols: List[str], date_col: Union[str, Dict[str, str]], value_col: str, freq=1, method: str = 'abs', format: str = 'column', offseted_suffix: str = '_offseted', evolution_col_name: str = 'evolution_computed', missing_date_as_zero: bool = False, raise_duplicate_error: bool = True ): """ This function answers the question: how has a value changed on a weekly, monthly, yearly basis ? --- ### Parameters *mandatory :* - `id_cols` (*list*): name of the columns used to create each group. - `date_col` (*str or dict*): either directly the name of the column containing the date or a dictionary with: - `selector` (*str*): the name of the column - `format` (*str*): the format of the date (see [pandas doc]( https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior)) - `value_col` (*str*): name of the column containing the value to compare. *optional :* - `freq` (*int/pd.DateOffset/pd.Serie/dict*): the frequency at which we calculate evolutions - `method` (*str*): either `"abs"` for absolute values or `"pct"` for the evolution in percentage of previous value. - `offseted_suffix` (*str*): suffix of the offseted column. By default, `"_offseted"`. - `evolution_col_name` (*str*): name given to the evolution column. By default, `"evolution_computed"`. - `missing_date_as_zero` (*boolean*): add missing date with zero value. - `raise_duplicate_error` (*boolean*): raise an error when the dataset has duplicated values with the given `id_cols`. - `format` (*str*): `'df'` # Do not change it !!! --- ### Example **Input** | id_cols | value_col | date_col| |:---------:|:------------:|:----------:| | A | 20 | 2010| | | 7 | 2011| | B | 200 | 2010| | | 220 | 2011| | C | 100 | 2011| ```cson compute_evolution_by_frequency: id_cols: "id_cols" date_col: "date_col" value_col: "value_col" ``` **Output** | id_cols | value_col | date_col| evolution| |:---------:|:------------:|:----------:|:---------:| | A | 20 | 2010| null| | | 7 | 2011| -13| | B | 200 | 2010| null| | | 220 | 2011| 20| | C | 100 | 2011| null| """ if missing_date_as_zero: how = 'outer' fillna = 0 else: how = 'left' fillna = None return __compute_evolution( df=df, id_cols=id_cols, value_col=value_col, date_col=date_col, freq=freq, method=method, format=format, offseted_suffix=offseted_suffix, evolution_col_name=evolution_col_name, how=how, fillna=fillna, raise_duplicate_error=raise_duplicate_error )
[ "This", "function", "answers", "the", "question", ":", "how", "has", "a", "value", "changed", "on", "a", "weekly", "monthly", "yearly", "basis", "?" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/generic/compute_evolution.py#L10-L98
[ "def", "compute_evolution_by_frequency", "(", "df", ",", "id_cols", ":", "List", "[", "str", "]", ",", "date_col", ":", "Union", "[", "str", ",", "Dict", "[", "str", ",", "str", "]", "]", ",", "value_col", ":", "str", ",", "freq", "=", "1", ",", "method", ":", "str", "=", "'abs'", ",", "format", ":", "str", "=", "'column'", ",", "offseted_suffix", ":", "str", "=", "'_offseted'", ",", "evolution_col_name", ":", "str", "=", "'evolution_computed'", ",", "missing_date_as_zero", ":", "bool", "=", "False", ",", "raise_duplicate_error", ":", "bool", "=", "True", ")", ":", "if", "missing_date_as_zero", ":", "how", "=", "'outer'", "fillna", "=", "0", "else", ":", "how", "=", "'left'", "fillna", "=", "None", "return", "__compute_evolution", "(", "df", "=", "df", ",", "id_cols", "=", "id_cols", ",", "value_col", "=", "value_col", ",", "date_col", "=", "date_col", ",", "freq", "=", "freq", ",", "method", "=", "method", ",", "format", "=", "format", ",", "offseted_suffix", "=", "offseted_suffix", ",", "evolution_col_name", "=", "evolution_col_name", ",", "how", "=", "how", ",", "fillna", "=", "fillna", ",", "raise_duplicate_error", "=", "raise_duplicate_error", ")" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
compute_evolution_by_criteria
This function answers the question: how has a value changed compare to a specific value ? --- ### Parameters *mandatory :* - `id_cols` (*list*): columns used to create each group - `value_col` (*str*): name of the column containing the value to compare - `compare_to` (*str*): the query identifying a specific set of values for comparison. *optional :* - `method` (*str*): either `"abs"` for absolute values or `"pct"` for the evolution in percentage of previous value. - `offseted_suffix` (*str*): suffix of the offseted column. By default, `"_offseted"`. - `evolution_col_name` (*str*): name given to the evolution column. By default, `"evolution_computed"`. - `raise_duplicate_error` (*boolean*): raise an error when the dataset has duplicated values with the given `id_cols`. - `format` (*str*): `'df'` # Do not change it !!! --- ### Example **Input** | id_cols | value_col | month| |:---------:|:------------:|:-------:| | A | 100 | 1| | | 250 | 12| | B | 300 | 1| | | 200 | 12| ```cson compute_evolution_by_criteria: id_cols: "id_cols" value_col: "value_col" compare_to: "month==12" ``` **Output** | id_cols | value_col | month| value_offseted | evolution_computed| |:---------:|:------------:|:-------:|:----------------:|:-----------------:| | A | 100 | 1| 250| -150| | | 250 | 12| 250| 0| | B | 300 | 1| 200| 100| | | 200 | 12| 200| 0|
toucan_data_sdk/utils/generic/compute_evolution.py
def compute_evolution_by_criteria( df, id_cols: List[str], value_col: str, compare_to: str, method: str = 'abs', format: str = 'column', offseted_suffix: str = '_offseted', evolution_col_name: str = 'evolution_computed', raise_duplicate_error: bool = True ): """ This function answers the question: how has a value changed compare to a specific value ? --- ### Parameters *mandatory :* - `id_cols` (*list*): columns used to create each group - `value_col` (*str*): name of the column containing the value to compare - `compare_to` (*str*): the query identifying a specific set of values for comparison. *optional :* - `method` (*str*): either `"abs"` for absolute values or `"pct"` for the evolution in percentage of previous value. - `offseted_suffix` (*str*): suffix of the offseted column. By default, `"_offseted"`. - `evolution_col_name` (*str*): name given to the evolution column. By default, `"evolution_computed"`. - `raise_duplicate_error` (*boolean*): raise an error when the dataset has duplicated values with the given `id_cols`. - `format` (*str*): `'df'` # Do not change it !!! --- ### Example **Input** | id_cols | value_col | month| |:---------:|:------------:|:-------:| | A | 100 | 1| | | 250 | 12| | B | 300 | 1| | | 200 | 12| ```cson compute_evolution_by_criteria: id_cols: "id_cols" value_col: "value_col" compare_to: "month==12" ``` **Output** | id_cols | value_col | month| value_offseted | evolution_computed| |:---------:|:------------:|:-------:|:----------------:|:-----------------:| | A | 100 | 1| 250| -150| | | 250 | 12| 250| 0| | B | 300 | 1| 200| 100| | | 200 | 12| 200| 0| """ return __compute_evolution(**locals())
def compute_evolution_by_criteria( df, id_cols: List[str], value_col: str, compare_to: str, method: str = 'abs', format: str = 'column', offseted_suffix: str = '_offseted', evolution_col_name: str = 'evolution_computed', raise_duplicate_error: bool = True ): """ This function answers the question: how has a value changed compare to a specific value ? --- ### Parameters *mandatory :* - `id_cols` (*list*): columns used to create each group - `value_col` (*str*): name of the column containing the value to compare - `compare_to` (*str*): the query identifying a specific set of values for comparison. *optional :* - `method` (*str*): either `"abs"` for absolute values or `"pct"` for the evolution in percentage of previous value. - `offseted_suffix` (*str*): suffix of the offseted column. By default, `"_offseted"`. - `evolution_col_name` (*str*): name given to the evolution column. By default, `"evolution_computed"`. - `raise_duplicate_error` (*boolean*): raise an error when the dataset has duplicated values with the given `id_cols`. - `format` (*str*): `'df'` # Do not change it !!! --- ### Example **Input** | id_cols | value_col | month| |:---------:|:------------:|:-------:| | A | 100 | 1| | | 250 | 12| | B | 300 | 1| | | 200 | 12| ```cson compute_evolution_by_criteria: id_cols: "id_cols" value_col: "value_col" compare_to: "month==12" ``` **Output** | id_cols | value_col | month| value_offseted | evolution_computed| |:---------:|:------------:|:-------:|:----------------:|:-----------------:| | A | 100 | 1| 250| -150| | | 250 | 12| 250| 0| | B | 300 | 1| 200| 100| | | 200 | 12| 200| 0| """ return __compute_evolution(**locals())
[ "This", "function", "answers", "the", "question", ":", "how", "has", "a", "value", "changed", "compare", "to", "a", "specific", "value", "?" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/generic/compute_evolution.py#L101-L160
[ "def", "compute_evolution_by_criteria", "(", "df", ",", "id_cols", ":", "List", "[", "str", "]", ",", "value_col", ":", "str", ",", "compare_to", ":", "str", ",", "method", ":", "str", "=", "'abs'", ",", "format", ":", "str", "=", "'column'", ",", "offseted_suffix", ":", "str", "=", "'_offseted'", ",", "evolution_col_name", ":", "str", "=", "'evolution_computed'", ",", "raise_duplicate_error", ":", "bool", "=", "True", ")", ":", "return", "__compute_evolution", "(", "*", "*", "locals", "(", ")", ")" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
__compute_evolution
Compute an evolution column : - against a period distant from a fixed frequency. - against a part of the df Unfortunately, pandas doesn't allow .change() and .pct_change() to be executed with a MultiIndex. Args: df (pd.DataFrame): id_cols (list(str)): value_col (str): date_col (str/dict): default None freq (int/pd.DateOffset/pd.Serie): default 1 compare_to (str): default None method (str): default ``'abs'`` can be also ``'pct'`` format(str): default 'column' can be also 'df' offseted_suffix(str): default '_offseted' evolution_col_name(str): default 'evolution_computed' how(str): default 'left' fillna(str/int): default None
toucan_data_sdk/utils/generic/compute_evolution.py
def __compute_evolution( df, id_cols, value_col, date_col=None, freq=1, compare_to=None, method='abs', format='column', offseted_suffix='_offseted', evolution_col_name='evolution_computed', how='left', fillna=None, raise_duplicate_error=True ): """ Compute an evolution column : - against a period distant from a fixed frequency. - against a part of the df Unfortunately, pandas doesn't allow .change() and .pct_change() to be executed with a MultiIndex. Args: df (pd.DataFrame): id_cols (list(str)): value_col (str): date_col (str/dict): default None freq (int/pd.DateOffset/pd.Serie): default 1 compare_to (str): default None method (str): default ``'abs'`` can be also ``'pct'`` format(str): default 'column' can be also 'df' offseted_suffix(str): default '_offseted' evolution_col_name(str): default 'evolution_computed' how(str): default 'left' fillna(str/int): default None """ if date_col is not None: is_date_to_format = isinstance(date_col, dict) or (df[date_col].dtype == np.object) if is_date_to_format: if isinstance(date_col, dict): date_format = date_col.get('format', None) date_col = date_col['selector'] else: date_format = None df['_'+date_col + '_copy_'] = pd.to_datetime(df[date_col], format=date_format) date_col = '_'+date_col + '_copy_' is_freq_dict = isinstance(freq, dict) if is_freq_dict: freq = pd.DateOffset(**{k: int(v) for k, v in freq.items()}) check_params_columns_duplicate(id_cols + [value_col, date_col]) # create df_offseted group_cols = id_cols + [date_col] df_offseted = df[group_cols + [value_col]].copy() df_offseted[date_col] += freq df_with_offseted_values = apply_merge( df, df_offseted, group_cols, how, offseted_suffix, raise_duplicate_error ) if is_date_to_format: del df_with_offseted_values[date_col] elif compare_to is not None: # create df_offseted check_params_columns_duplicate(id_cols + [value_col]) group_cols = id_cols df_offseted = df.query(compare_to).copy() df_offseted = df_offseted[group_cols + [value_col]] df_with_offseted_values = apply_merge( df, df_offseted, group_cols, how, offseted_suffix, raise_duplicate_error ) apply_fillna(df_with_offseted_values, value_col, offseted_suffix, fillna) apply_method(df_with_offseted_values, evolution_col_name, value_col, offseted_suffix, method) return apply_format(df_with_offseted_values, evolution_col_name, format)
def __compute_evolution( df, id_cols, value_col, date_col=None, freq=1, compare_to=None, method='abs', format='column', offseted_suffix='_offseted', evolution_col_name='evolution_computed', how='left', fillna=None, raise_duplicate_error=True ): """ Compute an evolution column : - against a period distant from a fixed frequency. - against a part of the df Unfortunately, pandas doesn't allow .change() and .pct_change() to be executed with a MultiIndex. Args: df (pd.DataFrame): id_cols (list(str)): value_col (str): date_col (str/dict): default None freq (int/pd.DateOffset/pd.Serie): default 1 compare_to (str): default None method (str): default ``'abs'`` can be also ``'pct'`` format(str): default 'column' can be also 'df' offseted_suffix(str): default '_offseted' evolution_col_name(str): default 'evolution_computed' how(str): default 'left' fillna(str/int): default None """ if date_col is not None: is_date_to_format = isinstance(date_col, dict) or (df[date_col].dtype == np.object) if is_date_to_format: if isinstance(date_col, dict): date_format = date_col.get('format', None) date_col = date_col['selector'] else: date_format = None df['_'+date_col + '_copy_'] = pd.to_datetime(df[date_col], format=date_format) date_col = '_'+date_col + '_copy_' is_freq_dict = isinstance(freq, dict) if is_freq_dict: freq = pd.DateOffset(**{k: int(v) for k, v in freq.items()}) check_params_columns_duplicate(id_cols + [value_col, date_col]) # create df_offseted group_cols = id_cols + [date_col] df_offseted = df[group_cols + [value_col]].copy() df_offseted[date_col] += freq df_with_offseted_values = apply_merge( df, df_offseted, group_cols, how, offseted_suffix, raise_duplicate_error ) if is_date_to_format: del df_with_offseted_values[date_col] elif compare_to is not None: # create df_offseted check_params_columns_duplicate(id_cols + [value_col]) group_cols = id_cols df_offseted = df.query(compare_to).copy() df_offseted = df_offseted[group_cols + [value_col]] df_with_offseted_values = apply_merge( df, df_offseted, group_cols, how, offseted_suffix, raise_duplicate_error ) apply_fillna(df_with_offseted_values, value_col, offseted_suffix, fillna) apply_method(df_with_offseted_values, evolution_col_name, value_col, offseted_suffix, method) return apply_format(df_with_offseted_values, evolution_col_name, format)
[ "Compute", "an", "evolution", "column", ":", "-", "against", "a", "period", "distant", "from", "a", "fixed", "frequency", ".", "-", "against", "a", "part", "of", "the", "df" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/generic/compute_evolution.py#L167-L246
[ "def", "__compute_evolution", "(", "df", ",", "id_cols", ",", "value_col", ",", "date_col", "=", "None", ",", "freq", "=", "1", ",", "compare_to", "=", "None", ",", "method", "=", "'abs'", ",", "format", "=", "'column'", ",", "offseted_suffix", "=", "'_offseted'", ",", "evolution_col_name", "=", "'evolution_computed'", ",", "how", "=", "'left'", ",", "fillna", "=", "None", ",", "raise_duplicate_error", "=", "True", ")", ":", "if", "date_col", "is", "not", "None", ":", "is_date_to_format", "=", "isinstance", "(", "date_col", ",", "dict", ")", "or", "(", "df", "[", "date_col", "]", ".", "dtype", "==", "np", ".", "object", ")", "if", "is_date_to_format", ":", "if", "isinstance", "(", "date_col", ",", "dict", ")", ":", "date_format", "=", "date_col", ".", "get", "(", "'format'", ",", "None", ")", "date_col", "=", "date_col", "[", "'selector'", "]", "else", ":", "date_format", "=", "None", "df", "[", "'_'", "+", "date_col", "+", "'_copy_'", "]", "=", "pd", ".", "to_datetime", "(", "df", "[", "date_col", "]", ",", "format", "=", "date_format", ")", "date_col", "=", "'_'", "+", "date_col", "+", "'_copy_'", "is_freq_dict", "=", "isinstance", "(", "freq", ",", "dict", ")", "if", "is_freq_dict", ":", "freq", "=", "pd", ".", "DateOffset", "(", "*", "*", "{", "k", ":", "int", "(", "v", ")", "for", "k", ",", "v", "in", "freq", ".", "items", "(", ")", "}", ")", "check_params_columns_duplicate", "(", "id_cols", "+", "[", "value_col", ",", "date_col", "]", ")", "# create df_offseted", "group_cols", "=", "id_cols", "+", "[", "date_col", "]", "df_offseted", "=", "df", "[", "group_cols", "+", "[", "value_col", "]", "]", ".", "copy", "(", ")", "df_offseted", "[", "date_col", "]", "+=", "freq", "df_with_offseted_values", "=", "apply_merge", "(", "df", ",", "df_offseted", ",", "group_cols", ",", "how", ",", "offseted_suffix", ",", "raise_duplicate_error", ")", "if", "is_date_to_format", ":", "del", "df_with_offseted_values", "[", "date_col", "]", "elif", "compare_to", "is", "not", "None", ":", "# create df_offseted", "check_params_columns_duplicate", "(", "id_cols", "+", "[", "value_col", "]", ")", "group_cols", "=", "id_cols", "df_offseted", "=", "df", ".", "query", "(", "compare_to", ")", ".", "copy", "(", ")", "df_offseted", "=", "df_offseted", "[", "group_cols", "+", "[", "value_col", "]", "]", "df_with_offseted_values", "=", "apply_merge", "(", "df", ",", "df_offseted", ",", "group_cols", ",", "how", ",", "offseted_suffix", ",", "raise_duplicate_error", ")", "apply_fillna", "(", "df_with_offseted_values", ",", "value_col", ",", "offseted_suffix", ",", "fillna", ")", "apply_method", "(", "df_with_offseted_values", ",", "evolution_col_name", ",", "value_col", ",", "offseted_suffix", ",", "method", ")", "return", "apply_format", "(", "df_with_offseted_values", ",", "evolution_col_name", ",", "format", ")" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
rank
This function creates rank columns based on numeric values to be ranked. --- ### Parameters *mandatory :* - `value_cols` (*list*): name(s) of the columns used *optional :* - `group_cols` (*list*): name(s) of the column(s) used to create each group inside which independent ranking needs to be applied - `rank_cols_names` (*list*): the names of the added ranking columns. If not filled, the ranking will be named after the value_cols with a '_rank' suffix - `method` (*str*): method to use when encountering equal values: - `'min'` (default): lowest rank in group - `'max'`: highest rank in group - `'average'`: average rank of group - `'first'`: ranks assigned in order the values appear in the series - `'dense'`: like 'min', but rank always increases by 1 between groups - `ascending` (*boolean*): whether the rank should be determined based on ascending (default) or descending order --- ### Example **Input** | ENTITY | YEAR | VALUE_1 | VALUE_2 | | :---: | :---: | :---: | :---: | | A | 2017 | 10 | 3 | | A | 2017 | 20 | 1 | | A | 2018 | 10 | 5 | | A | 2018 | 30 | 4 | | B | 2017 | 60 | 4 | | B | 2017 | 40 | 3 | | B | 2018 | 50 | 7 | | B | 2018 | 50 | 6 | ```cson rank : value_cols: 'VALUE_1' ``` **Output** | ENTITY | YEAR | VALUE_1 | VALUE_2 | VALUE_1_rank | :---: | :---: | :---: | :---: | :---: | | A | 2017 | 10 | 3 | 1 | | A | 2017 | 20 | 1 | 3 | | A | 2018 | 10 | 5 | 1 | | A | 2018 | 30 | 4 | 4 | | B | 2017 | 60 | 4 | 8 | | B | 2017 | 40 | 3 | 5 | | B | 2018 | 50 | 7 | 6 | | B | 2018 | 50 | 6 | 6 |
toucan_data_sdk/utils/postprocess/rank.py
def rank( df, value_cols: Union[str, List[str]], group_cols: List[str] = None, rank_cols_names: List[str] = None, method='min', ascending: bool = True ): """ This function creates rank columns based on numeric values to be ranked. --- ### Parameters *mandatory :* - `value_cols` (*list*): name(s) of the columns used *optional :* - `group_cols` (*list*): name(s) of the column(s) used to create each group inside which independent ranking needs to be applied - `rank_cols_names` (*list*): the names of the added ranking columns. If not filled, the ranking will be named after the value_cols with a '_rank' suffix - `method` (*str*): method to use when encountering equal values: - `'min'` (default): lowest rank in group - `'max'`: highest rank in group - `'average'`: average rank of group - `'first'`: ranks assigned in order the values appear in the series - `'dense'`: like 'min', but rank always increases by 1 between groups - `ascending` (*boolean*): whether the rank should be determined based on ascending (default) or descending order --- ### Example **Input** | ENTITY | YEAR | VALUE_1 | VALUE_2 | | :---: | :---: | :---: | :---: | | A | 2017 | 10 | 3 | | A | 2017 | 20 | 1 | | A | 2018 | 10 | 5 | | A | 2018 | 30 | 4 | | B | 2017 | 60 | 4 | | B | 2017 | 40 | 3 | | B | 2018 | 50 | 7 | | B | 2018 | 50 | 6 | ```cson rank : value_cols: 'VALUE_1' ``` **Output** | ENTITY | YEAR | VALUE_1 | VALUE_2 | VALUE_1_rank | :---: | :---: | :---: | :---: | :---: | | A | 2017 | 10 | 3 | 1 | | A | 2017 | 20 | 1 | 3 | | A | 2018 | 10 | 5 | 1 | | A | 2018 | 30 | 4 | 4 | | B | 2017 | 60 | 4 | 8 | | B | 2017 | 40 | 3 | 5 | | B | 2018 | 50 | 7 | 6 | | B | 2018 | 50 | 6 | 6 | """ value_cols = [value_cols] if not isinstance(value_cols, list) else value_cols for col in value_cols: if not np.issubdtype(df[col].dtype, np.number): raise TypeError(col + " specified in value_cols must be of numeric type") if rank_cols_names is None: rank_cols_names = [x + '_rank' for x in value_cols] if group_cols is None: df[rank_cols_names] = df[value_cols].rank(method=method, ascending=ascending) else: df[rank_cols_names] = (df.groupby(group_cols)[value_cols] .rank(method=method, ascending=ascending)) if method != 'average': df[rank_cols_names] = df[rank_cols_names].astype('int') return df
def rank( df, value_cols: Union[str, List[str]], group_cols: List[str] = None, rank_cols_names: List[str] = None, method='min', ascending: bool = True ): """ This function creates rank columns based on numeric values to be ranked. --- ### Parameters *mandatory :* - `value_cols` (*list*): name(s) of the columns used *optional :* - `group_cols` (*list*): name(s) of the column(s) used to create each group inside which independent ranking needs to be applied - `rank_cols_names` (*list*): the names of the added ranking columns. If not filled, the ranking will be named after the value_cols with a '_rank' suffix - `method` (*str*): method to use when encountering equal values: - `'min'` (default): lowest rank in group - `'max'`: highest rank in group - `'average'`: average rank of group - `'first'`: ranks assigned in order the values appear in the series - `'dense'`: like 'min', but rank always increases by 1 between groups - `ascending` (*boolean*): whether the rank should be determined based on ascending (default) or descending order --- ### Example **Input** | ENTITY | YEAR | VALUE_1 | VALUE_2 | | :---: | :---: | :---: | :---: | | A | 2017 | 10 | 3 | | A | 2017 | 20 | 1 | | A | 2018 | 10 | 5 | | A | 2018 | 30 | 4 | | B | 2017 | 60 | 4 | | B | 2017 | 40 | 3 | | B | 2018 | 50 | 7 | | B | 2018 | 50 | 6 | ```cson rank : value_cols: 'VALUE_1' ``` **Output** | ENTITY | YEAR | VALUE_1 | VALUE_2 | VALUE_1_rank | :---: | :---: | :---: | :---: | :---: | | A | 2017 | 10 | 3 | 1 | | A | 2017 | 20 | 1 | 3 | | A | 2018 | 10 | 5 | 1 | | A | 2018 | 30 | 4 | 4 | | B | 2017 | 60 | 4 | 8 | | B | 2017 | 40 | 3 | 5 | | B | 2018 | 50 | 7 | 6 | | B | 2018 | 50 | 6 | 6 | """ value_cols = [value_cols] if not isinstance(value_cols, list) else value_cols for col in value_cols: if not np.issubdtype(df[col].dtype, np.number): raise TypeError(col + " specified in value_cols must be of numeric type") if rank_cols_names is None: rank_cols_names = [x + '_rank' for x in value_cols] if group_cols is None: df[rank_cols_names] = df[value_cols].rank(method=method, ascending=ascending) else: df[rank_cols_names] = (df.groupby(group_cols)[value_cols] .rank(method=method, ascending=ascending)) if method != 'average': df[rank_cols_names] = df[rank_cols_names].astype('int') return df
[ "This", "function", "creates", "rank", "columns", "based", "on", "numeric", "values", "to", "be", "ranked", "." ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/rank.py#L6-L91
[ "def", "rank", "(", "df", ",", "value_cols", ":", "Union", "[", "str", ",", "List", "[", "str", "]", "]", ",", "group_cols", ":", "List", "[", "str", "]", "=", "None", ",", "rank_cols_names", ":", "List", "[", "str", "]", "=", "None", ",", "method", "=", "'min'", ",", "ascending", ":", "bool", "=", "True", ")", ":", "value_cols", "=", "[", "value_cols", "]", "if", "not", "isinstance", "(", "value_cols", ",", "list", ")", "else", "value_cols", "for", "col", "in", "value_cols", ":", "if", "not", "np", ".", "issubdtype", "(", "df", "[", "col", "]", ".", "dtype", ",", "np", ".", "number", ")", ":", "raise", "TypeError", "(", "col", "+", "\" specified in value_cols must be of numeric type\"", ")", "if", "rank_cols_names", "is", "None", ":", "rank_cols_names", "=", "[", "x", "+", "'_rank'", "for", "x", "in", "value_cols", "]", "if", "group_cols", "is", "None", ":", "df", "[", "rank_cols_names", "]", "=", "df", "[", "value_cols", "]", ".", "rank", "(", "method", "=", "method", ",", "ascending", "=", "ascending", ")", "else", ":", "df", "[", "rank_cols_names", "]", "=", "(", "df", ".", "groupby", "(", "group_cols", ")", "[", "value_cols", "]", ".", "rank", "(", "method", "=", "method", ",", "ascending", "=", "ascending", ")", ")", "if", "method", "!=", "'average'", ":", "df", "[", "rank_cols_names", "]", "=", "df", "[", "rank_cols_names", "]", ".", "astype", "(", "'int'", ")", "return", "df" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
waterfall
Return a line for each bars of a waterfall chart, totals, groups, subgroups. Compute the variation and variation rate for each line. --- ### Parameters *mandatory :* - `date` (*str*): name of the column that id the period of each lines - `value` (*str*): name of the column that contains the vaue for each lines - `start` (*dict*): - `label`: text displayed under the first master column - `id`: value in the date col that id lines for the first period - `end` (*dict*): - `label`: text displayed under the last master column - `id`: value in the date col that id lines for the second period *optional :* - `upperGroup` (*dict*): - `id`: name of the column that contains upperGroups unique IDs - `label`: not required, text displayed under each upperGroups bars, using ID when it's absent - `groupsOrder`: not required, order of upperGroups - `insideGroup` (*dict*): - `id`: name of the column that contains insideGroups unique IDs - `label`: not required, text displayed under each insideGroups bars, using ID when it's absent - `groupsOrder`: not required, order of insideGroups - `filters` (*list*): columns to filters on --- ### Example **Input** | product_id | played | date | ord | category_id | category_name | |:------------:|:--------:|:------:|:-----:|:-------------:|:---------------:| | super clap | 12 | t1 | 1 | clap | Clap | | clap clap | 1 | t1 | 10 | clap | Clap | | tac | 1 | t1 | 1 | snare | Snare | | super clap | 10 | t2 | 1 | clap | Clap | | tac | 100 | t2 | 1 | snare | Snare | | bom | 1 | t2 | 1 | tom | Tom | ```cson waterfall: upperGroup: id: 'category_id' label: 'category_name' insideGroup: id: 'product_id' groupsOrder: 'ord' date: 'date' value: 'played' start: label: 'Trimestre 1' id: 't1' end: label: 'Trimester 2' id: 't2' ``` **Output** | value | label | variation | groups | type | order | |:-------:|:-----------:|:-----------:|:--------:|:------:|:-------:| | 14 | Trimestre 1 | NaN | NaN | NaN | NaN | | -3 | Clap | -0.230769 | clap | parent | NaN | | -2 | super clap | -0.166667 | clap | child | 1 | | -1 | clap clap | -1 | clap | child | 10 | | 99 | Snare | 99 | snare | parent | NaN | | 99 | tac | 99 | snare | child | 1 | | 1 | Tom | inf | tom | parent | NaN | | 1 | bom | inf | tom | child | 1 | | 111 | Trimester 2 | NaN | NaN | NaN | NaN |
toucan_data_sdk/utils/postprocess/waterfall.py
def waterfall( df, date: str, value: str, start: Dict[str, str], end: Dict[str, str], upperGroup: Dict[str, str], insideGroup: Dict[str, str] = None, filters: List[str] = None ): """ Return a line for each bars of a waterfall chart, totals, groups, subgroups. Compute the variation and variation rate for each line. --- ### Parameters *mandatory :* - `date` (*str*): name of the column that id the period of each lines - `value` (*str*): name of the column that contains the vaue for each lines - `start` (*dict*): - `label`: text displayed under the first master column - `id`: value in the date col that id lines for the first period - `end` (*dict*): - `label`: text displayed under the last master column - `id`: value in the date col that id lines for the second period *optional :* - `upperGroup` (*dict*): - `id`: name of the column that contains upperGroups unique IDs - `label`: not required, text displayed under each upperGroups bars, using ID when it's absent - `groupsOrder`: not required, order of upperGroups - `insideGroup` (*dict*): - `id`: name of the column that contains insideGroups unique IDs - `label`: not required, text displayed under each insideGroups bars, using ID when it's absent - `groupsOrder`: not required, order of insideGroups - `filters` (*list*): columns to filters on --- ### Example **Input** | product_id | played | date | ord | category_id | category_name | |:------------:|:--------:|:------:|:-----:|:-------------:|:---------------:| | super clap | 12 | t1 | 1 | clap | Clap | | clap clap | 1 | t1 | 10 | clap | Clap | | tac | 1 | t1 | 1 | snare | Snare | | super clap | 10 | t2 | 1 | clap | Clap | | tac | 100 | t2 | 1 | snare | Snare | | bom | 1 | t2 | 1 | tom | Tom | ```cson waterfall: upperGroup: id: 'category_id' label: 'category_name' insideGroup: id: 'product_id' groupsOrder: 'ord' date: 'date' value: 'played' start: label: 'Trimestre 1' id: 't1' end: label: 'Trimester 2' id: 't2' ``` **Output** | value | label | variation | groups | type | order | |:-------:|:-----------:|:-----------:|:--------:|:------:|:-------:| | 14 | Trimestre 1 | NaN | NaN | NaN | NaN | | -3 | Clap | -0.230769 | clap | parent | NaN | | -2 | super clap | -0.166667 | clap | child | 1 | | -1 | clap clap | -1 | clap | child | 10 | | 99 | Snare | 99 | snare | parent | NaN | | 99 | tac | 99 | snare | child | 1 | | 1 | Tom | inf | tom | parent | NaN | | 1 | bom | inf | tom | child | 1 | | 111 | Trimester 2 | NaN | NaN | NaN | NaN | """ if len(df) == 0: return df if filters is not None: if isinstance(filters, str): filters = [filters] def sub_waterfall(df): wa_df = waterfall(df, date, value, start, end, upperGroup, insideGroup) for filters_col in filters: wa_df[filters_col] = df[filters_col].values[0] return wa_df # filters df into a list of sub_df list_of_sub_df = [df[(df[filters].values == i).all(axis=1)] for i in df[filters].drop_duplicates().values] return pd.concat([sub_waterfall(df) for df in list_of_sub_df], sort=False) groups = { 'upperGroup': { 'type': 'parent', 'id': 'upperGroup', 'order': { 'by': ['upperGroup_order', 'groups'], 'ascending': [True, True] }, 'obj': upperGroup } } if insideGroup is not None: groups['insideGroup'] = { 'type': 'child', 'id': 'insideGroup', 'order': { 'by': ['type', 'insideGroup_order', 'label'], 'ascending': [False, True, True] }, 'obj': insideGroup } # prepare the dataframe with standard column names df = _compute_rename(df, date, value, groups) agg_conf = {'value': sum} agg_conf.update({f'{col}_label': 'first' for col in groups.keys()}) agg_conf.update({f'{col}_order': 'first' for col in groups.keys()}) df = df.groupby(list(groups.keys()) + ['date']).agg(agg_conf).reset_index() df_start, df_end = _compute_start_end(df, start, end) df = _compute_value_diff(df, start, end, groups) middle = _compute_upper_group(df) if insideGroup is not None: middle = pd.concat([middle, _compute_inside_group(df)]) ret = _compute_order(df_start, df_end, middle, groups) return ret
