text
stringlengths
2
999k
""" MIT License Copyright (c) 2020-present shay (shayypy) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ------------------------------------------------------------------------------ This project includes code from https://github.com/Rapptz/discord.py, which is available under the MIT license: The MIT License (MIT) Copyright (c) 2015-present Rapptz Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import guilded.abc class Context(guilded.abc.Messageable): def __init__(self, **attrs): self.message = attrs.pop('message', None) self._state = attrs.pop('state', self.message._state) self.bot = attrs.pop('bot', None) self.args = attrs.pop('args', []) self.kwargs = attrs.pop('kwargs', {}) self.prefix = attrs.pop('prefix') self.command = attrs.pop('command', None) self.view = attrs.pop('view', None) self.invoked_with = attrs.pop('invoked_with', None) self.invoked_parents = attrs.pop('invoked_parents', []) self.invoked_subcommand = attrs.pop('invoked_subcommand', None) self.subcommand_passed = attrs.pop('subcommand_passed', None) self.command_failed = attrs.pop('command_failed', False) @property def valid(self): return self.prefix is not None and self.command is not None @property def cog(self): if self.command is None: return None return self.command.cog @property def channel(self): return self.message.channel @property def _channel_id(self): return self.message.channel_id @property def team(self): return self.message.team @property def guild(self): return self.team @property def author(self): return self.message.author @property def me(self): return self.team.me if self.team else self.bot.user #def reply(self, *content, **kwargs): # return self.message.reply(*content, **kwargs)
#!/usr/bin/env python # coding=utf-8 import logging from typing import NamedTuple, List from dataclasses import dataclass from collections import OrderedDict as odict, defaultdict import numpy as np from ioos_qc.qartod import QartodFlags L = logging.getLogger(__name__) # noqa class CallResult(NamedTuple): package: str test: str function: callable results: np.ndarray def __repr__(self): return f'<CallResult package={self.package} test={self.test}>' class ContextResult(NamedTuple): stream_id: str results: List[CallResult] subset_indexes: np.ndarray data: np.ndarray = None tinp: np.ndarray = None zinp: np.ndarray = None lat: np.ndarray = None lon: np.ndarray = None def __repr__(self): return f'<ContextResult stream_id={self.stream_id}>' @dataclass class CollectedResult: stream_id: str package: str test: str function: callable results: np.ma.core.MaskedArray = None data: np.ndarray = None tinp: np.ndarray = None zinp: np.ndarray = None lat: np.ndarray = None lon: np.ndarray = None def __repr__(self): return f'<CollectedResult stream_id={self.stream_id} package={self.package} test={self.test}>' def function_name(self) -> str: return self.function.__name__ @property def hash_key(self) -> str: return f'{self.stream_id}:{self.package}.{self.test}' def collect_results(results, how='list'): if how in ['list', list]: return collect_results_list(results) elif how in ['dict', dict]: return collect_results_dict(results) def collect_results_list(results): """ Turns a list of ContextResult objects into an iterator of CollectedResult objects by combining the subset_index information in each ContextResult together into a single array of results. """ collected = odict() # ContextResults for r in results: cr = None # Shortcut for CallResult objects when someone uses QcConfig.run() directly # and doesn't go through a Stream object if isinstance(r, CallResult): cr = CollectedResult( stream_id=None, package=r.package, test=r.test, function=r.function, results=r.results, ) collected[cr.hash_key] = cr continue # CallResults for tr in r.results: cr = CollectedResult( stream_id=r.stream_id, package=tr.package, test=tr.test, function=tr.function ) if cr.hash_key not in collected: # Set the initial values cr.results = np.ma.masked_all(shape=r.subset_indexes.shape, dtype=tr.results.dtype) cr.data = np.ma.masked_all(shape=r.subset_indexes.shape, dtype=r.data.dtype) cr.tinp = np.ma.masked_all(shape=r.subset_indexes.shape, dtype=r.tinp.dtype) cr.zinp = np.ma.masked_all(shape=r.subset_indexes.shape, dtype=r.zinp.dtype) cr.lat = np.ma.masked_all(shape=r.subset_indexes.shape, dtype=r.lat.dtype) cr.lon = np.ma.masked_all(shape=r.subset_indexes.shape, dtype=r.lon.dtype) collected[cr.hash_key] = cr collected[cr.hash_key].results[r.subset_indexes] = tr.results if cr is not None: if r.subset_indexes.all(): collected[cr.hash_key].data = r.data collected[cr.hash_key].tinp = r.tinp collected[cr.hash_key].zinp = r.zinp collected[cr.hash_key].lat = r.lat collected[cr.hash_key].lon = r.lon else: collected[cr.hash_key].data[r.subset_indexes] = r.data collected[cr.hash_key].tinp[r.subset_indexes] = r.tinp collected[cr.hash_key].zinp[r.subset_indexes] = r.zinp collected[cr.hash_key].lat[r.subset_indexes] = r.lat collected[cr.hash_key].lon[r.subset_indexes] = r.lon return list(collected.values()) def collect_results_dict(results): """ Turns a list of ContextResult objects into a dictionary of test results by combining the subset_index information in each ContextResult together into a single array of results. This is mostly here for historical purposes. Users should migrate to using the Result objects directly. """ # Magic for nested key generation # https://stackoverflow.com/a/27809959 collected = defaultdict(lambda: defaultdict(odict)) # ContextResults for r in results: # Shortcut for CallResult objects when someone uses QcConfig.run() directly # and doesn't go through a Stream object if isinstance(r, CallResult): collected[r.package][r.test] = r.results continue flag_arr = np.ma.empty_like(r.subset_indexes, dtype='uint8') flag_arr.fill(QartodFlags.UNKNOWN) # iterate over the CallResults for tr in r.results: testpackage = tr.package testname = tr.test testresults = tr.results if testname not in collected[r.stream_id][testpackage]: collected[r.stream_id][testpackage][testname] = np.copy(flag_arr) collected[r.stream_id][testpackage][testname][r.subset_indexes] = testresults return collected
from bs4 import BeautifulSoup as bs import requests from urllib.request import urlopen from urllib.parse import quote import re import time def getProductInfo(productNameIndex): headers = {"User-Agent": "Mozilla/5.0"} color = [] size = [] price = "" instruction = "" sizeGuide = "" category = "" url = ( "https://www.ficelle.co.kr/product/" + quote(productNameIndex["productName"]) + "/" + quote(productNameIndex["productIndex"]) + "/category/25/display/1/" ) response = requests.get(url, headers=headers) if response.status_code == 200: html = urlopen(url) soup = bs(html, "html.parser") # Color Crawling c = soup.find("ul", attrs={"ec-dev-id": "product_option_id1"}) colors = c.find_all("span") # print(colors) for i in colors: productColor = i.text # print("productColor : ", productColor) color.append(productColor) # c = soup.find_all("ul", attrs={"class": "ec-product-button ec-product-preview"}) # if not c: # print(soup) # c = soup.find_all("select", attrs={"id": "product_option_id1"}) # if c: # colors = c[0].find_all("option") # for i in range(2, len(colors)): # productColor = colors[i].text # print(productColor) # color.append(productColor) # else: # colors = c[0].find_all("li") # for i in colors: # productColor = i.find("span").text # print(productColor) # color.append(productColor) # Size Crawling sizes = soup.find_all("li", attrs={"class": "ec-product-disabled"}) if not sizes: sizes = soup.find_all("select", attrs={"id": "product_option_id2"}) if sizes: s = sizes[0].find_all("option") for i in range(2, len(s)): productSize = s[i].text # print(productSize) size.append(productSize) else: size.append("Free") else: for i in sizes: productSize = i.find("span").text # print(productSize) size.append(productSize) # Product Name Crawling # productName = soup.find( # "span", attrs={"style": "font-size:16px;color:#555555;"} # ).text # category # productName์œผ๋กœ ๋ถ„๋ฅ˜ํ• ๊ฒƒ! try: productNameSplitList = productNameIndex["productName"].split(" ") # print(productNameSplitList) productNameSplitList.sort() # print(productNameSplitList) pants = ["Pants", "Slacks"] knit_sweater = ["Knit", "Sweater"] blouse_shirt = ["Blouse", "Shirt", "Shirts"] skirt = ["Skirt"] onepiece = ["Onepiece", "Dress"] jacket = ["Jacket"] jumper = ["Jumper"] jumpsuit = ["Jumpsuit"] jeans = ["Denim", "Jeans"] cardigan = ["Cardigan"] coat = ["Coat"] sports_wear = ["Jogger"] t_shirt = ["T", "Sweat shirt", "Top", "Sleeveless", "MTM"] codie_set = ["Set", "&"] bag = ["Bag"] sandal = ["Sandal"] slipper = ["slipper", "Flip"] middle_boots = ["Middle"] long_boots = ["Long"] bloafaer = ["Bloafer"] flat = ["Flat"] for productNameValue in productNameSplitList: if productNameValue in codie_set: category = "ํŒจ์…˜์˜๋ฅ˜ ์—ฌ์„ฑ์˜๋ฅ˜ ์ฝ”๋””์„ธํŠธ" break else: if productNameValue in pants: category = "ํŒจ์…˜์˜๋ฅ˜ ์—ฌ์„ฑ์˜๋ฅ˜ ๋ฐ”์ง€" break elif productNameValue in blouse_shirt: category = "ํŒจ์…˜์˜๋ฅ˜ ์—ฌ์„ฑ์˜๋ฅ˜ ๋ธ”๋ผ์šฐ์Šค/์…”์ธ " break elif productNameValue in skirt: category = "ํŒจ์…˜์˜๋ฅ˜ ์—ฌ์„ฑ์˜๋ฅ˜ ์Šค์ปคํŠธ" break elif productNameValue in onepiece: category = "ํŒจ์…˜์˜๋ฅ˜ ์—ฌ์„ฑ์˜๋ฅ˜ ์›ํ”ผ์Šค" break elif productNameValue in jacket: category = "ํŒจ์…˜์˜๋ฅ˜ ์—ฌ์„ฑ์˜๋ฅ˜ ์žฌํ‚ท" break elif productNameValue in jumper: category = "ํŒจ์…˜์˜๋ฅ˜ ์—ฌ์„ฑ์˜๋ฅ˜ ์ ํผ" break elif productNameValue in jeans: category = "ํŒจ์…˜์˜๋ฅ˜ ์—ฌ์„ฑ์˜๋ฅ˜ ์ฒญ๋ฐ”์ง€" break elif productNameValue in cardigan: category = "ํŒจ์…˜์˜๋ฅ˜ ์—ฌ์„ฑ์˜๋ฅ˜ ์นด๋””๊ฑด" break elif productNameValue in coat: category = "ํŒจ์…˜์˜๋ฅ˜ ์—ฌ์„ฑ์˜๋ฅ˜ ์ฝ”ํŠธ" break elif productNameValue in sports_wear: category = "ํŒจ์…˜์˜๋ฅ˜ ์—ฌ์„ฑ์˜๋ฅ˜ ํŠธ๋ ˆ์ด๋‹๋ณต" break elif productNameValue in knit_sweater: category = "ํŒจ์…˜์˜๋ฅ˜ ์—ฌ์„ฑ์˜๋ฅ˜ ๋‹ˆํŠธ/์Šค์›จํ„ฐ" break elif productNameValue in jumpsuit: category = "ํŒจ์…˜์˜๋ฅ˜ ์—ฌ์„ฑ์˜๋ฅ˜ ์ ํ”„์ŠˆํŠธ" break elif productNameValue in t_shirt: category = "ํŒจ์…˜์˜๋ฅ˜ ์—ฌ์„ฑ์˜๋ฅ˜ ํ‹ฐ์…”์ธ " break elif productNameValue in bag: category = "ํŒจ์…˜์žกํ™” ์—ฌ์„ฑ๊ฐ€๋ฐฉ ์ˆ„๋”๋ฐฑ" break elif productNameValue in sandal: category = "ํŒจ์…˜์žกํ™” ์—ฌ์„ฑ์‹ ๋ฐœ ์ƒŒ๋“ค ์ŠคํŠธ๋žฉ์ƒŒ๋“ค" break elif productNameValue in slipper: category = "ํŒจ์…˜์žกํ™” ์—ฌ์„ฑ์‹ ๋ฐœ ์Šฌ๋ฆฌํผ" break elif productNameValue in middle_boots: category = "ํŒจ์…˜์žกํ™” ์—ฌ์„ฑ์‹ ๋ฐœ ๋ถ€์ธ  ๋ฏธ๋“ค๋ถ€์ธ " break elif productNameValue in long_boots: category = "ํŒจ์…˜์žกํ™” ์—ฌ์„ฑ์‹ ๋ฐœ ๋ถ€์ธ  ๋กฑ๋ถ€์ธ " break elif productNameValue in bloafaer: category = "ํŒจ์…˜์žกํ™” ์—ฌ์„ฑ์‹ ๋ฐœ ์ƒŒ๋“ค ๋ฎฌ/๋ธ”๋กœํผ" break elif productNameValue in flat: category = "ํŒจ์…˜์žกํ™” ์—ฌ์„ฑ์‹ ๋ฐœ ๋‹จํ™” ํ”Œ๋žซ" break except: print("Non-Existent Categories") # Instruction and Size Guide Crawling price = soup.find("strong", attrs={"id": "span_product_price_text"}).text # price string process price = re.sub(",|์›", "", price) price = int(price) + 500 instruction = soup.find("div", attrs={"id": "view1"}).find("p").text sizeGuide = soup.find("div", attrs={"id": "view2"}).find("p").text time.sleep(3) return { "productName": productNameIndex["productName"], "price": price, "colors": color, "sizes": size, "instruction": instruction, "sizeGuide": sizeGuide, "category": category, } else: print(response.status_code)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import git import os import re import sys import toml from pathlib import Path from alchemist_py.brokergen import createProject from alchemist_py.deviceinfo import searchDevice from alchemist_py.plugin_manager import PluginManager class Manager(object): def __init__(self): config = toml.load(open("Alchemist.toml")) self.board = config["board"] self.nodes = config["nodes"] self.topics = config["topics"] self.fpga, self.clock = searchDevice(self.board) self.topic_table = {} for topic in self.topics: self.topic_table[topic["name"]] =\ "struct {name} {{\n {message}}};".format( name=topic["name"], message=topic["message"] ) self.p_manager = PluginManager() self.ports = [] for ps in list(map(lambda x:x["ports"], self.nodes)): self.ports.extend(ps) def updateNode(self, node): path_to_project = Path("nodes")/node["name"] # make mini alchemist data for the node mini_alchemist = { "device": { "board": self.board, "fpga": self.fpga, "clock": self.clock }, "node": node, "topics": [] } for port in node["ports"]: for topic in self.topics: if port["attribute"] in ["wire"]: break elif port["attribute"] in ["publisher", "subscriber"] and port["topic"] == topic["name"]: mini_alchemist["topics"].append(topic) break else: print("Unknown topic:", port["topic"], file=sys.stderr) print("node:", node["name"]) exit(1) # write mini alchemist to TOML os.makedirs(path_to_project) toml.dump(mini_alchemist, open(path_to_project/".Alchemist.toml", "w")) # update project plugin = self.p_manager.loadPlugin(node["plugin"]) plugin.createProject(node["name"]) def updateNodes(self): # update projects for nodes for node in self.nodes: path_to_project = Path("nodes")/node["name"] # if no project for a node, make a directory and Alchemist.toml if not os.path.exists(path_to_project): if "repo" in node.keys(): git.Repo.clone_from(node["repo"], "nodes") else: self.updateNode(node) # if Alchemist.toml was updated, update mini Alchemist.toml t_alchemist = os.path.getatime("Alchemist.toml") t_mini_alchemist = os.path.getatime(path_to_project/".Alchemist.toml") if t_alchemist > t_mini_alchemist: if "repo" in node.keys(): git.Repo.clone_from(node["repo"], "nodes") else: self.updateNode(node) def updateTopic(self, topic:dict): path_to_project = Path("brokers") / ("broker"+topic["name"]) if not os.path.exists(path_to_project): byte = 0 for m in re.finditer(r"(?P<type>((unsigned\s+){0,1}(char|short|int|long)|(float|double)|(ap_(u){0,1}int\s*\<\s*[1-9]{1,4}\s*>)))\s+(?P<var>([a-zA-Z_][a-zA-Z0-9_]*(\s*\[\s*([0-9]|[1-9][0-9]*)\s*\]){0,1}))\s*;", topic["message"]): byte += self.getByte(m.group("type"), m.group("var")) mini_alchemist = { "device": { "board": self.board, "fpga": self.fpga, "clock": self.clock }, "topic": topic, } mini_alchemist["topic"]["pub"] = len(list(filter( lambda x: x["attribute"] == "publisher" and x["topic"] == topic["name"], self.ports ))) mini_alchemist["topic"]["sub"] = len(list(filter( lambda x: x["attribute"] == "subscriber" and x["topic"] == topic["name"], self.ports ))) mini_alchemist["topic"]["width"] = 64 mini_alchemist["topic"]["count"] = int(byte / 8) os.makedirs(path_to_project) toml.dump(mini_alchemist, open(path_to_project / ".Alchemist.toml", "w")) createProject(topic["name"]) def updateTopics(self): for topic in self.topics: self.updateTopic(topic) def getByte(self, vType:str, var:str): width_of_type = 0 if vType == "char": width_of_type = 1 elif vType == "short": width_of_type = 2 elif vType == "int": width_of_type = 4 elif vType == "long": width_of_type = 8 elif vType.split()[0] == "unsigned": if vType.split()[1] == "char": width_of_type = 1 elif vType.split()[1] == "short": width_of_type = 2 elif vType.split()[1] == "int": width_of_type = 4 elif vType.split()[1] == "long": width_of_type = 8 else: print("Unknown type!") exit(1) else: print("Unknown type!") exit(1) length_of_var = 1 m = re.match( r"[a-zA-Z_][a-zA-Z0-9_]*\s*\[\s*(?P<length>[1-9][0-9]*)\s*\]", var ) if m: length_of_var = int(m.group("length")) return width_of_type * length_of_var
import pymongo from bson import ObjectId from src.services import config collection = config.db.incomes def search_by_user_email(user_email, itype): return collection.find({"user_email": user_email, "itype": itype}) def sum_amounts_by_user(user_email, itype): pipeline = [{"$match": {"user_email": user_email, "itype": itype}}, {"$group": {"_id": "null", "total": {"$sum": "$amount"}}}] return collection.aggregate(pipeline) def save(income): collection.insert_one(income.__dict__) def save_all(incomes): collection.insert_many(incomes) def update(income_id, income): collection.find_one_and_update( {"_id": ObjectId(income_id)}, {"$set": income.__dict__}, upsert=True) def delete(income_id): collection.delete_one({"_id": ObjectId(income_id)}) def filter(user_email, category, date, account, itype): pipeline = [{ "$match": { "user_email": user_email, "category": category, "date": date, "account": account, "itype": itype }}, {"$sort": {"date": pymongo.DESCENDING}} ] return collection.aggregate(pipeline)
def SC_DFA(y): N = len(y) tau = int(np.floor(N/2)) y = y - np.mean(y) x = np.cumsum(y) taus = np.arange(5,tau+1) ntau = len(taus) F = np.zeros(ntau) for i in range(ntau): t = int(taus[i]) x_buff = x[:N - N % t] x_buff = x_buff.reshape((int(N / t),t)) y_buff = np.zeros((int(N / t),t)) for j in range(int(N / t)): tt = range(0,int(t)) p = np.polyfit(tt,x_buff[j,:],1) y_buff[j,:] = np.power(x_buff[j,:] - np.polyval(p,tt),2) y_buff.reshape((N - N % t,1)) F[i] = np.sqrt(np.mean(y_buff)) logtaur = np.log(taus) logF = np.log(F) p = np.polyfit(logtaur,logF,1) return p[0]
import subprocess from django.conf import settings from django.core.management.base import BaseCommand class Command(BaseCommand): help = "Automatically fixes formatting issues and reports any other linting errors" def handle(self, *args, **options): subprocess.run(["isort", "--apply", "--quiet"], cwd=settings.ROOT_DIR) subprocess.run(["black", "--quiet", "."], cwd=settings.ROOT_DIR) subprocess.run(["flake8"], cwd=settings.ROOT_DIR)
""" WSGI config for template_extends project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/1.11/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault("DJANGO_SETTINGS_MODULE", "template_extends.settings") application = get_wsgi_application()
# # Copyright 2015 Quantopian, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Tests for the zipline.assets package """ import sys from unittest import TestCase from datetime import datetime, timedelta import pickle import uuid import warnings import pandas as pd from pandas.tseries.tools import normalize_date from pandas.util.testing import assert_frame_equal from nose_parameterized import parameterized from numpy import full from zipline.assets import Asset, Equity, Future, AssetFinder from zipline.assets.futures import FutureChain from zipline.errors import ( SymbolNotFound, MultipleSymbolsFound, SidAssignmentError, RootSymbolNotFound, ) from zipline.finance.trading import with_environment from zipline.utils.test_utils import ( all_subindices, make_rotating_asset_info, ) def build_lookup_generic_cases(): """ Generate test cases for AssetFinder test_lookup_generic. """ unique_start = pd.Timestamp('2013-01-01', tz='UTC') unique_end = pd.Timestamp('2014-01-01', tz='UTC') dupe_0_start = pd.Timestamp('2013-01-01', tz='UTC') dupe_0_end = dupe_0_start + timedelta(days=1) dupe_1_start = pd.Timestamp('2013-01-03', tz='UTC') dupe_1_end = dupe_1_start + timedelta(days=1) frame = pd.DataFrame.from_records( [ { 'sid': 0, 'file_name': 'duplicated', 'company_name': 'duplicated_0', 'start_date_nano': dupe_0_start.value, 'end_date_nano': dupe_0_end.value, 'exchange': '', }, { 'sid': 1, 'file_name': 'duplicated', 'company_name': 'duplicated_1', 'start_date_nano': dupe_1_start.value, 'end_date_nano': dupe_1_end.value, 'exchange': '', }, { 'sid': 2, 'file_name': 'unique', 'company_name': 'unique', 'start_date_nano': unique_start.value, 'end_date_nano': unique_end.value, 'exchange': '', }, ], ) finder = AssetFinder(metadata=frame) dupe_0, dupe_1, unique = assets = [ finder.retrieve_asset(i) for i in range(3) ] dupe_0_start = dupe_0.start_date dupe_1_start = dupe_1.start_date cases = [ ## # Scalars # Asset object (finder, assets[0], None, assets[0]), (finder, assets[1], None, assets[1]), (finder, assets[2], None, assets[2]), # int (finder, 0, None, assets[0]), (finder, 1, None, assets[1]), (finder, 2, None, assets[2]), # Duplicated symbol with resolution date (finder, 'duplicated', dupe_0_start, dupe_0), (finder, 'duplicated', dupe_1_start, dupe_1), # Unique symbol, with or without resolution date. (finder, 'unique', unique_start, unique), (finder, 'unique', None, unique), ## # Iterables # Iterables of Asset objects. (finder, assets, None, assets), (finder, iter(assets), None, assets), # Iterables of ints (finder, (0, 1), None, assets[:-1]), (finder, iter((0, 1)), None, assets[:-1]), # Iterables of symbols. (finder, ('duplicated', 'unique'), dupe_0_start, [dupe_0, unique]), (finder, ('duplicated', 'unique'), dupe_1_start, [dupe_1, unique]), # Mixed types (finder, ('duplicated', 2, 'unique', 1, dupe_1), dupe_0_start, [dupe_0, assets[2], unique, assets[1], dupe_1]), ] return cases class AssetTestCase(TestCase): def test_asset_object(self): self.assertEquals({5061: 'foo'}[Asset(5061)], 'foo') self.assertEquals(Asset(5061), 5061) self.assertEquals(5061, Asset(5061)) self.assertEquals(Asset(5061), Asset(5061)) self.assertEquals(int(Asset(5061)), 5061) self.assertEquals(str(Asset(5061)), 'Asset(5061)') def test_asset_is_pickleable(self): # Very wow s = Asset( 1337, symbol="DOGE", asset_name="DOGECOIN", start_date=pd.Timestamp('2013-12-08 9:31AM', tz='UTC'), end_date=pd.Timestamp('2014-06-25 11:21AM', tz='UTC'), first_traded=pd.Timestamp('2013-12-08 9:31AM', tz='UTC'), exchange='THE MOON', ) s_unpickled = pickle.loads(pickle.dumps(s)) attrs_to_check = ['end_date', 'exchange', 'first_traded', 'end_date', 'asset_name', 'start_date', 'sid', 'start_date', 'symbol'] for attr in attrs_to_check: self.assertEqual(getattr(s, attr), getattr(s_unpickled, attr)) def test_asset_comparisons(self): s_23 = Asset(23) s_24 = Asset(24) self.assertEqual(s_23, s_23) self.assertEqual(s_23, 23) self.assertEqual(23, s_23) self.assertNotEqual(s_23, s_24) self.assertNotEqual(s_23, 24) self.assertNotEqual(s_23, "23") self.assertNotEqual(s_23, 23.5) self.assertNotEqual(s_23, []) self.assertNotEqual(s_23, None) self.assertLess(s_23, s_24) self.assertLess(s_23, 24) self.assertGreater(24, s_23) self.assertGreater(s_24, s_23) def test_lt(self): self.assertTrue(Asset(3) < Asset(4)) self.assertFalse(Asset(4) < Asset(4)) self.assertFalse(Asset(5) < Asset(4)) def test_le(self): self.assertTrue(Asset(3) <= Asset(4)) self.assertTrue(Asset(4) <= Asset(4)) self.assertFalse(Asset(5) <= Asset(4)) def test_eq(self): self.assertFalse(Asset(3) == Asset(4)) self.assertTrue(Asset(4) == Asset(4)) self.assertFalse(Asset(5) == Asset(4)) def test_ge(self): self.assertFalse(Asset(3) >= Asset(4)) self.assertTrue(Asset(4) >= Asset(4)) self.assertTrue(Asset(5) >= Asset(4)) def test_gt(self): self.assertFalse(Asset(3) > Asset(4)) self.assertFalse(Asset(4) > Asset(4)) self.assertTrue(Asset(5) > Asset(4)) def test_type_mismatch(self): if sys.version_info.major < 3: self.assertIsNotNone(Asset(3) < 'a') self.assertIsNotNone('a' < Asset(3)) else: with self.assertRaises(TypeError): Asset(3) < 'a' with self.assertRaises(TypeError): 'a' < Asset(3) class TestFuture(TestCase): future = Future( 2468, symbol='OMH15', root_symbol='OM', notice_date=pd.Timestamp('2014-01-20', tz='UTC'), expiration_date=pd.Timestamp('2014-02-20', tz='UTC'), contract_multiplier=500 ) def test_str(self): strd = self.future.