text
stringlengths
2
999k
""" Definition of the :class:`NativeRegistration` class. """ from pathlib import Path from typing import Tuple from typing import Union import nibabel as nib from brain_parts.parcellation.parcellations import ( Parcellation as parcellation_manager, ) from nilearn.image.resampling import resample_to_img from nipype.interfaces.base import TraitError from tqdm import tqdm from dmriprep_analyses.manager import DmriprepManager from dmriprep_analyses.registrations.messages import REFERENCE_FILE_MISSING from dmriprep_analyses.registrations.utils import DEFAULT_PARCELLATION_NAMING from dmriprep_analyses.registrations.utils import PROBSEG_THRESHOLD from dmriprep_analyses.registrations.utils import QUERIES from dmriprep_analyses.registrations.utils import TRANSFORMS class NativeRegistration(DmriprepManager): QUERIES = QUERIES #: Naming DEFAULT_PARCELLATION_NAMING = DEFAULT_PARCELLATION_NAMING #: Types of transformations TRANSFORMS = TRANSFORMS #: Default probability segmentations' threshold PROBSEG_THRESHOLD = PROBSEG_THRESHOLD def __init__( self, base_dir: Path, participant_labels: Union[str, list] = None, ) -> None: super().__init__(base_dir, participant_labels) self.parcellation_manager = parcellation_manager() def initiate_subject( self, participant_label: str ) -> Tuple[dict, Path, Path]: """ Query initially-required patricipant's files Parameters ---------- participant_label : str Specific participant's label to be queried Returns ------- Tuple[dict,Path,Path] A tuple of required files for parcellation registration. """ return [ grabber(participant_label, queries=self.QUERIES) for grabber in [ self.get_transforms, self.get_reference, self.get_probseg, ] ] def build_output_dictionary( self, parcellation_scheme: str, reference: Path, reference_type: str, ) -> dict: """ Based on a *reference* image, reconstruct output names for native parcellation naming. Parameters ---------- reference : Path The reference image. reference_type : str The reference image type (either "anat" or "dwi") Returns ------- dict A dictionary with keys of "whole-brain" and "gm-cropped" and their corresponding paths """ basic_query = dict( atlas=parcellation_scheme, resolution=reference_type, **self.DEFAULT_PARCELLATION_NAMING.copy(), ) outputs = dict() for key, label in zip(["whole_brain", "gm_cropped"], ["", "GM"]): query = basic_query.copy() query["label"] = label outputs[key] = self.data_grabber.build_path(reference, query) return outputs def register_to_anatomical( self, parcellation_scheme: str, participant_label: str, probseg_threshold: float = None, force: bool = False, ) -> dict: """ Register a *parcellation scheme* from standard to native anatomical space. # noqa Parameters ---------- parcellation_scheme : str A string representing existing key within *self.parcellation_manager.parcellations*. participant_label : str Specific participant's label probseg_threshold : float, optional Threshold for probability segmentation masking, by default None force : bool, optional Whether to re-write existing files, by default False Returns ------- dict A dictionary with keys of "whole_brain" and "gm_cropped" native-spaced parcellation schemes. """ transforms, reference, gm_probseg = self.initiate_subject( participant_label ) whole_brain, gm_cropped = [ self.build_output_dictionary( parcellation_scheme, reference, "anat" ).get(key) for key in ["whole_brain", "gm_cropped"] ] self.parcellation_manager.register_parcellation_scheme( parcellation_scheme, participant_label, reference, transforms.get("mni2native"), whole_brain, force=force, ) self.parcellation_manager.crop_to_probseg( parcellation_scheme, participant_label, whole_brain, gm_probseg, gm_cropped, masking_threshold=probseg_threshold or self.PROBSEG_THRESHOLD, force=force, ) return whole_brain, gm_cropped def register_dwi( self, parcellation_scheme: str, participant_label: str, session: str, anatomical_whole_brain: Path, anatomical_gm_cropped: Path, force: bool = False, ): """ Resample parcellation scheme from anatomical to DWI space. Parameters ---------- parcellation_scheme : str A string representing existing key within *self.parcellation_manager.parcellations*. # noqa participant_label : str Specific participant's label anatomical_whole_brain : Path Participant's whole-brain parcellation scheme in anatomical space anatomical_gm_cropped : Path Participant's GM-cropped parcellation scheme in anatomical space force : bool, optional Whether to re-write existing files, by default False """ reference = self.get_reference( participant_label, "dwi", {"session": session}, queries=self.QUERIES, ) if not reference: raise FileNotFoundError( REFERENCE_FILE_MISSING.format( participant_label=participant_label ) ) whole_brain, gm_cropped = [ self.build_output_dictionary( parcellation_scheme, reference, "dwi" ).get(key) for key in ["whole_brain", "gm_cropped"] ] for source, target in zip( [anatomical_whole_brain, anatomical_gm_cropped], [whole_brain, gm_cropped], ): if not target.exists() or force: img = resample_to_img( str(source), str(reference), interpolation="nearest" ) nib.save(img, target) return whole_brain, gm_cropped def run_single_subject( self, parcellation_scheme: str, participant_label: str, session: Union[str, list] = None, probseg_threshold: float = None, force: bool = False, ) -> dict: """ Parameters ---------- parcellation_scheme : str A string representing existing key within *self.parcellation_manager.parcellations*. # noqa participant_label : str Specific participant's label session : Union[str, list], optional Specific sessions available for *participant_label*, by default None # noqa probseg_threshold : float, optional Threshold for probability segmentation masking, by default None force : bool, optional Whether to re-write existing files, by default False Returns ------- dict A dictionary with keys of "anat" and available or requested sessions, and corresponding natice parcellations as keys. """ outputs = {} anat_whole_brain, anat_gm_cropped = self.register_to_anatomical( parcellation_scheme, participant_label, probseg_threshold, force ) outputs["anat"] = { "whole_brain": anat_whole_brain, "gm_cropped": anat_gm_cropped, } sessions = self.subjects.get(participant_label) or session if isinstance(sessions, str): sessions = [sessions] for session in sessions: whole_brain, gm_cropped = self.register_dwi( parcellation_scheme, participant_label, session, anat_whole_brain, anat_gm_cropped, force, ) outputs[session] = { "whole_brain": whole_brain, "gm_cropped": gm_cropped, } return outputs def run_dataset( self, parcellation_scheme: str, participant_label: Union[str, list] = None, probseg_threshold: float = None, force: bool = False, ): """ Register *parcellation_scheme* to all available (or requested) subjects' native space. Parameters ---------- parcellation_scheme : str A string representing existing key within *self.parcellation_manager.parcellations*. # noqa participant_label : Union[str, list], optional Specific subject/s within the dataset to run, by default None probseg_threshold : float, optional Threshold for probability segmentation masking, by default None force : bool, optional Whether to remove existing products and generate new ones, by default False # noqa """ native_parcellations = {} if participant_label: if isinstance(participant_label, str): participant_labels = [participant_label] elif isinstance(participant_label, list): participant_labels = participant_label else: participant_labels = list(sorted(self.subjects.keys())) for participant_label in tqdm(participant_labels): try: native_parcellations[ participant_label ] = self.run_single_subject( parcellation_scheme, participant_label, probseg_threshold=probseg_threshold, force=force, ) except (FileNotFoundError, TraitError): continue return native_parcellations
""" Copyright (C) Microsoft Corporation. All rights reserved.​ ​ Microsoft Corporation (“Microsoft”) grants you a nonexclusive, perpetual, royalty-free right to use, copy, and modify the software code provided by us ("Software Code"). You may not sublicense the Software Code or any use of it (except to your affiliates and to vendors to perform work on your behalf) through distribution, network access, service agreement, lease, rental, or otherwise. This license does not purport to express any claim of ownership over data you may have shared with Microsoft in the creation of the Software Code. Unless applicable law gives you more rights, Microsoft reserves all other rights not expressly granted herein, whether by implication, estoppel or otherwise. ​ ​ THE SOFTWARE CODE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL MICROSOFT OR ITS LICENSORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THE SOFTWARE CODE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import repackage repackage.add("../../azure-enterprise-scale-ml/esml/common/") import azureml.core from azureml.core.authentication import AzureCliAuthentication from esml import ESMLProject from baselayer_azure_ml import AutoMLFactory, azure_metric_regression,azure_metric_classification print("SDK Version:", azureml.core.VERSION) p = ESMLProject.get_project_from_env_command_line() p.describe() cli_auth = AzureCliAuthentication() ws = p.get_workspace_from_config(cli_auth) # Reads the current environment (dev,test, prod)config.json | Use CLI auth if MLOps p.init(ws) # Automapping from datalake to Azure ML datasets, prints status # FEATURE ENGINEERING # Feture engineering: Bronze 2 Gold - working with Azure ML Datasets with Bronze, Silver, Gold concept print("DEMO MLOPS FOLDER settings - remove this after you copies this folder)") # remove this after you copies this folder esml_dataset = p.DatasetByName("ds01_diabetes") # Get dataset df_bronze = esml_dataset.Bronze.to_pandas_dataframe() p.save_silver(esml_dataset,df_bronze) #Bronze -> Silver df = esml_dataset.Silver.to_pandas_dataframe() df_filtered = df[df.AGE > 0.015] gold_train = p.save_gold(df_filtered) #Silver -> Gold # SAVE GOLD - Last step that must happen gold_train = p.save_gold(df_filtered)
''' This file defines the testing module. This needs the following: 1. The system under test 2. The specification or the function which we are trying to minimize 3. Domains of the uncertainities ''' from .optimizers import * from .func_tree import * from .utils import * from sklearn.decomposition import KernelPCA import copy import GPy class test_module: def __init__(self, sut, bounds, spec=None,f_tree=None, optimizer=None, normalizer=False,seed=None, **kwargs): self.system_under_test = sut # Choosing the optimizer function if spec is None: self.f_acqu = f_tree else: self.spec = spec # To implement parser to convert from specification to the function f self.bounds = bounds self.normalizer=normalizer self.seed=seed if 'cost_model' in kwargs: self.cost_model = kwargs['cost_model'] else: self.cost_model = lambda x: 1 # Choosing the optimizers if 'opt_name' in kwargs: self.optimizer = select_opt(kwargs[opt_name])(bounds, **kwargs) elif optimizer is None: self.optimizer = sample_opt(bounds=bounds, cost=self.cost_model) else: self.optimizer = optimizer # Number of samples for initializing GPs if 'init_sample' in kwargs: self.init_sample = kwargs['init_sample'] else: self.init_sample = 2*len(bounds) # Model GPs for the smooth functions if 'with_smooth' in kwargs: self.with_smooth = kwargs['with_smooth'] else: self.with_smooth = True # Model GPs for the top level requirement, potentially modeling # non-smooth function if 'with_ns' in kwargs: self.with_ns = kwargs['with_ns'] else: self.with_ns = False # Random sampling if 'with_random' in kwargs: self.with_random = kwargs['with_random'] else: self.with_random = False # Exploration weight for GP-LCB if 'exp_weight' in kwargs: self.k = kwargs['exp_weight'] else: self.k = 10 # Optimize retsrats for hyper parameter optimization for GPs if 'optimize_restarts' in kwargs: self.optimize_restarts = kwargs['optimize_restarts'] else: self.optimize_restarts = 1 # Search in lower dimension if 'low_dim' in kwargs: self.using_kpca=True self.low_dim = kwargs['low_dim'] if 'kernel_type' in kwargs: self.kernel = kwargs['kernel_type'](self.low_dim) elif 'kernel' in kwargs: self.kernel = kwargs['kernel'] self.using_kpca = True self.low_dim = self.kernel.input_dim else: self.using_kpca=False if 'kernel_type' in kwargs: self.kernel = kwargs['kernel_type'](len(bounds)) else: self.kernel = GPy.kern.Matern32(len(bounds), ARD=True) if self.using_kpca: if isinstance(self.optimizer, lbfgs_opt) or \ isinstance(self.optimizer, direct_opt): print('Can use only sample_opt or delta_opt!') print('Changing optimizer to sample_opt!') self.optimizer = sample_opt(bounds, **kwargs) # Sending in pre sampled data if 'X' in kwargs: self.X = kwargs['X'] else: self.X = [] def initialize(self): if len(self.X) == 0: X = sample_from(self.init_sample, self.bounds) self.X = X trajs = [] for x in self.X: trajs.append(self.system_under_test(x)) Y = self.f_acqu.eval_robustness(trajs) if self.with_smooth: self.smooth_X = copy.deepcopy(self.X) if self.using_kpca: self.kpca_s = KernelPCA(kernel='rbf', fit_inverse_transform=True, copy_X=True, n_components=self.low_dim) X_s = self.kpca_s.fit_transform(self.smooth_X) else: X_s = self.smooth_X self.f_acqu.init_GPs(X_s, trajs, kernel=copy.deepcopy(self.kernel), optimize_restarts=self.optimize_restarts, normalizer=self.normalizer) if self.with_ns: self.ns_X = copy.deepcopy(self.X) if self.using_kpca: self.kpca_ns = KernelPCA(kernel='rbf', fit_inverse_transform=True, copy_X=True, n_components=self.low_dim) X_ns = self.kpca_ns.fit_transform(self.ns_X) else: X_ns = copy.deepcopy(self.ns_X) self.ns_GP = GPy.models.GPRegression(X_ns, Y, kernel=copy.deepcopy(self.kernel), normalizer=self.normalizer) self.ns_GP.optimize_restarts(self.optimize_restarts) if self.with_random: self.random_X = copy.deepcopy(self.X) self.random_Y = Y def run_BO(self, iters_BO): for ib in range(iters_BO): print('BO iteration:', ib) if self.with_smooth: def f(x): if self.using_kpca: x_s = self.kpca_s.transform(x) else: x_s = x if isinstance(self.optimizer, lbfgs_opt): df = self.f_acqu.eval_df(x_s, k = self.k) else: df=None return self.f_acqu.evaluate(x_s, k=self.k), df x,f= self.optimizer.optimize(f=lambda x:f(x)[0], df = lambda x:f(x)[1]) self.smooth_X = np.vstack((self.smooth_X, np.atleast_2d(x))) trajs = [self.system_under_test(x_i) for x_i in x] if self.using_kpca: X_s = self.kpca_s.fit_transform(self.smooth_X) else: X_s = self.smooth_X self.f_acqu.update_GPs(X_s, trajs, optimize_restarts=self.optimize_restarts) if self.with_ns: def f(X): if self.using_kpca: X_ns = self.kpca_ns.transform(X) else: X_ns = X m,v = self.ns_GP.predict(X_ns) if isinstance(self.optimizer, lbfgs_opt): dm,dv = self.ns_GP.predictive_gradients(X_ns) dm = dm[:,:,0] df = dm - (self.k/2)*(dv/np.sqrt(v)) else: df =None return m - self.k*np.sqrt(v), df x,f = self.optimizer.optimize(f=lambda x: f(x)[0], df = lambda x:f(x)[1]) trajs = [self.system_under_test(x_i) for x_i in x] f_x = self.f_acqu.eval_robustness(trajs) self.ns_X = np.vstack((self.ns_X, np.atleast_2d(x))) if self.using_kpca: X_ns = self.kpca_ns.fit_transform(self.ns_X) else: X_ns = self.ns_X self.ns_GP.set_XY(X_ns, np.vstack((self.ns_GP.Y, np.atleast_2d(f_x)))) self.ns_GP.optimize_restarts(self.optimize_restarts) if self.with_random: if self.seed is not None: np.random.seed(self.seed) sample_from(self.init_sample, self.bounds) rand_x = sample_from(iters_BO, self.bounds) trajs = [] for x in rand_x: trajs.append(self.system_under_test(x)) self.random_X = np.vstack((self.random_X, rand_x)) rand_y = self.f_acqu.eval_robustness(trajs) self.random_Y = np.vstack((self.random_Y, rand_y)) if self.with_smooth: vals = self.f_acqu.find_GP_func() self.smooth_min_val = np.array(vals).min() self.smooth_min_loc = np.array(vals).argmin() self.smooth_min_x = self.smooth_X[self.smooth_min_loc] self.smooth_count = np.sum(np.array(vals) < 0) self.smooth_ce = np.flatnonzero(np.array(vals) < 0) if self.with_ns: self.ns_min_val = self.ns_GP.Y.min() self.ns_min_loc = self.ns_GP.Y.argmin() self.ns_min_x = self.ns_GP.X[self.ns_min_loc] self.ns_count = np.sum(self.ns_GP.Y < 0) self.ns_ce = np.flatnonzero(self.ns_GP.Y < 0) if self.with_random: self.rand_min_val = self.random_Y.min() self.rand_min_loc = self.random_Y.argmin() self.rand_min_x = self.random_X[self.rand_min_loc] self.rand_count = np.sum(self.random_Y < 0) self.rand_ce = np.flatnonzero(self.random_Y < 0)
import argparse from suzieq.cli.sqcmds import * from suzieq.cli.sqcmds import context_commands from suzieq.cli.sqcmds import sqcmds_all from suzieq.cli.sq_nubia_context import NubiaSuzieqContext from suzieq.cli.sq_nubia_statusbar import NubiaSuzieqStatusBar from nubia import PluginInterface, CompletionDataSource from nubia.internal.blackcmd import CommandBlacklist from nubia.internal.cmdbase import AutoCommand class NubiaSuzieqPlugin(PluginInterface): """ The PluginInterface class is a way to customize nubia for every customer use case. It allowes custom argument validation, control over command loading, custom context objects, and much more. """ def create_context(self): """ Must create an object that inherits from `Context` parent class. The plugin can return a custom context but it has to inherit from the correct parent class. """ return NubiaSuzieqContext() def validate_args(self, args): """ This will be executed when starting nubia, the args passed is a dict-like object that contains the argparse result after parsing the command line arguments. The plugin can choose to update the context with the values, and/or decide to raise `ArgsValidationError` with the error message. """ pass def get_commands(self): cmds = [AutoCommand(getattr(globals()[x], x)) for x in sqcmds_all if not x.startswith('_')] cmds.append(AutoCommand(context_commands.set_ctxt)) cmds.append(AutoCommand(context_commands.clear_ctxt)) return cmds def get_opts_parser(self, add_help=True): """ Builds the ArgumentParser that will be passed to , use this to build your list of arguments that you want for your shell. """ opts_parser = argparse.ArgumentParser( description="Suzieq CLI", formatter_class=argparse.ArgumentDefaultsHelpFormatter, add_help=add_help, ) opts_parser.add_argument( "--config", "-c", default="", type=str, help="Configuration File" ) opts_parser.add_argument( "--verbose", "-v", action="count", default=0, help="Increase verbosity, can be specified " "multiple times", ) opts_parser.add_argument( "--stderr", "-s", action="store_true", default=True, help="By default the logging output goes to stderr " "Enable this feature to send it to a temporary logfile" ) # we only support pandas now, so we don't want this option # opts_parser.add_argument( # "--use-engine", "-e", help="Which analysis engine to use", default="pandas" # ) return opts_parser def get_completion_datasource_for_global_argument(self, argument): if argument == "--config": return ConfigFileCompletionDataSource() if argument == "--use-engine": return ConfigEngineCompletionDataSource() return None def create_usage_logger(self, context): """ Override this and return you own usage logger. Must be a subtype of UsageLoggerInterface. """ return None def get_status_bar(self, context): """ This returns the StatusBar object that handles the bottom status bar and the right-side per-line status """ return NubiaSuzieqStatusBar(context) def getBlacklistPlugin(self): blacklister = CommandBlacklist() blacklister.add_blocked_command("topcpu") blacklister.add_blocked_command("topmem") return blacklister class ConfigFileCompletionDataSource(CompletionDataSource): def get_all(self): return ["/tmp/c1", "/tmp/c2"] class ConfigEngineCompletionDataSource(CompletionDataSource): def get_all(self): return ["pandas"]
from django.db import models from django.contrib.auth.models import User from django.template.defaultfilters import slugify import os from django.urls import reverse class standard(models.Model): name = models.CharField(max_length=100, unique=True) slug = models.SlugField(null=True,blank=True) description = models.TextField(max_length=550,blank=True) def __str__(self): return self.name def save(self, *args, **kwargs): self.slug = slugify(self.name) super().save(*args, **kwargs) def save_subject_image(instance,filename): upload_to = 'images' ext = filename.split('.')[-1] #get filename if instance.subject_id: filename = 'Subject_Pictures/{}'.format(instance.subject_id,ext) return os.path.join(upload_to, filename) class subject(models.Model): subject_id =models.CharField(max_length=100,unique=True) name = models.CharField(max_length=100) slug = models.SlugField(null=True,blank=True) standard = models.ForeignKey(standard,on_delete = models.CASCADE, related_name='subjects') image = models.ImageField(upload_to = save_subject_image,blank=True,verbose_name ='subject image') description = models.TextField(max_length=550, blank=True) def __str__(self): return self.name def save(self, *args, **kwargs): self.slug = slugify(self.subject_id) super().save(*args, **kwargs) def save_lesson_files(instance,filename): upload_to = 'images' ext = filename.split('.')[-1] #get filename if instance.lesson_id: filename = 'lesson_files/{}/{}.{}'.format(instance.lesson_id,instance.lesson_id,ext) if os.path.exists(filename): new_name = str(instance.lesson_id) + str('1') filename = 'lesson_images/{}/{}.{}'.format(instance.lesson_id, new_name,ext) return os.path.join(upload_to, filename) class lesson(models.Model): lesson_id = models.CharField(max_length=100, unique=True) standard = models.ForeignKey(standard,on_delete=models.CASCADE) created_by = models.ForeignKey(User,on_delete=models.CASCADE) created_at = models.DateTimeField(auto_now_add=True) subject= models.ForeignKey(subject, on_delete=models.CASCADE, related_name='lessons') name = models.CharField(max_length=150) position = models.PositiveSmallIntegerField(verbose_name= 'Chapter No') slug = models.SlugField(null=True,blank=True) video = models.FileField(upload_to=save_lesson_files,verbose_name='video',blank=True,null=True) ppt = models.FileField(upload_to=save_lesson_files,verbose_name='ppt',blank=True) notes = models.FileField(upload_to=save_lesson_files,verbose_name='notes',blank=True) class Meta: ordering = ['position'] def __str__(self): return self.name def save(self, *args, **kwargs): self.slug = slugify(self.name) super().save(*args, **kwargs) def get_absolute_url(self): return reverse("curriculum:lesson_list", kwargs={'slug':self.subject.slug, 'standard':self.standard.slug}) class comment(models.Model): lesson_name = models.ForeignKey(lesson,null=True,on_delete=models.CASCADE,related_name='comments') comment_name = models.CharField(max_length=150, blank=True) #reply = models.ForeignKey("Comment",null=True, blank = True, on_delete = models.CASCADE, related_name='replies') author = models.ForeignKey(User,on_delete=models.CASCADE) body = models.TextField(max_length=500) date_added = models.DateTimeField(auto_now_add=True) def save(self, *args, **kwargs): self.comment_name = slugify("Comment by"+"-"+str(self.author)+str(self.date_added)) super().save(*args, **kwargs) def __str__(self): return self.comment_name class Meta: ordering = ['-date_added'] class reply(models.Model): comment_name = models.ForeignKey(comment,on_delete=models.CASCADE,related_name='replies') reply_body = models.TextField(max_length=500) author = models.ForeignKey(User, on_delete=models.CASCADE) date_added = models.DateTimeField(auto_now_add=True) def __str__(self): return "reply to "+str(self.comment_name.comment_name)
from django.shortcuts import render from rest_framework import generics, authentication, permissions from rest_framework.authtoken.views import ObtainAuthToken from rest_framework.settings import api_settings from user.serializers import UserSerializer, AuthTokenSerializer class CreateUserView(generics.CreateAPIView): """Create a new user in the system""" serializer_class = UserSerializer class CreateTokenview(ObtainAuthToken): """Create a new auth token for user""" serializer_class = AuthTokenSerializer renderer_classes = api_settings.DEFAULT_RENDERER_CLASSES class ManageUserView(generics.RetrieveUpdateAPIView): """Manage the authenticated user""" serializer_class = UserSerializer authentication_classes = (authentication.TokenAuthentication,) permission_classes = (permissions.IsAuthenticated,) def get_object(self): """Retrieve and return authentication user""" return self.request.user
import requests import numpy as np import collections import matplotlib.pyplot as plt from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas from PIL import Image from io import BytesIO class Image_Data: image = None @property def Array(self) -> np.ndarray: """ Return image array (RGB) """ return self.image @property def Color_Hex(self) -> list: hex = [] def convert_RGB2HEX(color): return "#{:02x}{:02x}{:02x}".format(int(color[0]), int(color[1]), int(color[2])) image = self.image image_height = len(image) for y in range(image_height): for x in image[y]: hex.append(convert_RGB2HEX(x)) return hex def __init__(self, image_path: str): if 'http' in image_path: # Online image image_req = requests.get(image_path, stream=True) if image_req.status_code == 200: self.image = np.array(Image.open(BytesIO(image_req.content))) else: # Local image self.image = np.array(Image.open(image_path)) def show(self): Image.fromarray(self.image, 'RGB').show() class Color: color = [] @property def Total(self) -> int: return len(self.color) @property def Count(self) -> dict: """ Return total unique color """ color_count = dict(collections.Counter(self.color)) # Sort dict by highest value color_count = { key: value for key, value in sorted(color_count.items(), key=lambda x: x[1], reverse=True) } return color_count @property def Listed_Count(self) -> list[dict]: """ Return total unique color in list of dictionary """ list_colors = [] colors = self.Count.items() # List each dict item for key, val in colors: item = "{'%(key)s' : %(val)s}" % {'key': key, 'val': val} list_colors.append(eval(item)) return list_colors def __init__(self, color: list): self.color = color def plot(self, min_value = 1): """ Plot color data with value more than min_value """ color_count = self.Count color_count = {key : value for key, value in color_count.items() if value >= min_value} color = list(color_count.keys()) count = list(color_count.values()) bar_colors = color # Draw plot #fig_width = len(color) #fig_height figure = plt.figure('Color Distribution', tight_layout=True) plt.barh(color, count, color=bar_colors, edgecolor='#aaaaaa') plt.title('Color Distribution') plt.ylabel('Color') plt.xlabel('Count') plt.show() # Render figure canvas = FigureCanvas(figure) canvas.draw() width, height = figure.get_size_inches() * figure.get_dpi() image = np.frombuffer(canvas.tostring_rgb(), dtype='uint8').reshape(int(height), int(width), 3) return image
from pymongo import MongoClient client = MongoClient() # carPricingDB = client["carPricing"] # firstOffersCollection = carPricingDB.create_collection("firstOffers") # firstOffersCollection.insert_one({"item":"initialone"}) carPricingDB = client.carPricing firstOffersCollection = carPricingDB.firstOffers firstOffersCollection.insert_one( {"item": "canvas", "qty": 100, "tags": ["cotton"], "size": {"h": 28, "w": 35.5, "uom": "cm"}}) coss = firstOffersCollection.find({"item":"canvas"})[0] print(coss)
# coding: utf-8 # -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- from __future__ import print_function import xml.dom.minidom as minidom import os # import PIL import numpy as np import scipy.sparse import subprocess try: import cPickle except ImportError: import pickle as cPickle import math import glob import uuid import scipy.io as sio import xml.etree.ElementTree as ET from .imdb import imdb from .imdb import ROOT_DIR from . import ds_utils from .adas_eval import adas_eval # TODO: make fast_rcnn irrelevant # >>>> obsolete, because it depends on sth outside of this project from model.utils.config import cfg # <<<< obsolete class adas(imdb): def __init__(self, image_set, year, devkit_path=None, sub_type='car'): imdb.__init__(self, 'adas_' + year + '_' + image_set) self._year = year self._image_set = image_set self._devkit_path = self._get_default_path() if devkit_path is None \ else devkit_path self._data_path = os.path.join(self._devkit_path, 'ADAS' + self._year) if sub_type == 'car': self._classes = ('__background__', #always index 0 'car',) elif sub_type == 'tired': self._classes = ('__background__', #always index 0 'o','s','w') self._class_to_ind = dict(zip(self.classes, range(self.num_classes))) self._image_ext = '.jpg' self._image_index = self._load_image_set_index() # Default to roidb handler # self._roidb_handler = self.selective_search_roidb self._roidb_handler = self.gt_roidb self._salt = str(uuid.uuid4()) self._comp_id = 'comp4' # PASCAL specific config options self.config = {'cleanup': True, 'use_salt': True, 'use_diff': False, 'matlab_eval': False, 'rpn_file': None, 'min_size': 2} assert os.path.exists(self._devkit_path), \ 'ADASdevkit path does not exist: {}'.format(self._devkit_path) assert os.path.exists(self._data_path), \ 'Path does not exist: {}'.format(self._data_path) def image_path_at(self, i): """ Return the absolute path to image i in the image sequence. """ return self.image_path_from_index(self._image_index[i]) def image_id_at(self, i): """ Return the absolute path to image i in the image sequence. """ return i def image_path_from_index(self, index): """ Construct an image path from the image's "index" identifier. """ image_path = os.path.join(self._data_path, 'JPEGImages', index + self._image_ext) assert os.path.exists(image_path), \ 'Path does not exist: {}'.format(image_path) return image_path def _load_image_set_index(self): """ Load the indexes listed in this dataset's image set file. """ # Example path to image set file: # self._devkit_path + /ADASdevkit2007/ADAS2007/ImageSets/Main/val.txt image_set_file = os.path.join(self._data_path, 'ImageSets', 'Main', self._image_set + '.txt') assert os.path.exists(image_set_file), \ 'Path does not exist: {}'.format(image_set_file) with open(image_set_file) as f: image_index = [x.strip() for x in f.readlines()] return image_index def _get_default_path(self): """ Return the default path where PASCAL ADAS is expected to be installed. """ return os.path.join(cfg.DATA_DIR, 'ADASdevkit' + self._year) def gt_roidb(self): """ Return the database of ground-truth regions of interest. This function loads/saves from/to a cache file to speed up future calls. """ cache_file = os.path.join(self.cache_path, self.name + '_gt_roidb.pkl') if os.path.exists(cache_file): print(cache_file) with open(cache_file, 'rb') as fid: roidb = cPickle.load(fid) print('{} gt roidb loaded from {}'.format(self.name, cache_file)) return roidb gt_roidb = [self._load_pascal_annotation(index) for index in self.image_index] with open(cache_file, 'wb') as fid: cPickle.dump(gt_roidb, fid, cPickle.HIGHEST_PROTOCOL) print('wrote gt roidb to {}'.format(cache_file)) return gt_roidb def selective_search_roidb(self): """ Return the database of selective search regions of interest. Ground-truth ROIs are also included. This function loads/saves from/to a cache file to speed up future calls. """ cache_file = os.path.join(self.cache_path, self.name + '_selective_search_roidb.pkl') if os.path.exists(cache_file): with open(cache_file, 'rb') as fid: roidb = cPickle.load(fid) print('{} ss roidb loaded from {}'.format(self.name, cache_file)) return roidb if int(self._year) == 2007 or self._image_set != 'test': gt_roidb = self.gt_roidb() ss_roidb = self._load_selective_search_roidb(gt_roidb) roidb = imdb.merge_roidbs(gt_roidb, ss_roidb) else: roidb = self._load_selective_search_roidb(None) with open(cache_file, 'wb') as fid: cPickle.dump(roidb, fid, cPickle.HIGHEST_PROTOCOL) print('wrote ss roidb to {}'.format(cache_file)) return roidb def rpn_roidb(self): if int(self._year) == 2007 or self._image_set != 'test': gt_roidb = self.gt_roidb() rpn_roidb = self._load_rpn_roidb(gt_roidb) roidb = imdb.merge_roidbs(gt_roidb, rpn_roidb) else: roidb = self._load_rpn_roidb(None) return roidb def _load_rpn_roidb(self, gt_roidb): filename = self.config['rpn_file'] print('loading {}'.format(filename)) assert os.path.exists(filename), \ 'rpn data not found at: {}'.format(filename) with open(filename, 'rb') as f: box_list = cPickle.load(f) return self.create_roidb_from_box_list(box_list, gt_roidb) def _load_selective_search_roidb(self, gt_roidb): filename = os.path.abspath(os.path.join(cfg.DATA_DIR, 'selective_search_data', self.name + '.mat')) assert os.path.exists(filename), \ 'Selective search data not found at: {}'.format(filename) raw_data = sio.loadmat(filename)['boxes'].ravel() box_list = [] for i in range(raw_data.shape[0]): boxes = raw_data[i][:, (1, 0, 3, 2)] - 1 keep = ds_utils.unique_boxes(boxes) boxes = boxes[keep, :] keep = ds_utils.filter_small_boxes(boxes, self.config['min_size']) boxes = boxes[keep, :] box_list.append(boxes) return self.create_roidb_from_box_list(box_list, gt_roidb) def _load_pascal_annotation(self, index): """ Load image and bounding boxes info from XML file in the PASCAL ADAS format. """ filename = os.path.join(self._data_path, 'Annotations', index + '.xml') tree = ET.parse(filename) objs = tree.findall('object') # if not self.config['use_diff']: # # Exclude the samples labeled as difficult # non_diff_objs = [ # obj for obj in objs if int(obj.find('difficult').text) == 0] # # if len(non_diff_objs) != len(objs): # # print 'Removed {} difficult objects'.format( # # len(objs) - len(non_diff_objs)) # objs = non_diff_objs num_objs = len(objs) boxes = np.zeros((num_objs, 4), dtype=np.uint16) gt_classes = np.zeros((num_objs), dtype=np.int32) overlaps = np.zeros((num_objs, self.num_classes), dtype=np.float32) # "Seg" area for pascal is just the box area seg_areas = np.zeros((num_objs), dtype=np.float32) ishards = np.zeros((num_objs), dtype=np.int32) # Load object bounding boxes into a data frame. for ix, obj in enumerate(objs): bbox = obj.find('bndbox') # Make pixel indexes 0-based x1 = float(bbox.find('xmin').text) - 1 y1 = float(bbox.find('ymin').text) - 1 x2 = float(bbox.find('xmax').text) - 1 y2 = float(bbox.find('ymax').text) - 1 diffc = obj.find('difficult') difficult = 0 if diffc == None else int(diffc.text) ishards[ix] = difficult cls = self._class_to_ind[obj.find('name').text.lower().strip()] boxes[ix, :] = [x1, y1, x2, y2] gt_classes[ix] = cls overlaps[ix, cls] = 1.0 seg_areas[ix] = (x2 - x1 + 1) * (y2 - y1 + 1) overlaps = scipy.sparse.csr_matrix(overlaps) return {'boxes': boxes, 'gt_classes': gt_classes, 'gt_ishard': ishards, 'gt_overlaps': overlaps, 'flipped': False, 'seg_areas': seg_areas} def _get_comp_id(self): comp_id = (self._comp_id + '_' + self._salt if self.config['use_salt'] else self._comp_id) return comp_id def _get_adas_results_file_template(self): # ADASdevkit/results/ADAS2007/Main/<comp_id>_det_test_aeroplane.txt filename = self._get_comp_id() + '_det_' + self._image_set + '_{:s}.txt' filedir = os.path.join(self._devkit_path, 'results', 'ADAS' + self._year, 'Main') if not os.path.exists(filedir): os.makedirs(filedir) path = os.path.join(filedir, filename) return path def _write_adas_results_file(self, all_boxes): for cls_ind, cls in enumerate(self.classes): if cls == '__background__': continue print('Writing {} ADAS results file'.format(cls)) filename = self._get_adas_results_file_template().format(cls) with open(filename, 'wt') as f: for im_ind, index in enumerate(self.image_index): dets = all_boxes[cls_ind][im_ind] if dets == []: continue # the ADASdevkit expects 1-based indices for k in range(dets.shape[0]): f.write('{:s} {:.3f} {:.1f} {:.1f} {:.1f} {:.1f}\n'. format(index, dets[k, -1], dets[k, 0] + 1, dets[k, 1] + 1, dets[k, 2] + 1, dets[k, 3] + 1)) def _do_python_eval(self, output_dir='output'): annopath = os.path.join( self._devkit_path, 'ADAS' + self._year, 'Annotations', '{:s}.xml') imagesetfile = os.path.join( self._devkit_path, 'ADAS' + self._year, 'ImageSets', 'Main', self._image_set + '.txt') cachedir = os.path.join(self._devkit_path, 'annotations_cache') aps = [] if not os.path.isdir(output_dir): os.mkdir(output_dir) for i, cls in enumerate(self._classes): if cls == '__background__': continue filename = self._get_adas_results_file_template().format(cls) rec, prec, ap = adas_eval( filename, annopath, imagesetfile, cls, cachedir, ovthresh=0.5) aps += [ap] print('AP for {} = {:.4f}'.format(cls, ap)) with open(os.path.join(output_dir, cls + '_pr.pkl'), 'w') as f: cPickle.dump({'rec': rec, 'prec': prec, 'ap': ap}, f) print('Mean AP = {:.4f}'.format(np.mean(aps))) print('~~~~~~~~') print('Results:') for ap in aps: print('{:.3f}'.format(ap)) print('{:.3f}'.format(np.mean(aps))) print('~~~~~~~~') print('') print('--------------------------------------------------------------') print('Results computed with the **unofficial** Python eval code.') print('Results should be very close to the official MATLAB eval code.') print('Recompute with `./tools/reval.py --matlab ...` for your paper.') print('-- Thanks, The Management') print('--------------------------------------------------------------') def _do_matlab_eval(self, output_dir='output'): print('-----------------------------------------------------') print('Computing results with the official MATLAB eval code.') print('-----------------------------------------------------') path = os.path.join(cfg.ROOT_DIR, 'lib', 'datasets', 'ADASdevkit-matlab-wrapper') cmd = 'cd {} && '.format(path) cmd += '{:s} -nodisplay -nodesktop '.format(cfg.MATLAB) cmd += '-r "dbstop if error; ' cmd += 'adas_eval(\'{:s}\',\'{:s}\',\'{:s}\',\'{:s}\'); quit;"' \ .format(self._devkit_path, self._get_comp_id(), self._image_set, output_dir) print('Running:\n{}'.format(cmd)) status = subprocess.call(cmd, shell=True) def evaluate_detections(self, all_boxes, output_dir): self._write_adas_results_file(all_boxes) self._do_python_eval(output_dir) if self.config['matlab_eval']: self._do_matlab_eval(output_dir) if self.config['cleanup']: for cls in self._classes: if cls == '__background__': continue filename = self._get_adas_results_file_template().format(cls) os.remove(filename) def competition_mode(self, on): if on: self.config['use_salt'] = False self.config['cleanup'] = False else: self.config['use_salt'] = True self.config['cleanup'] = True if __name__ == '__main__': d = adas('trainval', '2017') res = d.roidb from IPython import embed; embed()
# Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Tests for lots of functionality provided by L{twisted.internet}. """ from __future__ import division, absolute_import import os import sys import time from twisted.python.compat import _PY3 from twisted.trial import unittest from twisted.internet import reactor, protocol, error, abstract, defer from twisted.internet import interfaces, base try: from twisted.internet import ssl except ImportError: ssl = None if ssl and not ssl.supported: ssl = None from twisted.internet.defer import Deferred if not _PY3: from twisted.python import util class ThreePhaseEventTests(unittest.TestCase): """ Tests for the private implementation helpers for system event triggers. """ def setUp(self): """ Create a trigger, an argument, and an event to be used by tests. """ self.trigger = lambda x: None self.arg = object() self.event = base._ThreePhaseEvent() def test_addInvalidPhase(self): """ L{_ThreePhaseEvent.addTrigger} should raise L{KeyError} when called with an invalid phase. """ self.assertRaises( KeyError, self.event.addTrigger, 'xxx', self.trigger, self.arg) def test_addBeforeTrigger(self): """ L{_ThreePhaseEvent.addTrigger} should accept C{'before'} as a phase, a callable, and some arguments and add the callable with the arguments to the before list. """ self.event.addTrigger('before', self.trigger, self.arg) self.assertEqual( self.event.before, [(self.trigger, (self.arg,), {})]) def test_addDuringTrigger(self): """ L{_ThreePhaseEvent.addTrigger} should accept C{'during'} as a phase, a callable, and some arguments and add the callable with the arguments to the during list. """ self.event.addTrigger('during', self.trigger, self.arg) self.assertEqual( self.event.during, [(self.trigger, (self.arg,), {})]) def test_addAfterTrigger(self): """ L{_ThreePhaseEvent.addTrigger} should accept C{'after'} as a phase, a callable, and some arguments and add the callable with the arguments to the after list. """ self.event.addTrigger('after', self.trigger, self.arg) self.assertEqual( self.event.after, [(self.trigger, (self.arg,), {})]) def test_removeTrigger(self): """ L{_ThreePhaseEvent.removeTrigger} should accept an opaque object previously returned by L{_ThreePhaseEvent.addTrigger} and remove the associated trigger. """ handle = self.event.addTrigger('before', self.trigger, self.arg) self.event.removeTrigger(handle) self.assertEqual(self.event.before, []) def test_removeNonexistentTrigger(self): """ L{_ThreePhaseEvent.removeTrigger} should raise L{ValueError} when given an object not previously returned by L{_ThreePhaseEvent.addTrigger}. """ self.assertRaises(ValueError, self.event.removeTrigger, object()) def test_removeRemovedTrigger(self): """ L{_ThreePhaseEvent.removeTrigger} should raise L{ValueError} the second time it is called with an object returned by L{_ThreePhaseEvent.addTrigger}. """ handle = self.event.addTrigger('before', self.trigger, self.arg) self.event.removeTrigger(handle) self.assertRaises(ValueError, self.event.removeTrigger, handle) def test_removeAlmostValidTrigger(self): """ L{_ThreePhaseEvent.removeTrigger} should raise L{ValueError} if it is given a trigger handle which resembles a valid trigger handle aside from its phase being incorrect. """ self.assertRaises( KeyError, self.event.removeTrigger, ('xxx', self.trigger, (self.arg,), {})) def test_fireEvent(self): """ L{_ThreePhaseEvent.fireEvent} should call I{before}, I{during}, and I{after} phase triggers in that order. """ events = [] self.event.addTrigger('after', events.append, ('first', 'after')) self.event.addTrigger('during', events.append, ('first', 'during')) self.event.addTrigger('before', events.append, ('first', 'before')) self.event.addTrigger('before', events.append, ('second', 'before')) self.event.addTrigger('during', events.append, ('second', 'during')) self.event.addTrigger('after', events.append, ('second', 'after')) self.assertEqual(events, []) self.event.fireEvent() self.assertEqual(events, [('first', 'before'), ('second', 'before'), ('first', 'during'), ('second', 'during'), ('first', 'after'), ('second', 'after')]) def test_asynchronousBefore(self): """ L{_ThreePhaseEvent.fireEvent} should wait for any L{Deferred} returned by a I{before} phase trigger before proceeding to I{during} events. """ events = [] beforeResult = Deferred() self.event.addTrigger('before', lambda: beforeResult) self.event.addTrigger('during', events.append, 'during') self.event.addTrigger('after', events.append, 'after') self.assertEqual(events, []) self.event.fireEvent() self.assertEqual(events, []) beforeResult.callback(None) self.assertEqual(events, ['during', 'after']) def test_beforeTriggerException(self): """ If a before-phase trigger raises a synchronous exception, it should be logged and the remaining triggers should be run. """ events = [] class DummyException(Exception): pass def raisingTrigger(): raise DummyException() self.event.addTrigger('before', raisingTrigger) self.event.addTrigger('before', events.append, 'before') self.event.addTrigger('during', events.append, 'during') self.event.fireEvent() self.assertEqual(events, ['before', 'during']) errors = self.flushLoggedErrors(DummyException) self.assertEqual(len(errors), 1) def test_duringTriggerException(self): """ If a during-phase trigger raises a synchronous exception, it should be logged and the remaining triggers should be run. """ events = [] class DummyException(Exception): pass def raisingTrigger(): raise DummyException() self.event.addTrigger('during', raisingTrigger) self.event.addTrigger('during', events.append, 'during') self.event.addTrigger('after', events.append, 'after') self.event.fireEvent() self.assertEqual(events, ['during', 'after']) errors = self.flushLoggedErrors(DummyException) self.assertEqual(len(errors), 1) def test_synchronousRemoveAlreadyExecutedBefore(self): """ If a before-phase trigger tries to remove another before-phase trigger which has already run, a warning should be emitted. """ events = [] def removeTrigger(): self.event.removeTrigger(beforeHandle) beforeHandle = self.event.addTrigger('before', events.append, ('first', 'before')) self.event.addTrigger('before', removeTrigger) self.event.addTrigger('before', events.append, ('second', 'before')) self.assertWarns( DeprecationWarning, "Removing already-fired system event triggers will raise an " "exception in a future version of Twisted.", __file__, self.event.fireEvent) self.assertEqual(events, [('first', 'before'), ('second', 'before')]) def test_synchronousRemovePendingBefore(self): """ If a before-phase trigger removes another before-phase trigger which has not yet run, the removed trigger should not be run. """ events = [] self.event.addTrigger( 'before', lambda: self.event.removeTrigger(beforeHandle)) beforeHandle = self.event.addTrigger( 'before', events.append, ('first', 'before')) self.event.addTrigger('before', events.append, ('second', 'before')) self.event.fireEvent() self.assertEqual(events, [('second', 'before')]) def test_synchronousBeforeRemovesDuring(self): """ If a before-phase trigger removes a during-phase trigger, the during-phase trigger should not be run. """ events = [] self.event.addTrigger( 'before', lambda: self.event.removeTrigger(duringHandle)) duringHandle = self.event.addTrigger('during', events.append, 'during') self.event.addTrigger('after', events.append, 'after') self.event.fireEvent() self.assertEqual(events, ['after']) def test_asynchronousBeforeRemovesDuring(self): """ If a before-phase trigger returns a L{Deferred} and later removes a during-phase trigger before the L{Deferred} fires, the during-phase trigger should not be run. """ events = [] beforeResult = Deferred() self.event.addTrigger('before', lambda: beforeResult) duringHandle = self.event.addTrigger('during', events.append, 'during') self.event.addTrigger('after', events.append, 'after') self.event.fireEvent() self.event.removeTrigger(duringHandle) beforeResult.callback(None) self.assertEqual(events, ['after']) def test_synchronousBeforeRemovesConspicuouslySimilarDuring(self): """ If a before-phase trigger removes a during-phase trigger which is identical to an already-executed before-phase trigger aside from their phases, no warning should be emitted and the during-phase trigger should not be run. """ events = [] def trigger(): events.append('trigger') self.event.addTrigger('before', trigger) self.event.addTrigger( 'before', lambda: self.event.removeTrigger(duringTrigger)) duringTrigger = self.event.addTrigger('during', trigger) self.event.fireEvent() self.assertEqual(events, ['trigger']) def test_synchronousRemovePendingDuring(self): """ If a during-phase trigger removes another during-phase trigger which has not yet run, the removed trigger should not be run. """ events = [] self.event.addTrigger( 'during', lambda: self.event.removeTrigger(duringHandle)) duringHandle = self.event.addTrigger( 'during', events.append, ('first', 'during')) self.event.addTrigger( 'during', events.append, ('second', 'during')) self.event.fireEvent() self.assertEqual(events, [('second', 'during')]) def test_triggersRunOnce(self): """ A trigger should only be called on the first call to L{_ThreePhaseEvent.fireEvent}. """ events = [] self.event.addTrigger('before', events.append, 'before') self.event.addTrigger('during', events.append, 'during') self.event.addTrigger('after', events.append, 'after') self.event.fireEvent() self.event.fireEvent() self.assertEqual(events, ['before', 'during', 'after']) def test_finishedBeforeTriggersCleared(self): """ The temporary list L{_ThreePhaseEvent.finishedBefore} should be emptied and the state reset to C{'BASE'} before the first during-phase trigger executes. """ events = [] def duringTrigger(): events.append('during') self.assertEqual(self.event.finishedBefore, []) self.assertEqual(self.event.state, 'BASE') self.event.addTrigger('before', events.append, 'before') self.event.addTrigger('during', duringTrigger) self.event.fireEvent() self.assertEqual(events, ['before', 'during']) class SystemEventTests(unittest.TestCase): """ Tests for the reactor's implementation of the C{fireSystemEvent}, C{addSystemEventTrigger}, and C{removeSystemEventTrigger} methods of the L{IReactorCore} interface. @ivar triggers: A list of the handles to triggers which have been added to the reactor. """ def setUp(self): """ Create an empty list in which to store trigger handles. """ self.triggers = [] def tearDown(self): """ Remove all remaining triggers from the reactor. """ while self.triggers: trigger = self.triggers.pop() try: reactor.removeSystemEventTrigger(trigger) except (ValueError, KeyError): pass def addTrigger(self, event, phase, func): """ Add a trigger to the reactor and remember it in C{self.triggers}. """ t = reactor.addSystemEventTrigger(event, phase, func) self.triggers.append(t) return t def removeTrigger(self, trigger): """ Remove a trigger by its handle from the reactor and from C{self.triggers}. """ reactor.removeSystemEventTrigger(trigger) self.triggers.remove(trigger) def _addSystemEventTriggerTest(self, phase): eventType = 'test' events = [] def trigger(): events.append(None) self.addTrigger(phase, eventType, trigger) self.assertEqual(events, []) reactor.fireSystemEvent(eventType) self.assertEqual(events, [None]) def test_beforePhase(self): """ L{IReactorCore.addSystemEventTrigger} should accept the C{'before'} phase and not call the given object until the right event is fired. """ self._addSystemEventTriggerTest('before') def test_duringPhase(self): """ L{IReactorCore.addSystemEventTrigger} should accept the C{'during'} phase and not call the given object until the right event is fired. """ self._addSystemEventTriggerTest('during') def test_afterPhase(self): """ L{IReactorCore.addSystemEventTrigger} should accept the C{'after'} phase and not call the given object until the right event is fired. """ self._addSystemEventTriggerTest('after') def test_unknownPhase(self): """ L{IReactorCore.addSystemEventTrigger} should reject phases other than C{'before'}, C{'during'}, or C{'after'}. """ eventType = 'test' self.assertRaises( KeyError, self.addTrigger, 'xxx', eventType, lambda: None) def test_beforePreceedsDuring(self): """ L{IReactorCore.addSystemEventTrigger} should call triggers added to the C{'before'} phase before it calls triggers added to the C{'during'} phase. """ eventType = 'test' events = [] def beforeTrigger(): events.append('before') def duringTrigger(): events.append('during') self.addTrigger('before', eventType, beforeTrigger) self.addTrigger('during', eventType, duringTrigger) self.assertEqual(events, []) reactor.fireSystemEvent(eventType) self.assertEqual(events, ['before', 'during']) def test_duringPreceedsAfter(self): """ L{IReactorCore.addSystemEventTrigger} should call triggers added to the C{'during'} phase before it calls triggers added to the C{'after'} phase. """ eventType = 'test' events = [] def duringTrigger(): events.append('during') def afterTrigger(): events.append('after') self.addTrigger('during', eventType, duringTrigger) self.addTrigger('after', eventType, afterTrigger) self.assertEqual(events, []) reactor.fireSystemEvent(eventType) self.assertEqual(events, ['during', 'after']) def test_beforeReturnsDeferred(self): """ If a trigger added to the C{'before'} phase of an event returns a L{Deferred}, the C{'during'} phase should be delayed until it is called back. """ triggerDeferred = Deferred() eventType = 'test' events = [] def beforeTrigger(): return triggerDeferred def duringTrigger(): events.append('during') self.addTrigger('before', eventType, beforeTrigger) self.addTrigger('during', eventType, duringTrigger) self.assertEqual(events, []) reactor.fireSystemEvent(eventType) self.assertEqual(events, []) triggerDeferred.callback(None) self.assertEqual(events, ['during']) def test_multipleBeforeReturnDeferred(self): """ If more than one trigger added to the C{'before'} phase of an event return L{Deferred}s, the C{'during'} phase should be delayed until they are all called back. """ firstDeferred = Deferred() secondDeferred = Deferred() eventType = 'test' events = [] def firstBeforeTrigger(): return firstDeferred def secondBeforeTrigger(): return secondDeferred def duringTrigger(): events.append('during') self.addTrigger('before', eventType, firstBeforeTrigger) self.addTrigger('before', eventType, secondBeforeTrigger) self.addTrigger('during', eventType, duringTrigger) self.assertEqual(events, []) reactor.fireSystemEvent(eventType) self.assertEqual(events, []) firstDeferred.callback(None) self.assertEqual(events, []) secondDeferred.callback(None) self.assertEqual(events, ['during']) def test_subsequentBeforeTriggerFiresPriorBeforeDeferred(self): """ If a trigger added to the C{'before'} phase of an event calls back a L{Deferred} returned by an earlier trigger in the C{'before'} phase of the same event, the remaining C{'before'} triggers for that event should be run and any further L{Deferred}s waited on before proceeding to the C{'during'} events. """ eventType = 'test' events = [] firstDeferred = Deferred() secondDeferred = Deferred() def firstBeforeTrigger(): return firstDeferred def secondBeforeTrigger(): firstDeferred.callback(None) def thirdBeforeTrigger(): events.append('before') return secondDeferred def duringTrigger(): events.append('during') self.addTrigger('before', eventType, firstBeforeTrigger) self.addTrigger('before', eventType, secondBeforeTrigger) self.addTrigger('before', eventType, thirdBeforeTrigger) self.addTrigger('during', eventType, duringTrigger) self.assertEqual(events, []) reactor.fireSystemEvent(eventType) self.assertEqual(events, ['before']) secondDeferred.callback(None) self.assertEqual(events, ['before', 'during']) def test_removeSystemEventTrigger(self): """ A trigger removed with L{IReactorCore.removeSystemEventTrigger} should not be called when the event fires. """ eventType = 'test' events = [] def firstBeforeTrigger(): events.append('first') def secondBeforeTrigger(): events.append('second') self.addTrigger('before', eventType, firstBeforeTrigger) self.removeTrigger( self.addTrigger('before', eventType, secondBeforeTrigger)) self.assertEqual(events, []) reactor.fireSystemEvent(eventType) self.assertEqual(events, ['first']) def test_removeNonExistentSystemEventTrigger(self): """ Passing an object to L{IReactorCore.removeSystemEventTrigger} which was not returned by a previous call to L{IReactorCore.addSystemEventTrigger} or which has already been passed to C{removeSystemEventTrigger} should result in L{TypeError}, L{KeyError}, or L{ValueError} being raised. """ b = self.addTrigger('during', 'test', lambda: None) self.removeTrigger(b) self.assertRaises( TypeError, reactor.removeSystemEventTrigger, None) self.assertRaises( ValueError, reactor.removeSystemEventTrigger, b) self.assertRaises( KeyError, reactor.removeSystemEventTrigger, (b[0], ('xxx',) + b[1][1:])) def test_interactionBetweenDifferentEvents(self): """ L{IReactorCore.fireSystemEvent} should behave the same way for a particular system event regardless of whether Deferreds are being waited on for a different system event. """ events = [] firstEvent = 'first-event' firstDeferred = Deferred() def beforeFirstEvent(): events.append(('before', 'first')) return firstDeferred def afterFirstEvent(): events.append(('after', 'first')) secondEvent = 'second-event' secondDeferred = Deferred() def beforeSecondEvent(): events.append(('before', 'second')) return secondDeferred def afterSecondEvent(): events.append(('after', 'second')) self.addTrigger('before', firstEvent, beforeFirstEvent) self.addTrigger('after', firstEvent, afterFirstEvent) self.addTrigger('before', secondEvent, beforeSecondEvent) self.addTrigger('after', secondEvent, afterSecondEvent) self.assertEqual(events, []) # After this, firstEvent should be stuck before 'during' waiting for # firstDeferred. reactor.fireSystemEvent(firstEvent) self.assertEqual(events, [('before', 'first')]) # After this, secondEvent should be stuck before 'during' waiting for # secondDeferred. reactor.fireSystemEvent(secondEvent) self.assertEqual(events, [('before', 'first'), ('before', 'second')]) # After this, firstEvent should have finished completely, but # secondEvent should be at the same place. firstDeferred.callback(None) self.assertEqual(events, [('before', 'first'), ('before', 'second'), ('after', 'first')]) # After this, secondEvent should have finished completely. secondDeferred.callback(None) self.assertEqual(events, [('before', 'first'), ('before', 'second'), ('after', 'first'), ('after', 'second')]) class TimeTests(unittest.TestCase): """ Tests for the IReactorTime part of the reactor. """ def test_seconds(self): """ L{twisted.internet.reactor.seconds} should return something like a number. 1. This test specifically does not assert any relation to the "system time" as returned by L{time.time} or L{twisted.python.runtime.seconds}, because at some point we may find a better option for scheduling calls than wallclock-time. 2. This test *also* does not assert anything about the type of the result, because operations may not return ints or floats: For example, datetime-datetime == timedelta(0). """ now = reactor.seconds() self.assertEqual(now-now+now, now) def test_callLaterUsesReactorSecondsInDelayedCall(self): """ L{reactor.callLater<twisted.internet.interfaces.IReactorTime.callLater>} should use the reactor's seconds factory to produce the time at which the DelayedCall will be called. """ oseconds = reactor.seconds reactor.seconds = lambda: 100 try: call = reactor.callLater(5, lambda: None) self.assertEqual(call.getTime(), 105) finally: reactor.seconds = oseconds def test_callLaterUsesReactorSecondsAsDelayedCallSecondsFactory(self): """ L{reactor.callLater<twisted.internet.interfaces.IReactorTime.callLater>} should propagate its own seconds factory to the DelayedCall to use as its own seconds factory. """ oseconds = reactor.seconds reactor.seconds = lambda: 100 try: call = reactor.callLater(5, lambda: None) self.assertEqual(call.seconds(), 100) finally: reactor.seconds = oseconds def test_callLater(self): """ Test that a DelayedCall really calls the function it is supposed to call. """ d = Deferred() reactor.callLater(0, d.callback, None) d.addCallback(self.assertEqual, None) return d def test_cancelDelayedCall(self): """ Test that when a DelayedCall is cancelled it does not run. """ called = [] def function(): called.append(None) call = reactor.callLater(0, function) call.cancel() # Schedule a call in two "iterations" to check to make sure that the # above call never ran. d = Deferred() def check(): try: self.assertEqual(called, []) except: d.errback() else: d.callback(None) reactor.callLater(0, reactor.callLater, 0, check) return d def test_cancelCancelledDelayedCall(self): """ Test that cancelling a DelayedCall which has already been cancelled raises the appropriate exception. """ call = reactor.callLater(0, lambda: None) call.cancel() self.assertRaises(error.AlreadyCancelled, call.cancel) def test_cancelCalledDelayedCallSynchronous(self): """ Test that cancelling a DelayedCall in the DelayedCall's function as that function is being invoked by the DelayedCall raises the appropriate exception. """ d = Deferred() def later(): try: self.assertRaises(error.AlreadyCalled, call.cancel) except: d.errback() else: d.callback(None) call = reactor.callLater(0, later) return d def test_cancelCalledDelayedCallAsynchronous(self): """ Test that cancelling a DelayedCall after it has run its function raises the appropriate exception. """ d = Deferred() def check(): try: self.assertRaises(error.AlreadyCalled, call.cancel) except: d.errback() else: d.callback(None) def later(): reactor.callLater(0, check) call = reactor.callLater(0, later) return d def testCallLaterTime(self): d = reactor.callLater(10, lambda: None) try: self.assertTrue(d.getTime() - (time.time() + 10) < 1) finally: d.cancel() def testDelayedCallStringification(self): # Mostly just make sure str() isn't going to raise anything for # DelayedCalls within reason. dc = reactor.callLater(0, lambda x, y: None, 'x', y=10) str(dc) dc.reset(5) str(dc) dc.cancel() str(dc) dc = reactor.callLater(0, lambda: None, x=[({'hello': u'world'}, 10j), reactor], *range(10)) str(dc) dc.cancel() str(dc) def calledBack(ignored): str(dc) d = Deferred().addCallback(calledBack) dc = reactor.callLater(0, d.callback, None) str(dc) return d def testDelayedCallSecondsOverride(self): """ Test that the C{seconds} argument to DelayedCall gets used instead of the default timing function, if it is not None. """ def seconds(): return 10 dc = base.DelayedCall(5, lambda: None, (), {}, lambda dc: None, lambda dc: None, seconds) self.assertEqual(dc.getTime(), 5) dc.reset(3) self.assertEqual(dc.getTime(), 13) class CallFromThreadStopsAndWakeUpTests(unittest.TestCase): def testWakeUp(self): # Make sure other threads can wake up the reactor d = Deferred() def wake(): time.sleep(0.1) # callFromThread will call wakeUp for us reactor.callFromThread(d.callback, None) reactor.callInThread(wake) return d if interfaces.IReactorThreads(reactor, None) is None: testWakeUp.skip = "Nothing to wake up for without thread support" def _stopCallFromThreadCallback(self): self.stopped = True def _callFromThreadCallback(self, d): reactor.callFromThread(self._callFromThreadCallback2, d) reactor.callLater(0, self._stopCallFromThreadCallback) def _callFromThreadCallback2(self, d): try: self.assertTrue(self.stopped) except: # Send the error to the deferred d.errback() else: d.callback(None) def testCallFromThreadStops(self): """ Ensure that callFromThread from inside a callFromThread callback doesn't sit in an infinite loop and lets other things happen too. """ self.stopped = False d = defer.Deferred() reactor.callFromThread(self._callFromThreadCallback, d) return d class DelayedTests(unittest.TestCase): def setUp(self): self.finished = 0 self.counter = 0 self.timers = {} self.deferred = defer.Deferred() def tearDown(self): for t in self.timers.values(): t.cancel() def checkTimers(self): l1 = self.timers.values() l2 = list(reactor.getDelayedCalls()) # There should be at least the calls we put in. There may be other # calls that are none of our business and that we should ignore, # though. missing = [] for dc in l1: if dc not in l2: missing.append(dc) if missing: self.finished = 1 self.assertFalse(missing, "Should have been missing no calls, instead " + "was missing " + repr(missing)) def callback(self, tag): del self.timers[tag] self.checkTimers() def addCallback(self, tag): self.callback(tag) self.addTimer(15, self.callback) def done(self, tag): self.finished = 1 self.callback(tag) self.deferred.callback(None) def addTimer(self, when, callback): self.timers[self.counter] = reactor.callLater(when * 0.01, callback, self.counter) self.counter += 1 self.checkTimers() def testGetDelayedCalls(self): if not hasattr(reactor, "getDelayedCalls"): return # This is not a race because we don't do anything which might call # the reactor until we have all the timers set up. If we did, this # test might fail on slow systems. self.checkTimers() self.addTimer(35, self.done) self.addTimer(20, self.callback) self.addTimer(30, self.callback) which = self.counter self.addTimer(29, self.callback) self.addTimer(25, self.addCallback) self.addTimer(26, self.callback) self.timers[which].cancel() del self.timers[which] self.checkTimers() self.deferred.addCallback(lambda x : self.checkTimers()) return self.deferred def test_active(self): """ L{IDelayedCall.active} returns False once the call has run. """ dcall = reactor.callLater(0.01, self.deferred.callback, True) self.assertTrue(dcall.active()) def checkDeferredCall(success): self.assertFalse(dcall.active()) return success self.deferred.addCallback(checkDeferredCall) return self.deferred resolve_helper = """ from __future__ import print_function import %(reactor)s %(reactor)s.install() from twisted.internet import reactor class Foo: def __init__(self): reactor.callWhenRunning(self.start) self.timer = reactor.callLater(3, self.failed) def start(self): reactor.resolve('localhost').addBoth(self.done) def done(self, res): print('done', res) reactor.stop() def failed(self): print('failed') self.timer = None reactor.stop() f = Foo() reactor.run() """ class ChildResolveProtocol(protocol.ProcessProtocol): def __init__(self, onCompletion): self.onCompletion = onCompletion def connectionMade(self): self.output = [] self.error = [] def outReceived(self, out): self.output.append(out) def errReceived(self, err): self.error.append(err) def processEnded(self, reason): self.onCompletion.callback((reason, self.output, self.error)) self.onCompletion = None class ResolveTests(unittest.TestCase): def testChildResolve(self): # I've seen problems with reactor.run under gtk2reactor. Spawn a # child which just does reactor.resolve after the reactor has # started, fail if it does not complete in a timely fashion. helperPath = os.path.abspath(self.mktemp()) with open(helperPath, 'w') as helperFile: # Eeueuuggg reactorName = reactor.__module__ helperFile.write(resolve_helper % {'reactor': reactorName}) env = os.environ.copy() env['PYTHONPATH'] = os.pathsep.join(sys.path) helperDeferred = Deferred() helperProto = ChildResolveProtocol(helperDeferred) reactor.spawnProcess(helperProto, sys.executable, ("python", "-u", helperPath), env) def cbFinished(result): (reason, output, error) = result # If the output is "done 127.0.0.1\n" we don't really care what # else happened. output = b''.join(output) if output != b'done 127.0.0.1\n': self.fail(( "The child process failed to produce the desired results:\n" " Reason for termination was: %r\n" " Output stream was: %r\n" " Error stream was: %r\n") % (reason.getErrorMessage(), output, b''.join(error))) helperDeferred.addCallback(cbFinished) return helperDeferred if not interfaces.IReactorProcess(reactor, None): ResolveTests.skip = ( "cannot run test: reactor doesn't support IReactorProcess") class CallFromThreadTests(unittest.TestCase): """ Task scheduling from threads tests. """ if interfaces.IReactorThreads(reactor, None) is None: skip = "Nothing to test without thread support" def setUp(self): self.counter = 0 self.deferred = Deferred() def schedule(self, *args, **kwargs): """ Override in subclasses. """ reactor.callFromThread(*args, **kwargs) def test_lotsOfThreadsAreScheduledCorrectly(self): """ L{IReactorThreads.callFromThread} can be used to schedule a large number of calls in the reactor thread. """ def addAndMaybeFinish(): self.counter += 1 if self.counter == 100: self.deferred.callback(True) for i in range(100): self.schedule(addAndMaybeFinish) return self.deferred def test_threadsAreRunInScheduledOrder(self): """ Callbacks should be invoked in the order they were scheduled. """ order = [] def check(_): self.assertEqual(order, [1, 2, 3]) self.deferred.addCallback(check) self.schedule(order.append, 1) self.schedule(order.append, 2) self.schedule(order.append, 3) self.schedule(reactor.callFromThread, self.deferred.callback, None) return self.deferred def test_scheduledThreadsNotRunUntilReactorRuns(self): """ Scheduled tasks should not be run until the reactor starts running. """ def incAndFinish(): self.counter = 1 self.deferred.callback(True) self.schedule(incAndFinish) # Callback shouldn't have fired yet. self.assertEqual(self.counter, 0) return self.deferred class MyProtocol(protocol.Protocol): """ Sample protocol. """ class MyFactory(protocol.Factory): """ Sample factory. """ protocol = MyProtocol class ProtocolTests(unittest.TestCase): def testFactory(self): factory = MyFactory() protocol = factory.buildProtocol(None) self.assertEqual(protocol.factory, factory) self.assertIsInstance(protocol, factory.protocol) class DummyProducer(object): """ Very uninteresting producer implementation used by tests to ensure the right methods are called by the consumer with which it is registered. @type events: C{list} of C{str} @ivar events: The producer/consumer related events which have happened to this producer. Strings in this list may be C{'resume'}, C{'stop'}, or C{'pause'}. Elements are added as they occur. """ def __init__(self): self.events = [] def resumeProducing(self): self.events.append('resume') def stopProducing(self): self.events.append('stop') def pauseProducing(self): self.events.append('pause') class SillyDescriptor(abstract.FileDescriptor): """ A descriptor whose data buffer gets filled very fast. Useful for testing FileDescriptor's IConsumer interface, since the data buffer fills as soon as at least four characters are written to it, and gets emptied in a single doWrite() cycle. """ bufferSize = 3 connected = True def writeSomeData(self, data): """ Always write all data. """ return len(data) def startWriting(self): """ Do nothing: bypass the reactor. """ stopWriting = startWriting class ReentrantProducer(DummyProducer): """ Similar to L{DummyProducer}, but with a resumeProducing method which calls back into an L{IConsumer} method of the consumer against which it is registered. @ivar consumer: The consumer with which this producer has been or will be registered. @ivar methodName: The name of the method to call on the consumer inside C{resumeProducing}. @ivar methodArgs: The arguments to pass to the consumer method invoked in C{resumeProducing}. """ def __init__(self, consumer, methodName, *methodArgs): super(ReentrantProducer, self).__init__() self.consumer = consumer self.methodName = methodName self.methodArgs = methodArgs def resumeProducing(self): super(ReentrantProducer, self).resumeProducing() getattr(self.consumer, self.methodName)(*self.methodArgs) class ProducerTests(unittest.TestCase): """ Test abstract.FileDescriptor's consumer interface. """ def test_doubleProducer(self): """ Verify that registering a non-streaming producer invokes its resumeProducing() method and that you can only register one producer at a time. """ fd = abstract.FileDescriptor() fd.connected = 1 dp = DummyProducer() fd.registerProducer(dp, 0) self.assertEqual(dp.events, ['resume']) self.assertRaises(RuntimeError, fd.registerProducer, DummyProducer(), 0) def test_unconnectedFileDescriptor(self): """ Verify that registering a producer when the connection has already been closed invokes its stopProducing() method. """ fd = abstract.FileDescriptor() fd.disconnected = 1 dp = DummyProducer() fd.registerProducer(dp, 0) self.assertEqual(dp.events, ['stop']) def _dontPausePullConsumerTest(self, methodName): """ Pull consumers don't get their C{pauseProducing} method called if the descriptor buffer fills up. @param _methodName: Either 'write', or 'writeSequence', indicating which transport method to write data to. """ descriptor = SillyDescriptor() producer = DummyProducer() descriptor.registerProducer(producer, streaming=False) self.assertEqual(producer.events, ['resume']) del producer.events[:] # Fill up the descriptor's write buffer so we can observe whether or # not it pauses its producer in that case. if methodName == "writeSequence": descriptor.writeSequence([b'1', b'2', b'3', b'4']) else: descriptor.write(b'1234') self.assertEqual(producer.events, []) def test_dontPausePullConsumerOnWrite(self): """ Verify that FileDescriptor does not call producer.pauseProducing() on a non-streaming pull producer in response to a L{IConsumer.write} call which results in a full write buffer. Issue #2286. """ return self._dontPausePullConsumerTest('write') def test_dontPausePullConsumerOnWriteSequence(self): """ Like L{test_dontPausePullConsumerOnWrite}, but for a call to C{writeSequence} rather than L{IConsumer.write}. C{writeSequence} is not part of L{IConsumer}, but L{abstract.FileDescriptor} has supported consumery behavior in response to calls to L{writeSequence} forever. """ return self._dontPausePullConsumerTest('writeSequence') def _reentrantStreamingProducerTest(self, methodName): descriptor = SillyDescriptor() if methodName == "writeSequence": data = [b's', b'p', b'am'] else: data = b"spam" producer = ReentrantProducer(descriptor, methodName, data) descriptor.registerProducer(producer, streaming=True) # Start things off by filling up the descriptor's buffer so it will # pause its producer. getattr(descriptor, methodName)(data) # Sanity check - make sure that worked. self.assertEqual(producer.events, ['pause']) del producer.events[:] # After one call to doWrite, the buffer has been emptied so the # FileDescriptor should resume its producer. That will result in an # immediate call to FileDescriptor.write which will again fill the # buffer and result in the producer being paused. descriptor.doWrite() self.assertEqual(producer.events, ['resume', 'pause']) del producer.events[:] # After a second call to doWrite, the exact same thing should have # happened. Prior to the bugfix for which this test was written, # FileDescriptor would have incorrectly believed its producer was # already resumed (it was paused) and so not resume it again. descriptor.doWrite() self.assertEqual(producer.events, ['resume', 'pause']) def test_reentrantStreamingProducerUsingWrite(self): """ Verify that FileDescriptor tracks producer's paused state correctly. Issue #811, fixed in revision r12857. """ return self._reentrantStreamingProducerTest('write') def test_reentrantStreamingProducerUsingWriteSequence(self): """ Like L{test_reentrantStreamingProducerUsingWrite}, but for calls to C{writeSequence}. C{writeSequence} is B{not} part of L{IConsumer}, however C{abstract.FileDescriptor} has supported consumery behavior in response to calls to C{writeSequence} forever. """ return self._reentrantStreamingProducerTest('writeSequence') class PortStringificationTests(unittest.TestCase): if interfaces.IReactorTCP(reactor, None) is not None: def testTCP(self): p = reactor.listenTCP(0, protocol.ServerFactory()) portNo = p.getHost().port self.assertNotEqual(str(p).find(str(portNo)), -1, "%d not found in %s" % (portNo, p)) return p.stopListening() if interfaces.IReactorUDP(reactor, None) is not None: def testUDP(self): p = reactor.listenUDP(0, protocol.DatagramProtocol()) portNo = p.getHost().port self.assertNotEqual(str(p).find(str(portNo)), -1, "%d not found in %s" % (portNo, p)) return p.stopListening() if interfaces.IReactorSSL(reactor, None) is not None and ssl: def testSSL(self, ssl=ssl): pem = util.sibpath(__file__, 'server.pem') p = reactor.listenSSL(0, protocol.ServerFactory(), ssl.DefaultOpenSSLContextFactory(pem, pem)) portNo = p.getHost().port self.assertNotEqual(str(p).find(str(portNo)), -1, "%d not found in %s" % (portNo, p)) return p.stopListening() if _PY3: testSSL.skip = ("Re-enable once the Python 3 SSL port is done.")