def waterfall( df, date: str, value: str, start: Dict[str, str], end: Dict[str, str], upperGroup: Dict[str, str], insideGroup: Dict[str, str] = None, filters: List[str] = None ): """ Return a line for each bars of a waterfall chart, totals, groups, subgroups. Compute the variation and variation rate for each line. --- ### Parameters *mandatory :* - `date` (*str*): name of the column that id the period of each lines - `value` (*str*): name of the column that contains the vaue for each lines - `start` (*dict*): - `label`: text displayed under the first master column - `id`: value in the date col that id lines for the first period - `end` (*dict*): - `label`: text displayed under the last master column - `id`: value in the date col that id lines for the second period *optional :* - `upperGroup` (*dict*): - `id`: name of the column that contains upperGroups unique IDs - `label`: not required, text displayed under each upperGroups bars, using ID when it's absent - `groupsOrder`: not required, order of upperGroups - `insideGroup` (*dict*): - `id`: name of the column that contains insideGroups unique IDs - `label`: not required, text displayed under each insideGroups bars, using ID when it's absent - `groupsOrder`: not required, order of insideGroups - `filters` (*list*): columns to filters on --- ### Example **Input** | product_id | played | date | ord | category_id | category_name | |:------------:|:--------:|:------:|:-----:|:-------------:|:---------------:| | super clap | 12 | t1 | 1 | clap | Clap | | clap clap | 1 | t1 | 10 | clap | Clap | | tac | 1 | t1 | 1 | snare | Snare | | super clap | 10 | t2 | 1 | clap | Clap | | tac | 100 | t2 | 1 | snare | Snare | | bom | 1 | t2 | 1 | tom | Tom | ```cson waterfall: upperGroup: id: 'category_id' label: 'category_name' insideGroup: id: 'product_id' groupsOrder: 'ord' date: 'date' value: 'played' start: label: 'Trimestre 1' id: 't1' end: label: 'Trimester 2' id: 't2' ``` **Output** | value | label | variation | groups | type | order | |:-------:|:-----------:|:-----------:|:--------:|:------:|:-------:| | 14 | Trimestre 1 | NaN | NaN | NaN | NaN | | -3 | Clap | -0.230769 | clap | parent | NaN | | -2 | super clap | -0.166667 | clap | child | 1 | | -1 | clap clap | -1 | clap | child | 10 | | 99 | Snare | 99 | snare | parent | NaN | | 99 | tac | 99 | snare | child | 1 | | 1 | Tom | inf | tom | parent | NaN | | 1 | bom | inf | tom | child | 1 | | 111 | Trimester 2 | NaN | NaN | NaN | NaN | """ if len(df) == 0: return df if filters is not None: if isinstance(filters, str): filters = [filters] def sub_waterfall(df): wa_df = waterfall(df, date, value, start, end, upperGroup, insideGroup) for filters_col in filters: wa_df[filters_col] = df[filters_col].values[0] return wa_df # filters df into a list of sub_df list_of_sub_df = [df[(df[filters].values == i).all(axis=1)] for i in df[filters].drop_duplicates().values] return pd.concat([sub_waterfall(df) for df in list_of_sub_df], sort=False) groups = { 'upperGroup': { 'type': 'parent', 'id': 'upperGroup', 'order': { 'by': ['upperGroup_order', 'groups'], 'ascending': [True, True] }, 'obj': upperGroup } } if insideGroup is not None: groups['insideGroup'] = { 'type': 'child', 'id': 'insideGroup', 'order': { 'by': ['type', 'insideGroup_order', 'label'], 'ascending': [False, True, True] }, 'obj': insideGroup } # prepare the dataframe with standard column names df = _compute_rename(df, date, value, groups) agg_conf = {'value': sum} agg_conf.update({f'{col}_label': 'first' for col in groups.keys()}) agg_conf.update({f'{col}_order': 'first' for col in groups.keys()}) df = df.groupby(list(groups.keys()) + ['date']).agg(agg_conf).reset_index() df_start, df_end = _compute_start_end(df, start, end) df = _compute_value_diff(df, start, end, groups) middle = _compute_upper_group(df) if insideGroup is not None: middle = pd.concat([middle, _compute_inside_group(df)]) ret = _compute_order(df_start, df_end, middle, groups) return ret
[ "Return", "a", "line", "for", "each", "bars", "of", "a", "waterfall", "chart", "totals", "groups", "subgroups", ".", "Compute", "the", "variation", "and", "variation", "rate", "for", "each", "line", "." ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/waterfall.py#L5-L153
[ "def", "waterfall", "(", "df", ",", "date", ":", "str", ",", "value", ":", "str", ",", "start", ":", "Dict", "[", "str", ",", "str", "]", ",", "end", ":", "Dict", "[", "str", ",", "str", "]", ",", "upperGroup", ":", "Dict", "[", "str", ",", "str", "]", ",", "insideGroup", ":", "Dict", "[", "str", ",", "str", "]", "=", "None", ",", "filters", ":", "List", "[", "str", "]", "=", "None", ")", ":", "if", "len", "(", "df", ")", "==", "0", ":", "return", "df", "if", "filters", "is", "not", "None", ":", "if", "isinstance", "(", "filters", ",", "str", ")", ":", "filters", "=", "[", "filters", "]", "def", "sub_waterfall", "(", "df", ")", ":", "wa_df", "=", "waterfall", "(", "df", ",", "date", ",", "value", ",", "start", ",", "end", ",", "upperGroup", ",", "insideGroup", ")", "for", "filters_col", "in", "filters", ":", "wa_df", "[", "filters_col", "]", "=", "df", "[", "filters_col", "]", ".", "values", "[", "0", "]", "return", "wa_df", "# filters df into a list of sub_df", "list_of_sub_df", "=", "[", "df", "[", "(", "df", "[", "filters", "]", ".", "values", "==", "i", ")", ".", "all", "(", "axis", "=", "1", ")", "]", "for", "i", "in", "df", "[", "filters", "]", ".", "drop_duplicates", "(", ")", ".", "values", "]", "return", "pd", ".", "concat", "(", "[", "sub_waterfall", "(", "df", ")", "for", "df", "in", "list_of_sub_df", "]", ",", "sort", "=", "False", ")", "groups", "=", "{", "'upperGroup'", ":", "{", "'type'", ":", "'parent'", ",", "'id'", ":", "'upperGroup'", ",", "'order'", ":", "{", "'by'", ":", "[", "'upperGroup_order'", ",", "'groups'", "]", ",", "'ascending'", ":", "[", "True", ",", "True", "]", "}", ",", "'obj'", ":", "upperGroup", "}", "}", "if", "insideGroup", "is", "not", "None", ":", "groups", "[", "'insideGroup'", "]", "=", "{", "'type'", ":", "'child'", ",", "'id'", ":", "'insideGroup'", ",", "'order'", ":", "{", "'by'", ":", "[", "'type'", ",", "'insideGroup_order'", ",", "'label'", "]", ",", "'ascending'", ":", "[", "False", ",", "True", ",", "True", "]", "}", ",", "'obj'", ":", "insideGroup", "}", "# prepare the dataframe with standard column names", "df", "=", "_compute_rename", "(", "df", ",", "date", ",", "value", ",", "groups", ")", "agg_conf", "=", "{", "'value'", ":", "sum", "}", "agg_conf", ".", "update", "(", "{", "f'{col}_label'", ":", "'first'", "for", "col", "in", "groups", ".", "keys", "(", ")", "}", ")", "agg_conf", ".", "update", "(", "{", "f'{col}_order'", ":", "'first'", "for", "col", "in", "groups", ".", "keys", "(", ")", "}", ")", "df", "=", "df", ".", "groupby", "(", "list", "(", "groups", ".", "keys", "(", ")", ")", "+", "[", "'date'", "]", ")", ".", "agg", "(", "agg_conf", ")", ".", "reset_index", "(", ")", "df_start", ",", "df_end", "=", "_compute_start_end", "(", "df", ",", "start", ",", "end", ")", "df", "=", "_compute_value_diff", "(", "df", ",", "start", ",", "end", ",", "groups", ")", "middle", "=", "_compute_upper_group", "(", "df", ")", "if", "insideGroup", "is", "not", "None", ":", "middle", "=", "pd", ".", "concat", "(", "[", "middle", ",", "_compute_inside_group", "(", "df", ")", "]", ")", "ret", "=", "_compute_order", "(", "df_start", ",", "df_end", ",", "middle", ",", "groups", ")", "return", "ret" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
_compute_start_end
Compute two dataframes with value for start and end Args: totals(dataframe): Returns: Dataframe, Dataframe
toucan_data_sdk/utils/postprocess/waterfall.py
def _compute_start_end(df, start, end): """ Compute two dataframes with value for start and end Args: totals(dataframe): Returns: Dataframe, Dataframe """ result = {} time_dict = {'start': start, 'end': end} totals = df.groupby('date').agg({'value': sum}).reset_index() for time_name, time in time_dict.items(): if not totals[totals['date'] == time['id']].empty: value = totals.loc[ totals['date'] == time['id'], 'value' ].values[0] else: value = 0 result[time_name] = pd.DataFrame([{ 'value': value, 'label': time['label'], 'groups': time['label'] }]) return result['start'], result['end']
def _compute_start_end(df, start, end): """ Compute two dataframes with value for start and end Args: totals(dataframe): Returns: Dataframe, Dataframe """ result = {} time_dict = {'start': start, 'end': end} totals = df.groupby('date').agg({'value': sum}).reset_index() for time_name, time in time_dict.items(): if not totals[totals['date'] == time['id']].empty: value = totals.loc[ totals['date'] == time['id'], 'value' ].values[0] else: value = 0 result[time_name] = pd.DataFrame([{ 'value': value, 'label': time['label'], 'groups': time['label'] }]) return result['start'], result['end']
[ "Compute", "two", "dataframes", "with", "value", "for", "start", "and", "end", "Args", ":", "totals", "(", "dataframe", ")", ":" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/waterfall.py#L174-L198
[ "def", "_compute_start_end", "(", "df", ",", "start", ",", "end", ")", ":", "result", "=", "{", "}", "time_dict", "=", "{", "'start'", ":", "start", ",", "'end'", ":", "end", "}", "totals", "=", "df", ".", "groupby", "(", "'date'", ")", ".", "agg", "(", "{", "'value'", ":", "sum", "}", ")", ".", "reset_index", "(", ")", "for", "time_name", ",", "time", "in", "time_dict", ".", "items", "(", ")", ":", "if", "not", "totals", "[", "totals", "[", "'date'", "]", "==", "time", "[", "'id'", "]", "]", ".", "empty", ":", "value", "=", "totals", ".", "loc", "[", "totals", "[", "'date'", "]", "==", "time", "[", "'id'", "]", ",", "'value'", "]", ".", "values", "[", "0", "]", "else", ":", "value", "=", "0", "result", "[", "time_name", "]", "=", "pd", ".", "DataFrame", "(", "[", "{", "'value'", ":", "value", ",", "'label'", ":", "time", "[", "'label'", "]", ",", "'groups'", ":", "time", "[", "'label'", "]", "}", "]", ")", "return", "result", "[", "'start'", "]", ",", "result", "[", "'end'", "]" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
_compute_value_diff
Compute diff value between start and end Args: df(dataframe): Returns: Dataframe
toucan_data_sdk/utils/postprocess/waterfall.py
def _compute_value_diff(df, start, end, groups): """ Compute diff value between start and end Args: df(dataframe): Returns: Dataframe """ start_values = df[df['date'] == start['id']].copy() end_values = df[df['date'] == end['id']].copy() merge_on = [] for key, group in groups.items(): merge_on = merge_on + [key, f'{key}_label', f'{key}_order'] df = start_values.merge(end_values, on=merge_on, how='outer', suffixes=('_start', '_end'), ) # necessary before calculating variation df[['value_start', 'value_end']] = df[['value_start', 'value_end']].fillna(0) df['value'] = df['value_end'] - df['value_start'] df.drop(['date_start', 'date_end', 'value_end'], axis=1, inplace=True) df.rename(columns={'upperGroup': 'groups'}, inplace=True) return df
def _compute_value_diff(df, start, end, groups): """ Compute diff value between start and end Args: df(dataframe): Returns: Dataframe """ start_values = df[df['date'] == start['id']].copy() end_values = df[df['date'] == end['id']].copy() merge_on = [] for key, group in groups.items(): merge_on = merge_on + [key, f'{key}_label', f'{key}_order'] df = start_values.merge(end_values, on=merge_on, how='outer', suffixes=('_start', '_end'), ) # necessary before calculating variation df[['value_start', 'value_end']] = df[['value_start', 'value_end']].fillna(0) df['value'] = df['value_end'] - df['value_start'] df.drop(['date_start', 'date_end', 'value_end'], axis=1, inplace=True) df.rename(columns={'upperGroup': 'groups'}, inplace=True) return df
[ "Compute", "diff", "value", "between", "start", "and", "end", "Args", ":", "df", "(", "dataframe", ")", ":" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/waterfall.py#L201-L227
[ "def", "_compute_value_diff", "(", "df", ",", "start", ",", "end", ",", "groups", ")", ":", "start_values", "=", "df", "[", "df", "[", "'date'", "]", "==", "start", "[", "'id'", "]", "]", ".", "copy", "(", ")", "end_values", "=", "df", "[", "df", "[", "'date'", "]", "==", "end", "[", "'id'", "]", "]", ".", "copy", "(", ")", "merge_on", "=", "[", "]", "for", "key", ",", "group", "in", "groups", ".", "items", "(", ")", ":", "merge_on", "=", "merge_on", "+", "[", "key", ",", "f'{key}_label'", ",", "f'{key}_order'", "]", "df", "=", "start_values", ".", "merge", "(", "end_values", ",", "on", "=", "merge_on", ",", "how", "=", "'outer'", ",", "suffixes", "=", "(", "'_start'", ",", "'_end'", ")", ",", ")", "# necessary before calculating variation", "df", "[", "[", "'value_start'", ",", "'value_end'", "]", "]", "=", "df", "[", "[", "'value_start'", ",", "'value_end'", "]", "]", ".", "fillna", "(", "0", ")", "df", "[", "'value'", "]", "=", "df", "[", "'value_end'", "]", "-", "df", "[", "'value_start'", "]", "df", ".", "drop", "(", "[", "'date_start'", ",", "'date_end'", ",", "'value_end'", "]", ",", "axis", "=", "1", ",", "inplace", "=", "True", ")", "df", ".", "rename", "(", "columns", "=", "{", "'upperGroup'", ":", "'groups'", "}", ",", "inplace", "=", "True", ")", "return", "df" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
_compute_inside_group
Compute inside Group Args: df(dataframe): Returns: Dataframe
toucan_data_sdk/utils/postprocess/waterfall.py
def _compute_inside_group(df): """ Compute inside Group Args: df(dataframe): Returns: Dataframe """ inside_group = df.copy() inside_group['type'] = 'child' inside_group['variation'] = inside_group['value'] / inside_group[ 'value_start'] inside_group.drop(['upperGroup_label', 'insideGroup', 'value_start'], axis=1, inplace=True) inside_group.rename(columns={'insideGroup_label': 'label'}, inplace=True) return inside_group
def _compute_inside_group(df): """ Compute inside Group Args: df(dataframe): Returns: Dataframe """ inside_group = df.copy() inside_group['type'] = 'child' inside_group['variation'] = inside_group['value'] / inside_group[ 'value_start'] inside_group.drop(['upperGroup_label', 'insideGroup', 'value_start'], axis=1, inplace=True) inside_group.rename(columns={'insideGroup_label': 'label'}, inplace=True) return inside_group
[ "Compute", "inside", "Group", "Args", ":", "df", "(", "dataframe", ")", ":" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/waterfall.py#L230-L247
[ "def", "_compute_inside_group", "(", "df", ")", ":", "inside_group", "=", "df", ".", "copy", "(", ")", "inside_group", "[", "'type'", "]", "=", "'child'", "inside_group", "[", "'variation'", "]", "=", "inside_group", "[", "'value'", "]", "/", "inside_group", "[", "'value_start'", "]", "inside_group", ".", "drop", "(", "[", "'upperGroup_label'", ",", "'insideGroup'", ",", "'value_start'", "]", ",", "axis", "=", "1", ",", "inplace", "=", "True", ")", "inside_group", ".", "rename", "(", "columns", "=", "{", "'insideGroup_label'", ":", "'label'", "}", ",", "inplace", "=", "True", ")", "return", "inside_group" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
_compute_upper_group
Compute upperGroup Args: df (Dataframe): Returns: Dataframe
toucan_data_sdk/utils/postprocess/waterfall.py
def _compute_upper_group(df): """ Compute upperGroup Args: df (Dataframe): Returns: Dataframe """ upper_group = df.groupby(['groups']).agg({ 'value': sum, 'value_start': sum, 'upperGroup_label': 'first', 'upperGroup_order': 'first' }).reset_index() upper_group['type'] = 'parent' upper_group['variation'] = upper_group['value'] / upper_group[ 'value_start'] upper_group.drop(['value_start'], axis=1, inplace=True) upper_group.rename(columns={'upperGroup_label': 'label'}, inplace=True) return upper_group
def _compute_upper_group(df): """ Compute upperGroup Args: df (Dataframe): Returns: Dataframe """ upper_group = df.groupby(['groups']).agg({ 'value': sum, 'value_start': sum, 'upperGroup_label': 'first', 'upperGroup_order': 'first' }).reset_index() upper_group['type'] = 'parent' upper_group['variation'] = upper_group['value'] / upper_group[ 'value_start'] upper_group.drop(['value_start'], axis=1, inplace=True) upper_group.rename(columns={'upperGroup_label': 'label'}, inplace=True) return upper_group
[ "Compute", "upperGroup", "Args", ":", "df", "(", "Dataframe", ")", ":" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/waterfall.py#L250-L270
[ "def", "_compute_upper_group", "(", "df", ")", ":", "upper_group", "=", "df", ".", "groupby", "(", "[", "'groups'", "]", ")", ".", "agg", "(", "{", "'value'", ":", "sum", ",", "'value_start'", ":", "sum", ",", "'upperGroup_label'", ":", "'first'", ",", "'upperGroup_order'", ":", "'first'", "}", ")", ".", "reset_index", "(", ")", "upper_group", "[", "'type'", "]", "=", "'parent'", "upper_group", "[", "'variation'", "]", "=", "upper_group", "[", "'value'", "]", "/", "upper_group", "[", "'value_start'", "]", "upper_group", ".", "drop", "(", "[", "'value_start'", "]", ",", "axis", "=", "1", ",", "inplace", "=", "True", ")", "upper_group", ".", "rename", "(", "columns", "=", "{", "'upperGroup_label'", ":", "'label'", "}", ",", "inplace", "=", "True", ")", "return", "upper_group" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
_basic_math_operation
Basic mathematical operation to apply operator on `column_1` and `column_2` Both can be either a number or the name of a column of `df` Will create a new column named `new_column`
toucan_data_sdk/utils/postprocess/math.py
def _basic_math_operation(df, new_column, column_1, column_2, op): """ Basic mathematical operation to apply operator on `column_1` and `column_2` Both can be either a number or the name of a column of `df` Will create a new column named `new_column` """ if not isinstance(column_1, (str, int, float)): raise TypeError(f'column_1 must be a string, an integer or a float') if not isinstance(column_2, (str, int, float)): raise TypeError(f'column_2 must be a string, an integer or a float') if isinstance(column_1, str): column_1 = df[column_1] if isinstance(column_2, str): column_2 = df[column_2] operator = getattr(_operator, op) df[new_column] = operator(column_1, column_2) return df
def _basic_math_operation(df, new_column, column_1, column_2, op): """ Basic mathematical operation to apply operator on `column_1` and `column_2` Both can be either a number or the name of a column of `df` Will create a new column named `new_column` """ if not isinstance(column_1, (str, int, float)): raise TypeError(f'column_1 must be a string, an integer or a float') if not isinstance(column_2, (str, int, float)): raise TypeError(f'column_2 must be a string, an integer or a float') if isinstance(column_1, str): column_1 = df[column_1] if isinstance(column_2, str): column_2 = df[column_2] operator = getattr(_operator, op) df[new_column] = operator(column_1, column_2) return df
[ "Basic", "mathematical", "operation", "to", "apply", "operator", "on", "column_1", "and", "column_2", "Both", "can", "be", "either", "a", "number", "or", "the", "name", "of", "a", "column", "of", "df", "Will", "create", "a", "new", "column", "named", "new_column" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/math.py#L7-L24
[ "def", "_basic_math_operation", "(", "df", ",", "new_column", ",", "column_1", ",", "column_2", ",", "op", ")", ":", "if", "not", "isinstance", "(", "column_1", ",", "(", "str", ",", "int", ",", "float", ")", ")", ":", "raise", "TypeError", "(", "f'column_1 must be a string, an integer or a float'", ")", "if", "not", "isinstance", "(", "column_2", ",", "(", "str", ",", "int", ",", "float", ")", ")", ":", "raise", "TypeError", "(", "f'column_2 must be a string, an integer or a float'", ")", "if", "isinstance", "(", "column_1", ",", "str", ")", ":", "column_1", "=", "df", "[", "column_1", "]", "if", "isinstance", "(", "column_2", ",", "str", ")", ":", "column_2", "=", "df", "[", "column_2", "]", "operator", "=", "getattr", "(", "_operator", ",", "op", ")", "df", "[", "new_column", "]", "=", "operator", "(", "column_1", ",", "column_2", ")", "return", "df" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
add
DEPRECATED - use `formula` instead
toucan_data_sdk/utils/postprocess/math.py
def add(df, new_column, column_1, column_2): """ DEPRECATED - use `formula` instead """ return _basic_math_operation(df, new_column, column_1, column_2, op='add')
def add(df, new_column, column_1, column_2): """ DEPRECATED - use `formula` instead """ return _basic_math_operation(df, new_column, column_1, column_2, op='add')
[ "DEPRECATED", "-", "use", "formula", "instead" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/math.py#L27-L31
[ "def", "add", "(", "df", ",", "new_column", ",", "column_1", ",", "column_2", ")", ":", "return", "_basic_math_operation", "(", "df", ",", "new_column", ",", "column_1", ",", "column_2", ",", "op", "=", "'add'", ")" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
subtract
DEPRECATED - use `formula` instead
toucan_data_sdk/utils/postprocess/math.py
def subtract(df, new_column, column_1, column_2): """ DEPRECATED - use `formula` instead """ return _basic_math_operation(df, new_column, column_1, column_2, op='sub')
def subtract(df, new_column, column_1, column_2): """ DEPRECATED - use `formula` instead """ return _basic_math_operation(df, new_column, column_1, column_2, op='sub')
[ "DEPRECATED", "-", "use", "formula", "instead" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/math.py#L34-L38
[ "def", "subtract", "(", "df", ",", "new_column", ",", "column_1", ",", "column_2", ")", ":", "return", "_basic_math_operation", "(", "df", ",", "new_column", ",", "column_1", ",", "column_2", ",", "op", "=", "'sub'", ")" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
multiply
DEPRECATED - use `formula` instead
toucan_data_sdk/utils/postprocess/math.py
def multiply(df, new_column, column_1, column_2): """ DEPRECATED - use `formula` instead """ return _basic_math_operation(df, new_column, column_1, column_2, op='mul')
def multiply(df, new_column, column_1, column_2): """ DEPRECATED - use `formula` instead """ return _basic_math_operation(df, new_column, column_1, column_2, op='mul')
[ "DEPRECATED", "-", "use", "formula", "instead" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/math.py#L41-L45
[ "def", "multiply", "(", "df", ",", "new_column", ",", "column_1", ",", "column_2", ")", ":", "return", "_basic_math_operation", "(", "df", ",", "new_column", ",", "column_1", ",", "column_2", ",", "op", "=", "'mul'", ")" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
divide
DEPRECATED - use `formula` instead
toucan_data_sdk/utils/postprocess/math.py
def divide(df, new_column, column_1, column_2): """ DEPRECATED - use `formula` instead """ return _basic_math_operation(df, new_column, column_1, column_2, op='truediv')
def divide(df, new_column, column_1, column_2): """ DEPRECATED - use `formula` instead """ return _basic_math_operation(df, new_column, column_1, column_2, op='truediv')
[ "DEPRECATED", "-", "use", "formula", "instead" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/math.py#L48-L52
[ "def", "divide", "(", "df", ",", "new_column", ",", "column_1", ",", "column_2", ")", ":", "return", "_basic_math_operation", "(", "df", ",", "new_column", ",", "column_1", ",", "column_2", ",", "op", "=", "'truediv'", ")" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
formula
Do mathematic operations on columns (add, subtract, multiply or divide) --- ### Parameters *mandatory:* - `new_column` (*str*): name of the output column - `formula` (*str*): Operation on column. Use name of column and special character: - `+` for addition - `-` for subtraction - `*` for multiplication - `/` for division **Note:** - your column name can contain spaces. - if your column name is a number, you must use a quote mark : `"` or `'` (cf. example) --- ### Examples **Input** | variable | valueA | valueB | My rate | |:--------:|:--------:|:-----:|:------:| | toto | 20 | 100 | 10 | | toto | 30 | 200 | 10 | | toto | 10 | 300 | 10 | ```cson formula: new_column: 'valueD' formula: '(valueB + valueA ) / My rate' ``` **Output** | variable | valueA | valueB | My rate | valueD | |:--------:|:--------:|:------:|:-------:|:-------:| | toto | 20 | 100 | 10 | 12 | | toto | 30 | 200 | 10 | 23 | | toto | 10 | 300 | 10 | 31 | --- **Input** | variable | 2018 | 2019 | |:--------:|:--------:|:-----:| | toto | 20 | 100 | | toto | 30 | 200 | | toto | 10 | 300 | ```cson formula: new_column: 'Evolution' formula: "'2019' - '2018'" ``` **Output** | variable | 2018 | 2019 | Evolution | |:--------:|:--------:|:-----:|:-----:| | toto | 20 | 100 | 80 | | toto | 30 | 200 | 170 | | toto | 10 | 300 | 290 |
toucan_data_sdk/utils/postprocess/math.py
def formula(df, *, new_column: str, formula: str): """ Do mathematic operations on columns (add, subtract, multiply or divide) --- ### Parameters *mandatory:* - `new_column` (*str*): name of the output column - `formula` (*str*): Operation on column. Use name of column and special character: - `+` for addition - `-` for subtraction - `*` for multiplication - `/` for division **Note:** - your column name can contain spaces. - if your column name is a number, you must use a quote mark : `"` or `'` (cf. example) --- ### Examples **Input** | variable | valueA | valueB | My rate | |:--------:|:--------:|:-----:|:------:| | toto | 20 | 100 | 10 | | toto | 30 | 200 | 10 | | toto | 10 | 300 | 10 | ```cson formula: new_column: 'valueD' formula: '(valueB + valueA ) / My rate' ``` **Output** | variable | valueA | valueB | My rate | valueD | |:--------:|:--------:|:------:|:-------:|:-------:| | toto | 20 | 100 | 10 | 12 | | toto | 30 | 200 | 10 | 23 | | toto | 10 | 300 | 10 | 31 | --- **Input** | variable | 2018 | 2019 | |:--------:|:--------:|:-----:| | toto | 20 | 100 | | toto | 30 | 200 | | toto | 10 | 300 | ```cson formula: new_column: 'Evolution' formula: "'2019' - '2018'" ``` **Output** | variable | 2018 | 2019 | Evolution | |:--------:|:--------:|:-----:|:-----:| | toto | 20 | 100 | 80 | | toto | 30 | 200 | 170 | | toto | 10 | 300 | 290 | """ tokens = _parse_formula(formula) expression_splitted = [] for t in tokens: # To use a column name with only digits, it has to be quoted! # Otherwise it is considered as a regular number if not t.quoted and (t in MATH_CHARACTERS or is_float(t)): expression_splitted.append(t) elif t in df.columns: expression_splitted.append(f'df["{t}"]') else: raise FormulaError(f'"{t}" is not a valid column name') expression = ''.join(expression_splitted) df[new_column] = eval(expression) return df
def formula(df, *, new_column: str, formula: str): """ Do mathematic operations on columns (add, subtract, multiply or divide) --- ### Parameters *mandatory:* - `new_column` (*str*): name of the output column - `formula` (*str*): Operation on column. Use name of column and special character: - `+` for addition - `-` for subtraction - `*` for multiplication - `/` for division **Note:** - your column name can contain spaces. - if your column name is a number, you must use a quote mark : `"` or `'` (cf. example) --- ### Examples **Input** | variable | valueA | valueB | My rate | |:--------:|:--------:|:-----:|:------:| | toto | 20 | 100 | 10 | | toto | 30 | 200 | 10 | | toto | 10 | 300 | 10 | ```cson formula: new_column: 'valueD' formula: '(valueB + valueA ) / My rate' ``` **Output** | variable | valueA | valueB | My rate | valueD | |:--------:|:--------:|:------:|:-------:|:-------:| | toto | 20 | 100 | 10 | 12 | | toto | 30 | 200 | 10 | 23 | | toto | 10 | 300 | 10 | 31 | --- **Input** | variable | 2018 | 2019 | |:--------:|:--------:|:-----:| | toto | 20 | 100 | | toto | 30 | 200 | | toto | 10 | 300 | ```cson formula: new_column: 'Evolution' formula: "'2019' - '2018'" ``` **Output** | variable | 2018 | 2019 | Evolution | |:--------:|:--------:|:-----:|:-----:| | toto | 20 | 100 | 80 | | toto | 30 | 200 | 170 | | toto | 10 | 300 | 290 | """ tokens = _parse_formula(formula) expression_splitted = [] for t in tokens: # To use a column name with only digits, it has to be quoted! # Otherwise it is considered as a regular number if not t.quoted and (t in MATH_CHARACTERS or is_float(t)): expression_splitted.append(t) elif t in df.columns: expression_splitted.append(f'df["{t}"]') else: raise FormulaError(f'"{t}" is not a valid column name') expression = ''.join(expression_splitted) df[new_column] = eval(expression) return df
[ "Do", "mathematic", "operations", "on", "columns", "(", "add", "subtract", "multiply", "or", "divide", ")" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/math.py#L103-L188
[ "def", "formula", "(", "df", ",", "*", ",", "new_column", ":", "str", ",", "formula", ":", "str", ")", ":", "tokens", "=", "_parse_formula", "(", "formula", ")", "expression_splitted", "=", "[", "]", "for", "t", "in", "tokens", ":", "# To use a column name with only digits, it has to be quoted!", "# Otherwise it is considered as a regular number", "if", "not", "t", ".", "quoted", "and", "(", "t", "in", "MATH_CHARACTERS", "or", "is_float", "(", "t", ")", ")", ":", "expression_splitted", ".", "append", "(", "t", ")", "elif", "t", "in", "df", ".", "columns", ":", "expression_splitted", ".", "append", "(", "f'df[\"{t}\"]'", ")", "else", ":", "raise", "FormulaError", "(", "f'\"{t}\" is not a valid column name'", ")", "expression", "=", "''", ".", "join", "(", "expression_splitted", ")", "df", "[", "new_column", "]", "=", "eval", "(", "expression", ")", "return", "df" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
round_values
Round each value of a column --- ### Parameters *mandatory :* - `column` (*str*): name of the column to round - `decimals` (*int*): number of decimal to keeep *optional :* - `new_column` (*str*): name of the new column to create. By default, no new column will be created and `column` will be replaced --- ### Example ** Input** ENTITY|VALUE_1|VALUE_2 :-----:|:-----:|:-----: A|-1.512|-1.504 A|0.432|0.14 ```cson round_values: column: 'VALUE_1' decimals:1 new_column: 'Pika' ``` **Output** ENTITY|VALUE_1|VALUE_2|Pika :-----:|:-----:|:-----:|:-----: A|-1.512|-1.504|-1.5 A|0.432|0.14|0.4
toucan_data_sdk/utils/postprocess/math.py
def round_values(df, *, column: str, decimals: int, new_column: str = None): """ Round each value of a column --- ### Parameters *mandatory :* - `column` (*str*): name of the column to round - `decimals` (*int*): number of decimal to keeep *optional :* - `new_column` (*str*): name of the new column to create. By default, no new column will be created and `column` will be replaced --- ### Example ** Input** ENTITY|VALUE_1|VALUE_2 :-----:|:-----:|:-----: A|-1.512|-1.504 A|0.432|0.14 ```cson round_values: column: 'VALUE_1' decimals:1 new_column: 'Pika' ``` **Output** ENTITY|VALUE_1|VALUE_2|Pika :-----:|:-----:|:-----:|:-----: A|-1.512|-1.504|-1.5 A|0.432|0.14|0.4 """ new_column = new_column or column df[new_column] = df[column].round(decimals) return df
def round_values(df, *, column: str, decimals: int, new_column: str = None): """ Round each value of a column --- ### Parameters *mandatory :* - `column` (*str*): name of the column to round - `decimals` (*int*): number of decimal to keeep *optional :* - `new_column` (*str*): name of the new column to create. By default, no new column will be created and `column` will be replaced --- ### Example ** Input** ENTITY|VALUE_1|VALUE_2 :-----:|:-----:|:-----: A|-1.512|-1.504 A|0.432|0.14 ```cson round_values: column: 'VALUE_1' decimals:1 new_column: 'Pika' ``` **Output** ENTITY|VALUE_1|VALUE_2|Pika :-----:|:-----:|:-----:|:-----: A|-1.512|-1.504|-1.5 A|0.432|0.14|0.4 """ new_column = new_column or column df[new_column] = df[column].round(decimals) return df
[ "Round", "each", "value", "of", "a", "column" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/math.py#L195-L238
[ "def", "round_values", "(", "df", ",", "*", ",", "column", ":", "str", ",", "decimals", ":", "int", ",", "new_column", ":", "str", "=", "None", ")", ":", "new_column", "=", "new_column", "or", "column", "df", "[", "new_column", "]", "=", "df", "[", "column", "]", ".", "round", "(", "decimals", ")", "return", "df" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
absolute_values
Get the absolute numeric value of each element of a column --- ### Parameters *mandatory :* - `column` (*str*): name of the column *optional :* - `new_column` (*str*): name of the column containing the result. By default, no new column will be created and `column` will be replaced. --- ### Example **Input** | ENTITY | VALUE_1 | VALUE_2 | |:------:|:-------:|:-------:| | A | -1.512 | -1.504 | | A | 0.432 | 0.14 | ```cson absolute_values: column: 'VALUE_1' new_column: 'Pika' ``` **Output** | ENTITY | VALUE_1 | VALUE_2 | Pika | |:------:|:-------:|:-------:|:-----:| | A | -1.512 | -1.504 | 1.512 | | A | 0.432 | 0.14 | 0.432 |
toucan_data_sdk/utils/postprocess/math.py
def absolute_values(df, *, column: str, new_column: str = None): """ Get the absolute numeric value of each element of a column --- ### Parameters *mandatory :* - `column` (*str*): name of the column *optional :* - `new_column` (*str*): name of the column containing the result. By default, no new column will be created and `column` will be replaced. --- ### Example **Input** | ENTITY | VALUE_1 | VALUE_2 | |:------:|:-------:|:-------:| | A | -1.512 | -1.504 | | A | 0.432 | 0.14 | ```cson absolute_values: column: 'VALUE_1' new_column: 'Pika' ``` **Output** | ENTITY | VALUE_1 | VALUE_2 | Pika | |:------:|:-------:|:-------:|:-----:| | A | -1.512 | -1.504 | 1.512 | | A | 0.432 | 0.14 | 0.432 | """ new_column = new_column or column df[new_column] = abs(df[column]) return df
def absolute_values(df, *, column: str, new_column: str = None): """ Get the absolute numeric value of each element of a column --- ### Parameters *mandatory :* - `column` (*str*): name of the column *optional :* - `new_column` (*str*): name of the column containing the result. By default, no new column will be created and `column` will be replaced. --- ### Example **Input** | ENTITY | VALUE_1 | VALUE_2 | |:------:|:-------:|:-------:| | A | -1.512 | -1.504 | | A | 0.432 | 0.14 | ```cson absolute_values: column: 'VALUE_1' new_column: 'Pika' ``` **Output** | ENTITY | VALUE_1 | VALUE_2 | Pika | |:------:|:-------:|:-------:|:-----:| | A | -1.512 | -1.504 | 1.512 | | A | 0.432 | 0.14 | 0.432 | """ new_column = new_column or column df[new_column] = abs(df[column]) return df
[ "Get", "the", "absolute", "numeric", "value", "of", "each", "element", "of", "a", "column" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/math.py#L241-L282
[ "def", "absolute_values", "(", "df", ",", "*", ",", "column", ":", "str", ",", "new_column", ":", "str", "=", "None", ")", ":", "new_column", "=", "new_column", "or", "column", "df", "[", "new_column", "]", "=", "abs", "(", "df", "[", "column", "]", ")", "return", "df" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
pivot
Pivot the data. Reverse operation of melting --- ### Parameters *mandatory :* - `index` (*list*): names of index columns. - `column` (*str*): column name to pivot on - `value` (*str*): column name containing the value to fill the pivoted df *optional :* - `agg_function` (*str*): aggregation function to use among 'mean' (default), 'count', 'mean', 'max', 'min' --- ### Example **Input** | variable | wave | year | value | |:--------:|:-------:|:--------:|:-----:| | toto | wave 1 | 2014 | 300 | | toto | wave 1 | 2015 | 250 | | toto | wave 1 | 2016 | 450 | ```cson pivot: index: ['variable','wave'] column: 'year' value: 'value' ``` **Output** | variable | wave | 2014 | 2015 | 2015 | |:--------:|:-------:|:------:|:----:|:----:| | toto | wave 1 | 300 | 250 | 450 |