__str__() self.assertEqual("Future(2468 [OMH15])", strd) def test_repr(self): reprd = self.future.__repr__() self.assertTrue("Future" in reprd) self.assertTrue("2468" in reprd) self.assertTrue("OMH15" in reprd) self.assertTrue("root_symbol='OM'" in reprd) self.assertTrue(("notice_date=Timestamp('2014-01-20 00:00:00+0000', " "tz='UTC')") in reprd) self.assertTrue("expiration_date=Timestamp('2014-02-20 00:00:00+0000'" in reprd) self.assertTrue("contract_multiplier=500" in reprd) def test_reduce(self): reduced = self.future.__reduce__() self.assertEqual(Future, reduced[0]) def test_to_and_from_dict(self): dictd = self.future.to_dict() self.assertTrue('root_symbol' in dictd) self.assertTrue('notice_date' in dictd) self.assertTrue('expiration_date' in dictd) self.assertTrue('contract_multiplier' in dictd) from_dict = Future.from_dict(dictd) self.assertTrue(isinstance(from_dict, Future)) self.assertEqual(self.future, from_dict) def test_root_symbol(self): self.assertEqual('OM', self.future.root_symbol) class AssetFinderTestCase(TestCase): def test_lookup_symbol_fuzzy(self): as_of = pd.Timestamp('2013-01-01', tz='UTC') frame = pd.DataFrame.from_records( [ { 'sid': i, 'file_name': 'TEST@%d' % i, 'company_name': "company%d" % i, 'start_date_nano': as_of.value, 'end_date_nano': as_of.value, 'exchange': uuid.uuid4().hex, } for i in range(3) ] ) finder = AssetFinder(frame, fuzzy_char='@') asset_0, asset_1, asset_2 = ( finder.retrieve_asset(i) for i in range(3) ) for i in range(2): # we do it twice to test for caching bugs self.assertIsNone(finder.lookup_symbol('test', as_of)) self.assertEqual( asset_1, finder.lookup_symbol('test@1', as_of) ) # Adding an unnecessary fuzzy shouldn't matter. self.assertEqual( asset_1, finder.lookup_symbol('test@1', as_of, fuzzy=True) ) # Shouldn't find this with no fuzzy_str passed. self.assertIsNone(finder.lookup_symbol('test1', as_of)) # Should find exact match. self.assertEqual( asset_1, finder.lookup_symbol('test1', as_of, fuzzy=True), ) def test_lookup_symbol_resolve_multiple(self): # Incrementing by two so that start and end dates for each # generated Asset don't overlap (each Asset's end_date is the # day after its start date.) dates = pd.date_range('2013-01-01', freq='2D', periods=5, tz='UTC') df = pd.DataFrame.from_records( [ { 'sid': i, 'file_name': 'existing', 'company_name': 'existing', 'start_date_nano': date.value, 'end_date_nano': (date + timedelta(days=1)).value, 'exchange': 'NYSE', } for i, date in enumerate(dates) ] ) finder = AssetFinder(df) for _ in range(2): # Run checks twice to test for caching bugs. with self.assertRaises(SymbolNotFound): finder.lookup_symbol_resolve_multiple('non_existing', dates[0]) with self.assertRaises(MultipleSymbolsFound): finder.lookup_symbol_resolve_multiple('existing', None) for i, date in enumerate(dates): # Verify that we correctly resolve multiple symbols using # the supplied date result = finder.lookup_symbol_resolve_multiple( 'existing', date, ) self.assertEqual(result.symbol, 'existing') self.assertEqual(result.sid, i) @parameterized.expand( build_lookup_generic_cases() ) def test_lookup_generic(self, finder, symbols, reference_date, expected): """ Ensure that lookup_generic works with various permutations of inputs. """ results, missing = finder.lookup_generic(symbols, reference_date) self.assertEqual(results, expected) self.assertEqual(missing, []) def test_lookup_generic_handle_missing(self): data = pd.DataFrame.from_records( [ # Sids that will be found when we do lookups. { 'sid': 0, 'file_name': 'real', 'company_name': 'real', 'start_date_nano': pd.Timestamp('2013-1-1', tz='UTC'), 'end_date_nano': pd.Timestamp('2014-1-1', tz='UTC'), 'exchange': '', }, { 'sid': 1, 'file_name': 'also_real', 'company_name': 'also_real', 'start_date_nano': pd.Timestamp('2013-1-1', tz='UTC'), 'end_date_nano': pd.Timestamp('2014-1-1', tz='UTC'), 'exchange': '', }, # Sid whose end date is before our query date. We should # still correctly find it. { 'sid': 2, 'file_name': 'real_but_old', 'company_name': 'real_but_old', 'start_date_nano': pd.Timestamp('2002-1-1', tz='UTC'), 'end_date_nano': pd.Timestamp('2003-1-1', tz='UTC'), 'exchange': '', }, # Sid whose end date is before our query date. We should # still correctly find it. { 'sid': 3, 'file_name': 'real_but_in_the_future', 'company_name': 'real_but_in_the_future', 'start_date_nano': pd.Timestamp('2014-1-1', tz='UTC'), 'end_date_nano': pd.Timestamp('2020-1-1', tz='UTC'), 'exchange': 'THE FUTURE', }, ] ) finder = AssetFinder(data) results, missing = finder.lookup_generic( ['real', 1, 'fake', 'real_but_old', 'real_but_in_the_future'], pd.Timestamp('2013-02-01', tz='UTC'), ) self.assertEqual(len(results), 3) self.assertEqual(results[0].symbol, 'real') self.assertEqual(results[0].sid, 0) self.assertEqual(results[1].symbol, 'also_real') self.assertEqual(results[1].sid, 1) self.assertEqual(len(missing), 2) self.assertEqual(missing[0], 'fake') self.assertEqual(missing[1], 'real_but_in_the_future') def test_insert_metadata(self): finder = AssetFinder() finder.insert_metadata(0, asset_type='equity', start_date='2014-01-01', end_date='2015-01-01', symbol="PLAY", foo_data="FOO",) # Test proper insertion equity = finder.retrieve_asset(0) self.assertIsInstance(equity, Equity) self.assertEqual('PLAY', equity.symbol) self.assertEqual(pd.Timestamp('2015-01-01', tz='UTC'), equity.end_date) # Test invalid field self.assertFalse('foo_data' in finder.metadata_cache[0]) def test_consume_metadata(self): # Test dict consumption finder = AssetFinder() dict_to_consume = {0: {'symbol': 'PLAY'}, 1: {'symbol': 'MSFT'}} finder.consume_metadata(dict_to_consume) equity = finder.retrieve_asset(0) self.assertIsInstance(equity, Equity) self.assertEqual('PLAY', equity.symbol) finder = AssetFinder() # Test dataframe consumption df = pd.DataFrame(columns=['asset_name', 'exchange'], index=[0, 1]) df['asset_name'][0] = "Dave'N'Busters" df['exchange'][0] = "NASDAQ" df['asset_name'][1] = "Microsoft" df['exchange'][1] = "NYSE" finder.consume_metadata(df) self.assertEqual('NASDAQ', finder.metadata_cache[0]['exchange']) self.assertEqual('Microsoft', finder.metadata_cache[1]['asset_name']) def test_consume_asset_as_identifier(self): # Build some end dates eq_end = pd.Timestamp('2012-01-01', tz='UTC') fut_end = pd.Timestamp('2008-01-01', tz='UTC') # Build some simple Assets equity_asset = Equity(1, symbol="TESTEQ", end_date=eq_end) future_asset = Future(200, symbol="TESTFUT", end_date=fut_end) # Consume the Assets finder = AssetFinder() finder.consume_identifiers([equity_asset, future_asset]) # Test equality with newly built Assets self.assertEqual(equity_asset, finder.retrieve_asset(1)) self.assertEqual(future_asset, finder.retrieve_asset(200)) self.assertEqual(eq_end, finder.retrieve_asset(1).end_date) self.assertEqual(fut_end, finder.retrieve_asset(200).end_date) def test_sid_assignment(self): # This metadata does not contain SIDs metadata = {'PLAY': {'symbol': 'PLAY'}, 'MSFT': {'symbol': 'MSFT'}} today = normalize_date(pd.Timestamp('2015-07-09', tz='UTC')) # Build a finder that is allowed to assign sids finder = AssetFinder(metadata=metadata, allow_sid_assignment=True) # Verify that Assets were built and different sids were assigned play = finder.lookup_symbol('PLAY', today) msft = finder.lookup_symbol('MSFT', today) self.assertEqual('PLAY', play.symbol) self.assertIsNotNone(play.sid) self.assertNotEqual(play.sid, msft.sid) def test_sid_assignment_failure(self): # This metadata does not contain SIDs metadata = {'PLAY': {'symbol': 'PLAY'}, 'MSFT': {'symbol': 'MSFT'}} # Build a finder that is not allowed to assign sids, asserting failure with self.assertRaises(SidAssignmentError): AssetFinder(metadata=metadata, allow_sid_assignment=False) def test_security_dates_warning(self): # Build an asset with an end_date eq_end = pd.Timestamp('2012-01-01', tz='UTC') equity_asset = Equity(1, symbol="TESTEQ", end_date=eq_end) # Catch all warnings with warnings.catch_warnings(record=True) as w: # Cause all warnings to always be triggered warnings.simplefilter("always") equity_asset.security_start_date equity_asset.security_end_date equity_asset.security_name # Verify the warning self.assertEqual(3, len(w)) for warning in w: self.assertTrue(issubclass(warning.category, DeprecationWarning)) def test_lookup_future_chain(self): metadata = { # Notice day is today, so not valid 2: { 'symbol': 'ADN15', 'root_symbol': 'AD', 'asset_type': 'future', 'notice_date': pd.Timestamp('2015-05-14', tz='UTC'), 'start_date': pd.Timestamp('2015-01-01', tz='UTC') }, 1: { 'symbol': 'ADV15', 'root_symbol': 'AD', 'asset_type': 'future', 'notice_date': pd.Timestamp('2015-08-14', tz='UTC'), 'start_date': pd.Timestamp('2015-01-01', tz='UTC') }, # Starts trading today, so should be valid. 0: { 'symbol': 'ADF16', 'root_symbol': 'AD', 'asset_type': 'future', 'notice_date': pd.Timestamp('2015-11-16', tz='UTC'), 'start_date': pd.Timestamp('2015-05-14', tz='UTC') }, # Copy of the above future, but starts trading in August, # so it isn't valid. 3: { 'symbol': 'ADF16', 'root_symbol': 'AD', 'asset_type': 'future', 'notice_date': pd.Timestamp('2015-11-16', tz='UTC'), 'start_date': pd.Timestamp('2015-08-01', tz='UTC') }, } finder = AssetFinder(metadata=metadata) dt = pd.Timestamp('2015-05-14', tz='UTC') last_year = pd.Timestamp('2014-01-01', tz='UTC') first_day = pd.Timestamp('2015-01-01', tz='UTC') # Check that we get the expected number of contracts, in the # right order ad_contracts = finder.lookup_future_chain('AD', dt, dt) self.assertEqual(len(ad_contracts), 2) self.assertEqual(ad_contracts[0].sid, 1) self.assertEqual(ad_contracts[1].sid, 0) # Check that we get nothing if our knowledge date is last year ad_contracts = finder.lookup_future_chain('AD', dt, last_year) self.assertEqual(len(ad_contracts), 0) # Check that we get things that start on the knowledge date ad_contracts = finder.lookup_future_chain('AD', dt, first_day) self.assertEqual(len(ad_contracts), 1) def test_map_identifier_index_to_sids(self): # Build an empty finder and some Assets dt = pd.Timestamp('2014-01-01', tz='UTC') finder = AssetFinder() asset1 = Equity(1, symbol="AAPL") asset2 = Equity(2, symbol="GOOG") asset200 = Future(200, symbol="CLK15") asset201 = Future(201, symbol="CLM15") # Check for correct mapping and types pre_map = [asset1, asset2, asset200, asset201] post_map = finder.map_identifier_index_to_sids(pre_map, dt) self.assertListEqual([1, 2, 200, 201], post_map) for sid in post_map: self.assertIsInstance(sid, int) # Change order and check mapping again pre_map = [asset201, asset2, asset200, asset1] post_map = finder.map_identifier_index_to_sids(pre_map, dt) self.assertListEqual([201, 2, 200, 1], post_map) @with_environment() def test_compute_lifetimes(self, env=None): num_assets = 4 trading_day = env.trading_day first_start = pd.Timestamp('2015-04-01', tz='UTC') frame = make_rotating_asset_info( num_assets=num_assets, first_start=first_start, frequency=env.trading_day, periods_between_starts=3, asset_lifetime=5 ) finder = AssetFinder(frame) all_dates = pd.date_range( start=first_start, end=frame.end_date.max(), freq=trading_day, ) for dates in all_subindices(all_dates): expected_mask = full( shape=(len(dates), num_assets), fill_value=False, dtype=bool, ) for i, date in enumerate(dates): it = frame[['start_date', 'end_date']].itertuples() for j, start, end in it: if start <= date <= end: expected_mask[i, j] = True # Filter out columns with all-empty columns. expected_result = pd.DataFrame( data=expected_mask, index=dates, columns=frame.sid.values, ) actual_result = finder.lifetimes(dates) assert_frame_equal(actual_result, expected_result) class TestFutureChain(TestCase): metadata = { 0: { 'symbol': 'CLG06', 'root_symbol': 'CL', 'asset_type': 'future', 'start_date': pd.Timestamp('2005-12-01', tz='UTC'), 'notice_date': pd.Timestamp('2005-12-20', tz='UTC'), 'expiration_date': pd.Timestamp('2006-01-20', tz='UTC')}, 1: { 'root_symbol': 'CL', 'symbol': 'CLK06', 'asset_type': 'future', 'start_date': pd.Timestamp('2005-12-01', tz='UTC'), 'notice_date': pd.Timestamp('2006-03-20', tz='UTC'), 'expiration_date': pd.Timestamp('2006-04-20', tz='UTC')}, 2: { 'symbol': 'CLQ06', 'root_symbol': 'CL', 'asset_type': 'future', 'start_date': pd.Timestamp('2005-12-01', tz='UTC'), 'notice_date': pd.Timestamp('2006-06-20', tz='UTC'), 'expiration_date': pd.Timestamp('2006-07-20', tz='UTC')}, 3: { 'symbol': 'CLX06', 'root_symbol': 'CL', 'asset_type': 'future', 'start_date': pd.Timestamp('2006-02-01', tz='UTC'), 'notice_date': pd.Timestamp('2006-09-20', tz='UTC'), 'expiration_date': pd.Timestamp('2006-10-20', tz='UTC')} } asset_finder = AssetFinder(metadata=metadata) def test_len(self): """ Test the __len__ method of FutureChain. """ # None of the contracts have started yet. cl = FutureChain(self.asset_finder, lambda: '2005-11-30', 'CL') self.assertEqual(len(cl), 0) # Sids 0, 1, & 2 have started, 3 has not yet started. cl = FutureChain(self.asset_finder, lambda: '2005-12-01', 'CL') self.assertEqual(len(cl), 3) # Sid 0 is still valid the day before its notice date. cl = FutureChain(self.asset_finder, lambda: '2005-12-19', 'CL') self.assertEqual(len(cl), 3) # Sid 0 is now invalid, leaving only Sids 1 & 2 valid. cl = FutureChain(self.asset_finder, lambda: '2005-12-20', 'CL') self.assertEqual(len(cl), 2) # Sid 3 has started, so 1, 2, & 3 are now valid. cl = FutureChain(self.asset_finder, lambda: '2006-02-01', 'CL') self.assertEqual(len(cl), 3) # All contracts are no longer valid. cl = FutureChain(self.asset_finder, lambda: '2006-09-20', 'CL') self.assertEqual(len(cl), 0) def test_getitem(self): """ Test the __getitem__ method of FutureChain. """ cl = FutureChain(self.asset_finder, lambda: '2005-12-01', 'CL') self.assertEqual(cl[0], 0) self.assertEqual(cl[1], 1) self.assertEqual(cl[2], 2) with self.assertRaises(IndexError): cl[3] cl = FutureChain(self.asset_finder, lambda: '2005-12-19', 'CL') self.assertEqual(cl[0], 0) cl = FutureChain(self.asset_finder, lambda: '2005-12-20', 'CL') self.assertEqual(cl[0], 1) cl = FutureChain(self.asset_finder, lambda: '2006-02-01', 'CL') self.assertEqual(cl[-1], 3) def test_root_symbols(self): """ Test that different variations on root symbols are handled as expected. """ # Make sure this successfully gets the chain for CL. cl = FutureChain(self.asset_finder, lambda: '2005-12-01', 'CL') self.assertEqual(cl.root_symbol, 'CL') # These root symbols don't exist, so RootSymbolNotFound should # be raised immediately. with self.assertRaises(RootSymbolNotFound): FutureChain(self.asset_finder, lambda: '2005-12-01', 'CLZ') with self.assertRaises(RootSymbolNotFound): FutureChain(self.asset_finder, lambda: '2005-12-01', '') def test_repr(self): """ Test the __repr__ method of FutureChain. """ cl = FutureChain(self.asset_finder, lambda: '2005-12-01', 'CL') cl_feb = FutureChain(self.asset_finder, lambda: '2005-12-01', 'CL', as_of_date='2006-02-01') # The default chain should not include the as of date. self.assertEqual(repr(cl), "FutureChain(root_symbol='CL')") # An explicit as of date should show up in the repr. self.assertEqual( repr(cl_feb), ("FutureChain(root_symbol='CL', " "as_of_date='2006-02-01 00:00:00+00:00')") ) def test_as_of(self): """ Test the as_of method of FutureChain. """ cl = FutureChain(self.asset_finder, lambda: '2005-12-01', 'CL') # Test that the as_of_date is set correctly to the future feb = '2006-02-01' cl_feb = cl.as_of(feb) self.assertEqual( cl_feb.as_of_date, pd.Timestamp(feb, tz='UTC') ) # Test that the as_of_date is set correctly to the past, with # args of str, datetime.datetime, and pd.Timestamp. feb_prev = '2005-02-01' cl_feb_prev = cl.as_of(feb_prev) self.assertEqual( cl_feb_prev.as_of_date, pd.Timestamp(feb_prev, tz='UTC') ) feb_prev = datetime(year=2005, month=2, day=1) cl_feb_prev = cl.as_of(feb_prev) self.assertEqual( cl_feb_prev.as_of_date, pd.Timestamp(feb_prev, tz='UTC') ) feb_prev = pd.Timestamp('2005-02-01') cl_feb_prev = cl.as_of(feb_prev) self.assertEqual( cl_feb_prev.as_of_date, pd.Timestamp(feb_prev, tz='UTC') ) # The chain as of the current dt should always be the same as # the defualt chain. Tests date as str, pd.Timestamp, and # datetime.datetime. self.assertEqual(cl[0], cl.as_of('2005-12-01')[0]) self.assertEqual(cl[0], cl.as_of(pd.Timestamp('2005-12-01'))[0]) self.assertEqual( cl[0], cl.as_of(datetime(year=2005, month=12, day=1))[0] ) def test_offset(self): """ Test the offset method of FutureChain. """ cl = FutureChain(self.asset_finder, lambda: '2005-12-01', 'CL') # Test that an offset forward sets as_of_date as expected self.assertEqual( cl.offset('3 days').as_of_date, cl.as_of_date + pd.Timedelta(days=3) ) # Test that an offset backward sets as_of_date as expected, with # time delta given as str, datetime.timedelta, and pd.Timedelta. self.assertEqual( cl.offset('-1000 days').as_of_date, cl.as_of_date + pd.Timedelta(days=-1000) ) self.assertEqual( cl.offset(timedelta(days=-1000)).as_of_date, cl.as_of_date + pd.Timedelta(days=-1000) ) self.assertEqual( cl.offset(pd.Timedelta('-1000 days')).as_of_date, cl.as_of_date + pd.Timedelta(days=-1000) ) # An offset of zero should give the original chain. self.assertEqual(cl[0], cl.offset(0)[0]) self.assertEqual(cl[0], cl.offset("0 days")[0]) # A string that doesn't represent a time delta should raise a # ValueError. with self.assertRaises(ValueError): cl.offset("blah")
#!/usr/bin/env python import os import sys if __name__ == "__main__": os.environ.setdefault("DJANGO_SETTINGS_MODULE", "allfeed.settings") try: from django.core.management import execute_from_command_line except ImportError as exc: raise ImportError( "Couldn't import Django. Are you sure it's installed and " "available on your PYTHONPATH environment variable? Did you " "forget to activate a virtual environment?" ) from exc execute_from_command_line(sys.argv)
#!/usr/bin/env python __author__ = "Amir Savvy" __copyright__ = "Copyright 2021, MVP Vending Machine Project" __credits__ = ["amir savvy"] __license__ = "GPL" __version__ = "1.0.1" __maintainer__ = "Amir Savvy" __email__ = "mianamirlahore@gmail.com" __status__ = "Production" # User info TEST_NORMAL_USER_EMAIL = f"normal@user.com" TEST_SUPER_USER_EMAIL = f"super@user.com" TEST_PASSWORD = f"@#$%123456)(*!@#$" ADMIN = 1 SELLER = 2 BUYER = 3 AMOUNT_DATA = (5, 10, 20, 50, 100) UNSAFE_REQUEST_METHODS = ('POST', 'PUT', 'PATCH', 'DELETE') SAFE_REQUEST_METHODS = ('GET', 'HEAD', 'OPTIONS') EMPTY_RESPONSE = dict() MESSAGE_KEY = f'message' ERROR_MESSAGE_KEY = f'error_message' DATA_KEY = f'data' IS_SUCCESSFULL = "is_successfull" IS_FAILED = "is_failed"
""" This module is mainly used to conduct feature engineering for predicting air quality index model """ import warnings import helpers warnings.filterwarnings('ignore') if __name__ == '__main__': PATH = r'air_pollution_death_rate_related/data/data_air_raw/daily_aqi_by_county_' ### use most recent 3 years to train model RAW_DATA = helpers.read_raw_data(PATH, [2016, 2017, 2018]) DATA = helpers.data_cleaning(RAW_DATA) ### clean data before doing feature engineering for county_name in list(DATA["state_county"].unique()): #### we do feature engineering #### on each county independently #### feature engineering for model df = (helpers.feature_engineering_for_aqi(DATA, 30, county_name,\ "air_pollution_death_rate_related/data/county_features_data/county_features_train/"))
############################################################################### # # Tests for XlsxWriter. # # Copyright (c), 2013-2019, John McNamara, jmcnamara@cpan.org # from ..excel_comparsion_test import ExcelComparisonTest from ...workbook import Workbook class TestCompareXLSXFiles(ExcelComparisonTest): """ Test file created by XlsxWriter against a file created by Excel. """ def setUp(self): self.set_filename('autofilter09.xlsx') self.set_text_file('autofilter_data.txt') def test_create_file(self): """ Test the creation of a simple XlsxWriter file with an autofilter. This test checks a filter list. """ workbook = Workbook(self.got_filename) worksheet = workbook.add_worksheet() # Set the autofilter. worksheet.autofilter('A1:D51') # Add filter criteria. worksheet.filter_column_list(0, ['East', 'South', 'North']) # Open a text file with autofilter example data. textfile = open(self.txt_filename) # Read the headers from the first line of the input file. headers = textfile.readline().strip("\n").split() # Write out the headers. worksheet.write_row('A1', headers) # Start writing data after the headers. row = 1 # Read the rest of the text file and write it to the worksheet. for line in textfile: # Split the input data based on whitespace. data = line.strip("\n").split() # Convert the number data from the text file. for i, item in enumerate(data): try: data[i] = float(item) except ValueError: pass # Simulate a blank cell in the data. if row == 6: data[0] = '' # Get some of the field data. region = data[0] # Check for rows that match the filter. if region == 'North' or region == 'South' or region == 'East': # Row matches the filter, no further action required. pass else: # We need to hide rows that don't match the filter. worksheet.set_row(row, options={'hidden': True}) # Write out the row data. worksheet.write_row(row, 0, data) # Move on to the next worksheet row. row += 1 textfile.close() workbook.close() self.assertExcelEqual()