import setuptools with open('README.md') as file: readme = file.read() name = 'aio4chan' module = __import__(name) version = module.__version__ author = 'Exahilosys' url = f'https://github.com/{author}/{name}' download_url = f'{url}/archive/v{version}.tar.gz' setuptools.setup( name = name, version = version, author = author, url = url, download_url = download_url, packages = setuptools.find_packages(), license = 'MIT', description = 'API wrapper for 4chan.', long_description = readme, long_description_content_type = 'text/markdown', include_package_data = True, install_requires = ['aiohttp'], py_modules = [name], classifiers = [ 'License :: OSI Approved :: MIT License', 'Intended Audience :: Developers', 'Natural Language :: English', 'Operating System :: OS Independent', 'Programming Language :: Python :: 3.6', 'Topic :: Internet', 'Topic :: Software Development :: Libraries', 'Topic :: Software Development :: Libraries :: Python Modules', 'Topic :: Utilities', ] )
# coding: utf-8 """ Signing Today Web *Signing Today* is the perfect Digital Signature Gateway. Whenever in Your workflow You need to add one or more Digital Signatures to Your document, *Signing Today* is the right choice. You prepare Your documents, *Signing Today* takes care of all the rest: send invitations (`signature tickets`) to signers, collects their signatures, send You back the signed document. Integrating *Signing Today* in Your existing applications is very easy. Just follow these API specifications and get inspired by the many examples presented hereafter. # noqa: E501 The version of the OpenAPI document: 2.0.0 Generated by: https://openapi-generator.tech """ from __future__ import absolute_import import unittest import signing_today_client from signing_today_client.api.bit4id_pathgroup_digital_signature_transactions_api import Bit4idPathgroupDigitalSignatureTransactionsApi # noqa: E501 from signing_today_client.rest import ApiException class TestBit4idPathgroupDigitalSignatureTransactionsApi(unittest.TestCase): """Bit4idPathgroupDigitalSignatureTransactionsApi unit test stubs""" def setUp(self): self.api = signing_today_client.api.bit4id_pathgroup_digital_signature_transactions_api.Bit4idPathgroupDigitalSignatureTransactionsApi() # noqa: E501 def tearDown(self): pass def test_d_s_ts_get(self): """Test case for d_s_ts_get Retrieve DSTs # noqa: E501 """ pass def test_d_s_ts_post(self): """Test case for d_s_ts_post Create a new DST # noqa: E501 """ pass def test_d_st_id_audit_get(self): """Test case for d_st_id_audit_get Retrieve the audit records associated to the DST # noqa: E501 """ pass def test_d_st_id_delete(self): """Test case for d_st_id_delete Delete a DST # noqa: E501 """ pass def test_d_st_id_fill_patch(self): """Test case for d_st_id_fill_patch Fill a form of a DST # noqa: E501 """ pass def test_d_st_id_get(self): """Test case for d_st_id_get Retrieve a DST # noqa: E501 """ pass def test_d_st_id_instantiate_post(self): """Test case for d_st_id_instantiate_post Instantiate a DST from a template # noqa: E501 """ pass def test_d_st_id_modify_post(self): """Test case for d_st_id_modify_post Modify a published DST template # noqa: E501 """ pass def test_d_st_id_notify_post(self): """Test case for d_st_id_notify_post Send notifications for a DST # noqa: E501 """ pass def test_d_st_id_publish_post(self): """Test case for d_st_id_publish_post Publish a DST # noqa: E501 """ pass def test_d_st_id_put(self): """Test case for d_st_id_put Update a DST # noqa: E501 """ pass def test_d_st_id_replace_post(self): """Test case for d_st_id_replace_post Replace a rejected DST # noqa: E501 """ pass def test_d_st_id_sign_doc_id_sign_id_get(self): """Test case for d_st_id_sign_doc_id_sign_id_get Return the address for signing # noqa: E501 """ pass def test_d_st_id_templatize_post(self): """Test case for d_st_id_templatize_post Create a template from a DST # noqa: E501 """ pass if __name__ == '__main__': unittest.main()
import os import sys import traceback from _pydev_bundle.pydev_imports import xmlrpclib, _queue, Exec from _pydev_bundle._pydev_calltip_util import get_description from _pydev_imps._pydev_saved_modules import thread from _pydevd_bundle import pydevd_vars from _pydevd_bundle import pydevd_xml from _pydevd_bundle.pydevd_constants import (IS_JYTHON, dict_iter_items, NEXT_VALUE_SEPARATOR, Null, get_global_debugger) import signal from contextlib import contextmanager from _pydev_bundle import pydev_log try: import cStringIO as StringIO # may not always be available @UnusedImport except: try: import StringIO # @Reimport except: import io as StringIO # ======================================================================================================================= # BaseStdIn # ======================================================================================================================= class BaseStdIn: def __init__(self, original_stdin=sys.stdin, *args, **kwargs): try: self.encoding = sys.stdin.encoding except: # Not sure if it's available in all Python versions... pass self.original_stdin = original_stdin try: self.errors = sys.stdin.errors # Who knew? sys streams have an errors attribute! except: # Not sure if it's available in all Python versions... pass def readline(self, *args, **kwargs): # sys.stderr.write('Cannot readline out of the console evaluation\n') -- don't show anything # This could happen if the user had done input('enter number).<-- upon entering this, that message would appear, # which is not something we want. return '\n' def write(self, *args, **kwargs): pass # not available StdIn (but it can be expected to be in the stream interface) def flush(self, *args, **kwargs): pass # not available StdIn (but it can be expected to be in the stream interface) def read(self, *args, **kwargs): # in the interactive interpreter, a read and a readline are the same. return self.readline() def close(self, *args, **kwargs): pass # expected in StdIn def __iter__(self): # BaseStdIn would not be considered as Iterable in Python 3 without explicit `__iter__` implementation return self.original_stdin.__iter__() def __getattr__(self, item): # it's called if the attribute wasn't found if hasattr(self.original_stdin, item): return getattr(self.original_stdin, item) raise AttributeError("%s has no attribute %s" % (self.original_stdin, item)) # ======================================================================================================================= # StdIn # ======================================================================================================================= class StdIn(BaseStdIn): ''' Object to be added to stdin (to emulate it as non-blocking while the next line arrives) ''' def __init__(self, interpreter, host, client_port, original_stdin=sys.stdin): BaseStdIn.__init__(self, original_stdin) self.interpreter = interpreter self.client_port = client_port self.host = host def readline(self, *args, **kwargs): # Ok, callback into the client to get the new input try: server = xmlrpclib.Server('http://%s:%s' % (self.host, self.client_port)) requested_input = server.RequestInput() if not requested_input: return '\n' # Yes, a readline must return something (otherwise we can get an EOFError on the input() call). else: # readline should end with '\n' (not doing so makes IPython 5 remove the last *valid* character). requested_input += '\n' return requested_input except KeyboardInterrupt: raise # Let KeyboardInterrupt go through -- #PyDev-816: Interrupting infinite loop in the Interactive Console except: return '\n' def close(self, *args, **kwargs): pass # expected in StdIn #======================================================================================================================= # DebugConsoleStdIn #======================================================================================================================= class DebugConsoleStdIn(BaseStdIn): ''' Object to be added to stdin (to emulate it as non-blocking while the next line arrives) ''' def __init__(self, py_db, original_stdin): ''' :param py_db: If None, get_global_debugger() is used. ''' BaseStdIn.__init__(self, original_stdin) self._py_db = py_db self._in_notification = 0 def __send_input_requested_message(self, is_started): try: py_db = self._py_db if py_db is None: py_db = get_global_debugger() cmd = py_db.cmd_factory.make_input_requested_message(is_started) py_db.writer.add_command(cmd) except Exception: pydev_log.exception() @contextmanager def notify_input_requested(self): self._in_notification += 1 if self._in_notification == 1: self.__send_input_requested_message(True) try: yield finally: self._in_notification -= 1 if self._in_notification == 0: self.__send_input_requested_message(False) def readline(self, *args, **kwargs): with self.notify_input_requested(): return self.original_stdin.readline(*args, **kwargs) def read(self, *args, **kwargs): with self.notify_input_requested(): return self.original_stdin.read(*args, **kwargs) class CodeFragment: def __init__(self, text, is_single_line=True): self.text = text self.is_single_line = is_single_line def append(self, code_fragment): self.text = self.text + "\n" + code_fragment.text if not code_fragment.is_single_line: self.is_single_line = False # ======================================================================================================================= # BaseInterpreterInterface # ======================================================================================================================= class BaseInterpreterInterface: def __init__(self, mainThread, connect_status_queue=None): self.mainThread = mainThread self.interruptable = False self.exec_queue = _queue.Queue(0) self.buffer = None self.banner_shown = False self.connect_status_queue = connect_status_queue self.mpl_modules_for_patching = {} self.init_mpl_modules_for_patching() def build_banner(self): return 'print({0})\n'.format(repr(self.get_greeting_msg())) def get_greeting_msg(self): return 'PyDev console: starting.\n' def init_mpl_modules_for_patching(self): from pydev_ipython.matplotlibtools import activate_matplotlib, activate_pylab, activate_pyplot self.mpl_modules_for_patching = { "matplotlib": lambda: activate_matplotlib(self.enableGui), "matplotlib.pyplot": activate_pyplot, "pylab": activate_pylab } def need_more_for_code(self, source): # PyDev-502: PyDev 3.9 F2 doesn't support backslash continuations # Strangely even the IPython console is_complete said it was complete # even with a continuation char at the end. if source.endswith('\\'): return True if hasattr(self.interpreter, 'is_complete'): return not self.interpreter.is_complete(source) try: # At this point, it should always be single. # If we don't do this, things as: # # for i in range(10): print(i) # # (in a single line) don't work. # Note that it won't give an error and code will be None (so, it'll # use execMultipleLines in the next call in this case). symbol = 'single' code = self.interpreter.compile(source, '<input>', symbol) except (OverflowError, SyntaxError, ValueError): # Case 1 return False if code is None: # Case 2 return True # Case 3 return False def need_more(self, code_fragment): if self.buffer is None: self.buffer = code_fragment else: self.buffer.append(code_fragment) return self.need_more_for_code(self.buffer.text) def create_std_in(self, debugger=None, original_std_in=None): if debugger is None: return StdIn(self, self.host, self.client_port, original_stdin=original_std_in) else: return DebugConsoleStdIn(py_db=debugger, original_stdin=original_std_in) def add_exec(self, code_fragment, debugger=None): # In case sys.excepthook called, use original excepthook #PyDev-877: Debug console freezes with Python 3.5+ # (showtraceback does it on python 3.5 onwards) sys.excepthook = sys.__excepthook__ try: original_in = sys.stdin try: help = None if 'pydoc' in sys.modules: pydoc = sys.modules['pydoc'] # Don't import it if it still is not there. if hasattr(pydoc, 'help'): # You never know how will the API be changed, so, let's code defensively here help = pydoc.help if not hasattr(help, 'input'): help = None except: # Just ignore any error here pass more = False try: sys.stdin = self.create_std_in(debugger, original_in) try: if help is not None: # This will enable the help() function to work. try: try: help.input = sys.stdin except AttributeError: help._input = sys.stdin except: help = None if not self._input_error_printed: self._input_error_printed = True sys.stderr.write('\nError when trying to update pydoc.help.input\n') sys.stderr.write('(help() may not work -- please report this as a bug in the pydev bugtracker).\n\n') traceback.print_exc() try: self.start_exec() if hasattr(self, 'debugger'): self.debugger.enable_tracing() more = self.do_add_exec(code_fragment) if hasattr(self, 'debugger'): self.debugger.disable_tracing() self.finish_exec(more) finally: if help is not None: try: try: help.input = original_in except AttributeError: help._input = original_in except: pass finally: sys.stdin = original_in except SystemExit: raise except: traceback.print_exc() finally: sys.__excepthook__ = sys.excepthook return more def do_add_exec(self, codeFragment): ''' Subclasses should override. @return: more (True if more input is needed to complete the statement and False if the statement is complete). ''' raise NotImplementedError() def get_namespace(self): ''' Subclasses should override. @return: dict with namespace. ''' raise NotImplementedError() def __resolve_reference__(self, text): """ :type text: str """ obj = None if '.' not in text: try: obj = self.get_namespace()[text] except KeyError: pass if obj is None: try: obj = self.get_namespace()['__builtins__'][text] except: pass if obj is None: try: obj = getattr(self.get_namespace()['__builtins__'], text, None) except: pass else: try: last_dot = text.rindex('.') parent_context = text[0:last_dot] res = pydevd_vars.eval_in_context(parent_context, self.get_namespace(), self.get_namespace()) obj = getattr(res, text[last_dot + 1:]) except: pass return obj def getDescription(self, text): try: obj = self.__resolve_reference__(text) if obj is None: return '' return get_description(obj) except: return '' def do_exec_code(self, code, is_single_line): try: code_fragment = CodeFragment(code, is_single_line) more = self.need_more(code_fragment) if not more: code_fragment = self.buffer self.buffer = None self.exec_queue.put(code_fragment) return more except: traceback.print_exc() return False def execLine(self, line): return self.do_exec_code(line, True) def execMultipleLines(self, lines): if IS_JYTHON: more = False for line in lines.split('\n'): more = self.do_exec_code(line, True) return more else: return self.do_exec_code(lines, False) def interrupt(self): self.buffer = None # Also clear the buffer when it's interrupted. try: if self.interruptable: called = False try: # Fix for #PyDev-500: Console interrupt can't interrupt on sleep if os.name == 'posix': # On Linux we can't interrupt 0 as in Windows because it's # actually owned by a process -- on the good side, signals # work much better on Linux! os.kill(os.getpid(), signal.SIGINT) called = True elif os.name == 'nt': # Stupid windows: sending a Ctrl+C to a process given its pid # is absurdly difficult. # There are utilities to make it work such as # http://www.latenighthacking.com/projects/2003/sendSignal/ # but fortunately for us, it seems Python does allow a CTRL_C_EVENT # for the current process in Windows if pid 0 is passed... if we needed # to send a signal to another process the approach would be # much more difficult. # Still, note that CTRL_C_EVENT is only Python 2.7 onwards... # Also, this doesn't seem to be documented anywhere!? (stumbled # upon it by chance after digging quite a lot). os.kill(0, signal.CTRL_C_EVENT) called = True except: # Many things to go wrong (from CTRL_C_EVENT not being there # to failing import signal)... if that's the case, ask for # forgiveness and go on to the approach which will interrupt # the main thread (but it'll only work when it's executing some Python # code -- not on sleep() for instance). pass if not called: if hasattr(thread, 'interrupt_main'): # Jython doesn't have it thread.interrupt_main() else: self.mainThread._thread.interrupt() # Jython self.finish_exec(False) return True except: traceback.print_exc() return False def close(self): sys.exit(0) def start_exec(self): self.interruptable = True def get_server(self): if getattr(self, 'host', None) is not None: return xmlrpclib.Server('http://%s:%s' % (self.host, self.client_port)) else: return None server = property(get_server) def ShowConsole(self): server = self.get_server() if server is not None: server.ShowConsole() def finish_exec(self, more): self.interruptable = False server = self.get_server() if server is not None: return server.NotifyFinished(more) else: return True def getFrame(self): xml = StringIO.StringIO() hidden_ns = self.get_ipython_hidden_vars_dict() xml.write("<xml>") xml.write(pydevd_xml.frame_vars_to_xml(self.get_namespace(), hidden_ns)) xml.write("</xml>") return xml.getvalue() def getVariable(self, attributes): xml = StringIO.StringIO() xml.write("<xml>") val_dict = pydevd_vars.resolve_compound_var_object_fields(self.get_namespace(), attributes) if val_dict is None: val_dict = {} keys = val_dict.keys() for k in keys: val = val_dict[k] evaluate_full_value = pydevd_xml.should_evaluate_full_value(val) xml.write(pydevd_vars.var_to_xml(val, k, evaluate_full_value=evaluate_full_value)) xml.write("</xml>") return xml.getvalue() def getArray(self, attr, roffset, coffset, rows, cols, format): name = attr.split("\t")[-1] array = pydevd_vars.eval_in_context(name, self.get_namespace(), self.get_namespace()) return pydevd_vars.table_like_struct_to_xml(array, name, roffset, coffset, rows, cols, format) def evaluate(self, expression): xml = StringIO.StringIO() xml.write("<xml>") result = pydevd_vars.eval_in_context(expression, self.get_namespace(), self.get_namespace()) xml.write(pydevd_vars.var_to_xml(result, expression)) xml.write("</xml>") return xml.getvalue() def loadFullValue(self, seq, scope_attrs): """ Evaluate full value for async Console variables in a separate thread and send results to IDE side :param seq: id of command :param scope_attrs: a sequence of variables with their attributes separated by NEXT_VALUE_SEPARATOR (i.e.: obj\tattr1\tattr2NEXT_VALUE_SEPARATORobj2\attr1\tattr2) :return: """ frame_variables = self.get_namespace() var_objects = [] vars = scope_attrs.split(NEXT_VALUE_SEPARATOR) for var_attrs in vars: if '\t' in var_attrs: name, attrs = var_attrs.split('\t', 1) else: name = var_attrs attrs = None if name in frame_variables: var_object = pydevd_vars.resolve_var_object(frame_variables[name], attrs) var_objects.append((var_object, name)) else: var_object = pydevd_vars.eval_in_context(name, frame_variables, frame_variables) var_objects.append((var_object, name)) from _pydevd_bundle.pydevd_comm import GetValueAsyncThreadConsole t = GetValueAsyncThreadConsole(self.get_server(), seq, var_objects) t.start() def changeVariable(self, attr, value): def do_change_variable(): Exec('%s=%s' % (attr, value), self.get_namespace(), self.get_namespace()) # Important: it has to be really enabled in the main thread, so, schedule # it to run in the main thread. self.exec_queue.put(do_change_variable) def connectToDebugger(self, debuggerPort, debugger_options=None): ''' Used to show console with variables connection. Mainly, monkey-patches things in the debugger structure so that the debugger protocol works. ''' if debugger_options is None: debugger_options = {} env_key = "PYDEVD_EXTRA_ENVS" if env_key in debugger_options: for (env_name, value) in dict_iter_items(debugger_options[env_key]): existing_value = os.environ.get(env_name, None) if existing_value: os.environ[env_name] = "%s%c%s" % (existing_value, os.path.pathsep, value) else: os.environ[env_name] = value if env_name == "PYTHONPATH": sys.path.append(value) del debugger_options[env_key] def do_connect_to_debugger(): try: # Try to import the packages needed to attach the debugger import pydevd from _pydev_imps._pydev_saved_modules import threading except: # This happens on Jython embedded in host eclipse traceback.print_exc() sys.stderr.write('pydevd is not available, cannot connect\n') from _pydevd_bundle.pydevd_constants import set_thread_id from _pydev_bundle import pydev_localhost set_thread_id(threading.currentThread(), "console_main") VIRTUAL_FRAME_ID = "1" # matches PyStackFrameConsole.java VIRTUAL_CONSOLE_ID = "console_main" # matches PyThreadConsole.java f = FakeFrame() f.f_back = None f.f_globals = {} # As globals=locals here, let's simply let it empty (and save a bit of network traffic). f.f_locals = self.get_namespace() self.debugger = pydevd.PyDB() self.debugger.add_fake_frame(thread_id=VIRTUAL_CONSOLE_ID, frame_id=VIRTUAL_FRAME_ID, frame=f) try: pydevd.apply_debugger_options(debugger_options) self.debugger.connect(pydev_localhost.get_localhost(), debuggerPort) self.debugger.prepare_to_run() self.debugger.disable_tracing() except: traceback.print_exc() sys.stderr.write('Failed to connect to target debugger.\n') # Register to process commands when idle self.debugrunning = False try: import pydevconsole pydevconsole.set_debug_hook(self.debugger.process_internal_commands) except: traceback.print_exc() sys.stderr.write('Version of Python does not support debuggable Interactive Console.\n') # Important: it has to be really enabled in the main thread, so, schedule # it to run in the main thread. self.exec_queue.put(do_connect_to_debugger) return ('connect complete',) def handshake(self): if self.connect_status_queue is not None: self.connect_status_queue.put(True) return "PyCharm" def get_connect_status_queue(self): return self.connect_status_queue def hello(self, input_str): # Don't care what the input string is return ("Hello eclipse",) def enableGui(self, guiname): ''' Enable the GUI specified in guiname (see inputhook for list). As with IPython, enabling multiple GUIs isn't an error, but only the last one's main loop runs and it may not work ''' def do_enable_gui(): from _pydev_bundle.pydev_versioncheck import versionok_for_gui if versionok_for_gui(): try: from pydev_ipython.inputhook import enable_gui enable_gui(guiname) except: sys.stderr.write("Failed to enable GUI event loop integration for '%s'\n" % guiname) traceback.print_exc() elif guiname not in ['none', '', None]: # Only print a warning if the guiname was going to do something sys.stderr.write("PyDev console: Python version does not support GUI event loop integration for '%s'\n" % guiname) # Return value does not matter, so return back what was sent return guiname # Important: it has to be really enabled in the main thread, so, schedule # it to run in the main thread. self.exec_queue.put(do_enable_gui) def get_ipython_hidden_vars_dict(self): return None # ======================================================================================================================= # FakeFrame # ======================================================================================================================= class FakeFrame: ''' Used to show console with variables connection. A class to be used as a mock of a frame. '''
from .writer import saveMeshTracks from .reader import loadMeshTracks from .meshdata import Track, Mesh
"""Utilities for setting up a project's settings. The default way to use this is to import and call :func:`init_settings` in a project's settings module: # project/top_level_package/settings.py from arcutils.settings import init_settings init_settings() This adds a few default settings for bootstrapping purposes and then loads the project's local settings--the django-local-settings variety. Pass ``local_settings=False`` to :func:`init_settings` if the project doesn't use django-local-settings. """ import base64 import inspect import ipaddress import os import pkg_resources from datetime import datetime from django import VERSION as DJANGO_VERSION from django.conf import settings as django_settings from django.utils import timezone from local_settings import NO_DEFAULT, load_and_check_settings, LocalSetting, SecretSetting from local_settings.settings import DottedAccessDict, Settings as LocalSettings ARCUTILS_PACKAGE_DIR = pkg_resources.resource_filename('arcutils', '') class _InternalIPsType: """Used to construct a convenient INTERNAL_IPS setting for dev. An *instance* of this type considers any standard loopback or private IP address a valid internal IP address. """ def __contains__(self, addr): addr = ipaddress.ip_address(addr) return addr.is_loopback or addr.is_private INTERNAL_IPS = _InternalIPsType() def init_settings(settings=None, local_settings=True, prompt=None, quiet=None, package_level=0, stack_level=2, drop=(), settings_processors=()): """Initialize project settings. Basic Usage =========== By default, it's assumed that the project is structured like so, with the settings module in the top level package:: project/ package/ __init__.py settings.py README setup.py It's also assumed that :func:`init_settings` will be called from the global scope of the project's settings module:: # package/settings.py from arcutils.settings import init_settings init_settings() A few default settings that are commonly used in local settings files will be added (if not explicitly set before calling this function): - ARCUTILS_PACKAGE_DIR - PACKAGE (top level project package) - PACKAGE_DIR (top level project package directory) - ROOT_DIR (project directory; should only be used in dev) - START_TIME (current date/time; will be an "aware" UTC datetime object if the project has time zone support enabled) If the project has additional local settings, they must be defined *before* this function is called. Advanced Usage ============== Generally, you won't need to pass ``settings``, but if you do, it should be a dict of settings as you'd get from calling ``globals()`` in the project's settings module. If the settings module is in a sub-package, ``package_level`` will need to be adjusted accordingly. If :func:`init_settings` is being called from another function, ``stack_level`` will have to be adjusted accordingly. See :func:`derive_top_level_package_name` for more info about these args. The ``PACKAGE``, ``PACKAGE_DIR``, and ``ROOT_DIR`` settings will be derived based on the location of the settings module this function is called from. If this isn't working, ensure the ``package_level`` and ``stack_level`` options are correct; or, set the ``PACKAGE`` setting explicitly before calling this function:: PACKAGE = 'quickticket' init_settings() ``PACKAGE_DIR`` and ``ROOT_DIR`` can also be set explicitly if necessary. .. note:: If the package name and related settings can't be derived automatically, that indicates a bug in this function. To drop unused default settings, specify a list of such settings via the ``drop`` arg. To process settings in any custom manner needed, pass a list of functions via ``settings_processors``. Each processor will be passed the settings to be manipulated as necessary. """ settings = settings if settings is not None else get_module_globals(stack_level) if not settings.get('ARCUTILS_PACKAGE_DIR'): settings['ARCUTILS_PACKAGE_DIR'] = ARCUTILS_PACKAGE_DIR if not settings.get('PACKAGE'): # The default value for PACKAGE is derived by figuring out where # init_settings was called from in terms of package and scope. settings['PACKAGE'] = derive_top_level_package_name(package_level, stack_level) if not settings.get('PACKAGE_DIR'): # The default value for PACKAGE_DIR is simply the directory # corresponding to PACKAGE. settings['PACKAGE_DIR'] = pkg_resources.resource_filename(settings['PACKAGE'], '') if not settings.get('ROOT_DIR'): # The default value for ROOT_DIR is the directory N levels up # from PACKAGE_DIR, where N is equal to the package depth of the # top level package. Note that in most cases N is 1; it will be # greater than 1 when the top level package is contained in a # namespace package. package_depth = len(settings['PACKAGE'].split('.')) parts = os.path.split(settings['PACKAGE_DIR']) root_dir = os.path.join(*parts[:package_depth]) settings['ROOT_DIR'] = root_dir if local_settings: init_local_settings(settings, prompt=prompt, quiet=quiet) # NOTE: We can't simply use Django's timezone.now() here because it # accesses settings.USE_TZ, but at this point the settings # may not be considered fully configured by Django, so we have # to do this to avoid an ImproperlyConfigured exception. use_tz = settings.get('USE_TZ', False) now = datetime.utcnow().replace(tzinfo=timezone.utc) if use_tz else datetime.now() settings.setdefault('START_TIME', now) # Remove the MIDDLEWARE_CLASSES setting on Django >= 1.10, but only # if the MIDDLEWARE setting is present *and* set. if DJANGO_VERSION[:2] >= (1, 10): if settings.get('MIDDLEWARE'): settings.pop('MIDDLEWARE_CLASSES', None) # Drop irrelevant settings. for name in drop: del settings[name] for processor in settings_processors: processor(settings) return settings def init_local_settings(settings, prompt=None, quiet=None): """Initialize the local settings defined in ``settings``. Args: settings (dict): A dict of settings as you'd get from calling ``globals()`` in a Django settings module. quiet (bool): Squelch standard out when loading local settings. .. note:: If your project has additional local settings, they must be defined *before* this function is called. """ suggested_secret_key = base64.b64encode(os.urandom(64)).decode('utf-8') defaults = { 'DEBUG': LocalSetting(False), 'ADMINS': LocalSetting([]), 'ALLOWED_HOSTS': LocalSetting([]), 'GOOGLE': { 'analytics': { 'tracking_id': LocalSetting( None, doc='Enter Google Analytics tracking ID (UA-NNNNNNNN-N)' ), }, }, 'MANAGERS': LocalSetting([]), 'SECRET_KEY': SecretSetting(doc='Suggested: "{suggested_secret_key}"'.format(**locals())), 'DATABASES': { 'default': { 'ENGINE': LocalSetting('django.db.backends.postgresql'), 'NAME': LocalSetting(settings.get('PACKAGE', NO_DEFAULT)), 'USER': LocalSetting(''), 'PASSWORD': SecretSetting(), 'HOST': LocalSetting(''), }, }, } for k, v in defaults.items(): settings.setdefault(k, v) settings.update(load_and_check_settings(settings, prompt=prompt, quiet=quiet)) def get_setting(name, default=NO_DEFAULT, settings=None): """Get setting for ``name``, falling back to ``default`` if passed. ``name`` should be a string like 'ARC.cdn.hosts' or 'X.Y.0'. The name is split on dots into path segments, then the settings are traversed like this: - Set current value to django.conf.settings.{first segment} - For each other segment - Get current_value[segment] if current value is a dict - Get current_value[int(segment)] if current value is a list If the setting isn't found, the ``default`` value will be returned if specified; otherwise, a ``KeyError`` will be raised. ``settings`` can be used to retrieve the setting from a settings object other than the default ``django.conf.settings``. :class:`local_settings.settings.DottedAccessDict` is used to implement this functionality. See the django-local-settings project for more details about settings traversal. """ if settings is None: settings = django_settings if not isinstance(settings, LocalSettings): settings = DottedAccessDict(get_settings_dict(settings)) return settings.get_dotted(name, default) class PrefixedSettings: """Read-only settings for a given ``prefix``. Args: prefix: An upper case setting name such as "CAS" or "LDAP" defaults: A dict of defaults for the prefix The idea is to make it easy to fetch sub-settings within a given package. For example:: >>> DEFAULT_CAS_SETTINGS = { ... 'base_url': 'https://example.com/cas/', ... # plus a bunch more CAS settings... ... } >>> cas_settings = PrefixedSettings('CAS', DEFAULT_CAS_SETTINGS) >>> cas_settings.get('base_url') 'https://example.com/cas/' >>> cas_settings.get('logout_path', default='/default/logout/path') '/default/logout/path' See the ``cas``, ``ldap``, and ``masquerade`` packages for concrete examples of how this is used. """ def __init__(self, prefix, defaults=None, settings=None): defaults = get_settings_dict(defaults) settings = get_settings_dict(settings if settings is not None else django_settings) self.__prefix = prefix self.__defaults = DottedAccessDict(defaults) self.__settings = DottedAccessDict(settings) def get(self, name, default=NO_DEFAULT): """Get setting for configured ``prefix``. Args: name: setting name without ``prefix`` default: value to use if setting isn't present in the project's settings or in the ``defaults`` Returns: object: Value of setting Attempt to get setting from: 1. Project settings for ``prefix`` 2. Default settings from ``defaults`` 3. ``default`` arg Raises: KeyError: When the setting isn't found in the project's settings or in the ``defaults`` and no fallback is passed via the ``default`` keyword arg """ qualified_name = '{prefix}.{name}'.format(prefix=self.__prefix, name=name) try: return self.__settings.get_dotted(qualified_name) except KeyError: return self.__defaults.get_dotted(name, default=default) def __getitem__(self, key): return PrefixedSettings.get(self, key, NO_DEFAULT) # Internal helper functions def get_settings_dict(settings): """For a given settings object, return a dict. Args: settings (object): Usually either a Django settings object or a dict; can also be a sequence that can be converted to a dict or some other non-dict mapping Returns: empty dict: ``settings`` is ``None`` vars(settings._wrapped): ``settings`` is (or appears to be) a Django settings object dict(settings): ``settings`` is any other type of object """ if settings is None: return {} if hasattr(settings, '_wrapped'): # A Django settings object # TODO: Find a better way to check for Django settings? return vars(settings._wrapped) return dict(settings) def derive_top_level_package_name(package_level=0, stack_level=1): """Return top level package name. Args: package_level (int): How many package levels down the caller is. 0 indicates this function is being called from the top level package, 1 indicates that it's being called from a sub-package, etc. stack_level (int): How many levels down the stack the caller is from here. 1 indicates this function is being called from module scope, 2 indicates this function is being called from another function, etc. This will first get the package name of the module containing the caller. ``package_level`` segments will be then be chopped off of the package name. If this is called from a sub-package, ``package_level`` will have to be adjusted accordingly (add 1 for each sub-package). If this is called indirectly (e.g., via :func:`init_settings`) ``stack_level`` will have to be adjusted accordingly (add 1 for each nested function). """ assert package_level >= 0, 'Package level should be greater than or equal to 0' assert stack_level > 0, 'Stack level should be greater than 0' frame = inspect.stack()[stack_level][0] package = frame.f_globals['__package__'] package = package.rsplit('.', package_level)[0] return package def get_module_globals(stack_level=2): frame = inspect.stack()[stack_level][0] return frame.f_globals
# Copyright (c) 2010-2012 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. from swift import gettext_ as _ from urllib import unquote from swift.account.utils import account_listing_response from swift.common.request_helpers import get_listing_content_type from swift.common.utils import public from swift.common.constraints import check_metadata, MAX_ACCOUNT_NAME_LENGTH from swift.common.http import HTTP_NOT_FOUND, HTTP_GONE from swift.proxy.controllers.base import Controller, clear_info_cache from swift.common.swob import HTTPBadRequest, HTTPMethodNotAllowed class AccountController(Controller): """WSGI controller for account requests""" server_type = 'Account' def __init__(self, app, account_name, **kwargs): Controller.__init__(self, app) self.account_name = unquote(account_name) if not self.app.allow_account_management: self.allowed_methods.remove('PUT') self.allowed_methods.remove('DELETE') def GETorHEAD(self, req): """Handler for HTTP GET/HEAD requests.""" if len(self.account_name) > MAX_ACCOUNT_NAME_LENGTH: resp = HTTPBadRequest(request=req) resp.body = 'Account name length of %d longer than %d' % \ (len(self.account_name), MAX_ACCOUNT_NAME_LENGTH) return resp partition, nodes = self.app.account_ring.get_nodes(self.account_name) resp = self.GETorHEAD_base( req, _('Account'), self.app.account_ring, partition, req.path_info.rstrip('/')) if resp.status_int == HTTP_NOT_FOUND: if resp.headers.get('X-Account-Status', '').lower() == 'deleted': resp.status = HTTP_GONE elif self.app.account_autocreate: resp = account_listing_response(self.account_name, req, get_listing_content_type(req)) if not req.environ.get('swift_owner', False): for key in self.app.swift_owner_headers: if key in resp.headers: del resp.headers[key] return resp @public def PUT(self, req): """HTTP PUT request handler.""" if not self.app.allow_account_management: return HTTPMethodNotAllowed( request=req, headers={'Allow': ', '.join(self.allowed_methods)}) error_response = check_metadata(req, 'account') if error_response: return error_response if len(self.account_name) > MAX_ACCOUNT_NAME_LENGTH: resp = HTTPBadRequest(request=req) resp.body = 'Account name length of %d longer than %d' % \ (len(self.account_name), MAX_ACCOUNT_NAME_LENGTH) return resp account_partition, accounts = \ self.app.account_ring.get_nodes(self.account_name) headers = self.generate_request_headers(req, transfer=True) clear_info_cache(self.app, req.environ, self.account_name) resp = self.make_requests( req, self.app.account_ring, account_partition, 'PUT', req.path_info, [headers] * len(accounts)) return resp @public def POST(self, req): """HTTP POST request handler.""" if len(self.account_name) > MAX_ACCOUNT_NAME_LENGTH: resp = HTTPBadRequest(request=req) resp.body = 'Account name length of %d longer than %d' % \ (len(self.account_name), MAX_ACCOUNT_NAME_LENGTH) return resp error_response = check_metadata(req, 'account') if error_response: return error_response account_partition, accounts = \ self.app.account_ring.get_nodes(self.account_name) headers = self.generate_request_headers(req, transfer=True) clear_info_cache(self.app, req.environ, self.account_name) resp = self.make_requests( req, self.app.account_ring, account_partition, 'POST', req.path_info, [headers] * len(accounts)) if resp.status_int == HTTP_NOT_FOUND and self.app.account_autocreate: self.autocreate_account(req.environ, self.account_name) resp = self.make_requests( req, self.app.account_ring, account_partition, 'POST', req.path_info, [headers] * len(accounts)) return resp @public def DELETE(self, req): """HTTP DELETE request handler.""" # Extra safety in case someone typos a query string for an # account-level DELETE request that was really meant to be caught by # some middleware. if req.query_string: return HTTPBadRequest(request=req) if not self.app.allow_account_management: return HTTPMethodNotAllowed( request=req, headers={'Allow': ', '.join(self.allowed_methods)}) account_partition, accounts = \ self.app.account_ring.get_nodes(self.account_name) headers = self.generate_request_headers(req) clear_info_cache(self.app, req.environ, self.account_name) resp = self.make_requests( req, self.app.account_ring, account_partition, 'DELETE', req.path_info, [headers] * len(accounts)) return resp
# -*- coding: utf-8 -*- """ Created on Thu Apr 9 21:03:57 2020 @author: Mehul """ #importing the libraries import numpy as np import matplotlib.pyplot as plt import pandas as pd import random import warnings from matplotlib import style from collections import Counter from math import sqrt style.use('fivethirtyeight') #defining knn function def k_nearest_neighbors(data,predict,k=3): distances=[] if(len(data)>=k): #this is not an error it is just a warning , the algorithm still works warnings.warn('The value of k is less than the number of voting groups.') for group in data: #data is a dictionary of lists with different groups of classes for features in data[group]: #features represent the points in the dataset #original way #euclidean_distance=sqrt((features[0]-predict[0])**2+(features[1]-predict[1])**2) #faster way euclidean_distance=np.linalg.norm(np.array(features)-np.array(predict)) distances.append([euclidean_distance,group]) #once we have the distances we dont care about them #we populate the list of votes which has the top k neighbors to the prediction point votes=[i[1] for i in sorted(distances)[:k] ] #using counter we calculate the most common out of the nearest neighbors vote_result=Counter(votes).most_common(1)[0][0] #we can also give our confidence,confidence is the probability of your prediction being right #confidence=Counter(votes).most_common(1)[0][1]/k return vote_result def accuracy_of_result(train_set,test_set): #intialising correct=0 total=0 #testing and finding accuracy for group in test_set: for data in test_set[group]: #iterating through all the data in a class result=k_nearest_neighbors(train_set,data,k=5) if (group==result): correct=correct+1 total=total+1 accuracy=correct/total return accuracy '''' #trial data #our data is in form of dictionary of lists dataset={'k':[[1,2],[2,3,],[3,1]],'r':[[6,5],[7,7],[8,6]]} new_features=[5,7] #plotting the data plt.scatter(new_features[0],new_features[1],s=50) for i in dataset: for j in dataset[i]: print(j) plt.scatter(j[0],j[1],s=100,color=i) #applying knn model result=k_nearest_neighbors(dataset,new_features,k=3)#result represents the class the prediction point belongs to #plotting the prediction plt.scatter(new_features[0],new_features[1],s=50,color=result) for i in dataset: for j in dataset[i]: print(j) plt.scatter(j[0],j[1],s=100,color=i) ''' #Implmenting the model on the test dataset #importing the dataset dataset=pd.read_csv('breast-cancer-wisconsin.data.txt') #replacing missing instances with large numbers dataset.replace('?',-99999,inplace=True) dataset.drop(['id'],1,inplace=True) dataset=dataset.astype(float).values.tolist() #shuffling to data to include some randomness #this does not change the raltionship between the data #this is what can be used for cross-validation random.shuffle(dataset) #splitting the dataset into test set and train set test_size=0.2 #the train set and the test set are dictionary of lists train_set={2:[],4:[]} test_set={2:[],4:[]} #slicing the data into train_data and test_data train_data=dataset[:-int(test_size*len(dataset))] #all the data upto the last 20% test_data=dataset[-int(test_size*len(dataset)):] #the last 20% #populating the dictionary #here we take the data from the train_data and the test_data and use it to populate our dictionaries for i in train_data: train_set[i[-1]].append(i[:-1])# i[-1] represents the class of the particular row for i in test_data: test_set[i[-1]].append(i[:-1])# i[-1] represents the class of the particular row #getting the accuracy of our knn model on the dataset print('Accuracy of the result:',accuracy_of_result(train_set,test_set))
# -*- coding:utf-8 -*- from mongoengine import (IntField, DateTimeField, StringField, ReferenceField, DictField) from model import BaseModel # from ext import db class Account(BaseModel): name = StringField(max_length=5000, null=False) tel = IntField(null=False) password = StringField(max_length=5000, null=False) head_img_key = StringField(max_length=5000, null=False) meta = {'collection': 'account'}
import autofit as af import autolens as al from test_autolens.integration.tests.interferometer import runner test_type = "lens_only" test_name = "lens_x2_light__hyper" data_type = "lens_x2_light" data_resolution = "sma" def make_pipeline( name, phase_folders, real_space_shape_2d=(100, 100), real_space_pixel_scales=(0.1, 0.1), non_linear_class=af.MultiNest, ): class LensPlaneGalaxyX2Phase(al.PhaseInterferometer): def customize_priors(self, results): self.galaxies.lens_0.light.centre_0 = -1.0 self.galaxies.lens_0.light.centre_1 = -1.0 self.galaxies.lens_1.light.centre_0 = 1.0 self.galaxies.lens_1.light.centre_1 = 1.0 phase1 = LensPlaneGalaxyX2Phase( phase_name="phase_1", phase_folders=phase_folders, galaxies=dict( lens_0=al.GalaxyModel(redshift=0.5, light=al.lp.EllipticalSersic), lens_1=al.GalaxyModel(redshift=0.5, light=al.lp.EllipticalSersic), ), real_space_shape_2d=real_space_shape_2d, real_space_pixel_scales=real_space_pixel_scales, non_linear_class=non_linear_class, ) phase1.optimizer.const_efficiency_mode = True phase1.optimizer.n_live_points = 40 phase1.optimizer.sampling_efficiency = 0.8 phase1 = phase1.extend_with_multiple_hyper_phases(hyper_galaxy=True) phase2 = al.PhaseInterferometer( phase_name="phase_2", phase_folders=phase_folders, galaxies=dict( lens_0=al.GalaxyModel( redshift=0.5, light=phase1.result.model.galaxies.lens_0.light, hyper_galaxy=phase1.result.hyper_combined.instance.galaxies.lens_0.hyper_galaxy, ), lens_1=al.GalaxyModel( redshift=0.5, light=phase1.result.model.galaxies.lens_1.light, hyper_galaxy=phase1.result.hyper_combined.instance.galaxies.lens_1.hyper_galaxy, ), ), real_space_shape_2d=real_space_shape_2d, real_space_pixel_scales=real_space_pixel_scales, non_linear_class=non_linear_class, ) phase2.optimizer.const_efficiency_mode = True phase2.optimizer.n_live_points = 40 phase2.optimizer.sampling_efficiency = 0.8 return al.PipelineDataset(name, phase1, phase2) if __name__ == "__main__": import sys runner.run(sys.modules[__name__])
from django.test import TestCase, override_settings from model_bakery import baker from rest_framework.test import APIClient from accounts.models import User from core.models import CoreSettings from rest_framework.authtoken.models import Token class TacticalTestCase(TestCase): def authenticate(self): self.john = User(username="john") self.john.set_password("hunter2") self.john.save() self.alice = User(username="alice") self.alice.set_password("hunter2") self.alice.save() self.client_setup() self.client.force_authenticate(user=self.john) def setup_agent_auth(self, agent): agent_user = User.objects.create_user( username=agent.agent_id, password=User.objects.make_random_password(60) ) Token.objects.create(user=agent_user) def client_setup(self): self.client = APIClient() # fixes tests waiting 2 minutes for mesh token to appear @override_settings( MESH_TOKEN_KEY="41410834b8bb4481446027f87d88ec6f119eb9aa97860366440b778540c7399613f7cabfef4f1aa5c0bd9beae03757e17b2e990e5876b0d9924da59bdf24d3437b3ed1a8593b78d65a72a76c794160d9" ) def setup_coresettings(self): self.coresettings = CoreSettings.objects.create() def check_not_authenticated(self, method, url): self.client.logout() switch = { "get": self.client.get(url), "post": self.client.post(url), "put": self.client.put(url), "patch": self.client.patch(url), "delete": self.client.delete(url), } r = switch.get(method) self.assertEqual(r.status_code, 401) def create_checks(self, policy=None, agent=None, script=None): if not policy and not agent: return # will create 1 of every check and associate it with the policy object passed check_recipes = [ "checks.diskspace_check", "checks.ping_check", "checks.cpuload_check", "checks.memory_check", "checks.winsvc_check", "checks.script_check", "checks.eventlog_check", ] checks = list() for recipe in check_recipes: if not script: checks.append(baker.make_recipe(recipe, policy=policy, agent=agent)) else: checks.append( baker.make_recipe(recipe, policy=policy, agent=agent, script=script) ) return checks
# # Copyright (c) 2017 Intel Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from typing import Union import numpy as np import scipy.signal from rl_coach.agents.policy_optimization_agent import PolicyOptimizationAgent, PolicyGradientRescaler from rl_coach.architectures.tensorflow_components.heads.policy_head import PolicyHeadParameters from rl_coach.architectures.tensorflow_components.heads.v_head import VHeadParameters from rl_coach.architectures.tensorflow_components.middlewares.fc_middleware import FCMiddlewareParameters from rl_coach.base_parameters import AlgorithmParameters, NetworkParameters, \ AgentParameters from rl_coach.logger import screen from rl_coach.memories.episodic.single_episode_buffer import SingleEpisodeBufferParameters from rl_coach.spaces import DiscreteActionSpace from rl_coach.utils import last_sample from rl_coach.architectures.tensorflow_components.embedders.embedder import InputEmbedderParameters class ActorCriticAlgorithmParameters(AlgorithmParameters): def __init__(self): super().__init__() self.policy_gradient_rescaler = PolicyGradientRescaler.A_VALUE self.apply_gradients_every_x_episodes = 5 self.beta_entropy = 0 self.num_steps_between_gradient_updates = 5000 # this is called t_max in all the papers self.gae_lambda = 0.96 self.estimate_state_value_using_gae = False class ActorCriticNetworkParameters(NetworkParameters): def __init__(self): super().__init__() self.input_embedders_parameters = {'observation': InputEmbedderParameters()} self.middleware_parameters = FCMiddlewareParameters() self.heads_parameters = [VHeadParameters(), PolicyHeadParameters()] self.loss_weights = [0.5, 1.0] self.rescale_gradient_from_head_by_factor = [1, 1] self.optimizer_type = 'Adam' self.clip_gradients = 40.0 self.async_training = True class ActorCriticAgentParameters(AgentParameters): def __init__(self): super().__init__(algorithm=ActorCriticAlgorithmParameters(), exploration=None, #TODO this should be different for continuous (ContinuousEntropyExploration) # and discrete (CategoricalExploration) action spaces. memory=SingleEpisodeBufferParameters(), networks={"main": ActorCriticNetworkParameters()}) @property def path(self): return 'rl_coach.agents.actor_critic_agent:ActorCriticAgent' # Actor Critic - https://arxiv.org/abs/1602.01783 class ActorCriticAgent(PolicyOptimizationAgent): def __init__(self, agent_parameters, parent: Union['LevelManager', 'CompositeAgent']=None): super().__init__(agent_parameters, parent) self.last_gradient_update_step_idx = 0 self.action_advantages = self.register_signal('Advantages') self.state_values = self.register_signal('Values') self.value_loss = self.register_signal('Value Loss') self.policy_loss = self.register_signal('Policy Loss') # Discounting function used to calculate discounted returns. def discount(self, x, gamma): return scipy.signal.lfilter([1], [1, -gamma], x[::-1], axis=0)[::-1] def get_general_advantage_estimation_values(self, rewards, values): # values contain n+1 elements (t ... t+n+1), rewards contain n elements (t ... t + n) bootstrap_extended_rewards = np.array(rewards.tolist() + [values[-1]]) # Approximation based calculation of GAE (mathematically correct only when Tmax = inf, # although in practice works even in much smaller Tmax values, e.g. 20) deltas = rewards + self.ap.algorithm.discount * values[1:] - values[:-1] gae = self.discount(deltas, self.ap.algorithm.discount * self.ap.algorithm.gae_lambda) if self.ap.algorithm.estimate_state_value_using_gae: discounted_returns = np.expand_dims(gae + values[:-1], -1) else: discounted_returns = np.expand_dims(np.array(self.discount(bootstrap_extended_rewards, self.ap.algorithm.discount)), 1)[:-1] return gae, discounted_returns def learn_from_batch(self, batch): # batch contains a list of episodes to learn from network_keys = self.ap.network_wrappers['main'].input_embedders_parameters.keys() # get the values for the current states result = self.networks['main'].online_network.predict(batch.states(network_keys)) current_state_values = result[0] self.state_values.add_sample(current_state_values) # the targets for the state value estimator num_transitions = batch.size state_value_head_targets = np.zeros((num_transitions, 1)) # estimate the advantage function action_advantages = np.zeros((num_transitions, 1)) if self.policy_gradient_rescaler == PolicyGradientRescaler.A_VALUE: if batch.game_overs()[-1]: R = 0 else: R = self.networks['main'].online_network.predict(last_sample(batch.next_states(network_keys)))[0] for i in reversed(range(num_transitions)): R = batch.rewards()[i] + self.ap.algorithm.discount * R state_value_head_targets[i] = R action_advantages[i] = R - current_state_values[i] elif self.policy_gradient_rescaler == PolicyGradientRescaler.GAE: # get bootstraps bootstrapped_value = self.networks['main'].online_network.predict(last_sample(batch.next_states(network_keys)))[0] values = np.append(current_state_values, bootstrapped_value) if batch.game_overs()[-1]: values[-1] = 0 # get general discounted returns table gae_values, state_value_head_targets = self.get_general_advantage_estimation_values(batch.rewards(), values) action_advantages = np.vstack(gae_values) else: screen.warning("WARNING: The requested policy gradient rescaler is not available") action_advantages = action_advantages.squeeze(axis=-1) actions = batch.actions() if not isinstance(self.spaces.action, DiscreteActionSpace) and len(actions.shape) < 2: actions = np.expand_dims(actions, -1) # train result = self.networks['main'].online_network.accumulate_gradients({**batch.states(network_keys), 'output_1_0': actions}, [state_value_head_targets, action_advantages]) # logging total_loss, losses, unclipped_grads = result[:3] self.action_advantages.add_sample(action_advantages) self.unclipped_grads.add_sample(unclipped_grads) self.value_loss.add_sample(losses[0]) self.policy_loss.add_sample(losses[1]) return total_loss, losses, unclipped_grads def get_prediction(self, states): tf_input_state = self.prepare_batch_for_inference(states, "main") return self.networks['main'].online_network.predict(tf_input_state)[1:] # index 0 is the state value
""" parquet compat """ from __future__ import annotations import io import os from typing import Any from warnings import catch_warnings from pandas._typing import ( FilePath, ReadBuffer, StorageOptions, WriteBuffer, ) from pandas.compat._optional import import_optional_dependency from pandas.errors import AbstractMethodError from pandas.util._decorators import doc from pandas import ( DataFrame, MultiIndex, get_option, ) from pandas.core.shared_docs import _shared_docs from pandas.util.version import Version from pandas.io.common import ( IOHandles, get_handle, is_fsspec_url, is_url, stringify_path, ) def get_engine(engine: str) -> BaseImpl: """return our implementation""" if engine == "auto": engine = get_option("io.parquet.engine") if engine == "auto": # try engines in this order engine_classes = [PyArrowImpl, FastParquetImpl] error_msgs = "" for engine_class in engine_classes: try: return engine_class() except ImportError as err: error_msgs += "\n - " + str(err) raise ImportError( "Unable to find a usable engine; " "tried using: 'pyarrow', 'fastparquet'.\n" "A suitable version of " "pyarrow or fastparquet is required for parquet " "support.\n" "Trying to import the above resulted in these errors:" f"{error_msgs}" ) if engine == "pyarrow": return PyArrowImpl() elif engine == "fastparquet": return FastParquetImpl() raise ValueError("engine must be one of 'pyarrow', 'fastparquet'") def _get_path_or_handle( path: FilePath | ReadBuffer[bytes] | WriteBuffer[bytes], fs: Any, storage_options: StorageOptions = None, mode: str = "rb", is_dir: bool = False, ) -> tuple[ FilePath | ReadBuffer[bytes] | WriteBuffer[bytes], IOHandles[bytes] | None, Any ]: """File handling for PyArrow.""" path_or_handle = stringify_path(path) if is_fsspec_url(path_or_handle) and fs is None: fsspec = import_optional_dependency("fsspec") fs, path_or_handle = fsspec.core.url_to_fs( path_or_handle, **(storage_options or {}) ) elif storage_options and (not is_url(path_or_handle) or mode != "rb"): # can't write to a remote url # without making use of fsspec at the moment raise ValueError("storage_options passed with buffer, or non-supported URL") handles = None if ( not fs and not is_dir and isinstance(path_or_handle, str) and not os.path.isdir(path_or_handle) ): # use get_handle only when we are very certain that it is not a directory # fsspec resources can also point to directories # this branch is used for example when reading from non-fsspec URLs handles = get_handle( path_or_handle, mode, is_text=False, storage_options=storage_options ) fs = None path_or_handle = handles.handle return path_or_handle, handles, fs class BaseImpl: @staticmethod def validate_dataframe(df: DataFrame): if not isinstance(df, DataFrame): raise ValueError("to_parquet only supports IO with DataFrames") # must have value column names for all index levels (strings only) if isinstance(df.columns, MultiIndex): if not all( x.inferred_type in {"string", "empty"} for x in df.columns.levels ): raise ValueError( """ parquet must have string column names for all values in each level of the MultiIndex """ ) else: if df.columns.inferred_type not in {"string", "empty"}: raise ValueError("parquet must have string column names") # index level names must be strings valid_names = all( isinstance(name, str) for name in df.index.names if name is not None ) if not valid_names: raise ValueError("Index level names must be strings") def write(self, df: DataFrame, path, compression, **kwargs): raise AbstractMethodError(self) def read(self, path, columns=None, **kwargs): raise AbstractMethodError(self) class PyArrowImpl(BaseImpl): def __init__(self): import_optional_dependency( "pyarrow", extra="pyarrow is required for parquet support." ) import pyarrow.parquet # import utils to register the pyarrow extension types import pandas.core.arrays._arrow_utils # noqa:F401 self.api = pyarrow def write( self, df: DataFrame, path: FilePath | WriteBuffer[bytes], compression: str | None = "snappy", index: bool | None = None, storage_options: StorageOptions = None, partition_cols: list[str] | None = None, **kwargs, ): self.validate_dataframe(df) from_pandas_kwargs: dict[str, Any] = {"schema": kwargs.pop("schema", None)} if index is not None: from_pandas_kwargs["preserve_index"] = index table = self.api.Table.from_pandas(df, **from_pandas_kwargs) path_or_handle, handles, kwargs["filesystem"] = _get_path_or_handle( path, kwargs.pop("filesystem", None), storage_options=storage_options, mode="wb", is_dir=partition_cols is not None, ) try: if partition_cols is not None: # writes to multiple files under the given path self.api.parquet.write_to_dataset( table, path_or_handle, compression=compression, partition_cols=partition_cols, **kwargs, ) else: # write to single output file self.api.parquet.write_table( table, path_or_handle, compression=compression, **kwargs ) finally: if handles is not None: handles.close() def read( self, path, columns=None, use_nullable_dtypes=False, storage_options: StorageOptions = None, **kwargs, ): kwargs["use_pandas_metadata"] = True to_pandas_kwargs = {} if use_nullable_dtypes: import pandas as pd mapping = { self.api.int8(): pd.Int8Dtype(), self.api.int16(): pd.Int16Dtype(), self.api.int32(): pd.Int32Dtype(), self.api.int64(): pd.Int64Dtype(), self.api.uint8(): pd.UInt8Dtype(), self.api.uint16(): pd.UInt16Dtype(), self.api.uint32(): pd.UInt32Dtype(), self.api.uint64(): pd.UInt64Dtype(), self.api.bool_(): pd.BooleanDtype(), self.api.string(): pd.StringDtype(), } to_pandas_kwargs["types_mapper"] = mapping.get manager = get_option("mode.data_manager") if manager == "array": to_pandas_kwargs["split_blocks"] = True # type: ignore[assignment] path_or_handle, handles, kwargs["filesystem"] = _get_path_or_handle( path, kwargs.pop("filesystem", None), storage_options=storage_options, mode="rb", ) try: result = self.api.parquet.read_table( path_or_handle, columns=columns, **kwargs ).to_pandas(**to_pandas_kwargs) if manager == "array": result = result._as_manager("array", copy=False) return result finally: if handles is not None: handles.close() class FastParquetImpl(BaseImpl): def __init__(self): # since pandas is a dependency of fastparquet # we need to import on first use fastparquet = import_optional_dependency( "fastparquet", extra="fastparquet is required for parquet support." ) self.api = fastparquet def write( self, df: DataFrame, path, compression="snappy", index=None, partition_cols=None, storage_options: StorageOptions = None, **kwargs, ): self.validate_dataframe(df) # thriftpy/protocol/compact.py:339: # DeprecationWarning: tostring() is deprecated. # Use tobytes() instead. if "partition_on" in kwargs and partition_cols is not None: raise ValueError( "Cannot use both partition_on and " "partition_cols. Use partition_cols for partitioning data" ) elif "partition_on" in kwargs: partition_cols = kwargs.pop("partition_on") if partition_cols is not None: kwargs["file_scheme"] = "hive" # cannot use get_handle as write() does not accept file buffers path = stringify_path(path) if is_fsspec_url(path): fsspec = import_optional_dependency("fsspec") # if filesystem is provided by fsspec, file must be opened in 'wb' mode. kwargs["open_with"] = lambda path, _: fsspec.open( path, "wb", **(storage_options or {}) ).open() elif storage_options: raise ValueError( "storage_options passed with file object or non-fsspec file path" ) with catch_warnings(record=True): self.api.write( path, df, compression=compression, write_index=index, partition_on=partition_cols, **kwargs, ) def read( self, path, columns=None, storage_options: StorageOptions = None, **kwargs ): parquet_kwargs: dict[str, Any] = {} use_nullable_dtypes = kwargs.pop("use_nullable_dtypes", False) if Version(self.api.__version__) >= Version("0.7.1"): # We are disabling nullable dtypes for fastparquet pending discussion parquet_kwargs["pandas_nulls"] = False if use_nullable_dtypes: raise ValueError( "The 'use_nullable_dtypes' argument is not supported for the " "fastparquet engine" ) path = stringify_path(path) handles = None if is_fsspec_url(path): fsspec = import_optional_dependency("fsspec") if Version(self.api.__version__) > Version("0.6.1"): parquet_kwargs["fs"] = fsspec.open( path, "rb", **(storage_options or {}) ).fs else: parquet_kwargs["open_with"] = lambda path, _: fsspec.open( path, "rb", **(storage_options or {}) ).open() elif isinstance(path, str) and not os.path.isdir(path): # use get_handle only when we are very certain that it is not a directory # fsspec resources can also point to directories # this branch is used for example when reading from non-fsspec URLs handles = get_handle( path, "rb", is_text=False, storage_options=storage_options ) path = handles.handle parquet_file = self.api.ParquetFile(path, **parquet_kwargs) result = parquet_file.to_pandas(columns=columns, **kwargs) if handles is not None: handles.close() return result @doc(storage_options=_shared_docs["storage_options"]) def to_parquet( df: DataFrame, path: FilePath | WriteBuffer[bytes] | None = None, engine: str = "auto", compression: str | None = "snappy", index: bool | None = None, storage_options: StorageOptions = None, partition_cols: list[str] | None = None, **kwargs, ) -> bytes | None: """ Write a DataFrame to the parquet format. Parameters ---------- df : DataFrame path : str, path object, file-like object, or None, default None String, path object (implementing ``os.PathLike[str]``), or file-like object implementing a binary ``write()`` function. If None, the result is returned as bytes. If a string, it will be used as Root Directory path when writing a partitioned dataset. The engine fastparquet does not accept file-like objects. .. versionchanged:: 1.2.0 engine : {{'auto', 'pyarrow', 'fastparquet'}}, default 'auto' Parquet library to use. If 'auto', then the option ``io.parquet.engine`` is used. The default ``io.parquet.engine`` behavior is to try 'pyarrow', falling back to 'fastparquet' if 'pyarrow' is unavailable. compression : {{'snappy', 'gzip', 'brotli', 'lz4', 'zstd', None}}, default 'snappy'. Name of the compression to use. Use ``None`` for no compression. The supported compression methods actually depend on which engine is used. For 'pyarrow', 'snappy', 'gzip', 'brotli', 'lz4', 'zstd' are all supported. For 'fastparquet', only 'gzip' and 'snappy' are supported. index : bool, default None If ``True``, include the dataframe's index(es) in the file output. If ``False``, they will not be written to the file. If ``None``, similar to ``True`` the dataframe's index(es) will be saved. However, instead of being saved as values, the RangeIndex will be stored as a range in the metadata so it doesn't require much space and is faster. Other indexes will be included as columns in the file output. partition_cols : str or list, optional, default None Column names by which to partition the dataset. Columns are partitioned in the order they are given. Must be None if path is not a string. {storage_options} .. versionadded:: 1.2.0 kwargs Additional keyword arguments passed to the engine Returns ------- bytes if no path argument is provided else None """ if isinstance(partition_cols, str): partition_cols = [partition_cols] impl = get_engine(engine) path_or_buf: FilePath | WriteBuffer[bytes] = io.BytesIO() if path is None else path impl.write( df, path_or_buf, compression=compression, index=index, partition_cols=partition_cols, storage_options=storage_options, **kwargs, ) if path is None: assert isinstance(path_or_buf, io.BytesIO) return path_or_buf.getvalue() else: return None @doc(storage_options=_shared_docs["storage_options"]) def read_parquet( path, engine: str = "auto", columns=None, storage_options: StorageOptions = None, use_nullable_dtypes: bool = False, **kwargs, ): """ Load a parquet object from the file path, returning a DataFrame. Parameters ---------- path : str, path object or file-like object String, path object (implementing ``os.PathLike[str]``), or file-like object implementing a binary ``read()`` function. The string could be a URL. Valid URL schemes include http, ftp, s3, gs, and file. For file URLs, a host is expected. A local file could be: ``file://localhost/path/to/table.parquet``. A file URL can also be a path to a directory that contains multiple partitioned parquet files. Both pyarrow and fastparquet support paths to directories as well as file URLs. A directory path could be: ``file://localhost/path/to/tables`` or ``s3://bucket/partition_dir``. engine : {{'auto', 'pyarrow', 'fastparquet'}}, default 'auto' Parquet library to use. If 'auto', then the option ``io.parquet.engine`` is used. The default ``io.parquet.engine`` behavior is to try 'pyarrow', falling back to 'fastparquet' if 'pyarrow' is unavailable. columns : list, default=None If not None, only these columns will be read from the file. {storage_options} .. versionadded:: 1.3.0 use_nullable_dtypes : bool, default False If True, use dtypes that use ``pd.NA`` as missing value indicator for the resulting DataFrame. (only applicable for the ``pyarrow`` engine) As new dtypes are added that support ``pd.NA`` in the future, the output with this option will change to use those dtypes. Note: this is an experimental option, and behaviour (e.g. additional support dtypes) may change without notice. .. versionadded:: 1.2.0 **kwargs Any additional kwargs are passed to the engine. Returns ------- DataFrame """ impl = get_engine(engine) return impl.read( path, columns=columns, storage_options=storage_options, use_nullable_dtypes=use_nullable_dtypes, **kwargs, )
from builtins import zip from builtins import range from builtins import object import re import csv import unicodecsv from bs4 import BeautifulSoup from openelex.base.load import BaseLoader from openelex.models import RawResult from openelex.lib.text import ocd_type_id, slugify from .datasource import Datasource class LoadResults(object): """Entry point for data loading. Determines appropriate loader for file and triggers load process. """ def run(self, mapping): election_id = mapping['election'] if '2002' in election_id: loader = MDLoader2002() elif '2000' in election_id and 'primary' in election_id: loader = MDLoader2000Primary() elif '2008' in election_id and 'special' in election_id: loader = MDLoader2008Special() else: loader = MDLoader() loader.run(mapping) class CountyOCDMixin(object): """ Loader mixin that adds convenience method for generating county-level OCD IDs """ def _get_county_ocd_id(self, jurisdiction): """ Build an OCD ID for a county-level jurisdiction when the mapping reflects the state OCD ID. """ # Baltimore City is treated like a county in the results, but we # should use the city's OCD ID if jurisdiction == "Baltimore City": ocd_id = "{}/place:baltimore".format(self.mapping['ocd_id']) else: ocd_id = "{}/county:{}".format(self.mapping['ocd_id'], ocd_type_id(jurisdiction)) return ocd_id class MDBaseLoader(CountyOCDMixin, BaseLoader): datasource = Datasource() target_offices = set([ 'President - Vice Pres', 'President and Vice President of the United States', 'U.S. Senator', 'U.S. Congress', 'Representative in Congress', 'Governor / Lt. Governor', 'Comptroller', 'Attorney General', 'State Senator', 'House of Delegates', ]) district_offices = set([ 'U.S. Congress', 'Representative in Congress', 'State Senator', "House of Delegates", ]) def _skip_row(self, row): """ Should this row be skipped? This should be implemented in subclasses. """ return False class MDLoader(MDBaseLoader): """ Parse Maryland election results for the 2000 general election and all elections after 2002. """ def load(self): with self._file_handle as csvfile: results = [] reader = unicodecsv.DictReader(csvfile) for row in reader: # Skip non-target offices if self._skip_row(row): continue elif 'state_legislative' in self.source: results.extend(self._prep_state_leg_results(row)) elif 'precinct' in self.source: results.append(self._prep_precinct_result(row)) else: results.append(self._prep_county_result(row)) RawResult.objects.insert(results) def _skip_row(self, row): if row['Office Name'] == None: return True return row['Office Name'].strip() not in self.target_offices def _build_contest_kwargs(self, row, primary_type): kwargs = { 'office': row['Office Name'].strip(), 'district': row['Office District'].strip(), } # Add party if it's a primary #TODO: QUESTION: Should semi-closed also have party? if primary_type == 'closed': kwargs['primary_party'] = row['Party'].strip() return kwargs def _build_candidate_kwargs(self, row): try: full_name = row['Candidate Name'].strip() except KeyError: # 2000 results use "Candidate" for the column name full_name = row['Candidate'].strip() slug = slugify(full_name, substitute='-') kwargs = { 'full_name': full_name, #TODO: QUESTION: Do we need this? if so, needs a matching model field on RawResult 'name_slug': slug, } return kwargs def _base_kwargs(self, row): "Build base set of kwargs for RawResult" # TODO: Can this just be called once? kwargs = self._build_common_election_kwargs() contest_kwargs = self._build_contest_kwargs(row, kwargs['primary_type']) candidate_kwargs = self._build_candidate_kwargs(row) kwargs.update(contest_kwargs) kwargs.update(candidate_kwargs) return kwargs def _get_state_ocd_id(self): """ Get the state portion of the mapping's OCD ID This is neccessary because the mappings for some files have OCD IDs like 'ocd-division/country:us/state:md/sldl:all'. We need to extract the state portion, 'ocd-division/country:us/state:md' to build OCD IDs for lower jurisdictions. """ bits = [] state_bit = "state:"+ self.state for bit in self.mapping['ocd_id'].split('/'): bits.append(bit) if bit == state_bit: break return '/'.join(bits) def _prep_state_leg_results(self, row): kwargs = self._base_kwargs(row) kwargs.update({ 'reporting_level': 'state_legislative', 'winner': row['Winner'].strip(), 'write_in': self._writein(row), 'party': row['Party'].strip(), }) try: kwargs['write_in'] = row['Write-In?'].strip() # at the contest-level except KeyError as e: pass results = [] for field, val in list(row.items()): clean_field = field.strip() # Legislative fields prefixed with LEGS if not clean_field.startswith('LEGS'): continue kwargs.update({ 'jurisdiction': clean_field, # Remove the "LEGS " from the ocd_id. This is a somewhat # transformy action, but do it here in order to make the OCD IDs # as usable as possible when we bake out raw results 'ocd_id': "{}/sldl:{}".format(self._get_state_ocd_id(), ocd_type_id(clean_field.replace("LEGS ", ""))), 'votes': self._votes(val), }) results.append(RawResult(**kwargs)) return results def _prep_county_result(self, row): kwargs = self._base_kwargs(row) vote_brkdown_fields = [ ('election_day', 'Election Night Votes'), ('absentee', 'Absentees Votes'), ('provisional', 'Provisional Votes'), ('second_absentee', '2nd Absentees Votes'), ] vote_breakdowns = {} for field, key in vote_brkdown_fields: try: vote_breakdowns[field] = self._votes(row[key].strip()) except KeyError: pass kwargs.update({ 'reporting_level': 'county', 'jurisdiction': self.mapping['name'], 'ocd_id': self.mapping['ocd_id'], 'party': row['Party'].strip(), 'votes': self._votes(row['Total Votes']), 'vote_breakdowns': vote_breakdowns, }) if (kwargs['office'] not in self.district_offices and kwargs['district'] != ''): kwargs['reporting_level'] = 'congressional_district_by_county' kwargs['reporting_district'] = kwargs['district'] del kwargs['district'] return RawResult(**kwargs) def _prep_precinct_result(self, row): kwargs = self._base_kwargs(row) precinct = "%s-%s" % (row['Election District'], row['Election Precinct'].strip()) ocd_id = "{}/precinct:{}".format(self.mapping['ocd_id'], ocd_type_id(precinct)) kwargs.update({ 'reporting_level': 'precinct', 'jurisdiction': precinct, 'parent_jurisdiction': self.mapping['name'], 'ocd_id': ocd_id, 'party': row['Party'].strip(), 'votes': self._votes(row['Election Night Votes']), 'votes_type': 'election_day', 'winner': row['Winner'], 'write_in': self._writein(row), }) return RawResult(**kwargs) def _votes(self, val): """ Returns cleaned version of votes or 0 if it's a non-numeric value. """ if val.strip() == '': return 0 try: return int(float(val)) except ValueError: # Count'y convert value from string return 0 def _writein(self, row): # sometimes write-in field not present try: write_in = row['Write-In?'].strip() except KeyError: write_in = None return write_in class MDLoader2002(MDBaseLoader): """ Loads Maryland results for 2002. Format: Maryland results for 2002 are in a delimited text file where the delimiter is '|'. Fields: 0: Office 1: Office District - '-' is used to denote null values 2: County 3: Last Name - "zz998" is used for write-in candidates 4: Middle Name - "\\N" is used to denote null values 5: First Name - "Other Write-Ins" is used for write-in candidates 6: Party 7: Winner - Value is 0 or 1 8: UNKNOWN - Values are "(Vote for One)", "(Vote for No More Than Three)", etc. 9: Votes 10: UNKNOWN - Values are "\\N" for every row Sample row: House of Delegates |32 |Anne Arundel County |Burton |W. |Robert |Republican | 0|(Vote for No More Than Three) | 1494|\\N Notes: In the general election file, there are rows for judges and for "Statewide Ballot Questions". The columns in these rows are shifted over, but we can ignore these rows since we're not interested in these offices. """ def load(self): headers = [ 'office', 'district', 'jurisdiction', 'family_name', 'additional_name', 'given_name', 'party', 'winner', 'vote_type', 'votes', 'fill2' ] self._common_kwargs = self._build_common_election_kwargs() self._common_kwargs['reporting_level'] = 'county' # Store result instances for bulk loading results = [] with self._file_handle as csvfile: reader = unicodecsv.DictReader(csvfile, fieldnames=headers, delimiter='|') for row in reader: if self._skip_row(row): continue rr_kwargs = self._common_kwargs.copy() if rr_kwargs['primary_type'] == 'closed': rr_kwargs['primary_party'] = row['party'].strip() rr_kwargs.update(self._build_contest_kwargs(row)) rr_kwargs.update(self._build_candidate_kwargs(row)) jurisdiction = row['jurisdiction'].strip() rr_kwargs.update({ 'party': row['party'].strip(), 'jurisdiction': jurisdiction, 'ocd_id': self._get_county_ocd_id(jurisdiction), 'office': row['office'].strip(), 'district': row['district'].strip(), 'votes': int(row['votes'].strip()), }) results.append(RawResult(**rr_kwargs)) RawResult.objects.insert(results) def _skip_row(self, row): return row['office'].strip() not in self.target_offices def _build_contest_kwargs(self, row): return { 'office': row['office'].strip(), 'district': row['district'].strip(), } def _build_candidate_kwargs(self, row): return { 'family_name': row['family_name'].strip(), 'given_name': row['given_name'].strip(), 'additional_name': row['additional_name'].strip(), } class MDLoader2000Primary(MDBaseLoader): office_choices = [ "President and Vice President of the United States", "U.S. Senator", "Representative in Congress", "Judge of the Circuit Court", "Female Delegates and Alternate to the Democratic National Convention", "Female Delegates to the Democratic National Convention", "Male Delegates to the Democratic National Convention", "Male Delegates and Alternate to the Democratic National Convention", "Delegates to the Republican National Convention", ] def load(self): candidates = {} results = [] last_office = None last_party = None last_district = None common_kwargs = self._build_common_election_kwargs() with self._file_handle as csvfile: reader = csv.reader(csvfile) for row in reader: if not len(row): continue # Skip blank lines # determine if this is a row with an office office, party, district = self._parse_header(row) if office: # It's a header row if office in self.target_offices: # It's an office we care about. Save the office and # party for the next row last_office = office last_party = party last_district = district else: last_office = None last_party = None last_district = None elif last_office and row[0] == '': # Candidate name row candidates, winner_name = self._parse_candidates(row) elif last_office: # has to be a county result new_results = self._parse_results(row, last_office, last_party, last_district, candidates, winner_name, common_kwargs) results.extend(new_results) RawResult.objects.insert(results) def _parse_header(self, row): """ Returns a tuple of office and party and congressional district if the row is a header. Returns (None, None, None) for a non-header row. Note that the district doesn't represent the district of the office """ office = self._parse_office(row) if office: party = self._parse_party(row) district = self._parse_district(row) else: party = None district = None return office, party, district def _parse_office(self, row): for o in self.office_choices: if o in row[0]: return o return None def _parse_party(self, row): if 'Democratic' in row[0]: return 'Democratic' elif 'Republican' in row[0]: return 'Republican' else: return None def _parse_district(self, row): if 'District' not in row[0]: return None return re.search(r'(\d+)', row[0]).groups(0)[0] def _parse_candidates(self, row): candidates = [] for col in row: if col != '': full_name = col.strip() if 'Winner' in full_name: # Trim winner from candidate name full_name, remainder = full_name.split(' Winner') winner = full_name candidates.append(full_name) return candidates, winner # TODO: QUESTION: How to handle "Uncomitted to any ..." values def _parse_results(self, row, office, party, district, candidates, winner_name, common_kwargs): results = [] cols = [x.strip() for x in row if x != ''] county = cols[0].strip() cand_results = list(zip(candidates, cols[1:])) for cand, votes in cand_results: result_kwargs = common_kwargs.copy() result_kwargs.update({ 'jurisdiction': county, 'ocd_id': self._get_county_ocd_id(county), 'office': office, 'party': party, 'full_name': cand, 'votes': int(votes), }) if result_kwargs['primary_type'] == 'closed': result_kwargs['primary_party'] = party if office == "Representative in Congress": # In the case of U.S. representatives, the district represents # the office district. In all other cases, it just # represents the level of result aggregation. result_kwargs['district'] = district if cand == winner_name: result_kwargs['winner'] = 'Winner' # Try to figure out if this is a case where results are # provided by congressional district split by county and # record this. result_kwargs['reporting_level'] = self._get_reporting_level(district) if result_kwargs['reporting_level'] == 'congressional_district_by_county': result_kwargs['reporting_district'] = district results.append(RawResult(**result_kwargs)) return results def _get_reporting_level(self, district): """ Returns the reporting level based on the value of the results' district. This deals with the way in which results for 2000 primaries are returned broken down by both congressional district, split by county. """ if district: return "congressional_district_by_county" else: return "county" class MDLoader2008Special(CountyOCDMixin, BaseLoader): """ Loader for the Maryland 2008 4th Congressional District Special election results """ datasource = Datasource() def load(self): table = self._get_html_table() rows = self._parse_html_table(table) winner_name = self._parse_winner_name(table) candidate_attrs = self._parse_candidates_and_parties(rows[0], winner_name) results = self._parse_results(rows[1:3], candidate_attrs) RawResult.objects.insert(results) def _get_html_table(self): soup = BeautifulSoup(self._file_handle, 'html.parser') return soup.find(text=re.compile("Donna Edwards")).parent.parent.parent def _parse_html_table(self, table): rows = [] for tr in table.find_all('tr'): rows.append(self._parse_html_table_row(tr)) return rows def _parse_html_table_row(self, tr): row = [] cells = tr.find_all('th') + tr.find_all('td') for cell in cells: row.append(cell.text.strip()) return row def _parse_winner_name(self, table): cell = table.select('th > img')[0].parent return self._parse_name(cell.text.strip()) def _parse_candidates_and_parties(self, row, winner_name): candidate_attrs = [] for cell in row[1:]: # Skip the first cell. It's a header, "County" attrs = { 'full_name': self._parse_name(cell), 'party': self._parse_party(cell), 'write_in': self._parse_write_in(cell), } if attrs['full_name'] == winner_name: attrs['contest_winner'] = True candidate_attrs.append(attrs) return candidate_attrs def _parse_name(self, s): if s == "Other Write-Ins": return s # We know that all the candidate names are just first and last names bits = re.split(r'\s', s) return ' '.join(bits[:2]) def _parse_party(self, s): if s == "Other Write-Ins": return None bits = re.split(r'\s', s) return bits[2] def _parse_write_in(self, s): if s == "Other Write-Ins": return s elif "Write-In" in s: return "Write-In" else: return "" def _parse_results(self, rows, candidate_attrs): # These raw result attributes will be the same for every result. common_kwargs = self._build_common_election_kwargs() common_kwargs.update({ 'office': "Representative in Congress", 'district': '4', 'reporting_level': "county", }) results = [] for row in rows: county = row[0] for i in range(1, len(row)): kwargs = common_kwargs.copy() kwargs.update(candidate_attrs[i-1]) kwargs['jurisdiction'] = county kwargs['ocd_id'] = self._get_county_ocd_id(county) kwargs['votes'] = self._parse_votes(row[i]) results.append(RawResult(**kwargs)) return results def _parse_votes(self, s): return int(s.split(' ')[0].replace(',', ''))