toucan_data_sdk/utils/postprocess/pivot.py
def pivot(df, index: List[str], column: str, value: str, agg_function: str = 'mean'): """ Pivot the data. Reverse operation of melting --- ### Parameters *mandatory :* - `index` (*list*): names of index columns. - `column` (*str*): column name to pivot on - `value` (*str*): column name containing the value to fill the pivoted df *optional :* - `agg_function` (*str*): aggregation function to use among 'mean' (default), 'count', 'mean', 'max', 'min' --- ### Example **Input** | variable | wave | year | value | |:--------:|:-------:|:--------:|:-----:| | toto | wave 1 | 2014 | 300 | | toto | wave 1 | 2015 | 250 | | toto | wave 1 | 2016 | 450 | ```cson pivot: index: ['variable','wave'] column: 'year' value: 'value' ``` **Output** | variable | wave | 2014 | 2015 | 2015 | |:--------:|:-------:|:------:|:----:|:----:| | toto | wave 1 | 300 | 250 | 450 | """ if df.dtypes[value].type == np.object_: df = pd.pivot_table(df, index=index, columns=column, values=value, aggfunc=lambda x: ' '.join(x)) else: df = pd.pivot_table(df, index=index, columns=column, values=value, aggfunc=agg_function) df = df.reset_index() return df
def pivot(df, index: List[str], column: str, value: str, agg_function: str = 'mean'): """ Pivot the data. Reverse operation of melting --- ### Parameters *mandatory :* - `index` (*list*): names of index columns. - `column` (*str*): column name to pivot on - `value` (*str*): column name containing the value to fill the pivoted df *optional :* - `agg_function` (*str*): aggregation function to use among 'mean' (default), 'count', 'mean', 'max', 'min' --- ### Example **Input** | variable | wave | year | value | |:--------:|:-------:|:--------:|:-----:| | toto | wave 1 | 2014 | 300 | | toto | wave 1 | 2015 | 250 | | toto | wave 1 | 2016 | 450 | ```cson pivot: index: ['variable','wave'] column: 'year' value: 'value' ``` **Output** | variable | wave | 2014 | 2015 | 2015 | |:--------:|:-------:|:------:|:----:|:----:| | toto | wave 1 | 300 | 250 | 450 | """ if df.dtypes[value].type == np.object_: df = pd.pivot_table(df, index=index, columns=column, values=value, aggfunc=lambda x: ' '.join(x)) else: df = pd.pivot_table(df, index=index, columns=column, values=value, aggfunc=agg_function) df = df.reset_index() return df
[ "Pivot", "the", "data", ".", "Reverse", "operation", "of", "melting" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/pivot.py#L6-L58
[ "def", "pivot", "(", "df", ",", "index", ":", "List", "[", "str", "]", ",", "column", ":", "str", ",", "value", ":", "str", ",", "agg_function", ":", "str", "=", "'mean'", ")", ":", "if", "df", ".", "dtypes", "[", "value", "]", ".", "type", "==", "np", ".", "object_", ":", "df", "=", "pd", ".", "pivot_table", "(", "df", ",", "index", "=", "index", ",", "columns", "=", "column", ",", "values", "=", "value", ",", "aggfunc", "=", "lambda", "x", ":", "' '", ".", "join", "(", "x", ")", ")", "else", ":", "df", "=", "pd", ".", "pivot_table", "(", "df", ",", "index", "=", "index", ",", "columns", "=", "column", ",", "values", "=", "value", ",", "aggfunc", "=", "agg_function", ")", "df", "=", "df", ".", "reset_index", "(", ")", "return", "df" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
pivot_by_group
Pivot a dataframe by group of variables --- ### Parameters *mandatory :* * `variable` (*str*): name of the column used to create the groups. * `value` (*str*): name of the column containing the value to fill the pivoted df. * `new_columns` (*list of str*): names of the new columns. * `groups` (*dict*): names of the groups with their corresponding variables. **Warning**: the list of variables must have the same order as `new_columns` *optional :* * `id_cols` (*list of str*) : names of other columns to keep, default `None`. --- ### Example **Input** | type | variable | montant | |:----:|:----------:|:-------:| | A | var1 | 5 | | A | var1_evol | 0.3 | | A | var2 | 6 | | A | var2_evol | 0.2 | ```cson pivot_by_group : id_cols: ['type'] variable: 'variable' value: 'montant' new_columns: ['value', 'variation'] groups: 'Group 1' : ['var1', 'var1_evol'] 'Group 2' : ['var2', 'var2_evol'] ``` **Ouput** | type | variable | value | variation | |:----:|:----------:|:-------:|:---------:| | A | Group 1 | 5 | 0.3 | | A | Group 2 | 6 | 0.2 |
toucan_data_sdk/utils/postprocess/pivot.py
def pivot_by_group( df, variable, value, new_columns, groups, id_cols=None ): """ Pivot a dataframe by group of variables --- ### Parameters *mandatory :* * `variable` (*str*): name of the column used to create the groups. * `value` (*str*): name of the column containing the value to fill the pivoted df. * `new_columns` (*list of str*): names of the new columns. * `groups` (*dict*): names of the groups with their corresponding variables. **Warning**: the list of variables must have the same order as `new_columns` *optional :* * `id_cols` (*list of str*) : names of other columns to keep, default `None`. --- ### Example **Input** | type | variable | montant | |:----:|:----------:|:-------:| | A | var1 | 5 | | A | var1_evol | 0.3 | | A | var2 | 6 | | A | var2_evol | 0.2 | ```cson pivot_by_group : id_cols: ['type'] variable: 'variable' value: 'montant' new_columns: ['value', 'variation'] groups: 'Group 1' : ['var1', 'var1_evol'] 'Group 2' : ['var2', 'var2_evol'] ``` **Ouput** | type | variable | value | variation | |:----:|:----------:|:-------:|:---------:| | A | Group 1 | 5 | 0.3 | | A | Group 2 | 6 | 0.2 | """ if id_cols is None: index = [variable] else: index = [variable] + id_cols param = pd.DataFrame(groups, index=new_columns) temporary_colum = 'tmp' df[temporary_colum] = df[variable] for column in param.columns: df.loc[df[variable].isin(param[column]), variable] = column param = param.T for column in param.columns: df.loc[ df[temporary_colum].isin(param[column]), temporary_colum] = column df = pivot(df, index, temporary_colum, value) return df
def pivot_by_group( df, variable, value, new_columns, groups, id_cols=None ): """ Pivot a dataframe by group of variables --- ### Parameters *mandatory :* * `variable` (*str*): name of the column used to create the groups. * `value` (*str*): name of the column containing the value to fill the pivoted df. * `new_columns` (*list of str*): names of the new columns. * `groups` (*dict*): names of the groups with their corresponding variables. **Warning**: the list of variables must have the same order as `new_columns` *optional :* * `id_cols` (*list of str*) : names of other columns to keep, default `None`. --- ### Example **Input** | type | variable | montant | |:----:|:----------:|:-------:| | A | var1 | 5 | | A | var1_evol | 0.3 | | A | var2 | 6 | | A | var2_evol | 0.2 | ```cson pivot_by_group : id_cols: ['type'] variable: 'variable' value: 'montant' new_columns: ['value', 'variation'] groups: 'Group 1' : ['var1', 'var1_evol'] 'Group 2' : ['var2', 'var2_evol'] ``` **Ouput** | type | variable | value | variation | |:----:|:----------:|:-------:|:---------:| | A | Group 1 | 5 | 0.3 | | A | Group 2 | 6 | 0.2 | """ if id_cols is None: index = [variable] else: index = [variable] + id_cols param = pd.DataFrame(groups, index=new_columns) temporary_colum = 'tmp' df[temporary_colum] = df[variable] for column in param.columns: df.loc[df[variable].isin(param[column]), variable] = column param = param.T for column in param.columns: df.loc[ df[temporary_colum].isin(param[column]), temporary_colum] = column df = pivot(df, index, temporary_colum, value) return df
[ "Pivot", "a", "dataframe", "by", "group", "of", "variables" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/pivot.py#L61-L136
[ "def", "pivot_by_group", "(", "df", ",", "variable", ",", "value", ",", "new_columns", ",", "groups", ",", "id_cols", "=", "None", ")", ":", "if", "id_cols", "is", "None", ":", "index", "=", "[", "variable", "]", "else", ":", "index", "=", "[", "variable", "]", "+", "id_cols", "param", "=", "pd", ".", "DataFrame", "(", "groups", ",", "index", "=", "new_columns", ")", "temporary_colum", "=", "'tmp'", "df", "[", "temporary_colum", "]", "=", "df", "[", "variable", "]", "for", "column", "in", "param", ".", "columns", ":", "df", ".", "loc", "[", "df", "[", "variable", "]", ".", "isin", "(", "param", "[", "column", "]", ")", ",", "variable", "]", "=", "column", "param", "=", "param", ".", "T", "for", "column", "in", "param", ".", "columns", ":", "df", ".", "loc", "[", "df", "[", "temporary_colum", "]", ".", "isin", "(", "param", "[", "column", "]", ")", ",", "temporary_colum", "]", "=", "column", "df", "=", "pivot", "(", "df", ",", "index", ",", "temporary_colum", ",", "value", ")", "return", "df" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
groupby
Aggregate values by groups. --- ### Parameters *mandatory :* - `group_cols` (*list*): list of columns used to group data - `aggregations` (*dict*): dictionnary of values columns to group as keys and aggregation function to use as values (See the [list of aggregation functions]( https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html#aggregation)) --- ### Example **Input** | ENTITY | YEAR | VALUE_1 | VALUE_2 | |:------:|:----:|:-------:|:-------:| | A | 2017 | 10 | 3 | | A | 2017 | 20 | 1 | | A | 2018 | 10 | 5 | | A | 2018 | 30 | 4 | | B | 2017 | 60 | 4 | | B | 2017 | 40 | 3 | | B | 2018 | 50 | 7 | | B | 2018 | 60 | 6 | ```cson groupby: group_cols: ['ENTITY', 'YEAR'] aggregations: 'VALUE_1': 'sum', 'VALUE_2': 'mean' ``` **Output** | ENTITY | YEAR | VALUE_1 | VALUE_2 | |:------:|:----:|:-------:|:-------:| | A | 2017 | 30 | 2.0 | | A | 2018 | 40 | 4.5 | | B | 2017 | 100 | 3.5 | | B | 2018 | 110 | 6.5 |
toucan_data_sdk/utils/postprocess/groupby.py
def groupby(df, *, group_cols: Union[str, List[str]], aggregations: Dict[str, Union[str, List[str]]]): """ Aggregate values by groups. --- ### Parameters *mandatory :* - `group_cols` (*list*): list of columns used to group data - `aggregations` (*dict*): dictionnary of values columns to group as keys and aggregation function to use as values (See the [list of aggregation functions]( https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html#aggregation)) --- ### Example **Input** | ENTITY | YEAR | VALUE_1 | VALUE_2 | |:------:|:----:|:-------:|:-------:| | A | 2017 | 10 | 3 | | A | 2017 | 20 | 1 | | A | 2018 | 10 | 5 | | A | 2018 | 30 | 4 | | B | 2017 | 60 | 4 | | B | 2017 | 40 | 3 | | B | 2018 | 50 | 7 | | B | 2018 | 60 | 6 | ```cson groupby: group_cols: ['ENTITY', 'YEAR'] aggregations: 'VALUE_1': 'sum', 'VALUE_2': 'mean' ``` **Output** | ENTITY | YEAR | VALUE_1 | VALUE_2 | |:------:|:----:|:-------:|:-------:| | A | 2017 | 30 | 2.0 | | A | 2018 | 40 | 4.5 | | B | 2017 | 100 | 3.5 | | B | 2018 | 110 | 6.5 | """ df = df.groupby(group_cols, as_index=False).agg(aggregations) # When several aggregations are performed on the same column, pandas return # a multi-indexed dataframe, so we need to flatten the columns index to get # back to a unique level header if df.columns.nlevels == 2: level_0 = df.columns.get_level_values(0) level_1 = df.columns.get_level_values(1) new_columns = [(f'{x}_{y}' if x else y) for (x, y) in zip(level_1, level_0)] df.columns = new_columns return df
def groupby(df, *, group_cols: Union[str, List[str]], aggregations: Dict[str, Union[str, List[str]]]): """ Aggregate values by groups. --- ### Parameters *mandatory :* - `group_cols` (*list*): list of columns used to group data - `aggregations` (*dict*): dictionnary of values columns to group as keys and aggregation function to use as values (See the [list of aggregation functions]( https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html#aggregation)) --- ### Example **Input** | ENTITY | YEAR | VALUE_1 | VALUE_2 | |:------:|:----:|:-------:|:-------:| | A | 2017 | 10 | 3 | | A | 2017 | 20 | 1 | | A | 2018 | 10 | 5 | | A | 2018 | 30 | 4 | | B | 2017 | 60 | 4 | | B | 2017 | 40 | 3 | | B | 2018 | 50 | 7 | | B | 2018 | 60 | 6 | ```cson groupby: group_cols: ['ENTITY', 'YEAR'] aggregations: 'VALUE_1': 'sum', 'VALUE_2': 'mean' ``` **Output** | ENTITY | YEAR | VALUE_1 | VALUE_2 | |:------:|:----:|:-------:|:-------:| | A | 2017 | 30 | 2.0 | | A | 2018 | 40 | 4.5 | | B | 2017 | 100 | 3.5 | | B | 2018 | 110 | 6.5 | """ df = df.groupby(group_cols, as_index=False).agg(aggregations) # When several aggregations are performed on the same column, pandas return # a multi-indexed dataframe, so we need to flatten the columns index to get # back to a unique level header if df.columns.nlevels == 2: level_0 = df.columns.get_level_values(0) level_1 = df.columns.get_level_values(1) new_columns = [(f'{x}_{y}' if x else y) for (x, y) in zip(level_1, level_0)] df.columns = new_columns return df
[ "Aggregate", "values", "by", "groups", "." ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/groupby.py#L4-L65
[ "def", "groupby", "(", "df", ",", "*", ",", "group_cols", ":", "Union", "[", "str", ",", "List", "[", "str", "]", "]", ",", "aggregations", ":", "Dict", "[", "str", ",", "Union", "[", "str", ",", "List", "[", "str", "]", "]", "]", ")", ":", "df", "=", "df", ".", "groupby", "(", "group_cols", ",", "as_index", "=", "False", ")", ".", "agg", "(", "aggregations", ")", "# When several aggregations are performed on the same column, pandas return", "# a multi-indexed dataframe, so we need to flatten the columns index to get", "# back to a unique level header", "if", "df", ".", "columns", ".", "nlevels", "==", "2", ":", "level_0", "=", "df", ".", "columns", ".", "get_level_values", "(", "0", ")", "level_1", "=", "df", ".", "columns", ".", "get_level_values", "(", "1", ")", "new_columns", "=", "[", "(", "f'{x}_{y}'", "if", "x", "else", "y", ")", "for", "(", "x", ",", "y", ")", "in", "zip", "(", "level_1", ",", "level_0", ")", "]", "df", ".", "columns", "=", "new_columns", "return", "df" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
cumsum
DEPRECATED - please use `compute_cumsum` instead
toucan_data_sdk/utils/postprocess/cumsum.py
def cumsum(df, new_column: str, column: str, index: list, date_column: str, date_format: str): """ DEPRECATED - please use `compute_cumsum` instead """ logging.getLogger(__name__).warning(f"DEPRECATED: use compute_cumsum") date_temp = '__date_temp__' if isinstance(index, str): index = [index] levels = list(range(0, len(index))) df[date_temp] = pd.to_datetime(df[date_column], format=date_format) reference_cols = [date_temp, date_column] df = df.groupby(index + reference_cols).sum() df[new_column] = df.groupby(level=levels)[column].cumsum() df.reset_index(inplace=True) del df[date_temp] return df
def cumsum(df, new_column: str, column: str, index: list, date_column: str, date_format: str): """ DEPRECATED - please use `compute_cumsum` instead """ logging.getLogger(__name__).warning(f"DEPRECATED: use compute_cumsum") date_temp = '__date_temp__' if isinstance(index, str): index = [index] levels = list(range(0, len(index))) df[date_temp] = pd.to_datetime(df[date_column], format=date_format) reference_cols = [date_temp, date_column] df = df.groupby(index + reference_cols).sum() df[new_column] = df.groupby(level=levels)[column].cumsum() df.reset_index(inplace=True) del df[date_temp] return df
[ "DEPRECATED", "-", "please", "use", "compute_cumsum", "instead" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/cumsum.py#L5-L21
[ "def", "cumsum", "(", "df", ",", "new_column", ":", "str", ",", "column", ":", "str", ",", "index", ":", "list", ",", "date_column", ":", "str", ",", "date_format", ":", "str", ")", ":", "logging", ".", "getLogger", "(", "__name__", ")", ".", "warning", "(", "f\"DEPRECATED: use compute_cumsum\"", ")", "date_temp", "=", "'__date_temp__'", "if", "isinstance", "(", "index", ",", "str", ")", ":", "index", "=", "[", "index", "]", "levels", "=", "list", "(", "range", "(", "0", ",", "len", "(", "index", ")", ")", ")", "df", "[", "date_temp", "]", "=", "pd", ".", "to_datetime", "(", "df", "[", "date_column", "]", ",", "format", "=", "date_format", ")", "reference_cols", "=", "[", "date_temp", ",", "date_column", "]", "df", "=", "df", ".", "groupby", "(", "index", "+", "reference_cols", ")", ".", "sum", "(", ")", "df", "[", "new_column", "]", "=", "df", ".", "groupby", "(", "level", "=", "levels", ")", "[", "column", "]", ".", "cumsum", "(", ")", "df", ".", "reset_index", "(", "inplace", "=", "True", ")", "del", "df", "[", "date_temp", "]", "return", "df" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
add_missing_row
Add missing row to a df base on a reference column --- ### Parameters *mandatory :* - `id_cols` (*list of str*): names of the columns used to create each group - `reference_col` (*str*): name of the column used to identify missing rows *optional :* - `complete_index` (*list* or *dict*): [A, B, C] a list of values used to add missing rows. It can also be a dict to declare a date range. By default, use all values of reference_col. - `method` (*str*): by default all missing rows are added. The possible values are : - `"between"` : add missing rows having their value between min and max values for each group, - `"between_and_after"` : add missing rows having their value bigger than min value for each group. - `"between_and_before"` : add missing rows having their value smaller than max values for each group. - `cols_to_keep` (*list of str*): name of other columns to keep, linked to the reference_col. --- ### Example **Input** YEAR | MONTH | NAME :---:|:---:|:--: 2017|1|A 2017|2|A 2017|3|A 2017|1|B 2017|3|B ```cson add_missing_row: id_cols: ['NAME'] reference_col: 'MONTH' ``` **Output** YEAR | MONTH | NAME :---:|:---:|:--: 2017|1|A 2017|2|A 2017|3|A 2017|1|B 2017|2|B 2017|3|B
toucan_data_sdk/utils/generic/add_missing_row.py
def add_missing_row( df: pd.DataFrame, id_cols: List[str], reference_col: str, complete_index: Union[Dict[str, str], List[str]] = None, method: str = None, cols_to_keep: List[str] = None ) -> pd.DataFrame: """ Add missing row to a df base on a reference column --- ### Parameters *mandatory :* - `id_cols` (*list of str*): names of the columns used to create each group - `reference_col` (*str*): name of the column used to identify missing rows *optional :* - `complete_index` (*list* or *dict*): [A, B, C] a list of values used to add missing rows. It can also be a dict to declare a date range. By default, use all values of reference_col. - `method` (*str*): by default all missing rows are added. The possible values are : - `"between"` : add missing rows having their value between min and max values for each group, - `"between_and_after"` : add missing rows having their value bigger than min value for each group. - `"between_and_before"` : add missing rows having their value smaller than max values for each group. - `cols_to_keep` (*list of str*): name of other columns to keep, linked to the reference_col. --- ### Example **Input** YEAR | MONTH | NAME :---:|:---:|:--: 2017|1|A 2017|2|A 2017|3|A 2017|1|B 2017|3|B ```cson add_missing_row: id_cols: ['NAME'] reference_col: 'MONTH' ``` **Output** YEAR | MONTH | NAME :---:|:---:|:--: 2017|1|A 2017|2|A 2017|3|A 2017|1|B 2017|2|B 2017|3|B """ if cols_to_keep is None: cols_for_index = [reference_col] else: cols_for_index = [reference_col] + cols_to_keep check_params_columns_duplicate(id_cols + cols_for_index) if method == 'between' or method == 'between_and_after': df['start'] = df.groupby(id_cols)[reference_col].transform(min) id_cols += ['start'] if method == 'between' or method == 'between_and_before': df['end'] = df.groupby(id_cols)[reference_col].transform(max) id_cols += ['end'] names = id_cols + cols_for_index new_df = df.set_index(names) index_values = df.groupby(id_cols).sum().index.values if complete_index is None: complete_index = df.groupby(cols_for_index).sum().index.values elif isinstance(complete_index, dict): if complete_index['type'] == 'date': freq = complete_index['freq'] date_format = complete_index['format'] start = complete_index['start'] end = complete_index['end'] if isinstance(freq, dict): freq = pd.DateOffset(**{k: int(v) for k, v in freq.items()}) complete_index = pd.date_range(start=start, end=end, freq=freq) complete_index = complete_index.strftime(date_format) else: raise ParamsValueError(f'Unknown complete index type: ' f'{complete_index["type"]}') if not isinstance(index_values[0], tuple): index_values = [(x,) for x in index_values] if not isinstance(complete_index[0], tuple): complete_index = [(x,) for x in complete_index] new_tuples_index = [x + y for x in index_values for y in complete_index] new_index = pd.MultiIndex.from_tuples(new_tuples_index, names=names) new_df = new_df.reindex(new_index).reset_index() if method == 'between' or method == 'between_and_after': new_df = new_df[new_df[reference_col] >= new_df['start']] del new_df['start'] if method == 'between' or method == 'between_and_before': new_df = new_df[new_df[reference_col] <= new_df['end']] del new_df['end'] return new_df
def add_missing_row( df: pd.DataFrame, id_cols: List[str], reference_col: str, complete_index: Union[Dict[str, str], List[str]] = None, method: str = None, cols_to_keep: List[str] = None ) -> pd.DataFrame: """ Add missing row to a df base on a reference column --- ### Parameters *mandatory :* - `id_cols` (*list of str*): names of the columns used to create each group - `reference_col` (*str*): name of the column used to identify missing rows *optional :* - `complete_index` (*list* or *dict*): [A, B, C] a list of values used to add missing rows. It can also be a dict to declare a date range. By default, use all values of reference_col. - `method` (*str*): by default all missing rows are added. The possible values are : - `"between"` : add missing rows having their value between min and max values for each group, - `"between_and_after"` : add missing rows having their value bigger than min value for each group. - `"between_and_before"` : add missing rows having their value smaller than max values for each group. - `cols_to_keep` (*list of str*): name of other columns to keep, linked to the reference_col. --- ### Example **Input** YEAR | MONTH | NAME :---:|:---:|:--: 2017|1|A 2017|2|A 2017|3|A 2017|1|B 2017|3|B ```cson add_missing_row: id_cols: ['NAME'] reference_col: 'MONTH' ``` **Output** YEAR | MONTH | NAME :---:|:---:|:--: 2017|1|A 2017|2|A 2017|3|A 2017|1|B 2017|2|B 2017|3|B """ if cols_to_keep is None: cols_for_index = [reference_col] else: cols_for_index = [reference_col] + cols_to_keep check_params_columns_duplicate(id_cols + cols_for_index) if method == 'between' or method == 'between_and_after': df['start'] = df.groupby(id_cols)[reference_col].transform(min) id_cols += ['start'] if method == 'between' or method == 'between_and_before': df['end'] = df.groupby(id_cols)[reference_col].transform(max) id_cols += ['end'] names = id_cols + cols_for_index new_df = df.set_index(names) index_values = df.groupby(id_cols).sum().index.values if complete_index is None: complete_index = df.groupby(cols_for_index).sum().index.values elif isinstance(complete_index, dict): if complete_index['type'] == 'date': freq = complete_index['freq'] date_format = complete_index['format'] start = complete_index['start'] end = complete_index['end'] if isinstance(freq, dict): freq = pd.DateOffset(**{k: int(v) for k, v in freq.items()}) complete_index = pd.date_range(start=start, end=end, freq=freq) complete_index = complete_index.strftime(date_format) else: raise ParamsValueError(f'Unknown complete index type: ' f'{complete_index["type"]}') if not isinstance(index_values[0], tuple): index_values = [(x,) for x in index_values] if not isinstance(complete_index[0], tuple): complete_index = [(x,) for x in complete_index] new_tuples_index = [x + y for x in index_values for y in complete_index] new_index = pd.MultiIndex.from_tuples(new_tuples_index, names=names) new_df = new_df.reindex(new_index).reset_index() if method == 'between' or method == 'between_and_after': new_df = new_df[new_df[reference_col] >= new_df['start']] del new_df['start'] if method == 'between' or method == 'between_and_before': new_df = new_df[new_df[reference_col] <= new_df['end']] del new_df['end'] return new_df
[ "Add", "missing", "row", "to", "a", "df", "base", "on", "a", "reference", "column" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/generic/add_missing_row.py#L11-L121
[ "def", "add_missing_row", "(", "df", ":", "pd", ".", "DataFrame", ",", "id_cols", ":", "List", "[", "str", "]", ",", "reference_col", ":", "str", ",", "complete_index", ":", "Union", "[", "Dict", "[", "str", ",", "str", "]", ",", "List", "[", "str", "]", "]", "=", "None", ",", "method", ":", "str", "=", "None", ",", "cols_to_keep", ":", "List", "[", "str", "]", "=", "None", ")", "->", "pd", ".", "DataFrame", ":", "if", "cols_to_keep", "is", "None", ":", "cols_for_index", "=", "[", "reference_col", "]", "else", ":", "cols_for_index", "=", "[", "reference_col", "]", "+", "cols_to_keep", "check_params_columns_duplicate", "(", "id_cols", "+", "cols_for_index", ")", "if", "method", "==", "'between'", "or", "method", "==", "'between_and_after'", ":", "df", "[", "'start'", "]", "=", "df", ".", "groupby", "(", "id_cols", ")", "[", "reference_col", "]", ".", "transform", "(", "min", ")", "id_cols", "+=", "[", "'start'", "]", "if", "method", "==", "'between'", "or", "method", "==", "'between_and_before'", ":", "df", "[", "'end'", "]", "=", "df", ".", "groupby", "(", "id_cols", ")", "[", "reference_col", "]", ".", "transform", "(", "max", ")", "id_cols", "+=", "[", "'end'", "]", "names", "=", "id_cols", "+", "cols_for_index", "new_df", "=", "df", ".", "set_index", "(", "names", ")", "index_values", "=", "df", ".", "groupby", "(", "id_cols", ")", ".", "sum", "(", ")", ".", "index", ".", "values", "if", "complete_index", "is", "None", ":", "complete_index", "=", "df", ".", "groupby", "(", "cols_for_index", ")", ".", "sum", "(", ")", ".", "index", ".", "values", "elif", "isinstance", "(", "complete_index", ",", "dict", ")", ":", "if", "complete_index", "[", "'type'", "]", "==", "'date'", ":", "freq", "=", "complete_index", "[", "'freq'", "]", "date_format", "=", "complete_index", "[", "'format'", "]", "start", "=", "complete_index", "[", "'start'", "]", "end", "=", "complete_index", "[", "'end'", "]", "if", "isinstance", "(", "freq", ",", "dict", ")", ":", "freq", "=", "pd", ".", "DateOffset", "(", "*", "*", "{", "k", ":", "int", "(", "v", ")", "for", "k", ",", "v", "in", "freq", ".", "items", "(", ")", "}", ")", "complete_index", "=", "pd", ".", "date_range", "(", "start", "=", "start", ",", "end", "=", "end", ",", "freq", "=", "freq", ")", "complete_index", "=", "complete_index", ".", "strftime", "(", "date_format", ")", "else", ":", "raise", "ParamsValueError", "(", "f'Unknown complete index type: '", "f'{complete_index[\"type\"]}'", ")", "if", "not", "isinstance", "(", "index_values", "[", "0", "]", ",", "tuple", ")", ":", "index_values", "=", "[", "(", "x", ",", ")", "for", "x", "in", "index_values", "]", "if", "not", "isinstance", "(", "complete_index", "[", "0", "]", ",", "tuple", ")", ":", "complete_index", "=", "[", "(", "x", ",", ")", "for", "x", "in", "complete_index", "]", "new_tuples_index", "=", "[", "x", "+", "y", "for", "x", "in", "index_values", "for", "y", "in", "complete_index", "]", "new_index", "=", "pd", ".", "MultiIndex", ".", "from_tuples", "(", "new_tuples_index", ",", "names", "=", "names", ")", "new_df", "=", "new_df", ".", "reindex", "(", "new_index", ")", ".", "reset_index", "(", ")", "if", "method", "==", "'between'", "or", "method", "==", "'between_and_after'", ":", "new_df", "=", "new_df", "[", "new_df", "[", "reference_col", "]", ">=", "new_df", "[", "'start'", "]", "]", "del", "new_df", "[", "'start'", "]", "if", "method", "==", "'between'", "or", "method", "==", "'between_and_before'", ":", "new_df", "=", "new_df", "[", "new_df", "[", "reference_col", "]", "<=", "new_df", "[", "'end'", "]", "]", "del", "new_df", "[", "'end'", "]", "return", "new_df" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
extract_zip
Returns: dict: Dict[str, DataFrame]
toucan_data_sdk/sdk.py
def extract_zip(zip_file_path): """ Returns: dict: Dict[str, DataFrame] """ dfs = {} with zipfile.ZipFile(zip_file_path, mode='r') as z_file: names = z_file.namelist() for name in names: content = z_file.read(name) _, tmp_file_path = tempfile.mkstemp() try: with open(tmp_file_path, 'wb') as tmp_file: tmp_file.write(content) dfs[name] = joblib.load(tmp_file_path) finally: shutil.rmtree(tmp_file_path, ignore_errors=True) return dfs
def extract_zip(zip_file_path): """ Returns: dict: Dict[str, DataFrame] """ dfs = {} with zipfile.ZipFile(zip_file_path, mode='r') as z_file: names = z_file.namelist() for name in names: content = z_file.read(name) _, tmp_file_path = tempfile.mkstemp() try: with open(tmp_file_path, 'wb') as tmp_file: tmp_file.write(content) dfs[name] = joblib.load(tmp_file_path) finally: shutil.rmtree(tmp_file_path, ignore_errors=True) return dfs
[ "Returns", ":", "dict", ":", "Dict", "[", "str", "DataFrame", "]" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/sdk.py#L173-L191
[ "def", "extract_zip", "(", "zip_file_path", ")", ":", "dfs", "=", "{", "}", "with", "zipfile", ".", "ZipFile", "(", "zip_file_path", ",", "mode", "=", "'r'", ")", "as", "z_file", ":", "names", "=", "z_file", ".", "namelist", "(", ")", "for", "name", "in", "names", ":", "content", "=", "z_file", ".", "read", "(", "name", ")", "_", ",", "tmp_file_path", "=", "tempfile", ".", "mkstemp", "(", ")", "try", ":", "with", "open", "(", "tmp_file_path", ",", "'wb'", ")", "as", "tmp_file", ":", "tmp_file", ".", "write", "(", "content", ")", "dfs", "[", "name", "]", "=", "joblib", ".", "load", "(", "tmp_file_path", ")", "finally", ":", "shutil", ".", "rmtree", "(", "tmp_file_path", ",", "ignore_errors", "=", "True", ")", "return", "dfs" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
extract
Args: data (str | byte): Returns: dict: Dict[str, DataFrame]
toucan_data_sdk/sdk.py
def extract(data): """ Args: data (str | byte): Returns: dict: Dict[str, DataFrame] """ _, tmp_file_path = tempfile.mkstemp() try: with open(tmp_file_path, 'wb') as tmp_file: tmp_file.write(data) if zipfile.is_zipfile(tmp_file_path): return extract_zip(tmp_file_path) else: raise DataSdkError('Unsupported file type') finally: shutil.rmtree(tmp_file_path, ignore_errors=True)
def extract(data): """ Args: data (str | byte): Returns: dict: Dict[str, DataFrame] """ _, tmp_file_path = tempfile.mkstemp() try: with open(tmp_file_path, 'wb') as tmp_file: tmp_file.write(data) if zipfile.is_zipfile(tmp_file_path): return extract_zip(tmp_file_path) else: raise DataSdkError('Unsupported file type') finally: shutil.rmtree(tmp_file_path, ignore_errors=True)
[ "Args", ":", "data", "(", "str", "|", "byte", ")", ":" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/sdk.py#L194-L213
[ "def", "extract", "(", "data", ")", ":", "_", ",", "tmp_file_path", "=", "tempfile", ".", "mkstemp", "(", ")", "try", ":", "with", "open", "(", "tmp_file_path", ",", "'wb'", ")", "as", "tmp_file", ":", "tmp_file", ".", "write", "(", "data", ")", "if", "zipfile", ".", "is_zipfile", "(", "tmp_file_path", ")", ":", "return", "extract_zip", "(", "tmp_file_path", ")", "else", ":", "raise", "DataSdkError", "(", "'Unsupported file type'", ")", "finally", ":", "shutil", ".", "rmtree", "(", "tmp_file_path", ",", "ignore_errors", "=", "True", ")" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
ToucanDataSdk.read_from_cache
Returns: dict: Dict[str, DataFrame]
toucan_data_sdk/sdk.py
def read_from_cache(self, domains=None): """ Returns: dict: Dict[str, DataFrame] """ logger.info(f'Reading data from cache ({self.EXTRACTION_CACHE_PATH})') if domains is not None and isinstance(domains, list): dfs = {domain: self.read_entry(domain) for domain in domains} else: dfs = {name: self.read_entry(name) for name in os.listdir(self.EXTRACTION_CACHE_PATH)} return dfs
def read_from_cache(self, domains=None): """ Returns: dict: Dict[str, DataFrame] """ logger.info(f'Reading data from cache ({self.EXTRACTION_CACHE_PATH})') if domains is not None and isinstance(domains, list): dfs = {domain: self.read_entry(domain) for domain in domains} else: dfs = {name: self.read_entry(name) for name in os.listdir(self.EXTRACTION_CACHE_PATH)} return dfs
[ "Returns", ":", "dict", ":", "Dict", "[", "str", "DataFrame", "]" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/sdk.py#L114-L125
[ "def", "read_from_cache", "(", "self", ",", "domains", "=", "None", ")", ":", "logger", ".", "info", "(", "f'Reading data from cache ({self.EXTRACTION_CACHE_PATH})'", ")", "if", "domains", "is", "not", "None", "and", "isinstance", "(", "domains", ",", "list", ")", ":", "dfs", "=", "{", "domain", ":", "self", ".", "read_entry", "(", "domain", ")", "for", "domain", "in", "domains", "}", "else", ":", "dfs", "=", "{", "name", ":", "self", ".", "read_entry", "(", "name", ")", "for", "name", "in", "os", ".", "listdir", "(", "self", ".", "EXTRACTION_CACHE_PATH", ")", "}", "return", "dfs" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
ToucanDataSdk.read_entry
Args: file_name (str): Returns: pd.DataFrame:
toucan_data_sdk/sdk.py
def read_entry(self, file_name): """ Args: file_name (str): Returns: pd.DataFrame: """ file_path = os.path.join(self.EXTRACTION_CACHE_PATH, file_name) logger.info(f'Reading cache entry: {file_path}') return joblib.load(file_path)
def read_entry(self, file_name): """ Args: file_name (str): Returns: pd.DataFrame: """ file_path = os.path.join(self.EXTRACTION_CACHE_PATH, file_name) logger.info(f'Reading cache entry: {file_path}') return joblib.load(file_path)