from lxml.builder import ElementMaker from moai.metadata.mods import NL_MODS, XSI_NS class DIDL(object): """A metadata prefix implementing the DARE DIDL metadata format this format is registered under the name "didl" Note that this format re-uses oai_dc and mods formats that come with MOAI by default """ def __init__(self, prefix, config, db): self.prefix = prefix self.config = config self.db = db self.ns = {'didl': "urn:mpeg:mpeg21:2002:02-DIDL-NS", 'dii': "urn:mpeg:mpeg21:2002:01-DII-NS", 'dip': "urn:mpeg:mpeg21:2005:01-DIP-NS", 'dcterms': "http://purl.org/dc/terms/", 'xsi': "http://www.w3.org/2001/XMLSchema-instance", 'rdf': "http://www.w3.org/1999/02/22-rdf-syntax-ns#", 'dc': 'http://purl.org/dc/elements/1.1/', } self.schemas = {'didl':'http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/did/didl.xsd', 'dii': 'http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/dii/dii.xsd', 'dip': 'http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-21_schema_files/dip/dip.xsd'} def get_namespace(self): return self.ns[self.prefix] def get_schema_location(self): return self.schemas[self.prefix] def __call__(self, element, metadata): data = metadata.record DIDL = ElementMaker(namespace=self.ns['didl'], nsmap=self.ns) DII = ElementMaker(namespace=self.ns['dii']) DIP = ElementMaker(namespace=self.ns['dip']) RDF = ElementMaker(namespace=self.ns['rdf']) DCTERMS = ElementMaker(namespace=self.ns['dcterms']) oai_url = (self.config.url+'?verb=GetRecord&' 'metadataPrefix=%s&identifier=%s' % ( self.prefix, data['id'])) id_url = data['metadata'].get('url', [None])[0] # generate mods for this feed mods_data = DIDL.Resource(mimeType="application/xml") NL_MODS('mods', self.config, self.db)(mods_data, metadata) asset_data = [] descriptive_metadata = RDF.type() descriptive_metadata.attrib['{%s}resource' % self.ns['rdf']] = ( 'info:eu-repo/semantics/descriptiveMetadata') didl = DIDL.DIDL( DIDL.Item( DIDL.Descriptor( DIDL.Statement( DCTERMS.modified(data['modified'].isoformat().split('.')[0]), mimeType="application/xml" ) ), DIDL.Component( DIDL.Resource(ref=id_url or oai_url,mimeType="application/xml") ), DIDL.Item( DIDL.Descriptor( DIDL.Statement(descriptive_metadata, mimeType="application/xml") ), DIDL.Component( DIDL.Descriptor( DIDL.Statement("mods", mimeType="text/plain")), mods_data) ), ) ) object_file = RDF.type() object_file.attrib['{%s}resource' % self.ns['rdf']] = ( 'info:eu-repo/semantics/objectFile') for root_item in didl: for asset in data['metadata'].get('asset', []): url = asset['url'] if not url.startswith('http://'): url = self.config.url.rstrip('/') + '/' + url.lstrip('/') item = DIDL.Item( DIDL.Descriptor( DIDL.Statement(object_file, mimeType="application/xml") ) ) access = asset.get('access') if access == 'open': access = ( 'http://purl.org/eprint/accessRights/OpenAccess') elif access == 'restricted': access = ( 'http://purl.org/eprint/accessRights/RestrictedAccess') elif access == 'closed': access = ( 'http://purl.org/eprint/accessRights/ClosedAccess') if access: item.append( DIDL.Descriptor( DIDL.Statement(DCTERMS.accessRights(access), mimeType="application/xml"))) for modified in asset.get('modified', []): item.append( DIDL.Descriptor( DIDL.Statement(DCTERMS.modified(modified), mimeType="application/xml"))) item.append( DIDL.Component( DIDL.Resource(mimeType=asset['mimetype'], ref=url) ) ) root_item.append(item) break human_start_page = RDF.type() human_start_page.attrib['{%s}resource' % self.ns['rdf']] = ( 'info:eu-repo/semantics/humanStartPage') if data['metadata'].get('url'): item = DIDL.Item( DIDL.Descriptor( DIDL.Statement(human_start_page, mimeType="application/xml") ), DIDL.Component( DIDL.Resource(mimeType="text/html", ref=data['metadata']['url'][0]) ) ) root_item.append(item) didl.attrib['{%s}schemaLocation' % XSI_NS] = ( '%s %s %s %s %s %s' % (self.ns['didl'], self.schemas['didl'], self.ns['dii'], self.schemas['dii'], self.ns['dip'], self.schemas['dip'])) element.append(didl)
# -*- coding: utf-8 -*- import sys from os.path import dirname, abspath, normpath, join, realpath from os import listdir, remove, system import json from datetime import datetime begin = len(normpath(abspath(join(dirname(__file__), "../..")))) end = len(normpath(abspath(join(dirname(__file__), "..")))) MAIN_DIR = dirname(realpath(__file__)) package_name = MAIN_DIR[begin + 1 : end] # Add the directory to the python path sys.path.append(MAIN_DIR[:begin]) exec( "from " + package_name + ".Generator.ClassGenerator.class_generator import generate_class" ) exec("from " + package_name + ".Generator.read_fct import read_all") exec("from " + package_name + ".definitions import MAIN_DIR, DOC_DIR, INT_DIR") # List of the main packages (to sort the classes) PACKAGE_LIST = ["Geometry", "Machine", "Material", "Slot", "Import"] def generate_code(root_path, gen_dict=None): """Generate pyleecan Classes code according to doc in root_path Parameters ---------- root_path : str Path to the main folder of Pyleecan gen_dict : dict Generation dictionary (contains all the csv data) Returns ------- None """ CLASS_DIR = join(root_path, "Classes") FUNC_DIR = join(root_path, "Functions") DOC_DIR = join(root_path, "Generator", "ClassesRef") print("Reading classes csv in: " + DOC_DIR) print("Saving generated files in: " + CLASS_DIR) path = __file__[__file__.index(package_name) :] path = path.replace("\\", "/") # Deleting all the previous class print("Deleting old class files...") for file_name in listdir(CLASS_DIR): if file_name[0] != "_": remove(join(CLASS_DIR, file_name)) # A file to import every classes quickly import_file = open(join(CLASS_DIR, "import_all.py"), "w") import_file.write("# -*- coding: utf-8 -*-\n\n") import_file.write('"""File generated by generate_code() - \n') import_file.write('WARNING! All changes made in this file will be lost!\n"""\n\n') # A file to select the constructor according to a string load_file = open(join(FUNC_DIR, "load_switch.py"), "w") load_file.write("# -*- coding: utf-8 -*-\n") load_file.write('"""File generated by generate_code() - \n') load_file.write('WARNING! All changes made in this file will be lost!\n"""\n\n') load_file.write("from ..Classes.import_all import *\n\n") load_file.write("load_switch = {\n") # Read all the csv files if gen_dict is None: gen_dict = read_all(DOC_DIR) # Generate all the class files (sorted to remove "commit noise") for class_name, _ in iter(sorted(list(gen_dict.items()))): import_file.write( "from ..Classes." + class_name + " import " + class_name + "\n" ) load_file.write(' "' + class_name + '": ' + class_name + ",\n") print("Generation of " + class_name + " class") generate_class(gen_dict, class_name, CLASS_DIR) import_file.close() load_file.write("}\n") load_file.close() print("Generation of load_switch.py") print("Generation of import_all.py") # Save gen_dict class_dict_file = join(CLASS_DIR, "Class_Dict.json") with open(class_dict_file, "w") as json_file: json.dump(gen_dict, json_file, sort_keys=True, indent=4, separators=(",", ": ")) if __name__ == "__main__": gen_dict = read_all(DOC_DIR, is_internal=False, in_path=INT_DIR) generate_code(MAIN_DIR, gen_dict) # Run black try: import black system('"{}" -m black .'.format(sys.executable)) if black.__version__.split(".")[0] != "20": print("\n############################################") print( "WARNING: The official version of black for pyleecan is 20, please update your black version" ) print("############################################\n") except ImportError: print("/!\\ Please install and run black (version 20) /!\\") now = datetime.now() print("End at: ", now.strftime("%H:%M:%S"))
file=open("sample.txt","r") d=dict() for lines in file: lines=lines.strip() lines=lines.lower() words=lines.split(" ") for word in words: if word in d: d[word]=d[word]+1 else: d[word]=1 find=str(input("enter the word to count: ")) find=find.lower() if find in list(d.keys()): print(f"{find} : "+ str(d.get(find))) else: print("word not present!! ")
# # Class for full thermal submodel # import pybamm from .base_x_full import BaseModel class NoCurrentCollector(BaseModel): """Class for full x-direction thermal submodel without current collectors Parameters ---------- param : parameter class The parameters to use for this submodel **Extends:** :class:`pybamm.thermal.x_full.BaseModel` """ def __init__(self, param): super().__init__(param) def set_rhs(self, variables): T = variables["Cell temperature"] q = variables["Heat flux"] Q = variables["Total heating"] self.rhs = { T: (-pybamm.div(q) / self.param.delta ** 2 + self.param.B * Q) / (self.param.C_th * self.param.rho_k) } def set_boundary_conditions(self, variables): T = variables["Cell temperature"] T_n_left = pybamm.boundary_value(T, "left") T_p_right = pybamm.boundary_value(T, "right") T_amb = variables["Ambient temperature"] self.boundary_conditions = { T: { "left": ( self.param.h * (T_n_left - T_amb) / self.param.lambda_n, "Neumann", ), "right": ( -self.param.h * (T_p_right - T_amb) / self.param.lambda_p, "Neumann", ), } } def _current_collector_heating(self, variables): """Returns zeros for current collector heat source terms""" Q_s_cn = pybamm.Scalar(0) Q_s_cp = pybamm.Scalar(0) return Q_s_cn, Q_s_cp def _yz_average(self, var): """ Computes the y-z average by integration over y and z In this case this is just equal to the input variable """ return var def _x_average(self, var, var_cn, var_cp): """ Computes the X-average over the whole cell *not* including current collectors. This overwrites the default behaviour of 'base_thermal'. """ return pybamm.x_average(var)
""" Summary """ class Solution(object): """ Problem: https://leetcode.com/problems/combination-sum/ Example: given candidate set [2, 3, 6, 7] and target 7, A solution set is: [ [7], [2, 2, 3] ] """ def combinationSum(self, candidates, target): """ :type candidates: List[int] :type target: int :rtype: List[List[int]] """ candidates.sort() rets = [] for i in candidates: if i > target: break elif i == target: rets.append([i]) else: rets += ([sorted([i] + x) for x in self.combinationSum(candidates, target - i)]) result = [] for r in rets: if r not in result: result.append(r) return result if __name__ == '__main__': candidates = [2, 3, 6, 7] target = 7 result = Solution().combinationSum(candidates, 7) print(result)
import pandas as pd import youtube_api_comments_to_mongodb as ym import text_classification_and_sentiment_analysis as ta dbpw = 'kpop' collection_name = 'comments' data = ym.mongo_to_dataframe(dbpw, collection_name) allcomments, englishcomments = ta.dataframe_preparation(data) tt_set, englishcomments = ta.classify_facilitator(englishcomments, 300, ['quality', 'nationalist_ethnicist', 'kpop']) allcomments.to_pickle('allcomments.pickle') englishcomments.to_pickle('englishcomments.pickle') tt_set.to_pickle('tt_set.pickle')
class Person: def __init__(self, name, age): self.name = name self.age = age def __str__(self): return "{" + self.name + " " + str(self.age) + "}" p1 = Person("John", 36) print(p1)
import logging import random from typing import List, Tuple import numpy as np from skimage.transform import resize from scipy.ndimage import zoom from toolbox import images from toolbox.images import crop, mask_bbox from .poisson_disk import sample_poisson_uniform logger = logging.getLogger(__name__) class PatchType: S2F_MASKED_BLACK = 'cropped_scaled_to_fit' S2F_MASKED_WHITE = 'cropped_scaled_to_fit_white' S2F = 'scaled_to_fit' RANDOM = 'random2' def sample_poisson_mask(mask, r, k): ymin, ymax, xmin, xmax = mask_bbox(mask) height = ymax - ymin width = xmax - xmin points = np.array(sample_poisson_uniform(height, width, r, k, mask[ymin:ymax, xmin:xmax])) points[:, 0] += ymin points[:, 1] += xmin points = np.floor(points).astype(int) return points def generate_dense_bboxes( mask: np.ndarray, scale=0.23, min_dist=0.091): mask_height, mask_width = mask.shape min_length = min(mask_height, mask_width) patch_sample_size = scale * min_length centers = sample_poisson_mask(mask, min_length * min_dist, 1000) half = int(patch_sample_size / 2) bboxes = [] for center in centers: ycent, xcent = center bbox = (ycent - half, ycent + half + 1, xcent - half, xcent + half + 1) if (bbox[0] >= 0 and bbox[1] < mask_height and bbox[2] >= 0 and bbox[3] < mask_width): bboxes.append(bbox) print('bboxes={} centers={}, mask_size={}, min_dist={}'.format( len(bboxes), len(centers), mask.shape, min_length * min_dist)) return bboxes def random_crops(image, patch_size, num_crops): border_mask = np.ones(image.shape[:2], dtype=bool) left = patch_size/2 right = image.shape[1] - patch_size/2 top = patch_size/2 bottom = image.shape[0] - patch_size/2 border_mask[:, :left] = False border_mask[:, right:] = False border_mask[:top, :] = False border_mask[bottom:, :] = False yinds, xinds = np.where(border_mask) bboxes = [] for i in range(num_crops): point_idx = np.random.randint(0, len(yinds)) ycent, xcent = yinds[point_idx], xinds[point_idx] half = int(patch_size / 2) # Just squash the patch if it's out of bounds. bbox = (ycent - half, ycent + half + 1, xcent - half, xcent + half + 1) bboxes.append(bbox) return bboxes_to_patches(image, bboxes, patch_size) def generate_random_bboxes(mask: np.ndarray, scale_range=(1.0, 1.0), num_patches=5, fixed_size=None): """ Generates random bounding boxes at random scales with centroid within the mask. :param mask: The contrained area for the centroid of the patch. :param min_scale: The min scale (multiple of the minimum length of the input mask) of the sampling. :param max_scale: The max scale (multiple of the minimum length of the input mask) of the sampling. :param num_patches: Number of patches to generate. :return: Bounding boxes. """ mask_height, mask_width = mask.shape[:2] min_length = min(mask_height, mask_width) yinds, xinds = np.where(mask) patch_bboxes = [] patch_scales = [] tries = 0 while len(patch_bboxes) < num_patches: scale = random.uniform(*scale_range) patch_scales.append(scale) patch_size = scale * fixed_size if fixed_size else int(scale * min_length) point_idx = np.random.randint(0, len(yinds)) ycent, xcent = yinds[point_idx], xinds[point_idx] half = int(patch_size / 2) # Just squash the patch if it's out of bounds. if (ycent - half < 0 or ycent + half > mask.shape[0] or xcent - half < 0 or xcent + half > mask.shape[1]): if tries < 100: tries += 1 continue bbox = (max(ycent - half, 0), min(ycent + half + 1, mask.shape[0]), max(xcent - half, 0), min(xcent + half + 1, mask.shape[1])) patch_bboxes.append(bbox) return patch_bboxes, patch_scales def bboxes_to_patches(im: np.ndarray, bboxes: List[Tuple[int, int, int, int]], patch_size: int, use_pil=False): """ Converts bounding boxes to actual patches. Patches are all resized to the patch size regardless of the original bounding box size. :param im: To crop patch from. :param bboxes: Boxes defining the patch. :param patch_size: Patch size to return. :return: Image patches. """ patches = [] for bbox in bboxes: cropped = crop(im, bbox) if cropped.shape[0] != patch_size or cropped.shape[1] != patch_size: scale = [patch_size/cropped.shape[0], patch_size/cropped.shape[1]] if len(im.shape) == 3: scale.append(1.0) if use_pil: cropped = resize(cropped, (patch_size, patch_size)) \ .astype(dtype=np.float32) else: cropped = zoom(cropped, scale, im.dtype, order=1) patches.append(cropped) return patches def compute_mask_tight_patch(im: np.ndarray, mask: np.ndarray, patch_size: int): """ Computes a patch which contains all the pixels active in the mask scaled to the patch size. :param im: :param mask: :param patch_size: :return: """ bbox = images.compute_mask_bbox(mask) cropped = images.crop(im, bbox) resized = imresize(cropped, (patch_size, patch_size, cropped.shape[2])) return resized def compute_minmax_thickness(mask): max_width = 0 max_height = 0 for row_id in range(mask.shape[0]): row = mask[row_id, :] split_locs = np.where(np.diff(row) != 0)[0] + 1 for segment in (np.split(row, split_locs)): if segment[0] != 0: max_width = max(max_width, len(segment)) for col_id in range(mask.shape[1]): col = mask[:, col_id] split_locs = np.where(np.diff(col) != 0)[0] + 1 for segment in (np.split(col, split_locs)): if segment[0] != 0: max_height = max(max_height, len(segment)) return min(max_width, max_height), max(max_width, max_height)
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Tue Dec 7 12:02:50 2021 @author: ministudio """ from datetime import datetime, timezone import pandas as pd import numpy as np from alive_progress import alive_bar def get_all_futures(ftx_client): tickers = ftx_client.fetchMarkets() list_perp =[] #with alive_bar(len(tickers),length=20) as bar: for ticker in tickers: if 'PERP' in ticker['id']: list_perp.append(ticker['id']) #bar() return list_perp def scanner(day,month,year,ticker,ftx): results = pd.DataFrame(columns=['P/L %']) start_trade = datetime(year, month, day, 0, 0, 0) timestamp = start_trade.replace(tzinfo=timezone.utc).timestamp() candles = ftx.fetchOHLCV(ticker, timeframe='1h', since=timestamp*1000, limit=5000) candles_df = pd.DataFrame(candles, columns=['MTS','OPEN','HIGH','LOW','CLOSE','VOLUME']) volume = candles_df.VOLUME.sum() for j in range(0,24): # algoritmo per andare di candela in candela ledger = pd.DataFrame(columns=['POSITION','ENTRY PRICE','P_L SINGLE','P_L TOTAL']) long = True time_scanner = '' # calcolo l'offset tra una candela e l'altra di mio interesse offset = 12 if j != 0: candles = candles[1:] try: for i in range(0,len(candles),offset): entry_price = candles[i][1] if i == 0: start = datetime.utcfromtimestamp(candles[i][0]/1000) end = datetime.utcfromtimestamp(candles[i+offset][0]/1000) #datetime.utcfromtimestamp(candles[i+offset+10][0]/1000) #print('FROM',start.strftime("%H:%M"),'TO',end.strftime("%H:%M")) var_pct = p_l_total = 0 position = 'LONG' time_scanner = f'{start.strftime("%H:%M")} to {end.strftime("%H:%M")}' else: #r_exit_entry = candles[i][4]/candles[i-offset][4] #if not long else candles[i][4]/candles[i-offset][4] # calcolo il profitto if long: var_pct = round((candles[i-offset][1] - candles[i][1])/candles[i-offset][1]*100, 3) p_l_total = ledger['P_L TOTAL'].iloc[-1] + var_pct if not long: var_pct = round((candles[i][1]-candles[i-offset][1])/candles[i][1]*100, 3) p_l_total = ledger['P_L TOTAL'].iloc[-1] + var_pct if long: date = datetime.utcfromtimestamp(candles[i][0]/1000) position = 'LONG' long = False else: # quindi vado in short date = datetime.utcfromtimestamp(candles[i][0]/1000) #candles[i+10][0]/1000 position = 'SHORT' long = True ledger.loc[date] = [position, entry_price, var_pct, p_l_total] results.loc[time_scanner] = round(ledger['P_L TOTAL'][-1],2) #print('P/L TOTAL :\t',round(ledger['P_L TOTAL'][-1],2), '%\n') except Exception as e: results.loc[time_scanner] = np.NAN return results, volume
HTTP_OK = 200 HTTP_CREATED = 201 HTTP_NO_CONTENT = 204 HTTP_BAD_REQUEST = 400 HTTP_UNAUTHORIZED = 401 HTTP_NOT_FOUND = 404 HTTP_CONFLICT = 409
#!/usr/bin/python # coding=utf-8 # # <bitbar.title>Dashcoin Ticker (ยฃ1GBP)</bitbar.title> # <bitbar.version>v1.0</bitbar.version> # <bitbar.author>impshum</bitbar.author> # <bitbar.author.github>impshum</bitbar.author.github> # <bitbar.desc>Displays current Dashcoin price for ยฃ1 from Coinmarketcap</bitbar.desc> # <bitbar.image>https://i.imgur.com/KZH5B8s.jpg/bitbar.image> # # by impshum from urllib import urlopen url = urlopen('https://coinmarketcap-nexuist.rhcloud.com/api/dash').read() import json result = json.loads(url) def flow(): if result ['change'] > '0': print (' ยฃ%.4f | image=iVBORw0KGgoAAAANSUhEUgAAABAAAAAQCAYAAAAf8/9hAAAABmJLR0QAyQACAALwzISXAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAB3RJTUUH4AQHACkSBTjB+AAAALNJREFUOMvVk70NAjEMhb87WYiGBZAQU7ABNSVSWpZgEEagsJDoKBELUCEKFuBuCKTw0xyQC0lICe5i+/k9/wT+3opUUJQhcAUqa8I5ZQT4tANwioGTCkQZA9vmOQE2oUJFhL0DXBz33RpKUfCLfLTQJMx9IlEWuQr6QB3prGtNS1lwiMvEYo7ekNsKRBkB+y+rH1hDFVOwy7ids+gbVzrsM6CXeYDTF85xroB1ZoHb73ymB5RhJkpZTihGAAAAAElFTkSuQmCC color=#000000'% float(result['price']['gbp'])) else: print (' ยฃ%.4f | image=iVBORw0KGgoAAAANSUhEUgAAABAAAAAQCAYAAAAf8/9hAAAABmJLR0QABACnAADQ9FZaAAAACXBIWXMAAAsTAAALEwEAmpwYAAAAB3RJTUUH4AQHACQ1FZwK3gAAAMRJREFUOMvNkjEKAjEQRZ+jKNjYKh5AbzCdjVcQj+BFPIKlp7EMeAJrUbASQVCEr80uG9cNbqe/Cgn/5WUI/DqNfBHM+kCzbs+lPUAr2pwBq5qABbB+M8gszkDvS/kOdAG5VBgEM4ApsP0CGLukjxlEoA0wSZR3Lo0qhxhZDIBDAmDA0wsBLD51CZeOwLKivHbprZx6AkAHuEXbD5fawYwywMqAzOKeDTTPvKqcTGZBMLsGs0utn5gADYEHcKp9e9ni//MCDtNCE3qjsIwAAAAASUVORK5CYII= color=#000000'% float(result['price']['gbp'])) flow()
#Tests proper handling of Verifications with Transactions which don't exist. from typing import Dict, List, Any import json from pytest import raises from e2e.Libs.Minisketch import Sketch from e2e.Classes.Merit.Block import Block from e2e.Classes.Merit.Merit import Merit from e2e.Classes.Consensus.VerificationPacket import VerificationPacket from e2e.Meros.RPC import RPC from e2e.Meros.Meros import MessageType from e2e.Meros.Liver import Liver from e2e.Tests.Errors import TestError, SuccessError #pylint: disable=too-many-statements def VUnknownInBlockTest( rpc: RPC ) -> None: vectors: Dict[str, Any] with open("e2e/Vectors/Consensus/Verification/Parsable.json", "r") as file: vectors = json.loads(file.read()) merit: Merit = Merit.fromJSON(vectors["blockchain"]) #Custom function to send the last Block and verify it errors at the right place. def checkFail() -> None: #This Block should cause the node to disconnect us AFTER it attempts to sync our Transaction. syncedTX: bool = False #Grab the Block. block: Block = merit.blockchain.blocks[2] #Send the Block. rpc.meros.liveBlockHeader(block.header) rpc.meros.handleBlockBody(block) #Handle sync requests. reqHash: bytes = bytes() while True: if syncedTX: #Try receiving from the Live socket, where Meros sends keep-alives. try: if len(rpc.meros.live.recv()) != 0: raise Exception() except TestError: raise SuccessError("Node disconnected us after we sent a parsable, yet invalid, Verification.") except Exception: raise TestError("Meros sent a keep-alive.") msg: bytes = rpc.meros.sync.recv() if MessageType(msg[0]) == MessageType.SketchHashesRequest: if not block.body.packets: raise TestError("Meros asked for Sketch Hashes from a Block without any.") reqHash = msg[1 : 33] if reqHash != block.header.hash: raise TestError("Meros asked for Sketch Hashes that didn't belong to the Block we just sent it.") #Create the hashes. hashes: List[int] = [] for packet in block.body.packets: hashes.append(Sketch.hash(block.header.sketchSalt, packet)) #Send the Sketch Hashes. rpc.meros.sketchHashes(hashes) elif MessageType(msg[0]) == MessageType.SketchHashRequests: if not block.body.packets: raise TestError("Meros asked for Verification Packets from a Block without any.") reqHash = msg[1 : 33] if reqHash != block.header.hash: raise TestError("Meros asked for Verification Packets that didn't belong to the Block we just sent it.") #Create a lookup of hash to packets. packets: Dict[int, VerificationPacket] = {} for packet in block.body.packets: packets[Sketch.hash(block.header.sketchSalt, packet)] = packet #Look up each requested packet and respond accordingly. for h in range(int.from_bytes(msg[33 : 37], byteorder="little")): sketchHash: int = int.from_bytes(msg[37 + (h * 8) : 45 + (h * 8)], byteorder="little") if sketchHash not in packets: raise TestError("Meros asked for a non-existent Sketch Hash.") rpc.meros.packet(packets[sketchHash]) elif MessageType(msg[0]) == MessageType.TransactionRequest: rpc.meros.dataMissing() syncedTX = True else: raise TestError("Unexpected message sent: " + msg.hex().upper()) with raises(SuccessError): Liver(rpc, vectors["blockchain"], callbacks={1: checkFail}).live()