# -*- coding: utf-8 -*- """ For more information on this file, see https://docs.djangoproject.com/en/1.11/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.11/ref/settings/ """ import os import re from django.template import base # from typing import List # Build paths inside the project like this: os.path.join(BASE_DIR, ...) PROJECT_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) BASE_DIR = os.path.dirname(PROJECT_DIR) DEBUG = False ALLOWED_HOSTS = [] # type: List[str] # Application definition INSTALLED_APPS = [ "django.contrib.admin", "django.contrib.auth", "django.contrib.contenttypes", "django.contrib.sessions", "django.contrib.messages", "django.contrib.staticfiles", "django.contrib.admindocs", "django.contrib.sites", "django.contrib.humanize", {% if cookiecutter.install_allauth == "y" %} "allauth", "allauth.account", "allauth.socialaccount", "allauth.socialaccount.providers.facebook", "allauth.socialaccount.providers.google", {% endif %} "{{cookiecutter.project_slug}}.apps.core.apps.CoreConfig", {%- if cookiecutter.install_allauth == "y" %} "{{cookiecutter.project_slug}}.apps.myauth", "{{cookiecutter.project_slug}}.apps.profile.apps.ProfileConfig", {%- endif %} {%- if cookiecutter.install_rq == "y" %} "django_rq", "rq_scheduler", "django_redis", {%- endif %} {%- if cookiecutter.install_wagtail == "y" %} "wagtail.contrib.forms", "wagtail.contrib.redirects", "wagtail.embeds", "wagtail.sites", "wagtail.users", "wagtail.snippets", "wagtail.documents", "wagtail.images", "wagtail.search", "wagtail.admin", "wagtail.core", "modelcluster", "taggit", {%- endif %} ] MIDDLEWARE = [ "django.middleware.security.SecurityMiddleware", "django.contrib.sessions.middleware.SessionMiddleware", "django.middleware.common.CommonMiddleware", "django.middleware.csrf.CsrfViewMiddleware", "django.contrib.auth.middleware.AuthenticationMiddleware", "django.contrib.messages.middleware.MessageMiddleware", "django.middleware.clickjacking.XFrameOptionsMiddleware", "{{cookiecutter.project_slug}}.contrib.request.global_middleware", {%- if cookiecutter.install_allauth == "y" %} "{{cookiecutter.project_slug}}.apps.profile.middleware.ProfileMiddleware", {%- endif %} {% if cookiecutter.install_wagtail == "y" %} "wagtail.core.middleware.SiteMiddleware", "wagtail.contrib.redirects.middleware.RedirectMiddleware", {% endif -%} ] # List[str] ROOT_URLCONF = "{{cookiecutter.project_slug}}.urls" TEMPLATES = [ { "BACKEND": "django.template.backends.django.DjangoTemplates", "DIRS": ["{{cookiecutter.project_slug}}/templates"], "APP_DIRS": True, "OPTIONS": { "context_processors": [ "django.template.context_processors.debug", "django.template.context_processors.request", "django.contrib.auth.context_processors.auth", "django.contrib.messages.context_processors.messages", "django_settings_export.settings_export", ], }, }, ] WSGI_APPLICATION = "{{cookiecutter.project_slug}}.wsgi.application" {% if cookiecutter.install_allauth == "y" -%} AUTHENTICATION_BACKENDS = ( # Needed to login by username in Django admin, regardless of `allauth` "django.contrib.auth.backends.ModelBackend", # `allauth` specific authentication methods, such as login by e-mail "allauth.account.auth_backends.AuthenticationBackend", ) {%- endif %} # Database # https://docs.djangoproject.com/en/1.11/ref/settings/#databases DATABASES = { "default": { "ENGINE": "django.db.backends.sqlite3", "NAME": os.path.join(BASE_DIR, "db.sqlite3"), } } # Password validation # https://docs.djangoproject.com/en/1.11/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { "NAME": "django.contrib.auth.password_validation.UserAttributeSimilarityValidator", }, { "NAME": "django.contrib.auth.password_validation.MinimumLengthValidator", }, { "NAME": "django.contrib.auth.password_validation.CommonPasswordValidator", }, { "NAME": "django.contrib.auth.password_validation.NumericPasswordValidator", }, ] # Internationalization # https://docs.djangoproject.com/en/1.11/topics/i18n/ LANGUAGE_CODE = "en-us" TIME_ZONE = "Pacific/Auckland" USE_I18N = False USE_L10N = False USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.11/howto/static-files/ STATIC_URL = "/static/" STATICFILES_FINDERS = [ "django.contrib.staticfiles.finders.FileSystemFinder", "django.contrib.staticfiles.finders.AppDirectoriesFinder", ] STATICFILES_STORAGE = "django.contrib.staticfiles.storage.ManifestStaticFilesStorage" STATICFILES_DIRS = [ os.path.join(PROJECT_DIR, "static"), ] LOGGING = { "version": 1, "disable_existing_loggers": False, "formatters": { "verbose": { "format": "%(levelname)s [%(asctime)s] %(name)s.%(funcName)s:%(lineno)s| %(message)s" }, }, "handlers": { "console": { "class": "logging.StreamHandler", "formatter": "verbose", }, }, "loggers": { "{{cookiecutter.project_slug}}": { "handlers": ["console"], "level": os.getenv("DJANGO_LOG_LEVEL", "INFO"), }, "django": { "handlers": ["console"], "level": os.getenv("DJANGO_LOG_LEVEL", "INFO"), }, }, } SITE_ID = 1 STATIC_ROOT = os.path.join(BASE_DIR, ".static") GTM_ID = None SETTINGS_EXPORT = [ "DEBUG", "GTM_ID", ] MEDIA_ROOT = os.path.join(BASE_DIR, "tmp") MEDIA_URL = "/media/" MEDIA_SECRET = "change_me_in_prod" # this allows Django template tags to span multiple lines. # http://zachsnow.com/#!/blog/2016/multiline-template-tags-django/ base.tag_re = re.compile(base.tag_re.pattern, re.DOTALL) {%- if cookiecutter.install_rq == "y" %} CACHES = { "default": { "BACKEND": "django_redis.cache.RedisCache", "LOCATION": os.environ.get("REDIS_URL", "redis://127.0.0.1:6379/1"), "OPTIONS": { "CLIENT_CLASS": "django_redis.client.DefaultClient" } }, } RQ_QUEUES = { "default": { "USE_REDIS_CACHE": "default", "ASYNC": True }, } RQ_SHOW_ADMIN_LINK = True {% endif %} STATIC_LOGGING = { "env": os.environ.get("DJANGO_SETTINGS_MODULE", "").split(".")[-1] } {% if cookiecutter.install_wagtail == "y" %} WAGTAIL_SITE_NAME = "{{cookiecutter.project_slug}}" {% endif -%} {%- if cookiecutter.install_allauth == "y" %} # DJANGO ALLAUTH CONFIG: http://django-allauth.readthedocs.io/en/stable/configuration.html ACCOUNT_USER_DISPLAY = "allauth.account.utils.user_email" ACCOUNT_AUTHENTICATION_METHOD = "email" ACCOUNT_CONFIRM_EMAIL_ON_GET = True ACCOUNT_EMAIL_REQUIRED = True ACCOUNT_LOGIN_ON_EMAIL_CONFIRMATION = True ACCOUNT_USERNAME_REQUIRED = False ACCOUNT_ADAPTER = "{{cookiecutter.project_slug}}.apps.myauth.adapters.AccountAdapter" LOGIN_URL = "account_login" LOGIN_REDIRECT_URL = "profile:edit" LOGOUT_REDIRECT_URL = "account_login" {% endif -%}
""" If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. The sum of these multiples is 23. Find the sum of all the multiples of 3 or 5 below 1000. """ def mul_sum(a: int=3, b: int=5): max_num = 1000 all_nums = [x for x in range(1, max_num) if (x % 3 == 0) | (x % 5 == 0)] return sum(all_nums) if __name__ == "__main__": result = mul_sum() print(result)
from ..adapter import CustomSocialAccountAdapter def test_authentication_error_logs(mocker): mocker.patch( "allauth.socialaccount.adapter.DefaultSocialAccountAdapter.authentication_error" ) # noqa error = mocker.patch("{{cookiecutter.project_slug}}.multisalesforce.adapter.logger.error") adapter = CustomSocialAccountAdapter() adapter.authentication_error() assert error.called
from pydantic import BaseSettings class Settings(BaseSettings): APP_ENDPOINT: str = 'localhost:8080' CONFIG_PATH: str = None DATACENTER_ID: int = 0 WORKER_ID: int = 0
#!/usr/bin/env python """Django's command-line utility for administrative tasks.""" import os import sys def main(): """Run administrative tasks.""" os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'offline.settings') try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv) if __name__ == '__main__': main()
import os from PIL import Image #Vérification rep_cour=os.getcwd() if rep_cour!="C:\Documents and Settings\Administrateur\Bureau\ISN/trait_img": os.chdir("C:\Documents and Settings\Administrateur\Bureau\ISN/trait_img") print(os.getcwd()) print("Tout est en ordre!") #Paramètres de l'image + son affichage nom_image=("img_base.pgm") img_in=Image.open(nom_image) print("Nom de l'image :",nom_image) print("Format de l'image :",img_in.format) print("Taille de l'image :",img_in.size) print("Mode de l'image :",img_in.mode) #img_in.show() #Création d'une copie nb taille=img_in.size col=taille[0] lgn=taille[1] img_out=Image.new(img_in.mode,img_in.size) y=0 x=0 while (x<col): while(y<lgn): p=img_in.getpixel((x,y)) if p<175: img_out.putpixel((x,y),p) else: img_out.putpixel((x,y),255) y=y+1 p=0 y=0 x=x+1 nom_copie_image=("img_copie.pgm") img_out.save(nom_copie_image) img_in_1=Image.open(nom_copie_image) #img_in_1.show() #Création d'une copie négatif img_out=Image.new(img_in.mode,img_in.size) y=0 x=0 while (x<col): while(y<lgn): p=img_in.getpixel((x,y)) p=255-p img_out.putpixel((x,y),p) y=y+1 p=0 y=0 x=x+1 nom_copie_image=("img_copie_negatif.pgm") img_out.save(nom_copie_image) img_in_2=Image.open(nom_copie_image) #img_in_2.show() #Création d'une copie réduction img_out=Image.new(img_in.mode,(int(col/2)+1,int(lgn/2)+1)) y=0 x=0 y1=0 x1=0 while (x<col): while(y<lgn): p=img_in.getpixel((x,y)) img_out.putpixel((x1,y1),p) y=y+2 y1=y1+1 p=0 y1=0 y=0 x1=x1+1 x=x+2 nom_copie_image=("img_copie_reduc.pgm") img_out.save(nom_copie_image) img_in_3=Image.open(nom_copie_image) #img_in_3.show() #Création d'une copie réduction img_out=Image.new(img_in.mode,img_in.size) y=0 x=0 y1=0 x1=0 while (x<col): while(y<lgn): p=img_in.getpixel((x,y)) img_out.putpixel((x1+int(col/2),y1),p) img_out.putpixel((x1,y1+int(lgn/2)),p) img_out.putpixel((x1,y1),p) img_out.putpixel((x1+int(col/2),y1+int(lgn/2)),p) y=y+2 y1=y1+1 p=0 y1=0 y=0 x1=x1+1 x=x+2 nom_copie_image=("img_copie_photomaton.pgm") img_out.save(nom_copie_image) img_in_4=Image.open(nom_copie_image) #img_in_4.show() #Création d'une copie effet de bord img_out=Image.new(img_in.mode,img_in.size) y=1 x=1 while (x<col-1): while(y<lgn-1): b=img_in.getpixel((x+1,y),p) c=img_in.getpixel((x,y+1),p) d=img_in.getpixel((x-1,y),p) e=img_in.getpixel((x,y-1),p) t=((b-d)**2+(c-e)**2)**0.5 if t>25: p=255 else: p=0 b=img_out.putpixel((x,y),p) y=y+1 p=0 y=0 x=x+1 nom_copie_image=("img_copie_effetbord.pgm") img_out.save(nom_copie_image) img_in_5=Image.open(nom_copie_image) img_in_5.show()
# -*- coding: utf-8 -*- """Test sequences for graphiness. """ # Copyright (C) 2004-2018 by # Aric Hagberg <hagberg@lanl.gov> # Dan Schult <dschult@colgate.edu> # Pieter Swart <swart@lanl.gov> # All rights reserved. # BSD license. import heapq import networkx as nx __author__ = "\n".join(['Aric Hagberg (hagberg@lanl.gov)', 'Pieter Swart (swart@lanl.gov)', 'Dan Schult (dschult@colgate.edu)' 'Joel Miller (joel.c.miller.research@gmail.com)' 'Ben Edwards' 'Brian Cloteaux <brian.cloteaux@nist.gov>']) __all__ = ['is_graphical', 'is_multigraphical', 'is_pseudographical', 'is_digraphical', 'is_valid_degree_sequence_erdos_gallai', 'is_valid_degree_sequence_havel_hakimi', ] def is_graphical(sequence, method='eg'): """Returns True if sequence is a valid degree sequence. A degree sequence is valid if some graph can realize it. Parameters ---------- sequence : list or iterable container A sequence of integer node degrees method : "eg" | "hh" The method used to validate the degree sequence. "eg" corresponds to the Erdős-Gallai algorithm, and "hh" to the Havel-Hakimi algorithm. Returns ------- valid : bool True if the sequence is a valid degree sequence and False if not. Examples -------- >>> G = nx.path_graph(4) >>> sequence = (d for n, d in G.degree()) >>> nx.is_graphical(sequence) True References ---------- Erdős-Gallai [EG1960]_, [choudum1986]_ Havel-Hakimi [havel1955]_, [hakimi1962]_, [CL1996]_ """ if method == 'eg': valid = is_valid_degree_sequence_erdos_gallai(list(sequence)) elif method == 'hh': valid = is_valid_degree_sequence_havel_hakimi(list(sequence)) else: msg = "`method` must be 'eg' or 'hh'" raise nx.NetworkXException(msg) return valid def _basic_graphical_tests(deg_sequence): # Sort and perform some simple tests on the sequence if not nx.utils.is_list_of_ints(deg_sequence): raise nx.NetworkXUnfeasible p = len(deg_sequence) num_degs = [0] * p dmax, dmin, dsum, n = 0, p, 0, 0 for d in deg_sequence: # Reject if degree is negative or larger than the sequence length if d < 0 or d >= p: raise nx.NetworkXUnfeasible # Process only the non-zero integers elif d > 0: dmax, dmin, dsum, n = max(dmax, d), min(dmin, d), dsum + d, n + 1 num_degs[d] += 1 # Reject sequence if it has odd sum or is oversaturated if dsum % 2 or dsum > n * (n - 1): raise nx.NetworkXUnfeasible return dmax, dmin, dsum, n, num_degs def is_valid_degree_sequence_havel_hakimi(deg_sequence): r"""Returns True if deg_sequence can be realized by a simple graph. The validation proceeds using the Havel-Hakimi theorem. Worst-case run time is $O(s)$ where $s$ is the sum of the sequence. Parameters ---------- deg_sequence : list A list of integers where each element specifies the degree of a node in a graph. Returns ------- valid : bool True if deg_sequence is graphical and False if not. Notes ----- The ZZ condition says that for the sequence d if .. math:: |d| >= \frac{(\max(d) + \min(d) + 1)^2}{4*\min(d)} then d is graphical. This was shown in Theorem 6 in [1]_. References ---------- .. [1] I.E. Zverovich and V.E. Zverovich. "Contributions to the theory of graphic sequences", Discrete Mathematics, 105, pp. 292-303 (1992). [havel1955]_, [hakimi1962]_, [CL1996]_ """ try: dmax, dmin, dsum, n, num_degs = _basic_graphical_tests(deg_sequence) except nx.NetworkXUnfeasible: return False # Accept if sequence has no non-zero degrees or passes the ZZ condition if n == 0 or 4 * dmin * n >= (dmax + dmin + 1) * (dmax + dmin + 1): return True modstubs = [0] * (dmax + 1) # Successively reduce degree sequence by removing the maximum degree while n > 0: # Retrieve the maximum degree in the sequence while num_degs[dmax] == 0: dmax -= 1 # If there are not enough stubs to connect to, then the sequence is # not graphical if dmax > n - 1: return False # Remove largest stub in list num_degs[dmax], n = num_degs[dmax] - 1, n - 1 # Reduce the next dmax largest stubs mslen = 0 k = dmax for i in range(dmax): while num_degs[k] == 0: k -= 1 num_degs[k], n = num_degs[k] - 1, n - 1 if k > 1: modstubs[mslen] = k - 1 mslen += 1 # Add back to the list any non-zero stubs that were removed for i in range(mslen): stub = modstubs[i] num_degs[stub], n = num_degs[stub] + 1, n + 1 return True def is_valid_degree_sequence_erdos_gallai(deg_sequence): r"""Returns True if deg_sequence can be realized by a simple graph. The validation is done using the Erdős-Gallai theorem [EG1960]_. Parameters ---------- deg_sequence : list A list of integers Returns ------- valid : bool True if deg_sequence is graphical and False if not. Notes ----- This implementation uses an equivalent form of the Erdős-Gallai criterion. Worst-case run time is $O(n)$ where $n$ is the length of the sequence. Specifically, a sequence d is graphical if and only if the sum of the sequence is even and for all strong indices k in the sequence, .. math:: \sum_{i=1}^{k} d_i \leq k(k-1) + \sum_{j=k+1}^{n} \min(d_i,k) = k(n-1) - ( k \sum_{j=0}^{k-1} n_j - \sum_{j=0}^{k-1} j n_j ) A strong index k is any index where d_k >= k and the value n_j is the number of occurrences of j in d. The maximal strong index is called the Durfee index. This particular rearrangement comes from the proof of Theorem 3 in [2]_. The ZZ condition says that for the sequence d if .. math:: |d| >= \frac{(\max(d) + \min(d) + 1)^2}{4*\min(d)} then d is graphical. This was shown in Theorem 6 in [2]_. References ---------- .. [1] A. Tripathi and S. Vijay. "A note on a theorem of Erdős & Gallai", Discrete Mathematics, 265, pp. 417-420 (2003). .. [2] I.E. Zverovich and V.E. Zverovich. "Contributions to the theory of graphic sequences", Discrete Mathematics, 105, pp. 292-303 (1992). [EG1960]_, [choudum1986]_ """ try: dmax, dmin, dsum, n, num_degs = _basic_graphical_tests(deg_sequence) except nx.NetworkXUnfeasible: return False # Accept if sequence has no non-zero degrees or passes the ZZ condition if n == 0 or 4 * dmin * n >= (dmax + dmin + 1) * (dmax + dmin + 1): return True # Perform the EG checks using the reformulation of Zverovich and Zverovich k, sum_deg, sum_nj, sum_jnj = 0, 0, 0, 0 for dk in range(dmax, dmin - 1, -1): if dk < k + 1: # Check if already past Durfee index return True if num_degs[dk] > 0: run_size = num_degs[dk] # Process a run of identical-valued degrees if dk < k + run_size: # Check if end of run is past Durfee index run_size = dk - k # Adjust back to Durfee index sum_deg += run_size * dk for v in range(run_size): sum_nj += num_degs[k + v] sum_jnj += (k + v) * num_degs[k + v] k += run_size if sum_deg > k * (n - 1) - k * sum_nj + sum_jnj: return False return True def is_multigraphical(sequence): """Returns True if some multigraph can realize the sequence. Parameters ---------- deg_sequence : list A list of integers Returns ------- valid : bool True if deg_sequence is a multigraphic degree sequence and False if not. Notes ----- The worst-case run time is $O(n)$ where $n$ is the length of the sequence. References ---------- .. [1] S. L. Hakimi. "On the realizability of a set of integers as degrees of the vertices of a linear graph", J. SIAM, 10, pp. 496-506 (1962). """ deg_sequence = list(sequence) if not nx.utils.is_list_of_ints(deg_sequence): return False dsum, dmax = 0, 0 for d in deg_sequence: if d < 0: return False dsum, dmax = dsum + d, max(dmax, d) if dsum % 2 or dsum < 2 * dmax: return False return True def is_pseudographical(sequence): """Returns True if some pseudograph can realize the sequence. Every nonnegative integer sequence with an even sum is pseudographical (see [1]_). Parameters ---------- sequence : list or iterable container A sequence of integer node degrees Returns ------- valid : bool True if the sequence is a pseudographic degree sequence and False if not. Notes ----- The worst-case run time is $O(n)$ where n is the length of the sequence. References ---------- .. [1] F. Boesch and F. Harary. "Line removal algorithms for graphs and their degree lists", IEEE Trans. Circuits and Systems, CAS-23(12), pp. 778-782 (1976). """ s = list(sequence) if not nx.utils.is_list_of_ints(s): return False return sum(s) % 2 == 0 and min(s) >= 0 def is_digraphical(in_sequence, out_sequence): r"""Returns True if some directed graph can realize the in- and out-degree sequences. Parameters ---------- in_sequence : list or iterable container A sequence of integer node in-degrees out_sequence : list or iterable container A sequence of integer node out-degrees Returns ------- valid : bool True if in and out-sequences are digraphic False if not. Notes ----- This algorithm is from Kleitman and Wang [1]_. The worst case runtime is $O(s \times \log n)$ where $s$ and $n$ are the sum and length of the sequences respectively. References ---------- .. [1] D.J. Kleitman and D.L. Wang Algorithms for Constructing Graphs and Digraphs with Given Valences and Factors, Discrete Mathematics, 6(1), pp. 79-88 (1973) """ in_deg_sequence = list(in_sequence) out_deg_sequence = list(out_sequence) if not nx.utils.is_list_of_ints(in_deg_sequence): return False if not nx.utils.is_list_of_ints(out_deg_sequence): return False # Process the sequences and form two heaps to store degree pairs with # either zero or non-zero out degrees sumin, sumout, nin, nout = 0, 0, len(in_deg_sequence), len(out_deg_sequence) maxn = max(nin, nout) maxin = 0 if maxn == 0: return True stubheap, zeroheap = [], [] for n in range(maxn): in_deg, out_deg = 0, 0 if n < nout: out_deg = out_deg_sequence[n] if n < nin: in_deg = in_deg_sequence[n] if in_deg < 0 or out_deg < 0: return False sumin, sumout, maxin = sumin + in_deg, sumout + out_deg, max(maxin, in_deg) if in_deg > 0: stubheap.append((-1 * out_deg, -1 * in_deg)) elif out_deg > 0: zeroheap.append(-1 * out_deg) if sumin != sumout: return False heapq.heapify(stubheap) heapq.heapify(zeroheap) modstubs = [(0, 0)] * (maxin + 1) # Successively reduce degree sequence by removing the maximum out degree while stubheap: # Take the first value in the sequence with non-zero in degree (freeout, freein) = heapq.heappop(stubheap) freein *= -1 if freein > len(stubheap) + len(zeroheap): return False # Attach out stubs to the nodes with the most in stubs mslen = 0 for i in range(freein): if zeroheap and (not stubheap or stubheap[0][0] > zeroheap[0]): stubout = heapq.heappop(zeroheap) stubin = 0 else: (stubout, stubin) = heapq.heappop(stubheap) if stubout == 0: return False # Check if target is now totally connected if stubout + 1 < 0 or stubin < 0: modstubs[mslen] = (stubout + 1, stubin) mslen += 1 # Add back the nodes to the heap that still have available stubs for i in range(mslen): stub = modstubs[i] if stub[1] < 0: heapq.heappush(stubheap, stub) else: heapq.heappush(zeroheap, stub[0]) if freeout < 0: heapq.heappush(zeroheap, freeout) return True
import logging import operator import time import traceback from pathlib import Path from typing import List, Type, Set, Tuple, Optional from PyQt5.QtCore import QEvent, Qt, pyqtSignal from PyQt5.QtGui import QIcon, QWindowStateChangeEvent, QCursor from PyQt5.QtWidgets import QWidget, QVBoxLayout, QCheckBox, QHeaderView, QToolBar, \ QLabel, QPlainTextEdit, QProgressBar, QPushButton, QComboBox, QApplication, QListView, QSizePolicy, \ QMenu, QHBoxLayout from bauh.api import user from bauh.api.abstract.cache import MemoryCache from bauh.api.abstract.context import ApplicationContext from bauh.api.abstract.controller import SoftwareManager, SoftwareAction from bauh.api.abstract.model import SoftwarePackage from bauh.api.abstract.view import MessageType from bauh.api.http import HttpClient from bauh.api.paths import LOGS_DIR from bauh.commons.html import bold from bauh.context import set_theme from bauh.stylesheet import read_all_themes_metadata, ThemeMetadata from bauh.view.core.config import CoreConfigManager from bauh.view.core.tray_client import notify_tray from bauh.view.qt import dialog, commons, qt_utils from bauh.view.qt.about import AboutDialog from bauh.view.qt.apps_table import PackagesTable, UpgradeToggleButton from bauh.view.qt.commons import sum_updates_displayed from bauh.view.qt.components import new_spacer, IconButton, QtComponentsManager, to_widget, QSearchBar, \ QCustomMenuAction, QCustomToolbar from bauh.view.qt.dialog import ConfirmationDialog from bauh.view.qt.history import HistoryDialog from bauh.view.qt.info import InfoDialog from bauh.view.qt.root import RootDialog from bauh.view.qt.screenshots import ScreenshotsDialog from bauh.view.qt.settings import SettingsWindow from bauh.view.qt.thread import UpgradeSelected, RefreshApps, UninstallPackage, DowngradePackage, ShowPackageInfo, \ ShowPackageHistory, SearchPackages, InstallPackage, AnimateProgress, NotifyPackagesReady, FindSuggestions, \ ListWarnings, \ AsyncAction, LaunchPackage, ApplyFilters, CustomSoftwareAction, ShowScreenshots, CustomAction, \ NotifyInstalledLoaded, \ IgnorePackageUpdates, SaveTheme, StartAsyncAction from bauh.view.qt.view_model import PackageView, PackageViewStatus from bauh.view.util import util, resource from bauh.view.util.translation import I18n DARK_ORANGE = '#FF4500' # action ids ACTION_APPLY_FILTERS = 1 ACTION_SEARCH = 2 ACTION_INSTALL = 3 ACTION_UNINSTALL = 4 ACTION_INFO = 5 ACTION_HISTORY = 6 ACTION_DOWNGRADE = 7 ACTION_UPGRADE = 8 ACTION_LAUNCH = 9 ACTION_CUSTOM_ACTION = 10 ACTION_SCREENSHOTS = 11 ACTION_IGNORE_UPDATES = 12 # components ids SEARCH_BAR = 1 BT_INSTALLED = 2 BT_REFRESH = 3 BT_SUGGESTIONS = 4 BT_UPGRADE = 5 CHECK_UPDATES = 6 CHECK_APPS = 7 COMBO_TYPES = 8 COMBO_CATEGORIES = 9 INP_NAME = 10 CHECK_DETAILS = 11 BT_SETTINGS = 12 BT_CUSTOM_ACTIONS = 13 BT_ABOUT = 14 BT_THEMES = 15 # component groups ids GROUP_FILTERS = 1 GROUP_VIEW_INSTALLED = 2 GROUP_VIEW_SEARCH = 3 GROUP_UPPER_BAR = 4 GROUP_LOWER_BTS = 5 class ManageWindow(QWidget): signal_user_res = pyqtSignal(bool) signal_root_password = pyqtSignal(bool, str) signal_table_update = pyqtSignal() signal_stop_notifying = pyqtSignal() def __init__(self, i18n: I18n, icon_cache: MemoryCache, manager: SoftwareManager, screen_size, config: dict, context: ApplicationContext, http_client: HttpClient, logger: logging.Logger, icon: QIcon): super(ManageWindow, self).__init__() self.setObjectName('manage_window') self.comp_manager = QtComponentsManager() self.i18n = i18n self.logger = logger self.manager = manager self.working = False # restrict the number of threaded actions self.installed_loaded = False # used to control the state when the interface is set to not load the apps on startup self.pkgs = [] # packages current loaded in the table self.pkgs_available = [] # all packages loaded in memory self.pkgs_installed = [] # cached installed packages self.display_limit = config['ui']['table']['max_displayed'] self.icon_cache = icon_cache self.screen_size = screen_size self.config = config self.context = context self.http_client = http_client self.icon_app = icon self.setWindowIcon(self.icon_app) self.layout = QVBoxLayout() self.setLayout(self.layout) self.toolbar_status = QToolBar() self.toolbar_status.setObjectName('toolbar_status') self.toolbar_status.addWidget(new_spacer()) self.label_status = QLabel() self.label_status.setObjectName('label_status') self.label_status.setText('') self.toolbar_status.addWidget(self.label_status) self.search_bar = QSearchBar(search_callback=self.search) self.search_bar.set_placeholder(i18n['window_manage.search_bar.placeholder'] + "...") self.search_bar.set_tooltip(i18n['window_manage.search_bar.tooltip']) self.search_bar.set_button_tooltip(i18n['window_manage.search_bar.button_tooltip']) self.comp_manager.register_component(SEARCH_BAR, self.search_bar, self.toolbar_status.addWidget(self.search_bar)) self.toolbar_status.addWidget(new_spacer()) self.layout.addWidget(self.toolbar_status) self.toolbar_filters = QWidget() self.toolbar_filters.setObjectName('table_filters') self.toolbar_filters.setLayout(QHBoxLayout()) self.toolbar_filters.setSizePolicy(QSizePolicy.Minimum, QSizePolicy.Fixed) self.toolbar_filters.setContentsMargins(0, 0, 0, 0) self.check_updates = QCheckBox() self.check_updates.setObjectName('check_updates') self.check_updates.setCursor(QCursor(Qt.PointingHandCursor)) self.check_updates.setText(self.i18n['updates'].capitalize()) self.check_updates.stateChanged.connect(self._handle_updates_filter) self.check_updates.sizePolicy().setRetainSizeWhenHidden(True) self.toolbar_filters.layout().addWidget(self.check_updates) self.comp_manager.register_component(CHECK_UPDATES, self.check_updates) self.check_apps = QCheckBox() self.check_apps.setObjectName('check_apps') self.check_apps.setCursor(QCursor(Qt.PointingHandCursor)) self.check_apps.setText(self.i18n['manage_window.checkbox.only_apps']) self.check_apps.setChecked(True) self.check_apps.stateChanged.connect(self._handle_filter_only_apps) self.check_apps.sizePolicy().setRetainSizeWhenHidden(True) self.toolbar_filters.layout().addWidget(self.check_apps) self.comp_manager.register_component(CHECK_APPS, self.check_apps) self.any_type_filter = 'any' self.cache_type_filter_icons = {} self.combo_filter_type = QComboBox() self.combo_filter_type.setObjectName('combo_types') self.combo_filter_type.setCursor(QCursor(Qt.PointingHandCursor)) self.combo_filter_type.setView(QListView()) self.combo_filter_type.view().setCursor(QCursor(Qt.PointingHandCursor)) self.combo_filter_type.setSizeAdjustPolicy(QComboBox.AdjustToContents) self.combo_filter_type.setEditable(True) self.combo_filter_type.lineEdit().setReadOnly(True) self.combo_filter_type.lineEdit().setAlignment(Qt.AlignCenter) self.combo_filter_type.activated.connect(self._handle_type_filter) self.combo_filter_type.addItem('--- {} ---'.format(self.i18n['type'].capitalize()), self.any_type_filter) self.combo_filter_type.sizePolicy().setRetainSizeWhenHidden(True) self.toolbar_filters.layout().addWidget(self.combo_filter_type) self.comp_manager.register_component(COMBO_TYPES, self.combo_filter_type) self.any_category_filter = 'any' self.combo_categories = QComboBox() self.combo_categories.setObjectName('combo_categories') self.combo_categories.setCursor(QCursor(Qt.PointingHandCursor)) self.combo_categories.setSizeAdjustPolicy(QComboBox.AdjustToContents) self.combo_categories.view().setCursor(QCursor(Qt.PointingHandCursor)) self.combo_categories.setEditable(True) self.combo_categories.lineEdit().setReadOnly(True) self.combo_categories.lineEdit().setAlignment(Qt.AlignCenter) self.combo_categories.activated.connect(self._handle_category_filter) self.combo_categories.sizePolicy().setRetainSizeWhenHidden(True) self.combo_categories.addItem('--- {} ---'.format(self.i18n['category'].capitalize()), self.any_category_filter) self.toolbar_filters.layout().addWidget(self.combo_categories) self.comp_manager.register_component(COMBO_CATEGORIES, self.combo_categories) self.input_name = QSearchBar(search_callback=self.begin_apply_filters) self.input_name.palette().swap(self.combo_categories.palette()) self.input_name.setObjectName('name_filter') self.input_name.set_placeholder(self.i18n['manage_window.name_filter.placeholder'] + '...') self.input_name.set_tooltip(self.i18n['manage_window.name_filter.tooltip']) self.input_name.set_button_tooltip(self.i18n['manage_window.name_filter.button_tooltip']) self.input_name.sizePolicy().setRetainSizeWhenHidden(True) self.toolbar_filters.layout().addWidget(self.input_name) self.comp_manager.register_component(INP_NAME, self.input_name) self.toolbar_filters.layout().addWidget(new_spacer()) toolbar_bts = [] bt_inst = QPushButton() bt_inst.setObjectName('bt_installed') bt_inst.setProperty('root', 'true') bt_inst.setCursor(QCursor(Qt.PointingHandCursor)) bt_inst.setToolTip(self.i18n['manage_window.bt.installed.tooltip']) bt_inst.setText(self.i18n['manage_window.bt.installed.text'].capitalize()) bt_inst.clicked.connect(self._begin_loading_installed) bt_inst.sizePolicy().setRetainSizeWhenHidden(True) toolbar_bts.append(bt_inst) self.toolbar_filters.layout().addWidget(bt_inst) self.comp_manager.register_component(BT_INSTALLED, bt_inst) bt_ref = QPushButton() bt_ref.setObjectName('bt_refresh') bt_ref.setProperty('root', 'true') bt_ref.setCursor(QCursor(Qt.PointingHandCursor)) bt_ref.setToolTip(i18n['manage_window.bt.refresh.tooltip']) bt_ref.setText(self.i18n['manage_window.bt.refresh.text']) bt_ref.clicked.connect(self.begin_refresh_packages) bt_ref.sizePolicy().setRetainSizeWhenHidden(True) toolbar_bts.append(bt_ref) self.toolbar_filters.layout().addWidget(bt_ref) self.comp_manager.register_component(BT_REFRESH, bt_ref) self.bt_upgrade = QPushButton() self.bt_upgrade.setProperty('root', 'true') self.bt_upgrade.setObjectName('bt_upgrade') self.bt_upgrade.setCursor(QCursor(Qt.PointingHandCursor)) self.bt_upgrade.setToolTip(i18n['manage_window.bt.upgrade.tooltip']) self.bt_upgrade.setText(i18n['manage_window.bt.upgrade.text']) self.bt_upgrade.clicked.connect(self.upgrade_selected) self.bt_upgrade.sizePolicy().setRetainSizeWhenHidden(True) toolbar_bts.append(self.bt_upgrade) self.toolbar_filters.layout().addWidget(self.bt_upgrade) self.comp_manager.register_component(BT_UPGRADE, self.bt_upgrade) # setting all buttons to the same size: bt_biggest_size = 0 for bt in toolbar_bts: bt_width = bt.sizeHint().width() if bt_width > bt_biggest_size: bt_biggest_size = bt_width for bt in toolbar_bts: bt_width = bt.sizeHint().width() if bt_biggest_size > bt_width: bt.setFixedWidth(bt_biggest_size) self.layout.addWidget(self.toolbar_filters) self.table_container = QWidget() self.table_container.setObjectName('table_container') self.table_container.setContentsMargins(0, 0, 0, 0) self.table_container.setLayout(QVBoxLayout()) self.table_container.layout().setContentsMargins(0, 0, 0, 0) self.table_apps = PackagesTable(self, self.icon_cache, download_icons=bool(self.config['download']['icons'])) self.table_apps.change_headers_policy() self.table_container.layout().addWidget(self.table_apps) self.layout.addWidget(self.table_container) self.toolbar_console = QWidget() self.toolbar_console.setObjectName('console_toolbar') self.toolbar_console.setSizePolicy(QSizePolicy.Minimum, QSizePolicy.Fixed) self.toolbar_console.setLayout(QHBoxLayout()) self.toolbar_console.setContentsMargins(0, 0, 0, 0) self.check_details = QCheckBox() self.check_details.setObjectName('check_details') self.check_details.setCursor(QCursor(Qt.PointingHandCursor)) self.check_details.setText(self.i18n['manage_window.checkbox.show_details']) self.check_details.stateChanged.connect(self._handle_console) self.toolbar_console.layout().addWidget(self.check_details) self.comp_manager.register_component(CHECK_DETAILS, self.check_details) self.toolbar_console.layout().addWidget(new_spacer()) self.label_displayed = QLabel() self.label_displayed.setObjectName('apps_displayed') self.label_displayed.setCursor(QCursor(Qt.WhatsThisCursor)) self.label_displayed.setToolTip(self.i18n['manage_window.label.apps_displayed.tip']) self.toolbar_console.layout().addWidget(self.label_displayed) self.label_displayed.hide() self.layout.addWidget(self.toolbar_console) self.textarea_details = QPlainTextEdit(self) self.textarea_details.setObjectName('textarea_details') self.textarea_details.setProperty('console', 'true') self.textarea_details.resize(self.table_apps.size()) self.layout.addWidget(self.textarea_details) self.textarea_details.setVisible(False) self.textarea_details.setReadOnly(True) self.toolbar_substatus = QToolBar() self.toolbar_substatus.setObjectName('toolbar_substatus') self.toolbar_substatus.addWidget(new_spacer()) self.label_substatus = QLabel() self.label_substatus.setObjectName('label_substatus') self.label_substatus.setCursor(QCursor(Qt.WaitCursor)) self.toolbar_substatus.addWidget(self.label_substatus) self.toolbar_substatus.addWidget(new_spacer()) self.layout.addWidget(self.toolbar_substatus) self._change_label_substatus('') self.thread_update = self._bind_async_action(UpgradeSelected(self.manager, context.internet_checker, self.i18n), finished_call=self._finish_upgrade_selected) self.thread_refresh = self._bind_async_action(RefreshApps(self.manager), finished_call=self._finish_refresh_packages, only_finished=True) self.thread_uninstall = self._bind_async_action(UninstallPackage(self.manager, self.icon_cache, self.i18n), finished_call=self._finish_uninstall) self.thread_show_info = self._bind_async_action(ShowPackageInfo(self.manager), finished_call=self._finish_show_info) self.thread_show_history = self._bind_async_action(ShowPackageHistory(self.manager, self.i18n), finished_call=self._finish_show_history) self.thread_search = self._bind_async_action(SearchPackages(self.manager), finished_call=self._finish_search, only_finished=True) self.thread_downgrade = self._bind_async_action(DowngradePackage(self.manager, self.i18n), finished_call=self._finish_downgrade) self.thread_suggestions = self._bind_async_action(FindSuggestions(man=self.manager), finished_call=self._finish_load_suggestions, only_finished=True) self.thread_launch = self._bind_async_action(LaunchPackage(self.manager), finished_call=self._finish_launch_package, only_finished=False) self.thread_custom_action = self._bind_async_action(CustomAction(manager=self.manager, i18n=self.i18n), finished_call=self._finish_execute_custom_action) self.thread_screenshots = self._bind_async_action(ShowScreenshots(self.manager), finished_call=self._finish_show_screenshots) self.thread_apply_filters = ApplyFilters() self.thread_apply_filters.signal_finished.connect(self._finish_apply_filters) self.thread_apply_filters.signal_table.connect(self._update_table_and_upgrades) self.signal_table_update.connect(self.thread_apply_filters.stop_waiting) self.thread_install = InstallPackage(manager=self.manager, icon_cache=self.icon_cache, i18n=self.i18n) self._bind_async_action(self.thread_install, finished_call=self._finish_install) self.thread_animate_progress = AnimateProgress() self.thread_animate_progress.signal_change.connect(self._update_progress) self.thread_notify_pkgs_ready = NotifyPackagesReady() self.thread_notify_pkgs_ready.signal_changed.connect(self._update_package_data) self.thread_notify_pkgs_ready.signal_finished.connect(self._update_state_when_pkgs_ready) self.signal_stop_notifying.connect(self.thread_notify_pkgs_ready.stop_working) self.thread_ignore_updates = IgnorePackageUpdates(manager=self.manager) self._bind_async_action(self.thread_ignore_updates, finished_call=self.finish_ignore_updates) self.thread_reload = StartAsyncAction(delay_in_milis=5) self.thread_reload.signal_start.connect(self._reload) self.container_bottom = QWidget() self.container_bottom.setObjectName('container_bottom') self.container_bottom.setSizePolicy(QSizePolicy.Minimum, QSizePolicy.Fixed) self.container_bottom.setLayout(QHBoxLayout()) self.container_bottom.layout().setContentsMargins(0, 0, 0, 0) self.container_bottom.layout().addWidget(new_spacer()) if config['suggestions']['enabled']: bt_sugs = IconButton(action=lambda: self._begin_load_suggestions(filter_installed=True), i18n=i18n, tooltip=self.i18n['manage_window.bt.suggestions.tooltip']) bt_sugs.setObjectName('suggestions') self.container_bottom.layout().addWidget(bt_sugs) self.comp_manager.register_component(BT_SUGGESTIONS, bt_sugs) bt_themes = IconButton(self.show_themes, i18n=self.i18n, tooltip=self.i18n['manage_window.bt_themes.tip']) bt_themes.setObjectName('themes') self.container_bottom.layout().addWidget(bt_themes) self.comp_manager.register_component(BT_THEMES, bt_themes) self.custom_actions = [a for a in manager.gen_custom_actions()] bt_custom_actions = IconButton(action=self.show_custom_actions, i18n=self.i18n, tooltip=self.i18n['manage_window.bt_custom_actions.tip']) bt_custom_actions.setObjectName('custom_actions') bt_custom_actions.setVisible(bool(self.custom_actions)) self.container_bottom.layout().addWidget(bt_custom_actions) self.comp_manager.register_component(BT_CUSTOM_ACTIONS, bt_custom_actions) bt_settings = IconButton(action=self.show_settings, i18n=self.i18n, tooltip=self.i18n['manage_window.bt_settings.tooltip']) bt_settings.setObjectName('settings') self.container_bottom.layout().addWidget(bt_settings) self.comp_manager.register_component(BT_SETTINGS, bt_settings) bt_about = IconButton(action=self._show_about, i18n=self.i18n, tooltip=self.i18n['manage_window.settings.about']) bt_about.setObjectName('about') self.container_bottom.layout().addWidget(bt_about) self.comp_manager.register_component(BT_ABOUT, bt_about) self.layout.addWidget(self.container_bottom) self.container_progress = QCustomToolbar(spacing=0, policy_height=QSizePolicy.Fixed) self.container_progress.setObjectName('container_progress') self.container_progress.add_space() self.progress_bar = QProgressBar() self.progress_bar.setObjectName('progress_manage') self.progress_bar.setCursor(QCursor(Qt.WaitCursor)) self.progress_bar.setTextVisible(False) self.container_progress.add_widget(self.progress_bar) self.container_progress.add_space() self.layout.addWidget(self.container_progress) qt_utils.centralize(self) self.filter_only_apps = True self.type_filter = self.any_type_filter self.category_filter = self.any_category_filter self.filter_updates = False self._maximized = False self.progress_controll_enabled = True self.recent_uninstall = False self.types_changed = False self.dialog_about = None self.load_suggestions = bool(config['suggestions']['enabled']) self.suggestions_requested = False self.first_refresh = True self.thread_warnings = ListWarnings(man=manager, i18n=i18n) self.thread_warnings.signal_warnings.connect(self._show_warnings) self.settings_window = None self.search_performed = False self.thread_save_theme = SaveTheme(theme_key='') self.thread_load_installed = NotifyInstalledLoaded() self.thread_load_installed.signal_loaded.connect(self._finish_loading_installed) self.setMinimumHeight(int(screen_size.height() * 0.5)) self.setMinimumWidth(int(screen_size.width() * 0.6)) self._register_groups() def _register_groups(self): filters = (CHECK_APPS, CHECK_UPDATES, COMBO_CATEGORIES, COMBO_TYPES, INP_NAME) self.comp_manager.register_group(GROUP_FILTERS, False, *filters) self.comp_manager.register_group(GROUP_VIEW_SEARCH, False, COMBO_CATEGORIES, COMBO_TYPES, INP_NAME, # filters BT_INSTALLED, BT_SUGGESTIONS) # buttons self.comp_manager.register_group(GROUP_VIEW_INSTALLED, False, BT_REFRESH, BT_UPGRADE, # buttons *filters) self.comp_manager.register_group(GROUP_UPPER_BAR, False, CHECK_APPS, CHECK_UPDATES, COMBO_CATEGORIES, COMBO_TYPES, INP_NAME, BT_INSTALLED, BT_SUGGESTIONS, BT_REFRESH, BT_UPGRADE) self.comp_manager.register_group(GROUP_LOWER_BTS, False, BT_SUGGESTIONS, BT_THEMES, BT_CUSTOM_ACTIONS, BT_SETTINGS, BT_ABOUT) def update_custom_actions(self): self.custom_actions = [a for a in self.manager.gen_custom_actions()] def _update_process_progress(self, val: int): if self.progress_controll_enabled: self.thread_animate_progress.set_progress(val) def _change_status(self, status: str = None): if status: self.label_status.setText(status + '...') self.label_status.setCursor(QCursor(Qt.WaitCursor)) else: self.label_status.setText('') self.label_status.unsetCursor() def _set_table_enabled(self, enabled: bool): self.table_apps.setEnabled(enabled) if enabled: self.table_container.unsetCursor() else: self.table_container.setCursor(QCursor(Qt.WaitCursor)) def begin_apply_filters(self): self.stop_notifying_package_states() self._begin_action(action_label=self.i18n['manage_window.status.filtering'], action_id=ACTION_APPLY_FILTERS) self.comp_manager.disable_visible_from_groups(GROUP_UPPER_BAR, GROUP_LOWER_BTS) self.comp_manager.set_component_read_only(INP_NAME, True) self.thread_apply_filters.filters = self._gen_filters() self.thread_apply_filters.pkgs = self.pkgs_available self.thread_apply_filters.start() self.setFocus(Qt.NoFocusReason) def _finish_apply_filters(self): self._finish_action(ACTION_APPLY_FILTERS) self.update_bt_upgrade() def stop_notifying_package_states(self): if self.thread_notify_pkgs_ready.isRunning(): self.signal_stop_notifying.emit() self.thread_notify_pkgs_ready.wait(1000) def _update_table_and_upgrades(self, pkgs_info: dict): self._update_table(pkgs_info=pkgs_info, signal=True) if self.pkgs: self._update_state_when_pkgs_ready() self.stop_notifying_package_states() self.thread_notify_pkgs_ready.pkgs = self.pkgs self.thread_notify_pkgs_ready.work = True self.thread_notify_pkgs_ready.start() def _bind_async_action(self, action: AsyncAction, finished_call, only_finished: bool = False) -> AsyncAction: action.signal_finished.connect(finished_call) if not only_finished: action.signal_confirmation.connect(self._ask_confirmation) action.signal_output.connect(self._update_action_output) action.signal_message.connect(self._show_message) action.signal_status.connect(self._change_label_status) action.signal_substatus.connect(self._change_label_substatus) action.signal_progress.connect(self._update_process_progress) action.signal_progress_control.connect(self.set_progress_controll) action.signal_root_password.connect(self._pause_and_ask_root_password) self.signal_user_res.connect(action.confirm) self.signal_root_password.connect(action.set_root_password) return action def _ask_confirmation(self, msg: dict): self.thread_animate_progress.pause() extra_widgets = [to_widget(comp=c, i18n=self.i18n) for c in msg['components']] if msg.get('components') else None diag = ConfirmationDialog(title=msg['title'], body=msg['body'], i18n=self.i18n, widgets=extra_widgets, confirmation_label=msg['confirmation_label'], deny_label=msg['deny_label'], deny_button=msg['deny_button'], window_cancel=msg['window_cancel'], confirmation_button=msg.get('confirmation_button', True)) diag.ask() res = diag.confirmed self.thread_animate_progress.animate() self.signal_user_res.emit(res) def _pause_and_ask_root_password(self): self.thread_animate_progress.pause() valid, password = RootDialog.ask_password(self.context, i18n=self.i18n, comp_manager=self.comp_manager) self.thread_animate_progress.animate() self.signal_root_password.emit(valid, password) def _show_message(self, msg: dict): self.thread_animate_progress.pause() dialog.show_message(title=msg['title'], body=msg['body'], type_=msg['type']) self.thread_animate_progress.animate() def _show_warnings(self, warnings: List[str]): if warnings: dialog.show_message(title=self.i18n['warning'].capitalize(), body='<p>{}</p>'.format('<br/><br/>'.join(warnings)), type_=MessageType.WARNING) def show(self): super(ManageWindow, self).show() if not self.thread_warnings.isFinished(): self.thread_warnings.start() qt_utils.centralize(self) def verify_warnings(self): self.thread_warnings.start() def _begin_loading_installed(self): if self.installed_loaded: self.search_bar.clear() self.input_name.set_text('') self._begin_action(self.i18n['manage_window.status.installed']) self._handle_console_option(False) self.comp_manager.set_components_visible(False) self.suggestions_requested = False self.search_performed = False self.thread_load_installed.start() else: self.load_suggestions = False self.begin_refresh_packages() def _finish_loading_installed(self): self._finish_action() self.comp_manager.set_group_visible(GROUP_VIEW_INSTALLED, True) self.update_pkgs(new_pkgs=None, as_installed=True) self._hide_filters_no_packages() self._update_bts_installed_and_suggestions() self._set_lower_buttons_visible(True) self._reorganize() def _update_bts_installed_and_suggestions(self): available_types = len(self.manager.get_managed_types()) self.comp_manager.set_component_visible(BT_INSTALLED, available_types > 0 and any([self.suggestions_requested, self.search_performed])) self.comp_manager.set_component_visible(BT_SUGGESTIONS, available_types > 0) def _hide_filters_no_packages(self): if not self.pkgs: self.comp_manager.set_group_visible(GROUP_FILTERS, False) def _show_about(self): if self.dialog_about is None: self.dialog_about = AboutDialog(self.config) self.dialog_about.show() def _handle_updates_filter(self, status: int): self.filter_updates = status == 2 self.begin_apply_filters() def _handle_filter_only_apps(self, status: int): self.filter_only_apps = status == 2 self.begin_apply_filters() def _handle_type_filter(self, idx: int): self.type_filter = self.combo_filter_type.itemData(idx) self.combo_filter_type.adjustSize() self.begin_apply_filters() def _handle_category_filter(self, idx: int): self.category_filter = self.combo_categories.itemData(idx) self.begin_apply_filters() def _update_state_when_pkgs_ready(self): if self.progress_bar.isVisible(): return self._reload_categories() self._reorganize() def _update_package_data(self, idx: int): if self.table_apps.isEnabled(): pkg = self.pkgs[idx] pkg.status = PackageViewStatus.READY self.table_apps.update_package(pkg) def _reload_categories(self): categories = set() for p in self.pkgs_available: if p.model.categories: for c in p.model.categories: if c: cat = c.strip().lower() if cat: categories.add(cat) if categories: self._update_categories(categories, keep_selected=True) def changeEvent(self, e: QEvent): if isinstance(e, QWindowStateChangeEvent): self._maximized = self.isMaximized() self.table_apps.change_headers_policy(maximized=self._maximized) def _handle_console(self, checked: bool): if checked: self.textarea_details.show() else: self.textarea_details.hide() def _handle_console_option(self, enable: bool): if enable: self.textarea_details.clear() self.comp_manager.set_component_visible(CHECK_DETAILS, enable) self.check_details.setChecked(False) self.textarea_details.hide() def begin_refresh_packages(self, pkg_types: Optional[Set[Type[SoftwarePackage]]] = None): self.search_bar.clear() self._begin_action(self.i18n['manage_window.status.refreshing']) self.comp_manager.set_components_visible(False) self._handle_console_option(False) self.suggestions_requested = False self.search_performed = False self.thread_refresh.pkg_types = pkg_types self.thread_refresh.start() def _finish_refresh_packages(self, res: dict, as_installed: bool = True): self._finish_action() self._set_lower_buttons_visible(True) self.comp_manager.set_component_visible(SEARCH_BAR, True) if self.search_performed or self.suggestions_requested: self.comp_manager.set_group_visible(GROUP_VIEW_SEARCH, True) else: self.comp_manager.set_group_visible(GROUP_VIEW_INSTALLED, True) if self.update_pkgs(res['installed'], as_installed=as_installed, types=res['types']): self._hide_filters_no_packages() self._update_bts_installed_and_suggestions() self._reorganize() self.load_suggestions = False self.types_changed = False def load_without_packages(self): self.load_suggestions = False self._handle_console_option(False) self._finish_refresh_packages({'installed': None, 'types': None}, as_installed=False) def _begin_load_suggestions(self, filter_installed: bool): self.search_bar.clear() self._begin_action(self.i18n['manage_window.status.suggestions']) self._handle_console_option(False) self.comp_manager.set_components_visible(False) self.suggestions_requested = True self.thread_suggestions.filter_installed = filter_installed self.thread_suggestions.start() def _finish_load_suggestions(self, res: dict): self._finish_search(res) def begin_uninstall(self, pkg: PackageView): pwd, proceed = self._ask_root_password(SoftwareAction.UNINSTALL, pkg) if not proceed: return self._begin_action(action_label='{} {}'.format(self.i18n['manage_window.status.uninstalling'], pkg.model.name), action_id=ACTION_UNINSTALL) self.comp_manager.set_groups_visible(False, GROUP_UPPER_BAR, GROUP_LOWER_BTS) self._handle_console_option(True) self.thread_uninstall.pkg = pkg self.thread_uninstall.root_pwd = pwd self.thread_uninstall.start() def _finish_uninstall(self, res: dict): self._finish_action(action_id=ACTION_UNINSTALL) if res['success']: src_pkg = res['pkg'] if self._can_notify_user(): util.notify_user('{} ({}) {}'.format(src_pkg.model.name, src_pkg.model.get_type(), self.i18n['uninstalled'])) if res['removed']: for list_idx, pkg_list in enumerate((self.pkgs_available, self.pkgs, self.pkgs_installed)): if pkg_list: removed_idxs = [] for pkgv_idx, pkgv in enumerate(pkg_list): if len(removed_idxs) == len(res['removed']): break for model in res['removed']: if pkgv.model == model: if list_idx == 0: # updates the model pkgv.update_model(model) if not self.search_performed or list_idx == 2: # always from the installed packages removed_idxs.append(pkgv_idx) if self.search_performed and list_idx == 1: # only for displayed self.table_apps.update_package(pkgv, change_update_col=True) break # as the model has been found, stops the loop if removed_idxs: # updating the list removed_idxs.sort() for decrement, pkg_idx in enumerate(removed_idxs): del pkg_list[pkg_idx - decrement] if list_idx == 1: # updates the rows if the current list reprents the displayed packages: for decrement, idx in enumerate(removed_idxs): self.table_apps.removeRow(idx - decrement) self._update_table_indexes() self.update_bt_upgrade() self.update_custom_actions() self._show_console_checkbox_if_output() notify_tray() else: self._show_console_errors() if self._can_notify_user(): util.notify_user('{}: {}'.format(res['pkg'].model.name, self.i18n['notification.uninstall.failed'])) def _update_table_indexes(self): if self.pkgs: for new_idx, pkgv in enumerate(self.pkgs): # updating the package indexes pkgv.table_index = new_idx def begin_launch_package(self, pkg: PackageView): self._begin_action(action_label=self.i18n['manage_window.status.running_app'].format(pkg.model.name), action_id=ACTION_LAUNCH) self.comp_manager.disable_visible() self.thread_launch.pkg = pkg self.thread_launch.start() def _finish_launch_package(self, success: bool): self._finish_action(action_id=ACTION_LAUNCH) def _can_notify_user(self): return bool(self.config['system']['notifications']) and (self.isHidden() or self.isMinimized()) def _change_label_status(self, status: str): self.label_status.setText(status) def _change_label_substatus(self, substatus: str): self.label_substatus.setText('<p>{}</p>'.format(substatus)) if not substatus: self.toolbar_substatus.hide() elif not self.toolbar_substatus.isVisible() and self.progress_bar.isVisible(): self.toolbar_substatus.show() def _reorganize(self): if not self._maximized: self.table_apps.change_headers_policy(QHeaderView.Stretch) self.table_apps.change_headers_policy() self._resize(accept_lower_width=len(self.pkgs) > 0) def _update_table(self, pkgs_info: dict, signal: bool = False): self.pkgs = pkgs_info['pkgs_displayed'] if pkgs_info['not_installed'] == 0: update_check = sum_updates_displayed(pkgs_info) > 0 else: update_check = False self.table_apps.update_packages(self.pkgs, update_check_enabled=update_check) if not self._maximized: self.label_displayed.show() self.table_apps.change_headers_policy(QHeaderView.Stretch) self.table_apps.change_headers_policy() self._resize(accept_lower_width=len(self.pkgs) > 0) if len(self.pkgs) == 0 and len(self.pkgs_available) == 0: self.label_displayed.setText('') else: self.label_displayed.setText('{} / {}'.format(len(self.pkgs), len(self.pkgs_available))) else: self.label_displayed.hide() if signal: self.signal_table_update.emit() def update_bt_upgrade(self, pkgs_info: dict = None): show_bt_upgrade = False if not any([self.suggestions_requested, self.search_performed]) and (not pkgs_info or pkgs_info['not_installed'] == 0): for pkg in (pkgs_info['pkgs_displayed'] if pkgs_info else self.pkgs): if not pkg.model.is_update_ignored() and pkg.update_checked: show_bt_upgrade = True break self.comp_manager.set_component_visible(BT_UPGRADE, show_bt_upgrade) if show_bt_upgrade: self._reorganize() def change_update_state(self, pkgs_info: dict, trigger_filters: bool = True, keep_selected: bool = False): self.update_bt_upgrade(pkgs_info) if pkgs_info['updates'] > 0: if pkgs_info['not_installed'] == 0: if not self.comp_manager.is_visible(CHECK_UPDATES): self.comp_manager.set_component_visible(CHECK_UPDATES, True) if not self.filter_updates and not keep_selected: self._change_checkbox(self.check_updates, True, 'filter_updates', trigger_filters) if pkgs_info['napp_updates'] > 0 and self.filter_only_apps and not keep_selected: self._change_checkbox(self.check_apps, False, 'filter_only_apps', trigger_filters) else: if not keep_selected: self._change_checkbox(self.check_updates, False, 'filter_updates', trigger_filters) self.comp_manager.set_component_visible(CHECK_UPDATES, False) def _change_checkbox(self, checkbox: QCheckBox, checked: bool, attr: str = None, trigger: bool = True): if not trigger: checkbox.blockSignals(True) checkbox.setChecked(checked) if not trigger: setattr(self, attr, checked) checkbox.blockSignals(False) def _gen_filters(self, ignore_updates: bool = False) -> dict: return { 'only_apps': False if self.search_performed else self.filter_only_apps, 'type': self.type_filter, 'category': self.category_filter, 'updates': False if ignore_updates else self.filter_updates, 'name': self.input_name.text().lower() if self.input_name.text() else None, 'display_limit': None if self.filter_updates else self.display_limit } def update_pkgs(self, new_pkgs: Optional[List[SoftwarePackage]], as_installed: bool, types: Optional[Set[type]] = None, ignore_updates: bool = False, keep_filters: bool = False) -> bool: self.input_name.set_text('') pkgs_info = commons.new_pkgs_info() filters = self._gen_filters(ignore_updates=ignore_updates) if new_pkgs is not None: old_installed = None if as_installed: old_installed = self.pkgs_installed self.pkgs_installed = [] for pkg in new_pkgs: app_model = PackageView(model=pkg, i18n=self.i18n) commons.update_info(app_model, pkgs_info) commons.apply_filters(app_model, filters, pkgs_info) if old_installed and types: for pkgv in old_installed: if pkgv.model.__class__ not in types: commons.update_info(pkgv, pkgs_info) commons.apply_filters(pkgv, filters, pkgs_info) else: # use installed for pkgv in self.pkgs_installed: commons.update_info(pkgv, pkgs_info) commons.apply_filters(pkgv, filters, pkgs_info) if pkgs_info['apps_count'] == 0: if self.load_suggestions or self.types_changed: if as_installed: self.pkgs_installed = pkgs_info['pkgs'] self._begin_load_suggestions(filter_installed=False) self.load_suggestions = False return False else: if not keep_filters: self._change_checkbox(self.check_apps, False, 'filter_only_apps', trigger=False) self.check_apps.setCheckable(False) else: if not keep_filters: self.check_apps.setCheckable(True) self._change_checkbox(self.check_apps, True, 'filter_only_apps', trigger=False) self.change_update_state(pkgs_info=pkgs_info, trigger_filters=False, keep_selected=keep_filters and bool(pkgs_info['pkgs_displayed'])) self._update_categories(pkgs_info['categories'], keep_selected=keep_filters and bool(pkgs_info['pkgs_displayed'])) self._update_type_filters(pkgs_info['available_types'], keep_selected=keep_filters and bool(pkgs_info['pkgs_displayed'])) self._apply_filters(pkgs_info, ignore_updates=ignore_updates) self.change_update_state(pkgs_info=pkgs_info, trigger_filters=False, keep_selected=keep_filters and bool(pkgs_info['pkgs_displayed'])) self.pkgs_available = pkgs_info['pkgs'] if as_installed: self.pkgs_installed = pkgs_info['pkgs'] self.pkgs = pkgs_info['pkgs_displayed'] self._update_table(pkgs_info=pkgs_info) if new_pkgs: self.stop_notifying_package_states() self.thread_notify_pkgs_ready.work = True self.thread_notify_pkgs_ready.pkgs = self.pkgs self.thread_notify_pkgs_ready.start() self._resize(accept_lower_width=bool(self.pkgs_installed)) if self.first_refresh: qt_utils.centralize(self) self.first_refresh = False if not self.installed_loaded and as_installed: self.installed_loaded = True return True def _apply_filters(self, pkgs_info: dict, ignore_updates: bool): pkgs_info['pkgs_displayed'] = [] filters = self._gen_filters(ignore_updates=ignore_updates) for pkgv in pkgs_info['pkgs']: commons.apply_filters(pkgv, filters, pkgs_info) def _clean_combo_types(self): if self.combo_filter_type.count() > 1: for _ in range(self.combo_filter_type.count() - 1): self.combo_filter_type.removeItem(1) def _update_type_filters(self, available_types: dict = None, keep_selected: bool = False): if available_types is None: self.comp_manager.set_component_visible(COMBO_TYPES, self.combo_filter_type.count() > 2) else: keeping_selected = keep_selected and available_types and self.type_filter in available_types if not keeping_selected: self.type_filter = self.any_type_filter if not available_types: self._clean_combo_types() if available_types: self._clean_combo_types() sel_type = -1 for idx, item in enumerate(available_types.items()): app_type, icon_path, label = item[0], item[1]['icon'], item[1]['label'] icon = self.cache_type_filter_icons.get(app_type) if not icon: icon = QIcon(icon_path) self.cache_type_filter_icons[app_type] = icon self.combo_filter_type.addItem(icon, label, app_type) if keeping_selected and app_type == self.type_filter: sel_type = idx + 1 self.combo_filter_type.blockSignals(True) self.combo_filter_type.setCurrentIndex(sel_type if sel_type > -1 else 0) self.combo_filter_type.blockSignals(False) self.comp_manager.set_component_visible(COMBO_TYPES, len(available_types) > 1) else: self.comp_manager.set_component_visible(COMBO_TYPES, False) def _update_categories(self, categories: Set[str] = None, keep_selected: bool = False): if categories is None: self.comp_manager.set_component_visible(COMBO_CATEGORIES, self.combo_categories.count() > 1) else: keeping_selected = keep_selected and categories and self.category_filter in categories if not keeping_selected: self.category_filter = self.any_category_filter if categories: if self.combo_categories.count() > 1: for _ in range(self.combo_categories.count() - 1): self.combo_categories.removeItem(1) selected_cat = -1 cat_list = list(categories) cat_list.sort() for idx, c in enumerate(cat_list): self.__add_category(c) if keeping_selected and c == self.category_filter: selected_cat = idx + 1 self.combo_categories.blockSignals(True) self.combo_categories.setCurrentIndex(selected_cat if selected_cat > -1 else 0) self.combo_categories.blockSignals(False) self.comp_manager.set_component_visible(COMBO_CATEGORIES, True) else: self.comp_manager.set_component_visible(COMBO_CATEGORIES, False) def __add_category(self, category: str): i18n_cat = self.i18n.get('category.{}'.format(category), self.i18n.get(category, category)) self.combo_categories.addItem(i18n_cat.capitalize(), category) def _get_current_categories(self) -> Set[str]: if self.combo_categories.count() > 1: return {self.combo_categories.itemData(idx) for idx in range(self.combo_categories.count()) if idx > 0} def _resize(self, accept_lower_width: bool = True): table_width = self.table_apps.get_width() toolbar_width = self.toolbar_filters.sizeHint().width() topbar_width = self.toolbar_status.sizeHint().width() new_width = max(table_width, toolbar_width, topbar_width) new_width *= 1.05 # this extra size is not because of the toolbar button, but the table upgrade buttons if (self.pkgs and accept_lower_width) or new_width > self.width(): self.resize(int(new_width), self.height()) def set_progress_controll(self, enabled: bool): self.progress_controll_enabled = enabled def upgrade_selected(self): body = QWidget() body.setLayout(QHBoxLayout()) body.setSizePolicy(QSizePolicy.MinimumExpanding, QSizePolicy.Preferred) body.layout().addWidget(QLabel(self.i18n['manage_window.upgrade_all.popup.body'])) body.layout().addWidget(UpgradeToggleButton(pkg=None, root=self, i18n=self.i18n, clickable=False)) if ConfirmationDialog(title=self.i18n['manage_window.upgrade_all.popup.title'], i18n=self.i18n, body=None, widgets=[body]).ask(): self._begin_action(action_label=self.i18n['manage_window.status.upgrading'], action_id=ACTION_UPGRADE) self.comp_manager.set_components_visible(False) self._handle_console_option(True) self.thread_update.pkgs = self.pkgs self.thread_update.start() def _finish_upgrade_selected(self, res: dict): self._finish_action() if res.get('id'): output = self.textarea_details.toPlainText() if output: try: Path(UpgradeSelected.UPGRADE_LOGS_DIR).mkdir(parents=True, exist_ok=True) logs_path = '{}/{}.log'.format(UpgradeSelected.UPGRADE_LOGS_DIR, res['id']) with open(logs_path, 'w+') as f: f.write(output) self.textarea_details.appendPlainText('\n*Upgrade summary generated at: {}'.format(UpgradeSelected.SUMMARY_FILE.format(res['id']))) self.textarea_details.appendPlainText('*Upgrade logs generated at: {}'.format(logs_path)) except: traceback.print_exc() if res['success']: self.comp_manager.remove_saved_state(ACTION_UPGRADE) self.begin_refresh_packages(pkg_types=res['types']) self._show_console_checkbox_if_output() if self._can_notify_user(): util.notify_user('{} {}'.format(res['updated'], self.i18n['notification.update_selected.success'])) notify_tray() else: self.comp_manager.restore_state(ACTION_UPGRADE) self._show_console_errors() if self._can_notify_user(): util.notify_user(self.i18n['notification.update_selected.failed']) self.update_custom_actions() def _show_console_errors(self): if self.textarea_details.toPlainText(): self.check_details.setChecked(True) else: self._handle_console_option(False) self.comp_manager.set_component_visible(CHECK_DETAILS, False) def _update_action_output(self, output: str): self.textarea_details.appendPlainText(output) def _begin_action(self, action_label: str, action_id: int = None): self.thread_animate_progress.stop = False self.thread_animate_progress.start() self.progress_bar.setVisible(True) if action_id is not None: self.comp_manager.save_states(action_id, only_visible=True) self._set_table_enabled(False) self.comp_manager.set_component_visible(SEARCH_BAR, False) self._change_status(action_label) def _set_lower_buttons_visible(self, visible: bool): self.comp_manager.set_group_visible(GROUP_LOWER_BTS, visible) if visible: self.comp_manager.set_component_visible(BT_CUSTOM_ACTIONS, bool(self.custom_actions)) def _finish_action(self, action_id: int = None): self.thread_animate_progress.stop = True self.thread_animate_progress.wait(msecs=1000) self.progress_bar.setVisible(False) self.progress_bar.setValue(0) self.progress_bar.setTextVisible(False) if action_id is not None: self.comp_manager.restore_state(action_id) self.comp_manager.set_component_visible(SEARCH_BAR, True) self._change_status() self._change_label_substatus('') self._set_table_enabled(True) self.progress_controll_enabled = True def begin_downgrade(self, pkg: PackageView): pwd, proceed = self._ask_root_password(SoftwareAction.DOWNGRADE, pkg) if not proceed: return self._begin_action(action_label='{} {}'.format(self.i18n['manage_window.status.downgrading'], pkg.model.name), action_id=ACTION_DOWNGRADE) self.comp_manager.set_components_visible(False) self._handle_console_option(True) self.thread_downgrade.pkg = pkg self.thread_downgrade.root_pwd = pwd self.thread_downgrade.start() def _finish_downgrade(self, res: dict): self._finish_action() if res['success']: self.comp_manager.remove_saved_state(ACTION_DOWNGRADE) if self._can_notify_user(): util.notify_user('{} {}'.format(res['app'], self.i18n['downgraded'])) self.begin_refresh_packages(pkg_types={res['app'].model.__class__} if len(self.pkgs) > 1 else None) self._show_console_checkbox_if_output() self.update_custom_actions() notify_tray() else: self.comp_manager.restore_state(ACTION_DOWNGRADE) self._show_console_errors() if self._can_notify_user(): util.notify_user(self.i18n['notification.downgrade.failed']) def begin_show_info(self, pkg: dict): self._begin_action(self.i18n['manage_window.status.info'], action_id=ACTION_INFO) self.comp_manager.disable_visible() self.thread_show_info.pkg = pkg self.thread_show_info.start() def _finish_show_info(self, pkg_info: dict): self._finish_action(action_id=ACTION_INFO) if pkg_info: if len(pkg_info) > 1: dialog_info = InfoDialog(pkg_info=pkg_info, icon_cache=self.icon_cache, i18n=self.i18n, screen_size=self.screen_size) dialog_info.exec_() else: dialog.show_message(title=self.i18n['warning'].capitalize(), body=self.i18n['manage_window.info.no_info'].format(bold(pkg_info['__app__'].model.name)), type_=MessageType.WARNING) def begin_show_screenshots(self, pkg: PackageView): self._begin_action(action_label=self.i18n['manage_window.status.screenshots'].format(bold(pkg.model.name)), action_id=ACTION_SCREENSHOTS) self.comp_manager.disable_visible() self.thread_screenshots.pkg = pkg self.thread_screenshots.start() def _finish_show_screenshots(self, res: dict): self._finish_action(ACTION_SCREENSHOTS) if res.get('screenshots'): diag = ScreenshotsDialog(pkg=res['pkg'], http_client=self.http_client, icon_cache=self.icon_cache, logger=self.logger, i18n=self.i18n, screenshots=res['screenshots']) diag.exec_() else: dialog.show_message(title=self.i18n['error'], body=self.i18n['popup.screenshots.no_screenshot.body'].format(bold(res['pkg'].model.name)), type_=MessageType.ERROR) def begin_show_history(self, pkg: PackageView): self._begin_action(self.i18n['manage_window.status.history'], action_id=ACTION_HISTORY) self.comp_manager.disable_visible() self.thread_show_history.pkg = pkg self.thread_show_history.start() def _finish_show_history(self, res: dict): self._finish_action(ACTION_HISTORY) if res.get('error'): self._handle_console_option(True) self.textarea_details.appendPlainText(res['error']) self.check_details.setChecked(True) elif not res['history'].history: dialog.show_message(title=self.i18n['action.history.no_history.title'], body=self.i18n['action.history.no_history.body'].format(bold(res['history'].pkg.name)), type_=MessageType.WARNING) else: dialog_history = HistoryDialog(res['history'], self.icon_cache, self.i18n) dialog_history.exec_() def _begin_search(self, word, action_id: int = None): self.filter_updates = False self._begin_action('{} {}'.format(self.i18n['manage_window.status.searching'], word if word else ''), action_id=action_id) def search(self): word = self.search_bar.text().strip() if word: self._handle_console(False) self._begin_search(word, action_id=ACTION_SEARCH) self.comp_manager.set_components_visible(False) self.thread_search.word = word self.thread_search.start() def _finish_search(self, res: dict): self._finish_action() self.search_performed = True if not res['error']: self.comp_manager.set_group_visible(GROUP_VIEW_SEARCH, True) self.update_pkgs(res['pkgs_found'], as_installed=False, ignore_updates=True) self._set_lower_buttons_visible(True) self._update_bts_installed_and_suggestions() self._hide_filters_no_packages() self._reorganize() else: self.comp_manager.restore_state(ACTION_SEARCH) dialog.show_message(title=self.i18n['warning'].capitalize(), body=self.i18n[res['error']], type_=MessageType.WARNING) def _ask_root_password(self, action: SoftwareAction, pkg: PackageView) -> Tuple[Optional[str], bool]: pwd = None requires_root = self.manager.requires_root(action, pkg.model) if not user.is_root() and requires_root: valid, pwd = RootDialog.ask_password(self.context, i18n=self.i18n, comp_manager=self.comp_manager) if not valid: return pwd, False return pwd, True def install(self, pkg: PackageView): pwd, proceed = self._ask_root_password(SoftwareAction.INSTALL, pkg) if not proceed: return self._begin_action('{} {}'.format(self.i18n['manage_window.status.installing'], pkg.model.name), action_id=ACTION_INSTALL) self.comp_manager.set_groups_visible(False, GROUP_UPPER_BAR, GROUP_LOWER_BTS) self._handle_console_option(True) self.thread_install.pkg = pkg self.thread_install.root_pwd = pwd self.thread_install.start() def _finish_install(self, res: dict): self._finish_action(action_id=ACTION_INSTALL) console_output = self.textarea_details.toPlainText() if console_output: log_path = f"{LOGS_DIR}/install/{res['pkg'].model.get_type()}/{res['pkg'].model.name}" try: Path(log_path).mkdir(parents=True, exist_ok=True) log_file = f'{log_path}/{int(time.time())}.log' with open(log_file, 'w+') as f: f.write(console_output) self.textarea_details.appendPlainText(self.i18n['console.install_logs.path'].format('"{}"'.format(log_file))) except: self.textarea_details.appendPlainText("[warning] Could not write install log file to '{}'".format(log_path)) if res['success']: if self._can_notify_user(): util.notify_user(msg='{} ({}) {}'.format(res['pkg'].model.name, res['pkg'].model.get_type(), self.i18n['installed'])) models_updated = [] for key in ('installed', 'removed'): if res.get(key): models_updated.extend(res[key]) if models_updated: installed_available_idxs = [] for idx, available in enumerate(self.pkgs_available): for pidx, model in enumerate(models_updated): if available.model == model: available.update_model(model) if model.installed: installed_available_idxs.append((idx, pidx, available)) # re-indexing all installed so they always will be be displayed when no filters are applied if installed_available_idxs: # removing from available installed_available_idxs.sort(key=operator.itemgetter(0)) for decrement, data in enumerate(installed_available_idxs): del self.pkgs_available[data[0] - decrement] # re-inserting into the available installed_available_idxs.sort(key=operator.itemgetter(1)) for new_idx, data in enumerate(installed_available_idxs): self.pkgs_available.insert(new_idx, data[2]) # updating the respective table rows: for displayed in self.pkgs: for model in models_updated: if displayed.model == model: self.table_apps.update_package(displayed, change_update_col=True) self.update_bt_upgrade() # updating installed packages if res['removed'] and self.pkgs_installed: to_remove = [] for idx, installed in enumerate(self.pkgs_installed): for removed in res['removed']: if installed.model == removed: to_remove.append(idx) if to_remove: to_remove.sort() for decrement, idx in enumerate(to_remove): del self.pkgs_installed[idx - decrement] if res['installed']: for idx, model in enumerate(res['installed']): self.pkgs_installed.insert(idx, PackageView(model, self.i18n)) self.update_custom_actions() self.table_apps.change_headers_policy(policy=QHeaderView.Stretch, maximized=self._maximized) self.table_apps.change_headers_policy(policy=QHeaderView.ResizeToContents, maximized=self._maximized) self._resize(accept_lower_width=False) else: self._show_console_errors() if self._can_notify_user(): util.notify_user('{}: {}'.format(res['pkg'].model.name, self.i18n['notification.install.failed'])) def _update_progress(self, value: int): self.progress_bar.setValue(value) def begin_execute_custom_action(self, pkg: Optional[PackageView], action: CustomSoftwareAction): if pkg is None and action.requires_confirmation and \ not ConfirmationDialog(title=self.i18n['confirmation'].capitalize(), body='<p>{}</p>'.format(self.i18n['custom_action.proceed_with'].capitalize().format(bold(self.i18n[action.i18n_label_key]))), icon=QIcon(action.icon_path) if action.icon_path else QIcon(resource.get_path('img/logo.svg')), i18n=self.i18n).ask(): return False pwd = None if not user.is_root() and action.requires_root: valid, pwd = RootDialog.ask_password(self.context, i18n=self.i18n, comp_manager=self.comp_manager) if not valid: return self._begin_action(action_label='{}{}'.format(self.i18n[action.i18n_status_key], ' {}'.format(pkg.model.name) if pkg else ''), action_id=ACTION_CUSTOM_ACTION) self.comp_manager.set_components_visible(False) self._handle_console_option(True) self.thread_custom_action.pkg = pkg self.thread_custom_action.root_pwd = pwd self.thread_custom_action.custom_action = action self.thread_custom_action.start() def _finish_execute_custom_action(self, res: dict): self._finish_action() if res['success']: if res['action'].refresh: self.comp_manager.remove_saved_state(ACTION_CUSTOM_ACTION) self.begin_refresh_packages(pkg_types={res['pkg'].model.__class__} if res['pkg'] else None) else: self.comp_manager.restore_state(ACTION_CUSTOM_ACTION) self._show_console_checkbox_if_output() else: self.comp_manager.restore_state(ACTION_CUSTOM_ACTION) self._show_console_errors() if res['error']: dialog.show_message(title=self.i18n['warning' if res['error_type'] == MessageType.WARNING else 'error'].capitalize(), body=self.i18n[res['error']], type_=res['error_type']) def _show_console_checkbox_if_output(self): if self.textarea_details.toPlainText(): self.comp_manager.set_component_visible(CHECK_DETAILS, True) else: self.comp_manager.set_component_visible(CHECK_DETAILS, False) def show_settings(self): if self.settings_window: self.settings_window.handle_display() else: self.settings_window = SettingsWindow(self.manager, self.i18n, self.screen_size, self) self.settings_window.setMinimumWidth(int(self.screen_size.width() / 4)) self.settings_window.resize(self.size()) self.settings_window.adjustSize() qt_utils.centralize(self.settings_window) self.settings_window.show() def _map_custom_action(self, action: CustomSoftwareAction, parent: QWidget) -> QCustomMenuAction: if action.icon_path: try: if action.icon_path.startswith('/'): icon = QIcon(action.icon_path) else: icon = QIcon.fromTheme(action.icon_path) except: icon = None else: icon = None return QCustomMenuAction(parent=parent, label=self.i18n[action.i18n_label_key], action=lambda: self.begin_execute_custom_action(None, action), icon=icon) def show_custom_actions(self): if self.custom_actions: menu_row = QMenu() menu_row.setCursor(QCursor(Qt.PointingHandCursor)) actions = [self._map_custom_action(a, menu_row) for a in self.custom_actions] menu_row.addActions(actions) menu_row.adjustSize() menu_row.popup(QCursor.pos()) menu_row.exec_() def begin_ignore_updates(self, pkg: PackageView): status_key = 'ignore_updates' if not pkg.model.is_update_ignored() else 'ignore_updates_reverse' self._begin_action(action_label=self.i18n['manage_window.status.{}'.format(status_key)].format(pkg.model.name), action_id=ACTION_IGNORE_UPDATES) self.comp_manager.disable_visible() self.thread_ignore_updates.pkg = pkg self.thread_ignore_updates.start() def finish_ignore_updates(self, res: dict): self._finish_action(action_id=ACTION_IGNORE_UPDATES) if res['success']: hide_package = commons.is_package_hidden(res['pkg'], self._gen_filters()) if hide_package: idx_to_remove = None for pkg in self.pkgs: if pkg == res['pkg']: idx_to_remove = pkg.table_index break if idx_to_remove is not None: del self.pkgs[idx_to_remove] self.table_apps.removeRow(idx_to_remove) self._update_table_indexes() self.update_bt_upgrade() else: for pkg in self.pkgs: if pkg == res['pkg']: pkg.update_model(res['pkg'].model) self.table_apps.update_package(pkg, change_update_col=not any([self.search_performed, self.suggestions_requested])) self.update_bt_upgrade() break for pkg_list in (self.pkgs_available, self.pkgs_installed): if pkg_list: for pkg in pkg_list: if pkg == res['pkg']: pkg.update_model(res['pkg'].model) break self._add_pkg_categories(res['pkg']) dialog.show_message(title=self.i18n['success'].capitalize(), body=self.i18n['action.{}.success'.format(res['action'])].format(bold(res['pkg'].model.name)), type_=MessageType.INFO) else: dialog.show_message(title=self.i18n['fail'].capitalize(), body=self.i18n['action.{}.fail'.format(res['action'])].format(bold(res['pkg'].model.name)), type_=MessageType.ERROR) def _add_pkg_categories(self, pkg: PackageView): if pkg.model.categories: pkg_categories = {c.strip().lower() for c in pkg.model.categories if c and c.strip()} if pkg_categories: current_categories = self._get_current_categories() if current_categories: pkg_categories = {c.strip().lower() for c in pkg.model.categories if c} if pkg_categories: categories_to_add = {c for c in pkg_categories if c and c not in current_categories} if categories_to_add: for cat in categories_to_add: self.__add_category(cat) else: self._update_categories(pkg_categories) def _map_theme_action(self, theme: ThemeMetadata, menu: QMenu) -> QCustomMenuAction: def _change_theme(): set_theme(theme_key=theme.key, app=QApplication.instance(), logger=self.context.logger) self.thread_save_theme.theme_key = theme.key self.thread_save_theme.start() return QCustomMenuAction(label=theme.get_i18n_name(self.i18n), action=_change_theme, parent=menu, tooltip=theme.get_i18n_description(self.i18n)) def show_themes(self): menu_row = QMenu() menu_row.setCursor(QCursor(Qt.PointingHandCursor)) menu_row.addActions(self._map_theme_actions(menu_row)) menu_row.adjustSize() menu_row.popup(QCursor.pos()) menu_row.exec_() def _map_theme_actions(self, menu: QMenu) -> List[QCustomMenuAction]: core_config = CoreConfigManager().get_config() current_theme_key, current_action = core_config['ui']['theme'], None actions = [] for t in read_all_themes_metadata(): if not t.abstract: action = self._map_theme_action(t, menu) if current_action is None and current_theme_key is not None and current_theme_key == t.key: action.button.setProperty('current', 'true') current_action = action else: actions.append(action) if not current_action: invalid_action = QCustomMenuAction(label=self.i18n['manage_window.bt_themes.option.invalid'], parent=menu) invalid_action.button.setProperty('current', 'true') current_action = invalid_action actions.sort(key=lambda a: a.get_label()) actions.insert(0, current_action) return actions def reload(self): self.thread_reload.start() def _reload(self): self.update_custom_actions() self.verify_warnings() self.types_changed = True self.begin_refresh_packages()
from fastapi import FastAPI from fastapi.testclient import TestClient app = FastAPI() @app.get("/api/v1/healthcheck") async def read_main(): return "OK" @app.post("/api/v1/query") async def query(): return [{"event_date": "20210105"}] client = TestClient(app) def test_read_main(): response = client.get("/api/v1/healthcheck") assert response.status_code == 200 assert response.json() == "OK" def test_query(): response = client.post( "/api/v1/query", json={ "type": "service_account", "date": "20210105", "projet_id": "test-project", "private_key_id": "test", "private_key": "testkey", "client_email": "test@test.com", "client_id": "test", "auth_uri": "https://accounts.google.com/o/oauth2/auth", "token_uri": "ttps://oauth2.googleapis.com/token", "auth_provider_x509_cert_url": "test", "client_x509_cert_url": "test" } ) assert response.status_code == 200 assert response.json() == [{"event_date": "20210105"}]
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! """Client and server classes corresponding to protobuf-defined services.""" import grpc from google.protobuf import empty_pb2 as google_dot_protobuf_dot_empty__pb2 from yandex.cloud.datasphere.v1 import app_token_service_pb2 as yandex_dot_cloud_dot_datasphere_dot_v1_dot_app__token__service__pb2 class AppTokenServiceStub(object): """A set of methods for managing app tokens. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.Validate = channel.unary_unary( '/yandex.cloud.datasphere.v1.AppTokenService/Validate', request_serializer=yandex_dot_cloud_dot_datasphere_dot_v1_dot_app__token__service__pb2.AppTokenValidateRequest.SerializeToString, response_deserializer=google_dot_protobuf_dot_empty__pb2.Empty.FromString, ) class AppTokenServiceServicer(object): """A set of methods for managing app tokens. """ def Validate(self, request, context): """Validates app token. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_AppTokenServiceServicer_to_server(servicer, server): rpc_method_handlers = { 'Validate': grpc.unary_unary_rpc_method_handler( servicer.Validate, request_deserializer=yandex_dot_cloud_dot_datasphere_dot_v1_dot_app__token__service__pb2.AppTokenValidateRequest.FromString, response_serializer=google_dot_protobuf_dot_empty__pb2.Empty.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'yandex.cloud.datasphere.v1.AppTokenService', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,)) # This class is part of an EXPERIMENTAL API. class AppTokenService(object): """A set of methods for managing app tokens. """ @staticmethod def Validate(request, target, options=(), channel_credentials=None, call_credentials=None, insecure=False, compression=None, wait_for_ready=None, timeout=None, metadata=None): return grpc.experimental.unary_unary(request, target, '/yandex.cloud.datasphere.v1.AppTokenService/Validate', yandex_dot_cloud_dot_datasphere_dot_v1_dot_app__token__service__pb2.AppTokenValidateRequest.SerializeToString, google_dot_protobuf_dot_empty__pb2.Empty.FromString, options, channel_credentials, insecure, call_credentials, compression, wait_for_ready, timeout, metadata)
import pytest @pytest.mark.usefixtures("smart_setup") class TestObjectValue: def test_get_sheet_object_value(self, smart_setup): smart = smart_setup['smart'] sheet = smart.Sheets.get_sheet(smart_setup['sheet'].id, include='objectValue') assert isinstance(sheet.rows[0].cells[0].object_value, smart.models.StringObjectValue) assert isinstance(sheet, smart.models.Sheet) def test_predecessors(self, smart_setup): smart = smart_setup['smart'] templates = smart.Templates.list_public_templates(include_all=True) for template in templates.data: if template.name == 'Basic Project with Gantt & Dependencies': break sheet = smart.models.Sheet({ 'name': 'example_project_python_sdk' + smart_setup['now'], 'fromId': template.id }) action = smart.Home.create_sheet_from_template(sheet) sheet = action.result assert action.message == 'SUCCESS' sheet = smart.Sheets.get_sheet(sheet.id) # add 'Task1' row = smart.models.Row() row.to_bottom = True for col in sheet.columns: if col.primary: row.cells.append({ 'column_id': col.id, 'value': 'Task1' }) break action = smart.Sheets.add_rows(sheet.id, [row]) task1_row = action.result[0] assert isinstance(task1_row, smart.models.row.Row) assert action.request_response.status_code == 200 # add 'Task2' with 'Task1' predecessor p1 = smart.models.Predecessor() p1.type = 'FS' p1.row_id = task1_row.id predecessor_list = smart.models.PredecessorList() predecessor_list.predecessors = [p1] row = smart.models.Row() row.to_bottom = True for col in sheet.columns: if col.primary: row.cells.append({ 'column_id': col.id, 'value': 'Task2' }) if col.type == 'PREDECESSOR': row.cells.append({ 'column_id': col.id, 'object_value': predecessor_list }) action = smart.Sheets.add_rows(sheet.id, [row]) task2_row = action.result[0] assert isinstance(task2_row, smart.models.row.Row) assert action.request_response.status_code == 200 # add 'Task3' with 'Task1','Task2' predecessors p1 = smart.models.Predecessor() p1.type = 'FS' p1.row_id = task1_row.id p2 = smart.models.Predecessor() p2.type = 'FS' p2.row_id = task2_row.id predecessor_list = smart.models.PredecessorList() predecessor_list.predecessors = [p1, p2] row = smart.models.Row() row.to_bottom = True for col in sheet.columns: if col.primary: row.cells.append({ 'column_id': col.id, 'value': 'Task3' }) if col.type == 'PREDECESSOR': row.cells.append({ 'column_id': col.id, 'object_value': predecessor_list }) action = smart.Sheets.add_rows(sheet.id, [row]) task3_row = action.result[0] assert isinstance(task3_row, smart.models.row.Row) assert action.request_response.status_code == 200 # clear the predecessor list from task 3 row = smart.models.Row() row.id = task3_row.id for col in sheet.columns: if col.type == 'PREDECESSOR': row.cells.append({ 'column_id': col.id, 'value': smart.models.ExplicitNull() }) break action = smart.Sheets.update_rows(sheet.id, [row]) assert action.request_response.status_code == 200 for cell in action.data[0].cells: if cell.column_id == col.id: break; assert cell.object_value is None # clean up action = smart.Sheets.delete_sheet(sheet.id) assert action.message == 'SUCCESS'
import random import time class Athlete(): name = "" health = 100 def __init__(self, newName): self.name = newName print("На ринге появляется новый боец, его имя - ", self.name ) print() def punch(self, other): time.sleep(1) print(self.name, "наносит удар бойцу ", other.name) other.health -= 20 print("Уровень физического состояния бойца ", other.name, " - ", other.health) print() fighter1 = Athlete("Владимир") fighter2 = Athlete("Николай") while (fighter1.health != 0) and (fighter2.health != 0): fighters = [fighter1, fighter2] if fighters[random.randint(0,1)] == fighter1: fighter1.punch(fighter2) else: fighter2.punch(fighter1) print("Победу в поединке одержал " + (fighter1.name if fighter1.health > 0 else fighter2.name) + "!")