[ "Args", ":", "file_name", "(", "str", ")", ":" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/sdk.py#L127-L137
[ "def", "read_entry", "(", "self", ",", "file_name", ")", ":", "file_path", "=", "os", ".", "path", ".", "join", "(", "self", ".", "EXTRACTION_CACHE_PATH", ",", "file_name", ")", "logger", ".", "info", "(", "f'Reading cache entry: {file_path}'", ")", "return", "joblib", ".", "load", "(", "file_path", ")" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
ToucanDataSdk.write
Args: data (str | byte): Returns: dict: Dict[str, DataFrame]
toucan_data_sdk/sdk.py
def write(self, dfs): """ Args: data (str | byte): Returns: dict: Dict[str, DataFrame] """ if not os.path.exists(self.EXTRACTION_CACHE_PATH): os.makedirs(self.EXTRACTION_CACHE_PATH) for name, df in dfs.items(): file_path = os.path.join(self.EXTRACTION_CACHE_PATH, name) joblib.dump(df, filename=file_path) logger.info(f'Cache entry added: {file_path}')
def write(self, dfs): """ Args: data (str | byte): Returns: dict: Dict[str, DataFrame] """ if not os.path.exists(self.EXTRACTION_CACHE_PATH): os.makedirs(self.EXTRACTION_CACHE_PATH) for name, df in dfs.items(): file_path = os.path.join(self.EXTRACTION_CACHE_PATH, name) joblib.dump(df, filename=file_path) logger.info(f'Cache entry added: {file_path}')
[ "Args", ":", "data", "(", "str", "|", "byte", ")", ":" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/sdk.py#L139-L153
[ "def", "write", "(", "self", ",", "dfs", ")", ":", "if", "not", "os", ".", "path", ".", "exists", "(", "self", ".", "EXTRACTION_CACHE_PATH", ")", ":", "os", ".", "makedirs", "(", "self", ".", "EXTRACTION_CACHE_PATH", ")", "for", "name", ",", "df", "in", "dfs", ".", "items", "(", ")", ":", "file_path", "=", "os", ".", "path", ".", "join", "(", "self", ".", "EXTRACTION_CACHE_PATH", ",", "name", ")", "joblib", ".", "dump", "(", "df", ",", "filename", "=", "file_path", ")", "logger", ".", "info", "(", "f'Cache entry added: {file_path}'", ")" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
clean_dataframe
This method is used to: - slugify the column names (if slugify is set to True) - convert columns to 'category' (if len(unique) < threshold) or 'int' - clean the dataframe and rename if necessary
toucan_data_sdk/utils/generic/clean.py
def clean_dataframe(df, is_slugify=True, threshold=50, rename_cols=None): """ This method is used to: - slugify the column names (if slugify is set to True) - convert columns to 'category' (if len(unique) < threshold) or 'int' - clean the dataframe and rename if necessary """ if is_slugify: df = df.rename(columns=slugify) df = df.dropna(axis=1, how='all') for column in get_category_cols(df, threshold=threshold): df[column] = df[column].astype('category') for column in get_int_cols(df): df[column] = df[column].astype(int) if rename_cols is not None: df = df.rename(columns=rename_cols) return df
def clean_dataframe(df, is_slugify=True, threshold=50, rename_cols=None): """ This method is used to: - slugify the column names (if slugify is set to True) - convert columns to 'category' (if len(unique) < threshold) or 'int' - clean the dataframe and rename if necessary """ if is_slugify: df = df.rename(columns=slugify) df = df.dropna(axis=1, how='all') for column in get_category_cols(df, threshold=threshold): df[column] = df[column].astype('category') for column in get_int_cols(df): df[column] = df[column].astype(int) if rename_cols is not None: df = df.rename(columns=rename_cols) return df
[ "This", "method", "is", "used", "to", ":", "-", "slugify", "the", "column", "names", "(", "if", "slugify", "is", "set", "to", "True", ")", "-", "convert", "columns", "to", "category", "(", "if", "len", "(", "unique", ")", "<", "threshold", ")", "or", "int", "-", "clean", "the", "dataframe", "and", "rename", "if", "necessary" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/generic/clean.py#L14-L33
[ "def", "clean_dataframe", "(", "df", ",", "is_slugify", "=", "True", ",", "threshold", "=", "50", ",", "rename_cols", "=", "None", ")", ":", "if", "is_slugify", ":", "df", "=", "df", ".", "rename", "(", "columns", "=", "slugify", ")", "df", "=", "df", ".", "dropna", "(", "axis", "=", "1", ",", "how", "=", "'all'", ")", "for", "column", "in", "get_category_cols", "(", "df", ",", "threshold", "=", "threshold", ")", ":", "df", "[", "column", "]", "=", "df", "[", "column", "]", ".", "astype", "(", "'category'", ")", "for", "column", "in", "get_int_cols", "(", "df", ")", ":", "df", "[", "column", "]", "=", "df", "[", "column", "]", ".", "astype", "(", "int", ")", "if", "rename_cols", "is", "not", "None", ":", "df", "=", "df", ".", "rename", "(", "columns", "=", "rename_cols", ")", "return", "df" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
compute_ffill_by_group
Compute `ffill` with `groupby` Dedicated method as there is a performance issue with a simple groupby/fillna (2017/07) The method `ffill` propagates last valid value forward to next values. --- ### Parameters *mandatory :* - `id_cols` (*list of str*): names of columns used to create each group. - `reference_cols` (*list of str*): names of columns used to sort. - `value_col` (*str*): name of the columns to fill. --- ### Example **Input** name | rank | value :------:|:--------------:|:--------: A | 1 | 2 A | 2 | 5 A | 3 | null B | 1 | null B | 2 | 7 ```cson compute_ffill_by_group: id_cols: ['name'] reference_cols: ['rank'] value_col: 'value' ``` **Ouput** name | rank | value :------:|:--------------:|:--------: A | 1 | 2 A | 2 | 5 A | 3 | 5 B | 1 | null B | 2 | 7
toucan_data_sdk/utils/generic/compute_ffill_by_group.py
def compute_ffill_by_group( df, id_cols: List[str], reference_cols: List[str], value_col: str ): """ Compute `ffill` with `groupby` Dedicated method as there is a performance issue with a simple groupby/fillna (2017/07) The method `ffill` propagates last valid value forward to next values. --- ### Parameters *mandatory :* - `id_cols` (*list of str*): names of columns used to create each group. - `reference_cols` (*list of str*): names of columns used to sort. - `value_col` (*str*): name of the columns to fill. --- ### Example **Input** name | rank | value :------:|:--------------:|:--------: A | 1 | 2 A | 2 | 5 A | 3 | null B | 1 | null B | 2 | 7 ```cson compute_ffill_by_group: id_cols: ['name'] reference_cols: ['rank'] value_col: 'value' ``` **Ouput** name | rank | value :------:|:--------------:|:--------: A | 1 | 2 A | 2 | 5 A | 3 | 5 B | 1 | null B | 2 | 7 """ check_params_columns_duplicate(id_cols + reference_cols + [value_col]) df = df.sort_values(by=id_cols + reference_cols) df = df.set_index(id_cols) df['fill'] = 1 - df[value_col].isnull().astype(int) df['fill'] = df.groupby( level=list(range(0, len(id_cols) - 1)) )['fill'].cumsum() df[value_col] = df[value_col].ffill() df.loc[df['fill'] == 0, value_col] = None del df['fill'] return df.reset_index()
def compute_ffill_by_group( df, id_cols: List[str], reference_cols: List[str], value_col: str ): """ Compute `ffill` with `groupby` Dedicated method as there is a performance issue with a simple groupby/fillna (2017/07) The method `ffill` propagates last valid value forward to next values. --- ### Parameters *mandatory :* - `id_cols` (*list of str*): names of columns used to create each group. - `reference_cols` (*list of str*): names of columns used to sort. - `value_col` (*str*): name of the columns to fill. --- ### Example **Input** name | rank | value :------:|:--------------:|:--------: A | 1 | 2 A | 2 | 5 A | 3 | null B | 1 | null B | 2 | 7 ```cson compute_ffill_by_group: id_cols: ['name'] reference_cols: ['rank'] value_col: 'value' ``` **Ouput** name | rank | value :------:|:--------------:|:--------: A | 1 | 2 A | 2 | 5 A | 3 | 5 B | 1 | null B | 2 | 7 """ check_params_columns_duplicate(id_cols + reference_cols + [value_col]) df = df.sort_values(by=id_cols + reference_cols) df = df.set_index(id_cols) df['fill'] = 1 - df[value_col].isnull().astype(int) df['fill'] = df.groupby( level=list(range(0, len(id_cols) - 1)) )['fill'].cumsum() df[value_col] = df[value_col].ffill() df.loc[df['fill'] == 0, value_col] = None del df['fill'] return df.reset_index()
[ "Compute", "ffill", "with", "groupby", "Dedicated", "method", "as", "there", "is", "a", "performance", "issue", "with", "a", "simple", "groupby", "/", "fillna", "(", "2017", "/", "07", ")", "The", "method", "ffill", "propagates", "last", "valid", "value", "forward", "to", "next", "values", "." ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/generic/compute_ffill_by_group.py#L6-L67
[ "def", "compute_ffill_by_group", "(", "df", ",", "id_cols", ":", "List", "[", "str", "]", ",", "reference_cols", ":", "List", "[", "str", "]", ",", "value_col", ":", "str", ")", ":", "check_params_columns_duplicate", "(", "id_cols", "+", "reference_cols", "+", "[", "value_col", "]", ")", "df", "=", "df", ".", "sort_values", "(", "by", "=", "id_cols", "+", "reference_cols", ")", "df", "=", "df", ".", "set_index", "(", "id_cols", ")", "df", "[", "'fill'", "]", "=", "1", "-", "df", "[", "value_col", "]", ".", "isnull", "(", ")", ".", "astype", "(", "int", ")", "df", "[", "'fill'", "]", "=", "df", ".", "groupby", "(", "level", "=", "list", "(", "range", "(", "0", ",", "len", "(", "id_cols", ")", "-", "1", ")", ")", ")", "[", "'fill'", "]", ".", "cumsum", "(", ")", "df", "[", "value_col", "]", "=", "df", "[", "value_col", "]", ".", "ffill", "(", ")", "df", ".", "loc", "[", "df", "[", "'fill'", "]", "==", "0", ",", "value_col", "]", "=", "None", "del", "df", "[", "'fill'", "]", "return", "df", ".", "reset_index", "(", ")" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
fake_data_generator
`conf` is a list of dictionaries like {'type': 'label', 'values': ['Paris', 'Marseille', 'Lyons'], 'name': 'Cities'} and each dictionary will add a column. There are two different behaviours: - type: 'label' -> the new column will be taken into account for a cartesian product with all other labels - type: 'number' -> the new column will contain simple numbers
toucan_data_sdk/fakir/fake_data_generator.py
def fake_data_generator(conf: List[dict]) -> pd.DataFrame: """ `conf` is a list of dictionaries like {'type': 'label', 'values': ['Paris', 'Marseille', 'Lyons'], 'name': 'Cities'} and each dictionary will add a column. There are two different behaviours: - type: 'label' -> the new column will be taken into account for a cartesian product with all other labels - type: 'number' -> the new column will contain simple numbers """ # First create all the lines with the cartesian product of all the # possible values of 'label' columns label_confs = [x for x in conf if x['type'] == 'label'] label_names = [x['name'] for x in label_confs] label_values = [x['values'] for x in label_confs] df = pd.DataFrame(list(product(*label_values)), columns=label_names) # Then add all the 'number' columns number_confs = [x for x in conf if x['type'] == 'number'] for num_conf in number_confs: num_column = np.random.uniform(low=num_conf['min'], high=num_conf['max'], size=df.shape[0]) df[num_conf['name']] = num_column.round(num_conf.get('digits', 4)) return df
def fake_data_generator(conf: List[dict]) -> pd.DataFrame: """ `conf` is a list of dictionaries like {'type': 'label', 'values': ['Paris', 'Marseille', 'Lyons'], 'name': 'Cities'} and each dictionary will add a column. There are two different behaviours: - type: 'label' -> the new column will be taken into account for a cartesian product with all other labels - type: 'number' -> the new column will contain simple numbers """ # First create all the lines with the cartesian product of all the # possible values of 'label' columns label_confs = [x for x in conf if x['type'] == 'label'] label_names = [x['name'] for x in label_confs] label_values = [x['values'] for x in label_confs] df = pd.DataFrame(list(product(*label_values)), columns=label_names) # Then add all the 'number' columns number_confs = [x for x in conf if x['type'] == 'number'] for num_conf in number_confs: num_column = np.random.uniform(low=num_conf['min'], high=num_conf['max'], size=df.shape[0]) df[num_conf['name']] = num_column.round(num_conf.get('digits', 4)) return df
[ "conf", "is", "a", "list", "of", "dictionaries", "like", "{", "type", ":", "label", "values", ":", "[", "Paris", "Marseille", "Lyons", "]", "name", ":", "Cities", "}", "and", "each", "dictionary", "will", "add", "a", "column", "." ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/fakir/fake_data_generator.py#L8-L33
[ "def", "fake_data_generator", "(", "conf", ":", "List", "[", "dict", "]", ")", "->", "pd", ".", "DataFrame", ":", "# First create all the lines with the cartesian product of all the", "# possible values of 'label' columns", "label_confs", "=", "[", "x", "for", "x", "in", "conf", "if", "x", "[", "'type'", "]", "==", "'label'", "]", "label_names", "=", "[", "x", "[", "'name'", "]", "for", "x", "in", "label_confs", "]", "label_values", "=", "[", "x", "[", "'values'", "]", "for", "x", "in", "label_confs", "]", "df", "=", "pd", ".", "DataFrame", "(", "list", "(", "product", "(", "*", "label_values", ")", ")", ",", "columns", "=", "label_names", ")", "# Then add all the 'number' columns", "number_confs", "=", "[", "x", "for", "x", "in", "conf", "if", "x", "[", "'type'", "]", "==", "'number'", "]", "for", "num_conf", "in", "number_confs", ":", "num_column", "=", "np", ".", "random", ".", "uniform", "(", "low", "=", "num_conf", "[", "'min'", "]", ",", "high", "=", "num_conf", "[", "'max'", "]", ",", "size", "=", "df", ".", "shape", "[", "0", "]", ")", "df", "[", "num_conf", "[", "'name'", "]", "]", "=", "num_column", ".", "round", "(", "num_conf", ".", "get", "(", "'digits'", ",", "4", ")", ")", "return", "df" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
two_values_melt
Transforms one or multiple columns into rows. Unlike melt function, two value columns can be returned by the function (e.g. an evolution column and a price column) --- ### Parameters *mandatory :* - `first_value_vars` (*list of str*): name of the columns corresponding to the first returned value column - `second_value_vars` (*list of str*): name of the columns corresponding to the second returned value column - `var_name` (*str*): name of the column containing values in first_value_vars - `value_name` (*str*): suffix of the two value columns (suffix_first / suffix_second) --- ### Example **Input** | Region | avg | total | evo_avg | evo_total | |:---------:|:--------:|:-----------:|:--------:|:-----------:| | A | 50| 100 | 1 | 4 | | B | 40 | 250 | 2 | 5 | ```cson two_values_melt: first_value_vars: ["avg", "total"] second_value_vars: ["evo_avg", "evo_total"] var_name: "type" value_name: "value" ``` **Output** | Region | type | value_first | value_second | |:---------:|:--------:|:------------:|:-------------:| | A | avg| 50 | 1 | | A | total| 100 | 4 | | B | avg| 40 | 2 | | B | avg| 250 | 5 |
toucan_data_sdk/utils/generic/two_values_melt.py
def two_values_melt( df, first_value_vars: List[str], second_value_vars: List[str], var_name: str, value_name: str ): """ Transforms one or multiple columns into rows. Unlike melt function, two value columns can be returned by the function (e.g. an evolution column and a price column) --- ### Parameters *mandatory :* - `first_value_vars` (*list of str*): name of the columns corresponding to the first returned value column - `second_value_vars` (*list of str*): name of the columns corresponding to the second returned value column - `var_name` (*str*): name of the column containing values in first_value_vars - `value_name` (*str*): suffix of the two value columns (suffix_first / suffix_second) --- ### Example **Input** | Region | avg | total | evo_avg | evo_total | |:---------:|:--------:|:-----------:|:--------:|:-----------:| | A | 50| 100 | 1 | 4 | | B | 40 | 250 | 2 | 5 | ```cson two_values_melt: first_value_vars: ["avg", "total"] second_value_vars: ["evo_avg", "evo_total"] var_name: "type" value_name: "value" ``` **Output** | Region | type | value_first | value_second | |:---------:|:--------:|:------------:|:-------------:| | A | avg| 50 | 1 | | A | total| 100 | 4 | | B | avg| 40 | 2 | | B | avg| 250 | 5 | """ value_name_first = value_name + '_first' value_name_second = value_name + '_second' # Melt on the first value columns melt_first_value = pd.melt(df, id_vars=[col for col in list(df) if col not in first_value_vars], value_vars=first_value_vars, var_name=var_name, value_name=value_name_first) melt_first_value.drop(second_value_vars, axis=1, inplace=True) # Melt on the second value columns melt_second_value = pd.melt(df, id_vars=[col for col in list(df) if col not in second_value_vars], value_vars=second_value_vars, var_name=var_name, value_name=value_name_second) # Since there are two value columns, there is no need to keep the # second_value_vars names. And it will make things easier for the merge. normalize_types = {k: v for k, v in zip(second_value_vars, first_value_vars)} melt_second_value.replace(normalize_types, inplace=True) melt_second_value.drop(first_value_vars, axis=1, inplace=True) on_cols = list(melt_first_value) on_cols.remove(value_name_first) return pd.merge(melt_first_value, melt_second_value, on=on_cols, how='outer')
def two_values_melt( df, first_value_vars: List[str], second_value_vars: List[str], var_name: str, value_name: str ): """ Transforms one or multiple columns into rows. Unlike melt function, two value columns can be returned by the function (e.g. an evolution column and a price column) --- ### Parameters *mandatory :* - `first_value_vars` (*list of str*): name of the columns corresponding to the first returned value column - `second_value_vars` (*list of str*): name of the columns corresponding to the second returned value column - `var_name` (*str*): name of the column containing values in first_value_vars - `value_name` (*str*): suffix of the two value columns (suffix_first / suffix_second) --- ### Example **Input** | Region | avg | total | evo_avg | evo_total | |:---------:|:--------:|:-----------:|:--------:|:-----------:| | A | 50| 100 | 1 | 4 | | B | 40 | 250 | 2 | 5 | ```cson two_values_melt: first_value_vars: ["avg", "total"] second_value_vars: ["evo_avg", "evo_total"] var_name: "type" value_name: "value" ``` **Output** | Region | type | value_first | value_second | |:---------:|:--------:|:------------:|:-------------:| | A | avg| 50 | 1 | | A | total| 100 | 4 | | B | avg| 40 | 2 | | B | avg| 250 | 5 | """ value_name_first = value_name + '_first' value_name_second = value_name + '_second' # Melt on the first value columns melt_first_value = pd.melt(df, id_vars=[col for col in list(df) if col not in first_value_vars], value_vars=first_value_vars, var_name=var_name, value_name=value_name_first) melt_first_value.drop(second_value_vars, axis=1, inplace=True) # Melt on the second value columns melt_second_value = pd.melt(df, id_vars=[col for col in list(df) if col not in second_value_vars], value_vars=second_value_vars, var_name=var_name, value_name=value_name_second) # Since there are two value columns, there is no need to keep the # second_value_vars names. And it will make things easier for the merge. normalize_types = {k: v for k, v in zip(second_value_vars, first_value_vars)} melt_second_value.replace(normalize_types, inplace=True) melt_second_value.drop(first_value_vars, axis=1, inplace=True) on_cols = list(melt_first_value) on_cols.remove(value_name_first) return pd.merge(melt_first_value, melt_second_value, on=on_cols, how='outer')
[ "Transforms", "one", "or", "multiple", "columns", "into", "rows", ".", "Unlike", "melt", "function", "two", "value", "columns", "can", "be", "returned", "by", "the", "function", "(", "e", ".", "g", ".", "an", "evolution", "column", "and", "a", "price", "column", ")" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/generic/two_values_melt.py#L5-L83
[ "def", "two_values_melt", "(", "df", ",", "first_value_vars", ":", "List", "[", "str", "]", ",", "second_value_vars", ":", "List", "[", "str", "]", ",", "var_name", ":", "str", ",", "value_name", ":", "str", ")", ":", "value_name_first", "=", "value_name", "+", "'_first'", "value_name_second", "=", "value_name", "+", "'_second'", "# Melt on the first value columns", "melt_first_value", "=", "pd", ".", "melt", "(", "df", ",", "id_vars", "=", "[", "col", "for", "col", "in", "list", "(", "df", ")", "if", "col", "not", "in", "first_value_vars", "]", ",", "value_vars", "=", "first_value_vars", ",", "var_name", "=", "var_name", ",", "value_name", "=", "value_name_first", ")", "melt_first_value", ".", "drop", "(", "second_value_vars", ",", "axis", "=", "1", ",", "inplace", "=", "True", ")", "# Melt on the second value columns", "melt_second_value", "=", "pd", ".", "melt", "(", "df", ",", "id_vars", "=", "[", "col", "for", "col", "in", "list", "(", "df", ")", "if", "col", "not", "in", "second_value_vars", "]", ",", "value_vars", "=", "second_value_vars", ",", "var_name", "=", "var_name", ",", "value_name", "=", "value_name_second", ")", "# Since there are two value columns, there is no need to keep the", "# second_value_vars names. And it will make things easier for the merge.", "normalize_types", "=", "{", "k", ":", "v", "for", "k", ",", "v", "in", "zip", "(", "second_value_vars", ",", "first_value_vars", ")", "}", "melt_second_value", ".", "replace", "(", "normalize_types", ",", "inplace", "=", "True", ")", "melt_second_value", ".", "drop", "(", "first_value_vars", ",", "axis", "=", "1", ",", "inplace", "=", "True", ")", "on_cols", "=", "list", "(", "melt_first_value", ")", "on_cols", ".", "remove", "(", "value_name_first", ")", "return", "pd", ".", "merge", "(", "melt_first_value", ",", "melt_second_value", ",", "on", "=", "on_cols", ",", "how", "=", "'outer'", ")" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
concat
Concatenate `columns` element-wise See [pandas doc]( https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.str.cat.html) for more information --- ### Parameters *mandatory :* - `columns` (*list*): list of columns to concatenate (at least 2 columns) - `new_column` (*str*): the destination column *optional :* - `sep` (*str*): the separator
toucan_data_sdk/utils/postprocess/text.py
def concat( df, *, columns: List[str], new_column: str, sep: str = None ): """ Concatenate `columns` element-wise See [pandas doc]( https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.str.cat.html) for more information --- ### Parameters *mandatory :* - `columns` (*list*): list of columns to concatenate (at least 2 columns) - `new_column` (*str*): the destination column *optional :* - `sep` (*str*): the separator """ if len(columns) < 2: raise ValueError('The `columns` parameter needs to have at least 2 columns') first_col, *other_cols = columns df.loc[:, new_column] = df[first_col].astype(str).str.cat(df[other_cols].astype(str), sep=sep) return df
def concat( df, *, columns: List[str], new_column: str, sep: str = None ): """ Concatenate `columns` element-wise See [pandas doc]( https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.str.cat.html) for more information --- ### Parameters *mandatory :* - `columns` (*list*): list of columns to concatenate (at least 2 columns) - `new_column` (*str*): the destination column *optional :* - `sep` (*str*): the separator """ if len(columns) < 2: raise ValueError('The `columns` parameter needs to have at least 2 columns') first_col, *other_cols = columns df.loc[:, new_column] = df[first_col].astype(str).str.cat(df[other_cols].astype(str), sep=sep) return df
[ "Concatenate", "columns", "element", "-", "wise", "See", "[", "pandas", "doc", "]", "(", "https", ":", "//", "pandas", ".", "pydata", ".", "org", "/", "pandas", "-", "docs", "/", "stable", "/", "reference", "/", "api", "/", "pandas", ".", "Series", ".", "str", ".", "cat", ".", "html", ")", "for", "more", "information" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/text.py#L452-L479
[ "def", "concat", "(", "df", ",", "*", ",", "columns", ":", "List", "[", "str", "]", ",", "new_column", ":", "str", ",", "sep", ":", "str", "=", "None", ")", ":", "if", "len", "(", "columns", ")", "<", "2", ":", "raise", "ValueError", "(", "'The `columns` parameter needs to have at least 2 columns'", ")", "first_col", ",", "", "*", "other_cols", "=", "columns", "df", ".", "loc", "[", ":", ",", "new_column", "]", "=", "df", "[", "first_col", "]", ".", "astype", "(", "str", ")", ".", "str", ".", "cat", "(", "df", "[", "other_cols", "]", ".", "astype", "(", "str", ")", ",", "sep", "=", "sep", ")", "return", "df" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
contains
Test if pattern or regex is contained within strings of `column` See [pandas doc]( https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.str.contains.html) for more information --- ### Parameters *mandatory :* - `column` (*str*): the column - `pat` (*str*): character sequence or regular expression. *optional :* - `new_column` (*str*): the destination column (if not set, `column` will be used) - `case` (*boolean*): if true, case sensitive. - `na`: fill value for missing values. - `regex` (*boolean*): default true
toucan_data_sdk/utils/postprocess/text.py
def contains( df, column: str, *, pat: str, new_column: str = None, case: bool = True, na: Any = None, regex: bool = True ): """ Test if pattern or regex is contained within strings of `column` See [pandas doc]( https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.str.contains.html) for more information --- ### Parameters *mandatory :* - `column` (*str*): the column - `pat` (*str*): character sequence or regular expression. *optional :* - `new_column` (*str*): the destination column (if not set, `column` will be used) - `case` (*boolean*): if true, case sensitive. - `na`: fill value for missing values. - `regex` (*boolean*): default true """ new_column = new_column or column df.loc[:, new_column] = df[column].str.contains(pat, case=case, na=na, regex=regex) return df
def contains( df, column: str, *, pat: str, new_column: str = None, case: bool = True, na: Any = None, regex: bool = True ): """ Test if pattern or regex is contained within strings of `column` See [pandas doc]( https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.str.contains.html) for more information --- ### Parameters *mandatory :* - `column` (*str*): the column - `pat` (*str*): character sequence or regular expression. *optional :* - `new_column` (*str*): the destination column (if not set, `column` will be used) - `case` (*boolean*): if true, case sensitive. - `na`: fill value for missing values. - `regex` (*boolean*): default true """ new_column = new_column or column df.loc[:, new_column] = df[column].str.contains(pat, case=case, na=na, regex=regex) return df
[ "Test", "if", "pattern", "or", "regex", "is", "contained", "within", "strings", "of", "column", "See", "[", "pandas", "doc", "]", "(", "https", ":", "//", "pandas", ".", "pydata", ".", "org", "/", "pandas", "-", "docs", "/", "stable", "/", "reference", "/", "api", "/", "pandas", ".", "Series", ".", "str", ".", "contains", ".", "html", ")", "for", "more", "information" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/text.py#L482-L513
[ "def", "contains", "(", "df", ",", "column", ":", "str", ",", "*", ",", "pat", ":", "str", ",", "new_column", ":", "str", "=", "None", ",", "case", ":", "bool", "=", "True", ",", "na", ":", "Any", "=", "None", ",", "regex", ":", "bool", "=", "True", ")", ":", "new_column", "=", "new_column", "or", "column", "df", ".", "loc", "[", ":", ",", "new_column", "]", "=", "df", "[", "column", "]", ".", "str", ".", "contains", "(", "pat", ",", "case", "=", "case", ",", "na", "=", "na", ",", "regex", "=", "regex", ")", "return", "df" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
repeat
Duplicate each string in `column` by indicated number of time See [pandas doc]( https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.str.repeat.html) for more information --- ### Parameters *mandatory :* - `column` (*str*): the column - `times` (*int*): times to repeat the string *optional :* - `new_column` (*str*): the destination column (if not set, `column` will be used)
toucan_data_sdk/utils/postprocess/text.py
def repeat( df, column: str, *, times: int, new_column: str = None ): """ Duplicate each string in `column` by indicated number of time See [pandas doc]( https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.str.repeat.html) for more information --- ### Parameters *mandatory :* - `column` (*str*): the column - `times` (*int*): times to repeat the string *optional :* - `new_column` (*str*): the destination column (if not set, `column` will be used) """ new_column = new_column or column df.loc[:, new_column] = df[column].str.repeat(times) return df
def repeat( df, column: str, *, times: int, new_column: str = None ): """ Duplicate each string in `column` by indicated number of time See [pandas doc]( https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.str.repeat.html) for more information --- ### Parameters *mandatory :* - `column` (*str*): the column - `times` (*int*): times to repeat the string *optional :* - `new_column` (*str*): the destination column (if not set, `column` will be used) """ new_column = new_column or column df.loc[:, new_column] = df[column].str.repeat(times) return df
[ "Duplicate", "each", "string", "in", "column", "by", "indicated", "number", "of", "time", "See", "[", "pandas", "doc", "]", "(", "https", ":", "//", "pandas", ".", "pydata", ".", "org", "/", "pandas", "-", "docs", "/", "stable", "/", "reference", "/", "api", "/", "pandas", ".", "Series", ".", "str", ".", "repeat", ".", "html", ")", "for", "more", "information" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/text.py#L516-L541
[ "def", "repeat", "(", "df", ",", "column", ":", "str", ",", "*", ",", "times", ":", "int", ",", "new_column", ":", "str", "=", "None", ")", ":", "new_column", "=", "new_column", "or", "column", "df", ".", "loc", "[", ":", ",", "new_column", "]", "=", "df", "[", "column", "]", ".", "str", ".", "repeat", "(", "times", ")", "return", "df" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
replace_pattern
Replace occurrences of pattern/regex in `column` with some other string See [pandas doc]( https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.str.replace.html) for more information --- ### Parameters *mandatory :* - `column` (*str*): the column - `pat` (*str*): character sequence or regular expression - `repl` (*str*): replacement string *optional :* - `new_column` (*str*): the destination column (if not set, `column` will be used) - `case` (*boolean*): if true, case sensitive. - `regex` (*boolean*): default true
toucan_data_sdk/utils/postprocess/text.py
def replace_pattern( df, column: str, *, pat: str, repl: str, new_column: str = None, case: bool = True, regex: bool = True ): """ Replace occurrences of pattern/regex in `column` with some other string See [pandas doc]( https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.str.replace.html) for more information --- ### Parameters *mandatory :* - `column` (*str*): the column - `pat` (*str*): character sequence or regular expression - `repl` (*str*): replacement string *optional :* - `new_column` (*str*): the destination column (if not set, `column` will be used) - `case` (*boolean*): if true, case sensitive. - `regex` (*boolean*): default true """ new_column = new_column or column df.loc[:, new_column] = df[column].str.replace(pat, repl, case=case, regex=regex) return df
def replace_pattern( df, column: str, *, pat: str, repl: str, new_column: str = None, case: bool = True, regex: bool = True ): """ Replace occurrences of pattern/regex in `column` with some other string See [pandas doc]( https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.Series.str.replace.html) for more information --- ### Parameters *mandatory :* - `column` (*str*): the column - `pat` (*str*): character sequence or regular expression - `repl` (*str*): replacement string *optional :* - `new_column` (*str*): the destination column (if not set, `column` will be used) - `case` (*boolean*): if true, case sensitive. - `regex` (*boolean*): default true """ new_column = new_column or column df.loc[:, new_column] = df[column].str.replace(pat, repl, case=case, regex=regex) return df
[ "Replace", "occurrences", "of", "pattern", "/", "regex", "in", "column", "with", "some", "other", "string", "See", "[", "pandas", "doc", "]", "(", "https", ":", "//", "pandas", ".", "pydata", ".", "org", "/", "pandas", "-", "docs", "/", "stable", "/", "reference", "/", "api", "/", "pandas", ".", "Series", ".", "str", ".", "replace", ".", "html", ")", "for", "more", "information" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/text.py#L544-L575
[ "def", "replace_pattern", "(", "df", ",", "column", ":", "str", ",", "*", ",", "pat", ":", "str", ",", "repl", ":", "str", ",", "new_column", ":", "str", "=", "None", ",", "case", ":", "bool", "=", "True", ",", "regex", ":", "bool", "=", "True", ")", ":", "new_column", "=", "new_column", "or", "column", "df", ".", "loc", "[", ":", ",", "new_column", "]", "=", "df", "[", "column", "]", ".", "str", ".", "replace", "(", "pat", ",", "repl", ",", "case", "=", "case", ",", "regex", "=", "regex", ")", "return", "df" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
catch
Decorator to catch an exception and don't raise it. Logs information if a decorator failed. Note: We don't want possible exceptions during logging to be raised. This is used to decorate any function that gets executed before or after the execution of the decorated function.