B_4002_10 = {0: {'A': 0.22337100816803507, 'C': -0.08721732138853625, 'E': -0.05776024940539231, 'D': -0.8062336491499029, 'G': -0.22235775138309136, 'F': 0.41616940014979253, 'I': -0.2625598958640791, 'H': -0.2842266678402531, 'K': -0.11806916630138095, 'M': 0.3503963704784862, 'L': -0.11175681610077592, 'N': -0.6559751061375433, 'Q': 0.42709232284615184, 'P': -0.6562206710837208, 'S': -0.02028872713419685, 'R': 0.7053425369818895, 'T': -0.16988396865190242, 'W': 0.5294490014218092, 'V': -0.5397379396163317, 'Y': 0.6224062516023391}, 1: {'A': -4.0, 'C': -1.4792466334792438, 'E': 1.9520597704545073, 'D': -1.3065688764576122, 'G': -4.0, 'F': -1.2998595004729445, 'I': -1.7137811098439848, 'H': -1.5503864274444812, 'K': -1.5503864274444812, 'M': -1.7137811098439848, 'L': -1.5873303359490254, 'N': -4.0, 'Q': -4.0, 'P': -1.485221375614014, 'S': -1.4792466334792438, 'R': -1.516442783779311, 'T': -1.3722901525124491, 'W': -1.2998595004729445, 'V': -1.7027070282103178, 'Y': -1.2998595004729445}, 2: {'A': 0.2563438176533894, 'C': 0.005946632197619582, 'E': -0.01583980936870634, 'D': -0.28769896803687756, 'G': -0.6954066625927517, 'F': 0.12061097626119485, 'I': 0.3350620409473355, 'H': -0.1694896011839807, 'K': 0.3362119351909843, 'M': 0.21123743247221569, 'L': 0.3569719895865599, 'N': 0.5952112576301342, 'Q': 0.07334278898807628, 'P': -0.4863848827377961, 'S': 0.5774056906967757, 'R': -0.6603164669657029, 'T': -0.5333967423641524, 'W': 0.07155631156720803, 'V': -0.3025209922484634, 'Y': -0.3412456411532286}, 3: {'A': 0.5977554346220839, 'C': 0.014950504192544605, 'E': -0.14276836811036525, 'D': -0.566829217593357, 'G': 0.43366216673597924, 'F': 0.18735599610913023, 'I': -0.5941476733420843, 'H': 0.7148611685591905, 'K': -0.25892998681258395, 'M': 0.24255037248622957, 'L': 0.1922371468778731, 'N': -0.8992543313554157, 'Q': -0.0066294697791371, 'P': -0.17868447116149977, 'S': 0.5575118094930324, 'R': 0.4354350798832712, 'T': -0.6863999529014213, 'W': -0.9040043361451602, 'V': -0.09610557652101945, 'Y': 0.25017165150118675}, 4: {'A': -0.36211990116689025, 'C': 1.0140227890402689, 'E': -0.10425685745040862, 'D': 0.07615994218018855, 'G': -0.8009857839941741, 'F': 0.24667787490362253, 'I': -0.17420628325418536, 'H': -0.7132294203626169, 'K': 0.12801265861459374, 'M': 0.7179341611730891, 'L': 0.2421722453426991, 'N': 0.25183605308664186, 'Q': -0.7166747952837604, 'P': -0.130679376377445, 'S': 0.3742768715087381, 'R': -0.44531439192302325, 'T': 1.0778574915916541, 'W': -0.7242004826221311, 'V': -0.10127761501276543, 'Y': -0.5187144195614529}, 5: {'A': 0.5744121217096468, 'C': 0.5415630199991066, 'E': -0.5530536302143234, 'D': -0.28640127477331273, 'G': -0.729203233404597, 'F': -0.11418154127673937, 'I': 0.37603616107858134, 'H': -0.9148359315846256, 'K': -0.18293738749007366, 'M': 0.4430551493441148, 'L': 0.028940205572376906, 'N': -0.015688177174764985, 'Q': 0.3334643637995271, 'P': 0.3653661968849176, 'S': 0.24310899420114637, 'R': 0.3683640838816875, 'T': -0.41546224081805533, 'W': -0.17011116673092944, 'V': -0.16028570036270884, 'Y': 0.037898267913432676}, 6: {'A': -0.2449698680605102, 'C': 0.21891284135185457, 'E': -0.1914970740107789, 'D': -0.6845824833815898, 'G': -0.23680284287562992, 'F': -0.047735228056870374, 'I': -0.14535092817743472, 'H': -0.7904575078177513, 'K': -0.3522379408807177, 'M': 0.4651584476619752, 'L': 0.3633365762076467, 'N': -0.1906297329391477, 'Q': -0.17917612566613594, 'P': -0.09502957757299856, 'S': 0.1613073465286862, 'R': -0.2735299808531706, 'T': 0.577678919761243, 'W': 0.21111680192906904, 'V': 0.24561358020466897, 'Y': 0.5422742451008902}, 7: {'A': -0.26126715312869003, 'C': 0.04523513286573463, 'E': 0.3009863034413461, 'D': -0.23595975352186618, 'G': -0.04401611182001157, 'F': 0.8106155298979435, 'I': -0.6959114020958657, 'H': 0.7274217689457967, 'K': -1.0948083223532759, 'M': 0.7971560783910433, 'L': -0.4799785717728068, 'N': -1.047191366836869, 'Q': 0.03006318067260729, 'P': 0.6499374087495984, 'S': 0.09020424788565452, 'R': -0.6399431218454593, 'T': 0.09387374649172615, 'W': 0.38231537787910685, 'V': 0.29085420864742834, 'Y': 0.10502029689790073}, 8: {'A': -0.17624591714060261, 'C': -0.44594096205809025, 'E': 0.2717227979727722, 'D': -0.012845762584315317, 'G': -0.2375535720710233, 'F': 0.16487310250932152, 'I': 0.00804494192498933, 'H': -0.8499150101901889, 'K': -0.8296394058347988, 'M': -0.5893452296325081, 'L': 0.24782037761046985, 'N': -0.42682194513580807, 'Q': -0.2002625627126248, 'P': 0.7689731259954051, 'S': 0.29368829704065275, 'R': -0.6530871271743546, 'T': 0.4318928627874784, 'W': -0.9240865611446291, 'V': 0.26557804589733297, 'Y': 0.038742804015257794}, 9: {'A': 0.39435936592627074, 'C': -0.2506580204205583, 'E': -4.0, 'D': -4.0, 'G': -0.3259787590539208, 'F': -0.16992688879892542, 'I': 0.2967586631856834, 'H': -1.787811063406423, 'K': -1.757918849655444, 'M': 0.8174924984834613, 'L': 1.0839069131169379, 'N': -4.0, 'Q': -4.0, 'P': -4.0, 'S': -0.007550469044766957, 'R': -1.787811063406423, 'T': -0.31612993413343005, 'W': -0.9384717898759554, 'V': 0.1245946934278608, 'Y': -1.046424620597781}, -1: {'slope': 0.13311575086207222, 'intercept': -0.5859339389711538}}
import sys from ingenialink.ethercat.network import EthercatNetwork def connect_slave(): net = EthercatNetwork("\\Device\\NPF_{192D1D2F-C684-467D-A637-EC07BD434A63}") servo = net.connect_to_slave( target=1, dictionary='../../resources/dictionaries/cap-net-e_eoe_0.7.1.xdf') return servo, net def load_config_example(): """Loads a given configuration file into the drive.""" servo, net = connect_slave() servo.load_configuration('ecat_config.xcf') servo.load_configuration('ecat_config_0.xcf', subnode=0) servo.load_configuration('ecat_config_1.xcf', subnode=1) net.disconnect_from_slave(servo) def save_config_example(): """Saves the drive configuration into a file.""" servo, net = connect_slave() servo.save_configuration('ecat_config.xcf') servo.save_configuration('ecat_config_0.xcf', subnode=0) servo.save_configuration('ecat_config_1.xcf', subnode=1) net.disconnect_from_slave(servo) if __name__ == '__main__': save_config_example() load_config_example() sys.exit()
# -*- Python -*- # This file is licensed under a pytorch-style license # See LICENSE.pytorch for license information. from torch_mlir.dialects.torch.importer.jit_ir import ModuleBuilder from utils import create_script_function # RUN: %PYTHON %s | torch-mlir-opt | FileCheck %s mb = ModuleBuilder() # CHECK-LABEL: func @__torch__.refined_block_arg( # CHECK-SAME: %[[ARG:.*]]: !torch.tensor) -> !torch.tensor { # CHECK: %[[REFINED:.*]] = torch.tensor_static_info_cast %[[ARG]] : !torch.tensor to !torch.tensor<[1,384],f32> # CHECK: %[[RESULT:.*]] = torch.tensor_static_info_cast %[[REFINED]] : !torch.tensor<[1,384],f32> to !torch.tensor # CHECK: return %[[RESULT]] : !torch.tensor mb.import_function(create_script_function("__torch__.refined_block_arg", """ graph(%0 : Float(1, 384)): return (%0) """)) mb.module.operation.print() print()
#Program to find the rank of a matrix. #Developed by: SRIJITH R #RegisterNumber: 21004191 import numpy as np A=np.array([[5,-3,-10],[2,2,-3],[-3,-1,5]]) val=np.linalg.matrix_rank(A) print(val)
""" File upload page using a png file """ from selenium.webdriver.common.by import By from pages.base_page import BasePage class FileUpload(BasePage): FILE_UP = (By.ID, 'file-upload-field') def upload_file(self): file_up = self.driver.find_element(*self.FILE_UP) file_up.send_keys('C:/Users/anton/PycharmProjects/Automation_testing/exercices_todo/blue.png')
import os import re import sys import time import datetime from .MiscUtils import commands_get_status_output try: long() except Exception: long = int from . import PLogger from .LocalJobSpec import LocalJobSpec from .LocalJobsetSpec import LocalJobsetSpec class PdbProxy: # constructor def __init__(self,verbose=False): # database engine self.engine = 'sqlite3' # version of database schema self.version = '0_0_1' # database file name self.filename = 'pandajob.db' # database dir self.database_dir = os.path.expanduser(os.environ['PANDA_CONFIG_ROOT']) # full path of database file self.database = '%s/%s' % (self.database_dir,self.filename) # table name self.tablename = 'jobtable_%s' % self.version # verbose self.verbose = verbose # connection self.con = None # logger self.log = PLogger.getPandaLogger() # set verbose def setVerbose(self,verbose): # verbose self.verbose = verbose # execute SQL def execute(self,sql,var={}): # logger tmpLog = PLogger.getPandaLogger() # expand variables for tmpKey in var: tmpVal = var[tmpKey] sql = sql.replqce(tmpKey,str(tmpVal)) # construct command com = '%s %s "%s"' % (self.engine,self.database,sql) if self.verbose: tmpLog.debug("DB Req : " + com) # execute nTry = 5 status =0 for iTry in range(nTry): if self.verbose: tmpLog.debug(" Try : %s/%s" % (iTry,nTry)) status,output = commands_get_status_output(com) status %= 255 if status == 0: break if iTry+1 < nTry: time.sleep(2) # return if status != 0: tmpLog.error(status) tmpLog.error(output) return False,output else: if self.verbose: tmpLog.debug(" Ret : " + output) outList = output.split('\n') # remove '' try: outList.remove('') except Exception: pass # remove junk messages ngStrings = ['Loading resources from'] for tmpStr in tuple(outList): # look for NG strings flagNG = False for ngStr in ngStrings: match = re.search(ngStr,tmpStr,re.I) if match is not None: flagNG = True break # remove if flagNG: try: outList.remove(tmpStr) except Exception: pass return True,outList # execute SQL def execute_direct(self, sql, var=None, fetch=False): if self.con is None: import sqlite3 self.con = sqlite3.connect(self.database, check_same_thread=False) if self.verbose: self.log.debug("DB Req : {0} var={1}".format(sql, str(var))) cur = self.con.cursor() try: if var is None: var = {} cur.execute(sql, var) retVal = True except Exception: retVal = False if not self.verbose: self.log.error("DB Req : {0} var={1}".format(sql, str(var))) err_type, err_value = sys.exc_info()[:2] err_str = "{0} {1}".format(err_type.__name__, err_value) self.log.error(err_str) if self.verbose: self.log.debug(retVal) outList = [] if retVal: if fetch: outList = cur.fetchall() if self.verbose: for item in outList: self.log.debug(" Ret : " + str(item)) self.con.commit() return retVal, outList # remove old database def deleteDatabase(self): commands_get_status_output('rm -f %s' % self.database) # initialize database def initialize(self): # import sqlite3 # check if sqlite3 is available com = 'which %s' % self.engine status,output = commands_get_status_output(com) if status != 0: errstr = "\n\n" errstr += "ERROR : %s is not available in PATH\n\n" % self.engine errstr += "There are some possible solutions\n" errstr += " * run this application under Athena runtime with Release 14 or higher. e.g.,\n" errstr += " $ source setup.sh -tag=14.2.24,32,setup\n" errstr += " $ source .../etc/panda/panda_setup.sh\n\n" errstr += " * set PATH and LD_LIBRARY_PATH to include %s. e.g., at CERN\n" % self.engine errstr += " $ export PATH=/afs/cern.ch/sw/lcg/external/sqlite/3.4.0/slc3_ia32_gcc323/bin:$PATH\n" errstr += " $ export LD_LIBRARY_PATH=/afs/cern.ch/sw/lcg/external/sqlite/3.4.0/slc3_ia32_gcc323/lib:$LD_LIBRARY_PATH\n" errstr += " $ source .../etc/panda/panda_setup.sh\n\n" errstr += " * install %s from the standard SL4 repository. e.g.,\n" % self.engine errstr += " $ yum install %s\n\n" % self.engine errstr += " * use SLC5\n" raise RuntimeError(errstr) # create dir for DB if not os.path.exists(self.database_dir): os.makedirs(self.database_dir) # the table already exist if self.checkTable(): return # create table self.createTable() return # check table def checkTable(self): # get tables retS,retV = self.execute('.table') if not retS: raise RuntimeError("cannot get tables") # the table already exist or not if retV == []: return False if self.tablename not in retV[-1].split(): return False # check schema self.checkSchema() return True # check schema def checkSchema(self,noAdd=False): # get colum names retS,retV = self.execute('PRAGMA table_info(%s)' % self.tablename) if not retS: raise RuntimeError("cannot get table_info") # parse columns = [] for line in retV: items = line.split('|') if len(items) > 1: columns.append(items[1]) # check for tmpC in LocalJobSpec.appended: tmpA = LocalJobSpec.appended[tmpC] if tmpC not in columns: if noAdd: raise RuntimeError("%s not found in database schema" % tmpC) # add column retS,retV = self.execute("ALTER TABLE %s ADD COLUMN '%s' %s" % \ (self.tablename,tmpC,tmpA)) if not retS: raise RuntimeError("cannot add %s to database schema" % tmpC) if noAdd: return # check whole schema just in case self.checkSchema(noAdd=True) # create table def createTable(self): # ver 0_1_1 sql = "CREATE TABLE %s (" % self.tablename sql += "'id' INTEGER PRIMARY KEY," sql += "'JobID' INTEGER," sql += "'PandaID' TEXT," sql += "'jobStatus' TEXT," sql += "'site' VARCHAR(128)," sql += "'cloud' VARCHAR(20)," sql += "'jobType' VARCHAR(20)," sql += "'jobName' VARCHAR(128)," sql += "'inDS' TEXT," sql += "'outDS' TEXT," sql += "'libDS' VARCHAR(255)," sql += "'jobParams' TEXT," sql += "'retryID' INTEGER," sql += "'provenanceID' INTEGER," sql += "'creationTime' TIMESTAMP," sql += "'lastUpdate' TIMESTAMP," sql += "'dbStatus' VARCHAR(20)," sql += "'buildStatus' VARCHAR(20)," sql += "'commandToPilot' VARCHAR(20)," for tmpC in LocalJobSpec.appended: tmpA = LocalJobSpec.appended[tmpC] sql += "'%s' %s," % (tmpC,tmpA) sql = sql[:-1] sql += ")" # execute retS,retV = self.execute(sql) if not retS: raise RuntimeError("failed to create %s" % self.tablename) # confirm if not self.checkTable(): raise RuntimeError("failed to confirm %s" % self.tablename) # convert Panda jobs to DB representation def convertPtoD(pandaJobList,pandaIDstatus,localJob=None,fileInfo={},pandaJobForSiteID=None): statusOnly = False if localJob is not None: # update status only ddata = localJob statusOnly = True else: # create new spec ddata = LocalJobSpec() # sort by PandaID pandIDs = list(pandaIDstatus) pandIDs.sort() pStr = '' sStr = '' ddata.commandToPilot = '' for tmpID in pandIDs: # PandaID pStr += '%s,' % tmpID # status sStr += '%s,' % pandaIDstatus[tmpID][0] # commandToPilot if pandaIDstatus[tmpID][1] == 'tobekilled': ddata.commandToPilot = 'tobekilled' pStr = pStr[:-1] sStr = sStr[:-1] # job status ddata.jobStatus = sStr # PandaID ddata.PandaID = pStr # get panda Job pandaJob = None if pandaJobList != []: # look for buildJob since it doesn't have the first PandaID when retried for pandaJob in pandaJobList: if pandaJob.prodSourceLabel == 'panda': break elif pandaJobForSiteID is not None: pandaJob = pandaJobForSiteID # extract libDS if pandaJob is not None: if pandaJob.prodSourceLabel == 'panda': # build Jobs ddata.buildStatus = pandaJob.jobStatus for tmpFile in pandaJob.Files: if tmpFile.type == 'output': ddata.libDS = tmpFile.dataset break else: # noBuild or libDS ddata.buildStatus = '' for tmpFile in pandaJob.Files: if tmpFile.type == 'input' and tmpFile.lfn.endswith('.lib.tgz'): ddata.libDS = tmpFile.dataset break # release ddata.releaseVar = pandaJob.AtlasRelease # cache tmpCache = re.sub('^[^-]+-*','',pandaJob.homepackage) tmpCache = re.sub('_','-',tmpCache) ddata.cacheVar = tmpCache # return if update status only if statusOnly: # build job if ddata.buildStatus != '': ddata.buildStatus = sStr.split(',')[0] # set computingSite mainly for rebrokerage if pandaJobForSiteID is not None: ddata.site = pandaJobForSiteID.computingSite ddata.nRebro = pandaJobForSiteID.specialHandling.split(',').count('rebro') + \ pandaJobForSiteID.specialHandling.split(',').count('sretry') # return return ddata # job parameters ddata.jobParams = pandaJob.metadata # extract datasets iDSlist = [] oDSlist = [] if fileInfo != {}: if 'inDS' in fileInfo: iDSlist = fileInfo['inDS'] if 'outDS' in fileInfo: oDSlist = fileInfo['outDS'] else: for pandaJob in pandaJobList: for tmpFile in pandaJob.Files: if tmpFile.type == 'input' and not tmpFile.lfn.endswith('.lib.tgz'): if tmpFile.dataset not in iDSlist: iDSlist.append(tmpFile.dataset) elif tmpFile.type == 'output' and not tmpFile.lfn.endswith('.lib.tgz'): if tmpFile.dataset not in oDSlist: oDSlist.append(tmpFile.dataset) # convert to string ddata.inDS = '' for iDS in iDSlist: ddata.inDS += '%s,' % iDS ddata.inDS = ddata.inDS[:-1] ddata.outDS = '' for oDS in oDSlist: ddata.outDS += '%s,' % oDS ddata.outDS = ddata.outDS[:-1] # job name ddata.jobName = pandaJob.jobName # creation time ddata.creationTime = pandaJob.creationTime # job type ddata.jobType = pandaJob.prodSeriesLabel # site ddata.site = pandaJob.computingSite # cloud ddata.cloud = pandaJob.cloud # job ID ddata.JobID = pandaJob.jobDefinitionID # retry ID ddata.retryID = 0 # provenance ID ddata.provenanceID = pandaJob.jobExecutionID # groupID ddata.groupID = pandaJob.jobsetID ddata.retryJobsetID = -1 if pandaJob.sourceSite not in ['NULL',None,'']: ddata.parentJobsetID = long(pandaJob.sourceSite) else: ddata.parentJobsetID = -1 # job type ddata.jobType = pandaJob.processingType # the number of rebrokerage actions ddata.nRebro = pandaJob.specialHandling.split(',').count('rebro') # jediTaskID ddata.jediTaskID = -1 # return return ddata # convert JediTask to DB representation def convertJTtoD(jediTaskDict,localJob=None): statusOnly = False if localJob is not None: # update status only ddata = localJob statusOnly = True else: # create new spec ddata = LocalJobSpec() # max IDs maxIDs = 20 # task status ddata.taskStatus = jediTaskDict['status'] # statistic ddata.jobStatus = jediTaskDict['statistics'] # PandaID ddata.PandaID = '' for tmpPandaID in jediTaskDict['PandaID'][:maxIDs]: ddata.PandaID += '%s,' % tmpPandaID ddata.PandaID = ddata.PandaID[:-1] if len(jediTaskDict['PandaID']) > maxIDs: ddata.PandaID += ',+%sIDs' % (len(jediTaskDict['PandaID'])-maxIDs) # merge status if 'mergeStatus' not in jediTaskDict or jediTaskDict['mergeStatus'] is None: ddata.mergeJobStatus = 'NA' else: ddata.mergeJobStatus = jediTaskDict['mergeStatus'] # merge PandaID ddata.mergeJobID = '' for tmpPandaID in jediTaskDict['mergePandaID'][:maxIDs]: ddata.mergeJobID += '%s,' % tmpPandaID ddata.mergeJobID = ddata.mergeJobID[:-1] if len(jediTaskDict['mergePandaID']) > maxIDs: ddata.mergeJobID += ',+%sIDs' % (len(jediTaskDict['mergePandaID'])-maxIDs) # return if update status only if statusOnly: return ddata # release ddata.releaseVar = jediTaskDict['transUses'] # cache if jediTaskDict['transHome'] is None: tmpCache = '' else: tmpCache = re.sub('^[^-]+-*','',jediTaskDict['transHome']) tmpCache = re.sub('_','-',tmpCache) ddata.cacheVar = tmpCache # job parameters try: if isinstance(jediTaskDict['cliParams'],unicode): ddata.jobParams = jediTaskDict['cliParams'].encode('utf_8') else: ddata.jobParams = jediTaskDict['cliParams'] # truncate ddata.jobParams = ddata.jobParams[:1024] except Exception: pass # input datasets try: # max number of datasets to show maxDS = 20 inDSs = jediTaskDict['inDS'].split(',') strInDS = '' # concatenate for tmpInDS in inDSs[:maxDS]: strInDS += "%s," % tmpInDS strInDS = strInDS[:-1] # truncate if len(inDSs) > maxDS: strInDS += ',+{0}DSs'.format(len(inDSs)-maxDS) ddata.inDS = strInDS except Exception: ddata.inDS = jediTaskDict['inDS'] # output datasets ddata.outDS = jediTaskDict['outDS'] # job name ddata.jobName = jediTaskDict['taskName'] # creation time ddata.creationTime = jediTaskDict['creationDate'] # job type ddata.jobType = jediTaskDict['processingType'] # site ddata.site = jediTaskDict['site'] # cloud ddata.cloud = jediTaskDict['cloud'] # job ID ddata.JobID = jediTaskDict['reqID'] # retry ID ddata.retryID = 0 # provenance ID ddata.provenanceID = 0 # groupID ddata.groupID = jediTaskDict['reqID'] # jediTaskID ddata.jediTaskID = jediTaskDict['jediTaskID'] # IDs for retry ddata.retryJobsetID = -1 ddata.parentJobsetID = -1 # the number of rebrokerage actions ddata.nRebro = 0 # return return ddata # instantiate database proxy pdbProxy = PdbProxy() # just initialize DB def initialzieDB(verbose=False,restoreDB=False): if restoreDB: pdbProxy.deleteDatabase() pdbProxy.initialize() pdbProxy.setVerbose(verbose) # insert job info to DB def insertJobDB(job,verbose=False): tmpLog = PLogger.getPandaLogger() # set update time job.lastUpdate = datetime.datetime.utcnow() # make sql sql1 = "INSERT INTO %s (%s) " % (pdbProxy.tablename,LocalJobSpec.columnNames()) sql1+= "VALUES " + job.values() status,out = pdbProxy.execute_direct(sql1) if not status: raise RuntimeError("failed to insert job") # update job info in DB def updateJobDB(job,verbose=False,updateTime=None): # make sql sql1 = "UPDATE %s SET " % pdbProxy.tablename sql1 += job.values(forUpdate=True) sql1 += " WHERE JobID=%s " % job.JobID # set update time if updateTime is not None: job.lastUpdate = updateTime sql1 += " AND lastUpdate<'%s' " % updateTime.strftime('%Y-%m-%d %H:%M:%S') else: job.lastUpdate = datetime.datetime.utcnow() status,out = pdbProxy.execute_direct(sql1) if not status: raise RuntimeError("failed to update job") # set retryID def setRetryID(job,verbose=False): # make sql sql1 = "UPDATE %s SET " % pdbProxy.tablename sql1 += "retryID=%s,retryJobsetID=%s " % (job.JobID,job.groupID) sql1 += " WHERE JobID=%s AND (nRebro IS NULL OR nRebro=%s)" % (job.provenanceID,job.nRebro) status,out = pdbProxy.execute(sql1) if not status: raise RuntimeError("failed to set retryID") # delete old jobs def deleteOldJobs(days,verbose=False): # time limit limit = datetime.datetime.utcnow() - datetime.timedelta(days=days) # make sql sql1 = "DELETE FROM %s " % pdbProxy.tablename sql1 += " WHERE creationTime<'%s' " % limit.strftime('%Y-%m-%d %H:%M:%S') status,out = pdbProxy.execute_direct(sql1) if not status: raise RuntimeError("failed to delete old jobs") # read job info from DB def readJobDB(JobID,verbose=False): # make sql sql1 = "SELECT %s FROM %s " % (LocalJobSpec.columnNames(),pdbProxy.tablename) sql1+= "WHERE JobID=%s" % JobID # execute status,out = pdbProxy.execute_direct(sql1, fetch=True) if not status: raise RuntimeError("failed to get JobID=%s" % JobID) if len(out) == 0: return None # instantiate LocalJobSpec for values in out: job = LocalJobSpec() job.pack(values) # return frozen job if exists if job.dbStatus == 'frozen': return job # return any return job # read jobset info from DB def readJobsetDB(JobsetID,verbose=False): # make sql sql1 = "SELECT %s FROM %s " % (LocalJobSpec.columnNames(),pdbProxy.tablename) sql1+= "WHERE groupID=%s" % JobsetID # execute status,out = pdbProxy.execute(sql1) if not status: raise RuntimeError("failed to get JobsetID=%s" % JobsetID) if len(out) == 0: return None # instantiate LocalJobSpec tmpJobMap = {} for tmpStr in out: values = tmpStr.split('|') job = LocalJobSpec() job.pack(values) # return frozen job if exists if job.dbStatus == 'frozen' or job.JobID not in tmpJobMap: tmpJobMap[job.JobID] = job # make jobset jobset = LocalJobsetSpec() # set jobs jobset.setJobs(tmpJobMap.values()) # return any return jobset # check jobset status in DB def checkJobsetStatus(JobsetID,verbose=False): # logger tmpLog = PLogger.getPandaLogger() # make sql sql1 = "SELECT %s FROM %s " % (LocalJobSpec.columnNames(),pdbProxy.tablename) sql1+= "WHERE groupID=%s" % JobsetID failedRet = False,None # execute status,out = pdbProxy.execute(sql1) if not status: tmpLog.error(out) tmpLog.error("failed to access local DB") return failedRet if len(out) == 0: tmpLog.error("failed to get JobsetID=%s from local DB" % JobsetID) return None # instantiate LocalJobSpec jobMap = {} for tmpStr in out: values = tmpStr.split('|') job = LocalJobSpec() job.pack(values) # use frozen job if exists if job.JobID not in jobMap or job.dbStatus == 'frozen': jobMap[job.JobID] = job # check all job status for tmpJobID in jobMap: tmpJobSpec = jobMap[tmpJobID] if tmpJobSpec != 'frozen': return True,'running' # return return True,'frozen' # bulk read job info from DB def bulkReadJobDB(verbose=False): # make sql sql1 = "SELECT %s FROM %s " % (LocalJobSpec.columnNames(),pdbProxy.tablename) # execute status,out = pdbProxy.execute_direct(sql1, fetch=True) if not status: raise RuntimeError("failed to get jobs") if len(out) == 0: return [] # instantiate LocalJobSpec retMap = {} jobsetMap = {} for values in out: job = LocalJobSpec() job.pack(values) # use frozen job if exists if job.JobID not in retMap or job.dbStatus == 'frozen': if job.groupID in [0,'0','NULL',-1,'-1']: retMap[long(job.JobID)] = job else: # add jobset tmpJobsetID = long(job.groupID) if tmpJobsetID not in retMap or tmpJobsetID not in jobsetMap: jobsetMap[tmpJobsetID] = [] jobset = LocalJobsetSpec() retMap[tmpJobsetID] = jobset # add job jobsetMap[tmpJobsetID].append(job) # add jobs to jobset for tmpJobsetID in jobsetMap: tmpJobList = jobsetMap[tmpJobsetID] retMap[tmpJobsetID].setJobs(tmpJobList) # sort ids = list(retMap) ids.sort() retVal = [] for id in ids: retVal.append(retMap[id]) # return return retVal # get list of JobID def getListOfJobIDs(nonFrozen=False,verbose=False): # make sql sql1 = "SELECT JobID,dbStatus FROM %s " % pdbProxy.tablename # execute status,out = pdbProxy.execute_direct(sql1, fetch=True) if not status: raise RuntimeError("failed to get list of JobIDs") allList = [] frozenList = [] for item in out: # extract JobID tmpID = long(item[0]) # status in DB tmpStatus = item[-1] # keep all jobs if tmpID not in allList: allList.append(tmpID) # keep frozen jobs if nonFrozen and tmpStatus == 'frozen': if tmpID not in frozenList: frozenList.append(tmpID) # remove redundant jobs retVal = [] for item in allList: if item not in frozenList: retVal.append(item) # sort retVal.sort() # return return retVal # get map of jobsetID and JobIDs def getMapJobsetIDJobIDs(verbose=False): # make sql sql1 = "SELECT groupID,JobID FROM %s WHERE groupID is not NULL and groupID != 0 and groupID != ''" % pdbProxy.tablename # execute status,out = pdbProxy.execute(sql1) if not status: raise RuntimeError("failed to get list of JobIDs") allMap = {} for item in out: # JobsetID tmpJobsetID = long(item.split('|')[0]) # JobID tmpJobID = long(item.split('|')[-1]) # append if tmpJobsetID not in allMap: allMap[tmpJobsetID] = [] if tmpJobID not in allMap[tmpJobsetID]: allMap[tmpJobsetID].append(tmpJobID) # sort for tmpKey in allMap.keys(): allMap[tmpKey].sort() # return return allMap # make JobSetSpec def makeJobsetSpec(jobList): jobset = LocalJobsetSpec() jobset.setJobs(jobList) return jobset # get map of jobsetID and jediTaskID def getJobsetTaskMap(verbose=False): # make sql sql1 = "SELECT groupID,jediTaskID FROM %s WHERE groupID is not NULL and groupID != 0 and groupID != '' and jediTaskID is not null and jediTaskID != ''" % pdbProxy.tablename # execute status,out = pdbProxy.execute_direct(sql1, fetch=True) if not status: raise RuntimeError("failed to get list of JobIDs") allMap = {} for item in out: # JobsetID tmpJobsetID = long(item[0]) # JobID jediTaskID = long(item[-1]) # append allMap[jediTaskID] = tmpJobsetID # return return allMap
r""" Gnomonic ======== The point of perspective of the gnomonic projection lies at the center of the earth. As a consequence great circles (orthodromes) on the surface of the Earth are displayed as straight lines, which makes it suitable for distance estimation for navigational purposes. It is neither conformal nor equal-area and the distortion increases greatly with distance to the projection center. It follows that the scope of application is restricted to a small area around the projection center (at a maximum of 60ยฐ). **f**\ *lon0/lat0*\ [*/horizon*\ ]\ */scale* or **F**\ *lon0/lat0*\ [*/horizon*\ ]\ */width* **f** or **F** specifies the projection type, *lon0/lat0* specifies the projection center, the optional parameter *horizon* specifies the maximum distance from projection center (in degrees, < 90, default 60), and *scale* or *width* sets the size of the figure. """ import pygmt fig = pygmt.Figure() fig.coast(projection="F-90/15/12c", region="g", frame="20g20", land="gray") fig.show()
import flask from flask import Flask,jsonify,request import json from data_input import data_in import numpy as np import pickle def load_models(): file_name = './models/model_file.p' with open(file_name,'rb') as pickled: data = pickle.load(pickled) model = data['model'] return model app = Flask(__name__) @app.route('/predict',methods=['GET']) def predict(): request_json = request.get_json() x = request_json['input'] x_in = np.array(x).reshape(1,-1) model = load_models() prediction = model.predict(x_in)[0] response = json.dumps({'response': prediction}) return response,200 if __name__ == '__main__': application.run(debug=True)
import os import pytest from sap.aibus.dar.client.data_manager_client import DataManagerClient from sap.aibus.dar.client.inference_client import InferenceClient from sap.aibus.dar.client.model_manager_client import ModelManagerClient from sap.aibus.dar.client.util.credentials import OnlineCredentialsSource from sap.aibus.dar.client.workflow.model import ModelCreator @pytest.fixture() def dar_url(): return os.environ["DAR_URL"] @pytest.fixture() def dar_client_id(): return os.environ["DAR_CLIENT_ID"] @pytest.fixture() def dar_client_secret(): return os.environ["DAR_CLIENT_SECRET"] @pytest.fixture() def dar_uaa_url(): return os.environ["DAR_AUTH_URL"] # For the following fixtures, the parameters to the functions # will be provided by existing fixtures of the same name! @pytest.fixture() def credentials_source(dar_client_id, dar_client_secret, dar_uaa_url): return OnlineCredentialsSource(dar_uaa_url, dar_client_id, dar_client_secret) @pytest.fixture() def data_manager_client(dar_url, credentials_source): client = DataManagerClient(dar_url, credentials_source) return client @pytest.fixture() def model_manager_client(dar_url, credentials_source): client = ModelManagerClient(dar_url, credentials_source) return client @pytest.fixture() def inference_client(dar_url, credentials_source): client = InferenceClient(dar_url, credentials_source) return client @pytest.fixture() def model_creator(dar_url, credentials_source): create_model = ModelCreator(dar_url, credentials_source) return create_model
import json import os import sys from datetime import datetime import numpy as np import pandas as pd from objects.task import Task from objects.workflow import Workflow from objects.workload import Workload pd.set_option('display.max_columns', None) USAGE = 'Usage: python(3) ./galaxy_to_parquet.py galaxy_folder' NAME = 'Galaxy' TARGET_DIR = os.path.join(os.path.dirname(os.getcwd()), 'output_parquet', NAME) DATETIME_FORMAT = '%Y-%m-%d %H:%M:%S.%f' EPOCH = datetime(1970, 1, 1) JOBS = None METRICS = None WORKFLOWS = None WORKFLOW_INVOCATIONS = None WORKFLOW_STEPS = None WORKFLOW_INVOKE_STEPS = None WORKFLOW_CONNECTIONS = None WORKFLOW_STEP_INPUT = None def read_files(folder_path): global METRICS METRICS = pd.read_csv(os.path.join(folder_path, 'job_metrics_numeric.csv'), names=["id", "job_id", "plugin", "metric_name", "metric_value"], dtype={ "id": np.float, "job_id": np.float, "plugin": np.str, "metric_name": np.str, "metric_value": np.float, }) print("Done with reading metrics") global WORKFLOWS WORKFLOWS = pd.read_csv(os.path.join(folder_path, 'workflows.csv'), names=["id", "create_time", "update_time", "stored_workflow_id", "has_cycles", "has_errors", "parent_workflow_id", "uuid"], dtype={ "id": np.float, "create_time": np.str, "update_time": np.str, "stored_workflow_id": np.float, "has_cycles": np.str, "has_errors": np.str, "parent_workflow_id": np.float, "uuid": np.str, }) print("Done with reading workflows") global WORKFLOW_INVOCATIONS WORKFLOW_INVOCATIONS = pd.read_csv(os.path.join(folder_path, 'workflow-invocations.csv'), names=["id", "create_time", "update_time", "workflow_id", "state", "scheduler", "handler"], dtype={ "id": np.float, "create_time": np.str, "update_time": np.str, "workflow_id": np.float, "state": np.str, "scheduler": np.str, "handler": np.str, }) print("Done with reading workflow invocations") global WORKFLOW_STEPS WORKFLOW_STEPS = pd.read_csv(os.path.join(folder_path, 'workflow-steps.csv'), names=["id", "create_time", "update_time", "workflow_id", "type", "tool_id", "tool_version", "order_index", "subworkflow_id", "dynamic_tool_id"], dtype={ "id": np.float, "create_time": np.str, "update_time": np.str, "workflow_id": np.float, "type": np.str, "tool_id": np.str, "tool_version": np.str, "order_index": np.float, "subworkflow_id": np.str, "dynamic_tool_id": np.str, }) print("Done with reading workflow steps") global WORKFLOW_INVOKE_STEPS WORKFLOW_INVOKE_STEPS = pd.read_csv(os.path.join(folder_path, 'workflow-invoke-steps.csv'), keep_default_na=True, names=["id", "create_time", "update_time", "workflow_invocation_id", "workflow_step_id", "job_id", "state"], dtype={ "id": np.float, "create_time": np.str, "update_time": np.str, "workflow_invocation_id": np.float, "workflow_step_id": np.float, "job_id": np.float, "state": np.str, }) print("Done with reading workflow invocation steps") global WORKFLOW_CONNECTIONS WORKFLOW_CONNECTIONS = pd.read_csv(os.path.join(folder_path, 'workflow-connections.csv'), names=["id", "output_step_id", "input_step_input_id", "output_name", "input_subworkflow_step_id"], dtype={ "id": np.float, "output_step_id": np.float, "input_step_input_id": np.float, "output_name": np.str, "input_subworkflow_step_id": np.float, }) print("Done with reading workflow connections") global WORKFLOW_STEP_INPUT WORKFLOW_STEP_INPUT = pd.read_csv(os.path.join(folder_path, 'workflow-step-input.csv'), names=["id", "workflow_step_id", "name"], dtype={ "id": np.float, "workflow_step_id": np.float, "name": np.str, }) print("Done with reading workflow step input") def check_if_empty(*args): for field in args: if np.isnan(field): return True def compute_children(step_job_ids, tasks_in_workflow): for task in tasks_in_workflow: step_id = None for pair in step_job_ids: # find task id's corresponding step id if pair[1] == task.id: step_id = pair[0] children = set() df = WORKFLOW_CONNECTIONS.loc[(WORKFLOW_CONNECTIONS["output_step_id"] == step_id)] if df.empty: task.children = children continue for wc_row in df.itertuples(): # find id for subsequent connected step row = WORKFLOW_STEP_INPUT.loc[(WORKFLOW_STEP_INPUT["id"] == wc_row[3])] child_step_id = row.iloc[0]["workflow_step_id"] # find child_step_id in step-job pairs and add corresponding job_id to children set for pair2 in step_job_ids: if pair2[0] == child_step_id: children.add(np.int64(pair2[1])) for child in tasks_in_workflow: if child.id == pair2[1]: child.parents.append(np.int64(task.id)) break break task.children = children for task2 in tasks_in_workflow: unique_parents = set(task2.parents) unique_parents_list = list(unique_parents) task2.parents = unique_parents_list return tasks_in_workflow def parse(): os.makedirs(TARGET_DIR, exist_ok=True) task_counter = 0 workflow_counter = 0 processed_workflows = [] final_workflows = [] final_tasks = [] task_offset = 0 workflow_offset = None for wi_row in WORKFLOW_INVOCATIONS.itertuples(): flag = False # only use one execution of a workflow if wi_row[4] in processed_workflows: continue # check if workflow contains cycles workflow_row = WORKFLOWS.loc[(WORKFLOWS["id"] == getattr(wi_row, "workflow_id"))] if workflow_row.iloc[0]["has_cycles"] == "t": continue # workflows contain a number of workflow steps but this is not the ID of their actual execution # this list is used to tie the workflow steps to their actual execution ID step_job_ids = [] tasks_in_workflow = [] workflow_index = wi_row[4] # check if workflow id is null if pd.isnull(workflow_index): continue df = WORKFLOW_INVOKE_STEPS.loc[(WORKFLOW_INVOKE_STEPS["workflow_invocation_id"] == getattr(wi_row, "id"))] # check if workflow is not empty if df.empty: processed_workflows.append(workflow_index) continue for wis_row in df.itertuples(): # check if entry in WF_INVOKE_STEPS has the same wf_invocation_id if getattr(wis_row, "workflow_invocation_id") == getattr(wi_row, "id"): # check if required fields are not empty if check_if_empty(getattr(wis_row, "workflow_step_id"), getattr(wis_row, "job_id")): processed_workflows.append(workflow_index) flag = True break # get step id and corresponding execution id step_job_pair = [getattr(wis_row, "workflow_step_id"), getattr(wis_row, "job_id")] step_job_ids.append(step_job_pair) job_id = getattr(wis_row, "job_id") submit_time = int(((datetime.strptime(getattr(wis_row, "create_time"),DATETIME_FORMAT) - EPOCH).total_seconds()) * 1000) job_metrics = METRICS.loc[(METRICS["job_id"] == job_id)] runtime = job_metrics.loc[(job_metrics["metric_name"] == "runtime_seconds"), 'metric_value'] * 1000 memory = job_metrics.loc[(job_metrics["metric_name"] == "memory.memsw.max_usage_in_bytes"), 'metric_value'] cpu_time = job_metrics.loc[(job_metrics["metric_name"] == "cpuacct.usage"), 'metric_value'] # check if any required fields are empty if runtime.empty or memory.empty or cpu_time.empty: processed_workflows.append(workflow_index) flag = True break # used to find the task with lowest submit time, this time will be used ass offset if task_offset == 0: task_offset = submit_time elif submit_time < task_offset: task_offset = submit_time runtime = runtime.iloc[0] memory = memory.iloc[0] cpu_time = cpu_time.iloc[0] / 1000000 if cpu_time > runtime: cpu_time = runtime task = Task(np.int64(job_id), "Composite", submit_time, 0, runtime, 1, None, workflow_index, -1, "cpu-time",resource=cpu_time, memory_requested=memory) task_counter += 1 tasks_in_workflow.append(task) flag = False # if flag is true, a task in the workflow is not usable to we skip it if flag: processed_workflows.append((workflow_index)) continue # compute children of tasks final_tasks.extend(compute_children(step_job_ids, tasks_in_workflow)) workflow_submit_time = int(((datetime.strptime(getattr(wi_row, "create_time"),DATETIME_FORMAT) - EPOCH).total_seconds()) * 1000) # find smallest workflow submit time as offset if workflow_offset is None: workflow_offset = workflow_submit_time elif workflow_submit_time < workflow_offset: workflow_offset = workflow_submit_time workflow = Workflow(workflow_index, workflow_submit_time, tasks_in_workflow, "core", "Engineering", "Galaxy", "Biological Engineering") workflow.compute_critical_path() processed_workflows.append(workflow_index) final_workflows.append(workflow) workflow_counter += 1 # apply offset for x in final_tasks: x.ts_submit = x.ts_submit - task_offset # apply offset for y in final_workflows: y.ts_submit = y.ts_submit - workflow_offset # make tasks dataframe task_df = pd.DataFrame([t.get_parquet_dict() for t in final_tasks]) # create parquet file in specified folder os.makedirs(os.path.join(TARGET_DIR, Task.output_path()), exist_ok=True) task_df.to_parquet(os.path.join(TARGET_DIR, Task.output_path(), "part.0.parquet"), engine="pyarrow") # make workflows dataframe workflow_df = pd.DataFrame([w.get_parquet_dict() for w in final_workflows]) # create parquet file in specified folder os.makedirs(os.path.join(TARGET_DIR, Workflow.output_path()), exist_ok=True) workflow_df.to_parquet(os.path.join(TARGET_DIR, Workflow.output_path(), "part.0.parquet"), engine="pyarrow") json_dict = Workload.get_json_dict_from_pandas_task_dataframe(task_df, domain="Biological Engineering", authors=["Jaro Bosch", "Laurens Versluis"], workload_description="Traces from different biomedical research workflows, executed on the public Galaxy server in Europe." ) os.makedirs(os.path.join(TARGET_DIR, Workload.output_path()), exist_ok=True) with open(os.path.join(TARGET_DIR, Workload.output_path(), "generic_information.json"), "w") as file: # Need this on 32-bit python. def default(o): if isinstance(o, np.int64): return int(o) raise TypeError file.write(json.dumps(json_dict, default=default)) if __name__ == '__main__': if len(sys.argv) != 2: print(USAGE) sys.exit(1) folder_path = sys.argv[1] read_files(folder_path) parse()
import seaborn as sns import matplotlib.pyplot as plt import torch import numpy as np import cv2 from .cam import GradCAM # def load_gradcam(images, labels, model, device, target_layers): def load_gradcam(test, model, device, target_layers,size = 25,classified = True): _images = [] _target = [] _pred = [] # model, device = self.trainer.model, self.trainer.device # set the model to evaluation mode model.eval() # turn off gradients with torch.no_grad(): for data, target in test: # move them to respective device data, target = data.to(device), target.to(device) # do inferencing output = model(data) # print("output:",output[0]) # get the predicted output pred = output.argmax(dim=1, keepdim=True) # print(pred,pred.view_as(target)) # get the current misclassified in this batch list_images = (target.eq(pred.view_as(target)) == classified) batch_misclassified = data[list_images] batch_mis_pred = pred[list_images] batch_mis_target = target[list_images] # batch_misclassified = _images.append(batch_misclassified) _pred.append(batch_mis_pred) _target.append(batch_mis_target) # group all the batched together img = torch.cat(_images) pred = torch.cat(_pred) tar = torch.cat(_target) # move the model to device images = img[:size] labels = tar[:size] model.to(device) # set the model in evaluation mode model.eval() # get the grad cam gcam = GradCAM(model=model, candidate_layers=target_layers) # images = torch.stack(images).to(device) # predicted probabilities and class ids pred_probs, pred_ids = gcam.forward(images) # actual class ids # target_ids = torch.LongTensor(labels).view(len(images), -1).to(device) target_ids = labels.view(len(images), -1).to(device) # backward pass wrt to the actual ids gcam.backward(ids=target_ids) # we will store the layers and correspondings images activations here layers_region = {} # fetch the grad cam layers of all the images for target_layer in target_layers: # Grad-CAM regions = gcam.generate(target_layer=target_layer) layers_region[target_layer] = regions # we are done here, remove the hooks gcam.remove_hook() return layers_region, pred_probs, pred_ids,images, labels sns.set() # plt.style.use("dark_background") def plot_gradcam(gcam_layers, images, target_labels, predicted_labels, class_labels, denormalize): images = images.cpu() # convert BCHW to BHWC for plotting stufffff images = images.permute(0, 2, 3, 1) target_labels = target_labels.cpu() fig, axs = plt.subplots(nrows=len(images), ncols=len( gcam_layers.keys())+1, figsize=((len(gcam_layers.keys()) + 2)*3, len(images)*3)) fig.suptitle("Grad-CAM", fontsize=16) for image_idx, image in enumerate(images): # denormalize the imaeg denorm_img = denormalize(image.permute(2, 0, 1)).permute(1, 2, 0) # axs[image_idx, 0].text( # 0.5, 0.5, f'predicted: {class_labels[predicted_labels[image_idx][0] ]}\nactual: {class_labels[target_labels[image_idx]] }', horizontalalignment='center', verticalalignment='center', fontsize=14, ) # axs[image_idx, 0].axis('off') axs[image_idx, 0].imshow( (denorm_img.numpy() * 255).astype(np.uint8), interpolation='bilinear') axs[image_idx, 0].axis('off') for layer_idx, layer_name in enumerate(gcam_layers.keys()): # gets H X W of the cam layer _layer = gcam_layers[layer_name][image_idx].cpu().numpy()[0] heatmap = 1 - _layer heatmap = np.uint8(255 * heatmap) heatmap_img = cv2.applyColorMap(heatmap, cv2.COLORMAP_JET) superimposed_img = cv2.addWeighted( (denorm_img.numpy() * 255).astype(np.uint8), 0.6, heatmap_img, 0.4, 0) axs[image_idx, layer_idx + 1].imshow(superimposed_img, interpolation='bilinear') axs[image_idx, layer_idx+1].set_title(f'layer: {layer_name}') axs[image_idx, layer_idx+1].axis('off') axs[image_idx, 0].set_title(f'Predicted: {class_labels[predicted_labels[image_idx][0] ]}\nTarget: {class_labels[target_labels[image_idx]] }') plt.tight_layout() plt.subplots_adjust(top=0.95, wspace=0.2, hspace=0.2) plt.show()
"""Factory classes for easily generating test objects.""" from .activation import Activation from .annotation import Annotation from .annotation_moderation import AnnotationModeration from .auth_client import AuthClient, ConfidentialAuthClient from .auth_ticket import AuthTicket from .authz_code import AuthzCode from .base import set_session from .document import Document, DocumentMeta, DocumentURI from .feature import Feature from .flag import Flag from .group import Group, OpenGroup, RestrictedGroup from .group_scope import GroupScope from .job import Job, SyncAnnotationJob from .organization import Organization from .setting import Setting from .token import DeveloperToken, OAuth2Token from .user import User from .user_identity import UserIdentity __all__ = ( "Activation", "Annotation", "AnnotationModeration", "AuthClient", "AuthTicket", "AuthzCode", "ConfidentialAuthClient", "DeveloperToken", "Document", "DocumentMeta", "DocumentURI", "Feature", "Flag", "Group", "GroupScope", "Job", "OAuth2Token", "OpenGroup", "Organization", "RestrictedGroup", "Setting", "SyncAnnotationJob", "User", "UserIdentity", "set_session", )