import bagel import numpy as np from sklearn.metrics import precision_recall_curve from typing import Sequence, Tuple, Dict, Optional def _adjust_scores(labels: np.ndarray, scores: np.ndarray, delay: Optional[int] = None, inplace: bool = False) -> np.ndarray: if np.shape(scores) != np.shape(labels): raise ValueError('`labels` and `scores` must have same shape') if delay is None: delay = len(scores) splits = np.where(labels[1:] != labels[:-1])[0] + 1 is_anomaly = labels[0] == 1 adjusted_scores = np.copy(scores) if not inplace else scores pos = 0 for part in splits: if is_anomaly: ptr = min(pos + delay + 1, part) adjusted_scores[pos: ptr] = np.max(adjusted_scores[pos: ptr]) adjusted_scores[ptr: part] = np.maximum(adjusted_scores[ptr: part], adjusted_scores[pos]) is_anomaly = not is_anomaly pos = part part = len(labels) if is_anomaly: ptr = min(pos + delay + 1, part) adjusted_scores[pos: part] = np.max(adjusted_scores[pos: ptr]) return adjusted_scores def _ignore_missing(series_list: Sequence, missing: np.ndarray) -> Tuple[np.ndarray, ...]: ret = [] for series in series_list: series = np.copy(series) ret.append(series[missing != 1]) return tuple(ret) def _best_f1score(labels: np.ndarray, scores: np.ndarray) -> Tuple[float, float, float, float]: precision, recall, thresholds = precision_recall_curve(y_true=labels, probas_pred=scores) f1score = 2 * precision * recall / np.clip(precision + recall, a_min=1e-8, a_max=None) best_threshold = thresholds[np.argmax(f1score)] best_precision = precision[np.argmax(f1score)] best_recall = recall[np.argmax(f1score)] return best_threshold, best_precision, best_recall, np.max(f1score) def get_test_results(labels: np.ndarray, scores: np.ndarray, missing: np.ndarray, window_size: int, delay: Optional[int] = None) -> Dict: labels = labels[window_size - 1:] scores = scores[window_size - 1:] missing = missing[window_size - 1:] adjusted_scores = _adjust_scores(labels=labels, scores=scores, delay=delay) adjusted_labels, adjusted_scores = _ignore_missing([labels, adjusted_scores], missing=missing) threshold, precision, recall, f1score = _best_f1score(labels=adjusted_labels, scores=adjusted_scores) return {'threshold': threshold, 'precision': precision, 'recall': recall, 'f1score': f1score} class KPIStats: def __init__(self, kpi: bagel.data.KPI): self.num_points = len(kpi.values) self.num_missing = len(kpi.missing[kpi.missing == 1]) self.num_anomaly = len(kpi.labels[kpi.labels == 1]) self.missing_rate = self.num_missing / self.num_points self.anomaly_rate = self.num_anomaly / self.num_points def get_kpi_stats(*kpis: bagel.data.KPI) -> Tuple[KPIStats, ...]: ret = [] for kpi in kpis: ret.append(KPIStats(kpi)) return tuple(ret)
""" This is a library for defining and using particle filters. """ #----------------------------------------------------------------------------- # Copyright (c) 2013, yt Development Team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. #----------------------------------------------------------------------------- import copy from contextlib import contextmanager from yt.fields.field_info_container import \ NullFunc, TranslationFunc from yt.funcs import mylog from yt.utilities.exceptions import YTIllDefinedFilter # One to one mapping filter_registry = {} class DummyFieldInfo(object): particle_type = True dfi = DummyFieldInfo() class ParticleFilter(object): def __init__(self, name, function, requires, filtered_type): self.name = name self.function = function self.requires = requires[:] self.filtered_type = filtered_type @contextmanager def apply(self, dobj): with dobj._chunked_read(dobj._current_chunk): with dobj._field_type_state(self.filtered_type, dfi): # We won't be storing the field data from the whole read, so we # start by filtering now. filter = self.function(self, dobj) yield # Retain a reference here, and we'll filter all appropriate fields # later. fd = dobj.field_data for f, tr in fd.items(): if f[0] != self.filtered_type: continue if tr.shape != filter.shape and tr.shape[0] != filter.shape[0]: raise YTIllDefinedFilter(self, tr.shape, filter.shape) else: d = tr[filter] dobj.field_data[self.name, f[1]] = d def available(self, field_list): # Note that this assumes that all the fields in field_list have the # same form as the 'requires' attributes. This won't be true if the # fields are implicitly "all" or something. return all((self.filtered_type, field) in field_list for field in self.requires) def missing(self, field_list): return list((self.filtered_type, field) for field in self.requires if (self.filtered_type, field) not in field_list) def wrap_func(self, field_name, old_fi): new_fi = copy.copy(old_fi) new_fi.name = (self.name, field_name[1]) if old_fi._function == NullFunc: new_fi._function = TranslationFunc(old_fi.name) # Marking the field as inherited new_fi._inherited_particle_filter = True return new_fi def add_particle_filter(name, function, requires=None, filtered_type="all"): r"""Create a new particle filter in the global namespace of filters A particle filter is a short name that corresponds to an algorithm for filtering a set of particles into a subset. This is useful for creating new particle types based on a cut on a particle field, such as particle mass, ID or type. After defining a new filter, it still needs to be added to the dataset by calling :func:`~yt.data_objects.static_output.add_particle_filter`. .. note:: Alternatively, you can make use of the :func:`~yt.data_objects.particle_filters.particle_filter` decorator to define a new particle filter. Parameters ---------- name : string The name of the particle filter. New particle fields with particle type set by this name will be added to any dataset that enables this particle filter. function : reference to a function The function that defines the particle filter. The function should accept two arguments: a reference to a particle filter object and a reference to an abstract yt data object. See the example below. requires : a list of field names A list of field names required by the particle filter definition. filtered_type : string The name of the particle type to be filtered. Example ------- >>> import yt >>> def _stars(pfilter, data): ... return data[(pfilter.filtered_type, 'particle_type')] == 2 >>> yt.add_particle_filter("stars", function=_stars, filtered_type='all', ... requires=["particle_type"]) >>> ds = yt.load('IsolatedGalaxy/galaxy0030/galaxy0030') >>> ds.add_particle_filter('stars') >>> ad = ds.all_data() >>> print (ad['stars', 'particle_mass']) [ 1.68243760e+38 1.65690882e+38 1.65813321e+38 ..., 2.04238266e+38 2.04523901e+38 2.04770938e+38] g """ if requires is None: requires = [] filter = ParticleFilter(name, function, requires, filtered_type) if filter_registry.get(name, None) is not None: mylog.warning('The %s particle filter already exists. Overriding.' % name) filter_registry[name] = filter def particle_filter(name=None, requires=None, filtered_type='all'): r"""A decorator that adds a new particle filter A particle filter is a short name that corresponds to an algorithm for filtering a set of particles into a subset. This is useful for creating new particle types based on a cut on a particle field, such as particle mass, ID or type. .. note:: Alternatively, you can make use of the :func:`~yt.data_objects.particle_filters.add_particle_filter` function to define a new particle filter using a more declarative syntax. Parameters ---------- name : string The name of the particle filter. New particle fields with particle type set by this name will be added to any dataset that enables this particle filter. If not set, the name will be inferred from the name of the filter function. function : reference to a function The function that defines the particle filter. The function should accept two arguments: a reference to a particle filter object and a reference to an abstract yt data object. See the example below. requires : a list of field names A list of field names required by the particle filter definition. filtered_type : string The name of the particle type to be filtered. Example ------- >>> import yt >>> # define a filter named "stars" >>> @yt.particle_filter(requires=["particle_type"], filtered_type='all') >>> def stars(pfilter, data): ... return data[(pfilter.filtered_type, 'particle_type')] == 2 >>> ds = yt.load('IsolatedGalaxy/galaxy0030/galaxy0030') >>> ds.add_particle_filter('stars') >>> ad = ds.all_data() >>> print (ad['stars', 'particle_mass']) [ 1.68243760e+38 1.65690882e+38 1.65813321e+38 ..., 2.04238266e+38 2.04523901e+38 2.04770938e+38] g """ def wrapper(function): if name is None: used_name = function.__name__ else: used_name = name return add_particle_filter(used_name, function, requires, filtered_type) return wrapper
# -*- coding: utf-8 -*- # Copyright (c) 2015, Mayo Clinic # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # # Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # Neither the name of the <ORGANIZATION> nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE # OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED # OF THE POSSIBILITY OF SUCH DAMAGE.f import dirlistproc def proc_xml(input_fn: str, output_fn: str, _) -> bool: print("Converting %s to %s" % (input_fn, output_fn)) return True def main(): dlp = dirlistproc.DirectoryListProcessor(None, "Convert XML to Text", ".xml", ".txt") nfiles, nsuccess = dlp.run(proc_xml) print("Total=%d Successful=%d" % (nfiles, nsuccess)) if __name__ == '__main__': main()
from .connection import Connection
#Split one picture import cv2 import numpy.random as random import numpy as np import os import time #borders #mitochondria #mitochondria borders #PSD #vesicles def is_Img(name): img_type = ('.png', '.jpg', '.jpeg') if name.endswith((img_type)): return True else: return False file_dir_arr = ["axon", "mitochondria", "PSD", "vesicles", "boundaries","mitochondrial boundaries"] name_list = [] mask_list = [] out_dir = "cutting data" size_data = 256 size_step = 128 if not os.path.isdir(out_dir): print("создаю out_dir:" + out_dir) os.makedirs(out_dir) dir_input_img = "original data/original/" dir_input_mask ="original data/" ########################################################### img_name = "training075.png" ########################################################### if is_Img(os.path.join(dir_input_img, img_name)): count = 0 img = cv2.imread(os.path.join(dir_input_img, img_name), 0) h,w = img.shape[0:2] if not os.path.isdir(out_dir+"/original"): print("создаю out_dir:" + "original") os.makedirs(out_dir+"/original") for start_y in range(0,h, size_step): if (h - start_y < size_data): continue for start_x in range(0,w, size_step): if (w - start_x < size_data): continue cutting_img = img[start_y:start_y+size_data, start_x:start_x+size_data] cv2.imwrite(out_dir + "/original/" + img_name + "_" + str(size_data) +"_" + str(size_step) +"_" +str(count)+".png", cutting_img) count+=1 for i,dir_name in enumerate(file_dir_arr): if is_Img(os.path.join(dir_input_mask + dir_name, img_name)): img = cv2.imread(os.path.join(dir_input_mask +dir_name, img_name), 0) img[img < 128] = 0 img[img > 127] = 255 if name_list.count(img_name) == 0: name_list.append(img_name) mask_list.append(np.zeros((len(file_dir_arr),)+ img.shape, np.uint8)) index = name_list.index(img_name) mask_list[index][i] = img print(name_list) for index, mask_stack in enumerate(mask_list): count = 0 for i,dir_name in enumerate(file_dir_arr): local_count = count mask_write = mask_stack[i] h,w = mask_write.shape[0:2] if not os.path.isdir(out_dir+"/"+dir_name): print("создаю out_dir:" + "mask") os.makedirs(out_dir+"/"+dir_name ) for start_y in range(0,h, size_step): if (h - start_y < size_data): continue for start_x in range(0,w, size_step): if (w - start_x < size_data): continue cutting_mask = mask_write[start_y:start_y+size_data, start_x:start_x+size_data] cv2.imwrite(out_dir+"/"+dir_name +"/" + name_list[index] + "_" + str(size_data) +"_" + str(size_step) +"_" +str(local_count)+".png", cutting_mask) local_count+=1
"""payu.cli ======== Command line interface tools :copyright: Copyright 2011 Marshall Ward, see AUTHORS for details. :license: Apache License, Version 2.0, see LICENSE for details """ import argparse from distutils import sysconfig import importlib import os import pkgutil import shlex import subprocess import sys import payu import payu.envmod as envmod from payu.models import index as supported_models import payu.subcommands # Default configuration DEFAULT_CONFIG = 'config.yaml' def parse(): """Parse the command line inputs and execute the subcommand.""" # Build the list of subcommand modules modnames = [mod for (_, mod, _) in pkgutil.iter_modules(payu.subcommands.__path__, prefix=payu.subcommands.__name__ + '.') if mod.endswith('_cmd')] subcmds = [importlib.import_module(mod) for mod in modnames] # Construct the subcommand parser parser = argparse.ArgumentParser() parser.add_argument('--version', action='version', version='payu {0}'.format(payu.__version__)) subparsers = parser.add_subparsers() for cmd in subcmds: cmd_parser = subparsers.add_parser(cmd.title, **cmd.parameters) cmd_parser.set_defaults(run_cmd=cmd.runcmd) for arg in cmd.arguments: cmd_parser.add_argument(*arg['flags'], **arg['parameters']) # Display help if no arguments are provided if len(sys.argv) == 1: parser.print_help() else: args = vars(parser.parse_args()) run_cmd = args.pop('run_cmd') run_cmd(**args) def get_model_type(model_type, config): """Determine and validate the active model type.""" # If no model type is given, then check the config file if not model_type: model_type = config.get('model') # If there is still no model type, try the parent directory if not model_type: model_type = os.path.basename(os.path.abspath(os.pardir)) print('payu: warning: Assuming model is {0} based on parent directory ' 'name.'.format(model_type)) if model_type not in supported_models: print('payu: error: Unknown model {0}'.format(model_type)) sys.exit(-1) def set_env_vars(init_run=None, n_runs=None, lab_path=None, dir_path=None, reproduce=None): """Construct the environment variables used by payu for resubmissions.""" payu_env_vars = {} # Setup Python dynamic library link lib_paths = sysconfig.get_config_vars('LIBDIR') payu_env_vars['LD_LIBRARY_PATH'] = ':'.join(lib_paths) if 'PYTHONPATH' in os.environ: payu_env_vars['PYTHONPATH'] = os.environ['PYTHONPATH'] # Set (or import) the path to the PAYU scripts (PAYU_PATH) # NOTE: We may be able to use sys.path[0] here. payu_binpath = os.environ.get('PAYU_PATH') if not payu_binpath or not os.path.isdir(payu_binpath): payu_binpath = os.path.dirname(sys.argv[0]) payu_env_vars['PAYU_PATH'] = payu_binpath # Set the run counters if init_run: init_run = int(init_run) assert init_run >= 0 payu_env_vars['PAYU_CURRENT_RUN'] = init_run if n_runs: n_runs = int(n_runs) assert n_runs > 0 payu_env_vars['PAYU_N_RUNS'] = n_runs # Import explicit project paths if lab_path: payu_env_vars['PAYU_LAB_PATH'] = os.path.normpath(lab_path) if dir_path: payu_env_vars['PAYU_DIR_PATH'] = os.path.normpath(dir_path) if reproduce: payu_env_vars['PAYU_REPRODUCE'] = reproduce return payu_env_vars def submit_job(pbs_script, pbs_config, pbs_vars=None): """Submit a userscript the scheduler.""" # Initialisation if pbs_vars is None: pbs_vars = {} pbs_flags = [] pbs_queue = pbs_config.get('queue', 'normal') pbs_flags.append('-q {queue}'.format(queue=pbs_queue)) pbs_project = pbs_config.get('project', os.environ['PROJECT']) pbs_flags.append('-P {project}'.format(project=pbs_project)) pbs_resources = ['walltime', 'ncpus', 'mem', 'jobfs'] for res_key in pbs_resources: res_flags = [] res_val = pbs_config.get(res_key) if res_val: res_flags.append('{key}={val}'.format(key=res_key, val=res_val)) if res_flags: pbs_flags.append('-l {res}'.format(res=','.join(res_flags))) # TODO: Need to pass lab.config_path somehow... pbs_jobname = pbs_config.get('jobname', os.path.basename(os.getcwd())) if pbs_jobname: # PBSPro has a 15-character jobname limit pbs_flags.append('-N {name}'.format(name=pbs_jobname[:15])) pbs_priority = pbs_config.get('priority') if pbs_priority: pbs_flags.append('-p {priority}'.format(priority=pbs_priority)) pbs_flags.append('-l wd') pbs_join = pbs_config.get('join', 'n') if pbs_join not in ('oe', 'eo', 'n'): print('payu: error: unknown qsub IO stream join setting.') sys.exit(-1) else: pbs_flags.append('-j {join}'.format(join=pbs_join)) # Append environment variables to qsub command # TODO: Support full export of environment variables: `qsub -V` pbs_vstring = ','.join('{0}={1}'.format(k, v) for k, v in pbs_vars.items()) pbs_flags.append('-v ' + pbs_vstring) # Append any additional qsub flags here pbs_flags_extend = pbs_config.get('qsub_flags') if pbs_flags_extend: pbs_flags.append(pbs_flags_extend) if not os.path.isabs(pbs_script): # NOTE: PAYU_PATH is always set if `set_env_vars` was always called. # This is currently always true, but is not explicitly enforced. # So this conditional check is a bit redundant. payu_bin = pbs_vars.get('PAYU_PATH', os.path.dirname(sys.argv[0])) pbs_script = os.path.join(payu_bin, pbs_script) assert os.path.isfile(pbs_script) # Set up environment modules here for PBS. envmod.setup() envmod.module('load', 'pbs') # Construct job submission command cmd = 'qsub {flags} -- {python} {script}'.format( flags=' '.join(pbs_flags), python=sys.executable, script=pbs_script ) print(cmd) subprocess.check_call(shlex.split(cmd))
from django.db import models from django.contrib.auth.models import AbstractBaseUser, PermissionsMixin, BaseUserManager from django.conf import settings class UserProfileManager(BaseUserManager): """Manager for user profiles""" def create_user(self, email, name, password=None): """ Create a new user profile""" if not email: raise ValueError('Users must have an email address') email =self.normalize_email(email) user = self.model(email=email, name=name) user.set_password(password) user.save(using=self._db) return user def create_superuser(self, email, name, password): """ Create a new superuser profile""" user = self.create_user(email, name, password) user.is_superuser = True user.is_staff = True user.save(using=self._db) return user class UserProfile(AbstractBaseUser, PermissionsMixin): """Database model for users in system""" email = models.EmailField(max_length=255, unique=True) name = models.CharField(max_length=255) is_active = models.BooleanField(default=True) is_staff = models.BooleanField(default=False) objects = UserProfileManager() USERNAME_FIELD = 'email' REQUIRED_FIELDS = ['name'] def get_full_name(self): """Retrieve full name""" return self.name def get_short_name(self): """Retrieve shot name of user""" return self.name def __str__(self): """ Return string representation for our users""" return self.email class ProfileFeedItem(models.Model): """ Profile status update """ user_profile = models.ForeignKey( settings.AUTH_USER_MODEL, on_delete = models.CASCADE, ) status_text = models.CharField(max_length=255) created_on = models.DateTimeField(auto_now_add=True) def __str__(self): """ Return the model as string """ return self.status_text
import dash import dash_bootstrap_components as dbc # bootstrap theme # https://bootswatch.com/lux/ external_stylesheets = [dbc.themes.YETI] app = dash.Dash(__name__, external_stylesheets=external_stylesheets, suppress_callback_exceptions=True) server = app.server
# coding: utf-8 __author__ = 'cleardusk' import os.path as osp import time import numpy as np import cv2 import torch from torchvision.transforms import Compose import torch.backends.cudnn as cudnn import _3DDFA_V2.models as models from _3DDFA_V2.bfm import BFMModel from _3DDFA_V2.utils.io import _load from _3DDFA_V2.utils.functions import ( crop_img, parse_roi_box_from_bbox, parse_roi_box_from_landmark, ) from _3DDFA_V2.utils.tddfa_util import ( load_model, _parse_param, similar_transform, ToTensorGjz, NormalizeGjz ) make_abs_path = lambda fn: osp.join(osp.dirname(osp.realpath(__file__)), fn) class TDDFA(object): """TDDFA: named Three-D Dense Face Alignment (TDDFA)""" def __init__(self, **kvs): torch.set_grad_enabled(False) print(make_abs_path('configs/bfm_noneck_v3.pkl')) # load BFM self.bfm = BFMModel( bfm_fp=kvs.get('bfm_fp', make_abs_path('configs/bfm_noneck_v3.pkl')), shape_dim=kvs.get('shape_dim', 40), exp_dim=kvs.get('exp_dim', 10) ) self.tri = self.bfm.tri # config self.gpu_mode = kvs.get('gpu_mode', False) self.gpu_id = kvs.get('gpu_id', 0) self.size = kvs.get('size', 120) param_mean_std_fp = kvs.get( 'param_mean_std_fp', make_abs_path(f'configs/param_mean_std_62d_{self.size}x{self.size}.pkl') ) # load model, default output is dimension with length 62 = 12(pose) + 40(shape) +10(expression) model = getattr(models, kvs.get('arch'))( num_classes=kvs.get('num_params', 62), widen_factor=kvs.get('widen_factor', 1), size=self.size, mode=kvs.get('mode', 'small') ) model = load_model(model, kvs.get('checkpoint_fp')) if self.gpu_mode: cudnn.benchmark = True model = model.cuda(device=self.gpu_id) self.model = model self.model.eval() # eval mode, fix BN # data normalization transform_normalize = NormalizeGjz(mean=127.5, std=128) transform_to_tensor = ToTensorGjz() transform = Compose([transform_to_tensor, transform_normalize]) self.transform = transform # params normalization config r = _load(param_mean_std_fp) self.param_mean = r.get('mean') self.param_std = r.get('std') # print('param_mean and param_srd', self.param_mean, self.param_std) def __call__(self, img_ori, objs, **kvs): """The main call of TDDFA, given image and box / landmark, return 3DMM params and roi_box :param img_ori: the input image :param objs: the list of box or landmarks :param kvs: options :return: param list and roi_box list """ # Crop image, forward to get the param param_lst = [] roi_box_lst = [] crop_policy = kvs.get('crop_policy', 'box') for obj in objs: if crop_policy == 'box': # by face box roi_box = parse_roi_box_from_bbox(obj) elif crop_policy == 'landmark': # by landmarks roi_box = parse_roi_box_from_landmark(obj) else: raise ValueError(f'Unknown crop policy {crop_policy}') roi_box_lst.append(roi_box) img = crop_img(img_ori, roi_box) img = cv2.resize(img, dsize=(self.size, self.size), interpolation=cv2.INTER_LINEAR) inp = self.transform(img).unsqueeze(0) if self.gpu_mode: inp = inp.cuda(device=self.gpu_id) if kvs.get('timer_flag', False): end = time.time() param = self.model(inp) elapse = f'Inference: {(time.time() - end) * 1000:.1f}ms' print(elapse) else: param = self.model(inp) param = param.squeeze().cpu().numpy().flatten().astype(np.float32) param = param * self.param_std + self.param_mean # re-scale # print('output', param) param_lst.append(param) return param_lst, roi_box_lst def recon_vers(self, param_lst, roi_box_lst, **kvs): dense_flag = kvs.get('dense_flag', False) size = self.size ver_lst = [] for param, roi_box in zip(param_lst, roi_box_lst): if dense_flag: R, offset, alpha_shp, alpha_exp = _parse_param(param) pts3d = R @ (self.bfm.u + self.bfm.w_shp @ alpha_shp + self.bfm.w_exp @ alpha_exp). \ reshape(3, -1, order='F') + offset pts3d = similar_transform(pts3d, roi_box, size) else: R, offset, alpha_shp, alpha_exp = _parse_param(param) pts3d = R @ (self.bfm.u_base + self.bfm.w_shp_base @ alpha_shp + self.bfm.w_exp_base @ alpha_exp). \ reshape(3, -1, order='F') + offset pts3d = similar_transform(pts3d, roi_box, size) ver_lst.append(pts3d) return ver_lst
import sys def sol(): input = sys.stdin.readline N = int(input()) node = [[] for i in range(N)] for i in range(N): vector = list(map(int, input().split(" "))) for j in range(N): if vector[j] == 1: node[i].append(j) for i in range(N): visited = ["0"] * N dfs(node, visited, i) print(" ".join(visited)) def bfs(N, node, i): queue = [] visited = [False] * N queue.append(i) while len(queue) > 0: v = queue.pop(0) for w in node[v]: if not visited[w]: visited[w] = True queue.append(w) result = [] for check in visited: if check: result.append("1") else: result.append("0") return result def dfs(node, visited, v): for w in node[v]: if visited[w] == "0": visited[w] = "1" dfs(node, visited, w) if __name__ == "__main__": sol()
from .._sign.sphincs_sha256_128f_robust import ffi as __ffi, lib as __lib from .common import _sign_generate_keypair_factory, _sign_sign_factory, _sign_verify_factory PUBLIC_KEY_SIZE = __lib.CRYPTO_PUBLICKEYBYTES SECRET_KEY_SIZE = __lib.CRYPTO_SECRETKEYBYTES SIGNATURE_SIZE = __lib.CRYPTO_BYTES generate_keypair = _sign_generate_keypair_factory(__ffi, __lib) sign = _sign_sign_factory(__ffi, __lib) verify = _sign_verify_factory(__ffi, __lib)
from n0s3p4ss.domain_list import SubdomainList from n0s3p4ss.attack_surface_discoverer import discover from n0s3p4ss.sniffer_switcher_http_status_based import apply_flow_for def sniff(target_domains): subdomains = SubdomainList().list_each_domain_subdomains(target_domains) attack_surfaces = [discover(subdomain) for subdomain in subdomains] return [ apply_flow_for(attack_surface) for attack_surface in attack_surfaces ]
import DBinterface as DB import random import datetime as dt def print_ranking(my_ranking,ranking_size,top_or_bottom): Tweet="" if top_or_bottom == True: Tweet += ("The first " + ranking_size + " cities with more CO2 emissions due to traffic are: \r\n ") else: Tweet += ("The first " + ranking_size + " cities with less CO2 emissions due to traffic are: \r\n" + "Congratulations!!!!! The Earth loves you :D \r\n") for i in range(ranking_size): Tweet += (str((i+1)) + "º " + str(my_ranking[i][0]) + " with a CO2 value of " + str(my_ranking[i][1]) + "\r\n") return(Tweet) def rank(api): interface = DB.nasaDBinterface() ranking_size = random.randint(2,10) top_or_bottom = random.choice([True, False]) my_ranking = interface.getranking(ranking_size, top_or_bottom) Tweet=print_ranking(my_ranking,ranking_size,top_or_bottom) api.update_status(status=Tweet) def leer_hashtag(T): L=list(T) L.append(" ") for a in range(len(L)): if L[a]=="#": a=a+1 ht=[] while L[a]!=" ": ht.append(L[a]) a=a+1 ht_salida= "" for e in ht: ht_salida += e return ht_salida def get_city(TEXT): L=TEXT.split() c="" ciudad="" for a in range(len(L)): if L[a]=="#consulta": break if L[a]=="City:": for i in range(len(L)-a-2): c += L[a+i+1] + " " x=c.split() for i in range(len(x)-1): ciudad += x[i]+" " if len(x) != 1: ciudad += x[len(x)-1] return ciudad.lower()
from experiments.experiments.PubIntegBackground import PubIntegBackground import numpy as np if __name__ == "__main__": for i in np.arange(0.0, 10.0, 0.1): PubIntegBackground(correlation=False, listing=True, pub='None', intensity=i)
import logging from typing import Any, Dict, List, Union import bleach import cssutils import markdown from django.conf import settings from django.core.mail import EmailMultiAlternatives, get_connection from django.template.loader import get_template from django.utils.translation import ugettext as _ from i18nfield.strings import LazyI18nString from inlinestyler.utils import inline_css from pretix.base.i18n import language from pretix.base.models import Event, InvoiceAddress, Order from pretix.celery_app import app from pretix.multidomain.urlreverse import build_absolute_uri logger = logging.getLogger('pretix.base.mail') INVALID_ADDRESS = 'invalid-pretix-mail-address' cssutils.log.setLevel(logging.CRITICAL) class TolerantDict(dict): def __missing__(self, key): return key class SendMailException(Exception): pass def mail(email: str, subject: str, template: Union[str, LazyI18nString], context: Dict[str, Any]=None, event: Event=None, locale: str=None, order: Order=None, headers: dict=None, sender: str=None): """ Sends out an email to a user. The mail will be sent synchronously or asynchronously depending on the installation. :param email: The email address of the recipient :param subject: The email subject. Should be localized to the recipients's locale or a lazy object that will be localized by being casted to a string. :param template: The filename of a template to be used. It will be rendered with the locale given in the locale argument and the context given in the next argument. Alternatively, you can pass a LazyI18nString and ``context`` will be used as the argument to a Python ``.format_map()`` call on the template. :param context: The context for rendering the template (see ``template`` parameter) :param event: The event this email is related to (optional). If set, this will be used to determine the sender, a possible prefix for the subject and the SMTP server that should be used to send this email. :param order: The order this email is related to (optional). If set, this will be used to include a link to the order below the email. :param headers: A dict of custom mail headers to add to the mail :param locale: The locale to be used while evaluating the subject and the template :param sender: Set the sender email address. If not set and ``event`` is set, the event's default will be used, otherwise the system default. :raises MailOrderException: on obvious, immediate failures. Not raising an exception does not necessarily mean that the email has been sent, just that it has been queued by the email backend. """ if email == INVALID_ADDRESS: return headers = headers or {} with language(locale): if isinstance(context, dict) and order: try: context.update({ 'invoice_name': order.invoice_address.name, 'invoice_company': order.invoice_address.company }) except InvoiceAddress.DoesNotExist: context.update({ 'invoice_name': '', 'invoice_company': '' }) body, body_md = render_mail(template, context) sender = sender or (event.settings.get('mail_from') if event else settings.MAIL_FROM) subject = str(subject) body_plain = body htmlctx = { 'site': settings.PRETIX_INSTANCE_NAME, 'site_url': settings.SITE_URL, 'body': body_md, 'color': '#8E44B3' } if event: htmlctx['event'] = event htmlctx['color'] = event.settings.primary_color if event.settings.mail_from == settings.DEFAULT_FROM_EMAIL and event.settings.contact_mail: headers['Reply-To'] = event.settings.contact_mail prefix = event.settings.get('mail_prefix') if prefix: subject = "[%s] %s" % (prefix, subject) body_plain += "\r\n\r\n-- \r\n" signature = str(event.settings.get('mail_text_signature')) if signature: signature = signature.format(event=event.name) signature_md = signature.replace('\n', '<br>\n') signature_md = bleach.linkify(bleach.clean(markdown.markdown(signature_md), tags=bleach.ALLOWED_TAGS + ['p', 'br'])) htmlctx['signature'] = signature_md body_plain += signature body_plain += "\r\n\r\n-- \r\n" if order: body_plain += _( "You are receiving this email because you placed an order for {event}." ).format(event=event.name) htmlctx['order'] = order body_plain += "\r\n" body_plain += _( "You can view your order details at the following URL:\n{orderurl}." ).replace("\n", "\r\n").format( event=event.name, orderurl=build_absolute_uri( order.event, 'presale:event.order', kwargs={ 'order': order.code, 'secret': order.secret } ) ) body_plain += "\r\n" tpl = get_template('pretixbase/email/plainwrapper.html') body_html = tpl.render(htmlctx) return mail_send([email], subject, body_plain, body_html, sender, event.id if event else None, headers) @app.task def mail_send_task(to: List[str], subject: str, body: str, html: str, sender: str, event: int=None, headers: dict=None, bcc: List[str]=None) -> bool: email = EmailMultiAlternatives(subject, body, sender, to=to, bcc=bcc, headers=headers) if html is not None: email.attach_alternative(inline_css(html), "text/html") if event: event = Event.objects.get(id=event) backend = event.get_mail_backend() else: backend = get_connection(fail_silently=False) try: backend.send_messages([email]) except Exception: logger.exception('Error sending email') raise SendMailException('Failed to send an email to {}.'.format(to)) def mail_send(*args, **kwargs): mail_send_task.apply_async(args=args, kwargs=kwargs) def render_mail(template, context): if isinstance(template, LazyI18nString): body = str(template) if context: body = body.format_map(TolerantDict(context)) body_md = bleach.linkify(bleach.clean(markdown.markdown(body), tags=bleach.ALLOWED_TAGS + [ 'p', 'pre' ])) else: tpl = get_template(template) body = tpl.render(context) body_md = bleach.linkify(markdown.markdown(body)) return body, body_md
# Time: O(n) # Space: O(1) class Solution(object): # @param {integer[]} nums # @return {integer[]} def productExceptSelf(self, nums): if not nums: return [] left_product = [1 for _ in xrange(len(nums))] for i in xrange(1, len(nums)): left_product[i] = left_product[i - 1] * nums[i - 1] right_product = 1 for i in xrange(len(nums) - 2, -1, -1): right_product *= nums[i + 1] left_product[i] = left_product[i] * right_product return left_product
# All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import collections from neutron_lib.api import converters from neutron_lib.api.definitions import portbindings from neutron_lib.api.definitions import provider_net as provider from neutron_lib.api import extensions from neutron_lib.api import validators from neutron_lib import exceptions as n_exc from neutron_lib.plugins import directory from neutron_lib.plugins.ml2 import api from neutron_lib.services.trunk import constants from neutron._i18n import _ from neutron.objects import trunk as trunk_objects from neutron.services.trunk import exceptions as trunk_exc from neutron.services.trunk import utils # This layer is introduced for keeping business logic and # data persistence decoupled. def trunk_can_be_managed(context, trunk): """Validate that the trunk can be managed.""" if not trunk.admin_state_up: raise trunk_exc.TrunkDisabled(trunk_id=trunk.id) def enforce_port_deletion_rules(resource, event, trigger, payload=None): """Prohibit the deletion of a port that's used in a trunk.""" # NOTE: the ML2 plugin properly catches these exceptions when raised, but # non-ML2 plugins might not. To address this we should move the callback # registry notification emitted in the ML2 plugin's delete_port() higher # up in the plugin hierarchy. context = payload.context port_id = payload.resource_id subport_obj = trunk_objects.SubPort.get_object(context, port_id=port_id) if subport_obj: raise trunk_exc.PortInUseAsSubPort(port_id=port_id, trunk_id=subport_obj.trunk_id) trunk_obj = trunk_objects.Trunk.get_object(context, port_id=port_id) if trunk_obj: raise trunk_exc.PortInUseAsTrunkParent(port_id=port_id, trunk_id=trunk_obj.id) class TrunkPortValidator(object): def __init__(self, port_id): self.port_id = port_id self._port = None def validate(self, context, parent_port=True): """Validate that the port can be used in a trunk. :param parent_port: True if the port is intended for use as parent in a trunk. """ # TODO(tidwellr): there is a chance of a race between the # time these checks are performed and the time the trunk # creation is executed. To be revisited, if it bites. # Validate that the given port_id is not used by a subport. subports = trunk_objects.SubPort.get_objects( context, port_id=self.port_id) if subports: raise trunk_exc.TrunkPortInUse(port_id=self.port_id) # Validate that the given port_id is not used by a trunk. trunks = trunk_objects.Trunk.get_objects(context, port_id=self.port_id) if trunks: raise trunk_exc.ParentPortInUse(port_id=self.port_id) if parent_port: # if the port is being used as a parent in a trunk, check if # it can be trunked, i.e. if it is already associated to physical # resources (namely it is bound). Bound ports may be used as # trunk parents, but that depends on the underlying driver in # charge. if not self.can_be_trunked_or_untrunked(context): raise trunk_exc.ParentPortInUse(port_id=self.port_id) else: # if the port is being used as subport in a trunk, check if it is a # port that is not actively used for other purposes, e.g. a router # port, compute port, DHCP port etc. We have no clue what the side # effects of connecting the port to a trunk would be, and it is # better to err on the side of caution and prevent the operation. self.check_not_in_use(context) return self.port_id def is_bound(self, context): """Return true if the port is bound, false otherwise.""" # Validate that the given port_id does not have a port binding. core_plugin = directory.get_plugin() self._port = core_plugin.get_port(context, self.port_id) return bool(self._port.get(portbindings.HOST_ID)) def can_be_trunked_or_untrunked(self, context): """"Return true if a port can be trunked.""" if not self.is_bound(context): # An unbound port can be trunked, always. return True trunk_plugin = directory.get_plugin('trunk') vif_type = self._port.get(portbindings.VIF_TYPE) binding_host = self._port.get(portbindings.HOST_ID) # Determine the driver that will be in charge of the trunk: this # can be determined based on the vif type, whether or not the # driver is agent-based, and whether the host is running the agent # associated to the driver itself. host_agent_types = utils.get_agent_types_by_host(context, binding_host) drivers = [ driver for driver in trunk_plugin.registered_drivers if utils.is_driver_compatible( context, driver, vif_type, host_agent_types) ] if len(drivers) > 1: raise trunk_exc.TrunkPluginDriverConflict() elif len(drivers) == 1: return drivers[0].can_trunk_bound_port else: return False def check_not_in_use(self, context): """Raises PortInUse for ports assigned for device purposes.""" core_plugin = directory.get_plugin() self._port = core_plugin.get_port(context, self.port_id) # NOTE(armax): the trunk extension itself does not make use of the # device_id field, because it has no reason to. If need be, this # check can be altered to accommodate the change in logic. if self._port['device_id']: raise n_exc.PortInUse(net_id=self._port['network_id'], port_id=self._port['id'], device_id=self._port['device_id']) class SubPortsValidator(object): def __init__(self, segmentation_types, subports, trunk_port_id=None): self._segmentation_types = segmentation_types self.subports = subports self.trunk_port_id = trunk_port_id def validate(self, context, basic_validation=False, trunk_validation=True): """Validate that subports can be used in a trunk.""" # Perform basic validation on subports, in case subports # are not automatically screened by the API layer. if basic_validation: msg = validators.validate_subports(self.subports) if msg: raise n_exc.InvalidInput(error_message=msg) if trunk_validation: trunk_port_mtu = self._get_port_mtu(context, self.trunk_port_id) subport_mtus = self._prepare_subports(context) return [self._validate(context, s, trunk_port_mtu, subport_mtus) for s in self.subports] else: return self.subports def _prepare_subports(self, context): """Utility method to parse subports in the request The objective of this method is two-fold: * Update subports segmentation details if INHERIT is requested; * Return the MTU for each of the subport in the request. This method does two things rather than one to allow us to hit the DB once, and thus minimize the number of lookups required to learn about the segmentation type and the MTU of the networks on which subports are plugged. """ InheritIndex = ( collections.namedtuple("InheritIndex", "index has_inherit")) port_ids = {} any_has_inherit = False for i, s in enumerate(self.subports): has_inherit = (s.get('segmentation_type') == constants.SEGMENTATION_TYPE_INHERIT) any_has_inherit |= has_inherit port_ids[s['port_id']] = ( InheritIndex(index=i, has_inherit=has_inherit)) core_plugin = directory.get_plugin() if (any_has_inherit and not extensions.is_extension_supported( core_plugin, provider.ALIAS)): msg = (_("Cannot accept segmentation type %s") % constants.SEGMENTATION_TYPE_INHERIT) raise n_exc.InvalidInput(error_message=msg) ports = core_plugin.get_ports(context, filters={'id': port_ids}) network_port_map = collections.defaultdict(list) for p in ports: network_port_map[p['network_id']].append({'port_id': p['id']}) networks = core_plugin.get_networks( context.elevated(), filters={'id': network_port_map}) subport_mtus = {} for net in networks: for port in network_port_map[net['id']]: if port_ids[port['port_id']].has_inherit: port.update( {'segmentation_id': net[provider.SEGMENTATION_ID], 'segmentation_type': net[provider.NETWORK_TYPE]}) self.subports[port_ids[port['port_id']].index] = port # To speed up the request, record the network MTU for each # subport to avoid hitting the DB more than necessary. Do # that only if the extension is available. if extensions.is_extension_supported(core_plugin, 'net-mtu'): subport_mtus[port['port_id']] = net[api.MTU] return subport_mtus def _get_port_mtu(self, context, port_id): """Get port MTU Return MTU for the network where the given port belongs to. If the network or port cannot be obtained, or if MTU is not defined, returns None. """ core_plugin = directory.get_plugin() if not extensions.is_extension_supported(core_plugin, 'net-mtu'): return try: port = core_plugin.get_port(context, port_id) return core_plugin.get_network( context, port['network_id'])[api.MTU] except (n_exc.PortNotFound, n_exc.NetworkNotFound): # A concurrent request might have made the port or network # disappear; though during DB insertion, the subport request # will fail on integrity constraint, it is safer to return # a None MTU here. return def _raise_subport_is_parent_port(self, context, subport): if subport['port_id'] == self.trunk_port_id: raise trunk_exc.ParentPortInUse(port_id=subport['port_id']) def _raise_subport_invalid_mtu(self, context, subport, trunk_port_mtu, subport_mtus): # Check MTU sanity - subport MTU must not exceed trunk MTU. # If for whatever reason trunk_port_mtu is not available, # the MTU sanity check cannot be enforced. if trunk_port_mtu: # missing MTUs for subports is not an error condition: the # subport UUID may be invalid or non existent. subport_mtu = subport_mtus.get(subport['port_id']) if subport_mtu and subport_mtu > trunk_port_mtu: raise trunk_exc.SubPortMtuGreaterThanTrunkPortMtu( port_id=subport['port_id'], port_mtu=subport_mtu, trunk_id=self.trunk_port_id, trunk_mtu=trunk_port_mtu ) def _raise_if_segmentation_details_missing(self, subport): try: segmentation_type = subport["segmentation_type"] segmentation_id = ( converters.convert_to_int(subport["segmentation_id"])) return (segmentation_type, segmentation_id) except KeyError: msg = _("Invalid subport details '%s': missing segmentation " "information. Must specify both segmentation_id and " "segmentation_type") % subport raise n_exc.InvalidInput(error_message=msg) except n_exc.InvalidInput: msg = _("Invalid subport details: segmentation_id '%s' is " "not an integer") % subport["segmentation_id"] raise n_exc.InvalidInput(error_message=msg) def _raise_if_segmentation_details_invalid(self, segmentation_type, segmentation_id): if segmentation_type not in self._segmentation_types: msg = _("Unknown segmentation_type '%s'") % segmentation_type raise n_exc.InvalidInput(error_message=msg) if not self._segmentation_types[segmentation_type](segmentation_id): msg = _("Segmentation ID '%s' is not in range") % segmentation_id raise n_exc.InvalidInput(error_message=msg) def _raise_if_subport_is_used_in_other_trunk(self, context, subport): trunk_validator = TrunkPortValidator(subport['port_id']) trunk_validator.validate(context, parent_port=False) def _validate(self, context, subport, trunk_port_mtu, subport_mtus): self._raise_subport_is_parent_port(context, subport) self._raise_subport_invalid_mtu( context, subport, trunk_port_mtu, subport_mtus) segmentation_type, segmentation_id = ( self._raise_if_segmentation_details_missing(subport)) self._raise_if_segmentation_details_invalid( segmentation_type, segmentation_id) self._raise_if_subport_is_used_in_other_trunk(context, subport) return subport
# This Source Code Form is subject to the terms of the Mozilla Public # License, v. 2.0. If a copy of the MPL was not distributed with this # file, You can obtain one at http://mozilla.org/MPL/2.0/. from gaiatest import GaiaTestCase from gaiatest.apps.settings.app import Settings class TestChangeLanguage(GaiaTestCase): def test_change_language_settings(self): lang_name = self.marionette.execute_script(""" var qps = window.wrappedJSObject.navigator.mozL10n.qps; return qps['qps-ploc'].name; """) header = self.marionette.execute_script(""" var qps = window.wrappedJSObject.navigator.mozL10n.qps; return qps['qps-ploc'].translate('Settings'); """) self.data_layer.set_setting('devtools.qps.enabled', True) settings = Settings(self.marionette) settings.launch() language_settings = settings.open_language_settings() language_settings.select_language(lang_name) self.wait_for_condition(lambda m: language_settings.current_language == 'qps-ploc') language_settings.go_back() # Verify that language has changed self.wait_for_condition(lambda m: settings.header_text == header) self.assertEqual(self.data_layer.get_setting('language.current'), "qps-ploc")
# esle stmt # using else block after for loop s = 0 for i in range(1, 6): s += i else: print("end of for loop!") print("sum =",s) # using else blokc after while loop r = n = 1 while n <= 5: r *= n n += 1 else: print("end of while loop!") print("5! = " + str(r)) if r==3: pass
# Generated by Django 3.0.3 on 2020-04-22 13:20 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('core', '0018_auto_20200422_1314'), ] operations = [ migrations.AlterField( model_name='user_movie', name='insert_date', field=models.DateTimeField(default='2020-04-22T13:20:19.335148', editable=False), ), ]
import os import re import subprocess import logging """ Uses command line pdfinfo utility (from poppler pakage) for various small operations (e.g. get pdf page count). """ logger = logging.getLogger(__name__) def get_pagecount(filepath): """ Returns the number of pages in a PDF document as integer. filepath - is filesystem path to a PDF document """ if not os.path.isfile(filepath): raise ValueError("Filepath %s is not a file" % filepath) if os.path.isdir(filepath): raise ValueError("Filepath %s is a directory!" % filepath) base, ext = os.path.splitext(filepath) # pure images (png, jpeg) have only one page :) if ext and ext.lower() in ('.jpeg', '.png', '.jpg'): # whatever png/jpg image is there - it is # considered by default one page document. return 1 if ext and ext.lower() not in ('.pdf',): raise ValueError( "Only jpeg, png and pdf are handlerd by this" " method" ) # pdfinfo "${PDFFILE}" | grep Pages cmd = ["/usr/bin/pdfinfo", filepath] compl = subprocess.run( cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE ) if compl.returncode: logger.error( "get_pagecount: cmd=%s args=%s stdout=%s stderr=%s code=%s", cmd, compl.args, compl.stdout, compl.stderr, compl.returncode, stack_info=True ) raise Exception("Error occured while getting document page count.") lines = compl.stdout.decode('utf-8').split('\n') # look up for the line containing "Pages: 11" for line in lines: x = re.match("Pages:\W+(\d+)$", line.strip()) if x: return int(x.group(1)) return 0
import glob import pyclass from sicparse import OptionParser import sys def main(): if len(sys.argv)!=3: print "not enough arguments" return # if (not pyclass.gotgdict()): pyclass.get(verbose=False) # sys.argv = [arg.replace("\"","") for arg in sys.argv] string_found = sys.argv[1] in sys.argv[2] # Sic.comm("let kosma%is_string_found {0}".format(str(string_found))) if string_found: Sic.comm('let kosma%string_found {0}'.format(sys.argv[1])) else: Sic.comm('let kosma%string_found "{0}"'.format(" ")) # return if __name__ == "__main__": main()
from .models import Restriction from django.db.models.signals import post_save from django.dispatch import receiver @receiver(post_save, sender=Restriction) def post_save_restriction(sender, **kwargs): msg = "worked" pass
#!/usr/bin/python from flask import Flask, request, flash, redirect, render_template, jsonify from flaskext.mysql import MySQL from flask_wtf import Form from wtforms import StringField, PasswordField from wtforms.validators import DataRequired import twilio.twiml import random import requests import json import omdb from googleplaces import GooglePlaces, types, lang from microsofttranslator import Translator from yahoo_finance import Share from twilio.rest import TwilioRestClient gp_api_key = 'AIzaSyAX_75N29J--rh3Qj9gXjMBVx9IuD_Um74' google_places = GooglePlaces(gp_api_key) bing_api_key = 'oeToVPEyRZIASRK2n2byOU1x0EMatLIpd8kCIvwXmMw' # Credentials owner: avikantsainidbz@gmail.com # Find these values at https://twilio.com/user/account twilio_account_sid = "ACab3e465e67051257d227bf49a3c9a58e" twilio_auth_token = "ca96731e12b0442bcf5b1c8f7dedc58d" admin_phone = "+918095138333" # admin_phone = "+918095718111" # Returns a JSON formatted data with a HTTP status code def dataFormatter(code, message, data): resp = jsonify({ 'code': code, 'message': message, 'data': data }) resp.status_code = code return resp def get_verify_name(id, s, e): verify_url = "http://api.tvmaze.com/shows/" + str(id) + "/episodebynumber?season=" + str(s) + "&number=" + str(e) resp = requests.get(verify_url) j = json.loads(resp.text) name = j['name'] return name test_mode = False app = Flask(__name__) app.config.from_object('config') mysql = MySQL() app.config['MYSQL_DATABASE_USER'] = 'b4dea37336a229' app.config['MYSQL_DATABASE_PASSWORD'] = '423dbfab' app.config['MYSQL_DATABASE_DB'] = 'heroku_d5dd20eac082bba' app.config['MYSQL_DATABASE_HOST'] = 'us-cdbr-iron-east-03.cleardb.net' mysql.init_app(app) # Main route class SMSForm(Form): phone_number = StringField('phone_number', validators=[DataRequired()]) query_string = StringField('query_string', validators=[DataRequired()]) # password_field = PasswordField('password_field', validators=[DataRequired()]) @app.route("/", methods=['GET', 'POST']) def home_page(): form = SMSForm() if form.validate_on_submit(): query = str(form.query_string.data) number = str(form.phone_number.data) # password = str(form.password_field.data) # if password == get_verify_name(2, 4, 2): print("Sending sms to " + number + " with query \'" + query + "\'.") # message = process_query(query) message = "" if query.lower().startswith('subscribe'): print("Subscribing...") words = query.split() ph_no = words[1] city = words[2] state = "" for w in words[3:]: state = state + w subscriptions(ph_no, city.lower(), state.lower()) message = "Successfully subscribed to emergency services. Thank you for using hello_friend." else: message = process_query(query) send_sms_to_number(message, number) flash("Sent SMS to " + number + ": \'" + message + "\'.") # else: # flash("Invalid secret code, admins are not pleased.") return render_template('index.html', form=form, number=number, query=query, showdetails=False) return render_template('index.html', form=form, showdetails=True) class EmergencyForm(Form): message_field = StringField('message_field', validators=[DataRequired()]) location_field = StringField('location_field', validators=[DataRequired()]) class EmergencyForm2(Form): phone_field = StringField('phone_field') city_field = StringField('city_field') state_field = StringField('state_field') @app.route("/emergency/", methods=['GET', 'POST']) def emergency_page(): form = EmergencyForm() if form.validate_on_submit(): message = str(form.message_field.data) state = str(form.location_field.data) print("Broadcasting SMSs to people in state " + str(state)) # Send SMS to people here... conn = mysql.connect() try: cursor = conn.cursor() cursor.execute("SELECT ph_no FROM subscribers WHERE state = %s", (state)) data = cursor.fetchall() for value in data: phone_no = value[0] print("Sending Broadcast message to " + str(phone_no)); send_sms_to_number(message, str(phone_no)) cursor.close() conn.close() except: cursor.close() conn.close() return render_template('emergency.html', form=form, showdetails=False) form2 = EmergencyForm2() if form2.validate_on_submit(): phone = str(form2.phone_field.data) city = str(form2.city_field.data) state = str(form2.state_field.data) print("Adding subscription") subscriptions(phone, city, state) flash("Successfully subscribed to emergency services. Thank you for using hello_friend.") return render_template('emergency.html', form=form, showdetails=True) @app.route("/emergency_list/", methods=['GET']) def emergency_list(): conn = mysql.connect() try: cursor = conn.cursor() cursor.execute("SELECT * FROM subscribers") values = cursor.fetchall() data = [] for value in values: d = [value[0], value[1], value[2]] data.append(d) return dataFormatter(200, "LEL", data) except: return dataFormatter(400, "LEL", []) @app.route("/add_s", methods=['GET', 'POST']) def add_subscription(): form2 = EmergencyForm2() if form2.validate_on_submit(): phone = str(form2.phone_field.data) city = str(form2.city_field.data) state = str(form2.state_field.data) print("Adding subscription") subscriptions(phone, city, state) flash("Successfully subscribed to emergency services. Thank you for using hello_friend.") return render_template('add.html', form2=form2, showdetails=True) # Test routes def send_sms_to_number(message, number): client = TwilioRestClient(twilio_account_sid, twilio_auth_token) message = client.messages.create(to=number, from_="+13609001701", body=message) def send_sms_to_admin(message): send_sms_to_number(message, admin_phone) # Test routing to specific phone number @app.route("/test_phone/<phone>", methods=['POST']) def test_method(phone): try: query = request.form.get('query') msg = process_query(query) send_sms_to_number(str(msg), phone) return "Message \'\'\'" + str(msg) + "\'\'\' sent to " + str(phone) + ".\n" except: return "Failed to send message. :(\n" # Main routes noIntent = [ "I'm having trouble understanding you, could you rephrase your question?", "I didn't catch that, could you rephrase your query?", "Sorry, I didn't understand that. Try rephrasing your request." ] examples = [ "Navigate from Lucknow to Kanpur", "Will it rain in New York today", "SOS Whitefield, Bangalore", "Translate \'Have you gone crazy\'' to german", "How do you say Madrid I'm finally here in spanish", "imdb inception", "stocks AAPL", "atm near rajendra nagar hyderabad", "Define Hitler", "Show me sports news", "Directions from Lucknow to Kanpur", ] technicalIssues = [ "Looks like we are facing technical difficulties, please try again in sometime.", "Looks like the server is taking to long to respond, please try again in sometime.", "Looks like we have too many requests to handle at the moment, please try again in sometime.", "Our monkeys are fixing some bugs in the server, please try again in sometime." ] @app.route("/no_intent", methods=['POST']) def no_intent(): message = random.choice(noIntent) message += "\n\nDid you know you can try something like: \"" + random.choice(examples) + "\"\n\n- hello_friend." return message @app.route("/network_error", methods=['POST']) def technical_issues(): message = random.choice(technicalIssues) message += "\n\nDid you know you can try something like: \"" + random.choice(examples) + "\"\n\n- hello_friend." return message @app.route("/sos", methods=["POST"]) def sos(dict_response): message = "" # try: query_text = dict_response["_text"].lower() # remove sos prefix and clean location string issos = False if query_text.find("sos ") != -1: query_text = query_text[4:] issos = True if query_text.find(" sos") != -1: query_text = query_text[:-4] issos = True if query_text.find("help ") != -1: query_text = query_text[5:] if query_text.find(" help") != -1: query_text = query_text[:-5] query_result = google_places.nearby_search(location=query_text, keyword='hospital', radius=5000, types=[types.TYPE_HOSPITAL]) number_of_places = 0 message = "Nearby hospitals: \n" for place in query_result.places: if number_of_places < 3: number_of_places += 1 message += place.name place_info = place.get_details() message += ", Ph: " + place.local_phone_number + "\n" else: break if issos: query_result = google_places.nearby_search(location=query_text, keyword='police', radius=5000, types=[types.TYPE_POLICE]) if len(query_result.places) > 0: place = query_result.places[0] place.get_details() message += "\nNearest police station: " + place.name message += ", Ph: " + place.local_phone_number + "\n" # except: # message = technical_issues() return message @app.route("/weather", methods=['POST']) def weather(entities): message = "" try: try: location = entities['location'][0]['value'].lower() except: location = entities['local_search_query'][0]['value'] response = requests.get(url="http://api.openweathermap.org/data/2.5/weather?q=" + location + "&APPID=500d01a6ece6498b1cbf94ed23519119") dict_response = json.loads(response.text) temperature_in_celsius = round(dict_response['main']['temp'] - 273.15, 2) humidity = dict_response['main']['humidity'] weather_description = dict_response['weather'][0]['description'] message = "The weather in " + location + ": " + weather_description + ". " message += "Average: " + str(temperature_in_celsius) + " C, " message += "Humidity: " + str(humidity) + "%" try: wind_speed = dict_response['wind']['speed'] message += ", Wind: " + str(wind_speed) + " km/h" except: message += "." except: message = technical_issues() return message @app.route("/navigate", methods=['POST']) def navigate(entities): try: try: destination = entities['to'][0]['value'] except: destination = entities['search_query'][0]['value'] try: origin = entities['from'][0]['value'] except: try: origin = entities['local_search_query'][0]['value'] except: origin = entities['location'][0]['value'] print("Navigating from " + origin + " to " + destination + ".") message = "Directions from " + origin + " to " + destination + ":\n\n" key = "GSC5hkB0CEmUyk4nI2MY~HxNEzo1P1bHB1sX8EzDJpA~AmYeCHqvBerEI06DBSKWfo4pgB1w9Krgk7EH6lhGqqf3s5RaJArOzWJ-SL6AYVVw" try: try: bingMapsResponse = requests.get(url="http://dev.virtualearth.net/REST/V1/Routes/Driving?wp.0=" + origin + "&wp.1=" + destination + "&avoid=minimizeTolls&key="+key) bingMaps_dict = json.loads(bingMapsResponse.text) except: message = network_error() return message print(bingMaps_dict) resources = bingMaps_dict.get('resourceSets')[0].get('resources') routeLegs = resources[0].get('routeLegs') distance = routeLegs[0].get('routeSubLegs')[0].get('travelDistance') message += "Total Trip Distance: " + str(distance) + " km\n" duration = routeLegs[0].get('routeSubLegs')[0].get('travelDuration') message += "Total Trip Duration: " + str(duration/60) + " min \n" itineraryItems = routeLegs[0].get('itineraryItems') count = 1 for item in itineraryItems: message += str(count) + ". " + item.get('instruction').get('text') + " (" message += str(item.get('travelDistance')) + " km, " message += str(item.get('travelDuration') / 60 ) + " min)" message += "\n" count +=1 except: message = "We could not find a route from " + origin + " to " + destination + ". Please bear with us as we try to resolve this issue." # Precaution if (len(message) > 1536): message = message[:1533] + "..."; except: message = technical_issues() return message @app.route("/translate", methods=['POST']) def translate(entities): message = "" try: text_for_translation = entities['phrase_to_translate'][0]['value'] lang = entities['language'][0]['value'].lower() language = "" if lang == "spanish": language = "es" elif lang == "french": language = "fr" elif lang == "german": language = "de" elif lang == "chinese": language = "zh-CHS" else: message = "We don't support translation to " + lang + " as of now. Check back later as support is being added." return message message = "\"" + text_for_translation + "\" in " + lang + " is \'" translator = Translator('SMSAssistant', 'fhV+AdYFiK0QfQ4PFys+oQ/T0xiBBVQa32kxxbP55Ks=') message += translator.translate(text_for_translation, language) + "\'" if test_mode: send_sms_to_admin(message) except: message = technical_issues() return message @app.route("/news", methods=['POST']) def getNews(entities): message = "" try: try: newstopic = entities['news_topic'][0]['value'].lower() # default topic if newstopic is None: newstopic = "world" except: newstopic = "world" response = requests.get(url='https://api.datamarket.azure.com/Bing/Search/News?$format=json&Query=%27' + newstopic + "%27", \ auth=(bing_api_key, bing_api_key)) news_dict = json.loads(response.text) news = news_dict.get('d').get('results') message = "" if len(news) >= 5: message = "Here are the top 5 stories about " + newstopic + ":\n" for x in range(0, 5): message += str(x+1) + ". " + news[x].get('Title') + ".\n" else: message = "Here are the top news stories about " + newstopic + ":\n" for item in news: message += "- " + item.get('Title') + "\n" if test_mode: send_sms_to_admin(message) except: message = technical_issues() return message @app.route("/imdb", methods=['POST']) def imdb(dict_response): message = "" try: query_text = dict_response['_text'].lower() if query_text.find("imdb ") != -1: query_text = query_text[5:] response = omdb.request(t='' + query_text + '', r='json') data = json.loads(response.text) mediatype = data["Type"] year = data["Year"] title = data["Title"] if mediatype == "movie": message += "Found a Movie, \"" + title + "\" (" + year + ")\n" elif mediatype == "series": message += "Found a TV show, \"" + title + "\" (" + year + ")\n" for key in data: if key in ["Rated", "Runtime", "Genre", "Director", "Writer"]: if data[key] != "N/A": message += key + ": " + data[key] + "\n" if key == "imdbRating": message += "IMDB: " + data[key] + "\n" if data["Plot"] != "N/A": message += "Plot: " + data["Plot"] except: message = technical_issues() return message @app.route("/stocks", methods=['POST']) def stocks(dict_response): message = "" try: query_text = dict_response['_text'].lower() if query_text.find("stocks ") != -1: query_text = query_text[7:] y = Share(query_text) message += "Trading information for " + y.get_name() + " (" + query_text + ") :\n" message += "Opened: " + y.get_open() + "\n" message += "Current: " + y.get_price() + "\n" message += "Earnings share: " + y.get_earnings_share() + "\n" message += "Short ratio: " + y.get_short_ratio() + "\n" message += "Previous close: " + y.get_prev_close() + "\n" except: message = technical_issues() return message @app.route("/atm", methods=['POST']) def atm(dict_response): message = "" try: query_text = dict_response['_text'].lower() if query_text.find("atm near ") != -1: query_text = query_text[9:] query_result = google_places.nearby_search(location=query_text, keyword='atm', radius=5000, types=[types.TYPE_ATM]) number_of_places = 0 message = "ATM's near \'" + query_text + "\':\n" for place in query_result.places: if number_of_places < 5: number_of_places += 1 message = message + place.name place_info = place.get_details() if place.local_phone_number != None: message = message + " " + place.local_phone_number message = message + "\n" else: break except: message = technical_issues() return message @app.route("/define", methods=['POST']) def define(dict_response): message = "" try: query_text = dict_response['_text'].lower() if query_text.find("define ") != -1: topic = query_text[7:] r = requests.get(url='http://api.duckduckgo.com/?q=' + topic + '&format=json&pretty=1') message = "" topic_response = json.loads(r.text) all_definitions = topic_response['RelatedTopics'] if len(all_definitions) > 0: top_definitions = all_definitions[0] definition = top_definitions['Text'] message = "\"" + topic + "\": " + definition else: message = "Definition for " + topic + " was not found. We're working on this." except: message = technical_issues() return message def subscriptions(ph_no, city, state): conn = mysql.connect() try: cursor = conn.cursor() cursor.execute("INSERT INTO subscribers VALUES (%s, %s, %s)", (ph_no, city, state)) conn.commit() cursor.close() conn.close() except: cursor.close() conn.close() # Main SMS webhook def process_query(query): msg = "" try: response = requests.get(url='https://api.wit.ai/message?v=20161022&q='+query,headers={'Authorization': 'Bearer TUDKLORVVMITDT4FCJFMAARQAWB2NLJ2'}) except: msg = technical_issues() return msg dict_response = json.loads(response.text) print(dict_response); intent = None confidence = None entities = None msg = None try: if dict_response['entities']['intent']: intent = dict_response['entities']['intent'][0]['value'] confidence = dict_response['entities']['intent'][0]['confidence'] entities = dict_response['entities'] print("Entities: ") print(entities) except: msg = no_intent() return msg if intent is None or confidence < 0.2: msg = no_intent() elif intent == "weather": msg = weather(entities) elif intent == "navigate": msg = navigate(entities) elif intent == "sos": msg = sos(dict_response) elif intent == "translate": msg = translate(entities) elif intent == "news": msg = getNews(entities) elif intent == "imdb": msg = imdb(dict_response) elif intent == "atm": msg = atm(dict_response) elif intent == "stocks": msg = stocks(dict_response) elif intent == "define": msg = define(dict_response) else: msg = "Feature not supported" return msg @app.route("/sms", methods=['POST']) def sms(): query = request.values.get('Body', None) resp = twilio.twiml.Response() msg = "" if query.lower().startswith('subscribe'): print("Subscribing...") words = query.split() ph_no = words[1] city = words[2] state = "" for w in words[3:]: state = state + w subscriptions(ph_no, city.lower(), state.lower()) msg = "Successfully subscribed to emergency services. Thank you for using hello_friend." else: msg = process_query(query) if test_mode: send_sms_to_admin(query) resp.message(msg) return str(resp) # ------ # Update the json file. def saveFile(): with open('data/voice.json', 'w') as outfile: json.dump(data, outfile) # Open the given json file in data. try: with open('data/voice.json') as data_file: data = json.load(data_file) except: data = [] saveFile(); class VoiceForm(Form): phone_number = StringField('phone_number', validators=[DataRequired()]) title_field = StringField('title_field', validators=[DataRequired()]) password_field = PasswordField('password_field', validators=[DataRequired()]) @app.route("/voice/", methods=['GET', 'POST']) def voice_page(): form = VoiceForm() if form.validate_on_submit(): title = str(form.title_field.data) number = str(form.phone_number.data) password = str(form.password_field.data) if password == get_verify_name(2, 4, 2): client = TwilioRestClient(twilio_account_sid, twilio_auth_token) routex = "http://hello-frrriend.herokuapp.com/voice/" + str(title) call = client.calls.create(url=routex, to=number, from_="+13609001701") flash("Rung " + number + ".") else: flash("Invalid secret code, admins are not pleased.") return render_template('voice.html', form=form, number=number, title=title, showdetails=False, data=data) return render_template('voice.html', form=form, showdetails=True, data=data) @app.route('/voice/list', methods=['GET']) def voice_list(): return dataFormatter(200, "Listing data", data) @app.route('/voice/add', methods=['POST']) def voice_add(): d = {} title = request.values.get('title') if title is None: return dataFormatter(404, "Bad request, need title.", []) d['title'] = title message = request.values.get('message') if message is not None: d['message'] = message url = request.values.get('url') if url is not None: d['url'] = url p = None for x in data: if x['title'] == title: p = x if p is not None: data.remove(p) data.append(d) saveFile() return dataFormatter(201, "Updated", data) data.append(d) saveFile() return dataFormatter(201, "Appended", data) def voice_add_util(title, message, url): d = {} d['title'] = title if len(message) > 0: d['message'] = message if len(url) > 0: d['url'] = url p = None for x in data: if x['title'] == title: p = x if p is not None: data.remove(p) data.append(d) saveFile() return; data.append(d) saveFile() @app.route('/voice/<title>', methods=['POST', 'GET']) def voice_title(title): d = None for x in data: if x['title'] == title: d = x break resp = twilio.twiml.Response() print(d) if d is None: resp.say("Don't talk please") else: try: message = d['message'] resp.say(d['message'], voice='Alice', language='en-IN') except: print("No message ofr the ") try: url = d['url'] resp.play(d['url']) except: print("No url in the query") return str(resp) if __name__ == "__main__": app.run(debug=True)
AMOUNTS = [ 99999999999999999999999999999, 0x0, 0x1, 0x1000000000000000000000000, 0x30000000000000, 1000000000000000000, 0x180000000000000, 100000000000000000, 10000000000000000, 1000000000000000, 0x2, 5000000000000000, 0x20, 0x700000000000000, 0x8, 0x3c00000000000, 0xe00000000000000, 0x400000000000000000000000, 50000000000000000, 500000000000000000, 0x18000000000000, 0x3, 0x80, 0x300000000000000, 0x1000000000000000000000001, 5000000000000000000, 0x1c00000000000000, 0x4, 10000000000000000000, 0xc000000000000, 0x2000, 20000000000000000, 0x40, 200000000000000000, 2000000000000000, 0x800000000000000000000, 0x800000000000000000000000, 0x1000000000000000000000002, 0x400, 0x80000000000000, 0x100000000000000, 0xc00000000000, 0x1800000000000000000, 0x800000000000000000, 0x70000000000000, 250000000000000, 0x380000000000000, 0x8000000000000000000, 0x8000000000000000, 0x1000, ]
""" Collection of functions to assist PyDoof modules. """ from collections import Iterable from datetime import date from enum import Enum def parse_query_params(params): """ Parses a query-parameters dictionary into their proper parameters schema. Each key value of the dictionary represents a parameter and its value. The function parses each key-value based on the value type. * Parses dates into a string following the "YYYYMMDD" format. * Parses dictionaries like `parameter: {key: value}` into parameter `parameter[key]: value`. * Parses lists like `parameter: [val0, val1]` into parameter `parameter[]: [val0, val1]`. * Excludes parameters where its value is `None`. """ query_params = {} for param, value in params.items(): query_params.update( _parse_param(param, value) ) return query_params def _parse_param(param, value): query_params = {} if isinstance(value, date): query_params[param] = value.strftime("%Y%m%d") elif isinstance(value, dict): for k, v in value.items(): query_params.update( _parse_param(f'{param}[{k}]', v) ) elif isinstance(value, Enum): query_params[param] = value.value elif not isinstance(value, str) and isinstance(value, Iterable): query_params.update( _dicts_appends(_parse_param(f'{param}[]', v) for v in value) ) elif value is not None: query_params[param] = value return query_params def _dicts_appends(dicts): dict_join = {} for dict_ in dicts: for key, value in dict_.items(): if key in dict_join: try: dict_join[key].append(value) except AttributeError: dict_join[key] = [dict_join[key], value] else: dict_join[key] = value return dict_join