toucan_data_sdk/utils/decorators.py
def catch(logger): """ Decorator to catch an exception and don't raise it. Logs information if a decorator failed. Note: We don't want possible exceptions during logging to be raised. This is used to decorate any function that gets executed before or after the execution of the decorated function. """ def decorator(func): @wraps(func) def wrapper(*args, **kwargs): try: return func(*args, **kwargs) except Exception: logger.warning(f"Exception raised in decorator: {func.__name__}") return wrapper return decorator
def catch(logger): """ Decorator to catch an exception and don't raise it. Logs information if a decorator failed. Note: We don't want possible exceptions during logging to be raised. This is used to decorate any function that gets executed before or after the execution of the decorated function. """ def decorator(func): @wraps(func) def wrapper(*args, **kwargs): try: return func(*args, **kwargs) except Exception: logger.warning(f"Exception raised in decorator: {func.__name__}") return wrapper return decorator
[ "Decorator", "to", "catch", "an", "exception", "and", "don", "t", "raise", "it", ".", "Logs", "information", "if", "a", "decorator", "failed", "." ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/decorators.py#L61-L80
[ "def", "catch", "(", "logger", ")", ":", "def", "decorator", "(", "func", ")", ":", "@", "wraps", "(", "func", ")", "def", "wrapper", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "try", ":", "return", "func", "(", "*", "args", ",", "*", "*", "kwargs", ")", "except", "Exception", ":", "logger", ".", "warning", "(", "f\"Exception raised in decorator: {func.__name__}\"", ")", "return", "wrapper", "return", "decorator" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
log_message
Decorator to log a message before executing a function
toucan_data_sdk/utils/decorators.py
def log_message(logger, message=""): """ Decorator to log a message before executing a function """ def decorator(func): @wraps(func) def wrapper(*args, **kwargs): _log_message(logger, func.__name__, message) result = func(*args, **kwargs) return result return wrapper return decorator
def log_message(logger, message=""): """ Decorator to log a message before executing a function """ def decorator(func): @wraps(func) def wrapper(*args, **kwargs): _log_message(logger, func.__name__, message) result = func(*args, **kwargs) return result return wrapper return decorator
[ "Decorator", "to", "log", "a", "message", "before", "executing", "a", "function" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/decorators.py#L109-L120
[ "def", "log_message", "(", "logger", ",", "message", "=", "\"\"", ")", ":", "def", "decorator", "(", "func", ")", ":", "@", "wraps", "(", "func", ")", "def", "wrapper", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "_log_message", "(", "logger", ",", "func", ".", "__name__", ",", "message", ")", "result", "=", "func", "(", "*", "args", ",", "*", "*", "kwargs", ")", "return", "result", "return", "wrapper", "return", "decorator" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
log_time
Decorator to log the execution time of a function
toucan_data_sdk/utils/decorators.py
def log_time(logger): """ Decorator to log the execution time of a function """ def decorator(func): @wraps(func) def wrapper(*args, **kwargs): start = time.time() result = func(*args, **kwargs) end = time.time() _log_time(logger, func.__name__, start, end) return result return wrapper return decorator
def log_time(logger): """ Decorator to log the execution time of a function """ def decorator(func): @wraps(func) def wrapper(*args, **kwargs): start = time.time() result = func(*args, **kwargs) end = time.time() _log_time(logger, func.__name__, start, end) return result return wrapper return decorator
[ "Decorator", "to", "log", "the", "execution", "time", "of", "a", "function" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/decorators.py#L123-L136
[ "def", "log_time", "(", "logger", ")", ":", "def", "decorator", "(", "func", ")", ":", "@", "wraps", "(", "func", ")", "def", "wrapper", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "start", "=", "time", ".", "time", "(", ")", "result", "=", "func", "(", "*", "args", ",", "*", "*", "kwargs", ")", "end", "=", "time", ".", "time", "(", ")", "_log_time", "(", "logger", ",", "func", ".", "__name__", ",", "start", ",", "end", ")", "return", "result", "return", "wrapper", "return", "decorator" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
log_shapes
Decorator to log the shapes of input and output dataframes It considers all the dataframes passed either as arguments or keyword arguments as inputs and all the dataframes returned as outputs.
toucan_data_sdk/utils/decorators.py
def log_shapes(logger): """ Decorator to log the shapes of input and output dataframes It considers all the dataframes passed either as arguments or keyword arguments as inputs and all the dataframes returned as outputs. """ def decorator(func): @wraps(func) def wrapper(*args, **kwargs): input_shapes = _get_dfs_shapes(*args, **kwargs) result = func(*args, **kwargs) output_shapes = _get_dfs_shapes(result) _log_shapes(logger, func.__name__, input_shapes, output_shapes) return result return wrapper return decorator
def log_shapes(logger): """ Decorator to log the shapes of input and output dataframes It considers all the dataframes passed either as arguments or keyword arguments as inputs and all the dataframes returned as outputs. """ def decorator(func): @wraps(func) def wrapper(*args, **kwargs): input_shapes = _get_dfs_shapes(*args, **kwargs) result = func(*args, **kwargs) output_shapes = _get_dfs_shapes(result) _log_shapes(logger, func.__name__, input_shapes, output_shapes) return result return wrapper return decorator
[ "Decorator", "to", "log", "the", "shapes", "of", "input", "and", "output", "dataframes" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/decorators.py#L139-L155
[ "def", "log_shapes", "(", "logger", ")", ":", "def", "decorator", "(", "func", ")", ":", "@", "wraps", "(", "func", ")", "def", "wrapper", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "input_shapes", "=", "_get_dfs_shapes", "(", "*", "args", ",", "*", "*", "kwargs", ")", "result", "=", "func", "(", "*", "args", ",", "*", "*", "kwargs", ")", "output_shapes", "=", "_get_dfs_shapes", "(", "result", ")", "_log_shapes", "(", "logger", ",", "func", ".", "__name__", ",", "input_shapes", ",", "output_shapes", ")", "return", "result", "return", "wrapper", "return", "decorator" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
log
Basic log decorator Can be used as : - @log (with default logger) - @log(mylogger) - @log(start_message='Hello !", logger=mylogger, end_message='Bye !')
toucan_data_sdk/utils/decorators.py
def log(logger=None, start_message='Starting...', end_message='Done...'): """ Basic log decorator Can be used as : - @log (with default logger) - @log(mylogger) - @log(start_message='Hello !", logger=mylogger, end_message='Bye !') """ def actual_log(f, real_logger=logger): logger = real_logger or _logger @wraps(f) def timed(*args, **kwargs): logger.info(f'{f.__name__} - {start_message}') start = time.time() res = f(*args, **kwargs) end = time.time() logger.info(f'{f.__name__} - {end_message} (took {end - start:.2f}s)') return res return timed if callable(logger): return actual_log(logger, real_logger=None) return actual_log
def log(logger=None, start_message='Starting...', end_message='Done...'): """ Basic log decorator Can be used as : - @log (with default logger) - @log(mylogger) - @log(start_message='Hello !", logger=mylogger, end_message='Bye !') """ def actual_log(f, real_logger=logger): logger = real_logger or _logger @wraps(f) def timed(*args, **kwargs): logger.info(f'{f.__name__} - {start_message}') start = time.time() res = f(*args, **kwargs) end = time.time() logger.info(f'{f.__name__} - {end_message} (took {end - start:.2f}s)') return res return timed if callable(logger): return actual_log(logger, real_logger=None) return actual_log
[ "Basic", "log", "decorator", "Can", "be", "used", "as", ":", "-" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/decorators.py#L158-L182
[ "def", "log", "(", "logger", "=", "None", ",", "start_message", "=", "'Starting...'", ",", "end_message", "=", "'Done...'", ")", ":", "def", "actual_log", "(", "f", ",", "real_logger", "=", "logger", ")", ":", "logger", "=", "real_logger", "or", "_logger", "@", "wraps", "(", "f", ")", "def", "timed", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "logger", ".", "info", "(", "f'{f.__name__} - {start_message}'", ")", "start", "=", "time", ".", "time", "(", ")", "res", "=", "f", "(", "*", "args", ",", "*", "*", "kwargs", ")", "end", "=", "time", ".", "time", "(", ")", "logger", ".", "info", "(", "f'{f.__name__} - {end_message} (took {end - start:.2f}s)'", ")", "return", "res", "return", "timed", "if", "callable", "(", "logger", ")", ":", "return", "actual_log", "(", "logger", ",", "real_logger", "=", "None", ")", "return", "actual_log" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
domain
Allow to apply a function f(df: DataFrame) -> DataFrame) on dfs by specifying the key E.g instead of writing: def process_domain1(dfs): df = dfs['domain1'] # actual process dfs['domain1'] = df return dfs You can write: @domain('domain1') def process_domain1(df): #actual process return df
toucan_data_sdk/utils/decorators.py
def domain(domain_name): """ Allow to apply a function f(df: DataFrame) -> DataFrame) on dfs by specifying the key E.g instead of writing: def process_domain1(dfs): df = dfs['domain1'] # actual process dfs['domain1'] = df return dfs You can write: @domain('domain1') def process_domain1(df): #actual process return df """ def decorator(func): @wraps(func) def wrapper(*args, **kwargs): dfs, *args = args if not isinstance(dfs, dict): raise TypeError(f'{dfs} is not a dict') df = dfs.pop(domain_name) df = func(df, *args, **kwargs) return {domain_name: df, **dfs} return wrapper return decorator
def domain(domain_name): """ Allow to apply a function f(df: DataFrame) -> DataFrame) on dfs by specifying the key E.g instead of writing: def process_domain1(dfs): df = dfs['domain1'] # actual process dfs['domain1'] = df return dfs You can write: @domain('domain1') def process_domain1(df): #actual process return df """ def decorator(func): @wraps(func) def wrapper(*args, **kwargs): dfs, *args = args if not isinstance(dfs, dict): raise TypeError(f'{dfs} is not a dict') df = dfs.pop(domain_name) df = func(df, *args, **kwargs) return {domain_name: df, **dfs} return wrapper return decorator
[ "Allow", "to", "apply", "a", "function", "f", "(", "df", ":", "DataFrame", ")", "-", ">", "DataFrame", ")", "on", "dfs", "by", "specifying", "the", "key", "E", ".", "g", "instead", "of", "writing", ":", "def", "process_domain1", "(", "dfs", ")", ":", "df", "=", "dfs", "[", "domain1", "]", "#", "actual", "process", "dfs", "[", "domain1", "]", "=", "df", "return", "dfs" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/decorators.py#L185-L213
[ "def", "domain", "(", "domain_name", ")", ":", "def", "decorator", "(", "func", ")", ":", "@", "wraps", "(", "func", ")", "def", "wrapper", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "dfs", ",", "", "*", "args", "=", "args", "if", "not", "isinstance", "(", "dfs", ",", "dict", ")", ":", "raise", "TypeError", "(", "f'{dfs} is not a dict'", ")", "df", "=", "dfs", ".", "pop", "(", "domain_name", ")", "df", "=", "func", "(", "df", ",", "*", "args", ",", "*", "*", "kwargs", ")", "return", "{", "domain_name", ":", "df", ",", "*", "*", "dfs", "}", "return", "wrapper", "return", "decorator" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
cache
Avoid to recompute a function if its parameters and its source code doesnt have changed. Args: requires: list of dependencies (functions or function names) disabled (bool): disable the cache mecanism for this function (useful if you only want to use the dependency mecanism) applied_on_method (bool): ignore the first argument (useful to ignore "self") check_param (True, False or a str): the name of the parameter to check. False to not check any of them. True (default) to check all of them. limit (int or None): number of cache entries to keep (no limit by default)
toucan_data_sdk/utils/decorators.py
def cache( # noqa: C901 requires=None, disabled=False, applied_on_method=False, check_param=True, limit=None ): """ Avoid to recompute a function if its parameters and its source code doesnt have changed. Args: requires: list of dependencies (functions or function names) disabled (bool): disable the cache mecanism for this function (useful if you only want to use the dependency mecanism) applied_on_method (bool): ignore the first argument (useful to ignore "self") check_param (True, False or a str): the name of the parameter to check. False to not check any of them. True (default) to check all of them. limit (int or None): number of cache entries to keep (no limit by default) """ if not requires: requires = [] elif isinstance(requires, collections.Callable): requires = [requires] if not isinstance(check_param, (bool, str)): raise TypeError("'check_param' must be a str (name of the param to check) or a bool") if limit is not None and not isinstance(limit, int): raise TypeError("'limit' must be an int (number of cache entries to keep) or None") # We keep data in the function attributes so that this data # is not erased between two calls: if not hasattr(cache, 'funcs_references'): cache.funcs_references = {} # dict of {function_name -> function_object (or None)} if not hasattr(cache, 'dependencies'): cache.dependencies = {} # dict of {function_name -> [list of function names]} if not hasattr(cache, 'memories'): cache.memories = {} # dict of {thread_id -> joblib.Memory object} def decorator(func): """ This code is executed when the augment module is read (when decorator is applied). Here we populate cache.funcs_references and cache.dependencies to use them later. """ cache.funcs_references[func.__name__] = get_orig_function(func) dependencies_names = [] for requirement in requires: if isinstance(requirement, collections.Callable): req_name = requirement.__name__ cache.funcs_references[req_name] = get_orig_function(requirement) elif requirement not in cache.funcs_references: req_name = requirement cache.funcs_references[req_name] = None dependencies_names.append(req_name) cache.dependencies[func.__name__] = dependencies_names @wraps(func) def wrapper(*args, **kwargs): """ This code is executed when a decorated function is actually executed. It uses the previously built dependency tree (see above). """ current_memory = cache.memories.get(current_thread().name) if disabled is True or current_memory is None: return func(*args, **kwargs) # if cache is enabled, we compute the md5 hash of the concatenated source codes # of all the dependencies. concatenated_source_code = '' dependencies = resolve_dependencies(func.__name__, cache.dependencies) for func_name in dependencies: function = cache.funcs_references[func_name] if function is None: raise Exception(f"Can't get source code of function '{func_name}'") source_code = get_func_sourcecode(function) concatenated_source_code += source_code md5_hash = md5(str.encode(concatenated_source_code)).hexdigest() # Add extra parameters so that joblib checks they didnt have changed: tmp_extra_kwargs = { '__func_dependencies_hash__': md5_hash, '__original_func_name__': func.__name__, } if check_param is True: kwargs.update(tmp_extra_kwargs) if applied_on_method: self_arg, args = args[0], args[1:] @wraps(func) def f(*args, **kwargs): # delete the extra parameters that the underlying function doesnt expect: for k in tmp_extra_kwargs.keys(): del kwargs[k] if applied_on_method: args = (self_arg,) + args return func(*args, **kwargs) f = current_memory.cache(f) result = f(*args, **kwargs) else: if isinstance(check_param, str): check_only_param_value = get_param_value_from_func_call( param_name=check_param, func=func, call_args=args, call_kwargs=kwargs, ) tmp_extra_kwargs['__check_only__'] = check_only_param_value @wraps(func) def f(**tmp_extra_kwargs): return func(*args, **kwargs) f = current_memory.cache(f) result = f(**tmp_extra_kwargs) if limit is not None: clean_cachedir_old_entries(f.store_backend, func.__name__, limit) return result return wrapper return decorator
def cache( # noqa: C901 requires=None, disabled=False, applied_on_method=False, check_param=True, limit=None ): """ Avoid to recompute a function if its parameters and its source code doesnt have changed. Args: requires: list of dependencies (functions or function names) disabled (bool): disable the cache mecanism for this function (useful if you only want to use the dependency mecanism) applied_on_method (bool): ignore the first argument (useful to ignore "self") check_param (True, False or a str): the name of the parameter to check. False to not check any of them. True (default) to check all of them. limit (int or None): number of cache entries to keep (no limit by default) """ if not requires: requires = [] elif isinstance(requires, collections.Callable): requires = [requires] if not isinstance(check_param, (bool, str)): raise TypeError("'check_param' must be a str (name of the param to check) or a bool") if limit is not None and not isinstance(limit, int): raise TypeError("'limit' must be an int (number of cache entries to keep) or None") # We keep data in the function attributes so that this data # is not erased between two calls: if not hasattr(cache, 'funcs_references'): cache.funcs_references = {} # dict of {function_name -> function_object (or None)} if not hasattr(cache, 'dependencies'): cache.dependencies = {} # dict of {function_name -> [list of function names]} if not hasattr(cache, 'memories'): cache.memories = {} # dict of {thread_id -> joblib.Memory object} def decorator(func): """ This code is executed when the augment module is read (when decorator is applied). Here we populate cache.funcs_references and cache.dependencies to use them later. """ cache.funcs_references[func.__name__] = get_orig_function(func) dependencies_names = [] for requirement in requires: if isinstance(requirement, collections.Callable): req_name = requirement.__name__ cache.funcs_references[req_name] = get_orig_function(requirement) elif requirement not in cache.funcs_references: req_name = requirement cache.funcs_references[req_name] = None dependencies_names.append(req_name) cache.dependencies[func.__name__] = dependencies_names @wraps(func) def wrapper(*args, **kwargs): """ This code is executed when a decorated function is actually executed. It uses the previously built dependency tree (see above). """ current_memory = cache.memories.get(current_thread().name) if disabled is True or current_memory is None: return func(*args, **kwargs) # if cache is enabled, we compute the md5 hash of the concatenated source codes # of all the dependencies. concatenated_source_code = '' dependencies = resolve_dependencies(func.__name__, cache.dependencies) for func_name in dependencies: function = cache.funcs_references[func_name] if function is None: raise Exception(f"Can't get source code of function '{func_name}'") source_code = get_func_sourcecode(function) concatenated_source_code += source_code md5_hash = md5(str.encode(concatenated_source_code)).hexdigest() # Add extra parameters so that joblib checks they didnt have changed: tmp_extra_kwargs = { '__func_dependencies_hash__': md5_hash, '__original_func_name__': func.__name__, } if check_param is True: kwargs.update(tmp_extra_kwargs) if applied_on_method: self_arg, args = args[0], args[1:] @wraps(func) def f(*args, **kwargs): # delete the extra parameters that the underlying function doesnt expect: for k in tmp_extra_kwargs.keys(): del kwargs[k] if applied_on_method: args = (self_arg,) + args return func(*args, **kwargs) f = current_memory.cache(f) result = f(*args, **kwargs) else: if isinstance(check_param, str): check_only_param_value = get_param_value_from_func_call( param_name=check_param, func=func, call_args=args, call_kwargs=kwargs, ) tmp_extra_kwargs['__check_only__'] = check_only_param_value @wraps(func) def f(**tmp_extra_kwargs): return func(*args, **kwargs) f = current_memory.cache(f) result = f(**tmp_extra_kwargs) if limit is not None: clean_cachedir_old_entries(f.store_backend, func.__name__, limit) return result return wrapper return decorator
[ "Avoid", "to", "recompute", "a", "function", "if", "its", "parameters", "and", "its", "source", "code", "doesnt", "have", "changed", "." ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/decorators.py#L219-L341
[ "def", "cache", "(", "# noqa: C901", "requires", "=", "None", ",", "disabled", "=", "False", ",", "applied_on_method", "=", "False", ",", "check_param", "=", "True", ",", "limit", "=", "None", ")", ":", "if", "not", "requires", ":", "requires", "=", "[", "]", "elif", "isinstance", "(", "requires", ",", "collections", ".", "Callable", ")", ":", "requires", "=", "[", "requires", "]", "if", "not", "isinstance", "(", "check_param", ",", "(", "bool", ",", "str", ")", ")", ":", "raise", "TypeError", "(", "\"'check_param' must be a str (name of the param to check) or a bool\"", ")", "if", "limit", "is", "not", "None", "and", "not", "isinstance", "(", "limit", ",", "int", ")", ":", "raise", "TypeError", "(", "\"'limit' must be an int (number of cache entries to keep) or None\"", ")", "# We keep data in the function attributes so that this data", "# is not erased between two calls:", "if", "not", "hasattr", "(", "cache", ",", "'funcs_references'", ")", ":", "cache", ".", "funcs_references", "=", "{", "}", "# dict of {function_name -> function_object (or None)}", "if", "not", "hasattr", "(", "cache", ",", "'dependencies'", ")", ":", "cache", ".", "dependencies", "=", "{", "}", "# dict of {function_name -> [list of function names]}", "if", "not", "hasattr", "(", "cache", ",", "'memories'", ")", ":", "cache", ".", "memories", "=", "{", "}", "# dict of {thread_id -> joblib.Memory object}", "def", "decorator", "(", "func", ")", ":", "\"\"\" This code is executed when the augment module is read (when decorator is applied).\n Here we populate cache.funcs_references and cache.dependencies to use them later. \"\"\"", "cache", ".", "funcs_references", "[", "func", ".", "__name__", "]", "=", "get_orig_function", "(", "func", ")", "dependencies_names", "=", "[", "]", "for", "requirement", "in", "requires", ":", "if", "isinstance", "(", "requirement", ",", "collections", ".", "Callable", ")", ":", "req_name", "=", "requirement", ".", "__name__", "cache", ".", "funcs_references", "[", "req_name", "]", "=", "get_orig_function", "(", "requirement", ")", "elif", "requirement", "not", "in", "cache", ".", "funcs_references", ":", "req_name", "=", "requirement", "cache", ".", "funcs_references", "[", "req_name", "]", "=", "None", "dependencies_names", ".", "append", "(", "req_name", ")", "cache", ".", "dependencies", "[", "func", ".", "__name__", "]", "=", "dependencies_names", "@", "wraps", "(", "func", ")", "def", "wrapper", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "\"\"\" This code is executed when a decorated function is actually executed.\n It uses the previously built dependency tree (see above). \"\"\"", "current_memory", "=", "cache", ".", "memories", ".", "get", "(", "current_thread", "(", ")", ".", "name", ")", "if", "disabled", "is", "True", "or", "current_memory", "is", "None", ":", "return", "func", "(", "*", "args", ",", "*", "*", "kwargs", ")", "# if cache is enabled, we compute the md5 hash of the concatenated source codes", "# of all the dependencies.", "concatenated_source_code", "=", "''", "dependencies", "=", "resolve_dependencies", "(", "func", ".", "__name__", ",", "cache", ".", "dependencies", ")", "for", "func_name", "in", "dependencies", ":", "function", "=", "cache", ".", "funcs_references", "[", "func_name", "]", "if", "function", "is", "None", ":", "raise", "Exception", "(", "f\"Can't get source code of function '{func_name}'\"", ")", "source_code", "=", "get_func_sourcecode", "(", "function", ")", "concatenated_source_code", "+=", "source_code", "md5_hash", "=", "md5", "(", "str", ".", "encode", "(", "concatenated_source_code", ")", ")", ".", "hexdigest", "(", ")", "# Add extra parameters so that joblib checks they didnt have changed:", "tmp_extra_kwargs", "=", "{", "'__func_dependencies_hash__'", ":", "md5_hash", ",", "'__original_func_name__'", ":", "func", ".", "__name__", ",", "}", "if", "check_param", "is", "True", ":", "kwargs", ".", "update", "(", "tmp_extra_kwargs", ")", "if", "applied_on_method", ":", "self_arg", ",", "args", "=", "args", "[", "0", "]", ",", "args", "[", "1", ":", "]", "@", "wraps", "(", "func", ")", "def", "f", "(", "*", "args", ",", "*", "*", "kwargs", ")", ":", "# delete the extra parameters that the underlying function doesnt expect:", "for", "k", "in", "tmp_extra_kwargs", ".", "keys", "(", ")", ":", "del", "kwargs", "[", "k", "]", "if", "applied_on_method", ":", "args", "=", "(", "self_arg", ",", ")", "+", "args", "return", "func", "(", "*", "args", ",", "*", "*", "kwargs", ")", "f", "=", "current_memory", ".", "cache", "(", "f", ")", "result", "=", "f", "(", "*", "args", ",", "*", "*", "kwargs", ")", "else", ":", "if", "isinstance", "(", "check_param", ",", "str", ")", ":", "check_only_param_value", "=", "get_param_value_from_func_call", "(", "param_name", "=", "check_param", ",", "func", "=", "func", ",", "call_args", "=", "args", ",", "call_kwargs", "=", "kwargs", ",", ")", "tmp_extra_kwargs", "[", "'__check_only__'", "]", "=", "check_only_param_value", "@", "wraps", "(", "func", ")", "def", "f", "(", "*", "*", "tmp_extra_kwargs", ")", ":", "return", "func", "(", "*", "args", ",", "*", "*", "kwargs", ")", "f", "=", "current_memory", ".", "cache", "(", "f", ")", "result", "=", "f", "(", "*", "*", "tmp_extra_kwargs", ")", "if", "limit", "is", "not", "None", ":", "clean_cachedir_old_entries", "(", "f", ".", "store_backend", ",", "func", ".", "__name__", ",", "limit", ")", "return", "result", "return", "wrapper", "return", "decorator" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
setup_cachedir
This function injects a joblib.Memory object in the cache() function (in a thread-specific slot of its 'memories' attribute).