# ------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # -------------------------------------------------------------------------- import msrest.serialization from .._generated.models import ( LexicalAnalyzer, LexicalTokenizer, AnalyzeRequest, CustomAnalyzer as _CustomAnalyzer, PatternAnalyzer as _PatternAnalyzer, PatternTokenizer as _PatternTokenizer, SearchResourceEncryptionKey as _SearchResourceEncryptionKey, SearchIndexerDataSource as _SearchIndexerDataSource, SynonymMap as _SynonymMap, DataSourceCredentials, AzureActiveDirectoryApplicationCredentials ) DELIMITER = "|" class AnalyzeTextOptions(msrest.serialization.Model): """Specifies some text and analysis components used to break that text into tokens. All required parameters must be populated in order to send to Azure. :param text: Required. The text to break into tokens. :type text: str :param analyzer_name: The name of the analyzer to use to break the given text. If this parameter is not specified, you must specify a tokenizer instead. The tokenizer and analyzer parameters are mutually exclusive. Possible values include: "ar.microsoft", "ar.lucene", "hy.lucene", "bn.microsoft", "eu.lucene", "bg.microsoft", "bg.lucene", "ca.microsoft", "ca.lucene", "zh- Hans.microsoft", "zh-Hans.lucene", "zh-Hant.microsoft", "zh-Hant.lucene", "hr.microsoft", "cs.microsoft", "cs.lucene", "da.microsoft", "da.lucene", "nl.microsoft", "nl.lucene", "en.microsoft", "en.lucene", "et.microsoft", "fi.microsoft", "fi.lucene", "fr.microsoft", "fr.lucene", "gl.lucene", "de.microsoft", "de.lucene", "el.microsoft", "el.lucene", "gu.microsoft", "he.microsoft", "hi.microsoft", "hi.lucene", "hu.microsoft", "hu.lucene", "is.microsoft", "id.microsoft", "id.lucene", "ga.lucene", "it.microsoft", "it.lucene", "ja.microsoft", "ja.lucene", "kn.microsoft", "ko.microsoft", "ko.lucene", "lv.microsoft", "lv.lucene", "lt.microsoft", "ml.microsoft", "ms.microsoft", "mr.microsoft", "nb.microsoft", "no.lucene", "fa.lucene", "pl.microsoft", "pl.lucene", "pt-BR.microsoft", "pt-BR.lucene", "pt- PT.microsoft", "pt-PT.lucene", "pa.microsoft", "ro.microsoft", "ro.lucene", "ru.microsoft", "ru.lucene", "sr-cyrillic.microsoft", "sr-latin.microsoft", "sk.microsoft", "sl.microsoft", "es.microsoft", "es.lucene", "sv.microsoft", "sv.lucene", "ta.microsoft", "te.microsoft", "th.microsoft", "th.lucene", "tr.microsoft", "tr.lucene", "uk.microsoft", "ur.microsoft", "vi.microsoft", "standard.lucene", "standardasciifolding.lucene", "keyword", "pattern", "simple", "stop", "whitespace". :type analyzer_name: str or ~azure.search.documents.indexes.models.LexicalAnalyzerName :param tokenizer_name: The name of the tokenizer to use to break the given text. If this parameter is not specified, you must specify an analyzer instead. The tokenizer and analyzer parameters are mutually exclusive. Possible values include: "classic", "edgeNGram", "keyword_v2", "letter", "lowercase", "microsoft_language_tokenizer", "microsoft_language_stemming_tokenizer", "nGram", "path_hierarchy_v2", "pattern", "standard_v2", "uax_url_email", "whitespace". :type tokenizer_name: str or ~azure.search.documents.indexes.models.LexicalTokenizerName :param token_filters: An optional list of token filters to use when breaking the given text. This parameter can only be set when using the tokenizer parameter. :type token_filters: list[str or ~azure.search.documents.indexes.models.TokenFilterName] :param char_filters: An optional list of character filters to use when breaking the given text. This parameter can only be set when using the tokenizer parameter. :type char_filters: list[str] """ _validation = { 'text': {'required': True}, } _attribute_map = { 'text': {'key': 'text', 'type': 'str'}, 'analyzer_name': {'key': 'analyzerName', 'type': 'str'}, 'tokenizer_name': {'key': 'tokenizerName', 'type': 'str'}, 'token_filters': {'key': 'tokenFilters', 'type': '[str]'}, 'char_filters': {'key': 'charFilters', 'type': '[str]'}, } def __init__( self, **kwargs ): super(AnalyzeTextOptions, self).__init__(**kwargs) self.text = kwargs['text'] self.analyzer_name = kwargs.get('analyzer_name', None) self.tokenizer_name = kwargs.get('tokenizer_name', None) self.token_filters = kwargs.get('token_filters', None) self.char_filters = kwargs.get('char_filters', None) def _to_analyze_request(self): return AnalyzeRequest( text=self.text, analyzer=self.analyzer_name, tokenizer=self.tokenizer_name, token_filters=self.token_filters, char_filters=self.char_filters ) class CustomAnalyzer(LexicalAnalyzer): """Allows you to take control over the process of converting text into indexable/searchable tokens. It's a user-defined configuration consisting of a single predefined tokenizer and one or more filters. The tokenizer is responsible for breaking text into tokens, and the filters for modifying tokens emitted by the tokenizer. All required parameters must be populated in order to send to Azure. :param odata_type: Required. Identifies the concrete type of the analyzer.Constant filled by server. :type odata_type: str :param name: Required. The name of the analyzer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :type name: str :param tokenizer_name: Required. The name of the tokenizer to use to divide continuous text into a sequence of tokens, such as breaking a sentence into words. Possible values include: "classic", "edgeNGram", "keyword_v2", "letter", "lowercase", "microsoft_language_tokenizer", "microsoft_language_stemming_tokenizer", "nGram", "path_hierarchy_v2", "pattern", "standard_v2", "uax_url_email", "whitespace". :type tokenizer_name: str or ~azure.search.documents.indexes.models.LexicalTokenizerName :param token_filters: A list of token filters used to filter out or modify the tokens generated by a tokenizer. For example, you can specify a lowercase filter that converts all characters to lowercase. The filters are run in the order in which they are listed. :type token_filters: list[str or ~azure.search.documents.indexes.models.TokenFilterName] :param char_filters: A list of character filters used to prepare input text before it is processed by the tokenizer. For instance, they can replace certain characters or symbols. The filters are run in the order in which they are listed. :type char_filters: list[str] """ _validation = { 'odata_type': {'required': True}, 'name': {'required': True}, 'tokenizer_name': {'required': True}, } _attribute_map = { 'odata_type': {'key': '@odata\\.type', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'tokenizer_name': {'key': 'tokenizerName', 'type': 'str'}, 'token_filters': {'key': 'tokenFilters', 'type': '[str]'}, 'char_filters': {'key': 'charFilters', 'type': '[str]'}, } def __init__( self, **kwargs ): super(CustomAnalyzer, self).__init__(**kwargs) self.odata_type = '#Microsoft.Azure.Search.CustomAnalyzer' self.tokenizer_name = kwargs['tokenizer_name'] self.token_filters = kwargs.get('token_filters', None) self.char_filters = kwargs.get('char_filters', None) def _to_generated(self): return _CustomAnalyzer( name=self.name, odata_type=self.odata_type, tokenizer=self.tokenizer_name, token_filters=self.token_filters, char_filters=self.char_filters ) @classmethod def _from_generated(cls, custom_analyzer): if not custom_analyzer: return None return cls( name=custom_analyzer.name, odata_type=custom_analyzer.odata_type, tokenizer_name=custom_analyzer.tokenizer, token_filters=custom_analyzer.token_filters, char_filters=custom_analyzer.char_filters ) class PatternAnalyzer(LexicalAnalyzer): """Flexibly separates text into terms via a regular expression. This analyzer is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :param name: Required. The name of the analyzer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :type name: str :param lower_case_terms: A value indicating whether terms should be lower-cased. Default is true. :type lower_case_terms: bool :param pattern: A regular expression to match token separators. Default is an expression that matches one or more white space characters. :type pattern: str :param flags: List of regular expression flags. Possible values of each flag include: 'CANON_EQ', 'CASE_INSENSITIVE', 'COMMENTS', 'DOTALL', 'LITERAL', 'MULTILINE', 'UNICODE_CASE', 'UNIX_LINES'. :type flags: list[str] or list[~search_service_client.models.RegexFlags] :param stopwords: A list of stopwords. :type stopwords: list[str] """ _validation = {"odata_type": {"required": True}, "name": {"required": True}} _attribute_map = { "odata_type": {"key": "@odata\\.type", "type": "str"}, "name": {"key": "name", "type": "str"}, "lower_case_terms": {"key": "lowercase", "type": "bool"}, "pattern": {"key": "pattern", "type": "str"}, "flags": {"key": "flags", "type": "[str]"}, "stopwords": {"key": "stopwords", "type": "[str]"}, } def __init__(self, **kwargs): super(PatternAnalyzer, self).__init__(**kwargs) self.odata_type = "#Microsoft.Azure.Search.PatternAnalyzer" self.lower_case_terms = kwargs.get("lower_case_terms", True) self.pattern = kwargs.get("pattern", r"\W+") self.flags = kwargs.get("flags", None) self.stopwords = kwargs.get("stopwords", None) def _to_generated(self): if not self.flags: flags = None else: flags = DELIMITER.join(self.flags) return _PatternAnalyzer( name=self.name, lower_case_terms=self.lower_case_terms, pattern=self.pattern, flags=flags, stopwords=self.stopwords, ) @classmethod def _from_generated(cls, pattern_analyzer): if not pattern_analyzer: return None if not pattern_analyzer.flags: flags = None else: flags = pattern_analyzer.flags.split(DELIMITER) return cls( name=pattern_analyzer.name, lower_case_terms=pattern_analyzer.lower_case_terms, pattern=pattern_analyzer.pattern, flags=flags, stopwords=pattern_analyzer.stopwords, ) class PatternTokenizer(LexicalTokenizer): """Tokenizer that uses regex pattern matching to construct distinct tokens. This tokenizer is implemented using Apache Lucene. All required parameters must be populated in order to send to Azure. :param name: Required. The name of the tokenizer. It must only contain letters, digits, spaces, dashes or underscores, can only start and end with alphanumeric characters, and is limited to 128 characters. :type name: str :param pattern: A regular expression to match token separators. Default is an expression that matches one or more white space characters. :type pattern: str :param flags: List of regular expression flags. Possible values of each flag include: 'CANON_EQ', 'CASE_INSENSITIVE', 'COMMENTS', 'DOTALL', 'LITERAL', 'MULTILINE', 'UNICODE_CASE', 'UNIX_LINES'. :type flags: list[str] or list[~search_service_client.models.RegexFlags] :param group: The zero-based ordinal of the matching group in the regular expression to extract into tokens. Use -1 if you want to use the entire pattern to split the input into tokens, irrespective of matching groups. Default is -1. :type group: int """ _validation = {"odata_type": {"required": True}, "name": {"required": True}} _attribute_map = { "odata_type": {"key": "@odata\\.type", "type": "str"}, "name": {"key": "name", "type": "str"}, "pattern": {"key": "pattern", "type": "str"}, "flags": {"key": "flags", "type": "[str]"}, "group": {"key": "group", "type": "int"}, } def __init__(self, **kwargs): super(PatternTokenizer, self).__init__(**kwargs) self.odata_type = "#Microsoft.Azure.Search.PatternTokenizer" self.pattern = kwargs.get("pattern", r"\W+") self.flags = kwargs.get("flags", None) self.group = kwargs.get("group", -1) def _to_generated(self): if not self.flags: flags = None else: flags = DELIMITER.join(self.flags) return _PatternTokenizer( name=self.name, pattern=self.pattern, flags=flags, group=self.group, ) @classmethod def _from_generated(cls, pattern_tokenizer): if not pattern_tokenizer: return None if not pattern_tokenizer.flags: flags = None else: flags = pattern_tokenizer.flags.split(DELIMITER) return cls( name=pattern_tokenizer.name, pattern=pattern_tokenizer.pattern, flags=flags, group=pattern_tokenizer.group, ) class SearchResourceEncryptionKey(msrest.serialization.Model): """A customer-managed encryption key in Azure Key Vault. Keys that you create and manage can be used to encrypt or decrypt data-at-rest in Azure Cognitive Search, such as indexes and synonym maps. All required parameters must be populated in order to send to Azure. :param key_name: Required. The name of your Azure Key Vault key to be used to encrypt your data at rest. :type key_name: str :param key_version: Required. The version of your Azure Key Vault key to be used to encrypt your data at rest. :type key_version: str :param vault_uri: Required. The URI of your Azure Key Vault, also referred to as DNS name, that contains the key to be used to encrypt your data at rest. An example URI might be https://my- keyvault-name.vault.azure.net. :type vault_uri: str :param application_id: Required. An AAD Application ID that was granted the required access permissions to the Azure Key Vault that is to be used when encrypting your data at rest. The Application ID should not be confused with the Object ID for your AAD Application. :type application_id: str :param application_secret: The authentication key of the specified AAD application. :type application_secret: str """ _validation = { 'key_name': {'required': True}, 'key_version': {'required': True}, 'vault_uri': {'required': True}, } _attribute_map = { 'key_name': {'key': 'keyVaultKeyName', 'type': 'str'}, 'key_version': {'key': 'keyVaultKeyVersion', 'type': 'str'}, 'vault_uri': {'key': 'keyVaultUri', 'type': 'str'}, 'application_id': {'key': 'applicationId', 'type': 'str'}, 'application_secret': {'key': 'applicationSecret', 'type': 'str'}, } def __init__( self, **kwargs ): super(SearchResourceEncryptionKey, self).__init__(**kwargs) self.key_name = kwargs['key_name'] self.key_version = kwargs['key_version'] self.vault_uri = kwargs['vault_uri'] self.application_id = kwargs.get('application_id', None) self.application_secret = kwargs.get('application_secret', None) def _to_generated(self): if self.application_id and self.application_secret: access_credentials = AzureActiveDirectoryApplicationCredentials( application_id=self.application_id, application_secret=self.application_secret ) else: access_credentials = None return _SearchResourceEncryptionKey( key_name=self.key_name, key_version=self.key_version, vault_uri=self.vault_uri, access_credentials=access_credentials ) @classmethod def _from_generated(cls, search_resource_encryption_key): if not search_resource_encryption_key: return None if search_resource_encryption_key.access_credentials: application_id = search_resource_encryption_key.access_credentials.application_id application_secret = search_resource_encryption_key.access_credentials.application_secret else: application_id = None application_secret = None return cls( key_name=search_resource_encryption_key.key_name, key_version=search_resource_encryption_key.key_version, vault_uri=search_resource_encryption_key.vault_uri, application_id=application_id, application_secret=application_secret ) class SynonymMap(msrest.serialization.Model): """Represents a synonym map definition. Variables are only populated by the server, and will be ignored when sending a request. All required parameters must be populated in order to send to Azure. :param name: Required. The name of the synonym map. :type name: str :ivar format: Required. The format of the synonym map. Only the 'solr' format is currently supported. Default value: "solr". :vartype format: str :param synonyms: Required. A series of synonym rules in the specified synonym map format. The rules must be separated by newlines. :type synonyms: list[str] :param encryption_key: A description of an encryption key that you create in Azure Key Vault. This key is used to provide an additional level of encryption-at-rest for your data when you want full assurance that no one, not even Microsoft, can decrypt your data in Azure Cognitive Search. Once you have encrypted your data, it will always remain encrypted. Azure Cognitive Search will ignore attempts to set this property to null. You can change this property as needed if you want to rotate your encryption key; Your data will be unaffected. Encryption with customer-managed keys is not available for free search services, and is only available for paid services created on or after January 1, 2019. :type encryption_key: ~azure.search.documents.indexes.models.SearchResourceEncryptionKey :param e_tag: The ETag of the synonym map. :type e_tag: str """ _validation = { 'name': {'required': True}, 'format': {'required': True, 'constant': True}, 'synonyms': {'required': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'format': {'key': 'format', 'type': 'str'}, 'synonyms': {'key': 'synonyms', 'type': '[str]'}, 'encryption_key': {'key': 'encryptionKey', 'type': 'SearchResourceEncryptionKey'}, 'e_tag': {'key': '@odata\\.etag', 'type': 'str'}, } format = "solr" def __init__( self, **kwargs ): super(SynonymMap, self).__init__(**kwargs) self.name = kwargs['name'] self.synonyms = kwargs['synonyms'] self.encryption_key = kwargs.get('encryption_key', None) self.e_tag = kwargs.get('e_tag', None) def _to_generated(self): return _SynonymMap( name=self.name, synonyms="\n".join(self.synonyms), encryption_key=self.encryption_key._to_generated() if self.encryption_key else None, # pylint:disable=protected-access e_tag=self.e_tag ) @classmethod def _from_generated(cls, synonym_map): if not synonym_map: return None return cls( name=synonym_map.name, synonyms=synonym_map.synonyms.split("\n"), # pylint:disable=protected-access encryption_key=SearchResourceEncryptionKey._from_generated(synonym_map.encryption_key), e_tag=synonym_map.e_tag ) @classmethod def create_from_file(cls, name, file_path): with open(file_path, "r") as f: solr_format_synonyms = f.read() synonyms = solr_format_synonyms.split("\n") return cls( name=name, synonyms=synonyms ) class SearchIndexerDataSourceConnection(msrest.serialization.Model): """Represents a datasource connection definition, which can be used to configure an indexer. All required parameters must be populated in order to send to Azure. :param name: Required. The name of the datasource connection. :type name: str :param description: The description of the datasource connection. :type description: str :param type: Required. The type of the datasource connection. Possible values include: "azuresql", "cosmosdb", "azureblob", "azuretable", "mysql", "adlsgen2". :type type: str or ~azure.search.documents.indexes.models.SearchIndexerDataSourceType :param connection_string: The connection string for the datasource connection. :type connection_string: str :param container: Required. The data container for the datasource connection. :type container: ~azure.search.documents.indexes.models.SearchIndexerDataContainer :param data_change_detection_policy: The data change detection policy for the datasource connection. :type data_change_detection_policy: ~azure.search.documents.models.DataChangeDetectionPolicy :param data_deletion_detection_policy: The data deletion detection policy for the datasource connection. :type data_deletion_detection_policy: ~azure.search.documents.models.DataDeletionDetectionPolicy :param e_tag: The ETag of the data source. :type e_tag: str """ _validation = { 'name': {'required': True}, 'type': {'required': True}, 'connection_string': {'required': True}, 'container': {'required': True}, } _attribute_map = { 'name': {'key': 'name', 'type': 'str'}, 'description': {'key': 'description', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'connection_string': {'key': 'connectionString', 'type': 'str'}, 'container': {'key': 'container', 'type': 'SearchIndexerDataContainer'}, 'data_change_detection_policy': {'key': 'dataChangeDetectionPolicy', 'type': 'DataChangeDetectionPolicy'}, 'data_deletion_detection_policy': {'key': 'dataDeletionDetectionPolicy', 'type': 'DataDeletionDetectionPolicy'}, 'e_tag': {'key': '@odata\\.etag', 'type': 'str'}, } def __init__( self, **kwargs ): super(SearchIndexerDataSourceConnection, self).__init__(**kwargs) self.name = kwargs['name'] self.description = kwargs.get('description', None) self.type = kwargs['type'] self.connection_string = kwargs['connection_string'] self.container = kwargs['container'] self.data_change_detection_policy = kwargs.get('data_change_detection_policy', None) self.data_deletion_detection_policy = kwargs.get('data_deletion_detection_policy', None) self.e_tag = kwargs.get('e_tag', None) def _to_generated(self): if self.connection_string is None or self.connection_string == "": connection_string = "<unchanged>" else: connection_string = self.connection_string credentials = DataSourceCredentials( connection_string=connection_string ) return _SearchIndexerDataSource( name=self.name, description=self.description, type=self.type, credentials=credentials, container=self.container, data_change_detection_policy=self.data_change_detection_policy, data_deletion_detection_policy=self.data_deletion_detection_policy, e_tag=self.e_tag ) @classmethod def _from_generated(cls, search_indexer_data_source): if not search_indexer_data_source: return None connection_string = search_indexer_data_source.credentials.connection_string \ if search_indexer_data_source.credentials else None return cls( name=search_indexer_data_source.name, description=search_indexer_data_source.description, type=search_indexer_data_source.type, connection_string=connection_string, container=search_indexer_data_source.container, data_change_detection_policy=search_indexer_data_source.data_change_detection_policy, data_deletion_detection_policy=search_indexer_data_source.data_deletion_detection_policy, e_tag=search_indexer_data_source.e_tag ) def pack_analyzer(analyzer): if not analyzer: return None if isinstance(analyzer, (PatternAnalyzer, CustomAnalyzer)): return analyzer._to_generated() # pylint:disable=protected-access return analyzer def unpack_analyzer(analyzer): if not analyzer: return None if isinstance(analyzer, _PatternAnalyzer): return PatternAnalyzer._from_generated(analyzer) # pylint:disable=protected-access if isinstance(analyzer, _CustomAnalyzer): return CustomAnalyzer._from_generated(analyzer) # pylint:disable=protected-access return analyzer
import os import nltk import re from gensim import corpora, models, similarities from cleaning import clean def train(): #Loads the data from the local storage synopses = [] for filename in os.listdir('cnn-stories'): with open('cnn-stories/' + filename, 'r') as infile: synopses.append(infile.read()) #Cleans the data corpus, dictionary = clean(synopses) #Saves the model and the dictionary in local storage corpora.Dictionary.save(dictionary, 'dictionary.dict') lda = models.LdaModel(corpus, num_topics=10, id2word=dictionary, update_every=5, chunksize=10000, passes=100) lda.save('lda.model') if __name__ == "__main__": train()