# coding=utf-8 # flake8: noqa E302 """ Test plugin infrastructure and hooks. """ import sys import pytest # Python 3.5 had some regressions in the unitest.mock module, so use 3rd party mock if available try: import mock except ImportError: from unittest import mock import cmd2 from cmd2 import plugin class Plugin: """A mixin class for testing hook registration and calling""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self.reset_counters() def reset_counters(self): self.called_preparse = 0 self.called_postparsing = 0 self.called_precmd = 0 self.called_postcmd = 0 self.called_cmdfinalization = 0 ### # # preloop and postloop hooks # which share the same signature and are thus interchangable # ### def prepost_hook_one(self) -> None: """Method used for preloop or postloop hooks""" self.poutput("one") def prepost_hook_two(self) -> None: """Another method used for preloop or postloop hooks""" self.poutput("two") def prepost_hook_too_many_parameters(self, param) -> None: """A preloop or postloop hook with too many parameters""" pass def prepost_hook_with_wrong_return_annotation(self) -> bool: """A preloop or postloop hook with incorrect return type""" pass ### # # preparse hook # ### def preparse(self, data: cmd2.plugin.PostparsingData) -> cmd2.plugin.PostparsingData: """Preparsing hook""" self.called_preparse += 1 return data ### # # Postparsing hooks # ### def postparse_hook(self, data: cmd2.plugin.PostparsingData) -> cmd2.plugin.PostparsingData: """A postparsing hook""" self.called_postparsing += 1 return data def postparse_hook_stop(self, data: cmd2.plugin.PostparsingData) -> cmd2.plugin.PostparsingData: """A postparsing hook with requests application exit""" self.called_postparsing += 1 data.stop = True return data def postparse_hook_emptystatement(self, data: cmd2.plugin.PostparsingData) -> cmd2.plugin.PostparsingData: """A postparsing hook with raises an EmptyStatement exception""" self.called_postparsing += 1 raise cmd2.EmptyStatement def postparse_hook_exception(self, data: cmd2.plugin.PostparsingData) -> cmd2.plugin.PostparsingData: """A postparsing hook which raises an exception""" self.called_postparsing += 1 raise ValueError def postparse_hook_too_many_parameters(self, data1, data2) -> cmd2.plugin.PostparsingData: """A postparsing hook with too many parameters""" pass def postparse_hook_undeclared_parameter_annotation(self, data) -> cmd2.plugin.PostparsingData: """A postparsing hook with an undeclared parameter type""" pass def postparse_hook_wrong_parameter_annotation(self, data: str) -> cmd2.plugin.PostparsingData: """A postparsing hook with the wrong parameter type""" pass def postparse_hook_undeclared_return_annotation(self, data: cmd2.plugin.PostparsingData): """A postparsing hook with an undeclared return type""" pass def postparse_hook_wrong_return_annotation(self, data: cmd2.plugin.PostparsingData) -> str: """A postparsing hook with the wrong return type""" pass ### # # precommand hooks, some valid, some invalid # ### def precmd(self, statement: cmd2.Statement) -> cmd2.Statement: """Override cmd.Cmd method""" self.called_precmd += 1 return statement def precmd_hook(self, data: plugin.PrecommandData) -> plugin.PrecommandData: """A precommand hook""" self.called_precmd += 1 return data def precmd_hook_emptystatement(self, data: plugin.PrecommandData) -> plugin.PrecommandData: """A precommand hook which raises an EmptyStatement exception""" self.called_precmd += 1 raise cmd2.EmptyStatement def precmd_hook_exception(self, data: plugin.PrecommandData) -> plugin.PrecommandData: """A precommand hook which raises an exception""" self.called_precmd += 1 raise ValueError def precmd_hook_not_enough_parameters(self) -> plugin.PrecommandData: """A precommand hook with no parameters""" pass def precmd_hook_too_many_parameters(self, one: plugin.PrecommandData, two: str) -> plugin.PrecommandData: """A precommand hook with too many parameters""" return one def precmd_hook_no_parameter_annotation(self, data) -> plugin.PrecommandData: """A precommand hook with no type annotation on the parameter""" return data def precmd_hook_wrong_parameter_annotation(self, data: str) -> plugin.PrecommandData: """A precommand hook with the incorrect type annotation on the parameter""" return data def precmd_hook_no_return_annotation(self, data: plugin.PrecommandData): """A precommand hook with no type annotation on the return value""" return data def precmd_hook_wrong_return_annotation(self, data: plugin.PrecommandData) -> cmd2.Statement: return self.statement_parser.parse('hi there') ### # # postcommand hooks, some valid, some invalid # ### def postcmd(self, stop: bool, statement: cmd2.Statement) -> bool: """Override cmd.Cmd method""" self.called_postcmd += 1 return stop def postcmd_hook(self, data: plugin.PostcommandData) -> plugin.PostcommandData: """A postcommand hook""" self.called_postcmd += 1 return data def postcmd_hook_exception(self, data: plugin.PostcommandData) -> plugin.PostcommandData: """A postcommand hook with raises an exception""" self.called_postcmd += 1 raise ZeroDivisionError def postcmd_hook_not_enough_parameters(self) -> plugin.PostcommandData: """A precommand hook with no parameters""" pass def postcmd_hook_too_many_parameters(self, one: plugin.PostcommandData, two: str) -> plugin.PostcommandData: """A precommand hook with too many parameters""" return one def postcmd_hook_no_parameter_annotation(self, data) -> plugin.PostcommandData: """A precommand hook with no type annotation on the parameter""" return data def postcmd_hook_wrong_parameter_annotation(self, data: str) -> plugin.PostcommandData: """A precommand hook with the incorrect type annotation on the parameter""" return data def postcmd_hook_no_return_annotation(self, data: plugin.PostcommandData): """A precommand hook with no type annotation on the return value""" return data def postcmd_hook_wrong_return_annotation(self, data: plugin.PostcommandData) -> cmd2.Statement: return self.statement_parser.parse('hi there') ### # # command finalization hooks, some valid, some invalid # ### def cmdfinalization_hook(self, data: plugin.CommandFinalizationData) -> plugin.CommandFinalizationData: """A command finalization hook.""" self.called_cmdfinalization += 1 return data def cmdfinalization_hook_stop(self, data: cmd2.plugin.CommandFinalizationData) -> cmd2.plugin.CommandFinalizationData: """A command finalization hook which requests application exit""" self.called_cmdfinalization += 1 data.stop = True return data def cmdfinalization_hook_exception(self, data: cmd2.plugin.CommandFinalizationData) -> cmd2.plugin.CommandFinalizationData: """A command finalization hook which raises an exception""" self.called_cmdfinalization += 1 raise ValueError def cmdfinalization_hook_not_enough_parameters(self) -> plugin.CommandFinalizationData: """A command finalization hook with no parameters.""" pass def cmdfinalization_hook_too_many_parameters(self, one: plugin.CommandFinalizationData, two: str) -> plugin.CommandFinalizationData: """A command finalization hook with too many parameters.""" return one def cmdfinalization_hook_no_parameter_annotation(self, data) -> plugin.CommandFinalizationData: """A command finalization hook with no type annotation on the parameter.""" return data def cmdfinalization_hook_wrong_parameter_annotation(self, data: str) -> plugin.CommandFinalizationData: """A command finalization hook with the incorrect type annotation on the parameter.""" return data def cmdfinalization_hook_no_return_annotation(self, data: plugin.CommandFinalizationData): """A command finalizationhook with no type annotation on the return value.""" return data def cmdfinalization_hook_wrong_return_annotation(self, data: plugin.CommandFinalizationData) -> cmd2.Statement: """A command finalization hook with the wrong return type annotation.""" return self.statement_parser.parse('hi there') class PluggedApp(Plugin, cmd2.Cmd): """A sample app with a plugin mixed in""" def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) def do_say(self, statement): """Repeat back the arguments""" self.poutput(statement) ### # # test pre and postloop hooks # ### def test_register_preloop_hook_too_many_parameters(): app = PluggedApp() with pytest.raises(TypeError): app.register_preloop_hook(app.prepost_hook_too_many_parameters) def test_register_preloop_hook_with_return_annotation(): app = PluggedApp() with pytest.raises(TypeError): app.register_preloop_hook(app.prepost_hook_with_wrong_return_annotation) def test_preloop_hook(capsys): # Need to patch sys.argv so cmd2 doesn't think it was called with arguments equal to the py.test args testargs = ["prog", "say hello", 'quit'] with mock.patch.object(sys, 'argv', testargs): app = PluggedApp() app.register_preloop_hook(app.prepost_hook_one) app.cmdloop() out, err = capsys.readouterr() assert out == 'one\nhello\n' assert not err def test_preloop_hooks(capsys): # Need to patch sys.argv so cmd2 doesn't think it was called with arguments equal to the py.test args testargs = ["prog", "say hello", 'quit'] with mock.patch.object(sys, 'argv', testargs): app = PluggedApp() app.register_preloop_hook(app.prepost_hook_one) app.register_preloop_hook(app.prepost_hook_two) app.cmdloop() out, err = capsys.readouterr() assert out == 'one\ntwo\nhello\n' assert not err def test_register_postloop_hook_too_many_parameters(): app = PluggedApp() with pytest.raises(TypeError): app.register_postloop_hook(app.prepost_hook_too_many_parameters) def test_register_postloop_hook_with_wrong_return_annotation(): app = PluggedApp() with pytest.raises(TypeError): app.register_postloop_hook(app.prepost_hook_with_wrong_return_annotation) def test_postloop_hook(capsys): # Need to patch sys.argv so cmd2 doesn't think it was called with arguments equal to the py.test args testargs = ["prog", "say hello", 'quit'] with mock.patch.object(sys, 'argv', testargs): app = PluggedApp() app.register_postloop_hook(app.prepost_hook_one) app.cmdloop() out, err = capsys.readouterr() assert out == 'hello\none\n' assert not err def test_postloop_hooks(capsys): # Need to patch sys.argv so cmd2 doesn't think it was called with arguments equal to the py.test args testargs = ["prog", "say hello", 'quit'] with mock.patch.object(sys, 'argv', testargs): app = PluggedApp() app.register_postloop_hook(app.prepost_hook_one) app.register_postloop_hook(app.prepost_hook_two) app.cmdloop() out, err = capsys.readouterr() assert out == 'hello\none\ntwo\n' assert not err ### # # test preparse hook # ### def test_preparse(capsys): app = PluggedApp() app.register_postparsing_hook(app.preparse) app.onecmd_plus_hooks('say hello') out, err = capsys.readouterr() assert out == 'hello\n' assert not err assert app.called_preparse == 1 ### # # test postparsing hooks # ### def test_postparsing_hook_too_many_parameters(): app = PluggedApp() with pytest.raises(TypeError): app.register_postparsing_hook(app.postparse_hook_too_many_parameters) def test_postparsing_hook_undeclared_parameter_annotation(): app = PluggedApp() with pytest.raises(TypeError): app.register_postparsing_hook(app.postparse_hook_undeclared_parameter_annotation) def test_postparsing_hook_wrong_parameter_annotation(): app = PluggedApp() with pytest.raises(TypeError): app.register_postparsing_hook(app.postparse_hook_wrong_parameter_annotation) def test_postparsing_hook_undeclared_return_annotation(): app = PluggedApp() with pytest.raises(TypeError): app.register_postparsing_hook(app.postparse_hook_undeclared_return_annotation) def test_postparsing_hook_wrong_return_annotation(): app = PluggedApp() with pytest.raises(TypeError): app.register_postparsing_hook(app.postparse_hook_wrong_return_annotation) def test_postparsing_hook(capsys): app = PluggedApp() app.onecmd_plus_hooks('say hello') out, err = capsys.readouterr() assert out == 'hello\n' assert not err assert not app.called_postparsing app.reset_counters() app.register_postparsing_hook(app.postparse_hook) app.onecmd_plus_hooks('say hello') out, err = capsys.readouterr() assert out == 'hello\n' assert not err assert app.called_postparsing == 1 # register the function again, so it should be called twice app.reset_counters() app.register_postparsing_hook(app.postparse_hook) app.onecmd_plus_hooks('say hello') out, err = capsys.readouterr() assert out == 'hello\n' assert not err assert app.called_postparsing == 2 def test_postparsing_hook_stop_first(capsys): app = PluggedApp() app.register_postparsing_hook(app.postparse_hook_stop) stop = app.onecmd_plus_hooks('say hello') assert app.called_postparsing == 1 assert stop # register another function but it shouldn't be called app.reset_counters() app.register_postparsing_hook(app.postparse_hook) stop = app.onecmd_plus_hooks('say hello') assert app.called_postparsing == 1 assert stop def test_postparsing_hook_stop_second(capsys): app = PluggedApp() app.register_postparsing_hook(app.postparse_hook) stop = app.onecmd_plus_hooks('say hello') assert app.called_postparsing == 1 assert not stop # register another function and make sure it gets called app.reset_counters() app.register_postparsing_hook(app.postparse_hook_stop) stop = app.onecmd_plus_hooks('say hello') assert app.called_postparsing == 2 assert stop # register a third function which shouldn't be called app.reset_counters() app.register_postparsing_hook(app.postparse_hook) stop = app.onecmd_plus_hooks('say hello') assert app.called_postparsing == 2 assert stop def test_postparsing_hook_emptystatement_first(capsys): app = PluggedApp() app.register_postparsing_hook(app.postparse_hook_emptystatement) stop = app.onecmd_plus_hooks('say hello') out, err = capsys.readouterr() assert not stop assert not out assert not err assert app.called_postparsing == 1 # register another function but it shouldn't be called app.reset_counters() stop = app.register_postparsing_hook(app.postparse_hook) app.onecmd_plus_hooks('say hello') out, err = capsys.readouterr() assert not stop assert not out assert not err assert app.called_postparsing == 1 def test_postparsing_hook_emptystatement_second(capsys): app = PluggedApp() app.register_postparsing_hook(app.postparse_hook) stop = app.onecmd_plus_hooks('say hello') out, err = capsys.readouterr() assert not stop assert out == 'hello\n' assert not err assert app.called_postparsing == 1 # register another function and make sure it gets called app.reset_counters() app.register_postparsing_hook(app.postparse_hook_emptystatement) stop = app.onecmd_plus_hooks('say hello') out, err = capsys.readouterr() assert not stop assert not out assert not err assert app.called_postparsing == 2 # register a third function which shouldn't be called app.reset_counters() app.register_postparsing_hook(app.postparse_hook) stop = app.onecmd_plus_hooks('say hello') out, err = capsys.readouterr() assert not stop assert not out assert not err assert app.called_postparsing == 2 def test_postparsing_hook_exception(capsys): app = PluggedApp() app.register_postparsing_hook(app.postparse_hook_exception) stop = app.onecmd_plus_hooks('say hello') out, err = capsys.readouterr() assert not stop assert not out assert err assert app.called_postparsing == 1 # register another function, but it shouldn't be called app.reset_counters() app.register_postparsing_hook(app.postparse_hook) stop = app.onecmd_plus_hooks('say hello') out, err = capsys.readouterr() assert not stop assert not out assert err assert app.called_postparsing == 1 ### # # test precmd hooks # ##### def test_register_precmd_hook_parameter_count(): app = PluggedApp() with pytest.raises(TypeError): app.register_precmd_hook(app.precmd_hook_not_enough_parameters) with pytest.raises(TypeError): app.register_precmd_hook(app.precmd_hook_too_many_parameters) def test_register_precmd_hook_no_parameter_annotation(): app = PluggedApp() with pytest.raises(TypeError): app.register_precmd_hook(app.precmd_hook_no_parameter_annotation) def test_register_precmd_hook_wrong_parameter_annotation(): app = PluggedApp() with pytest.raises(TypeError): app.register_precmd_hook(app.precmd_hook_wrong_parameter_annotation) def test_register_precmd_hook_no_return_annotation(): app = PluggedApp() with pytest.raises(TypeError): app.register_precmd_hook(app.precmd_hook_no_return_annotation) def test_register_precmd_hook_wrong_return_annotation(): app = PluggedApp() with pytest.raises(TypeError): app.register_precmd_hook(app.precmd_hook_wrong_return_annotation) def test_precmd_hook(capsys): app = PluggedApp() app.onecmd_plus_hooks('say hello') out, err = capsys.readouterr() assert out == 'hello\n' assert not err # without registering any hooks, precmd() should be called assert app.called_precmd == 1 app.reset_counters() app.register_precmd_hook(app.precmd_hook) app.onecmd_plus_hooks('say hello') out, err = capsys.readouterr() assert out == 'hello\n' assert not err # with one hook registered, we should get precmd() and the hook assert app.called_precmd == 2 # register the function again, so it should be called twice app.reset_counters() app.register_precmd_hook(app.precmd_hook) app.onecmd_plus_hooks('say hello') out, err = capsys.readouterr() assert out == 'hello\n' assert not err # with two hooks registered, we should get precmd() and both hooks assert app.called_precmd == 3 def test_precmd_hook_emptystatement_first(capsys): app = PluggedApp() app.register_precmd_hook(app.precmd_hook_emptystatement) stop = app.onecmd_plus_hooks('say hello') out, err = capsys.readouterr() assert not stop assert not out assert not err # since the registered hooks are called before precmd(), if a registered # hook throws an exception, precmd() is never called assert app.called_precmd == 1 # register another function but it shouldn't be called app.reset_counters() stop = app.register_precmd_hook(app.precmd_hook) app.onecmd_plus_hooks('say hello') out, err = capsys.readouterr() assert not stop assert not out assert not err # the exception raised by the first hook should prevent the second # hook from being called, and it also prevents precmd() from being # called assert app.called_precmd == 1 def test_precmd_hook_emptystatement_second(capsys): app = PluggedApp() app.register_precmd_hook(app.precmd_hook) stop = app.onecmd_plus_hooks('say hello') out, err = capsys.readouterr() assert not stop assert out == 'hello\n' assert not err # with one hook registered, we should get precmd() and the hook assert app.called_precmd == 2 # register another function and make sure it gets called app.reset_counters() app.register_precmd_hook(app.precmd_hook_emptystatement) stop = app.onecmd_plus_hooks('say hello') out, err = capsys.readouterr() assert not stop assert not out assert not err # since the registered hooks are called before precmd(), if a registered # hook throws an exception, precmd() is never called assert app.called_precmd == 2 # register a third function which shouldn't be called app.reset_counters() app.register_precmd_hook(app.precmd_hook) stop = app.onecmd_plus_hooks('say hello') out, err = capsys.readouterr() assert not stop assert not out assert not err # the exception raised by the second hook should prevent the third # hook from being called. since the registered hooks are called before precmd(), # if a registered hook throws an exception, precmd() is never called assert app.called_precmd == 2 ### # # test postcmd hooks # #### def test_register_postcmd_hook_parameter_count(): app = PluggedApp() with pytest.raises(TypeError): app.register_postcmd_hook(app.postcmd_hook_not_enough_parameters) with pytest.raises(TypeError): app.register_postcmd_hook(app.postcmd_hook_too_many_parameters) def test_register_postcmd_hook_no_parameter_annotation(): app = PluggedApp() with pytest.raises(TypeError): app.register_postcmd_hook(app.postcmd_hook_no_parameter_annotation) def test_register_postcmd_hook_wrong_parameter_annotation(): app = PluggedApp() with pytest.raises(TypeError): app.register_postcmd_hook(app.postcmd_hook_wrong_parameter_annotation) def test_register_postcmd_hook_no_return_annotation(): app = PluggedApp() with pytest.raises(TypeError): app.register_postcmd_hook(app.postcmd_hook_no_return_annotation) def test_register_postcmd_hook_wrong_return_annotation(): app = PluggedApp() with pytest.raises(TypeError): app.register_postcmd_hook(app.postcmd_hook_wrong_return_annotation) def test_postcmd(capsys): app = PluggedApp() app.onecmd_plus_hooks('say hello') out, err = capsys.readouterr() assert out == 'hello\n' assert not err # without registering any hooks, postcmd() should be called assert app.called_postcmd == 1 app.reset_counters() app.register_postcmd_hook(app.postcmd_hook) app.onecmd_plus_hooks('say hello') out, err = capsys.readouterr() assert out == 'hello\n' assert not err # with one hook registered, we should get precmd() and the hook assert app.called_postcmd == 2 # register the function again, so it should be called twice app.reset_counters() app.register_postcmd_hook(app.postcmd_hook) app.onecmd_plus_hooks('say hello') out, err = capsys.readouterr() assert out == 'hello\n' assert not err # with two hooks registered, we should get precmd() and both hooks assert app.called_postcmd == 3 def test_postcmd_exception_first(capsys): app = PluggedApp() app.register_postcmd_hook(app.postcmd_hook_exception) stop = app.onecmd_plus_hooks('say hello') out, err = capsys.readouterr() assert not stop assert out == 'hello\n' assert err # since the registered hooks are called before postcmd(), if a registered # hook throws an exception, postcmd() is never called. So we should have # a count of one because we called the hook that raised the exception assert app.called_postcmd == 1 # register another function but it shouldn't be called app.reset_counters() stop = app.register_postcmd_hook(app.postcmd_hook) app.onecmd_plus_hooks('say hello') out, err = capsys.readouterr() assert not stop assert out == 'hello\n' assert err # the exception raised by the first hook should prevent the second # hook from being called, and it also prevents postcmd() from being # called assert app.called_postcmd == 1 def test_postcmd_exception_second(capsys): app = PluggedApp() app.register_postcmd_hook(app.postcmd_hook) stop = app.onecmd_plus_hooks('say hello') out, err = capsys.readouterr() assert not stop assert out == 'hello\n' assert not err # with one hook registered, we should get the hook and postcmd() assert app.called_postcmd == 2 # register another function which should be called app.reset_counters() stop = app.register_postcmd_hook(app.postcmd_hook_exception) app.onecmd_plus_hooks('say hello') out, err = capsys.readouterr() assert not stop assert out == 'hello\n' assert err # the exception raised by the first hook should prevent the second # hook from being called, and it also prevents postcmd() from being # called. So we have the first hook, and the second hook, which raised # the exception assert app.called_postcmd == 2 ## # # command finalization # ### def test_register_cmdfinalization_hook_parameter_count(): app = PluggedApp() with pytest.raises(TypeError): app.register_cmdfinalization_hook(app.cmdfinalization_hook_not_enough_parameters) with pytest.raises(TypeError): app.register_cmdfinalization_hook(app.cmdfinalization_hook_too_many_parameters) def test_register_cmdfinalization_hook_no_parameter_annotation(): app = PluggedApp() with pytest.raises(TypeError): app.register_cmdfinalization_hook(app.cmdfinalization_hook_no_parameter_annotation) def test_register_cmdfinalization_hook_wrong_parameter_annotation(): app = PluggedApp() with pytest.raises(TypeError): app.register_cmdfinalization_hook(app.cmdfinalization_hook_wrong_parameter_annotation) def test_register_cmdfinalization_hook_no_return_annotation(): app = PluggedApp() with pytest.raises(TypeError): app.register_cmdfinalization_hook(app.cmdfinalization_hook_no_return_annotation) def test_register_cmdfinalization_hook_wrong_return_annotation(): app = PluggedApp() with pytest.raises(TypeError): app.register_cmdfinalization_hook(app.cmdfinalization_hook_wrong_return_annotation) def test_cmdfinalization(capsys): app = PluggedApp() app.onecmd_plus_hooks('say hello') out, err = capsys.readouterr() assert out == 'hello\n' assert not err assert app.called_cmdfinalization == 0 app.register_cmdfinalization_hook(app.cmdfinalization_hook) app.onecmd_plus_hooks('say hello') out, err = capsys.readouterr() assert out == 'hello\n' assert not err assert app.called_cmdfinalization == 1 # register the function again, so it should be called twice app.reset_counters() app.register_cmdfinalization_hook(app.cmdfinalization_hook) app.onecmd_plus_hooks('say hello') out, err = capsys.readouterr() assert out == 'hello\n' assert not err assert app.called_cmdfinalization == 2 def test_cmdfinalization_stop_first(capsys): app = PluggedApp() app.register_cmdfinalization_hook(app.cmdfinalization_hook_stop) app.register_cmdfinalization_hook(app.cmdfinalization_hook) stop = app.onecmd_plus_hooks('say hello') out, err = capsys.readouterr() assert out == 'hello\n' assert not err assert app.called_cmdfinalization == 2 assert stop def test_cmdfinalization_stop_second(capsys): app = PluggedApp() app.register_cmdfinalization_hook(app.cmdfinalization_hook) app.register_cmdfinalization_hook(app.cmdfinalization_hook_stop) stop = app.onecmd_plus_hooks('say hello') out, err = capsys.readouterr() assert out == 'hello\n' assert not err assert app.called_cmdfinalization == 2 assert stop def test_cmdfinalization_hook_exception(capsys): app = PluggedApp() app.register_cmdfinalization_hook(app.cmdfinalization_hook_exception) stop = app.onecmd_plus_hooks('say hello') out, err = capsys.readouterr() assert not stop assert out == 'hello\n' assert err assert app.called_cmdfinalization == 1 # register another function, but it shouldn't be called app.reset_counters() app.register_cmdfinalization_hook(app.cmdfinalization_hook) stop = app.onecmd_plus_hooks('say hello') out, err = capsys.readouterr() assert not stop assert out == 'hello\n' assert err assert app.called_cmdfinalization == 1
import json import os from FastAutoAugment.common.common import get_logger, common_init, expdir_abspath from FastAutoAugment.data_aug.train import train_and_eval if __name__ == '__main__': conf = common_init(config_filepath='confs/aug_train_cifar.yaml', param_args=["--autoaug.loader.aug", "fa_reduced_cifar10", "--common.experiment_name", "autoaug_train"]) logger = get_logger() import time t = time.time() save_path = expdir_abspath('model.pth') # result = train_and_eval(conf, val_ratio=conf['val_ratio'], val_fold=conf['val_fold'], # save_path=save_path, only_eval=conf['only_eval'], metric='test') # TODO: Will fail if val_ratio=0 since we are not using latest training infrastructure # TODO: Move val_ratio, val_fold, metric to config file result = train_and_eval(conf, val_ratio=0.2, val_fold=0, save_path=save_path, only_eval=False, metric='test') elapsed = time.time() - t logger.info('training done.') logger.info('model: %s' % conf['autoaug']['model']) logger.info('augmentation: %s' % conf['autoaug']['loader']['aug']) logger.info('\n' + json.dumps(result, indent=4)) logger.info('elapsed time: %.3f Hours' % (elapsed / 3600.)) logger.info('top1 error in testset: %.4f' % (1. - result['top1_test'])) logger.info('Save path: %s' % save_path)
# coding: utf-8 """ ESPER API REFERENCE OpenAPI spec version: 1.0.0 Contact: developer@esper.io --------------------------------------------------------- Copyright 2019 Shoonya Enterprises Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import pprint import re import six from esperclient.models.app_install import AppInstall class InlineResponse2005(object): """NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'count': 'int', 'next': 'str', 'previous': 'str', 'results': 'list[AppInstall]' } attribute_map = { 'count': 'count', 'next': 'next', 'previous': 'previous', 'results': 'results' } def __init__(self, count=None, next=None, previous=None, results=None): """InlineResponse2005 - a model defined in Swagger""" self._count = None self._next = None self._previous = None self._results = None self.discriminator = None self.count = count if next is not None: self.next = next if previous is not None: self.previous = previous self.results = results @property def count(self): """Gets the count of this InlineResponse2005. :return: The count of this InlineResponse2005. :rtype: int """ return self._count @count.setter def count(self, count): """Sets the count of this InlineResponse2005. :param count: The count of this InlineResponse2005. :type: int """ if count is None: raise ValueError("Invalid value for `count`, must not be `None`") self._count = count @property def next(self): """Gets the next of this InlineResponse2005. :return: The next of this InlineResponse2005. :rtype: str """ return self._next @next.setter def next(self, next): """Sets the next of this InlineResponse2005. :param next: The next of this InlineResponse2005. :type: str """ self._next = next @property def previous(self): """Gets the previous of this InlineResponse2005. :return: The previous of this InlineResponse2005. :rtype: str """ return self._previous @previous.setter def previous(self, previous): """Sets the previous of this InlineResponse2005. :param previous: The previous of this InlineResponse2005. :type: str """ self._previous = previous @property def results(self): """Gets the results of this InlineResponse2005. :return: The results of this InlineResponse2005. :rtype: list[AppInstall] """ return self._results @results.setter def results(self, results): """Sets the results of this InlineResponse2005. :param results: The results of this InlineResponse2005. :type: list[AppInstall] """ if results is None: raise ValueError("Invalid value for `results`, must not be `None`") self._results = results def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value if issubclass(InlineResponse2005, dict): for key, value in self.items(): result[key] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, InlineResponse2005): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
from . import Link def iterate_words(lines): for line in lines: words = line.split() if len(words) == 0: continue for word in words[:-1]: yield word, is_stop_word(word) yield words[-1], True # EOL is considered a stop word def is_stop_word(word): return any(word.endswith(stopchar) for stopchar in '.;?!') def tokenize(source, link_length): head = [] end = [] is_start = True words_iter = iterate_words(source) while len(head) < link_length - 1: word, is_end = next(words_iter) head += [word] end += [is_end] for word, is_end in iterate_words(source): yield Link(head, word, is_start, is_end) head = head[1:] + [word] # If the start of the current link is a stop word, the next link # is a starting link is_start = end[0] end = end[1:] + [is_end]
from django.shortcuts import render from catalog.models import Book, Author, BookInstance, Genre from django.contrib.auth.mixins import LoginRequiredMixin def index(request): """View function for home page of site.""" # Generate counts of some of the main objects num_books = Book.objects.all().count() num_instances = BookInstance.objects.all().count() # Available books (status = 'a') num_instances_available = BookInstance.objects.filter(status__exact='a').count() # The 'all()' is implied by default. num_authors = Author.objects.count() # Number of visits to this view, as counted in the session variable. num_visits = request.session.get('num_visits', 1) request.session['num_visits'] = num_visits + 1 context = { 'num_books': num_books, 'num_instances': num_instances, 'num_instances_available': num_instances_available, 'num_authors': num_authors, 'num_visits': num_visits, } # Render the HTML template index.html with the data in the context variable return render(request, 'index.html', context=context) from django.views import generic class BookListView(generic.ListView): model = Book paginate_by = 2 class BookDetailView(generic.DetailView): model = Book def book_detail_view(request, primary_key): try: book = Book.objects.get(pk=primary_key) except Book.DoesNotExist: raise Http404('Book does not exist') return render(request, 'catalog/book_detail.html', context={'book': book}) class AuthorListView(generic.ListView): model = Author paginate_by = 2 class AuthorDetailView(generic.DetailView): model = Author class LoanedBooksByUserListView(LoginRequiredMixin,generic.ListView): """Generic class-based view listing books on loan to current user.""" model = BookInstance template_name ='catalog/bookinstance_list_borrowed_user.html' paginate_by = 2 def get_queryset(self): return BookInstance.objects.filter(borrower=self.request.user).filter(status__exact='o').order_by('due_back') # Added as part of challenge! from django.contrib.auth.mixins import PermissionRequiredMixin class LoanedBooksAllListView(PermissionRequiredMixin, generic.ListView): """Generic class-based view listing all books on loan. Only visible to users with can_mark_returned permission.""" model = BookInstance permission_required = 'catalog.can_mark_returned' template_name = 'catalog/bookinstance_list_borrowed_all.html' paginate_by = 10 def get_queryset(self): return BookInstance.objects.filter(status__exact='o').order_by('due_back') from django.shortcuts import get_object_or_404 from django.http import HttpResponseRedirect from django.urls import reverse import datetime from django.contrib.auth.decorators import login_required, permission_required # from .forms import RenewBookForm from catalog.forms import RenewBookForm @login_required @permission_required('catalog.can_mark_returned', raise_exception=True) def renew_book_librarian(request, pk): """View function for renewing a specific BookInstance by librarian.""" book_instance = get_object_or_404(BookInstance, pk=pk) # If this is a POST request then process the Form data if request.method == 'POST': # Create a form instance and populate it with data from the request (binding): form = RenewBookForm(request.POST) # Check if the form is valid: if form.is_valid(): # process the data in form.cleaned_data as required (here we just write it to the model due_back field) book_instance.due_back = form.cleaned_data['renewal_date'] book_instance.save() # redirect to a new URL: return HttpResponseRedirect(reverse('all-borrowed')) # If this is a GET (or any other method) create the default form else: proposed_renewal_date = datetime.date.today() + datetime.timedelta(weeks=3) form = RenewBookForm(initial={'renewal_date': proposed_renewal_date}) context = { 'form': form, 'book_instance': book_instance, } return render(request, 'catalog/book_renew_librarian.html', context) from django.views.generic.edit import CreateView, UpdateView, DeleteView from django.urls import reverse_lazy from catalog.models import Author class AuthorCreate(CreateView): model = Author fields = ['first_name', 'last_name', 'date_of_birth', 'date_of_death'] initial = {'date_of_death': '11/06/2020'} class AuthorUpdate(UpdateView): model = Author fields = '__all__' # Not recommended (potential security issue if more fields added) class AuthorDelete(DeleteView): model = Author success_url = reverse_lazy('authors') class BookCreate(CreateView): model = Book fields = ['title', 'author', 'summary', 'isbn', 'genre', 'language'] # initial = {'date_of_death': '11/06/2020'}
import enum @enum.unique class Flag(enum.IntEnum): NOT_NULL = 1 PRI_KEY = 2 UNIQUE_KEY = 4 MULTIPLE_KEY = 8 BLOB = 16 UNSIGNED = 32 ZEROFILL = 64 BINARY = 128 ENUM = 256 AUTO_INCREMENT = 512 TIMESTAMP = 1024 SET = 2048 PART_KEY = 16384 GROUP = 32767 UNIQUE = 65536
#!/usr/bin/env python3 # Copyright lowRISC contributors. # Licensed under the Apache License, Version 2.0, see LICENSE for details. # SPDX-License-Identifier: Apache-2.0 import argparse from distutils.version import StrictVersion import logging as log import os import re import shlex import subprocess import sys # Display INFO log messages and up. log.basicConfig(level=log.INFO, format="%(levelname)s: %(message)s") def get_tool_requirements_path(): '''Return the path to tool_requirements.py, at the top of the repo''' # top_src_dir is the top of the repository top_src_dir = os.path.normpath(os.path.join(os.path.dirname(__file__), '..')) return os.path.join(top_src_dir, 'tool_requirements.py') class ReqErr(Exception): def __init__(self, path, msg): self.path = path self.msg = msg def __str__(self): return ('Error parsing tool requirements from {!r}: {}' .format(self.path, self.msg)) class ToolReq: # A subclass can set this to configure the command that's run to get the # version of a tool. If tool_cmd is None, get_version will call "self.tool # --version". tool_cmd = None # Used by get_version. If not None, this is a dictionary that's added to # the environment when running the command. tool_env = None # A subclass can set this to configure _parse_version_output. If set, it # should be a Regex object with a single capturing group that captures the # version. version_regex = None def __init__(self, tool, min_version): self.tool = tool self.min_version = min_version self.optional = False def _get_tool_cmd(self): '''Return the command to run to get the installed version''' return self.tool_cmd or [self.tool, '--version'] def _get_version(self): '''Run the tool to get the installed version. Raises a RuntimeError on failure. The default version uses the class variable tool_cmd to figure out what to run. ''' def _parse_version_output(self, stdout): '''Parse the nonempty stdout to get a version number Raises a ValueError on failure. The default implementation returns the last word of the first line if version_regex is None or the first match for version_regex if it is not None. ''' if self.version_regex is None: line0 = stdout.split('\n', 1)[0] words = line0.rsplit(None, 1) if not words: raise ValueError('Empty first line.') return words[-1] for line in stdout.split('\n'): match = self.version_regex.match(line.rstrip()) if match is not None: return match.group(1) raise ValueError('No line matched version regex.') def get_version(self): '''Run the tool to get a version. Returns a version string on success. Raises a RuntimeError on failure. The default version uses the class variable tool_cmd to figure out what to run. ''' cmd = self._get_tool_cmd() cmd_txt = ' '.join(shlex.quote(w) for w in cmd) env = None if self.tool_env is not None: env = os.environ.copy() env.update(self.tool_env) try: proc = subprocess.run(cmd, check=True, stdout=subprocess.PIPE, universal_newlines=True, env=env) except (subprocess.CalledProcessError, FileNotFoundError) as err: env_msg = ('' if not self.tool_env else ' (with environment overrides: {})' .format(', '.join('{}={}'.format(k, v) for k, v in self.tool_env.items()))) raise RuntimeError('Failed to run {!r}{} to check version: {}' .format(cmd_txt, env_msg, err)) if not proc.stdout: raise RuntimeError('No output from running {!r} to check version.' .format(cmd_txt)) try: return self._parse_version_output(proc.stdout) except ValueError as err: raise RuntimeError('Bad output from running {!r} ' 'to check version: {}' .format(cmd_txt, err)) def to_semver(self, version, from_req): '''Convert a tool version to semantic versioning format If from_req is true, this version comes from the requirements file (rather than being reported from an installed application). That might mean stricter checking. If version is not a known format, raises a ValueError. ''' return version def check(self): '''Get the installed version and check it matches the requirements Returns (is_good, msg). is_good is true if we matched the requirements and false otherwise. msg describes what happened (an error message on failure, or extra information on success). ''' try: min_semver = self.to_semver(self.min_version, True) except ValueError as err: return (False, 'Failed to convert requirement to semantic version: {}' .format(err)) try: min_sv = StrictVersion(min_semver) except ValueError as err: return (False, 'Bad semver inferred from required version ({}): {}' .format(min_semver, err)) try: actual_version = self.get_version() except RuntimeError as err: return (False, str(err)) try: actual_semver = self.to_semver(actual_version, False) except ValueError as err: return (False, 'Failed to convert installed to semantic version: {}' .format(err)) try: actual_sv = StrictVersion(actual_semver) except ValueError as err: return (False, 'Bad semver inferred from installed version ({}): {}' .format(actual_semver, err)) if actual_sv < min_sv: return (False, 'Installed version is too old: ' 'found version {}, but need at least {}' .format(actual_version, self.min_version)) return (True, 'Sufficiently recent version (found {}; needed {})' .format(actual_version, self.min_version)) class VerilatorToolReq(ToolReq): def get_version(self): try: # Note: "verilator" needs to be called through a shell and with all # arguments in a string, as it doesn't have a shebang, but instead # relies on perl magic to parse command line arguments. version_str = subprocess.run('verilator --version', shell=True, check=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True) except subprocess.CalledProcessError as err: raise RuntimeError('Unable to call Verilator to check version: {}' .format(err)) from None return version_str.stdout.split(' ')[1].strip() class VeribleToolReq(ToolReq): tool_cmd = ['verible-verilog-lint', '--version'] def to_semver(self, version, from_req): # Drop the hash suffix and convert into version string that # is compatible with StrictVersion in check_version below. # Example: v0.0-808-g1e17daa -> 0.0.808 m = re.fullmatch(r'v([0-9]+)\.([0-9]+)-([0-9]+)-g[0-9a-f]+$', version) if m is None: raise ValueError("{} has invalid version string format." .format(version)) return '.'.join(m.group(1, 2, 3)) class VivadoToolReq(ToolReq): tool_cmd = ['vivado', '-version'] version_regex = re.compile(r'Vivado v(.*)\s') def to_semver(self, version, from_req): # Regular Vivado releases just have a major and minor version. # In this case, we set the patch level to 0. m = re.fullmatch(r'([0-9]+)\.([0-9]+)(?:\.([0-9]+))?', version) if m is None: raise ValueError("{} has invalid version string format." .format(version)) return '.'.join((m.group(1), m.group(2), m.group(3) or '0')) class VcsToolReq(ToolReq): tool_cmd = ['vcs', '-full64', '-ID'] tool_env = {'VCS_ARCH_OVERRIDE': 'linux'} version_regex = re.compile(r'Compiler version = VCS [A-Z]-(.*)') def to_semver(self, version, from_req): # VCS has a rather strange numbering scheme, where the most general # versions look something like this: # # Q-2020.03-SP1-2 # # Our version_regex strips out the "Q" part (a "platform prefix") # already. A version always has the "2020.03" (year and month) part, # and may also have an -SP<n> and/or -<patch> suffix. # # Since StrictVersion expects a 3 digit versioning scheme, we multiply # any SP number by 100, which should work as long as the patch version # isn't greater than 99. # # Some VCS builds also report other cruft (like _Full64) after this # version number. If from_req is False, allow (and ignore) that too. regex = r'([0-9]+).([0-9]+)(?:-SP([0-9]+))?(?:-([0-9]+))?' if from_req: regex += '$' match = re.match(regex, version) if match is None: raise ValueError("{!r} is not a recognised VCS version string." .format(version)) major = match.group(1) minor = match.group(2) sp = int(match.group(3) or 0) patch = int(match.group(4) or 0) comb = str(sp * 100 + patch) return '{}.{}{}'.format(major, minor, comb) class PyModuleToolReq(ToolReq): '''A tool in a Python module (its version can be found by running pip)''' version_regex = re.compile(r'Version: (.*)') def _get_tool_cmd(self): return ['pip3', 'show', self.tool] def dict_to_tool_req(path, tool, raw): '''Parse a dict (as read from Python) as a ToolReq Required keys: version. Optional keys: as_needed. ''' where = 'Dict for {} in __TOOL_REQUIREMENTS__'.format(tool) # We operate in place on the dictionary. Take a copy to avoid an # obnoxious API. raw = raw.copy() if 'min_version' not in raw: raise ReqErr(path, '{} is missing required key: "min_version".' .format(where)) min_version = raw['min_version'] if not isinstance(min_version, str): raise ReqErr(path, '{} has min_version that is not a string.' .format(where)) del raw['min_version'] as_needed = False if 'as_needed' in raw: as_needed = raw['as_needed'] if not isinstance(as_needed, bool): raise ReqErr(path, '{} has as_needed that is not a bool.' .format(where)) del raw['as_needed'] if raw: raise ReqErr(path, '{} has unexpected keys: {}.' .format(where, ', '.join(raw.keys()))) classes = { 'edalize': PyModuleToolReq, 'vcs': VcsToolReq, 'verible': VeribleToolReq, 'verilator': VerilatorToolReq, 'vivado': VivadoToolReq, } cls = classes.get(tool, ToolReq) ret = cls(tool, min_version) ret.as_needed = as_needed return ret def read_tool_requirements(path=None): '''Read tool requirements from a Python file''' if path is None: path = get_tool_requirements_path() with open(path, 'r') as pyfile: globs = {} exec(pyfile.read(), globs) # We expect the exec call to have populated globs with a # __TOOL_REQUIREMENTS__ dictionary. raw = globs.get('__TOOL_REQUIREMENTS__') if raw is None: raise ReqErr(path, 'The Python file at did not define ' '__TOOL_REQUIREMENTS__.') # raw should be a dictionary (keyed by tool name) if not isinstance(raw, dict): raise ReqErr(path, '__TOOL_REQUIREMENTS__ is not a dict.') reqs = {} for tool, raw_val in raw.items(): if not isinstance(tool, str): raise ReqErr(path, 'Invalid key in __TOOL_REQUIREMENTS__: {!r}' .format(tool)) if isinstance(raw_val, str): # Shorthand notation: value is just a string, which we # interpret as a minimum version raw_val = {'min_version': raw_val} if not isinstance(raw_val, dict): raise ReqErr(path, 'Value for {} in __TOOL_REQUIREMENTS__ ' 'is not a string or dict.'.format(tool)) reqs[tool] = dict_to_tool_req(path, tool, raw_val) return reqs def main(): parser = argparse.ArgumentParser() parser.add_argument('tool', nargs='*') args = parser.parse_args() # Get tool requirements try: tool_requirements = read_tool_requirements() except ReqErr as err: log.error(str(err)) return 1 pending_tools = set(args.tool) missing_tools = [] for tool, req in tool_requirements.items(): if req.as_needed and tool not in pending_tools: continue pending_tools.discard(tool) good, msg = req.check() if not good: log.error('Failed tool requirement for {}: {}' .format(tool, msg)) missing_tools.append(tool) else: log.info('Tool {} present: {}' .format(tool, msg)) all_good = True if missing_tools: log.error("Tool requirements not fulfilled. " "Please update tools ({}) and retry." .format(', '.join(missing_tools))) all_good = False if pending_tools: log.error("Some tools specified on command line don't appear in " "tool requirements file: {}" .format(', '.join(sorted(pending_tools)))) all_good = False return 0 if all_good else 1 if __name__ == "__main__": sys.exit(main())
# -*- coding: utf-8 -*- # @Time : 2020/10/11 上午10:58 # @Author : TaoWang # @Description : 参数配置 import argparse def ArgumentParser(): parser = argparse.ArgumentParser() parser.add_argument('--embed_size', type=int, default=300, help="embedding size of word embedding") parser.add_argument("--epoch",type=int,default=1,help="epoch of training") parser.add_argument("--cuda",type=bool,default=True,help="whether use gpu") parser.add_argument("--gpu",type=int,default=0,help="whether use gpu") parser.add_argument("--learning_rate",type=float,default=0.001,help="learning rate during training") parser.add_argument("--batch_size",type=int,default=32,help="batch size during training") parser.add_argument("--min_count",type=int,default=20,help="min count of words") parser.add_argument("--window_size",type=int,default=2,help="min count of words") parser.add_argument("--x_max",type=int,default=100,help="x_max of glove") parser.add_argument("--alpha",type=float,default=0.75,help="alpha of glove") return parser.parse_args(args=[])
""" The ``mlflow.pytorch`` module provides an API for logging and loading PyTorch models. This module exports PyTorch models with the following flavors: PyTorch (native) format This is the main flavor that can be loaded back into PyTorch. :py:mod:`mlflow.pyfunc` Produced for use by generic pyfunc-based deployment tools and batch inference. """ import importlib import logging import os import yaml import cloudpickle import numpy as np import pandas as pd from distutils.version import LooseVersion import posixpath import mlflow import shutil import mlflow.pyfunc.utils as pyfunc_utils from mlflow import pyfunc from mlflow.exceptions import MlflowException from mlflow.models import Model, ModelSignature from mlflow.models.model import MLMODEL_FILE_NAME from mlflow.models.utils import ModelInputExample, _save_example from mlflow.protos.databricks_pb2 import RESOURCE_DOES_NOT_EXIST from mlflow.pytorch import pickle_module as mlflow_pytorch_pickle_module from mlflow.tracking.artifact_utils import _download_artifact_from_uri from mlflow.utils.annotations import experimental from mlflow.utils.environment import _mlflow_conda_env from mlflow.utils.file_utils import _copy_file_or_tree, TempDir from mlflow.utils.model_utils import _get_flavor_configuration from mlflow.tracking._model_registry import DEFAULT_AWAIT_MAX_SLEEP_SECONDS from mlflow.utils.autologging_utils import autologging_integration, safe_patch FLAVOR_NAME = "pytorch" _SERIALIZED_TORCH_MODEL_FILE_NAME = "model.pth" _PICKLE_MODULE_INFO_FILE_NAME = "pickle_module_info.txt" _EXTRA_FILES_KEY = "extra_files" _REQUIREMENTS_FILE_KEY = "requirements_file" _logger = logging.getLogger(__name__) def get_default_conda_env(): """ :return: The default Conda environment as a dictionary for MLflow Models produced by calls to :func:`save_model()` and :func:`log_model()`. .. code-block:: python :caption: Example import mlflow.pytorch # Log PyTorch model with mlflow.start_run() as run: mlflow.pytorch.log_model(model, "model") # Fetch the associated conda environment env = mlflow.pytorch.get_default_conda_env() print("conda env: {}".format(env)) .. code-block:: text :caption: Output conda env {'name': 'mlflow-env', 'channels': ['defaults', 'conda-forge', 'pytorch'], 'dependencies': ['python=3.7.5', 'pytorch=1.5.1', 'torchvision=0.6.1', 'pip', {'pip': ['mlflow', 'cloudpickle==1.6.0']}]} """ import torch import torchvision return _mlflow_conda_env( additional_conda_deps=[ "pytorch={}".format(torch.__version__), "torchvision={}".format(torchvision.__version__), ], additional_pip_deps=[ # We include CloudPickle in the default environment because # it's required by the default pickle module used by `save_model()` # and `log_model()`: `mlflow.pytorch.pickle_module`. "cloudpickle=={}".format(cloudpickle.__version__) ], additional_conda_channels=["pytorch"], ) def log_model( pytorch_model, artifact_path, conda_env=None, code_paths=None, pickle_module=None, registered_model_name=None, signature: ModelSignature = None, input_example: ModelInputExample = None, await_registration_for=DEFAULT_AWAIT_MAX_SLEEP_SECONDS, requirements_file=None, extra_files=None, **kwargs ): """ Log a PyTorch model as an MLflow artifact for the current run. :param pytorch_model: PyTorch model to be saved. Can be either an eager model (subclass of ``torch.nn.Module``) or scripted model prepared via ``torch.jit.script`` or ``torch.jit.trace``. The model accept a single ``torch.FloatTensor`` as input and produce a single output tensor. If saving an eager model, any code dependencies of the model's class, including the class definition itself, should be included in one of the following locations: - The package(s) listed in the model's Conda environment, specified by the ``conda_env`` parameter. - One or more of the files specified by the ``code_paths`` parameter. :param artifact_path: Run-relative artifact path. :param conda_env: Path to a Conda environment file. If provided, this decsribes the environment this model should be run in. At minimum, it should specify the dependencies contained in :func:`get_default_conda_env()`. If ``None``, the default :func:`get_default_conda_env()` environment is added to the model. The following is an *example* dictionary representation of a Conda environment:: { 'name': 'mlflow-env', 'channels': ['defaults'], 'dependencies': [ 'python=3.7.0', 'pytorch=0.4.1', 'torchvision=0.2.1' ] } :param code_paths: A list of local filesystem paths to Python file dependencies (or directories containing file dependencies). These files are *prepended* to the system path when the model is loaded. :param pickle_module: The module that PyTorch should use to serialize ("pickle") the specified ``pytorch_model``. This is passed as the ``pickle_module`` parameter to ``torch.save()``. By default, this module is also used to deserialize ("unpickle") the PyTorch model at load time. :param registered_model_name: (Experimental) If given, create a model version under ``registered_model_name``, also creating a registered model if one with the given name does not exist. :param signature: (Experimental) :py:class:`ModelSignature <mlflow.models.ModelSignature>` describes model input and output :py:class:`Schema <mlflow.types.Schema>`. The model signature can be :py:func:`inferred <mlflow.models.infer_signature>` from datasets with valid model input (e.g. the training dataset with target column omitted) and valid model output (e.g. model predictions generated on the training dataset), for example: .. code-block:: python from mlflow.models.signature import infer_signature train = df.drop_column("target_label") predictions = ... # compute model predictions signature = infer_signature(train, predictions) :param input_example: (Experimental) Input example provides one or several instances of valid model input. The example can be used as a hint of what data to feed the model. The given example will be converted to a Pandas DataFrame and then serialized to json using the Pandas split-oriented format. Bytes are base64-encoded. :param await_registration_for: Number of seconds to wait for the model version to finish being created and is in ``READY`` status. By default, the function waits for five minutes. Specify 0 or None to skip waiting. :param requirements_file: A string containing the path to requirements file. Remote URIs are resolved to absolute filesystem paths. For example, consider the following ``requirements_file`` string - requirements_file = "s3://my-bucket/path/to/my_file" In this case, the ``"my_file"`` requirements file is downloaded from S3. If ``None``, no requirements file is added to the model. :param extra_files: A list containing the paths to corresponding extra files. Remote URIs are resolved to absolute filesystem paths. For example, consider the following ``extra_files`` list - extra_files = ["s3://my-bucket/path/to/my_file1", "s3://my-bucket/path/to/my_file2"] In this case, the ``"my_file1 & my_file2"`` extra file is downloaded from S3. If ``None``, no extra files are added to the model. :param kwargs: kwargs to pass to ``torch.save`` method. .. code-block:: python :caption: Example import numpy as np import torch import mlflow.pytorch class LinearNNModel(torch.nn.Module): def __init__(self): super(LinearNNModel, self).__init__() self.linear = torch.nn.Linear(1, 1) # One in and one out def forward(self, x): y_pred = self.linear(x) return y_pred def gen_data(): # Example linear model modified to use y = 2x # from https://github.com/hunkim/PyTorchZeroToAll # X training data, y labels X = torch.arange(1.0, 25.0).view(-1, 1) y = torch.from_numpy(np.array([x * 2 for x in X])).view(-1, 1) return X, y # Define model, loss, and optimizer model = LinearNNModel() criterion = torch.nn.MSELoss() optimizer = torch.optim.SGD(model.parameters(), lr=0.001) # Training loop epochs = 250 X, y = gen_data() for epoch in range(epochs): # Forward pass: Compute predicted y by passing X to the model y_pred = model(X) # Compute the loss loss = criterion(y_pred, y) # Zero gradients, perform a backward pass, and update the weights. optimizer.zero_grad() loss.backward() optimizer.step() # Log the model with mlflow.start_run() as run: mlflow.pytorch.log_model(model, "model") # convert to scripted model and log the model scripted_pytorch_model = torch.jit.script(model) mlflow.pytorch.log_model(scripted_pytorch_model, "scripted_model") # Fetch the logged model artifacts print("run_id: {}".format(run.info.run_id)) for artifact_path in ["model/data", "scripted_model/data"]: artifacts = [f.path for f in MlflowClient().list_artifacts(run.info.run_id, artifact_path)] print("artifacts: {}".format(artifacts)) .. code-block:: text :caption: Output run_id: 1a1ec9e413ce48e9abf9aec20efd6f71 artifacts: ['model/data/model.pth', 'model/data/pickle_module_info.txt'] artifacts: ['scripted_model/data/model.pth', 'scripted_model/data/pickle_module_info.txt'] .. figure:: ../_static/images/pytorch_logged_models.png PyTorch logged models """ pickle_module = pickle_module or mlflow_pytorch_pickle_module Model.log( artifact_path=artifact_path, flavor=mlflow.pytorch, pytorch_model=pytorch_model, conda_env=conda_env, code_paths=code_paths, pickle_module=pickle_module, registered_model_name=registered_model_name, signature=signature, input_example=input_example, await_registration_for=await_registration_for, requirements_file=requirements_file, extra_files=extra_files, **kwargs, ) def save_model( pytorch_model, path, conda_env=None, mlflow_model=None, code_paths=None, pickle_module=None, signature: ModelSignature = None, input_example: ModelInputExample = None, requirements_file=None, extra_files=None, **kwargs ): """ Save a PyTorch model to a path on the local file system. :param pytorch_model: PyTorch model to be saved. Can be either an eager model (subclass of ``torch.nn.Module``) or scripted model prepared via ``torch.jit.script`` or ``torch.jit.trace``. The model accept a single ``torch.FloatTensor`` as input and produce a single output tensor. If saving an eager model, any code dependencies of the model's class, including the class definition itself, should be included in one of the following locations: - The package(s) listed in the model's Conda environment, specified by the ``conda_env`` parameter. - One or more of the files specified by the ``code_paths`` parameter. :param path: Local path where the model is to be saved. :param conda_env: Either a dictionary representation of a Conda environment or the path to a Conda environment yaml file. If provided, this decsribes the environment this model should be run in. At minimum, it should specify the dependencies contained in :func:`get_default_conda_env()`. If ``None``, the default :func:`get_default_conda_env()` environment is added to the model. The following is an *example* dictionary representation of a Conda environment:: { 'name': 'mlflow-env', 'channels': ['defaults'], 'dependencies': [ 'python=3.7.0', 'pytorch=0.4.1', 'torchvision=0.2.1' ] } :param mlflow_model: :py:mod:`mlflow.models.Model` this flavor is being added to. :param code_paths: A list of local filesystem paths to Python file dependencies (or directories containing file dependencies). These files are *prepended* to the system path when the model is loaded. :param pickle_module: The module that PyTorch should use to serialize ("pickle") the specified ``pytorch_model``. This is passed as the ``pickle_module`` parameter to ``torch.save()``. By default, this module is also used to deserialize ("unpickle") the PyTorch model at load time. :param signature: (Experimental) :py:class:`ModelSignature <mlflow.models.ModelSignature>` describes model input and output :py:class:`Schema <mlflow.types.Schema>`. The model signature can be :py:func:`inferred <mlflow.models.infer_signature>` from datasets with valid model input (e.g. the training dataset with target column omitted) and valid model output (e.g. model predictions generated on the training dataset), for example: .. code-block:: python from mlflow.models.signature import infer_signature train = df.drop_column("target_label") predictions = ... # compute model predictions signature = infer_signature(train, predictions) :param input_example: (Experimental) Input example provides one or several instances of valid model input. The example can be used as a hint of what data to feed the model. The given example will be converted to a Pandas DataFrame and then serialized to json using the Pandas split-oriented format. Bytes are base64-encoded. :param requirements_file: A string containing the path to requirements file. Remote URIs are resolved to absolute filesystem paths. For example, consider the following ``requirements_file`` string - requirements_file = "s3://my-bucket/path/to/my_file" In this case, the ``"my_file"`` requirements file is downloaded from S3. If ``None``, no requirements file is added to the model. :param extra_files: A list containing the paths to corresponding extra files. Remote URIs are resolved to absolute filesystem paths. For example, consider the following ``extra_files`` list - extra_files = ["s3://my-bucket/path/to/my_file1", "s3://my-bucket/path/to/my_file2"] In this case, the ``"my_file1 & my_file2"`` extra file is downloaded from S3. If ``None``, no extra files are added to the model. :param kwargs: kwargs to pass to ``torch.save`` method. .. code-block:: python :caption: Example import os import torch import mlflow.pytorch # Class defined here class LinearNNModel(torch.nn.Module): ... # Initialize our model, criterion and optimizer ... # Training loop ... # Save PyTorch models to current working directory with mlflow.start_run() as run: mlflow.pytorch.save_model(model, "model") # Convert to a scripted model and save it scripted_pytorch_model = torch.jit.script(model) mlflow.pytorch.save_model(scripted_pytorch_model, "scripted_model") # Load each saved model for inference for model_path in ["model", "scripted_model"]: model_uri = "{}/{}".format(os.getcwd(), model_path) loaded_model = mlflow.pytorch.load_model(model_uri) print("Loaded {}:".format(model_path)) for x in [6.0, 8.0, 12.0, 30.0]: X = torch.Tensor([[x]]) y_pred = loaded_model(X) print("predict X: {}, y_pred: {:.2f}".format(x, y_pred.data.item())) print("--") .. code-block:: text :caption: Output Loaded model: predict X: 6.0, y_pred: 11.90 predict X: 8.0, y_pred: 15.92 predict X: 12.0, y_pred: 23.96 predict X: 30.0, y_pred: 60.13 -- Loaded scripted_model: predict X: 6.0, y_pred: 11.90 predict X: 8.0, y_pred: 15.92 predict X: 12.0, y_pred: 23.96 predict X: 30.0, y_pred: 60.13 """ import torch pickle_module = pickle_module or mlflow_pytorch_pickle_module if not isinstance(pytorch_model, torch.nn.Module): raise TypeError("Argument 'pytorch_model' should be a torch.nn.Module") if code_paths is not None: if not isinstance(code_paths, list): raise TypeError("Argument code_paths should be a list, not {}".format(type(code_paths))) path = os.path.abspath(path) if os.path.exists(path): raise RuntimeError("Path '{}' already exists".format(path)) if mlflow_model is None: mlflow_model = Model() os.makedirs(path) if signature is not None: mlflow_model.signature = signature if input_example is not None: _save_example(mlflow_model, input_example, path) model_data_subpath = "data" model_data_path = os.path.join(path, model_data_subpath) os.makedirs(model_data_path) # Persist the pickle module name as a file in the model's `data` directory. This is necessary # because the `data` directory is the only available parameter to `_load_pyfunc`, and it # does not contain the MLmodel configuration; therefore, it is not sufficient to place # the module name in the MLmodel # # TODO: Stop persisting this information to the filesystem once we have a mechanism for # supplying the MLmodel configuration to `mlflow.pytorch._load_pyfunc` pickle_module_path = os.path.join(model_data_path, _PICKLE_MODULE_INFO_FILE_NAME) with open(pickle_module_path, "w") as f: f.write(pickle_module.__name__) # Save pytorch model model_path = os.path.join(model_data_path, _SERIALIZED_TORCH_MODEL_FILE_NAME) if isinstance(pytorch_model, torch.jit.ScriptModule): torch.jit.ScriptModule.save(pytorch_model, model_path) else: torch.save(pytorch_model, model_path, pickle_module=pickle_module, **kwargs) torchserve_artifacts_config = {} if requirements_file: if not isinstance(requirements_file, str): raise TypeError("Path to requirements file should be a string") with TempDir() as tmp_requirements_dir: _download_artifact_from_uri( artifact_uri=requirements_file, output_path=tmp_requirements_dir.path() ) rel_path = os.path.basename(requirements_file) torchserve_artifacts_config[_REQUIREMENTS_FILE_KEY] = {"path": rel_path} shutil.move(tmp_requirements_dir.path(rel_path), path) if extra_files: torchserve_artifacts_config[_EXTRA_FILES_KEY] = [] if not isinstance(extra_files, list): raise TypeError("Extra files argument should be a list") with TempDir() as tmp_extra_files_dir: for extra_file in extra_files: _download_artifact_from_uri( artifact_uri=extra_file, output_path=tmp_extra_files_dir.path() ) rel_path = posixpath.join(_EXTRA_FILES_KEY, os.path.basename(extra_file),) torchserve_artifacts_config[_EXTRA_FILES_KEY].append({"path": rel_path}) shutil.move( tmp_extra_files_dir.path(), posixpath.join(path, _EXTRA_FILES_KEY), ) conda_env_subpath = "conda.yaml" if conda_env is None: conda_env = get_default_conda_env() elif not isinstance(conda_env, dict): with open(conda_env, "r") as f: conda_env = yaml.safe_load(f) with open(os.path.join(path, conda_env_subpath), "w") as f: yaml.safe_dump(conda_env, stream=f, default_flow_style=False) if code_paths is not None: code_dir_subpath = "code" for code_path in code_paths: _copy_file_or_tree(src=code_path, dst=path, dst_dir=code_dir_subpath) else: code_dir_subpath = None mlflow_model.add_flavor( FLAVOR_NAME, model_data=model_data_subpath, pytorch_version=torch.__version__, **torchserve_artifacts_config, ) pyfunc.add_to_model( mlflow_model, loader_module="mlflow.pytorch", data=model_data_subpath, pickle_module_name=pickle_module.__name__, code=code_dir_subpath, env=conda_env_subpath, ) mlflow_model.save(os.path.join(path, MLMODEL_FILE_NAME)) def _load_model(path, **kwargs): """ :param path: The path to a serialized PyTorch model. :param kwargs: Additional kwargs to pass to the PyTorch ``torch.load`` function. """ import torch if os.path.isdir(path): # `path` is a directory containing a serialized PyTorch model and a text file containing # information about the pickle module that should be used by PyTorch to load it model_path = os.path.join(path, "model.pth") pickle_module_path = os.path.join(path, _PICKLE_MODULE_INFO_FILE_NAME) with open(pickle_module_path, "r") as f: pickle_module_name = f.read() if "pickle_module" in kwargs and kwargs["pickle_module"].__name__ != pickle_module_name: _logger.warning( "Attempting to load the PyTorch model with a pickle module, '%s', that does not" " match the pickle module that was used to save the model: '%s'.", kwargs["pickle_module"].__name__, pickle_module_name, ) else: try: kwargs["pickle_module"] = importlib.import_module(pickle_module_name) except ImportError as exc: raise MlflowException( message=( "Failed to import the pickle module that was used to save the PyTorch" " model. Pickle module name: `{pickle_module_name}`".format( pickle_module_name=pickle_module_name ) ), error_code=RESOURCE_DOES_NOT_EXIST, ) from exc else: model_path = path if LooseVersion(torch.__version__) >= LooseVersion("1.5.0"): return torch.load(model_path, **kwargs) else: try: # load the model as an eager model. return torch.load(model_path, **kwargs) except Exception: # pylint: disable=broad-except # If fails, assume the model as a scripted model return torch.jit.load(model_path) def load_model(model_uri, **kwargs): """ Load a PyTorch model from a local file or a run. :param model_uri: The location, in URI format, of the MLflow model, for example: - ``/Users/me/path/to/local/model`` - ``relative/path/to/local/model`` - ``s3://my_bucket/path/to/model`` - ``runs:/<mlflow_run_id>/run-relative/path/to/model`` - ``models:/<model_name>/<model_version>`` - ``models:/<model_name>/<stage>`` For more information about supported URI schemes, see `Referencing Artifacts <https://www.mlflow.org/docs/latest/concepts.html# artifact-locations>`_. :param kwargs: kwargs to pass to ``torch.load`` method. :return: A PyTorch model. .. code-block:: python :caption: Example import torch import mlflow.pytorch # Class defined here class LinearNNModel(torch.nn.Module): ... # Initialize our model, criterion and optimizer ... # Training loop ... # Log the model with mlflow.start_run() as run: mlflow.pytorch.log_model(model, "model") # Inference after loading the logged model model_uri = "runs:/{}/model".format(run.info.run_id) loaded_model = mlflow.pytorch.load_model(model_uri) for x in [4.0, 6.0, 30.0]: X = torch.Tensor([[x]]) y_pred = loaded_model(X) print("predict X: {}, y_pred: {:.2f}".format(x, y_pred.data.item())) .. code-block:: text :caption: Output predict X: 4.0, y_pred: 7.57 predict X: 6.0, y_pred: 11.64 predict X: 30.0, y_pred: 60.48 """ import torch local_model_path = _download_artifact_from_uri(artifact_uri=model_uri) try: pyfunc_conf = _get_flavor_configuration( model_path=local_model_path, flavor_name=pyfunc.FLAVOR_NAME ) except MlflowException: pyfunc_conf = {} code_subpath = pyfunc_conf.get(pyfunc.CODE) if code_subpath is not None: pyfunc_utils._add_code_to_system_path( code_path=os.path.join(local_model_path, code_subpath) ) pytorch_conf = _get_flavor_configuration(model_path=local_model_path, flavor_name=FLAVOR_NAME) if torch.__version__ != pytorch_conf["pytorch_version"]: _logger.warning( "Stored model version '%s' does not match installed PyTorch version '%s'", pytorch_conf["pytorch_version"], torch.__version__, ) torch_model_artifacts_path = os.path.join(local_model_path, pytorch_conf["model_data"]) return _load_model(path=torch_model_artifacts_path, **kwargs) def _load_pyfunc(path, **kwargs): """ Load PyFunc implementation. Called by ``pyfunc.load_pyfunc``. :param path: Local filesystem path to the MLflow Model with the ``pytorch`` flavor. """ return _PyTorchWrapper(_load_model(path, **kwargs)) class _PyTorchWrapper(object): """ Wrapper class that creates a predict function such that predict(data: pd.DataFrame) -> model's output as pd.DataFrame (pandas DataFrame) """ def __init__(self, pytorch_model): self.pytorch_model = pytorch_model def predict(self, data, device="cpu"): import torch if not isinstance(data, pd.DataFrame): raise TypeError("Input data should be pandas.DataFrame") self.pytorch_model.to(device) self.pytorch_model.eval() with torch.no_grad(): input_tensor = torch.from_numpy(data.values.astype(np.float32)).to(device) preds = self.pytorch_model(input_tensor) if not isinstance(preds, torch.Tensor): raise TypeError( "Expected PyTorch model to output a single output tensor, " "but got output of type '{}'".format(type(preds)) ) predicted = pd.DataFrame(preds.numpy()) predicted.index = data.index return predicted @experimental @autologging_integration(FLAVOR_NAME) def autolog(log_every_n_epoch=1, log_models=True, disable=False): # pylint: disable=unused-argument """ Enables (or disables) and configures autologging from `PyTorch Lightning <https://pytorch-lightning.readthedocs.io/en/latest>`_ to MLflow. Autologging is performed when you call the `fit` method of `pytorch_lightning.Trainer() \ <https://pytorch-lightning.readthedocs.io/en/latest/trainer.html#>`_. Explore the complete `PyTorch MNIST \ <https://github.com/mlflow/mlflow/tree/master/examples/pytorch/MNIST/example1>`_ for an expansive example with implementation of additional lightening steps. **Note**: Autologging is only supported for PyTorch Lightning models, i.e., models that subclass `pytorch_lightning.LightningModule \ <https://pytorch-lightning.readthedocs.io/en/latest/lightning_module.html>`_. In particular, autologging support for vanilla PyTorch models that only subclass `torch.nn.Module <https://pytorch.org/docs/stable/generated/torch.nn.Module.html>`_ is not yet available. :param log_every_n_epoch: If specified, logs metrics once every `n` epochs. By default, metrics are logged after every epoch. :param log_models: If ``True``, trained models are logged as MLflow model artifacts. If ``False``, trained models are not logged. :param disable: If ``True``, disables all supported autologging integrations. If ``False``, enables all supported autologging integrations. .. code-block:: python :caption: Example import os import pytorch_lightning as pl import torch from torch.nn import functional as F from torch.utils.data import DataLoader from torchvision import transforms from torchvision.datasets import MNIST from pytorch_lightning.metrics.functional import accuracy import mlflow.pytorch from mlflow.tracking import MlflowClient # For brevity, here is the simplest most minimal example with just a training # loop step, (no validation, no testing). It illustrates how you can use MLflow # to auto log parameters, metrics, and models. class MNISTModel(pl.LightningModule): def __init__(self): super(MNISTModel, self).__init__() self.l1 = torch.nn.Linear(28 * 28, 10) def forward(self, x): return torch.relu(self.l1(x.view(x.size(0), -1))) def training_step(self, batch, batch_nb): x, y = batch loss = F.cross_entropy(self(x), y) acc = accuracy(loss, y) # Use the current of PyTorch logger self.log("train_loss", loss, on_epoch=True) self.log("acc", acc, on_epoch=True) return loss def configure_optimizers(self): return torch.optim.Adam(self.parameters(), lr=0.02) def print_auto_logged_info(r): tags = {k: v for k, v in r.data.tags.items() if not k.startswith("mlflow.")} artifacts = [f.path for f in MlflowClient().list_artifacts(r.info.run_id, "model")] print("run_id: {}".format(r.info.run_id)) print("artifacts: {}".format(artifacts)) print("params: {}".format(r.data.params)) print("metrics: {}".format(r.data.metrics)) print("tags: {}".format(tags)) # Initialize our model mnist_model = MNISTModel() # Initialize DataLoader from MNIST Dataset train_ds = MNIST(os.getcwd(), train=True, download=True, transform=transforms.ToTensor()) train_loader = DataLoader(train_ds, batch_size=32) # Initialize a trainer trainer = pl.Trainer(max_epochs=20, progress_bar_refresh_rate=20) # Auto log all MLflow entities mlflow.pytorch.autolog() # Train the model with mlflow.start_run() as run: trainer.fit(mnist_model, train_loader) # fetch the auto logged parameters and metrics print_auto_logged_info(mlflow.get_run(run_id=run.info.run_id)) .. code-block:: text :caption: Output run_id: 42caa17b60cb489c8083900fb52506a7 artifacts: ['model/MLmodel', 'model/conda.yaml', 'model/data'] params: {'betas': '(0.9, 0.999)', 'weight_decay': '0', 'epochs': '20', 'eps': '1e-08', 'lr': '0.02', 'optimizer_name': 'Adam', ' amsgrad': 'False'} metrics: {'acc_step': 0.0, 'train_loss_epoch': 1.0917967557907104, 'train_loss_step': 1.0794280767440796, 'train_loss': 1.0794280767440796, 'acc_epoch': 0.0033333334140479565, 'acc': 0.0} tags: {'Mode': 'training'} .. figure:: ../_static/images/pytorch_lightening_autolog.png PyTorch autologged MLflow entities """ import pytorch_lightning as pl from mlflow.pytorch._pytorch_autolog import _create_patch_fit fit = _create_patch_fit(log_every_n_epoch=log_every_n_epoch, log_models=log_models) safe_patch(FLAVOR_NAME, pl.Trainer, "fit", fit, manage_run=True)
#!/usr/bin/env python3 # Copyright (c) 2016 The Bitcoin Core developers # Copyright (c) 2017-2018 The Placeholder Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the bumpfee RPC. Verifies that the bumpfee RPC creates replacement transactions successfully when its preconditions are met, and returns appropriate errors in other cases. This module consists of around a dozen individual test cases implemented in the top-level functions named as test_<test_case_description>. The test functions can be disabled or reordered if needed for debugging. If new test cases are added in the future, they should try to follow the same convention and not make assumptions about execution order. """ from feature_segwit import send_to_witness from test_framework.test_framework import PlacehTestFramework from test_framework import blocktools from test_framework.mininode import CTransaction from test_framework.util import * import io # Sequence number that is BIP 125 opt-in and BIP 68-compliant BIP125_SEQUENCE_NUMBER = 0xfffffffd WALLET_PASSPHRASE = "test" WALLET_PASSPHRASE_TIMEOUT = 3600 class BumpFeeTest(PlacehTestFramework): def set_test_params(self): self.num_nodes = 2 self.setup_clean_chain = True self.extra_args = [ ["-prematurewitness", "-walletprematurewitness", "-mempoolreplacement", "-walletrbf={}".format(i)] for i in range(self.num_nodes)] def run_test(self): # Encrypt wallet for test_locked_wallet_fails test self.nodes[1].node_encrypt_wallet(WALLET_PASSPHRASE) self.start_node(1) self.nodes[1].walletpassphrase(WALLET_PASSPHRASE, WALLET_PASSPHRASE_TIMEOUT) connect_nodes_bi(self.nodes, 0, 1) self.sync_all() peer_node, rbf_node = self.nodes rbf_node_address = rbf_node.getnewaddress() # fund rbf node with 10 coins of 0.001 btc (100,000 satoshis) self.log.info("Mining blocks...") peer_node.generate(110) self.sync_all() for i in range(25): peer_node.sendtoaddress(rbf_node_address, 0.001) self.sync_all() peer_node.generate(1) self.sync_all() assert_equal(rbf_node.getbalance(), Decimal("0.025")) self.log.info("Running tests") dest_address = peer_node.getnewaddress() test_simple_bumpfee_succeeds(rbf_node, peer_node, dest_address) test_segwit_bumpfee_succeeds(rbf_node, dest_address) test_nonrbf_bumpfee_fails(peer_node, dest_address) test_notmine_bumpfee_fails(rbf_node, peer_node, dest_address) test_bumpfee_with_descendant_fails(rbf_node, rbf_node_address, dest_address) test_small_output_fails(rbf_node, dest_address) test_dust_to_fee(rbf_node, dest_address) test_settxfee(rbf_node, dest_address) test_rebumping(rbf_node, dest_address) test_rebumping_not_replaceable(rbf_node, dest_address) test_unconfirmed_not_spendable(rbf_node, rbf_node_address) test_bumpfee_metadata(rbf_node, dest_address) test_locked_wallet_fails(rbf_node, dest_address) self.log.info("Success") def test_simple_bumpfee_succeeds(rbf_node, peer_node, dest_address): rbfid = spend_one_input(rbf_node, dest_address) rbftx = rbf_node.gettransaction(rbfid) sync_mempools((rbf_node, peer_node)) assert rbfid in rbf_node.getrawmempool() and rbfid in peer_node.getrawmempool() bumped_tx = rbf_node.bumpfee(rbfid) assert_equal(bumped_tx["errors"], []) assert bumped_tx["fee"] - abs(rbftx["fee"]) > 0 # check that bumped_tx propagates, original tx was evicted and has a wallet conflict sync_mempools((rbf_node, peer_node)) assert bumped_tx["txid"] in rbf_node.getrawmempool() assert bumped_tx["txid"] in peer_node.getrawmempool() assert rbfid not in rbf_node.getrawmempool() assert rbfid not in peer_node.getrawmempool() oldwtx = rbf_node.gettransaction(rbfid) assert len(oldwtx["walletconflicts"]) > 0 # check wallet transaction replaces and replaced_by values bumpedwtx = rbf_node.gettransaction(bumped_tx["txid"]) assert_equal(oldwtx["replaced_by_txid"], bumped_tx["txid"]) assert_equal(bumpedwtx["replaces_txid"], rbfid) def test_segwit_bumpfee_succeeds(rbf_node, dest_address): # Create a transaction with segwit output, then create an RBF transaction # which spends it, and make sure bumpfee can be called on it. segwit_in = next(u for u in rbf_node.listunspent() if u["amount"] == Decimal("0.001")) segwit_out = rbf_node.validateaddress(rbf_node.getnewaddress()) rbf_node.addwitnessaddress(segwit_out["address"]) segwitid = send_to_witness( use_p2wsh=False, node=rbf_node, utxo=segwit_in, pubkey=segwit_out["pubkey"], encode_p2sh=False, amount=Decimal("0.0009"), sign=True) rbfraw = rbf_node.createrawtransaction([{ 'txid': segwitid, 'vout': 0, "sequence": BIP125_SEQUENCE_NUMBER }], {dest_address: Decimal("0.0005"), rbf_node.getrawchangeaddress(): Decimal("0.0003")}) rbfsigned = rbf_node.signrawtransaction(rbfraw) rbfid = rbf_node.sendrawtransaction(rbfsigned["hex"]) assert rbfid in rbf_node.getrawmempool() bumped_tx = rbf_node.bumpfee(rbfid) assert bumped_tx["txid"] in rbf_node.getrawmempool() assert rbfid not in rbf_node.getrawmempool() def test_nonrbf_bumpfee_fails(peer_node, dest_address): # cannot replace a non RBF transaction (from node which did not enable RBF) not_rbfid = peer_node.sendtoaddress(dest_address, Decimal("0.00090000")) assert_raises_rpc_error(-4, "not BIP 125 replaceable", peer_node.bumpfee, not_rbfid) def test_notmine_bumpfee_fails(rbf_node, peer_node, dest_address): # cannot bump fee unless the tx has only inputs that we own. # here, the rbftx has a peer_node coin and then adds a rbf_node input # Note that this test depends upon the RPC code checking input ownership prior to change outputs # (since it can't use fundrawtransaction, it lacks a proper change output) utxos = [node.listunspent()[-1] for node in (rbf_node, peer_node)] inputs = [{ "txid": utxo["txid"], "vout": utxo["vout"], "address": utxo["address"], "sequence": BIP125_SEQUENCE_NUMBER } for utxo in utxos] output_val = sum(utxo["amount"] for utxo in utxos) - Decimal("0.001") rawtx = rbf_node.createrawtransaction(inputs, {dest_address: output_val}) signedtx = rbf_node.signrawtransaction(rawtx) signedtx = peer_node.signrawtransaction(signedtx["hex"]) rbfid = rbf_node.sendrawtransaction(signedtx["hex"]) assert_raises_rpc_error(-4, "Transaction contains inputs that don't belong to this wallet", rbf_node.bumpfee, rbfid) def test_bumpfee_with_descendant_fails(rbf_node, rbf_node_address, dest_address): # cannot bump fee if the transaction has a descendant # parent is send-to-self, so we don't have to check which output is change when creating the child tx parent_id = spend_one_input(rbf_node, rbf_node_address) tx = rbf_node.createrawtransaction([{"txid": parent_id, "vout": 0}], {dest_address: 0.00020000}) tx = rbf_node.signrawtransaction(tx) rbf_node.sendrawtransaction(tx["hex"]) assert_raises_rpc_error(-8, "Transaction has descendants in the wallet", rbf_node.bumpfee, parent_id) def test_small_output_fails(rbf_node, dest_address): # cannot bump fee with a too-small output rbfid = spend_one_input(rbf_node, dest_address) rbf_node.bumpfee(rbfid, {"totalFee": 50000}) rbfid = spend_one_input(rbf_node, dest_address) assert_raises_rpc_error(-4, "Change output is too small", rbf_node.bumpfee, rbfid, {"totalFee": 50001}) def test_dust_to_fee(rbf_node, dest_address): # check that if output is reduced to dust, it will be converted to fee # the bumped tx sets fee=49,900, but it converts to 50,000 rbfid = spend_one_input(rbf_node, dest_address) fulltx = rbf_node.getrawtransaction(rbfid, 1) bumped_tx = rbf_node.bumpfee(rbfid, {"totalFee": 49900}) full_bumped_tx = rbf_node.getrawtransaction(bumped_tx["txid"], 1) assert_equal(bumped_tx["fee"], Decimal("0.00050000")) assert_equal(len(fulltx["vout"]), 2) assert_equal(len(full_bumped_tx["vout"]), 1) # change output is eliminated def test_settxfee(rbf_node, dest_address): # check that bumpfee reacts correctly to the use of settxfee (paytxfee) rbfid = spend_one_input(rbf_node, dest_address) requested_feerate = Decimal("0.00025000") rbf_node.settxfee(requested_feerate) bumped_tx = rbf_node.bumpfee(rbfid) actual_feerate = bumped_tx["fee"] * 1000 / rbf_node.getrawtransaction(bumped_tx["txid"], True)["size"] # Assert that the difference between the requested feerate and the actual # feerate of the bumped transaction is small. assert_greater_than(Decimal("0.00001000"), abs(requested_feerate - actual_feerate)) rbf_node.settxfee(Decimal("0.00000000")) # unset paytxfee def test_rebumping(rbf_node, dest_address): # check that re-bumping the original tx fails, but bumping the bumper succeeds rbfid = spend_one_input(rbf_node, dest_address) bumped = rbf_node.bumpfee(rbfid, {"totalFee": 2000}) assert_raises_rpc_error(-4, "already bumped", rbf_node.bumpfee, rbfid, {"totalFee": 3000}) rbf_node.bumpfee(bumped["txid"], {"totalFee": 3000}) def test_rebumping_not_replaceable(rbf_node, dest_address): # check that re-bumping a non-replaceable bump tx fails rbfid = spend_one_input(rbf_node, dest_address) bumped = rbf_node.bumpfee(rbfid, {"totalFee": 10000, "replaceable": False}) assert_raises_rpc_error(-4, "Transaction is not BIP 125 replaceable", rbf_node.bumpfee, bumped["txid"], {"totalFee": 20000}) def test_unconfirmed_not_spendable(rbf_node, rbf_node_address): # check that unconfirmed outputs from bumped transactions are not spendable rbfid = spend_one_input(rbf_node, rbf_node_address) rbftx = rbf_node.gettransaction(rbfid)["hex"] assert rbfid in rbf_node.getrawmempool() bumpid = rbf_node.bumpfee(rbfid)["txid"] assert bumpid in rbf_node.getrawmempool() assert rbfid not in rbf_node.getrawmempool() # check that outputs from the bump transaction are not spendable # due to the replaces_txid check in CWallet::AvailableCoins assert_equal([t for t in rbf_node.listunspent(minconf=0, include_unsafe=False) if t["txid"] == bumpid], []) # submit a block with the rbf tx to clear the bump tx out of the mempool, # then call abandon to make sure the wallet doesn't attempt to resubmit the # bump tx, then invalidate the block so the rbf tx will be put back in the # mempool. this makes it possible to check whether the rbf tx outputs are # spendable before the rbf tx is confirmed. block = submit_block_with_tx(rbf_node, rbftx) rbf_node.abandontransaction(bumpid) rbf_node.invalidateblock(block.hash) assert bumpid not in rbf_node.getrawmempool() assert rbfid in rbf_node.getrawmempool() # check that outputs from the rbf tx are not spendable before the # transaction is confirmed, due to the replaced_by_txid check in # CWallet::AvailableCoins assert_equal([t for t in rbf_node.listunspent(minconf=0, include_unsafe=False) if t["txid"] == rbfid], []) # check that the main output from the rbf tx is spendable after confirmed rbf_node.generate(1) assert_equal( sum(1 for t in rbf_node.listunspent(minconf=0, include_unsafe=False) if t["txid"] == rbfid and t["address"] == rbf_node_address and t["spendable"]), 1) def test_bumpfee_metadata(rbf_node, dest_address): rbfid = rbf_node.sendtoaddress(dest_address, Decimal("0.00100000"), "comment value", "to value") bumped_tx = rbf_node.bumpfee(rbfid) bumped_wtx = rbf_node.gettransaction(bumped_tx["txid"]) assert_equal(bumped_wtx["comment"], "comment value") assert_equal(bumped_wtx["to"], "to value") def test_locked_wallet_fails(rbf_node, dest_address): rbfid = spend_one_input(rbf_node, dest_address) rbf_node.walletlock() assert_raises_rpc_error(-13, "Please enter the wallet passphrase with walletpassphrase first.", rbf_node.bumpfee, rbfid) def spend_one_input(node, dest_address): tx_input = dict( sequence=BIP125_SEQUENCE_NUMBER, **next(u for u in node.listunspent() if u["amount"] == Decimal("0.00100000"))) rawtx = node.createrawtransaction( [tx_input], {dest_address: Decimal("0.00050000"), node.getrawchangeaddress(): Decimal("0.00049000")}) signedtx = node.signrawtransaction(rawtx) txid = node.sendrawtransaction(signedtx["hex"]) return txid def submit_block_with_tx(node, tx): ctx = CTransaction() ctx.deserialize(io.BytesIO(hex_str_to_bytes(tx))) tip = node.getbestblockhash() height = node.getblockcount() + 1 block_time = node.getblockheader(tip)["mediantime"] + 1 block = blocktools.create_block(int(tip, 16), blocktools.create_coinbase(height), block_time) block.vtx.append(ctx) block.rehash() block.hashMerkleRoot = block.calc_merkle_root() block.solve() node.submitblock(bytes_to_hex_str(block.serialize(True))) return block if __name__ == "__main__": BumpFeeTest().main()