toucan_data_sdk/utils/decorators.py
def setup_cachedir(cachedir, mmap_mode=None, bytes_limit=None): """ This function injects a joblib.Memory object in the cache() function (in a thread-specific slot of its 'memories' attribute). """ if not hasattr(cache, 'memories'): cache.memories = {} memory = joblib.Memory( location=cachedir, verbose=0, mmap_mode=mmap_mode, bytes_limit=bytes_limit, ) cache.memories[current_thread().name] = memory return memory
def setup_cachedir(cachedir, mmap_mode=None, bytes_limit=None): """ This function injects a joblib.Memory object in the cache() function (in a thread-specific slot of its 'memories' attribute). """ if not hasattr(cache, 'memories'): cache.memories = {} memory = joblib.Memory( location=cachedir, verbose=0, mmap_mode=mmap_mode, bytes_limit=bytes_limit, ) cache.memories[current_thread().name] = memory return memory
[ "This", "function", "injects", "a", "joblib", ".", "Memory", "object", "in", "the", "cache", "()", "function", "(", "in", "a", "thread", "-", "specific", "slot", "of", "its", "memories", "attribute", ")", "." ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/decorators.py#L347-L360
[ "def", "setup_cachedir", "(", "cachedir", ",", "mmap_mode", "=", "None", ",", "bytes_limit", "=", "None", ")", ":", "if", "not", "hasattr", "(", "cache", ",", "'memories'", ")", ":", "cache", ".", "memories", "=", "{", "}", "memory", "=", "joblib", ".", "Memory", "(", "location", "=", "cachedir", ",", "verbose", "=", "0", ",", "mmap_mode", "=", "mmap_mode", ",", "bytes_limit", "=", "bytes_limit", ",", ")", "cache", ".", "memories", "[", "current_thread", "(", ")", ".", "name", "]", "=", "memory", "return", "memory" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
melt
A melt will transform a dataset by creating a column "variable" and a column "value". This function is useful to transform a dataset into a format where one or more columns are identifier variables, while all other columns, considered measured variables (value_vars), are “unpivoted” to the row axis, leaving just two non-identifier columns, `"variable"` and `"value"`. --- ### Parameters *mandatory :* - `id` (*list of str*): names of the columns that must be kept in column. - `value` (*list of str*): names of the columns that will be transformed in long format (in rows). *optional :* - `dropna` (*boolean*): It allows you to drop missing values. --- ### Example **Input** | my_label | my_value | my_column_1 | my_column_2 | info_1 | info_2 | info_3 | |:--------:|:--------:|:-----------:|:-----------:|:------:|:------:|:------:| | toto | 10 | S45 | Lalaland | 10 | 20 | None | ```cson melt: id: ['my_label', 'my_value' 'my_column_1', 'my_colum_2'] value: ['info_1', 'info_2', 'info_3'] dropna: true ``` **Ouput** | my_label | my_value | my_column_1 | my_column_2 | variable | value | |:--------:|:--------:|:-----------:|:-----------:|:--------:|:------:| | toto | 10 | S45 | Lalaland | info_1 | 10 | | toto | 10 | S45 | Lalaland | info_2 | 20 |
toucan_data_sdk/utils/postprocess/melt.py
def melt( df, id: List[str], value: List[str], dropna=False ): """ A melt will transform a dataset by creating a column "variable" and a column "value". This function is useful to transform a dataset into a format where one or more columns are identifier variables, while all other columns, considered measured variables (value_vars), are “unpivoted” to the row axis, leaving just two non-identifier columns, `"variable"` and `"value"`. --- ### Parameters *mandatory :* - `id` (*list of str*): names of the columns that must be kept in column. - `value` (*list of str*): names of the columns that will be transformed in long format (in rows). *optional :* - `dropna` (*boolean*): It allows you to drop missing values. --- ### Example **Input** | my_label | my_value | my_column_1 | my_column_2 | info_1 | info_2 | info_3 | |:--------:|:--------:|:-----------:|:-----------:|:------:|:------:|:------:| | toto | 10 | S45 | Lalaland | 10 | 20 | None | ```cson melt: id: ['my_label', 'my_value' 'my_column_1', 'my_colum_2'] value: ['info_1', 'info_2', 'info_3'] dropna: true ``` **Ouput** | my_label | my_value | my_column_1 | my_column_2 | variable | value | |:--------:|:--------:|:-----------:|:-----------:|:--------:|:------:| | toto | 10 | S45 | Lalaland | info_1 | 10 | | toto | 10 | S45 | Lalaland | info_2 | 20 | """ df = df[(id + value)] df = pd.melt(df, id_vars=id, value_vars=value) if dropna: df = df.dropna(subset=['value']) return df
def melt( df, id: List[str], value: List[str], dropna=False ): """ A melt will transform a dataset by creating a column "variable" and a column "value". This function is useful to transform a dataset into a format where one or more columns are identifier variables, while all other columns, considered measured variables (value_vars), are “unpivoted” to the row axis, leaving just two non-identifier columns, `"variable"` and `"value"`. --- ### Parameters *mandatory :* - `id` (*list of str*): names of the columns that must be kept in column. - `value` (*list of str*): names of the columns that will be transformed in long format (in rows). *optional :* - `dropna` (*boolean*): It allows you to drop missing values. --- ### Example **Input** | my_label | my_value | my_column_1 | my_column_2 | info_1 | info_2 | info_3 | |:--------:|:--------:|:-----------:|:-----------:|:------:|:------:|:------:| | toto | 10 | S45 | Lalaland | 10 | 20 | None | ```cson melt: id: ['my_label', 'my_value' 'my_column_1', 'my_colum_2'] value: ['info_1', 'info_2', 'info_3'] dropna: true ``` **Ouput** | my_label | my_value | my_column_1 | my_column_2 | variable | value | |:--------:|:--------:|:-----------:|:-----------:|:--------:|:------:| | toto | 10 | S45 | Lalaland | info_1 | 10 | | toto | 10 | S45 | Lalaland | info_2 | 20 | """ df = df[(id + value)] df = pd.melt(df, id_vars=id, value_vars=value) if dropna: df = df.dropna(subset=['value']) return df
[ "A", "melt", "will", "transform", "a", "dataset", "by", "creating", "a", "column", "variable", "and", "a", "column", "value", ".", "This", "function", "is", "useful", "to", "transform", "a", "dataset", "into", "a", "format", "where", "one", "or", "more", "columns", "are", "identifier", "variables", "while", "all", "other", "columns", "considered", "measured", "variables", "(", "value_vars", ")", "are", "“unpivoted”", "to", "the", "row", "axis", "leaving", "just", "two", "non", "-", "identifier", "columns", "variable", "and", "value", "." ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/melt.py#L6-L59
[ "def", "melt", "(", "df", ",", "id", ":", "List", "[", "str", "]", ",", "value", ":", "List", "[", "str", "]", ",", "dropna", "=", "False", ")", ":", "df", "=", "df", "[", "(", "id", "+", "value", ")", "]", "df", "=", "pd", ".", "melt", "(", "df", ",", "id_vars", "=", "id", ",", "value_vars", "=", "value", ")", "if", "dropna", ":", "df", "=", "df", ".", "dropna", "(", "subset", "=", "[", "'value'", "]", ")", "return", "df" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
rename
Replaces data values and column names according to the locale --- ### Parameters - `values` (optional: dict): - key: term to be replaced - value: - key: the locale e.g. 'en' or 'fr' - value: term's translation - `columns` (optional: dict): - key: columns name to be replaced - value: - key: the locale e.g. 'en' or 'fr' - value: column name's translation - `locale` (optional: str): the locale you want to use. By default the client locale is used. --- ### Example **Input** | label | value | |:----------------:|:-----:| | France | 100 | | Europe wo France | 500 | ```cson rename: values: 'Europe wo France': 'en': 'Europe excl. France' 'fr': 'Europe excl. France' columns: 'value': 'en': 'revenue' 'fr': 'revenue' ``` **Output** | label | revenue | |:-------------------:|:-------:| | France | 100 | | Europe excl. France | 500 |
toucan_data_sdk/utils/postprocess/rename.py
def rename( df, values: Dict[str, Dict[str, str]] = None, columns: Dict[str, Dict[str, str]] = None, locale: str = None ): """ Replaces data values and column names according to the locale --- ### Parameters - `values` (optional: dict): - key: term to be replaced - value: - key: the locale e.g. 'en' or 'fr' - value: term's translation - `columns` (optional: dict): - key: columns name to be replaced - value: - key: the locale e.g. 'en' or 'fr' - value: column name's translation - `locale` (optional: str): the locale you want to use. By default the client locale is used. --- ### Example **Input** | label | value | |:----------------:|:-----:| | France | 100 | | Europe wo France | 500 | ```cson rename: values: 'Europe wo France': 'en': 'Europe excl. France' 'fr': 'Europe excl. France' columns: 'value': 'en': 'revenue' 'fr': 'revenue' ``` **Output** | label | revenue | |:-------------------:|:-------:| | France | 100 | | Europe excl. France | 500 | """ if values: to_replace = list(values.keys()) value = [values[term][locale] for term in values] df = df.replace(to_replace=to_replace, value=value) if columns: _keys = list(columns.keys()) _values = [column[locale] for column in columns.values()] columns = dict(list(zip(_keys, _values))) df = df.rename(columns=columns) return df
def rename( df, values: Dict[str, Dict[str, str]] = None, columns: Dict[str, Dict[str, str]] = None, locale: str = None ): """ Replaces data values and column names according to the locale --- ### Parameters - `values` (optional: dict): - key: term to be replaced - value: - key: the locale e.g. 'en' or 'fr' - value: term's translation - `columns` (optional: dict): - key: columns name to be replaced - value: - key: the locale e.g. 'en' or 'fr' - value: column name's translation - `locale` (optional: str): the locale you want to use. By default the client locale is used. --- ### Example **Input** | label | value | |:----------------:|:-----:| | France | 100 | | Europe wo France | 500 | ```cson rename: values: 'Europe wo France': 'en': 'Europe excl. France' 'fr': 'Europe excl. France' columns: 'value': 'en': 'revenue' 'fr': 'revenue' ``` **Output** | label | revenue | |:-------------------:|:-------:| | France | 100 | | Europe excl. France | 500 | """ if values: to_replace = list(values.keys()) value = [values[term][locale] for term in values] df = df.replace(to_replace=to_replace, value=value) if columns: _keys = list(columns.keys()) _values = [column[locale] for column in columns.values()] columns = dict(list(zip(_keys, _values))) df = df.rename(columns=columns) return df
[ "Replaces", "data", "values", "and", "column", "names", "according", "to", "the", "locale" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/rename.py#L4-L70
[ "def", "rename", "(", "df", ",", "values", ":", "Dict", "[", "str", ",", "Dict", "[", "str", ",", "str", "]", "]", "=", "None", ",", "columns", ":", "Dict", "[", "str", ",", "Dict", "[", "str", ",", "str", "]", "]", "=", "None", ",", "locale", ":", "str", "=", "None", ")", ":", "if", "values", ":", "to_replace", "=", "list", "(", "values", ".", "keys", "(", ")", ")", "value", "=", "[", "values", "[", "term", "]", "[", "locale", "]", "for", "term", "in", "values", "]", "df", "=", "df", ".", "replace", "(", "to_replace", "=", "to_replace", ",", "value", "=", "value", ")", "if", "columns", ":", "_keys", "=", "list", "(", "columns", ".", "keys", "(", ")", ")", "_values", "=", "[", "column", "[", "locale", "]", "for", "column", "in", "columns", ".", "values", "(", ")", "]", "columns", "=", "dict", "(", "list", "(", "zip", "(", "_keys", ",", "_values", ")", ")", ")", "df", "=", "df", ".", "rename", "(", "columns", "=", "columns", ")", "return", "df" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
compute_cumsum
Compute cumsum for a group of columns. --- ### Parameters *mandatory :* - `id_cols` (*list*): the columns id to create each group - `reference_cols` (*list*): the columns to order the cumsum - `value_cols` (*list*): the columns to cumsum *optional :* - `new_value_cols` (*list*): the new columns with the result cumsum - `cols_to_keep` (*list*): other columns to keep in the dataset. This option can be used if there is only one row by group [id_cols + reference_cols] --- ### Example **Input** MONTH | DAY | NAME | VALUE | X :---:|:---:|:--:|:---:|:---: 1 | 1 | A | 1 | lo 2 | 1 | A | 1 | lo 2 | 15 | A | 1 | la 1 | 15 | B | 1 | la ```cson compute_cumsum: id_cols: ['NAME'] reference_cols: ['MONTH', 'DAY'] cumsum_cols: ['VALUE'] cols_to_keep: ['X'] ``` **Output** NAME | MONTH | DAY | X | VALUE :---:|:---:|:--:|:---:|:---: A | 1 | 1 | lo | 1 A | 2 | 1 | la | 2 A | 2 | 15 | lo | 3 B | 1 | 15 | la | 1
toucan_data_sdk/utils/generic/compute_cumsum.py
def compute_cumsum( df, id_cols: List[str], reference_cols: List[str], value_cols: List[str], new_value_cols: List[str] = None, cols_to_keep: List[str] = None ): """ Compute cumsum for a group of columns. --- ### Parameters *mandatory :* - `id_cols` (*list*): the columns id to create each group - `reference_cols` (*list*): the columns to order the cumsum - `value_cols` (*list*): the columns to cumsum *optional :* - `new_value_cols` (*list*): the new columns with the result cumsum - `cols_to_keep` (*list*): other columns to keep in the dataset. This option can be used if there is only one row by group [id_cols + reference_cols] --- ### Example **Input** MONTH | DAY | NAME | VALUE | X :---:|:---:|:--:|:---:|:---: 1 | 1 | A | 1 | lo 2 | 1 | A | 1 | lo 2 | 15 | A | 1 | la 1 | 15 | B | 1 | la ```cson compute_cumsum: id_cols: ['NAME'] reference_cols: ['MONTH', 'DAY'] cumsum_cols: ['VALUE'] cols_to_keep: ['X'] ``` **Output** NAME | MONTH | DAY | X | VALUE :---:|:---:|:--:|:---:|:---: A | 1 | 1 | lo | 1 A | 2 | 1 | la | 2 A | 2 | 15 | lo | 3 B | 1 | 15 | la | 1 """ if cols_to_keep is None: cols_to_keep = [] if new_value_cols is None: new_value_cols = value_cols if len(value_cols) != len(new_value_cols): raise ParamsValueError('`value_cols` and `new_value_cols` needs ' 'to have the same number of elements') check_params_columns_duplicate(id_cols + reference_cols + cols_to_keep + value_cols) levels = list(range(0, len(id_cols))) df = df.groupby(id_cols + reference_cols + cols_to_keep).sum() df[new_value_cols] = df.groupby(level=levels)[value_cols].cumsum() return df.reset_index()
def compute_cumsum( df, id_cols: List[str], reference_cols: List[str], value_cols: List[str], new_value_cols: List[str] = None, cols_to_keep: List[str] = None ): """ Compute cumsum for a group of columns. --- ### Parameters *mandatory :* - `id_cols` (*list*): the columns id to create each group - `reference_cols` (*list*): the columns to order the cumsum - `value_cols` (*list*): the columns to cumsum *optional :* - `new_value_cols` (*list*): the new columns with the result cumsum - `cols_to_keep` (*list*): other columns to keep in the dataset. This option can be used if there is only one row by group [id_cols + reference_cols] --- ### Example **Input** MONTH | DAY | NAME | VALUE | X :---:|:---:|:--:|:---:|:---: 1 | 1 | A | 1 | lo 2 | 1 | A | 1 | lo 2 | 15 | A | 1 | la 1 | 15 | B | 1 | la ```cson compute_cumsum: id_cols: ['NAME'] reference_cols: ['MONTH', 'DAY'] cumsum_cols: ['VALUE'] cols_to_keep: ['X'] ``` **Output** NAME | MONTH | DAY | X | VALUE :---:|:---:|:--:|:---:|:---: A | 1 | 1 | lo | 1 A | 2 | 1 | la | 2 A | 2 | 15 | lo | 3 B | 1 | 15 | la | 1 """ if cols_to_keep is None: cols_to_keep = [] if new_value_cols is None: new_value_cols = value_cols if len(value_cols) != len(new_value_cols): raise ParamsValueError('`value_cols` and `new_value_cols` needs ' 'to have the same number of elements') check_params_columns_duplicate(id_cols + reference_cols + cols_to_keep + value_cols) levels = list(range(0, len(id_cols))) df = df.groupby(id_cols + reference_cols + cols_to_keep).sum() df[new_value_cols] = df.groupby(level=levels)[value_cols].cumsum() return df.reset_index()
[ "Compute", "cumsum", "for", "a", "group", "of", "columns", "." ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/generic/compute_cumsum.py#L9-L80
[ "def", "compute_cumsum", "(", "df", ",", "id_cols", ":", "List", "[", "str", "]", ",", "reference_cols", ":", "List", "[", "str", "]", ",", "value_cols", ":", "List", "[", "str", "]", ",", "new_value_cols", ":", "List", "[", "str", "]", "=", "None", ",", "cols_to_keep", ":", "List", "[", "str", "]", "=", "None", ")", ":", "if", "cols_to_keep", "is", "None", ":", "cols_to_keep", "=", "[", "]", "if", "new_value_cols", "is", "None", ":", "new_value_cols", "=", "value_cols", "if", "len", "(", "value_cols", ")", "!=", "len", "(", "new_value_cols", ")", ":", "raise", "ParamsValueError", "(", "'`value_cols` and `new_value_cols` needs '", "'to have the same number of elements'", ")", "check_params_columns_duplicate", "(", "id_cols", "+", "reference_cols", "+", "cols_to_keep", "+", "value_cols", ")", "levels", "=", "list", "(", "range", "(", "0", ",", "len", "(", "id_cols", ")", ")", ")", "df", "=", "df", ".", "groupby", "(", "id_cols", "+", "reference_cols", "+", "cols_to_keep", ")", ".", "sum", "(", ")", "df", "[", "new_value_cols", "]", "=", "df", ".", "groupby", "(", "level", "=", "levels", ")", "[", "value_cols", "]", ".", "cumsum", "(", ")", "return", "df", ".", "reset_index", "(", ")" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
combine_columns_aggregation
Aggregates data to reproduce "All" category for requester --- ### Parameters *mandatory :* - `id_cols` (*list*): the columns id to group - `cols_for_combination` (*dict*): colums corresponding to the filters as key and their default value as value *optional :* - `agg_func` (*str*, *list* or *dict*): the function(s) to use for aggregating the data. Accepted combinations are: - string function name - list of functions and/or function names, e.g. [np.sum, 'mean'] - dict of axis labels -> functions, function names or list of such.
toucan_data_sdk/utils/generic/combine_columns_aggregation.py
def combine_columns_aggregation( df, id_cols: List[str], cols_for_combination: Dict[str, str], agg_func: Union[str, List[str], Dict[str, str]] = 'sum' ): """ Aggregates data to reproduce "All" category for requester --- ### Parameters *mandatory :* - `id_cols` (*list*): the columns id to group - `cols_for_combination` (*dict*): colums corresponding to the filters as key and their default value as value *optional :* - `agg_func` (*str*, *list* or *dict*): the function(s) to use for aggregating the data. Accepted combinations are: - string function name - list of functions and/or function names, e.g. [np.sum, 'mean'] - dict of axis labels -> functions, function names or list of such. """ requesters_cols = list(cols_for_combination.keys()) requester_combination = [ list(item) for i in range(0, len(requesters_cols) + 1) for item in itertools.combinations(requesters_cols, i)] dfs_result = [] for comb in requester_combination: df_tmp = df.groupby(id_cols + comb).agg(agg_func).reset_index() for key in (set(cols_for_combination.keys()) - set(comb)): df_tmp[key] = cols_for_combination[key] dfs_result.append(df_tmp) return pd.concat(dfs_result, sort=False, ignore_index=True)
def combine_columns_aggregation( df, id_cols: List[str], cols_for_combination: Dict[str, str], agg_func: Union[str, List[str], Dict[str, str]] = 'sum' ): """ Aggregates data to reproduce "All" category for requester --- ### Parameters *mandatory :* - `id_cols` (*list*): the columns id to group - `cols_for_combination` (*dict*): colums corresponding to the filters as key and their default value as value *optional :* - `agg_func` (*str*, *list* or *dict*): the function(s) to use for aggregating the data. Accepted combinations are: - string function name - list of functions and/or function names, e.g. [np.sum, 'mean'] - dict of axis labels -> functions, function names or list of such. """ requesters_cols = list(cols_for_combination.keys()) requester_combination = [ list(item) for i in range(0, len(requesters_cols) + 1) for item in itertools.combinations(requesters_cols, i)] dfs_result = [] for comb in requester_combination: df_tmp = df.groupby(id_cols + comb).agg(agg_func).reset_index() for key in (set(cols_for_combination.keys()) - set(comb)): df_tmp[key] = cols_for_combination[key] dfs_result.append(df_tmp) return pd.concat(dfs_result, sort=False, ignore_index=True)
[ "Aggregates", "data", "to", "reproduce", "All", "category", "for", "requester" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/generic/combine_columns_aggregation.py#L7-L43
[ "def", "combine_columns_aggregation", "(", "df", ",", "id_cols", ":", "List", "[", "str", "]", ",", "cols_for_combination", ":", "Dict", "[", "str", ",", "str", "]", ",", "agg_func", ":", "Union", "[", "str", ",", "List", "[", "str", "]", ",", "Dict", "[", "str", ",", "str", "]", "]", "=", "'sum'", ")", ":", "requesters_cols", "=", "list", "(", "cols_for_combination", ".", "keys", "(", ")", ")", "requester_combination", "=", "[", "list", "(", "item", ")", "for", "i", "in", "range", "(", "0", ",", "len", "(", "requesters_cols", ")", "+", "1", ")", "for", "item", "in", "itertools", ".", "combinations", "(", "requesters_cols", ",", "i", ")", "]", "dfs_result", "=", "[", "]", "for", "comb", "in", "requester_combination", ":", "df_tmp", "=", "df", ".", "groupby", "(", "id_cols", "+", "comb", ")", ".", "agg", "(", "agg_func", ")", ".", "reset_index", "(", ")", "for", "key", "in", "(", "set", "(", "cols_for_combination", ".", "keys", "(", ")", ")", "-", "set", "(", "comb", ")", ")", ":", "df_tmp", "[", "key", "]", "=", "cols_for_combination", "[", "key", "]", "dfs_result", ".", "append", "(", "df_tmp", ")", "return", "pd", ".", "concat", "(", "dfs_result", ",", "sort", "=", "False", ",", "ignore_index", "=", "True", ")" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
get_param_value_from_func_call
Get the value of a function's parameter based on its signature and the call's args and kwargs. Example: >>> def foo(a, b, c=3, d=4): ... pass ... >>> # what would be the value of "c" when calling foo(1, b=2, c=33) ? >>> get_param_value_from_func_call('c', foo, [1], {'b': 2, 'c': 33}) 33
toucan_data_sdk/utils/helpers.py
def get_param_value_from_func_call(param_name, func, call_args, call_kwargs): """ Get the value of a function's parameter based on its signature and the call's args and kwargs. Example: >>> def foo(a, b, c=3, d=4): ... pass ... >>> # what would be the value of "c" when calling foo(1, b=2, c=33) ? >>> get_param_value_from_func_call('c', foo, [1], {'b': 2, 'c': 33}) 33 """ signature = inspect.signature(func) params_list = signature.parameters.keys() if param_name not in params_list: raise TypeError(f"'{param_name}' not found in {func.__name__}" f"parameters list ([{params_list}])") call = signature.bind(*call_args, **call_kwargs) call.apply_defaults() return call.arguments[param_name]
def get_param_value_from_func_call(param_name, func, call_args, call_kwargs): """ Get the value of a function's parameter based on its signature and the call's args and kwargs. Example: >>> def foo(a, b, c=3, d=4): ... pass ... >>> # what would be the value of "c" when calling foo(1, b=2, c=33) ? >>> get_param_value_from_func_call('c', foo, [1], {'b': 2, 'c': 33}) 33 """ signature = inspect.signature(func) params_list = signature.parameters.keys() if param_name not in params_list: raise TypeError(f"'{param_name}' not found in {func.__name__}" f"parameters list ([{params_list}])") call = signature.bind(*call_args, **call_kwargs) call.apply_defaults() return call.arguments[param_name]
[ "Get", "the", "value", "of", "a", "function", "s", "parameter", "based", "on", "its", "signature", "and", "the", "call", "s", "args", "and", "kwargs", "." ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/helpers.py#L25-L45
[ "def", "get_param_value_from_func_call", "(", "param_name", ",", "func", ",", "call_args", ",", "call_kwargs", ")", ":", "signature", "=", "inspect", ".", "signature", "(", "func", ")", "params_list", "=", "signature", ".", "parameters", ".", "keys", "(", ")", "if", "param_name", "not", "in", "params_list", ":", "raise", "TypeError", "(", "f\"'{param_name}' not found in {func.__name__}\"", "f\"parameters list ([{params_list}])\"", ")", "call", "=", "signature", ".", "bind", "(", "*", "call_args", ",", "*", "*", "call_kwargs", ")", "call", ".", "apply_defaults", "(", ")", "return", "call", ".", "arguments", "[", "param_name", "]" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
get_func_sourcecode
Try to get sourcecode using standard inspect.getsource(). If the function comes from a module which has been created dynamically (not from the filesystem), then it tries to read the sourcecode on the filesystem anyway. WARNING: can do weird things if the filesystem code slightly differs from the original module code.
toucan_data_sdk/utils/helpers.py
def get_func_sourcecode(func): """ Try to get sourcecode using standard inspect.getsource(). If the function comes from a module which has been created dynamically (not from the filesystem), then it tries to read the sourcecode on the filesystem anyway. WARNING: can do weird things if the filesystem code slightly differs from the original module code. """ def getsource(func): lines, lnum = getsourcelines(func) return ''.join(lines) def getsourcelines(func): lines, lnum = findsource(func) return inspect.getblock(lines[lnum:]), lnum + 1 def findsource(func): file = getfile(func) # file path module = inspect.getmodule(func, file) lines = linecache.getlines(file, module.__dict__) code = func.__code__ lnum = code.co_firstlineno - 1 pat = re.compile(r'^(\s*def\s)|(\s*async\s+def\s)|(.*(?<!\w)lambda(:|\s))|^(\s*@)') while lnum > 0: if pat.match(lines[lnum]): break lnum = lnum - 1 # pragma: no cover return lines, lnum def getfile(func): module = inspect.getmodule(func) return module.__file__ try: return inspect.getsource(func) except Exception: return getsource(func)
def get_func_sourcecode(func): """ Try to get sourcecode using standard inspect.getsource(). If the function comes from a module which has been created dynamically (not from the filesystem), then it tries to read the sourcecode on the filesystem anyway. WARNING: can do weird things if the filesystem code slightly differs from the original module code. """ def getsource(func): lines, lnum = getsourcelines(func) return ''.join(lines) def getsourcelines(func): lines, lnum = findsource(func) return inspect.getblock(lines[lnum:]), lnum + 1 def findsource(func): file = getfile(func) # file path module = inspect.getmodule(func, file) lines = linecache.getlines(file, module.__dict__) code = func.__code__ lnum = code.co_firstlineno - 1 pat = re.compile(r'^(\s*def\s)|(\s*async\s+def\s)|(.*(?<!\w)lambda(:|\s))|^(\s*@)') while lnum > 0: if pat.match(lines[lnum]): break lnum = lnum - 1 # pragma: no cover return lines, lnum def getfile(func): module = inspect.getmodule(func) return module.__file__ try: return inspect.getsource(func) except Exception: return getsource(func)
[ "Try", "to", "get", "sourcecode", "using", "standard", "inspect", ".", "getsource", "()", ".", "If", "the", "function", "comes", "from", "a", "module", "which", "has", "been", "created", "dynamically", "(", "not", "from", "the", "filesystem", ")", "then", "it", "tries", "to", "read", "the", "sourcecode", "on", "the", "filesystem", "anyway", ".", "WARNING", ":", "can", "do", "weird", "things", "if", "the", "filesystem", "code", "slightly", "differs", "from", "the", "original", "module", "code", "." ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/helpers.py#L48-L86
[ "def", "get_func_sourcecode", "(", "func", ")", ":", "def", "getsource", "(", "func", ")", ":", "lines", ",", "lnum", "=", "getsourcelines", "(", "func", ")", "return", "''", ".", "join", "(", "lines", ")", "def", "getsourcelines", "(", "func", ")", ":", "lines", ",", "lnum", "=", "findsource", "(", "func", ")", "return", "inspect", ".", "getblock", "(", "lines", "[", "lnum", ":", "]", ")", ",", "lnum", "+", "1", "def", "findsource", "(", "func", ")", ":", "file", "=", "getfile", "(", "func", ")", "# file path", "module", "=", "inspect", ".", "getmodule", "(", "func", ",", "file", ")", "lines", "=", "linecache", ".", "getlines", "(", "file", ",", "module", ".", "__dict__", ")", "code", "=", "func", ".", "__code__", "lnum", "=", "code", ".", "co_firstlineno", "-", "1", "pat", "=", "re", ".", "compile", "(", "r'^(\\s*def\\s)|(\\s*async\\s+def\\s)|(.*(?<!\\w)lambda(:|\\s))|^(\\s*@)'", ")", "while", "lnum", ">", "0", ":", "if", "pat", ".", "match", "(", "lines", "[", "lnum", "]", ")", ":", "break", "lnum", "=", "lnum", "-", "1", "# pragma: no cover", "return", "lines", ",", "lnum", "def", "getfile", "(", "func", ")", ":", "module", "=", "inspect", ".", "getmodule", "(", "func", ")", "return", "module", ".", "__file__", "try", ":", "return", "inspect", ".", "getsource", "(", "func", ")", "except", "Exception", ":", "return", "getsource", "(", "func", ")" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
slugify
Returns a slugified name (we allow _ to be used)
toucan_data_sdk/utils/helpers.py
def slugify(name, separator='-'): """Returns a slugified name (we allow _ to be used)""" return _slugify(name, regex_pattern=re.compile('[^-_a-z0-9]+'), separator=separator)
def slugify(name, separator='-'): """Returns a slugified name (we allow _ to be used)""" return _slugify(name, regex_pattern=re.compile('[^-_a-z0-9]+'), separator=separator)
[ "Returns", "a", "slugified", "name", "(", "we", "allow", "_", "to", "be", "used", ")" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/helpers.py#L99-L101
[ "def", "slugify", "(", "name", ",", "separator", "=", "'-'", ")", ":", "return", "_slugify", "(", "name", ",", "regex_pattern", "=", "re", ".", "compile", "(", "'[^-_a-z0-9]+'", ")", ",", "separator", "=", "separator", ")" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
resolve_dependencies
Given a function name and a mapping of function dependencies, returns a list of *all* the dependencies for this function.
toucan_data_sdk/utils/helpers.py
def resolve_dependencies(func_name, dependencies): """ Given a function name and a mapping of function dependencies, returns a list of *all* the dependencies for this function. """ def _resolve_deps(func_name, func_deps): """ Append dependencies recursively to func_deps (accumulator) """ if func_name in func_deps: return func_deps.append(func_name) for dep in dependencies.get(func_name, []): _resolve_deps(dep, func_deps) func_deps = [] _resolve_deps(func_name, func_deps) return sorted(func_deps)
def resolve_dependencies(func_name, dependencies): """ Given a function name and a mapping of function dependencies, returns a list of *all* the dependencies for this function. """ def _resolve_deps(func_name, func_deps): """ Append dependencies recursively to func_deps (accumulator) """ if func_name in func_deps: return func_deps.append(func_name) for dep in dependencies.get(func_name, []): _resolve_deps(dep, func_deps) func_deps = [] _resolve_deps(func_name, func_deps) return sorted(func_deps)
[ "Given", "a", "function", "name", "and", "a", "mapping", "of", "function", "dependencies", "returns", "a", "list", "of", "*", "all", "*", "the", "dependencies", "for", "this", "function", "." ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/helpers.py#L104-L119
[ "def", "resolve_dependencies", "(", "func_name", ",", "dependencies", ")", ":", "def", "_resolve_deps", "(", "func_name", ",", "func_deps", ")", ":", "\"\"\" Append dependencies recursively to func_deps (accumulator) \"\"\"", "if", "func_name", "in", "func_deps", ":", "return", "func_deps", ".", "append", "(", "func_name", ")", "for", "dep", "in", "dependencies", ".", "get", "(", "func_name", ",", "[", "]", ")", ":", "_resolve_deps", "(", "dep", ",", "func_deps", ")", "func_deps", "=", "[", "]", "_resolve_deps", "(", "func_name", ",", "func_deps", ")", "return", "sorted", "(", "func_deps", ")" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
clean_cachedir_old_entries
Remove old entries from the cache
toucan_data_sdk/utils/helpers.py
def clean_cachedir_old_entries(cachedir: StoreBackendBase, func_name: str, limit: int) -> int: """Remove old entries from the cache""" if limit < 1: raise ValueError("'limit' must be greater or equal to 1") cache_entries = get_cachedir_entries(cachedir, func_name) cache_entries = sorted(cache_entries, key=lambda e: e.last_access, reverse=True) cache_entries_to_remove = cache_entries[limit:] for entry in cache_entries_to_remove: shutil.rmtree(entry.path, ignore_errors=True) return len(cache_entries_to_remove)
def clean_cachedir_old_entries(cachedir: StoreBackendBase, func_name: str, limit: int) -> int: """Remove old entries from the cache""" if limit < 1: raise ValueError("'limit' must be greater or equal to 1") cache_entries = get_cachedir_entries(cachedir, func_name) cache_entries = sorted(cache_entries, key=lambda e: e.last_access, reverse=True) cache_entries_to_remove = cache_entries[limit:] for entry in cache_entries_to_remove: shutil.rmtree(entry.path, ignore_errors=True) return len(cache_entries_to_remove)
[ "Remove", "old", "entries", "from", "the", "cache" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/helpers.py#L122-L133
[ "def", "clean_cachedir_old_entries", "(", "cachedir", ":", "StoreBackendBase", ",", "func_name", ":", "str", ",", "limit", ":", "int", ")", "->", "int", ":", "if", "limit", "<", "1", ":", "raise", "ValueError", "(", "\"'limit' must be greater or equal to 1\"", ")", "cache_entries", "=", "get_cachedir_entries", "(", "cachedir", ",", "func_name", ")", "cache_entries", "=", "sorted", "(", "cache_entries", ",", "key", "=", "lambda", "e", ":", "e", ".", "last_access", ",", "reverse", "=", "True", ")", "cache_entries_to_remove", "=", "cache_entries", "[", "limit", ":", "]", "for", "entry", "in", "cache_entries_to_remove", ":", "shutil", ".", "rmtree", "(", "entry", ".", "path", ",", "ignore_errors", "=", "True", ")", "return", "len", "(", "cache_entries_to_remove", ")" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
roll_up
Creates aggregates following a given hierarchy --- ### Parameters *mandatory :* - `levels` (*list of str*): name of the columns composing the hierarchy (from the top to the bottom level). - `groupby_vars` (*list of str*): name of the columns with value to aggregate. - `extra_groupby_cols` (*list of str*) optional: other columns used to group in each level. *optional :* - `var_name` (*str*) : name of the result variable column. By default, `“type”`. - `value_name` (*str*): name of the result value column. By default, `“value”`. - `agg_func` (*str*): name of the aggregation operation. By default, `“sum”`. - `drop_levels` (*list of str*): the names of the levels that you may want to discard from the output. --- ### Example **Input** | Region | City | Population | |:---------:|:--------:|:-----------:| | Idf | Panam| 200 | | Idf | Antony | 50 | | Nord | Lille | 20 | ```cson roll_up: levels: ["Region", "City"] groupby_vars: "Population" ``` **Output** | Region | City | Population | value | type | |:---------:|:--------:|:-----------:|:--------:|:------:| | Idf | Panam| 200 | Panam | City | | Idf | Antony | 50 | Antony | City | | Nord | Lille | 20 | Lille | City | | Idf | Nan | 250 | Idf | Region | | Nord | Nan | 20 | Nord | Region |
toucan_data_sdk/utils/generic/roll_up.py
def roll_up( df, levels: List[str], groupby_vars: List[str], extra_groupby_cols: List[str] = None, var_name: str = 'type', value_name: str = 'value', agg_func: str = 'sum', drop_levels: List[str] = None ): """ Creates aggregates following a given hierarchy --- ### Parameters *mandatory :* - `levels` (*list of str*): name of the columns composing the hierarchy (from the top to the bottom level). - `groupby_vars` (*list of str*): name of the columns with value to aggregate. - `extra_groupby_cols` (*list of str*) optional: other columns used to group in each level. *optional :* - `var_name` (*str*) : name of the result variable column. By default, `“type”`. - `value_name` (*str*): name of the result value column. By default, `“value”`. - `agg_func` (*str*): name of the aggregation operation. By default, `“sum”`. - `drop_levels` (*list of str*): the names of the levels that you may want to discard from the output. --- ### Example **Input** | Region | City | Population | |:---------:|:--------:|:-----------:| | Idf | Panam| 200 | | Idf | Antony | 50 | | Nord | Lille | 20 | ```cson roll_up: levels: ["Region", "City"] groupby_vars: "Population" ``` **Output** | Region | City | Population | value | type | |:---------:|:--------:|:-----------:|:--------:|:------:| | Idf | Panam| 200 | Panam | City | | Idf | Antony | 50 | Antony | City | | Nord | Lille | 20 | Lille | City | | Idf | Nan | 250 | Idf | Region | | Nord | Nan | 20 | Nord | Region | """ dfs = list() groupby_cols_cpy = list(levels) levels_cpy = list(levels) levels_cpy.reverse() extra_groupby_cols = extra_groupby_cols or [] drop_levels = drop_levels or [] previous_level = None for top_level in levels_cpy: # Aggregation gb_df = getattr( df.groupby(groupby_cols_cpy + extra_groupby_cols)[groupby_vars], agg_func)().reset_index() # Melt-like columns gb_df[var_name] = top_level gb_df[value_name] = gb_df[top_level] dfs.append(gb_df) if previous_level in drop_levels: del dfs[-2] previous_level = top_level # Remove one level each time in the groupby: lowest level column needs # a groupby with every levels, the next level needs every one except # the lowest, etc. until the top level column that needs only itself # inside the groupby. groupby_cols_cpy.pop() return pd.concat(dfs, sort=False).reset_index()
def roll_up( df, levels: List[str], groupby_vars: List[str], extra_groupby_cols: List[str] = None, var_name: str = 'type', value_name: str = 'value', agg_func: str = 'sum', drop_levels: List[str] = None ): """ Creates aggregates following a given hierarchy --- ### Parameters *mandatory :* - `levels` (*list of str*): name of the columns composing the hierarchy (from the top to the bottom level). - `groupby_vars` (*list of str*): name of the columns with value to aggregate. - `extra_groupby_cols` (*list of str*) optional: other columns used to group in each level. *optional :* - `var_name` (*str*) : name of the result variable column. By default, `“type”`. - `value_name` (*str*): name of the result value column. By default, `“value”`. - `agg_func` (*str*): name of the aggregation operation. By default, `“sum”`. - `drop_levels` (*list of str*): the names of the levels that you may want to discard from the output. --- ### Example **Input** | Region | City | Population | |:---------:|:--------:|:-----------:| | Idf | Panam| 200 | | Idf | Antony | 50 | | Nord | Lille | 20 | ```cson roll_up: levels: ["Region", "City"] groupby_vars: "Population" ``` **Output** | Region | City | Population | value | type | |:---------:|:--------:|:-----------:|:--------:|:------:| | Idf | Panam| 200 | Panam | City | | Idf | Antony | 50 | Antony | City | | Nord | Lille | 20 | Lille | City | | Idf | Nan | 250 | Idf | Region | | Nord | Nan | 20 | Nord | Region | """ dfs = list() groupby_cols_cpy = list(levels) levels_cpy = list(levels) levels_cpy.reverse() extra_groupby_cols = extra_groupby_cols or [] drop_levels = drop_levels or [] previous_level = None for top_level in levels_cpy: # Aggregation gb_df = getattr( df.groupby(groupby_cols_cpy + extra_groupby_cols)[groupby_vars], agg_func)().reset_index() # Melt-like columns gb_df[var_name] = top_level gb_df[value_name] = gb_df[top_level] dfs.append(gb_df) if previous_level in drop_levels: del dfs[-2] previous_level = top_level # Remove one level each time in the groupby: lowest level column needs # a groupby with every levels, the next level needs every one except # the lowest, etc. until the top level column that needs only itself # inside the groupby. groupby_cols_cpy.pop() return pd.concat(dfs, sort=False).reset_index()