# -*- coding: utf-8 -*- # Copyright 2022 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import warnings from typing import Callable, Dict, Optional, Sequence, Tuple, Union from google.api_core import grpc_helpers from google.api_core import operations_v1 from google.api_core import gapic_v1 import google.auth # type: ignore from google.auth import credentials as ga_credentials # type: ignore from google.auth.transport.grpc import SslCredentials # type: ignore import grpc # type: ignore from google.cloud.aiplatform_v1.types import specialist_pool from google.cloud.aiplatform_v1.types import specialist_pool_service from google.longrunning import operations_pb2 # type: ignore from .base import SpecialistPoolServiceTransport, DEFAULT_CLIENT_INFO class SpecialistPoolServiceGrpcTransport(SpecialistPoolServiceTransport): """gRPC backend transport for SpecialistPoolService. A service for creating and managing Customer SpecialistPools. When customers start Data Labeling jobs, they can reuse/create Specialist Pools to bring their own Specialists to label the data. Customers can add/remove Managers for the Specialist Pool on Cloud console, then Managers will get email notifications to manage Specialists and tasks on CrowdCompute console. This class defines the same methods as the primary client, so the primary client can load the underlying transport implementation and call it. It sends protocol buffers over the wire using gRPC (which is built on top of HTTP/2); the ``grpcio`` package must be installed. """ _stubs: Dict[str, Callable] def __init__( self, *, host: str = "aiplatform.googleapis.com", credentials: ga_credentials.Credentials = None, credentials_file: str = None, scopes: Sequence[str] = None, channel: grpc.Channel = None, api_mtls_endpoint: str = None, client_cert_source: Callable[[], Tuple[bytes, bytes]] = None, ssl_channel_credentials: grpc.ChannelCredentials = None, client_cert_source_for_mtls: Callable[[], Tuple[bytes, bytes]] = None, quota_project_id: Optional[str] = None, client_info: gapic_v1.client_info.ClientInfo = DEFAULT_CLIENT_INFO, always_use_jwt_access: Optional[bool] = False, ) -> None: """Instantiate the transport. Args: host (Optional[str]): The hostname to connect to. credentials (Optional[google.auth.credentials.Credentials]): The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment. This argument is ignored if ``channel`` is provided. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is ignored if ``channel`` is provided. scopes (Optional(Sequence[str])): A list of scopes. This argument is ignored if ``channel`` is provided. channel (Optional[grpc.Channel]): A ``Channel`` instance through which to make calls. api_mtls_endpoint (Optional[str]): Deprecated. The mutual TLS endpoint. If provided, it overrides the ``host`` argument and tries to create a mutual TLS channel with client SSL credentials from ``client_cert_source`` or application default SSL credentials. client_cert_source (Optional[Callable[[], Tuple[bytes, bytes]]]): Deprecated. A callback to provide client SSL certificate bytes and private key bytes, both in PEM format. It is ignored if ``api_mtls_endpoint`` is None. ssl_channel_credentials (grpc.ChannelCredentials): SSL credentials for the grpc channel. It is ignored if ``channel`` is provided. client_cert_source_for_mtls (Optional[Callable[[], Tuple[bytes, bytes]]]): A callback to provide client certificate bytes and private key bytes, both in PEM format. It is used to configure a mutual TLS channel. It is ignored if ``channel`` or ``ssl_channel_credentials`` is provided. quota_project_id (Optional[str]): An optional project to use for billing and quota. client_info (google.api_core.gapic_v1.client_info.ClientInfo): The client info used to send a user-agent string along with API requests. If ``None``, then default info will be used. Generally, you only need to set this if you're developing your own client library. always_use_jwt_access (Optional[bool]): Whether self signed JWT should be used for service account credentials. Raises: google.auth.exceptions.MutualTLSChannelError: If mutual TLS transport creation failed for any reason. google.api_core.exceptions.DuplicateCredentialArgs: If both ``credentials`` and ``credentials_file`` are passed. """ self._grpc_channel = None self._ssl_channel_credentials = ssl_channel_credentials self._stubs: Dict[str, Callable] = {} self._operations_client: Optional[operations_v1.OperationsClient] = None if api_mtls_endpoint: warnings.warn("api_mtls_endpoint is deprecated", DeprecationWarning) if client_cert_source: warnings.warn("client_cert_source is deprecated", DeprecationWarning) if channel: # Ignore credentials if a channel was passed. credentials = False # If a channel was explicitly provided, set it. self._grpc_channel = channel self._ssl_channel_credentials = None else: if api_mtls_endpoint: host = api_mtls_endpoint # Create SSL credentials with client_cert_source or application # default SSL credentials. if client_cert_source: cert, key = client_cert_source() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) else: self._ssl_channel_credentials = SslCredentials().ssl_credentials else: if client_cert_source_for_mtls and not ssl_channel_credentials: cert, key = client_cert_source_for_mtls() self._ssl_channel_credentials = grpc.ssl_channel_credentials( certificate_chain=cert, private_key=key ) # The base transport sets the host, credentials and scopes super().__init__( host=host, credentials=credentials, credentials_file=credentials_file, scopes=scopes, quota_project_id=quota_project_id, client_info=client_info, always_use_jwt_access=always_use_jwt_access, ) if not self._grpc_channel: self._grpc_channel = type(self).create_channel( self._host, # use the credentials which are saved credentials=self._credentials, # Set ``credentials_file`` to ``None`` here as # the credentials that we saved earlier should be used. credentials_file=None, scopes=self._scopes, ssl_credentials=self._ssl_channel_credentials, quota_project_id=quota_project_id, options=[ ("grpc.max_send_message_length", -1), ("grpc.max_receive_message_length", -1), ], ) # Wrap messages. This must be done after self._grpc_channel exists self._prep_wrapped_messages(client_info) @classmethod def create_channel( cls, host: str = "aiplatform.googleapis.com", credentials: ga_credentials.Credentials = None, credentials_file: str = None, scopes: Optional[Sequence[str]] = None, quota_project_id: Optional[str] = None, **kwargs, ) -> grpc.Channel: """Create and return a gRPC channel object. Args: host (Optional[str]): The host for the channel to use. credentials (Optional[~.Credentials]): The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. credentials_file (Optional[str]): A file with credentials that can be loaded with :func:`google.auth.load_credentials_from_file`. This argument is mutually exclusive with credentials. scopes (Optional[Sequence[str]]): A optional list of scopes needed for this service. These are only used when credentials are not specified and are passed to :func:`google.auth.default`. quota_project_id (Optional[str]): An optional project to use for billing and quota. kwargs (Optional[dict]): Keyword arguments, which are passed to the channel creation. Returns: grpc.Channel: A gRPC channel object. Raises: google.api_core.exceptions.DuplicateCredentialArgs: If both ``credentials`` and ``credentials_file`` are passed. """ return grpc_helpers.create_channel( host, credentials=credentials, credentials_file=credentials_file, quota_project_id=quota_project_id, default_scopes=cls.AUTH_SCOPES, scopes=scopes, default_host=cls.DEFAULT_HOST, **kwargs, ) @property def grpc_channel(self) -> grpc.Channel: """Return the channel designed to connect to this service. """ return self._grpc_channel @property def operations_client(self) -> operations_v1.OperationsClient: """Create the client designed to process long-running operations. This property caches on the instance; repeated calls return the same client. """ # Quick check: Only create a new client if we do not already have one. if self._operations_client is None: self._operations_client = operations_v1.OperationsClient(self.grpc_channel) # Return the client from cache. return self._operations_client @property def create_specialist_pool( self, ) -> Callable[ [specialist_pool_service.CreateSpecialistPoolRequest], operations_pb2.Operation ]: r"""Return a callable for the create specialist pool method over gRPC. Creates a SpecialistPool. Returns: Callable[[~.CreateSpecialistPoolRequest], ~.Operation]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "create_specialist_pool" not in self._stubs: self._stubs["create_specialist_pool"] = self.grpc_channel.unary_unary( "/google.cloud.aiplatform.v1.SpecialistPoolService/CreateSpecialistPool", request_serializer=specialist_pool_service.CreateSpecialistPoolRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs["create_specialist_pool"] @property def get_specialist_pool( self, ) -> Callable[ [specialist_pool_service.GetSpecialistPoolRequest], specialist_pool.SpecialistPool, ]: r"""Return a callable for the get specialist pool method over gRPC. Gets a SpecialistPool. Returns: Callable[[~.GetSpecialistPoolRequest], ~.SpecialistPool]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "get_specialist_pool" not in self._stubs: self._stubs["get_specialist_pool"] = self.grpc_channel.unary_unary( "/google.cloud.aiplatform.v1.SpecialistPoolService/GetSpecialistPool", request_serializer=specialist_pool_service.GetSpecialistPoolRequest.serialize, response_deserializer=specialist_pool.SpecialistPool.deserialize, ) return self._stubs["get_specialist_pool"] @property def list_specialist_pools( self, ) -> Callable[ [specialist_pool_service.ListSpecialistPoolsRequest], specialist_pool_service.ListSpecialistPoolsResponse, ]: r"""Return a callable for the list specialist pools method over gRPC. Lists SpecialistPools in a Location. Returns: Callable[[~.ListSpecialistPoolsRequest], ~.ListSpecialistPoolsResponse]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "list_specialist_pools" not in self._stubs: self._stubs["list_specialist_pools"] = self.grpc_channel.unary_unary( "/google.cloud.aiplatform.v1.SpecialistPoolService/ListSpecialistPools", request_serializer=specialist_pool_service.ListSpecialistPoolsRequest.serialize, response_deserializer=specialist_pool_service.ListSpecialistPoolsResponse.deserialize, ) return self._stubs["list_specialist_pools"] @property def delete_specialist_pool( self, ) -> Callable[ [specialist_pool_service.DeleteSpecialistPoolRequest], operations_pb2.Operation ]: r"""Return a callable for the delete specialist pool method over gRPC. Deletes a SpecialistPool as well as all Specialists in the pool. Returns: Callable[[~.DeleteSpecialistPoolRequest], ~.Operation]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "delete_specialist_pool" not in self._stubs: self._stubs["delete_specialist_pool"] = self.grpc_channel.unary_unary( "/google.cloud.aiplatform.v1.SpecialistPoolService/DeleteSpecialistPool", request_serializer=specialist_pool_service.DeleteSpecialistPoolRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs["delete_specialist_pool"] @property def update_specialist_pool( self, ) -> Callable[ [specialist_pool_service.UpdateSpecialistPoolRequest], operations_pb2.Operation ]: r"""Return a callable for the update specialist pool method over gRPC. Updates a SpecialistPool. Returns: Callable[[~.UpdateSpecialistPoolRequest], ~.Operation]: A function that, when called, will call the underlying RPC on the server. """ # Generate a "stub function" on-the-fly which will actually make # the request. # gRPC handles serialization and deserialization, so we just need # to pass in the functions for each. if "update_specialist_pool" not in self._stubs: self._stubs["update_specialist_pool"] = self.grpc_channel.unary_unary( "/google.cloud.aiplatform.v1.SpecialistPoolService/UpdateSpecialistPool", request_serializer=specialist_pool_service.UpdateSpecialistPoolRequest.serialize, response_deserializer=operations_pb2.Operation.FromString, ) return self._stubs["update_specialist_pool"] def close(self): self.grpc_channel.close() __all__ = ("SpecialistPoolServiceGrpcTransport",)
# Base path for log files and sessions base_path = '~/.weevely/' # History path history_path = '~/.weevely/history' # Session path sessions_path = '~/.weevely/sessions/' sessions_ext = '.session' # Supported Channels channels = [ # Obfuscated channel inside POST requests introduced # in Weevely 3.6 'ObfPost', ] # Append random GET parameters to every request to # make sure the page is not cache by proxies. add_random_param_nocache = False # Add additional headers to be sent at every request e.g. # additional_headers = [ # ( 'Authentication', 'Basic QWxhZGRpbjpvcGVuIHNlc2FtBl==' ) # ] additional_headers = [] # Agents and obfuscators used by generator.py agent_templates_folder_path = 'bd/agents/' obfuscators_templates_folder_path = 'bd/obfuscators/' ####################################### # Resolve given paths - DO NOT CHANGE # ####################################### import os, sys base_path = os.path.expanduser(base_path) history_path = os.path.expanduser(history_path) sessions_path = os.path.expanduser(sessions_path) weevely_path = os.path.dirname(os.path.realpath(sys.argv[0])) agent_templates_folder_path = os.path.join( weevely_path, agent_templates_folder_path ) obfuscators_templates_folder_path = os.path.join( weevely_path, obfuscators_templates_folder_path )
# -*- coding: utf-8 -*- # file: train_text_classification_bert.py # time: 2021/8/5 # author: yangheng <yangheng@m.scnu.edu.cn> # github: https://github.com/yangheng95 # Copyright (C) 2021. All Rights Reserved. from pyabsa import TextClassificationTrainer, ClassificationConfigManager, ClassificationDatasetList from pyabsa.functional import BERTClassificationModelList classification_config_english = ClassificationConfigManager.get_classification_config_english() classification_config_english.model = BERTClassificationModelList.BERT classification_config_english.num_epoch = 10 classification_config_english.evaluate_begin = 0 classification_config_english.max_seq_len = 512 classification_config_english.log_step = 200 classification_config_english.dropout = 0.5 classification_config_english.cache_dataset = False classification_config_english.seed = {42, 56, 1} classification_config_english.l2reg = 1e-5 classification_config_english.learning_rate = 1e-5 classification_config_english.cross_validate_fold = 5 dataset = ClassificationDatasetList.SST2 text_classifier = TextClassificationTrainer(config=classification_config_english, dataset=dataset, checkpoint_save_mode=1, auto_device=True ).load_trained_model()
# Copyright 2018 The Cornac Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ import unittest import random import time from cornac.datasets import movielens class TestMovieLens(unittest.TestCase): def test_load_feedback(self): # only run data download tests 20% of the time to speed up frequent testing random.seed(time.time()) if random.random() > 0.8: ml_100k = movielens.load_feedback() self.assertEqual(len(ml_100k), 100000) if random.random() > 0.8: ml_1m = movielens.load_feedback(variant='1M') self.assertEqual(len(ml_1m), 1000209) def test_load_plot(self): # only run data download tests 20% of the time to speed up frequent testing random.seed(time.time()) if random.random() > 0.8: plots, ids = movielens.load_plot() self.assertEqual(len(ids), 10076) if __name__ == '__main__': unittest.main()
# -*- coding: utf-8 -*- """ Created on Sat Apr 4 15:37:43 2020 @author: moder """ import os from datetime import datetime import pandas as pd import urllib.request from bs4 import BeautifulSoup user_agent = "user_agent = 'Mozilla/5.0 (Windows NT 6.1; Win64; x64)" def scrap_wikipedia_text(url): request = urllib.request.Request(url, data=None, headers={'User-Agent' : user_agent}) html = urllib.request.urlopen(request).read().decode('utf-8') soup = BeautifulSoup(html, 'html.parser') content_div = soup.find('div', attrs={'id': 'mw-content-text'}) # remove tables and graphs if content_div is not None: for s in content_div.select('table'): s.extract() for s in content_div.select('img'): s.extract() # remove references for s in content_div.select('div.reflist'): s.extract() print('div.reflist extracted from %s...' % url) # iterate all p tags and append to text tags = ['h1', 'h2', 'h3', 'li', 'p'] bodytext = '' for con in content_div.find_all(tags): bodytext += con.text return bodytext return None if __name__ == '__main__': print('store data started...') # load containment history file from kaggle df_contain = pd.read_csv(r'data/COVID 19 Containment measures data.csv') # cfilter = df_contain['Country'].isin(['Austria', 'Germany', 'Italy', 'Spain', 'Denmark']) # df_c = df_contain[cfilter] df_c = df_contain df = df_c[df_c['Source'].notna()] df_drop = df.drop_duplicates(subset='Source', keep='last') wfilter = df_drop['Source'].str.contains('en.wikipedia.org') df_red = df_drop[wfilter] df_res = df_red[['Date Start', 'Country', 'Keywords', 'Source']] df_res.to_csv(r'data/covid19-all-countries.csv') for index, row in df_res.iterrows(): text = scrap_wikipedia_text(row['Source']) time = datetime.now().strftime('%Y%m%d_%H%M%S') filename = '%s_%s_covid19-wikipedia.txt' % (time, row['Country']) with open(os.path.join('data',filename), 'w', encoding='utf-8') as file: file.write(text) print('saved file %s ...' % filename) file.close() # \[\d+\]
import torch device = torch.device("cuda" if torch.cuda.is_available() else "cpu") LAMBDA_COORD = 5 LAMBDA_NOOBJ = 0.5 def calc_loss(inp , target, opt): if inp.size(0) != target.size(0): raise Exception("Batch size does not match") total_loss = torch.tensor(0.0) #total_loss = total_loss.dtype(tensor) for i in range(inp.size(0)): inp = inp[i] target = target[i] Q = predict_one_bbox(inp, target, opt) total_loss = total_loss + calc_loss_single(Q, target, opt) return total_loss def predict_one_bbox(inp, target, opt): Q = torch.zeros(opt.S, opt.S, 5 + opt.C) select = torch.tensor(0).to(device) for i in range(opt.S): for j in range(opt.S): for b in range(opt.B): if b==0: boxes = inp[i, j, b*5 : b*5+5].to(device) else: boxes = torch.stack((boxes, inp[i, j, b*5 : b*5+5])).to(device) if len(target[i, j, :].nonzero()) > 1: max_iou = torch.tensor([0.]).to(device) groundtruth_box = target[i, j, :4].clone() for b in range(opt.B): iou = calc_IOU(groundtruth_box, boxes[b][:-1], device) if iou > max_iou: max_iou = iou select = torch.tensor(b).to(device) else: max_confidence = torch.tensor(0.).to(device) for b in range(opt.B): confidence = boxes[b][-1] if confidence > max_confidence: max_confidence = confidence select = torch.tensor(b).to(device) Q[i, j, :5] = boxes[select] Q[i, j, 5:] = inp[i, j, -opt.C:] return Q def calc_loss_single(inp, target, opt): loss = torch.zeros(1) for i in range(opt.S): for j in range(opt.S): # case 1: grid cell HAS object if len(target[i, j, :].nonzero()) > 1: # localization loss = loss + LAMBDA_COORD * (torch.pow(inp[i, j, 0] - target[i, j, 0], 2) + torch.pow(inp[i, j, 1] - target[i, j, 1], 2)) loss = loss + LAMBDA_COORD * (torch.pow(torch.sqrt(torch.abs(inp[i, j, 2])) - torch.sqrt(torch.abs(target[i, j,2])), 2) \ + torch.pow(torch.sqrt(torch.abs(inp[i, j, 3])) - torch.sqrt(torch.abs(target[i, j, 3])), 2)) # org # loss = loss + LAMBDA_COORD * (torch.sqrt(torch.abs(P[i, j, 2] - G[i, j, 2])) + # torch.sqrt(torch.abs(P[i, j, 3] - G[i, j, 3]))) # ZZ loss = loss + torch.pow(inp[i, j, 4]-1, 2) # Ground truth confidence is constant 1 # classification true_cls = target[i, j, -1].type(torch.int64) true_cls_vec = torch.zeros(opt.C) true_cls_vec[true_cls] = torch.tensor(1) pred_cls_vec = inp[i, j, -opt.C:] loss = loss + torch.sum(torch.pow(pred_cls_vec - true_cls_vec, 2)) # case 2: grid cell NO object # classification else: loss = loss + LAMBDA_NOOBJ * torch.pow(inp[i, j, 4] - 0, 2) # Ground truth confidence is constant 0 return loss def calc_IOU(box_1, box_2, device=torch.device('cpu'), use_float64=False): """ Tensor version of calc_IOU() compute IOU between two bounding boxes :param box_1: Detection x, y, w, h image coordinates in [0, 1] :param box_2: GroundTruth x, y, w, h image coordinates in [0, 1] :return: """ ''' x_min_1 = torch.clamp((box_1[0] - box_1[2] / 2), 0, 1).to(device) x_max_1 = torch.clamp((box_1[0] + box_1[2] / 2), 0, 1).to(device) y_min_1 = torch.clamp((box_1[1] - box_1[3] / 2), 0, 1).to(device) y_max_1 = torch.clamp((box_1[1] + box_1[3] / 2), 0, 1).to(device) ''' x_min_1 = torch.clamp((abs(box_1[0]) - abs(box_1[2]) / 2), 0, 1).to(device) x_max_1 = torch.clamp((abs(box_1[0]) + abs(box_1[2]) / 2), 0, 1).to(device) y_min_1 = torch.clamp((abs(box_1[1]) - abs(box_1[3]) / 2), 0, 1).to(device) y_max_1 = torch.clamp((abs(box_1[1]) + abs(box_1[3]) / 2), 0, 1).to(device) x_min_2 = torch.clamp((box_2[0] - box_2[2] / 2), 0, 1).to(device) x_max_2 = torch.clamp((box_2[0] + box_2[2] / 2), 0, 1).to(device) y_min_2 = torch.clamp((box_2[1] - box_2[3] / 2), 0, 1).to(device) y_max_2 = torch.clamp((box_2[1] + box_2[3] / 2), 0, 1).to(device) # z = torch.tensor(0, dtype=torch.float).to(device) z = torch.tensor(0.).to(device) a = torch.min(x_max_1, x_max_2) b = torch.max(x_min_1, x_min_2) c = torch.min(y_max_1, y_max_2) d = torch.max(y_min_1, y_min_2) overlap_width = torch.max(a-b, z) overlap_height = torch.max(c-d, z) overlap_area = overlap_width * overlap_height union_area = (x_max_1 - x_min_1) * (y_max_1 - y_min_1) \ + (x_max_2 - x_min_2) * (y_max_2 - y_min_2) \ - overlap_area intersection_over_union = overlap_area / union_area return intersection_over_union
from django.apps import AppConfig class BasicApiConfig(AppConfig): default_auto_field = 'django.db.models.BigAutoField' name = 'basic_api'