"""The Amazon Redshift dialect. This is based on postgres dialect, since it was initially based off of Postgres 8. We should monitor in future and see if it should be rebased off of ANSI """ from sqlfluff.core.parser import ( OneOf, AnyNumberOf, AnySetOf, Anything, Ref, Sequence, Bracketed, BaseSegment, Delimited, Nothing, OptionallyBracketed, Matchable, ) from sqlfluff.core.dialects import load_raw_dialect from sqlfluff.dialects.dialect_redshift_keywords import ( redshift_reserved_keywords, redshift_unreserved_keywords, ) postgres_dialect = load_raw_dialect("postgres") ansi_dialect = load_raw_dialect("ansi") redshift_dialect = postgres_dialect.copy_as("redshift") # Set Keywords redshift_dialect.sets("unreserved_keywords").clear() redshift_dialect.sets("unreserved_keywords").update( [n.strip().upper() for n in redshift_unreserved_keywords.split("\n")] ) redshift_dialect.sets("reserved_keywords").clear() redshift_dialect.sets("reserved_keywords").update( [n.strip().upper() for n in redshift_reserved_keywords.split("\n")] ) redshift_dialect.sets("bare_functions").clear() redshift_dialect.sets("bare_functions").update(["current_date", "sysdate"]) redshift_dialect.sets("date_part_function_name").update( ["DATEADD", "DATEDIFF", "EXTRACT", "DATE_PART"] ) # Add datetime units # https://docs.aws.amazon.com/redshift/latest/dg/r_Dateparts_for_datetime_functions.html redshift_dialect.sets("datetime_units").update( [ # millenium "MILLENNIUM", "MILLENNIA", "MIL", "MILS", # century "CENTURY", "CENTURIES", "C", "CENT", "CENTS", # decade "DECADE", "DECADES", "DEC", "DECS", # epoch "EPOCH", # year "YEAR", "YEARS", "Y", "YR", "YRS", # quarter "QUARTER", "QUARTERS", "QTR", "QTRS", # month "MONTH", "MONTHS", "MON", "MONS", # week "WEEK", "WEEKS", "W", # day of week "DAYOFWEEK", "DOW", "DW", "WEEKDAY", # day of year "DAYOFYEAR", "DOY", "DY", "YEARDAY", # day "DAY", "DAYS", "D", # hour "HOUR", "HOURS", "H", "HR", "HRS", # minute "MINUTE", "MINUTES", "M", "MIN", "MINS", # second "SECOND", "SECONDS", "S", "SEC", "SECS", # millisec "MILLISECOND", "MILLISECONDS", "MS", "MSEC", "MSECS", "MSECOND", "MSECONDS", "MILLISEC", "MILLISECS", "MILLISECON", # microsec "MICROSECOND", "MICROSECONDS", "MICROSEC", "MICROSECS", "MICROSECOND", "USECOND", "USECONDS", "US", "USEC", "USECS", # timezone "TIMEZONE", "TIMEZONE_HOUR", "TIMEZONE_MINUTE", ] ) redshift_dialect.replace( WellKnownTextGeometrySegment=Nothing(), JoinLikeClauseGrammar=Sequence( AnySetOf( Ref("FromPivotExpressionSegment"), Ref("FromUnpivotExpressionSegment"), min_times=1, ), Ref("AliasExpressionSegment", optional=True), ), ) ObjectReferenceSegment = redshift_dialect.get_segment("ObjectReferenceSegment") redshift_dialect.add( CompressionTypeGrammar=OneOf( "BZIP2", "GZIP", "LZOP", "ZSTD", ), ArgModeGrammar=OneOf( "IN", "OUT", "INOUT", ), ColumnEncodingGrammar=OneOf( "RAW", "AZ64", "BYTEDICT", "DELTA", "DELTA32K", "LZO", "MOSTLY8", "MOSTLY16", "MOSTLY32", "RUNLENGTH", "TEXT255", "TEXT32K", "ZSTD", ), ) # need to ignore type due to mypy rules on type variables # see https://mypy.readthedocs.io/en/stable/common_issues.html#variables-vs-type-aliases # for details @redshift_dialect.segment(replace=True) class ColumnReferenceSegment(ObjectReferenceSegment): # type: ignore """A reference to column, field or alias. Adjusted to support column references for Redshift's SUPER data type (https://docs.aws.amazon.com/redshift/latest/dg/super-overview.html), which uses a subset of the PartiQL language (https://partiql.org/) to reference columns. """ type = "column_reference" match_grammar: Matchable = Delimited( Sequence( Ref("SingleIdentifierGrammar"), AnyNumberOf(Ref("ArrayAccessorSegment")), Ref("TimeZoneGrammar", optional=True), ), delimiter=OneOf( Ref("DotSegment"), Sequence(Ref("DotSegment"), Ref("DotSegment")) ), terminator=OneOf( "ON", "AS", "USING", Ref("CommaSegment"), Ref("CastOperatorSegment"), Ref("BinaryOperatorGrammar"), Ref("ColonSegment"), Ref("DelimiterSegment"), Ref("JoinLikeClauseGrammar"), ), allow_gaps=False, ) @redshift_dialect.segment() class FromUnpivotExpressionSegment(BaseSegment): """An UNPIVOT expression. See https://docs.aws.amazon.com/redshift/latest/dg/r_FROM_clause-pivot-unpivot-examples.html for details. """ type = "from_unpivot_expression" match_grammar = Sequence( "UNPIVOT", Sequence( OneOf("INCLUDE", "EXCLUDE"), "NULLS", optional=True, ), Bracketed( Sequence( Ref("ColumnReferenceSegment"), "FOR", Ref("ColumnReferenceSegment"), "IN", Bracketed( Delimited( Sequence( Ref("ColumnReferenceSegment"), Ref("AliasExpressionSegment", optional=True), ) ), ), ), ), ) @redshift_dialect.segment() class FromPivotExpressionSegment(BaseSegment): """A PIVOT expression. See https://docs.aws.amazon.com/redshift/latest/dg/r_FROM_clause-pivot-unpivot-examples.html for details. """ type = "from_pivot_expression" match_grammar = Sequence( "PIVOT", Bracketed( Sequence( OptionallyBracketed(Ref("FunctionSegment")), Ref("AliasExpressionSegment", optional=True), "FOR", Ref("ColumnReferenceSegment"), "IN", Bracketed( Delimited( Sequence( Ref("ExpressionSegment"), Ref("AliasExpressionSegment", optional=True), ), ), ), ), ), ) @redshift_dialect.segment(replace=True) class DateTimeTypeIdentifier(BaseSegment): """A Date Time type.""" type = "datetime_type_identifier" match_grammar = OneOf( "DATE", "DATETIME", Sequence( OneOf("TIME", "TIMESTAMP"), Sequence(OneOf("WITH", "WITHOUT"), "TIME", "ZONE", optional=True), ), OneOf("TIMETZ", "TIMESTAMPTZ"), # INTERVAL types are not Datetime types under Redshift: # https://docs.aws.amazon.com/redshift/latest/dg/r_Datetime_types.html ) @redshift_dialect.segment(replace=True) class DatatypeSegment(BaseSegment): """A data type segment. Indicates a data type. https://docs.aws.amazon.com/redshift/latest/dg/c_Supported_data_types.html """ type = "data_type" match_grammar = OneOf( # numeric types "SMALLINT", "INT2", "INTEGER", "INT", "INT4", "BIGINT", "INT8", "REAL", "FLOAT4", Sequence("DOUBLE", "PRECISION"), "FLOAT8", "FLOAT", # numeric types [precision ["," scale])] Sequence( OneOf("DECIMAL", "NUMERIC"), Bracketed( Delimited(Ref("NumericLiteralSegment")), optional=True, ), ), # character types OneOf( Sequence( OneOf( "CHAR", "CHARACTER", "NCHAR", "VARCHAR", Sequence("CHARACTER", "VARYING"), "NVARCHAR", ), Bracketed( OneOf( Ref("NumericLiteralSegment"), "MAX", ), optional=True, ), ), "BPCHAR", "TEXT", ), Sequence( Ref("DateTimeTypeIdentifier"), Ref("TimeZoneGrammar", optional=True), ), # INTERVAL is a data type *only* for conversion operations "INTERVAL", # boolean types OneOf("BOOLEAN", "BOOL"), # hllsketch type "HLLSKETCH", # super type "SUPER", # spatial data "GEOMETRY", "GEOGRAPHY", # binary type Sequence( OneOf( "VARBYTE", "VARBINARY", Sequence("BINARY", "VARYING"), ), Bracketed( Ref("NumericLiteralSegment"), optional=True, ), ), ) @redshift_dialect.segment() class DataFormatSegment(BaseSegment): """DataFormat segment. Indicates data format available for COPY commands. https://docs.aws.amazon.com/redshift/latest/dg/c_Compression_encodings.html """ type = "data_format_segment" match_grammar = Sequence( Sequence( "FORMAT", Ref.keyword("AS", optional=True), optional=True, ), OneOf( Sequence( "CSV", Sequence( "QUOTE", Ref.keyword("AS", optional=True), Ref("QuotedLiteralSegment"), optional=True, ), ), Sequence( "SHAPEFILE", Sequence( "SIMPLIFY", Ref.keyword("AUTO", optional=True), Ref("NumericLiteralSegment", optional=True), optional=True, ), ), Sequence( OneOf("AVRO", "JSON"), Sequence( Ref.keyword("AS", optional=True), Ref("QuotedLiteralSegment"), optional=True, ), ), "PARQUET", "ORC", "RCFILE", "SEQUENCEFILE", ), ) @redshift_dialect.segment() class AuthorizationSegment(BaseSegment): """Authorization segment. Specifies authorization to access data in another AWS resource. https://docs.aws.amazon.com/redshift/latest/dg/copy-parameters-authorization.html """ type = "authorization_segment" match_grammar = AnySetOf( OneOf( Sequence( "IAM_ROLE", OneOf( "DEFAULT", Ref("QuotedLiteralSegment"), ), ), Sequence( Ref.keyword("WITH", optional=True), "CREDENTIALS", Ref.keyword("AS", optional=True), Ref("QuotedLiteralSegment"), ), Sequence( "ACCESS_KEY_ID", Ref("QuotedLiteralSegment"), "SECRET_ACCESS_KEY", Ref("QuotedLiteralSegment"), Sequence( "SESSION_TOKEN", Ref("QuotedLiteralSegment"), optional=True, ), ), optional=False, ), Sequence( "KMS_KEY_ID", Ref("QuotedLiteralSegment"), optional=True, ), Sequence( "MASTER_SYMMETRIC_KEY", Ref("QuotedLiteralSegment"), optional=True, ), ) @redshift_dialect.segment() class ColumnAttributeSegment(BaseSegment): """Redshift specific column attributes. As specified in https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_TABLE_NEW.html """ type = "column_attribute_segment" match_grammar = AnySetOf( Sequence("DEFAULT", Ref("ExpressionSegment")), Sequence( "IDENTITY", Bracketed(Delimited(Ref("NumericLiteralSegment"))), ), Sequence( "GENERATED", "BY", "DEFAULT", "AS", "IDENTITY", Bracketed(Delimited(Ref("NumericLiteralSegment"))), ), Sequence("ENCODE", Ref("ColumnEncodingGrammar")), "DISTKEY", "SORTKEY", Sequence("COLLATE", OneOf("CASE_SENSITIVE", "CASE_INSENSITIVE")), ) @redshift_dialect.segment(replace=True) class ColumnConstraintSegment(BaseSegment): """Redshift specific column constraints. As specified in https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_TABLE_NEW.html """ type = "column_constraint_segment" match_grammar = AnySetOf( OneOf(Sequence("NOT", "NULL"), "NULL"), OneOf("UNIQUE", Sequence("PRIMARY", "KEY")), Sequence( "REFERENCES", Ref("TableReferenceSegment"), Bracketed(Ref("ColumnReferenceSegment"), optional=True), ), ) @redshift_dialect.segment() class TableAttributeSegment(BaseSegment): """Redshift specific table attributes. As specified in https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_TABLE_NEW.html """ type = "table_constraint" match_grammar = AnySetOf( Sequence("DISTSTYLE", OneOf("AUTO", "EVEN", "KEY", "ALL"), optional=True), Sequence("DISTKEY", Bracketed(Ref("ColumnReferenceSegment")), optional=True), OneOf( Sequence( OneOf("COMPOUND", "INTERLEAVED", optional=True), "SORTKEY", Bracketed(Delimited(Ref("ColumnReferenceSegment"))), ), Sequence("SORTKEY", "AUTO"), optional=True, ), Sequence("ENCODE", "AUTO", optional=True), ) @redshift_dialect.segment(replace=True) class TableConstraintSegment(BaseSegment): """Redshift specific table constraints. As specified in https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_TABLE_NEW.html """ type = "table_constraint" match_grammar = AnySetOf( Sequence("UNIQUE", Bracketed(Delimited(Ref("ColumnReferenceSegment")))), Sequence( "PRIMARY", "KEY", Bracketed(Delimited(Ref("ColumnReferenceSegment"))), ), Sequence( "FOREIGN", "KEY", Bracketed(Delimited(Ref("ColumnReferenceSegment"))), "REFERENCES", Ref("TableReferenceSegment"), Sequence(Bracketed(Ref("ColumnReferenceSegment"))), ), ) @redshift_dialect.segment(replace=True) class LikeOptionSegment(BaseSegment): """Like Option Segment. As specified in https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_TABLE_NEW.html """ type = "like_option_segment" match_grammar = Sequence(OneOf("INCLUDING", "EXCLUDING"), "DEFAULTS") @redshift_dialect.segment(replace=True) class CreateTableStatementSegment(BaseSegment): """A `CREATE TABLE` statement. As specified in https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_TABLE_NEW.html """ type = "create_table_statement" match_grammar = Sequence( "CREATE", Ref.keyword("LOCAL", optional=True), Ref("TemporaryGrammar", optional=True), "TABLE", Ref("IfNotExistsGrammar", optional=True), Ref("TableReferenceSegment"), Bracketed( OneOf( # Columns and comment syntax: Delimited( Sequence( Ref("ColumnReferenceSegment"), Ref("DatatypeSegment"), AnyNumberOf(Ref("ColumnAttributeSegment"), optional=True), AnyNumberOf(Ref("ColumnConstraintSegment"), optional=True), ), Ref("TableConstraintSegment", optional=True), ), Sequence( "LIKE", Ref("TableReferenceSegment"), AnyNumberOf(Ref("LikeOptionSegment"), optional=True), ), ) ), Sequence("BACKUP", OneOf("YES", "NO", optional=True), optional=True), AnyNumberOf(Ref("TableAttributeSegment"), optional=True), ) @redshift_dialect.segment(replace=True) class CreateTableAsStatementSegment(BaseSegment): """A `CREATE TABLE AS` statement. As specified in https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_TABLE_AS.html """ type = "create_table_as_statement" match_grammar = Sequence( "CREATE", Sequence( Ref.keyword("LOCAL", optional=True), OneOf("TEMPORARY", "TEMP"), optional=True, ), "TABLE", Ref("ObjectReferenceSegment"), Bracketed( Delimited( Ref("ColumnReferenceSegment"), ), optional=True, ), Sequence("BACKUP", OneOf("YES", "NO"), optional=True), Ref("TableAttributeSegment", optional=True), "AS", OptionallyBracketed(Ref("SelectableGrammar")), ) @redshift_dialect.segment(replace=True) class CreateModelStatementSegment(BaseSegment): """A `CREATE MODEL` statement. https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_MODEL.html NB: order of keywords matter """ type = "create_model_statement" match_grammar = Sequence( "CREATE", "MODEL", Ref("ObjectReferenceSegment"), Sequence( "FROM", OneOf( Ref("QuotedLiteralSegment"), Bracketed(Ref("SelectableGrammar")), Ref("ObjectReferenceSegment"), ), optional=True, ), Sequence( "TARGET", Ref("ColumnReferenceSegment"), optional=True, ), Sequence( "FUNCTION", Ref("ObjectReferenceSegment"), Bracketed( Delimited(Ref("DatatypeSegment")), optional=True, ), ), Sequence( "RETURNS", Ref("DatatypeSegment"), optional=True, ), Sequence( "SAGEMAKER", Ref("QuotedLiteralSegment"), optional=True, ), Sequence( "IAM_ROLE", OneOf( "DEFAULT", Ref("QuotedLiteralSegment"), ), ), Sequence( "AUTO", OneOf( "ON", "OFF", ), optional=True, ), Sequence( "MODEL_TYPE", OneOf( "XGBOOST", "MLP", "KMEANS", ), optional=True, ), Sequence( "PROBLEM_TYPE", OneOf( "REGRESSION", "BINARY_CLASSIFICATION", "MULTICLASS_CLASSIFICATION", ), optional=True, ), Sequence( "OBJECTIVE", Ref("QuotedLiteralSegment"), optional=True, ), Sequence( "PREPROCESSORS", Ref("QuotedLiteralSegment"), optional=True, ), Sequence( "HYPERPARAMETERS", "DEFAULT", Sequence( "EXCEPT", Bracketed( Delimited( Anything(), ), ), optional=True, ), optional=True, ), Sequence( "SETTINGS", Bracketed( Sequence( "S3_BUCKET", Ref("QuotedLiteralSegment"), Sequence( "KMS_KEY_ID", Ref("QuotedLiteralSegment"), optional=True, ), Sequence( "S3_GARBAGE_COLLECT", OneOf( "ON", "OFF", ), optional=True, ), Sequence( "MAX_CELLS", Ref("NumericLiteralSegment"), optional=True, ), Sequence( "MAX_RUNTIME", Ref("NumericLiteralSegment"), optional=True, ), ), ), optional=True, ), ) @redshift_dialect.segment() class ShowModelStatementSegment(BaseSegment): """A `SHOW MODEL` statement. As specified in: https://docs.aws.amazon.com/redshift/latest/dg/r_SHOW_MODEL.html """ type = "show_model_statement" match_grammar = Sequence( "SHOW", "MODEL", OneOf( "ALL", Ref("ObjectReferenceSegment"), ), ) @redshift_dialect.segment() class CreateExternalTableStatementSegment(BaseSegment): """A `CREATE EXTERNAL TABLE` statement. https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_EXTERNAL_TABLE.html """ type = "create_external_table_statement" match_grammar = Sequence( "CREATE", "EXTERNAL", "TABLE", Ref("TableReferenceSegment"), Bracketed( # Columns and comment syntax: Delimited( Sequence( Ref("ColumnReferenceSegment"), Ref("DatatypeSegment"), ), ), ), Ref("PartitionedBySegment", optional=True), Sequence( "ROW", "FORMAT", OneOf( Sequence( "DELIMITED", Ref("RowFormatDelimitedSegment"), ), Sequence( "SERDE", Ref("QuotedLiteralSegment"), Sequence( "WITH", "SERDEPROPERTIES", Bracketed( Delimited( Sequence( Ref("QuotedLiteralSegment"), Ref("EqualsSegment"), Ref("QuotedLiteralSegment"), ), ), ), optional=True, ), ), ), optional=True, ), "STORED", "AS", OneOf( "PARQUET", "RCFILE", "SEQUENCEFILE", "TEXTFILE", "ORC", "AVRO", Sequence( "INPUTFORMAT", Ref("QuotedLiteralSegment"), "OUTPUTFORMAT", Ref("QuotedLiteralSegment"), ), ), "LOCATION", Ref("QuotedLiteralSegment"), Sequence( "TABLE", "PROPERTIES", Bracketed( Delimited( Sequence( Ref("QuotedLiteralSegment"), Ref("EqualsSegment"), Ref("QuotedLiteralSegment"), ), ), ), optional=True, ), ) @redshift_dialect.segment() class CreateExternalTableAsStatementSegment(BaseSegment): """A `CREATE EXTERNAL TABLE AS` statement. https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_EXTERNAL_TABLE.html """ type = "create_external_table_statement" match_grammar = Sequence( "CREATE", "EXTERNAL", "TABLE", Ref("TableReferenceSegment"), Ref("PartitionedBySegment", optional=True), Sequence( "ROW", "FORMAT", "DELIMITED", Ref("RowFormatDelimitedSegment"), optional=True, ), "STORED", "AS", OneOf( "PARQUET", "TEXTFILE", ), "LOCATION", Ref("QuotedLiteralSegment"), Sequence( "TABLE", "PROPERTIES", Bracketed( Delimited( Sequence( Ref("QuotedLiteralSegment"), Ref("EqualsSegment"), Ref("QuotedLiteralSegment"), ), ), ), optional=True, ), "AS", OptionallyBracketed(Ref("SelectableGrammar")), ) @redshift_dialect.segment() class CreateLibraryStatementSegment(BaseSegment): """A `CREATE LIBRARY` statement. https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_LIBRARY.html """ type = "create_library_statement" match_grammar = Sequence( "CREATE", Sequence( "OR", "REPLACE", optional=True, ), "LIBRARY", Ref("ObjectReferenceSegment"), "LANGUAGE", "PLPYTHONU", "FROM", Ref("QuotedLiteralSegment"), AnySetOf( Ref("AuthorizationSegment", optional=False), Sequence( "REGION", Ref.keyword("AS", optional=True), Ref("QuotedLiteralSegment"), optional=True, ), ), ) @redshift_dialect.segment() class UnloadStatementSegment(BaseSegment): """A `UNLOAD` statement. https://docs.aws.amazon.com/redshift/latest/dg/r_UNLOAD.html """ type = "unload_statement" match_grammar = Sequence( "UNLOAD", Bracketed(Ref("QuotedLiteralSegment")), "TO", Ref("QuotedLiteralSegment"), AnySetOf( Ref("AuthorizationSegment", optional=False), Sequence( "REGION", Ref.keyword("AS", optional=True), Ref("QuotedLiteralSegment"), optional=True, ), Ref("CompressionTypeGrammar", optional=True), Sequence( Sequence( "FORMAT", Ref.keyword("AS", optional=True), optional=True, ), OneOf( "CSV", "JSON", "PARQUET", ), optional=True, ), Sequence( "PARTITION", "BY", Ref("BracketedColumnReferenceListGrammar"), Ref.keyword("INCLUDE", optional=True), ), Sequence( "PARALLEL", OneOf( "PRESET", "ON", "OFF", "TRUE", "FALSE", optional=True, ), optional=True, ), OneOf( Sequence( "DELIMITER", Ref.keyword("AS", optional=True), Ref("QuotedLiteralSegment"), ), Sequence( "FIXEDWIDTH", Ref.keyword("AS", optional=True), Ref("QuotedLiteralSegment"), ), optional=True, ), Sequence( "MANIFEST", Ref.keyword("VERBOSE", optional=True), optional=True, ), Sequence( "NULL", "AS", Ref("QuotedLiteralSegment"), optional=True, ), Sequence( "NULL", "AS", Ref("QuotedLiteralSegment"), optional=True, ), AnySetOf( OneOf( "MAXFILESIZE", "ROWGROUPSIZE", ), Ref.keyword("AS", optional=True), Ref("NumericLiteralSegment"), OneOf( "MB", "GB", ), optional=True, ), Sequence( "ENCRYPTED", Ref.keyword("AUTO", optional=True), optional=True, ), Ref.keyword("ALLOWOVERWRITE", optional=True), Ref.keyword("CLEANPATH", optional=True), Ref.keyword("ESCAPE", optional=True), Ref.keyword("ADDQUOTES", optional=True), Ref.keyword("HEADER", optional=True), ), ) @redshift_dialect.segment(replace=True) class CopyStatementSegment( postgres_dialect.get_segment("CopyStatementSegment") # type: ignore ): """A `COPY` statement. : - https://docs.aws.amazon.com/redshift/latest/dg/r_COPY.html - https://docs.aws.amazon.com/redshift/latest/dg/r_COPY-parameters.html """ type = "copy_statement" match_grammar = Sequence( "COPY", Ref("TableReferenceSegment"), Ref("BracketedColumnReferenceListGrammar", optional=True), "FROM", Ref("QuotedLiteralSegment"), AnySetOf( Ref("AuthorizationSegment", optional=False), Sequence( "REGION", Ref.keyword("AS", optional=True), Ref("QuotedLiteralSegment"), optional=True, ), Ref("CompressionTypeGrammar", optional=True), Ref("DataFormatSegment", optional=True), OneOf( Sequence( "DELIMITER", Ref.keyword("AS", optional=True), Ref("QuotedLiteralSegment"), ), Sequence( "FIXEDWIDTH", Ref.keyword("AS", optional=True), Ref("QuotedLiteralSegment"), ), optional=True, ), Sequence( "ENCRYPTED", Ref.keyword("AUTO", optional=True), optional=True, ), Ref.keyword("MANIFEST", optional=True), Sequence( "COMPROWS", Ref("NumericLiteralSegment"), optional=True, ), Sequence( "MAXERROR", Ref.keyword("AS", optional=True), Ref("NumericLiteralSegment"), optional=True, ), Sequence( "COMPUPDATE", OneOf( "PRESET", "ON", "OFF", "TRUE", "FALSE", optional=True, ), optional=True, ), Sequence( "STATUPDATE", OneOf( "ON", "OFF", "TRUE", "FALSE", optional=True, ), optional=True, ), Ref.keyword("NOLOAD", optional=True), Ref.keyword("ACCEPTANYDATE", optional=True), Sequence( "ACCEPTINVCHARS", Ref.keyword("AS", optional=True), Ref("QuotedLiteralSegment"), optional=True, ), Ref.keyword("BLANKSASNULL", optional=True), Sequence( "DATEFORMAT", Ref.keyword("AS", optional=True), OneOf( "AUTO", Ref("QuotedLiteralSegment"), ), optional=True, ), Ref.keyword("EMPTYASNULL", optional=True), Sequence( "ENCODING", Ref.keyword("AS", optional=True), OneOf( "UTF8", "UTF16", "UTF16BE", "UTF16LE", ), optional=True, ), Ref.keyword("ESCAPE", optional=True), Ref.keyword("EXPLICIT_IDS", optional=True), Ref.keyword("FILLRECORD", optional=True), Ref.keyword("IGNOREBLANKLINES", optional=True), Sequence( "IGNOREHEADER", Ref.keyword("AS", optional=True), Ref("QuotedLiteralSegment"), optional=True, ), Sequence( "NULL", "AS", Ref("QuotedLiteralSegment"), optional=True, ), Sequence( "READRATIO", Ref("NumericLiteralSegment"), optional=True, ), Ref.keyword("REMOVEQUOTES", optional=True), Ref.keyword("ROUNDEC", optional=True), Sequence( "TIMEFORMAT", Ref.keyword("AS", optional=True), OneOf( "AUTO", "EPOCHSECS", "EPOCHMILLISECS", Ref("QuotedLiteralSegment"), ), optional=True, ), Ref.keyword("TRIMBLANKS", optional=True), Ref.keyword("TRUNCATECOLUMNS", optional=True), ), ) @redshift_dialect.segment(replace=True) class InsertStatementSegment(BaseSegment): """An`INSERT` statement. Redshift has two versions of insert statements: - https://docs.aws.amazon.com/redshift/latest/dg/r_INSERT_30.html - https://docs.aws.amazon.com/redshift/latest/dg/r_INSERT_external_table.html """ # TODO: This logic can be streamlined. However, there are some odd parsing issues. # See https://github.com/sqlfluff/sqlfluff/pull/1896 type = "insert_statement" match_grammar = Sequence( "INSERT", "INTO", Ref("TableReferenceSegment"), OneOf( OptionallyBracketed(Ref("SelectableGrammar")), Sequence("DEFAULT", "VALUES"), Sequence( Ref("BracketedColumnReferenceListGrammar", optional=True), OneOf( Ref("ValuesClauseSegment"), OptionallyBracketed(Ref("SelectableGrammar")), ), ), ), ) @redshift_dialect.segment(replace=True) class CreateSchemaStatementSegment(BaseSegment): """A `CREATE SCHEMA` statement. https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_SCHEMA.html TODO: support optional SCHEMA_ELEMENT """ type = "create_schema_statement" match_grammar = Sequence( "CREATE", "SCHEMA", OneOf( Sequence( Ref("IfNotExistsGrammar", optional=True), Ref("SchemaReferenceSegment"), Sequence( "AUTHORIZATION", Ref("ObjectReferenceSegment"), optional=True, ), ), Sequence( "AUTHORIZATION", Ref("ObjectReferenceSegment"), ), ), Sequence( "QUOTA", OneOf( Sequence( Ref("NumericLiteralSegment"), OneOf( "MB", "GB", "TB", ), ), "UNLIMITED", ), optional=True, ), ) @redshift_dialect.segment() class ProcedureParameterListSegment(BaseSegment): """The parameters for a procedure. https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_PROCEDURE.html """ type = "procedure_parameter_list" # Odd syntax, but prevents eager parameters being confused for data types _param_type = OneOf("REFCURSOR", Ref("DatatypeSegment")) match_grammar = Bracketed( Sequence( AnyNumberOf( OneOf( Ref("ParameterNameSegment"), exclude=OneOf(_param_type, Ref("ArgModeGrammar")), optional=True, ), Ref("ArgModeGrammar", optional=True), max_times_per_element=1, ), _param_type, AnyNumberOf( Sequence( Ref("CommaSegment"), AnyNumberOf( OneOf( Ref("ParameterNameSegment"), exclude=OneOf(_param_type, Ref("ArgModeGrammar")), optional=True, ), Ref("ArgModeGrammar", optional=True), max_times_per_element=1, ), _param_type, ), ), optional=True, ), ) @redshift_dialect.segment(replace=True) class CreateProcedureStatementSegment(BaseSegment): """A `CREATE PROCEDURE` statement. https://www.postgresql.org/docs/14/sql-createprocedure.html TODO: Just a basic statement for now, without full syntax. based on CreateFunctionStatementSegment without a return type. """ type = "create_procedure_statement" match_grammar = Sequence( "CREATE", Sequence("OR", "REPLACE", optional=True), "PROCEDURE", Ref("FunctionNameSegment"), Ref("ProcedureParameterListSegment"), Ref("FunctionDefinitionGrammar"), ) @redshift_dialect.segment() class AlterProcedureStatementSegment(BaseSegment): """An `ALTER PROCEDURE` statement. https://docs.aws.amazon.com/redshift/latest/dg/r_ALTER_PROCEDURE.html """ type = "alter_procedure_statement" match_grammar = Sequence( "ALTER", "PROCEDURE", Ref("FunctionNameSegment"), Ref("ProcedureParameterListSegment", optional=True), OneOf( Sequence("RENAME", "TO", Ref("FunctionNameSegment")), Sequence( "OWNER", "TO", OneOf( OneOf(Ref("ParameterNameSegment"), Ref("QuotedIdentifierSegment")), "CURRENT_USER", "SESSION_USER", ), ), ), ) @redshift_dialect.segment(replace=True) class DropProcedureStatementSegment(BaseSegment): """An `DROP PROCEDURE` statement. https://docs.aws.amazon.com/redshift/latest/dg/r_DROP_PROCEDURE.html """ type = "drop_procedure_statement" match_grammar = Sequence( "DROP", "PROCEDURE", Ref("IfExistsGrammar", optional=True), Delimited( Sequence( Ref("FunctionNameSegment"), Ref("ProcedureParameterListSegment", optional=True), ), ), ) @redshift_dialect.segment() class DeclareStatementSegment(BaseSegment): """A `DECLARE` statement. As specified in https://docs.aws.amazon.com/redshift/latest/dg/declare.html """ type = "declare_statement" match_grammar = Sequence( "DECLARE", Ref("ObjectReferenceSegment"), "CURSOR", "FOR", Ref("SelectableGrammar"), ) @redshift_dialect.segment() class FetchStatementSegment(BaseSegment): """A `FETCH` statement. As specified in https://docs.aws.amazon.com/redshift/latest/dg/fetch.html """ type = "fetch_statement" match_grammar = Sequence( "fetch", OneOf( "NEXT", "ALL", Sequence( "FORWARD", OneOf( "ALL", Ref("NumericLiteralSegment"), ), ), ), "FROM", Ref("ObjectReferenceSegment"), ) @redshift_dialect.segment() class CloseStatementSegment(BaseSegment): """A `CLOSE` statement. As specified in https://docs.aws.amazon.com/redshift/latest/dg/close.html """ type = "close_statement" match_grammar = Sequence( "CLOSE", Ref("ObjectReferenceSegment"), ) @redshift_dialect.segment() class AltereDatashareStatementSegment(BaseSegment): """An `ALTER DATASHARE` statement. https://docs.aws.amazon.com/redshift/latest/dg/r_ALTER_DATASHARE.html """ type = "create_datashare_statement" match_grammar = Sequence( "ALTER", "DATASHARE", Ref("ObjectReferenceSegment"), OneOf( # add or remove objects to the datashare Sequence( OneOf( "ADD", "REMOVE", ), OneOf( Sequence( "TABLE", Delimited(Ref("TableReferenceSegment")), ), Sequence( "SCHEMA", Delimited(Ref("SchemaReferenceSegment")), ), Sequence( "FUNCTION", Delimited(Ref("FunctionNameSegment")), ), Sequence( "ALL", OneOf("TABLES", "FUNCTIONS"), "IN", "SCHEMA", Delimited(Ref("SchemaReferenceSegment")), ), ), ), # configure the properties of the datashare Sequence( "SET", OneOf( Sequence( "PUBLICACCESSIBLE", Ref("EqualsSegment", optional=True), Ref("BooleanLiteralGrammar"), ), Sequence( "INCLUDENEW", Ref("EqualsSegment", optional=True), Ref("BooleanLiteralGrammar"), "FOR", "SCHEMA", Ref("SchemaReferenceSegment"), ), ), ), ), ) @redshift_dialect.segment() class CreateDatashareStatementSegment(BaseSegment): """A `CREATE DATASHARE` statement. https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_DATASHARE.html """ type = "create_datashare_statement" match_grammar = Sequence( "CREATE", "DATASHARE", Ref("ObjectReferenceSegment"), Sequence( Ref.keyword("SET", optional=True), "PUBLICACCESSIBLE", Ref("EqualsSegment", optional=True), OneOf( "TRUE", "FALSE", ), optional=True, ), ) @redshift_dialect.segment() class DescDatashareStatementSegment(BaseSegment): """A `DESC DATASHARE` statement. https://docs.aws.amazon.com/redshift/latest/dg/r_DESC_DATASHARE.html """ type = "desc_datashare_statement" match_grammar = Sequence( "DESC", "DATASHARE", Ref("ObjectReferenceSegment"), Sequence( "OF", Sequence( "ACCOUNT", Ref("QuotedLiteralSegment"), optional=True, ), "NAMESPACE", Ref("QuotedLiteralSegment"), optional=True, ), ) @redshift_dialect.segment() class DropDatashareStatementSegment(BaseSegment): """A `DROP DATASHARE` statement. https://docs.aws.amazon.com/redshift/latest/dg/r_DROP_DATASHARE.html """ type = "drop_datashare_statement" match_grammar = Sequence( "DROP", "DATASHARE", Ref("ObjectReferenceSegment"), ) @redshift_dialect.segment() class ShowDatasharesStatementSegment(BaseSegment): """A `SHOW DATASHARES` statement. https://docs.aws.amazon.com/redshift/latest/dg/r_SHOW_DATASHARES.html """ type = "show_datashares_statement" match_grammar = Sequence( "SHOW", "DATASHARES", Sequence( "LIKE", Ref("QuotedLiteralSegment"), optional=True, ), ) @redshift_dialect.segment() class AnalyzeCompressionStatementSegment(BaseSegment): """An `ANALYZE COMPRESSION` statement. https://docs.aws.amazon.com/redshift/latest/dg/r_ANALYZE_COMPRESSION.html """ type = "analyze_compression_statement" match_grammar = Sequence( OneOf("ANALYZE", "ANALYSE"), "COMPRESSION", Sequence( Ref("TableReferenceSegment"), Bracketed( Delimited( Ref("ColumnReferenceSegment"), ), optional=True, ), Sequence( "COMPROWS", Ref("NumericLiteralSegment"), optional=True, ), optional=True, ), ) @redshift_dialect.segment() class VacuumStatementSegment(BaseSegment): """A `VACUUM` statement. https://docs.aws.amazon.com/redshift/latest/dg/r_VACUUM_command.html """ type = "vacuum_statement" match_grammar = Sequence( "VACUUM", OneOf( "FULL", "REINDEX", "RECLUSTER", Sequence( OneOf( "SORT", "DELETE", ), "ONLY", ), optional=True, ), Ref("TableReferenceSegment", optional=True), Sequence( "TO", Ref("NumericLiteralSegment"), "PERCENT", optional=True, ), Ref.keyword("BOOST", optional=True), ) # Adding Redshift specific statements @redshift_dialect.segment(replace=True) class StatementSegment( postgres_dialect.get_segment("StatementSegment") # type: ignore ): """A generic segment, to any of its child subsegments.""" type = "statement" parse_grammar = redshift_dialect.get_segment("StatementSegment").parse_grammar.copy( insert=[ Ref("CreateLibraryStatementSegment"), Ref("CreateUserStatementSegment"), Ref("CreateGroupStatementSegment"), Ref("AlterUserStatementSegment"), Ref("AlterGroupStatementSegment"), Ref("CreateExternalTableAsStatementSegment"), Ref("CreateExternalTableStatementSegment"), Ref("DataFormatSegment"), Ref("UnloadStatementSegment"), Ref("CopyStatementSegment"), Ref("ShowModelStatementSegment"), Ref("CreateDatashareStatementSegment"), Ref("DescDatashareStatementSegment"), Ref("DropDatashareStatementSegment"), Ref("ShowDatasharesStatementSegment"), Ref("AltereDatashareStatementSegment"), Ref("DeclareStatementSegment"), Ref("FetchStatementSegment"), Ref("CloseStatementSegment"), Ref("AnalyzeCompressionStatementSegment"), Ref("VacuumStatementSegment"), Ref("AlterProcedureStatementSegment"), ], ) match_grammar = redshift_dialect.get_segment( "StatementSegment" ).match_grammar.copy() @redshift_dialect.segment() class PartitionedBySegment(BaseSegment): """Partitioned By Segment. As specified in https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_EXTERNAL_TABLE.html """ type = "partitioned_by_segment" match_grammar = Sequence( Ref.keyword("PARTITIONED"), "BY", Bracketed( Delimited( Sequence( Ref("ColumnReferenceSegment"), Ref("DatatypeSegment"), ), ), ), ) @redshift_dialect.segment() class RowFormatDelimitedSegment(BaseSegment): """Row Format Delimited Segment. As specified in https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_EXTERNAL_TABLE.html """ type = "row_format_deimited_segment" match_grammar = AnySetOf( Sequence( "FIELDS", "TERMINATED", "BY", Ref("QuotedLiteralSegment"), ), Sequence( "LINES", "TERMINATED", "BY", Ref("QuotedLiteralSegment"), ), optional=True, ) @redshift_dialect.segment() class CreateUserStatementSegment(BaseSegment): """`CREATE USER` statement. https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html """ type = "create_user" match_grammar = Sequence( "CREATE", "USER", Ref("ObjectReferenceSegment"), Ref.keyword("WITH", optional=True), "PASSWORD", OneOf(Ref("QuotedLiteralSegment"), "DISABLE"), AnySetOf( OneOf( "CREATEDB", "NOCREATEDB", ), OneOf( "CREATEUSER", "NOCREATEUSER", ), Sequence( "SYSLOG", "ACCESS", OneOf( "RESTRICTED", "UNRESTRICTED", ), ), Sequence("IN", "GROUP", Delimited(Ref("ObjectReferenceSegment"))), Sequence("VALID", "UNTIL", Ref("QuotedLiteralSegment")), Sequence( "CONNECTION", "LIMIT", OneOf( Ref("NumericLiteralSegment"), "UNLIMITED", ), ), Sequence( "SESSION", "TIMEOUT", Ref("NumericLiteralSegment"), ), ), ) @redshift_dialect.segment() class CreateGroupStatementSegment(BaseSegment): """`CREATE GROUP` statement. https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_GROUP.html """ type = "create_group" match_grammar = Sequence( "CREATE", "GROUP", Ref("ObjectReferenceSegment"), Sequence( Ref.keyword("WITH", optional=True), "USER", Delimited( Ref("ObjectReferenceSegment"), ), optional=True, ), ) @redshift_dialect.segment() class AlterUserStatementSegment(BaseSegment): """`ALTER USER` statement. https://docs.aws.amazon.com/redshift/latest/dg/r_ALTER_USER.html """ type = "alter_user" match_grammar = Sequence( "ALTER", "USER", Ref("ObjectReferenceSegment"), Ref.keyword("WITH", optional=True), AnySetOf( OneOf( "CREATEDB", "NOCREATEDB", ), OneOf( "CREATEUSER", "NOCREATEUSER", ), Sequence( "SYSLOG", "ACCESS", OneOf( "RESTRICTED", "UNRESTRICTED", ), ), Sequence( "PASSWORD", OneOf( Ref("QuotedLiteralSegment"), "DISABLE", ), Sequence("VALID", "UNTIL", Ref("QuotedLiteralSegment"), optional=True), ), Sequence( "RENAME", "TO", Ref("ObjectReferenceSegment"), ), Sequence( "CONNECTION", "LIMIT", OneOf( Ref("NumericLiteralSegment"), "UNLIMITED", ), ), OneOf( Sequence( "SESSION", "TIMEOUT", Ref("NumericLiteralSegment"), ), Sequence( "RESET", "SESSION", "TIMEOUT", ), ), OneOf( Sequence( "SET", Ref("ObjectReferenceSegment"), OneOf( "TO", Ref("EqualsSegment"), ), OneOf( "DEFAULT", Ref("LiteralGrammar"), ), ), Sequence( "RESET", Ref("ObjectReferenceSegment"), ), ), min_times=1, ), ) @redshift_dialect.segment() class AlterGroupStatementSegment(BaseSegment): """`ALTER GROUP` statement. https://docs.aws.amazon.com/redshift/latest/dg/r_ALTER_GROUP.html """ type = "alter_group" match_grammar = Sequence( "ALTER", "GROUP", Ref("ObjectReferenceSegment"), OneOf( Sequence( OneOf("ADD", "DROP"), "USER", Delimited( Ref("ObjectReferenceSegment"), ), ), Sequence( "RENAME", "TO", Ref("ObjectReferenceSegment"), ), ), ) @redshift_dialect.segment(replace=True) class TransactionStatementSegment(BaseSegment): """A `BEGIN|START`, `COMMIT|END` or `ROLLBACK|ABORT` transaction statement. https://docs.aws.amazon.com/redshift/latest/dg/r_BEGIN.html """ type = "transaction_statement" match_grammar = Sequence( OneOf("BEGIN", "START", "COMMIT", "END", "ROLLBACK", "ABORT"), OneOf("TRANSACTION", "WORK", optional=True), Sequence( "ISOLATION", "LEVEL", OneOf( "SERIALIZABLE", Sequence("READ", "COMMITTED"), Sequence("READ", "UNCOMMITTED"), Sequence("REPEATABLE", "READ"), ), optional=True, ), OneOf( Sequence("READ", "ONLY"), Sequence("READ", "WRITE"), optional=True, ), )
import os import cv2 import imutils import numpy as np from imutils import contours from imutils import perspective from scipy.spatial import distance as dist def detect_shape(filepath, min_width=15, debug=False): image = cv2.imread(filepath, 0) resized = imutils.resize(image, width=300) ratio = image.shape[0] / float(resized.shape[0]) ''' blurred = cv2.GaussianBlur(resized, (5, 5), 0) thresh = cv2.threshold(blurred, 60, 255, cv2.THRESH_BINARY)[1] ''' gray = cv2.bilateralFilter(resized, 1, 10, 120 ) edges = cv2.Canny( gray, 10, 250 ) kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (7, 7)) closed = cv2.morphologyEx( edges, cv2.MORPH_CLOSE, kernel ) ''' cnts = cv2.findContours( closed, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE ) gray = cv2.GaussianBlur(resized, (7, 7), 0) edged = cv2.Canny(gray, 10, 250) edged = cv2.dilate(edged, None, iterations=1) edged = cv2.erode(edged, None, iterations=1) ''' cnts = cv2.findContours(closed.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts = cnts[0] if imutils.is_cv2() else cnts[1] shapes = dict() print(len(cnts)) for idx, c in enumerate(cnts): try : perimeter = cv2.arcLength(c, True) approx = cv2.approxPolyDP(c, 0.1 * perimeter, True) if len(approx) == 4: (x, y, w, h) = cv2.boundingRect(approx) shapes["rect_{}".format(idx)] = (x, y, w, h) if(debug == True): M = cv2.moments(c) cX = int((M["m10"] / M["m00"]) * ratio) cY = int((M["m01"] / M["m00"]) * ratio) c = c.astype("float") c *= ratio c = c.astype("int") cv2.drawContours(image, [c], -1, (0, 255, 0), 2) cv2.putText(image, "square", (cX, cY), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 2) cv2.namedWindow('image', cv2.WINDOW_NORMAL) cv2.resizeWindow('image', 300,300) cv2.imshow("image", image) cv2.waitKey(0) except : pass return shapes def midpoint(ptA, ptB): return ((ptA[0] + ptB[0]) * 0.5, (ptA[1] + ptB[1]) * 0.5) def min_dif(list1, list2): min_d, ind = 1000000, -1 for i in range(0, len(list1)): for j in range(0, len(list2)): if(list1[i]-list2[j] < min_d): ind = j min_d = list1[i]-list2[j] return ind def object_size(filepath, left_width=15): image = cv2.imread(filepath, 0) #gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) gray = cv2.GaussianBlur(image, (7, 7), 0) edged = cv2.Canny(gray, 50, 100) edged = cv2.dilate(edged, None, iterations=1) edged = cv2.erode(edged, None, iterations=1) # NOTE : Contour - Outlines cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) cnts = cnts[0] if imutils.is_cv2() else cnts[1] (cnts, _) = contours.sort_contours(cnts) pixelsPerMetric = None dimensions = list() for c in cnts: if cv2.contourArea(c) < 100: continue orig = image.copy() box = cv2.minAreaRect(c) box = cv2.cv.BoxPoints(box) if imutils.is_cv2() else cv2.boxPoints(box) box = np.array(box, dtype="int") box = perspective.order_points(box) (tl, tr, br, bl) = box (tltrX, tltrY) = midpoint(tl, tr) (blbrX, blbrY) = midpoint(bl, br) (tlblX, tlblY) = midpoint(tl, bl) (trbrX, trbrY) = midpoint(tr, br) cv2.circle(orig, (int(tltrX), int(tltrY)), 5, (255, 0, 0), -1) cv2.circle(orig, (int(blbrX), int(blbrY)), 5, (255, 0, 0), -1) cv2.circle(orig, (int(tlblX), int(tlblY)), 5, (255, 0, 0), -1) cv2.circle(orig, (int(trbrX), int(trbrY)), 5, (255, 0, 0), -1) # draw lines between the midpoints cv2.line(orig, (int(tltrX), int(tltrY)), (int(blbrX), int(blbrY)), (255, 0, 255), 2) cv2.line(orig, (int(tlblX), int(tlblY)), (int(trbrX), int(trbrY)), (255, 0, 255), 2) dA = dist.euclidean((tltrX, tltrY), (blbrX, blbrY)) dB = dist.euclidean((tlblX, tlblY), (trbrX, trbrY)) if pixelsPerMetric is None: pixelsPerMetric = dB / left_width dimA = dA / pixelsPerMetric dimB = dB / pixelsPerMetric cv2.putText(orig, "{:.1f}in".format(dimA), (int(tltrX - 15), int(tltrY - 10)), cv2.FONT_HERSHEY_SIMPLEX, 0.65, (255, 255, 255), 2) cv2.putText(orig, "{:.1f}in".format(dimB), (int(trbrX + 10), int(trbrY)), cv2.FONT_HERSHEY_SIMPLEX, 0.65, (255, 255, 255), 2) cv2.namedWindow('image', cv2.WINDOW_NORMAL) cv2.resizeWindow('image', 300,300) cv2.imshow("image", orig) cv2.waitKey(0) dimensions.append((dimA, dimB)) max_dim = [-1, -1] for dims in dimensions: if(dims[0] * dims[1] > max_dim[0] * max_dim[1] and left_width not in dims): max_dim[0] = dims[0] max_dim[1] = dims[1] return max_dim def weight(file1, file2, left_width=21, const_div=6000.0): # left_width = A4 Size size1 = object_size(file1, left_width) size2 = object_size(file2, left_width) rem_ind = min_dif(size1, size2) weight = (size1[0] * size1[1] * size2[1-rem_ind]) / const_div return weight if __name__ == '__main__': print(detect_shape("img.jpg", debug=True))
import numpy as np def euclidean_distance(p1,p2): """ returns euclidean distance between matrices @params: p1, p2: np.ndarray matrices to perform operation to. """ return np.sqrt(np.sum((p1-p2)**2, axis=1)) def entropy(p): """ Will be our measurement for uncertainty in our construction of descision tree @params: p: float """ if p == 0: return 0 elif p == 1: return 0 else: return -(p * np.log2(p) + (1 - p) * np.log2(1 - p)) def information_gain(left_child, right_child): """ measurement of how much info we gained when splitting a node using our entropy method. @def: takes in a list of classes from left and right child to return the information gain of our curr split @params: left_child: np.ndarray curr left child arr right_child: np.ndarray curr left child arr """ parent = left_child + right_child p_par = parent.count(1) / len(parent) if len(parent) > 0 else 0 p_left = left_child.count(1) / len(left_child) if len(left_child) \ > 0 else 0 p_right = right_child.count(1) / len(right_child) if len(right_child) \ > 0 else 0 infogain_p = self.entropy(p_par) infogain_l = self.entropy(p_left) infogain_r = self.entropy(p_right) return infogain_p - len(left_child) / len(parent) * infogain_l - \ len(right_child) / len(parent) * infogain_r
from django.contrib import admin from friends.models import FriendRequest # Register your models here. admin.site.register(FriendRequest)
import _plotly_utils.basevalidators class ConnectgapsValidator(_plotly_utils.basevalidators.BooleanValidator): def __init__( self, plotly_name="connectgaps", parent_name="scattermapbox", **kwargs ): super(ConnectgapsValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "calc"), role=kwargs.pop("role", "info"), **kwargs )
#!/bin/python3 __author__ = "Adam Karl" """Find the sum of all primes less than or equal to N""" #https://projecteuler.net/problem=10 from math import sqrt isPrime = [] def sieve(n): """fills isPrime array with booleans for whether the number at isPrime[i] is prime or not""" """uses a process known as the sieve of eratosthenes""" global isPrime isPrime = [True for i in range(n+1)] #for numbers from 0 to n inclusive isPrime[0] = False isPrime[1] = False index = 2 while index <= n: if isPrime[index]: #found a prime number multiplier = 2 while index * multiplier <= n: isPrime[index * multiplier] = False #all multiples of the prime are not prime multiplier += 1 index += 1 return isPrime def sumPrimes(n): """given a list of n booleans on whether an index is prime or not, return the sum of all primes <= index""" s = 0 for index in range(1, n+1): if isPrime[index]: s += index return s def main(): print("Find the sum of all primes below: ", end="") n = int(input().strip()) isPrime = sieve(n) #generate isPrime print("Sum = %d" % sumPrimes(n)) if __name__ == "__main__": main()
import torch from syft.generic import object_storage def test_clear_objects(): obj_storage = object_storage.ObjectStorage() x = torch.tensor(1) obj_storage.set_obj(x) objs = obj_storage.current_objects() assert len(objs) == 1 assert objs[x.id] == x ret_val = obj_storage.clear_objects() objs = obj_storage.current_objects() assert len(objs) == 0 assert ret_val == obj_storage def test_clear_objects_return_None(): obj_storage = object_storage.ObjectStorage() x = torch.tensor(1) obj_storage.set_obj(x) objs = obj_storage.current_objects() assert len(objs) == 1 assert objs[x.id] == x ret_val = obj_storage.clear_objects(return_self=False) objs = obj_storage.current_objects() assert len(objs) == 0 assert ret_val is None
from ApiManager.utils.operation import add_project_data, add_module_data, add_case_data, add_config_data, \ add_register_data, bulk_import_data from ApiManager.models import ModuleInfo import yaml '''前端test信息转字典''' def key_value_dict(mode=3, **kwargs): if not kwargs: return None sorted_kwargs = sorted(kwargs.items()) kwargs.clear() if mode == 3: half_index = len(sorted_kwargs) // 3 for value in range(half_index): key = sorted_kwargs[value][1] data_type = sorted_kwargs[value + 2 * half_index][1] value = sorted_kwargs[half_index + value][1] if key != '' and value != '': try: if data_type == 'string': value = str(value) elif data_type == 'float': value = float(value) elif data_type == 'int': value = int(value) else: value = bool(value) except ValueError: # 如果类型转换失败,默认字符串保存 pass if key != '' and value != '': kwargs.setdefault(key, value) else: half_index = len(sorted_kwargs) // 2 for value in range(half_index): key = sorted_kwargs[value][1] value = sorted_kwargs[half_index + value][1] if key != '' and value != '': kwargs.setdefault(key, value) return kwargs '''前端test信息转列表''' def key_value_list(mode=4, **kwargs): if not kwargs: return None sorted_kwargs = sorted(kwargs.items()) lists = [] if mode == 4: half_index = len(sorted_kwargs) // 4 for value in range(half_index): check = sorted_kwargs[value][1] expected = sorted_kwargs[value + half_index][1] comparator = sorted_kwargs[value + 2 * half_index][1] data_type = sorted_kwargs[value + 3 * half_index][1] if check != '' and expected != '': try: if data_type == 'string': expected = str(expected) elif data_type == 'float': expected = float(expected) elif data_type == 'int': expected = int(expected) else: expected = bool(expected) except ValueError: # 如果类型转换失败,默认字符串保存 pass lists.append({'check': check, 'comparator': comparator, 'expected': expected}) elif mode == 3: half_index = len(sorted_kwargs) // 3 for value in range(half_index): key = sorted_kwargs[value][1] data_type = sorted_kwargs[value + 2 * half_index][1] value = sorted_kwargs[half_index + value][1] if key != '' and value != '': try: if data_type == 'string': value = str(value) elif data_type == 'float': value = float(value) elif data_type == 'int': value = int(value) else: value = bool(value) except ValueError: # 如果类型转换失败,默认字符串保存 pass lists.append({key: value}) else: half_index = len(sorted_kwargs) // 2 for value in range(half_index): key = sorted_kwargs[value][1] value = sorted_kwargs[half_index + value][1] if key != '' and value != '': lists.append({key: value}) if not lists: return None return lists '''动态加载模块''' def load_modules(**kwargs): belong_project = kwargs.get('name').get('project') module_info = list(ModuleInfo.objects.get_module_info(belong_project)) string = '' for value in module_info: string = string + value + 'replaceFlag' return string[:len(string) - 11] '''模块信息逻辑及落地''' def module_info_logic(type=True, **kwargs): if kwargs.get('module_name') is '': return '模块名称不能为空' if kwargs.get('belong_project') is '': return '请先添加项目' if kwargs.get('test_user') is '': return '测试人员不能为空' if kwargs.get('lifting_time') is '': return '提测时间不能为空' return add_module_data(type, **kwargs) '''项目信息逻辑及落地''' def project_info_logic(type=True, **kwargs): if kwargs.get('project_name') is '': return '项目名称不能为空' if kwargs.get('responsible_name') is '': return '负责人不能为空' if kwargs.get('test_user') is '': return '测试人员不能为空' if kwargs.get('dev_user') is '': return '开发人员不能为空' if kwargs.get('publish_app') is '': return '发布应用不能为空' return add_project_data(type, **kwargs) '''用例信息逻辑及落地''' def case_info_logic(type=True, **kwargs): test = kwargs.pop('test') ''' 动态展示模块 ''' if 'request' not in test.keys(): return load_modules(**test) else: if test.get('name').get('case_name') is '': return '用例名称不可为空' if test.get('name').get('project') is None or test.get('name').get('project') is '': return '请先添加项目' if test.get('name').get('module') is None or test.get('name').get('module') is '': return '请先添加模块' if test.get('name').get('author') is '': return '创建者不能为空' if test.get('request').get('url') is '': return '接口地址不能为空' if not test.get('validate'): return '至少需要一个结果校验!' name = test.pop('name') test.setdefault('name', name.pop('case_name')) test.setdefault('case_info', name) validate = test.pop('validate') test.setdefault('validate', key_value_list(**validate)) extract = test.pop('extract') if extract: test.setdefault('extract', key_value_list(mode=2, **extract)) request_data = test.get('request').pop('request_data') date_type = test.get('request').pop('type') if request_data and date_type: test.get('request').setdefault(date_type, key_value_dict(**request_data)) headers = test.get('request').pop('headers') if headers: test.get('request').setdefault('headers', key_value_dict(mode=2, **headers)) variables = test.pop('variables') if variables: test.setdefault('variables', key_value_list(mode=3, **variables)) setup = test.pop('setup') if setup: test.setdefault('setup', key_value_list(mode=2, **setup)) teardown = test.pop('teardown') if teardown: test.setdefault('teardown', key_value_list(mode=2, **teardown)) kwargs.setdefault('test', test) return add_case_data(type, **kwargs) '''模块信息逻辑及落地''' def config_info_logic(type=True, **kwargs): config = kwargs.pop('config') ''' 动态展示模块 ''' if 'request' not in config.keys(): return load_modules(**config) else: if config.get('name').get('config_name') is '': return '配置名称不可为空' if config.get('name').get('project') is None or config.get('name').get('project') is '': return '请先添加项目' if config.get('name').get('config_module') is None or config.get('name').get('config_module') is '': return '请先添加模块' if config.get('name').get('config_author') is '': return '创建者不能为空' name = config.pop('name') config.setdefault('name', name.pop('config_name')) config.setdefault('config_info', name) request_data = config.get('request').pop('request_data') data_type = config.get('request').pop('type') if request_data and data_type: config.get('request').setdefault(data_type, key_value_dict(**request_data)) headers = config.get('request').pop('headers') if headers: config.get('request').setdefault('headers', key_value_dict(mode=2, **headers)) variables = config.pop('variables') if variables: config.setdefault('variables', key_value_list(mode=3, **variables)) kwargs.setdefault('config', config) return add_config_data(type, **kwargs) '''查询session''' def set_filter_session(request): filter_query = {'filter': '1', 'user': '', 'name': ''} if request.method == 'POST': request.session['filter'] = request.POST.get('filter') request.session['user'] = request.POST.get('user') request.session['name'] = request.POST.get('name') try: filter_query = {'filter': request.session['filter'], 'user': request.session['user'], 'name': request.session['name']} except KeyError: pass return filter_query '''ajax异步提示''' def get_ajax_msg(msg, success): if msg is 'ok': return success else: return msg '''注册信息逻辑判断''' def register_info_logic(**kwargs): return add_register_data(**kwargs) '''上传yml文件内容转列表''' def yml_parser(file_path): with open(file_path, 'r') as f: s = yaml.load(f) data = {'case_info': s} bulk_import_data(**data) return s
import tensorflow as tf #from tensorflow.python.ops.rnn_cell import * #from tensorflow.python.ops.rnn_cell_impl import _Linear from tensorflow.contrib.rnn.python.ops.core_rnn_cell import * #from tensorflow import keras from tensorflow.python.ops import math_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import array_ops from tensorflow.python.ops import variable_scope as vs #from keras import backend as K def din_attention(query, facts, attention_size, mask=None, stag='null', mode='SUM', softmax_stag=1, time_major=False, return_alphas=False): if isinstance(facts, tuple): # In case of Bi-RNN, concatenate the forward and the backward RNN outputs. facts = tf.concat(facts, 2) print ("query_size mismatch") query = tf.concat(values = [ query, query, ], axis=1) if time_major: # (T,B,D) => (B,T,D) facts = tf.array_ops.transpose(facts, [1, 0, 2]) facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer querry_size = query.get_shape().as_list()[-1] queries = tf.tile(query, [1, tf.shape(facts)[1]]) queries = tf.reshape(queries, tf.shape(facts)) din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1) d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att' + stag) d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag) d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att' + stag) d_layer_3_all = tf.reshape(d_layer_3_all, [-1, 1, tf.shape(facts)[1]]) scores = d_layer_3_all if mask is not None: mask = tf.equal(mask, tf.ones_like(mask)) key_masks = tf.expand_dims(mask, 1) # [B, 1, T] paddings = tf.ones_like(scores) * (-2 ** 32 + 1) scores = tf.where(key_masks, scores, paddings) # [B, 1, T] # Activation if softmax_stag: scores = tf.nn.softmax(scores) # [B, 1, T] # Weighted sum if mode == 'SUM': output = tf.matmul(scores, facts) # [B, 1, H] # output = tf.reshape(output, [-1, tf.shape(facts)[-1]]) else: scores = tf.reshape(scores, [-1, tf.shape(facts)[1]]) output = facts * tf.expand_dims(scores, -1) output = tf.reshape(output, tf.shape(facts)) if return_alphas: return output, scores return output class VecAttGRUCell(RNNCell): """Gated Recurrent Unit cell (cf. http://arxiv.org/abs/1406.1078). Args: num_units: int, The number of units in the GRU cell. activation: Nonlinearity to use. Default: `tanh`. reuse: (optional) Python boolean describing whether to reuse variables in an existing scope. If not `True`, and the existing scope already has the given variables, an error is raised. kernel_initializer: (optional) The initializer to use for the weight and projection matrices. bias_initializer: (optional) The initializer to use for the bias. """ def __init__(self, num_units, activation=None, reuse=None, kernel_initializer=None, bias_initializer=None): super(VecAttGRUCell, self).__init__(_reuse=reuse) self._num_units = num_units self._activation = activation or math_ops.tanh self._kernel_initializer = kernel_initializer self._bias_initializer = bias_initializer self._gate_linear = None self._candidate_linear = None @property def state_size(self): return self._num_units @property def output_size(self): return self._num_units def __call__(self, inputs, state, att_score): return self.call(inputs, state, att_score) def call(self, inputs, state, att_score=None): """Gated recurrent unit (GRU) with nunits cells.""" if self._gate_linear is None: bias_ones = self._bias_initializer if self._bias_initializer is None: bias_ones = init_ops.constant_initializer(1.0, dtype=inputs.dtype) with vs.variable_scope("gates"): # Reset gate and update gate. self._gate_linear = _Linear( [inputs, state], 2 * self._num_units, True, bias_initializer=bias_ones, kernel_initializer=self._kernel_initializer) value = math_ops.sigmoid(self._gate_linear([inputs, state])) r, u = array_ops.split(value=value, num_or_size_splits=2, axis=1) r_state = r * state if self._candidate_linear is None: with vs.variable_scope("candidate"): self._candidate_linear = _Linear( [inputs, r_state], self._num_units, True, bias_initializer=self._bias_initializer, kernel_initializer=self._kernel_initializer) c = self._activation(self._candidate_linear([inputs, r_state])) u = (1.0 - att_score) * u new_h = u * state + (1 - u) * c return new_h, new_h def prelu(_x, scope=''): """parametric ReLU activation""" with tf.variable_scope(name_or_scope=scope, default_name="prelu"): _alpha = tf.get_variable("prelu_"+scope, shape=_x.get_shape()[-1], dtype=_x.dtype, initializer=tf.constant_initializer(0.1)) return tf.maximum(0.0, _x) + _alpha * tf.minimum(0.0, _x) def calc_auc(raw_arr): """Summary Args: raw_arr (TYPE): Description Returns: TYPE: Description """ arr = sorted(raw_arr, key=lambda d:d[0], reverse=True) pos, neg = 0., 0. for record in arr: if record[1] == 1.: pos += 1 else: neg += 1 fp, tp = 0., 0. xy_arr = [] for record in arr: if record[1] == 1.: tp += 1 else: fp += 1 xy_arr.append([fp/neg, tp/pos]) auc = 0. prev_x = 0. prev_y = 0. for x, y in xy_arr: if x != prev_x: auc += ((x - prev_x) * (y + prev_y) / 2.) prev_x = x prev_y = y return auc def calc_gauc(raw_arr, nick_index): """Summary Args: raw_arr (TYPE): Description Returns: TYPE: Description """ last_index = 0 gauc = 0. pv_sum = 0 for idx in xrange(len(nick_index)): if nick_index[idx] != nick_index[last_index]: input_arr = raw_arr[last_index:idx] auc_val=calc_auc(input_arr) if auc_val >= 0.0: gauc += auc_val * len(input_arr) pv_sum += len(input_arr) else: pv_sum += len(input_arr) last_index = idx return gauc / pv_sum def attention(query, facts, attention_size, mask, stag='null', mode='LIST', softmax_stag=1, time_major=False, return_alphas=False): if isinstance(facts, tuple): # In case of Bi-RNN, concatenate the forward and the backward RNN outputs. facts = tf.concat(facts, 2) if time_major: # (T,B,D) => (B,T,D) facts = tf.array_ops.transpose(facts, [1, 0, 2]) mask = tf.equal(mask, tf.ones_like(mask)) hidden_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer input_size = query.get_shape().as_list()[-1] # Trainable parameters w1 = tf.Variable(tf.random_normal([hidden_size, attention_size], stddev=0.1)) w2 = tf.Variable(tf.random_normal([input_size, attention_size], stddev=0.1)) b = tf.Variable(tf.random_normal([attention_size], stddev=0.1)) v = tf.Variable(tf.random_normal([attention_size], stddev=0.1)) with tf.name_scope('v'): # Applying fully connected layer with non-linear activation to each of the B*T timestamps; # the shape of `tmp` is (B,T,D)*(D,A)=(B,T,A), where A=attention_size tmp1 = tf.tensordot(facts, w1, axes=1) tmp2 = tf.tensordot(query, w2, axes=1) tmp2 = tf.reshape(tmp2, [-1, 1, tf.shape(tmp2)[-1]]) tmp = tf.tanh((tmp1 + tmp2) + b) # For each of the timestamps its vector of size A from `tmp` is reduced with `v` vector v_dot_tmp = tf.tensordot(tmp, v, axes=1, name='v_dot_tmp') # (B,T) shape key_masks = mask # [B, 1, T] # key_masks = tf.expand_dims(mask, 1) # [B, 1, T] paddings = tf.ones_like(v_dot_tmp) * (-2 ** 32 + 1) v_dot_tmp = tf.where(key_masks, v_dot_tmp, paddings) # [B, 1, T] alphas = tf.nn.softmax(v_dot_tmp, name='alphas') # (B,T) shape # Output of (Bi-)RNN is reduced with attention vector; the result has (B,D) shape #output = tf.reduce_sum(facts * tf.expand_dims(alphas, -1), 1) output = facts * tf.expand_dims(alphas, -1) output = tf.reshape(output, tf.shape(facts)) # output = output / (facts.get_shape().as_list()[-1] ** 0.5) if not return_alphas: return output else: return output, alphas def din_fcn_attention(query, facts, attention_size, mask, stag='null', mode='SUM', softmax_stag=1, time_major=False, return_alphas=False, forCnn=False): if isinstance(facts, tuple): # In case of Bi-RNN, concatenate the forward and the backward RNN outputs. facts = tf.concat(facts, 2) if len(facts.get_shape().as_list()) == 2: facts = tf.expand_dims(facts, 1) if time_major: # (T,B,D) => (B,T,D) facts = tf.array_ops.transpose(facts, [1, 0, 2]) # Trainable parameters facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer querry_size = query.get_shape().as_list()[-1] query = tf.layers.dense(query, facts_size, activation=None, name='f1' + stag) query = prelu(query) queries = tf.tile(query, [1, tf.shape(facts)[1]]) queries = tf.reshape(queries, tf.shape(facts)) din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1) d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att' + stag) d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag) d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att' + stag) d_layer_3_all = tf.reshape(d_layer_3_all, [-1, 1, tf.shape(facts)[1]]) scores = d_layer_3_all # Mask if mask is not None: # key_masks = tf.sequence_mask(facts_length, tf.shape(facts)[1]) # [B, T] key_masks = tf.expand_dims(mask, 1) # [B, 1, T] paddings = tf.ones_like(scores) * (-2 ** 32 + 1) if not forCnn: scores = tf.where(key_masks, scores, paddings) # [B, 1, T] # Scale # scores = scores / (facts.get_shape().as_list()[-1] ** 0.5) # Activation if softmax_stag: scores = tf.nn.softmax(scores) # [B, 1, T] # Weighted sum if mode == 'SUM': output = tf.matmul(scores, facts) # [B, 1, H] # output = tf.reshape(output, [-1, tf.shape(facts)[-1]]) else: scores = tf.reshape(scores, [-1, tf.shape(facts)[1]]) output = facts * tf.expand_dims(scores, -1) output = tf.reshape(output, tf.shape(facts)) if return_alphas: return output, scores return output def self_attention(facts, ATTENTION_SIZE, mask, stag='null'): if len(facts.get_shape().as_list()) == 2: facts = tf.expand_dims(facts, 1) def cond(batch, output, i): return tf.less(i, tf.shape(batch)[1]) def body(batch, output, i): self_attention_tmp = din_fcn_attention(batch[:, i, :], batch[:, 0:i+1, :], ATTENTION_SIZE, mask[:, 0:i+1], softmax_stag=1, stag=stag, mode='LIST') self_attention_tmp = tf.reduce_sum(self_attention_tmp, 1) output = output.write(i, self_attention_tmp) return batch, output, i + 1 output_ta = tf.TensorArray(dtype=tf.float32, size=0, dynamic_size=True, element_shape=(facts[:, 0, :].get_shape())) _, output_op, _ = tf.while_loop(cond, body, [facts, output_ta, 0]) self_attention = output_op.stack() self_attention = tf.transpose(self_attention, perm = [1, 0, 2]) return self_attention def self_all_attention(facts, ATTENTION_SIZE, mask, stag='null'): if len(facts.get_shape().as_list()) == 2: facts = tf.expand_dims(facts, 1) def cond(batch, output, i): return tf.less(i, tf.shape(batch)[1]) def body(batch, output, i): self_attention_tmp = din_fcn_attention(batch[:, i, :], batch, ATTENTION_SIZE, mask, softmax_stag=1, stag=stag, mode='LIST') self_attention_tmp = tf.reduce_sum(self_attention_tmp, 1) output = output.write(i, self_attention_tmp) return batch, output, i + 1 output_ta = tf.TensorArray(dtype=tf.float32, size=0, dynamic_size=True, element_shape=(facts[:, 0, :].get_shape())) _, output_op, _ = tf.while_loop(cond, body, [facts, output_ta, 0]) self_attention = output_op.stack() self_attention = tf.transpose(self_attention, perm = [1, 0, 2]) return self_attention def din_fcn_shine(query, facts, attention_size, mask, stag='null', mode='SUM', softmax_stag=1, time_major=False, return_alphas=False): if isinstance(facts, tuple): # In case of Bi-RNN, concatenate the forward and the backward RNN outputs. facts = tf.concat(facts, 2) if time_major: # (T,B,D) => (B,T,D) facts = tf.array_ops.transpose(facts, [1, 0, 2]) # Trainable parameters mask = tf.equal(mask, tf.ones_like(mask)) facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer querry_size = query.get_shape().as_list()[-1] query = tf.layers.dense(query, facts_size, activation=None, name='f1_trans_shine' + stag) query = prelu(query) queries = tf.tile(query, [1, tf.shape(facts)[1]]) queries = tf.reshape(queries, tf.shape(facts)) din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1) d_layer_1_all = tf.layers.dense(din_all, facts_size, activation=tf.nn.sigmoid, name='f1_shine_att' + stag) d_layer_2_all = tf.layers.dense(d_layer_1_all, facts_size, activation=tf.nn.sigmoid, name='f2_shine_att' + stag) d_layer_2_all = tf.reshape(d_layer_2_all, tf.shape(facts)) output = d_layer_2_all return output
import sys # Alternatively just load env variables via your env/bin/activate script if sys.platform.startswith('darwin') or sys.platform.startswith('win'): import json path = "Gigger/utilities/env_local.json" with open(path) as json_file: global CONFIG CONFIG = json.load(json_file) else: import os global CONFIG CONFIG = { "DEPLOYMENT": os.environ['DEPLOYMENT'], "DB": { "HOST": os.environ['DB_HOST'], "USER": os.environ['DB_USER'], "PW": os.environ['DB_PW'], "SCHEMA": os.environ['DB_SCHEMA'], }, "AWS": True, "FB_APP_ID": os.environ['FB_APP_ID'] }
import logging import six import ddtrace from ddtrace.compat import StringIO from ddtrace.constants import ENV_KEY from ddtrace.constants import VERSION_KEY from ddtrace.contrib.logging import patch from ddtrace.contrib.logging import unpatch from ddtrace.contrib.logging.patch import RECORD_ATTR_SPAN_ID from ddtrace.contrib.logging.patch import RECORD_ATTR_TRACE_ID from ddtrace.vendor import wrapt from tests.utils import TracerTestCase logger = logging.getLogger() logger.level = logging.INFO DEFAULT_FORMAT = ( "%(message)s - dd.service=%(dd.service)s dd.version=%(dd.version)s dd.env=%(dd.env)s" " dd.trace_id=%(dd.trace_id)s dd.span_id=%(dd.span_id)s" ) def current_span(tracer=None): if not tracer: tracer = ddtrace.tracer return tracer.current_span() class AssertFilter(logging.Filter): def filter(self, record): trace_id = getattr(record, RECORD_ATTR_TRACE_ID) assert isinstance(trace_id, six.string_types) span_id = getattr(record, RECORD_ATTR_SPAN_ID) assert isinstance(span_id, six.string_types) return True def capture_function_log(func, fmt=DEFAULT_FORMAT, logger_override=None): if logger_override is not None: logger_to_capture = logger_override else: logger_to_capture = logger # add stream handler to capture output out = StringIO() sh = logging.StreamHandler(out) try: formatter = logging.Formatter(fmt) sh.setFormatter(formatter) logger_to_capture.addHandler(sh) assert_filter = AssertFilter() logger_to_capture.addFilter(assert_filter) result = func() finally: logger_to_capture.removeHandler(sh) logger_to_capture.removeFilter(assert_filter) return out.getvalue().strip(), result class LoggingTestCase(TracerTestCase): def setUp(self): patch() super(LoggingTestCase, self).setUp() def tearDown(self): unpatch() super(LoggingTestCase, self).tearDown() def test_patch(self): """ Confirm patching was successful """ log = logging.getLogger() self.assertTrue(isinstance(log.makeRecord, wrapt.BoundFunctionWrapper)) unpatch() log = logging.getLogger() self.assertFalse(isinstance(log.makeRecord, wrapt.BoundFunctionWrapper)) def _test_logging(self, create_span, service="", version="", env=""): def func(): span = create_span() logger.info("Hello!") if span: span.finish() return span with self.override_config("logging", dict(tracer=self.tracer)): # with format string for trace info output, span = capture_function_log(func) trace_id = 0 span_id = 0 if span: trace_id = span.trace_id span_id = span.span_id assert output == "Hello! - dd.service={} dd.version={} dd.env={} dd.trace_id={} dd.span_id={}".format( service, version, env, trace_id, span_id ) # without format string output, _ = capture_function_log(func, fmt="%(message)s") assert output == "Hello!" def test_log_trace(self): """ Check logging patched and formatter including trace info """ def create_span(): return self.tracer.trace("test.logging") self._test_logging(create_span=create_span) with self.override_global_config(dict(version="global.version", env="global.env")): self._test_logging(create_span=create_span, version="global.version", env="global.env") def test_log_trace_service(self): def create_span(): return self.tracer.trace("test.logging", service="logging") self._test_logging(create_span=create_span) with self.override_global_config(dict(version="global.version", env="global.env")): self._test_logging(create_span=create_span, version="global.version", env="global.env") @TracerTestCase.run_in_subprocess(env_overrides=dict(DD_TAGS="service:ddtagservice,env:ddenv,version:ddversion")) def test_log_DD_TAGS(self): def create_span(): return self.tracer.trace("test.logging") self._test_logging(create_span=create_span, service="ddtagservice", version="ddversion", env="ddenv") def test_log_trace_version(self): def create_span(): span = self.tracer.trace("test.logging") span.set_tag(VERSION_KEY, "manual.version") return span self._test_logging(create_span=create_span, version="") # Setting global config version and overriding with span specific value # We always want the globals in the logs with self.override_global_config(dict(version="global.version", env="global.env")): self._test_logging(create_span=create_span, version="global.version", env="global.env") def test_log_trace_env(self): """ Check logging patched and formatter including trace info """ def create_span(): span = self.tracer.trace("test.logging") span.set_tag(ENV_KEY, "manual.env") return span self._test_logging(create_span=create_span, env="") # Setting global config env and overriding with span specific value # We always want the globals in the logs with self.override_global_config(dict(version="global.version", env="global.env")): self._test_logging(create_span=create_span, version="global.version", env="global.env") def test_log_no_trace(self): """ Check traced funclogging patched and formatter not including trace info """ def create_span(): return None self._test_logging(create_span=create_span) with self.override_global_config(dict(version="global.version", env="global.env")): self._test_logging(create_span=create_span, version="global.version", env="global.env")
# -*- coding: utf-8 -*- ''' Helpful decorators for module writing ''' # Import python libs from __future__ import absolute_import import inspect import logging import time from functools import wraps from collections import defaultdict # Import salt libs import salt.utils import salt.utils.args from salt.exceptions import CommandNotFoundError, CommandExecutionError, SaltConfigurationError from salt.version import SaltStackVersion, __saltstack_version__ from salt.log import LOG_LEVELS # Import 3rd-party libs import salt.ext.six as six log = logging.getLogger(__name__) class Depends(object): ''' This decorator will check the module when it is loaded and check that the dependencies passed in are in the globals of the module. If not, it will cause the function to be unloaded (or replaced) ''' # kind -> Dependency -> list of things that depend on it dependency_dict = defaultdict(lambda: defaultdict(dict)) def __init__(self, *dependencies, **kwargs): ''' The decorator is instantiated with a list of dependencies (string of global name) An example use of this would be: @depends('modulename') def test(): return 'foo' OR @depends('modulename', fallback_function=function) def test(): return 'foo' ''' log.trace( 'Depends decorator instantiated with dep list of {0}'.format( dependencies ) ) self.dependencies = dependencies self.fallback_function = kwargs.get('fallback_function') def __call__(self, function): ''' The decorator is "__call__"d with the function, we take that function and determine which module and function name it is to store in the class wide depandancy_dict ''' try: # This inspect call may fail under certain conditions in the loader. Possibly related to # a Python bug here: # http://bugs.python.org/issue17735 frame = inspect.stack()[1][0] # due to missing *.py files under esky we cannot use inspect.getmodule # module name is something like salt.loaded.int.modules.test _, kind, mod_name = frame.f_globals['__name__'].rsplit('.', 2) fun_name = function.__name__ for dep in self.dependencies: self.dependency_dict[kind][dep][(mod_name, fun_name)] = \ (frame, self.fallback_function) except Exception as exc: log.error('Exception encountered when attempting to inspect frame in ' 'dependency decorator: {0}'.format(exc)) return function @classmethod def enforce_dependencies(cls, functions, kind): ''' This is a class global method to enforce the dependencies that you currently know about. It will modify the "functions" dict and remove/replace modules that are missing dependencies. ''' for dependency, dependent_dict in six.iteritems(cls.dependency_dict[kind]): for (mod_name, func_name), (frame, fallback_function) in six.iteritems(dependent_dict): # check if dependency is loaded if dependency is True: log.trace( 'Dependency for {0}.{1} exists, not unloading'.format( mod_name, func_name ) ) continue # check if you have the dependency if dependency in frame.f_globals \ or dependency in frame.f_locals: log.trace( 'Dependency ({0}) already loaded inside {1}, ' 'skipping'.format( dependency, mod_name ) ) continue log.trace( 'Unloading {0}.{1} because dependency ({2}) is not ' 'imported'.format( mod_name, func_name, dependency ) ) # if not, unload the function if frame: try: func_name = frame.f_globals['__func_alias__'][func_name] except (AttributeError, KeyError): pass mod_key = '{0}.{1}'.format(mod_name, func_name) # if we don't have this module loaded, skip it! if mod_key not in functions: continue try: if fallback_function is not None: functions[mod_key] = fallback_function else: del functions[mod_key] except AttributeError: # we already did??? log.trace('{0} already removed, skipping'.format(mod_key)) continue depends = Depends def timing(function): ''' Decorator wrapper to log execution time, for profiling purposes ''' @wraps(function) def wrapped(*args, **kwargs): start_time = time.time() ret = function(*args, **salt.utils.clean_kwargs(**kwargs)) end_time = time.time() if function.__module__.startswith('salt.loaded.int.'): mod_name = function.__module__[16:] else: mod_name = function.__module__ log.profile( 'Function {0}.{1} took {2:.20f} seconds to execute'.format( mod_name, function.__name__, end_time - start_time ) ) return ret return wrapped def which(exe): ''' Decorator wrapper for salt.utils.which ''' def wrapper(function): def wrapped(*args, **kwargs): if salt.utils.which(exe) is None: raise CommandNotFoundError( 'The \'{0}\' binary was not found in $PATH.'.format(exe) ) return function(*args, **kwargs) return identical_signature_wrapper(function, wrapped) return wrapper def which_bin(exes): ''' Decorator wrapper for salt.utils.which_bin ''' def wrapper(function): def wrapped(*args, **kwargs): if salt.utils.which_bin(exes) is None: raise CommandNotFoundError( 'None of provided binaries({0}) was not found ' 'in $PATH.'.format( ['\'{0}\''.format(exe) for exe in exes] ) ) return function(*args, **kwargs) return identical_signature_wrapper(function, wrapped) return wrapper def identical_signature_wrapper(original_function, wrapped_function): ''' Return a function with identical signature as ``original_function``'s which will call the ``wrapped_function``. ''' context = {'__wrapped__': wrapped_function} function_def = compile( 'def {0}({1}):\n' ' return __wrapped__({2})'.format( # Keep the original function name original_function.__name__, # The function signature including defaults, i.e., 'timeout=1' inspect.formatargspec( *salt.utils.args.get_function_argspec(original_function) )[1:-1], # The function signature without the defaults inspect.formatargspec( formatvalue=lambda val: '', *salt.utils.args.get_function_argspec(original_function) )[1:-1] ), '<string>', 'exec' ) six.exec_(function_def, context) return wraps(original_function)(context[original_function.__name__]) def memoize(func): ''' Memoize aka cache the return output of a function given a specific set of arguments .. versionedited:: 2016.3.4 Added **kwargs support. ''' cache = {} @wraps(func) def _memoize(*args, **kwargs): str_args = [] for arg in args: if not isinstance(arg, six.string_types): str_args.append(str(arg)) else: str_args.append(arg) args_ = ','.join(list(str_args) + ['{0}={1}'.format(k, kwargs[k]) for k in sorted(kwargs)]) if args_ not in cache: cache[args_] = func(*args, **kwargs) return cache[args_] return _memoize class _DeprecationDecorator(object): ''' Base mix-in class for the deprecation decorator. Takes care of a common functionality, used in its derivatives. ''' OPT_IN = 1 OPT_OUT = 2 def __init__(self, globals, version): ''' Constructor. :param globals: Module globals. Important for finding out replacement functions :param version: Expiration version :return: ''' self._globals = globals self._exp_version_name = version self._exp_version = SaltStackVersion.from_name(self._exp_version_name) self._curr_version = __saltstack_version__.info self._raise_later = None self._function = None self._orig_f_name = None def _get_args(self, kwargs): ''' Extract function-specific keywords from all of the kwargs. :param kwargs: :return: ''' _args = list() _kwargs = dict() if '__pub_arg' in kwargs: # For modules for arg_item in kwargs.get('__pub_arg', list()): if type(arg_item) == dict: _kwargs.update(arg_item.copy()) else: _args.append(arg_item) else: _kwargs = kwargs.copy() # For states return _args, _kwargs def _call_function(self, kwargs): ''' Call target function that has been decorated. :return: ''' if self._raise_later: raise self._raise_later # pylint: disable=E0702 if self._function: args, kwargs = self._get_args(kwargs) try: return self._function(*args, **kwargs) except TypeError as error: error = str(error).replace(self._function, self._orig_f_name) # Hide hidden functions log.error('Function "{f_name}" was not properly called: {error}'.format(f_name=self._orig_f_name, error=error)) return self._function.__doc__ except Exception as error: log.error('Unhandled exception occurred in ' 'function "{f_name}: {error}'.format(f_name=self._function.__name__, error=error)) raise error else: raise CommandExecutionError("Function is deprecated, but the successor function was not found.") def __call__(self, function): ''' Callable method of the decorator object when the decorated function is gets called. :param function: :return: ''' self._function = function self._orig_f_name = self._function.__name__ class _IsDeprecated(_DeprecationDecorator): ''' This decorator should be used only with the deprecated functions to mark them as deprecated and alter its behavior a corresponding way. The usage is only suitable if deprecation process is renaming the function from one to another. In case function name or even function signature stays the same, please use 'with_deprecated' decorator instead. It has the following functionality: 1. Put a warning level message to the log, informing that the deprecated function has been in use. 2. Raise an exception, if deprecated function is being called, but the lifetime of it already expired. 3. Point to the successor of the deprecated function in the log messages as well during the blocking it, once expired. Usage of this decorator as follows. In this example no successor is mentioned, hence the function "foo()" will be logged with the warning each time is called and blocked completely, once EOF of it is reached: from salt.util.decorators import is_deprecated @is_deprecated(globals(), "Beryllium") def foo(): pass In the following example a successor function is mentioned, hence every time the function "bar()" is called, message will suggest to use function "baz()" instead. Once EOF is reached of the function "bar()", an exception will ask to use function "baz()", in order to continue: from salt.util.decorators import is_deprecated @is_deprecated(globals(), "Beryllium", with_successor="baz") def bar(): pass def baz(): pass ''' def __init__(self, globals, version, with_successor=None): ''' Constructor of the decorator 'is_deprecated'. :param globals: Module globals :param version: Version to be deprecated :param with_successor: Successor function (optional) :return: ''' _DeprecationDecorator.__init__(self, globals, version) self._successor = with_successor def __call__(self, function): ''' Callable method of the decorator object when the decorated function is gets called. :param function: :return: ''' _DeprecationDecorator.__call__(self, function) def _decorate(*args, **kwargs): ''' Decorator function. :param args: :param kwargs: :return: ''' if self._curr_version < self._exp_version: msg = ['The function "{f_name}" is deprecated and will ' 'expire in version "{version_name}".'.format(f_name=self._function.__name__, version_name=self._exp_version_name)] if self._successor: msg.append('Use successor "{successor}" instead.'.format(successor=self._successor)) log.warning(' '.join(msg)) else: msg = ['The lifetime of the function "{f_name}" expired.'.format(f_name=self._function.__name__)] if self._successor: msg.append('Please use its successor "{successor}" instead.'.format(successor=self._successor)) log.warning(' '.join(msg)) raise CommandExecutionError(' '.join(msg)) return self._call_function(kwargs) return _decorate is_deprecated = _IsDeprecated class _WithDeprecated(_DeprecationDecorator): ''' This decorator should be used with the successor functions to mark them as a new and alter its behavior in a corresponding way. It is used alone if a function content or function signature needs to be replaced, leaving the name of the function same. In case function needs to be renamed or just dropped, it has to be used in pair with 'is_deprecated' decorator. It has the following functionality: 1. Put a warning level message to the log, in case a component is using its deprecated version. 2. Switch between old and new function in case an older version is configured for the desired use. 3. Raise an exception, if deprecated version reached EOL and point out for the new version. Usage of this decorator as follows. If 'with_name' is not specified, then the name of the deprecated function is assumed with the "_" prefix. In this case, in order to deprecate a function, it is required: - Add a prefix "_" to an existing function. E.g.: "foo()" to "_foo()". - Implement a new function with exactly the same name, just without the prefix "_". Example: from salt.util.decorators import with_deprecated @with_deprecated(globals(), "Beryllium") def foo(): "This is a new function" def _foo(): "This is a deprecated function" In case there is a need to deprecate a function and rename it, the decorator should be used with the 'with_name' parameter. This parameter is pointing to the existing deprecated function. In this case deprecation process as follows: - Leave a deprecated function without changes, as is. - Implement a new function and decorate it with this decorator. - Set a parameter 'with_name' to the deprecated function. - If a new function has a different name than a deprecated, decorate a deprecated function with the 'is_deprecated' decorator in order to let the function have a deprecated behavior. Example: from salt.util.decorators import with_deprecated @with_deprecated(globals(), "Beryllium", with_name="an_old_function") def a_new_function(): "This is a new function" @is_deprecated(globals(), "Beryllium", with_successor="a_new_function") def an_old_function(): "This is a deprecated function" ''' MODULE_NAME = '__virtualname__' CFG_USE_DEPRECATED = 'use_deprecated' CFG_USE_SUPERSEDED = 'use_superseded' def __init__(self, globals, version, with_name=None, policy=_DeprecationDecorator.OPT_OUT): ''' Constructor of the decorator 'with_deprecated' :param globals: :param version: :param with_name: :param policy: :return: ''' _DeprecationDecorator.__init__(self, globals, version) self._with_name = with_name self._policy = policy def _set_function(self, function): ''' Based on the configuration, set to execute an old or a new function. :return: ''' full_name = "{m_name}.{f_name}".format( m_name=self._globals.get(self.MODULE_NAME, '') or self._globals['__name__'].split('.')[-1], f_name=function.__name__) if full_name.startswith("."): self._raise_later = CommandExecutionError('Module not found for function "{f_name}"'.format( f_name=function.__name__)) opts = self._globals.get('__opts__', '{}') pillar = self._globals.get('__pillar__', '{}') use_deprecated = (full_name in opts.get(self.CFG_USE_DEPRECATED, list()) or full_name in pillar.get(self.CFG_USE_DEPRECATED, list())) use_superseded = (full_name in opts.get(self.CFG_USE_SUPERSEDED, list()) or full_name in pillar.get(self.CFG_USE_SUPERSEDED, list())) if use_deprecated and use_superseded: raise SaltConfigurationError("Function '{0}' is mentioned both in deprecated " "and superseded sections. Please remove any of that.".format(full_name)) old_function = self._globals.get(self._with_name or "_{0}".format(function.__name__)) if self._policy == self.OPT_IN: self._function = function if use_superseded else old_function else: self._function = old_function if use_deprecated else function def _is_used_deprecated(self): ''' Returns True, if a component configuration explicitly is asking to use an old version of the deprecated function. :return: ''' func_path = "{m_name}.{f_name}".format( m_name=self._globals.get(self.MODULE_NAME, '') or self._globals['__name__'].split('.')[-1], f_name=self._orig_f_name) return func_path in self._globals.get('__opts__').get( self.CFG_USE_DEPRECATED, list()) or func_path in self._globals.get('__pillar__').get( self.CFG_USE_DEPRECATED, list()) or (self._policy == self.OPT_IN and not (func_path in self._globals.get('__opts__', {}).get( self.CFG_USE_SUPERSEDED, list())) and not (func_path in self._globals.get('__pillar__', {}).get( self.CFG_USE_SUPERSEDED, list()))), func_path def __call__(self, function): ''' Callable method of the decorator object when the decorated function is gets called. :param function: :return: ''' _DeprecationDecorator.__call__(self, function) def _decorate(*args, **kwargs): ''' Decorator function. :param args: :param kwargs: :return: ''' self._set_function(function) is_deprecated, func_path = self._is_used_deprecated() if is_deprecated: if self._curr_version < self._exp_version: msg = list() if self._with_name: msg.append('The function "{f_name}" is deprecated and will ' 'expire in version "{version_name}".'.format( f_name=self._with_name.startswith("_") and self._orig_f_name or self._with_name, version_name=self._exp_version_name)) msg.append('Use its successor "{successor}" instead.'.format(successor=self._orig_f_name)) else: msg.append('The function "{f_name}" is using its deprecated version and will ' 'expire in version "{version_name}".'.format(f_name=func_path, version_name=self._exp_version_name)) log.warning(' '.join(msg)) else: msg_patt = 'The lifetime of the function "{f_name}" expired.' if '_' + self._orig_f_name == self._function.__name__: msg = [msg_patt.format(f_name=self._orig_f_name), 'Please turn off its deprecated version in the configuration'] else: msg = ['Although function "{f_name}" is called, an alias "{f_alias}" ' 'is configured as its deprecated version.'.format( f_name=self._orig_f_name, f_alias=self._with_name or self._orig_f_name), msg_patt.format(f_name=self._with_name or self._orig_f_name), 'Please use its successor "{successor}" instead.'.format(successor=self._orig_f_name)] log.error(' '.join(msg)) raise CommandExecutionError(' '.join(msg)) return self._call_function(kwargs) _decorate.__doc__ = self._function.__doc__ return _decorate with_deprecated = _WithDeprecated def ignores_kwargs(*kwarg_names): ''' Decorator to filter out unexpected keyword arguments from the call kwarg_names: List of argument names to ignore ''' def _ignores_kwargs(fn): def __ignores_kwargs(*args, **kwargs): kwargs_filtered = kwargs.copy() for name in kwarg_names: if name in kwargs_filtered: del kwargs_filtered[name] return fn(*args, **kwargs_filtered) return __ignores_kwargs return _ignores_kwargs
#!/usr/bin/env python3 import argparse import boutvecma import easyvvuq as uq import chaospy import os import numpy as np import time import matplotlib.pyplot as plt CAMPAIGN_NAME = "Conduction." def refine_sampling_plan(campaign, analysis, number_of_refinements): """ Refine the sampling plan. Parameters ---------- number_of_refinements (int) The number of refinement iterations that must be performed. Returns ------- None. The new accepted indices are stored in analysis.l_norm and the admissible indices in sampler.admissible_idx. """ sampler = campaign.get_active_sampler() for _ in range(number_of_refinements): # compute the admissible indices sampler.look_ahead(analysis.l_norm) print(f"Code will be evaluated {sampler.n_new_points[-1]} times") # run the ensemble campaign.execute().collate(progress_bar=True) # accept one of the multi indices of the new admissible set data_frame = campaign.get_collation_result() analysis.adapt_dimension("T", data_frame) analysis.save_state(f"{campaign.campaign_dir}/analysis.state") def plot_grid_2D(campaign, analysis, i, filename="out.pdf"): fig = plt.figure(figsize=[12, 4]) ax1 = fig.add_subplot(121) ax2 = fig.add_subplot(122) accepted_grid = campaign.get_active_sampler().generate_grid(analysis.l_norm) ax1.plot(accepted_grid[:, 0], accepted_grid[:, 1], "o") ax2.plot(accepted_grid[:, 2], accepted_grid[:, 3], "o") ax1.set_title(f"iteration {i}") fig.tight_layout() fig.savefig(filename) def custom_moments_plot(results, filename, i): fig, ax = plt.subplots() xvalues = np.arange(len(results.describe("T", "mean"))) ax.fill_between( xvalues, results.describe("T", "mean") - results.describe("T", "std"), results.describe("T", "mean") + results.describe("T", "std"), label="std", alpha=0.2, ) ax.plot(xvalues, results.describe("T", "mean"), label="mean") try: ax.plot(xvalues, results.describe("T", "1%"), "--", label="1%", color="black") ax.plot(xvalues, results.describe("T", "99%"), "--", label="99%", color="black") except RuntimeError: pass ax.grid(True) ax.set_ylabel("T") ax.set_xlabel(r"$\rho$") ax.set_title("iteration " + str(i)) ax.legend() fig.savefig(filename) def first_time_setup(): encoder = boutvecma.BOUTEncoder( template_input="../../models/conduction/data/BOUT.inp" ) # decoder = boutvecma.LogDataBOUTDecoder(variables=["T"]) decoder = boutvecma.SimpleBOUTDecoder(variables=["T"]) params = { "conduction:chi": {"type": "float", "min": 0.0, "max": 1e3, "default": 1.0}, "T:scale": {"type": "float", "min": 0.0, "max": 1e3, "default": 1.0}, "T:gauss_width": {"type": "float", "min": 0.0, "max": 1e3, "default": 0.2}, "T:gauss_centre": { "type": "float", "min": 0.0, "max": 2 * np.pi, "default": np.pi, }, } actions = uq.actions.local_execute( encoder, os.path.abspath( "../../build/models/conduction/conduction -q -q -q -q -d . |& tee run.log" ), decoder, root=".", ) campaign = uq.Campaign(name=CAMPAIGN_NAME, actions=actions, params=params) vary = { "conduction:chi": chaospy.Uniform(0.2, 4.0), "T:scale": chaospy.Uniform(0.5, 1.5), "T:gauss_width": chaospy.Uniform(0.5, 1.5), "T:gauss_centre": chaospy.Uniform(0.5 * np.pi, 1.5 * np.pi), } sampler = uq.sampling.SCSampler( vary=vary, polynomial_order=1, quadrature_rule="C", sparse=True, growth=True, midpoint_level1=True, dimension_adaptive=True, ) campaign.set_sampler(sampler) print(f"Output will be in {campaign.campaign_dir}") sampler = campaign.get_active_sampler() print(f"Computing {sampler.n_samples} samples") time_start = time.time() campaign.execute().collate(progress_bar=True) # Create an analysis class and run the analysis. analysis = create_analysis(campaign) campaign.apply_analysis(analysis) analysis.save_state(f"{campaign.campaign_dir}/analysis.state") plot_grid_2D(campaign, analysis, 0, f"{campaign.campaign_dir}/grid0.png") for i in np.arange(1, 10): refine_once(campaign, analysis, i) time_end = time.time() print(f"Finished, took {time_end - time_start}") return campaign def create_analysis(campaign): return uq.analysis.SCAnalysis(sampler=campaign.get_active_sampler(), qoi_cols=["T"]) def refine_once(campaign, analysis, iteration): refine_sampling_plan(campaign, analysis, 1) campaign.apply_analysis(analysis) analysis.save_state(f"{campaign.campaign_dir}/analysis.state") results = campaign.last_analysis plot_grid_2D( campaign, analysis, iteration, f"{campaign.campaign_dir}/grid{iteration:02}.png", ) moment_plot_filename = os.path.join( f"{campaign.campaign_dir}", f"moments{iteration:02}.png" ) sobols_plot_filename = os.path.join( f"{campaign.campaign_dir}", f"sobols_first{iteration:02}.png" ) results.plot_sobols_first( "T", ylabel=f"iteration{iteration}", xlabel=r"$\rho$", filename=sobols_plot_filename, ) plt.ylim(0, 1) plt.savefig(f"{campaign.campaign_dir}/sobols{iteration:02}.png") custom_moments_plot(results, moment_plot_filename, iteration) with open(f"{campaign.campaign_dir}/last_iteration", "w") as f: f.write(f"{iteration}") def plot_results(campaign, moment_plot_filename, sobols_plot_filename): results = campaign.get_last_analysis() results.plot_sobols_first("T", xlabel=r"$\rho$", filename=sobols_plot_filename) fig, ax = plt.subplots() xvalues = np.arange(len(results.describe("T", "mean"))) ax.fill_between( xvalues, results.describe("T", "mean") - results.describe("T", "std"), results.describe("T", "mean") + results.describe("T", "std"), label="std", alpha=0.2, ) ax.plot(xvalues, results.describe("T", "mean"), label="mean") try: ax.plot(xvalues, results.describe("T", "1%"), "--", label="1%", color="black") ax.plot(xvalues, results.describe("T", "99%"), "--", label="99%", color="black") except RuntimeError: pass ax.grid(True) ax.set_ylabel("T") ax.set_xlabel(r"$\rho$") ax.legend() fig.savefig(moment_plot_filename) print(f"Results are in:\n\t{moment_plot_filename}\n\t{sobols_plot_filename}") def reload_campaign(directory): """Reload a campaign from a directory Returns the campaign, analysis, and last iteration number """ campaign = uq.Campaign( name=CAMPAIGN_NAME, db_location=f"sqlite:///{os.path.abspath(directory)}/campaign.db", ) analysis = create_analysis(campaign) analysis.load_state(f"{campaign.campaign_dir}/analysis.state") with open(f"{campaign.campaign_dir}/last_iteration", "r") as f: iteration = int(f.read()) return campaign, analysis, iteration if __name__ == "__main__": parser = argparse.ArgumentParser( "conduction_sc", description="Adaptive dimension refinement for 1D conduction model", ) parser.add_argument( "--restart", type=str, help="Restart previous campaign", default=None ) parser.add_argument( "-n", "--refinement-num", type=int, default=1, help="Number of refinements" ) args = parser.parse_args() if args.restart is None: first_time_setup() else: campaign, analysis, last_iteration = reload_campaign(args.restart) for iteration in range( last_iteration + 1, last_iteration + args.refinement_num + 1 ): refine_once(campaign, analysis, iteration)
