partition
stringclasses 3
values | func_name
stringlengths 1
134
| docstring
stringlengths 1
46.9k
| path
stringlengths 4
223
| original_string
stringlengths 75
104k
| code
stringlengths 75
104k
| docstring_tokens
listlengths 1
1.97k
| repo
stringlengths 7
55
| language
stringclasses 1
value | url
stringlengths 87
315
| code_tokens
listlengths 19
28.4k
| sha
stringlengths 40
40
|
|---|---|---|---|---|---|---|---|---|---|---|---|
test
|
_form_onset_offset_fronts
|
Takes an array of onsets or offsets (shape = [nfrequencies, nsamples], where a 1 corresponds to an on/offset,
and samples are 0 otherwise), and returns a new array of the same shape, where each 1 has been replaced by
either a 0, if the on/offset has been discarded, or a non-zero positive integer, such that
each front within the array has a unique ID - for example, all 2s in the array will be the front for on/offset
front 2, and all the 15s will be the front for on/offset front 15, etc.
Due to implementation details, there will be no 1 IDs.
|
algorithms/asa.py
|
def _form_onset_offset_fronts(ons_or_offs, sample_rate_hz, threshold_ms=20):
"""
Takes an array of onsets or offsets (shape = [nfrequencies, nsamples], where a 1 corresponds to an on/offset,
and samples are 0 otherwise), and returns a new array of the same shape, where each 1 has been replaced by
either a 0, if the on/offset has been discarded, or a non-zero positive integer, such that
each front within the array has a unique ID - for example, all 2s in the array will be the front for on/offset
front 2, and all the 15s will be the front for on/offset front 15, etc.
Due to implementation details, there will be no 1 IDs.
"""
threshold_s = threshold_ms / 1000
threshold_samples = sample_rate_hz * threshold_s
ons_or_offs = np.copy(ons_or_offs)
claimed = []
this_id = 2
# For each frequency,
for frequency_index, row in enumerate(ons_or_offs[:, :]):
ones = np.reshape(np.where(row == 1), (-1,))
# for each 1 in that frequency,
for top_level_frequency_one_index in ones:
claimed.append((frequency_index, top_level_frequency_one_index))
found_a_front = False
# for each frequencies[i:],
for other_frequency_index, other_row in enumerate(ons_or_offs[frequency_index + 1:, :], start=frequency_index + 1):
# for each non-claimed 1 which is less than theshold_ms away in time,
upper_limit_index = top_level_frequency_one_index + threshold_samples
lower_limit_index = top_level_frequency_one_index - threshold_samples
other_ones = np.reshape(np.where(other_row == 1), (-1,)) # Get the indexes of all the 1s in row
tmp = np.reshape(np.where((other_ones >= lower_limit_index) # Get the indexes in the other_ones array of all items in bounds
& (other_ones <= upper_limit_index)), (-1,))
other_ones = other_ones[tmp] # Get the indexes of all the 1s in the row that are in bounds
if len(other_ones) > 0:
unclaimed_idx = other_ones[0] # Take the first one
claimed.append((other_frequency_index, unclaimed_idx))
elif len(claimed) < 3:
# revert the top-most 1 to 0
ons_or_offs[frequency_index, top_level_frequency_one_index] = 0
claimed = []
break # Break from the for-each-frequencies[i:] loop so we can move on to the next item in the top-most freq
elif len(claimed) >= 3:
found_a_front = True
# this group of so-far-claimed forms a front
claimed_as_indexes = tuple(np.array(claimed).T)
ons_or_offs[claimed_as_indexes] = this_id
this_id += 1
claimed = []
break # Move on to the next item in the top-most array
# If we never found a frequency that did not have a matching offset, handle that case here
if len(claimed) >= 3:
claimed_as_indexes = tuple(np.array(claimed).T)
ons_or_offs[claimed_as_indexes] = this_id
this_id += 1
claimed = []
elif found_a_front:
this_id += 1
else:
ons_or_offs[frequency_index, top_level_frequency_one_index] = 0
claimed = []
return ons_or_offs
|
def _form_onset_offset_fronts(ons_or_offs, sample_rate_hz, threshold_ms=20):
"""
Takes an array of onsets or offsets (shape = [nfrequencies, nsamples], where a 1 corresponds to an on/offset,
and samples are 0 otherwise), and returns a new array of the same shape, where each 1 has been replaced by
either a 0, if the on/offset has been discarded, or a non-zero positive integer, such that
each front within the array has a unique ID - for example, all 2s in the array will be the front for on/offset
front 2, and all the 15s will be the front for on/offset front 15, etc.
Due to implementation details, there will be no 1 IDs.
"""
threshold_s = threshold_ms / 1000
threshold_samples = sample_rate_hz * threshold_s
ons_or_offs = np.copy(ons_or_offs)
claimed = []
this_id = 2
# For each frequency,
for frequency_index, row in enumerate(ons_or_offs[:, :]):
ones = np.reshape(np.where(row == 1), (-1,))
# for each 1 in that frequency,
for top_level_frequency_one_index in ones:
claimed.append((frequency_index, top_level_frequency_one_index))
found_a_front = False
# for each frequencies[i:],
for other_frequency_index, other_row in enumerate(ons_or_offs[frequency_index + 1:, :], start=frequency_index + 1):
# for each non-claimed 1 which is less than theshold_ms away in time,
upper_limit_index = top_level_frequency_one_index + threshold_samples
lower_limit_index = top_level_frequency_one_index - threshold_samples
other_ones = np.reshape(np.where(other_row == 1), (-1,)) # Get the indexes of all the 1s in row
tmp = np.reshape(np.where((other_ones >= lower_limit_index) # Get the indexes in the other_ones array of all items in bounds
& (other_ones <= upper_limit_index)), (-1,))
other_ones = other_ones[tmp] # Get the indexes of all the 1s in the row that are in bounds
if len(other_ones) > 0:
unclaimed_idx = other_ones[0] # Take the first one
claimed.append((other_frequency_index, unclaimed_idx))
elif len(claimed) < 3:
# revert the top-most 1 to 0
ons_or_offs[frequency_index, top_level_frequency_one_index] = 0
claimed = []
break # Break from the for-each-frequencies[i:] loop so we can move on to the next item in the top-most freq
elif len(claimed) >= 3:
found_a_front = True
# this group of so-far-claimed forms a front
claimed_as_indexes = tuple(np.array(claimed).T)
ons_or_offs[claimed_as_indexes] = this_id
this_id += 1
claimed = []
break # Move on to the next item in the top-most array
# If we never found a frequency that did not have a matching offset, handle that case here
if len(claimed) >= 3:
claimed_as_indexes = tuple(np.array(claimed).T)
ons_or_offs[claimed_as_indexes] = this_id
this_id += 1
claimed = []
elif found_a_front:
this_id += 1
else:
ons_or_offs[frequency_index, top_level_frequency_one_index] = 0
claimed = []
return ons_or_offs
|
[
"Takes",
"an",
"array",
"of",
"onsets",
"or",
"offsets",
"(",
"shape",
"=",
"[",
"nfrequencies",
"nsamples",
"]",
"where",
"a",
"1",
"corresponds",
"to",
"an",
"on",
"/",
"offset",
"and",
"samples",
"are",
"0",
"otherwise",
")",
"and",
"returns",
"a",
"new",
"array",
"of",
"the",
"same",
"shape",
"where",
"each",
"1",
"has",
"been",
"replaced",
"by",
"either",
"a",
"0",
"if",
"the",
"on",
"/",
"offset",
"has",
"been",
"discarded",
"or",
"a",
"non",
"-",
"zero",
"positive",
"integer",
"such",
"that",
"each",
"front",
"within",
"the",
"array",
"has",
"a",
"unique",
"ID",
"-",
"for",
"example",
"all",
"2s",
"in",
"the",
"array",
"will",
"be",
"the",
"front",
"for",
"on",
"/",
"offset",
"front",
"2",
"and",
"all",
"the",
"15s",
"will",
"be",
"the",
"front",
"for",
"on",
"/",
"offset",
"front",
"15",
"etc",
"."
] |
MaxStrange/AudioSegment
|
python
|
https://github.com/MaxStrange/AudioSegment/blob/1daefb8de626ddff3ff7016697c3ad31d262ecd6/algorithms/asa.py#L197-L261
|
[
"def",
"_form_onset_offset_fronts",
"(",
"ons_or_offs",
",",
"sample_rate_hz",
",",
"threshold_ms",
"=",
"20",
")",
":",
"threshold_s",
"=",
"threshold_ms",
"/",
"1000",
"threshold_samples",
"=",
"sample_rate_hz",
"*",
"threshold_s",
"ons_or_offs",
"=",
"np",
".",
"copy",
"(",
"ons_or_offs",
")",
"claimed",
"=",
"[",
"]",
"this_id",
"=",
"2",
"# For each frequency,",
"for",
"frequency_index",
",",
"row",
"in",
"enumerate",
"(",
"ons_or_offs",
"[",
":",
",",
":",
"]",
")",
":",
"ones",
"=",
"np",
".",
"reshape",
"(",
"np",
".",
"where",
"(",
"row",
"==",
"1",
")",
",",
"(",
"-",
"1",
",",
")",
")",
"# for each 1 in that frequency,",
"for",
"top_level_frequency_one_index",
"in",
"ones",
":",
"claimed",
".",
"append",
"(",
"(",
"frequency_index",
",",
"top_level_frequency_one_index",
")",
")",
"found_a_front",
"=",
"False",
"# for each frequencies[i:],",
"for",
"other_frequency_index",
",",
"other_row",
"in",
"enumerate",
"(",
"ons_or_offs",
"[",
"frequency_index",
"+",
"1",
":",
",",
":",
"]",
",",
"start",
"=",
"frequency_index",
"+",
"1",
")",
":",
"# for each non-claimed 1 which is less than theshold_ms away in time,",
"upper_limit_index",
"=",
"top_level_frequency_one_index",
"+",
"threshold_samples",
"lower_limit_index",
"=",
"top_level_frequency_one_index",
"-",
"threshold_samples",
"other_ones",
"=",
"np",
".",
"reshape",
"(",
"np",
".",
"where",
"(",
"other_row",
"==",
"1",
")",
",",
"(",
"-",
"1",
",",
")",
")",
"# Get the indexes of all the 1s in row",
"tmp",
"=",
"np",
".",
"reshape",
"(",
"np",
".",
"where",
"(",
"(",
"other_ones",
">=",
"lower_limit_index",
")",
"# Get the indexes in the other_ones array of all items in bounds",
"&",
"(",
"other_ones",
"<=",
"upper_limit_index",
")",
")",
",",
"(",
"-",
"1",
",",
")",
")",
"other_ones",
"=",
"other_ones",
"[",
"tmp",
"]",
"# Get the indexes of all the 1s in the row that are in bounds",
"if",
"len",
"(",
"other_ones",
")",
">",
"0",
":",
"unclaimed_idx",
"=",
"other_ones",
"[",
"0",
"]",
"# Take the first one",
"claimed",
".",
"append",
"(",
"(",
"other_frequency_index",
",",
"unclaimed_idx",
")",
")",
"elif",
"len",
"(",
"claimed",
")",
"<",
"3",
":",
"# revert the top-most 1 to 0",
"ons_or_offs",
"[",
"frequency_index",
",",
"top_level_frequency_one_index",
"]",
"=",
"0",
"claimed",
"=",
"[",
"]",
"break",
"# Break from the for-each-frequencies[i:] loop so we can move on to the next item in the top-most freq",
"elif",
"len",
"(",
"claimed",
")",
">=",
"3",
":",
"found_a_front",
"=",
"True",
"# this group of so-far-claimed forms a front",
"claimed_as_indexes",
"=",
"tuple",
"(",
"np",
".",
"array",
"(",
"claimed",
")",
".",
"T",
")",
"ons_or_offs",
"[",
"claimed_as_indexes",
"]",
"=",
"this_id",
"this_id",
"+=",
"1",
"claimed",
"=",
"[",
"]",
"break",
"# Move on to the next item in the top-most array",
"# If we never found a frequency that did not have a matching offset, handle that case here",
"if",
"len",
"(",
"claimed",
")",
">=",
"3",
":",
"claimed_as_indexes",
"=",
"tuple",
"(",
"np",
".",
"array",
"(",
"claimed",
")",
".",
"T",
")",
"ons_or_offs",
"[",
"claimed_as_indexes",
"]",
"=",
"this_id",
"this_id",
"+=",
"1",
"claimed",
"=",
"[",
"]",
"elif",
"found_a_front",
":",
"this_id",
"+=",
"1",
"else",
":",
"ons_or_offs",
"[",
"frequency_index",
",",
"top_level_frequency_one_index",
"]",
"=",
"0",
"claimed",
"=",
"[",
"]",
"return",
"ons_or_offs"
] |
1daefb8de626ddff3ff7016697c3ad31d262ecd6
|
test
|
_lookup_offset_by_onset_idx
|
Takes an onset index (freq, sample) and returns the offset index (freq, sample)
such that frequency index is the same, and sample index is the minimum of all
offsets ocurring after the given onset. If there are no offsets after the given
onset in that frequency channel, the final sample in that channel is returned.
|
algorithms/asa.py
|
def _lookup_offset_by_onset_idx(onset_idx, onsets, offsets):
"""
Takes an onset index (freq, sample) and returns the offset index (freq, sample)
such that frequency index is the same, and sample index is the minimum of all
offsets ocurring after the given onset. If there are no offsets after the given
onset in that frequency channel, the final sample in that channel is returned.
"""
assert len(onset_idx) == 2, "Onset_idx must be a tuple of the form (freq_idx, sample_idx)"
frequency_idx, sample_idx = onset_idx
offset_sample_idxs = np.reshape(np.where(offsets[frequency_idx, :] == 1), (-1,))
# get the offsets which occur after onset
offset_sample_idxs = offset_sample_idxs[offset_sample_idxs > sample_idx]
if len(offset_sample_idxs) == 0:
# There is no offset in this frequency that occurs after the onset, just return the last sample
chosen_offset_sample_idx = offsets.shape[1] - 1
assert offsets[frequency_idx, chosen_offset_sample_idx] == 0
else:
# Return the closest offset to the onset
chosen_offset_sample_idx = offset_sample_idxs[0]
assert offsets[frequency_idx, chosen_offset_sample_idx] != 0
return frequency_idx, chosen_offset_sample_idx
|
def _lookup_offset_by_onset_idx(onset_idx, onsets, offsets):
"""
Takes an onset index (freq, sample) and returns the offset index (freq, sample)
such that frequency index is the same, and sample index is the minimum of all
offsets ocurring after the given onset. If there are no offsets after the given
onset in that frequency channel, the final sample in that channel is returned.
"""
assert len(onset_idx) == 2, "Onset_idx must be a tuple of the form (freq_idx, sample_idx)"
frequency_idx, sample_idx = onset_idx
offset_sample_idxs = np.reshape(np.where(offsets[frequency_idx, :] == 1), (-1,))
# get the offsets which occur after onset
offset_sample_idxs = offset_sample_idxs[offset_sample_idxs > sample_idx]
if len(offset_sample_idxs) == 0:
# There is no offset in this frequency that occurs after the onset, just return the last sample
chosen_offset_sample_idx = offsets.shape[1] - 1
assert offsets[frequency_idx, chosen_offset_sample_idx] == 0
else:
# Return the closest offset to the onset
chosen_offset_sample_idx = offset_sample_idxs[0]
assert offsets[frequency_idx, chosen_offset_sample_idx] != 0
return frequency_idx, chosen_offset_sample_idx
|
[
"Takes",
"an",
"onset",
"index",
"(",
"freq",
"sample",
")",
"and",
"returns",
"the",
"offset",
"index",
"(",
"freq",
"sample",
")",
"such",
"that",
"frequency",
"index",
"is",
"the",
"same",
"and",
"sample",
"index",
"is",
"the",
"minimum",
"of",
"all",
"offsets",
"ocurring",
"after",
"the",
"given",
"onset",
".",
"If",
"there",
"are",
"no",
"offsets",
"after",
"the",
"given",
"onset",
"in",
"that",
"frequency",
"channel",
"the",
"final",
"sample",
"in",
"that",
"channel",
"is",
"returned",
"."
] |
MaxStrange/AudioSegment
|
python
|
https://github.com/MaxStrange/AudioSegment/blob/1daefb8de626ddff3ff7016697c3ad31d262ecd6/algorithms/asa.py#L263-L283
|
[
"def",
"_lookup_offset_by_onset_idx",
"(",
"onset_idx",
",",
"onsets",
",",
"offsets",
")",
":",
"assert",
"len",
"(",
"onset_idx",
")",
"==",
"2",
",",
"\"Onset_idx must be a tuple of the form (freq_idx, sample_idx)\"",
"frequency_idx",
",",
"sample_idx",
"=",
"onset_idx",
"offset_sample_idxs",
"=",
"np",
".",
"reshape",
"(",
"np",
".",
"where",
"(",
"offsets",
"[",
"frequency_idx",
",",
":",
"]",
"==",
"1",
")",
",",
"(",
"-",
"1",
",",
")",
")",
"# get the offsets which occur after onset",
"offset_sample_idxs",
"=",
"offset_sample_idxs",
"[",
"offset_sample_idxs",
">",
"sample_idx",
"]",
"if",
"len",
"(",
"offset_sample_idxs",
")",
"==",
"0",
":",
"# There is no offset in this frequency that occurs after the onset, just return the last sample",
"chosen_offset_sample_idx",
"=",
"offsets",
".",
"shape",
"[",
"1",
"]",
"-",
"1",
"assert",
"offsets",
"[",
"frequency_idx",
",",
"chosen_offset_sample_idx",
"]",
"==",
"0",
"else",
":",
"# Return the closest offset to the onset",
"chosen_offset_sample_idx",
"=",
"offset_sample_idxs",
"[",
"0",
"]",
"assert",
"offsets",
"[",
"frequency_idx",
",",
"chosen_offset_sample_idx",
"]",
"!=",
"0",
"return",
"frequency_idx",
",",
"chosen_offset_sample_idx"
] |
1daefb8de626ddff3ff7016697c3ad31d262ecd6
|
test
|
_get_front_idxs_from_id
|
Return a list of tuples of the form (frequency_idx, sample_idx),
corresponding to all the indexes of the given front.
|
algorithms/asa.py
|
def _get_front_idxs_from_id(fronts, id):
"""
Return a list of tuples of the form (frequency_idx, sample_idx),
corresponding to all the indexes of the given front.
"""
if id == -1:
# This is the only special case.
# -1 is the index of the catch-all final column offset front.
freq_idxs = np.arange(fronts.shape[0], dtype=np.int64)
sample_idxs = np.ones(len(freq_idxs), dtype=np.int64) * (fronts.shape[1] - 1)
else:
freq_idxs, sample_idxs = np.where(fronts == id)
return [(f, i) for f, i in zip(freq_idxs, sample_idxs)]
|
def _get_front_idxs_from_id(fronts, id):
"""
Return a list of tuples of the form (frequency_idx, sample_idx),
corresponding to all the indexes of the given front.
"""
if id == -1:
# This is the only special case.
# -1 is the index of the catch-all final column offset front.
freq_idxs = np.arange(fronts.shape[0], dtype=np.int64)
sample_idxs = np.ones(len(freq_idxs), dtype=np.int64) * (fronts.shape[1] - 1)
else:
freq_idxs, sample_idxs = np.where(fronts == id)
return [(f, i) for f, i in zip(freq_idxs, sample_idxs)]
|
[
"Return",
"a",
"list",
"of",
"tuples",
"of",
"the",
"form",
"(",
"frequency_idx",
"sample_idx",
")",
"corresponding",
"to",
"all",
"the",
"indexes",
"of",
"the",
"given",
"front",
"."
] |
MaxStrange/AudioSegment
|
python
|
https://github.com/MaxStrange/AudioSegment/blob/1daefb8de626ddff3ff7016697c3ad31d262ecd6/algorithms/asa.py#L285-L297
|
[
"def",
"_get_front_idxs_from_id",
"(",
"fronts",
",",
"id",
")",
":",
"if",
"id",
"==",
"-",
"1",
":",
"# This is the only special case.",
"# -1 is the index of the catch-all final column offset front.",
"freq_idxs",
"=",
"np",
".",
"arange",
"(",
"fronts",
".",
"shape",
"[",
"0",
"]",
",",
"dtype",
"=",
"np",
".",
"int64",
")",
"sample_idxs",
"=",
"np",
".",
"ones",
"(",
"len",
"(",
"freq_idxs",
")",
",",
"dtype",
"=",
"np",
".",
"int64",
")",
"*",
"(",
"fronts",
".",
"shape",
"[",
"1",
"]",
"-",
"1",
")",
"else",
":",
"freq_idxs",
",",
"sample_idxs",
"=",
"np",
".",
"where",
"(",
"fronts",
"==",
"id",
")",
"return",
"[",
"(",
"f",
",",
"i",
")",
"for",
"f",
",",
"i",
"in",
"zip",
"(",
"freq_idxs",
",",
"sample_idxs",
")",
"]"
] |
1daefb8de626ddff3ff7016697c3ad31d262ecd6
|
test
|
_choose_front_id_from_candidates
|
Returns a front ID which is the id of the offset front that contains the most overlap
with offsets that correspond to the given onset front ID.
|
algorithms/asa.py
|
def _choose_front_id_from_candidates(candidate_offset_front_ids, offset_fronts, offsets_corresponding_to_onsets):
"""
Returns a front ID which is the id of the offset front that contains the most overlap
with offsets that correspond to the given onset front ID.
"""
noverlaps = [] # will contain tuples of the form (number_overlapping, offset_front_id)
for offset_front_id in candidate_offset_front_ids:
offset_front_f_idxs, offset_front_s_idxs = np.where(offset_fronts == offset_front_id)
offset_front_idxs = [(f, i) for f, i in zip(offset_front_f_idxs, offset_front_s_idxs)]
noverlap_this_id = len(set(offset_front_idxs).symmetric_difference(set(offsets_corresponding_to_onsets)))
noverlaps.append((noverlap_this_id, offset_front_id))
_overlapped, chosen_offset_front_id = max(noverlaps, key=lambda t: t[0])
return int(chosen_offset_front_id)
|
def _choose_front_id_from_candidates(candidate_offset_front_ids, offset_fronts, offsets_corresponding_to_onsets):
"""
Returns a front ID which is the id of the offset front that contains the most overlap
with offsets that correspond to the given onset front ID.
"""
noverlaps = [] # will contain tuples of the form (number_overlapping, offset_front_id)
for offset_front_id in candidate_offset_front_ids:
offset_front_f_idxs, offset_front_s_idxs = np.where(offset_fronts == offset_front_id)
offset_front_idxs = [(f, i) for f, i in zip(offset_front_f_idxs, offset_front_s_idxs)]
noverlap_this_id = len(set(offset_front_idxs).symmetric_difference(set(offsets_corresponding_to_onsets)))
noverlaps.append((noverlap_this_id, offset_front_id))
_overlapped, chosen_offset_front_id = max(noverlaps, key=lambda t: t[0])
return int(chosen_offset_front_id)
|
[
"Returns",
"a",
"front",
"ID",
"which",
"is",
"the",
"id",
"of",
"the",
"offset",
"front",
"that",
"contains",
"the",
"most",
"overlap",
"with",
"offsets",
"that",
"correspond",
"to",
"the",
"given",
"onset",
"front",
"ID",
"."
] |
MaxStrange/AudioSegment
|
python
|
https://github.com/MaxStrange/AudioSegment/blob/1daefb8de626ddff3ff7016697c3ad31d262ecd6/algorithms/asa.py#L299-L311
|
[
"def",
"_choose_front_id_from_candidates",
"(",
"candidate_offset_front_ids",
",",
"offset_fronts",
",",
"offsets_corresponding_to_onsets",
")",
":",
"noverlaps",
"=",
"[",
"]",
"# will contain tuples of the form (number_overlapping, offset_front_id)",
"for",
"offset_front_id",
"in",
"candidate_offset_front_ids",
":",
"offset_front_f_idxs",
",",
"offset_front_s_idxs",
"=",
"np",
".",
"where",
"(",
"offset_fronts",
"==",
"offset_front_id",
")",
"offset_front_idxs",
"=",
"[",
"(",
"f",
",",
"i",
")",
"for",
"f",
",",
"i",
"in",
"zip",
"(",
"offset_front_f_idxs",
",",
"offset_front_s_idxs",
")",
"]",
"noverlap_this_id",
"=",
"len",
"(",
"set",
"(",
"offset_front_idxs",
")",
".",
"symmetric_difference",
"(",
"set",
"(",
"offsets_corresponding_to_onsets",
")",
")",
")",
"noverlaps",
".",
"append",
"(",
"(",
"noverlap_this_id",
",",
"offset_front_id",
")",
")",
"_overlapped",
",",
"chosen_offset_front_id",
"=",
"max",
"(",
"noverlaps",
",",
"key",
"=",
"lambda",
"t",
":",
"t",
"[",
"0",
"]",
")",
"return",
"int",
"(",
"chosen_offset_front_id",
")"
] |
1daefb8de626ddff3ff7016697c3ad31d262ecd6
|
test
|
_get_offset_front_id_after_onset_sample_idx
|
Returns the offset_front_id which corresponds to the offset front which occurs
first entirely after the given onset sample_idx.
|
algorithms/asa.py
|
def _get_offset_front_id_after_onset_sample_idx(onset_sample_idx, offset_fronts):
"""
Returns the offset_front_id which corresponds to the offset front which occurs
first entirely after the given onset sample_idx.
"""
# get all the offset_front_ids
offset_front_ids = [i for i in np.unique(offset_fronts) if i != 0]
best_id_so_far = -1
closest_offset_sample_idx = sys.maxsize
for offset_front_id in offset_front_ids:
# get all that offset front's indexes
offset_front_idxs = _get_front_idxs_from_id(offset_fronts, offset_front_id)
# get the sample indexes
offset_front_sample_idxs = [s for _f, s in offset_front_idxs]
# if each sample index is greater than onset_sample_idx, keep this offset front if it is the best one so far
min_sample_idx = min(offset_front_sample_idxs)
if min_sample_idx > onset_sample_idx and min_sample_idx < closest_offset_sample_idx:
closest_offset_sample_idx = min_sample_idx
best_id_so_far = offset_front_id
assert best_id_so_far > 1 or best_id_so_far == -1
return best_id_so_far
|
def _get_offset_front_id_after_onset_sample_idx(onset_sample_idx, offset_fronts):
"""
Returns the offset_front_id which corresponds to the offset front which occurs
first entirely after the given onset sample_idx.
"""
# get all the offset_front_ids
offset_front_ids = [i for i in np.unique(offset_fronts) if i != 0]
best_id_so_far = -1
closest_offset_sample_idx = sys.maxsize
for offset_front_id in offset_front_ids:
# get all that offset front's indexes
offset_front_idxs = _get_front_idxs_from_id(offset_fronts, offset_front_id)
# get the sample indexes
offset_front_sample_idxs = [s for _f, s in offset_front_idxs]
# if each sample index is greater than onset_sample_idx, keep this offset front if it is the best one so far
min_sample_idx = min(offset_front_sample_idxs)
if min_sample_idx > onset_sample_idx and min_sample_idx < closest_offset_sample_idx:
closest_offset_sample_idx = min_sample_idx
best_id_so_far = offset_front_id
assert best_id_so_far > 1 or best_id_so_far == -1
return best_id_so_far
|
[
"Returns",
"the",
"offset_front_id",
"which",
"corresponds",
"to",
"the",
"offset",
"front",
"which",
"occurs",
"first",
"entirely",
"after",
"the",
"given",
"onset",
"sample_idx",
"."
] |
MaxStrange/AudioSegment
|
python
|
https://github.com/MaxStrange/AudioSegment/blob/1daefb8de626ddff3ff7016697c3ad31d262ecd6/algorithms/asa.py#L313-L337
|
[
"def",
"_get_offset_front_id_after_onset_sample_idx",
"(",
"onset_sample_idx",
",",
"offset_fronts",
")",
":",
"# get all the offset_front_ids",
"offset_front_ids",
"=",
"[",
"i",
"for",
"i",
"in",
"np",
".",
"unique",
"(",
"offset_fronts",
")",
"if",
"i",
"!=",
"0",
"]",
"best_id_so_far",
"=",
"-",
"1",
"closest_offset_sample_idx",
"=",
"sys",
".",
"maxsize",
"for",
"offset_front_id",
"in",
"offset_front_ids",
":",
"# get all that offset front's indexes",
"offset_front_idxs",
"=",
"_get_front_idxs_from_id",
"(",
"offset_fronts",
",",
"offset_front_id",
")",
"# get the sample indexes",
"offset_front_sample_idxs",
"=",
"[",
"s",
"for",
"_f",
",",
"s",
"in",
"offset_front_idxs",
"]",
"# if each sample index is greater than onset_sample_idx, keep this offset front if it is the best one so far",
"min_sample_idx",
"=",
"min",
"(",
"offset_front_sample_idxs",
")",
"if",
"min_sample_idx",
">",
"onset_sample_idx",
"and",
"min_sample_idx",
"<",
"closest_offset_sample_idx",
":",
"closest_offset_sample_idx",
"=",
"min_sample_idx",
"best_id_so_far",
"=",
"offset_front_id",
"assert",
"best_id_so_far",
">",
"1",
"or",
"best_id_so_far",
"==",
"-",
"1",
"return",
"best_id_so_far"
] |
1daefb8de626ddff3ff7016697c3ad31d262ecd6
|
test
|
_get_offset_front_id_after_onset_front
|
Get the ID corresponding to the offset which occurs first after the given onset_front_id.
By `first` I mean the front which contains the offset which is closest to the latest point
in the onset front. By `after`, I mean that the offset must contain only offsets which
occur after the latest onset in the onset front.
If there is no appropriate offset front, the id returned is -1.
|
algorithms/asa.py
|
def _get_offset_front_id_after_onset_front(onset_front_id, onset_fronts, offset_fronts):
"""
Get the ID corresponding to the offset which occurs first after the given onset_front_id.
By `first` I mean the front which contains the offset which is closest to the latest point
in the onset front. By `after`, I mean that the offset must contain only offsets which
occur after the latest onset in the onset front.
If there is no appropriate offset front, the id returned is -1.
"""
# get the onset idxs for this front
onset_idxs = _get_front_idxs_from_id(onset_fronts, onset_front_id)
# get the sample idxs for this front
onset_sample_idxs = [s for _f, s in onset_idxs]
# get the latest onset in this onset front
latest_onset_in_front = max(onset_sample_idxs)
offset_front_id_after_this_onset_front = _get_offset_front_id_after_onset_sample_idx(latest_onset_in_front, offset_fronts)
return int(offset_front_id_after_this_onset_front)
|
def _get_offset_front_id_after_onset_front(onset_front_id, onset_fronts, offset_fronts):
"""
Get the ID corresponding to the offset which occurs first after the given onset_front_id.
By `first` I mean the front which contains the offset which is closest to the latest point
in the onset front. By `after`, I mean that the offset must contain only offsets which
occur after the latest onset in the onset front.
If there is no appropriate offset front, the id returned is -1.
"""
# get the onset idxs for this front
onset_idxs = _get_front_idxs_from_id(onset_fronts, onset_front_id)
# get the sample idxs for this front
onset_sample_idxs = [s for _f, s in onset_idxs]
# get the latest onset in this onset front
latest_onset_in_front = max(onset_sample_idxs)
offset_front_id_after_this_onset_front = _get_offset_front_id_after_onset_sample_idx(latest_onset_in_front, offset_fronts)
return int(offset_front_id_after_this_onset_front)
|
[
"Get",
"the",
"ID",
"corresponding",
"to",
"the",
"offset",
"which",
"occurs",
"first",
"after",
"the",
"given",
"onset_front_id",
".",
"By",
"first",
"I",
"mean",
"the",
"front",
"which",
"contains",
"the",
"offset",
"which",
"is",
"closest",
"to",
"the",
"latest",
"point",
"in",
"the",
"onset",
"front",
".",
"By",
"after",
"I",
"mean",
"that",
"the",
"offset",
"must",
"contain",
"only",
"offsets",
"which",
"occur",
"after",
"the",
"latest",
"onset",
"in",
"the",
"onset",
"front",
"."
] |
MaxStrange/AudioSegment
|
python
|
https://github.com/MaxStrange/AudioSegment/blob/1daefb8de626ddff3ff7016697c3ad31d262ecd6/algorithms/asa.py#L339-L359
|
[
"def",
"_get_offset_front_id_after_onset_front",
"(",
"onset_front_id",
",",
"onset_fronts",
",",
"offset_fronts",
")",
":",
"# get the onset idxs for this front",
"onset_idxs",
"=",
"_get_front_idxs_from_id",
"(",
"onset_fronts",
",",
"onset_front_id",
")",
"# get the sample idxs for this front",
"onset_sample_idxs",
"=",
"[",
"s",
"for",
"_f",
",",
"s",
"in",
"onset_idxs",
"]",
"# get the latest onset in this onset front",
"latest_onset_in_front",
"=",
"max",
"(",
"onset_sample_idxs",
")",
"offset_front_id_after_this_onset_front",
"=",
"_get_offset_front_id_after_onset_sample_idx",
"(",
"latest_onset_in_front",
",",
"offset_fronts",
")",
"return",
"int",
"(",
"offset_front_id_after_this_onset_front",
")"
] |
1daefb8de626ddff3ff7016697c3ad31d262ecd6
|
test
|
_match_offset_front_id_to_onset_front_id
|
Find all offset fronts which are composed of at least one offset which corresponds to one of the onsets in the
given onset front.
The offset front which contains the most of such offsets is the match.
If there are no such offset fronts, return -1.
|
algorithms/asa.py
|
def _match_offset_front_id_to_onset_front_id(onset_front_id, onset_fronts, offset_fronts, onsets, offsets):
"""
Find all offset fronts which are composed of at least one offset which corresponds to one of the onsets in the
given onset front.
The offset front which contains the most of such offsets is the match.
If there are no such offset fronts, return -1.
"""
# find all offset fronts which are composed of at least one offset which corresponds to one of the onsets in the onset front
# the offset front which contains the most of such offsets is the match
# get the onsets that make up front_id
onset_idxs = _get_front_idxs_from_id(onset_fronts, onset_front_id)
# get the offsets that match the onsets in front_id
offset_idxs = [_lookup_offset_by_onset_idx(i, onsets, offsets) for i in onset_idxs]
# get all offset_fronts which contain at least one of these offsets
candidate_offset_front_ids = set([int(offset_fronts[f, i]) for f, i in offset_idxs])
# It is possible that offset_idxs contains offset indexes that correspond to offsets that did not
# get formed into a front - those will have a front ID of 0. Remove them.
candidate_offset_front_ids = [id for id in candidate_offset_front_ids if id != 0]
if candidate_offset_front_ids:
chosen_offset_front_id = _choose_front_id_from_candidates(candidate_offset_front_ids, offset_fronts, offset_idxs)
else:
chosen_offset_front_id = _get_offset_front_id_after_onset_front(onset_front_id, onset_fronts, offset_fronts)
return chosen_offset_front_id
|
def _match_offset_front_id_to_onset_front_id(onset_front_id, onset_fronts, offset_fronts, onsets, offsets):
"""
Find all offset fronts which are composed of at least one offset which corresponds to one of the onsets in the
given onset front.
The offset front which contains the most of such offsets is the match.
If there are no such offset fronts, return -1.
"""
# find all offset fronts which are composed of at least one offset which corresponds to one of the onsets in the onset front
# the offset front which contains the most of such offsets is the match
# get the onsets that make up front_id
onset_idxs = _get_front_idxs_from_id(onset_fronts, onset_front_id)
# get the offsets that match the onsets in front_id
offset_idxs = [_lookup_offset_by_onset_idx(i, onsets, offsets) for i in onset_idxs]
# get all offset_fronts which contain at least one of these offsets
candidate_offset_front_ids = set([int(offset_fronts[f, i]) for f, i in offset_idxs])
# It is possible that offset_idxs contains offset indexes that correspond to offsets that did not
# get formed into a front - those will have a front ID of 0. Remove them.
candidate_offset_front_ids = [id for id in candidate_offset_front_ids if id != 0]
if candidate_offset_front_ids:
chosen_offset_front_id = _choose_front_id_from_candidates(candidate_offset_front_ids, offset_fronts, offset_idxs)
else:
chosen_offset_front_id = _get_offset_front_id_after_onset_front(onset_front_id, onset_fronts, offset_fronts)
return chosen_offset_front_id
|
[
"Find",
"all",
"offset",
"fronts",
"which",
"are",
"composed",
"of",
"at",
"least",
"one",
"offset",
"which",
"corresponds",
"to",
"one",
"of",
"the",
"onsets",
"in",
"the",
"given",
"onset",
"front",
".",
"The",
"offset",
"front",
"which",
"contains",
"the",
"most",
"of",
"such",
"offsets",
"is",
"the",
"match",
".",
"If",
"there",
"are",
"no",
"such",
"offset",
"fronts",
"return",
"-",
"1",
"."
] |
MaxStrange/AudioSegment
|
python
|
https://github.com/MaxStrange/AudioSegment/blob/1daefb8de626ddff3ff7016697c3ad31d262ecd6/algorithms/asa.py#L361-L389
|
[
"def",
"_match_offset_front_id_to_onset_front_id",
"(",
"onset_front_id",
",",
"onset_fronts",
",",
"offset_fronts",
",",
"onsets",
",",
"offsets",
")",
":",
"# find all offset fronts which are composed of at least one offset which corresponds to one of the onsets in the onset front",
"# the offset front which contains the most of such offsets is the match",
"# get the onsets that make up front_id",
"onset_idxs",
"=",
"_get_front_idxs_from_id",
"(",
"onset_fronts",
",",
"onset_front_id",
")",
"# get the offsets that match the onsets in front_id",
"offset_idxs",
"=",
"[",
"_lookup_offset_by_onset_idx",
"(",
"i",
",",
"onsets",
",",
"offsets",
")",
"for",
"i",
"in",
"onset_idxs",
"]",
"# get all offset_fronts which contain at least one of these offsets",
"candidate_offset_front_ids",
"=",
"set",
"(",
"[",
"int",
"(",
"offset_fronts",
"[",
"f",
",",
"i",
"]",
")",
"for",
"f",
",",
"i",
"in",
"offset_idxs",
"]",
")",
"# It is possible that offset_idxs contains offset indexes that correspond to offsets that did not",
"# get formed into a front - those will have a front ID of 0. Remove them.",
"candidate_offset_front_ids",
"=",
"[",
"id",
"for",
"id",
"in",
"candidate_offset_front_ids",
"if",
"id",
"!=",
"0",
"]",
"if",
"candidate_offset_front_ids",
":",
"chosen_offset_front_id",
"=",
"_choose_front_id_from_candidates",
"(",
"candidate_offset_front_ids",
",",
"offset_fronts",
",",
"offset_idxs",
")",
"else",
":",
"chosen_offset_front_id",
"=",
"_get_offset_front_id_after_onset_front",
"(",
"onset_front_id",
",",
"onset_fronts",
",",
"offset_fronts",
")",
"return",
"chosen_offset_front_id"
] |
1daefb8de626ddff3ff7016697c3ad31d262ecd6
|
test
|
_get_consecutive_portions_of_front
|
Yields lists of the form [(f, s), (f, s)], one at a time from the given front (which is a list of the same form),
such that each list yielded is consecutive in frequency.
|
algorithms/asa.py
|
def _get_consecutive_portions_of_front(front):
"""
Yields lists of the form [(f, s), (f, s)], one at a time from the given front (which is a list of the same form),
such that each list yielded is consecutive in frequency.
"""
last_f = None
ls = []
for f, s in front:
if last_f is not None and f != last_f + 1:
yield ls
ls = []
ls.append((f, s))
last_f = f
yield ls
|
def _get_consecutive_portions_of_front(front):
"""
Yields lists of the form [(f, s), (f, s)], one at a time from the given front (which is a list of the same form),
such that each list yielded is consecutive in frequency.
"""
last_f = None
ls = []
for f, s in front:
if last_f is not None and f != last_f + 1:
yield ls
ls = []
ls.append((f, s))
last_f = f
yield ls
|
[
"Yields",
"lists",
"of",
"the",
"form",
"[",
"(",
"f",
"s",
")",
"(",
"f",
"s",
")",
"]",
"one",
"at",
"a",
"time",
"from",
"the",
"given",
"front",
"(",
"which",
"is",
"a",
"list",
"of",
"the",
"same",
"form",
")",
"such",
"that",
"each",
"list",
"yielded",
"is",
"consecutive",
"in",
"frequency",
"."
] |
MaxStrange/AudioSegment
|
python
|
https://github.com/MaxStrange/AudioSegment/blob/1daefb8de626ddff3ff7016697c3ad31d262ecd6/algorithms/asa.py#L391-L404
|
[
"def",
"_get_consecutive_portions_of_front",
"(",
"front",
")",
":",
"last_f",
"=",
"None",
"ls",
"=",
"[",
"]",
"for",
"f",
",",
"s",
"in",
"front",
":",
"if",
"last_f",
"is",
"not",
"None",
"and",
"f",
"!=",
"last_f",
"+",
"1",
":",
"yield",
"ls",
"ls",
"=",
"[",
"]",
"ls",
".",
"append",
"(",
"(",
"f",
",",
"s",
")",
")",
"last_f",
"=",
"f",
"yield",
"ls"
] |
1daefb8de626ddff3ff7016697c3ad31d262ecd6
|
test
|
_get_consecutive_and_overlapping_fronts
|
Gets an onset_front and an offset_front such that they both occupy at least some of the same
frequency channels, then returns the portion of each that overlaps with the other.
|
algorithms/asa.py
|
def _get_consecutive_and_overlapping_fronts(onset_fronts, offset_fronts, onset_front_id, offset_front_id):
"""
Gets an onset_front and an offset_front such that they both occupy at least some of the same
frequency channels, then returns the portion of each that overlaps with the other.
"""
# Get the onset front of interest
onset_front = _get_front_idxs_from_id(onset_fronts, onset_front_id)
# Get the offset front of interest
offset_front = _get_front_idxs_from_id(offset_fronts, offset_front_id)
# Keep trying consecutive portions of this onset front until we find a consecutive portion
# that overlaps with part of the offset front
consecutive_portions_of_onset_front = [c for c in _get_consecutive_portions_of_front(onset_front)]
for consecutive_portion_of_onset_front in consecutive_portions_of_onset_front:
# Only get the segment of this front that overlaps in frequencies with the onset front of interest
onset_front_frequency_indexes = [f for f, _ in consecutive_portion_of_onset_front]
overlapping_offset_front = [(f, s) for f, s in offset_front if f in onset_front_frequency_indexes]
# Only get as much of this overlapping portion as is actually consecutive
for consecutive_portion_of_offset_front in _get_consecutive_portions_of_front(overlapping_offset_front):
if consecutive_portion_of_offset_front:
# Just return the first one we get - if we get any it means we found a portion of overlap
return consecutive_portion_of_onset_front, consecutive_portion_of_offset_front
return [], []
|
def _get_consecutive_and_overlapping_fronts(onset_fronts, offset_fronts, onset_front_id, offset_front_id):
"""
Gets an onset_front and an offset_front such that they both occupy at least some of the same
frequency channels, then returns the portion of each that overlaps with the other.
"""
# Get the onset front of interest
onset_front = _get_front_idxs_from_id(onset_fronts, onset_front_id)
# Get the offset front of interest
offset_front = _get_front_idxs_from_id(offset_fronts, offset_front_id)
# Keep trying consecutive portions of this onset front until we find a consecutive portion
# that overlaps with part of the offset front
consecutive_portions_of_onset_front = [c for c in _get_consecutive_portions_of_front(onset_front)]
for consecutive_portion_of_onset_front in consecutive_portions_of_onset_front:
# Only get the segment of this front that overlaps in frequencies with the onset front of interest
onset_front_frequency_indexes = [f for f, _ in consecutive_portion_of_onset_front]
overlapping_offset_front = [(f, s) for f, s in offset_front if f in onset_front_frequency_indexes]
# Only get as much of this overlapping portion as is actually consecutive
for consecutive_portion_of_offset_front in _get_consecutive_portions_of_front(overlapping_offset_front):
if consecutive_portion_of_offset_front:
# Just return the first one we get - if we get any it means we found a portion of overlap
return consecutive_portion_of_onset_front, consecutive_portion_of_offset_front
return [], []
|
[
"Gets",
"an",
"onset_front",
"and",
"an",
"offset_front",
"such",
"that",
"they",
"both",
"occupy",
"at",
"least",
"some",
"of",
"the",
"same",
"frequency",
"channels",
"then",
"returns",
"the",
"portion",
"of",
"each",
"that",
"overlaps",
"with",
"the",
"other",
"."
] |
MaxStrange/AudioSegment
|
python
|
https://github.com/MaxStrange/AudioSegment/blob/1daefb8de626ddff3ff7016697c3ad31d262ecd6/algorithms/asa.py#L406-L430
|
[
"def",
"_get_consecutive_and_overlapping_fronts",
"(",
"onset_fronts",
",",
"offset_fronts",
",",
"onset_front_id",
",",
"offset_front_id",
")",
":",
"# Get the onset front of interest",
"onset_front",
"=",
"_get_front_idxs_from_id",
"(",
"onset_fronts",
",",
"onset_front_id",
")",
"# Get the offset front of interest",
"offset_front",
"=",
"_get_front_idxs_from_id",
"(",
"offset_fronts",
",",
"offset_front_id",
")",
"# Keep trying consecutive portions of this onset front until we find a consecutive portion",
"# that overlaps with part of the offset front",
"consecutive_portions_of_onset_front",
"=",
"[",
"c",
"for",
"c",
"in",
"_get_consecutive_portions_of_front",
"(",
"onset_front",
")",
"]",
"for",
"consecutive_portion_of_onset_front",
"in",
"consecutive_portions_of_onset_front",
":",
"# Only get the segment of this front that overlaps in frequencies with the onset front of interest",
"onset_front_frequency_indexes",
"=",
"[",
"f",
"for",
"f",
",",
"_",
"in",
"consecutive_portion_of_onset_front",
"]",
"overlapping_offset_front",
"=",
"[",
"(",
"f",
",",
"s",
")",
"for",
"f",
",",
"s",
"in",
"offset_front",
"if",
"f",
"in",
"onset_front_frequency_indexes",
"]",
"# Only get as much of this overlapping portion as is actually consecutive",
"for",
"consecutive_portion_of_offset_front",
"in",
"_get_consecutive_portions_of_front",
"(",
"overlapping_offset_front",
")",
":",
"if",
"consecutive_portion_of_offset_front",
":",
"# Just return the first one we get - if we get any it means we found a portion of overlap",
"return",
"consecutive_portion_of_onset_front",
",",
"consecutive_portion_of_offset_front",
"return",
"[",
"]",
",",
"[",
"]"
] |
1daefb8de626ddff3ff7016697c3ad31d262ecd6
|
test
|
_update_segmentation_mask
|
Returns an updated segmentation mask such that the input `segmentation_mask` has been updated by segmenting between
`onset_front_id` and `offset_front_id`, as found in `onset_fronts` and `offset_fronts`, respectively.
This function also returns the onset_fronts and offset_fronts matrices, updated so that any fronts that are of
less than 3 channels wide are removed.
This function also returns a boolean value indicating whether the onset channel went to completion.
Specifically, segments by doing the following:
- Going across frequencies in the onset_front,
- add the segment mask ID (the onset front ID) to all samples between the onset_front and the offset_front,
if the offset_front is in that frequency.
Possible scenarios:
Fronts line up completely:
::
| | S S S
| | => S S S
| | S S S
| | S S S
Onset front starts before offset front:
::
| |
| | S S S
| | => S S S
| | S S S
Onset front ends after offset front:
::
| | S S S
| | => S S S
| | S S S
| |
Onset front starts before and ends after offset front:
::
| |
| | => S S S
| | S S S
| |
The above three options in reverse:
::
| |S S| |
|S S| |S S| |S S|
|S S| |S S| |S S|
|S S| | |
There is one last scenario:
::
| |
\ /
\ /
/ \
| |
Where the offset and onset fronts cross one another. If this happens, we simply
reverse the indices and accept:
::
|sss|
\sss/
\s/
/s\
|sss|
The other option would be to destroy the offset front from the crossover point on, and
then search for a new offset front for the rest of the onset front.
|
algorithms/asa.py
|
def _update_segmentation_mask(segmentation_mask, onset_fronts, offset_fronts, onset_front_id, offset_front_id_most_overlap):
"""
Returns an updated segmentation mask such that the input `segmentation_mask` has been updated by segmenting between
`onset_front_id` and `offset_front_id`, as found in `onset_fronts` and `offset_fronts`, respectively.
This function also returns the onset_fronts and offset_fronts matrices, updated so that any fronts that are of
less than 3 channels wide are removed.
This function also returns a boolean value indicating whether the onset channel went to completion.
Specifically, segments by doing the following:
- Going across frequencies in the onset_front,
- add the segment mask ID (the onset front ID) to all samples between the onset_front and the offset_front,
if the offset_front is in that frequency.
Possible scenarios:
Fronts line up completely:
::
| | S S S
| | => S S S
| | S S S
| | S S S
Onset front starts before offset front:
::
| |
| | S S S
| | => S S S
| | S S S
Onset front ends after offset front:
::
| | S S S
| | => S S S
| | S S S
| |
Onset front starts before and ends after offset front:
::
| |
| | => S S S
| | S S S
| |
The above three options in reverse:
::
| |S S| |
|S S| |S S| |S S|
|S S| |S S| |S S|
|S S| | |
There is one last scenario:
::
| |
\ /
\ /
/ \
| |
Where the offset and onset fronts cross one another. If this happens, we simply
reverse the indices and accept:
::
|sss|
\sss/
\s/
/s\
|sss|
The other option would be to destroy the offset front from the crossover point on, and
then search for a new offset front for the rest of the onset front.
"""
# Get the portions of the onset and offset fronts that overlap and are consecutive
onset_front_overlap, offset_front_overlap = _get_consecutive_and_overlapping_fronts(onset_fronts, offset_fronts, onset_front_id, offset_front_id_most_overlap)
onset_front = _get_front_idxs_from_id(onset_fronts, onset_front_id)
offset_front = _get_front_idxs_from_id(offset_fronts, offset_front_id_most_overlap)
msg = "Onset front {} and offset front {} result in consecutive overlapping portions of (on) {} and (off) {}, one of which is empty".format(
onset_front, offset_front, onset_front_overlap, offset_front_overlap
)
assert onset_front_overlap, msg
assert offset_front_overlap, msg
onset_front = onset_front_overlap
offset_front = offset_front_overlap
# Figure out which frequencies will go in the segment
flow_on, _slow_on = onset_front[0]
fhigh_on, _shigh_on = onset_front[-1]
flow_off, _slow_off = offset_front[0]
fhigh_off, _shigh_off = offset_front[-1]
flow = max(flow_on, flow_off)
fhigh = min(fhigh_on, fhigh_off)
# Update all the masks with the segment
for fidx, _freqchan in enumerate(segmentation_mask[flow:fhigh + 1, :], start=flow):
assert fidx >= flow, "Frequency index is {}, but we should have started at {}".format(fidx, flow)
assert (fidx - flow) < len(onset_front), "Frequency index {} minus starting frequency {} is too large for nfrequencies {} in onset front {}".format(
fidx, flow, len(onset_front), onset_front
)
assert (fidx - flow) < len(offset_front), "Frequency index {} minus starting frequency {} is too large for nfrequencies {} in offset front {}".format(
fidx, flow, len(offset_front), offset_front
)
_, beg = onset_front[fidx - flow]
_, end = offset_front[fidx - flow]
if beg > end:
end, beg = beg, end
assert end >= beg
segmentation_mask[fidx, beg:end + 1] = onset_front_id
onset_fronts[fidx, (beg + 1):(end + 1)] = 0
offset_fronts[fidx, (beg + 1):(end + 1)] = 0
nfreqs_used_in_onset_front = (fidx - flow) + 1
# Update the other masks to delete fronts that have been used
indexes = np.arange(flow, fhigh + 1, 1, dtype=np.int64)
onset_front_sample_idxs_across_freqs = np.array([s for _, s in onset_front])
onset_front_sample_idxs_across_freqs_up_to_break = onset_front_sample_idxs_across_freqs[:nfreqs_used_in_onset_front]
offset_front_sample_idxs_across_freqs = np.array([s for _, s in offset_front])
offset_front_sample_idxs_across_freqs_up_to_break = offset_front_sample_idxs_across_freqs[:nfreqs_used_in_onset_front]
## Remove the offset front from where we started to where we ended
offset_fronts[indexes[:nfreqs_used_in_onset_front], offset_front_sample_idxs_across_freqs_up_to_break] = 0
## Remove the onset front from where we started to where we ended
onset_fronts[indexes[:nfreqs_used_in_onset_front], onset_front_sample_idxs_across_freqs_up_to_break] = 0
# Determine if we matched the entire onset front by checking if there is any more of this onset front in onset_fronts
whole_onset_front_matched = onset_front_id not in np.unique(onset_fronts)
return whole_onset_front_matched
|
def _update_segmentation_mask(segmentation_mask, onset_fronts, offset_fronts, onset_front_id, offset_front_id_most_overlap):
"""
Returns an updated segmentation mask such that the input `segmentation_mask` has been updated by segmenting between
`onset_front_id` and `offset_front_id`, as found in `onset_fronts` and `offset_fronts`, respectively.