[ "Creates", "aggregates", "following", "a", "given", "hierarchy" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/generic/roll_up.py#L5-L88
[ "def", "roll_up", "(", "df", ",", "levels", ":", "List", "[", "str", "]", ",", "groupby_vars", ":", "List", "[", "str", "]", ",", "extra_groupby_cols", ":", "List", "[", "str", "]", "=", "None", ",", "var_name", ":", "str", "=", "'type'", ",", "value_name", ":", "str", "=", "'value'", ",", "agg_func", ":", "str", "=", "'sum'", ",", "drop_levels", ":", "List", "[", "str", "]", "=", "None", ")", ":", "dfs", "=", "list", "(", ")", "groupby_cols_cpy", "=", "list", "(", "levels", ")", "levels_cpy", "=", "list", "(", "levels", ")", "levels_cpy", ".", "reverse", "(", ")", "extra_groupby_cols", "=", "extra_groupby_cols", "or", "[", "]", "drop_levels", "=", "drop_levels", "or", "[", "]", "previous_level", "=", "None", "for", "top_level", "in", "levels_cpy", ":", "# Aggregation", "gb_df", "=", "getattr", "(", "df", ".", "groupby", "(", "groupby_cols_cpy", "+", "extra_groupby_cols", ")", "[", "groupby_vars", "]", ",", "agg_func", ")", "(", ")", ".", "reset_index", "(", ")", "# Melt-like columns", "gb_df", "[", "var_name", "]", "=", "top_level", "gb_df", "[", "value_name", "]", "=", "gb_df", "[", "top_level", "]", "dfs", ".", "append", "(", "gb_df", ")", "if", "previous_level", "in", "drop_levels", ":", "del", "dfs", "[", "-", "2", "]", "previous_level", "=", "top_level", "# Remove one level each time in the groupby: lowest level column needs", "# a groupby with every levels, the next level needs every one except", "# the lowest, etc. until the top level column that needs only itself", "# inside the groupby.", "groupby_cols_cpy", ".", "pop", "(", ")", "return", "pd", ".", "concat", "(", "dfs", ",", "sort", "=", "False", ")", ".", "reset_index", "(", ")" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
argmax
Keep the row of the data corresponding to the maximal value in a column --- ### Parameters *mandatory :* - `column` (*str*): name of the column containing the value you want to keep the maximum *optional :* - `groups` (*str or list(str)*): name of the column(s) used for 'groupby' logic (the function will return the argmax by group) --- ### Example **Input** | variable | wave | year | value | |:--------:|:-------:|:--------:|:-----:| | toto | wave 1 | 2014 | 300 | | toto | wave 1 | 2015 | 250 | | toto | wave 1 | 2016 | 450 | ```cson argmax: column: 'year' ``` **Output** | variable | wave | year | value | |:--------:|:-------:|:--------:|:-----:| | toto | wave 1 | 2016 | 450 |
toucan_data_sdk/utils/postprocess/argmax.py
def argmax(df, column: str, groups: Union[str, List[str]] = None): """ Keep the row of the data corresponding to the maximal value in a column --- ### Parameters *mandatory :* - `column` (*str*): name of the column containing the value you want to keep the maximum *optional :* - `groups` (*str or list(str)*): name of the column(s) used for 'groupby' logic (the function will return the argmax by group) --- ### Example **Input** | variable | wave | year | value | |:--------:|:-------:|:--------:|:-----:| | toto | wave 1 | 2014 | 300 | | toto | wave 1 | 2015 | 250 | | toto | wave 1 | 2016 | 450 | ```cson argmax: column: 'year' ``` **Output** | variable | wave | year | value | |:--------:|:-------:|:--------:|:-----:| | toto | wave 1 | 2016 | 450 | """ if groups is None: df = df[df[column] == df[column].max()].reset_index(drop=True) else: group_max = df.groupby(groups)[column].transform('max') df = (df .loc[df[column] == group_max, :] .drop_duplicates() .reset_index(drop=True) ) return df
def argmax(df, column: str, groups: Union[str, List[str]] = None): """ Keep the row of the data corresponding to the maximal value in a column --- ### Parameters *mandatory :* - `column` (*str*): name of the column containing the value you want to keep the maximum *optional :* - `groups` (*str or list(str)*): name of the column(s) used for 'groupby' logic (the function will return the argmax by group) --- ### Example **Input** | variable | wave | year | value | |:--------:|:-------:|:--------:|:-----:| | toto | wave 1 | 2014 | 300 | | toto | wave 1 | 2015 | 250 | | toto | wave 1 | 2016 | 450 | ```cson argmax: column: 'year' ``` **Output** | variable | wave | year | value | |:--------:|:-------:|:--------:|:-----:| | toto | wave 1 | 2016 | 450 | """ if groups is None: df = df[df[column] == df[column].max()].reset_index(drop=True) else: group_max = df.groupby(groups)[column].transform('max') df = (df .loc[df[column] == group_max, :] .drop_duplicates() .reset_index(drop=True) ) return df
[ "Keep", "the", "row", "of", "the", "data", "corresponding", "to", "the", "maximal", "value", "in", "a", "column" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/argmax.py#L4-L51
[ "def", "argmax", "(", "df", ",", "column", ":", "str", ",", "groups", ":", "Union", "[", "str", ",", "List", "[", "str", "]", "]", "=", "None", ")", ":", "if", "groups", "is", "None", ":", "df", "=", "df", "[", "df", "[", "column", "]", "==", "df", "[", "column", "]", ".", "max", "(", ")", "]", ".", "reset_index", "(", "drop", "=", "True", ")", "else", ":", "group_max", "=", "df", ".", "groupby", "(", "groups", ")", "[", "column", "]", ".", "transform", "(", "'max'", ")", "df", "=", "(", "df", ".", "loc", "[", "df", "[", "column", "]", "==", "group_max", ",", ":", "]", ".", "drop_duplicates", "(", ")", ".", "reset_index", "(", "drop", "=", "True", ")", ")", "return", "df" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
argmin
Keep the row of the data corresponding to the minimal value in a column --- ### Parameters *mandatory :* - `column` (str): name of the column containing the value you want to keep the minimum *optional :* - `groups` (*str or list(str)*): name of the column(s) used for 'groupby' logic (the function will return the argmax by group) --- ### Example **Input** | variable | wave | year | value | |:--------:|:-------:|:--------:|:-----:| | toto | wave 1 | 2014 | 300 | | toto | wave 1 | 2015 | 250 | | toto | wave 1 | 2016 | 450 | ```cson argmin: column: 'year' ] ``` **Output** | variable | wave | year | value | |:--------:|:-------:|:--------:|:-----:| | toto | wave 1 | 2015 | 250 |
toucan_data_sdk/utils/postprocess/argmax.py
def argmin(df, column: str, groups: Union[str, List[str]] = None): """ Keep the row of the data corresponding to the minimal value in a column --- ### Parameters *mandatory :* - `column` (str): name of the column containing the value you want to keep the minimum *optional :* - `groups` (*str or list(str)*): name of the column(s) used for 'groupby' logic (the function will return the argmax by group) --- ### Example **Input** | variable | wave | year | value | |:--------:|:-------:|:--------:|:-----:| | toto | wave 1 | 2014 | 300 | | toto | wave 1 | 2015 | 250 | | toto | wave 1 | 2016 | 450 | ```cson argmin: column: 'year' ] ``` **Output** | variable | wave | year | value | |:--------:|:-------:|:--------:|:-----:| | toto | wave 1 | 2015 | 250 | """ if groups is None: df = df[df[column] == df[column].min()].reset_index(drop=True) else: group_min = df.groupby(groups)[column].transform('min') df = (df .loc[df[column] == group_min, :] .drop_duplicates() .reset_index(drop=True) ) return df
def argmin(df, column: str, groups: Union[str, List[str]] = None): """ Keep the row of the data corresponding to the minimal value in a column --- ### Parameters *mandatory :* - `column` (str): name of the column containing the value you want to keep the minimum *optional :* - `groups` (*str or list(str)*): name of the column(s) used for 'groupby' logic (the function will return the argmax by group) --- ### Example **Input** | variable | wave | year | value | |:--------:|:-------:|:--------:|:-----:| | toto | wave 1 | 2014 | 300 | | toto | wave 1 | 2015 | 250 | | toto | wave 1 | 2016 | 450 | ```cson argmin: column: 'year' ] ``` **Output** | variable | wave | year | value | |:--------:|:-------:|:--------:|:-----:| | toto | wave 1 | 2015 | 250 | """ if groups is None: df = df[df[column] == df[column].min()].reset_index(drop=True) else: group_min = df.groupby(groups)[column].transform('min') df = (df .loc[df[column] == group_min, :] .drop_duplicates() .reset_index(drop=True) ) return df
[ "Keep", "the", "row", "of", "the", "data", "corresponding", "to", "the", "minimal", "value", "in", "a", "column" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/argmax.py#L54-L101
[ "def", "argmin", "(", "df", ",", "column", ":", "str", ",", "groups", ":", "Union", "[", "str", ",", "List", "[", "str", "]", "]", "=", "None", ")", ":", "if", "groups", "is", "None", ":", "df", "=", "df", "[", "df", "[", "column", "]", "==", "df", "[", "column", "]", ".", "min", "(", ")", "]", ".", "reset_index", "(", "drop", "=", "True", ")", "else", ":", "group_min", "=", "df", ".", "groupby", "(", "groups", ")", "[", "column", "]", ".", "transform", "(", "'min'", ")", "df", "=", "(", "df", ".", "loc", "[", "df", "[", "column", "]", "==", "group_min", ",", ":", "]", ".", "drop_duplicates", "(", ")", ".", "reset_index", "(", "drop", "=", "True", ")", ")", "return", "df" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
fillna
Can fill NaN values from a column with a given value or a column --- ### Parameters - `column` (*str*): name of column you want to fill - `value`: NaN will be replaced by this value - `column_value`: NaN will be replaced by value from this column *NOTE*: You must set either the 'value' parameter or the 'column_value' parameter --- ### Example **Input** | variable | wave | year | my_value | |:--------:|:-------:|:--------:|:--------:| | toto | wave 1 | 2014 | 300 | | toto | wave 1 | 2015 | | | toto | wave 1 | 2016 | 450 | ```cson fillna: column: 'my_value' value: 0 ``` **Output** | variable | wave | year | my_value | |:--------:|:-------:|:--------:|:--------:| | toto | wave 1 | 2014 | 300 | | toto | wave 1 | 2015 | 0 | | toto | wave 1 | 2016 | 450 |
toucan_data_sdk/utils/postprocess/fillna.py
def fillna(df, column: str, value=None, column_value=None): """ Can fill NaN values from a column with a given value or a column --- ### Parameters - `column` (*str*): name of column you want to fill - `value`: NaN will be replaced by this value - `column_value`: NaN will be replaced by value from this column *NOTE*: You must set either the 'value' parameter or the 'column_value' parameter --- ### Example **Input** | variable | wave | year | my_value | |:--------:|:-------:|:--------:|:--------:| | toto | wave 1 | 2014 | 300 | | toto | wave 1 | 2015 | | | toto | wave 1 | 2016 | 450 | ```cson fillna: column: 'my_value' value: 0 ``` **Output** | variable | wave | year | my_value | |:--------:|:-------:|:--------:|:--------:| | toto | wave 1 | 2014 | 300 | | toto | wave 1 | 2015 | 0 | | toto | wave 1 | 2016 | 450 | """ if column not in df.columns: df[column] = nan if value is not None and column_value is not None: raise ValueError('You cannot set both the parameters value and column_value') if value is not None: df[column] = df[column].fillna(value) if column_value is not None: if column_value not in df.columns: raise ValueError(f'"{column_value}" is not a valid column name') df[column] = df[column].fillna(df[column_value]) return df
def fillna(df, column: str, value=None, column_value=None): """ Can fill NaN values from a column with a given value or a column --- ### Parameters - `column` (*str*): name of column you want to fill - `value`: NaN will be replaced by this value - `column_value`: NaN will be replaced by value from this column *NOTE*: You must set either the 'value' parameter or the 'column_value' parameter --- ### Example **Input** | variable | wave | year | my_value | |:--------:|:-------:|:--------:|:--------:| | toto | wave 1 | 2014 | 300 | | toto | wave 1 | 2015 | | | toto | wave 1 | 2016 | 450 | ```cson fillna: column: 'my_value' value: 0 ``` **Output** | variable | wave | year | my_value | |:--------:|:-------:|:--------:|:--------:| | toto | wave 1 | 2014 | 300 | | toto | wave 1 | 2015 | 0 | | toto | wave 1 | 2016 | 450 | """ if column not in df.columns: df[column] = nan if value is not None and column_value is not None: raise ValueError('You cannot set both the parameters value and column_value') if value is not None: df[column] = df[column].fillna(value) if column_value is not None: if column_value not in df.columns: raise ValueError(f'"{column_value}" is not a valid column name') df[column] = df[column].fillna(df[column_value]) return df
[ "Can", "fill", "NaN", "values", "from", "a", "column", "with", "a", "given", "value", "or", "a", "column" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/fillna.py#L4-L58
[ "def", "fillna", "(", "df", ",", "column", ":", "str", ",", "value", "=", "None", ",", "column_value", "=", "None", ")", ":", "if", "column", "not", "in", "df", ".", "columns", ":", "df", "[", "column", "]", "=", "nan", "if", "value", "is", "not", "None", "and", "column_value", "is", "not", "None", ":", "raise", "ValueError", "(", "'You cannot set both the parameters value and column_value'", ")", "if", "value", "is", "not", "None", ":", "df", "[", "column", "]", "=", "df", "[", "column", "]", ".", "fillna", "(", "value", ")", "if", "column_value", "is", "not", "None", ":", "if", "column_value", "not", "in", "df", ".", "columns", ":", "raise", "ValueError", "(", "f'\"{column_value}\" is not a valid column name'", ")", "df", "[", "column", "]", "=", "df", "[", "column", "]", ".", "fillna", "(", "df", "[", "column_value", "]", ")", "return", "df" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
date_requester_generator
From a dataset containing dates in a column, return a dataset with at least 3 columns : - "DATE" : Label of date - "DATETIME" : Date in datetime dtype - "GRANULARITY" : Granularity of date --- ### Parameters *mandatory :* - `date_column` (*str*): name of column containing the date in the dataframe - `frequency` (*str*): see [pandas doc]( http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases) *optional :* - `date_column_format` (*str*): format of the date in date_column - `format` (*str*): format of the date (see [pandas doc]( https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior)) By default, the format is set to `'%d/%m/%Y'` **WARNING**: only use if `granularities` is None. - `granularities` (*dict*): - key (*str*): name of the granularity - value (*str*): Format of the granularity e.g. '%d/%m/%Y' (see [pandas doc]( https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior)) - `others_format` (*dict*) : Add new columns for each key - key (*str*) : name of the column - value (*str*): format of the granularity e.g. '%d/%m/%Y' (see [pandas doc]( https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior)) - `times_delta` (*dict*) : Add new columns for each key - key (*str*) : name of the column - value (*str*): time delta (e.g. '+1 day', '+3 day', '-4 month') --- ### Example **Input** date | kpi :---:|:-----: 2018-01-01 | 1 2018-01-05 | 2 2018-01-04 | 3 2018-01-03 | 4 2018-01-02 | 5 ```cson date_requester_generator: date_column: 'date' frequency: 'D' granularities: 'day': '%d/%m/%Y' 'Semaine': '%W' others_format: 'year': '%Y' ``` **Ouput** DATE | DATETIME | GRANULARITY | year :---------:|:----------:|:-----------:|:---: 01/01/2018 | 2018-01-01 | day | 2018 02/01/2018 | 2018-01-02 | day | 2018 03/01/2018 | 2018-01-03 | day | 2018 04/01/2018 | 2018-01-04 | day | 2018 05/01/2018 | 2018-01-05 | day | 2018 01 | 2018-01-01 | Semaine | 2018
toucan_data_sdk/utils/generic/date_requester.py
def date_requester_generator( df: pd.DataFrame, date_column: str, frequency: str, date_column_format: str = None, format: str = '%Y-%m-%d', granularities: Dict[str, str] = None, others_format: Dict[str, str] = None, times_delta: Dict[str, str] = None ) -> pd.DataFrame: """ From a dataset containing dates in a column, return a dataset with at least 3 columns : - "DATE" : Label of date - "DATETIME" : Date in datetime dtype - "GRANULARITY" : Granularity of date --- ### Parameters *mandatory :* - `date_column` (*str*): name of column containing the date in the dataframe - `frequency` (*str*): see [pandas doc]( http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases) *optional :* - `date_column_format` (*str*): format of the date in date_column - `format` (*str*): format of the date (see [pandas doc]( https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior)) By default, the format is set to `'%d/%m/%Y'` **WARNING**: only use if `granularities` is None. - `granularities` (*dict*): - key (*str*): name of the granularity - value (*str*): Format of the granularity e.g. '%d/%m/%Y' (see [pandas doc]( https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior)) - `others_format` (*dict*) : Add new columns for each key - key (*str*) : name of the column - value (*str*): format of the granularity e.g. '%d/%m/%Y' (see [pandas doc]( https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior)) - `times_delta` (*dict*) : Add new columns for each key - key (*str*) : name of the column - value (*str*): time delta (e.g. '+1 day', '+3 day', '-4 month') --- ### Example **Input** date | kpi :---:|:-----: 2018-01-01 | 1 2018-01-05 | 2 2018-01-04 | 3 2018-01-03 | 4 2018-01-02 | 5 ```cson date_requester_generator: date_column: 'date' frequency: 'D' granularities: 'day': '%d/%m/%Y' 'Semaine': '%W' others_format: 'year': '%Y' ``` **Ouput** DATE | DATETIME | GRANULARITY | year :---------:|:----------:|:-----------:|:---: 01/01/2018 | 2018-01-01 | day | 2018 02/01/2018 | 2018-01-02 | day | 2018 03/01/2018 | 2018-01-03 | day | 2018 04/01/2018 | 2018-01-04 | day | 2018 05/01/2018 | 2018-01-05 | day | 2018 01 | 2018-01-01 | Semaine | 2018 """ start_date = pd.to_datetime(df[date_column], format=date_column_format).min() end_date = pd.to_datetime(df[date_column], format=date_column_format).max() granularities = granularities or {'date': format} others_format = others_format or {} times_delta = times_delta or {} # Base DataFrame columns_list = ['DATE', 'DATETIME', 'GRANULARITY', *others_format, *times_delta] result_df = {col_name: [] for col_name in columns_list} # Generate the range date_range = pd.date_range(start=start_date, end=end_date, freq=frequency) for granularity_name, granularity_format in granularities.items(): date_range_label = date_range.strftime(granularity_format) a = list(set(date_range_label)) index_unique = list(set([a.index(x) for x in date_range_label])) date_range_datetime = date_range[index_unique] date_range_label = date_range_label.unique() result_df['DATE'] += list(date_range_label) result_df['DATETIME'] += list(date_range_datetime) result_df['GRANULARITY'] += [granularity_name] * len(date_range_label) for col_name, other_format in others_format.items(): result_df[col_name] += list(date_range_datetime.strftime(other_format)) for col_name, time_delta in times_delta.items(): result_df[col_name] += list((date_range_datetime + pd.Timedelta(time_delta)) .strftime(granularity_format)) return pd.DataFrame(result_df)
def date_requester_generator( df: pd.DataFrame, date_column: str, frequency: str, date_column_format: str = None, format: str = '%Y-%m-%d', granularities: Dict[str, str] = None, others_format: Dict[str, str] = None, times_delta: Dict[str, str] = None ) -> pd.DataFrame: """ From a dataset containing dates in a column, return a dataset with at least 3 columns : - "DATE" : Label of date - "DATETIME" : Date in datetime dtype - "GRANULARITY" : Granularity of date --- ### Parameters *mandatory :* - `date_column` (*str*): name of column containing the date in the dataframe - `frequency` (*str*): see [pandas doc]( http://pandas.pydata.org/pandas-docs/stable/timeseries.html#offset-aliases) *optional :* - `date_column_format` (*str*): format of the date in date_column - `format` (*str*): format of the date (see [pandas doc]( https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior)) By default, the format is set to `'%d/%m/%Y'` **WARNING**: only use if `granularities` is None. - `granularities` (*dict*): - key (*str*): name of the granularity - value (*str*): Format of the granularity e.g. '%d/%m/%Y' (see [pandas doc]( https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior)) - `others_format` (*dict*) : Add new columns for each key - key (*str*) : name of the column - value (*str*): format of the granularity e.g. '%d/%m/%Y' (see [pandas doc]( https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior)) - `times_delta` (*dict*) : Add new columns for each key - key (*str*) : name of the column - value (*str*): time delta (e.g. '+1 day', '+3 day', '-4 month') --- ### Example **Input** date | kpi :---:|:-----: 2018-01-01 | 1 2018-01-05 | 2 2018-01-04 | 3 2018-01-03 | 4 2018-01-02 | 5 ```cson date_requester_generator: date_column: 'date' frequency: 'D' granularities: 'day': '%d/%m/%Y' 'Semaine': '%W' others_format: 'year': '%Y' ``` **Ouput** DATE | DATETIME | GRANULARITY | year :---------:|:----------:|:-----------:|:---: 01/01/2018 | 2018-01-01 | day | 2018 02/01/2018 | 2018-01-02 | day | 2018 03/01/2018 | 2018-01-03 | day | 2018 04/01/2018 | 2018-01-04 | day | 2018 05/01/2018 | 2018-01-05 | day | 2018 01 | 2018-01-01 | Semaine | 2018 """ start_date = pd.to_datetime(df[date_column], format=date_column_format).min() end_date = pd.to_datetime(df[date_column], format=date_column_format).max() granularities = granularities or {'date': format} others_format = others_format or {} times_delta = times_delta or {} # Base DataFrame columns_list = ['DATE', 'DATETIME', 'GRANULARITY', *others_format, *times_delta] result_df = {col_name: [] for col_name in columns_list} # Generate the range date_range = pd.date_range(start=start_date, end=end_date, freq=frequency) for granularity_name, granularity_format in granularities.items(): date_range_label = date_range.strftime(granularity_format) a = list(set(date_range_label)) index_unique = list(set([a.index(x) for x in date_range_label])) date_range_datetime = date_range[index_unique] date_range_label = date_range_label.unique() result_df['DATE'] += list(date_range_label) result_df['DATETIME'] += list(date_range_datetime) result_df['GRANULARITY'] += [granularity_name] * len(date_range_label) for col_name, other_format in others_format.items(): result_df[col_name] += list(date_range_datetime.strftime(other_format)) for col_name, time_delta in times_delta.items(): result_df[col_name] += list((date_range_datetime + pd.Timedelta(time_delta)) .strftime(granularity_format)) return pd.DataFrame(result_df)
[ "From", "a", "dataset", "containing", "dates", "in", "a", "column", "return", "a", "dataset", "with", "at", "least", "3", "columns", ":", "-", "DATE", ":", "Label", "of", "date", "-", "DATETIME", ":", "Date", "in", "datetime", "dtype", "-", "GRANULARITY", ":", "Granularity", "of", "date" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/generic/date_requester.py#L5-L118
[ "def", "date_requester_generator", "(", "df", ":", "pd", ".", "DataFrame", ",", "date_column", ":", "str", ",", "frequency", ":", "str", ",", "date_column_format", ":", "str", "=", "None", ",", "format", ":", "str", "=", "'%Y-%m-%d'", ",", "granularities", ":", "Dict", "[", "str", ",", "str", "]", "=", "None", ",", "others_format", ":", "Dict", "[", "str", ",", "str", "]", "=", "None", ",", "times_delta", ":", "Dict", "[", "str", ",", "str", "]", "=", "None", ")", "->", "pd", ".", "DataFrame", ":", "start_date", "=", "pd", ".", "to_datetime", "(", "df", "[", "date_column", "]", ",", "format", "=", "date_column_format", ")", ".", "min", "(", ")", "end_date", "=", "pd", ".", "to_datetime", "(", "df", "[", "date_column", "]", ",", "format", "=", "date_column_format", ")", ".", "max", "(", ")", "granularities", "=", "granularities", "or", "{", "'date'", ":", "format", "}", "others_format", "=", "others_format", "or", "{", "}", "times_delta", "=", "times_delta", "or", "{", "}", "# Base DataFrame", "columns_list", "=", "[", "'DATE'", ",", "'DATETIME'", ",", "'GRANULARITY'", ",", "*", "others_format", ",", "*", "times_delta", "]", "result_df", "=", "{", "col_name", ":", "[", "]", "for", "col_name", "in", "columns_list", "}", "# Generate the range", "date_range", "=", "pd", ".", "date_range", "(", "start", "=", "start_date", ",", "end", "=", "end_date", ",", "freq", "=", "frequency", ")", "for", "granularity_name", ",", "granularity_format", "in", "granularities", ".", "items", "(", ")", ":", "date_range_label", "=", "date_range", ".", "strftime", "(", "granularity_format", ")", "a", "=", "list", "(", "set", "(", "date_range_label", ")", ")", "index_unique", "=", "list", "(", "set", "(", "[", "a", ".", "index", "(", "x", ")", "for", "x", "in", "date_range_label", "]", ")", ")", "date_range_datetime", "=", "date_range", "[", "index_unique", "]", "date_range_label", "=", "date_range_label", ".", "unique", "(", ")", "result_df", "[", "'DATE'", "]", "+=", "list", "(", "date_range_label", ")", "result_df", "[", "'DATETIME'", "]", "+=", "list", "(", "date_range_datetime", ")", "result_df", "[", "'GRANULARITY'", "]", "+=", "[", "granularity_name", "]", "*", "len", "(", "date_range_label", ")", "for", "col_name", ",", "other_format", "in", "others_format", ".", "items", "(", ")", ":", "result_df", "[", "col_name", "]", "+=", "list", "(", "date_range_datetime", ".", "strftime", "(", "other_format", ")", ")", "for", "col_name", ",", "time_delta", "in", "times_delta", ".", "items", "(", ")", ":", "result_df", "[", "col_name", "]", "+=", "list", "(", "(", "date_range_datetime", "+", "pd", ".", "Timedelta", "(", "time_delta", ")", ")", ".", "strftime", "(", "granularity_format", ")", ")", "return", "pd", ".", "DataFrame", "(", "result_df", ")" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
_norm_date
normalize symbolic date values (e.g. 'TODAY') Convert a symbolic value in a valid date. Currenlty known symbolic values are 'TODAY', 'YESTERDAY' and 'TOMORROW'. NOTE: This function will return `date` (not `datetime`) instances. Parameters: `datestr`: the date to parse, formatted as `date_fmt` `date_fmt`: expected output date format Returns: The interpreted date as a datetime.datetime object. If `datestr` doesn't match any of the known symbolic names, it just parses it.
toucan_data_sdk/utils/postprocess/filter_by_date.py
def _norm_date(datestr: str, date_fmt: str) -> date: """normalize symbolic date values (e.g. 'TODAY') Convert a symbolic value in a valid date. Currenlty known symbolic values are 'TODAY', 'YESTERDAY' and 'TOMORROW'. NOTE: This function will return `date` (not `datetime`) instances. Parameters: `datestr`: the date to parse, formatted as `date_fmt` `date_fmt`: expected output date format Returns: The interpreted date as a datetime.datetime object. If `datestr` doesn't match any of the known symbolic names, it just parses it. """ try: days = {'TODAY': 0, 'YESTERDAY': -1, 'TOMORROW': 1}[datestr.upper()] return date.today() + pd.Timedelta(days=days) except KeyError: return datetime.strptime(datestr, date_fmt).date()
def _norm_date(datestr: str, date_fmt: str) -> date: """normalize symbolic date values (e.g. 'TODAY') Convert a symbolic value in a valid date. Currenlty known symbolic values are 'TODAY', 'YESTERDAY' and 'TOMORROW'. NOTE: This function will return `date` (not `datetime`) instances. Parameters: `datestr`: the date to parse, formatted as `date_fmt` `date_fmt`: expected output date format Returns: The interpreted date as a datetime.datetime object. If `datestr` doesn't match any of the known symbolic names, it just parses it. """ try: days = {'TODAY': 0, 'YESTERDAY': -1, 'TOMORROW': 1}[datestr.upper()] return date.today() + pd.Timedelta(days=days) except KeyError: return datetime.strptime(datestr, date_fmt).date()
[ "normalize", "symbolic", "date", "values", "(", "e", ".", "g", ".", "TODAY", ")" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/filter_by_date.py#L13-L34
[ "def", "_norm_date", "(", "datestr", ":", "str", ",", "date_fmt", ":", "str", ")", "->", "date", ":", "try", ":", "days", "=", "{", "'TODAY'", ":", "0", ",", "'YESTERDAY'", ":", "-", "1", ",", "'TOMORROW'", ":", "1", "}", "[", "datestr", ".", "upper", "(", ")", "]", "return", "date", ".", "today", "(", ")", "+", "pd", ".", "Timedelta", "(", "days", "=", "days", ")", "except", "KeyError", ":", "return", "datetime", ".", "strptime", "(", "datestr", ",", "date_fmt", ")", ".", "date", "(", ")" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
add_offset
add a human readable offset to `dateobj` and return corresponding date. rely on `pandas.Timedelta` and add the following extra shortcuts: - "w", "week" and "weeks" for a week (i.e. 7days) - "month', "months" for a month (i.e. no day computation, just increment the month) - "y", "year', "years" for a year (i.e. no day computation, just increment the year)
toucan_data_sdk/utils/postprocess/filter_by_date.py
def add_offset(dateobj, hr_offset: str, sign: str): """add a human readable offset to `dateobj` and return corresponding date. rely on `pandas.Timedelta` and add the following extra shortcuts: - "w", "week" and "weeks" for a week (i.e. 7days) - "month', "months" for a month (i.e. no day computation, just increment the month) - "y", "year', "years" for a year (i.e. no day computation, just increment the year) """ sign_coeff = 1 if sign == '+' else -1 try: return dateobj + sign_coeff * pd.Timedelta(hr_offset) except ValueError: # pd.Timedelta could not parse the offset, let's try harder match = TIMEDELTA_RGX.match(hr_offset) if match is not None: groups = match.groupdict() unit = groups['unit'].lower()[0] num = sign_coeff * int(groups['num']) # is it a week ? if unit == 'w': return dateobj + num * timedelta(weeks=1) # or a month ? if unit == 'm': return add_months(dateobj, num) # or a year ? if unit == 'y': return add_years(dateobj, num) # we did what we could, just re-raise the original exception raise
def add_offset(dateobj, hr_offset: str, sign: str): """add a human readable offset to `dateobj` and return corresponding date. rely on `pandas.Timedelta` and add the following extra shortcuts: - "w", "week" and "weeks" for a week (i.e. 7days) - "month', "months" for a month (i.e. no day computation, just increment the month) - "y", "year', "years" for a year (i.e. no day computation, just increment the year) """ sign_coeff = 1 if sign == '+' else -1 try: return dateobj + sign_coeff * pd.Timedelta(hr_offset) except ValueError: # pd.Timedelta could not parse the offset, let's try harder match = TIMEDELTA_RGX.match(hr_offset) if match is not None: groups = match.groupdict() unit = groups['unit'].lower()[0] num = sign_coeff * int(groups['num']) # is it a week ? if unit == 'w': return dateobj + num * timedelta(weeks=1) # or a month ? if unit == 'm': return add_months(dateobj, num) # or a year ? if unit == 'y': return add_years(dateobj, num) # we did what we could, just re-raise the original exception raise
[ "add", "a", "human", "readable", "offset", "to", "dateobj", "and", "return", "corresponding", "date", "." ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/filter_by_date.py#L37-L65
[ "def", "add_offset", "(", "dateobj", ",", "hr_offset", ":", "str", ",", "sign", ":", "str", ")", ":", "sign_coeff", "=", "1", "if", "sign", "==", "'+'", "else", "-", "1", "try", ":", "return", "dateobj", "+", "sign_coeff", "*", "pd", ".", "Timedelta", "(", "hr_offset", ")", "except", "ValueError", ":", "# pd.Timedelta could not parse the offset, let's try harder", "match", "=", "TIMEDELTA_RGX", ".", "match", "(", "hr_offset", ")", "if", "match", "is", "not", "None", ":", "groups", "=", "match", ".", "groupdict", "(", ")", "unit", "=", "groups", "[", "'unit'", "]", ".", "lower", "(", ")", "[", "0", "]", "num", "=", "sign_coeff", "*", "int", "(", "groups", "[", "'num'", "]", ")", "# is it a week ?", "if", "unit", "==", "'w'", ":", "return", "dateobj", "+", "num", "*", "timedelta", "(", "weeks", "=", "1", ")", "# or a month ?", "if", "unit", "==", "'m'", ":", "return", "add_months", "(", "dateobj", ",", "num", ")", "# or a year ?", "if", "unit", "==", "'y'", ":", "return", "add_years", "(", "dateobj", ",", "num", ")", "# we did what we could, just re-raise the original exception", "raise" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
add_months
return `dateobj` + `nb_months` If landing date doesn't exist (e.g. february, 30th), return the last day of the landing month. >>> add_months(date(2018, 1, 1), 1) datetime.date(2018, 1, 1) >>> add_months(date(2018, 1, 1), -1) datetime.date(2017, 12, 1) >>> add_months(date(2018, 1, 1), 25) datetime.date(2020, 2, 1) >>> add_months(date(2018, 1, 1), -25) datetime.date(2015, 12, 1) >>> add_months(date(2018, 1, 31), 1) datetime.date(2018, 2, 28)
toucan_data_sdk/utils/postprocess/filter_by_date.py
def add_months(dateobj, nb_months: int): """return `dateobj` + `nb_months` If landing date doesn't exist (e.g. february, 30th), return the last day of the landing month. >>> add_months(date(2018, 1, 1), 1) datetime.date(2018, 1, 1) >>> add_months(date(2018, 1, 1), -1) datetime.date(2017, 12, 1) >>> add_months(date(2018, 1, 1), 25) datetime.date(2020, 2, 1) >>> add_months(date(2018, 1, 1), -25) datetime.date(2015, 12, 1) >>> add_months(date(2018, 1, 31), 1) datetime.date(2018, 2, 28) """ nb_years, nb_months = divmod(nb_months, 12) month = dateobj.month + nb_months if month > 12: nb_years += 1 month -= 12 year = dateobj.year + nb_years lastday = monthrange(year, month)[1] return dateobj.replace(year=year, month=month, day=min(lastday, dateobj.day))
def add_months(dateobj, nb_months: int): """return `dateobj` + `nb_months` If landing date doesn't exist (e.g. february, 30th), return the last day of the landing month. >>> add_months(date(2018, 1, 1), 1) datetime.date(2018, 1, 1) >>> add_months(date(2018, 1, 1), -1) datetime.date(2017, 12, 1) >>> add_months(date(2018, 1, 1), 25) datetime.date(2020, 2, 1) >>> add_months(date(2018, 1, 1), -25) datetime.date(2015, 12, 1) >>> add_months(date(2018, 1, 31), 1) datetime.date(2018, 2, 28) """ nb_years, nb_months = divmod(nb_months, 12) month = dateobj.month + nb_months if month > 12: nb_years += 1 month -= 12 year = dateobj.year + nb_years lastday = monthrange(year, month)[1] return dateobj.replace(year=year, month=month, day=min(lastday, dateobj.day))
[ "return", "dateobj", "+", "nb_months" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/filter_by_date.py#L68-L92
[ "def", "add_months", "(", "dateobj", ",", "nb_months", ":", "int", ")", ":", "nb_years", ",", "nb_months", "=", "divmod", "(", "nb_months", ",", "12", ")", "month", "=", "dateobj", ".", "month", "+", "nb_months", "if", "month", ">", "12", ":", "nb_years", "+=", "1", "month", "-=", "12", "year", "=", "dateobj", ".", "year", "+", "nb_years", "lastday", "=", "monthrange", "(", "year", ",", "month", ")", "[", "1", "]", "return", "dateobj", ".", "replace", "(", "year", "=", "year", ",", "month", "=", "month", ",", "day", "=", "min", "(", "lastday", ",", "dateobj", ".", "day", ")", ")" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
add_years
return `dateobj` + `nb_years` If landing date doesn't exist (e.g. february, 30th), return the last day of the landing month. >>> add_years(date(2018, 1, 1), 1) datetime.date(2019, 1, 1) >>> add_years(date(2018, 1, 1), -1) datetime.date(2017, 1, 1) >>> add_years(date(2020, 2, 29), 1) datetime.date(2021, 2, 28) >>> add_years(date(2020, 2, 29), -1) datetime.date(2019, 2, 28)
toucan_data_sdk/utils/postprocess/filter_by_date.py
def add_years(dateobj, nb_years): """return `dateobj` + `nb_years` If landing date doesn't exist (e.g. february, 30th), return the last day of the landing month. >>> add_years(date(2018, 1, 1), 1) datetime.date(2019, 1, 1) >>> add_years(date(2018, 1, 1), -1) datetime.date(2017, 1, 1) >>> add_years(date(2020, 2, 29), 1) datetime.date(2021, 2, 28) >>> add_years(date(2020, 2, 29), -1) datetime.date(2019, 2, 28) """ year = dateobj.year + nb_years lastday = monthrange(year, dateobj.month)[1] return dateobj.replace(year=year, day=min(lastday, dateobj.day))
def add_years(dateobj, nb_years): """return `dateobj` + `nb_years` If landing date doesn't exist (e.g. february, 30th), return the last day of the landing month. >>> add_years(date(2018, 1, 1), 1) datetime.date(2019, 1, 1) >>> add_years(date(2018, 1, 1), -1) datetime.date(2017, 1, 1) >>> add_years(date(2020, 2, 29), 1) datetime.date(2021, 2, 28) >>> add_years(date(2020, 2, 29), -1) datetime.date(2019, 2, 28) """ year = dateobj.year + nb_years lastday = monthrange(year, dateobj.month)[1] return dateobj.replace(year=year, day=min(lastday, dateobj.day))
[ "return", "dateobj", "+", "nb_years" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/filter_by_date.py#L95-L112
[ "def", "add_years", "(", "dateobj", ",", "nb_years", ")", ":", "year", "=", "dateobj", ".", "year", "+", "nb_years", "lastday", "=", "monthrange", "(", "year", ",", "dateobj", ".", "month", ")", "[", "1", "]", "return", "dateobj", ".", "replace", "(", "year", "=", "year", ",", "day", "=", "min", "(", "lastday", ",", "dateobj", ".", "day", ")", ")" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
parse_date
parse `datestr` and return corresponding date object. `datestr` should be a string matching `date_fmt` and parseable by `strptime` but some offset can also be added using `(datestr) + OFFSET` or `(datestr) - OFFSET` syntax. When using this syntax, `OFFSET` should be understable by `pandas.Timedelta` (cf. http://pandas.pydata.org/pandas-docs/stable/timedeltas.html) and `w`, `week` `month` and `year` offset keywords are also accepted. `datestr` MUST be wrapped with parenthesis. Additionally, the following symbolic names are supported: `TODAY`, `YESTERDAY`, `TOMORROW`. Example usage: >>> parse_date('2018-01-01', '%Y-%m-%d') datetime.date(2018, 1, 1) parse_date('(2018-01-01) + 1day', '%Y-%m-%d') datetime.date(2018, 1, 2) parse_date('(2018-01-01) + 2weeks', '%Y-%m-%d') datetime.date(2018, 1, 15) Parameters: `datestr`: the date to parse, formatted as `date_fmt` `date_fmt`: expected date format Returns: The `date` object. If date could not be parsed, a ValueError will be raised.