import machine, time from machine import Pin __version__ = '0.2.0' __author__ = 'Roberto Sánchez' __license__ = "Apache License 2.0. https://www.apache.org/licenses/LICENSE-2.0" class HCSR04: """ Driver to use the untrasonic sensor HC-SR04. The sensor range is between 2cm and 4m. The timeouts received listening to echo pin are converted to OSError('Out of range') """ # echo_timeout_us is based in chip range limit (400cm) def __init__(self, trigger_pin, echo_pin, echo_timeout_us=500*2*30): """ trigger_pin: Output pin to send pulses echo_pin: Readonly pin to measure the distance. The pin should be protected with 1k resistor echo_timeout_us: Timeout in microseconds to listen to echo pin. By default is based in sensor limit range (4m) """ self.echo_timeout_us = echo_timeout_us # Init trigger pin (out) self.trigger = Pin(trigger_pin, mode=Pin.OUT, pull=None) self.trigger.value(0) # Init echo pin (in) self.echo = Pin(echo_pin, mode=Pin.IN, pull=None) def _send_pulse_and_wait(self): """ Send the pulse to trigger and listen on echo pin. We use the method `machine.time_pulse_us()` to get the microseconds until the echo is received. """ self.trigger.value(0) # Stabilize the sensor time.sleep_us(5) self.trigger.value(1) # Send a 10us pulse. time.sleep_us(10) self.trigger.value(0) try: pulse_time = machine.time_pulse_us(self.echo, 1, self.echo_timeout_us) return pulse_time except OSError as ex: if ex.args[0] == 110: # 110 = ETIMEDOUT raise OSError('Out of range') raise ex def distance_mm(self): """ Get the distance in milimeters without floating point operations. """ pulse_time = self._send_pulse_and_wait() # To calculate the distance we get the pulse_time and divide it by 2 # (the pulse walk the distance twice) and by 29.1 becasue # the sound speed on air (343.2 m/s), that It's equivalent to # 0.34320 mm/us that is 1mm each 2.91us # pulse_time // 2 // 2.91 -> pulse_time // 5.82 -> pulse_time * 100 // 582 mm = pulse_time * 100 // 582 return mm def distance_cm(self): """ Get the distance in centimeters with floating point operations. It returns a float """ pulse_time = self._send_pulse_and_wait() # To calculate the distance we get the pulse_time and divide it by 2 # (the pulse walk the distance twice) and by 29.1 becasue # the sound speed on air (343.2 m/s), that It's equivalent to # 0.034320 cm/us that is 1cm each 29.1us cms = (pulse_time / 2) / 29.1 return cms
#!/usr/bin/env python # Copyright 2021-2022 NVIDIA Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import argparse import json import multiprocessing import os import platform import re import shutil import subprocess import sys import tempfile import time from distutils import sysconfig import setuptools # Flush output on newlines sys.stdout.reconfigure(line_buffering=True) os_name = platform.system() # Work around breaking change in setuptools 60 setup_py_flags = [] if int(setuptools.__version__.split(".")[0]) >= 60: setup_py_flags = ["--single-version-externally-managed", "--root=/"] class BooleanFlag(argparse.Action): def __init__( self, option_strings, dest, default, required=False, help="", metavar=None, ): assert all(not opt.startswith("--no") for opt in option_strings) def flatten(list): return [item for sublist in list for item in sublist] option_strings = flatten( [ [opt, "--no-" + opt[2:], "--no" + opt[2:]] if opt.startswith("--") else [opt] for opt in option_strings ] ) super().__init__( option_strings, dest, nargs=0, const=None, default=default, type=bool, choices=None, required=required, help=help, metavar=metavar, ) def __call__(self, parser, namespace, values, option_string): setattr(namespace, self.dest, not option_string.startswith("--no")) required_thrust_version = "cuda-11.2" # Global variable for verbose installation verbose_global = False def verbose_check_call(*args, **kwargs): if verbose_global: print('Executing: "', " ".join(*args), '" with ', kwargs) subprocess.check_call(*args, **kwargs) def verbose_check_output(*args, **kwargs): if verbose_global: print('Executing: "', " ".join(*args), '" with ', kwargs) return subprocess.check_output(*args, **kwargs) def find_active_python_version_and_path(): # Launching a sub-process to do this in a general way seems hard version = ( str(sys.version_info.major) + "." + str(sys.version_info.minor) + "." + str(sys.version_info.micro) ) cv = sysconfig.get_config_vars() paths = [os.path.join(cv[p], cv["LDLIBRARY"]) for p in ("LIBDIR", "LIBPL")] # ensure that static libraries are replaced with the dynamic version paths = [ os.path.splitext(p)[0] + (".dylib" if os_name == "Darwin" else ".so") for p in paths ] paths = [p for p in paths if os.path.isfile(p)] e = "Error: could not auto-locate python library." assert paths, e return version, paths[0] def git_clone(repo_dir, url, branch=None, tag=None, commit=None): assert branch is not None or tag is not None or commit is not None if branch is not None: verbose_check_call( ["git", "clone", "--recursive", "-b", branch, url, repo_dir] ) elif commit is not None: verbose_check_call(["git", "clone", "--recursive", url, repo_dir]) verbose_check_call(["git", "checkout", commit], cwd=repo_dir) verbose_check_call( ["git", "submodule", "update", "--init"], cwd=repo_dir ) git_reset(repo_dir, commit) else: verbose_check_call( [ "git", "clone", "--recursive", "--single-branch", "-b", tag, url, repo_dir, ] ) verbose_check_call(["git", "checkout", "-b", "master"], cwd=repo_dir) def git_reset(repo_dir, refspec): verbose_check_call(["git", "reset", "--hard", refspec], cwd=repo_dir) def git_update(repo_dir, branch=None, tag=None, commit=None): if branch is not None: verbose_check_call(["git", "fetch"], cwd=repo_dir) verbose_check_call(["git", "checkout", branch], cwd=repo_dir) verbose_check_call(["git", "pull", "--ff-only"], cwd=repo_dir) else: verbose_check_call(["git", "fetch"], cwd=repo_dir) verbose_check_call(["git", "checkout", commit or tag], cwd=repo_dir) def load_json_config(filename): try: with open(filename, "r") as f: return json.load(f) except IOError: return None def dump_json_config(filename, value): with open(filename, "w") as f: return json.dump(value, f) def symlink(from_path, to_path): if not os.path.lexists(to_path): os.symlink(from_path, to_path) def install_gasnet(gasnet_dir, conduit, thread_count): print("Legate is installing GASNet into a local directory...") temp_dir = tempfile.mkdtemp() git_clone( temp_dir, url="https://github.com/StanfordLegion/gasnet.git", branch="master", ) # Update the configuration file with the prefix for our output # Then we can invoke make verbose_check_call( [ "make", "-j", str(thread_count), "CONDUIT=" + str(conduit), "GASNET_INSTALL_DIR=" + str(gasnet_dir), ], cwd=temp_dir, ) shutil.rmtree(temp_dir) def install_legion(legion_src_dir, branch, commit=None): print("Legate is installing Legion into a local directory...") # For now all we have to do is clone legion since we build it with Legate git_clone( legion_src_dir, url="https://gitlab.com/StanfordLegion/legion.git", branch=branch, commit=commit, ) def install_thrust(thrust_dir): print("Legate is installing Thrust into a local directory...") git_clone( thrust_dir, url="https://github.com/thrust/thrust.git", tag=required_thrust_version, ) def update_legion(legion_src_dir, branch, commit=None): # Make sure we are on the right branch for single/multi-node git_update(legion_src_dir, branch=branch, commit=commit) def build_legion( legion_src_dir, install_dir, cmake, cmake_exe, cuda_dir, debug, debug_release, check_bounds, cuda, arch, openmp, march, llvm, hdf, spy, gasnet, gasnet_dir, conduit, pyversion, pylib_name, maxdim, maxfields, clean_first, extra_flags, thread_count, verbose, ): no_hijack = True if cuda and os.environ.get("USE_CUDART_HIJACK", "0") == "1": print( """ ##################################################################### Warning: Realm's CUDA runtime hijack is incompatible with NCCL. Please note that your code will crash catastrophically as soon as it calls into NCCL either directly or through some other Legate library. ##################################################################### """ ) time.sleep(10) no_hijack = False if cmake: build_dir = os.path.join(legion_src_dir, "build") try: shutil.rmtree(build_dir) except FileNotFoundError: pass if not os.path.exists(build_dir): os.mkdir(build_dir) flags = ( [ "-DCMAKE_BUILD_TYPE=%s" % ( "Debug" if debug else "RelWithDebInfo" if debug_release else "Release" ), "-DLegion_MAX_DIM=%s" % (str(maxdim)), "-DLegion_MAX_FIELDS=%s" % (str(maxfields)), "-DLegion_USE_CUDA=%s" % ("ON" if cuda else "OFF"), "-DLegion_GPU_ARCH=%s" % arch, "-DLegion_USE_OpenMP=%s" % ("ON" if openmp else "OFF"), "-DBUILD_MARCH=%s" % march, "-DLegion_USE_LLVM=%s" % ("ON" if llvm else "OFF"), "-DLegion_USE_GASNet=%s" % ("ON" if gasnet else "OFF"), "-DLegion_USE_HDF5=%s" % ("ON" if hdf else "OFF"), "-DCMAKE_INSTALL_PREFIX=%s" % (os.path.realpath(install_dir)), "-DLegion_USE_Python=On", "-DLegion_Python_Version=%s" % pyversion, "-DLegion_REDOP_COMPLEX=On", "-DLegion_REDOP_HALF=On", "-DBUILD_SHARED_LIBS=ON", "-DLegion_BUILD_BINDINGS=On", ] + extra_flags + (["-DLegion_BOUNDS_CHECKS=On"] if check_bounds else []) + (["-DLegion_HIJACK_CUDART=Off"] if no_hijack else []) + ( ["-DGASNet_ROOT_DIR=%s" % gasnet_dir] if gasnet_dir is not None else [] ) + ( ["-DGASNet_CONDUIT=%s" % conduit] if conduit is not None else [] ) + ( ["-DCUDA_TOOLKIT_ROOT_DIR=%s" % cuda_dir] if cuda_dir is not None else [] ) + ( ["-DCMAKE_CXX_COMPILER=%s" % os.environ["CXX"]] if "CXX" in os.environ else [] ) + ( ["-DCMAKE_CXX_FLAGS=%s" % os.environ["CC_FLAGS"]] if "CC_FLAGS" in os.environ else [] ) ) make_flags = ["VERBOSE=1"] if verbose else [] make_flags += ["-C", os.path.realpath(build_dir)] if spy: raise NotImplementedError("Need support for Legion Spy with cmake") try: subprocess.check_output([cmake_exe, "--version"]) except OSError: print( "Error: CMake is not installed or otherwise not executable. " "Please check" ) print( "your CMake installation and try again. You can use the " "--with-cmake flag" ) print("to specify the CMake executable if it is not on PATH.") print() print("Attempted to execute: %s" % cmake_exe) sys.exit(1) verbose_check_call( [cmake_exe] + flags + [legion_src_dir], cwd=build_dir ) verbose_check_call( ["make"] + make_flags + ["-j", str(thread_count), "install"], cwd=build_dir, ) # TODO: install legion spy and legion prof else: version = pyversion.split(".") flags = ( [ "LG_RT_DIR=%s" % (os.path.join(legion_src_dir, "runtime")), "DEBUG=%s" % (1 if debug else 0), "DEBUG_RELEASE=%s" % (1 if debug_release else 0), "MAX_DIM=%s" % (str(maxdim)), "MAX_FIELDS=%s" % (str(maxfields)), "USE_CUDA=%s" % (1 if cuda else 0), "GPU_ARCH=%s" % arch, "USE_OPENMP=%s" % (1 if openmp else 0), "MARCH=%s" % march, "USE_LLVM=%s" % (1 if llvm else 0), "USE_GASNET=%s" % (1 if gasnet else 0), "USE_HDF=%s" % (1 if hdf else 0), "PREFIX=%s" % (os.path.realpath(install_dir)), "PYTHON_VERSION_MAJOR=%s" % version[0], "PYTHON_VERSION_MINOR=%s" % version[1], "PYTHON_LIB=%s" % pylib_name, "FORCE_PYTHON=1", "USE_COMPLEX=1", "USE_HALF=1", "USE_SPY=%s" % (1 if spy else 0), "REALM_USE_CUDART_HIJACK=%s" % (1 if not no_hijack else 0), ] + extra_flags + (["BOUNDS_CHECKS=1"] if check_bounds else []) + (["GASNET=%s" % gasnet_dir] if gasnet_dir is not None else []) + (["CONDUIT=%s" % conduit] if conduit is not None else []) + (["CUDA=%s" % cuda_dir] if cuda_dir is not None else []) ) legion_python_dir = os.path.join(legion_src_dir, "bindings", "python") if clean_first: verbose_check_call( ["make"] + flags + ["clean"], cwd=legion_python_dir ) # Explicitly ask for C++17, otherwise the Legion build will use C++11. env = dict(os.environ.items()) env["CXXFLAGS"] = "-std=c++17 " + env.get("CXXFLAGS", "") verbose_check_call( ["make"] + flags + ["-j", str(thread_count), "install"], cwd=legion_python_dir, env=env, ) verbose_check_call( [ sys.executable, "setup.py", "install", "--prefix", str(os.path.realpath(install_dir)), ] + setup_py_flags, cwd=legion_python_dir, ) verbose_check_call( [ "cp", "legion_spy.py", os.path.join(install_dir, "share", "legate", "legion_spy.py"), ], cwd=os.path.join(legion_src_dir, "tools"), ) verbose_check_call( [ "cp", "legion_prof.py", os.path.join(install_dir, "share", "legate", "legion_prof.py"), ], cwd=os.path.join(legion_src_dir, "tools"), ) verbose_check_call( [ "cp", "legion_serializer.py", os.path.join( install_dir, "share", "legate", "legion_serializer.py" ), ], cwd=os.path.join(legion_src_dir, "tools"), ) verbose_check_call( [ "cp", "legion_prof_copy.html.template", os.path.join( install_dir, "share", "legate", "legion_prof_copy.html.template", ), ], cwd=os.path.join(legion_src_dir, "tools"), ) verbose_check_call( [ "cp", "-r", "legion_prof_files", os.path.join(install_dir, "share", "legate", "legion_prof_files"), ], cwd=os.path.join(legion_src_dir, "tools"), ) def build_legate_core( install_dir, legate_core_dir, cmake, cmake_exe, cuda_dir, nccl_dir, debug, debug_release, cuda, arch, openmp, march, spy, gasnet, clean_first, thread_count, verbose, unknown, ): src_dir = os.path.join(legate_core_dir, "src") if cmake: print("Warning: CMake is currently not supported for Legate build.") print("Using GNU Make for now.") make_flags = [ "LEGATE_DIR=%s" % install_dir, "DEBUG=%s" % (1 if debug else 0), "DEBUG_RELEASE=%s" % (1 if debug_release else 0), "USE_CUDA=%s" % (1 if cuda else 0), "USE_OPENMP=%s" % (1 if openmp else 0), "MARCH=%s" % march, "GPU_ARCH=%s" % arch, "PREFIX=%s" % str(install_dir), "USE_GASNET=%s" % (1 if gasnet else 0), "NCCL_DIR=%s" % nccl_dir, ] + (["CUDA=%s" % cuda_dir] if cuda_dir is not None else []) if clean_first: verbose_check_call(["make"] + make_flags + ["clean"], cwd=src_dir) verbose_check_call( ["make"] + make_flags + ["-j", str(thread_count), "install"], cwd=src_dir, ) # Fill in config.mk.in and copy it to the target destination with open(os.path.join(src_dir, "config.mk.in")) as f: content = f.read() content = content.format( debug=repr(1 if debug else 0), debug_release=repr(1 if debug_release else 0), cuda=repr(1 if cuda else 0), arch=(arch if arch is not None else ""), cuda_dir=(cuda_dir if cuda_dir is not None else ""), openmp=repr(1 if openmp else 0), march=march, gasnet=repr(1 if gasnet else 0), ) with open(os.path.join(src_dir, "config.mk"), "wb") as f: f.write(content.encode("utf-8")) cmd = ["cp", "config.mk", os.path.join(install_dir, "share", "legate")] verbose_check_call(cmd, cwd=src_dir) # Then run setup.py cmd = [ sys.executable, "setup.py", "install", "--recurse", ] + setup_py_flags if unknown is not None: try: prefix_loc = unknown.index("--prefix") cmd.extend(unknown[prefix_loc : prefix_loc + 2]) except ValueError: cmd += ["--prefix", str(install_dir)] else: cmd += ["--prefix", str(install_dir)] verbose_check_call(cmd, cwd=legate_core_dir) def install( gasnet, cuda, arch, openmp, march, hdf, llvm, spy, conduit, nccl_dir, cmake, cmake_exe, install_dir, gasnet_dir, pylib_name, cuda_dir, maxdim, maxfields, debug, debug_release, check_bounds, clean_first, extra_flags, thread_count, verbose, thrust_dir, legion_branch, unknown, ): global verbose_global verbose_global = verbose legate_core_dir = os.path.dirname(os.path.realpath(__file__)) cmake_config = os.path.join(legate_core_dir, ".cmake.json") dump_json_config(cmake_config, cmake) if pylib_name is None: pyversion, pylib_name = find_active_python_version_and_path() else: f_name = os.path.split(pylib_name)[-1] match = re.match(r"^libpython(\d\d?\.\d\d?)", f_name) e = "Unable to get version from library name {}".format(pylib_name) assert match, e pyversion = match.group(1) print("Using python lib and version: {}, {}".format(pylib_name, pyversion)) install_dir_config = os.path.join(legate_core_dir, ".install-dir.json") if install_dir is None: install_dir = load_json_config(install_dir_config) if install_dir is None: install_dir = os.path.join(legate_core_dir, "install") install_dir = os.path.realpath(install_dir) dump_json_config(install_dir_config, install_dir) os.makedirs(os.path.join(install_dir, "share", "legate"), exist_ok=True) if thread_count is None: thread_count = multiprocessing.cpu_count() # Save the maxdim config maxdim_config = os.path.join(legate_core_dir, ".maxdim.json") # Check the max dimensions if maxdim < 1 or maxdim > 9: raise Exception( "The maximum number of Legate dimensions must be between 1 and 9 " "inclusive" ) dump_json_config(maxdim_config, str(maxdim)) # Save the maxfields config maxfields_config = os.path.join(legate_core_dir, ".maxfields.json") # Check that max fields is between 32 and 4096 and is a power of 2 if maxfields not in [32, 64, 128, 256, 512, 1024, 2048, 4096]: raise Exception( "The maximum number of Legate fields must be a power of 2 between " "32 and 4096 inclusive" ) dump_json_config(maxfields_config, str(maxfields)) # If the user asked for a conduit and we don't have gasnet then install it if gasnet: conduit_config = os.path.join(legate_core_dir, ".conduit.json") if conduit is None: conduit = load_json_config(conduit_config) if conduit is None: raise Exception( "The first time you use GASNet you need to tell us " 'which conduit to use with the "--conduit" flag' ) dump_json_config(conduit_config, conduit) gasnet_config = os.path.join( legate_core_dir, ".gasnet" + str(conduit) + ".json" ) if gasnet_dir is None: gasnet_dir = load_json_config(gasnet_config) if gasnet_dir is None: gasnet_dir = os.path.join(install_dir, "gasnet") if not os.path.exists(gasnet_dir): install_gasnet(gasnet_dir, conduit, thread_count) dump_json_config(gasnet_config, gasnet_dir) # If the user asked for CUDA, make sure we know where the install # directory is if cuda: cuda_config = os.path.join(legate_core_dir, ".cuda.json") if cuda_dir is None: cuda_dir = load_json_config(cuda_config) if cuda_dir is None: raise Exception( "The first time you use CUDA you need to tell Legate " 'where CUDA is installed with the "--with-cuda" flag.' ) dump_json_config(cuda_config, cuda_dir) arch_config = os.path.join(legate_core_dir, ".arch.json") if arch is None: arch = load_json_config(arch_config) if arch is None: try: import pynvml pynvml.nvmlInit() major, minor = pynvml.nvmlDeviceGetCudaComputeCapability( pynvml.nvmlDeviceGetHandleByIndex(0) ) arch = f"{major}{minor}" pynvml.nvmlShutdown() except Exception as exc: raise Exception( "Could not auto-detect CUDA GPU architecture, please " "specify the target architecture using --arch" ) from exc dump_json_config(arch_config, arch) nccl_config = os.path.join(legate_core_dir, ".nccl.json") if nccl_dir is None: nccl_dir = load_json_config(nccl_config) if nccl_dir is None: raise Exception( "The first time you use CUDA you need to tell Legate " 'where NCCL is installed with the "--with-nccl" flag.' ) dump_json_config(nccl_config, nccl_dir) # install a stable version of Thrust thrust_config = os.path.join(legate_core_dir, ".thrust.json") if thrust_dir is None: thrust_dir = load_json_config(thrust_config) if thrust_dir is None: thrust_dir = os.path.join(install_dir, "thrust") thrust_dir = os.path.realpath(thrust_dir) if not os.path.exists(thrust_dir): install_thrust(thrust_dir) # Simply put Thrust into the environment. os.environ["CXXFLAGS"] = ( "-I" + thrust_dir + " " + os.environ.get("CXXFLAGS", "") ) dump_json_config(thrust_config, thrust_dir) # Build Legion from scratch. legion_src_dir = os.path.join(legate_core_dir, "legion") if not os.path.exists(legion_src_dir): install_legion(legion_src_dir, branch=legion_branch) elif clean_first: update_legion(legion_src_dir, branch=legion_branch) build_legion( legion_src_dir, install_dir, cmake, cmake_exe, cuda_dir, debug, debug_release, check_bounds, cuda, arch, openmp, march, llvm, hdf, spy, gasnet, gasnet_dir, conduit, pyversion, pylib_name, maxdim, maxfields, clean_first, extra_flags, thread_count, verbose, ) build_legate_core( install_dir, legate_core_dir, cmake, cmake_exe, cuda_dir, nccl_dir, debug, debug_release, cuda, arch, openmp, march, spy, gasnet, clean_first, thread_count, verbose, unknown, ) # Copy any executables that we need for legate functionality verbose_check_call( ["cp", "legate.py", os.path.join(install_dir, "bin", "legate")], cwd=legate_core_dir, ) verbose_check_call( [ "cp", "scripts/lgpatch.py", os.path.join(install_dir, "bin", "lgpatch"), ], cwd=legate_core_dir, ) verbose_check_call( ["cp", "bind.sh", os.path.join(install_dir, "bin", "bind.sh")], cwd=legate_core_dir, ) if cuda: # Copy CUDA configuration that the launcher needs to find CUDA path verbose_check_call( [ "cp", ".cuda.json", os.path.join(install_dir, "share", "legate", ".cuda.json"), ], cwd=legate_core_dir, ) # Record the path to NCCL that was used in this build libs_path = os.path.join(install_dir, "share", ".legate-libs.json") try: with open(libs_path, "r") as f: libs_config = json.load(f) except (FileNotFoundError, IOError, json.JSONDecodeError): libs_config = {} libs_config["nccl"] = nccl_dir with open(libs_path, "w") as f: json.dump(libs_config, f) # Copy thrust configuration verbose_check_call( [ "cp", thrust_config, os.path.join(install_dir, "share", "legate"), ], cwd=legate_core_dir, ) def driver(): parser = argparse.ArgumentParser(description="Install Legate front end.") parser.add_argument( "--install-dir", dest="install_dir", metavar="DIR", required=False, help="Path to install all Legate-related software", ) parser.add_argument( "--debug", dest="debug", action="store_true", required=False, default=os.environ.get("DEBUG", "0") == "1", help="Build Legate and Legion with no optimizations, and full " "debugging checks.", ) parser.add_argument( "--debug-release", dest="debug_release", action="store_true", required=False, default=os.environ.get("DEBUG_RELEASE", "0") == "1", help="Build Legate and Legion with optimizations enabled, but include " "debugging symbols.", ) parser.add_argument( "--check-bounds", dest="check_bounds", action="store_true", required=False, default=os.environ.get("CHECK_BOUNDS", "0") == "1", help="Build Legion with bounds checking enabled (warning: expensive).", ) parser.add_argument( "--max-dim", dest="maxdim", type=int, default=int(os.environ.get("LEGION_MAX_DIM", 4)), help="Maximum number of dimensions that Legate will support", ) parser.add_argument( "--max-fields", dest="maxfields", type=int, default=int(os.environ.get("LEGION_MAX_FIELDS", 256)), help="Maximum number of fields that Legate will support", ) parser.add_argument( "--gasnet", dest="gasnet", action="store_true", required=False, default=os.environ.get("USE_GASNET", "0") == "1", help="Build Legate with GASNet.", ) parser.add_argument( "--with-gasnet", dest="gasnet_dir", metavar="DIR", required=False, default=os.environ.get("GASNET"), help="Path to GASNet installation directory.", ) parser.add_argument( "--cuda", action=BooleanFlag, default=os.environ.get("USE_CUDA", "0") == "1", help="Build Legate with CUDA support.", ) parser.add_argument( "--with-cuda", dest="cuda_dir", metavar="DIR", required=False, default=os.environ.get("CUDA"), help="Path to CUDA installation directory.", ) parser.add_argument( "--arch", dest="arch", action="store", required=False, default=None, help="Specify the target GPU architecture.", ) parser.add_argument( "--openmp", action=BooleanFlag, default=os.environ.get("USE_OPENMP", "0") == "1", help="Build Legate with OpenMP support.", ) parser.add_argument( "--march", dest="march", required=False, default="native", help="Specify the target CPU architecture.", ) parser.add_argument( "--llvm", dest="llvm", action="store_true", required=False, default=os.environ.get("USE_LLVM", "0") == "1", help="Build Legate with LLVM support.", ) parser.add_argument( "--hdf5", "--hdf", dest="hdf", action="store_true", required=False, default=os.environ.get("USE_HDF", "0") == "1", help="Build Legate with HDF support.", ) parser.add_argument( "--spy", dest="spy", action="store_true", required=False, default=os.environ.get("USE_SPY", "0") == "1", help="Build Legate with detailed Legion Spy enabled.", ) parser.add_argument( "--conduit", dest="conduit", action="store", required=False, choices=["ibv", "ucx", "aries", "mpi", "udp"], default=os.environ.get("CONDUIT"), help="Build Legate with specified GASNet conduit.", ) parser.add_argument( "--with-nccl", dest="nccl_dir", metavar="DIR", required=False, default=os.environ.get("NCCL_PATH"), help="Path to NCCL installation directory.", ) parser.add_argument( "--python-lib", dest="pylib_name", action="store", required=False, default=None, help=( "Build Legate against the specified Python shared library. " "Default is to use the Python library currently executing this " "install script." ), ) parser.add_argument( "--cmake", action=BooleanFlag, default=os.environ.get("USE_CMAKE", "0") == "1", help="Build Legate with CMake instead of GNU Make.", ) parser.add_argument( "--with-cmake", dest="cmake_exe", metavar="EXE", required=False, default="cmake", help="Path to CMake executable (if not on PATH).", ) parser.add_argument( "--clean", dest="clean_first", action=BooleanFlag, default=True, help="Clean before build, and pull latest Legion.", ) parser.add_argument( "--extra", dest="extra_flags", action="append", required=False, default=[], help="Extra flags for make command.", ) parser.add_argument( "-j", dest="thread_count", nargs="?", type=int, help="Number of threads used to compile.", ) parser.add_argument( "-v", "--verbose", dest="verbose", action="store_true", required=False, help="Enable verbose build output.", ) parser.add_argument( "--with-thrust", dest="thrust_dir", metavar="DIR", required=False, default=os.environ.get("THRUST_PATH"), help="Path to Thrust installation directory. The required version of " "Thrust is " + required_thrust_version + " or compatible. If not " "provided, Thrust will be installed automatically.", ) parser.add_argument( "--legion-branch", dest="legion_branch", required=False, default="control_replication", help="Legion branch to build Legate with.", ) args, unknown = parser.parse_known_args() install(unknown=unknown, **vars(args)) if __name__ == "__main__": driver()
import pytest import os import RaveEngine.projectManager as projectManager import RaveEngine.botManager as botManager import RaveEngine.configManager as configManager import Utils.commandManager as commandManager from flaky import flaky import Utils.sad as sad import Utils.utils as utils @pytest.fixture(autouse=True) def setup(): projectManager.createInitProject(createBasicModules=True) yield commandManager.runRmDirCommand(sad._CONFIG_DIR_NAME_) commandManager.runRmDirCommand(sad._LOG_DIR_NAME_) commandManager.runRmDirCommand(sad._MODULES_DIR_) commandManager.runRmDirCommand(sad._OUTPUT_BOT_DIR_) def data_generateHeaders(): return [sad._HEADER_TOKEN_FLAG] def data_generateBot(): data = [(False, sad._HOSTING_HEROKU_OPTION_), (True, sad._HOSTING_HEROKU_OPTION_)] data += [(False, sad._HOSTING_GAE_OPTION_), (True, sad._HOSTING_GAE_OPTION_)] return data @flaky(3,1) @pytest.mark.parametrize('testFlag, hosting', data_generateBot()) def test_generateBot(testFlag, hosting): projectManager.createInitProject(createBasicModules=True, hostingOption=hosting) if not testFlag: with pytest.raises(SystemExit) as pytest_wrapped_e: botManager.generateBot(testFlag=testFlag) assert pytest_wrapped_e.type == SystemExit config = configManager.getConfig() configManager.set(config, sad._CONFIG_RAVEGEN_SECTION_, sad._CONFIG_DEPLOY_URL_OPTION, "www.test.com") botManager.generateBot(testFlag=testFlag) assert os.path.exists(sad._OUTPUT_BOT_DIR_) assert os.path.exists(sad.OUTPUT_BOT_PATH) headers = utils._getHeaders() if testFlag: assert headers[sad._HEADER_TOKEN_FLAG] == sad._STR_TRUE_ else: assert headers[sad._HEADER_TOKEN_FLAG] == sad._STR_FALSE_ @flaky(3,1) @pytest.mark.parametrize('header', data_generateHeaders()) def test_generateHeaders(header): botManager.generateBot() headers = utils._getHeaders() assert header in headers
from __future__ import unicode_literals from __future__ import print_function from __future__ import division from __future__ import absolute_import from conftest import Mock import responses class TestIP(object): @responses.activate def test_get_ip(self, manager): data = Mock.mock_get('ip_address/10.1.0.101') ip_addr = manager.get_ip('10.1.0.101') assert type(ip_addr).__name__ == 'IPAddress' assert ip_addr.address == '10.1.0.101' assert ip_addr.ptr_record == 'a.ptr.record' @responses.activate def test_get_ips(self, manager): data = Mock.mock_get('ip_address') ip_addrs = manager.get_ips() for ip_addr in ip_addrs: assert type(ip_addr).__name__ == 'IPAddress' @responses.activate def test_modify_ip_oop(self, manager): # get ip data = Mock.mock_get('ip_address/10.1.0.101') ip_addr = manager.get_ip('10.1.0.101') # put ip data = Mock.mock_put('ip_address/10.1.0.101') ip_addr.ptr_record = 'my.ptr.record' ip_addr.save() assert ip_addr.ptr_record == 'my.ptr.record' @responses.activate def test_modify_ip(self, manager): data = Mock.mock_put('ip_address/10.1.0.101') ip_addr = manager.modify_ip('10.1.0.101', ptr_record='my.ptr.record') assert ip_addr.ptr_record == 'my.ptr.record' @responses.activate def test_modify_ip(self, manager): data = Mock.mock_put('ip_address/10.1.0.101') ip_addr = manager.modify_ip('10.1.0.101', ptr_record='my.ptr.record') assert ip_addr.ptr_record == 'my.ptr.record' @responses.activate def test_ip_delete(self, manager): Mock.mock_delete('ip_address/10.1.0.101') res = manager.release_ip('10.1.0.101') assert res == {}
from rpython.rlib.rarithmetic import LONG_BIT, intmask, longlongmask, r_uint, r_ulonglong from rpython.rlib.rarithmetic import ovfcheck, r_longlong, widen from rpython.rlib.rarithmetic import most_neg_value_of_same_type from rpython.rlib.rfloat import isinf, isnan from rpython.rlib.rstring import StringBuilder from rpython.rlib.debug import make_sure_not_resized, check_regular_int from rpython.rlib.objectmodel import we_are_translated, specialize from rpython.rlib import jit from rpython.rtyper.lltypesystem import lltype, rffi from rpython.rtyper import extregistry import math, sys SUPPORT_INT128 = hasattr(rffi, '__INT128_T') BYTEORDER = sys.byteorder # note about digit sizes: # In division, the native integer type must be able to hold # a sign bit plus two digits plus 1 overflow bit. #SHIFT = (LONG_BIT // 2) - 1 if SUPPORT_INT128: SHIFT = 63 UDIGIT_TYPE = r_ulonglong if LONG_BIT >= 64: UDIGIT_MASK = intmask else: UDIGIT_MASK = longlongmask LONG_TYPE = rffi.__INT128_T if LONG_BIT > SHIFT: STORE_TYPE = lltype.Signed UNSIGNED_TYPE = lltype.Unsigned else: STORE_TYPE = rffi.LONGLONG UNSIGNED_TYPE = rffi.ULONGLONG else: SHIFT = 31 UDIGIT_TYPE = r_uint UDIGIT_MASK = intmask STORE_TYPE = lltype.Signed UNSIGNED_TYPE = lltype.Unsigned LONG_TYPE = rffi.LONGLONG MASK = int((1 << SHIFT) - 1) FLOAT_MULTIPLIER = float(1 << SHIFT) # For BIGINT and INT mix. # # The VALID range of an int is different than a valid range of a bigint of length one. # -1 << LONG_BIT is actually TWO digits, because they are stored without the sign. if SHIFT == LONG_BIT - 1: MIN_INT_VALUE = -1 << SHIFT def int_in_valid_range(x): if x == MIN_INT_VALUE: return False return True else: # Means we don't have INT128 on 64bit. def int_in_valid_range(x): if x > MASK or x < -MASK: return False return True int_in_valid_range._always_inline_ = True # Debugging digit array access. # # False == no checking at all # True == check 0 <= value <= MASK # For long multiplication, use the O(N**2) school algorithm unless # both operands contain more than KARATSUBA_CUTOFF digits (this # being an internal Python long digit, in base BASE). # Karatsuba is O(N**1.585) USE_KARATSUBA = True # set to False for comparison if SHIFT > 31: KARATSUBA_CUTOFF = 19 else: KARATSUBA_CUTOFF = 38 KARATSUBA_SQUARE_CUTOFF = 2 * KARATSUBA_CUTOFF # For exponentiation, use the binary left-to-right algorithm # unless the exponent contains more than FIVEARY_CUTOFF digits. # In that case, do 5 bits at a time. The potential drawback is that # a table of 2**5 intermediate results is computed. FIVEARY_CUTOFF = 8 def _mask_digit(x): return UDIGIT_MASK(x & MASK) _mask_digit._annspecialcase_ = 'specialize:argtype(0)' def _widen_digit(x): return rffi.cast(LONG_TYPE, x) def _store_digit(x): return rffi.cast(STORE_TYPE, x) _store_digit._annspecialcase_ = 'specialize:argtype(0)' def _load_unsigned_digit(x): return rffi.cast(UNSIGNED_TYPE, x) _load_unsigned_digit._always_inline_ = True NULLDIGIT = _store_digit(0) ONEDIGIT = _store_digit(1) def _check_digits(l): for x in l: assert type(x) is type(NULLDIGIT) assert UDIGIT_MASK(x) & MASK == UDIGIT_MASK(x) class InvalidEndiannessError(Exception): pass class InvalidSignednessError(Exception): pass class Entry(extregistry.ExtRegistryEntry): _about_ = _check_digits def compute_result_annotation(self, s_list): from rpython.annotator import model as annmodel assert isinstance(s_list, annmodel.SomeList) s_DIGIT = self.bookkeeper.valueoftype(type(NULLDIGIT)) assert s_DIGIT.contains(s_list.listdef.listitem.s_value) def specialize_call(self, hop): hop.exception_cannot_occur() class rbigint(object): """This is a reimplementation of longs using a list of digits.""" _immutable_ = True _immutable_fields_ = ["_digits"] def __init__(self, digits=[NULLDIGIT], sign=0, size=0): if not we_are_translated(): _check_digits(digits) make_sure_not_resized(digits) self._digits = digits assert size >= 0 self.size = size or len(digits) self.sign = sign # __eq__ and __ne__ method exist for testingl only, they are not RPython! def __eq__(self, other): # NOT_RPYTHON if not isinstance(other, rbigint): return NotImplemented return self.eq(other) def __ne__(self, other): # NOT_RPYTHON return not (self == other) def digit(self, x): """Return the x'th digit, as an int.""" return self._digits[x] digit._always_inline_ = True def widedigit(self, x): """Return the x'th digit, as a long long int if needed to have enough room to contain two digits.""" return _widen_digit(self._digits[x]) widedigit._always_inline_ = True def udigit(self, x): """Return the x'th digit, as an unsigned int.""" return _load_unsigned_digit(self._digits[x]) udigit._always_inline_ = True def setdigit(self, x, val): val = _mask_digit(val) assert val >= 0 self._digits[x] = _store_digit(val) setdigit._annspecialcase_ = 'specialize:argtype(2)' setdigit._always_inline_ = True def numdigits(self): return self.size numdigits._always_inline_ = True @staticmethod @jit.elidable def fromint(intval): # This function is marked as pure, so you must not call it and # then modify the result. check_regular_int(intval) if intval < 0: sign = -1 ival = -r_uint(intval) elif intval > 0: sign = 1 ival = r_uint(intval) else: return NULLRBIGINT carry = ival >> SHIFT if carry: return rbigint([_store_digit(ival & MASK), _store_digit(carry)], sign, 2) else: return rbigint([_store_digit(ival & MASK)], sign, 1) @staticmethod @jit.elidable def frombool(b): # You must not call this function and then modify the result. if b: return ONERBIGINT return NULLRBIGINT @staticmethod def fromlong(l): "NOT_RPYTHON" return rbigint(*args_from_long(l)) @staticmethod @jit.elidable def fromfloat(dval): """ Create a new bigint object from a float """ # This function is not marked as pure because it can raise if isinf(dval): raise OverflowError("cannot convert float infinity to integer") if isnan(dval): raise ValueError("cannot convert float NaN to integer") return rbigint._fromfloat_finite(dval) @staticmethod @jit.elidable def _fromfloat_finite(dval): sign = 1 if dval < 0.0: sign = -1 dval = -dval frac, expo = math.frexp(dval) # dval = frac*2**expo; 0.0 <= frac < 1.0 if expo <= 0: return NULLRBIGINT ndig = (expo-1) // SHIFT + 1 # Number of 'digits' in result v = rbigint([NULLDIGIT] * ndig, sign, ndig) frac = math.ldexp(frac, (expo-1) % SHIFT + 1) for i in range(ndig-1, -1, -1): # use int(int(frac)) as a workaround for a CPython bug: # with frac == 2147483647.0, int(frac) == 2147483647L bits = int(int(frac)) v.setdigit(i, bits) frac -= float(bits) frac = math.ldexp(frac, SHIFT) return v @staticmethod @jit.elidable @specialize.argtype(0) def fromrarith_int(i): # This function is marked as pure, so you must not call it and # then modify the result. return rbigint(*args_from_rarith_int(i)) @staticmethod @jit.elidable def fromdecimalstr(s): # This function is marked as elidable, so you must not call it and # then modify the result. return _decimalstr_to_bigint(s) @staticmethod @jit.elidable def fromstr(s, base=0): """As string_to_int(), but ignores an optional 'l' or 'L' suffix and returns an rbigint.""" from rpython.rlib.rstring import NumberStringParser, \ strip_spaces s = literal = strip_spaces(s) if (s.endswith('l') or s.endswith('L')) and base < 22: # in base 22 and above, 'L' is a valid digit! try: long('L',22) s = s[:-1] parser = NumberStringParser(s, literal, base, 'long') return rbigint._from_numberstring_parser(parser) @staticmethod def _from_numberstring_parser(parser): return parse_digit_string(parser) @staticmethod @jit.elidable def frombytes(s, byteorder, signed): if byteorder not in ('big', 'little'): raise InvalidEndiannessError() if not s: return NULLRBIGINT if byteorder != BYTEORDER: msb = ord(s[0]) itr = range(len(s)-1, -1, -1) else: msb = ord(s[-1]) itr = range(0, len(s)) sign = -1 if msb >= 0x80 and signed else 1 accum = _widen_digit(0) accumbits = 0 digits = [] carry = 1 for i in itr: c = _widen_digit(ord(s[i])) if sign == -1: c = (0xFF ^ c) + carry carry = c >> 8 c &= 0xFF accum |= c << accumbits accumbits += 8 if accumbits >= SHIFT: digits.append(_store_digit(intmask(accum & MASK))) accum >>= SHIFT accumbits -= SHIFT if accumbits: digits.append(_store_digit(intmask(accum))) result = rbigint(digits[:], sign) result._normalize() return result @jit.elidable def tobytes(self, nbytes, byteorder, signed): if byteorder not in ('big', 'little'): raise InvalidEndiannessError() if not signed and self.sign == -1: raise InvalidSignednessError() bswap = byteorder != BYTEORDER d = _widen_digit(0) j = 0 imax = self.numdigits() accum = _widen_digit(0) accumbits = 0 result = StringBuilder(nbytes) carry = 1 for i in range(0, imax): d = self.widedigit(i) if self.sign == -1: d = (d ^ MASK) + carry carry = d >> SHIFT d &= MASK accum |= d << accumbits if i == imax - 1: # Avoid bogus 0's s = d ^ MASK if self.sign == -1 else d while s: s >>= 1 accumbits += 1 else: accumbits += SHIFT while accumbits >= 8: if j >= nbytes: raise OverflowError() j += 1 result.append(chr(accum & 0xFF)) accum >>= 8 accumbits -= 8 if accumbits: if j >= nbytes: raise OverflowError() j += 1 if self.sign == -1: # Add a sign bit accum |= (~_widen_digit(0)) << accumbits result.append(chr(accum & 0xFF)) if j < nbytes: signbyte = 0xFF if self.sign == -1 else 0 result.append_multiple_char(chr(signbyte), nbytes - j) digits = result.build() if j == nbytes and nbytes > 0 and signed: # If not already set, we cannot contain the sign bit msb = digits[-1] if (self.sign == -1) != (ord(msb) >= 0x80): raise OverflowError() if bswap: # Bah, this is very inefficient. At least it's not # quadratic. length = len(digits) if length >= 0: digits = ''.join([digits[i] for i in range(length-1, -1, -1)]) return digits def toint(self): """ Get an integer from a bigint object. Raises OverflowError if overflow occurs. """ if self.numdigits() > MAX_DIGITS_THAT_CAN_FIT_IN_INT: raise OverflowError return self._toint_helper() @jit.elidable def _toint_helper(self): x = self._touint_helper() # Haven't lost any bits, but if the sign bit is set we're in # trouble *unless* this is the min negative number. So, # trouble iff sign bit set && (positive || some bit set other # than the sign bit). sign = self.sign if intmask(x) < 0 and (sign > 0 or (x << 1) != 0): raise OverflowError return intmask(intmask(x) * sign) @jit.elidable def tolonglong(self): return _AsLongLong(self) def tobool(self): return self.sign != 0 @jit.elidable def touint(self): if self.sign == -1: raise ValueError("cannot convert negative integer to unsigned int") return self._touint_helper() @jit.elidable def _touint_helper(self): x = r_uint(0) i = self.numdigits() - 1 while i >= 0: prev = x x = (x << SHIFT) + self.udigit(i) if (x >> SHIFT) != prev: raise OverflowError("long int too large to convert to unsigned int") i -= 1 return x @jit.elidable def toulonglong(self): if self.sign == -1: raise ValueError("cannot convert negative integer to unsigned int") return _AsULonglong_ignore_sign(self) @jit.elidable def uintmask(self): return _AsUInt_mask(self) @jit.elidable def ulonglongmask(self): """Return r_ulonglong(self), truncating.""" return _AsULonglong_mask(self) @jit.elidable def tofloat(self): return _AsDouble(self) @jit.elidable def format(self, digits, prefix='', suffix=''): # 'digits' is a string whose length is the base to use, # and where each character is the corresponding digit. return _format(self, digits, prefix, suffix) @jit.elidable def repr(self): try: x = self.toint() except OverflowError: return self.format(BASE10, suffix="L") return str(x) + "L" @jit.elidable def str(self): try: x = self.toint() except OverflowError: return self.format(BASE10) return str(x) @jit.elidable def eq(self, other): if (self.sign != other.sign or self.numdigits() != other.numdigits()): return False i = 0 ld = self.numdigits() while i < ld: if self.digit(i) != other.digit(i): return False i += 1 return True @jit.elidable def int_eq(self, other): """ eq with int """ if not int_in_valid_range(other): # Fallback to Long. return self.eq(rbigint.fromint(other)) if self.numdigits() > 1: return False return (self.sign * self.digit(0)) == other def ne(self, other): return not self.eq(other) def int_ne(self, other): return not self.int_eq(other) @jit.elidable def lt(self, other): if self.sign > other.sign: return False if self.sign < other.sign: return True ld1 = self.numdigits() ld2 = other.numdigits() if ld1 > ld2: if other.sign > 0: return False else: return True elif ld1 < ld2: if other.sign > 0: return True else: return False i = ld1 - 1 while i >= 0: d1 = self.digit(i) d2 = other.digit(i) if d1 < d2: if other.sign > 0: return True else: return False elif d1 > d2: if other.sign > 0: return False else: return True i -= 1 return False @jit.elidable def int_lt(self, other): """ lt where other is an int """ if not int_in_valid_range(other): # Fallback to Long. return self.lt(rbigint.fromint(other)) osign = 1 if other == 0: osign = 0 elif other < 0: osign = -1 if self.sign > osign: return False elif self.sign < osign: return True digits = self.numdigits() if digits > 1: if osign == 1: return False else: return True d1 = self.sign * self.digit(0) if d1 < other: return True return False def le(self, other): return not other.lt(self) def int_le(self, other): # Alternative that might be faster, reimplant this. as a check with other + 1. But we got to check for overflow # or reduce valid range. if self.int_eq(other): return True return self.int_lt(other) def gt(self, other): return other.lt(self) def int_gt(self, other): return not self.int_le(other) def ge(self, other): return not self.lt(other) def int_ge(self, other): return not self.int_lt(other) @jit.elidable def hash(self): return _hash(self) @jit.elidable def add(self, other): if self.sign == 0: return other if other.sign == 0: return self if self.sign == other.sign: result = _x_add(self, other) else: result = _x_sub(other, self) result.sign *= other.sign return result @jit.elidable def int_add(self, other): if not int_in_valid_range(other): # Fallback to long. return self.add(rbigint.fromint(other)) elif self.sign == 0: return rbigint.fromint(other) elif other == 0: return self sign = -1 if other < 0 else 1 if self.sign == sign: result = _x_int_add(self, other) else: result = _x_int_sub(self, other) result.sign *= -1 result.sign *= sign return result @jit.elidable def sub(self, other): if other.sign == 0: return self elif self.sign == 0: return rbigint(other._digits[:other.size], -other.sign, other.size) elif self.sign == other.sign: result = _x_sub(self, other) else: result = _x_add(self, other) result.sign *= self.sign return result @jit.elidable def int_sub(self, other): if not int_in_valid_range(other): # Fallback to long. return self.sub(rbigint.fromint(other)) elif other == 0: return self elif self.sign == 0: return rbigint.fromint(-other) elif self.sign == (-1 if other < 0 else 1): result = _x_int_sub(self, other) else: result = _x_int_add(self, other) result.sign *= self.sign return result @jit.elidable def mul(self, b): asize = self.numdigits() bsize = b.numdigits() a = self if asize > bsize: a, b, asize, bsize = b, a, bsize, asize if a.sign == 0 or b.sign == 0: return NULLRBIGINT if asize == 1: if a._digits[0] == NULLDIGIT: return NULLRBIGINT elif a._digits[0] == ONEDIGIT: return rbigint(b._digits[:b.size], a.sign * b.sign, b.size) elif bsize == 1: res = b.widedigit(0) * a.widedigit(0) carry = res >> SHIFT if carry: return rbigint([_store_digit(res & MASK), _store_digit(carry)], a.sign * b.sign, 2) else: return rbigint([_store_digit(res & MASK)], a.sign * b.sign, 1) result = _x_mul(a, b, a.digit(0)) elif USE_KARATSUBA: if a is b: i = KARATSUBA_SQUARE_CUTOFF else: i = KARATSUBA_CUTOFF if asize <= i: result = _x_mul(a, b) """elif 2 * asize <= bsize: result = _k_lopsided_mul(a, b)""" else: result = _k_mul(a, b) else: result = _x_mul(a, b) result.sign = a.sign * b.sign return result @jit.elidable def int_mul(self, b): if not int_in_valid_range(b): # Fallback to long. return self.mul(rbigint.fromint(b)) if self.sign == 0 or b == 0: return NULLRBIGINT asize = self.numdigits() digit = abs(b) bsign = -1 if b < 0 else 1 if digit == 1: return rbigint(self._digits[:self.size], self.sign * bsign, asize) elif asize == 1: res = self.widedigit(0) * digit carry = res >> SHIFT if carry: return rbigint([_store_digit(res & MASK), _store_digit(carry)], self.sign * bsign, 2) else: return rbigint([_store_digit(res & MASK)], self.sign * bsign, 1) elif digit & (digit - 1) == 0: result = self.lqshift(ptwotable[digit]) else: result = _muladd1(self, digit) result.sign = self.sign * bsign return result @jit.elidable def truediv(self, other): div = _bigint_true_divide(self, other) return div @jit.elidable def floordiv(self, other): if self.sign == 1 and other.numdigits() == 1 and other.sign == 1: digit = other.digit(0) if digit == 1: return rbigint(self._digits[:self.size], 1, self.size) elif digit and digit & (digit - 1) == 0: return self.rshift(ptwotable[digit]) div, mod = _divrem(self, other) if mod.sign * other.sign == -1: if div.sign == 0: return ONENEGATIVERBIGINT div = div.int_sub(1) return div def div(self, other): return self.floordiv(other) @jit.elidable def mod(self, other): if self.sign == 0: return NULLRBIGINT if other.sign != 0 and other.numdigits() == 1: digit = other.digit(0) if digit == 1: return NULLRBIGINT elif digit == 2: modm = self.digit(0) & 1 if modm: return ONENEGATIVERBIGINT if other.sign == -1 else ONERBIGINT return NULLRBIGINT elif digit & (digit - 1) == 0: mod = self.int_and_(digit - 1) else: # Perform size = self.numdigits() - 1 if size > 0: rem = self.widedigit(size) size -= 1 while size >= 0: rem = ((rem << SHIFT) + self.widedigit(size)) % digit size -= 1 else: rem = self.digit(0) % digit if rem == 0: return NULLRBIGINT mod = rbigint([_store_digit(rem)], -1 if self.sign < 0 else 1, 1) else: div, mod = _divrem(self, other) if mod.sign * other.sign == -1: mod = mod.add(other) return mod @jit.elidable def int_mod(self, other): if self.sign == 0: return NULLRBIGINT elif not int_in_valid_range(other): # Fallback to long. return self.mod(rbigint.fromint(other)) elif other != 0: digit = abs(other) if digit == 1: return NULLRBIGINT elif digit == 2: modm = self.digit(0) & 1 if modm: return ONENEGATIVERBIGINT if other < 0 else ONERBIGINT return NULLRBIGINT elif digit & (digit - 1) == 0: mod = self.int_and_(digit - 1) else: # Perform size = self.numdigits() - 1 if size > 0: rem = self.widedigit(size) size -= 1 while size >= 0: rem = ((rem << SHIFT) + self.widedigit(size)) % digit size -= 1 else: rem = self.digit(0) % digit if rem == 0: return NULLRBIGINT mod = rbigint([_store_digit(rem)], -1 if self.sign < 0 else 1, 1) else: raise ZeroDivisionError("long division or modulo by zero") if mod.sign * (-1 if other < 0 else 1) == -1: mod = mod.int_add(other) return mod @jit.elidable def divmod(v, w): """ The / and % operators are now defined in terms of divmod(). The expression a mod b has the value a - b*floor(a/b). The _divrem function gives the remainder after division of |a| by |b|, with the sign of a. This is also expressed as a - b*trunc(a/b), if trunc truncates towards zero. Some examples: a b a rem b a mod b 13 10 3 3 -13 10 -3 7 13 -10 3 -7 -13 -10 -3 -3 So, to get from rem to mod, we have to add b if a and b have different signs. We then subtract one from the 'div' part of the outcome to keep the invariant intact. """ div, mod = _divrem(v, w) if mod.sign * w.sign == -1: mod = mod.add(w) if div.sign == 0: return ONENEGATIVERBIGINT, mod div = div.int_sub(1) return div, mod @jit.elidable def pow(a, b, c=None): negativeOutput = False # if x<0 return negative output # 5-ary values. If the exponent is large enough, table is # precomputed so that table[i] == a**i % c for i in range(32). # python translation: the table is computed when needed. if b.sign < 0: # if exponent is negative if c is not None: raise TypeError( "pow() 2nd argument " "cannot be negative when 3rd argument specified") # XXX failed to implement raise ValueError("bigint pow() too negative") size_b = b.numdigits() if c is not None: if c.sign == 0: raise ValueError("pow() 3rd argument cannot be 0") # if modulus < 0: # negativeOutput = True # modulus = -modulus if c.sign < 0: negativeOutput = True c = c.neg() # if modulus == 1: # return 0 if c.numdigits() == 1 and c._digits[0] == ONEDIGIT: return NULLRBIGINT # Reduce base by modulus in some cases: # 1. If base < 0. Forcing the base non-neg makes things easier. # 2. If base is obviously larger than the modulus. The "small # exponent" case later can multiply directly by base repeatedly, # while the "large exponent" case multiplies directly by base 31 # times. It can be unboundedly faster to multiply by # base % modulus instead. # We could _always_ do this reduction, but mod() isn't cheap, # so we only do it when it buys something. if a.sign < 0 or a.numdigits() > c.numdigits(): a = a.mod(c) elif b.sign == 0: return ONERBIGINT elif a.sign == 0: return NULLRBIGINT elif size_b == 1: if b._digits[0] == NULLDIGIT: return ONERBIGINT if a.sign == 1 else ONENEGATIVERBIGINT elif b._digits[0] == ONEDIGIT: return a elif a.numdigits() == 1: adigit = a.digit(0) digit = b.digit(0) if adigit == 1: if a.sign == -1 and digit % 2: return ONENEGATIVERBIGINT return ONERBIGINT elif adigit & (adigit - 1) == 0: ret = a.lshift(((digit-1)*(ptwotable[adigit]-1)) + digit-1) if a.sign == -1 and not digit % 2: ret.sign = 1 return ret # At this point a, b, and c are guaranteed non-negative UNLESS # c is NULL, in which case a may be negative. */ z = rbigint([ONEDIGIT], 1, 1) # python adaptation: moved macros REDUCE(X) and MULT(X, Y, result) # into helper function result = _help_mult(x, y, c) if size_b <= FIVEARY_CUTOFF: # Left-to-right binary exponentiation (HAC Algorithm 14.79) # http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf size_b -= 1 while size_b >= 0: bi = b.digit(size_b) j = 1 << (SHIFT-1) while j != 0: z = _help_mult(z, z, c) if bi & j: z = _help_mult(z, a, c) j >>= 1 size_b -= 1 else: # Left-to-right 5-ary exponentiation (HAC Algorithm 14.82) # This is only useful in the case where c != None. # z still holds 1L table = [z] * 32 table[0] = z for i in range(1, 32): table[i] = _help_mult(table[i-1], a, c) # Note that here SHIFT is not a multiple of 5. The difficulty # is to extract 5 bits at a time from 'b', starting from the # most significant digits, so that at the end of the algorithm # it falls exactly to zero. # m = max number of bits = i * SHIFT # m+ = m rounded up to the next multiple of 5 # j = (m+) % SHIFT = (m+) - (i * SHIFT) # (computed without doing "i * SHIFT", which might overflow) j = size_b % 5 j = _jmapping[j] if not we_are_translated(): assert j == (size_b*SHIFT+4)//5*5 - size_b*SHIFT # accum = r_uint(0) while True: j -= 5 if j >= 0: index = (accum >> j) & 0x1f else: # 'accum' does not have enough digit. # must get the next digit from 'b' in order to complete if size_b == 0: break # Done size_b -= 1 assert size_b >= 0 bi = b.udigit(size_b) index = ((accum << (-j)) | (bi >> (j+SHIFT))) & 0x1f accum = bi j += SHIFT # for k in range(5): z = _help_mult(z, z, c) if index: z = _help_mult(z, table[index], c) # assert j == -5 if negativeOutput and z.sign != 0: z = z.sub(c) return z @jit.elidable def neg(self): return rbigint(self._digits, -self.sign, self.size) @jit.elidable def abs(self): if self.sign != -1: return self return rbigint(self._digits, 1, self.size) @jit.elidable def invert(self): #Implement ~x as -(x + 1) if self.sign == 0: return ONENEGATIVERBIGINT ret = self.int_add(1) ret.sign = -ret.sign return ret @jit.elidable def lshift(self, int_other): if int_other < 0: raise ValueError("negative shift count") elif int_other == 0: return self # wordshift, remshift = divmod(int_other, SHIFT) wordshift = int_other // SHIFT remshift = int_other - wordshift * SHIFT if not remshift: # So we can avoid problems with eq, AND avoid the need for normalize. if self.sign == 0: return self return rbigint([NULLDIGIT] * wordshift + self._digits, self.sign, self.size + wordshift) oldsize = self.numdigits() newsize = oldsize + wordshift + 1 z = rbigint([NULLDIGIT] * newsize, self.sign, newsize) accum = _widen_digit(0) j = 0 while j < oldsize: accum += self.widedigit(j) << remshift z.setdigit(wordshift, accum) accum >>= SHIFT wordshift += 1 j += 1 newsize -= 1 assert newsize >= 0 z.setdigit(newsize, accum) z._normalize() return z lshift._always_inline_ = True # It's so fast that it's always benefitial. @jit.elidable def lqshift(self, int_other): " A quicker one with much less checks, int_other is valid and for the most part constant." assert int_other > 0 oldsize = self.numdigits() z = rbigint([NULLDIGIT] * (oldsize + 1), self.sign, (oldsize + 1)) accum = _widen_digit(0) i = 0 while i < oldsize: accum += self.widedigit(i) << int_other z.setdigit(i, accum) accum >>= SHIFT i += 1 z.setdigit(oldsize, accum) z._normalize() return z lqshift._always_inline_ = True # It's so fast that it's always benefitial. @jit.elidable def rshift(self, int_other, dont_invert=False): if int_other < 0: raise ValueError("negative shift count") elif int_other == 0: return self if self.sign == -1 and not dont_invert: a = self.invert().rshift(int_other) return a.invert() wordshift = int_other / SHIFT newsize = self.numdigits() - wordshift if newsize <= 0: return NULLRBIGINT loshift = int_other % SHIFT hishift = SHIFT - loshift z = rbigint([NULLDIGIT] * newsize, self.sign, newsize) i = 0 while i < newsize: newdigit = (self.digit(wordshift) >> loshift) if i+1 < newsize: newdigit |= (self.digit(wordshift+1) << hishift) z.setdigit(i, newdigit) i += 1 wordshift += 1 z._normalize() return z rshift._always_inline_ = 'try' # It's so fast that it's always benefitial. @jit.elidable def abs_rshift_and_mask(self, bigshiftcount, mask): assert isinstance(bigshiftcount, r_ulonglong) assert mask >= 0 wordshift = bigshiftcount / SHIFT numdigits = self.numdigits() if wordshift >= numdigits: return 0 wordshift = intmask(wordshift) loshift = intmask(intmask(bigshiftcount) - intmask(wordshift * SHIFT)) lastdigit = self.digit(wordshift) >> loshift if mask > (MASK >> loshift) and wordshift + 1 < numdigits: hishift = SHIFT - loshift lastdigit |= self.digit(wordshift+1) << hishift return lastdigit & mask @staticmethod def from_list_n_bits(list, nbits): if len(list) == 0: return NULLRBIGINT if nbits == SHIFT: z = rbigint(list, 1) else: if not (1 <= nbits < SHIFT): raise ValueError lllength = (r_ulonglong(len(list)) * nbits) // SHIFT length = intmask(lllength) + 1 z = rbigint([NULLDIGIT] * length, 1) out = 0 i = 0 accum = 0 for input in list: accum |= (input << i) original_i = i i += nbits if i > SHIFT: z.setdigit(out, accum) out += 1 accum = input >> (SHIFT - original_i) i -= SHIFT assert out < length z.setdigit(out, accum) z._normalize() return z @jit.elidable def and_(self, other): return _bitwise(self, '&', other) @jit.elidable def int_and_(self, other): return _int_bitwise(self, '&', other) @jit.elidable def xor(self, other): return _bitwise(self, '^', other) @jit.elidable def int_xor(self, other): return _int_bitwise(self, '^', other) @jit.elidable def or_(self, other): return _bitwise(self, '|', other) @jit.elidable def int_or_(self, other): return _int_bitwise(self, '|', other) @jit.elidable def oct(self): if self.sign == 0: return '0L' else: return _format(self, BASE8, '0', 'L') @jit.elidable def hex(self): return _format(self, BASE16, '0x', 'L') @jit.elidable def log(self, base): # base is supposed to be positive or 0.0, which means we use e if base == 10.0: return _loghelper(math.log10, self) ret = _loghelper(math.log, self) if base != 0.0: ret /= math.log(base) return ret def tolong(self): "NOT_RPYTHON" l = 0L digits = list(self._digits) digits.reverse() for d in digits: l = l << SHIFT l += intmask(d) return l * self.sign def _normalize(self): i = self.numdigits() while i > 1 and self._digits[i - 1] == NULLDIGIT: i -= 1 assert i > 0 if i != self.numdigits(): self.size = i if self.numdigits() == 1 and self._digits[0] == NULLDIGIT: self.sign = 0 self._digits = [NULLDIGIT] _normalize._always_inline_ = True @jit.elidable def bit_length(self): i = self.numdigits() if i == 1 and self._digits[0] == NULLDIGIT: return 0 msd = self.digit(i - 1) msd_bits = 0 while msd >= 32: msd_bits += 6 msd >>= 6 msd_bits += [ 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5 ][msd] # yes, this can overflow: a huge number which fits 3 gigabytes of # memory has around 24 gigabits! bits = ovfcheck((i-1) * SHIFT) + msd_bits return bits def __repr__(self): return "<rbigint digits=%s, sign=%s, size=%d, len=%d, %s>" % (self._digits, self.sign, self.size, len(self._digits), self.str()) ONERBIGINT = rbigint([ONEDIGIT], 1, 1) ONENEGATIVERBIGINT = rbigint([ONEDIGIT], -1, 1) NULLRBIGINT = rbigint() _jmapping = [(5 * SHIFT) % 5, (4 * SHIFT) % 5, (3 * SHIFT) % 5, (2 * SHIFT) % 5, (1 * SHIFT) % 5] # if the bigint has more digits than this, it cannot fit into an int MAX_DIGITS_THAT_CAN_FIT_IN_INT = rbigint.fromint(-sys.maxint - 1).numdigits() #_________________________________________________________________ # Helper Functions def _help_mult(x, y, c): """ Multiply two values, then reduce the result: result = X*Y % c. If c is None, skip the mod. """ res = x.mul(y) # Perform a modular reduction, X = X % c, but leave X alone if c # is NULL. if c is not None: res = res.mod(c) return res def digits_from_nonneg_long(l): digits = [] while True: digits.append(_store_digit(_mask_digit(l & MASK))) l = l >> SHIFT if not l: return digits[:] # to make it non-resizable digits_from_nonneg_long._annspecialcase_ = "specialize:argtype(0)" def digits_for_most_neg_long(l): # This helper only works if 'l' is the most negative integer of its # type, which in base 2 looks like: 1000000..0000 digits = [] while _mask_digit(l) == 0: digits.append(NULLDIGIT) l = l >> SHIFT # now 'l' looks like: ...111100000 # turn it into: ...000100000 # to drop the extra unwanted 1's introduced by the signed right shift l = -intmask(l) assert l & MASK == l digits.append(_store_digit(l)) return digits[:] # to make it non-resizable digits_for_most_neg_long._annspecialcase_ = "specialize:argtype(0)" def args_from_rarith_int1(x): if x > 0: return digits_from_nonneg_long(x), 1 elif x == 0: return [NULLDIGIT], 0 elif x != most_neg_value_of_same_type(x): # normal case return digits_from_nonneg_long(-x), -1 else: # the most negative integer! hacks needed... return digits_for_most_neg_long(x), -1 args_from_rarith_int1._annspecialcase_ = "specialize:argtype(0)" def args_from_rarith_int(x): return args_from_rarith_int1(widen(x)) args_from_rarith_int._annspecialcase_ = "specialize:argtype(0)" # ^^^ specialized by the precise type of 'x', which is typically a r_xxx # instance from rlib.rarithmetic def args_from_long(x): "NOT_RPYTHON" if x >= 0: if x == 0: return [NULLDIGIT], 0 else: return digits_from_nonneg_long(x), 1 else: return digits_from_nonneg_long(-x), -1 def _x_add(a, b): """ Add the absolute values of two bigint integers. """ size_a = a.numdigits() size_b = b.numdigits() # Ensure a is the larger of the two: if size_a < size_b: a, b = b, a size_a, size_b = size_b, size_a z = rbigint([NULLDIGIT] * (size_a + 1), 1) i = UDIGIT_TYPE(0) carry = UDIGIT_TYPE(0) while i < size_b: carry += a.udigit(i) + b.udigit(i) z.setdigit(i, carry) carry >>= SHIFT i += 1 while i < size_a: carry += a.udigit(i) z.setdigit(i, carry) carry >>= SHIFT i += 1 z.setdigit(i, carry) z._normalize() return z def _x_int_add(a, b): """ Add the absolute values of one bigint and one integer. """ size_a = a.numdigits() z = rbigint([NULLDIGIT] * (size_a + 1), 1) i = UDIGIT_TYPE(1) carry = a.udigit(0) + abs(b) z.setdigit(0, carry) carry >>= SHIFT while i < size_a: carry += a.udigit(i) z.setdigit(i, carry) carry >>= SHIFT i += 1 z.setdigit(i, carry) z._normalize() return z def _x_sub(a, b): """ Subtract the absolute values of two integers. """ size_a = a.numdigits() size_b = b.numdigits() sign = 1 # Ensure a is the larger of the two: if size_a < size_b: sign = -1 a, b = b, a size_a, size_b = size_b, size_a elif size_a == size_b: # Find highest digit where a and b differ: i = size_a - 1 while i >= 0 and a.digit(i) == b.digit(i): i -= 1 if i < 0: return NULLRBIGINT if a.digit(i) < b.digit(i): sign = -1 a, b = b, a size_a = size_b = i+1 z = rbigint([NULLDIGIT] * size_a, sign, size_a) borrow = UDIGIT_TYPE(0) i = _load_unsigned_digit(0) while i < size_b: # The following assumes unsigned arithmetic # works modulo 2**N for some N>SHIFT. borrow = a.udigit(i) - b.udigit(i) - borrow z.setdigit(i, borrow) borrow >>= SHIFT #borrow &= 1 # Keep only one sign bit i += 1 while i < size_a: borrow = a.udigit(i) - borrow z.setdigit(i, borrow) borrow >>= SHIFT #borrow &= 1 i += 1 assert borrow == 0 z._normalize() return z def _x_int_sub(a, b): """ Subtract the absolute values of two integers. """ size_a = a.numdigits() bdigit = abs(b) if size_a == 1: # Find highest digit where a and b differ: adigit = a.digit(0) if adigit == bdigit: return NULLRBIGINT return rbigint.fromint(adigit - bdigit) z = rbigint([NULLDIGIT] * size_a, 1, size_a) i = _load_unsigned_digit(1) # The following assumes unsigned arithmetic # works modulo 2**N for some N>SHIFT. borrow = a.udigit(0) - bdigit z.setdigit(0, borrow) borrow >>= SHIFT #borrow &= 1 # Keep only one sign bit while i < size_a: borrow = a.udigit(i) - borrow z.setdigit(i, borrow) borrow >>= SHIFT #borrow &= 1 i += 1 assert borrow == 0 z._normalize() return z # A neat little table of power of twos. ptwotable = {} for x in range(SHIFT-1): ptwotable[r_longlong(2 << x)] = x+1 ptwotable[r_longlong(-2 << x)] = x+1 def _x_mul(a, b, digit=0): """ Grade school multiplication, ignoring the signs. Returns the absolute value of the product, or None if error. """ size_a = a.numdigits() size_b = b.numdigits() if a is b: # Efficient squaring per HAC, Algorithm 14.16: # http://www.cacr.math.uwaterloo.ca/hac/about/chap14.pdf # Gives slightly less than a 2x speedup when a == b, # via exploiting that each entry in the multiplication # pyramid appears twice (except for the size_a squares). z = rbigint([NULLDIGIT] * (size_a + size_b), 1) i = UDIGIT_TYPE(0) while i < size_a: f = a.widedigit(i) pz = i << 1 pa = i + 1 carry = z.widedigit(pz) + f * f z.setdigit(pz, carry) pz += 1 carry >>= SHIFT assert carry <= MASK # Now f is added in twice in each column of the # pyramid it appears. Same as adding f<<1 once. f <<= 1 while pa < size_a: carry += z.widedigit(pz) + a.widedigit(pa) * f pa += 1 z.setdigit(pz, carry) pz += 1 carry >>= SHIFT if carry: carry += z.widedigit(pz) z.setdigit(pz, carry) pz += 1 carry >>= SHIFT if carry: z.setdigit(pz, z.widedigit(pz) + carry) assert (carry >> SHIFT) == 0 i += 1 z._normalize() return z elif digit: if digit & (digit - 1) == 0: return b.lqshift(ptwotable[digit]) # Even if it's not power of two it can still be useful. return _muladd1(b, digit) # a is not b # use the following identity to reduce the number of operations # a * b = a_0*b_0 + sum_{i=1}^n(a_0*b_i + a_1*b_{i-1}) + a_1*b_n z = rbigint([NULLDIGIT] * (size_a + size_b), 1) i = UDIGIT_TYPE(0) size_a1 = UDIGIT_TYPE(size_a - 1) size_b1 = UDIGIT_TYPE(size_b - 1) while i < size_a1: f0 = a.widedigit(i) f1 = a.widedigit(i + 1) pz = i carry = z.widedigit(pz) + b.widedigit(0) * f0 z.setdigit(pz, carry) pz += 1 carry >>= SHIFT j = UDIGIT_TYPE(0) while j < size_b1: # this operation does not overflow using # SHIFT = (LONG_BIT // 2) - 1 = B - 1; in fact before it # carry and z.widedigit(pz) are less than 2**(B - 1); # b.widedigit(j + 1) * f0 < (2**(B-1) - 1)**2; so # carry + z.widedigit(pz) + b.widedigit(j + 1) * f0 + # b.widedigit(j) * f1 < 2**(2*B - 1) - 2**B < 2**LONG)BIT - 1 carry += z.widedigit(pz) + b.widedigit(j + 1) * f0 + \ b.widedigit(j) * f1 z.setdigit(pz, carry) pz += 1 carry >>= SHIFT j += 1 # carry < 2**(B + 1) - 2 carry += z.widedigit(pz) + b.widedigit(size_b1) * f1 z.setdigit(pz, carry) pz += 1 carry >>= SHIFT # carry < 4 if carry: z.setdigit(pz, carry) assert (carry >> SHIFT) == 0 i += 2 if size_a & 1: pz = size_a1 f = a.widedigit(pz) pb = 0 carry = _widen_digit(0) while pb < size_b: carry += z.widedigit(pz) + b.widedigit(pb) * f pb += 1 z.setdigit(pz, carry) pz += 1 carry >>= SHIFT if carry: z.setdigit(pz, z.widedigit(pz) + carry) z._normalize() return z def _kmul_split(n, size): """ A helper for Karatsuba multiplication (k_mul). Takes a bigint "n" and an integer "size" representing the place to split, and sets low and high such that abs(n) == (high << size) + low, viewing the shift as being by digits. The sign bit is ignored, and the return values are >= 0. """ size_n = n.numdigits() size_lo = min(size_n, size) # We use "or" her to avoid having a check where list can be empty in _normalize. lo = rbigint(n._digits[:size_lo] or [NULLDIGIT], 1) hi = rbigint(n._digits[size_lo:n.size] or [NULLDIGIT], 1) lo._normalize() hi._normalize() return hi, lo def _k_mul(a, b): """ Karatsuba multiplication. Ignores the input signs, and returns the absolute value of the product (or raises if error). See Knuth Vol. 2 Chapter 4.3.3 (Pp. 294-295). """ asize = a.numdigits() bsize = b.numdigits() # (ah*X+al)(bh*X+bl) = ah*bh*X*X + (ah*bl + al*bh)*X + al*bl # Let k = (ah+al)*(bh+bl) = ah*bl + al*bh + ah*bh + al*bl # Then the original product is # ah*bh*X*X + (k - ah*bh - al*bl)*X + al*bl # By picking X to be a power of 2, "*X" is just shifting, and it's # been reduced to 3 multiplies on numbers half the size. # Split a & b into hi & lo pieces. shift = bsize >> 1 ah, al = _kmul_split(a, shift) if ah.sign == 0: # This may happen now that _k_lopsided_mul ain't catching it. return _x_mul(a, b) #assert ah.sign == 1 # the split isn't degenerate if a is b: bh = ah bl = al else: bh, bl = _kmul_split(b, shift) # The plan: # 1. Allocate result space (asize + bsize digits: that's always # enough). # 2. Compute ah*bh, and copy into result at 2*shift. # 3. Compute al*bl, and copy into result at 0. Note that this # can't overlap with #2. # 4. Subtract al*bl from the result, starting at shift. This may # underflow (borrow out of the high digit), but we don't care: # we're effectively doing unsigned arithmetic mod # BASE**(sizea + sizeb), and so long as the *final* result fits, # borrows and carries out of the high digit can be ignored. # 5. Subtract ah*bh from the result, starting at shift. # 6. Compute (ah+al)*(bh+bl), and add it into the result starting # at shift. # 1. Allocate result space. ret = rbigint([NULLDIGIT] * (asize + bsize), 1) # 2. t1 <- ah*bh, and copy into high digits of result. t1 = ah.mul(bh) assert t1.sign >= 0 assert 2*shift + t1.numdigits() <= ret.numdigits() for i in range(t1.numdigits()): ret._digits[2*shift + i] = t1._digits[i] # Zero-out the digits higher than the ah*bh copy. */ ## ignored, assuming that we initialize to zero ##i = ret->ob_size - 2*shift - t1->ob_size; ##if (i) ## memset(ret->ob_digit + 2*shift + t1->ob_size, 0, ## i * sizeof(digit)); # 3. t2 <- al*bl, and copy into the low digits. t2 = al.mul(bl) assert t2.sign >= 0 assert t2.numdigits() <= 2*shift # no overlap with high digits for i in range(t2.numdigits()): ret._digits[i] = t2._digits[i] # Zero out remaining digits. ## ignored, assuming that we initialize to zero ##i = 2*shift - t2->ob_size; /* number of uninitialized digits */ ##if (i) ## memset(ret->ob_digit + t2->ob_size, 0, i * sizeof(digit)); # 4 & 5. Subtract ah*bh (t1) and al*bl (t2). We do al*bl first # because it's fresher in cache. i = ret.numdigits() - shift # # digits after shift _v_isub(ret, shift, i, t2, t2.numdigits()) _v_isub(ret, shift, i, t1, t1.numdigits()) # 6. t3 <- (ah+al)(bh+bl), and add into result. t1 = _x_add(ah, al) if a is b: t2 = t1 else: t2 = _x_add(bh, bl) t3 = t1.mul(t2) assert t3.sign >= 0 # Add t3. It's not obvious why we can't run out of room here. # See the (*) comment after this function. _v_iadd(ret, shift, i, t3, t3.numdigits()) ret._normalize() return ret """ (*) Why adding t3 can't "run out of room" above. Let f(x) mean the floor of x and c(x) mean the ceiling of x. Some facts to start with: 1. For any integer i, i = c(i/2) + f(i/2). In particular, bsize = c(bsize/2) + f(bsize/2). 2. shift = f(bsize/2) 3. asize <= bsize 4. Since we call k_lopsided_mul if asize*2 <= bsize, asize*2 > bsize in this routine, so asize > bsize/2 >= f(bsize/2) in this routine. We allocated asize + bsize result digits, and add t3 into them at an offset of shift. This leaves asize+bsize-shift allocated digit positions for t3 to fit into, = (by #1 and #2) asize + f(bsize/2) + c(bsize/2) - f(bsize/2) = asize + c(bsize/2) available digit positions. bh has c(bsize/2) digits, and bl at most f(size/2) digits. So bh+hl has at most c(bsize/2) digits + 1 bit. If asize == bsize, ah has c(bsize/2) digits, else ah has at most f(bsize/2) digits, and al has at most f(bsize/2) digits in any case. So ah+al has at most (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 1 bit. The product (ah+al)*(bh+bl) therefore has at most c(bsize/2) + (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits and we have asize + c(bsize/2) available digit positions. We need to show this is always enough. An instance of c(bsize/2) cancels out in both, so the question reduces to whether asize digits is enough to hold (asize == bsize ? c(bsize/2) : f(bsize/2)) digits + 2 bits. If asize < bsize, then we're asking whether asize digits >= f(bsize/2) digits + 2 bits. By #4, asize is at least f(bsize/2)+1 digits, so this in turn reduces to whether 1 digit is enough to hold 2 bits. This is so since SHIFT=15 >= 2. If asize == bsize, then we're asking whether bsize digits is enough to hold c(bsize/2) digits + 2 bits, or equivalently (by #1) whether f(bsize/2) digits is enough to hold 2 bits. This is so if bsize >= 2, which holds because bsize >= KARATSUBA_CUTOFF >= 2. Note that since there's always enough room for (ah+al)*(bh+bl), and that's clearly >= each of ah*bh and al*bl, there's always enough room to subtract ah*bh and al*bl too. """ def _k_lopsided_mul(a, b): # Not in use anymore, only account for like 1% performance. Perhaps if we # Got rid of the extra list allocation this would be more effective. """ b has at least twice the digits of a, and a is big enough that Karatsuba would pay off *if* the inputs had balanced sizes. View b as a sequence of slices, each with a->ob_size digits, and multiply the slices by a, one at a time. This gives k_mul balanced inputs to work with, and is also cache-friendly (we compute one double-width slice of the result at a time, then move on, never bactracking except for the helpful single-width slice overlap between successive partial sums). """ asize = a.numdigits() bsize = b.numdigits() # nbdone is # of b digits already multiplied assert asize > KARATSUBA_CUTOFF assert 2 * asize <= bsize # Allocate result space, and zero it out. ret = rbigint([NULLDIGIT] * (asize + bsize), 1) # Successive slices of b are copied into bslice. #bslice = rbigint([0] * asize, 1) # XXX we cannot pre-allocate, see comments below! # XXX prevent one list from being created. bslice = rbigint(sign=1) nbdone = 0 while bsize > 0: nbtouse = min(bsize, asize) # Multiply the next slice of b by a. #bslice.digits[:nbtouse] = b.digits[nbdone : nbdone + nbtouse] # XXX: this would be more efficient if we adopted CPython's # way to store the size, instead of resizing the list! # XXX change the implementation, encoding length via the sign. bslice._digits = b._digits[nbdone : nbdone + nbtouse] bslice.size = nbtouse product = _k_mul(a, bslice) # Add into result. _v_iadd(ret, nbdone, ret.numdigits() - nbdone, product, product.numdigits()) bsize -= nbtouse nbdone += nbtouse ret._normalize() return ret def _inplace_divrem1(pout, pin, n, size=0): """ Divide bigint pin by non-zero digit n, storing quotient in pout, and returning the remainder. It's OK for pin == pout on entry. """ rem = _widen_digit(0) assert n > 0 and n <= MASK if not size: size = pin.numdigits() size -= 1 while size >= 0: rem = (rem << SHIFT) | pin.widedigit(size) hi = rem // n pout.setdigit(size, hi) rem -= hi * n size -= 1 return rffi.cast(lltype.Signed, rem) def _divrem1(a, n): """ Divide a bigint integer by a digit, returning both the quotient and the remainder as a tuple. The sign of a is ignored; n should not be zero. """ assert n > 0 and n <= MASK size = a.numdigits() z = rbigint([NULLDIGIT] * size, 1, size) rem = _inplace_divrem1(z, a, n) z._normalize() return z, rem def _v_iadd(x, xofs, m, y, n): """ x and y are rbigints, m >= n required. x.digits[0:n] is modified in place, by adding y.digits[0:m] to it. Carries are propagated as far as x[m-1], and the remaining carry (0 or 1) is returned. Python adaptation: x is addressed relative to xofs! """ carry = UDIGIT_TYPE(0) assert m >= n i = _load_unsigned_digit(xofs) iend = xofs + n while i < iend: carry += x.udigit(i) + y.udigit(i-xofs) x.setdigit(i, carry) carry >>= SHIFT i += 1 iend = xofs + m while carry and i < iend: carry += x.udigit(i) x.setdigit(i, carry) carry >>= SHIFT i += 1 return carry def _v_isub(x, xofs, m, y, n): """ x and y are rbigints, m >= n required. x.digits[0:n] is modified in place, by substracting y.digits[0:m] to it. Borrows are propagated as far as x[m-1], and the remaining borrow (0 or 1) is returned. Python adaptation: x is addressed relative to xofs! """ borrow = UDIGIT_TYPE(0) assert m >= n i = _load_unsigned_digit(xofs) iend = xofs + n while i < iend: borrow = x.udigit(i) - y.udigit(i-xofs) - borrow x.setdigit(i, borrow) borrow >>= SHIFT borrow &= 1 # keep only 1 sign bit i += 1 iend = xofs + m while borrow and i < iend: borrow = x.udigit(i) - borrow x.setdigit(i, borrow) borrow >>= SHIFT borrow &= 1 i += 1 return borrow def _muladd1(a, n, extra=0): """Multiply by a single digit and add a single digit, ignoring the sign. """ size_a = a.numdigits() z = rbigint([NULLDIGIT] * (size_a+1), 1) assert extra & MASK == extra carry = _widen_digit(extra) i = 0 while i < size_a: carry += a.widedigit(i) * n z.setdigit(i, carry) carry >>= SHIFT i += 1 z.setdigit(i, carry) z._normalize() return z _muladd1._annspecialcase_ = "specialize:argtype(2)" def _v_lshift(z, a, m, d): """ Shift digit vector a[0:m] d bits left, with 0 <= d < SHIFT. Put * result in z[0:m], and return the d bits shifted out of the top. """ carry = 0 assert 0 <= d and d < SHIFT i = 0 while i < m: acc = a.widedigit(i) << d | carry z.setdigit(i, acc) carry = acc >> SHIFT i += 1 return carry def _v_rshift(z, a, m, d): """ Shift digit vector a[0:m] d bits right, with 0 <= d < PyLong_SHIFT. Put * result in z[0:m], and return the d bits shifted out of the bottom. """ carry = _widen_digit(0) acc = _widen_digit(0) mask = (1 << d) - 1 assert 0 <= d and d < SHIFT i = m-1 while i >= 0: acc = (carry << SHIFT) | a.widedigit(i) carry = acc & mask z.setdigit(i, acc >> d) i -= 1 return carry def _x_divrem(v1, w1): """ Unsigned bigint division with remainder -- the algorithm """ size_v = v1.numdigits() size_w = w1.numdigits() assert size_v >= size_w and size_w > 1 v = rbigint([NULLDIGIT] * (size_v + 1), 1, size_v + 1) w = rbigint([NULLDIGIT] * size_w, 1, size_w) """ normalize: shift w1 left so that its top digit is >= PyLong_BASE/2. shift v1 left by the same amount. Results go into w and v. """ d = SHIFT - bits_in_digit(w1.digit(abs(size_w-1))) carry = _v_lshift(w, w1, size_w, d) assert carry == 0 carry = _v_lshift(v, v1, size_v, d) if carry != 0 or v.digit(abs(size_v-1)) >= w.digit(abs(size_w-1)): v.setdigit(size_v, carry) size_v += 1 """ Now v->ob_digit[size_v-1] < w->ob_digit[size_w-1], so quotient has at most (and usually exactly) k = size_v - size_w digits. """ k = size_v - size_w if k == 0: # We can't use v1, nor NULLRBIGINT here as some function modify the result. assert _v_rshift(w, v, size_w, d) == 0 w._normalize() return rbigint([NULLDIGIT]), w assert k > 0 a = rbigint([NULLDIGIT] * k, 1, k) wm1 = w.widedigit(abs(size_w-1)) wm2 = w.widedigit(abs(size_w-2)) j = size_v - 1 k -= 1 while k >= 0: assert j >= 0 """ inner loop: divide vk[0:size_w+1] by w0[0:size_w], giving single-digit quotient q, remainder in vk[0:size_w]. """ # estimate quotient digit q; may overestimate by 1 (rare) if j >= size_v: vtop = 0 else: vtop = v.widedigit(j) assert vtop <= wm1 vv = (vtop << SHIFT) | v.widedigit(abs(j-1)) q = vv / wm1 r = vv - wm1 * q while wm2 * q > ((r << SHIFT) | v.widedigit(abs(j-2))): q -= 1 r += wm1 #assert q <= MASK+1, We need to compare to BASE <=, but ehm, it gives a buildin long error. So we ignore this. # subtract q*w0[0:size_w] from vk[0:size_w+1] zhi = 0 i = 0 while i < size_w: z = v.widedigit(k+i) + zhi - q * w.widedigit(i) v.setdigit(k+i, z) zhi = z >> SHIFT i += 1 # add w back if q was too large (this branch taken rarely) if vtop + zhi < 0: carry = UDIGIT_TYPE(0) i = 0 while i < size_w: carry += v.udigit(k+i) + w.udigit(i) v.setdigit(k+i, carry) carry >>= SHIFT i += 1 q -= 1 # store quotient digit a.setdigit(k, q) k -= 1 j -= 1 carry = _v_rshift(w, v, size_w, d) assert carry == 0 a._normalize() w._normalize() return a, w def _divrem(a, b): """ Long division with remainder, top-level routine """ size_a = a.numdigits() size_b = b.numdigits() if b.sign == 0: raise ZeroDivisionError("long division or modulo by zero") if (size_a < size_b or (size_a == size_b and a.digit(abs(size_a-1)) < b.digit(abs(size_b-1)))): # |a| < |b| return NULLRBIGINT, a# result is 0 if size_b == 1: z, urem = _divrem1(a, b.digit(0)) rem = rbigint([_store_digit(urem)], int(urem != 0), 1) else: z, rem = _x_divrem(a, b) # Set the signs. # The quotient z has the sign of a*b; # the remainder r has the sign of a, # so a = b*z + r. if a.sign != b.sign: z.sign = - z.sign if a.sign < 0 and rem.sign != 0: rem.sign = - rem.sign return z, rem # ______________ conversions to double _______________ def _AsScaledDouble(v): """ NBITS_WANTED should be > the number of bits in a double's precision, but small enough so that 2**NBITS_WANTED is within the normal double range. nbitsneeded is set to 1 less than that because the most-significant Python digit contains at least 1 significant bit, but we don't want to bother counting them (catering to the worst case cheaply). 