This function also returns the onset_fronts and offset_fronts matrices, updated so that any fronts that are of
less than 3 channels wide are removed.
This function also returns a boolean value indicating whether the onset channel went to completion.
Specifically, segments by doing the following:
- Going across frequencies in the onset_front,
- add the segment mask ID (the onset front ID) to all samples between the onset_front and the offset_front,
if the offset_front is in that frequency.
Possible scenarios:
Fronts line up completely:
::
| | S S S
| | => S S S
| | S S S
| | S S S
Onset front starts before offset front:
::
| |
| | S S S
| | => S S S
| | S S S
Onset front ends after offset front:
::
| | S S S
| | => S S S
| | S S S
| |
Onset front starts before and ends after offset front:
::
| |
| | => S S S
| | S S S
| |
The above three options in reverse:
::
| |S S| |
|S S| |S S| |S S|
|S S| |S S| |S S|
|S S| | |
There is one last scenario:
::
| |
\ /
\ /
/ \
| |
Where the offset and onset fronts cross one another. If this happens, we simply
reverse the indices and accept:
::
|sss|
\sss/
\s/
/s\
|sss|
The other option would be to destroy the offset front from the crossover point on, and
then search for a new offset front for the rest of the onset front.
"""
# Get the portions of the onset and offset fronts that overlap and are consecutive
onset_front_overlap, offset_front_overlap = _get_consecutive_and_overlapping_fronts(onset_fronts, offset_fronts, onset_front_id, offset_front_id_most_overlap)
onset_front = _get_front_idxs_from_id(onset_fronts, onset_front_id)
offset_front = _get_front_idxs_from_id(offset_fronts, offset_front_id_most_overlap)
msg = "Onset front {} and offset front {} result in consecutive overlapping portions of (on) {} and (off) {}, one of which is empty".format(
onset_front, offset_front, onset_front_overlap, offset_front_overlap
)
assert onset_front_overlap, msg
assert offset_front_overlap, msg
onset_front = onset_front_overlap
offset_front = offset_front_overlap
# Figure out which frequencies will go in the segment
flow_on, _slow_on = onset_front[0]
fhigh_on, _shigh_on = onset_front[-1]
flow_off, _slow_off = offset_front[0]
fhigh_off, _shigh_off = offset_front[-1]
flow = max(flow_on, flow_off)
fhigh = min(fhigh_on, fhigh_off)
# Update all the masks with the segment
for fidx, _freqchan in enumerate(segmentation_mask[flow:fhigh + 1, :], start=flow):
assert fidx >= flow, "Frequency index is {}, but we should have started at {}".format(fidx, flow)
assert (fidx - flow) < len(onset_front), "Frequency index {} minus starting frequency {} is too large for nfrequencies {} in onset front {}".format(
fidx, flow, len(onset_front), onset_front
)
assert (fidx - flow) < len(offset_front), "Frequency index {} minus starting frequency {} is too large for nfrequencies {} in offset front {}".format(
fidx, flow, len(offset_front), offset_front
)
_, beg = onset_front[fidx - flow]
_, end = offset_front[fidx - flow]
if beg > end:
end, beg = beg, end
assert end >= beg
segmentation_mask[fidx, beg:end + 1] = onset_front_id
onset_fronts[fidx, (beg + 1):(end + 1)] = 0
offset_fronts[fidx, (beg + 1):(end + 1)] = 0
nfreqs_used_in_onset_front = (fidx - flow) + 1
# Update the other masks to delete fronts that have been used
indexes = np.arange(flow, fhigh + 1, 1, dtype=np.int64)
onset_front_sample_idxs_across_freqs = np.array([s for _, s in onset_front])
onset_front_sample_idxs_across_freqs_up_to_break = onset_front_sample_idxs_across_freqs[:nfreqs_used_in_onset_front]
offset_front_sample_idxs_across_freqs = np.array([s for _, s in offset_front])
offset_front_sample_idxs_across_freqs_up_to_break = offset_front_sample_idxs_across_freqs[:nfreqs_used_in_onset_front]
## Remove the offset front from where we started to where we ended
offset_fronts[indexes[:nfreqs_used_in_onset_front], offset_front_sample_idxs_across_freqs_up_to_break] = 0
## Remove the onset front from where we started to where we ended
onset_fronts[indexes[:nfreqs_used_in_onset_front], onset_front_sample_idxs_across_freqs_up_to_break] = 0
# Determine if we matched the entire onset front by checking if there is any more of this onset front in onset_fronts
whole_onset_front_matched = onset_front_id not in np.unique(onset_fronts)
return whole_onset_front_matched
|
[
"Returns",
"an",
"updated",
"segmentation",
"mask",
"such",
"that",
"the",
"input",
"segmentation_mask",
"has",
"been",
"updated",
"by",
"segmenting",
"between",
"onset_front_id",
"and",
"offset_front_id",
"as",
"found",
"in",
"onset_fronts",
"and",
"offset_fronts",
"respectively",
"."
] |
MaxStrange/AudioSegment
|
python
|
https://github.com/MaxStrange/AudioSegment/blob/1daefb8de626ddff3ff7016697c3ad31d262ecd6/algorithms/asa.py#L433-L575
|
[
"def",
"_update_segmentation_mask",
"(",
"segmentation_mask",
",",
"onset_fronts",
",",
"offset_fronts",
",",
"onset_front_id",
",",
"offset_front_id_most_overlap",
")",
":",
"# Get the portions of the onset and offset fronts that overlap and are consecutive",
"onset_front_overlap",
",",
"offset_front_overlap",
"=",
"_get_consecutive_and_overlapping_fronts",
"(",
"onset_fronts",
",",
"offset_fronts",
",",
"onset_front_id",
",",
"offset_front_id_most_overlap",
")",
"onset_front",
"=",
"_get_front_idxs_from_id",
"(",
"onset_fronts",
",",
"onset_front_id",
")",
"offset_front",
"=",
"_get_front_idxs_from_id",
"(",
"offset_fronts",
",",
"offset_front_id_most_overlap",
")",
"msg",
"=",
"\"Onset front {} and offset front {} result in consecutive overlapping portions of (on) {} and (off) {}, one of which is empty\"",
".",
"format",
"(",
"onset_front",
",",
"offset_front",
",",
"onset_front_overlap",
",",
"offset_front_overlap",
")",
"assert",
"onset_front_overlap",
",",
"msg",
"assert",
"offset_front_overlap",
",",
"msg",
"onset_front",
"=",
"onset_front_overlap",
"offset_front",
"=",
"offset_front_overlap",
"# Figure out which frequencies will go in the segment",
"flow_on",
",",
"_slow_on",
"=",
"onset_front",
"[",
"0",
"]",
"fhigh_on",
",",
"_shigh_on",
"=",
"onset_front",
"[",
"-",
"1",
"]",
"flow_off",
",",
"_slow_off",
"=",
"offset_front",
"[",
"0",
"]",
"fhigh_off",
",",
"_shigh_off",
"=",
"offset_front",
"[",
"-",
"1",
"]",
"flow",
"=",
"max",
"(",
"flow_on",
",",
"flow_off",
")",
"fhigh",
"=",
"min",
"(",
"fhigh_on",
",",
"fhigh_off",
")",
"# Update all the masks with the segment",
"for",
"fidx",
",",
"_freqchan",
"in",
"enumerate",
"(",
"segmentation_mask",
"[",
"flow",
":",
"fhigh",
"+",
"1",
",",
":",
"]",
",",
"start",
"=",
"flow",
")",
":",
"assert",
"fidx",
">=",
"flow",
",",
"\"Frequency index is {}, but we should have started at {}\"",
".",
"format",
"(",
"fidx",
",",
"flow",
")",
"assert",
"(",
"fidx",
"-",
"flow",
")",
"<",
"len",
"(",
"onset_front",
")",
",",
"\"Frequency index {} minus starting frequency {} is too large for nfrequencies {} in onset front {}\"",
".",
"format",
"(",
"fidx",
",",
"flow",
",",
"len",
"(",
"onset_front",
")",
",",
"onset_front",
")",
"assert",
"(",
"fidx",
"-",
"flow",
")",
"<",
"len",
"(",
"offset_front",
")",
",",
"\"Frequency index {} minus starting frequency {} is too large for nfrequencies {} in offset front {}\"",
".",
"format",
"(",
"fidx",
",",
"flow",
",",
"len",
"(",
"offset_front",
")",
",",
"offset_front",
")",
"_",
",",
"beg",
"=",
"onset_front",
"[",
"fidx",
"-",
"flow",
"]",
"_",
",",
"end",
"=",
"offset_front",
"[",
"fidx",
"-",
"flow",
"]",
"if",
"beg",
">",
"end",
":",
"end",
",",
"beg",
"=",
"beg",
",",
"end",
"assert",
"end",
">=",
"beg",
"segmentation_mask",
"[",
"fidx",
",",
"beg",
":",
"end",
"+",
"1",
"]",
"=",
"onset_front_id",
"onset_fronts",
"[",
"fidx",
",",
"(",
"beg",
"+",
"1",
")",
":",
"(",
"end",
"+",
"1",
")",
"]",
"=",
"0",
"offset_fronts",
"[",
"fidx",
",",
"(",
"beg",
"+",
"1",
")",
":",
"(",
"end",
"+",
"1",
")",
"]",
"=",
"0",
"nfreqs_used_in_onset_front",
"=",
"(",
"fidx",
"-",
"flow",
")",
"+",
"1",
"# Update the other masks to delete fronts that have been used",
"indexes",
"=",
"np",
".",
"arange",
"(",
"flow",
",",
"fhigh",
"+",
"1",
",",
"1",
",",
"dtype",
"=",
"np",
".",
"int64",
")",
"onset_front_sample_idxs_across_freqs",
"=",
"np",
".",
"array",
"(",
"[",
"s",
"for",
"_",
",",
"s",
"in",
"onset_front",
"]",
")",
"onset_front_sample_idxs_across_freqs_up_to_break",
"=",
"onset_front_sample_idxs_across_freqs",
"[",
":",
"nfreqs_used_in_onset_front",
"]",
"offset_front_sample_idxs_across_freqs",
"=",
"np",
".",
"array",
"(",
"[",
"s",
"for",
"_",
",",
"s",
"in",
"offset_front",
"]",
")",
"offset_front_sample_idxs_across_freqs_up_to_break",
"=",
"offset_front_sample_idxs_across_freqs",
"[",
":",
"nfreqs_used_in_onset_front",
"]",
"## Remove the offset front from where we started to where we ended",
"offset_fronts",
"[",
"indexes",
"[",
":",
"nfreqs_used_in_onset_front",
"]",
",",
"offset_front_sample_idxs_across_freqs_up_to_break",
"]",
"=",
"0",
"## Remove the onset front from where we started to where we ended",
"onset_fronts",
"[",
"indexes",
"[",
":",
"nfreqs_used_in_onset_front",
"]",
",",
"onset_front_sample_idxs_across_freqs_up_to_break",
"]",
"=",
"0",
"# Determine if we matched the entire onset front by checking if there is any more of this onset front in onset_fronts",
"whole_onset_front_matched",
"=",
"onset_front_id",
"not",
"in",
"np",
".",
"unique",
"(",
"onset_fronts",
")",
"return",
"whole_onset_front_matched"
] |
1daefb8de626ddff3ff7016697c3ad31d262ecd6
|
test
|
_front_id_from_idx
|
Returns the front ID found in `front` at the given `index`.
:param front: An onset or offset front array of shape [nfrequencies, nsamples]
:index: A tuple of the form (frequency index, sample index)
:returns: The ID of the front or -1 if not found in `front` and the item at `onsets_or_offsets[index]`
is not a 1.
|
algorithms/asa.py
|
def _front_id_from_idx(front, index):
"""
Returns the front ID found in `front` at the given `index`.
:param front: An onset or offset front array of shape [nfrequencies, nsamples]
:index: A tuple of the form (frequency index, sample index)
:returns: The ID of the front or -1 if not found in `front` and the item at `onsets_or_offsets[index]`
is not a 1.
"""
fidx, sidx = index
id = front[fidx, sidx]
if id == 0:
return -1
else:
return id
|
def _front_id_from_idx(front, index):
"""
Returns the front ID found in `front` at the given `index`.
:param front: An onset or offset front array of shape [nfrequencies, nsamples]
:index: A tuple of the form (frequency index, sample index)
:returns: The ID of the front or -1 if not found in `front` and the item at `onsets_or_offsets[index]`
is not a 1.
"""
fidx, sidx = index
id = front[fidx, sidx]
if id == 0:
return -1
else:
return id
|
[
"Returns",
"the",
"front",
"ID",
"found",
"in",
"front",
"at",
"the",
"given",
"index",
"."
] |
MaxStrange/AudioSegment
|
python
|
https://github.com/MaxStrange/AudioSegment/blob/1daefb8de626ddff3ff7016697c3ad31d262ecd6/algorithms/asa.py#L577-L591
|
[
"def",
"_front_id_from_idx",
"(",
"front",
",",
"index",
")",
":",
"fidx",
",",
"sidx",
"=",
"index",
"id",
"=",
"front",
"[",
"fidx",
",",
"sidx",
"]",
"if",
"id",
"==",
"0",
":",
"return",
"-",
"1",
"else",
":",
"return",
"id"
] |
1daefb8de626ddff3ff7016697c3ad31d262ecd6
|
test
|
_get_front_ids_one_at_a_time
|
Yields one onset front ID at a time until they are gone. All the onset fronts from a
frequency channel are yielded, then all of the next channel's, etc., though one at a time.
|
algorithms/asa.py
|
def _get_front_ids_one_at_a_time(onset_fronts):
"""
Yields one onset front ID at a time until they are gone. All the onset fronts from a
frequency channel are yielded, then all of the next channel's, etc., though one at a time.
"""
yielded_so_far = set()
for row in onset_fronts:
for id in row:
if id != 0 and id not in yielded_so_far:
yield id
yielded_so_far.add(id)
|
def _get_front_ids_one_at_a_time(onset_fronts):
"""
Yields one onset front ID at a time until they are gone. All the onset fronts from a
frequency channel are yielded, then all of the next channel's, etc., though one at a time.
"""
yielded_so_far = set()
for row in onset_fronts:
for id in row:
if id != 0 and id not in yielded_so_far:
yield id
yielded_so_far.add(id)
|
[
"Yields",
"one",
"onset",
"front",
"ID",
"at",
"a",
"time",
"until",
"they",
"are",
"gone",
".",
"All",
"the",
"onset",
"fronts",
"from",
"a",
"frequency",
"channel",
"are",
"yielded",
"then",
"all",
"of",
"the",
"next",
"channel",
"s",
"etc",
".",
"though",
"one",
"at",
"a",
"time",
"."
] |
MaxStrange/AudioSegment
|
python
|
https://github.com/MaxStrange/AudioSegment/blob/1daefb8de626ddff3ff7016697c3ad31d262ecd6/algorithms/asa.py#L593-L603
|
[
"def",
"_get_front_ids_one_at_a_time",
"(",
"onset_fronts",
")",
":",
"yielded_so_far",
"=",
"set",
"(",
")",
"for",
"row",
"in",
"onset_fronts",
":",
"for",
"id",
"in",
"row",
":",
"if",
"id",
"!=",
"0",
"and",
"id",
"not",
"in",
"yielded_so_far",
":",
"yield",
"id",
"yielded_so_far",
".",
"add",
"(",
"id",
")"
] |
1daefb8de626ddff3ff7016697c3ad31d262ecd6
|
test
|
_get_corresponding_offsets
|
Gets the offsets that occur as close as possible to the onsets in the given onset-front.
|
algorithms/asa.py
|
def _get_corresponding_offsets(onset_fronts, onset_front_id, onsets, offsets):
"""
Gets the offsets that occur as close as possible to the onsets in the given onset-front.
"""
corresponding_offsets = []
for index in _get_front_idxs_from_id(onset_fronts, onset_front_id):
offset_fidx, offset_sidx = _lookup_offset_by_onset_idx(index, onsets, offsets)
corresponding_offsets.append((offset_fidx, offset_sidx))
return corresponding_offsets
|
def _get_corresponding_offsets(onset_fronts, onset_front_id, onsets, offsets):
"""
Gets the offsets that occur as close as possible to the onsets in the given onset-front.
"""
corresponding_offsets = []
for index in _get_front_idxs_from_id(onset_fronts, onset_front_id):
offset_fidx, offset_sidx = _lookup_offset_by_onset_idx(index, onsets, offsets)
corresponding_offsets.append((offset_fidx, offset_sidx))
return corresponding_offsets
|
[
"Gets",
"the",
"offsets",
"that",
"occur",
"as",
"close",
"as",
"possible",
"to",
"the",
"onsets",
"in",
"the",
"given",
"onset",
"-",
"front",
"."
] |
MaxStrange/AudioSegment
|
python
|
https://github.com/MaxStrange/AudioSegment/blob/1daefb8de626ddff3ff7016697c3ad31d262ecd6/algorithms/asa.py#L605-L613
|
[
"def",
"_get_corresponding_offsets",
"(",
"onset_fronts",
",",
"onset_front_id",
",",
"onsets",
",",
"offsets",
")",
":",
"corresponding_offsets",
"=",
"[",
"]",
"for",
"index",
"in",
"_get_front_idxs_from_id",
"(",
"onset_fronts",
",",
"onset_front_id",
")",
":",
"offset_fidx",
",",
"offset_sidx",
"=",
"_lookup_offset_by_onset_idx",
"(",
"index",
",",
"onsets",
",",
"offsets",
")",
"corresponding_offsets",
".",
"append",
"(",
"(",
"offset_fidx",
",",
"offset_sidx",
")",
")",
"return",
"corresponding_offsets"
] |
1daefb8de626ddff3ff7016697c3ad31d262ecd6
|
test
|
_get_all_offset_fronts_from_offsets
|
Returns all the offset fronts that are composed of at least one of the given offset indexes.
Also returns a dict of the form {offset_front_id: ntimes saw}
|
algorithms/asa.py
|
def _get_all_offset_fronts_from_offsets(offset_fronts, corresponding_offsets):
"""
Returns all the offset fronts that are composed of at least one of the given offset indexes.
Also returns a dict of the form {offset_front_id: ntimes saw}
"""
all_offset_fronts_of_interest = []
ids_ntimes_seen = {}
for offset_index in corresponding_offsets:
offset_id = _front_id_from_idx(offset_fronts, offset_index)
if offset_id not in ids_ntimes_seen:
offset_front_idxs = _get_front_idxs_from_id(offset_fronts, offset_id)
all_offset_fronts_of_interest.append(offset_front_idxs)
ids_ntimes_seen[offset_id] = 1
else:
ids_ntimes_seen[offset_id] += 1
return all_offset_fronts_of_interest, ids_ntimes_seen
|
def _get_all_offset_fronts_from_offsets(offset_fronts, corresponding_offsets):
"""
Returns all the offset fronts that are composed of at least one of the given offset indexes.
Also returns a dict of the form {offset_front_id: ntimes saw}
"""
all_offset_fronts_of_interest = []
ids_ntimes_seen = {}
for offset_index in corresponding_offsets:
offset_id = _front_id_from_idx(offset_fronts, offset_index)
if offset_id not in ids_ntimes_seen:
offset_front_idxs = _get_front_idxs_from_id(offset_fronts, offset_id)
all_offset_fronts_of_interest.append(offset_front_idxs)
ids_ntimes_seen[offset_id] = 1
else:
ids_ntimes_seen[offset_id] += 1
return all_offset_fronts_of_interest, ids_ntimes_seen
|
[
"Returns",
"all",
"the",
"offset",
"fronts",
"that",
"are",
"composed",
"of",
"at",
"least",
"one",
"of",
"the",
"given",
"offset",
"indexes",
".",
"Also",
"returns",
"a",
"dict",
"of",
"the",
"form",
"{",
"offset_front_id",
":",
"ntimes",
"saw",
"}"
] |
MaxStrange/AudioSegment
|
python
|
https://github.com/MaxStrange/AudioSegment/blob/1daefb8de626ddff3ff7016697c3ad31d262ecd6/algorithms/asa.py#L615-L630
|
[
"def",
"_get_all_offset_fronts_from_offsets",
"(",
"offset_fronts",
",",
"corresponding_offsets",
")",
":",
"all_offset_fronts_of_interest",
"=",
"[",
"]",
"ids_ntimes_seen",
"=",
"{",
"}",
"for",
"offset_index",
"in",
"corresponding_offsets",
":",
"offset_id",
"=",
"_front_id_from_idx",
"(",
"offset_fronts",
",",
"offset_index",
")",
"if",
"offset_id",
"not",
"in",
"ids_ntimes_seen",
":",
"offset_front_idxs",
"=",
"_get_front_idxs_from_id",
"(",
"offset_fronts",
",",
"offset_id",
")",
"all_offset_fronts_of_interest",
".",
"append",
"(",
"offset_front_idxs",
")",
"ids_ntimes_seen",
"[",
"offset_id",
"]",
"=",
"1",
"else",
":",
"ids_ntimes_seen",
"[",
"offset_id",
"]",
"+=",
"1",
"return",
"all_offset_fronts_of_interest",
",",
"ids_ntimes_seen"
] |
1daefb8de626ddff3ff7016697c3ad31d262ecd6
|
test
|
_remove_overlaps
|
Removes all points in the fronts that overlap with the segmentation mask.
|
algorithms/asa.py
|
def _remove_overlaps(segmentation_mask, fronts):
"""
Removes all points in the fronts that overlap with the segmentation mask.
"""
fidxs, sidxs = np.where((segmentation_mask != fronts) & (segmentation_mask != 0) & (fronts != 0))
fronts[fidxs, sidxs] = 0
|
def _remove_overlaps(segmentation_mask, fronts):
"""
Removes all points in the fronts that overlap with the segmentation mask.
"""
fidxs, sidxs = np.where((segmentation_mask != fronts) & (segmentation_mask != 0) & (fronts != 0))
fronts[fidxs, sidxs] = 0
|
[
"Removes",
"all",
"points",
"in",
"the",
"fronts",
"that",
"overlap",
"with",
"the",
"segmentation",
"mask",
"."
] |
MaxStrange/AudioSegment
|
python
|
https://github.com/MaxStrange/AudioSegment/blob/1daefb8de626ddff3ff7016697c3ad31d262ecd6/algorithms/asa.py#L632-L637
|
[
"def",
"_remove_overlaps",
"(",
"segmentation_mask",
",",
"fronts",
")",
":",
"fidxs",
",",
"sidxs",
"=",
"np",
".",
"where",
"(",
"(",
"segmentation_mask",
"!=",
"fronts",
")",
"&",
"(",
"segmentation_mask",
"!=",
"0",
")",
"&",
"(",
"fronts",
"!=",
"0",
")",
")",
"fronts",
"[",
"fidxs",
",",
"sidxs",
"]",
"=",
"0"
] |
1daefb8de626ddff3ff7016697c3ad31d262ecd6
|
test
|
_match_fronts
|
Returns a segmentation mask, which looks like this:
frequency 1: 0 0 4 4 4 4 4 0 0 5 5 5
frequency 2: 0 4 4 4 4 4 0 0 0 0 5 5
frequency 3: 0 4 4 4 4 4 4 4 5 5 5 5
That is, each item in the array is either a 0 (not part of a segment) or a positive
integer which indicates which segment the sample in that frequency band belongs to.
|
algorithms/asa.py
|
def _match_fronts(onset_fronts, offset_fronts, onsets, offsets, debug=False):
"""
Returns a segmentation mask, which looks like this:
frequency 1: 0 0 4 4 4 4 4 0 0 5 5 5
frequency 2: 0 4 4 4 4 4 0 0 0 0 5 5
frequency 3: 0 4 4 4 4 4 4 4 5 5 5 5
That is, each item in the array is either a 0 (not part of a segment) or a positive
integer which indicates which segment the sample in that frequency band belongs to.
"""
def printd(*args, **kwargs):
if debug:
print(*args, **kwargs)
# Make copies of everything, so we can do whatever we want with them
onset_fronts = np.copy(onset_fronts)
offset_fronts = np.copy(offset_fronts)
onsets = np.copy(onsets)
offsets = np.copy(offsets)
# This is what we will return
segmentation_mask = np.zeros_like(onset_fronts)
# - Take the first frequency in the onset_fronts matrix
# [ s s s s s s s s s] <-- This frequency
# [ s s s s s s s s s]
# [ s s s s s s s s s]
# [ s s s s s s s s s]
# [ s s s s s s s s s]
# - Follow it along in time like this:
# first sample last sample
# v --> v
# [ s s s s s s s s s]
# [ s s s s s s s s s]
# [ s s s s s s s s s]
# [ s s s s s s s s s]
# [ s s s s s s s s s]
# until you get to the first onset front in that frequency
# Here it is!
# v
# [ . O . . . . . . .]
# [ . . O . . . . . .]
# [ . . O . . . . . .]
# [ . O . . . . . . .]
# [ O . . . . . . . .]
resulting_onset_fronts = np.copy(onset_fronts)
printd(" -> Dealing with onset fronts...")
for onset_front_id in _get_front_ids_one_at_a_time(onset_fronts):
printd(" -> Dealing with onset front", int(onset_front_id))
front_is_complete = False
while not front_is_complete:
# - Now, starting at this onset front in each frequency, find that onset's corresponding offset
# [ . O . . . . F . .]
# [ . . O . . . F . .]
# [ . . O . F . . . .]
# [ . O . F . . . . .]
# [ O F . . . . . . .]
corresponding_offsets = _get_corresponding_offsets(resulting_onset_fronts, onset_front_id, onsets, offsets)
# It is possible that onset_front_id has been removed from resulting_onset_fronts,
# if so, skip it and move on to the next onset front (we are iterating over the original
# to keep the iterator valid)
if not corresponding_offsets:
break
# - Get all the offset fronts that are composed of at least one of these offset times
# [ . O . . . . 1 . .]
# [ . . O 3 . . 1 . .]
# [ . . O 3 F . 1 . .]
# [ . O . 3 . . . 1 .]
# [ O F 3 . . . . . .]
_all_offset_fronts_of_interest, ids_ntimes_seen = _get_all_offset_fronts_from_offsets(offset_fronts, corresponding_offsets)
# - Check how many of these offset times each of the offset fronts are composed of:
# [ . O . . . . Y . .]
# [ . . O 3 . . Y . .]
# [ . . O 3 F . 1 . .]
# [ . O . X . . . 1 .]
# [ O F 3 . . . . . .]
# In this example, offset front 1 is made up of 4 offset times, 2 of which (the Y's) are offset times
# that correspond to onsets in the onset front we are currently dealing with. Meanwhile, offset
# front 3 is made up of 4 offset times, only one of which (the X) is one of the offsets that corresponds
# to the onset front.
# - Choose the offset front which matches the most offset time candidates. In this example, offset front 1
# is chosen because it has 2 of these offset times.
# If there is a tie, we choose the ID with the lower number
ntimes_seen_sorted = sorted([(k, v) for k, v in ids_ntimes_seen.items()], key=lambda tup: (-1 * tup[1], tup[0]))
assert len(ntimes_seen_sorted) > 0, "We somehow got an empty dict of offset front IDs"
# Only use the special final front (the -1, catch-all front composed of final samples in each frequency) if necessary
offset_front_id, _ntimes_seen = ntimes_seen_sorted[0]
if offset_front_id == -1 and len(ntimes_seen_sorted) > 1:
offset_front_id, _ntimes_seen = ntimes_seen_sorted[1]
offset_front_id_most_overlap = offset_front_id
# - Finally, update the segmentation mask to follow the offset
# front from where it first overlaps in frequency with the onset front to where it ends or to where
# the onset front ends, whichever happens first.
# [ . S S S S S S . .]
# [ . . S S S S S . .]
# [ . . S S S S S . .]
# [ . S S S S S S S .]
# [ O F 3 . . . . . .] <-- This frequency has not yet been matched with an offset front
front_is_complete = _update_segmentation_mask(segmentation_mask,
resulting_onset_fronts,
offset_fronts,
onset_front_id,
offset_front_id_most_overlap)
# Remove any onsets that are covered by the new segmentation mask
_remove_overlaps(segmentation_mask, resulting_onset_fronts)
# Remove any offsets that are covered by the new segmentaion mask
_remove_overlaps(segmentation_mask, offset_fronts)
# - Repeat this algorithm, restarting in the first frequency channel that did not match (the last frequency in
# the above example). Do this until you have finished with this onset front.
# - Repeat for each onset front in the rest of this frequency
# - Repeat for each frequency
return segmentation_mask
|
def _match_fronts(onset_fronts, offset_fronts, onsets, offsets, debug=False):
"""
Returns a segmentation mask, which looks like this:
frequency 1: 0 0 4 4 4 4 4 0 0 5 5 5
frequency 2: 0 4 4 4 4 4 0 0 0 0 5 5
frequency 3: 0 4 4 4 4 4 4 4 5 5 5 5
That is, each item in the array is either a 0 (not part of a segment) or a positive
integer which indicates which segment the sample in that frequency band belongs to.
"""
def printd(*args, **kwargs):
if debug:
print(*args, **kwargs)
# Make copies of everything, so we can do whatever we want with them
onset_fronts = np.copy(onset_fronts)
offset_fronts = np.copy(offset_fronts)
onsets = np.copy(onsets)
offsets = np.copy(offsets)
# This is what we will return
segmentation_mask = np.zeros_like(onset_fronts)
# - Take the first frequency in the onset_fronts matrix
# [ s s s s s s s s s] <-- This frequency
# [ s s s s s s s s s]
# [ s s s s s s s s s]
# [ s s s s s s s s s]
# [ s s s s s s s s s]
# - Follow it along in time like this:
# first sample last sample
# v --> v
# [ s s s s s s s s s]
# [ s s s s s s s s s]
# [ s s s s s s s s s]
# [ s s s s s s s s s]
# [ s s s s s s s s s]
# until you get to the first onset front in that frequency
# Here it is!
# v
# [ . O . . . . . . .]
# [ . . O . . . . . .]
# [ . . O . . . . . .]
# [ . O . . . . . . .]
# [ O . . . . . . . .]
resulting_onset_fronts = np.copy(onset_fronts)
printd(" -> Dealing with onset fronts...")
for onset_front_id in _get_front_ids_one_at_a_time(onset_fronts):
printd(" -> Dealing with onset front", int(onset_front_id))
front_is_complete = False
while not front_is_complete:
# - Now, starting at this onset front in each frequency, find that onset's corresponding offset
# [ . O . . . . F . .]
# [ . . O . . . F . .]
# [ . . O . F . . . .]
# [ . O . F . . . . .]
# [ O F . . . . . . .]
corresponding_offsets = _get_corresponding_offsets(resulting_onset_fronts, onset_front_id, onsets, offsets)
# It is possible that onset_front_id has been removed from resulting_onset_fronts,
# if so, skip it and move on to the next onset front (we are iterating over the original
# to keep the iterator valid)
if not corresponding_offsets:
break
# - Get all the offset fronts that are composed of at least one of these offset times
# [ . O . . . . 1 . .]
# [ . . O 3 . . 1 . .]
# [ . . O 3 F . 1 . .]
# [ . O . 3 . . . 1 .]
# [ O F 3 . . . . . .]
_all_offset_fronts_of_interest, ids_ntimes_seen = _get_all_offset_fronts_from_offsets(offset_fronts, corresponding_offsets)
# - Check how many of these offset times each of the offset fronts are composed of:
# [ . O . . . . Y . .]
# [ . . O 3 . . Y . .]
# [ . . O 3 F . 1 . .]
# [ . O . X . . . 1 .]
# [ O F 3 . . . . . .]
# In this example, offset front 1 is made up of 4 offset times, 2 of which (the Y's) are offset times
# that correspond to onsets in the onset front we are currently dealing with. Meanwhile, offset
# front 3 is made up of 4 offset times, only one of which (the X) is one of the offsets that corresponds
# to the onset front.
# - Choose the offset front which matches the most offset time candidates. In this example, offset front 1
# is chosen because it has 2 of these offset times.
# If there is a tie, we choose the ID with the lower number
ntimes_seen_sorted = sorted([(k, v) for k, v in ids_ntimes_seen.items()], key=lambda tup: (-1 * tup[1], tup[0]))
assert len(ntimes_seen_sorted) > 0, "We somehow got an empty dict of offset front IDs"
# Only use the special final front (the -1, catch-all front composed of final samples in each frequency) if necessary
offset_front_id, _ntimes_seen = ntimes_seen_sorted[0]
if offset_front_id == -1 and len(ntimes_seen_sorted) > 1:
offset_front_id, _ntimes_seen = ntimes_seen_sorted[1]
offset_front_id_most_overlap = offset_front_id
# - Finally, update the segmentation mask to follow the offset
# front from where it first overlaps in frequency with the onset front to where it ends or to where
# the onset front ends, whichever happens first.
# [ . S S S S S S . .]
# [ . . S S S S S . .]
# [ . . S S S S S . .]
# [ . S S S S S S S .]
# [ O F 3 . . . . . .] <-- This frequency has not yet been matched with an offset front
front_is_complete = _update_segmentation_mask(segmentation_mask,
resulting_onset_fronts,
offset_fronts,
onset_front_id,
offset_front_id_most_overlap)
# Remove any onsets that are covered by the new segmentation mask
_remove_overlaps(segmentation_mask, resulting_onset_fronts)
# Remove any offsets that are covered by the new segmentaion mask
_remove_overlaps(segmentation_mask, offset_fronts)
# - Repeat this algorithm, restarting in the first frequency channel that did not match (the last frequency in
# the above example). Do this until you have finished with this onset front.
# - Repeat for each onset front in the rest of this frequency
# - Repeat for each frequency
return segmentation_mask
|
[
"Returns",
"a",
"segmentation",
"mask",
"which",
"looks",
"like",
"this",
":",
"frequency",
"1",
":",
"0",
"0",
"4",
"4",
"4",
"4",
"4",
"0",
"0",
"5",
"5",
"5",
"frequency",
"2",
":",
"0",
"4",
"4",
"4",
"4",
"4",
"0",
"0",
"0",
"0",
"5",
"5",
"frequency",
"3",
":",
"0",
"4",
"4",
"4",
"4",
"4",
"4",
"4",
"5",
"5",
"5",
"5"
] |
MaxStrange/AudioSegment
|
python
|
https://github.com/MaxStrange/AudioSegment/blob/1daefb8de626ddff3ff7016697c3ad31d262ecd6/algorithms/asa.py#L639-L773
|
[
"def",
"_match_fronts",
"(",
"onset_fronts",
",",
"offset_fronts",
",",
"onsets",
",",
"offsets",
",",
"debug",
"=",
"False",
")",
":",
"def",
"printd",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
":",
"if",
"debug",
":",
"print",
"(",
"*",
"args",
",",
"*",
"*",
"kwargs",
")",
"# Make copies of everything, so we can do whatever we want with them",
"onset_fronts",
"=",
"np",
".",
"copy",
"(",
"onset_fronts",
")",
"offset_fronts",
"=",
"np",
".",
"copy",
"(",
"offset_fronts",
")",
"onsets",
"=",
"np",
".",
"copy",
"(",
"onsets",
")",
"offsets",
"=",
"np",
".",
"copy",
"(",
"offsets",
")",
"# This is what we will return",
"segmentation_mask",
"=",
"np",
".",
"zeros_like",
"(",
"onset_fronts",
")",
"# - Take the first frequency in the onset_fronts matrix",
"# [ s s s s s s s s s] <-- This frequency",
"# [ s s s s s s s s s]",
"# [ s s s s s s s s s]",
"# [ s s s s s s s s s]",
"# [ s s s s s s s s s]",
"# - Follow it along in time like this:",
"# first sample last sample",
"# v --> v",
"# [ s s s s s s s s s]",
"# [ s s s s s s s s s]",
"# [ s s s s s s s s s]",
"# [ s s s s s s s s s]",
"# [ s s s s s s s s s]",
"# until you get to the first onset front in that frequency",
"# Here it is!",
"# v",
"# [ . O . . . . . . .]",
"# [ . . O . . . . . .]",
"# [ . . O . . . . . .]",
"# [ . O . . . . . . .]",
"# [ O . . . . . . . .]",
"resulting_onset_fronts",
"=",
"np",
".",
"copy",
"(",
"onset_fronts",
")",
"printd",
"(",
"\" -> Dealing with onset fronts...\"",
")",
"for",
"onset_front_id",
"in",
"_get_front_ids_one_at_a_time",
"(",
"onset_fronts",
")",
":",
"printd",
"(",
"\" -> Dealing with onset front\"",
",",
"int",
"(",
"onset_front_id",
")",
")",
"front_is_complete",
"=",
"False",
"while",
"not",
"front_is_complete",
":",
"# - Now, starting at this onset front in each frequency, find that onset's corresponding offset",
"# [ . O . . . . F . .]",
"# [ . . O . . . F . .]",
"# [ . . O . F . . . .]",
"# [ . O . F . . . . .]",
"# [ O F . . . . . . .]",
"corresponding_offsets",
"=",
"_get_corresponding_offsets",
"(",
"resulting_onset_fronts",
",",
"onset_front_id",
",",
"onsets",
",",
"offsets",
")",
"# It is possible that onset_front_id has been removed from resulting_onset_fronts,",
"# if so, skip it and move on to the next onset front (we are iterating over the original",
"# to keep the iterator valid)",
"if",
"not",
"corresponding_offsets",
":",
"break",
"# - Get all the offset fronts that are composed of at least one of these offset times",
"# [ . O . . . . 1 . .]",
"# [ . . O 3 . . 1 . .]",
"# [ . . O 3 F . 1 . .]",
"# [ . O . 3 . . . 1 .]",
"# [ O F 3 . . . . . .]",
"_all_offset_fronts_of_interest",
",",
"ids_ntimes_seen",
"=",
"_get_all_offset_fronts_from_offsets",
"(",
"offset_fronts",
",",
"corresponding_offsets",
")",
"# - Check how many of these offset times each of the offset fronts are composed of:",
"# [ . O . . . . Y . .]",
"# [ . . O 3 . . Y . .]",
"# [ . . O 3 F . 1 . .]",
"# [ . O . X . . . 1 .]",
"# [ O F 3 . . . . . .]",
"# In this example, offset front 1 is made up of 4 offset times, 2 of which (the Y's) are offset times",
"# that correspond to onsets in the onset front we are currently dealing with. Meanwhile, offset",
"# front 3 is made up of 4 offset times, only one of which (the X) is one of the offsets that corresponds",
"# to the onset front.",
"# - Choose the offset front which matches the most offset time candidates. In this example, offset front 1",
"# is chosen because it has 2 of these offset times.",
"# If there is a tie, we choose the ID with the lower number",
"ntimes_seen_sorted",
"=",
"sorted",
"(",
"[",
"(",
"k",
",",
"v",
")",
"for",
"k",
",",
"v",
"in",
"ids_ntimes_seen",
".",
"items",
"(",
")",
"]",
",",
"key",
"=",
"lambda",
"tup",
":",
"(",
"-",
"1",
"*",
"tup",
"[",
"1",
"]",
",",
"tup",
"[",
"0",
"]",
")",
")",
"assert",
"len",
"(",
"ntimes_seen_sorted",
")",
">",
"0",
",",
"\"We somehow got an empty dict of offset front IDs\"",
"# Only use the special final front (the -1, catch-all front composed of final samples in each frequency) if necessary",
"offset_front_id",
",",
"_ntimes_seen",
"=",
"ntimes_seen_sorted",
"[",
"0",
"]",
"if",
"offset_front_id",
"==",
"-",
"1",
"and",
"len",
"(",
"ntimes_seen_sorted",
")",
">",
"1",
":",
"offset_front_id",
",",
"_ntimes_seen",
"=",
"ntimes_seen_sorted",
"[",
"1",
"]",
"offset_front_id_most_overlap",
"=",
"offset_front_id",
"# - Finally, update the segmentation mask to follow the offset",
"# front from where it first overlaps in frequency with the onset front to where it ends or to where",
"# the onset front ends, whichever happens first.",
"# [ . S S S S S S . .]",
"# [ . . S S S S S . .]",
"# [ . . S S S S S . .]",
"# [ . S S S S S S S .]",
"# [ O F 3 . . . . . .] <-- This frequency has not yet been matched with an offset front",
"front_is_complete",
"=",
"_update_segmentation_mask",
"(",
"segmentation_mask",
",",
"resulting_onset_fronts",
",",
"offset_fronts",
",",
"onset_front_id",
",",
"offset_front_id_most_overlap",
")",
"# Remove any onsets that are covered by the new segmentation mask",
"_remove_overlaps",
"(",
"segmentation_mask",
",",
"resulting_onset_fronts",
")",
"# Remove any offsets that are covered by the new segmentaion mask",
"_remove_overlaps",
"(",
"segmentation_mask",
",",
"offset_fronts",
")",
"# - Repeat this algorithm, restarting in the first frequency channel that did not match (the last frequency in",
"# the above example). Do this until you have finished with this onset front.",
"# - Repeat for each onset front in the rest of this frequency",
"# - Repeat for each frequency",
"return",
"segmentation_mask"
] |
1daefb8de626ddff3ff7016697c3ad31d262ecd6
|
test
|
_remove_fronts_that_are_too_small
|
Removes all fronts from `fronts` which are strictly smaller than
`size` consecutive frequencies in length.
|
algorithms/asa.py
|
def _remove_fronts_that_are_too_small(fronts, size):
"""
Removes all fronts from `fronts` which are strictly smaller than
`size` consecutive frequencies in length.
"""
ids = np.unique(fronts)
for id in ids:
if id == 0 or id == -1:
continue
front = _get_front_idxs_from_id(fronts, id)
if len(front) < size:
indexes = ([f for f, _ in front], [s for _, s in front])
fronts[indexes] = 0
|
def _remove_fronts_that_are_too_small(fronts, size):
"""
Removes all fronts from `fronts` which are strictly smaller than
`size` consecutive frequencies in length.
"""
ids = np.unique(fronts)
for id in ids:
if id == 0 or id == -1:
continue
front = _get_front_idxs_from_id(fronts, id)
if len(front) < size:
indexes = ([f for f, _ in front], [s for _, s in front])
fronts[indexes] = 0
|
[
"Removes",
"all",
"fronts",
"from",
"fronts",
"which",
"are",
"strictly",
"smaller",
"than",
"size",
"consecutive",
"frequencies",
"in",
"length",
"."
] |
MaxStrange/AudioSegment
|
python
|
https://github.com/MaxStrange/AudioSegment/blob/1daefb8de626ddff3ff7016697c3ad31d262ecd6/algorithms/asa.py#L776-L788
|
[
"def",
"_remove_fronts_that_are_too_small",
"(",
"fronts",
",",
"size",
")",
":",
"ids",
"=",
"np",
".",
"unique",
"(",
"fronts",
")",
"for",
"id",
"in",
"ids",
":",
"if",
"id",
"==",
"0",
"or",
"id",
"==",
"-",
"1",
":",
"continue",
"front",
"=",
"_get_front_idxs_from_id",
"(",
"fronts",
",",
"id",
")",
"if",
"len",
"(",
"front",
")",
"<",
"size",
":",
"indexes",
"=",
"(",
"[",
"f",
"for",
"f",
",",
"_",
"in",
"front",
"]",
",",
"[",
"s",
"for",
"_",
",",
"s",
"in",
"front",
"]",
")",
"fronts",
"[",
"indexes",
"]",
"=",
"0"
] |
1daefb8de626ddff3ff7016697c3ad31d262ecd6
|
test
|
_break_poorly_matched_fronts
|
For each onset front, for each frequency in that front, break the onset front if the signals
between this frequency's onset and the next frequency's onset are not similar enough.
Specifically:
If we have the following two frequency channels, and the two O's are part of the same onset front,
::
[ . O . . . . . . . . . . ]
[ . . . . O . . . . . . . ]
We compare the signals x and y:
::
[ . x x x x . . . . . . . ]
[ . y y y y . . . . . . . ]
And if they are not sufficiently similar (via a DSP correlation algorithm), we break the onset
front between these two channels.
Once this is done, remove any onset fronts that are less than 3 channels wide.
|
algorithms/asa.py
|
def _break_poorly_matched_fronts(fronts, threshold=0.1, threshold_overlap_samples=3):
"""
For each onset front, for each frequency in that front, break the onset front if the signals
between this frequency's onset and the next frequency's onset are not similar enough.
Specifically:
If we have the following two frequency channels, and the two O's are part of the same onset front,
::
[ . O . . . . . . . . . . ]
[ . . . . O . . . . . . . ]
We compare the signals x and y:
::
[ . x x x x . . . . . . . ]
[ . y y y y . . . . . . . ]
And if they are not sufficiently similar (via a DSP correlation algorithm), we break the onset
front between these two channels.
Once this is done, remove any onset fronts that are less than 3 channels wide.
"""
assert threshold_overlap_samples > 0, "Number of samples of overlap must be greater than zero"
breaks_after = {}
for front_id in _get_front_ids_one_at_a_time(fronts):
front = _get_front_idxs_from_id(fronts, front_id)
for i, (f, s) in enumerate(front):
if i < len(front) - 1:
# Get the signal from f, s to f, s+1 and the signal from f+1, s to f+1, s+1
next_f, next_s = front[i + 1]
low_s = min(s, next_s)
high_s = max(s, next_s)
sig_this_f = fronts[f, low_s:high_s]
sig_next_f = fronts[next_f, low_s:high_s]
assert len(sig_next_f) == len(sig_this_f)
if len(sig_next_f) > threshold_overlap_samples:
# If these two signals are not sufficiently close in form, this front should be broken up
correlation = signal.correlate(sig_this_f, sig_next_f, mode='same')
assert len(correlation) > 0
correlation = correlation / max(correlation + 1E-9)
similarity = np.sum(correlation) / len(correlation)
# TODO: the above stuff probably needs to be figured out
if similarity < threshold:
if front_id in breaks_after:
breaks_after[front_id].append((f, s))
else:
breaks_after[front_id] = []
# Now update the fronts matrix by breaking up any fronts at the points we just identified
# and assign the newly created fronts new IDs
taken_ids = sorted(np.unique(fronts))
next_id = taken_ids[-1] + 1
for id in breaks_after.keys():
for f, s in breaks_after[id]:
fidxs, sidxs = np.where(fronts == id)
idxs_greater_than_f = [fidx for fidx in fidxs if fidx > f]
start = len(sidxs) - len(idxs_greater_than_f)
indexes = (idxs_greater_than_f, sidxs[start:])
fronts[indexes] = next_id
next_id += 1
_remove_fronts_that_are_too_small(fronts, 3)
|
def _break_poorly_matched_fronts(fronts, threshold=0.1, threshold_overlap_samples=3):
"""
For each onset front, for each frequency in that front, break the onset front if the signals
between this frequency's onset and the next frequency's onset are not similar enough.
Specifically:
If we have the following two frequency channels, and the two O's are part of the same onset front,
::
[ . O . . . . . . . . . . ]
[ . . . . O . . . . . . . ]
We compare the signals x and y:
::
[ . x x x x . . . . . . . ]
[ . y y y y . . . . . . . ]
And if they are not sufficiently similar (via a DSP correlation algorithm), we break the onset
front between these two channels.
Once this is done, remove any onset fronts that are less than 3 channels wide.
"""
assert threshold_overlap_samples > 0, "Number of samples of overlap must be greater than zero"
breaks_after = {}
for front_id in _get_front_ids_one_at_a_time(fronts):
front = _get_front_idxs_from_id(fronts, front_id)
for i, (f, s) in enumerate(front):
if i < len(front) - 1:
# Get the signal from f, s to f, s+1 and the signal from f+1, s to f+1, s+1
next_f, next_s = front[i + 1]
low_s = min(s, next_s)
high_s = max(s, next_s)
sig_this_f = fronts[f, low_s:high_s]
sig_next_f = fronts[next_f, low_s:high_s]
assert len(sig_next_f) == len(sig_this_f)
if len(sig_next_f) > threshold_overlap_samples:
# If these two signals are not sufficiently close in form, this front should be broken up
correlation = signal.correlate(sig_this_f, sig_next_f, mode='same')
assert len(correlation) > 0
correlation = correlation / max(correlation + 1E-9)
similarity = np.sum(correlation) / len(correlation)
# TODO: the above stuff probably needs to be figured out
if similarity < threshold:
if front_id in breaks_after:
breaks_after[front_id].append((f, s))
else:
breaks_after[front_id] = []
# Now update the fronts matrix by breaking up any fronts at the points we just identified
# and assign the newly created fronts new IDs
taken_ids = sorted(np.unique(fronts))
next_id = taken_ids[-1] + 1
for id in breaks_after.keys():
for f, s in breaks_after[id]:
fidxs, sidxs = np.where(fronts == id)
idxs_greater_than_f = [fidx for fidx in fidxs if fidx > f]
start = len(sidxs) - len(idxs_greater_than_f)
indexes = (idxs_greater_than_f, sidxs[start:])
fronts[indexes] = next_id
next_id += 1
_remove_fronts_that_are_too_small(fronts, 3)
|
[
"For",
"each",
"onset",
"front",
"for",
"each",
"frequency",
"in",
"that",
"front",
"break",
"the",
"onset",
"front",
"if",
"the",
"signals",
"between",
"this",
"frequency",
"s",
"onset",
"and",
"the",
"next",
"frequency",
"s",
"onset",
"are",
"not",
"similar",
"enough",
"."