toucan_data_sdk/utils/postprocess/filter_by_date.py
def parse_date(datestr: str, date_fmt: str) -> date: """parse `datestr` and return corresponding date object. `datestr` should be a string matching `date_fmt` and parseable by `strptime` but some offset can also be added using `(datestr) + OFFSET` or `(datestr) - OFFSET` syntax. When using this syntax, `OFFSET` should be understable by `pandas.Timedelta` (cf. http://pandas.pydata.org/pandas-docs/stable/timedeltas.html) and `w`, `week` `month` and `year` offset keywords are also accepted. `datestr` MUST be wrapped with parenthesis. Additionally, the following symbolic names are supported: `TODAY`, `YESTERDAY`, `TOMORROW`. Example usage: >>> parse_date('2018-01-01', '%Y-%m-%d') datetime.date(2018, 1, 1) parse_date('(2018-01-01) + 1day', '%Y-%m-%d') datetime.date(2018, 1, 2) parse_date('(2018-01-01) + 2weeks', '%Y-%m-%d') datetime.date(2018, 1, 15) Parameters: `datestr`: the date to parse, formatted as `date_fmt` `date_fmt`: expected date format Returns: The `date` object. If date could not be parsed, a ValueError will be raised. """ rgx = re.compile(r'\((?P<date>.*)\)(\s*(?P<sign>[+-])(?P<offset>.*))?$') datestr = datestr.strip() match = rgx.match(datestr) # if regexp doesn't match, date must match the expected format if match is None: return _norm_date(datestr, date_fmt) datestr = match.group('date').strip() dateobj = _norm_date(datestr, date_fmt) offset = match.group('offset') if offset: return add_offset(dateobj, offset, match.group('sign')) return dateobj
def parse_date(datestr: str, date_fmt: str) -> date: """parse `datestr` and return corresponding date object. `datestr` should be a string matching `date_fmt` and parseable by `strptime` but some offset can also be added using `(datestr) + OFFSET` or `(datestr) - OFFSET` syntax. When using this syntax, `OFFSET` should be understable by `pandas.Timedelta` (cf. http://pandas.pydata.org/pandas-docs/stable/timedeltas.html) and `w`, `week` `month` and `year` offset keywords are also accepted. `datestr` MUST be wrapped with parenthesis. Additionally, the following symbolic names are supported: `TODAY`, `YESTERDAY`, `TOMORROW`. Example usage: >>> parse_date('2018-01-01', '%Y-%m-%d') datetime.date(2018, 1, 1) parse_date('(2018-01-01) + 1day', '%Y-%m-%d') datetime.date(2018, 1, 2) parse_date('(2018-01-01) + 2weeks', '%Y-%m-%d') datetime.date(2018, 1, 15) Parameters: `datestr`: the date to parse, formatted as `date_fmt` `date_fmt`: expected date format Returns: The `date` object. If date could not be parsed, a ValueError will be raised. """ rgx = re.compile(r'\((?P<date>.*)\)(\s*(?P<sign>[+-])(?P<offset>.*))?$') datestr = datestr.strip() match = rgx.match(datestr) # if regexp doesn't match, date must match the expected format if match is None: return _norm_date(datestr, date_fmt) datestr = match.group('date').strip() dateobj = _norm_date(datestr, date_fmt) offset = match.group('offset') if offset: return add_offset(dateobj, offset, match.group('sign')) return dateobj
[ "parse", "datestr", "and", "return", "corresponding", "date", "object", "." ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/filter_by_date.py#L115-L152
[ "def", "parse_date", "(", "datestr", ":", "str", ",", "date_fmt", ":", "str", ")", "->", "date", ":", "rgx", "=", "re", ".", "compile", "(", "r'\\((?P<date>.*)\\)(\\s*(?P<sign>[+-])(?P<offset>.*))?$'", ")", "datestr", "=", "datestr", ".", "strip", "(", ")", "match", "=", "rgx", ".", "match", "(", "datestr", ")", "# if regexp doesn't match, date must match the expected format", "if", "match", "is", "None", ":", "return", "_norm_date", "(", "datestr", ",", "date_fmt", ")", "datestr", "=", "match", ".", "group", "(", "'date'", ")", ".", "strip", "(", ")", "dateobj", "=", "_norm_date", "(", "datestr", ",", "date_fmt", ")", "offset", "=", "match", ".", "group", "(", "'offset'", ")", "if", "offset", ":", "return", "add_offset", "(", "dateobj", ",", "offset", ",", "match", ".", "group", "(", "'sign'", ")", ")", "return", "dateobj" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
filter_by_date
Filter dataframe your data by date. This function will interpret `start`, `stop` and `atdate` and build the corresponding date range. The caller must specify either: - `atdate`: keep all rows matching this date exactly, - `start`: keep all rows matching this date onwards. - `stop`: keep all rows matching dates before this one. - `start` and `stop`: keep all rows between `start` and `stop`, Any other combination will raise an error. The lower bound of the date range will be included, the upper bound will be excluded. When specified, `start`, `stop` and `atdate` values are expected to match the `date_format` format or a known symbolic value (i.e. 'TODAY', 'YESTERDAY' or 'TOMORROW'). Additionally, the offset syntax "(date) + offset" is also supported (Mind the parenthesis around the date string). In that case, the offset must be one of the syntax supported by `pandas.Timedelta` (see [pandas doc]( http://pandas.pydata.org/pandas-docs/stable/timedeltas.html)) --- ### Parameters *mandatory :* - `date_col` (*str*): the name of the dataframe's column to filter on *optional :* - `date_format` (*str*): expected date format in column `date_col` (see [available formats]( https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior) - `start` (*str*): if specified, lower bound (included) of the date range - `stop` (*str*): if specified, upper bound (excluded) of the date range - `atdate` (*str*): if specified, the exact date we're filtering on
toucan_data_sdk/utils/postprocess/filter_by_date.py
def filter_by_date( df, date_col: str, date_format: str = '%Y-%m-%d', start: str = None, stop: str = None, atdate: str = None ): """ Filter dataframe your data by date. This function will interpret `start`, `stop` and `atdate` and build the corresponding date range. The caller must specify either: - `atdate`: keep all rows matching this date exactly, - `start`: keep all rows matching this date onwards. - `stop`: keep all rows matching dates before this one. - `start` and `stop`: keep all rows between `start` and `stop`, Any other combination will raise an error. The lower bound of the date range will be included, the upper bound will be excluded. When specified, `start`, `stop` and `atdate` values are expected to match the `date_format` format or a known symbolic value (i.e. 'TODAY', 'YESTERDAY' or 'TOMORROW'). Additionally, the offset syntax "(date) + offset" is also supported (Mind the parenthesis around the date string). In that case, the offset must be one of the syntax supported by `pandas.Timedelta` (see [pandas doc]( http://pandas.pydata.org/pandas-docs/stable/timedeltas.html)) --- ### Parameters *mandatory :* - `date_col` (*str*): the name of the dataframe's column to filter on *optional :* - `date_format` (*str*): expected date format in column `date_col` (see [available formats]( https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior) - `start` (*str*): if specified, lower bound (included) of the date range - `stop` (*str*): if specified, upper bound (excluded) of the date range - `atdate` (*str*): if specified, the exact date we're filtering on """ mask = None if start is None and stop is None and atdate is None: raise TypeError('either "start", "stop" or "atdate" must be specified') if start is not None and atdate is not None: raise TypeError('"start" and "atdate" are mutually exclusive') if stop is not None and atdate is not None: raise TypeError('"stop" and "atdate" are mutually exclusive') # add a new column that will hold actual date objects instead of strings. # This column is just temporary and will be removed before returning the # filtered dataframe. filtercol = str(uuid4()) df[filtercol] = pd.to_datetime(df[date_col], format=date_format) if atdate is not None: mask = df[filtercol] == parse_date(atdate, date_format) elif start is not None and stop is not None: mask = ((df[filtercol] >= parse_date(start, date_format)) & (df[filtercol] < parse_date(stop, date_format))) elif stop is None: mask = df[filtercol] >= parse_date(start, date_format) elif start is None: mask = df[filtercol] < parse_date(stop, date_format) return df[mask].drop(filtercol, axis=1)
def filter_by_date( df, date_col: str, date_format: str = '%Y-%m-%d', start: str = None, stop: str = None, atdate: str = None ): """ Filter dataframe your data by date. This function will interpret `start`, `stop` and `atdate` and build the corresponding date range. The caller must specify either: - `atdate`: keep all rows matching this date exactly, - `start`: keep all rows matching this date onwards. - `stop`: keep all rows matching dates before this one. - `start` and `stop`: keep all rows between `start` and `stop`, Any other combination will raise an error. The lower bound of the date range will be included, the upper bound will be excluded. When specified, `start`, `stop` and `atdate` values are expected to match the `date_format` format or a known symbolic value (i.e. 'TODAY', 'YESTERDAY' or 'TOMORROW'). Additionally, the offset syntax "(date) + offset" is also supported (Mind the parenthesis around the date string). In that case, the offset must be one of the syntax supported by `pandas.Timedelta` (see [pandas doc]( http://pandas.pydata.org/pandas-docs/stable/timedeltas.html)) --- ### Parameters *mandatory :* - `date_col` (*str*): the name of the dataframe's column to filter on *optional :* - `date_format` (*str*): expected date format in column `date_col` (see [available formats]( https://docs.python.org/3/library/datetime.html#strftime-and-strptime-behavior) - `start` (*str*): if specified, lower bound (included) of the date range - `stop` (*str*): if specified, upper bound (excluded) of the date range - `atdate` (*str*): if specified, the exact date we're filtering on """ mask = None if start is None and stop is None and atdate is None: raise TypeError('either "start", "stop" or "atdate" must be specified') if start is not None and atdate is not None: raise TypeError('"start" and "atdate" are mutually exclusive') if stop is not None and atdate is not None: raise TypeError('"stop" and "atdate" are mutually exclusive') # add a new column that will hold actual date objects instead of strings. # This column is just temporary and will be removed before returning the # filtered dataframe. filtercol = str(uuid4()) df[filtercol] = pd.to_datetime(df[date_col], format=date_format) if atdate is not None: mask = df[filtercol] == parse_date(atdate, date_format) elif start is not None and stop is not None: mask = ((df[filtercol] >= parse_date(start, date_format)) & (df[filtercol] < parse_date(stop, date_format))) elif stop is None: mask = df[filtercol] >= parse_date(start, date_format) elif start is None: mask = df[filtercol] < parse_date(stop, date_format) return df[mask].drop(filtercol, axis=1)
[ "Filter", "dataframe", "your", "data", "by", "date", "." ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/filter_by_date.py#L155-L220
[ "def", "filter_by_date", "(", "df", ",", "date_col", ":", "str", ",", "date_format", ":", "str", "=", "'%Y-%m-%d'", ",", "start", ":", "str", "=", "None", ",", "stop", ":", "str", "=", "None", ",", "atdate", ":", "str", "=", "None", ")", ":", "mask", "=", "None", "if", "start", "is", "None", "and", "stop", "is", "None", "and", "atdate", "is", "None", ":", "raise", "TypeError", "(", "'either \"start\", \"stop\" or \"atdate\" must be specified'", ")", "if", "start", "is", "not", "None", "and", "atdate", "is", "not", "None", ":", "raise", "TypeError", "(", "'\"start\" and \"atdate\" are mutually exclusive'", ")", "if", "stop", "is", "not", "None", "and", "atdate", "is", "not", "None", ":", "raise", "TypeError", "(", "'\"stop\" and \"atdate\" are mutually exclusive'", ")", "# add a new column that will hold actual date objects instead of strings.", "# This column is just temporary and will be removed before returning the", "# filtered dataframe.", "filtercol", "=", "str", "(", "uuid4", "(", ")", ")", "df", "[", "filtercol", "]", "=", "pd", ".", "to_datetime", "(", "df", "[", "date_col", "]", ",", "format", "=", "date_format", ")", "if", "atdate", "is", "not", "None", ":", "mask", "=", "df", "[", "filtercol", "]", "==", "parse_date", "(", "atdate", ",", "date_format", ")", "elif", "start", "is", "not", "None", "and", "stop", "is", "not", "None", ":", "mask", "=", "(", "(", "df", "[", "filtercol", "]", ">=", "parse_date", "(", "start", ",", "date_format", ")", ")", "&", "(", "df", "[", "filtercol", "]", "<", "parse_date", "(", "stop", ",", "date_format", ")", ")", ")", "elif", "stop", "is", "None", ":", "mask", "=", "df", "[", "filtercol", "]", ">=", "parse_date", "(", "start", ",", "date_format", ")", "elif", "start", "is", "None", ":", "mask", "=", "df", "[", "filtercol", "]", "<", "parse_date", "(", "stop", ",", "date_format", ")", "return", "df", "[", "mask", "]", ".", "drop", "(", "filtercol", ",", "axis", "=", "1", ")" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
replace
Change the label of a value or a columns within your data source. (Similar to `rename` but does not have the notion of locale) --- ### Parameters *mandatory :* - `column` (*str*): name of the column to modify. - `to_replace` (*dict*): keys of this dict are old values pointing on substitute. *optional :* - `new_column` (*str*): name of the output column. By default the `column` arguments is modified. **Note**: extra parameters can be used (see [pandas doc]( https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.replace.html)) --- ### Example **Input** article | rating :------:|:------: book | 1 puzzle | 3 food | 5 We want to split the ratings in three categories: "good", "average" and "poor". ```cson replace: column: "rating" new_column: "rating_category" # create a new column with replaced data to_replace: 1: "poor" 2: "poor" 3: "average" 4: "good" 5: "good" ``` **Ouput** article | rating | rating_category :------:|:------:|:--------------: book | 1 | poor puzzle | 3 | average food | 5 | good
toucan_data_sdk/utils/postprocess/replace.py
def replace(df, column: str, new_column: str = None, **kwargs): """ Change the label of a value or a columns within your data source. (Similar to `rename` but does not have the notion of locale) --- ### Parameters *mandatory :* - `column` (*str*): name of the column to modify. - `to_replace` (*dict*): keys of this dict are old values pointing on substitute. *optional :* - `new_column` (*str*): name of the output column. By default the `column` arguments is modified. **Note**: extra parameters can be used (see [pandas doc]( https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.replace.html)) --- ### Example **Input** article | rating :------:|:------: book | 1 puzzle | 3 food | 5 We want to split the ratings in three categories: "good", "average" and "poor". ```cson replace: column: "rating" new_column: "rating_category" # create a new column with replaced data to_replace: 1: "poor" 2: "poor" 3: "average" 4: "good" 5: "good" ``` **Ouput** article | rating | rating_category :------:|:------:|:--------------: book | 1 | poor puzzle | 3 | average food | 5 | good """ new_column = new_column or column df.loc[:, new_column] = df[column].replace(**kwargs) return df
def replace(df, column: str, new_column: str = None, **kwargs): """ Change the label of a value or a columns within your data source. (Similar to `rename` but does not have the notion of locale) --- ### Parameters *mandatory :* - `column` (*str*): name of the column to modify. - `to_replace` (*dict*): keys of this dict are old values pointing on substitute. *optional :* - `new_column` (*str*): name of the output column. By default the `column` arguments is modified. **Note**: extra parameters can be used (see [pandas doc]( https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.replace.html)) --- ### Example **Input** article | rating :------:|:------: book | 1 puzzle | 3 food | 5 We want to split the ratings in three categories: "good", "average" and "poor". ```cson replace: column: "rating" new_column: "rating_category" # create a new column with replaced data to_replace: 1: "poor" 2: "poor" 3: "average" 4: "good" 5: "good" ``` **Ouput** article | rating | rating_category :------:|:------:|:--------------: book | 1 | poor puzzle | 3 | average food | 5 | good """ new_column = new_column or column df.loc[:, new_column] = df[column].replace(**kwargs) return df
[ "Change", "the", "label", "of", "a", "value", "or", "a", "columns", "within", "your", "data", "source", ".", "(", "Similar", "to", "rename", "but", "does", "not", "have", "the", "notion", "of", "locale", ")" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/replace.py#L1-L56
[ "def", "replace", "(", "df", ",", "column", ":", "str", ",", "new_column", ":", "str", "=", "None", ",", "*", "*", "kwargs", ")", ":", "new_column", "=", "new_column", "or", "column", "df", ".", "loc", "[", ":", ",", "new_column", "]", "=", "df", "[", "column", "]", ".", "replace", "(", "*", "*", "kwargs", ")", "return", "df" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
percentage
Add a column to the dataframe according to the groupby logic on group_cols --- ### Parameters *mandatory :* - `column` (*str*): name of the desired column you need percentage on *optional :* - `group_cols` (*list*): names of columns for the groupby logic - `new_column` (*str*): name of the output column. By default `column` will be overwritten. --- **Input** | gender | sport | number | |:------:|:----------:|:------:| | male | bicycle | 17 | | female | basketball | 17 | | male | basketball | 3 | | female | football | 7 | | female | running | 30 | | male | running | 20 | | male | football | 21 | | female | bicycle | 17 | ```cson percentage: new_column: 'number_percentage' column: 'number' group_cols: ['sport'] ``` **Output** | gender | sport | number | number_percentage | |:------:|:----------:|:------:|:-----------------:| | male | bicycle | 17 | 50.0 | | female | basketball | 17 | 85.0 | | male | basketball | 3 | 15.0 | | female | football | 7 | 25.0 | | female | running | 30 | 60.0 | | male | running | 20 | 40.0 | | male | football | 21 | 75.0 | | female | bicycle | 17 | 50.0 |
toucan_data_sdk/utils/postprocess/percentage.py
def percentage( df, column: str, group_cols: Union[str, List[str]] = None, new_column: str = None ): """ Add a column to the dataframe according to the groupby logic on group_cols --- ### Parameters *mandatory :* - `column` (*str*): name of the desired column you need percentage on *optional :* - `group_cols` (*list*): names of columns for the groupby logic - `new_column` (*str*): name of the output column. By default `column` will be overwritten. --- **Input** | gender | sport | number | |:------:|:----------:|:------:| | male | bicycle | 17 | | female | basketball | 17 | | male | basketball | 3 | | female | football | 7 | | female | running | 30 | | male | running | 20 | | male | football | 21 | | female | bicycle | 17 | ```cson percentage: new_column: 'number_percentage' column: 'number' group_cols: ['sport'] ``` **Output** | gender | sport | number | number_percentage | |:------:|:----------:|:------:|:-----------------:| | male | bicycle | 17 | 50.0 | | female | basketball | 17 | 85.0 | | male | basketball | 3 | 15.0 | | female | football | 7 | 25.0 | | female | running | 30 | 60.0 | | male | running | 20 | 40.0 | | male | football | 21 | 75.0 | | female | bicycle | 17 | 50.0 | """ new_column = new_column or column if group_cols is None: df[new_column] = 100. * df[column] / sum(df[column]) else: df[new_column] = 100. * df[column] / df.groupby(group_cols)[column].transform(sum) return df
def percentage( df, column: str, group_cols: Union[str, List[str]] = None, new_column: str = None ): """ Add a column to the dataframe according to the groupby logic on group_cols --- ### Parameters *mandatory :* - `column` (*str*): name of the desired column you need percentage on *optional :* - `group_cols` (*list*): names of columns for the groupby logic - `new_column` (*str*): name of the output column. By default `column` will be overwritten. --- **Input** | gender | sport | number | |:------:|:----------:|:------:| | male | bicycle | 17 | | female | basketball | 17 | | male | basketball | 3 | | female | football | 7 | | female | running | 30 | | male | running | 20 | | male | football | 21 | | female | bicycle | 17 | ```cson percentage: new_column: 'number_percentage' column: 'number' group_cols: ['sport'] ``` **Output** | gender | sport | number | number_percentage | |:------:|:----------:|:------:|:-----------------:| | male | bicycle | 17 | 50.0 | | female | basketball | 17 | 85.0 | | male | basketball | 3 | 15.0 | | female | football | 7 | 25.0 | | female | running | 30 | 60.0 | | male | running | 20 | 40.0 | | male | football | 21 | 75.0 | | female | bicycle | 17 | 50.0 | """ new_column = new_column or column if group_cols is None: df[new_column] = 100. * df[column] / sum(df[column]) else: df[new_column] = 100. * df[column] / df.groupby(group_cols)[column].transform(sum) return df
[ "Add", "a", "column", "to", "the", "dataframe", "according", "to", "the", "groupby", "logic", "on", "group_cols" ]
ToucanToco/toucan-data-sdk
python
https://github.com/ToucanToco/toucan-data-sdk/blob/c3ca874e1b64f4bdcc2edda750a72d45d1561d8a/toucan_data_sdk/utils/postprocess/percentage.py#L4-L64
[ "def", "percentage", "(", "df", ",", "column", ":", "str", ",", "group_cols", ":", "Union", "[", "str", ",", "List", "[", "str", "]", "]", "=", "None", ",", "new_column", ":", "str", "=", "None", ")", ":", "new_column", "=", "new_column", "or", "column", "if", "group_cols", "is", "None", ":", "df", "[", "new_column", "]", "=", "100.", "*", "df", "[", "column", "]", "/", "sum", "(", "df", "[", "column", "]", ")", "else", ":", "df", "[", "new_column", "]", "=", "100.", "*", "df", "[", "column", "]", "/", "df", ".", "groupby", "(", "group_cols", ")", "[", "column", "]", ".", "transform", "(", "sum", ")", "return", "df" ]
c3ca874e1b64f4bdcc2edda750a72d45d1561d8a
test
ada_family_core
Optimize by SGD, AdaGrad, or AdaDelta.
deepy/trainers/cores/ada_family.py
def ada_family_core(params, gparams, learning_rate = 0.01, eps= 1e-6, rho=0.95, method="ADADELTA", beta=0.0, gsum_regularization = 0.0001): """ Optimize by SGD, AdaGrad, or AdaDelta. """ _, _, _, args = inspect.getargvalues(inspect.currentframe()) logging.info("ada_family_core: %s" % str(args.items())) free_parameters = [] if method == "FINETUNING_ADAGRAD": method = "ADAGRAD" gsum_regularization = 0 oneMinusBeta = 1 - beta gsums = [theano.shared(np.zeros_like(param.get_value(borrow=True), dtype=FLOATX), name="gsum_%s" % param.name) if (method == 'ADADELTA' or method == 'ADAGRAD') else None for param in params] xsums = [theano.shared(np.zeros_like(param.get_value(borrow=True), dtype=FLOATX), name="xsum_%s" % param.name) if method == 'ADADELTA' else None for param in params] # Fix for AdaGrad, init gsum to 1 if method == 'ADAGRAD': for gsum in gsums: gsum.set_value(gsum.get_value() ** 0) updates = OrderedDict() # Updates for gparam, param, gsum, xsum in zip(gparams, params, gsums, xsums): if method == 'ADADELTA': updates[gsum] = rho * gsum + (1. - rho) * (gparam **2) dparam = -T.sqrt((xsum + eps) / (updates[gsum] + eps)) * gparam updates[xsum] =rho * xsum + (1. - rho) * (dparam **2) updates[param] = param * oneMinusBeta + dparam elif method == 'ADAGRAD': updates[gsum] = gsum + (gparam **2) - gsum_regularization * gsum updates[param] = param * oneMinusBeta - learning_rate * (gparam / (T.sqrt(updates[gsum] + eps))) else: updates[param] = param * oneMinusBeta - gparam * learning_rate # Add free parameters if method == 'ADADELTA': free_parameters.extend(gsums + xsums) elif method == 'ADAGRAD': free_parameters.extend(gsums) # Check dtype for k in updates: if updates[k].dtype != FLOATX: updates[k] = updates[k].astype(FLOATX) return updates.items(), free_parameters
def ada_family_core(params, gparams, learning_rate = 0.01, eps= 1e-6, rho=0.95, method="ADADELTA", beta=0.0, gsum_regularization = 0.0001): """ Optimize by SGD, AdaGrad, or AdaDelta. """ _, _, _, args = inspect.getargvalues(inspect.currentframe()) logging.info("ada_family_core: %s" % str(args.items())) free_parameters = [] if method == "FINETUNING_ADAGRAD": method = "ADAGRAD" gsum_regularization = 0 oneMinusBeta = 1 - beta gsums = [theano.shared(np.zeros_like(param.get_value(borrow=True), dtype=FLOATX), name="gsum_%s" % param.name) if (method == 'ADADELTA' or method == 'ADAGRAD') else None for param in params] xsums = [theano.shared(np.zeros_like(param.get_value(borrow=True), dtype=FLOATX), name="xsum_%s" % param.name) if method == 'ADADELTA' else None for param in params] # Fix for AdaGrad, init gsum to 1 if method == 'ADAGRAD': for gsum in gsums: gsum.set_value(gsum.get_value() ** 0) updates = OrderedDict() # Updates for gparam, param, gsum, xsum in zip(gparams, params, gsums, xsums): if method == 'ADADELTA': updates[gsum] = rho * gsum + (1. - rho) * (gparam **2) dparam = -T.sqrt((xsum + eps) / (updates[gsum] + eps)) * gparam updates[xsum] =rho * xsum + (1. - rho) * (dparam **2) updates[param] = param * oneMinusBeta + dparam elif method == 'ADAGRAD': updates[gsum] = gsum + (gparam **2) - gsum_regularization * gsum updates[param] = param * oneMinusBeta - learning_rate * (gparam / (T.sqrt(updates[gsum] + eps))) else: updates[param] = param * oneMinusBeta - gparam * learning_rate # Add free parameters if method == 'ADADELTA': free_parameters.extend(gsums + xsums) elif method == 'ADAGRAD': free_parameters.extend(gsums) # Check dtype for k in updates: if updates[k].dtype != FLOATX: updates[k] = updates[k].astype(FLOATX) return updates.items(), free_parameters
[ "Optimize", "by", "SGD", "AdaGrad", "or", "AdaDelta", "." ]
zomux/deepy
python
https://github.com/zomux/deepy/blob/090fbad22a08a809b12951cd0d4984f5bd432698/deepy/trainers/cores/ada_family.py#L13-L61
[ "def", "ada_family_core", "(", "params", ",", "gparams", ",", "learning_rate", "=", "0.01", ",", "eps", "=", "1e-6", ",", "rho", "=", "0.95", ",", "method", "=", "\"ADADELTA\"", ",", "beta", "=", "0.0", ",", "gsum_regularization", "=", "0.0001", ")", ":", "_", ",", "_", ",", "_", ",", "args", "=", "inspect", ".", "getargvalues", "(", "inspect", ".", "currentframe", "(", ")", ")", "logging", ".", "info", "(", "\"ada_family_core: %s\"", "%", "str", "(", "args", ".", "items", "(", ")", ")", ")", "free_parameters", "=", "[", "]", "if", "method", "==", "\"FINETUNING_ADAGRAD\"", ":", "method", "=", "\"ADAGRAD\"", "gsum_regularization", "=", "0", "oneMinusBeta", "=", "1", "-", "beta", "gsums", "=", "[", "theano", ".", "shared", "(", "np", ".", "zeros_like", "(", "param", ".", "get_value", "(", "borrow", "=", "True", ")", ",", "dtype", "=", "FLOATX", ")", ",", "name", "=", "\"gsum_%s\"", "%", "param", ".", "name", ")", "if", "(", "method", "==", "'ADADELTA'", "or", "method", "==", "'ADAGRAD'", ")", "else", "None", "for", "param", "in", "params", "]", "xsums", "=", "[", "theano", ".", "shared", "(", "np", ".", "zeros_like", "(", "param", ".", "get_value", "(", "borrow", "=", "True", ")", ",", "dtype", "=", "FLOATX", ")", ",", "name", "=", "\"xsum_%s\"", "%", "param", ".", "name", ")", "if", "method", "==", "'ADADELTA'", "else", "None", "for", "param", "in", "params", "]", "# Fix for AdaGrad, init gsum to 1", "if", "method", "==", "'ADAGRAD'", ":", "for", "gsum", "in", "gsums", ":", "gsum", ".", "set_value", "(", "gsum", ".", "get_value", "(", ")", "**", "0", ")", "updates", "=", "OrderedDict", "(", ")", "# Updates", "for", "gparam", ",", "param", ",", "gsum", ",", "xsum", "in", "zip", "(", "gparams", ",", "params", ",", "gsums", ",", "xsums", ")", ":", "if", "method", "==", "'ADADELTA'", ":", "updates", "[", "gsum", "]", "=", "rho", "*", "gsum", "+", "(", "1.", "-", "rho", ")", "*", "(", "gparam", "**", "2", ")", "dparam", "=", "-", "T", ".", "sqrt", "(", "(", "xsum", "+", "eps", ")", "/", "(", "updates", "[", "gsum", "]", "+", "eps", ")", ")", "*", "gparam", "updates", "[", "xsum", "]", "=", "rho", "*", "xsum", "+", "(", "1.", "-", "rho", ")", "*", "(", "dparam", "**", "2", ")", "updates", "[", "param", "]", "=", "param", "*", "oneMinusBeta", "+", "dparam", "elif", "method", "==", "'ADAGRAD'", ":", "updates", "[", "gsum", "]", "=", "gsum", "+", "(", "gparam", "**", "2", ")", "-", "gsum_regularization", "*", "gsum", "updates", "[", "param", "]", "=", "param", "*", "oneMinusBeta", "-", "learning_rate", "*", "(", "gparam", "/", "(", "T", ".", "sqrt", "(", "updates", "[", "gsum", "]", "+", "eps", ")", ")", ")", "else", ":", "updates", "[", "param", "]", "=", "param", "*", "oneMinusBeta", "-", "gparam", "*", "learning_rate", "# Add free parameters", "if", "method", "==", "'ADADELTA'", ":", "free_parameters", ".", "extend", "(", "gsums", "+", "xsums", ")", "elif", "method", "==", "'ADAGRAD'", ":", "free_parameters", ".", "extend", "(", "gsums", ")", "# Check dtype", "for", "k", "in", "updates", ":", "if", "updates", "[", "k", "]", ".", "dtype", "!=", "FLOATX", ":", "updates", "[", "k", "]", "=", "updates", "[", "k", "]", ".", "astype", "(", "FLOATX", ")", "return", "updates", ".", "items", "(", ")", ",", "free_parameters" ]
090fbad22a08a809b12951cd0d4984f5bd432698