57 is one more than VAX-D double precision; I (Tim) don't know of a double format with more precision than that; it's 1 larger so that we add in at least one round bit to stand in for the ignored least-significant bits. """ NBITS_WANTED = 57 if v.sign == 0: return 0.0, 0 i = v.numdigits() - 1 sign = v.sign x = float(v.digit(i)) nbitsneeded = NBITS_WANTED - 1 # Invariant: i Python digits remain unaccounted for. while i > 0 and nbitsneeded > 0: i -= 1 x = x * FLOAT_MULTIPLIER + float(v.digit(i)) nbitsneeded -= SHIFT # There are i digits we didn't shift in. Pretending they're all # zeroes, the true value is x * 2**(i*SHIFT). exponent = i assert x > 0.0 return x * sign, exponent ##def ldexp(x, exp): ## assert type(x) is float ## lb1 = LONG_BIT - 1 ## multiplier = float(1 << lb1) ## while exp >= lb1: ## x *= multiplier ## exp -= lb1 ## if exp: ## x *= float(1 << exp) ## return x # note that math.ldexp checks for overflows, # while the C ldexp is not guaranteed to do. # XXX make sure that we don't ignore this! # YYY no, we decided to do ignore this! @jit.dont_look_inside def _AsDouble(n): """ Get a C double from a bigint object. """ # This is a "correctly-rounded" version from Python 2.7. # from rpython.rlib import rfloat DBL_MANT_DIG = rfloat.DBL_MANT_DIG # 53 for IEEE 754 binary64 DBL_MAX_EXP = rfloat.DBL_MAX_EXP # 1024 for IEEE 754 binary64 assert DBL_MANT_DIG < r_ulonglong.BITS # Reduce to case n positive. sign = n.sign if sign == 0: return 0.0 elif sign < 0: n = n.neg() # Find exponent: 2**(exp - 1) <= n < 2**exp exp = n.bit_length() # Get top DBL_MANT_DIG + 2 significant bits of n, with a 'sticky' # last bit: that is, the least significant bit of the result is 1 # iff any of the shifted-out bits is set. shift = DBL_MANT_DIG + 2 - exp if shift >= 0: q = _AsULonglong_mask(n) << shift if not we_are_translated(): assert q == n.tolong() << shift # no masking actually done else: shift = -shift n2 = n.rshift(shift) q = _AsULonglong_mask(n2) if not we_are_translated(): assert q == n2.tolong() # no masking actually done if not n.eq(n2.lshift(shift)): q |= 1 # Now remove the excess 2 bits, rounding to nearest integer (with # ties rounded to even). q = (q >> 2) + r_uint((bool(q & 2) and bool(q & 5))) if exp > DBL_MAX_EXP or (exp == DBL_MAX_EXP and q == r_ulonglong(1) << DBL_MANT_DIG): raise OverflowError("integer too large to convert to float") ad = math.ldexp(float(q), exp - DBL_MANT_DIG) if sign < 0: ad = -ad return ad def _loghelper(func, arg): """ A decent logarithm is easy to compute even for huge bigints, but libm can't do that by itself -- loghelper can. func is log or log10. Note that overflow isn't possible: a bigint can contain no more than INT_MAX * SHIFT bits, so has value certainly less than 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is small enough to fit in an IEEE single. log and log10 are even smaller. """ x, e = _AsScaledDouble(arg) if x <= 0.0: raise ValueError # Value is ~= x * 2**(e*SHIFT), so the log ~= # log(x) + log(2) * e * SHIFT. # CAUTION: e*SHIFT may overflow using int arithmetic, # so force use of double. */ return func(x) + (e * float(SHIFT) * func(2.0)) _loghelper._annspecialcase_ = 'specialize:arg(0)' # ____________________________________________________________ BASE_AS_FLOAT = float(1 << SHIFT) # note that it may not fit an int BitLengthTable = ''.join(map(chr, [ 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5])) def bits_in_digit(d): # returns the unique integer k such that 2**(k-1) <= d < # 2**k if d is nonzero, else 0. d_bits = 0 while d >= 32: d_bits += 6 d >>= 6 d_bits += ord(BitLengthTable[d]) return d_bits def _truediv_result(result, negate): if negate: result = -result return result def _truediv_overflow(): raise OverflowError("integer division result too large for a float") def _bigint_true_divide(a, b): # A longish method to obtain the floating-point result with as much # precision as theoretically possible. The code is almost directly # copied from CPython. See there (Objects/longobject.c, # long_true_divide) for detailled comments. Method in a nutshell: # # 0. reduce to case a, b > 0; filter out obvious underflow/overflow # 1. choose a suitable integer 'shift' # 2. use integer arithmetic to compute x = floor(2**-shift*a/b) # 3. adjust x for correct rounding # 4. convert x to a double dx with the same value # 5. return ldexp(dx, shift). from rpython.rlib import rfloat DBL_MANT_DIG = rfloat.DBL_MANT_DIG # 53 for IEEE 754 binary64 DBL_MAX_EXP = rfloat.DBL_MAX_EXP # 1024 for IEEE 754 binary64 DBL_MIN_EXP = rfloat.DBL_MIN_EXP MANT_DIG_DIGITS = DBL_MANT_DIG // SHIFT MANT_DIG_BITS = DBL_MANT_DIG % SHIFT # Reduce to case where a and b are both positive. negate = (a.sign < 0) ^ (b.sign < 0) if not b.tobool(): raise ZeroDivisionError("long division or modulo by zero") if not a.tobool(): return _truediv_result(0.0, negate) a_size = a.numdigits() b_size = b.numdigits() # Fast path for a and b small (exactly representable in a double). # Relies on floating-point division being correctly rounded; results # may be subject to double rounding on x86 machines that operate with # the x87 FPU set to 64-bit precision. a_is_small = (a_size <= MANT_DIG_DIGITS or (a_size == MANT_DIG_DIGITS+1 and a.digit(MANT_DIG_DIGITS) >> MANT_DIG_BITS == 0)) b_is_small = (b_size <= MANT_DIG_DIGITS or (b_size == MANT_DIG_DIGITS+1 and b.digit(MANT_DIG_DIGITS) >> MANT_DIG_BITS == 0)) if a_is_small and b_is_small: a_size -= 1 da = float(a.digit(a_size)) while True: a_size -= 1 if a_size < 0: break da = da * BASE_AS_FLOAT + a.digit(a_size) b_size -= 1 db = float(b.digit(b_size)) while True: b_size -= 1 if b_size < 0: break db = db * BASE_AS_FLOAT + b.digit(b_size) return _truediv_result(da / db, negate) # Catch obvious cases of underflow and overflow diff = a_size - b_size if diff > sys.maxint/SHIFT - 1: return _truediv_overflow() # Extreme overflow elif diff < 1 - sys.maxint/SHIFT: return _truediv_result(0.0, negate) # Extreme underflow # Next line is now safe from overflowing integers diff = (diff * SHIFT + bits_in_digit(a.digit(a_size - 1)) - bits_in_digit(b.digit(b_size - 1))) # Now diff = a_bits - b_bits. if diff > DBL_MAX_EXP: return _truediv_overflow() elif diff < DBL_MIN_EXP - DBL_MANT_DIG - 1: return _truediv_result(0.0, negate) # Choose value for shift; see comments for step 1 in CPython. shift = max(diff, DBL_MIN_EXP) - DBL_MANT_DIG - 2 inexact = False # x = abs(a * 2**-shift) if shift <= 0: x = a.lshift(-shift) else: x = a.rshift(shift, dont_invert=True) # set inexact if any of the bits shifted out is nonzero if not a.eq(x.lshift(shift)): inexact = True # x //= b. If the remainder is nonzero, set inexact. x, rem = _divrem(x, b) if rem.tobool(): inexact = True assert x.tobool() # result of division is never zero x_size = x.numdigits() x_bits = (x_size-1)*SHIFT + bits_in_digit(x.digit(x_size-1)) # The number of extra bits that have to be rounded away. extra_bits = max(x_bits, DBL_MIN_EXP - shift) - DBL_MANT_DIG assert extra_bits == 2 or extra_bits == 3 # Round by remembering a modified copy of the low digit of x mask = r_uint(1 << (extra_bits - 1)) low = x.udigit(0) | r_uint(inexact) if (low & mask) != 0 and (low & (3*mask-1)) != 0: low += mask x_digit_0 = low & ~(mask-1) # Convert x to a double dx; the conversion is exact. x_size -= 1 dx = 0.0 while x_size > 0: dx += x.digit(x_size) dx *= BASE_AS_FLOAT x_size -= 1 dx += x_digit_0 # Check whether ldexp result will overflow a double. if (shift + x_bits >= DBL_MAX_EXP and (shift + x_bits > DBL_MAX_EXP or dx == math.ldexp(1.0, x_bits))): return _truediv_overflow() return _truediv_result(math.ldexp(dx, shift), negate) # ____________________________________________________________ BASE8 = '01234567' BASE10 = '0123456789' BASE16 = '0123456789abcdef' def _format_base2_notzero(a, digits, prefix='', suffix=''): base = len(digits) # JRH: special case for power-of-2 bases accum = 0 accumbits = 0 # # of bits in accum basebits = 0 i = base while i > 1: basebits += 1 i >>= 1 # Compute a rough upper bound for the length of the string size_a = a.numdigits() i = 5 + len(prefix) + len(suffix) + (size_a*SHIFT + basebits-1) // basebits result = [chr(0)] * i next_char_index = i j = len(suffix) while j > 0: next_char_index -= 1 j -= 1 result[next_char_index] = suffix[j] i = 0 while i < size_a: accum |= a.widedigit(i) << accumbits accumbits += SHIFT assert accumbits >= basebits while 1: cdigit = intmask(accum & (base - 1)) next_char_index -= 1 assert next_char_index >= 0 result[next_char_index] = digits[cdigit] accumbits -= basebits accum >>= basebits if i < size_a - 1: if accumbits < basebits: break else: if accum <= 0: break i += 1 j = len(prefix) while j > 0: next_char_index -= 1 j -= 1 result[next_char_index] = prefix[j] if a.sign < 0: next_char_index -= 1 result[next_char_index] = '-' assert next_char_index >= 0 # otherwise, buffer overflow (this is also a # hint for the annotator for the slice below) return ''.join(result[next_char_index:]) class _PartsCache(object): def __init__(self): # 36 - 3, because bases 0, 1 make no sense # and 2 is handled differently self.parts_cache = [None] * 34 self.mindigits = [0] * 34 for i in range(34): base = i + 3 mindigits = 1 while base ** mindigits < sys.maxint: mindigits += 1 mindigits -= 1 self.mindigits[i] = mindigits def get_cached_parts(self, base): index = base - 3 res = self.parts_cache[index] if res is None: rbase = rbigint.fromint(base) part = rbase.pow(rbigint.fromint(self.mindigits[index])) res = [part] self.parts_cache[base - 3] = res return res def get_mindigits(self, base): return self.mindigits[base - 3] _parts_cache = _PartsCache() def _format_int_general(val, digits): base = len(digits) out = [] while val: out.append(digits[val % base]) val //= base out.reverse() return "".join(out) def _format_int10(val, digits): return str(val) @specialize.arg(7) def _format_recursive(x, i, output, pts, digits, size_prefix, mindigits, _format_int): # bottomed out with min_digit sized pieces # use str of ints if i < 0: # this checks whether any digit has been appended yet if output.getlength() == size_prefix: if x.sign != 0: s = _format_int(x.toint(), digits) output.append(s) else: s = _format_int(x.toint(), digits) output.append_multiple_char(digits[0], mindigits - len(s)) output.append(s) else: top, bot = x.divmod(pts[i]) # split the number _format_recursive(top, i-1, output, pts, digits, size_prefix, mindigits, _format_int) _format_recursive(bot, i-1, output, pts, digits, size_prefix, mindigits, _format_int) def _format(x, digits, prefix='', suffix=''): if x.sign == 0: return prefix + "0" + suffix base = len(digits) assert base >= 2 and base <= 36 if (base & (base - 1)) == 0: return _format_base2_notzero(x, digits, prefix, suffix) negative = x.sign < 0 if negative: x = x.neg() rbase = rbigint.fromint(base) two = rbigint.fromint(2) pts = _parts_cache.get_cached_parts(base) mindigits = _parts_cache.get_mindigits(base) stringsize = mindigits startindex = 0 for startindex, part in enumerate(pts): if not part.lt(x): break stringsize *= 2 # XXX can this overflow on 32 bit? else: # not enough parts computed yet while pts[-1].lt(x): pts.append(pts[-1].pow(two)) stringsize *= 2 startindex = len(pts) - 1 # remove first base**2**i greater than x startindex -= 1 output = StringBuilder(stringsize) if negative: output.append('-') output.append(prefix) if digits == BASE10: _format_recursive( x, startindex, output, pts, digits, output.getlength(), mindigits, _format_int10) else: _format_recursive( x, startindex, output, pts, digits, output.getlength(), mindigits, _format_int_general) output.append(suffix) return output.build() def _bitwise(a, op, b): # '&', '|', '^' """ Bitwise and/or/xor operations """ if a.sign < 0: a = a.invert() maska = MASK else: maska = 0 if b.sign < 0: b = b.invert() maskb = MASK else: maskb = 0 negz = 0 if op == '^': if maska != maskb: maska ^= MASK negz = -1 elif op == '&': if maska and maskb: op = '|' maska ^= MASK maskb ^= MASK negz = -1 elif op == '|': if maska or maskb: op = '&' maska ^= MASK maskb ^= MASK negz = -1 # JRH: The original logic here was to allocate the result value (z) # as the longer of the two operands. However, there are some cases # where the result is guaranteed to be shorter than that: AND of two # positives, OR of two negatives: use the shorter number. AND with # mixed signs: use the positive number. OR with mixed signs: use the # negative number. After the transformations above, op will be '&' # iff one of these cases applies, and mask will be non-0 for operands # whose length should be ignored. size_a = a.numdigits() size_b = b.numdigits() if op == '&': if maska: size_z = size_b else: if maskb: size_z = size_a else: size_z = min(size_a, size_b) else: size_z = max(size_a, size_b) z = rbigint([NULLDIGIT] * size_z, 1, size_z) i = 0 while i < size_z: if i < size_a: diga = a.digit(i) ^ maska else: diga = maska if i < size_b: digb = b.digit(i) ^ maskb else: digb = maskb if op == '&': z.setdigit(i, diga & digb) elif op == '|': z.setdigit(i, diga | digb) elif op == '^': z.setdigit(i, diga ^ digb) i += 1 z._normalize() if negz == 0: return z return z.invert() _bitwise._annspecialcase_ = "specialize:arg(1)" def _int_bitwise(a, op, b): # '&', '|', '^' """ Bitwise and/or/xor operations """ if not int_in_valid_range(b): # Fallback to long. return _bitwise(a, op, rbigint.fromint(b)) if a.sign < 0: a = a.invert() maska = MASK else: maska = 0 if b < 0: b = ~b maskb = MASK else: maskb = 0 negz = 0 if op == '^': if maska != maskb: maska ^= MASK negz = -1 elif op == '&': if maska and maskb: op = '|' maska ^= MASK maskb ^= MASK negz = -1 elif op == '|': if maska or maskb: op = '&' maska ^= MASK maskb ^= MASK negz = -1 # JRH: The original logic here was to allocate the result value (z) # as the longer of the two operands. However, there are some cases # where the result is guaranteed to be shorter than that: AND of two # positives, OR of two negatives: use the shorter number. AND with # mixed signs: use the positive number. OR with mixed signs: use the # negative number. After the transformations above, op will be '&' # iff one of these cases applies, and mask will be non-0 for operands # whose length should be ignored. size_a = a.numdigits() if op == '&': if maska: size_z = 1 else: if maskb: size_z = size_a else: size_z = 1 else: size_z = size_a z = rbigint([NULLDIGIT] * size_z, 1, size_z) i = 0 while i < size_z: if i < size_a: diga = a.digit(i) ^ maska else: diga = maska if i == 0: digb = b ^ maskb else: digb = maskb if op == '&': z.setdigit(i, diga & digb) elif op == '|': z.setdigit(i, diga | digb) elif op == '^': z.setdigit(i, diga ^ digb) i += 1 z._normalize() if negz == 0: return z return z.invert() _int_bitwise._annspecialcase_ = "specialize:arg(1)" ULONGLONG_BOUND = r_ulonglong(1L << (r_longlong.BITS-1)) LONGLONG_MIN = r_longlong(-(1L << (r_longlong.BITS-1))) def _AsLongLong(v): """ Get a r_longlong integer from a bigint object. Raises OverflowError if overflow occurs. """ x = _AsULonglong_ignore_sign(v) # grr grr grr if x >= ULONGLONG_BOUND: if x == ULONGLONG_BOUND and v.sign < 0: x = LONGLONG_MIN else: raise OverflowError else: x = r_longlong(x) if v.sign < 0: x = -x return x def _AsULonglong_ignore_sign(v): x = r_ulonglong(0) i = v.numdigits() - 1 while i >= 0: prev = x x = (x << SHIFT) + r_ulonglong(v.widedigit(i)) if (x >> SHIFT) != prev: raise OverflowError( "long int too large to convert to unsigned long long int") i -= 1 return x def make_unsigned_mask_conversion(T): def _As_unsigned_mask(v): x = T(0) i = v.numdigits() - 1 while i >= 0: x = (x << SHIFT) + T(v.digit(i)) i -= 1 if v.sign < 0: x = -x return x return _As_unsigned_mask _AsULonglong_mask = make_unsigned_mask_conversion(r_ulonglong) _AsUInt_mask = make_unsigned_mask_conversion(r_uint) def _hash(v): # This is designed so that Python ints and longs with the # same value hash to the same value, otherwise comparisons # of mapping keys will turn out weird. Moreover, purely # to please decimal.py, we return a hash that satisfies # hash(x) == hash(x % ULONG_MAX). In particular, this # implies that hash(x) == hash(x % (2**64-1)). i = v.numdigits() - 1 sign = v.sign x = r_uint(0) LONG_BIT_SHIFT = LONG_BIT - SHIFT while i >= 0: # Force a native long #-bits (32 or 64) circular shift x = (x << SHIFT) | (x >> LONG_BIT_SHIFT) x += v.udigit(i) # If the addition above overflowed we compensate by # incrementing. This preserves the value modulo # ULONG_MAX. if x < v.udigit(i): x += 1 i -= 1 res = intmask(intmask(x) * sign) return res #_________________________________________________________________ # a few internal helpers def digits_max_for_base(base): dec_per_digit = 1 while base ** dec_per_digit < MASK: dec_per_digit += 1 dec_per_digit -= 1 return base ** dec_per_digit BASE_MAX = [0, 0] + [digits_max_for_base(_base) for _base in range(2, 37)] DEC_MAX = digits_max_for_base(10) assert DEC_MAX == BASE_MAX[10] def _decimalstr_to_bigint(s): # a string that has been already parsed to be decimal and valid, # is turned into a bigint p = 0 lim = len(s) sign = False if s[p] == '-': sign = True p += 1 elif s[p] == '+': p += 1 a = rbigint() tens = 1 dig = 0 ord0 = ord('0') while p < lim: dig = dig * 10 + ord(s[p]) - ord0 p += 1 tens *= 10 if tens == DEC_MAX or p == lim: a = _muladd1(a, tens, dig) tens = 1 dig = 0 if sign and a.sign == 1: a.sign = -1 return a def parse_digit_string(parser): # helper for fromstr a = rbigint() base = parser.base digitmax = BASE_MAX[base] tens, dig = 1, 0 while True: digit = parser.next_digit() if tens == digitmax or digit < 0: a = _muladd1(a, tens, dig) if digit < 0: break dig = digit tens = base else: dig = dig * base + digit tens *= base a.sign *= parser.sign return a
import tvm import tvm._ffi import numpy as np from functools import reduce from tvm.tensor_graph.core.utils import to_int, to_tuple, flatten_tir_graph, op_feature def make_tir_graph(fwd_graph, loss=None, optimizer=None, inference=True, need_output=True, need_grad=True): if inference: finputs, foutputs, fweights = fwd_graph() inputs = [x.tvm_tensor for x in finputs] weights = [x.tvm_tensor for x in fweights] outputs = [x.tvm_tensor for x in foutputs] labels = [] loss = None gradients = [] lr = None updates = [] tir_graph = tvm.tg.make_tir_graph_inference(inputs, outputs, weights) else: assert loss is not None and optimizer is not None bwd_graph = fwd_graph.make_backward(loss, optimizer) inputs = [x.tvm_tensor for x in bwd_graph.inputs] weights = [x.tvm_tensor for x in bwd_graph.weights] outputs = [x.tvm_tensor for x in bwd_graph.outputs] if need_output else [] labels = [x.tvm_tensor for x in bwd_graph.labels] loss = bwd_graph.loss.tvm_tensor gradients = [x.tvm_tensor for x in bwd_graph.gradients] if need_grad else [] lr = optimizer.lr_tensor updates = [x.tvm_tensor for x in bwd_graph.updates] tir_graph = tvm.tg.make_tir_graph_training(inputs, labels, outputs, weights, loss, gradients, lr, updates) return tir_graph @tvm._ffi.register_func("tg.graph.partition_policy") def partition_policy(graph, pre, post, number): pre_stat = graph.operation_stat_dict[pre] post_stat = graph.operation_stat_dict[post] # root op must be separated if pre_stat.must_compute_root: return True if pre_stat.num_consumers > 1: # do not fuse multi-output return True # if pre_stat.injective: # return False # if number > 10: # return True if pre_stat.reductive and post_stat.reductive: # do not fuse reductive nodes return True if pre_stat.injective and post_stat.injective: return False if pre_stat.injective and post_stat.reductive: return False if pre_stat.reductive and post_stat.injective: return True # if pre_stat.injective and post_stat.injective: # return ((not pre_stat.merge_backward) and post_stat.merge_backward) # if pre_stat.injective and post_stat.reductive: # return not pre_stat.merge_backward # if pre_stat.reductive and post_stat.injective: # return post_stat.merge_backward return True def set_partition_policy(policy): tvm._ffi.register_func("tg.graph.partition_policy", policy, True) """ Below are deprecated Python implementations They'll be removed in the future """ def is_injective(op): is_compute = isinstance(op, tvm.te.tensor.ComputeOp) has_reduce = hasattr(op, "reduce_axis") and op.reduce_axis return is_compute and (not has_reduce) def is_reductive(op): has_reduce = hasattr(op, "reduce_axis") and op.reduce_axis return has_reduce def remain_shape(op): is_compute = isinstance(op, tvm.te.tensor.ComputeOp) if not is_compute: return False ret = True output_shape = to_tuple(op.output(0).shape) for t in op.input_tensors: if to_tuple(t.shape) != output_shape: ret = False break return ret def able_inline(op, down_graph): is_compute = isinstance(op, tvm.te.tensor.ComputeOp) has_reduce = hasattr(op, "reduce_axis") and op.reduce_axis is_output = False for i in range(op.num_outputs): if op.output(i) not in down_graph: is_output = True break return is_compute and (not has_reduce) and (not is_output) class PyOpState(object): def __init__(self): self.injective = False self.elementwise = False self.reductive = False self.num_inputs = 0 self.num_consumers = 0 self.head = True # self.tail = False self.reductions = [] self.output_shape = [] self.num_add = 0 self.num_mul = 0 self.num_div = 0 self.num_branch = 0 self.num_logic = 0 self.num_special = 0 self.gflop = 0 self.input_occur_count = [] # is output self.must_root = False def set_states(self, op, down_graph, root_ops): assert isinstance(op, tvm.te.tensor.ComputeOp) self.injective = is_injective(op) # the output shapes of multi-output op are the same self.output_shape = list(to_tuple(op.output(0).shape)) self.reductive = is_reductive(op) self.elementwise = self.injective and remain_shape(op) self.num_inputs = len(op.input_tensors) for i in range(op.num_outputs): if op.output(i) in down_graph: self.num_consumers += len(down_graph[op.output(i)]) if self.reductive: for iv in op.reduce_axis: self.reductions.append(to_int(iv.dom.extent)) operation_count = tvm.tg.count_operation(op) for (k, v) in operation_count.items(): setattr(self, k.value, v.value) input_occur = tvm.tg.count_input_occur(op.input_tensors, op) self.input_occur_count = [x.value for x in input_occur] if op in root_ops: self.must_root = True self.gflop = reduce(lambda x, y: x * y, self.reductions, 1) * \ reduce(lambda x, y: x * y, self.output_shape, 1) * \ (self.num_add + self.num_mul + self.num_div) / 1e9 class PyTIRSubGraph(object): def __init__(self): self.inputs = {} self.outputs = {} self.labels = {} self.weights = {} self.loss = {} self.gradients = {} self.lr = {} self.updates = {} self.index = {} self.connected_sets = {} self.op_stat_dict = {} self.op_list = [] self.ops = [] self.tensors = [] self.down_graph = {} self.c_list = [] def __repr__(self): ret = "PyTIRSubGraph\n" ret += "inputs=" + str(self.inputs) + "\n" ret += "outputs=" + str(self.outputs) + "\n" ret += "labels=" + str(self.labels) + "\n" ret += "weights=" + str(self.weights) + "\n" ret += "loss=" + str(self.loss) + "\n" ret += "gradients=" + str(self.gradients) + "\n" ret += "lr=" + str(self.lr) + "\n" ret += "updates=" + str(self.updates) + "\n" return ret def __str__(self): return self.__repr__() class PyTIRGraph(object): """PyTIRGraph inputs : (list of) tvm Tensor graph inputs outputs : (list of) tvm Tensor graph outputs wire : """ def __init__(self, inputs, labels, outputs, weights, loss, gradients, lr, updates, wire=None): if not isinstance(inputs, (list, tuple)): inputs = [inputs] if not isinstance(labels, (list, tuple)): labels = [labels] if not isinstance(outputs, (list, tuple)): outputs = [outputs] if not isinstance(weights, (list, tuple)): weights = [weights] if not isinstance(gradients, (list, tuple)): gradients = [gradients] if not isinstance(updates, (list, tuple)): updates = [updates] self.inputs = inputs self.labels = labels self.outputs = outputs self.weights = weights self.loss = loss self.gradients = gradients self.lr = lr self.updates = updates if self.loss is None: self.root_ops = [x.op for x in outputs + gradients + updates] else: self.root_ops = [x.op for x in outputs + [loss] + gradients + updates] if len(updates) > 0: assert len(weights) == len(updates) op_list, down_graph = flatten_tir_graph(self.root_ops) # a list of compute op after topological sorting self.op_list = op_list self.num_ops = len(op_list) self.op_feature_dict = {} # this graph is tensor to op list self.down_graph = down_graph # these are runtime properties self.ctx = None self.tvm_array_dict = {} # these are properties that can be modified by user self.np_array_dict = {} # these are properties that can be modified by scheduler self.op_stat_dict = {} self.subgraphs = {} self.subgraph_features = {} self.op_map = {} self.call_order = [] self.schedules = {} self.scheduled_subgraphs = set() self.bufs = {} self.functions = {} self.shared_functions = {} # initialize some of them for op in op_list: self.op_stat_dict[op] = PyOpState() # get the states of each op self._analyze() def _analyze(self): look_up = set(self.root_ops) def func(op): self.op_stat_dict[op].set_states(op, self.down_graph, look_up) feature = op_feature(op) self.op_feature_dict[op] = feature return None _ = list(map(func, self.op_list)) def partition_graph(self): partition = PyTIRSubGraphPartition() (subgraphs, op_map), order = partition.partion_graph(self) self.subgraphs = subgraphs self.op_map = op_map self.call_order = order def func(kv): mark, subgraph = kv tensors = list(set(list(subgraph.outputs.keys()) + list(subgraph.loss.keys()) + list(subgraph.gradients.keys()) + list(subgraph.updates.keys()))) subgraph.tensors = tensors ops = [x.op for x in tensors] op_list, down_graph = flatten_tir_graph(ops, output_first=True) op_stat_dict = {} for op in op_list: v = self.op_map[op] if v in self.op_stat_dict: op_stat_dict[op] = self.op_stat_dict[v] subgraph.op_stat_dict = op_stat_dict subgraph.ops = ops subgraph.op_list = op_list subgraph.down_graph = down_graph self.subgraph_features[mark] = ";".join(map(lambda x: self.op_feature_dict[self.op_map[x]], op_list)) return None _ = list(map(func, subgraphs.items())) def set_inputs(self, inputs): for tvm_tensor, np_array in inputs.items(): self.np_array_dict[tvm_tensor] = np_array def set_lr(self, lr): if self.lr is None: raise RuntimeError("TIR Graph has no learning rate.") self.np_array_dict[self.lr] = lr def set_labels(self, labels): for tvm_tensor, np_array in labels.items(): self.np_array_dict[tvm_tensor] = np_array def set_weights(self, weights): for tvm_tensor, np_array in weights.items(): self.np_array_dict[tvm_tensor] = np_array def get_tvm_array(self, tvm_tensor): return self.tvm_array_dict[tvm_tensor] def get_outputs(self): return [self.tvm_array_dict[x] for x in self.outputs] def get_loss(self, tvm_tensor): assert self.loss is not None return self.tvm_array_dict[self.loss] def get_gradients(self): return [self.tvm_array_dict[x] for x in self.gradients] def get_updates(self): return [self.tvm_array_dict[x] for x in self.updates] def clear_schedule(self): self.op_stat_dict = {} self.subgraphs = {} self.subgraph_features = {} self.op_map = {} self.call_order = [] self.schedules = {} self.scheduled_subgraphs = set() self.bufs = {} self.functions = {} self.shared_functions = {} # initialize some of them for op in self.op_list: self.op_stat_dict[op] = PyOpState() # get the states of each op self._analyze() def clear_runtime(self): self.ctx = None self.tvm_array_dict = {} def create_schedule_for(self, mark=0, force=False): subgraphs = self.subgraphs feature = self.subgraph_features[mark] if force: self.scheduled_subgraphs.remove(feature) elif feature in self.scheduled_subgraphs: return False subgraph = subgraphs[mark] inputs = list(subgraph.inputs.keys()) outputs = list(subgraph.outputs.keys()) weights = list(subgraph.weights.keys()) labels = list(subgraph.labels.keys()) loss = list(subgraph.loss.keys()) gradients = list(subgraph.gradients.keys()) lr = list(subgraph.lr.keys()) updates = list(subgraph.updates.keys()) sub_bufs = list(set(inputs + labels + outputs + weights + loss + gradients + lr + updates)) self.bufs[mark] = sub_bufs ops = [x.op for x in outputs + loss + gradients + updates] s = tvm.te.create_schedule(ops) self.schedules[mark] = s self.scheduled_subgraphs.add(feature) return True def create_schedule(self, force=False): subgraphs = self.subgraphs if force: self.scheduled_subgraphs = set() for mark, subgraph in subgraphs.items(): feature = self.subgraph_features[mark] if feature in self.scheduled_subgraphs: continue inputs = list(subgraph.inputs.keys()) outputs = list(subgraph.outputs.keys()) weights = list(subgraph.weights.keys()) labels = list(subgraph.labels.keys()) loss = list(subgraph.loss.keys()) gradients = list(subgraph.gradients.keys()) lr = list(subgraph.lr.keys()) updates = list(subgraph.updates.keys()) sub_bufs = list(set(inputs + labels + outputs + weights + loss + gradients + lr + updates)) self.bufs[mark] = sub_bufs ops = [x.op for x in outputs + loss + gradients + updates] s = tvm.te.create_schedule(ops) self.schedules[mark] = s self.scheduled_subgraphs.add(feature) def build_for(self, target, mark=0, force=False): feature = self.subgraph_features[mark] if force: self.shared_functions.pop(feature) elif feature in self.shared_functions: self.functions[mark] = self.shared_functions[feature] return True bufs = self.bufs[mark] sch = self.schedules[mark] try: func = tvm.build(sch, bufs, target=target) self.functions[mark] = func self.shared_functions[feature] = func # print("build success for subgraph", mark) return True except Exception as e: print("build error in subgraph", mark) print(e) # print(bufs) # print(tvm.lower(sch, bufs, simple_mode=True)) return False def build(self, target, force=False): fail = 0 if force: self.shared_functions = {} for mark, sch in self.schedules.items(): feature = self.subgraph_features[mark] if feature in self.shared_functions: self.functions[mark] = self.shared_functions[feature] continue bufs = self.bufs[mark] try: func = tvm.build(sch, bufs, target=target) self.functions[mark] = func self.shared_functions[feature] = func # print("build success for subgraph", mark) except Exception as e: fail += 1 print("build error in subgraph", mark) print(e) print(bufs) print(tvm.lower(sch, bufs, simple_mode=True)) return fail == 0 def allocate_buffer(self, target, dev, force=False): if not force and self.ctx is not None: return self.ctx = tvm.context(target, dev) # inputs for inp in self.inputs: if inp in self.np_array_dict: np_array = self.np_array_dict[inp].astype(inp.dtype) else: raise RuntimeError("Should provide input tensor for %s" % (str(inp))) self.tvm_array_dict[inp] = tvm.nd.array(np_array, self.ctx) # outputs for out in self.outputs: self.tvm_array_dict[out] = tvm.nd.empty(to_tuple(out.shape), out.dtype, ctx=self.ctx) # labels for label in self.labels: if label in self.np_array_dict: np_array = self.np_array_dict[label].astype(label.dtype) else: raise RuntimeError("Should provide input tensor for %s" % (str(label))) self.tvm_array_dict[label] = tvm.nd.array(np_array, self.ctx) # loss if self.loss is not None: self.tvm_array_dict[self.loss] = tvm.nd.empty(to_tuple(self.loss.shape), self.loss.dtype, ctx=self.ctx) # weights for weight in self.weights: if weight in self.np_array_dict: np_array = self.np_array_dict[weight].astype(weight.dtype) else: # TODO: add initializer np_array = np.random.uniform(-1, 1, to_tuple(weight.shape)).astype(weight.dtype) self.tvm_array_dict[weight] = tvm.nd.array(np_array, self.ctx) # gradients for grad in self.gradients: self.tvm_array_dict[grad] = tvm.nd.empty(to_tuple(grad.shape), grad.dtype, ctx=self.ctx) # lr if self.lr is not None: if self.lr in self.np_array_dict: np_array = self.np_array_dict[self.lr].astype(self.lr.dtype) else: raise RuntimeError("Should provide learning rate.") self.tvm_array_dict[self.lr] = tvm.nd.array(np_array, self.ctx) # updates for i, update in enumerate(self.updates): self.tvm_array_dict[update] = self.tvm_array_dict[self.weights[i]] # intermediate buffer for subgraph in self.subgraphs.values(): for out, old_tensor in subgraph.outputs.items(): if old_tensor not in self.outputs: # it's new output self.tvm_array_dict[old_tensor] = tvm.nd.empty(to_tuple(old_tensor.shape), old_tensor.dtype, ctx=self.ctx) def run(self, scheduler, target, dev): """ This is not enabled """ raise NotImplementedError() # generate specific space # scheduler has a cache, so multiple calls has the same effect scheduler.add_task(self, target) config = scheduler.propose(self, target) scheduler.apply_config(self, target, config) # apply config # 1. modify op stat list -> head, tail # 2. make subgraphs # 3. create schedule # 4. modify schedule self.build(target) # allocate buffer # only the first call has effect self.allocate_buffer(target, dev) for mark in self.call_order: func = self.functions[mark] bufs = self.bufs[mark] real_bufs = [self.tvm_array_dict[self.subgraphs[mark].index[x]] for x in bufs] func(*real_bufs) class PyTIRSubGraphPartition(object): def __init__(self): pass def __call__(self, graph): """ graph: PyTIRGraph """ pass def is_boundary(self, pre, post, graph): pre_stat = graph.op_stat_dict[pre] post_stat = graph.op_stat_dict[post] # root op must be separated if pre_stat.must_root: return True if pre_stat.num_consumers > 1: # do not fuse multi-output return True if pre_stat.reductive and post_stat.reductive: # do not fuse reductive nodes return True if pre_stat.injective and post_stat.injective: return ((not pre_stat.head) and post_stat.head) if pre_stat.injective and post_stat.reductive: return not pre_stat.head if pre_stat.reductive and post_stat.injective: return post_stat.head return True def partion_graph(self, graph): """ graph: PyTIRGraph returns: list of list of tvm ComputeOp dict from tvm ComputeOp to list of DataPort """ # -1 for not visited graph_mark = {x: -1 for x in graph.op_list} # setup initial nodes, all compute ops are included # this guarantees no node is left visit_stack = list(reversed(graph.op_list)) visited = set() global_mark = -1 while len(visit_stack) > 0: cur = visit_stack.pop() if cur in visited: continue if graph_mark[cur] < 0: # not marked # new subgraph global_mark += 1 graph_mark[cur] = global_mark graph_mark[cur] = global_mark # all the outputs for i in range(cur.num_outputs): t = cur.output(i) if t in graph.down_graph: for op in graph.down_graph[t]: if not self.is_boundary(cur, op, graph): if graph_mark[op] < 0: # mark it as the same subgraph graph_mark[op] = global_mark # only add node within the same subgraph visit_stack.append(op) # all the inputs for t in cur.input_tensors: if isinstance(t.op, tvm.te.tensor.ComputeOp): if not self.is_boundary(t.op, cur, graph): if graph_mark[t.op] < 0: # mark it as the same subgraph graph_mark[t.op] = global_mark # only add node within the same subgraph visit_stack.append(t.op) # add visit visited.add(cur) order = self.validate_partition(graph_mark) return self.subgraph_rewrite(graph_mark, graph), order def subgraph_rewrite(self, graph_mark, tgraph): ret = tvm.tg.subgraph_partition(graph_mark, tgraph.root_ops) op_map = {} inputs_set = set(tgraph.inputs) outputs_set = set(tgraph.outputs) labels_set = set(tgraph.labels) weights_set = set(tgraph.weights) gradients_set = set(tgraph.gradients) updates_set = set(tgraph.updates) subgraphs = {} for (old_op, mark) in graph_mark.items(): new_op = ret[old_op] op_map[new_op] = old_op if mark not in subgraphs: subgraphs[mark] = PyTIRSubGraph() for i, t in enumerate(old_op.input_tensors): if t in inputs_set: # new -> old subgraphs[mark].inputs[new_op.input_tensors[i]] = t if t in labels_set: subgraphs[mark].labels[new_op.input_tensors[i]] = t if t == tgraph.lr: subgraphs[mark].lr[new_op.input_tensors[i]] = t if t in weights_set: subgraphs[mark].weights[new_op.input_tensors[i]] = t # this is special # ret contains the new placeholder op because # this indicates an intermediate input if new_op.input_tensors[i].op in ret: subgraphs[mark].inputs[new_op.input_tensors[i]] = \ ret[new_op.input_tensors[i].op].output(t.value_index) another_mark = graph_mark[ret[new_op.input_tensors[i].op]] if another_mark not in subgraphs: subgraphs[another_mark] = PyTIRSubGraph() subgraphs[another_mark].outputs[ret[ret[new_op.input_tensors[i].op]].output(t.value_index)] = \ ret[new_op.input_tensors[i].op].output(t.value_index) for i in range(old_op.num_outputs): t = old_op.output(i) if t in outputs_set: subgraphs[mark].outputs[new_op.output(i)] = t if t in gradients_set: subgraphs[mark].gradients[new_op.output(i)] = t if t in updates_set: subgraphs[mark].updates[new_op.output(i)] = t if t == tgraph.loss: subgraphs[mark].loss[new_op.output(i)] = t for mark, subgraph in subgraphs.items(): subgraph.index = { **subgraph.inputs, **subgraph.outputs, **subgraph.labels, **subgraph.loss, \ **subgraph.weights, **subgraph.gradients, **subgraph.lr, **subgraph.updates} return subgraphs, op_map def validate_partition(self, graph_mark): # dst -> src order = [] ref = {} max_mark = 0 for (op, mark) in graph_mark.items(): max_mark = max(mark, max_mark) for inp in op.input_tensors: if inp.op in graph_mark: src_mark = graph_mark[inp.op] if src_mark != mark: if mark not in ref: ref[mark] = set() ref[mark].add(src_mark) visited = set() visiting = set() def func(val): if val in visited: return if val in visiting: raise RuntimeError( "The subgraph relation has a circular reference.") visiting.add(val) if val not in ref: order.append(val) visiting.remove(val) visited.add(val) return for inp in ref[val]: func(inp) order.append(val) visiting.remove(val) visited.add(val) return for mark in range(max_mark+1): func(mark) return order
# Copyright (c) 2012 OpenStack Foundation # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """Volume-related Utilities and helpers.""" import ast import functools import math import operator import re import time import uuid from Crypto.Random import random import eventlet from eventlet import tpool from oslo_concurrency import processutils from oslo_config import cfg from oslo_log import log as logging from oslo_utils import strutils from oslo_utils import timeutils from oslo_utils import units import six from six.moves import range from cinder.brick.local_dev import lvm as brick_lvm from cinder import context from cinder import db from cinder import exception from cinder.i18n import _, _LI, _LW, _LE from cinder import objects from cinder import rpc from cinder import utils from cinder.volume import group_types from cinder.volume import throttling from cinder.volume import volume_types CONF = cfg.CONF LOG = logging.getLogger(__name__) def null_safe_str(s): return str(s) if s else '' def _usage_from_volume(context, volume_ref, **kw): now = timeutils.utcnow() launched_at = volume_ref['launched_at'] or now created_at = volume_ref['created_at'] or now volume_status = volume_ref['status'] if volume_status == 'error_managing_deleting': volume_status = 'deleting' usage_info = dict( tenant_id=volume_ref['project_id'], host=volume_ref['host'], user_id=volume_ref['user_id'], availability_zone=volume_ref['availability_zone'], volume_id=volume_ref['id'], volume_type=volume_ref['volume_type_id'], display_name=volume_ref['display_name'], launched_at=launched_at.isoformat(), created_at=created_at.isoformat(), status=volume_status, snapshot_id=volume_ref['snapshot_id'], size=volume_ref['size'], replication_status=volume_ref['replication_status'], replication_extended_status=volume_ref['replication_extended_status'], replication_driver_data=volume_ref['replication_driver_data'], metadata=volume_ref.get('volume_metadata'),) usage_info.update(kw) try: attachments = db.volume_attachment_get_all_by_volume_id( context, volume_ref['id']) usage_info['volume_attachment'] = attachments glance_meta = db.volume_glance_metadata_get(context, volume_ref['id']) if glance_meta: usage_info['glance_metadata'] = glance_meta except exception.GlanceMetadataNotFound: pass except exception.VolumeNotFound: LOG.debug("Can not find volume %s at notify usage", volume_ref['id']) return usage_info def _usage_from_backup(backup, **kw): num_dependent_backups = backup.num_dependent_backups usage_info = dict(tenant_id=backup.project_id, user_id=backup.user_id, availability_zone=backup.availability_zone, backup_id=backup.id, host=backup.host, display_name=backup.display_name, created_at=str(backup.created_at), status=backup.status, volume_id=backup.volume_id, size=backup.size, service_metadata=backup.service_metadata, service=backup.service, fail_reason=backup.fail_reason, parent_id=backup.parent_id, num_dependent_backups=num_dependent_backups, snapshot_id=backup.snapshot_id, ) usage_info.update(kw) return usage_info @utils.if_notifications_enabled def notify_about_volume_usage(context, volume, event_suffix, extra_usage_info=None, host=None): if not host: host = CONF.host if not extra_usage_info: extra_usage_info = {} usage_info = _usage_from_volume(context, volume, **extra_usage_info) rpc.get_notifier("volume", host).info(context, 'volume.%s' % event_suffix, usage_info) @utils.if_notifications_enabled def notify_about_backup_usage(context, backup, event_suffix, extra_usage_info=None, host=None): if not host: host = CONF.host if not extra_usage_info: extra_usage_info = {} usage_info = _usage_from_backup(backup, **extra_usage_info) rpc.get_notifier("backup", host).info(context, 'backup.%s' % event_suffix, usage_info) def _usage_from_snapshot(snapshot, context, **extra_usage_info): # (niedbalski) a snapshot might be related to a deleted # volume, if that's the case, the volume information is still # required for filling the usage_info, so we enforce to read # the volume data even if the volume has been deleted. context.read_deleted = "yes" volume = db.volume_get(context, snapshot.volume_id) usage_info = { 'tenant_id': snapshot.project_id, 'user_id': snapshot.user_id, 'availability_zone': volume['availability_zone'], 'volume_id': snapshot.volume_id, 'volume_size': snapshot.volume_size, 'snapshot_id': snapshot.id, 'display_name': snapshot.display_name, 'created_at': str(snapshot.created_at), 'status': snapshot.status, 'deleted': null_safe_str(snapshot.deleted), 'metadata': null_safe_str(snapshot.metadata), } usage_info.update(extra_usage_info) return usage_info @utils.if_notifications_enabled def notify_about_snapshot_usage(context, snapshot, event_suffix, extra_usage_info=None, host=None): if not host: host = CONF.host if not extra_usage_info: extra_usage_info = {} usage_info = _usage_from_snapshot(snapshot, context, **extra_usage_info) rpc.get_notifier('snapshot', host).info(context, 'snapshot.%s' % event_suffix, usage_info) def _usage_from_capacity(capacity, **extra_usage_info): capacity_info = { 'name_to_id': capacity['name_to_id'], 'total': capacity['total'], 'free': capacity['free'], 'allocated': capacity['allocated'], 'provisioned': capacity['provisioned'], 'virtual_free': capacity['virtual_free'], 'reported_at': capacity['reported_at'] } capacity_info.update(extra_usage_info) return capacity_info @utils.if_notifications_enabled def notify_about_capacity_usage(context, capacity, suffix, extra_usage_info=None, host=None): if not host: host = CONF.host if not extra_usage_info: extra_usage_info = {} usage_info = _usage_from_capacity(capacity, **extra_usage_info) rpc.get_notifier('capacity', host).info(context, 'capacity.%s' % suffix, usage_info) @utils.if_notifications_enabled def notify_about_replication_usage(context, volume, suffix, extra_usage_info=None, host=None): if not host: host = CONF.host if not extra_usage_info: extra_usage_info = {} usage_info = _usage_from_volume(context, volume, **extra_usage_info) rpc.get_notifier('replication', host).info(context, 'replication.%s' % suffix, usage_info) @utils.if_notifications_enabled def notify_about_replication_error(context, volume, suffix, extra_error_info=None, host=None): if not host: host = CONF.host if not extra_error_info: extra_error_info = {} usage_info = _usage_from_volume(context, volume, **extra_error_info) rpc.get_notifier('replication', host).error(context, 'replication.%s' % suffix, usage_info) def _usage_from_consistencygroup(group_ref, **kw): usage_info = dict(tenant_id=group_ref.project_id, user_id=group_ref.user_id, availability_zone=group_ref.availability_zone, consistencygroup_id=group_ref.id, name=group_ref.name, created_at=group_ref.created_at.isoformat(), status=group_ref.status) usage_info.update(kw) return usage_info @utils.if_notifications_enabled def notify_about_consistencygroup_usage(context, group, event_suffix, extra_usage_info=None, host=None): if not host: host = CONF.host if not extra_usage_info: extra_usage_info = {} usage_info = _usage_from_consistencygroup(group, **extra_usage_info) rpc.get_notifier("consistencygroup", host).info( context, 'consistencygroup.%s' % event_suffix, usage_info) def _usage_from_group(group_ref, **kw): usage_info = dict(tenant_id=group_ref.project_id, user_id=group_ref.user_id, availability_zone=group_ref.availability_zone, group_id=group_ref.id, group_type=group_ref.group_type_id, name=group_ref.name, created_at=group_ref.created_at.isoformat(), status=group_ref.status) usage_info.update(kw) return usage_info @utils.if_notifications_enabled def notify_about_group_usage(context, group, event_suffix, extra_usage_info=None, host=None): if not host: host = CONF.host if not extra_usage_info: extra_usage_info = {} usage_info = _usage_from_group(group, **extra_usage_info) rpc.get_notifier("group", host).info( context, 'group.%s' % event_suffix, usage_info) def _usage_from_cgsnapshot(cgsnapshot, **kw): usage_info = dict( tenant_id=cgsnapshot.project_id, user_id=cgsnapshot.user_id, cgsnapshot_id=cgsnapshot.id, name=cgsnapshot.name, consistencygroup_id=cgsnapshot.consistencygroup_id, created_at=cgsnapshot.created_at.isoformat(), status=cgsnapshot.status) usage_info.update(kw) return usage_info def _usage_from_group_snapshot(group_snapshot, **kw): usage_info = dict( tenant_id=group_snapshot.project_id, user_id=group_snapshot.user_id, group_snapshot_id=group_snapshot.id, name=group_snapshot.name, group_id=group_snapshot.group_id, group_type=group_snapshot.group_type_id, created_at=group_snapshot.created_at.isoformat(), status=group_snapshot.status) usage_info.update(kw) return usage_info @utils.if_notifications_enabled def notify_about_cgsnapshot_usage(context, cgsnapshot, event_suffix, extra_usage_info=None, host=None): if not host: host = CONF.host if not extra_usage_info: extra_usage_info = {} usage_info = _usage_from_cgsnapshot(cgsnapshot, **extra_usage_info) rpc.get_notifier("cgsnapshot", host).info( context, 'cgsnapshot.%s' % event_suffix, usage_info) @utils.if_notifications_enabled def notify_about_group_snapshot_usage(context, group_snapshot, event_suffix, extra_usage_info=None, host=None): if not host: host = CONF.host if not extra_usage_info: extra_usage_info = {} usage_info = _usage_from_group_snapshot(group_snapshot, **extra_usage_info) rpc.get_notifier("group_snapshot", host).info( context, 'group_snapshot.%s' % event_suffix, usage_info) def _check_blocksize(blocksize): # Check if volume_dd_blocksize is valid try: # Rule out zero-sized/negative/float dd blocksize which # cannot be caught by strutils if blocksize.startswith(('-', '0')) or '.' in blocksize: raise ValueError strutils.string_to_bytes('%sB' % blocksize) except ValueError: LOG.warning(_LW("Incorrect value error: %(blocksize)s, " "it may indicate that \'volume_dd_blocksize\' " "was configured incorrectly. Fall back to default."), {'blocksize': blocksize}) # Fall back to default blocksize CONF.clear_override('volume_dd_blocksize') blocksize = CONF.volume_dd_blocksize return blocksize def check_for_odirect_support(src, dest, flag='oflag=direct'): # Check whether O_DIRECT is supported try: # iflag=direct and if=/dev/zero combination does not work # error: dd: failed to open '/dev/zero': Invalid argument if (src == '/dev/zero' and flag == 'iflag=direct'): return False else: utils.execute('dd', 'count=0', 'if=%s' % src, 'of=%s' % dest, flag, run_as_root=True) return True except processutils.ProcessExecutionError: return False def _copy_volume_with_path(prefix, srcstr, deststr, size_in_m, blocksize, sync=False, execute=utils.execute, ionice=None, sparse=False): cmd = prefix[:] if ionice: cmd.extend(('ionice', ionice)) blocksize = _check_blocksize(blocksize) size_in_bytes = size_in_m * units.Mi cmd.extend(('dd', 'if=%s' % srcstr, 'of=%s' % deststr, 'count=%d' % size_in_bytes, 'bs=%s' % blocksize)) # Use O_DIRECT to avoid thrashing the system buffer cache odirect = check_for_odirect_support(srcstr, deststr, 'iflag=direct') cmd.append('iflag=count_bytes,direct' if odirect else 'iflag=count_bytes') if check_for_odirect_support(srcstr, deststr, 'oflag=direct'): cmd.append('oflag=direct') odirect = True # If the volume is being unprovisioned then # request the data is persisted before returning, # so that it's not discarded from the cache. conv = [] if sync and not odirect: conv.append('fdatasync') if sparse: conv.append('sparse') if conv: conv_options = 'conv=' + ",".join(conv) cmd.append(conv_options) # Perform the copy start_time = timeutils.utcnow() execute(*cmd, run_as_root=True) duration = timeutils.delta_seconds(start_time, timeutils.utcnow()) # NOTE(jdg): use a default of 1, mostly for unit test, but in # some incredible event this is 0 (cirros image?) don't barf if duration < 1: duration = 1 mbps = (size_in_m / duration) LOG.debug("Volume copy details: src %(src)s, dest %(dest)s, " "size %(sz).2f MB, duration %(duration).2f sec", {"src": srcstr, "dest": deststr, "sz": size_in_m, "duration": duration}) LOG.info(_LI("Volume copy %(size_in_m).2f MB at %(mbps).2f MB/s"), {'size_in_m': size_in_m, 'mbps': mbps}) def _open_volume_with_path(path, mode): try: with utils.temporary_chown(path): handle = open(path, mode) return handle except Exception: LOG.error(_LE("Failed to open volume from %(path)s."), {'path': path}) def _transfer_data(src, dest, length, chunk_size): """Transfer data between files (Python IO objects).""" chunks = int(math.ceil(length / chunk_size)) remaining_length = length LOG.debug("%(chunks)s chunks of %(bytes)s bytes to be transferred.", {'chunks': chunks, 'bytes': chunk_size}) for chunk in range(0, chunks): before = time.time() data = tpool.execute(src.read, min(chunk_size, remaining_length)) # If we have reached end of source, discard any extraneous bytes from # destination volume if trim is enabled and stop writing. if data == b'': break tpool.execute(dest.write, data) remaining_length -= len(data) delta = (time.time() - before) rate = (chunk_size / delta) / units.Ki LOG.debug("Transferred chunk %(chunk)s of %(chunks)s (%(rate)dK/s).", {'chunk': chunk + 1, 'chunks': chunks, 'rate': rate}) # yield to any other pending operations eventlet.sleep(0) tpool.execute(dest.flush) def _copy_volume_with_file(src, dest, size_in_m): src_handle = src if isinstance(src, six.string_types): src_handle = _open_volume_with_path(src, 'rb') dest_handle = dest if isinstance(dest, six.string_types): dest_handle = _open_volume_with_path(dest, 'wb') if not src_handle: raise exception.DeviceUnavailable( _("Failed to copy volume, source device unavailable.")) if not dest_handle: raise exception.DeviceUnavailable( _("Failed to copy volume, destination device unavailable.")) start_time = timeutils.utcnow() _transfer_data(src_handle, dest_handle, size_in_m * units.Mi, units.Mi * 4) duration = max(1, timeutils.delta_seconds(start_time, timeutils.utcnow())) if isinstance(src, six.string_types): src_handle.close() if isinstance(dest, six.string_types): dest_handle.close() mbps = (size_in_m / duration) LOG.info(_LI("Volume copy completed (%(size_in_m).2f MB at " "%(mbps).2f MB/s)."), {'size_in_m': size_in_m, 'mbps': mbps}) def copy_volume(src, dest, size_in_m, blocksize, sync=False, execute=utils.execute, ionice=None, throttle=None, sparse=False): """Copy data from the source volume to the destination volume. The parameters 'src' and 'dest' are both typically of type str, which represents the path to each volume on the filesystem. Connectors can optionally return a volume handle of type RawIOBase for volumes that are not available on the local filesystem for open/close operations. If either 'src' or 'dest' are not of type str, then they are assumed to be of type RawIOBase or any derivative that supports file operations such as read and write. In this case, the handles are treated as file handles instead of file paths and, at present moment, throttling is unavailable. """ if (isinstance(src, six.string_types) and isinstance(dest, six.string_types)): if not throttle: throttle = throttling.Throttle.get_default() with throttle.subcommand(src, dest) as throttle_cmd: _copy_volume_with_path(throttle_cmd['prefix'], src, dest, size_in_m, blocksize, sync=sync, execute=execute, ionice=ionice, sparse=sparse) else: _copy_volume_with_file(src, dest, size_in_m) def clear_volume(volume_size, volume_path, volume_clear=None, volume_clear_size=None, volume_clear_ionice=None, throttle=None): """Unprovision old volumes to prevent data leaking between users.""" if volume_clear is None: volume_clear = CONF.volume_clear if volume_clear_size is None: volume_clear_size = CONF.volume_clear_size if volume_clear_size == 0: volume_clear_size = volume_size if volume_clear_ionice is None: volume_clear_ionice = CONF.volume_clear_ionice LOG.info(_LI("Performing secure delete on volume: %s"), volume_path) # We pass sparse=False explicitly here so that zero blocks are not # skipped in order to clear the volume. if volume_clear == 'zero': return copy_volume('/dev/zero', volume_path, volume_clear_size, CONF.volume_dd_blocksize, sync=True, execute=utils.execute, ionice=volume_clear_ionice, throttle=throttle, sparse=False) else: raise exception.InvalidConfigurationValue( option='volume_clear', value=volume_clear) def supports_thin_provisioning(): return brick_lvm.LVM.supports_thin_provisioning( utils.get_root_helper()) def get_all_physical_volumes(vg_name=None): return brick_lvm.LVM.get_all_physical_volumes( utils.get_root_helper(), vg_name) def get_all_volume_groups(vg_name=None): return brick_lvm.LVM.get_all_volume_groups( utils.get_root_helper(), vg_name) # Default symbols to use for passwords. Avoids visually confusing characters. # ~6 bits per symbol DEFAULT_PASSWORD_SYMBOLS = ('23456789', # Removed: 0,1 'ABCDEFGHJKLMNPQRSTUVWXYZ', # Removed: I, O 'abcdefghijkmnopqrstuvwxyz') # Removed: l def generate_password(length=16, symbolgroups=DEFAULT_PASSWORD_SYMBOLS): """Generate a random password from the supplied symbol groups. At least one symbol from each group will be included. Unpredictable results if length is less than the number of symbol groups. Believed to be reasonably secure (with a reasonable password length!) """ # NOTE(jerdfelt): Some password policies require at least one character # from each group of symbols, so start off with one random character # from each symbol group password = [random.choice(s) for s in symbolgroups] # If length < len(symbolgroups), the leading characters will only # be from the first length groups. Try our best to not be predictable # by shuffling and then truncating. random.shuffle(password) password = password[:length] length -= len(password) # then fill with random characters from all symbol groups symbols = ''.join(symbolgroups) password.extend([random.choice(symbols) for _i in range(length)]) # finally shuffle to ensure first x characters aren't from a # predictable group random.shuffle(password) return ''.join(password) def generate_username(length=20, symbolgroups=DEFAULT_PASSWORD_SYMBOLS): # Use the same implementation as the password generation. return generate_password(length, symbolgroups) DEFAULT_POOL_NAME = '_pool0' def extract_host(host, level='backend', default_pool_name=False): """Extract Host, Backend or Pool information from host string. :param host: String for host, which could include host@backend#pool info :param level: Indicate which level of information should be extracted from host string. Level can be 'host', 'backend' or 'pool', default value is 'backend' :param default_pool_name: this flag specify what to do if level == 'pool' and there is no 'pool' info encoded in host string. default_pool_name=True will return DEFAULT_POOL_NAME, otherwise we return None. Default value of this parameter is False. :return: expected information, string or None :raises: exception.InvalidVolume For example: host = 'HostA@BackendB#PoolC' ret = extract_host(host, 'host') # ret is 'HostA' ret = extract_host(host, 'backend') # ret is 'HostA@BackendB' ret = extract_host(host, 'pool') # ret is 'PoolC' host = 'HostX@BackendY' ret = extract_host(host, 'pool') # ret is None ret = extract_host(host, 'pool', True) # ret is '_pool0' """ if host is None: msg = _("volume is not assigned to a host") raise exception.InvalidVolume(reason=msg) if level == 'host': # make sure pool is not included hst = host.split('#')[0] return hst.split('@')[0] elif level == 'backend': return host.split('#')[0] elif level == 'pool': lst = host.split('#') if len(lst) == 2: return lst[1] elif default_pool_name is True: return DEFAULT_POOL_NAME else: return None def append_host(host, pool): """Encode pool into host info.""" if not host or not pool: return host new_host = "#".join([host, pool]) return new_host def matching_backend_name(src_volume_type, volume_type): if src_volume_type.get('volume_backend_name') and \ volume_type.get('volume_backend_name'): return src_volume_type.get('volume_backend_name') == \ volume_type.get('volume_backend_name') else: return False def hosts_are_equivalent(host_1, host_2): # In case host_1 or host_2 are None if not (host_1 and host_2): return host_1 == host_2 return extract_host(host_1) == extract_host(host_2) def read_proc_mounts(): """Read the /proc/mounts file. It's a dummy function but it eases the writing of unit tests as mocking __builtin__open() for a specific file only is not trivial. """ with open('/proc/mounts') as mounts: return mounts.readlines() def extract_id_from_volume_name(vol_name): regex = re.compile( CONF.volume_name_template.replace('%s', '(?P<uuid>.+)')) match = regex.match(vol_name) return match.group('uuid') if match else None def check_already_managed_volume(vol_id): """Check cinder db for already managed volume. :param vol_id: volume id parameter :returns: bool -- return True, if db entry with specified volume id exists, otherwise return False """ try: return (vol_id and isinstance(vol_id, six.string_types) and uuid.UUID(vol_id, version=4) and objects.Volume.exists(context.get_admin_context(), vol_id)) except ValueError: return False def extract_id_from_snapshot_name(snap_name): """Return a snapshot's ID from its name on the backend.""" regex = re.compile( CONF.snapshot_name_template.replace('%s', '(?P<uuid>.+)')) match = regex.match(snap_name) return match.group('uuid') if match else None def paginate_entries_list(entries, marker, limit, offset, sort_keys, sort_dirs): """Paginate a list of entries. :param entries: list of dictionaries :marker: The last element previously returned :limit: The maximum number of items to return :offset: The number of items to skip from the marker or from the first element. :sort_keys: A list of keys in the dictionaries to sort by :sort_dirs: A list of sort directions, where each is either 'asc' or 'dec' """ comparers = [(operator.itemgetter(key.strip()), multiplier) for (key, multiplier) in zip(sort_keys, sort_dirs)] def comparer(left, right): for fn, d in comparers: left_val = fn(left) right_val = fn(right) if isinstance(left_val, dict): left_val = sorted(left_val.values())[0] if isinstance(right_val, dict): right_val = sorted(right_val.values())[0] if left_val == right_val: continue if d == 'asc': return -1 if left_val < right_val else 1 else: return -1 if left_val > right_val else 1 else: return 0 sorted_entries = sorted(entries, key=functools.cmp_to_key(comparer)) start_index = 0 if offset is None: offset = 0 if marker: start_index = -1 for i, entry in enumerate(sorted_entries): if entry['reference'] == marker: start_index = i + 1 break if start_index < 0: msg = _('marker not found: %s') % marker raise exception.InvalidInput(reason=msg) range_end = start_index + limit return sorted_entries[start_index + offset:range_end + offset] def convert_config_string_to_dict(config_string): """Convert config file replication string to a dict. The only supported form is as follows: "{'key-1'='val-1' 'key-2'='val-2'...}" :param config_string: Properly formatted string to convert to dict. :response: dict of string values """ resultant_dict = {} try: st = config_string.replace("=", ":") st = st.replace(" ", ", ") resultant_dict = ast.literal_eval(st) except Exception: LOG.warning(_LW("Error encountered translating config_string: " "%(config_string)s to dict"), {'config_string': config_string}) return resultant_dict def create_encryption_key(context, key_manager, volume_type_id): encryption_key_id = None if volume_types.is_encrypted(context, volume_type_id): volume_type_encryption = ( volume_types.get_volume_type_encryption(context, volume_type_id)) cipher = volume_type_encryption.cipher length = volume_type_encryption.key_size algorithm = cipher.split('-')[0] if cipher else None encryption_key_id = key_manager.create_key( context, algorithm=algorithm, length=length) return encryption_key_id def is_replicated_str(str): spec = (str or '').split() return (len(spec) == 2 and spec[0] == '<is>' and strutils.bool_from_string(spec[1])) def is_replicated_spec(extra_specs): return (extra_specs and is_replicated_str(extra_specs.get('replication_enabled'))) def group_get_by_id(group_id): ctxt = context.get_admin_context() group = db.group_get(ctxt, group_id) return group def is_group_a_cg_snapshot_type(group_or_snap): LOG.debug("Checking if %s is a consistent snapshot group", group_or_snap) if group_or_snap["group_type_id"] is not None: spec = group_types.get_group_type_specs( group_or_snap["group_type_id"], key="consistent_group_snapshot_enabled" ) return spec == "<is> True" return False
# -*- coding: utf-8 -*- # # This file is part of Invenio. # Copyright (C) 2015-2018 CERN. # # Invenio is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. """Persistent identifier fetchers. A proper fetcher is defined as a function that return a :data:`invenio_pidstore.fetchers.FetchedPID` instance. E.g. .. code-block:: python def my_fetcher(record_uuid, data): return FetchedPID( provider=MyRecordIdProvider, pid_type=MyRecordIdProvider.pid_type, pid_value=extract_pid_value(data), ) To see more about providers see :mod:`invenio_pidstore.providers`. """ from __future__ import absolute_import, print_function from invenio_pidstore.fetchers import FetchedPID from oarepo_communities.converters import CommunityPIDValue from oarepo_communities.proxies import current_oarepo_communities from .providers import NRNresultsIdProvider def nr_nresults_id_fetcher(record_uuid, data): """Fetch a record's identifiers. :param record_uuid: The record UUID. :param data: The record metadata. :returns: A :data:`invenio_pidstore.fetchers.FetchedPID` instance. """ id_field = "control_number" return FetchedPID( # FetchedPID je obyčejný namedtuple provider=NRNresultsIdProvider, pid_type=NRNresultsIdProvider.pid_type, pid_value=CommunityPIDValue( str(data[id_field]), current_oarepo_communities.get_primary_community_field(data)) )
import logging,os from rest import Restclient LOCAL_DATA_FOLDER = '/DATA' GENOTYPE_FOLDER = '/GENOTYPE' REST_HOST = os.environ['REST_HOST'] REST_USERNAME = os.environ['REST_USERNAME'] REST_PASSWORD = os.environ['REST_PASSWORD'] restclient = Restclient(REST_HOST,REST_USERNAME,REST_PASSWORD) class CeleryProgressLogHandler(logging.StreamHandler): def __init__(self,task): logging.StreamHandler.__init__(self) self.task = task def emit(self,record): if 'progress' in record.__dict__: progress = record.__dict__['progress'] msg = self.format(record) if 'task' in record.__dict__: msg = record.__dict__['task'] body = {'progress':progress,'task':msg} self.task.update_state(state='PROGRESS',meta=body)
import os from collections import OrderedDict import matplotlib.pyplot as plt import pandas _ramachandran_densities = pandas.read_csv( 'data/rama500-general.data', skiprows=6, delimiter=' ', names=['phi', 'psi', 'value'] ) """ DSSP output: H = α-helix B = residue in isolated β-bridge E = extended strand, participates in β ladder G = 3-helix (310 helix) I = 5 helix (π-helix) T = hydrogen bonded turn S = bend Colors extracted from rcsb.org. """ DSSP_to_color = { 'H': '#ED6161', 'B': '#CCA200', 'E': '#FFFB00', 'G': '#FFC2C2', 'I': '#900000', 'T': '#990099', 'S': '#0000FF', '-': 'black', } def ramachandran_surface(): """ Plot density surface for generic ramachandran """ fontsize = 18 ticks = [-180, -90, 0, 90, 180] plt.contourf( list(OrderedDict.fromkeys(_ramachandran_densities['phi'])), list(OrderedDict.fromkeys(_ramachandran_densities['psi'])), _ramachandran_densities['value'].values.reshape(180, 180).T, levels=[0, 0.0005, 0.02, 1], colors=['#FFFFFF', '#B3E8FF', '#7FD9FF'] ) plt.xlabel('$\phi$', fontsize=fontsize) plt.ylabel('$\psi$', fontsize=fontsize) plt.xticks(ticks) plt.yticks(ticks) plt.tick_params(direction="out") plt.margins(0.05) ax = plt.axes() ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') ax.spines['left'].set_smart_bounds(True) ax.spines['bottom'].set_smart_bounds(True) ax.xaxis.set_ticks_position('bottom') ax.yaxis.set_ticks_position('left') def ramachandran(torsion_angles, fragment, target_pdb=None, output_writer=None, output_dir=None): """ Plot ramachandran of a set of torsion angles for a given fragment :param torsion_angles: Dictionary with torsion angles phi and psi :param fragment: Fragment identifier, used for displaying purposes """ target_pdb = None plt.figure() ramachandran_surface() plt.title('Ramachandran plot for ' + fragment) plt.scatter( x=torsion_angles['phi'], y=torsion_angles['psi'], s=[1.05 ** x for x in torsion_angles['identity']], c=[DSSP_to_color[ss] for ss in torsion_angles['central_ss']], marker='o', alpha=0.5, ) if target_pdb and (target_pdb in list(torsion_angles['pdb'])): i = list(torsion_angles['pdb']).index(target_pdb) plt.scatter( x=torsion_angles['phi'][i], y=torsion_angles['psi'][i], marker='D', c='red', s=50 ) if output_writer: output_writer.savefig(dpi=150) if output_dir: plt.savefig( os.path.join(output_dir, 'ramachandran', fragment + '.svg'), format='svg', dpi=300 ) plt.close()
""" This is a dummy file used only to avoid errors in ReadTheDocs. The real BF.py is created during the setup once swig is run. """ def CP(): pass def LeP(): pass def LaP(): pass def HoPpro(): pass def HoPphy(): pass def FS(): pass def ELMReLU(): pass def ELMSigmoid(): pass def ELMTanh(): pass def ELMSin(): pass def ELMSwish(): pass def nCP(): pass def nLeP(): pass def nFS(): pass def nELMReLU(): pass def nELMSigmoid(): pass def nELMTanh(): pass def nELMSin(): pass def nELMSwish(): pass
seq = 'CTTCTCACGTACAACAAAATC' symbol2number = {"A":0,"C":1,"G":2,"T":3} def PatternToNumber(Pattern): if not Pattern: return 0 symbol = Pattern[-1] prefix = Pattern[:-1] return ((4*PatternToNumber(prefix))+symbol2number[symbol]) def NumberToPattern(index, k): bases = ['A', 'C', 'G', 'T'] pattern = '' for i in range(k): pattern += bases[index % 4] index = index // 4 return pattern[::-1] def ComputingFrequencies(text,k): FrequencyArray =[] for i in range(0,((4**k))): FrequencyArray.append(0) for i in range(0,(len(text)-1)): pattern = text[i:(i+k)] j = PatternToNumber(pattern) FrequencyArray[j] = FrequencyArray[j]+1 return FrequencyArray def FasterFrequentWords(text,k): FrequentPatterns = [] FrequencyArray = ComputingFrequencies(text,k) maxCount = max(FrequencyArray) for i in range(0,(4**k)): if FrequencyArray[i] == maxCount: pattern = NumberToPattern(i,k) FrequentPatterns.append(pattern) return FrequentPatterns print(FasterFrequentWords("ACGCGGCTCTGAAA",2))
import os from dotenv import load_dotenv, find_dotenv #this will load all the envars from a .env file located in the project root (api) load_dotenv(find_dotenv()) CONFIGURATION = { "development": "config.DevConfig", "testing": "config.TestConfig", "production": "config.Config", "default": "config.Config" } class Config(object): PROJECT_ROOT = os.path.abspath(os.path.dirname(__file__)) SECRET_KEY = 'a secret' SQLALCHEMY_TRACK_MODIFICATIONS = False NRO_SERVICE_ACCOUNT = os.getenv('NRO_SERVICE_ACCOUNT', 'nro_service_account') SOLR_BASE_URL = os.getenv('SOLR_BASE_URL', None) SOLR_SYNONYMS_API_URL = os.getenv('SOLR_SYNONYMS_API_URL', None) NRO_EXTRACTOR_URI = os.getenv('NRO_EXTRACTOR_URI', None) ALEMBIC_INI='migrations/alembic.ini' # POSTGRESQL DB_USER = os.getenv('DATABASE_USERNAME', '') DB_PASSWORD = os.getenv('DATABASE_PASSWORD','') DB_NAME = os.getenv('DATABASE_NAME','') DB_HOST = os.getenv('DATABASE_HOST','') DB_PORT = os.getenv('DATABASE_PORT','5432') SQLALCHEMY_DATABASE_URI = 'postgresql://{user}:{password}@{host}:{port}/{name}'.format( user=DB_USER, password=DB_PASSWORD, host=DB_HOST, port=int(DB_PORT), name=DB_NAME, ) ## ORACLE - LEGACY NRO NAMESDB NRO_USER = os.getenv('NRO_USER', '') NRO_SCHEMA = os.getenv('NRO_SCHEMA', None) NRO_PASSWORD = os.getenv('NRO_PASSWORD', '') NRO_DB_NAME = os.getenv('NRO_DB_NAME', '') NRO_HOST = os.getenv('NRO_HOST', '') NRO_PORT = int(os.getenv('NRO_PORT', '1521')) # JWT_OIDC Settings JWT_OIDC_WELL_KNOWN_CONFIG = os.getenv('JWT_OIDC_WELL_KNOWN_CONFIG') JWT_OIDC_ALGORITHMS = os.getenv('JWT_OIDC_ALGORITHMS') JWT_OIDC_JWKS_URI = os.getenv('JWT_OIDC_JWKS_URI') JWT_OIDC_ISSUER = os.getenv('JWT_OIDC_ISSUER') JWT_OIDC_AUDIENCE = os.getenv('JWT_OIDC_AUDIENCE') JWT_OIDC_CLIENT_SECRET = os.getenv('JWT_OIDC_CLIENT_SECRET') JWT_OIDC_CACHING_ENABLED = os.getenv('JWT_OIDC_CACHING_ENABLED') try: JWT_OIDC_JWKS_CACHE_TIMEOUT = int(os.getenv('JWT_OIDC_JWKS_CACHE_TIMEOUT')) except: JWT_OIDC_JWKS_CACHE_TIMEOUT = 300 TESTING = False, DEBUG = False class DevConfig(Config): TESTING = False, DEBUG = True class TestConfig(Config): DEBUG = True TESTING = True # POSTGRESQL DB_USER = os.getenv('DATABASE_TEST_USERNAME', '') DB_PASSWORD = os.getenv('DATABASE_TEST_PASSWORD','') DB_NAME = os.getenv('DATABASE_TEST_NAME','') DB_HOST = os.getenv('DATABASE_TEST_HOST','') DB_PORT = os.getenv('DATABASE_TEST_PORT','5432') SQLALCHEMY_DATABASE_URI = 'postgresql://{user}:{password}@{host}:{port}/{name}'.format( user=DB_USER, password=DB_PASSWORD, host=DB_HOST, port=int(DB_PORT), name=DB_NAME, ) # JWT OIDC settings ## JWT_OIDC_TEST_MODE will set jwt_manager to use JWT_OIDC_TEST_MODE = True JWT_OIDC_TEST_AUDIENCE = os.getenv('JWT_OIDC_AUDIENCE') JWT_OIDC_TEST_CLIENT_SECRET = os.getenv('JWT_OIDC_CLIENT_SECRET') JWT_OIDC_TEST_ISSUER = 'https://sso-dev.pathfinder.gov.bc.ca/auth/realms/sbc' JWT_OIDC_TEST_KEYS = { "keys": [ { "kid": "flask-jwt-oidc-test-client", "kty": "RSA", "alg": "RS256", "use": "sig", "n": "AN-fWcpCyE5KPzHDjigLaSUVZI0uYrcGcc40InVtl-rQRDmAh-C2W8H4_Hxhr5VLc6crsJ2LiJTV_E72S03pzpOOaaYV6-TzAjCou2GYJIXev7f6Hh512PuG5wyxda_TlBSsI-gvphRTPsKCnPutrbiukCYrnPuWxX5_cES9eStR", "e": "AQAB" } ] } JWT_OIDC_TEST_PRIVATE_KEY_JWKS = { "keys": [ { "kid": "flask-jwt-oidc-test-client", "kty": "RSA", "alg": "RS256", "use": "sig", "kty": "RSA", "n": "AN-fWcpCyE5KPzHDjigLaSUVZI0uYrcGcc40InVtl-rQRDmAh-C2W8H4_Hxhr5VLc6crsJ2LiJTV_E72S03pzpOOaaYV6-TzAjCou2GYJIXev7f6Hh512PuG5wyxda_TlBSsI-gvphRTPsKCnPutrbiukCYrnPuWxX5_cES9eStR", "e": "AQAB", "d": "C0G3QGI6OQ6tvbCNYGCqq043YI_8MiBl7C5dqbGZmx1ewdJBhMNJPStuckhskURaDwk4-8VBW9SlvcfSJJrnZhgFMjOYSSsBtPGBIMIdM5eSKbenCCjO8Tg0BUh_xa3CHST1W4RQ5rFXadZ9AeNtaGcWj2acmXNO3DVETXAX3x0", "p": "APXcusFMQNHjh6KVD_hOUIw87lvK13WkDEeeuqAydai9Ig9JKEAAfV94W6Aftka7tGgE7ulg1vo3eJoLWJ1zvKM", "q": "AOjX3OnPJnk0ZFUQBwhduCweRi37I6DAdLTnhDvcPTrrNWuKPg9uGwHjzFCJgKd8KBaDQ0X1rZTZLTqi3peT43s", "dp": "AN9kBoA5o6_Rl9zeqdsIdWFmv4DB5lEqlEnC7HlAP-3oo3jWFO9KQqArQL1V8w2D4aCd0uJULiC9pCP7aTHvBhc", "dq": "ANtbSY6njfpPploQsF9sU26U0s7MsuLljM1E8uml8bVJE1mNsiu9MgpUvg39jEu9BtM2tDD7Y51AAIEmIQex1nM", "qi": "XLE5O360x-MhsdFXx8Vwz4304-MJg-oGSJXCK_ZWYOB_FGXFRTfebxCsSYi0YwJo-oNu96bvZCuMplzRI1liZw" } ] } JWT_OIDC_TEST_PRIVATE_KEY_PEM = """ -----BEGIN RSA PRIVATE KEY----- MIICXQIBAAKBgQDfn1nKQshOSj8xw44oC2klFWSNLmK3BnHONCJ1bZfq0EQ5gIfg tlvB+Px8Ya+VS3OnK7Cdi4iU1fxO9ktN6c6TjmmmFevk8wIwqLthmCSF3r+3+h4e ddj7hucMsXWv05QUrCPoL6YUUz7Cgpz7ra24rpAmK5z7lsV+f3BEvXkrUQIDAQAB AoGAC0G3QGI6OQ6tvbCNYGCqq043YI/8MiBl7C5dqbGZmx1ewdJBhMNJPStuckhs kURaDwk4+8VBW9SlvcfSJJrnZhgFMjOYSSsBtPGBIMIdM5eSKbenCCjO8Tg0BUh/ xa3CHST1W4RQ5rFXadZ9AeNtaGcWj2acmXNO3DVETXAX3x0CQQD13LrBTEDR44ei lQ/4TlCMPO5bytd1pAxHnrqgMnWovSIPSShAAH1feFugH7ZGu7RoBO7pYNb6N3ia C1idc7yjAkEA6Nfc6c8meTRkVRAHCF24LB5GLfsjoMB0tOeEO9w9Ous1a4o+D24b AePMUImAp3woFoNDRfWtlNktOqLel5PjewJBAN9kBoA5o6/Rl9zeqdsIdWFmv4DB 5lEqlEnC7HlAP+3oo3jWFO9KQqArQL1V8w2D4aCd0uJULiC9pCP7aTHvBhcCQQDb W0mOp436T6ZaELBfbFNulNLOzLLi5YzNRPLppfG1SRNZjbIrvTIKVL4N/YxLvQbT NrQw+2OdQACBJiEHsdZzAkBcsTk7frTH4yGx0VfHxXDPjfTj4wmD6gZIlcIr9lZg 4H8UZcVFN95vEKxJiLRjAmj6g273pu9kK4ymXNEjWWJn -----END RSA PRIVATE KEY-----"""
# Execution time : 0.003847 seconds # Solution Explanation # A simple brute-froce approach is enough import time width = 40 from functools import reduce def solution(): v = list() v.append([0]*23) v.append([0]*23) v.append([0]*23) for line in open('input_p011.in','r'): v.append(list(map(int,line.split()))) v[-1].extend([0,0,0]) v.append([0]*23) v.append([0]*23) v.append([0]*23) ans = 0 for it1 in range(3,23): for it2 in range(20): ans = max(ans,reduce(lambda a,b: a*b,[v[it1][it2+k] for k in range(4)])) ans = max(ans,reduce(lambda a,b: a*b,[v[it1+k][it2] for k in range(4)])) ans = max(ans,reduce(lambda a,b: a*b,[v[it1-k][it2+k] for k in range(4)])) ans = max(ans,reduce(lambda a,b: a*b,[v[it1+k][it2+k] for k in range(4)])) return ans if __name__=="__main__": start_ = time.time() print(' Answer -> %s '.center(width,'-') % ( solution() )) print(' %f seconds '.center(width,'-') % ( time.time() - start_))
import sys config = { "Database": { "Address": "localhost", "Username": "root", "Password": "", "Name": "Houdini", "Driver": "PyMySQL" if sys.platform == "win32" else "MySQLdb" }, "Redis": { "Address": "127.0.0.1", "Port": 6379 }, "Servers": { "Login": { "Address": "127.0.0.1", "Port": 6112, "World": False, "Plugins": [ "Example" ], "Logging": { "General": "logs/login.log", "Errors": "logs/login-errors.log", "Level": "INFO" }, "LoginFailureLimit": 5, "LoginFailureTimer": 3600 }, "Wind": { "Id": "100", "Address": "127.0.0.1", "Port": 9875, "World": True, "Capacity": 200, "CacheExpiry": 3600, "Plugins": [ "Commands", "Bot", "Rank" ], "Logging": { "General": "logs/wind.log", "Errors": "logs/wind-errors.log", "Level": "DEBUG" } } }, "Tables": { "Four": [ { "RoomId": 220, "Tables": [205, 206, 207] }, { "RoomId": 221, "Tables": [200, 201, 202, 203, 204] } ], "Mancala": [ { "RoomId": 111, "Tables": [100, 101, 102, 103, 104] } ], "Treasure": [ { "RoomId": 422, "Tables": [300, 301, 302, 303, 304, 305, 306, 307] } ] }, "Waddles": { "Sled": [ { "RoomId": 230, "Waddles": [ { "Id": 100, "Seats": 4 }, { "Id": 101, "Seats": 3 }, { "Id": 102, "Seats": 2 }, { "Id": 103, "Seats": 2 } ]} ], "Card": [ { "RoomId": 320, "Waddles": [ { "Id": 200, "Seats": 2 }, { "Id": 201, "Seats": 2 }, { "Id": 202, "Seats": 2 }, { "Id": 203, "Seats": 2 } ]} ], "CardFire": [ { "RoomId": 812, "Waddles": [ { "Id": 300, "Seats": 2 }, { "Id": 301, "Seats": 2 }, { "Id": 302, "Seats": 3 }, { "Id": 303, "Seats": 4 } ]} ] }, "Treasure": { "Food": [115, 114, 109, 112, 110, 105, 113, 106, 108, 107, 111, 128], "Furniture": [305, 313, 504, 506, 500, 503, 501, 507, 505, 502, 616, 542, 340, 150, 149, 369, 370, 300], "Clothing": [3028, 232, 412, 112, 184, 1056, 6012, 118, 774, 366, 103, 498, 469, 1082, 5196, 790, 4039, 326, 105, 122, 5080, 111], "Gold": { "Clothing": [2139, 2137, 5385, 3185, 5384, 5386, 6209, 2138, 1735, 3186, 1734, 2136, 4994, 4993, 3187], "Furniture": [2132, 2131, 2130, 2129] }, "BorderTabby": { "Clothing": [24073, 24075, 24078, 24074, 24080, 24076, 24081, 24071, 24072, 24077, 24079, 24070, 4414, 122], "Furniture": [2180, 2182, 2183] }, "Dinosaur": { "Clothing": [24031, 24030, 24033, 24029], "Furniture": [2180, 2182, 2183] } } }
# GENERATED BY KOMAND SDK - DO NOT EDIT from setuptools import setup, find_packages setup(name='haveibeenpwned-rapid7-plugin', version='4.0.2', description='Determine if a user, domain, or password has been leaked via data available in the Have I Been Pwned database', author='rapid7', author_email='', url='', packages=find_packages(), install_requires=['komand'], # Add third-party dependencies to requirements.txt, not here! scripts=['bin/icon_haveibeenpwned'] )