] |
MaxStrange/AudioSegment
|
python
|
https://github.com/MaxStrange/AudioSegment/blob/1daefb8de626ddff3ff7016697c3ad31d262ecd6/algorithms/asa.py#L790-L855
|
[
"def",
"_break_poorly_matched_fronts",
"(",
"fronts",
",",
"threshold",
"=",
"0.1",
",",
"threshold_overlap_samples",
"=",
"3",
")",
":",
"assert",
"threshold_overlap_samples",
">",
"0",
",",
"\"Number of samples of overlap must be greater than zero\"",
"breaks_after",
"=",
"{",
"}",
"for",
"front_id",
"in",
"_get_front_ids_one_at_a_time",
"(",
"fronts",
")",
":",
"front",
"=",
"_get_front_idxs_from_id",
"(",
"fronts",
",",
"front_id",
")",
"for",
"i",
",",
"(",
"f",
",",
"s",
")",
"in",
"enumerate",
"(",
"front",
")",
":",
"if",
"i",
"<",
"len",
"(",
"front",
")",
"-",
"1",
":",
"# Get the signal from f, s to f, s+1 and the signal from f+1, s to f+1, s+1",
"next_f",
",",
"next_s",
"=",
"front",
"[",
"i",
"+",
"1",
"]",
"low_s",
"=",
"min",
"(",
"s",
",",
"next_s",
")",
"high_s",
"=",
"max",
"(",
"s",
",",
"next_s",
")",
"sig_this_f",
"=",
"fronts",
"[",
"f",
",",
"low_s",
":",
"high_s",
"]",
"sig_next_f",
"=",
"fronts",
"[",
"next_f",
",",
"low_s",
":",
"high_s",
"]",
"assert",
"len",
"(",
"sig_next_f",
")",
"==",
"len",
"(",
"sig_this_f",
")",
"if",
"len",
"(",
"sig_next_f",
")",
">",
"threshold_overlap_samples",
":",
"# If these two signals are not sufficiently close in form, this front should be broken up",
"correlation",
"=",
"signal",
".",
"correlate",
"(",
"sig_this_f",
",",
"sig_next_f",
",",
"mode",
"=",
"'same'",
")",
"assert",
"len",
"(",
"correlation",
")",
">",
"0",
"correlation",
"=",
"correlation",
"/",
"max",
"(",
"correlation",
"+",
"1E-9",
")",
"similarity",
"=",
"np",
".",
"sum",
"(",
"correlation",
")",
"/",
"len",
"(",
"correlation",
")",
"# TODO: the above stuff probably needs to be figured out",
"if",
"similarity",
"<",
"threshold",
":",
"if",
"front_id",
"in",
"breaks_after",
":",
"breaks_after",
"[",
"front_id",
"]",
".",
"append",
"(",
"(",
"f",
",",
"s",
")",
")",
"else",
":",
"breaks_after",
"[",
"front_id",
"]",
"=",
"[",
"]",
"# Now update the fronts matrix by breaking up any fronts at the points we just identified",
"# and assign the newly created fronts new IDs",
"taken_ids",
"=",
"sorted",
"(",
"np",
".",
"unique",
"(",
"fronts",
")",
")",
"next_id",
"=",
"taken_ids",
"[",
"-",
"1",
"]",
"+",
"1",
"for",
"id",
"in",
"breaks_after",
".",
"keys",
"(",
")",
":",
"for",
"f",
",",
"s",
"in",
"breaks_after",
"[",
"id",
"]",
":",
"fidxs",
",",
"sidxs",
"=",
"np",
".",
"where",
"(",
"fronts",
"==",
"id",
")",
"idxs_greater_than_f",
"=",
"[",
"fidx",
"for",
"fidx",
"in",
"fidxs",
"if",
"fidx",
">",
"f",
"]",
"start",
"=",
"len",
"(",
"sidxs",
")",
"-",
"len",
"(",
"idxs_greater_than_f",
")",
"indexes",
"=",
"(",
"idxs_greater_than_f",
",",
"sidxs",
"[",
"start",
":",
"]",
")",
"fronts",
"[",
"indexes",
"]",
"=",
"next_id",
"next_id",
"+=",
"1",
"_remove_fronts_that_are_too_small",
"(",
"fronts",
",",
"3",
")"
] |
1daefb8de626ddff3ff7016697c3ad31d262ecd6
|
test
|
_update_segmentation_mask_if_overlap
|
Merges the segments specified by `id` (found in `toupdate`) and `otherid`
(found in `other`) if they overlap at all. Updates `toupdate` accordingly.
|
algorithms/asa.py
|
def _update_segmentation_mask_if_overlap(toupdate, other, id, otherid):
"""
Merges the segments specified by `id` (found in `toupdate`) and `otherid`
(found in `other`) if they overlap at all. Updates `toupdate` accordingly.
"""
# If there is any overlap or touching, merge the two, otherwise just return
yourmask = other == otherid
mymask = toupdate == id
overlap_exists = np.any(yourmask & mymask)
if not overlap_exists:
return
yourfidxs, yoursidxs = np.where(other == otherid)
toupdate[yourfidxs, yoursidxs] = id
|
def _update_segmentation_mask_if_overlap(toupdate, other, id, otherid):
"""
Merges the segments specified by `id` (found in `toupdate`) and `otherid`
(found in `other`) if they overlap at all. Updates `toupdate` accordingly.
"""
# If there is any overlap or touching, merge the two, otherwise just return
yourmask = other == otherid
mymask = toupdate == id
overlap_exists = np.any(yourmask & mymask)
if not overlap_exists:
return
yourfidxs, yoursidxs = np.where(other == otherid)
toupdate[yourfidxs, yoursidxs] = id
|
[
"Merges",
"the",
"segments",
"specified",
"by",
"id",
"(",
"found",
"in",
"toupdate",
")",
"and",
"otherid",
"(",
"found",
"in",
"other",
")",
"if",
"they",
"overlap",
"at",
"all",
".",
"Updates",
"toupdate",
"accordingly",
"."
] |
MaxStrange/AudioSegment
|
python
|
https://github.com/MaxStrange/AudioSegment/blob/1daefb8de626ddff3ff7016697c3ad31d262ecd6/algorithms/asa.py#L857-L870
|
[
"def",
"_update_segmentation_mask_if_overlap",
"(",
"toupdate",
",",
"other",
",",
"id",
",",
"otherid",
")",
":",
"# If there is any overlap or touching, merge the two, otherwise just return",
"yourmask",
"=",
"other",
"==",
"otherid",
"mymask",
"=",
"toupdate",
"==",
"id",
"overlap_exists",
"=",
"np",
".",
"any",
"(",
"yourmask",
"&",
"mymask",
")",
"if",
"not",
"overlap_exists",
":",
"return",
"yourfidxs",
",",
"yoursidxs",
"=",
"np",
".",
"where",
"(",
"other",
"==",
"otherid",
")",
"toupdate",
"[",
"yourfidxs",
",",
"yoursidxs",
"]",
"=",
"id"
] |
1daefb8de626ddff3ff7016697c3ad31d262ecd6
|
test
|
_segments_are_adjacent
|
Checks if seg1 and seg2 are adjacent at any point. Each is a tuple of the form
(fidxs, sidxs).
|
algorithms/asa.py
|
def _segments_are_adjacent(seg1, seg2):
"""
Checks if seg1 and seg2 are adjacent at any point. Each is a tuple of the form
(fidxs, sidxs).
"""
# TODO: This is unnacceptably slow
lsf1, lss1 = seg1
lsf2, lss2 = seg2
for i, f1 in enumerate(lsf1):
for j, f2 in enumerate(lsf2):
if f1 <= f2 + 1 and f1 >= f2 - 1:
# Frequencies are a match, are samples?
if lss1[i] <= lss2[j] + 1 and lss1[i] >= lss2[j] - 1:
return True
return False
|
def _segments_are_adjacent(seg1, seg2):
"""
Checks if seg1 and seg2 are adjacent at any point. Each is a tuple of the form
(fidxs, sidxs).
"""
# TODO: This is unnacceptably slow
lsf1, lss1 = seg1
lsf2, lss2 = seg2
for i, f1 in enumerate(lsf1):
for j, f2 in enumerate(lsf2):
if f1 <= f2 + 1 and f1 >= f2 - 1:
# Frequencies are a match, are samples?
if lss1[i] <= lss2[j] + 1 and lss1[i] >= lss2[j] - 1:
return True
return False
|
[
"Checks",
"if",
"seg1",
"and",
"seg2",
"are",
"adjacent",
"at",
"any",
"point",
".",
"Each",
"is",
"a",
"tuple",
"of",
"the",
"form",
"(",
"fidxs",
"sidxs",
")",
"."
] |
MaxStrange/AudioSegment
|
python
|
https://github.com/MaxStrange/AudioSegment/blob/1daefb8de626ddff3ff7016697c3ad31d262ecd6/algorithms/asa.py#L872-L886
|
[
"def",
"_segments_are_adjacent",
"(",
"seg1",
",",
"seg2",
")",
":",
"# TODO: This is unnacceptably slow",
"lsf1",
",",
"lss1",
"=",
"seg1",
"lsf2",
",",
"lss2",
"=",
"seg2",
"for",
"i",
",",
"f1",
"in",
"enumerate",
"(",
"lsf1",
")",
":",
"for",
"j",
",",
"f2",
"in",
"enumerate",
"(",
"lsf2",
")",
":",
"if",
"f1",
"<=",
"f2",
"+",
"1",
"and",
"f1",
">=",
"f2",
"-",
"1",
":",
"# Frequencies are a match, are samples?",
"if",
"lss1",
"[",
"i",
"]",
"<=",
"lss2",
"[",
"j",
"]",
"+",
"1",
"and",
"lss1",
"[",
"i",
"]",
">=",
"lss2",
"[",
"j",
"]",
"-",
"1",
":",
"return",
"True",
"return",
"False"
] |
1daefb8de626ddff3ff7016697c3ad31d262ecd6
|
test
|
_merge_adjacent_segments
|
Merges all segments in `mask` which are touching.
|
algorithms/asa.py
|
def _merge_adjacent_segments(mask):
"""
Merges all segments in `mask` which are touching.
"""
mask_ids = [id for id in np.unique(mask) if id != 0]
for id in mask_ids:
myfidxs, mysidxs = np.where(mask == id)
for other in mask_ids: # Ugh, brute force O(N^2) algorithm.. gross..
if id == other:
continue
else:
other_fidxs, other_sidxs = np.where(mask == other)
if _segments_are_adjacent((myfidxs, mysidxs), (other_fidxs, other_sidxs)):
mask[other_fidxs, other_sidxs] = id
|
def _merge_adjacent_segments(mask):
"""
Merges all segments in `mask` which are touching.
"""
mask_ids = [id for id in np.unique(mask) if id != 0]
for id in mask_ids:
myfidxs, mysidxs = np.where(mask == id)
for other in mask_ids: # Ugh, brute force O(N^2) algorithm.. gross..
if id == other:
continue
else:
other_fidxs, other_sidxs = np.where(mask == other)
if _segments_are_adjacent((myfidxs, mysidxs), (other_fidxs, other_sidxs)):
mask[other_fidxs, other_sidxs] = id
|
[
"Merges",
"all",
"segments",
"in",
"mask",
"which",
"are",
"touching",
"."
] |
MaxStrange/AudioSegment
|
python
|
https://github.com/MaxStrange/AudioSegment/blob/1daefb8de626ddff3ff7016697c3ad31d262ecd6/algorithms/asa.py#L888-L901
|
[
"def",
"_merge_adjacent_segments",
"(",
"mask",
")",
":",
"mask_ids",
"=",
"[",
"id",
"for",
"id",
"in",
"np",
".",
"unique",
"(",
"mask",
")",
"if",
"id",
"!=",
"0",
"]",
"for",
"id",
"in",
"mask_ids",
":",
"myfidxs",
",",
"mysidxs",
"=",
"np",
".",
"where",
"(",
"mask",
"==",
"id",
")",
"for",
"other",
"in",
"mask_ids",
":",
"# Ugh, brute force O(N^2) algorithm.. gross..",
"if",
"id",
"==",
"other",
":",
"continue",
"else",
":",
"other_fidxs",
",",
"other_sidxs",
"=",
"np",
".",
"where",
"(",
"mask",
"==",
"other",
")",
"if",
"_segments_are_adjacent",
"(",
"(",
"myfidxs",
",",
"mysidxs",
")",
",",
"(",
"other_fidxs",
",",
"other_sidxs",
")",
")",
":",
"mask",
"[",
"other_fidxs",
",",
"other_sidxs",
"]",
"=",
"id"
] |
1daefb8de626ddff3ff7016697c3ad31d262ecd6
|
test
|
_integrate_segmentation_masks
|
`segmasks` should be in sorted order of [coarsest, ..., finest].
Integrates the given list of segmentation masks together to form one segmentation mask
by having each segment subsume ones that exist in the finer masks.
|
algorithms/asa.py
|
def _integrate_segmentation_masks(segmasks):
"""
`segmasks` should be in sorted order of [coarsest, ..., finest].
Integrates the given list of segmentation masks together to form one segmentation mask
by having each segment subsume ones that exist in the finer masks.
"""
if len(segmasks) == 1:
return segmasks
assert len(segmasks) > 0, "Passed in empty list of segmentation masks"
coarse_mask = np.copy(segmasks[0])
mask_ids = [id for id in np.unique(coarse_mask) if id != 0]
for id in mask_ids:
for mask in segmasks[1:]:
finer_ids = [i for i in np.unique(mask) if i != 0]
for finer_id in finer_ids:
_update_segmentation_mask_if_overlap(coarse_mask, mask, id, finer_id)
# Lastly, merge all adjacent blocks, but just kidding, since this algorithm is waaaay to slow
#_merge_adjacent_segments(coarse_mask)
return coarse_mask
|
def _integrate_segmentation_masks(segmasks):
"""
`segmasks` should be in sorted order of [coarsest, ..., finest].
Integrates the given list of segmentation masks together to form one segmentation mask
by having each segment subsume ones that exist in the finer masks.
"""
if len(segmasks) == 1:
return segmasks
assert len(segmasks) > 0, "Passed in empty list of segmentation masks"
coarse_mask = np.copy(segmasks[0])
mask_ids = [id for id in np.unique(coarse_mask) if id != 0]
for id in mask_ids:
for mask in segmasks[1:]:
finer_ids = [i for i in np.unique(mask) if i != 0]
for finer_id in finer_ids:
_update_segmentation_mask_if_overlap(coarse_mask, mask, id, finer_id)
# Lastly, merge all adjacent blocks, but just kidding, since this algorithm is waaaay to slow
#_merge_adjacent_segments(coarse_mask)
return coarse_mask
|
[
"segmasks",
"should",
"be",
"in",
"sorted",
"order",
"of",
"[",
"coarsest",
"...",
"finest",
"]",
"."
] |
MaxStrange/AudioSegment
|
python
|
https://github.com/MaxStrange/AudioSegment/blob/1daefb8de626ddff3ff7016697c3ad31d262ecd6/algorithms/asa.py#L903-L924
|
[
"def",
"_integrate_segmentation_masks",
"(",
"segmasks",
")",
":",
"if",
"len",
"(",
"segmasks",
")",
"==",
"1",
":",
"return",
"segmasks",
"assert",
"len",
"(",
"segmasks",
")",
">",
"0",
",",
"\"Passed in empty list of segmentation masks\"",
"coarse_mask",
"=",
"np",
".",
"copy",
"(",
"segmasks",
"[",
"0",
"]",
")",
"mask_ids",
"=",
"[",
"id",
"for",
"id",
"in",
"np",
".",
"unique",
"(",
"coarse_mask",
")",
"if",
"id",
"!=",
"0",
"]",
"for",
"id",
"in",
"mask_ids",
":",
"for",
"mask",
"in",
"segmasks",
"[",
"1",
":",
"]",
":",
"finer_ids",
"=",
"[",
"i",
"for",
"i",
"in",
"np",
".",
"unique",
"(",
"mask",
")",
"if",
"i",
"!=",
"0",
"]",
"for",
"finer_id",
"in",
"finer_ids",
":",
"_update_segmentation_mask_if_overlap",
"(",
"coarse_mask",
",",
"mask",
",",
"id",
",",
"finer_id",
")",
"# Lastly, merge all adjacent blocks, but just kidding, since this algorithm is waaaay to slow",
"#_merge_adjacent_segments(coarse_mask)",
"return",
"coarse_mask"
] |
1daefb8de626ddff3ff7016697c3ad31d262ecd6
|
test
|
_separate_masks
|
Returns a list of segmentation masks each of the same dimension as the input one,
but where they each have exactly one segment in them and all other samples in them
are zeroed.
Only bothers to return segments that are larger in total area than `threshold * mask.size`.
|
algorithms/asa.py
|
def _separate_masks(mask, threshold=0.025):
"""
Returns a list of segmentation masks each of the same dimension as the input one,
but where they each have exactly one segment in them and all other samples in them
are zeroed.
Only bothers to return segments that are larger in total area than `threshold * mask.size`.
"""
try:
ncpus = multiprocessing.cpu_count()
except NotImplementedError:
ncpus = 2
with multiprocessing.Pool(processes=ncpus) as pool:
mask_ids = [id for id in np.unique(mask) if id != 0]
thresholds = [threshold * mask.size for _ in range(len(mask_ids))]
masks = [mask for _ in range(len(mask_ids))]
ms = pool.starmap(_separate_masks_task, zip(mask_ids, thresholds, masks))
return [m for m in ms if m is not None]
|
def _separate_masks(mask, threshold=0.025):
"""
Returns a list of segmentation masks each of the same dimension as the input one,
but where they each have exactly one segment in them and all other samples in them
are zeroed.
Only bothers to return segments that are larger in total area than `threshold * mask.size`.
"""
try:
ncpus = multiprocessing.cpu_count()
except NotImplementedError:
ncpus = 2
with multiprocessing.Pool(processes=ncpus) as pool:
mask_ids = [id for id in np.unique(mask) if id != 0]
thresholds = [threshold * mask.size for _ in range(len(mask_ids))]
masks = [mask for _ in range(len(mask_ids))]
ms = pool.starmap(_separate_masks_task, zip(mask_ids, thresholds, masks))
return [m for m in ms if m is not None]
|
[
"Returns",
"a",
"list",
"of",
"segmentation",
"masks",
"each",
"of",
"the",
"same",
"dimension",
"as",
"the",
"input",
"one",
"but",
"where",
"they",
"each",
"have",
"exactly",
"one",
"segment",
"in",
"them",
"and",
"all",
"other",
"samples",
"in",
"them",
"are",
"zeroed",
"."
] |
MaxStrange/AudioSegment
|
python
|
https://github.com/MaxStrange/AudioSegment/blob/1daefb8de626ddff3ff7016697c3ad31d262ecd6/algorithms/asa.py#L935-L953
|
[
"def",
"_separate_masks",
"(",
"mask",
",",
"threshold",
"=",
"0.025",
")",
":",
"try",
":",
"ncpus",
"=",
"multiprocessing",
".",
"cpu_count",
"(",
")",
"except",
"NotImplementedError",
":",
"ncpus",
"=",
"2",
"with",
"multiprocessing",
".",
"Pool",
"(",
"processes",
"=",
"ncpus",
")",
"as",
"pool",
":",
"mask_ids",
"=",
"[",
"id",
"for",
"id",
"in",
"np",
".",
"unique",
"(",
"mask",
")",
"if",
"id",
"!=",
"0",
"]",
"thresholds",
"=",
"[",
"threshold",
"*",
"mask",
".",
"size",
"for",
"_",
"in",
"range",
"(",
"len",
"(",
"mask_ids",
")",
")",
"]",
"masks",
"=",
"[",
"mask",
"for",
"_",
"in",
"range",
"(",
"len",
"(",
"mask_ids",
")",
")",
"]",
"ms",
"=",
"pool",
".",
"starmap",
"(",
"_separate_masks_task",
",",
"zip",
"(",
"mask_ids",
",",
"thresholds",
",",
"masks",
")",
")",
"return",
"[",
"m",
"for",
"m",
"in",
"ms",
"if",
"m",
"is",
"not",
"None",
"]"
] |
1daefb8de626ddff3ff7016697c3ad31d262ecd6
|
test
|
_downsample_one_or_the_other
|
Takes the given `mask` and `stft`, which must be matrices of shape `frequencies, times`
and downsamples one of them into the other one's times, so that the time dimensions
are equal. Leaves the frequency dimension untouched.
|
algorithms/asa.py
|
def _downsample_one_or_the_other(mask, mask_indexes, stft, stft_indexes):
"""
Takes the given `mask` and `stft`, which must be matrices of shape `frequencies, times`
and downsamples one of them into the other one's times, so that the time dimensions
are equal. Leaves the frequency dimension untouched.
"""
assert len(mask.shape) == 2, "Expected a two-dimensional `mask`, but got one of {} dimensions.".format(len(mask.shape))
assert len(stft.shape) == 2, "Expected a two-dimensional `stft`, but got one of {} dimensions.".format(len(stft.shape))
if mask.shape[1] > stft.shape[1]:
downsample_factor = mask.shape[1] / stft.shape[1]
indexes = _get_downsampled_indexes(mask, downsample_factor)
mask = mask[:, indexes]
mask_indexes = np.array(indexes)
elif mask.shape[1] < stft.shape[1]:
downsample_factor = stft.shape[1] / mask.shape[1]
indexes = _get_downsampled_indexes(stft, downsample_factor)
stft = stft[:, indexes]
stft_indexes = np.array(indexes)
return mask, mask_indexes, stft, stft_indexes
|
def _downsample_one_or_the_other(mask, mask_indexes, stft, stft_indexes):
"""
Takes the given `mask` and `stft`, which must be matrices of shape `frequencies, times`
and downsamples one of them into the other one's times, so that the time dimensions
are equal. Leaves the frequency dimension untouched.
"""
assert len(mask.shape) == 2, "Expected a two-dimensional `mask`, but got one of {} dimensions.".format(len(mask.shape))
assert len(stft.shape) == 2, "Expected a two-dimensional `stft`, but got one of {} dimensions.".format(len(stft.shape))
if mask.shape[1] > stft.shape[1]:
downsample_factor = mask.shape[1] / stft.shape[1]
indexes = _get_downsampled_indexes(mask, downsample_factor)
mask = mask[:, indexes]
mask_indexes = np.array(indexes)
elif mask.shape[1] < stft.shape[1]:
downsample_factor = stft.shape[1] / mask.shape[1]
indexes = _get_downsampled_indexes(stft, downsample_factor)
stft = stft[:, indexes]
stft_indexes = np.array(indexes)
return mask, mask_indexes, stft, stft_indexes
|
[
"Takes",
"the",
"given",
"mask",
"and",
"stft",
"which",
"must",
"be",
"matrices",
"of",
"shape",
"frequencies",
"times",
"and",
"downsamples",
"one",
"of",
"them",
"into",
"the",
"other",
"one",
"s",
"times",
"so",
"that",
"the",
"time",
"dimensions",
"are",
"equal",
".",
"Leaves",
"the",
"frequency",
"dimension",
"untouched",
"."
] |
MaxStrange/AudioSegment
|
python
|
https://github.com/MaxStrange/AudioSegment/blob/1daefb8de626ddff3ff7016697c3ad31d262ecd6/algorithms/asa.py#L976-L996
|
[
"def",
"_downsample_one_or_the_other",
"(",
"mask",
",",
"mask_indexes",
",",
"stft",
",",
"stft_indexes",
")",
":",
"assert",
"len",
"(",
"mask",
".",
"shape",
")",
"==",
"2",
",",
"\"Expected a two-dimensional `mask`, but got one of {} dimensions.\"",
".",
"format",
"(",
"len",
"(",
"mask",
".",
"shape",
")",
")",
"assert",
"len",
"(",
"stft",
".",
"shape",
")",
"==",
"2",
",",
"\"Expected a two-dimensional `stft`, but got one of {} dimensions.\"",
".",
"format",
"(",
"len",
"(",
"stft",
".",
"shape",
")",
")",
"if",
"mask",
".",
"shape",
"[",
"1",
"]",
">",
"stft",
".",
"shape",
"[",
"1",
"]",
":",
"downsample_factor",
"=",
"mask",
".",
"shape",
"[",
"1",
"]",
"/",
"stft",
".",
"shape",
"[",
"1",
"]",
"indexes",
"=",
"_get_downsampled_indexes",
"(",
"mask",
",",
"downsample_factor",
")",
"mask",
"=",
"mask",
"[",
":",
",",
"indexes",
"]",
"mask_indexes",
"=",
"np",
".",
"array",
"(",
"indexes",
")",
"elif",
"mask",
".",
"shape",
"[",
"1",
"]",
"<",
"stft",
".",
"shape",
"[",
"1",
"]",
":",
"downsample_factor",
"=",
"stft",
".",
"shape",
"[",
"1",
"]",
"/",
"mask",
".",
"shape",
"[",
"1",
"]",
"indexes",
"=",
"_get_downsampled_indexes",
"(",
"stft",
",",
"downsample_factor",
")",
"stft",
"=",
"stft",
"[",
":",
",",
"indexes",
"]",
"stft_indexes",
"=",
"np",
".",
"array",
"(",
"indexes",
")",
"return",
"mask",
",",
"mask_indexes",
",",
"stft",
",",
"stft_indexes"
] |
1daefb8de626ddff3ff7016697c3ad31d262ecd6
|
test
|
_map_segmentation_mask_to_stft_domain
|
Maps the given `mask`, which is in domain (`frequencies`, `times`) to the new domain (`stft_frequencies`, `stft_times`)
and returns the result.
|
algorithms/asa.py
|
def _map_segmentation_mask_to_stft_domain(mask, times, frequencies, stft_times, stft_frequencies):
"""
Maps the given `mask`, which is in domain (`frequencies`, `times`) to the new domain (`stft_frequencies`, `stft_times`)
and returns the result.
"""
assert mask.shape == (frequencies.shape[0], times.shape[0]), "Times is shape {} and frequencies is shape {}, but mask is shaped {}".format(
times.shape, frequencies.shape, mask.shape
)
result = np.zeros((stft_frequencies.shape[0], stft_times.shape[0]))
if len(stft_times) > len(times):
all_j = [j for j in range(len(stft_times))]
idxs = [int(i) for i in np.linspace(0, len(times) - 1, num=len(stft_times))]
all_i = [all_j[idx] for idx in idxs]
else:
all_i = [i for i in range(len(times))]
idxs = [int(i) for i in np.linspace(0, len(stft_times) - 1, num=len(times))]
all_j = [all_i[idx] for idx in idxs]
for i, j in zip(all_i, all_j):
result[:, j] = np.interp(stft_frequencies, frequencies, mask[:, i])
return result
|
def _map_segmentation_mask_to_stft_domain(mask, times, frequencies, stft_times, stft_frequencies):
"""
Maps the given `mask`, which is in domain (`frequencies`, `times`) to the new domain (`stft_frequencies`, `stft_times`)
and returns the result.
"""
assert mask.shape == (frequencies.shape[0], times.shape[0]), "Times is shape {} and frequencies is shape {}, but mask is shaped {}".format(
times.shape, frequencies.shape, mask.shape
)
result = np.zeros((stft_frequencies.shape[0], stft_times.shape[0]))
if len(stft_times) > len(times):
all_j = [j for j in range(len(stft_times))]
idxs = [int(i) for i in np.linspace(0, len(times) - 1, num=len(stft_times))]
all_i = [all_j[idx] for idx in idxs]
else:
all_i = [i for i in range(len(times))]
idxs = [int(i) for i in np.linspace(0, len(stft_times) - 1, num=len(times))]
all_j = [all_i[idx] for idx in idxs]
for i, j in zip(all_i, all_j):
result[:, j] = np.interp(stft_frequencies, frequencies, mask[:, i])
return result
|
[
"Maps",
"the",
"given",
"mask",
"which",
"is",
"in",
"domain",
"(",
"frequencies",
"times",
")",
"to",
"the",
"new",
"domain",
"(",
"stft_frequencies",
"stft_times",
")",
"and",
"returns",
"the",
"result",
"."
] |
MaxStrange/AudioSegment
|
python
|
https://github.com/MaxStrange/AudioSegment/blob/1daefb8de626ddff3ff7016697c3ad31d262ecd6/algorithms/asa.py#L998-L1020
|
[
"def",
"_map_segmentation_mask_to_stft_domain",
"(",
"mask",
",",
"times",
",",
"frequencies",
",",
"stft_times",
",",
"stft_frequencies",
")",
":",
"assert",
"mask",
".",
"shape",
"==",
"(",
"frequencies",
".",
"shape",
"[",
"0",
"]",
",",
"times",
".",
"shape",
"[",
"0",
"]",
")",
",",
"\"Times is shape {} and frequencies is shape {}, but mask is shaped {}\"",
".",
"format",
"(",
"times",
".",
"shape",
",",
"frequencies",
".",
"shape",
",",
"mask",
".",
"shape",
")",
"result",
"=",
"np",
".",
"zeros",
"(",
"(",
"stft_frequencies",
".",
"shape",
"[",
"0",
"]",
",",
"stft_times",
".",
"shape",
"[",
"0",
"]",
")",
")",
"if",
"len",
"(",
"stft_times",
")",
">",
"len",
"(",
"times",
")",
":",
"all_j",
"=",
"[",
"j",
"for",
"j",
"in",
"range",
"(",
"len",
"(",
"stft_times",
")",
")",
"]",
"idxs",
"=",
"[",
"int",
"(",
"i",
")",
"for",
"i",
"in",
"np",
".",
"linspace",
"(",
"0",
",",
"len",
"(",
"times",
")",
"-",
"1",
",",
"num",
"=",
"len",
"(",
"stft_times",
")",
")",
"]",
"all_i",
"=",
"[",
"all_j",
"[",
"idx",
"]",
"for",
"idx",
"in",
"idxs",
"]",
"else",
":",
"all_i",
"=",
"[",
"i",
"for",
"i",
"in",
"range",
"(",
"len",
"(",
"times",
")",
")",
"]",
"idxs",
"=",
"[",
"int",
"(",
"i",
")",
"for",
"i",
"in",
"np",
".",
"linspace",
"(",
"0",
",",
"len",
"(",
"stft_times",
")",
"-",
"1",
",",
"num",
"=",
"len",
"(",
"times",
")",
")",
"]",
"all_j",
"=",
"[",
"all_i",
"[",
"idx",
"]",
"for",
"idx",
"in",
"idxs",
"]",
"for",
"i",
",",
"j",
"in",
"zip",
"(",
"all_i",
",",
"all_j",
")",
":",
"result",
"[",
":",
",",
"j",
"]",
"=",
"np",
".",
"interp",
"(",
"stft_frequencies",
",",
"frequencies",
",",
"mask",
"[",
":",
",",
"i",
"]",
")",
"return",
"result"
] |
1daefb8de626ddff3ff7016697c3ad31d262ecd6
|
test
|
_asa_task
|
Worker for the ASA algorithm's multiprocessing step.
|
algorithms/asa.py
|
def _asa_task(q, masks, stft, sample_width, frame_rate, nsamples_for_each_fft):
"""
Worker for the ASA algorithm's multiprocessing step.
"""
# Convert each mask to (1 or 0) rather than (ID or 0)
for mask in masks:
mask = np.where(mask > 0, 1, 0)
# Multiply the masks against STFTs
masks = [mask * stft for mask in masks]
nparrs = []
dtype_dict = {1: np.int8, 2: np.int16, 4: np.int32}
dtype = dtype_dict[sample_width]
for m in masks:
_times, nparr = signal.istft(m, frame_rate, nperseg=nsamples_for_each_fft)
nparr = nparr.astype(dtype)
nparrs.append(nparr)
for m in nparrs:
q.put(m)
q.put("DONE")
|
def _asa_task(q, masks, stft, sample_width, frame_rate, nsamples_for_each_fft):
"""
Worker for the ASA algorithm's multiprocessing step.
"""
# Convert each mask to (1 or 0) rather than (ID or 0)
for mask in masks:
mask = np.where(mask > 0, 1, 0)
# Multiply the masks against STFTs
masks = [mask * stft for mask in masks]
nparrs = []
dtype_dict = {1: np.int8, 2: np.int16, 4: np.int32}
dtype = dtype_dict[sample_width]
for m in masks:
_times, nparr = signal.istft(m, frame_rate, nperseg=nsamples_for_each_fft)
nparr = nparr.astype(dtype)
nparrs.append(nparr)
for m in nparrs:
q.put(m)
q.put("DONE")
|
[
"Worker",
"for",
"the",
"ASA",
"algorithm",
"s",
"multiprocessing",
"step",
"."
] |
MaxStrange/AudioSegment
|
python
|
https://github.com/MaxStrange/AudioSegment/blob/1daefb8de626ddff3ff7016697c3ad31d262ecd6/algorithms/asa.py#L1022-L1043
|
[
"def",
"_asa_task",
"(",
"q",
",",
"masks",
",",
"stft",
",",
"sample_width",
",",
"frame_rate",
",",
"nsamples_for_each_fft",
")",
":",
"# Convert each mask to (1 or 0) rather than (ID or 0)",
"for",
"mask",
"in",
"masks",
":",
"mask",
"=",
"np",
".",
"where",
"(",
"mask",
">",
"0",
",",
"1",
",",
"0",
")",
"# Multiply the masks against STFTs",
"masks",
"=",
"[",
"mask",
"*",
"stft",
"for",
"mask",
"in",
"masks",
"]",
"nparrs",
"=",
"[",
"]",
"dtype_dict",
"=",
"{",
"1",
":",
"np",
".",
"int8",
",",
"2",
":",
"np",
".",
"int16",
",",
"4",
":",
"np",
".",
"int32",
"}",
"dtype",
"=",
"dtype_dict",
"[",
"sample_width",
"]",
"for",
"m",
"in",
"masks",
":",
"_times",
",",
"nparr",
"=",
"signal",
".",
"istft",
"(",
"m",
",",
"frame_rate",
",",
"nperseg",
"=",
"nsamples_for_each_fft",
")",
"nparr",
"=",
"nparr",
".",
"astype",
"(",
"dtype",
")",
"nparrs",
".",
"append",
"(",
"nparr",
")",
"for",
"m",
"in",
"nparrs",
":",
"q",
".",
"put",
"(",
"m",
")",
"q",
".",
"put",
"(",
"\"DONE\"",
")"
] |
1daefb8de626ddff3ff7016697c3ad31d262ecd6
|
test
|
_get_filter_indices
|
Runs a Markov Decision Process over the given `seg` in chunks of `ms_per_input`, yielding `True` if
this `ms_per_input` chunk has been classified as positive (1) and `False` if this chunk has been
classified as negative (0).
:param seg: The AudioSegment to apply this algorithm to.
:param start_as_yes: If True, the first `ms_per_input` chunk will be classified as positive.
:param prob_raw_yes: The raw probability of finding the event in any given independently sampled `ms_per_input`.
:param ms_per_input: The number of ms of AudioSegment to be fed into the model at a time.
:param model: The model, which must hava predict() function, which takes an AudioSegment of `ms_per_input`
number of ms and which outputs 1 if the audio event is detected in that input, 0 if not.
:param transition_matrix: An iterable of the form: [p(yes->no), p(no->yes)].
:param model_stats: An iterable of the form: [p(reality=1|output=1), p(reality=1|output=0)].
:yields: `True` if the event has been classified in this chunk, `False` otherwise.
|
algorithms/eventdetection.py
|
def _get_filter_indices(seg, start_as_yes, prob_raw_yes, ms_per_input, model, transition_matrix, model_stats):
"""
Runs a Markov Decision Process over the given `seg` in chunks of `ms_per_input`, yielding `True` if
this `ms_per_input` chunk has been classified as positive (1) and `False` if this chunk has been
classified as negative (0).
:param seg: The AudioSegment to apply this algorithm to.
:param start_as_yes: If True, the first `ms_per_input` chunk will be classified as positive.
:param prob_raw_yes: The raw probability of finding the event in any given independently sampled `ms_per_input`.
:param ms_per_input: The number of ms of AudioSegment to be fed into the model at a time.
:param model: The model, which must hava predict() function, which takes an AudioSegment of `ms_per_input`
number of ms and which outputs 1 if the audio event is detected in that input, 0 if not.
:param transition_matrix: An iterable of the form: [p(yes->no), p(no->yes)].
:param model_stats: An iterable of the form: [p(reality=1|output=1), p(reality=1|output=0)].
:yields: `True` if the event has been classified in this chunk, `False` otherwise.
"""
filter_triggered = 1 if start_as_yes else 0
prob_raw_no = 1.0 - prob_raw_yes
for segment, _timestamp in seg.generate_frames_as_segments(ms_per_input):
yield filter_triggered
observation = int(round(model.predict(segment)))
assert observation == 1 or observation == 0, "The given model did not output a 1 or a 0, output: "\
+ str(observation)
prob_hyp_yes_given_last_hyp = 1.0 - transition_matrix[0] if filter_triggered else transition_matrix[1]
prob_hyp_no_given_last_hyp = transition_matrix[0] if filter_triggered else 1.0 - transition_matrix[1]
prob_hyp_yes_given_data = model_stats[0] if observation == 1 else model_stats[1]
prob_hyp_no_given_data = 1.0 - model_stats[0] if observation == 1 else 1.0 - model_stats[1]
hypothesis_yes = prob_raw_yes * prob_hyp_yes_given_last_hyp * prob_hyp_yes_given_data
hypothesis_no = prob_raw_no * prob_hyp_no_given_last_hyp * prob_hyp_no_given_data
# make a list of ints - each is 0 or 1. The number of 1s is hypotheis_yes * 100
# the number of 0s is hypothesis_no * 100
distribution = [1 for i in range(int(round(hypothesis_yes * 100)))]
distribution.extend([0 for i in range(int(round(hypothesis_no * 100)))])
# shuffle
random.shuffle(distribution)
filter_triggered = random.choice(distribution)
|
def _get_filter_indices(seg, start_as_yes, prob_raw_yes, ms_per_input, model, transition_matrix, model_stats):
"""
Runs a Markov Decision Process over the given `seg` in chunks of `ms_per_input`, yielding `True` if
this `ms_per_input` chunk has been classified as positive (1) and `False` if this chunk has been
classified as negative (0).
:param seg: The AudioSegment to apply this algorithm to.
:param start_as_yes: If True, the first `ms_per_input` chunk will be classified as positive.
:param prob_raw_yes: The raw probability of finding the event in any given independently sampled `ms_per_input`.
:param ms_per_input: The number of ms of AudioSegment to be fed into the model at a time.
:param model: The model, which must hava predict() function, which takes an AudioSegment of `ms_per_input`
number of ms and which outputs 1 if the audio event is detected in that input, 0 if not.
:param transition_matrix: An iterable of the form: [p(yes->no), p(no->yes)].
:param model_stats: An iterable of the form: [p(reality=1|output=1), p(reality=1|output=0)].
:yields: `True` if the event has been classified in this chunk, `False` otherwise.
"""
filter_triggered = 1 if start_as_yes else 0
prob_raw_no = 1.0 - prob_raw_yes
for segment, _timestamp in seg.generate_frames_as_segments(ms_per_input):
yield filter_triggered
observation = int(round(model.predict(segment)))
assert observation == 1 or observation == 0, "The given model did not output a 1 or a 0, output: "\
+ str(observation)
prob_hyp_yes_given_last_hyp = 1.0 - transition_matrix[0] if filter_triggered else transition_matrix[1]
prob_hyp_no_given_last_hyp = transition_matrix[0] if filter_triggered else 1.0 - transition_matrix[1]
prob_hyp_yes_given_data = model_stats[0] if observation == 1 else model_stats[1]
prob_hyp_no_given_data = 1.0 - model_stats[0] if observation == 1 else 1.0 - model_stats[1]
hypothesis_yes = prob_raw_yes * prob_hyp_yes_given_last_hyp * prob_hyp_yes_given_data
hypothesis_no = prob_raw_no * prob_hyp_no_given_last_hyp * prob_hyp_no_given_data
# make a list of ints - each is 0 or 1. The number of 1s is hypotheis_yes * 100
# the number of 0s is hypothesis_no * 100
distribution = [1 for i in range(int(round(hypothesis_yes * 100)))]
distribution.extend([0 for i in range(int(round(hypothesis_no * 100)))])
# shuffle
random.shuffle(distribution)
filter_triggered = random.choice(distribution)
|
[
"Runs",
"a",
"Markov",
"Decision",
"Process",
"over",
"the",
"given",
"seg",
"in",
"chunks",
"of",
"ms_per_input",
"yielding",
"True",
"if",
"this",
"ms_per_input",
"chunk",
"has",
"been",
"classified",
"as",
"positive",
"(",
"1",
")",
"and",
"False",
"if",
"this",
"chunk",
"has",
"been",
"classified",
"as",
"negative",
"(",
"0",
")",
"."
] |
MaxStrange/AudioSegment
|
python
|
https://github.com/MaxStrange/AudioSegment/blob/1daefb8de626ddff3ff7016697c3ad31d262ecd6/algorithms/eventdetection.py#L9-L44
|
[
"def",
"_get_filter_indices",
"(",
"seg",
",",
"start_as_yes",
",",
"prob_raw_yes",
",",
"ms_per_input",
",",
"model",
",",
"transition_matrix",
",",
"model_stats",
")",
":",
"filter_triggered",
"=",
"1",
"if",
"start_as_yes",
"else",
"0",
"prob_raw_no",
"=",
"1.0",
"-",
"prob_raw_yes",
"for",
"segment",
",",
"_timestamp",
"in",
"seg",
".",
"generate_frames_as_segments",
"(",
"ms_per_input",
")",
":",
"yield",
"filter_triggered",
"observation",
"=",
"int",
"(",
"round",
"(",
"model",
".",
"predict",
"(",
"segment",
")",
")",
")",
"assert",
"observation",
"==",
"1",
"or",
"observation",
"==",
"0",
",",
"\"The given model did not output a 1 or a 0, output: \"",
"+",
"str",
"(",
"observation",
")",
"prob_hyp_yes_given_last_hyp",
"=",
"1.0",
"-",
"transition_matrix",
"[",
"0",
"]",
"if",
"filter_triggered",
"else",
"transition_matrix",
"[",
"1",
"]",
"prob_hyp_no_given_last_hyp",
"=",
"transition_matrix",
"[",
"0",
"]",
"if",
"filter_triggered",
"else",
"1.0",
"-",
"transition_matrix",
"[",
"1",
"]",
"prob_hyp_yes_given_data",
"=",
"model_stats",
"[",
"0",
"]",
"if",
"observation",
"==",
"1",
"else",
"model_stats",
"[",
"1",
"]",
"prob_hyp_no_given_data",
"=",
"1.0",
"-",
"model_stats",
"[",
"0",
"]",
"if",
"observation",
"==",
"1",
"else",
"1.0",
"-",
"model_stats",
"[",
"1",
"]",
"hypothesis_yes",
"=",
"prob_raw_yes",
"*",
"prob_hyp_yes_given_last_hyp",
"*",
"prob_hyp_yes_given_data",
"hypothesis_no",
"=",
"prob_raw_no",
"*",
"prob_hyp_no_given_last_hyp",
"*",
"prob_hyp_no_given_data",
"# make a list of ints - each is 0 or 1. The number of 1s is hypotheis_yes * 100",
"# the number of 0s is hypothesis_no * 100",
"distribution",
"=",
"[",
"1",
"for",
"i",
"in",
"range",
"(",
"int",
"(",
"round",
"(",
"hypothesis_yes",
"*",
"100",
")",
")",
")",
"]",
"distribution",
".",
"extend",
"(",
"[",
"0",
"for",
"i",
"in",
"range",
"(",
"int",
"(",
"round",
"(",
"hypothesis_no",
"*",
"100",
")",
")",
")",
"]",
")",
"# shuffle",
"random",
".",
"shuffle",
"(",
"distribution",
")",
"filter_triggered",
"=",
"random",
".",
"choice",
"(",
"distribution",
")"
] |
1daefb8de626ddff3ff7016697c3ad31d262ecd6
|
test
|
_group_filter_values
|
Takes a list of 1s and 0s and returns a list of tuples of the form:
['y/n', timestamp].
|
algorithms/eventdetection.py
|
def _group_filter_values(seg, filter_indices, ms_per_input):
"""
Takes a list of 1s and 0s and returns a list of tuples of the form:
['y/n', timestamp].
"""
ret = []
for filter_value, (_segment, timestamp) in zip(filter_indices, seg.generate_frames_as_segments(ms_per_input)):
if filter_value == 1:
if len(ret) > 0 and ret[-1][0] == 'n':
ret.append(['y', timestamp]) # The last one was different, so we create a new one
elif len(ret) > 0 and ret[-1][0] == 'y':
ret[-1][1] = timestamp # The last one was the same as this one, so just update the timestamp
else:
ret.append(['y', timestamp]) # This is the first one
else:
if len(ret) > 0 and ret[-1][0] == 'n':
ret[-1][1] = timestamp
elif len(ret) > 0 and ret[-1][0] == 'y':
ret.append(['n', timestamp])
else:
ret.append(['n', timestamp])
return ret
|
def _group_filter_values(seg, filter_indices, ms_per_input):
"""
Takes a list of 1s and 0s and returns a list of tuples of the form:
['y/n', timestamp].
"""
ret = []
for filter_value, (_segment, timestamp) in zip(filter_indices, seg.generate_frames_as_segments(ms_per_input)):
if filter_value == 1:
if len(ret) > 0 and ret[-1][0] == 'n':
ret.append(['y', timestamp]) # The last one was different, so we create a new one
elif len(ret) > 0 and ret[-1][0] == 'y':
ret[-1][1] = timestamp # The last one was the same as this one, so just update the timestamp
else:
ret.append(['y', timestamp]) # This is the first one
else:
if len(ret) > 0 and ret[-1][0] == 'n':
ret[-1][1] = timestamp
elif len(ret) > 0 and ret[-1][0] == 'y':
ret.append(['n', timestamp])
else:
ret.append(['n', timestamp])
return ret
|
[
"Takes",
"a",
"list",
"of",
"1s",
"and",
"0s",
"and",
"returns",
"a",
"list",
"of",
"tuples",
"of",
"the",
"form",
":",
"[",
"y",
"/",
"n",
"timestamp",
"]",
"."
] |
MaxStrange/AudioSegment
|
python
|
https://github.com/MaxStrange/AudioSegment/blob/1daefb8de626ddff3ff7016697c3ad31d262ecd6/algorithms/eventdetection.py#L46-L67
|
[
"def",
"_group_filter_values",
"(",
"seg",
",",
"filter_indices",
",",
"ms_per_input",
")",
":",
"ret",
"=",
"[",
"]",
"for",
"filter_value",
",",
"(",
"_segment",
",",
"timestamp",
")",
"in",
"zip",
"(",
"filter_indices",
",",
"seg",
".",
"generate_frames_as_segments",
"(",
"ms_per_input",
")",
")",
":",
"if",
"filter_value",
"==",
"1",
":",
"if",
"len",
"(",
"ret",
")",
">",
"0",
"and",
"ret",
"[",
"-",
"1",
"]",
"[",
"0",
"]",
"==",
"'n'",
":",
"ret",
".",
"append",
"(",
"[",
"'y'",
",",
"timestamp",
"]",
")",
"# The last one was different, so we create a new one",
"elif",
"len",
"(",
"ret",
")",
">",
"0",
"and",
"ret",
"[",
"-",
"1",
"]",
"[",
"0",
"]",
"==",
"'y'",
":",
"ret",
"[",
"-",
"1",
"]",
"[",
"1",
"]",
"=",
"timestamp",
"# The last one was the same as this one, so just update the timestamp",
"else",
":",
"ret",
".",
"append",
"(",
"[",
"'y'",
",",
"timestamp",
"]",
")",
"# This is the first one",
"else",
":",
"if",
"len",
"(",
"ret",
")",
">",
"0",
"and",
"ret",
"[",
"-",
"1",
"]",
"[",
"0",
"]",
"==",
"'n'",
":",
"ret",
"[",
"-",
"1",
"]",
"[",
"1",
"]",
"=",
"timestamp",
"elif",
"len",
"(",
"ret",
")",
">",
"0",
"and",
"ret",
"[",
"-",
"1",
"]",
"[",
"0",
"]",
"==",
"'y'",
":",
"ret",
".",
"append",
"(",
"[",
"'n'",
",",
"timestamp",
"]",
")",
"else",
":",
"ret",
".",
"append",
"(",
"[",
"'n'",
",",
"timestamp",
"]",
")",
"return",
"ret"
] |
1daefb8de626ddff3ff7016697c3ad31d262ecd6
|
test
|
_homogeneity_filter
|
Takes `ls` (a list of 1s and 0s) and smoothes it so that adjacent values are more likely
to be the same.
:param ls: A list of 1s and 0s to smooth.
:param window_size: How large the smoothing kernel is.
:returns: A list of 1s and 0s, but smoother.
|
algorithms/eventdetection.py
|
def _homogeneity_filter(ls, window_size):
"""
Takes `ls` (a list of 1s and 0s) and smoothes it so that adjacent values are more likely
to be the same.
:param ls: A list of 1s and 0s to smooth.
:param window_size: How large the smoothing kernel is.
:returns: A list of 1s and 0s, but smoother.
"""
# TODO: This is fine way to do this, but it seems like it might be faster and better to do a Gaussian convolution followed by rounding
k = window_size
i = k
while i <= len(ls) - k:
# Get a window of k items
window = [ls[i + j] for j in range(k)]
# Change the items in the window to be more like the mode of that window
mode = 1 if sum(window) >= k / 2 else 0
for j in range(k):
ls[i+j] = mode
i += k
return ls
|
def _homogeneity_filter(ls, window_size):
"""
Takes `ls` (a list of 1s and 0s) and smoothes it so that adjacent values are more likely
to be the same.
:param ls: A list of 1s and 0s to smooth.
:param window_size: How large the smoothing kernel is.
:returns: A list of 1s and 0s, but smoother.
"""
# TODO: This is fine way to do this, but it seems like it might be faster and better to do a Gaussian convolution followed by rounding
k = window_size
i = k
while i <= len(ls) - k:
# Get a window of k items
window = [ls[i + j] for j in range(k)]
# Change the items in the window to be more like the mode of that window
mode = 1 if sum(window) >= k / 2 else 0
for j in range(k):
ls[i+j] = mode
i += k
return ls
|
[
"Takes",
"ls",
"(",
"a",
"list",
"of",
"1s",
"and",
"0s",
")",
"and",
"smoothes",
"it",
"so",
"that",
"adjacent",
"values",
"are",
"more",
"likely",
"to",
"be",
"the",
"same",
"."
] |
MaxStrange/AudioSegment
|
python
|
https://github.com/MaxStrange/AudioSegment/blob/1daefb8de626ddff3ff7016697c3ad31d262ecd6/algorithms/eventdetection.py#L69-L89
|
[
"def",
"_homogeneity_filter",
"(",
"ls",
",",
"window_size",
")",
":",
"# TODO: This is fine way to do this, but it seems like it might be faster and better to do a Gaussian convolution followed by rounding",
"k",
"=",
"window_size",
"i",
"=",
"k",
"while",
"i",
"<=",
"len",
"(",
"ls",
")",
"-",
"k",
":",
"# Get a window of k items",
"window",
"=",
"[",
"ls",
"[",
"i",
"+",
"j",
"]",
"for",
"j",
"in",
"range",
"(",
"k",
")",
"]",
"# Change the items in the window to be more like the mode of that window",
"mode",
"=",
"1",
"if",
"sum",
"(",
"window",
")",
">=",
"k",
"/",
"2",
"else",
"0",
"for",
"j",
"in",
"range",
"(",
"k",
")",
":",
"ls",
"[",
"i",
"+",
"j",
"]",
"=",
"mode",
"i",
"+=",
"k",
"return",
"ls"
] |
1daefb8de626ddff3ff7016697c3ad31d262ecd6
|
test
|
bandpass_filter
|
Does a bandpass filter over the given data.
:param data: The data (numpy array) to be filtered.
:param low: The low cutoff in Hz.
:param high: The high cutoff in Hz.
:param fs: The sample rate (in Hz) of the data.
:param order: The order of the filter. The higher the order, the tighter the roll-off.
:returns: Filtered data (numpy array).
|
algorithms/filters.py
|
def bandpass_filter(data, low, high, fs, order=5):
"""
Does a bandpass filter over the given data.
:param data: The data (numpy array) to be filtered.
:param low: The low cutoff in Hz.
:param high: The high cutoff in Hz.
:param fs: The sample rate (in Hz) of the data.
:param order: The order of the filter. The higher the order, the tighter the roll-off.
:returns: Filtered data (numpy array).
"""
nyq = 0.5 * fs
low = low / nyq
high = high / nyq
b, a = signal.butter(order, [low, high], btype='band')
y = signal.lfilter(b, a, data)
return y
|
def bandpass_filter(data, low, high, fs, order=5):
"""
Does a bandpass filter over the given data.
:param data: The data (numpy array) to be filtered.
:param low: The low cutoff in Hz.
:param high: The high cutoff in Hz.
:param fs: The sample rate (in Hz) of the data.
:param order: The order of the filter. The higher the order, the tighter the roll-off.
:returns: Filtered data (numpy array).
"""
nyq = 0.5 * fs
low = low / nyq
high = high / nyq
b, a = signal.butter(order, [low, high], btype='band')
y = signal.lfilter(b, a, data)
return y
|
[
"Does",
"a",
"bandpass",
"filter",
"over",
"the",
"given",
"data",
"."
] |
MaxStrange/AudioSegment
|
python
|
https://github.com/MaxStrange/AudioSegment/blob/1daefb8de626ddff3ff7016697c3ad31d262ecd6/algorithms/filters.py#L7-L23
|
[
"def",
"bandpass_filter",
"(",
"data",
",",
"low",
",",
"high",
",",
"fs",
",",
"order",
"=",
"5",
")",
":",
"nyq",
"=",
"0.5",
"*",
"fs",
"low",
"=",
"low",
"/",
"nyq",
"high",
"=",
"high",
"/",
"nyq",
"b",
",",
"a",
"=",
"signal",
".",
"butter",
"(",
"order",
",",
"[",
"low",
",",
"high",
"]",
",",
"btype",
"=",
"'band'",
")",
"y",
"=",
"signal",
".",
"lfilter",
"(",
"b",
",",
"a",
",",
"data",
")",
"return",
"y"
] |
1daefb8de626ddff3ff7016697c3ad31d262ecd6
|
test
|
lowpass_filter
|
Does a lowpass filter over the given data.
:param data: The data (numpy array) to be filtered.
:param cutoff: The high cutoff in Hz.
:param fs: The sample rate in Hz of the data.
:param order: The order of the filter. The higher the order, the tighter the roll-off.
:returns: Filtered data (numpy array).
|
algorithms/filters.py
|
def lowpass_filter(data, cutoff, fs, order=5):
"""
Does a lowpass filter over the given data.
:param data: The data (numpy array) to be filtered.
:param cutoff: The high cutoff in Hz.
:param fs: The sample rate in Hz of the data.
:param order: The order of the filter. The higher the order, the tighter the roll-off.
:returns: Filtered data (numpy array).
"""
nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
b, a = signal.butter(order, normal_cutoff, btype='low', analog=False)
y = signal.lfilter(b, a, data)
return y
|
def lowpass_filter(data, cutoff, fs, order=5):
"""
Does a lowpass filter over the given data.
:param data: The data (numpy array) to be filtered.
:param cutoff: The high cutoff in Hz.
:param fs: The sample rate in Hz of the data.
:param order: The order of the filter. The higher the order, the tighter the roll-off.
:returns: Filtered data (numpy array).
"""
nyq = 0.5 * fs
normal_cutoff = cutoff / nyq
b, a = signal.butter(order, normal_cutoff, btype='low', analog=False)
y = signal.lfilter(b, a, data)
return y
|
[
"Does",
"a",
"lowpass",
"filter",
"over",
"the",
"given",
"data",
"."
] |
MaxStrange/AudioSegment
|
python
|
https://github.com/MaxStrange/AudioSegment/blob/1daefb8de626ddff3ff7016697c3ad31d262ecd6/algorithms/filters.py#L25-L39
|
[
"def",
"lowpass_filter",
"(",
"data",
",",
"cutoff",
",",
"fs",
",",
"order",
"=",
"5",
")",
":",
"nyq",
"=",
"0.5",
"*",
"fs",
"normal_cutoff",
"=",
"cutoff",
"/",
"nyq",
"b",
",",
"a",
"=",
"signal",
".",
"butter",
"(",
"order",
",",
"normal_cutoff",
",",
"btype",
"=",
"'low'",
",",
"analog",
"=",
"False",
")",
"y",
"=",
"signal",
".",
"lfilter",
"(",
"b",
",",
"a",
",",
"data",
")",
"return",
"y"
] |
1daefb8de626ddff3ff7016697c3ad31d262ecd6
|
test
|
list_to_tf_input
|
Separates the outcome feature from the data and creates the onehot vector for each row.
|
BlackBoxAuditing/model_factories/DecisionTree.py
|
def list_to_tf_input(data, response_index, num_outcomes):
"""
Separates the outcome feature from the data and creates the onehot vector for each row.
"""
matrix = np.matrix([row[:response_index] + row[response_index+1:] for row in data])
outcomes = np.asarray([row[response_index] for row in data], dtype=np.uint8)
outcomes_onehot = (np.arange(num_outcomes) == outcomes[:, None]).astype(np.float32)
return matrix, outcomes_onehot
|
def list_to_tf_input(data, response_index, num_outcomes):
"""
Separates the outcome feature from the data and creates the onehot vector for each row.
"""
matrix = np.matrix([row[:response_index] + row[response_index+1:] for row in data])
outcomes = np.asarray([row[response_index] for row in data], dtype=np.uint8)
outcomes_onehot = (np.arange(num_outcomes) == outcomes[:, None]).astype(np.float32)
return matrix, outcomes_onehot
|
[
"Separates",
"the",
"outcome",
"feature",
"from",
"the",
"data",
"and",
"creates",
"the",
"onehot",
"vector",
"for",
"each",
"row",
"."
] |
algofairness/BlackBoxAuditing
|
python
|
https://github.com/algofairness/BlackBoxAuditing/blob/b06c4faed5591cd7088475b2a203127bc5820483/BlackBoxAuditing/model_factories/DecisionTree.py#L132-L140
|
[
"def",
"list_to_tf_input",
"(",
"data",
",",
"response_index",
",",
"num_outcomes",
")",
":",
"matrix",
"=",
"np",
".",
"matrix",
"(",
"[",
"row",
"[",
":",
"response_index",
"]",
"+",
"row",
"[",
"response_index",
"+",
"1",
":",
"]",
"for",
"row",
"in",
"data",
"]",
")",
"outcomes",
"=",
"np",
".",
"asarray",
"(",
"[",
"row",
"[",
"response_index",
"]",
"for",
"row",
"in",
"data",
"]",
",",
"dtype",
"=",
"np",
".",
"uint8",
")",
"outcomes_onehot",
"=",
"(",
"np",
".",
"arange",
"(",
"num_outcomes",
")",
"==",
"outcomes",
"[",
":",
",",
"None",
"]",
")",
".",
"astype",
"(",
"np",
".",
"float32",
")",
"return",
"matrix",
",",
"outcomes_onehot"
] |
b06c4faed5591cd7088475b2a203127bc5820483
|
test
|
expand_and_standardize_dataset
|
Standardizes continuous features and expands categorical features.
|
BlackBoxAuditing/model_factories/DecisionTree.py
|
def expand_and_standardize_dataset(response_index, response_header, data_set, col_vals, headers, standardizers, feats_to_ignore, columns_to_expand, outcome_trans_dict):
"""
Standardizes continuous features and expands categorical features.
"""
# expand and standardize
modified_set = []
for row_index, row in enumerate(data_set):
new_row = []
for col_index, val in enumerate(row):
header = headers[col_index]
# Outcome feature -> index outcome
if col_index == response_index:
new_outcome = outcome_trans_dict[val]
new_row.append(new_outcome)
# Ignored feature -> pass
elif header in feats_to_ignore:
pass
# Categorical feature -> create new binary column for each possible value of the column
elif header in columns_to_expand:
for poss_val in col_vals[header]:
if val == poss_val:
new_cat_val = 1.0
else:
new_cat_val = -1.0
new_row.append(new_cat_val)
# Continuous feature -> standardize value with respect to its column
else:
new_cont_val = float((val - standardizers[header]['mean']) / standardizers[header]['std_dev'])
new_row.append(new_cont_val)
modified_set.append(new_row)
# update headers to reflect column expansion
expanded_headers = []
for header in headers:
if header in feats_to_ignore:
pass
elif (header in columns_to_expand) and (header is not response_header):
for poss_val in col_vals[header]:
new_header = '{}_{}'.format(header,poss_val)
expanded_headers.append(new_header)
else:
expanded_headers.append(header)
return modified_set, expanded_headers
|
def expand_and_standardize_dataset(response_index, response_header, data_set, col_vals, headers, standardizers, feats_to_ignore, columns_to_expand, outcome_trans_dict):
"""
Standardizes continuous features and expands categorical features.
"""
# expand and standardize
modified_set = []
for row_index, row in enumerate(data_set):
new_row = []
for col_index, val in enumerate(row):
header = headers[col_index]
# Outcome feature -> index outcome
if col_index == response_index:
new_outcome = outcome_trans_dict[val]
new_row.append(new_outcome)
# Ignored feature -> pass
elif header in feats_to_ignore:
pass
# Categorical feature -> create new binary column for each possible value of the column
elif header in columns_to_expand:
for poss_val in col_vals[header]:
if val == poss_val:
new_cat_val = 1.0
else:
new_cat_val = -1.0
new_row.append(new_cat_val)
# Continuous feature -> standardize value with respect to its column
else:
new_cont_val = float((val - standardizers[header]['mean']) / standardizers[header]['std_dev'])
new_row.append(new_cont_val)
modified_set.append(new_row)
# update headers to reflect column expansion
expanded_headers = []
for header in headers:
if header in feats_to_ignore:
pass
elif (header in columns_to_expand) and (header is not response_header):
for poss_val in col_vals[header]:
new_header = '{}_{}'.format(header,poss_val)
expanded_headers.append(new_header)
else:
expanded_headers.append(header)
return modified_set, expanded_headers
|
[
"Standardizes",
"continuous",
"features",
"and",
"expands",
"categorical",
"features",
"."
] |
algofairness/BlackBoxAuditing
|
python
|
https://github.com/algofairness/BlackBoxAuditing/blob/b06c4faed5591cd7088475b2a203127bc5820483/BlackBoxAuditing/model_factories/DecisionTree.py#L142-L190
|
[
"def",
"expand_and_standardize_dataset",
"(",
"response_index",
",",
"response_header",
",",
"data_set",
",",
"col_vals",
",",
"headers",
",",
"standardizers",
",",
"feats_to_ignore",
",",
"columns_to_expand",
",",
"outcome_trans_dict",
")",
":",
"# expand and standardize",
"modified_set",
"=",
"[",
"]",
"for",
"row_index",
",",
"row",
"in",
"enumerate",
"(",
"data_set",
")",
":",
"new_row",
"=",
"[",
"]",
"for",
"col_index",
",",
"val",
"in",
"enumerate",
"(",
"row",
")",
":",
"header",
"=",
"headers",
"[",
"col_index",
"]",
"# Outcome feature -> index outcome",
"if",
"col_index",
"==",
"response_index",
":",
"new_outcome",
"=",
"outcome_trans_dict",
"[",
"val",
"]",
"new_row",
".",
"append",
"(",
"new_outcome",
")",
"# Ignored feature -> pass",
"elif",
"header",
"in",
"feats_to_ignore",
":",
"pass",
"# Categorical feature -> create new binary column for each possible value of the column",
"elif",
"header",
"in",
"columns_to_expand",
":",
"for",
"poss_val",
"in",
"col_vals",
"[",
"header",
"]",
":",
"if",
"val",
"==",
"poss_val",
":",
"new_cat_val",
"=",
"1.0",
"else",
":",
"new_cat_val",
"=",
"-",
"1.0",
"new_row",
".",
"append",
"(",
"new_cat_val",
")",
"# Continuous feature -> standardize value with respect to its column",
"else",
":",
"new_cont_val",
"=",
"float",
"(",
"(",
"val",
"-",
"standardizers",
"[",
"header",
"]",
"[",
"'mean'",
"]",
")",
"/",
"standardizers",
"[",
"header",
"]",
"[",
"'std_dev'",
"]",
")",
"new_row",
".",
"append",
"(",
"new_cont_val",
")",
"modified_set",
".",
"append",
"(",
"new_row",
")",
"# update headers to reflect column expansion",
"expanded_headers",
"=",
"[",
"]",
"for",
"header",
"in",
"headers",
":",
"if",
"header",
"in",
"feats_to_ignore",
":",
"pass",
"elif",
"(",
"header",
"in",
"columns_to_expand",
")",
"and",
"(",
"header",
"is",
"not",
"response_header",
")",
":",
"for",
"poss_val",
"in",
"col_vals",
"[",
"header",
"]",
":",
"new_header",
"=",
"'{}_{}'",
".",
"format",
"(",
"header",
",",
"poss_val",
")",
"expanded_headers",
".",
"append",
"(",
"new_header",
")",
"else",
":",
"expanded_headers",
".",
"append",
"(",
"header",
")",
"return",
"modified_set",
",",
"expanded_headers"
] |
b06c4faed5591cd7088475b2a203127bc5820483
|
test
|
equal_ignore_order
|
Used to check whether the two edge lists have the same edges
when elements are neither hashable nor sortable.
|
BlackBoxAuditing/repairers/CategoricalFeature.py
|
def equal_ignore_order(a, b):
"""
Used to check whether the two edge lists have the same edges
when elements are neither hashable nor sortable.
"""
unmatched = list(b)
for element in a:
try:
unmatched.remove(element)
except ValueError:
return False
return not unmatched
|
def equal_ignore_order(a, b):
"""
Used to check whether the two edge lists have the same edges
when elements are neither hashable nor sortable.
"""
unmatched = list(b)
for element in a:
try:
unmatched.remove(element)
except ValueError:
return False
return not unmatched
|
[
"Used",
"to",
"check",
"whether",
"the",
"two",
"edge",
"lists",
"have",
"the",
"same",
"edges",
"when",
"elements",
"are",
"neither",
"hashable",
"nor",
"sortable",
"."
] |
algofairness/BlackBoxAuditing
|
python
|
https://github.com/algofairness/BlackBoxAuditing/blob/b06c4faed5591cd7088475b2a203127bc5820483/BlackBoxAuditing/repairers/CategoricalFeature.py#L111-L122
|
[
"def",
"equal_ignore_order",
"(",
"a",
",",
"b",
")",
":",
"unmatched",
"=",
"list",
"(",
"b",
")",
"for",
"element",
"in",
"a",
":",
"try",
":",
"unmatched",
".",
"remove",
"(",
"element",
")",
"except",
"ValueError",
":",
"return",
"False",
"return",
"not",
"unmatched"
] |
b06c4faed5591cd7088475b2a203127bc5820483
|
test
|
Repairer.repair
|
Create unique value structures: When performing repairs, we choose median values. If repair is partial, then values will be modified to some intermediate value between the original and the median value. However, the partially repaired value will only be chosen out of values that exist in the data set. This prevents choosing values that might not make any sense in the data's context. To do this, for each column, we need to sort all unique values and create two data structures: a list of values, and a dict mapping values to their positions in that list. Example: There are unique_col_vals[col] = [1, 2, 5, 7, 10, 14, 20] in the column. A value 2 must be repaired to 14, but the user requests that data only be repaired by 50%. We do this by finding the value at the right index:
index_lookup[col][2] = 1
index_lookup[col][14] = 5
this tells us that unique_col_vals[col][3] = 7 is 50% of the way from 2 to 14.
|
python2_source/BlackBoxAuditing/repairers/CategoricRepairer.py
|
def repair(self, data_to_repair):
num_cols = len(data_to_repair[0])
col_ids = range(num_cols)
# Get column type information
col_types = ["Y"]*len(col_ids)
for i, col in enumerate(col_ids):
if i in self.features_to_ignore:
col_types[i] = "I"
elif i == self.feature_to_repair:
col_types[i] = "X"
col_type_dict = {col_id: col_type for col_id, col_type in zip(col_ids, col_types)}
not_I_col_ids = filter(lambda x: col_type_dict[x] != "I", col_ids)
if self.kdd:
cols_to_repair = filter(lambda x: col_type_dict[x] == "Y", col_ids)
else:
cols_to_repair = filter(lambda x: col_type_dict[x] in "YX", col_ids)
# To prevent potential perils with user-provided column names, map them to safe column names
safe_stratify_cols = [self.feature_to_repair]
# Extract column values for each attribute in data
# Begin byled code will usually be created in the same directory as the .py file. initializing keys and values in dictionary
data_dict = {col_id: [] for col_id in col_ids}
# Populate each attribute with its column values
for row in data_to_repair:
for i in col_ids:
data_dict[i].append(row[i])
repair_types = {}
for col_id, values in data_dict.items():
if all(isinstance(value, float) for value in values):
repair_types[col_id] = float
elif all(isinstance(value, int) for value in values):
repair_types[col_id] = int
else:
repair_types[col_id] = str
"""
Create unique value structures: When performing repairs, we choose median values. If repair is partial, then values will be modified to some intermediate value between the original and the median value. However, the partially repaired value will only be chosen out of values that exist in the data set. This prevents choosing values that might not make any sense in the data's context. To do this, for each column, we need to sort all unique values and create two data structures: a list of values, and a dict mapping values to their positions in that list. Example: There are unique_col_vals[col] = [1, 2, 5, 7, 10, 14, 20] in the column. A value 2 must be repaired to 14, but the user requests that data only be repaired by 50%. We do this by finding the value at the right index:
index_lookup[col][2] = 1
index_lookup[col][14] = 5
this tells us that unique_col_vals[col][3] = 7 is 50% of the way from 2 to 14.
"""
unique_col_vals = {}
index_lookup = {}
for col_id in not_I_col_ids:
col_values = data_dict[col_id]
# extract unique values from column and sort
col_values = sorted(list(set(col_values)))
unique_col_vals[col_id] = col_values
# look up a value, get its position
index_lookup[col_id] = {col_values[i]: i for i in range(len(col_values))}
"""
Make a list of unique values per each stratified column. Then make a list of combinations of stratified groups. Example: race and gender cols are stratified: [(white, female), (white, male), (black, female), (black, male)] The combinations are tuples because they can be hashed and used as dictionary keys. From these, find the sizes of these groups.
"""
unique_stratify_values = [unique_col_vals[i] for i in safe_stratify_cols]
all_stratified_groups = list(product(*unique_stratify_values))
# look up a stratified group, and get a list of indices corresponding to that group in the data
stratified_group_indices = defaultdict(list)
# Find the number of unique values for each strat-group, organized per column.
val_sets = {group: {col_id:set() for col_id in cols_to_repair}
for group in all_stratified_groups}
for i, row in enumerate(data_to_repair):
group = tuple(row[col] for col in safe_stratify_cols)
for col_id in cols_to_repair:
val_sets[group][col_id].add(row[col_id])
# Also remember that this row pertains to this strat-group.
stratified_group_indices[group].append(i)
"""
Separate data by stratified group to perform repair on each Y column's values given that their corresponding protected attribute is a particular stratified group. We need to keep track of each Y column's values corresponding to each particular stratified group, as well as each value's index, so that when we repair the data, we can modify the correct value in the original data. Example: Supposing there is a Y column, "Score1", in which the 3rd and 5th scores, 70 and 90 respectively, belonged to black women, the data structure would look like: {("Black", "Woman"): {Score1: [(70,2),(90,4)]}}
"""
stratified_group_data = {group: {} for group in all_stratified_groups}
for group in all_stratified_groups:
for col_id, col_dict in data_dict.items():
# Get the indices at which each value occurs.
indices = {}
for i in stratified_group_indices[group]:
value = col_dict[i]
if value not in indices:
indices[value] = []
indices[value].append(i)
stratified_col_values = [(occurs, val) for val, occurs in indices.items()]
stratified_col_values.sort(key=lambda tup: tup[1])
stratified_group_data[group][col_id] = stratified_col_values
mode_feature_to_repair = get_mode(data_dict[self.feature_to_repair])
# Repair Data and retrieve the results
for col_id in cols_to_repair:
# which bucket value we're repairing
group_offsets = {group: 0 for group in all_stratified_groups}
col = data_dict[col_id]
num_quantiles = min(len(val_sets[group][col_id]) for group in all_stratified_groups)
quantile_unit = 1.0/num_quantiles
if repair_types[col_id] in {int, float}:
for quantile in range(num_quantiles):
median_at_quantiles = []
indices_per_group = {}
for group in all_stratified_groups:
group_data_at_col = stratified_group_data[group][col_id]
num_vals = len(group_data_at_col)
offset = int(round(group_offsets[group]*num_vals))
number_to_get = int(round((group_offsets[group] + quantile_unit)*num_vals) - offset)
group_offsets[group] += quantile_unit
if number_to_get > 0:
# Get data at this quantile from this Y column such that stratified X = group
offset_data = group_data_at_col[offset:offset+number_to_get]
indices_per_group[group] = [i for val_indices, _ in offset_data for i in val_indices]
values = sorted([float(val) for _, val in offset_data])
# Find this group's median value at this quantile
median_at_quantiles.append( get_median(values, self.kdd) )
# Find the median value of all groups at this quantile (chosen from each group's medians)
median = get_median(median_at_quantiles, self.kdd)
median_val_pos = index_lookup[col_id][median]
# Update values to repair the dataset.
for group in all_stratified_groups:
for index in indices_per_group[group]:
original_value = col[index]
current_val_pos = index_lookup[col_id][original_value]
distance = median_val_pos - current_val_pos # distance between indices
distance_to_repair = int(round(distance * self.repair_level))
index_of_repair_value = current_val_pos + distance_to_repair
repaired_value = unique_col_vals[col_id][index_of_repair_value]
# Update data to repaired valued
data_dict[col_id][index] = repaired_value
#Categorical Repair is done below
elif repair_types[col_id] in {str}:
feature = CategoricalFeature(col)
categories = feature.bin_index_dict.keys()
group_features = get_group_data(all_stratified_groups, stratified_group_data, col_id)
categories_count = get_categories_count(categories, all_stratified_groups, group_features)
categories_count_norm = get_categories_count_norm(categories, all_stratified_groups, categories_count, group_features)
median = get_median_per_category(categories, categories_count_norm)
# Partially fill-out the generator functions to simplify later calls.
dist_generator = lambda group_index, category : gen_desired_dist(group_index, category, col_id, median, self.repair_level, categories_count_norm, self.feature_to_repair, mode_feature_to_repair)
count_generator = lambda group_index, group, category : gen_desired_count(group_index, group, category, median, group_features, self.repair_level, categories_count)
group_features, overflow = flow_on_group_features(all_stratified_groups, group_features, count_generator)
group_features, assigned_overflow, distribution = assign_overflow(all_stratified_groups, categories, overflow, group_features, dist_generator)
# Return our repaired feature in the form of our original dataset
for group in all_stratified_groups:
indices = stratified_group_indices[group]
for i, index in enumerate(indices):
repaired_value = group_features[group].data[i]
data_dict[col_id][index] = repaired_value
# Replace stratified groups with their mode value, to remove it's information
repaired_data = []
for i, orig_row in enumerate(data_to_repair):
new_row = [orig_row[j] if j not in cols_to_repair else data_dict[j][i] for j in col_ids]
repaired_data.append(new_row)
return repaired_data
|
def repair(self, data_to_repair):
num_cols = len(data_to_repair[0])
col_ids = range(num_cols)
# Get column type information
col_types = ["Y"]*len(col_ids)
for i, col in enumerate(col_ids):
if i in self.features_to_ignore:
col_types[i] = "I"
elif i == self.feature_to_repair:
col_types[i] = "X"
col_type_dict = {col_id: col_type for col_id, col_type in zip(col_ids, col_types)}
not_I_col_ids = filter(lambda x: col_type_dict[x] != "I", col_ids)
if self.kdd:
cols_to_repair = filter(lambda x: col_type_dict[x] == "Y", col_ids)
else:
cols_to_repair = filter(lambda x: col_type_dict[x] in "YX", col_ids)
# To prevent potential perils with user-provided column names, map them to safe column names
safe_stratify_cols = [self.feature_to_repair]
# Extract column values for each attribute in data
# Begin byled code will usually be created in the same directory as the .py file. initializing keys and values in dictionary
data_dict = {col_id: [] for col_id in col_ids}
# Populate each attribute with its column values
for row in data_to_repair:
for i in col_ids:
data_dict[i].append(row[i])
repair_types = {}
for col_id, values in data_dict.items():
if all(isinstance(value, float) for value in values):
repair_types[col_id] = float
elif all(isinstance(value, int) for value in values):
repair_types[col_id] = int
else:
repair_types[col_id] = str
"""
Create unique value structures: When performing repairs, we choose median values. If repair is partial, then values will be modified to some intermediate value between the original and the median value. However, the partially repaired value will only be chosen out of values that exist in the data set. This prevents choosing values that might not make any sense in the data's context. To do this, for each column, we need to sort all unique values and create two data structures: a list of values, and a dict mapping values to their positions in that list. Example: There are unique_col_vals[col] = [1, 2, 5, 7, 10, 14, 20] in the column. A value 2 must be repaired to 14, but the user requests that data only be repaired by 50%. We do this by finding the value at the right index:
index_lookup[col][2] = 1
index_lookup[col][14] = 5
this tells us that unique_col_vals[col][3] = 7 is 50% of the way from 2 to 14.
"""
unique_col_vals = {}
index_lookup = {}
for col_id in not_I_col_ids:
col_values = data_dict[col_id]
# extract unique values from column and sort
col_values = sorted(list(set(col_values)))
unique_col_vals[col_id] = col_values
# look up a value, get its position
index_lookup[col_id] = {col_values[i]: i for i in range(len(col_values))}
"""
Make a list of unique values per each stratified column. Then make a list of combinations of stratified groups. Example: race and gender cols are stratified: [(white, female), (white, male), (black, female), (black, male)] The combinations are tuples because they can be hashed and used as dictionary keys. From these, find the sizes of these groups.
"""
unique_stratify_values = [unique_col_vals[i] for i in safe_stratify_cols]
all_stratified_groups = list(product(*unique_stratify_values))
# look up a stratified group, and get a list of indices corresponding to that group in the data
stratified_group_indices = defaultdict(list)
# Find the number of unique values for each strat-group, organized per column.
val_sets = {group: {col_id:set() for col_id in cols_to_repair}
for group in all_stratified_groups}
for i, row in enumerate(data_to_repair):
group = tuple(row[col] for col in safe_stratify_cols)
for col_id in cols_to_repair:
val_sets[group][col_id].add(row[col_id])
# Also remember that this row pertains to this strat-group.
stratified_group_indices[group].append(i)
"""
Separate data by stratified group to perform repair on each Y column's values given that their corresponding protected attribute is a particular stratified group. We need to keep track of each Y column's values corresponding to each particular stratified group, as well as each value's index, so that when we repair the data, we can modify the correct value in the original data. Example: Supposing there is a Y column, "Score1", in which the 3rd and 5th scores, 70 and 90 respectively, belonged to black women, the data structure would look like: {("Black", "Woman"): {Score1: [(70,2),(90,4)]}}
"""
stratified_group_data = {group: {} for group in all_stratified_groups}
for group in all_stratified_groups:
for col_id, col_dict in data_dict.items():
# Get the indices at which each value occurs.
indices = {}
for i in stratified_group_indices[group]:
value = col_dict[i]
if value not in indices:
indices[value] = []
indices[value].append(i)
stratified_col_values = [(occurs, val) for val, occurs in indices.items()]
stratified_col_values.sort(key=lambda tup: tup[1])
stratified_group_data[group][col_id] = stratified_col_values
mode_feature_to_repair = get_mode(data_dict[self.feature_to_repair])
# Repair Data and retrieve the results
for col_id in cols_to_repair:
# which bucket value we're repairing
group_offsets = {group: 0 for group in all_stratified_groups}
col = data_dict[col_id]
num_quantiles = min(len(val_sets[group][col_id]) for group in all_stratified_groups)
quantile_unit = 1.0/num_quantiles
if repair_types[col_id] in {int, float}:
for quantile in range(num_quantiles):
median_at_quantiles = []
indices_per_group = {}
for group in all_stratified_groups:
group_data_at_col = stratified_group_data[group][col_id]
num_vals = len(group_data_at_col)
offset = int(round(group_offsets[group]*num_vals))
number_to_get = int(round((group_offsets[group] + quantile_unit)*num_vals) - offset)
group_offsets[group] += quantile_unit
if number_to_get > 0:
# Get data at this quantile from this Y column such that stratified X = group
offset_data = group_data_at_col[offset:offset+number_to_get]
indices_per_group[group] = [i for val_indices, _ in offset_data for i in val_indices]
values = sorted([float(val) for _, val in offset_data])
# Find this group's median value at this quantile
median_at_quantiles.append( get_median(values, self.kdd) )
# Find the median value of all groups at this quantile (chosen from each group's medians)
median = get_median(median_at_quantiles, self.kdd)
median_val_pos = index_lookup[col_id][median]
# Update values to repair the dataset.
for group in all_stratified_groups:
for index in indices_per_group[group]:
original_value = col[index]
current_val_pos = index_lookup[col_id][original_value]
distance = median_val_pos - current_val_pos # distance between indices
distance_to_repair = int(round(distance * self.repair_level))
index_of_repair_value = current_val_pos + distance_to_repair
repaired_value = unique_col_vals[col_id][index_of_repair_value]
# Update data to repaired valued
data_dict[col_id][index] = repaired_value
#Categorical Repair is done below
elif repair_types[col_id] in {str}:
feature = CategoricalFeature(col)
categories = feature.bin_index_dict.keys()
group_features = get_group_data(all_stratified_groups, stratified_group_data, col_id)
categories_count = get_categories_count(categories, all_stratified_groups, group_features)
categories_count_norm = get_categories_count_norm(categories, all_stratified_groups, categories_count, group_features)
median = get_median_per_category(categories, categories_count_norm)
# Partially fill-out the generator functions to simplify later calls.
dist_generator = lambda group_index, category : gen_desired_dist(group_index, category, col_id, median, self.repair_level, categories_count_norm, self.feature_to_repair, mode_feature_to_repair)
count_generator = lambda group_index, group, category : gen_desired_count(group_index, group, category, median, group_features, self.repair_level, categories_count)
group_features, overflow = flow_on_group_features(all_stratified_groups, group_features, count_generator)
group_features, assigned_overflow, distribution = assign_overflow(all_stratified_groups, categories, overflow, group_features, dist_generator)
# Return our repaired feature in the form of our original dataset
for group in all_stratified_groups:
indices = stratified_group_indices[group]
for i, index in enumerate(indices):
repaired_value = group_features[group].data[i]
data_dict[col_id][index] = repaired_value
# Replace stratified groups with their mode value, to remove it's information
repaired_data = []
for i, orig_row in enumerate(data_to_repair):
new_row = [orig_row[j] if j not in cols_to_repair else data_dict[j][i] for j in col_ids]
repaired_data.append(new_row)
return repaired_data
|
[
"Create",
"unique",
"value",
"structures",
":",
"When",
"performing",
"repairs",
"we",
"choose",
"median",
"values",
".",
"If",
"repair",
"is",
"partial",
"then",
"values",
"will",
"be",
"modified",
"to",
"some",
"intermediate",
"value",
"between",
"the",
"original",
"and",
"the",
"median",
"value",
".",
"However",
"the",
"partially",
"repaired",
"value",
"will",
"only",
"be",
"chosen",
"out",
"of",
"values",
"that",
"exist",
"in",
"the",
"data",
"set",
".",
"This",
"prevents",
"choosing",
"values",
"that",
"might",
"not",
"make",
"any",
"sense",
"in",
"the",
"data",
"s",
"context",
".",
"To",
"do",
"this",
"for",
"each",
"column",
"we",
"need",
"to",
"sort",
"all",
"unique",
"values",
"and",
"create",
"two",
"data",
"structures",
":",
"a",
"list",
"of",
"values",
"and",
"a",
"dict",
"mapping",
"values",
"to",
"their",
"positions",
"in",
"that",
"list",
".",
"Example",
":",
"There",
"are",
"unique_col_vals",
"[",
"col",
"]",
"=",
"[",
"1",
"2",
"5",
"7",
"10",
"14",
"20",
"]",
"in",
"the",
"column",
".",
"A",
"value",
"2",
"must",
"be",
"repaired",
"to",
"14",
"but",
"the",
"user",
"requests",
"that",
"data",
"only",
"be",
"repaired",
"by",
"50%",
".",
"We",
"do",
"this",
"by",
"finding",
"the",
"value",
"at",
"the",
"right",
"index",
":",
"index_lookup",
"[",
"col",
"]",
"[",
"2",
"]",
"=",
"1",
"index_lookup",
"[",
"col",
"]",
"[",
"14",
"]",
"=",
"5",
"this",
"tells",
"us",
"that",
"unique_col_vals",
"[",
"col",
"]",
"[",
"3",
"]",
"=",
"7",
"is",
"50%",
"of",
"the",
"way",
"from",
"2",
"to",
"14",
"."
] |
algofairness/BlackBoxAuditing
|
python
|
https://github.com/algofairness/BlackBoxAuditing/blob/b06c4faed5591cd7088475b2a203127bc5820483/python2_source/BlackBoxAuditing/repairers/CategoricRepairer.py#L15-L197
|
[
"def",
"repair",
"(",
"self",
",",
"data_to_repair",
")",
":",
"num_cols",
"=",
"len",
"(",
"data_to_repair",
"[",
"0",
"]",
")",
"col_ids",
"=",
"range",
"(",
"num_cols",
")",
"# Get column type information",
"col_types",
"=",
"[",
"\"Y\"",
"]",
"*",
"len",
"(",
"col_ids",
")",
"for",
"i",
",",
"col",
"in",
"enumerate",
"(",
"col_ids",
")",
":",
"if",
"i",
"in",
"self",
".",
"features_to_ignore",
":",
"col_types",
"[",
"i",
"]",
"=",
"\"I\"",
"elif",
"i",
"==",
"self",
".",
"feature_to_repair",
":",
"col_types",
"[",
"i",
"]",
"=",
"\"X\"",
"col_type_dict",
"=",
"{",
"col_id",
":",
"col_type",
"for",
"col_id",
",",
"col_type",
"in",
"zip",
"(",
"col_ids",
",",
"col_types",
")",
"}",
"not_I_col_ids",
"=",
"filter",
"(",
"lambda",
"x",
":",
"col_type_dict",
"[",
"x",
"]",
"!=",
"\"I\"",
",",
"col_ids",
")",
"if",
"self",
".",
"kdd",
":",
"cols_to_repair",
"=",
"filter",
"(",
"lambda",
"x",
":",
"col_type_dict",
"[",
"x",
"]",
"==",
"\"Y\"",
",",
"col_ids",
")",
"else",
":",
"cols_to_repair",
"=",
"filter",
"(",
"lambda",
"x",
":",
"col_type_dict",
"[",
"x",
"]",
"in",
"\"YX\"",
",",
"col_ids",
")",
"# To prevent potential perils with user-provided column names, map them to safe column names",
"safe_stratify_cols",
"=",
"[",
"self",
".",
"feature_to_repair",
"]",
"# Extract column values for each attribute in data",
"# Begin byled code will usually be created in the same directory as the .py file. initializing keys and values in dictionary",
"data_dict",
"=",
"{",
"col_id",
":",
"[",
"]",
"for",
"col_id",
"in",
"col_ids",
"}",
"# Populate each attribute with its column values",
"for",
"row",
"in",
"data_to_repair",
":",
"for",
"i",
"in",
"col_ids",
":",
"data_dict",
"[",
"i",
"]",
".",
"append",
"(",
"row",
"[",
"i",
"]",
")",
"repair_types",
"=",
"{",
"}",
"for",
"col_id",
",",
"values",
"in",
"data_dict",
".",
"items",
"(",
")",
":",
"if",
"all",
"(",
"isinstance",
"(",
"value",
",",
"float",
")",
"for",
"value",
"in",
"values",
")",
":",
"repair_types",
"[",
"col_id",
"]",
"=",
"float",
"elif",
"all",
"(",
"isinstance",
"(",
"value",
",",
"int",
")",
"for",
"value",
"in",
"values",
")",
":",
"repair_types",
"[",
"col_id",
"]",
"=",
"int",
"else",
":",
"repair_types",
"[",
"col_id",
"]",
"=",
"str",
"unique_col_vals",
"=",
"{",
"}",
"index_lookup",
"=",
"{",
"}",
"for",
"col_id",
"in",
"not_I_col_ids",
":",
"col_values",
"=",
"data_dict",
"[",
"col_id",
"]",
"# extract unique values from column and sort",
"col_values",
"=",
"sorted",
"(",
"list",
"(",
"set",
"(",
"col_values",
")",
")",
")",
"unique_col_vals",
"[",
"col_id",
"]",
"=",
"col_values",
"# look up a value, get its position",
"index_lookup",
"[",
"col_id",
"]",
"=",
"{",
"col_values",
"[",
"i",
"]",
":",
"i",
"for",
"i",
"in",
"range",
"(",
"len",
"(",
"col_values",
")",
")",
"}",
"\"\"\"\n Make a list of unique values per each stratified column. Then make a list of combinations of stratified groups. Example: race and gender cols are stratified: [(white, female), (white, male), (black, female), (black, male)] The combinations are tuples because they can be hashed and used as dictionary keys. From these, find the sizes of these groups.\n \"\"\"",
"unique_stratify_values",
"=",
"[",
"unique_col_vals",
"[",
"i",
"]",
"for",
"i",
"in",
"safe_stratify_cols",
"]",
"all_stratified_groups",
"=",
"list",
"(",
"product",
"(",
"*",
"unique_stratify_values",
")",
")",
"# look up a stratified group, and get a list of indices corresponding to that group in the data",
"stratified_group_indices",
"=",
"defaultdict",
"(",
"list",
")",
"# Find the number of unique values for each strat-group, organized per column.",
"val_sets",
"=",
"{",
"group",
":",
"{",
"col_id",
":",
"set",
"(",
")",
"for",
"col_id",
"in",
"cols_to_repair",
"}",
"for",
"group",
"in",
"all_stratified_groups",
"}",
"for",
"i",
",",
"row",
"in",
"enumerate",
"(",
"data_to_repair",
")",
":",
"group",
"=",
"tuple",
"(",
"row",
"[",
"col",
"]",
"for",
"col",
"in",
"safe_stratify_cols",
")",
"for",
"col_id",
"in",
"cols_to_repair",
":",
"val_sets",
"[",
"group",
"]",
"[",
"col_id",
"]",
".",
"add",
"(",
"row",
"[",
"col_id",
"]",
")",
"# Also remember that this row pertains to this strat-group.",
"stratified_group_indices",
"[",
"group",
"]",
".",
"append",
"(",
"i",
")",
"\"\"\"\n Separate data by stratified group to perform repair on each Y column's values given that their corresponding protected attribute is a particular stratified group. We need to keep track of each Y column's values corresponding to each particular stratified group, as well as each value's index, so that when we repair the data, we can modify the correct value in the original data. Example: Supposing there is a Y column, \"Score1\", in which the 3rd and 5th scores, 70 and 90 respectively, belonged to black women, the data structure would look like: {(\"Black\", \"Woman\"): {Score1: [(70,2),(90,4)]}}\n \"\"\"",
"stratified_group_data",
"=",
"{",
"group",
":",
"{",
"}",
"for",
"group",
"in",
"all_stratified_groups",
"}",
"for",
"group",
"in",
"all_stratified_groups",
":",
"for",
"col_id",
",",
"col_dict",
"in",
"data_dict",
".",
"items",
"(",
")",
":",
"# Get the indices at which each value occurs.",
"indices",
"=",
"{",
"}",
"for",
"i",
"in",
"stratified_group_indices",
"[",
"group",
"]",
":",
"value",
"=",
"col_dict",
"[",
"i",
"]",
"if",
"value",
"not",
"in",
"indices",
":",
"indices",
"[",
"value",
"]",
"=",
"[",
"]",
"indices",
"[",
"value",
"]",
".",
"append",
"(",
"i",
")",
"stratified_col_values",
"=",
"[",
"(",
"occurs",
",",
"val",
")",
"for",
"val",
",",
"occurs",
"in",
"indices",
".",
"items",
"(",
")",
"]",
"stratified_col_values",
".",
"sort",
"(",
"key",
"=",
"lambda",
"tup",
":",
"tup",
"[",
"1",
"]",
")",
"stratified_group_data",
"[",
"group",
"]",
"[",
"col_id",
"]",
"=",
"stratified_col_values",
"mode_feature_to_repair",
"=",
"get_mode",
"(",
"data_dict",
"[",
"self",
".",
"feature_to_repair",
"]",
")",
"# Repair Data and retrieve the results",
"for",
"col_id",
"in",
"cols_to_repair",
":",
"# which bucket value we're repairing",
"group_offsets",
"=",
"{",
"group",
":",
"0",
"for",
"group",
"in",
"all_stratified_groups",
"}",
"col",
"=",
"data_dict",
"[",
"col_id",
"]",
"num_quantiles",
"=",
"min",
"(",
"len",
"(",
"val_sets",
"[",
"group",
"]",
"[",
"col_id",
"]",
")",
"for",
"group",
"in",
"all_stratified_groups",
")",
"quantile_unit",
"=",
"1.0",
"/",
"num_quantiles",
"if",
"repair_types",
"[",
"col_id",
"]",
"in",
"{",
"int",
",",
"float",
"}",
":",
"for",
"quantile",
"in",
"range",
"(",
"num_quantiles",
")",
":",
"median_at_quantiles",
"=",
"[",
"]",
"indices_per_group",
"=",
"{",
"}",
"for",
"group",
"in",
"all_stratified_groups",
":",
"group_data_at_col",
"=",
"stratified_group_data",
"[",
"group",
"]",
"[",
"col_id",
"]",
"num_vals",
"=",
"len",
"(",
"group_data_at_col",
")",
"offset",
"=",
"int",
"(",
"round",
"(",
"group_offsets",
"[",
"group",
"]",
"*",
"num_vals",
")",
")",
"number_to_get",
"=",
"int",
"(",
"round",
"(",
"(",
"group_offsets",
"[",
"group",
"]",
"+",
"quantile_unit",
")",
"*",
"num_vals",
")",
"-",
"offset",
")",
"group_offsets",
"[",
"group",
"]",
"+=",
"quantile_unit",
"if",
"number_to_get",
">",
"0",
":",
"# Get data at this quantile from this Y column such that stratified X = group",
"offset_data",
"=",
"group_data_at_col",
"[",
"offset",
":",
"offset",
"+",
"number_to_get",
"]",
"indices_per_group",
"[",
"group",
"]",
"=",
"[",
"i",
"for",
"val_indices",
",",
"_",
"in",
"offset_data",
"for",
"i",
"in",
"val_indices",
"]",
"values",
"=",
"sorted",
"(",
"[",
"float",
"(",
"val",
")",
"for",
"_",
",",
"val",
"in",
"offset_data",
"]",
")",
"# Find this group's median value at this quantile",
"median_at_quantiles",
".",
"append",
"(",
"get_median",
"(",
"values",
",",
"self",
".",
"kdd",
")",
")",
"# Find the median value of all groups at this quantile (chosen from each group's medians)",
"median",
"=",
"get_median",
"(",
"median_at_quantiles",
",",
"self",
".",
"kdd",
")",
"median_val_pos",
"=",
"index_lookup",
"[",
"col_id",
"]",
"[",
"median",
"]",
"# Update values to repair the dataset.",
"for",
"group",
"in",
"all_stratified_groups",
":",
"for",
"index",
"in",
"indices_per_group",
"[",
"group",
"]",
":",
"original_value",
"=",
"col",
"[",
"index",
"]",
"current_val_pos",
"=",
"index_lookup",
"[",
"col_id",
"]",
"[",
"original_value",
"]",
"distance",
"=",
"median_val_pos",
"-",
"current_val_pos",
"# distance between indices",
"distance_to_repair",
"=",
"int",
"(",
"round",
"(",
"distance",
"*",
"self",
".",
"repair_level",
")",
")",
"index_of_repair_value",
"=",
"current_val_pos",
"+",
"distance_to_repair",
"repaired_value",
"=",
"unique_col_vals",
"[",
"col_id",
"]",
"[",
"index_of_repair_value",
"]",
"# Update data to repaired valued",
"data_dict",
"[",
"col_id",
"]",
"[",
"index",
"]",
"=",
"repaired_value",
"#Categorical Repair is done below",
"elif",
"repair_types",
"[",
"col_id",
"]",
"in",
"{",
"str",
"}",
":",
"feature",
"=",
"CategoricalFeature",
"(",
"col",
")",
"categories",
"=",
"feature",
".",
"bin_index_dict",
".",
"keys",
"(",
")",
"group_features",
"=",
"get_group_data",
"(",
"all_stratified_groups",
",",
"stratified_group_data",
",",
"col_id",
")",
"categories_count",
"=",
"get_categories_count",
"(",
"categories",
",",
"all_stratified_groups",
",",
"group_features",
")",
"categories_count_norm",
"=",
"get_categories_count_norm",
"(",
"categories",
",",
"all_stratified_groups",
",",
"categories_count",
",",
"group_features",
")",
"median",
"=",
"get_median_per_category",
"(",
"categories",
",",
"categories_count_norm",
")",
"# Partially fill-out the generator functions to simplify later calls.",
"dist_generator",
"=",
"lambda",
"group_index",
",",
"category",
":",
"gen_desired_dist",
"(",
"group_index",
",",
"category",
",",
"col_id",
",",
"median",
",",
"self",
".",
"repair_level",
",",
"categories_count_norm",
",",
"self",
".",
"feature_to_repair",
",",
"mode_feature_to_repair",
")",
"count_generator",
"=",
"lambda",
"group_index",
",",
"group",
",",
"category",
":",
"gen_desired_count",
"(",
"group_index",
",",
"group",
",",
"category",
",",
"median",
",",
"group_features",
",",
"self",
".",
"repair_level",
",",
"categories_count",
")",
"group_features",
",",
"overflow",
"=",
"flow_on_group_features",
"(",
"all_stratified_groups",
",",
"group_features",
",",
"count_generator",
")",
"group_features",
",",
"assigned_overflow",
",",
"distribution",
"=",
"assign_overflow",
"(",
"all_stratified_groups",
",",
"categories",
",",
"overflow",
",",
"group_features",
",",
"dist_generator",
")",
"# Return our repaired feature in the form of our original dataset",
"for",
"group",
"in",
"all_stratified_groups",
":",
"indices",
"=",
"stratified_group_indices",
"[",
"group",
"]",
"for",
"i",
",",
"index",
"in",
"enumerate",
"(",
"indices",
")",
":",
"repaired_value",
"=",
"group_features",
"[",
"group",
"]",
".",
"data",
"[",
"i",
"]",
"data_dict",
"[",
"col_id",
"]",
"[",
"index",
"]",
"=",
"repaired_value",
"# Replace stratified groups with their mode value, to remove it's information",
"repaired_data",
"=",
"[",
"]",
"for",
"i",
",",
"orig_row",
"in",
"enumerate",
"(",
"data_to_repair",
")",
":",
"new_row",
"=",
"[",
"orig_row",
"[",
"j",
"]",
"if",
"j",
"not",
"in",
"cols_to_repair",
"else",
"data_dict",
"[",
"j",
"]",
"[",
"i",
"]",
"for",
"j",
"in",
"col_ids",
"]",
"repaired_data",
".",
"append",
"(",
"new_row",
")",
"return",
"repaired_data"
] |
b06c4faed5591cd7088475b2a203127bc5820483
|
test
|
group_audit_ranks
|
Given a list of audit files, rank them using the `measurer` and
return the features that never deviate more than `similarity_bound`
across repairs.
|
BlackBoxAuditing/audit_reading.py
|
def group_audit_ranks(filenames, measurer, similarity_bound=0.05):
"""
Given a list of audit files, rank them using the `measurer` and
return the features that never deviate more than `similarity_bound`
across repairs.
"""
def _partition_groups(feature_scores):
groups = []
for feature, score in feature_scores:
added_to_group = False
# Check to see if the feature belongs in a group with any other features.
for i, group in enumerate(groups):
mean_score, group_feature_scores = group
if abs(mean_score - score) < similarity_bound:
groups[i][1].append( (feature, score) )
# Recalculate the representative mean.
groups[i][0] = sum([s for _, s in group_feature_scores])/len(group_feature_scores)
added_to_group = True
break
# If this feature did not much with the current groups, create another group.
if not added_to_group:
groups.append( [score, [(feature,score)]] )
# Return just the features.
return [[feature for feature, score in group] for _, group in groups]
score_dict = {}
features = []
for filename in filenames:
with open(filename) as audit_file:
header_line = audit_file.readline()[:-1] # Remove the trailing endline.
feature = header_line[header_line.index(":")+1:]
features.append(feature)
confusion_matrices = load_audit_confusion_matrices(filename)
for rep_level, matrix in confusion_matrices:
score = measurer(matrix)
if rep_level not in score_dict:
score_dict[rep_level] = {}
score_dict[rep_level][feature] = score
# Sort by repair level increasing repair level.
score_keys = sorted(score_dict.keys())
groups = [features]
while score_keys:
key = score_keys.pop()
new_groups = []
for group in groups:
group_features = [(f, score_dict[key][f]) for f in group]
sub_groups = _partition_groups(group_features)
new_groups.extend(sub_groups)
groups = new_groups
return groups
|
def group_audit_ranks(filenames, measurer, similarity_bound=0.05):
"""
Given a list of audit files, rank them using the `measurer` and
return the features that never deviate more than `similarity_bound`
across repairs.
"""
def _partition_groups(feature_scores):
groups = []
for feature, score in feature_scores:
added_to_group = False
# Check to see if the feature belongs in a group with any other features.
for i, group in enumerate(groups):
mean_score, group_feature_scores = group
if abs(mean_score - score) < similarity_bound:
groups[i][1].append( (feature, score) )
# Recalculate the representative mean.
groups[i][0] = sum([s for _, s in group_feature_scores])/len(group_feature_scores)
added_to_group = True
break
# If this feature did not much with the current groups, create another group.
if not added_to_group:
groups.append( [score, [(feature,score)]] )
# Return just the features.
return [[feature for feature, score in group] for _, group in groups]
score_dict = {}
features = []
for filename in filenames:
with open(filename) as audit_file:
header_line = audit_file.readline()[:-1] # Remove the trailing endline.
feature = header_line[header_line.index(":")+1:]
features.append(feature)
confusion_matrices = load_audit_confusion_matrices(filename)
for rep_level, matrix in confusion_matrices:
score = measurer(matrix)
if rep_level not in score_dict:
score_dict[rep_level] = {}
score_dict[rep_level][feature] = score
# Sort by repair level increasing repair level.
score_keys = sorted(score_dict.keys())
groups = [features]
while score_keys:
key = score_keys.pop()
new_groups = []
for group in groups:
group_features = [(f, score_dict[key][f]) for f in group]
sub_groups = _partition_groups(group_features)
new_groups.extend(sub_groups)
groups = new_groups
return groups
|
[
"Given",
"a",
"list",
"of",
"audit",
"files",
"rank",
"them",
"using",
"the",
"measurer",
"and",
"return",
"the",
"features",
"that",
"never",
"deviate",
"more",
"than",
"similarity_bound",
"across",
"repairs",
"."
] |
algofairness/BlackBoxAuditing
|
python
|
https://github.com/algofairness/BlackBoxAuditing/blob/b06c4faed5591cd7088475b2a203127bc5820483/BlackBoxAuditing/audit_reading.py#L124-L183
|
[
"def",
"group_audit_ranks",
"(",
"filenames",
",",
"measurer",
",",
"similarity_bound",
"=",
"0.05",
")",
":",
"def",
"_partition_groups",
"(",
"feature_scores",
")",
":",
"groups",
"=",
"[",
"]",
"for",
"feature",
",",
"score",
"in",
"feature_scores",
":",
"added_to_group",
"=",
"False",
"# Check to see if the feature belongs in a group with any other features.",
"for",
"i",
",",
"group",
"in",
"enumerate",
"(",
"groups",
")",
":",
"mean_score",
",",
"group_feature_scores",
"=",
"group",
"if",
"abs",
"(",
"mean_score",
"-",
"score",
")",
"<",
"similarity_bound",
":",
"groups",
"[",
"i",
"]",
"[",
"1",
"]",
".",
"append",
"(",
"(",
"feature",
",",
"score",
")",
")",
"# Recalculate the representative mean.",
"groups",
"[",
"i",
"]",
"[",
"0",
"]",
"=",
"sum",
"(",
"[",
"s",
"for",
"_",
",",
"s",
"in",
"group_feature_scores",
"]",
")",
"/",
"len",
"(",
"group_feature_scores",
")",
"added_to_group",
"=",
"True",
"break",
"# If this feature did not much with the current groups, create another group.",
"if",
"not",
"added_to_group",
":",
"groups",
".",
"append",
"(",
"[",
"score",
",",
"[",
"(",
"feature",
",",
"score",
")",
"]",
"]",
")",
"# Return just the features.",
"return",
"[",
"[",
"feature",
"for",
"feature",
",",
"score",
"in",
"group",
"]",
"for",
"_",
",",
"group",
"in",
"groups",
"]",
"score_dict",
"=",
"{",
"}",
"features",
"=",
"[",
"]",
"for",
"filename",
"in",
"filenames",
":",
"with",
"open",
"(",
"filename",
")",
"as",
"audit_file",
":",
"header_line",
"=",
"audit_file",
".",
"readline",
"(",
")",
"[",
":",
"-",
"1",
"]",
"# Remove the trailing endline.",
"feature",
"=",
"header_line",
"[",
"header_line",
".",
"index",
"(",
"\":\"",
")",
"+",
"1",
":",
"]",
"features",
".",
"append",
"(",
"feature",
")",
"confusion_matrices",
"=",
"load_audit_confusion_matrices",
"(",
"filename",
")",
"for",
"rep_level",
",",
"matrix",
"in",
"confusion_matrices",
":",
"score",
"=",
"measurer",
"(",
"matrix",
")",
"if",
"rep_level",
"not",
"in",
"score_dict",
":",
"score_dict",
"[",
"rep_level",
"]",
"=",
"{",
"}",
"score_dict",
"[",
"rep_level",
"]",
"[",
"feature",
"]",
"=",
"score",
"# Sort by repair level increasing repair level.",
"score_keys",
"=",
"sorted",
"(",
"score_dict",
".",
"keys",
"(",
")",
")",
"groups",
"=",
"[",
"features",
"]",
"while",
"score_keys",
":",
"key",
"=",
"score_keys",
".",
"pop",
"(",
")",
"new_groups",
"=",
"[",
"]",
"for",
"group",
"in",
"groups",
":",
"group_features",
"=",
"[",
"(",
"f",
",",
"score_dict",
"[",
"key",
"]",
"[",
"f",
"]",
")",
"for",
"f",
"in",
"group",
"]",
"sub_groups",
"=",
"_partition_groups",
"(",
"group_features",
")",
"new_groups",
".",
"extend",
"(",
"sub_groups",
")",
"groups",
"=",
"new_groups",
"return",
"groups"
] |
b06c4faed5591cd7088475b2a203127bc5820483
|
test
|
accuracy
|
Given a confusion matrix, returns the accuracy.
Accuracy Definition: http://research.ics.aalto.fi/events/eyechallenge2005/evaluation.shtml
|
python2_source/BlackBoxAuditing/measurements.py
|
def accuracy(conf_matrix):
"""
Given a confusion matrix, returns the accuracy.
Accuracy Definition: http://research.ics.aalto.fi/events/eyechallenge2005/evaluation.shtml
"""
total, correct = 0.0, 0.0
for true_response, guess_dict in conf_matrix.items():
for guess, count in guess_dict.items():
if true_response == guess:
correct += count
total += count
return correct/total
|
def accuracy(conf_matrix):
"""
Given a confusion matrix, returns the accuracy.
Accuracy Definition: http://research.ics.aalto.fi/events/eyechallenge2005/evaluation.shtml
"""
total, correct = 0.0, 0.0
for true_response, guess_dict in conf_matrix.items():
for guess, count in guess_dict.items():
if true_response == guess:
correct += count
total += count
return correct/total
|
[
"Given",
"a",
"confusion",
"matrix",
"returns",
"the",
"accuracy",
".",
"Accuracy",
"Definition",
":",
"http",
":",
"//",
"research",
".",
"ics",
".",
"aalto",
".",
"fi",
"/",
"events",
"/",
"eyechallenge2005",
"/",
"evaluation",
".",
"shtml"
] |
algofairness/BlackBoxAuditing
|
python
|
https://github.com/algofairness/BlackBoxAuditing/blob/b06c4faed5591cd7088475b2a203127bc5820483/python2_source/BlackBoxAuditing/measurements.py#L1-L12
|
[
"def",
"accuracy",
"(",
"conf_matrix",
")",
":",
"total",
",",
"correct",
"=",
"0.0",
",",
"0.0",
"for",
"true_response",
",",
"guess_dict",
"in",
"conf_matrix",
".",
"items",
"(",
")",
":",
"for",
"guess",
",",
"count",
"in",
"guess_dict",
".",
"items",
"(",
")",
":",
"if",
"true_response",
"==",
"guess",
":",
"correct",
"+=",
"count",
"total",
"+=",
"count",
"return",
"correct",
"/",
"total"
] |
b06c4faed5591cd7088475b2a203127bc5820483
|
test
|
BCR
|
Given a confusion matrix, returns Balanced Classification Rate.
BCR is (1 - Balanced Error Rate).
BER Definition: http://research.ics.aalto.fi/events/eyechallenge2005/evaluation.shtml
|
python2_source/BlackBoxAuditing/measurements.py
|
def BCR(conf_matrix):
"""
Given a confusion matrix, returns Balanced Classification Rate.
BCR is (1 - Balanced Error Rate).
BER Definition: http://research.ics.aalto.fi/events/eyechallenge2005/evaluation.shtml
"""
parts = []
for true_response, guess_dict in conf_matrix.items():
error = 0.0
total = 0.0
for guess, count in guess_dict.items():
if true_response != guess:
error += count
total += count
parts.append(error/total)
BER = sum(parts)/len(parts)
return 1 - BER
|
def BCR(conf_matrix):
"""
Given a confusion matrix, returns Balanced Classification Rate.
BCR is (1 - Balanced Error Rate).
BER Definition: http://research.ics.aalto.fi/events/eyechallenge2005/evaluation.shtml
"""
parts = []
for true_response, guess_dict in conf_matrix.items():
error = 0.0
total = 0.0
for guess, count in guess_dict.items():
if true_response != guess:
error += count
total += count
parts.append(error/total)
BER = sum(parts)/len(parts)
return 1 - BER
|
[
"Given",
"a",
"confusion",
"matrix",
"returns",
"Balanced",
"Classification",
"Rate",
".",
"BCR",
"is",
"(",
"1",
"-",
"Balanced",
"Error",
"Rate",
")",
".",
"BER",
"Definition",
":",
"http",
":",
"//",
"research",
".",
"ics",
".",
"aalto",
".",
"fi",
"/",
"events",
"/",
"eyechallenge2005",
"/",
"evaluation",
".",
"shtml"
] |
algofairness/BlackBoxAuditing
|
python
|
https://github.com/algofairness/BlackBoxAuditing/blob/b06c4faed5591cd7088475b2a203127bc5820483/python2_source/BlackBoxAuditing/measurements.py#L14-L30
|
[
"def",
"BCR",
"(",
"conf_matrix",
")",
":",
"parts",
"=",
"[",
"]",
"for",
"true_response",
",",
"guess_dict",
"in",
"conf_matrix",
".",
"items",
"(",
")",
":",
"error",
"=",
"0.0",
"total",
"=",
"0.0",
"for",
"guess",
",",
"count",
"in",
"guess_dict",
".",
"items",
"(",
")",
":",
"if",
"true_response",
"!=",
"guess",
":",
"error",
"+=",
"count",
"total",
"+=",
"count",
"parts",
".",
"append",
"(",
"error",
"/",
"total",
")",
"BER",
"=",
"sum",
"(",
"parts",
")",
"/",
"len",
"(",
"parts",
")",
"return",
"1",
"-",
"BER"
] |
b06c4faed5591cd7088475b2a203127bc5820483
|
test
|
get_median
|
Given an unsorted list of numeric values, return median value (as a float).
Note that in the case of even-length lists of values, we apply the value to
the left of the center to be the median (such that the median can only be
a value from the list of values).
Eg: get_median([1,2,3,4]) == 2, not 2.5.
|
BlackBoxAuditing/repairers/calculators.py
|
def get_median(values, kdd):
"""
Given an unsorted list of numeric values, return median value (as a float).
Note that in the case of even-length lists of values, we apply the value to
the left of the center to be the median (such that the median can only be
a value from the list of values).
Eg: get_median([1,2,3,4]) == 2, not 2.5.
"""
if not values:
raise Exception("Cannot calculate median of list with no values!")
sorted_values = deepcopy(values)
sorted_values.sort() # Not calling `sorted` b/c `sorted_values` may not be list.
if kdd:
return sorted_values[len(values)//2]
else:
if len(values) % 2 == 0:
return sorted_values[len(values)//2-1]
else:
return sorted_values[len(values)//2]
|
def get_median(values, kdd):
"""
Given an unsorted list of numeric values, return median value (as a float).
Note that in the case of even-length lists of values, we apply the value to
the left of the center to be the median (such that the median can only be
a value from the list of values).
Eg: get_median([1,2,3,4]) == 2, not 2.5.
"""
if not values:
raise Exception("Cannot calculate median of list with no values!")
sorted_values = deepcopy(values)
sorted_values.sort() # Not calling `sorted` b/c `sorted_values` may not be list.
if kdd:
return sorted_values[len(values)//2]
else:
if len(values) % 2 == 0:
return sorted_values[len(values)//2-1]
else:
return sorted_values[len(values)//2]
|
[
"Given",
"an",
"unsorted",
"list",
"of",
"numeric",
"values",
"return",
"median",
"value",
"(",
"as",
"a",
"float",
")",
".",
"Note",
"that",
"in",
"the",
"case",
"of",
"even",
"-",
"length",
"lists",
"of",
"values",
"we",
"apply",
"the",
"value",
"to",
"the",
"left",
"of",
"the",
"center",
"to",
"be",
"the",
"median",
"(",
"such",
"that",
"the",
"median",
"can",
"only",
"be",
"a",
"value",
"from",
"the",
"list",
"of",
"values",
")",
".",
"Eg",
":",
"get_median",
"(",
"[",
"1",
"2",
"3",
"4",
"]",
")",
"==",
"2",
"not",
"2",
".",
"5",
"."
] |
algofairness/BlackBoxAuditing
|
python
|
https://github.com/algofairness/BlackBoxAuditing/blob/b06c4faed5591cd7088475b2a203127bc5820483/BlackBoxAuditing/repairers/calculators.py#L3-L24
|
[
"def",
"get_median",
"(",
"values",
",",
"kdd",
")",
":",
"if",
"not",
"values",
":",
"raise",
"Exception",
"(",
"\"Cannot calculate median of list with no values!\"",
")",
"sorted_values",
"=",
"deepcopy",
"(",
"values",
")",
"sorted_values",
".",
"sort",
"(",
")",
"# Not calling `sorted` b/c `sorted_values` may not be list.",
"if",
"kdd",
":",
"return",
"sorted_values",
"[",
"len",
"(",
"values",
")",
"//",
"2",
"]",
"else",
":",
"if",
"len",
"(",
"values",
")",
"%",
"2",
"==",
"0",
":",
"return",
"sorted_values",
"[",
"len",
"(",
"values",
")",
"//",
"2",
"-",
"1",
"]",
"else",
":",
"return",
"sorted_values",
"[",
"len",
"(",
"values",
")",
"//",
"2",
"]"
] |
b06c4faed5591cd7088475b2a203127bc5820483
|
test
|
expand_to_one_hot
|
with open("brandon_testing/test_"+str(time.clock())+".csv","w") as f:
writer = csv.writer(f,delimiter=",")
for row in fin:
writer.writerow(row)
|
python2_source/BlackBoxAuditing/model_factories/RecidivismTensorFlowModelFactory.py
|
def expand_to_one_hot(data,expand = True,use_alternative=False):
header_dict = {'ALCABUS':0,'PRIRCAT':1,'TMSRVC':2,'SEX1':3,'RACE':4,'RELTYP':5,'age_1st_arrest':6,'DRUGAB':7,'Class':8,'RLAGE':9,'NFRCTNS':10}
new_data = []
for entry in data:
temp = {}
if expand == True:
if entry[header_dict["SEX1"]] == "FEMALE":
temp['female'] = 1
else:
temp['female'] = 0
if entry[header_dict["ALCABUS"]] == 'INMATE IS AN ALCOHOL ABUSER':
temp['prior_alcohol_abuse'] = 1
else:
temp['prior_alcohol_abuse'] = 0
if entry[header_dict['DRUGAB']] == 'INMATE IS A DRUG ABUSER':
temp['prior_drug_abuse'] = 1
else:
temp['prior_drug_abuse'] = 0
if entry[header_dict['NFRCTNS']] == 'INMATE HAS RECORD':
temp['infraction_in_prison'] = 1
else:
temp['infraction_in_prison'] = 0
race_cats = ['WHITE','BLACK','AMERICAN INDIAN/ALEUTIAN','ASIAN/PACIFIC ISLANDER','OTHER','UNKNOWN']
for cat in race_cats:
if entry[header_dict['RACE']] == cat:
temp['race_'+cat] = 1
else:
temp['race_'+cat] = 0
release_age_cats = ['14 TO 17 YEARS OLD','18 TO 24 YEARS OLD', '25 TO 29 YEARS OLD', \
'30 TO 34 YEARS OLD','35 TO 39 YEARS OLD','40 TO 44 YEARS OLD','45 YEARS OLD AND OLDER']
for cat in release_age_cats:
if entry[header_dict['RLAGE']] == cat:
temp['release_age_'+cat] = 1
else:
temp['release_age_'+cat] = 0
time_served_cats = ['None','1 TO 6 MONTHS','13 TO 18 MONTHS','19 TO 24 MONTHS','25 TO 30 MONTHS', \
'31 TO 36 MONTHS','37 TO 60 MONTHS','61 MONTHS AND HIGHER','7 TO 12 MONTHS']
for cat in time_served_cats:
if entry[header_dict['TMSRVC']] == cat:
temp['time_served_'+cat] = 1
else:
temp['time_served_'+cat] = 0
prior_arrest_cats = ['None','1 PRIOR ARREST','11 TO 15 PRIOR ARRESTS','16 TO HI PRIOR ARRESTS','2 PRIOR ARRESTS', \
'3 PRIOR ARRESTS','4 PRIOR ARRESTS','5 PRIOR ARRESTS','6 PRIOR ARRESTS','7 TO 10 PRIOR ARRESTS']
for cat in prior_arrest_cats:
if entry[header_dict['PRIRCAT']] == cat:
temp['prior_arrest_'+cat] = 1
else:
temp['prior_arrest_'+cat] = 0
conditional_release =['PAROLE BOARD DECISION-SERVED NO MINIMUM','MANDATORY PAROLE RELEASE', 'PROBATION RELEASE-SHOCK PROBATION', \
'OTHER CONDITIONAL RELEASE']
unconditional_release = ['EXPIRATION OF SENTENCE','COMMUTATION-PARDON','RELEASE TO CUSTODY, DETAINER, OR WARRANT', \
'OTHER UNCONDITIONAL RELEASE']
other_release = ['NATURAL CAUSES','SUICIDE','HOMICIDE BY ANOTHER INMATE','OTHER HOMICIDE','EXECUTION','OTHER TYPE OF DEATH', \
'TRANSFER','RELEASE ON APPEAL OR BOND','OTHER TYPE OF RELEASE','ESCAPE','ACCIDENTAL INJURY TO SELF','UNKNOWN']
if entry[header_dict['RELTYP']] in conditional_release:
temp['released_conditional'] = 1
temp['released_unconditional'] = 0
temp['released_other'] = 0
elif entry[header_dict['RELTYP']] in unconditional_release:
temp['released_conditional'] = 0
temp['released_unconditional'] = 1
temp['released_other'] = 0
else:
temp['released_conditional'] = 0
temp['released_unconditional'] = 0
temp['released_other'] = 1
first_arrest_cats = ['UNDER 17','BETWEEN 18 AND 24','BETWEEN 25 AND 29','BETWEEN 30 AND 39','OVER 40']
for cat in first_arrest_cats:
if entry[header_dict['age_1st_arrest']] == cat:
temp['age_first_arrest_'+cat] = 1
else:
temp['age_first_arrest_'+cat] = 0
else:
temp['SEX1'] = entry['SEX1']
temp['RELTYP'] = entry['RELTYP']
temp['PRIRCAT'] = entry['PRIRCAT']
temp['ALCABUS'] = entry['ALCABUS']
temp['DRUGAB'] = entry['DRUGAB']
temp['RLAGE'] = entry['RLAGE']
temp['TMSRVC'] = entry['TMSRVC']
temp['NFRCTNS'] = entry['NFRCTNS']
temp['RACE'] = entry['RACE']
try:
bdate = datetime.date(int(entry['YEAROB2']),int(entry['MNTHOB2']), int(entry['DAYOB2']))
first_arrest = datetime.date(int(entry['A001YR']),int(entry['A001MO']),int(entry['A001DA']))
first_arrest_age = first_arrest - bdate
temp['age_1st_arrest'] = first_arrest_age.days
except:
temp['age_1st_arrest'] = 0
new_data.append(temp)
# convert from dictionary to list of lists
fin = [[int(entry[key]) for key in entry.keys()] for entry in new_data]
"""
with open("brandon_testing/test_"+str(time.clock())+".csv","w") as f:
writer = csv.writer(f,delimiter=",")
for row in fin:
writer.writerow(row)
"""
return fin
|
def expand_to_one_hot(data,expand = True,use_alternative=False):
header_dict = {'ALCABUS':0,'PRIRCAT':1,'TMSRVC':2,'SEX1':3,'RACE':4,'RELTYP':5,'age_1st_arrest':6,'DRUGAB':7,'Class':8,'RLAGE':9,'NFRCTNS':10}
new_data = []
for entry in data:
temp = {}
if expand == True:
if entry[header_dict["SEX1"]] == "FEMALE":
temp['female'] = 1
else:
temp['female'] = 0
if entry[header_dict["ALCABUS"]] == 'INMATE IS AN ALCOHOL ABUSER':
temp['prior_alcohol_abuse'] = 1
else:
temp['prior_alcohol_abuse'] = 0
if entry[header_dict['DRUGAB']] == 'INMATE IS A DRUG ABUSER':
temp['prior_drug_abuse'] = 1
else:
temp['prior_drug_abuse'] = 0
if entry[header_dict['NFRCTNS']] == 'INMATE HAS RECORD':
temp['infraction_in_prison'] = 1
else:
temp['infraction_in_prison'] = 0
race_cats = ['WHITE','BLACK','AMERICAN INDIAN/ALEUTIAN','ASIAN/PACIFIC ISLANDER','OTHER','UNKNOWN']
for cat in race_cats:
if entry[header_dict['RACE']] == cat:
temp['race_'+cat] = 1
else:
temp['race_'+cat] = 0
release_age_cats = ['14 TO 17 YEARS OLD','18 TO 24 YEARS OLD', '25 TO 29 YEARS OLD', \
'30 TO 34 YEARS OLD','35 TO 39 YEARS OLD','40 TO 44 YEARS OLD','45 YEARS OLD AND OLDER']
for cat in release_age_cats:
if entry[header_dict['RLAGE']] == cat:
temp['release_age_'+cat] = 1
else:
temp['release_age_'+cat] = 0
time_served_cats = ['None','1 TO 6 MONTHS','13 TO 18 MONTHS','19 TO 24 MONTHS','25 TO 30 MONTHS', \
'31 TO 36 MONTHS','37 TO 60 MONTHS','61 MONTHS AND HIGHER','7 TO 12 MONTHS']
for cat in time_served_cats:
if entry[header_dict['TMSRVC']] == cat:
temp['time_served_'+cat] = 1
else:
temp['time_served_'+cat] = 0
prior_arrest_cats = ['None','1 PRIOR ARREST','11 TO 15 PRIOR ARRESTS','16 TO HI PRIOR ARRESTS','2 PRIOR ARRESTS', \
'3 PRIOR ARRESTS','4 PRIOR ARRESTS','5 PRIOR ARRESTS','6 PRIOR ARRESTS','7 TO 10 PRIOR ARRESTS']
for cat in prior_arrest_cats:
if entry[header_dict['PRIRCAT']] == cat:
temp['prior_arrest_'+cat] = 1
else:
temp['prior_arrest_'+cat] = 0
conditional_release =['PAROLE BOARD DECISION-SERVED NO MINIMUM','MANDATORY PAROLE RELEASE', 'PROBATION RELEASE-SHOCK PROBATION', \
'OTHER CONDITIONAL RELEASE']
unconditional_release = ['EXPIRATION OF SENTENCE','COMMUTATION-PARDON','RELEASE TO CUSTODY, DETAINER, OR WARRANT', \
'OTHER UNCONDITIONAL RELEASE']
other_release = ['NATURAL CAUSES','SUICIDE','HOMICIDE BY ANOTHER INMATE','OTHER HOMICIDE','EXECUTION','OTHER TYPE OF DEATH', \
'TRANSFER','RELEASE ON APPEAL OR BOND','OTHER TYPE OF RELEASE','ESCAPE','ACCIDENTAL INJURY TO SELF','UNKNOWN']
if entry[header_dict['RELTYP']] in conditional_release:
temp['released_conditional'] = 1
temp['released_unconditional'] = 0
temp['released_other'] = 0
elif entry[header_dict['RELTYP']] in unconditional_release:
temp['released_conditional'] = 0
temp['released_unconditional'] = 1
temp['released_other'] = 0
else:
temp['released_conditional'] = 0
temp['released_unconditional'] = 0
temp['released_other'] = 1
first_arrest_cats = ['UNDER 17','BETWEEN 18 AND 24','BETWEEN 25 AND 29','BETWEEN 30 AND 39','OVER 40']
for cat in first_arrest_cats:
if entry[header_dict['age_1st_arrest']] == cat:
temp['age_first_arrest_'+cat] = 1
else:
temp['age_first_arrest_'+cat] = 0
else:
temp['SEX1'] = entry['SEX1']
temp['RELTYP'] = entry['RELTYP']
temp['PRIRCAT'] = entry['PRIRCAT']
temp['ALCABUS'] = entry['ALCABUS']
temp['DRUGAB'] = entry['DRUGAB']
temp['RLAGE'] = entry['RLAGE']
temp['TMSRVC'] = entry['TMSRVC']
temp['NFRCTNS'] = entry['NFRCTNS']
temp['RACE'] = entry['RACE']
try:
bdate = datetime.date(int(entry['YEAROB2']),int(entry['MNTHOB2']), int(entry['DAYOB2']))
first_arrest = datetime.date(int(entry['A001YR']),int(entry['A001MO']),int(entry['A001DA']))
first_arrest_age = first_arrest - bdate
temp['age_1st_arrest'] = first_arrest_age.days
except:
temp['age_1st_arrest'] = 0
new_data.append(temp)
# convert from dictionary to list of lists
fin = [[int(entry[key]) for key in entry.keys()] for entry in new_data]
"""
with open("brandon_testing/test_"+str(time.clock())+".csv","w") as f:
writer = csv.writer(f,delimiter=",")
for row in fin:
writer.writerow(row)
"""
return fin
|
[
"with",
"open",
"(",
"brandon_testing",
"/",
"test_",
"+",
"str",
"(",
"time",
".",
"clock",
"()",
")",
"+",
".",
"csv",
"w",
")",
"as",
"f",
":",
"writer",
"=",
"csv",
".",
"writer",
"(",
"f",
"delimiter",
"=",
")",
"for",
"row",
"in",
"fin",
":",
"writer",
".",
"writerow",
"(",
"row",
")"
] |
algofairness/BlackBoxAuditing
|
python
|
https://github.com/algofairness/BlackBoxAuditing/blob/b06c4faed5591cd7088475b2a203127bc5820483/python2_source/BlackBoxAuditing/model_factories/RecidivismTensorFlowModelFactory.py#L139-L253
|
[
"def",
"expand_to_one_hot",
"(",
"data",
",",
"expand",
"=",
"True",
",",
"use_alternative",
"=",
"False",
")",
":",
"header_dict",
"=",
"{",
"'ALCABUS'",
":",
"0",
",",
"'PRIRCAT'",
":",
"1",
",",
"'TMSRVC'",
":",
"2",
",",
"'SEX1'",
":",
"3",
",",
"'RACE'",
":",
"4",
",",
"'RELTYP'",
":",
"5",
",",
"'age_1st_arrest'",
":",
"6",
",",
"'DRUGAB'",
":",
"7",
",",
"'Class'",
":",
"8",
",",
"'RLAGE'",
":",
"9",
",",
"'NFRCTNS'",
":",
"10",
"}",
"new_data",
"=",
"[",
"]",
"for",
"entry",
"in",
"data",
":",
"temp",
"=",
"{",
"}",
"if",
"expand",
"==",
"True",
":",
"if",
"entry",
"[",
"header_dict",
"[",
"\"SEX1\"",
"]",
"]",
"==",
"\"FEMALE\"",
":",
"temp",
"[",
"'female'",
"]",
"=",
"1",
"else",
":",
"temp",
"[",
"'female'",
"]",
"=",
"0",
"if",
"entry",
"[",
"header_dict",
"[",
"\"ALCABUS\"",
"]",
"]",
"==",
"'INMATE IS AN ALCOHOL ABUSER'",
":",
"temp",
"[",
"'prior_alcohol_abuse'",
"]",
"=",
"1",
"else",
":",
"temp",
"[",
"'prior_alcohol_abuse'",
"]",
"=",
"0",
"if",
"entry",
"[",
"header_dict",
"[",
"'DRUGAB'",
"]",
"]",
"==",
"'INMATE IS A DRUG ABUSER'",
":",
"temp",
"[",
"'prior_drug_abuse'",
"]",
"=",
"1",
"else",
":",
"temp",
"[",
"'prior_drug_abuse'",
"]",
"=",
"0",
"if",
"entry",
"[",
"header_dict",
"[",
"'NFRCTNS'",
"]",
"]",
"==",
"'INMATE HAS RECORD'",
":",
"temp",
"[",
"'infraction_in_prison'",
"]",
"=",
"1",
"else",
":",
"temp",
"[",
"'infraction_in_prison'",
"]",
"=",
"0",
"race_cats",
"=",
"[",
"'WHITE'",
",",
"'BLACK'",
",",
"'AMERICAN INDIAN/ALEUTIAN'",
",",
"'ASIAN/PACIFIC ISLANDER'",
",",
"'OTHER'",
",",
"'UNKNOWN'",
"]",
"for",
"cat",
"in",
"race_cats",
":",
"if",
"entry",
"[",
"header_dict",
"[",
"'RACE'",
"]",
"]",
"==",
"cat",
":",
"temp",
"[",
"'race_'",
"+",
"cat",
"]",
"=",
"1",
"else",
":",
"temp",
"[",
"'race_'",
"+",
"cat",
"]",
"=",
"0",
"release_age_cats",
"=",
"[",
"'14 TO 17 YEARS OLD'",
",",
"'18 TO 24 YEARS OLD'",
",",
"'25 TO 29 YEARS OLD'",
",",
"'30 TO 34 YEARS OLD'",
",",
"'35 TO 39 YEARS OLD'",
",",
"'40 TO 44 YEARS OLD'",
",",
"'45 YEARS OLD AND OLDER'",
"]",
"for",
"cat",
"in",
"release_age_cats",
":",
"if",
"entry",
"[",
"header_dict",
"[",
"'RLAGE'",
"]",
"]",
"==",
"cat",
":",
"temp",
"[",
"'release_age_'",
"+",
"cat",
"]",
"=",
"1",
"else",
":",
"temp",
"[",
"'release_age_'",
"+",
"cat",
"]",
"=",
"0",
"time_served_cats",
"=",
"[",
"'None'",
",",
"'1 TO 6 MONTHS'",
",",
"'13 TO 18 MONTHS'",
",",
"'19 TO 24 MONTHS'",
",",
"'25 TO 30 MONTHS'",
",",
"'31 TO 36 MONTHS'",
",",
"'37 TO 60 MONTHS'",
",",
"'61 MONTHS AND HIGHER'",
",",
"'7 TO 12 MONTHS'",
"]",
"for",
"cat",
"in",
"time_served_cats",
":",
"if",
"entry",
"[",
"header_dict",
"[",
"'TMSRVC'",
"]",
"]",
"==",
"cat",
":",
"temp",
"[",
"'time_served_'",
"+",
"cat",
"]",
"=",
"1",
"else",
":",
"temp",
"[",
"'time_served_'",
"+",
"cat",
"]",
"=",
"0",
"prior_arrest_cats",
"=",
"[",
"'None'",
",",
"'1 PRIOR ARREST'",
",",
"'11 TO 15 PRIOR ARRESTS'",
",",
"'16 TO HI PRIOR ARRESTS'",
",",
"'2 PRIOR ARRESTS'",
",",
"'3 PRIOR ARRESTS'",
",",
"'4 PRIOR ARRESTS'",
",",
"'5 PRIOR ARRESTS'",
",",
"'6 PRIOR ARRESTS'",
",",
"'7 TO 10 PRIOR ARRESTS'",
"]",
"for",
"cat",
"in",
"prior_arrest_cats",
":",
"if",
"entry",
"[",
"header_dict",
"[",
"'PRIRCAT'",
"]",
"]",
"==",
"cat",
":",
"temp",
"[",
"'prior_arrest_'",
"+",
"cat",
"]",
"=",
"1",
"else",
":",
"temp",
"[",
"'prior_arrest_'",
"+",
"cat",
"]",
"=",
"0",
"conditional_release",
"=",
"[",
"'PAROLE BOARD DECISION-SERVED NO MINIMUM'",
",",
"'MANDATORY PAROLE RELEASE'",
",",
"'PROBATION RELEASE-SHOCK PROBATION'",
",",
"'OTHER CONDITIONAL RELEASE'",
"]",
"unconditional_release",
"=",
"[",
"'EXPIRATION OF SENTENCE'",
",",
"'COMMUTATION-PARDON'",
",",
"'RELEASE TO CUSTODY, DETAINER, OR WARRANT'",
",",
"'OTHER UNCONDITIONAL RELEASE'",
"]",
"other_release",
"=",
"[",
"'NATURAL CAUSES'",
",",
"'SUICIDE'",
",",
"'HOMICIDE BY ANOTHER INMATE'",
",",
"'OTHER HOMICIDE'",
",",
"'EXECUTION'",
",",
"'OTHER TYPE OF DEATH'",
",",
"'TRANSFER'",
",",
"'RELEASE ON APPEAL OR BOND'",
",",
"'OTHER TYPE OF RELEASE'",
",",
"'ESCAPE'",
",",
"'ACCIDENTAL INJURY TO SELF'",
",",
"'UNKNOWN'",
"]",
"if",
"entry",
"[",
"header_dict",
"[",
"'RELTYP'",
"]",
"]",
"in",
"conditional_release",
":",
"temp",
"[",
"'released_conditional'",
"]",
"=",
"1",
"temp",
"[",
"'released_unconditional'",
"]",
"=",
"0",
"temp",
"[",
"'released_other'",
"]",
"=",
"0",
"elif",
"entry",
"[",
"header_dict",
"[",
"'RELTYP'",
"]",
"]",
"in",
"unconditional_release",
":",
"temp",
"[",
"'released_conditional'",
"]",
"=",
"0",
"temp",
"[",
"'released_unconditional'",
"]",
"=",
"1",
"temp",
"[",
"'released_other'",
"]",
"=",
"0",
"else",
":",
"temp",
"[",
"'released_conditional'",
"]",
"=",
"0",
"temp",
"[",
"'released_unconditional'",
"]",
"=",
"0",
"temp",
"[",
"'released_other'",
"]",
"=",
"1",
"first_arrest_cats",
"=",
"[",
"'UNDER 17'",
",",
"'BETWEEN 18 AND 24'",
",",
"'BETWEEN 25 AND 29'",
",",
"'BETWEEN 30 AND 39'",
",",
"'OVER 40'",
"]",
"for",
"cat",
"in",
"first_arrest_cats",
":",
"if",
"entry",
"[",
"header_dict",
"[",
"'age_1st_arrest'",
"]",
"]",
"==",
"cat",
":",
"temp",
"[",
"'age_first_arrest_'",
"+",
"cat",
"]",
"=",
"1",
"else",
":",
"temp",
"[",
"'age_first_arrest_'",
"+",
"cat",
"]",
"=",
"0",
"else",
":",
"temp",
"[",
"'SEX1'",
"]",
"=",
"entry",
"[",
"'SEX1'",
"]",
"temp",
"[",
"'RELTYP'",
"]",
"=",
"entry",
"[",
"'RELTYP'",
"]",
"temp",
"[",
"'PRIRCAT'",
"]",
"=",
"entry",
"[",
"'PRIRCAT'",
"]",
"temp",
"[",
"'ALCABUS'",
"]",
"=",
"entry",
"[",
"'ALCABUS'",
"]",
"temp",
"[",
"'DRUGAB'",
"]",
"=",
"entry",
"[",
"'DRUGAB'",
"]",
"temp",
"[",
"'RLAGE'",
"]",
"=",
"entry",
"[",
"'RLAGE'",
"]",
"temp",
"[",
"'TMSRVC'",
"]",
"=",
"entry",
"[",
"'TMSRVC'",
"]",
"temp",
"[",
"'NFRCTNS'",
"]",
"=",
"entry",
"[",
"'NFRCTNS'",
"]",
"temp",
"[",
"'RACE'",
"]",
"=",
"entry",
"[",
"'RACE'",
"]",
"try",
":",
"bdate",
"=",
"datetime",
".",
"date",
"(",
"int",
"(",
"entry",
"[",
"'YEAROB2'",
"]",
")",
",",
"int",
"(",
"entry",
"[",
"'MNTHOB2'",
"]",
")",
",",
"int",
"(",
"entry",
"[",
"'DAYOB2'",
"]",
")",
")",
"first_arrest",
"=",
"datetime",
".",
"date",
"(",
"int",
"(",
"entry",
"[",
"'A001YR'",
"]",
")",
",",
"int",
"(",
"entry",
"[",
"'A001MO'",
"]",
")",
",",
"int",
"(",
"entry",
"[",
"'A001DA'",
"]",
")",
")",
"first_arrest_age",
"=",
"first_arrest",
"-",
"bdate",
"temp",
"[",
"'age_1st_arrest'",
"]",
"=",
"first_arrest_age",
".",
"days",
"except",
":",
"temp",
"[",
"'age_1st_arrest'",
"]",
"=",
"0",
"new_data",
".",
"append",
"(",
"temp",
")",
"# convert from dictionary to list of lists",
"fin",
"=",
"[",
"[",
"int",
"(",
"entry",
"[",
"key",
"]",
")",
"for",
"key",
"in",
"entry",
".",
"keys",
"(",
")",
"]",
"for",
"entry",
"in",
"new_data",
"]",
"return",
"fin"
] |
b06c4faed5591cd7088475b2a203127bc5820483
|
test
|
load_audit_confusion_matrices
|
Loads a confusion matrix in a two-level dictionary format.
For example, the confusion matrix of a 75%-accurate model
that predicted 15 values (and mis-classified 5) may look like:
{"A": {"A":10, "B": 5}, "B": {"B":5}}
Note that raw boolean values are translated into strings, such that
a value that was the boolean True will be returned as the string "True".
|
python2_source/BlackBoxAuditing/audit_reading.py
|
def load_audit_confusion_matrices(filename):
"""
Loads a confusion matrix in a two-level dictionary format.
For example, the confusion matrix of a 75%-accurate model
that predicted 15 values (and mis-classified 5) may look like:
{"A": {"A":10, "B": 5}, "B": {"B":5}}
Note that raw boolean values are translated into strings, such that
a value that was the boolean True will be returned as the string "True".
"""
with open(filename) as audit_file:
audit_file.next() # Skip the first line.
# Extract the confusion matrices and repair levels from the audit file.
confusion_matrices = []
for line in audit_file:
separator = ":"
separator_index = line.index(separator)
comma_index = line.index(',')
repair_level = float(line[separator_index+2:comma_index])
raw_confusion_matrix = line[comma_index+2:-2]
confusion_matrix = json.loads( raw_confusion_matrix.replace("'","\"") )
confusion_matrices.append( (repair_level, confusion_matrix) )
# Sort the repair levels in case they are out of order for whatever reason.
confusion_matrices.sort(key = lambda pair: pair[0])
return confusion_matrices
|
def load_audit_confusion_matrices(filename):
"""
Loads a confusion matrix in a two-level dictionary format.
For example, the confusion matrix of a 75%-accurate model
that predicted 15 values (and mis-classified 5) may look like:
{"A": {"A":10, "B": 5}, "B": {"B":5}}
Note that raw boolean values are translated into strings, such that
a value that was the boolean True will be returned as the string "True".
"""
with open(filename) as audit_file:
audit_file.next() # Skip the first line.
# Extract the confusion matrices and repair levels from the audit file.
confusion_matrices = []
for line in audit_file:
separator = ":"
separator_index = line.index(separator)
comma_index = line.index(',')
repair_level = float(line[separator_index+2:comma_index])
raw_confusion_matrix = line[comma_index+2:-2]
confusion_matrix = json.loads( raw_confusion_matrix.replace("'","\"") )
confusion_matrices.append( (repair_level, confusion_matrix) )
# Sort the repair levels in case they are out of order for whatever reason.
confusion_matrices.sort(key = lambda pair: pair[0])
return confusion_matrices
|
[
"Loads",
"a",
"confusion",
"matrix",
"in",
"a",
"two",
"-",
"level",
"dictionary",
"format",
"."
] |
algofairness/BlackBoxAuditing
|
python
|
https://github.com/algofairness/BlackBoxAuditing/blob/b06c4faed5591cd7088475b2a203127bc5820483/python2_source/BlackBoxAuditing/audit_reading.py#L11-L40
|
[
"def",
"load_audit_confusion_matrices",
"(",
"filename",
")",
":",
"with",
"open",
"(",
"filename",
")",
"as",
"audit_file",
":",
"audit_file",
".",
"next",
"(",
")",
"# Skip the first line.",
"# Extract the confusion matrices and repair levels from the audit file.",
"confusion_matrices",
"=",
"[",
"]",
"for",
"line",
"in",
"audit_file",
":",
"separator",
"=",
"\":\"",
"separator_index",
"=",
"line",
".",
"index",
"(",
"separator",
")",
"comma_index",
"=",
"line",
".",
"index",
"(",
"','",
")",
"repair_level",
"=",
"float",
"(",
"line",
"[",
"separator_index",
"+",
"2",
":",
"comma_index",
"]",
")",
"raw_confusion_matrix",
"=",
"line",
"[",
"comma_index",
"+",
"2",
":",
"-",
"2",
"]",
"confusion_matrix",
"=",
"json",
".",
"loads",
"(",
"raw_confusion_matrix",
".",
"replace",
"(",
"\"'\"",
",",
"\"\\\"\"",
")",
")",
"confusion_matrices",
".",
"append",
"(",
"(",
"repair_level",
",",
"confusion_matrix",
")",
")",
"# Sort the repair levels in case they are out of order for whatever reason.",
"confusion_matrices",
".",
"sort",
"(",
"key",
"=",
"lambda",
"pair",
":",
"pair",
"[",
"0",
"]",
")",
"return",
"confusion_matrices"
] |
b06c4faed5591cd7088475b2a203127bc5820483
|
test
|
list_to_tf_input
|
Separates the outcome feature from the data.
|
BlackBoxAuditing/model_factories/SVM.py
|
def list_to_tf_input(data, response_index, num_outcomes):
"""
Separates the outcome feature from the data.
"""
matrix = np.matrix([row[:response_index] + row[response_index+1:] for row in data])
outcomes = np.asarray([row[response_index] for row in data], dtype=np.uint8)
return matrix, outcomes
|
def list_to_tf_input(data, response_index, num_outcomes):
"""
Separates the outcome feature from the data.
"""
matrix = np.matrix([row[:response_index] + row[response_index+1:] for row in data])
outcomes = np.asarray([row[response_index] for row in data], dtype=np.uint8)
return matrix, outcomes
|
[
"Separates",
"the",
"outcome",
"feature",
"from",
"the",
"data",
"."
] |
algofairness/BlackBoxAuditing
|
python
|
https://github.com/algofairness/BlackBoxAuditing/blob/b06c4faed5591cd7088475b2a203127bc5820483/BlackBoxAuditing/model_factories/SVM.py#L138-L145
|
[
"def",
"list_to_tf_input",
"(",
"data",
",",
"response_index",
",",
"num_outcomes",
")",
":",
"matrix",
"=",
"np",
".",
"matrix",
"(",
"[",
"row",
"[",
":",
"response_index",
"]",
"+",
"row",
"[",
"response_index",
"+",
"1",
":",
"]",
"for",
"row",
"in",
"data",
"]",
")",
"outcomes",
"=",
"np",
".",
"asarray",
"(",
"[",
"row",
"[",
"response_index",
"]",
"for",
"row",
"in",
"data",
"]",
",",
"dtype",
"=",
"np",
".",
"uint8",
")",
"return",
"matrix",
",",
"outcomes"
] |
b06c4faed5591cd7088475b2a203127bc5820483
|
test
|
FreedmanDiaconisBinSize
|
The bin size in FD-binning is given by size = 2 * IQR(x) * n^(-1/3)
More Info: https://en.wikipedia.org/wiki/Freedman%E2%80%93Diaconis_rule
If the BinSize ends up being 0 (in the case that all values are the same),
return a BinSize of 1.
|
python2_source/BlackBoxAuditing/repairers/binning/BinSizes.py
|
def FreedmanDiaconisBinSize(feature_values):
"""
The bin size in FD-binning is given by size = 2 * IQR(x) * n^(-1/3)
More Info: https://en.wikipedia.org/wiki/Freedman%E2%80%93Diaconis_rule
If the BinSize ends up being 0 (in the case that all values are the same),
return a BinSize of 1.
"""
q75, q25 = numpy.percentile(feature_values, [75, 25])
IQR = q75 - q25
return 2.0 * IQR * len(feature_values) ** (-1.0/3.0)
|
def FreedmanDiaconisBinSize(feature_values):
"""
The bin size in FD-binning is given by size = 2 * IQR(x) * n^(-1/3)
More Info: https://en.wikipedia.org/wiki/Freedman%E2%80%93Diaconis_rule
If the BinSize ends up being 0 (in the case that all values are the same),
return a BinSize of 1.
"""
q75, q25 = numpy.percentile(feature_values, [75, 25])
IQR = q75 - q25
return 2.0 * IQR * len(feature_values) ** (-1.0/3.0)
|
[
"The",
"bin",
"size",
"in",
"FD",
"-",
"binning",
"is",
"given",
"by",
"size",
"=",
"2",
"*",
"IQR",
"(",
"x",
")",
"*",
"n^",
"(",
"-",
"1",
"/",
"3",
")",
"More",
"Info",
":",
"https",
":",
"//",
"en",
".",
"wikipedia",
".",
"org",
"/",
"wiki",
"/",
"Freedman%E2%80%93Diaconis_rule"
] |
algofairness/BlackBoxAuditing
|
python
|
https://github.com/algofairness/BlackBoxAuditing/blob/b06c4faed5591cd7088475b2a203127bc5820483/python2_source/BlackBoxAuditing/repairers/binning/BinSizes.py#L3-L15
|
[
"def",
"FreedmanDiaconisBinSize",
"(",
"feature_values",
")",
":",
"q75",
",",
"q25",
"=",
"numpy",
".",
"percentile",
"(",
"feature_values",
",",
"[",
"75",
",",
"25",
"]",
")",
"IQR",
"=",
"q75",
"-",
"q25",
"return",
"2.0",
"*",
"IQR",
"*",
"len",
"(",
"feature_values",
")",
"**",
"(",
"-",
"1.0",
"/",
"3.0",
")"
] |
b06c4faed5591cd7088475b2a203127bc5820483
|
test
|
PackagesStatusDetector._update_index_url_from_configs
|
Checks for alternative index-url in pip.conf
|
pip_upgrader/packages_status_detector.py
|
def _update_index_url_from_configs(self):
""" Checks for alternative index-url in pip.conf """
if 'VIRTUAL_ENV' in os.environ:
self.pip_config_locations.append(os.path.join(os.environ['VIRTUAL_ENV'], 'pip.conf'))
self.pip_config_locations.append(os.path.join(os.environ['VIRTUAL_ENV'], 'pip.ini'))
if site_config_files:
self.pip_config_locations.extend(site_config_files)
index_url = None
custom_config = None
if 'PIP_INDEX_URL' in os.environ and os.environ['PIP_INDEX_URL']:
# environ variable takes priority
index_url = os.environ['PIP_INDEX_URL']
custom_config = 'PIP_INDEX_URL environment variable'
else:
for pip_config_filename in self.pip_config_locations:
if pip_config_filename.startswith('~'):
pip_config_filename = os.path.expanduser(pip_config_filename)
if os.path.isfile(pip_config_filename):
config = ConfigParser()
config.read([pip_config_filename])
try:
index_url = config.get('global', 'index-url')
custom_config = pip_config_filename
break # stop on first detected, because config locations have a priority
except (NoOptionError, NoSectionError): # pragma: nocover
pass
if index_url:
self.PYPI_API_URL = self._prepare_api_url(index_url)
print(Color('Setting API url to {{autoyellow}}{}{{/autoyellow}} as found in {{autoyellow}}{}{{/autoyellow}}'
'. Use --default-index-url to use pypi default index'.format(self.PYPI_API_URL, custom_config)))
|
def _update_index_url_from_configs(self):
""" Checks for alternative index-url in pip.conf """
if 'VIRTUAL_ENV' in os.environ:
self.pip_config_locations.append(os.path.join(os.environ['VIRTUAL_ENV'], 'pip.conf'))
self.pip_config_locations.append(os.path.join(os.environ['VIRTUAL_ENV'], 'pip.ini'))
if site_config_files:
self.pip_config_locations.extend(site_config_files)
index_url = None
custom_config = None
if 'PIP_INDEX_URL' in os.environ and os.environ['PIP_INDEX_URL']:
# environ variable takes priority
index_url = os.environ['PIP_INDEX_URL']
custom_config = 'PIP_INDEX_URL environment variable'
else:
for pip_config_filename in self.pip_config_locations:
if pip_config_filename.startswith('~'):
pip_config_filename = os.path.expanduser(pip_config_filename)
if os.path.isfile(pip_config_filename):
config = ConfigParser()
config.read([pip_config_filename])
try:
index_url = config.get('global', 'index-url')
custom_config = pip_config_filename
break # stop on first detected, because config locations have a priority
except (NoOptionError, NoSectionError): # pragma: nocover
pass
if index_url:
self.PYPI_API_URL = self._prepare_api_url(index_url)
print(Color('Setting API url to {{autoyellow}}{}{{/autoyellow}} as found in {{autoyellow}}{}{{/autoyellow}}'
'. Use --default-index-url to use pypi default index'.format(self.PYPI_API_URL, custom_config)))
|
[
"Checks",
"for",
"alternative",
"index",
"-",
"url",
"in",
"pip",
".",
"conf"
] |
simion/pip-upgrader
|
python
|
https://github.com/simion/pip-upgrader/blob/716adca65d9ed56d4d416f94ede8a8e4fa8d640a/pip_upgrader/packages_status_detector.py#L55-L90
|
[
"def",
"_update_index_url_from_configs",
"(",
"self",
")",
":",
"if",
"'VIRTUAL_ENV'",
"in",
"os",
".",
"environ",
":",
"self",
".",
"pip_config_locations",
".",
"append",
"(",
"os",
".",
"path",
".",
"join",
"(",
"os",
".",
"environ",
"[",
"'VIRTUAL_ENV'",
"]",
",",
"'pip.conf'",
")",
")",
"self",
".",
"pip_config_locations",
".",
"append",
"(",
"os",
".",
"path",
".",
"join",
"(",
"os",
".",
"environ",
"[",
"'VIRTUAL_ENV'",
"]",
",",
"'pip.ini'",
")",
")",
"if",
"site_config_files",
":",
"self",
".",
"pip_config_locations",
".",
"extend",
"(",
"site_config_files",
")",
"index_url",
"=",
"None",
"custom_config",
"=",
"None",
"if",
"'PIP_INDEX_URL'",
"in",
"os",
".",
"environ",
"and",
"os",
".",
"environ",
"[",
"'PIP_INDEX_URL'",
"]",
":",
"# environ variable takes priority",
"index_url",
"=",
"os",
".",
"environ",
"[",
"'PIP_INDEX_URL'",
"]",
"custom_config",
"=",
"'PIP_INDEX_URL environment variable'",
"else",
":",
"for",
"pip_config_filename",
"in",
"self",
".",
"pip_config_locations",
":",
"if",
"pip_config_filename",
".",
"startswith",
"(",
"'~'",
")",
":",
"pip_config_filename",
"=",
"os",
".",
"path",
".",
"expanduser",
"(",
"pip_config_filename",
")",
"if",
"os",
".",
"path",
".",
"isfile",
"(",
"pip_config_filename",
")",
":",
"config",
"=",
"ConfigParser",
"(",
")",
"config",
".",
"read",
"(",
"[",
"pip_config_filename",
"]",
")",
"try",
":",
"index_url",
"=",
"config",
".",
"get",
"(",
"'global'",
",",
"'index-url'",
")",
"custom_config",
"=",
"pip_config_filename",
"break",
"# stop on first detected, because config locations have a priority",
"except",
"(",
"NoOptionError",
",",
"NoSectionError",
")",
":",
"# pragma: nocover",
"pass",
"if",
"index_url",
":",
"self",
".",
"PYPI_API_URL",
"=",
"self",
".",
"_prepare_api_url",
"(",
"index_url",
")",
"print",
"(",
"Color",
"(",
"'Setting API url to {{autoyellow}}{}{{/autoyellow}} as found in {{autoyellow}}{}{{/autoyellow}}'",
"'. Use --default-index-url to use pypi default index'",
".",
"format",
"(",
"self",
".",
"PYPI_API_URL",
",",
"custom_config",
")",
")",
")"
] |
716adca65d9ed56d4d416f94ede8a8e4fa8d640a
|
test
|
PackagesStatusDetector._fetch_index_package_info
|
:type package_name: str
:type current_version: version.Version
|
pip_upgrader/packages_status_detector.py
|
def _fetch_index_package_info(self, package_name, current_version):
"""
:type package_name: str
:type current_version: version.Version
"""
try:
package_canonical_name = package_name
if self.PYPI_API_TYPE == 'simple_html':
package_canonical_name = canonicalize_name(package_name)
response = requests.get(self.PYPI_API_URL.format(package=package_canonical_name), timeout=15)
except HTTPError as e: # pragma: nocover
return False, e.message
if not response.ok: # pragma: nocover
return False, 'API error: {}'.format(response.reason)
if self.PYPI_API_TYPE == 'pypi_json':
return self._parse_pypi_json_package_info(package_name, current_version, response)
elif self.PYPI_API_TYPE == 'simple_html':
return self._parse_simple_html_package_info(package_name, current_version, response)
else: # pragma: nocover
raise NotImplementedError('This type of PYPI_API_TYPE type is not supported')
|
def _fetch_index_package_info(self, package_name, current_version):
"""
:type package_name: str
:type current_version: version.Version
"""
try:
package_canonical_name = package_name
if self.PYPI_API_TYPE == 'simple_html':
package_canonical_name = canonicalize_name(package_name)
response = requests.get(self.PYPI_API_URL.format(package=package_canonical_name), timeout=15)
except HTTPError as e: # pragma: nocover
return False, e.message
if not response.ok: # pragma: nocover
return False, 'API error: {}'.format(response.reason)
if self.PYPI_API_TYPE == 'pypi_json':
return self._parse_pypi_json_package_info(package_name, current_version, response)
elif self.PYPI_API_TYPE == 'simple_html':
return self._parse_simple_html_package_info(package_name, current_version, response)
else: # pragma: nocover
raise NotImplementedError('This type of PYPI_API_TYPE type is not supported')
|
[
":",
"type",
"package_name",
":",
"str",
":",
"type",
"current_version",
":",
"version",
".",
"Version"
] |
simion/pip-upgrader
|
python
|
https://github.com/simion/pip-upgrader/blob/716adca65d9ed56d4d416f94ede8a8e4fa8d640a/pip_upgrader/packages_status_detector.py#L153-L175
|
[
"def",
"_fetch_index_package_info",
"(",
"self",
",",
"package_name",
",",
"current_version",
")",
":",
"try",
":",
"package_canonical_name",
"=",
"package_name",
"if",
"self",
".",
"PYPI_API_TYPE",
"==",
"'simple_html'",
":",
"package_canonical_name",
"=",
"canonicalize_name",
"(",
"package_name",
")",
"response",
"=",
"requests",
".",
"get",
"(",
"self",
".",
"PYPI_API_URL",
".",
"format",
"(",
"package",
"=",
"package_canonical_name",
")",
",",
"timeout",
"=",
"15",
")",
"except",
"HTTPError",
"as",
"e",
":",
"# pragma: nocover",
"return",
"False",
",",
"e",
".",
"message",
"if",
"not",
"response",
".",
"ok",
":",
"# pragma: nocover",
"return",
"False",
",",
"'API error: {}'",
".",
"format",
"(",
"response",
".",
"reason",
")",
"if",
"self",
".",
"PYPI_API_TYPE",
"==",
"'pypi_json'",
":",
"return",
"self",
".",
"_parse_pypi_json_package_info",
"(",
"package_name",
",",
"current_version",
",",
"response",
")",
"elif",
"self",
".",
"PYPI_API_TYPE",
"==",
"'simple_html'",
":",
"return",
"self",
".",
"_parse_simple_html_package_info",
"(",
"package_name",
",",
"current_version",
",",
"response",
")",
"else",
":",
"# pragma: nocover",
"raise",
"NotImplementedError",
"(",
"'This type of PYPI_API_TYPE type is not supported'",
")"
] |
716adca65d9ed56d4d416f94ede8a8e4fa8d640a
|
test
|
PackagesStatusDetector._parse_pypi_json_package_info
|
:type package_name: str
:type current_version: version.Version
:type response: requests.models.Response
|
pip_upgrader/packages_status_detector.py
|
def _parse_pypi_json_package_info(self, package_name, current_version, response):
"""
:type package_name: str
:type current_version: version.Version
:type response: requests.models.Response
"""
data = response.json()
all_versions = [version.parse(vers) for vers in data['releases'].keys()]
filtered_versions = [vers for vers in all_versions if not vers.is_prerelease and not vers.is_postrelease]
if not filtered_versions: # pragma: nocover
return False, 'error while parsing version'
latest_version = max(filtered_versions)
# even if user did not choose prerelease, if the package from requirements is pre/post release, use it
if self._prerelease or current_version.is_postrelease or current_version.is_prerelease:
prerelease_versions = [vers for vers in all_versions if vers.is_prerelease or vers.is_postrelease]
if prerelease_versions:
latest_version = max(prerelease_versions)
try:
try:
latest_version_info = data['releases'][str(latest_version)][0]
except KeyError: # pragma: nocover
# non-RFC versions, get the latest from pypi response
latest_version = version.parse(data['info']['version'])
latest_version_info = data['releases'][str(latest_version)][0]
except Exception: # pragma: nocover
return False, 'error while parsing version'
upload_time = latest_version_info['upload_time'].replace('T', ' ')
return {
'name': package_name,
'current_version': current_version,
'latest_version': latest_version,
'upgrade_available': current_version < latest_version,
'upload_time': upload_time
}, 'success'
|
def _parse_pypi_json_package_info(self, package_name, current_version, response):
"""
:type package_name: str
:type current_version: version.Version
:type response: requests.models.Response
"""
data = response.json()
all_versions = [version.parse(vers) for vers in data['releases'].keys()]
filtered_versions = [vers for vers in all_versions if not vers.is_prerelease and not vers.is_postrelease]
if not filtered_versions: # pragma: nocover
return False, 'error while parsing version'
latest_version = max(filtered_versions)
# even if user did not choose prerelease, if the package from requirements is pre/post release, use it
if self._prerelease or current_version.is_postrelease or current_version.is_prerelease:
prerelease_versions = [vers for vers in all_versions if vers.is_prerelease or vers.is_postrelease]
if prerelease_versions:
latest_version = max(prerelease_versions)
try:
try:
latest_version_info = data['releases'][str(latest_version)][0]
except KeyError: # pragma: nocover
# non-RFC versions, get the latest from pypi response
latest_version = version.parse(data['info']['version'])
latest_version_info = data['releases'][str(latest_version)][0]
except Exception: # pragma: nocover
return False, 'error while parsing version'
upload_time = latest_version_info['upload_time'].replace('T', ' ')
return {
'name': package_name,
'current_version': current_version,
'latest_version': latest_version,
'upgrade_available': current_version < latest_version,
'upload_time': upload_time
}, 'success'
|
[
":",
"type",
"package_name",
":",
"str",
":",
"type",
"current_version",
":",
"version",
".",
"Version",
":",
"type",
"response",
":",
"requests",
".",
"models",
".",
"Response"
] |
simion/pip-upgrader
|
python
|
https://github.com/simion/pip-upgrader/blob/716adca65d9ed56d4d416f94ede8a8e4fa8d640a/pip_upgrader/packages_status_detector.py#L188-L227
|
[
"def",
"_parse_pypi_json_package_info",
"(",
"self",
",",
"package_name",
",",
"current_version",
",",
"response",
")",
":",
"data",
"=",
"response",
".",
"json",
"(",
")",
"all_versions",
"=",
"[",
"version",
".",
"parse",
"(",
"vers",
")",
"for",
"vers",
"in",
"data",
"[",
"'releases'",
"]",
".",
"keys",
"(",
")",
"]",
"filtered_versions",
"=",
"[",
"vers",
"for",
"vers",
"in",
"all_versions",
"if",
"not",
"vers",
".",
"is_prerelease",
"and",
"not",
"vers",
".",
"is_postrelease",
"]",
"if",
"not",
"filtered_versions",
":",
"# pragma: nocover",
"return",
"False",
",",
"'error while parsing version'",
"latest_version",
"=",
"max",
"(",
"filtered_versions",
")",
"# even if user did not choose prerelease, if the package from requirements is pre/post release, use it",
"if",
"self",
".",
"_prerelease",
"or",
"current_version",
".",
"is_postrelease",
"or",
"current_version",
".",
"is_prerelease",
":",
"prerelease_versions",
"=",
"[",
"vers",
"for",
"vers",
"in",
"all_versions",
"if",
"vers",
".",
"is_prerelease",
"or",
"vers",
".",
"is_postrelease",
"]",
"if",
"prerelease_versions",
":",
"latest_version",
"=",
"max",
"(",
"prerelease_versions",
")",
"try",
":",
"try",
":",
"latest_version_info",
"=",
"data",
"[",
"'releases'",
"]",
"[",
"str",
"(",
"latest_version",
")",
"]",
"[",
"0",
"]",
"except",
"KeyError",
":",
"# pragma: nocover",
"# non-RFC versions, get the latest from pypi response",
"latest_version",
"=",
"version",
".",
"parse",
"(",
"data",
"[",
"'info'",
"]",
"[",
"'version'",
"]",
")",
"latest_version_info",
"=",
"data",
"[",
"'releases'",
"]",
"[",
"str",
"(",
"latest_version",
")",
"]",
"[",
"0",
"]",
"except",
"Exception",
":",
"# pragma: nocover",
"return",
"False",
",",
"'error while parsing version'",
"upload_time",
"=",
"latest_version_info",
"[",
"'upload_time'",
"]",
".",
"replace",
"(",
"'T'",
",",
"' '",
")",
"return",
"{",
"'name'",
":",
"package_name",
",",
"'current_version'",
":",
"current_version",
",",
"'latest_version'",
":",
"latest_version",
",",
"'upgrade_available'",
":",
"current_version",
"<",
"latest_version",
",",
"'upload_time'",
":",
"upload_time",
"}",
",",
"'success'"
] |
716adca65d9ed56d4d416f94ede8a8e4fa8d640a
|
test
|
PackagesStatusDetector._parse_simple_html_package_info
|
:type package_name: str
:type current_version: version.Version
:type response: requests.models.Response
|
pip_upgrader/packages_status_detector.py
|
def _parse_simple_html_package_info(self, package_name, current_version, response):
"""
:type package_name: str
:type current_version: version.Version
:type response: requests.models.Response
"""
pattern = r'<a.*>.*{name}-([A-z0-9\.-]*)(?:-py|\.tar).*<\/a>'.format(name=re.escape(package_name))
versions_match = re.findall(pattern, response.content.decode('utf-8'), flags=re.IGNORECASE)
all_versions = [version.parse(vers) for vers in versions_match]
filtered_versions = [vers for vers in all_versions if not vers.is_prerelease and not vers.is_postrelease]
if not filtered_versions: # pragma: nocover
return False, 'error while parsing version'
latest_version = max(filtered_versions)
# even if user did not choose prerelease, if the package from requirements is pre/post release, use it
if self._prerelease or current_version.is_postrelease or current_version.is_prerelease:
prerelease_versions = [vers for vers in all_versions if vers.is_prerelease or vers.is_postrelease]
if prerelease_versions:
latest_version = max(prerelease_versions)
return {
'name': package_name,
'current_version': current_version,
'latest_version': latest_version,
'upgrade_available': current_version < latest_version,
'upload_time': '-'
}, 'success'
|
def _parse_simple_html_package_info(self, package_name, current_version, response):
"""
:type package_name: str
:type current_version: version.Version
:type response: requests.models.Response
"""
pattern = r'<a.*>.*{name}-([A-z0-9\.-]*)(?:-py|\.tar).*<\/a>'.format(name=re.escape(package_name))
versions_match = re.findall(pattern, response.content.decode('utf-8'), flags=re.IGNORECASE)
all_versions = [version.parse(vers) for vers in versions_match]
filtered_versions = [vers for vers in all_versions if not vers.is_prerelease and not vers.is_postrelease]
if not filtered_versions: # pragma: nocover
return False, 'error while parsing version'
latest_version = max(filtered_versions)
# even if user did not choose prerelease, if the package from requirements is pre/post release, use it
if self._prerelease or current_version.is_postrelease or current_version.is_prerelease:
prerelease_versions = [vers for vers in all_versions if vers.is_prerelease or vers.is_postrelease]
if prerelease_versions:
latest_version = max(prerelease_versions)
return {
'name': package_name,
'current_version': current_version,
'latest_version': latest_version,
'upgrade_available': current_version < latest_version,
'upload_time': '-'
}, 'success'
|
[
":",
"type",
"package_name",
":",
"str",
":",
"type",
"current_version",
":",
"version",
".",
"Version",
":",
"type",
"response",
":",
"requests",
".",
"models",
".",
"Response"
] |
simion/pip-upgrader
|
python
|
https://github.com/simion/pip-upgrader/blob/716adca65d9ed56d4d416f94ede8a8e4fa8d640a/pip_upgrader/packages_status_detector.py#L229-L258
|
[
"def",
"_parse_simple_html_package_info",
"(",
"self",
",",
"package_name",
",",
"current_version",
",",
"response",
")",
":",
"pattern",
"=",
"r'<a.*>.*{name}-([A-z0-9\\.-]*)(?:-py|\\.tar).*<\\/a>'",
".",
"format",
"(",
"name",
"=",
"re",
".",
"escape",
"(",
"package_name",
")",
")",
"versions_match",
"=",
"re",
".",
"findall",
"(",
"pattern",
",",
"response",
".",
"content",
".",
"decode",
"(",
"'utf-8'",
")",
",",
"flags",
"=",
"re",
".",
"IGNORECASE",
")",
"all_versions",
"=",
"[",
"version",
".",
"parse",
"(",
"vers",
")",
"for",
"vers",
"in",
"versions_match",
"]",
"filtered_versions",
"=",
"[",
"vers",
"for",
"vers",
"in",
"all_versions",
"if",
"not",
"vers",
".",
"is_prerelease",
"and",
"not",
"vers",
".",
"is_postrelease",
"]",
"if",
"not",
"filtered_versions",
":",
"# pragma: nocover",
"return",
"False",
",",
"'error while parsing version'",
"latest_version",
"=",
"max",
"(",
"filtered_versions",
")",
"# even if user did not choose prerelease, if the package from requirements is pre/post release, use it",
"if",
"self",
".",
"_prerelease",
"or",
"current_version",
".",
"is_postrelease",
"or",
"current_version",
".",
"is_prerelease",
":",
"prerelease_versions",
"=",
"[",
"vers",
"for",
"vers",
"in",
"all_versions",
"if",
"vers",
".",
"is_prerelease",
"or",
"vers",
".",
"is_postrelease",
"]",
"if",
"prerelease_versions",
":",
"latest_version",
"=",
"max",
"(",
"prerelease_versions",
")",
"return",
"{",
"'name'",
":",
"package_name",
",",
"'current_version'",
":",
"current_version",
",",
"'latest_version'",
":",
"latest_version",
",",
"'upgrade_available'",
":",
"current_version",
"<",
"latest_version",
",",
"'upload_time'",
":",
"'-'",
"}",
",",
"'success'"
] |
716adca65d9ed56d4d416f94ede8a8e4fa8d640a
|
test
|
main
|
Main CLI entrypoint.
|
pip_upgrader/cli.py
|
def main():
""" Main CLI entrypoint. """
options = get_options()
Windows.enable(auto_colors=True, reset_atexit=True)
try:
# maybe check if virtualenv is not activated
check_for_virtualenv(options)
# 1. detect requirements files
filenames = RequirementsDetector(options.get('<requirements_file>')).get_filenames()
if filenames:
print(Color('{{autoyellow}}Found valid requirements file(s):{{/autoyellow}} '
'{{autocyan}}\n{}{{/autocyan}}'.format('\n'.join(filenames))))
else: # pragma: nocover
print(Color('{autoyellow}No requirements files found in current directory. CD into your project '
'or manually specify requirements files as arguments.{/autoyellow}'))
return
# 2. detect all packages inside requirements
packages = PackagesDetector(filenames).get_packages()
# 3. query pypi API, see which package has a newer version vs the one in requirements (or current env)
packages_status_map = PackagesStatusDetector(
packages, options.get('--use-default-index')).detect_available_upgrades(options)
# 4. [optionally], show interactive screen when user can choose which packages to upgrade
selected_packages = PackageInteractiveSelector(packages_status_map, options).get_packages()
# 5. having the list of packages, do the actual upgrade and replace the version inside all filenames
upgraded_packages = PackagesUpgrader(selected_packages, filenames, options).do_upgrade()
print(Color('{{autogreen}}Successfully upgraded (and updated requirements) for the following packages: '
'{}{{/autogreen}}'.format(','.join([package['name'] for package in upgraded_packages]))))
if options['--dry-run']:
print(Color('{automagenta}Actually, no, because this was a simulation using --dry-run{/automagenta}'))
except KeyboardInterrupt: # pragma: nocover
print(Color('\n{autored}Upgrade interrupted.{/autored}'))
|
def main():
""" Main CLI entrypoint. """
options = get_options()
Windows.enable(auto_colors=True, reset_atexit=True)
try:
# maybe check if virtualenv is not activated
check_for_virtualenv(options)
# 1. detect requirements files
filenames = RequirementsDetector(options.get('<requirements_file>')).get_filenames()
if filenames:
print(Color('{{autoyellow}}Found valid requirements file(s):{{/autoyellow}} '
'{{autocyan}}\n{}{{/autocyan}}'.format('\n'.join(filenames))))
else: # pragma: nocover
print(Color('{autoyellow}No requirements files found in current directory. CD into your project '
'or manually specify requirements files as arguments.{/autoyellow}'))
return
# 2. detect all packages inside requirements
packages = PackagesDetector(filenames).get_packages()
# 3. query pypi API, see which package has a newer version vs the one in requirements (or current env)
packages_status_map = PackagesStatusDetector(
packages, options.get('--use-default-index')).detect_available_upgrades(options)
# 4. [optionally], show interactive screen when user can choose which packages to upgrade
selected_packages = PackageInteractiveSelector(packages_status_map, options).get_packages()
# 5. having the list of packages, do the actual upgrade and replace the version inside all filenames
upgraded_packages = PackagesUpgrader(selected_packages, filenames, options).do_upgrade()
print(Color('{{autogreen}}Successfully upgraded (and updated requirements) for the following packages: '
'{}{{/autogreen}}'.format(','.join([package['name'] for package in upgraded_packages]))))
if options['--dry-run']:
print(Color('{automagenta}Actually, no, because this was a simulation using --dry-run{/automagenta}'))
except KeyboardInterrupt: # pragma: nocover
print(Color('\n{autored}Upgrade interrupted.{/autored}'))
|
[
"Main",
"CLI",
"entrypoint",
"."
] |
simion/pip-upgrader
|
python
|
https://github.com/simion/pip-upgrader/blob/716adca65d9ed56d4d416f94ede8a8e4fa8d640a/pip_upgrader/cli.py#L47-L84
|
[
"def",
"main",
"(",
")",
":",
"options",
"=",
"get_options",
"(",
")",
"Windows",
".",
"enable",
"(",
"auto_colors",
"=",
"True",
",",
"reset_atexit",
"=",
"True",
")",
"try",
":",
"# maybe check if virtualenv is not activated",
"check_for_virtualenv",
"(",
"options",
")",
"# 1. detect requirements files",
"filenames",
"=",
"RequirementsDetector",
"(",
"options",
".",
"get",
"(",
"'<requirements_file>'",
")",
")",
".",
"get_filenames",
"(",
")",
"if",
"filenames",
":",
"print",
"(",
"Color",
"(",
"'{{autoyellow}}Found valid requirements file(s):{{/autoyellow}} '",
"'{{autocyan}}\\n{}{{/autocyan}}'",
".",
"format",
"(",
"'\\n'",
".",
"join",
"(",
"filenames",
")",
")",
")",
")",
"else",
":",
"# pragma: nocover",
"print",
"(",
"Color",
"(",
"'{autoyellow}No requirements files found in current directory. CD into your project '",
"'or manually specify requirements files as arguments.{/autoyellow}'",
")",
")",
"return",
"# 2. detect all packages inside requirements",
"packages",
"=",
"PackagesDetector",
"(",
"filenames",
")",
".",
"get_packages",
"(",
")",
"# 3. query pypi API, see which package has a newer version vs the one in requirements (or current env)",
"packages_status_map",
"=",
"PackagesStatusDetector",
"(",
"packages",
",",
"options",
".",
"get",
"(",
"'--use-default-index'",
")",
")",
".",
"detect_available_upgrades",
"(",
"options",
")",
"# 4. [optionally], show interactive screen when user can choose which packages to upgrade",
"selected_packages",
"=",
"PackageInteractiveSelector",
"(",
"packages_status_map",
",",
"options",
")",
".",
"get_packages",
"(",
")",
"# 5. having the list of packages, do the actual upgrade and replace the version inside all filenames",
"upgraded_packages",
"=",
"PackagesUpgrader",
"(",
"selected_packages",
",",
"filenames",
",",
"options",
")",
".",
"do_upgrade",
"(",
")",
"print",
"(",
"Color",
"(",
"'{{autogreen}}Successfully upgraded (and updated requirements) for the following packages: '",
"'{}{{/autogreen}}'",
".",
"format",
"(",
"','",
".",
"join",
"(",
"[",
"package",
"[",
"'name'",
"]",
"for",
"package",
"in",
"upgraded_packages",
"]",
")",
")",
")",
")",
"if",
"options",
"[",
"'--dry-run'",
"]",
":",
"print",
"(",
"Color",
"(",
"'{automagenta}Actually, no, because this was a simulation using --dry-run{/automagenta}'",
")",
")",
"except",
"KeyboardInterrupt",
":",
"# pragma: nocover",
"print",
"(",
"Color",
"(",
"'\\n{autored}Upgrade interrupted.{/autored}'",
")",
")"
] |
716adca65d9ed56d4d416f94ede8a8e4fa8d640a
|
test
|
PackagesUpgrader._update_package
|
Update (install) the package in current environment, and if success, also replace version in file
|
pip_upgrader/packages_upgrader.py
|
def _update_package(self, package):
""" Update (install) the package in current environment, and if success, also replace version in file """
try:
if not self.dry_run and not self.skip_package_installation: # pragma: nocover
subprocess.check_call(['pip', 'install', '{}=={}'.format(package['name'], package['latest_version'])])
else:
print('[Dry Run]: skipping package installation:', package['name'])
# update only if installation success
self._update_requirements_package(package)
except CalledProcessError: # pragma: nocover
print(Color('{{autored}}Failed to install package "{}"{{/autored}}'.format(package['name'])))
|
def _update_package(self, package):
""" Update (install) the package in current environment, and if success, also replace version in file """
try:
if not self.dry_run and not self.skip_package_installation: # pragma: nocover
subprocess.check_call(['pip', 'install', '{}=={}'.format(package['name'], package['latest_version'])])
else:
print('[Dry Run]: skipping package installation:', package['name'])
# update only if installation success
self._update_requirements_package(package)
except CalledProcessError: # pragma: nocover
print(Color('{{autored}}Failed to install package "{}"{{/autored}}'.format(package['name'])))
|
[
"Update",
"(",
"install",
")",
"the",
"package",
"in",
"current",
"environment",
"and",
"if",
"success",
"also",
"replace",
"version",
"in",
"file"
] |
simion/pip-upgrader
|
python
|
https://github.com/simion/pip-upgrader/blob/716adca65d9ed56d4d416f94ede8a8e4fa8d640a/pip_upgrader/packages_upgrader.py#L30-L41
|
[
"def",
"_update_package",
"(",
"self",
",",
"package",
")",
":",
"try",
":",
"if",
"not",
"self",
".",
"dry_run",
"and",
"not",
"self",
".",
"skip_package_installation",
":",
"# pragma: nocover",
"subprocess",
".",
"check_call",
"(",
"[",
"'pip'",
",",
"'install'",
",",
"'{}=={}'",
".",
"format",
"(",
"package",
"[",
"'name'",
"]",
",",
"package",
"[",
"'latest_version'",
"]",
")",
"]",
")",
"else",
":",
"print",
"(",
"'[Dry Run]: skipping package installation:'",
",",
"package",
"[",
"'name'",
"]",
")",
"# update only if installation success",
"self",
".",
"_update_requirements_package",
"(",
"package",
")",
"except",
"CalledProcessError",
":",
"# pragma: nocover",
"print",
"(",
"Color",
"(",
"'{{autored}}Failed to install package \"{}\"{{/autored}}'",
".",
"format",
"(",
"package",
"[",
"'name'",
"]",
")",
")",
")"
] |
716adca65d9ed56d4d416f94ede8a8e4fa8d640a
|
test
|
RequirementsDetector.autodetect_files
|
Attempt to detect requirements files in the current working directory
|
pip_upgrader/requirements_detector.py
|
def autodetect_files(self):
""" Attempt to detect requirements files in the current working directory """
if self._is_valid_requirements_file('requirements.txt'):
self.filenames.append('requirements.txt')
if self._is_valid_requirements_file('requirements.pip'): # pragma: nocover
self.filenames.append('requirements.pip')
if os.path.isdir('requirements'):
for filename in os.listdir('requirements'):
file_path = os.path.join('requirements', filename)
if self._is_valid_requirements_file(file_path):
self.filenames.append(file_path)
self._check_inclusions_recursively()
|
def autodetect_files(self):
""" Attempt to detect requirements files in the current working directory """
if self._is_valid_requirements_file('requirements.txt'):
self.filenames.append('requirements.txt')
if self._is_valid_requirements_file('requirements.pip'): # pragma: nocover
self.filenames.append('requirements.pip')
if os.path.isdir('requirements'):
for filename in os.listdir('requirements'):
file_path = os.path.join('requirements', filename)
if self._is_valid_requirements_file(file_path):
self.filenames.append(file_path)
self._check_inclusions_recursively()
|
[
"Attempt",
"to",
"detect",
"requirements",
"files",
"in",
"the",
"current",
"working",
"directory"
] |
simion/pip-upgrader
|
python
|
https://github.com/simion/pip-upgrader/blob/716adca65d9ed56d4d416f94ede8a8e4fa8d640a/pip_upgrader/requirements_detector.py#L32-L45
|
[
"def",
"autodetect_files",
"(",
"self",
")",
":",
"if",
"self",
".",
"_is_valid_requirements_file",
"(",
"'requirements.txt'",
")",
":",
"self",
".",
"filenames",
".",
"append",
"(",
"'requirements.txt'",
")",
"if",
"self",
".",
"_is_valid_requirements_file",
"(",
"'requirements.pip'",
")",
":",
"# pragma: nocover",
"self",
".",
"filenames",
".",
"append",
"(",
"'requirements.pip'",
")",
"if",
"os",
".",
"path",
".",
"isdir",
"(",
"'requirements'",
")",
":",
"for",
"filename",
"in",
"os",
".",
"listdir",
"(",
"'requirements'",
")",
":",
"file_path",
"=",
"os",
".",
"path",
".",
"join",
"(",
"'requirements'",
",",
"filename",
")",
"if",
"self",
".",
"_is_valid_requirements_file",
"(",
"file_path",
")",
":",
"self",
".",
"filenames",
".",
"append",
"(",
"file_path",
")",
"self",
".",
"_check_inclusions_recursively",
"(",
")"
] |
716adca65d9ed56d4d416f94ede8a8e4fa8d640a
|
test
|
resolve_streams
|
Resolve all streams on the network.
This function returns all currently available streams from any outlet on
the network. The network is usually the subnet specified at the local
router, but may also include a group of machines visible to each other via
multicast packets (given that the network supports it), or list of
hostnames. These details may optionally be customized by the experimenter
in a configuration file (see Network Connectivity in the LSL wiki).
Keyword arguments:
wait_time -- The waiting time for the operation, in seconds, to search for
streams. Warning: If this is too short (<0.5s) only a subset
(or none) of the outlets that are present on the network may
be returned. (default 1.0)
Returns a list of StreamInfo objects (with empty desc field), any of which
can subsequently be used to open an inlet. The full description can be
retrieved from the inlet.
|
pylsl/pylsl.py
|
def resolve_streams(wait_time=1.0):
"""Resolve all streams on the network.
This function returns all currently available streams from any outlet on
the network. The network is usually the subnet specified at the local
router, but may also include a group of machines visible to each other via
multicast packets (given that the network supports it), or list of
hostnames. These details may optionally be customized by the experimenter
in a configuration file (see Network Connectivity in the LSL wiki).
Keyword arguments:
wait_time -- The waiting time for the operation, in seconds, to search for
streams. Warning: If this is too short (<0.5s) only a subset
(or none) of the outlets that are present on the network may
be returned. (default 1.0)
Returns a list of StreamInfo objects (with empty desc field), any of which
can subsequently be used to open an inlet. The full description can be
retrieved from the inlet.
"""
# noinspection PyCallingNonCallable
buffer = (c_void_p*1024)()
num_found = lib.lsl_resolve_all(byref(buffer), 1024, c_double(wait_time))
return [StreamInfo(handle=buffer[k]) for k in range(num_found)]
|
def resolve_streams(wait_time=1.0):
"""Resolve all streams on the network.
This function returns all currently available streams from any outlet on
the network. The network is usually the subnet specified at the local
router, but may also include a group of machines visible to each other via
multicast packets (given that the network supports it), or list of
hostnames. These details may optionally be customized by the experimenter
in a configuration file (see Network Connectivity in the LSL wiki).
Keyword arguments:
wait_time -- The waiting time for the operation, in seconds, to search for
streams. Warning: If this is too short (<0.5s) only a subset
(or none) of the outlets that are present on the network may
be returned. (default 1.0)
Returns a list of StreamInfo objects (with empty desc field), any of which
can subsequently be used to open an inlet. The full description can be
retrieved from the inlet.
"""
# noinspection PyCallingNonCallable
buffer = (c_void_p*1024)()
num_found = lib.lsl_resolve_all(byref(buffer), 1024, c_double(wait_time))
return [StreamInfo(handle=buffer[k]) for k in range(num_found)]
|
[
"Resolve",
"all",
"streams",
"on",
"the",
"network",
"."
] |
labstreaminglayer/liblsl-Python
|
python
|
https://github.com/labstreaminglayer/liblsl-Python/blob/1ff6fe2794f8dba286b7491d1f7a4c915b8a0605/pylsl/pylsl.py#L519-L543
|
[
"def",
"resolve_streams",
"(",
"wait_time",
"=",
"1.0",
")",
":",
"# noinspection PyCallingNonCallable",
"buffer",
"=",
"(",
"c_void_p",
"*",
"1024",
")",
"(",
")",
"num_found",
"=",
"lib",
".",
"lsl_resolve_all",
"(",
"byref",
"(",
"buffer",
")",
",",
"1024",
",",
"c_double",
"(",
"wait_time",
")",
")",
"return",
"[",
"StreamInfo",
"(",
"handle",
"=",
"buffer",
"[",
"k",
"]",
")",
"for",
"k",
"in",
"range",
"(",
"num_found",
")",
"]"
] |
1ff6fe2794f8dba286b7491d1f7a4c915b8a0605
|
test
|
resolve_byprop
|
Resolve all streams with a specific value for a given property.
If the goal is to resolve a specific stream, this method is preferred over
resolving all streams and then selecting the desired one.
Keyword arguments:
prop -- The StreamInfo property that should have a specific value (e.g.,
"name", "type", "source_id", or "desc/manufaturer").
value -- The string value that the property should have (e.g., "EEG" as
the type property).
minimum -- Return at least this many streams. (default 1)
timeout -- Optionally a timeout of the operation, in seconds. If the
timeout expires, less than the desired number of streams
(possibly none) will be returned. (default FOREVER)
Returns a list of matching StreamInfo objects (with empty desc field), any
of which can subsequently be used to open an inlet.
Example: results = resolve_Stream_byprop("type","EEG")
|
pylsl/pylsl.py
|
def resolve_byprop(prop, value, minimum=1, timeout=FOREVER):
"""Resolve all streams with a specific value for a given property.
If the goal is to resolve a specific stream, this method is preferred over
resolving all streams and then selecting the desired one.
Keyword arguments:
prop -- The StreamInfo property that should have a specific value (e.g.,
"name", "type", "source_id", or "desc/manufaturer").
value -- The string value that the property should have (e.g., "EEG" as
the type property).
minimum -- Return at least this many streams. (default 1)
timeout -- Optionally a timeout of the operation, in seconds. If the
timeout expires, less than the desired number of streams
(possibly none) will be returned. (default FOREVER)
Returns a list of matching StreamInfo objects (with empty desc field), any
of which can subsequently be used to open an inlet.
Example: results = resolve_Stream_byprop("type","EEG")
"""
# noinspection PyCallingNonCallable
buffer = (c_void_p*1024)()
num_found = lib.lsl_resolve_byprop(byref(buffer), 1024,
c_char_p(str.encode(prop)),
c_char_p(str.encode(value)),
minimum,
c_double(timeout))
return [StreamInfo(handle=buffer[k]) for k in range(num_found)]
|
def resolve_byprop(prop, value, minimum=1, timeout=FOREVER):
"""Resolve all streams with a specific value for a given property.
If the goal is to resolve a specific stream, this method is preferred over
resolving all streams and then selecting the desired one.
Keyword arguments:
prop -- The StreamInfo property that should have a specific value (e.g.,
"name", "type", "source_id", or "desc/manufaturer").
value -- The string value that the property should have (e.g., "EEG" as
the type property).
minimum -- Return at least this many streams. (default 1)
timeout -- Optionally a timeout of the operation, in seconds. If the
timeout expires, less than the desired number of streams
(possibly none) will be returned. (default FOREVER)
Returns a list of matching StreamInfo objects (with empty desc field), any
of which can subsequently be used to open an inlet.
Example: results = resolve_Stream_byprop("type","EEG")
"""
# noinspection PyCallingNonCallable
buffer = (c_void_p*1024)()
num_found = lib.lsl_resolve_byprop(byref(buffer), 1024,
c_char_p(str.encode(prop)),
c_char_p(str.encode(value)),
minimum,
c_double(timeout))
return [StreamInfo(handle=buffer[k]) for k in range(num_found)]
|
[
"Resolve",
"all",
"streams",
"with",
"a",
"specific",
"value",
"for",
"a",
"given",
"property",
"."
] |
labstreaminglayer/liblsl-Python
|
python
|
https://github.com/labstreaminglayer/liblsl-Python/blob/1ff6fe2794f8dba286b7491d1f7a4c915b8a0605/pylsl/pylsl.py#L546-L575
|
[
"def",
"resolve_byprop",
"(",
"prop",
",",
"value",
",",
"minimum",
"=",
"1",
",",
"timeout",
"=",
"FOREVER",
")",
":",
"# noinspection PyCallingNonCallable",
"buffer",
"=",
"(",
"c_void_p",
"*",
"1024",
")",
"(",
")",
"num_found",
"=",
"lib",
".",
"lsl_resolve_byprop",
"(",
"byref",
"(",
"buffer",
")",
",",
"1024",
",",
"c_char_p",
"(",
"str",
".",
"encode",
"(",
"prop",
")",
")",
",",
"c_char_p",
"(",
"str",
".",
"encode",
"(",
"value",
")",
")",
",",
"minimum",
",",
"c_double",
"(",
"timeout",
")",
")",
"return",
"[",
"StreamInfo",
"(",
"handle",
"=",
"buffer",
"[",
"k",
"]",
")",
"for",
"k",
"in",
"range",
"(",
"num_found",
")",
"]"
] |
1ff6fe2794f8dba286b7491d1f7a4c915b8a0605
|
test
|
resolve_bypred
|
Resolve all streams that match a given predicate.
Advanced query that allows to impose more conditions on the retrieved
streams; the given string is an XPath 1.0 predicate for the <description>
node (omitting the surrounding []'s), see also
http://en.wikipedia.org/w/index.php?title=XPath_1.0&oldid=474981951.
Keyword arguments:
predicate -- The predicate string, e.g. "name='BioSemi'" or
"type='EEG' and starts-with(name,'BioSemi') and
count(description/desc/channels/channel)=32"
minimum -- Return at least this many streams. (default 1)
timeout -- Optionally a timeout of the operation, in seconds. If the
timeout expires, less than the desired number of streams
(possibly none) will be returned. (default FOREVER)
Returns a list of matching StreamInfo objects (with empty desc field), any
of which can subsequently be used to open an inlet.
|
pylsl/pylsl.py
|
def resolve_bypred(predicate, minimum=1, timeout=FOREVER):
"""Resolve all streams that match a given predicate.
Advanced query that allows to impose more conditions on the retrieved
streams; the given string is an XPath 1.0 predicate for the <description>
node (omitting the surrounding []'s), see also
http://en.wikipedia.org/w/index.php?title=XPath_1.0&oldid=474981951.
Keyword arguments:
predicate -- The predicate string, e.g. "name='BioSemi'" or
"type='EEG' and starts-with(name,'BioSemi') and
count(description/desc/channels/channel)=32"
minimum -- Return at least this many streams. (default 1)
timeout -- Optionally a timeout of the operation, in seconds. If the
timeout expires, less than the desired number of streams
(possibly none) will be returned. (default FOREVER)
Returns a list of matching StreamInfo objects (with empty desc field), any
of which can subsequently be used to open an inlet.
"""
# noinspection PyCallingNonCallable
buffer = (c_void_p*1024)()
num_found = lib.lsl_resolve_bypred(byref(buffer), 1024,
c_char_p(str.encode(predicate)),
minimum,
c_double(timeout))
return [StreamInfo(handle=buffer[k]) for k in range(num_found)]
|
def resolve_bypred(predicate, minimum=1, timeout=FOREVER):
"""Resolve all streams that match a given predicate.
Advanced query that allows to impose more conditions on the retrieved
streams; the given string is an XPath 1.0 predicate for the <description>
node (omitting the surrounding []'s), see also
http://en.wikipedia.org/w/index.php?title=XPath_1.0&oldid=474981951.
Keyword arguments:
predicate -- The predicate string, e.g. "name='BioSemi'" or
"type='EEG' and starts-with(name,'BioSemi') and
count(description/desc/channels/channel)=32"
minimum -- Return at least this many streams. (default 1)
timeout -- Optionally a timeout of the operation, in seconds. If the
timeout expires, less than the desired number of streams
(possibly none) will be returned. (default FOREVER)
Returns a list of matching StreamInfo objects (with empty desc field), any
of which can subsequently be used to open an inlet.
"""
# noinspection PyCallingNonCallable
buffer = (c_void_p*1024)()
num_found = lib.lsl_resolve_bypred(byref(buffer), 1024,
c_char_p(str.encode(predicate)),
minimum,
c_double(timeout))
return [StreamInfo(handle=buffer[k]) for k in range(num_found)]
|
[
"Resolve",
"all",
"streams",
"that",
"match",
"a",
"given",
"predicate",
"."
] |
labstreaminglayer/liblsl-Python
|
python
|
https://github.com/labstreaminglayer/liblsl-Python/blob/1ff6fe2794f8dba286b7491d1f7a4c915b8a0605/pylsl/pylsl.py#L578-L605
|
[
"def",
"resolve_bypred",
"(",
"predicate",
",",
"minimum",
"=",
"1",
",",
"timeout",
"=",
"FOREVER",
")",
":",
"# noinspection PyCallingNonCallable",
"buffer",
"=",
"(",
"c_void_p",
"*",
"1024",
")",
"(",
")",
"num_found",
"=",
"lib",
".",
"lsl_resolve_bypred",
"(",
"byref",
"(",
"buffer",
")",
",",
"1024",
",",
"c_char_p",
"(",
"str",
".",
"encode",
"(",
"predicate",
")",
")",
",",
"minimum",
",",
"c_double",
"(",
"timeout",
")",
")",
"return",
"[",
"StreamInfo",
"(",
"handle",
"=",
"buffer",
"[",
"k",
"]",
")",
"for",
"k",
"in",
"range",
"(",
"num_found",
")",
"]"
] |
1ff6fe2794f8dba286b7491d1f7a4c915b8a0605
|
test
|
handle_error
|
Error handler function. Translates an error code into an exception.
|
pylsl/pylsl.py
|
def handle_error(errcode):
"""Error handler function. Translates an error code into an exception."""
if type(errcode) is c_int:
errcode = errcode.value
if errcode == 0:
pass # no error
elif errcode == -1:
raise TimeoutError("the operation failed due to a timeout.")
elif errcode == -2:
raise LostError("the stream has been lost.")
elif errcode == -3:
raise InvalidArgumentError("an argument was incorrectly specified.")
elif errcode == -4:
raise InternalError("an internal error has occurred.")
elif errcode < 0:
raise RuntimeError("an unknown error has occurred.")
|
def handle_error(errcode):
"""Error handler function. Translates an error code into an exception."""
if type(errcode) is c_int:
errcode = errcode.value
if errcode == 0:
pass # no error
elif errcode == -1:
raise TimeoutError("the operation failed due to a timeout.")
elif errcode == -2:
raise LostError("the stream has been lost.")
elif errcode == -3:
raise InvalidArgumentError("an argument was incorrectly specified.")
elif errcode == -4:
raise InternalError("an internal error has occurred.")
elif errcode < 0:
raise RuntimeError("an unknown error has occurred.")
|
[
"Error",
"handler",
"function",
".",
"Translates",
"an",
"error",
"code",
"into",
"an",
"exception",
"."
] |
labstreaminglayer/liblsl-Python
|
python
|
https://github.com/labstreaminglayer/liblsl-Python/blob/1ff6fe2794f8dba286b7491d1f7a4c915b8a0605/pylsl/pylsl.py#L1129-L1144
|
[
"def",
"handle_error",
"(",
"errcode",
")",
":",
"if",
"type",
"(",
"errcode",
")",
"is",
"c_int",
":",
"errcode",
"=",
"errcode",
".",
"value",
"if",
"errcode",
"==",
"0",
":",
"pass",
"# no error",
"elif",
"errcode",
"==",
"-",
"1",
":",
"raise",
"TimeoutError",
"(",
"\"the operation failed due to a timeout.\"",
")",
"elif",
"errcode",
"==",
"-",
"2",
":",
"raise",
"LostError",
"(",
"\"the stream has been lost.\"",
")",
"elif",
"errcode",
"==",
"-",
"3",
":",
"raise",
"InvalidArgumentError",
"(",
"\"an argument was incorrectly specified.\"",
")",
"elif",
"errcode",
"==",
"-",
"4",
":",
"raise",
"InternalError",
"(",
"\"an internal error has occurred.\"",
")",
"elif",
"errcode",
"<",
"0",
":",
"raise",
"RuntimeError",
"(",
"\"an unknown error has occurred.\"",
")"
] |
1ff6fe2794f8dba286b7491d1f7a4c915b8a0605
|
test
|
StreamOutlet.push_sample
|
Push a sample into the outlet.
Each entry in the list corresponds to one channel.
Keyword arguments:
x -- A list of values to push (one per channel).
timestamp -- Optionally the capture time of the sample, in agreement
with local_clock(); if omitted, the current
time is used. (default 0.0)
pushthrough -- Whether to push the sample through to the receivers
instead of buffering it with subsequent samples.
Note that the chunk_size, if specified at outlet
construction, takes precedence over the pushthrough flag.
(default True)
|
pylsl/pylsl.py
|
def push_sample(self, x, timestamp=0.0, pushthrough=True):
"""Push a sample into the outlet.
Each entry in the list corresponds to one channel.
Keyword arguments:
x -- A list of values to push (one per channel).
timestamp -- Optionally the capture time of the sample, in agreement
with local_clock(); if omitted, the current
time is used. (default 0.0)
pushthrough -- Whether to push the sample through to the receivers
instead of buffering it with subsequent samples.
Note that the chunk_size, if specified at outlet
construction, takes precedence over the pushthrough flag.
(default True)
"""
if len(x) == self.channel_count:
if self.channel_format == cf_string:
x = [v.encode('utf-8') for v in x]
handle_error(self.do_push_sample(self.obj, self.sample_type(*x),
c_double(timestamp),
c_int(pushthrough)))
else:
raise ValueError("length of the data must correspond to the "
"stream's channel count.")
|
def push_sample(self, x, timestamp=0.0, pushthrough=True):
"""Push a sample into the outlet.
Each entry in the list corresponds to one channel.
Keyword arguments:
x -- A list of values to push (one per channel).
timestamp -- Optionally the capture time of the sample, in agreement
with local_clock(); if omitted, the current
time is used. (default 0.0)
pushthrough -- Whether to push the sample through to the receivers
instead of buffering it with subsequent samples.
Note that the chunk_size, if specified at outlet
construction, takes precedence over the pushthrough flag.
(default True)
"""
if len(x) == self.channel_count:
if self.channel_format == cf_string:
x = [v.encode('utf-8') for v in x]
handle_error(self.do_push_sample(self.obj, self.sample_type(*x),
c_double(timestamp),
c_int(pushthrough)))
else:
raise ValueError("length of the data must correspond to the "
"stream's channel count.")
|
[
"Push",
"a",
"sample",
"into",
"the",
"outlet",
"."
] |
labstreaminglayer/liblsl-Python
|
python
|
https://github.com/labstreaminglayer/liblsl-Python/blob/1ff6fe2794f8dba286b7491d1f7a4c915b8a0605/pylsl/pylsl.py#L430-L455
|
[
"def",
"push_sample",
"(",
"self",
",",
"x",
",",
"timestamp",
"=",
"0.0",
",",
"pushthrough",
"=",
"True",
")",
":",
"if",
"len",
"(",
"x",
")",
"==",
"self",
".",
"channel_count",
":",
"if",
"self",
".",
"channel_format",
"==",
"cf_string",
":",
"x",
"=",
"[",
"v",
".",
"encode",
"(",
"'utf-8'",
")",
"for",
"v",
"in",
"x",
"]",
"handle_error",
"(",
"self",
".",
"do_push_sample",
"(",
"self",
".",
"obj",
",",
"self",
".",
"sample_type",
"(",
"*",
"x",
")",
",",
"c_double",
"(",
"timestamp",
")",
",",
"c_int",
"(",
"pushthrough",
")",
")",
")",
"else",
":",
"raise",
"ValueError",
"(",
"\"length of the data must correspond to the \"",
"\"stream's channel count.\"",
")"
] |
1ff6fe2794f8dba286b7491d1f7a4c915b8a0605
|
test
|
StreamOutlet.push_chunk
|
Push a list of samples into the outlet.
samples -- A list of samples, either as a list of lists or a list of
multiplexed values.
timestamp -- Optionally the capture time of the most recent sample, in
agreement with local_clock(); if omitted, the current
time is used. The time stamps of other samples are
automatically derived according to the sampling rate of
the stream. (default 0.0)
pushthrough Whether to push the chunk through to the receivers instead
of buffering it with subsequent samples. Note that the
chunk_size, if specified at outlet construction, takes
precedence over the pushthrough flag. (default True)
|
pylsl/pylsl.py
|
def push_chunk(self, x, timestamp=0.0, pushthrough=True):
"""Push a list of samples into the outlet.
samples -- A list of samples, either as a list of lists or a list of
multiplexed values.
timestamp -- Optionally the capture time of the most recent sample, in
agreement with local_clock(); if omitted, the current
time is used. The time stamps of other samples are
automatically derived according to the sampling rate of
the stream. (default 0.0)
pushthrough Whether to push the chunk through to the receivers instead
of buffering it with subsequent samples. Note that the
chunk_size, if specified at outlet construction, takes
precedence over the pushthrough flag. (default True)
"""
try:
n_values = self.channel_count * len(x)
data_buff = (self.value_type * n_values).from_buffer(x)
handle_error(self.do_push_chunk(self.obj, data_buff,
c_long(n_values),
c_double(timestamp),
c_int(pushthrough)))
except TypeError:
if len(x):
if type(x[0]) is list:
x = [v for sample in x for v in sample]
if self.channel_format == cf_string:
x = [v.encode('utf-8') for v in x]
if len(x) % self.channel_count == 0:
constructor = self.value_type*len(x)
# noinspection PyCallingNonCallable
handle_error(self.do_push_chunk(self.obj, constructor(*x),
c_long(len(x)),
c_double(timestamp),
c_int(pushthrough)))
else:
raise ValueError("each sample must have the same number of "
"channels.")
|
def push_chunk(self, x, timestamp=0.0, pushthrough=True):
"""Push a list of samples into the outlet.
samples -- A list of samples, either as a list of lists or a list of
multiplexed values.
timestamp -- Optionally the capture time of the most recent sample, in
agreement with local_clock(); if omitted, the current
time is used. The time stamps of other samples are
automatically derived according to the sampling rate of
the stream. (default 0.0)
pushthrough Whether to push the chunk through to the receivers instead
of buffering it with subsequent samples. Note that the
chunk_size, if specified at outlet construction, takes
precedence over the pushthrough flag. (default True)
"""
try:
n_values = self.channel_count * len(x)
data_buff = (self.value_type * n_values).from_buffer(x)
handle_error(self.do_push_chunk(self.obj, data_buff,
c_long(n_values),
c_double(timestamp),
c_int(pushthrough)))
except TypeError:
if len(x):
if type(x[0]) is list:
x = [v for sample in x for v in sample]
if self.channel_format == cf_string:
x = [v.encode('utf-8') for v in x]
if len(x) % self.channel_count == 0:
constructor = self.value_type*len(x)
# noinspection PyCallingNonCallable
handle_error(self.do_push_chunk(self.obj, constructor(*x),
c_long(len(x)),
c_double(timestamp),
c_int(pushthrough)))
else:
raise ValueError("each sample must have the same number of "
"channels.")
|
[
"Push",
"a",
"list",
"of",
"samples",
"into",
"the",
"outlet",
"."
] |
labstreaminglayer/liblsl-Python
|
python
|
https://github.com/labstreaminglayer/liblsl-Python/blob/1ff6fe2794f8dba286b7491d1f7a4c915b8a0605/pylsl/pylsl.py#L457-L495
|
[
"def",
"push_chunk",
"(",
"self",
",",
"x",
",",
"timestamp",
"=",
"0.0",
",",
"pushthrough",
"=",
"True",
")",
":",
"try",
":",
"n_values",
"=",
"self",
".",
"channel_count",
"*",
"len",
"(",
"x",
")",
"data_buff",
"=",
"(",
"self",
".",
"value_type",
"*",
"n_values",
")",
".",
"from_buffer",
"(",
"x",
")",
"handle_error",
"(",
"self",
".",
"do_push_chunk",
"(",
"self",
".",
"obj",
",",
"data_buff",
",",
"c_long",
"(",
"n_values",
")",
",",
"c_double",
"(",
"timestamp",
")",
",",
"c_int",
"(",
"pushthrough",
")",
")",
")",
"except",
"TypeError",
":",
"if",
"len",
"(",
"x",
")",
":",
"if",
"type",
"(",
"x",
"[",
"0",
"]",
")",
"is",
"list",
":",
"x",
"=",
"[",
"v",
"for",
"sample",
"in",
"x",
"for",
"v",
"in",
"sample",
"]",
"if",
"self",
".",
"channel_format",
"==",
"cf_string",
":",
"x",
"=",
"[",
"v",
".",
"encode",
"(",
"'utf-8'",
")",
"for",
"v",
"in",
"x",
"]",
"if",
"len",
"(",
"x",
")",
"%",
"self",
".",
"channel_count",
"==",
"0",
":",
"constructor",
"=",
"self",
".",
"value_type",
"*",
"len",
"(",
"x",
")",
"# noinspection PyCallingNonCallable",
"handle_error",
"(",
"self",
".",
"do_push_chunk",
"(",
"self",
".",
"obj",
",",
"constructor",
"(",
"*",
"x",
")",
",",
"c_long",
"(",
"len",
"(",
"x",
")",
")",
",",
"c_double",
"(",
"timestamp",
")",
",",
"c_int",
"(",
"pushthrough",
")",
")",
")",
"else",
":",
"raise",
"ValueError",
"(",
"\"each sample must have the same number of \"",
"\"channels.\"",
")"
] |
1ff6fe2794f8dba286b7491d1f7a4c915b8a0605
|
test
|
StreamOutlet.wait_for_consumers
|
Wait until some consumer shows up (without wasting resources).
Returns True if the wait was successful, False if the timeout expired.
|
pylsl/pylsl.py
|
def wait_for_consumers(self, timeout):
"""Wait until some consumer shows up (without wasting resources).
Returns True if the wait was successful, False if the timeout expired.
"""
return bool(lib.lsl_wait_for_consumers(self.obj, c_double(timeout)))
|
def wait_for_consumers(self, timeout):
"""Wait until some consumer shows up (without wasting resources).
Returns True if the wait was successful, False if the timeout expired.
"""
return bool(lib.lsl_wait_for_consumers(self.obj, c_double(timeout)))
|
[
"Wait",
"until",
"some",
"consumer",
"shows",
"up",
"(",
"without",
"wasting",
"resources",
")",
"."
] |
labstreaminglayer/liblsl-Python
|
python
|
https://github.com/labstreaminglayer/liblsl-Python/blob/1ff6fe2794f8dba286b7491d1f7a4c915b8a0605/pylsl/pylsl.py#L506-L512
|
[
"def",
"wait_for_consumers",
"(",
"self",
",",
"timeout",
")",
":",
"return",
"bool",
"(",
"lib",
".",
"lsl_wait_for_consumers",
"(",
"self",
".",
"obj",
",",
"c_double",
"(",
"timeout",
")",
")",
")"
] |
1ff6fe2794f8dba286b7491d1f7a4c915b8a0605
|
test
|
StreamInlet.info
|
Retrieve the complete information of the given stream.
This includes the extended description. Can be invoked at any time of
the stream's lifetime.
Keyword arguments:
timeout -- Timeout of the operation. (default FOREVER)
Throws a TimeoutError (if the timeout expires), or LostError (if the
stream source has been lost).
|
pylsl/pylsl.py
|
def info(self, timeout=FOREVER):
"""Retrieve the complete information of the given stream.
This includes the extended description. Can be invoked at any time of
the stream's lifetime.
Keyword arguments:
timeout -- Timeout of the operation. (default FOREVER)
Throws a TimeoutError (if the timeout expires), or LostError (if the
stream source has been lost).
"""
errcode = c_int()
result = lib.lsl_get_fullinfo(self.obj, c_double(timeout),
byref(errcode))
handle_error(errcode)
return StreamInfo(handle=result)
|
def info(self, timeout=FOREVER):
"""Retrieve the complete information of the given stream.
This includes the extended description. Can be invoked at any time of
the stream's lifetime.
Keyword arguments:
timeout -- Timeout of the operation. (default FOREVER)
Throws a TimeoutError (if the timeout expires), or LostError (if the
stream source has been lost).
"""
errcode = c_int()
result = lib.lsl_get_fullinfo(self.obj, c_double(timeout),
byref(errcode))
handle_error(errcode)
return StreamInfo(handle=result)
|
[
"Retrieve",
"the",
"complete",
"information",
"of",
"the",
"given",
"stream",
"."
] |
labstreaminglayer/liblsl-Python
|
python
|
https://github.com/labstreaminglayer/liblsl-Python/blob/1ff6fe2794f8dba286b7491d1f7a4c915b8a0605/pylsl/pylsl.py#L688-L705
|
[
"def",
"info",
"(",
"self",
",",
"timeout",
"=",
"FOREVER",
")",
":",
"errcode",
"=",
"c_int",
"(",
")",
"result",
"=",
"lib",
".",
"lsl_get_fullinfo",
"(",
"self",
".",
"obj",
",",
"c_double",
"(",
"timeout",
")",
",",
"byref",
"(",
"errcode",
")",
")",
"handle_error",
"(",
"errcode",
")",
"return",
"StreamInfo",
"(",
"handle",
"=",
"result",
")"
] |
1ff6fe2794f8dba286b7491d1f7a4c915b8a0605
|
test
|
StreamInlet.open_stream
|
Subscribe to the data stream.
All samples pushed in at the other end from this moment onwards will be
queued and eventually be delivered in response to pull_sample() or
pull_chunk() calls. Pulling a sample without some preceding open_stream
is permitted (the stream will then be opened implicitly).
Keyword arguments:
timeout -- Optional timeout of the operation (default FOREVER).
Throws a TimeoutError (if the timeout expires), or LostError (if the
stream source has been lost).
|
pylsl/pylsl.py
|
def open_stream(self, timeout=FOREVER):
"""Subscribe to the data stream.
All samples pushed in at the other end from this moment onwards will be
queued and eventually be delivered in response to pull_sample() or
pull_chunk() calls. Pulling a sample without some preceding open_stream
is permitted (the stream will then be opened implicitly).
Keyword arguments:
timeout -- Optional timeout of the operation (default FOREVER).
Throws a TimeoutError (if the timeout expires), or LostError (if the
stream source has been lost).
"""
errcode = c_int()
lib.lsl_open_stream(self.obj, c_double(timeout), byref(errcode))
handle_error(errcode)
|
def open_stream(self, timeout=FOREVER):
"""Subscribe to the data stream.
All samples pushed in at the other end from this moment onwards will be
queued and eventually be delivered in response to pull_sample() or
pull_chunk() calls. Pulling a sample without some preceding open_stream
is permitted (the stream will then be opened implicitly).
Keyword arguments:
timeout -- Optional timeout of the operation (default FOREVER).
Throws a TimeoutError (if the timeout expires), or LostError (if the
stream source has been lost).
"""
errcode = c_int()
lib.lsl_open_stream(self.obj, c_double(timeout), byref(errcode))
handle_error(errcode)
|
[
"Subscribe",
"to",
"the",
"data",
"stream",
"."
] |
labstreaminglayer/liblsl-Python
|
python
|
https://github.com/labstreaminglayer/liblsl-Python/blob/1ff6fe2794f8dba286b7491d1f7a4c915b8a0605/pylsl/pylsl.py#L707-L724
|
[
"def",
"open_stream",
"(",
"self",
",",
"timeout",
"=",
"FOREVER",
")",
":",
"errcode",
"=",
"c_int",
"(",
")",
"lib",
".",
"lsl_open_stream",
"(",
"self",
".",
"obj",
",",
"c_double",
"(",
"timeout",
")",
",",
"byref",
"(",
"errcode",
")",
")",
"handle_error",
"(",
"errcode",
")"
] |
1ff6fe2794f8dba286b7491d1f7a4c915b8a0605
|
test
|
StreamInlet.time_correction
|
Retrieve an estimated time correction offset for the given stream.
The first call to this function takes several miliseconds until a
reliable first estimate is obtained. Subsequent calls are instantaneous
(and rely on periodic background updates). The precision of these
estimates should be below 1 ms (empirically within +/-0.2 ms).
Keyword arguments:
timeout -- Timeout to acquire the first time-correction estimate
(default FOREVER).
Returns the current time correction estimate. This is the number that
needs to be added to a time stamp that was remotely generated via
local_clock() to map it into the local clock domain of this
machine.
Throws a TimeoutError (if the timeout expires), or LostError (if the
stream source has been lost).
|
pylsl/pylsl.py
|
def time_correction(self, timeout=FOREVER):
"""Retrieve an estimated time correction offset for the given stream.
The first call to this function takes several miliseconds until a
reliable first estimate is obtained. Subsequent calls are instantaneous
(and rely on periodic background updates). The precision of these
estimates should be below 1 ms (empirically within +/-0.2 ms).
Keyword arguments:
timeout -- Timeout to acquire the first time-correction estimate
(default FOREVER).
Returns the current time correction estimate. This is the number that
needs to be added to a time stamp that was remotely generated via
local_clock() to map it into the local clock domain of this
machine.
Throws a TimeoutError (if the timeout expires), or LostError (if the
stream source has been lost).
"""
errcode = c_int()
result = lib.lsl_time_correction(self.obj, c_double(timeout),
byref(errcode))
handle_error(errcode)
return result
|
def time_correction(self, timeout=FOREVER):
"""Retrieve an estimated time correction offset for the given stream.
The first call to this function takes several miliseconds until a
reliable first estimate is obtained. Subsequent calls are instantaneous
(and rely on periodic background updates). The precision of these
estimates should be below 1 ms (empirically within +/-0.2 ms).
Keyword arguments:
timeout -- Timeout to acquire the first time-correction estimate
(default FOREVER).
Returns the current time correction estimate. This is the number that
needs to be added to a time stamp that was remotely generated via
local_clock() to map it into the local clock domain of this
machine.
Throws a TimeoutError (if the timeout expires), or LostError (if the
stream source has been lost).
"""
errcode = c_int()
result = lib.lsl_time_correction(self.obj, c_double(timeout),
byref(errcode))
handle_error(errcode)
return result
|
[
"Retrieve",
"an",
"estimated",
"time",
"correction",
"offset",
"for",
"the",
"given",
"stream",
"."
] |
labstreaminglayer/liblsl-Python
|
python
|
https://github.com/labstreaminglayer/liblsl-Python/blob/1ff6fe2794f8dba286b7491d1f7a4c915b8a0605/pylsl/pylsl.py#L739-L764
|
[
"def",
"time_correction",
"(",
"self",
",",
"timeout",
"=",
"FOREVER",
")",
":",
"errcode",
"=",
"c_int",
"(",
")",
"result",
"=",
"lib",
".",
"lsl_time_correction",
"(",
"self",
".",
"obj",
",",
"c_double",
"(",
"timeout",
")",
",",
"byref",
"(",
"errcode",
")",
")",
"handle_error",
"(",
"errcode",
")",
"return",
"result"
] |
1ff6fe2794f8dba286b7491d1f7a4c915b8a0605
|
test
|
StreamInlet.pull_sample
|
Pull a sample from the inlet and return it.
Keyword arguments:
timeout -- The timeout for this operation, if any. (default FOREVER)
If this is passed as 0.0, then the function returns only a
sample if one is buffered for immediate pickup.
Returns a tuple (sample,timestamp) where sample is a list of channel
values and timestamp is the capture time of the sample on the remote
machine, or (None,None) if no new sample was available. To remap this
time stamp to the local clock, add the value returned by
.time_correction() to it.
Throws a LostError if the stream source has been lost. Note that, if
the timeout expires, no TimeoutError is thrown (because this case is
not considered an error).
|
pylsl/pylsl.py
|
def pull_sample(self, timeout=FOREVER, sample=None):
"""Pull a sample from the inlet and return it.
Keyword arguments:
timeout -- The timeout for this operation, if any. (default FOREVER)
If this is passed as 0.0, then the function returns only a
sample if one is buffered for immediate pickup.
Returns a tuple (sample,timestamp) where sample is a list of channel
values and timestamp is the capture time of the sample on the remote
machine, or (None,None) if no new sample was available. To remap this
time stamp to the local clock, add the value returned by
.time_correction() to it.
Throws a LostError if the stream source has been lost. Note that, if
the timeout expires, no TimeoutError is thrown (because this case is
not considered an error).
"""
# support for the legacy API
if type(timeout) is list:
assign_to = timeout
timeout = sample if type(sample) is float else 0.0
else:
assign_to = None
errcode = c_int()
timestamp = self.do_pull_sample(self.obj, byref(self.sample),
self.channel_count, c_double(timeout),
byref(errcode))
handle_error(errcode)
if timestamp:
sample = [v for v in self.sample]
if self.channel_format == cf_string:
sample = [v.decode('utf-8') for v in sample]
if assign_to is not None:
assign_to[:] = sample
return sample, timestamp
else:
return None, None
|
def pull_sample(self, timeout=FOREVER, sample=None):
"""Pull a sample from the inlet and return it.
Keyword arguments:
timeout -- The timeout for this operation, if any. (default FOREVER)
If this is passed as 0.0, then the function returns only a
sample if one is buffered for immediate pickup.
Returns a tuple (sample,timestamp) where sample is a list of channel
values and timestamp is the capture time of the sample on the remote
machine, or (None,None) if no new sample was available. To remap this
time stamp to the local clock, add the value returned by
.time_correction() to it.
Throws a LostError if the stream source has been lost. Note that, if
the timeout expires, no TimeoutError is thrown (because this case is
not considered an error).
"""
# support for the legacy API
if type(timeout) is list:
assign_to = timeout
timeout = sample if type(sample) is float else 0.0
else:
assign_to = None
errcode = c_int()
timestamp = self.do_pull_sample(self.obj, byref(self.sample),
self.channel_count, c_double(timeout),
byref(errcode))
handle_error(errcode)
if timestamp:
sample = [v for v in self.sample]
if self.channel_format == cf_string:
sample = [v.decode('utf-8') for v in sample]
if assign_to is not None:
assign_to[:] = sample
return sample, timestamp
else:
return None, None
|
[
"Pull",
"a",
"sample",
"from",
"the",
"inlet",
"and",
"return",
"it",
".",
"Keyword",
"arguments",
":",
"timeout",
"--",
"The",
"timeout",
"for",
"this",
"operation",
"if",
"any",
".",
"(",
"default",
"FOREVER",
")",
"If",
"this",
"is",
"passed",
"as",
"0",
".",
"0",
"then",
"the",
"function",
"returns",
"only",
"a",
"sample",
"if",
"one",
"is",
"buffered",
"for",
"immediate",
"pickup",
".",
"Returns",
"a",
"tuple",
"(",
"sample",
"timestamp",
")",
"where",
"sample",
"is",
"a",
"list",
"of",
"channel",
"values",
"and",
"timestamp",
"is",
"the",
"capture",
"time",
"of",
"the",
"sample",
"on",
"the",
"remote",
"machine",
"or",
"(",
"None",
"None",
")",
"if",
"no",
"new",
"sample",
"was",
"available",
".",
"To",
"remap",
"this",
"time",
"stamp",
"to",
"the",
"local",
"clock",
"add",
"the",
"value",
"returned",
"by",
".",
"time_correction",
"()",
"to",
"it",
".",
"Throws",
"a",
"LostError",
"if",
"the",
"stream",
"source",
"has",
"been",
"lost",
".",
"Note",
"that",
"if",
"the",
"timeout",
"expires",
"no",
"TimeoutError",
"is",
"thrown",
"(",
"because",
"this",
"case",
"is",
"not",
"considered",
"an",
"error",
")",
"."
] |
labstreaminglayer/liblsl-Python
|
python
|
https://github.com/labstreaminglayer/liblsl-Python/blob/1ff6fe2794f8dba286b7491d1f7a4c915b8a0605/pylsl/pylsl.py#L766-L806
|
[
"def",
"pull_sample",
"(",
"self",
",",
"timeout",
"=",
"FOREVER",
",",
"sample",
"=",
"None",
")",
":",
"# support for the legacy API",
"if",
"type",
"(",
"timeout",
")",
"is",
"list",
":",
"assign_to",
"=",
"timeout",
"timeout",
"=",
"sample",
"if",
"type",
"(",
"sample",
")",
"is",
"float",
"else",
"0.0",
"else",
":",
"assign_to",
"=",
"None",
"errcode",
"=",
"c_int",
"(",
")",
"timestamp",
"=",
"self",
".",
"do_pull_sample",
"(",
"self",
".",
"obj",
",",
"byref",
"(",
"self",
".",
"sample",
")",
",",
"self",
".",
"channel_count",
",",
"c_double",
"(",
"timeout",
")",
",",
"byref",
"(",
"errcode",
")",
")",
"handle_error",
"(",
"errcode",
")",
"if",
"timestamp",
":",
"sample",
"=",
"[",
"v",
"for",
"v",
"in",
"self",
".",
"sample",
"]",
"if",
"self",
".",
"channel_format",
"==",
"cf_string",
":",
"sample",
"=",
"[",
"v",
".",
"decode",
"(",
"'utf-8'",
")",
"for",
"v",
"in",
"sample",
"]",
"if",
"assign_to",
"is",
"not",
"None",
":",
"assign_to",
"[",
":",
"]",
"=",
"sample",
"return",
"sample",
",",
"timestamp",
"else",
":",
"return",
"None",
",",
"None"
] |
1ff6fe2794f8dba286b7491d1f7a4c915b8a0605
|
test
|
StreamInlet.pull_chunk
|
Pull a chunk of samples from the inlet.
Keyword arguments:
timeout -- The timeout of the operation; if passed as 0.0, then only
samples available for immediate pickup will be returned.
(default 0.0)
max_samples -- Maximum number of samples to return. (default
1024)
dest_obj -- A Python object that supports the buffer interface.
If this is provided then the dest_obj will be updated in place
and the samples list returned by this method will be empty.
It is up to the caller to trim the buffer to the appropriate
number of samples.
A numpy buffer must be order='C'
(default None)
Returns a tuple (samples,timestamps) where samples is a list of samples
(each itself a list of values), and timestamps is a list of time-stamps.
Throws a LostError if the stream source has been lost.
|
pylsl/pylsl.py
|
def pull_chunk(self, timeout=0.0, max_samples=1024, dest_obj=None):
"""Pull a chunk of samples from the inlet.
Keyword arguments:
timeout -- The timeout of the operation; if passed as 0.0, then only
samples available for immediate pickup will be returned.
(default 0.0)
max_samples -- Maximum number of samples to return. (default
1024)
dest_obj -- A Python object that supports the buffer interface.
If this is provided then the dest_obj will be updated in place
and the samples list returned by this method will be empty.
It is up to the caller to trim the buffer to the appropriate
number of samples.
A numpy buffer must be order='C'
(default None)
Returns a tuple (samples,timestamps) where samples is a list of samples
(each itself a list of values), and timestamps is a list of time-stamps.
Throws a LostError if the stream source has been lost.
"""
# look up a pre-allocated buffer of appropriate length
num_channels = self.channel_count
max_values = max_samples*num_channels
if max_samples not in self.buffers:
# noinspection PyCallingNonCallable
self.buffers[max_samples] = ((self.value_type*max_values)(),
(c_double*max_samples)())
if dest_obj is not None:
data_buff = (self.value_type * max_values).from_buffer(dest_obj)
else:
data_buff = self.buffers[max_samples][0]
ts_buff = self.buffers[max_samples][1]
# read data into it
errcode = c_int()
# noinspection PyCallingNonCallable
num_elements = self.do_pull_chunk(self.obj, byref(data_buff),
byref(ts_buff), max_values,
max_samples, c_double(timeout),
byref(errcode))
handle_error(errcode)
# return results (note: could offer a more efficient format in the
# future, e.g., a numpy array)
num_samples = num_elements/num_channels
if dest_obj is None:
samples = [[data_buff[s*num_channels+c] for c in range(num_channels)]
for s in range(int(num_samples))]
if self.channel_format == cf_string:
samples = [[v.decode('utf-8') for v in s] for s in samples]
free_char_p_array_memory(data_buff, max_values)
else:
samples = None
timestamps = [ts_buff[s] for s in range(int(num_samples))]
return samples, timestamps
|
def pull_chunk(self, timeout=0.0, max_samples=1024, dest_obj=None):
"""Pull a chunk of samples from the inlet.
Keyword arguments:
timeout -- The timeout of the operation; if passed as 0.0, then only
samples available for immediate pickup will be returned.
(default 0.0)
max_samples -- Maximum number of samples to return. (default
1024)
dest_obj -- A Python object that supports the buffer interface.
If this is provided then the dest_obj will be updated in place
and the samples list returned by this method will be empty.
It is up to the caller to trim the buffer to the appropriate
number of samples.
A numpy buffer must be order='C'
(default None)
Returns a tuple (samples,timestamps) where samples is a list of samples
(each itself a list of values), and timestamps is a list of time-stamps.
Throws a LostError if the stream source has been lost.
"""
# look up a pre-allocated buffer of appropriate length
num_channels = self.channel_count
max_values = max_samples*num_channels
if max_samples not in self.buffers:
# noinspection PyCallingNonCallable
self.buffers[max_samples] = ((self.value_type*max_values)(),
(c_double*max_samples)())
if dest_obj is not None:
data_buff = (self.value_type * max_values).from_buffer(dest_obj)
else:
data_buff = self.buffers[max_samples][0]
ts_buff = self.buffers[max_samples][1]
# read data into it
errcode = c_int()
# noinspection PyCallingNonCallable
num_elements = self.do_pull_chunk(self.obj, byref(data_buff),
byref(ts_buff), max_values,
max_samples, c_double(timeout),
byref(errcode))
handle_error(errcode)
# return results (note: could offer a more efficient format in the
# future, e.g., a numpy array)
num_samples = num_elements/num_channels
if dest_obj is None:
samples = [[data_buff[s*num_channels+c] for c in range(num_channels)]
for s in range(int(num_samples))]
if self.channel_format == cf_string:
samples = [[v.decode('utf-8') for v in s] for s in samples]
free_char_p_array_memory(data_buff, max_values)
else:
samples = None
timestamps = [ts_buff[s] for s in range(int(num_samples))]
return samples, timestamps
|
[
"Pull",
"a",
"chunk",
"of",
"samples",
"from",
"the",
"inlet",
".",
"Keyword",
"arguments",
":",
"timeout",
"--",
"The",
"timeout",
"of",
"the",
"operation",
";",
"if",
"passed",
"as",
"0",
".",
"0",
"then",
"only",
"samples",
"available",
"for",
"immediate",
"pickup",
"will",
"be",
"returned",
".",
"(",
"default",
"0",
".",
"0",
")",
"max_samples",
"--",
"Maximum",
"number",
"of",
"samples",
"to",
"return",
".",
"(",
"default",
"1024",
")",
"dest_obj",
"--",
"A",
"Python",
"object",
"that",
"supports",
"the",
"buffer",
"interface",
".",
"If",
"this",
"is",
"provided",
"then",
"the",
"dest_obj",
"will",
"be",
"updated",
"in",
"place",
"and",
"the",
"samples",
"list",
"returned",
"by",
"this",
"method",
"will",
"be",
"empty",
".",
"It",
"is",
"up",
"to",
"the",
"caller",
"to",
"trim",
"the",
"buffer",
"to",
"the",
"appropriate",
"number",
"of",
"samples",
".",
"A",
"numpy",
"buffer",
"must",
"be",
"order",
"=",
"C",
"(",
"default",
"None",
")",
"Returns",
"a",
"tuple",
"(",
"samples",
"timestamps",
")",
"where",
"samples",
"is",
"a",
"list",
"of",
"samples",
"(",
"each",
"itself",
"a",
"list",
"of",
"values",
")",
"and",
"timestamps",
"is",
"a",
"list",
"of",
"time",
"-",
"stamps",
"."
] |
labstreaminglayer/liblsl-Python
|
python
|
https://github.com/labstreaminglayer/liblsl-Python/blob/1ff6fe2794f8dba286b7491d1f7a4c915b8a0605/pylsl/pylsl.py#L808-L865
|
[
"def",
"pull_chunk",
"(",
"self",
",",
"timeout",
"=",
"0.0",
",",
"max_samples",
"=",
"1024",
",",
"dest_obj",
"=",
"None",
")",
":",
"# look up a pre-allocated buffer of appropriate length ",
"num_channels",
"=",
"self",
".",
"channel_count",
"max_values",
"=",
"max_samples",
"*",
"num_channels",
"if",
"max_samples",
"not",
"in",
"self",
".",
"buffers",
":",
"# noinspection PyCallingNonCallable",
"self",
".",
"buffers",
"[",
"max_samples",
"]",
"=",
"(",
"(",
"self",
".",
"value_type",
"*",
"max_values",
")",
"(",
")",
",",
"(",
"c_double",
"*",
"max_samples",
")",
"(",
")",
")",
"if",
"dest_obj",
"is",
"not",
"None",
":",
"data_buff",
"=",
"(",
"self",
".",
"value_type",
"*",
"max_values",
")",
".",
"from_buffer",
"(",
"dest_obj",
")",
"else",
":",
"data_buff",
"=",
"self",
".",
"buffers",
"[",
"max_samples",
"]",
"[",
"0",
"]",
"ts_buff",
"=",
"self",
".",
"buffers",
"[",
"max_samples",
"]",
"[",
"1",
"]",
"# read data into it",
"errcode",
"=",
"c_int",
"(",
")",
"# noinspection PyCallingNonCallable",
"num_elements",
"=",
"self",
".",
"do_pull_chunk",
"(",
"self",
".",
"obj",
",",
"byref",
"(",
"data_buff",
")",
",",
"byref",
"(",
"ts_buff",
")",
",",
"max_values",
",",
"max_samples",
",",
"c_double",
"(",
"timeout",
")",
",",
"byref",
"(",
"errcode",
")",
")",
"handle_error",
"(",
"errcode",
")",
"# return results (note: could offer a more efficient format in the ",
"# future, e.g., a numpy array)",
"num_samples",
"=",
"num_elements",
"/",
"num_channels",
"if",
"dest_obj",
"is",
"None",
":",
"samples",
"=",
"[",
"[",
"data_buff",
"[",
"s",
"*",
"num_channels",
"+",
"c",
"]",
"for",
"c",
"in",
"range",
"(",
"num_channels",
")",
"]",
"for",
"s",
"in",
"range",
"(",
"int",
"(",
"num_samples",
")",
")",
"]",
"if",
"self",
".",
"channel_format",
"==",
"cf_string",
":",
"samples",
"=",
"[",
"[",
"v",
".",
"decode",
"(",
"'utf-8'",
")",
"for",
"v",
"in",
"s",
"]",
"for",
"s",
"in",
"samples",
"]",
"free_char_p_array_memory",
"(",
"data_buff",
",",
"max_values",
")",
"else",
":",
"samples",
"=",
"None",
"timestamps",
"=",
"[",
"ts_buff",
"[",
"s",
"]",
"for",
"s",
"in",
"range",
"(",
"int",
"(",
"num_samples",
")",
")",
"]",
"return",
"samples",
",",
"timestamps"
] |
1ff6fe2794f8dba286b7491d1f7a4c915b8a0605
|
test
|
XMLElement.child
|
Get a child with a specified name.
|
pylsl/pylsl.py
|
def child(self, name):
"""Get a child with a specified name."""
return XMLElement(lib.lsl_child(self.e, str.encode(name)))
|
def child(self, name):
"""Get a child with a specified name."""
return XMLElement(lib.lsl_child(self.e, str.encode(name)))
|
[
"Get",
"a",
"child",
"with",
"a",
"specified",
"name",
"."
] |
labstreaminglayer/liblsl-Python
|
python
|
https://github.com/labstreaminglayer/liblsl-Python/blob/1ff6fe2794f8dba286b7491d1f7a4c915b8a0605/pylsl/pylsl.py#L920-L922
|
[
"def",
"child",
"(",
"self",
",",
"name",
")",
":",
"return",
"XMLElement",
"(",
"lib",
".",
"lsl_child",
"(",
"self",
".",
"e",
",",
"str",
".",
"encode",
"(",
"name",
")",
")",
")"
] |
1ff6fe2794f8dba286b7491d1f7a4c915b8a0605
|
test
|
XMLElement.next_sibling
|
Get the next sibling in the children list of the parent node.
If a name is provided, the next sibling with the given name is returned.
|
pylsl/pylsl.py
|
def next_sibling(self, name=None):
"""Get the next sibling in the children list of the parent node.
If a name is provided, the next sibling with the given name is returned.
"""
if name is None:
return XMLElement(lib.lsl_next_sibling(self.e))
else:
return XMLElement(lib.lsl_next_sibling_n(self.e, str.encode(name)))
|
def next_sibling(self, name=None):
"""Get the next sibling in the children list of the parent node.
If a name is provided, the next sibling with the given name is returned.
"""
if name is None:
return XMLElement(lib.lsl_next_sibling(self.e))
else:
return XMLElement(lib.lsl_next_sibling_n(self.e, str.encode(name)))
|
[
"Get",
"the",
"next",
"sibling",
"in",
"the",
"children",
"list",
"of",
"the",
"parent",
"node",
"."
] |
labstreaminglayer/liblsl-Python
|
python
|
https://github.com/labstreaminglayer/liblsl-Python/blob/1ff6fe2794f8dba286b7491d1f7a4c915b8a0605/pylsl/pylsl.py#L924-L933
|
[
"def",
"next_sibling",
"(",
"self",
",",
"name",
"=",
"None",
")",
":",
"if",
"name",
"is",
"None",
":",
"return",
"XMLElement",
"(",
"lib",
".",
"lsl_next_sibling",
"(",
"self",
".",
"e",
")",
")",
"else",
":",
"return",
"XMLElement",
"(",
"lib",
".",
"lsl_next_sibling_n",
"(",
"self",
".",
"e",
",",
"str",
".",
"encode",
"(",
"name",
")",
")",
")"
] |
1ff6fe2794f8dba286b7491d1f7a4c915b8a0605
|
test
|
XMLElement.previous_sibling
|
Get the previous sibling in the children list of the parent node.
If a name is provided, the previous sibling with the given name is
returned.
|
pylsl/pylsl.py
|
def previous_sibling(self, name=None):
"""Get the previous sibling in the children list of the parent node.
If a name is provided, the previous sibling with the given name is
returned.
"""
if name is None:
return XMLElement(lib.lsl_previous_sibling(self.e))
else:
return XMLElement(lib.lsl_previous_sibling_n(self.e,
str.encode(name)))
|
def previous_sibling(self, name=None):
"""Get the previous sibling in the children list of the parent node.
If a name is provided, the previous sibling with the given name is
returned.
"""
if name is None:
return XMLElement(lib.lsl_previous_sibling(self.e))
else:
return XMLElement(lib.lsl_previous_sibling_n(self.e,
str.encode(name)))
|
[
"Get",
"the",
"previous",
"sibling",
"in",
"the",
"children",
"list",
"of",
"the",
"parent",
"node",
"."
] |
labstreaminglayer/liblsl-Python
|
python
|
https://github.com/labstreaminglayer/liblsl-Python/blob/1ff6fe2794f8dba286b7491d1f7a4c915b8a0605/pylsl/pylsl.py#L935-L946
|
[
"def",
"previous_sibling",
"(",
"self",
",",
"name",
"=",
"None",
")",
":",
"if",
"name",
"is",
"None",
":",
"return",
"XMLElement",
"(",
"lib",
".",
"lsl_previous_sibling",
"(",
"self",
".",
"e",
")",
")",
"else",
":",
"return",
"XMLElement",
"(",
"lib",
".",
"lsl_previous_sibling_n",
"(",
"self",
".",
"e",
",",
"str",
".",
"encode",
"(",
"name",
")",
")",
")"
] |
1ff6fe2794f8dba286b7491d1f7a4c915b8a0605
|
test
|
XMLElement.child_value
|
Get child value (value of the first child that is text).
If a name is provided, then the value of the first child with the
given name is returned.
|
pylsl/pylsl.py
|
def child_value(self, name=None):
"""Get child value (value of the first child that is text).
If a name is provided, then the value of the first child with the
given name is returned.
"""
if name is None:
res = lib.lsl_child_value(self.e)
else:
res = lib.lsl_child_value_n(self.e, str.encode(name))
return res.decode('utf-8')
|
def child_value(self, name=None):
"""Get child value (value of the first child that is text).
If a name is provided, then the value of the first child with the
given name is returned.
"""
if name is None:
res = lib.lsl_child_value(self.e)
else:
res = lib.lsl_child_value_n(self.e, str.encode(name))
return res.decode('utf-8')
|
[
"Get",
"child",
"value",
"(",
"value",
"of",
"the",
"first",
"child",
"that",
"is",
"text",
")",
"."
] |
labstreaminglayer/liblsl-Python
|
python
|
https://github.com/labstreaminglayer/liblsl-Python/blob/1ff6fe2794f8dba286b7491d1f7a4c915b8a0605/pylsl/pylsl.py#L974-L985
|
[
"def",
"child_value",
"(",
"self",
",",
"name",
"=",
"None",
")",
":",
"if",
"name",
"is",
"None",
":",
"res",
"=",
"lib",
".",
"lsl_child_value",
"(",
"self",
".",
"e",
")",
"else",
":",
"res",
"=",
"lib",
".",
"lsl_child_value_n",
"(",
"self",
".",
"e",
",",
"str",
".",
"encode",
"(",
"name",
")",
")",
"return",
"res",
".",
"decode",
"(",
"'utf-8'",
")"
] |
1ff6fe2794f8dba286b7491d1f7a4c915b8a0605
|
test
|
XMLElement.append_child_value
|
Append a child node with a given name, which has a (nameless)
plain-text child with the given text value.
|
pylsl/pylsl.py
|
def append_child_value(self, name, value):
"""Append a child node with a given name, which has a (nameless)
plain-text child with the given text value."""
return XMLElement(lib.lsl_append_child_value(self.e,
str.encode(name),
str.encode(value)))
|
def append_child_value(self, name, value):
"""Append a child node with a given name, which has a (nameless)
plain-text child with the given text value."""
return XMLElement(lib.lsl_append_child_value(self.e,
str.encode(name),
str.encode(value)))
|
[
"Append",
"a",
"child",
"node",
"with",
"a",
"given",
"name",
"which",
"has",
"a",
"(",
"nameless",
")",
"plain",
"-",
"text",
"child",
"with",
"the",
"given",
"text",
"value",
"."
] |
labstreaminglayer/liblsl-Python
|
python
|
https://github.com/labstreaminglayer/liblsl-Python/blob/1ff6fe2794f8dba286b7491d1f7a4c915b8a0605/pylsl/pylsl.py#L989-L994
|
[
"def",
"append_child_value",
"(",
"self",
",",
"name",
",",
"value",
")",
":",
"return",
"XMLElement",
"(",
"lib",
".",
"lsl_append_child_value",
"(",
"self",
".",
"e",
",",
"str",
".",
"encode",
"(",
"name",
")",
",",
"str",
".",
"encode",
"(",
"value",
")",
")",
")"
] |
1ff6fe2794f8dba286b7491d1f7a4c915b8a0605
|
test
|
XMLElement.prepend_child_value
|
Prepend a child node with a given name, which has a (nameless)
plain-text child with the given text value.
|
pylsl/pylsl.py
|
def prepend_child_value(self, name, value):
"""Prepend a child node with a given name, which has a (nameless)
plain-text child with the given text value."""
return XMLElement(lib.lsl_prepend_child_value(self.e,
str.encode(name),
str.encode(value)))
|
def prepend_child_value(self, name, value):
"""Prepend a child node with a given name, which has a (nameless)
plain-text child with the given text value."""
return XMLElement(lib.lsl_prepend_child_value(self.e,
str.encode(name),
str.encode(value)))
|
[
"Prepend",
"a",
"child",
"node",
"with",
"a",
"given",
"name",
"which",
"has",
"a",
"(",
"nameless",
")",
"plain",
"-",
"text",
"child",
"with",
"the",
"given",
"text",
"value",
"."
] |
labstreaminglayer/liblsl-Python
|
python
|
https://github.com/labstreaminglayer/liblsl-Python/blob/1ff6fe2794f8dba286b7491d1f7a4c915b8a0605/pylsl/pylsl.py#L996-L1001
|
[
"def",
"prepend_child_value",
"(",
"self",
",",
"name",
",",
"value",
")",
":",
"return",
"XMLElement",
"(",
"lib",
".",
"lsl_prepend_child_value",
"(",
"self",
".",
"e",
",",
"str",
".",
"encode",
"(",
"name",
")",
",",
"str",
".",
"encode",
"(",
"value",
")",
")",
")"
] |
1ff6fe2794f8dba286b7491d1f7a4c915b8a0605
|
test
|
XMLElement.set_child_value
|
Set the text value of the (nameless) plain-text child of a named
child node.
|
pylsl/pylsl.py
|
def set_child_value(self, name, value):
"""Set the text value of the (nameless) plain-text child of a named
child node."""
return XMLElement(lib.lsl_set_child_value(self.e,
str.encode(name),
str.encode(value)))
|
def set_child_value(self, name, value):
"""Set the text value of the (nameless) plain-text child of a named
child node."""
return XMLElement(lib.lsl_set_child_value(self.e,
str.encode(name),
str.encode(value)))
|
[
"Set",
"the",
"text",
"value",
"of",
"the",
"(",
"nameless",
")",
"plain",
"-",
"text",
"child",
"of",
"a",
"named",
"child",
"node",
"."
] |
labstreaminglayer/liblsl-Python
|
python
|
https://github.com/labstreaminglayer/liblsl-Python/blob/1ff6fe2794f8dba286b7491d1f7a4c915b8a0605/pylsl/pylsl.py#L1003-L1008
|
[
"def",
"set_child_value",
"(",
"self",
",",
"name",
",",
"value",
")",
":",
"return",
"XMLElement",
"(",
"lib",
".",
"lsl_set_child_value",
"(",
"self",
".",
"e",
",",
"str",
".",
"encode",
"(",
"name",
")",
",",
"str",
".",
"encode",
"(",
"value",
")",
")",
")"
] |
1ff6fe2794f8dba286b7491d1f7a4c915b8a0605
|
test
|
XMLElement.set_name
|
Set the element's name. Returns False if the node is empty.
|
pylsl/pylsl.py
|
def set_name(self, name):
"""Set the element's name. Returns False if the node is empty."""
return bool(lib.lsl_set_name(self.e, str.encode(name)))
|
def set_name(self, name):
"""Set the element's name. Returns False if the node is empty."""
return bool(lib.lsl_set_name(self.e, str.encode(name)))
|
[
"Set",
"the",
"element",
"s",
"name",
".",
"Returns",
"False",
"if",
"the",
"node",
"is",
"empty",
"."
] |
labstreaminglayer/liblsl-Python
|
python
|
https://github.com/labstreaminglayer/liblsl-Python/blob/1ff6fe2794f8dba286b7491d1f7a4c915b8a0605/pylsl/pylsl.py#L1010-L1012
|
[
"def",
"set_name",
"(",
"self",
",",
"name",
")",
":",
"return",
"bool",
"(",
"lib",
".",
"lsl_set_name",
"(",
"self",
".",
"e",
",",
"str",
".",
"encode",
"(",
"name",
")",
")",
")"
] |
1ff6fe2794f8dba286b7491d1f7a4c915b8a0605
|
test
|
XMLElement.set_value
|
Set the element's value. Returns False if the node is empty.
|
pylsl/pylsl.py
|
def set_value(self, value):
"""Set the element's value. Returns False if the node is empty."""
return bool(lib.lsl_set_value(self.e, str.encode(value)))
|
def set_value(self, value):
"""Set the element's value. Returns False if the node is empty."""
return bool(lib.lsl_set_value(self.e, str.encode(value)))
|
[
"Set",
"the",
"element",
"s",
"value",
".",
"Returns",
"False",
"if",
"the",
"node",
"is",
"empty",
"."
] |
labstreaminglayer/liblsl-Python
|
python
|
https://github.com/labstreaminglayer/liblsl-Python/blob/1ff6fe2794f8dba286b7491d1f7a4c915b8a0605/pylsl/pylsl.py#L1014-L1016
|
[
"def",
"set_value",
"(",
"self",
",",
"value",
")",
":",
"return",
"bool",
"(",
"lib",
".",
"lsl_set_value",
"(",
"self",
".",
"e",
",",
"str",
".",
"encode",
"(",
"value",
")",
")",
")"
] |
1ff6fe2794f8dba286b7491d1f7a4c915b8a0605
|
test
|
XMLElement.append_child
|
Append a child element with the specified name.
|
pylsl/pylsl.py
|
def append_child(self, name):
"""Append a child element with the specified name."""
return XMLElement(lib.lsl_append_child(self.e, str.encode(name)))
|
def append_child(self, name):
"""Append a child element with the specified name."""
return XMLElement(lib.lsl_append_child(self.e, str.encode(name)))
|
[
"Append",
"a",
"child",
"element",
"with",
"the",
"specified",
"name",
"."
] |
labstreaminglayer/liblsl-Python
|
python
|
https://github.com/labstreaminglayer/liblsl-Python/blob/1ff6fe2794f8dba286b7491d1f7a4c915b8a0605/pylsl/pylsl.py#L1018-L1020
|
[
"def",
"append_child",
"(",
"self",
",",
"name",
")",
":",
"return",
"XMLElement",
"(",
"lib",
".",
"lsl_append_child",
"(",
"self",
".",
"e",
",",
"str",
".",
"encode",
"(",
"name",
")",
")",
")"
] |
1ff6fe2794f8dba286b7491d1f7a4c915b8a0605
|
test
|
XMLElement.prepend_child
|
Prepend a child element with the specified name.
|
pylsl/pylsl.py
|
def prepend_child(self, name):
"""Prepend a child element with the specified name."""
return XMLElement(lib.lsl_prepend_child(self.e, str.encode(name)))
|
def prepend_child(self, name):
"""Prepend a child element with the specified name."""
return XMLElement(lib.lsl_prepend_child(self.e, str.encode(name)))
|
[
"Prepend",
"a",
"child",
"element",
"with",
"the",
"specified",
"name",
"."
] |
labstreaminglayer/liblsl-Python
|
python
|
https://github.com/labstreaminglayer/liblsl-Python/blob/1ff6fe2794f8dba286b7491d1f7a4c915b8a0605/pylsl/pylsl.py#L1022-L1024
|
[
"def",
"prepend_child",
"(",
"self",
",",
"name",
")",
":",
"return",
"XMLElement",
"(",
"lib",
".",
"lsl_prepend_child",
"(",
"self",
".",
"e",
",",
"str",
".",
"encode",
"(",
"name",
")",
")",
")"
] |
1ff6fe2794f8dba286b7491d1f7a4c915b8a0605
|
test
|
XMLElement.append_copy
|
Append a copy of the specified element as a child.
|
pylsl/pylsl.py
|
def append_copy(self, elem):
"""Append a copy of the specified element as a child."""
return XMLElement(lib.lsl_append_copy(self.e, elem.e))
|
def append_copy(self, elem):
"""Append a copy of the specified element as a child."""
return XMLElement(lib.lsl_append_copy(self.e, elem.e))
|
[
"Append",
"a",
"copy",
"of",
"the",
"specified",
"element",
"as",
"a",
"child",
"."
] |
labstreaminglayer/liblsl-Python
|
python
|
https://github.com/labstreaminglayer/liblsl-Python/blob/1ff6fe2794f8dba286b7491d1f7a4c915b8a0605/pylsl/pylsl.py#L1026-L1028
|
[
"def",
"append_copy",
"(",
"self",
",",
"elem",
")",
":",
"return",
"XMLElement",
"(",
"lib",
".",
"lsl_append_copy",
"(",
"self",
".",
"e",
",",
"elem",
".",
"e",
")",
")"
] |
1ff6fe2794f8dba286b7491d1f7a4c915b8a0605
|
test
|
XMLElement.prepend_copy
|
Prepend a copy of the specified element as a child.
|
pylsl/pylsl.py
|
def prepend_copy(self, elem):
"""Prepend a copy of the specified element as a child."""
return XMLElement(lib.lsl_prepend_copy(self.e, elem.e))
|
def prepend_copy(self, elem):
"""Prepend a copy of the specified element as a child."""
return XMLElement(lib.lsl_prepend_copy(self.e, elem.e))
|
[
"Prepend",
"a",
"copy",
"of",
"the",
"specified",
"element",
"as",
"a",
"child",
"."
] |
labstreaminglayer/liblsl-Python
|
python
|
https://github.com/labstreaminglayer/liblsl-Python/blob/1ff6fe2794f8dba286b7491d1f7a4c915b8a0605/pylsl/pylsl.py#L1030-L1032
|
[
"def",
"prepend_copy",
"(",
"self",
",",
"elem",
")",
":",
"return",
"XMLElement",
"(",
"lib",
".",
"lsl_prepend_copy",
"(",
"self",
".",
"e",
",",
"elem",
".",
"e",
")",
")"
] |
1ff6fe2794f8dba286b7491d1f7a4c915b8a0605
|
test
|
XMLElement.remove_child
|
Remove a given child element, specified by name or as element.
|
pylsl/pylsl.py
|
def remove_child(self, rhs):
"""Remove a given child element, specified by name or as element."""
if type(rhs) is XMLElement:
lib.lsl_remove_child(self.e, rhs.e)
else:
lib.lsl_remove_child_n(self.e, rhs)
|
def remove_child(self, rhs):
"""Remove a given child element, specified by name or as element."""
if type(rhs) is XMLElement:
lib.lsl_remove_child(self.e, rhs.e)
else:
lib.lsl_remove_child_n(self.e, rhs)
|
[
"Remove",
"a",
"given",
"child",
"element",
"specified",
"by",
"name",
"or",
"as",
"element",
"."
] |
labstreaminglayer/liblsl-Python
|
python
|
https://github.com/labstreaminglayer/liblsl-Python/blob/1ff6fe2794f8dba286b7491d1f7a4c915b8a0605/pylsl/pylsl.py#L1034-L1039
|
[
"def",
"remove_child",
"(",
"self",
",",
"rhs",
")",
":",
"if",
"type",
"(",
"rhs",
")",
"is",
"XMLElement",
":",
"lib",
".",
"lsl_remove_child",
"(",
"self",
".",
"e",
",",
"rhs",
".",
"e",
")",
"else",
":",
"lib",
".",
"lsl_remove_child_n",
"(",
"self",
".",
"e",
",",
"rhs",
")"
] |
1ff6fe2794f8dba286b7491d1f7a4c915b8a0605
|
test
|
ContinuousResolver.results
|
Obtain the set of currently present streams on the network.
Returns a list of matching StreamInfo objects (with empty desc
field), any of which can subsequently be used to open an inlet.
|
pylsl/pylsl.py
|
def results(self):
"""Obtain the set of currently present streams on the network.
Returns a list of matching StreamInfo objects (with empty desc
field), any of which can subsequently be used to open an inlet.
"""
# noinspection PyCallingNonCallable
buffer = (c_void_p*1024)()
num_found = lib.lsl_resolver_results(self.obj, byref(buffer), 1024)
return [StreamInfo(handle=buffer[k]) for k in range(num_found)]
|
def results(self):
"""Obtain the set of currently present streams on the network.
Returns a list of matching StreamInfo objects (with empty desc
field), any of which can subsequently be used to open an inlet.
"""
# noinspection PyCallingNonCallable
buffer = (c_void_p*1024)()
num_found = lib.lsl_resolver_results(self.obj, byref(buffer), 1024)
return [StreamInfo(handle=buffer[k]) for k in range(num_found)]
|
[
"Obtain",
"the",
"set",
"of",
"currently",
"present",
"streams",
"on",
"the",
"network",
"."
] |
labstreaminglayer/liblsl-Python
|
python
|
https://github.com/labstreaminglayer/liblsl-Python/blob/1ff6fe2794f8dba286b7491d1f7a4c915b8a0605/pylsl/pylsl.py#L1092-L1102
|
[
"def",
"results",
"(",
"self",
")",
":",
"# noinspection PyCallingNonCallable",
"buffer",
"=",
"(",
"c_void_p",
"*",
"1024",
")",
"(",
")",
"num_found",
"=",
"lib",
".",
"lsl_resolver_results",
"(",
"self",
".",
"obj",
",",
"byref",
"(",
"buffer",
")",
",",
"1024",
")",
"return",
"[",
"StreamInfo",
"(",
"handle",
"=",
"buffer",
"[",
"k",
"]",
")",
"for",
"k",
"in",
"range",
"(",
"num_found",
")",
"]"
] |
1ff6fe2794f8dba286b7491d1f7a4c915b8a0605
|
test
|
pair
|
See all token associated with a given token.
PAIR lilas
|
addok/pairs.py
|
def pair(cmd, word):
"""See all token associated with a given token.
PAIR lilas"""
word = list(preprocess_query(word))[0]
key = pair_key(word)
tokens = [t.decode() for t in DB.smembers(key)]
tokens.sort()
print(white(tokens))
print(magenta('(Total: {})'.format(len(tokens))))
|
def pair(cmd, word):
"""See all token associated with a given token.
PAIR lilas"""
word = list(preprocess_query(word))[0]
key = pair_key(word)
tokens = [t.decode() for t in DB.smembers(key)]
tokens.sort()
print(white(tokens))
print(magenta('(Total: {})'.format(len(tokens))))
|
[
"See",
"all",
"token",
"associated",
"with",
"a",
"given",
"token",
".",
"PAIR",
"lilas"
] |
addok/addok
|
python
|
https://github.com/addok/addok/blob/46a270d76ec778d2b445c2be753e5c6ba070a9b2/addok/pairs.py#L35-L43
|
[
"def",
"pair",
"(",
"cmd",
",",
"word",
")",
":",
"word",
"=",
"list",
"(",
"preprocess_query",
"(",
"word",
")",
")",
"[",
"0",
"]",
"key",
"=",
"pair_key",
"(",
"word",
")",
"tokens",
"=",
"[",
"t",
".",
"decode",
"(",
")",
"for",
"t",
"in",
"DB",
".",
"smembers",
"(",
"key",
")",
"]",
"tokens",
".",
"sort",
"(",
")",
"print",
"(",
"white",
"(",
"tokens",
")",
")",
"print",
"(",
"magenta",
"(",
"'(Total: {})'",
".",
"format",
"(",
"len",
"(",
"tokens",
")",
")",
")",
")"
] |
46a270d76ec778d2b445c2be753e5c6ba070a9b2
|
test
|
do_AUTOCOMPLETE
|
Shows autocomplete results for a given token.
|
addok/autocomplete.py
|
def do_AUTOCOMPLETE(cmd, s):
"""Shows autocomplete results for a given token."""
s = list(preprocess_query(s))[0]
keys = [k.decode() for k in DB.smembers(edge_ngram_key(s))]
print(white(keys))
print(magenta('({} elements)'.format(len(keys))))
|
def do_AUTOCOMPLETE(cmd, s):
"""Shows autocomplete results for a given token."""
s = list(preprocess_query(s))[0]
keys = [k.decode() for k in DB.smembers(edge_ngram_key(s))]
print(white(keys))
print(magenta('({} elements)'.format(len(keys))))
|
[
"Shows",
"autocomplete",
"results",
"for",
"a",
"given",
"token",
"."
] |
addok/addok
|
python
|
https://github.com/addok/addok/blob/46a270d76ec778d2b445c2be753e5c6ba070a9b2/addok/autocomplete.py#L128-L133
|
[
"def",
"do_AUTOCOMPLETE",
"(",
"cmd",
",",
"s",
")",
":",
"s",
"=",
"list",
"(",
"preprocess_query",
"(",
"s",
")",
")",
"[",
"0",
"]",
"keys",
"=",
"[",
"k",
".",
"decode",
"(",
")",
"for",
"k",
"in",
"DB",
".",
"smembers",
"(",
"edge_ngram_key",
"(",
"s",
")",
")",
"]",
"print",
"(",
"white",
"(",
"keys",
")",
")",
"print",
"(",
"magenta",
"(",
"'({} elements)'",
".",
"format",
"(",
"len",
"(",
"keys",
")",
")",
")",
")"
] |
46a270d76ec778d2b445c2be753e5c6ba070a9b2
|
test
|
compute_edge_ngrams
|
Compute edge ngram of token from min. Does not include token itself.
|
addok/helpers/text.py
|
def compute_edge_ngrams(token, min=None):
"""Compute edge ngram of token from min. Does not include token itself."""
if min is None:
min = config.MIN_EDGE_NGRAMS
token = token[:config.MAX_EDGE_NGRAMS + 1]
return [token[:i] for i in range(min, len(token))]
|
def compute_edge_ngrams(token, min=None):
"""Compute edge ngram of token from min. Does not include token itself."""
if min is None:
min = config.MIN_EDGE_NGRAMS
token = token[:config.MAX_EDGE_NGRAMS + 1]
return [token[:i] for i in range(min, len(token))]
|
[
"Compute",
"edge",
"ngram",
"of",
"token",
"from",
"min",
".",
"Does",
"not",
"include",
"token",
"itself",
"."
] |
addok/addok
|
python
|
https://github.com/addok/addok/blob/46a270d76ec778d2b445c2be753e5c6ba070a9b2/addok/helpers/text.py#L187-L192
|
[
"def",
"compute_edge_ngrams",
"(",
"token",
",",
"min",
"=",
"None",
")",
":",
"if",
"min",
"is",
"None",
":",
"min",
"=",
"config",
".",
"MIN_EDGE_NGRAMS",
"token",
"=",
"token",
"[",
":",
"config",
".",
"MAX_EDGE_NGRAMS",
"+",
"1",
"]",
"return",
"[",
"token",
"[",
":",
"i",
"]",
"for",
"i",
"in",
"range",
"(",
"min",
",",
"len",
"(",
"token",
")",
")",
"]"
] |
46a270d76ec778d2b445c2be753e5c6ba070a9b2
|
test
|
iter_pipe
|
Allow for iterators to return either an item or an iterator of items.
|
addok/helpers/__init__.py
|
def iter_pipe(pipe, processors):
"""Allow for iterators to return either an item or an iterator of items."""
if isinstance(pipe, str):
pipe = [pipe]
for it in processors:
pipe = it(pipe)
yield from pipe
|
def iter_pipe(pipe, processors):
"""Allow for iterators to return either an item or an iterator of items."""
if isinstance(pipe, str):
pipe = [pipe]
for it in processors:
pipe = it(pipe)
yield from pipe
|
[
"Allow",
"for",
"iterators",
"to",
"return",
"either",
"an",
"item",
"or",
"an",
"iterator",
"of",
"items",
"."
] |
addok/addok
|
python
|
https://github.com/addok/addok/blob/46a270d76ec778d2b445c2be753e5c6ba070a9b2/addok/helpers/__init__.py#L33-L39
|
[
"def",
"iter_pipe",
"(",
"pipe",
",",
"processors",
")",
":",
"if",
"isinstance",
"(",
"pipe",
",",
"str",
")",
":",
"pipe",
"=",
"[",
"pipe",
"]",
"for",
"it",
"in",
"processors",
":",
"pipe",
"=",
"it",
"(",
"pipe",
")",
"yield",
"from",
"pipe"
] |
46a270d76ec778d2b445c2be753e5c6ba070a9b2
|
test
|
import_by_path
|
Import functions or class by their path. Should be of the form:
path.to.module.func
|
addok/helpers/__init__.py
|
def import_by_path(path):
"""
Import functions or class by their path. Should be of the form:
path.to.module.func
"""
if not isinstance(path, str):
return path
module_path, *name = path.rsplit('.', 1)
func = import_module(module_path)
if name:
func = getattr(func, name[0])
return func
|
def import_by_path(path):
"""
Import functions or class by their path. Should be of the form:
path.to.module.func
"""
if not isinstance(path, str):
return path
module_path, *name = path.rsplit('.', 1)
func = import_module(module_path)
if name:
func = getattr(func, name[0])
return func
|
[
"Import",
"functions",
"or",
"class",
"by",
"their",
"path",
".",
"Should",
"be",
"of",
"the",
"form",
":",
"path",
".",
"to",
".",
"module",
".",
"func"
] |
addok/addok
|
python
|
https://github.com/addok/addok/blob/46a270d76ec778d2b445c2be753e5c6ba070a9b2/addok/helpers/__init__.py#L42-L53
|
[
"def",
"import_by_path",
"(",
"path",
")",
":",
"if",
"not",
"isinstance",
"(",
"path",
",",
"str",
")",
":",
"return",
"path",
"module_path",
",",
"",
"*",
"name",
"=",
"path",
".",
"rsplit",
"(",
"'.'",
",",
"1",
")",
"func",
"=",
"import_module",
"(",
"module_path",
")",
"if",
"name",
":",
"func",
"=",
"getattr",
"(",
"func",
",",
"name",
"[",
"0",
"]",
")",
"return",
"func"
] |
46a270d76ec778d2b445c2be753e5c6ba070a9b2
|
test
|
haversine_distance
|
Calculate the great circle distance between two points
on the earth (specified in decimal degrees).
|
addok/helpers/__init__.py
|
def haversine_distance(point1, point2):
"""
Calculate the great circle distance between two points
on the earth (specified in decimal degrees).
"""
lat1, lon1 = point1
lat2, lon2 = point2
# Convert decimal degrees to radians.
lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
# Haversine formula.
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
c = 2 * asin(sqrt(a))
# 6367 km is the radius of the Earth.
km = 6367 * c
return km
|
def haversine_distance(point1, point2):
"""
Calculate the great circle distance between two points
on the earth (specified in decimal degrees).
"""
lat1, lon1 = point1
lat2, lon2 = point2
# Convert decimal degrees to radians.
lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
# Haversine formula.
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat/2)**2 + cos(lat1) * cos(lat2) * sin(dlon/2)**2
c = 2 * asin(sqrt(a))
# 6367 km is the radius of the Earth.
km = 6367 * c
return km
|
[
"Calculate",
"the",
"great",
"circle",
"distance",
"between",
"two",
"points",
"on",
"the",
"earth",
"(",
"specified",
"in",
"decimal",
"degrees",
")",
"."
] |
addok/addok
|
python
|
https://github.com/addok/addok/blob/46a270d76ec778d2b445c2be753e5c6ba070a9b2/addok/helpers/__init__.py#L64-L83
|
[
"def",
"haversine_distance",
"(",
"point1",
",",
"point2",
")",
":",
"lat1",
",",
"lon1",
"=",
"point1",
"lat2",
",",
"lon2",
"=",
"point2",
"# Convert decimal degrees to radians.",
"lon1",
",",
"lat1",
",",
"lon2",
",",
"lat2",
"=",
"map",
"(",
"radians",
",",
"[",
"lon1",
",",
"lat1",
",",
"lon2",
",",
"lat2",
"]",
")",
"# Haversine formula.",
"dlon",
"=",
"lon2",
"-",
"lon1",
"dlat",
"=",
"lat2",
"-",
"lat1",
"a",
"=",
"sin",
"(",
"dlat",
"/",
"2",
")",
"**",
"2",
"+",
"cos",
"(",
"lat1",
")",
"*",
"cos",
"(",
"lat2",
")",
"*",
"sin",
"(",
"dlon",
"/",
"2",
")",
"**",
"2",
"c",
"=",
"2",
"*",
"asin",
"(",
"sqrt",
"(",
"a",
")",
")",
"# 6367 km is the radius of the Earth.",
"km",
"=",
"6367",
"*",
"c",
"return",
"km"
] |
46a270d76ec778d2b445c2be753e5c6ba070a9b2
|
test
|
ChunkedPool.imap_unordered
|
Customized version of imap_unordered.
Directly send chunks to func, instead of iterating in each process and
sending one by one.
Original:
https://hg.python.org/cpython/file/tip/Lib/multiprocessing/pool.py#l271
Other tried options:
- map_async: makes a list(iterable), so it loads all the data for each
process into RAM
- apply_async: needs manual chunking
|
addok/helpers/__init__.py
|
def imap_unordered(self, func, iterable, chunksize):
"""Customized version of imap_unordered.
Directly send chunks to func, instead of iterating in each process and
sending one by one.
Original:
https://hg.python.org/cpython/file/tip/Lib/multiprocessing/pool.py#l271
Other tried options:
- map_async: makes a list(iterable), so it loads all the data for each
process into RAM
- apply_async: needs manual chunking
"""
assert self._state == RUN
task_batches = Pool._get_tasks(func, iterable, chunksize)
result = IMapUnorderedIterator(self._cache)
tasks = ((result._job, i, func, chunk, {})
for i, (_, chunk) in enumerate(task_batches))
self._taskqueue.put((tasks, result._set_length))
return result
|
def imap_unordered(self, func, iterable, chunksize):
"""Customized version of imap_unordered.
Directly send chunks to func, instead of iterating in each process and
sending one by one.
Original:
https://hg.python.org/cpython/file/tip/Lib/multiprocessing/pool.py#l271
Other tried options:
- map_async: makes a list(iterable), so it loads all the data for each
process into RAM
- apply_async: needs manual chunking
"""
assert self._state == RUN
task_batches = Pool._get_tasks(func, iterable, chunksize)
result = IMapUnorderedIterator(self._cache)
tasks = ((result._job, i, func, chunk, {})
for i, (_, chunk) in enumerate(task_batches))
self._taskqueue.put((tasks, result._set_length))
return result
|
[
"Customized",
"version",
"of",
"imap_unordered",
"."
] |
addok/addok
|
python
|
https://github.com/addok/addok/blob/46a270d76ec778d2b445c2be753e5c6ba070a9b2/addok/helpers/__init__.py#L144-L164
|
[
"def",
"imap_unordered",
"(",
"self",
",",
"func",
",",
"iterable",
",",
"chunksize",
")",
":",
"assert",
"self",
".",
"_state",
"==",
"RUN",
"task_batches",
"=",
"Pool",
".",
"_get_tasks",
"(",
"func",
",",
"iterable",
",",
"chunksize",
")",
"result",
"=",
"IMapUnorderedIterator",
"(",
"self",
".",
"_cache",
")",
"tasks",
"=",
"(",
"(",
"result",
".",
"_job",
",",
"i",
",",
"func",
",",
"chunk",
",",
"{",
"}",
")",
"for",
"i",
",",
"(",
"_",
",",
"chunk",
")",
"in",
"enumerate",
"(",
"task_batches",
")",
")",
"self",
".",
"_taskqueue",
".",
"put",
"(",
"(",
"tasks",
",",
"result",
".",
"_set_length",
")",
")",
"return",
"result"
] |
46a270d76ec778d2b445c2be753e5c6ba070a9b2
|
test
|
make_fuzzy
|
Naive neighborhoods algo.
|
addok/fuzzy.py
|
def make_fuzzy(word, max=1):
"""Naive neighborhoods algo."""
# inversions
neighbors = []
for i in range(0, len(word) - 1):
neighbor = list(word)
neighbor[i], neighbor[i+1] = neighbor[i+1], neighbor[i]
neighbors.append(''.join(neighbor))
# substitutions
for letter in string.ascii_lowercase:
for i in range(0, len(word)):
neighbor = list(word)
if letter != neighbor[i]:
neighbor[i] = letter
neighbors.append(''.join(neighbor))
# insertions
for letter in string.ascii_lowercase:
for i in range(0, len(word) + 1):
neighbor = list(word)
neighbor.insert(i, letter)
neighbors.append(''.join(neighbor))
if len(word) > 3:
# removal
for i in range(0, len(word)):
neighbor = list(word)
del neighbor[i]
neighbors.append(''.join(neighbor))
return neighbors
|
def make_fuzzy(word, max=1):
"""Naive neighborhoods algo."""
# inversions
neighbors = []
for i in range(0, len(word) - 1):
neighbor = list(word)
neighbor[i], neighbor[i+1] = neighbor[i+1], neighbor[i]
neighbors.append(''.join(neighbor))
# substitutions
for letter in string.ascii_lowercase:
for i in range(0, len(word)):
neighbor = list(word)
if letter != neighbor[i]:
neighbor[i] = letter
neighbors.append(''.join(neighbor))
# insertions
for letter in string.ascii_lowercase:
for i in range(0, len(word) + 1):
neighbor = list(word)
neighbor.insert(i, letter)
neighbors.append(''.join(neighbor))
if len(word) > 3:
# removal
for i in range(0, len(word)):
neighbor = list(word)
del neighbor[i]
neighbors.append(''.join(neighbor))
return neighbors
|
[
"Naive",
"neighborhoods",
"algo",
"."
] |
addok/addok
|
python
|
https://github.com/addok/addok/blob/46a270d76ec778d2b445c2be753e5c6ba070a9b2/addok/fuzzy.py#L11-L38
|
[
"def",
"make_fuzzy",
"(",
"word",
",",
"max",
"=",
"1",
")",
":",
"# inversions",
"neighbors",
"=",
"[",
"]",
"for",
"i",
"in",
"range",
"(",
"0",
",",
"len",
"(",
"word",
")",
"-",
"1",
")",
":",
"neighbor",
"=",
"list",
"(",
"word",
")",
"neighbor",
"[",
"i",
"]",
",",
"neighbor",
"[",
"i",
"+",
"1",
"]",
"=",
"neighbor",
"[",
"i",
"+",
"1",
"]",
",",
"neighbor",
"[",
"i",
"]",
"neighbors",
".",
"append",
"(",
"''",
".",
"join",
"(",
"neighbor",
")",
")",
"# substitutions",
"for",
"letter",
"in",
"string",
".",
"ascii_lowercase",
":",
"for",
"i",
"in",
"range",
"(",
"0",
",",
"len",
"(",
"word",
")",
")",
":",
"neighbor",
"=",
"list",
"(",
"word",
")",
"if",
"letter",
"!=",
"neighbor",
"[",
"i",
"]",
":",
"neighbor",
"[",
"i",
"]",
"=",
"letter",
"neighbors",
".",
"append",
"(",
"''",
".",
"join",
"(",
"neighbor",
")",
")",
"# insertions",
"for",
"letter",
"in",
"string",
".",
"ascii_lowercase",
":",
"for",
"i",
"in",
"range",
"(",
"0",
",",
"len",
"(",
"word",
")",
"+",
"1",
")",
":",
"neighbor",
"=",
"list",
"(",
"word",
")",
"neighbor",
".",
"insert",
"(",
"i",
",",
"letter",
")",
"neighbors",
".",
"append",
"(",
"''",
".",
"join",
"(",
"neighbor",
")",
")",
"if",
"len",
"(",
"word",
")",
">",
"3",
":",
"# removal",
"for",
"i",
"in",
"range",
"(",
"0",
",",
"len",
"(",
"word",
")",
")",
":",
"neighbor",
"=",
"list",
"(",
"word",
")",
"del",
"neighbor",
"[",
"i",
"]",
"neighbors",
".",
"append",
"(",
"''",
".",
"join",
"(",
"neighbor",
")",
")",
"return",
"neighbors"
] |
46a270d76ec778d2b445c2be753e5c6ba070a9b2
|
test
|
do_fuzzy
|
Compute fuzzy extensions of word.
FUZZY lilas
|
addok/fuzzy.py
|
def do_fuzzy(self, word):
"""Compute fuzzy extensions of word.
FUZZY lilas"""
word = list(preprocess_query(word))[0]
print(white(make_fuzzy(word)))
|
def do_fuzzy(self, word):
"""Compute fuzzy extensions of word.
FUZZY lilas"""
word = list(preprocess_query(word))[0]
print(white(make_fuzzy(word)))
|
[
"Compute",
"fuzzy",
"extensions",
"of",
"word",
".",
"FUZZY",
"lilas"
] |
addok/addok
|
python
|
https://github.com/addok/addok/blob/46a270d76ec778d2b445c2be753e5c6ba070a9b2/addok/fuzzy.py#L100-L104
|
[
"def",
"do_fuzzy",
"(",
"self",
",",
"word",
")",
":",
"word",
"=",
"list",
"(",
"preprocess_query",
"(",
"word",
")",
")",
"[",
"0",
"]",
"print",
"(",
"white",
"(",
"make_fuzzy",
"(",
"word",
")",
")",
")"
] |
46a270d76ec778d2b445c2be753e5c6ba070a9b2
|
test
|
do_fuzzyindex
|
Compute fuzzy extensions of word that exist in index.
FUZZYINDEX lilas
|
addok/fuzzy.py
|
def do_fuzzyindex(self, word):
"""Compute fuzzy extensions of word that exist in index.
FUZZYINDEX lilas"""
word = list(preprocess_query(word))[0]
token = Token(word)
neighbors = make_fuzzy(token)
neighbors = [(n, DB.zcard(dbkeys.token_key(n))) for n in neighbors]
neighbors.sort(key=lambda n: n[1], reverse=True)
for token, freq in neighbors:
if freq == 0:
break
print(white(token), blue(freq))
|
def do_fuzzyindex(self, word):
"""Compute fuzzy extensions of word that exist in index.
FUZZYINDEX lilas"""
word = list(preprocess_query(word))[0]
token = Token(word)
neighbors = make_fuzzy(token)
neighbors = [(n, DB.zcard(dbkeys.token_key(n))) for n in neighbors]
neighbors.sort(key=lambda n: n[1], reverse=True)
for token, freq in neighbors:
if freq == 0:
break
print(white(token), blue(freq))
|
[
"Compute",
"fuzzy",
"extensions",
"of",
"word",
"that",
"exist",
"in",
"index",
".",
"FUZZYINDEX",
"lilas"
] |
addok/addok
|
python
|
https://github.com/addok/addok/blob/46a270d76ec778d2b445c2be753e5c6ba070a9b2/addok/fuzzy.py#L107-L118
|
[
"def",
"do_fuzzyindex",
"(",
"self",
",",
"word",
")",
":",
"word",
"=",
"list",
"(",
"preprocess_query",
"(",
"word",
")",
")",
"[",
"0",
"]",
"token",
"=",
"Token",
"(",
"word",
")",
"neighbors",
"=",
"make_fuzzy",
"(",
"token",
")",
"neighbors",
"=",
"[",
"(",
"n",
",",
"DB",
".",
"zcard",
"(",
"dbkeys",
".",
"token_key",
"(",
"n",
")",
")",
")",
"for",
"n",
"in",
"neighbors",
"]",
"neighbors",
".",
"sort",
"(",
"key",
"=",
"lambda",
"n",
":",
"n",
"[",
"1",
"]",
",",
"reverse",
"=",
"True",
")",
"for",
"token",
",",
"freq",
"in",
"neighbors",
":",
"if",
"freq",
"==",
"0",
":",
"break",
"print",
"(",
"white",
"(",
"token",
")",
",",
"blue",
"(",
"freq",
")",
")"
] |
46a270d76ec778d2b445c2be753e5c6ba070a9b2
|
test
|
extend_results_extrapoling_relations
|
Try to extract the bigger group of interlinked tokens.
Should generally be used at last in the collectors chain.
|
addok/helpers/collectors.py
|
def extend_results_extrapoling_relations(helper):
"""Try to extract the bigger group of interlinked tokens.
Should generally be used at last in the collectors chain.
"""
if not helper.bucket_dry:
return # No need.
tokens = set(helper.meaningful + helper.common)
for relation in _extract_manytomany_relations(tokens):
helper.add_to_bucket([t.db_key for t in relation])
if helper.bucket_overflow:
break
else:
helper.debug('No relation extrapolated.')
|
def extend_results_extrapoling_relations(helper):
"""Try to extract the bigger group of interlinked tokens.
Should generally be used at last in the collectors chain.
"""
if not helper.bucket_dry:
return # No need.
tokens = set(helper.meaningful + helper.common)
for relation in _extract_manytomany_relations(tokens):
helper.add_to_bucket([t.db_key for t in relation])
if helper.bucket_overflow:
break
else:
helper.debug('No relation extrapolated.')
|
[
"Try",
"to",
"extract",
"the",
"bigger",
"group",
"of",
"interlinked",
"tokens",
"."
] |
addok/addok
|
python
|
https://github.com/addok/addok/blob/46a270d76ec778d2b445c2be753e5c6ba070a9b2/addok/helpers/collectors.py#L133-L146
|
[
"def",
"extend_results_extrapoling_relations",
"(",
"helper",
")",
":",
"if",
"not",
"helper",
".",
"bucket_dry",
":",
"return",
"# No need.",
"tokens",
"=",
"set",
"(",
"helper",
".",
"meaningful",
"+",
"helper",
".",
"common",
")",
"for",
"relation",
"in",
"_extract_manytomany_relations",
"(",
"tokens",
")",
":",
"helper",
".",
"add_to_bucket",
"(",
"[",
"t",
".",
"db_key",
"for",
"t",
"in",
"relation",
"]",
")",
"if",
"helper",
".",
"bucket_overflow",
":",
"break",
"else",
":",
"helper",
".",
"debug",
"(",
"'No relation extrapolated.'",
")"
] |
46a270d76ec778d2b445c2be753e5c6ba070a9b2
|
test
|
Cmd.do_help
|
Display this help message.
|
addok/shell.py
|
def do_help(self, command):
"""Display this help message."""
if command:
doc = getattr(self, 'do_' + command).__doc__
print(cyan(doc.replace(' ' * 8, '')))
else:
print(magenta('Available commands:'))
print(magenta('Type "HELP <command>" to get more info.'))
names = self.get_names()
names.sort()
for name in names:
if name[:3] != 'do_':
continue
doc = getattr(self, name).__doc__
doc = doc.split('\n')[0]
print('{} {}'.format(yellow(name[3:]),
cyan(doc.replace(' ' * 8, ' ')
.replace('\n', ''))))
|
def do_help(self, command):
"""Display this help message."""
if command:
doc = getattr(self, 'do_' + command).__doc__
print(cyan(doc.replace(' ' * 8, '')))
else:
print(magenta('Available commands:'))
print(magenta('Type "HELP <command>" to get more info.'))
names = self.get_names()
names.sort()
for name in names:
if name[:3] != 'do_':
continue
doc = getattr(self, name).__doc__
doc = doc.split('\n')[0]
print('{} {}'.format(yellow(name[3:]),
cyan(doc.replace(' ' * 8, ' ')
.replace('\n', ''))))
|
[
"Display",
"this",
"help",
"message",
"."
] |
addok/addok
|
python
|
https://github.com/addok/addok/blob/46a270d76ec778d2b445c2be753e5c6ba070a9b2/addok/shell.py#L110-L127
|
[
"def",
"do_help",
"(",
"self",
",",
"command",
")",
":",
"if",
"command",
":",
"doc",
"=",
"getattr",
"(",
"self",
",",
"'do_'",
"+",
"command",
")",
".",
"__doc__",
"print",
"(",
"cyan",
"(",
"doc",
".",
"replace",
"(",
"' '",
"*",
"8",
",",
"''",
")",
")",
")",
"else",
":",
"print",
"(",
"magenta",
"(",
"'Available commands:'",
")",
")",
"print",
"(",
"magenta",
"(",
"'Type \"HELP <command>\" to get more info.'",
")",
")",
"names",
"=",
"self",
".",
"get_names",
"(",
")",
"names",
".",
"sort",
"(",
")",
"for",
"name",
"in",
"names",
":",
"if",
"name",
"[",
":",
"3",
"]",
"!=",
"'do_'",
":",
"continue",
"doc",
"=",
"getattr",
"(",
"self",
",",
"name",
")",
".",
"__doc__",
"doc",
"=",
"doc",
".",
"split",
"(",
"'\\n'",
")",
"[",
"0",
"]",
"print",
"(",
"'{} {}'",
".",
"format",
"(",
"yellow",
"(",
"name",
"[",
"3",
":",
"]",
")",
",",
"cyan",
"(",
"doc",
".",
"replace",
"(",
"' '",
"*",
"8",
",",
"' '",
")",
".",
"replace",
"(",
"'\\n'",
",",
"''",
")",
")",
")",
")"
] |
46a270d76ec778d2b445c2be753e5c6ba070a9b2
|
test
|
Cmd.do_BENCH
|
Run a search many times to benchmark it.
BENCH [100] rue des Lilas
|
addok/shell.py
|
def do_BENCH(self, query):
"""Run a search many times to benchmark it.
BENCH [100] rue des Lilas"""
try:
count = int(re.match(r'^(\d+).*', query).group(1))
except AttributeError:
count = 100
self._search(query, count=count)
|
def do_BENCH(self, query):
"""Run a search many times to benchmark it.
BENCH [100] rue des Lilas"""
try:
count = int(re.match(r'^(\d+).*', query).group(1))
except AttributeError:
count = 100
self._search(query, count=count)
|
[
"Run",
"a",
"search",
"many",
"times",
"to",
"benchmark",
"it",
".",
"BENCH",
"[",
"100",
"]",
"rue",
"des",
"Lilas"
] |
addok/addok
|
python
|
https://github.com/addok/addok/blob/46a270d76ec778d2b445c2be753e5c6ba070a9b2/addok/shell.py#L209-L216
|
[
"def",
"do_BENCH",
"(",
"self",
",",
"query",
")",
":",
"try",
":",
"count",
"=",
"int",
"(",
"re",
".",
"match",
"(",
"r'^(\\d+).*'",
",",
"query",
")",
".",
"group",
"(",
"1",
")",
")",
"except",
"AttributeError",
":",
"count",
"=",
"100",
"self",
".",
"_search",
"(",
"query",
",",
"count",
"=",
"count",
")"
] |
46a270d76ec778d2b445c2be753e5c6ba070a9b2
|
test
|
Cmd.do_INTERSECT
|
Do a raw intersect between tokens (default limit 100).
INTERSECT rue des lilas [LIMIT 100]
|
addok/shell.py
|
def do_INTERSECT(self, words):
"""Do a raw intersect between tokens (default limit 100).
INTERSECT rue des lilas [LIMIT 100]"""
start = time.time()
limit = 100
if 'LIMIT' in words:
words, limit = words.split('LIMIT')
limit = int(limit)
tokens = [keys.token_key(w) for w in preprocess_query(words)]
DB.zinterstore(words, tokens)
results = DB.zrevrange(words, 0, limit, withscores=True)
DB.delete(words)
for id_, score in results:
r = Result(id_)
print('{} {} {}'.format(white(r), blue(r._id), cyan(score)))
duration = round((time.time() - start) * 1000, 1)
print(magenta("({} in {} ms)".format(len(results), duration)))
|
def do_INTERSECT(self, words):
"""Do a raw intersect between tokens (default limit 100).
INTERSECT rue des lilas [LIMIT 100]"""
start = time.time()
limit = 100
if 'LIMIT' in words:
words, limit = words.split('LIMIT')
limit = int(limit)
tokens = [keys.token_key(w) for w in preprocess_query(words)]
DB.zinterstore(words, tokens)
results = DB.zrevrange(words, 0, limit, withscores=True)
DB.delete(words)
for id_, score in results:
r = Result(id_)
print('{} {} {}'.format(white(r), blue(r._id), cyan(score)))
duration = round((time.time() - start) * 1000, 1)
print(magenta("({} in {} ms)".format(len(results), duration)))
|
[
"Do",
"a",
"raw",
"intersect",
"between",
"tokens",
"(",
"default",
"limit",
"100",
")",
".",
"INTERSECT",
"rue",
"des",
"lilas",
"[",
"LIMIT",
"100",
"]"
] |
addok/addok
|
python
|
https://github.com/addok/addok/blob/46a270d76ec778d2b445c2be753e5c6ba070a9b2/addok/shell.py#L218-L234
|
[
"def",
"do_INTERSECT",
"(",
"self",
",",
"words",
")",
":",
"start",
"=",
"time",
".",
"time",
"(",
")",
"limit",
"=",
"100",
"if",
"'LIMIT'",
"in",
"words",
":",
"words",
",",
"limit",
"=",
"words",
".",
"split",
"(",
"'LIMIT'",
")",
"limit",
"=",
"int",
"(",
"limit",
")",
"tokens",
"=",
"[",
"keys",
".",
"token_key",
"(",
"w",
")",
"for",
"w",
"in",
"preprocess_query",
"(",
"words",
")",
"]",
"DB",
".",
"zinterstore",
"(",
"words",
",",
"tokens",
")",
"results",
"=",
"DB",
".",
"zrevrange",
"(",
"words",
",",
"0",
",",
"limit",
",",
"withscores",
"=",
"True",
")",
"DB",
".",
"delete",
"(",
"words",
")",
"for",
"id_",
",",
"score",
"in",
"results",
":",
"r",
"=",
"Result",
"(",
"id_",
")",
"print",
"(",
"'{} {} {}'",
".",
"format",
"(",
"white",
"(",
"r",
")",
",",
"blue",
"(",
"r",
".",
"_id",
")",
",",
"cyan",
"(",
"score",
")",
")",
")",
"duration",
"=",
"round",
"(",
"(",
"time",
".",
"time",
"(",
")",
"-",
"start",
")",
"*",
"1000",
",",
"1",
")",
"print",
"(",
"magenta",
"(",
"\"({} in {} ms)\"",
".",
"format",
"(",
"len",
"(",
"results",
")",
",",
"duration",
")",
")",
")"
] |
46a270d76ec778d2b445c2be753e5c6ba070a9b2
|
test
|
Cmd.do_DBINFO
|
Print some useful infos from Redis DB.
|
addok/shell.py
|
def do_DBINFO(self, *args):
"""Print some useful infos from Redis DB."""
info = DB.info()
keys = [
'keyspace_misses', 'keyspace_hits', 'used_memory_human',
'total_commands_processed', 'total_connections_received',
'connected_clients']
for key in keys:
print('{}: {}'.format(white(key), blue(info[key])))
nb_of_redis_db = int(DB.config_get('databases')['databases'])
for db_index in range(nb_of_redis_db - 1):
db_name = 'db{}'.format(db_index)
if db_name in info:
label = white('nb keys (db {})'.format(db_index))
print('{}: {}'.format(label, blue(info[db_name]['keys'])))
|
def do_DBINFO(self, *args):
"""Print some useful infos from Redis DB."""
info = DB.info()
keys = [
'keyspace_misses', 'keyspace_hits', 'used_memory_human',
'total_commands_processed', 'total_connections_received',
'connected_clients']
for key in keys:
print('{}: {}'.format(white(key), blue(info[key])))
nb_of_redis_db = int(DB.config_get('databases')['databases'])
for db_index in range(nb_of_redis_db - 1):
db_name = 'db{}'.format(db_index)
if db_name in info:
label = white('nb keys (db {})'.format(db_index))
print('{}: {}'.format(label, blue(info[db_name]['keys'])))
|
[
"Print",
"some",
"useful",
"infos",
"from",
"Redis",
"DB",
"."
] |
addok/addok
|
python
|
https://github.com/addok/addok/blob/46a270d76ec778d2b445c2be753e5c6ba070a9b2/addok/shell.py#L236-L250
|
[
"def",
"do_DBINFO",
"(",
"self",
",",
"*",
"args",
")",
":",
"info",
"=",
"DB",
".",
"info",
"(",
")",
"keys",
"=",
"[",
"'keyspace_misses'",
",",
"'keyspace_hits'",
",",
"'used_memory_human'",
",",
"'total_commands_processed'",
",",
"'total_connections_received'",
",",
"'connected_clients'",
"]",
"for",
"key",
"in",
"keys",
":",
"print",
"(",
"'{}: {}'",
".",
"format",
"(",
"white",
"(",
"key",
")",
",",
"blue",
"(",
"info",
"[",
"key",
"]",
")",
")",
")",
"nb_of_redis_db",
"=",
"int",
"(",
"DB",
".",
"config_get",
"(",
"'databases'",
")",
"[",
"'databases'",
"]",
")",
"for",
"db_index",
"in",
"range",
"(",
"nb_of_redis_db",
"-",
"1",
")",
":",
"db_name",
"=",
"'db{}'",
".",
"format",
"(",
"db_index",
")",
"if",
"db_name",
"in",
"info",
":",
"label",
"=",
"white",
"(",
"'nb keys (db {})'",
".",
"format",
"(",
"db_index",
")",
")",
"print",
"(",
"'{}: {}'",
".",
"format",
"(",
"label",
",",
"blue",
"(",
"info",
"[",
"db_name",
"]",
"[",
"'keys'",
"]",
")",
")",
")"
] |
46a270d76ec778d2b445c2be753e5c6ba070a9b2
|
test
|
Cmd.do_DBKEY
|
Print raw content of a DB key.
DBKEY g|u09tyzfe
|
addok/shell.py
|
def do_DBKEY(self, key):
"""Print raw content of a DB key.
DBKEY g|u09tyzfe"""
type_ = DB.type(key).decode()
if type_ == 'set':
out = DB.smembers(key)
elif type_ == 'string':
out = DB.get(key)
else:
out = 'Unsupported type {}'.format(type_)
print('type:', magenta(type_))
print('value:', white(out))
|
def do_DBKEY(self, key):
"""Print raw content of a DB key.
DBKEY g|u09tyzfe"""
type_ = DB.type(key).decode()
if type_ == 'set':
out = DB.smembers(key)
elif type_ == 'string':
out = DB.get(key)
else:
out = 'Unsupported type {}'.format(type_)
print('type:', magenta(type_))
print('value:', white(out))
|
[
"Print",
"raw",
"content",
"of",
"a",
"DB",
"key",
".",
"DBKEY",
"g|u09tyzfe"
] |
addok/addok
|
python
|
https://github.com/addok/addok/blob/46a270d76ec778d2b445c2be753e5c6ba070a9b2/addok/shell.py#L252-L263
|
[
"def",
"do_DBKEY",
"(",
"self",
",",
"key",
")",
":",
"type_",
"=",
"DB",
".",
"type",
"(",
"key",
")",
".",
"decode",
"(",
")",
"if",
"type_",
"==",
"'set'",
":",
"out",
"=",
"DB",
".",
"smembers",
"(",
"key",
")",
"elif",
"type_",
"==",
"'string'",
":",
"out",
"=",
"DB",
".",
"get",
"(",
"key",
")",
"else",
":",
"out",
"=",
"'Unsupported type {}'",
".",
"format",
"(",
"type_",
")",
"print",
"(",
"'type:'",
",",
"magenta",
"(",
"type_",
")",
")",
"print",
"(",
"'value:'",
",",
"white",
"(",
"out",
")",
")"
] |
46a270d76ec778d2b445c2be753e5c6ba070a9b2
|
test
|
Cmd.do_GEODISTANCE
|
Compute geodistance from a result to a point.
GEODISTANCE 772210180J 48.1234 2.9876
|
addok/shell.py
|
def do_GEODISTANCE(self, s):
"""Compute geodistance from a result to a point.
GEODISTANCE 772210180J 48.1234 2.9876"""
try:
_id, lat, lon = s.split()
except:
return self.error('Malformed query. Use: ID lat lon')
try:
result = Result(keys.document_key(_id))
except ValueError as e:
return self.error(e)
center = (float(lat), float(lon))
km = haversine_distance((float(result.lat), float(result.lon)), center)
score = km_to_score(km)
print('km: {} | score: {}'.format(white(km), blue(score)))
|
def do_GEODISTANCE(self, s):
"""Compute geodistance from a result to a point.
GEODISTANCE 772210180J 48.1234 2.9876"""
try:
_id, lat, lon = s.split()
except:
return self.error('Malformed query. Use: ID lat lon')
try:
result = Result(keys.document_key(_id))
except ValueError as e:
return self.error(e)
center = (float(lat), float(lon))
km = haversine_distance((float(result.lat), float(result.lon)), center)
score = km_to_score(km)
print('km: {} | score: {}'.format(white(km), blue(score)))
|
[
"Compute",
"geodistance",
"from",
"a",
"result",
"to",
"a",
"point",
".",
"GEODISTANCE",
"772210180J",
"48",
".",
"1234",
"2",
".",
"9876"
] |
addok/addok
|
python
|
https://github.com/addok/addok/blob/46a270d76ec778d2b445c2be753e5c6ba070a9b2/addok/shell.py#L265-L279
|
[
"def",
"do_GEODISTANCE",
"(",
"self",
",",
"s",
")",
":",
"try",
":",
"_id",
",",
"lat",
",",
"lon",
"=",
"s",
".",
"split",
"(",
")",
"except",
":",
"return",
"self",
".",
"error",
"(",
"'Malformed query. Use: ID lat lon'",
")",
"try",
":",
"result",
"=",
"Result",
"(",
"keys",
".",
"document_key",
"(",
"_id",
")",
")",
"except",
"ValueError",
"as",
"e",
":",
"return",
"self",
".",
"error",
"(",
"e",
")",
"center",
"=",
"(",
"float",
"(",
"lat",
")",
",",
"float",
"(",
"lon",
")",
")",
"km",
"=",
"haversine_distance",
"(",
"(",
"float",
"(",
"result",
".",
"lat",
")",
",",
"float",
"(",
"result",
".",
"lon",
")",
")",
",",
"center",
")",
"score",
"=",
"km_to_score",
"(",
"km",
")",
"print",
"(",
"'km: {} | score: {}'.",
"f",
"ormat(",
"w",
"hite(",
"k",
"m)",
",",
" ",
"lue(",
"s",
"core)",
")",
")",
""
] |
46a270d76ec778d2b445c2be753e5c6ba070a9b2
|
test
|
Cmd.do_GEOHASHTOGEOJSON
|
Build GeoJSON corresponding to geohash given as parameter.
GEOHASHTOGEOJSON u09vej04 [NEIGHBORS 0|1|2]
|
addok/shell.py
|
def do_GEOHASHTOGEOJSON(self, geoh):
"""Build GeoJSON corresponding to geohash given as parameter.
GEOHASHTOGEOJSON u09vej04 [NEIGHBORS 0|1|2]"""
geoh, with_neighbors = self._match_option('NEIGHBORS', geoh)
bbox = geohash.bbox(geoh)
try:
with_neighbors = int(with_neighbors)
except TypeError:
with_neighbors = 0
def expand(bbox, geoh, depth):
neighbors = geohash.neighbors(geoh)
for neighbor in neighbors:
other = geohash.bbox(neighbor)
if with_neighbors > depth:
expand(bbox, neighbor, depth + 1)
else:
if other['n'] > bbox['n']:
bbox['n'] = other['n']
if other['s'] < bbox['s']:
bbox['s'] = other['s']
if other['e'] > bbox['e']:
bbox['e'] = other['e']
if other['w'] < bbox['w']:
bbox['w'] = other['w']
if with_neighbors > 0:
expand(bbox, geoh, 0)
geojson = {
"type": "Polygon",
"coordinates": [[
[bbox['w'], bbox['n']],
[bbox['e'], bbox['n']],
[bbox['e'], bbox['s']],
[bbox['w'], bbox['s']],
[bbox['w'], bbox['n']]
]]
}
print(white(json.dumps(geojson)))
|
def do_GEOHASHTOGEOJSON(self, geoh):
"""Build GeoJSON corresponding to geohash given as parameter.
GEOHASHTOGEOJSON u09vej04 [NEIGHBORS 0|1|2]"""
geoh, with_neighbors = self._match_option('NEIGHBORS', geoh)
bbox = geohash.bbox(geoh)
try:
with_neighbors = int(with_neighbors)
except TypeError:
with_neighbors = 0
def expand(bbox, geoh, depth):
neighbors = geohash.neighbors(geoh)
for neighbor in neighbors:
other = geohash.bbox(neighbor)
if with_neighbors > depth:
expand(bbox, neighbor, depth + 1)
else:
if other['n'] > bbox['n']:
bbox['n'] = other['n']
if other['s'] < bbox['s']:
bbox['s'] = other['s']
if other['e'] > bbox['e']:
bbox['e'] = other['e']
if other['w'] < bbox['w']:
bbox['w'] = other['w']
if with_neighbors > 0:
expand(bbox, geoh, 0)
geojson = {
"type": "Polygon",
"coordinates": [[
[bbox['w'], bbox['n']],
[bbox['e'], bbox['n']],
[bbox['e'], bbox['s']],
[bbox['w'], bbox['s']],
[bbox['w'], bbox['n']]
]]
}
print(white(json.dumps(geojson)))
|
[
"Build",
"GeoJSON",
"corresponding",
"to",
"geohash",
"given",
"as",
"parameter",
".",
"GEOHASHTOGEOJSON",
"u09vej04",
"[",
"NEIGHBORS",
"0|1|2",
"]"
] |
addok/addok
|
python
|
https://github.com/addok/addok/blob/46a270d76ec778d2b445c2be753e5c6ba070a9b2/addok/shell.py#L281-L320
|
[
"def",
"do_GEOHASHTOGEOJSON",
"(",
"self",
",",
"geoh",
")",
":",
"geoh",
",",
"with_neighbors",
"=",
"self",
".",
"_match_option",
"(",
"'NEIGHBORS'",
",",
"geoh",
")",
"bbox",
"=",
"geohash",
".",
"bbox",
"(",
"geoh",
")",
"try",
":",
"with_neighbors",
"=",
"int",
"(",
"with_neighbors",
")",
"except",
"TypeError",
":",
"with_neighbors",
"=",
"0",
"def",
"expand",
"(",
"bbox",
",",
"geoh",
",",
"depth",
")",
":",
"neighbors",
"=",
"geohash",
".",
"neighbors",
"(",
"geoh",
")",
"for",
"neighbor",
"in",
"neighbors",
":",
"other",
"=",
"geohash",
".",
"bbox",
"(",
"neighbor",
")",
"if",
"with_neighbors",
">",
"depth",
":",
"expand",
"(",
"bbox",
",",
"neighbor",
",",
"depth",
"+",
"1",
")",
"else",
":",
"if",
"other",
"[",
"'n'",
"]",
">",
"bbox",
"[",
"'n'",
"]",
":",
"bbox",
"[",
"'n'",
"]",
"=",
"other",
"[",
"'n'",
"]",
"if",
"other",
"[",
"'s'",
"]",
"<",
"bbox",
"[",
"'s'",
"]",
":",
"bbox",
"[",
"'s'",
"]",
"=",
"other",
"[",
"'s'",
"]",
"if",
"other",
"[",
"'e'",
"]",
">",
"bbox",
"[",
"'e'",
"]",
":",
"bbox",
"[",
"'e'",
"]",
"=",
"other",
"[",
"'e'",
"]",
"if",
"other",
"[",
"'w'",
"]",
"<",
"bbox",
"[",
"'w'",
"]",
":",
"bbox",
"[",
"'w'",
"]",
"=",
"other",
"[",
"'w'",
"]",
"if",
"with_neighbors",
">",
"0",
":",
"expand",
"(",
"bbox",
",",
"geoh",
",",
"0",
")",
"geojson",
"=",
"{",
"\"type\"",
":",
"\"Polygon\"",
",",
"\"coordinates\"",
":",
"[",
"[",
"[",
"bbox",
"[",
"'w'",
"]",
",",
"bbox",
"[",
"'n'",
"]",
"]",
",",
"[",
"bbox",
"[",
"'e'",
"]",
",",
"bbox",
"[",
"'n'",
"]",
"]",
",",
"[",
"bbox",
"[",
"'e'",
"]",
",",
"bbox",
"[",
"'s'",
"]",
"]",
",",
"[",
"bbox",
"[",
"'w'",
"]",
",",
"bbox",
"[",
"'s'",
"]",
"]",
",",
"[",
"bbox",
"[",
"'w'",
"]",
",",
"bbox",
"[",
"'n'",
"]",
"]",
"]",
"]",
"}",
"print",
"(",
"white",
"(",
"json",
".",
"dumps",
"(",
"geojson",
")",
")",
")"
] |
46a270d76ec778d2b445c2be753e5c6ba070a9b2
|
test
|
Cmd.do_GEOHASH
|
Compute a geohash from latitude and longitude.
GEOHASH 48.1234 2.9876
|
addok/shell.py
|
def do_GEOHASH(self, latlon):
"""Compute a geohash from latitude and longitude.
GEOHASH 48.1234 2.9876"""
try:
lat, lon = map(float, latlon.split())
except ValueError:
print(red('Invalid lat and lon {}'.format(latlon)))
else:
print(white(geohash.encode(lat, lon, config.GEOHASH_PRECISION)))
|
def do_GEOHASH(self, latlon):
"""Compute a geohash from latitude and longitude.
GEOHASH 48.1234 2.9876"""
try:
lat, lon = map(float, latlon.split())
except ValueError:
print(red('Invalid lat and lon {}'.format(latlon)))
else:
print(white(geohash.encode(lat, lon, config.GEOHASH_PRECISION)))
|
[
"Compute",
"a",
"geohash",
"from",
"latitude",
"and",
"longitude",
".",
"GEOHASH",
"48",
".",
"1234",
"2",
".",
"9876"
] |
addok/addok
|
python
|
https://github.com/addok/addok/blob/46a270d76ec778d2b445c2be753e5c6ba070a9b2/addok/shell.py#L322-L330
|
[
"def",
"do_GEOHASH",
"(",
"self",
",",
"latlon",
")",
":",
"try",
":",
"lat",
",",
"lon",
"=",
"map",
"(",
"float",
",",
"latlon",
".",
"split",
"(",
")",
")",
"except",
"ValueError",
":",
"print",
"(",
"red",
"(",
"'Invalid lat and lon {}'",
".",
"format",
"(",
"latlon",
")",
")",
")",
"else",
":",
"print",
"(",
"white",
"(",
"geohash",
".",
"encode",
"(",
"lat",
",",
"lon",
",",
"config",
".",
"GEOHASH_PRECISION",
")",
")",
")"
] |
46a270d76ec778d2b445c2be753e5c6ba070a9b2
|
test
|
Cmd.do_GEOHASHMEMBERS
|
Return members of a geohash and its neighbors.
GEOHASHMEMBERS u09vej04 [NEIGHBORS 0]
|
addok/shell.py
|
def do_GEOHASHMEMBERS(self, geoh):
"""Return members of a geohash and its neighbors.
GEOHASHMEMBERS u09vej04 [NEIGHBORS 0]"""
geoh, with_neighbors = self._match_option('NEIGHBORS', geoh)
key = compute_geohash_key(geoh, with_neighbors != '0')
if key:
for id_ in DB.smembers(key):
r = Result(id_)
print('{} {}'.format(white(r), blue(r._id)))
|
def do_GEOHASHMEMBERS(self, geoh):
"""Return members of a geohash and its neighbors.
GEOHASHMEMBERS u09vej04 [NEIGHBORS 0]"""
geoh, with_neighbors = self._match_option('NEIGHBORS', geoh)
key = compute_geohash_key(geoh, with_neighbors != '0')
if key:
for id_ in DB.smembers(key):
r = Result(id_)
print('{} {}'.format(white(r), blue(r._id)))
|
[
"Return",
"members",
"of",
"a",
"geohash",
"and",
"its",
"neighbors",
".",
"GEOHASHMEMBERS",
"u09vej04",
"[",
"NEIGHBORS",
"0",
"]"
] |
addok/addok
|
python
|
https://github.com/addok/addok/blob/46a270d76ec778d2b445c2be753e5c6ba070a9b2/addok/shell.py#L332-L340
|
[
"def",
"do_GEOHASHMEMBERS",
"(",
"self",
",",
"geoh",
")",
":",
"geoh",
",",
"with_neighbors",
"=",
"self",
".",
"_match_option",
"(",
"'NEIGHBORS'",
",",
"geoh",
")",
"key",
"=",
"compute_geohash_key",
"(",
"geoh",
",",
"with_neighbors",
"!=",
"'0'",
")",
"if",
"key",
":",
"for",
"id_",
"in",
"DB",
".",
"smembers",
"(",
"key",
")",
":",
"r",
"=",
"Result",
"(",
"id_",
")",
"print",
"(",
"'{} {}'",
".",
"format",
"(",
"white",
"(",
"r",
")",
",",
"blue",
"(",
"r",
".",
"_id",
")",
")",
")"
] |
46a270d76ec778d2b445c2be753e5c6ba070a9b2
|
test
|
Cmd.do_GET
|
Get document from index with its id.
GET 772210180J
|
addok/shell.py
|
def do_GET(self, _id):
"""Get document from index with its id.
GET 772210180J"""
doc = doc_by_id(_id)
if not doc:
return self.error('id "{}" not found'.format(_id))
for key, value in doc.items():
if key == config.HOUSENUMBERS_FIELD:
continue
print('{} {}'.format(white(key), magenta(value)))
if doc.get('housenumbers'):
def sorter(v):
try:
return int(re.match(r'^\d+', v['raw']).group())
except AttributeError:
return -1
housenumbers = sorted(doc['housenumbers'].values(), key=sorter)
print(white('housenumbers'),
magenta(', '.join(v['raw'] for v in housenumbers)))
|
def do_GET(self, _id):
"""Get document from index with its id.
GET 772210180J"""
doc = doc_by_id(_id)
if not doc:
return self.error('id "{}" not found'.format(_id))
for key, value in doc.items():
if key == config.HOUSENUMBERS_FIELD:
continue
print('{} {}'.format(white(key), magenta(value)))
if doc.get('housenumbers'):
def sorter(v):
try:
return int(re.match(r'^\d+', v['raw']).group())
except AttributeError:
return -1
housenumbers = sorted(doc['housenumbers'].values(), key=sorter)
print(white('housenumbers'),
magenta(', '.join(v['raw'] for v in housenumbers)))
|
[
"Get",
"document",
"from",
"index",
"with",
"its",
"id",
".",
"GET",
"772210180J"
] |
addok/addok
|
python
|
https://github.com/addok/addok/blob/46a270d76ec778d2b445c2be753e5c6ba070a9b2/addok/shell.py#L342-L360
|
[
"def",
"do_GET",
"(",
"self",
",",
"_id",
")",
":",
"doc",
"=",
"doc_by_id",
"(",
"_id",
")",
"if",
"not",
"doc",
":",
"return",
"self",
".",
"error",
"(",
"'id \"{}\" not found'",
".",
"format",
"(",
"_id",
")",
")",
"for",
"key",
",",
"value",
"in",
"doc",
".",
"items",
"(",
")",
":",
"if",
"key",
"==",
"config",
".",
"HOUSENUMBERS_FIELD",
":",
"continue",
"print",
"(",
"'{} {}'",
".",
"format",
"(",
"white",
"(",
"key",
")",
",",
"magenta",
"(",
"value",
")",
")",
")",
"if",
"doc",
".",
"get",
"(",
"'housenumbers'",
")",
":",
"def",
"sorter",
"(",
"v",
")",
":",
"try",
":",
"return",
"int",
"(",
"re",
".",
"match",
"(",
"r'^\\d+'",
",",
"v",
"[",
"'raw'",
"]",
")",
".",
"group",
"(",
")",
")",
"except",
"AttributeError",
":",
"return",
"-",
"1",
"housenumbers",
"=",
"sorted",
"(",
"doc",
"[",
"'housenumbers'",
"]",
".",
"values",
"(",
")",
",",
"key",
"=",
"sorter",
")",
"print",
"(",
"white",
"(",
"'housenumbers'",
")",
",",
"magenta",
"(",
"', '",
".",
"join",
"(",
"v",
"[",
"'raw'",
"]",
"for",
"v",
"in",
"housenumbers",
")",
")",
")"
] |
46a270d76ec778d2b445c2be753e5c6ba070a9b2
|
test
|
Cmd.do_INDEX
|
Get index details for a document by its id.
INDEX 772210180J
|
addok/shell.py
|
def do_INDEX(self, _id):
"""Get index details for a document by its id.
INDEX 772210180J"""
doc = doc_by_id(_id)
if not doc:
return self.error('id "{}" not found'.format(_id))
for field in config.FIELDS:
key = field['key']
if key in doc:
self._print_field_index_details(doc[key], _id)
|
def do_INDEX(self, _id):
"""Get index details for a document by its id.
INDEX 772210180J"""
doc = doc_by_id(_id)
if not doc:
return self.error('id "{}" not found'.format(_id))
for field in config.FIELDS:
key = field['key']
if key in doc:
self._print_field_index_details(doc[key], _id)
|
[
"Get",
"index",
"details",
"for",
"a",
"document",
"by",
"its",
"id",
".",
"INDEX",
"772210180J"
] |
addok/addok
|
python
|
https://github.com/addok/addok/blob/46a270d76ec778d2b445c2be753e5c6ba070a9b2/addok/shell.py#L375-L384
|
[
"def",
"do_INDEX",
"(",
"self",
",",
"_id",
")",
":",
"doc",
"=",
"doc_by_id",
"(",
"_id",
")",
"if",
"not",
"doc",
":",
"return",
"self",
".",
"error",
"(",
"'id \"{}\" not found'",
".",
"format",
"(",
"_id",
")",
")",
"for",
"field",
"in",
"config",
".",
"FIELDS",
":",
"key",
"=",
"field",
"[",
"'key'",
"]",
"if",
"key",
"in",
"doc",
":",
"self",
".",
"_print_field_index_details",
"(",
"doc",
"[",
"key",
"]",
",",
"_id",
")"
] |
46a270d76ec778d2b445c2be753e5c6ba070a9b2
|
test
|
Cmd.do_BESTSCORE
|
Return document linked to word with higher score.
BESTSCORE lilas
|
addok/shell.py
|
def do_BESTSCORE(self, word):
"""Return document linked to word with higher score.
BESTSCORE lilas"""
key = keys.token_key(indexed_string(word)[0])
for _id, score in DB.zrevrange(key, 0, 20, withscores=True):
result = Result(_id)
print(white(result), blue(score), green(result._id))
|
def do_BESTSCORE(self, word):
"""Return document linked to word with higher score.
BESTSCORE lilas"""
key = keys.token_key(indexed_string(word)[0])
for _id, score in DB.zrevrange(key, 0, 20, withscores=True):
result = Result(_id)
print(white(result), blue(score), green(result._id))
|
[
"Return",
"document",
"linked",
"to",
"word",
"with",
"higher",
"score",
".",
"BESTSCORE",
"lilas"
] |
addok/addok
|
python
|
https://github.com/addok/addok/blob/46a270d76ec778d2b445c2be753e5c6ba070a9b2/addok/shell.py#L386-L392
|
[
"def",
"do_BESTSCORE",
"(",
"self",
",",
"word",
")",
":",
"key",
"=",
"keys",
".",
"token_key",
"(",
"indexed_string",
"(",
"word",
")",
"[",
"0",
"]",
")",
"for",
"_id",
",",
"score",
"in",
"DB",
".",
"zrevrange",
"(",
"key",
",",
"0",
",",
"20",
",",
"withscores",
"=",
"True",
")",
":",
"result",
"=",
"Result",
"(",
"_id",
")",
"print",
"(",
"white",
"(",
"result",
")",
",",
"blue",
"(",
"score",
")",
",",
"green",
"(",
"result",
".",
"_id",
")",
")"
] |
46a270d76ec778d2b445c2be753e5c6ba070a9b2
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.