# coding: utf-8 """ Definition of the job dashboard interface. """ __all__ = ["BaseJobDashboard", "NoJobDashboard", "cache_by_status"] import time import functools from contextlib import contextmanager from abc import ABCMeta, abstractmethod import six def cache_by_status(func): """ Decorator for :py:meth:`BaseJobDashboard.publish` (and inheriting classes) that caches the last published status to decide if the a new publication is necessary or not. When the status did not change since the last call, the actual publish method is not invoked and *None* is returned. """ @functools.wraps(func) def wrapper(self, job_data, event, job_num, *args, **kwargs): job_id = job_data["job_id"] dashboard_status = self.map_status(job_data.get("status"), event) # nothing to do when the status is invalid or did not change if not dashboard_status or self._last_states.get(job_id) == dashboard_status: return None # set the new status self._last_states[job_id] = dashboard_status return func(self, job_data, event, job_num, *args, **kwargs) return wrapper @six.add_metaclass(ABCMeta) class BaseJobDashboard(object): """ Base class of a minimal job dashboard interface that is used from within :py:class:`law.workflow.remote.BaseRemoteWorkflow`'s. .. py:classattribute:: persistent_attributes type: list List of instance attributes that should be marked as being persistent. This is (e.g.) used in the :py:class:`law.workflow.remote.BaseRemoteWorkflow` when saving job and submission information to submission files. Common use cases are user information. .. py:attribute:: max_rate type: int Maximum number of events that can be published per second. :py:meth:`rate_guard` uses this value to delay function calls. """ cache_by_status = None persistent_attributes = [] def __init__(self, max_rate=0): super(BaseJobDashboard, self).__init__() # maximum number of events per second self.max_rate = max_rate # timestamp of last event, used to ensure that max_rate is not exceeded self._last_event_time = 0. # last dashboard status per job_id, used to prevent subsequent requests for jobs # without any status change self._last_states = {} def get_persistent_config(self): """ Returns the values of all :py:attr:`persistent_attributes` of this instance in a dictionary. """ return {attr: getattr(self, attr) for attr in self.persistent_attributes} def apply_config(self, config): """ Sets all attributes in a dictionary *config* to this instance. This can be understand as the counterpart of :py:meth:`get_persistent_config`. """ for attr, value in six.iteritems(config): if hasattr(self, attr): setattr(self, attr, value) @contextmanager def rate_guard(self): """ Context guard that ensures that decorated contexts are delayed in order to limit the number of status publications per second, defined by :py:attr:`max_rate`. Example: .. code-block:: python # print some numbers, which will take 10 / max_rate seconds for i in range(10): with self.rate_guard(): print(i) """ now = 0. if self.max_rate > 0: now = time.time() diff = self._last_event_time + 1. / self.max_rate - now if diff > 0: time.sleep(diff) try: yield finally: self._last_event_time = now def remote_hook_file(self): """ This method can return the path to a file that is considered as an input file to remote jobs. This file can contain bash functions, environment variables, etc., that are necessary to communicate with the implemented job dashboard. When *None* is returned, no file is sent. """ return None def remote_hook_data(self, job_num, attempt): """ This method can return a dictionary that is sent with remote jobs in the format ``key1=value1 key2=value2 ...``. The returned dictionary should (but does not have to) include the job number *job_num* and the retry *attempt*. """ return None def create_tracking_url(self): """ This method can return a tracking url that refers to a web page that visualizes jobs. When set, the url is shown in the central luigi scheduler. """ return None @abstractmethod def map_status(self, job_status, event): """ Maps the *job_status* (see :py:class:`law.job.base.BaseJobManager`) for a particular *event* to the status name that is accepted by the implemented job dashobard. Possible events are: - action.submit - action.cancel - status.pending - status.running - status.finished - status.retry - status.failed """ return @abstractmethod def publish(self, job_data, event, job_num, *args, **kwargs): """ Publishes the status of a job to the implemented job dashboard. *job_data* is a dictionary that contains a *job_id* and a *status* string (see :py:meth:`law.workflow.remote.StatusData.job_data`). """ return BaseJobDashboard.cache_by_status = staticmethod(cache_by_status) class NoJobDashboard(BaseJobDashboard): """ Null job dashboard implementation. Instances of this class actually does not publish any job status. It can rather be used as a placeholder in situations where a job dashboard is required, such as in :py:class:`law.workflow.remote.BaseRemoteWorkflow`. """ def map_status(self, *args, **kwargs): """""" return def publish(self, *args, **kwargs): """""" return
"""Output formatters.""" import os from pathlib import Path from typing import TYPE_CHECKING, Generic, TypeVar, Union import rich if TYPE_CHECKING: from ansiblelint.errors import MatchError T = TypeVar('T', bound='BaseFormatter') class BaseFormatter(Generic[T]): """Formatter of ansible-lint output. Base class for output formatters. Args: base_dir (str|Path): reference directory against which display relative path. display_relative_path (bool): whether to show path as relative or absolute """ def __init__(self, base_dir: Union[str, Path], display_relative_path: bool) -> None: """Initialize a BaseFormatter instance.""" if isinstance(base_dir, str): base_dir = Path(base_dir) if base_dir: # can be None base_dir = base_dir.absolute() # Required 'cause os.path.relpath() does not accept Path before 3.6 if isinstance(base_dir, Path): base_dir = str(base_dir) # Drop when Python 3.5 is no longer supported self._base_dir = base_dir if display_relative_path else None def _format_path(self, path: Union[str, Path]) -> str: # Required 'cause os.path.relpath() does not accept Path before 3.6 if isinstance(path, Path): path = str(path) # Drop when Python 3.5 is no longer supported if not self._base_dir: return path # Use os.path.relpath 'cause Path.relative_to() misbehaves return os.path.relpath(path, start=self._base_dir) def format(self, match: "MatchError") -> str: return str(match) def escape(self, text: str) -> str: """Escapes a string to avoid processing it as markup.""" return rich.markup.escape(text) class Formatter(BaseFormatter): def format(self, match: "MatchError") -> str: _id = getattr(match.rule, 'id', '000') result = ( f"[error_code]{_id}[/][dim]:[/] [error_title]{self.escape(match.message)}[/]") if match.tag: result += f" [dim][error_code]({match.tag})[/][/]" result += ( "\n" f"[filename]{self._format_path(match.filename or '')}[/]:{match.position}") if match.details: result += f" [dim]{match.details}[/]" result += "\n" return result class QuietFormatter(BaseFormatter): def format(self, match: "MatchError") -> str: return ( f"[error_code]{match.rule.id}[/] " f"[filename]{self._format_path(match.filename or '')}[/]:{match.position}") class ParseableFormatter(BaseFormatter): """Parseable uses PEP8 compatible format.""" def format(self, match: "MatchError") -> str: result = ( f"[filename]{self._format_path(match.filename or '')}[/]:{match.position}: " f"[error_code]E{match.rule.id}[/] [dim]{self.escape(match.message)}[/]") if match.tag: result += f" [dim][error_code]({match.tag})[/][/]" return result class AnnotationsFormatter(BaseFormatter): # https://docs.github.com/en/actions/reference/workflow-commands-for-github-actions#setting-a-warning-message """Formatter for emitting violations as GitHub Workflow Commands. These commands trigger the GHA Workflow runners platform to post violations in a form of GitHub Checks API annotations that appear rendered in pull- request files view. ::debug file={name},line={line},col={col},severity={severity}::{message} ::warning file={name},line={line},col={col},severity={severity}::{message} ::error file={name},line={line},col={col},severity={severity}::{message} Supported levels: debug, warning, error """ def format(self, match: "MatchError") -> str: """Prepare a match instance for reporting as a GitHub Actions annotation.""" level = self._severity_to_level(match.rule.severity) file_path = self._format_path(match.filename or "") line_num = match.linenumber rule_id = match.rule.id severity = match.rule.severity violation_details = self.escape(match.message) if match.column: col = f",col={match.column}" else: col = "" return ( f"::{level} file={file_path},line={line_num}{col},severity={severity}" f"::E{rule_id} {violation_details}" ) @staticmethod def _severity_to_level(severity: str) -> str: if severity in ['VERY_LOW', 'LOW']: return 'warning' if severity in ['INFO']: return 'debug' # ['MEDIUM', 'HIGH', 'VERY_HIGH'] or anything else return 'error' class ParseableSeverityFormatter(BaseFormatter): def format(self, match: "MatchError") -> str: filename = self._format_path(match.filename or "") position = match.position rule_id = u"E{0}".format(match.rule.id) severity = match.rule.severity message = self.escape(str(match.message)) return ( f"[filename]{filename}[/]:{position}: [[error_code]{rule_id}[/]] " f"[[error_code]{severity}[/]] [dim]{message}[/]")
import pytest from pytest import approx from math import radians, inf import pymap3d as pm @pytest.mark.parametrize( "geodetic_lat,alt_m,geocentric_lat", [(0, 0, 0), (90, 0, 90), (-90, 0, -90), (45, 0, 44.80757678), (-45, 0, -44.80757678)], ) def test_geodetic_alt_geocentric(geodetic_lat, alt_m, geocentric_lat): assert pm.geod2geoc(geodetic_lat, alt_m) == approx(geocentric_lat) r = pm.geocentric_radius(geodetic_lat) assert pm.geoc2geod(geocentric_lat, r) == approx(geodetic_lat) assert pm.geoc2geod(geocentric_lat, 1e5 + r) == approx( pm.geocentric2geodetic(geocentric_lat, 1e5 + alt_m) ) assert pm.geod2geoc(geodetic_lat, 1e5 + alt_m) == approx( pm.geodetic2geocentric(geodetic_lat, 1e5 + alt_m) ) @pytest.mark.parametrize( "geodetic_lat,geocentric_lat", [(0, 0), (90, 90), (-90, -90), (45, 44.80757678), (-45, -44.80757678)], ) def test_geodetic_geocentric(geodetic_lat, geocentric_lat): assert pm.geodetic2geocentric(geodetic_lat, 0) == approx(geocentric_lat) assert pm.geodetic2geocentric(radians(geodetic_lat), 0, deg=False) == approx( radians(geocentric_lat) ) assert pm.geocentric2geodetic(geocentric_lat, 0) == approx(geodetic_lat) assert pm.geocentric2geodetic(radians(geocentric_lat), 0, deg=False) == approx( radians(geodetic_lat) ) def test_numpy_geodetic_geocentric(): pytest.importorskip("numpy") assert pm.geodetic2geocentric([45, 0], 0) == approx([44.80757678, 0]) assert pm.geocentric2geodetic([44.80757678, 0], 0) == approx([45, 0]) @pytest.mark.parametrize( "geodetic_lat, isometric_lat", [(0, 0), (90, inf), (-90, -inf), (45, 50.227466), (-45, -50.227466), (89, 271.275)], ) def test_geodetic_isometric(geodetic_lat, isometric_lat): isolat = pm.geodetic2isometric(geodetic_lat) assert isolat == approx(isometric_lat) assert isinstance(isolat, float) assert pm.geodetic2isometric(radians(geodetic_lat), deg=False) == approx(radians(isometric_lat)) assert pm.isometric2geodetic(isometric_lat) == approx(geodetic_lat) assert pm.isometric2geodetic(radians(isometric_lat), deg=False) == approx(radians(geodetic_lat)) def test_numpy_geodetic_isometric(): pytest.importorskip("numpy") assert pm.geodetic2isometric([45, 0]) == approx([50.227466, 0]) assert pm.isometric2geodetic([50.227466, 0]) == approx([45, 0]) @pytest.mark.parametrize( "geodetic_lat,conformal_lat", [(0, 0), (90, 90), (-90, -90), (45, 44.80768406), (-45, -44.80768406), (89, 88.99327)], ) def test_geodetic_conformal(geodetic_lat, conformal_lat): clat = pm.geodetic2conformal(geodetic_lat) assert clat == approx(conformal_lat) assert isinstance(clat, float) assert pm.geodetic2conformal(radians(geodetic_lat), deg=False) == approx(radians(conformal_lat)) assert pm.conformal2geodetic(conformal_lat) == approx(geodetic_lat) assert pm.conformal2geodetic(radians(conformal_lat), deg=False) == approx(radians(geodetic_lat)) def test_numpy_geodetic_conformal(): pytest.importorskip("numpy") assert pm.geodetic2conformal([45, 0]) == approx([44.80768406, 0]) assert pm.conformal2geodetic([44.80768406, 0]) == approx([45, 0]) @pytest.mark.parametrize( "geodetic_lat,rectifying_lat", [(0, 0), (90, 90), (-90, -90), (45, 44.855682), (-45, -44.855682)], ) def test_geodetic_rectifying(geodetic_lat, rectifying_lat): assert pm.geodetic2rectifying(geodetic_lat) == approx(rectifying_lat) assert pm.geodetic2rectifying(radians(geodetic_lat), deg=False) == approx( radians(rectifying_lat) ) assert pm.rectifying2geodetic(rectifying_lat) == approx(geodetic_lat) assert pm.rectifying2geodetic(radians(rectifying_lat), deg=False) == approx( radians(geodetic_lat) ) def test_numpy_geodetic_rectifying(): pytest.importorskip("numpy") assert pm.geodetic2rectifying([45, 0]) == approx([44.855682, 0]) assert pm.rectifying2geodetic([44.855682, 0]) == approx([45, 0]) @pytest.mark.parametrize( "geodetic_lat,authalic_lat", [(0, 0), (90, 90), (-90, -90), (45, 44.87170288), (-45, -44.87170288)], ) def test_geodetic_authalic(geodetic_lat, authalic_lat): assert pm.geodetic2authalic(geodetic_lat) == approx(authalic_lat) assert pm.geodetic2authalic(radians(geodetic_lat), deg=False) == approx(radians(authalic_lat)) assert pm.authalic2geodetic(authalic_lat) == approx(geodetic_lat) assert pm.authalic2geodetic(radians(authalic_lat), deg=False) == approx(radians(geodetic_lat)) def test_numpy_geodetic_authalic(): pytest.importorskip("numpy") assert pm.geodetic2authalic([45, 0]) == approx([44.87170288, 0]) assert pm.authalic2geodetic([44.87170288, 0]) == approx([45, 0]) @pytest.mark.parametrize( "geodetic_lat,parametric_lat", [(0, 0), (90, 90), (-90, -90), (45, 44.9037878), (-45, -44.9037878)], ) def test_geodetic_parametric(geodetic_lat, parametric_lat): assert pm.geodetic2parametric(geodetic_lat) == approx(parametric_lat) assert pm.geodetic2parametric(radians(geodetic_lat), deg=False) == approx( radians(parametric_lat) ) assert pm.parametric2geodetic(parametric_lat) == approx(geodetic_lat) assert pm.parametric2geodetic(radians(parametric_lat), deg=False) == approx( radians(geodetic_lat) ) def test_numpy_geodetic_parametric(): pytest.importorskip("numpy") assert pm.geodetic2parametric([45, 0]) == approx([44.9037878, 0]) assert pm.parametric2geodetic([44.9037878, 0]) == approx([45, 0]) @pytest.mark.parametrize("lat", [91, -91]) def test_badvals(lat): # geodetic_isometric is not included on purpose with pytest.raises(ValueError): pm.geodetic2geocentric(lat, 0) with pytest.raises(ValueError): pm.geocentric2geodetic(lat, 0) with pytest.raises(ValueError): pm.geodetic2conformal(lat) with pytest.raises(ValueError): pm.conformal2geodetic(lat) with pytest.raises(ValueError): pm.geodetic2rectifying(lat) with pytest.raises(ValueError): pm.rectifying2geodetic(lat) with pytest.raises(ValueError): pm.geodetic2authalic(lat) with pytest.raises(ValueError): pm.authalic2geodetic(lat) with pytest.raises(ValueError): pm.geodetic2parametric(lat) with pytest.raises(ValueError): pm.parametric2geodetic(lat)
"""An Abstract Base Class for Managers """ import abc from py2c.utils import verify_attribute __all__ = ["Manager"] class Manager(object, metaclass=abc.ABCMeta): """Base class of all managers """ def __init__(self): super().__init__() verify_attribute(self, "options", dict) @abc.abstractmethod # coverage: no partial def run(self, options, *args, **kwargs): """Perform the task that manager is supposed to do. Arguments: options A dictionary object with the relavent options passed with values. """ raise NotImplementedError()
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/022_data.mixed.ipynb (unless otherwise specified). __all__ = ['MixedDataLoader', 'MixedDataLoaders', 'get_mixed_dls'] # Cell from ..imports import * # Cell # This implementation of a mixed dataloader is based on a great implementation created by Zach Mueller in this fastai thread: # https://forums.fast.ai/t/combining-tabular-images-in-fastai2-and-should-work-with-almost-any-other-type/73197 from packaging import version from fastai.data.load import _FakeLoader from torch.utils.data.dataloader import _MultiProcessingDataLoaderIter, _SingleProcessDataLoaderIter, _DatasetKind _loaders = (_MultiProcessingDataLoaderIter, _SingleProcessDataLoaderIter) class MixedDataLoader(): def __init__(self, *loaders, path='.', shuffle=False, device=None, bs=None): "Accepts any number of `DataLoader` and a device" self.path = path device = ifnone(device, default_device()) self.device = device self.c = None self.d = None self.bs = ifnone(bs, min([dl.bs for dl in loaders])) for i, dl in enumerate(loaders): # ensure all dls have the same bs if hasattr(dl, 'vars'): self.vars = dl.vars if hasattr(dl, 'len'): self.len = dl.len if hasattr(dl, 'split_idxs'): self.split_idxs = dl.split_idxs dl.bs = self.bs dl.shuffle_fn = self.shuffle_fn if self.c is None and hasattr(dl, "c"): self.c = dl.c if self.d is None and hasattr(dl, "d"): self.d = dl.d if i == 0: self.dataset = dl.dataset dl.to(device=device) self.shuffle = shuffle if not self.shuffle: self.rng = np.arange(len(self.dataset)).tolist() self.loaders = loaders self.count = 0 self.fake_l = _FakeLoader(self, False, 0, 0, 0) if version.parse( fastai.__version__) >= version.parse("2.1") else _FakeLoader(self, False, 0, 0) if sum([len(dl.dataset) for dl in loaders]) > 0: self._get_idxs() # Do not apply on an empty dataset def new(self, *args, **kwargs): loaders = [dl.new(*args, **kwargs) for dl in self.loaders] return type(self)(*loaders, path=self.path, device=self.device) # def __len__(self): return len(self.loaders[0]) def __len__(self): return self.loaders[0].__len__() def _get_vals(self, x): "Checks for duplicates in batches" idxs, new_x = [], [] for i, o in enumerate(x): x[i] = o.cpu().numpy().flatten() for idx, o in enumerate(x): if not self._arrayisin(o, new_x): idxs.append(idx) new_x.append(o) return idxs def _get_idxs(self): "Get `x` and `y` indices for batches of data" self.n_inps = [dl.n_inp for dl in self.loaders] self.x_idxs = self._split_idxs(self.n_inps) # Identify duplicate targets dl_dict = dict(zip(range(0, len(self.loaders)), self.n_inps)) outs = L([]) for key, n_inp in dl_dict.items(): b = next(iter(self.loaders[key])) outs += L(b[n_inp:]) self.y_idxs = self._get_vals(outs) def __iter__(self): z = zip(*[_loaders[i.fake_l.num_workers == 0](i.fake_l) for i in self.loaders]) for b in z: inps = [] outs = [] if self.device is not None: b = to_device(b, self.device) for batch, dl in zip(b, self.loaders): if hasattr(dl, 'idxs'): self.idxs = dl.idxs if hasattr(dl, 'input_idxs'): self.input_idxs = dl.input_idxs batch = dl.after_batch(batch) inps += batch[:dl.n_inp] outs += batch[dl.n_inp:] inps = tuple([tuple(L(inps)[idx]) if isinstance(idx, list) else inps[idx] for idx in self.x_idxs]) if len(self.x_idxs) > 1 else tuple(L(outs)[self.x_idxs][0]) outs = tuple(L(outs)[self.y_idxs]) if len(self.y_idxs) > 1 else L(outs)[self.y_idxs][0] yield inps, outs def one_batch(self): "Grab one batch of data" with self.fake_l.no_multiproc(): res = first(self) if hasattr(self, 'it'): delattr(self, 'it') return res def shuffle_fn(self, idxs): "Generate the same idxs for all dls in each batch when shuffled" if self.count == 0: self.shuffled_idxs = np.random.permutation(idxs) # sort each batch for i in range(len(self.shuffled_idxs)//self.bs + 1): self.shuffled_idxs[i*self.bs:(i+1)*self.bs] = np.sort(self.shuffled_idxs[i*self.bs:(i+1)*self.bs]) self.count += 1 if self.count == len(self.loaders): self.count = 0 return self.shuffled_idxs def show_batch(self): "Show a batch of data" for dl in self.loaders: dl.show_batch() def to(self, device): self.device = device def _arrayisin(self, arr, arr_list): "Checks if `arr` is in `arr_list`" for a in arr_list: if np.array_equal(arr, a): return True return False def _split_idxs(self, a): a_cum = np.array(a).cumsum().tolist() b = np.arange(sum(a)).tolist() start = 0 b_ = [] for i, idx in enumerate(range(len(a))): end = a_cum[i] b_.append(b[start:end] if end - start > 1 else b[start]) start = end return b_ class MixedDataLoaders(DataLoaders): pass # Cell def get_mixed_dls(*dls, device=None, shuffle_train=None, shuffle_valid=None, **kwargs): _mixed_train_dls = [] _mixed_valid_dls = [] for dl in dls: _mixed_train_dls.append(dl.train) _mixed_valid_dls.append(dl.valid) if shuffle_train is None: shuffle_train = dl.train.shuffle if shuffle_valid is None: shuffle_valid = dl.valid.shuffle if device is None: device = dl.train.device mixed_train_dl = MixedDataLoader(*_mixed_train_dls, shuffle=shuffle_train, **kwargs) mixed_valid_dl = MixedDataLoader(*_mixed_valid_dls, shuffle=shuffle_valid, **kwargs) mixed_dls = MixedDataLoaders(mixed_train_dl, mixed_valid_dl, device=device) return mixed_dls
""" GENERATED FILE - DO NOT EDIT (created via @build_stack_rules_proto//cmd/depsgen) """ load("@bazel_tools//tools/build_defs/repo:http.bzl", "http_archive") def _maybe(repo_rule, name, **kwargs): if name not in native.existing_rules(): repo_rule(name = name, **kwargs) def prebuilt_protoc_deps(): prebuilt_protoc_linux() # via <TOP> prebuilt_protoc_osx() # via <TOP> prebuilt_protoc_windows() # via <TOP> def prebuilt_protoc_linux(): _maybe( http_archive, name = "prebuilt_protoc_linux", sha256 = "6003de742ea3fcf703cfec1cd4a3380fd143081a2eb0e559065563496af27807", urls = [ "https://github.com/google/protobuf/releases/download/v3.6.1/protoc-3.6.1-linux-x86_64.zip", ], build_file_content = """ filegroup( name = "protoc", srcs = ["bin/protoc"], visibility = ["//visibility:public"], ) """, ) def prebuilt_protoc_osx(): _maybe( http_archive, name = "prebuilt_protoc_osx", sha256 = "0decc6ce5beed07f8c20361ddeb5ac7666f09cf34572cca530e16814093f9c0c", urls = [ "https://github.com/google/protobuf/releases/download/v3.6.1/protoc-3.6.1-osx-x86_64.zip", ], build_file_content = """ filegroup( name = "protoc", srcs = ["bin/protoc"], visibility = ["//visibility:public"], ) """, ) def prebuilt_protoc_windows(): _maybe( http_archive, name = "prebuilt_protoc_windows", sha256 = "0decc6ce5beed07f8c20361ddeb5ac7666f09cf34572cca530e16814093f9c0c", urls = [ "https://github.com/google/protobuf/releases/download/v3.6.1/protoc-3.6.1-win32.zip", ], build_file_content = """ filegroup( name = "protoc", srcs = ["bin/protoc.exe"], visibility = ["//visibility:public"], ) """, )
''' Timings Class Arrival and departure times for all Route Sections on a Route on a particular schedule and shows the time into a section and the time out of a section Model Operations Processing System. Copyright Brian Fairbairn 2009-2010. Licenced under the EUPL. You may not use this work except in compliance with the Licence. You may obtain a copy of the Licence at http://ec.europa.eu/idabc/eupl or as attached with this application (see Licence file). Unless required by applicable law or agreed to in writing, software distributed under the Licence is distributed on an 'AS IS' basis WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either expressed or implied. See the Licence governing permissions and limitations under the Licence. Changes: 15/08/2010 Ver 1 Removed unused variables Added handling of bad database return codes ''' import MOPS_Element class cTimings(MOPS_Element.cElement): """Details about Timings. Inherits from ListHandler class. Timings are contained in fixed-length data records. Id 10 Automatically generated reference Section 10 link to Section that timing is for Schedule 10 Link to Schedule DepartStation 10 Copied from Route Section. ArrivalStation 10 Copied from Route Section. PlannedDepartTime 12 Planned departure time from station PlannedArriveTime 12 Planned arrival time at station """ extract_code = 'select * from timings' extract_header = 'id|section|schedule|depart_station|arrive_station|planned_depart|planned_arrive\n' def adtims(self, message): """add timings to a section. this is a basic addition process; other facilities will help copy/duplicate timings. this process is a special process as, having been given a route, it will prompt for subsequent departure and arrival times until the route is complete. the process can be abandoned by entering an x at the input prompt """ if self.show_access(message, 'ADTIMS schedule', 'S') != 0: return #schedule code ----------------------------------------------------------------------------- schedule, rc = self.extract_field(message, 0, 'SCHEDULE CODE') if rc > 0: return #check it exists data = (schedule, 'I') sql = 'select id, direction, route from schedule where schedule = ? and status = ?' count, dummy = self.db_read(sql, data) if count < 0: return if count == 0: print('* SCHEDULE CODE DOES NOT EXIST OR NOT IN INACTIVE STATUS') return print('SCHEDULE ENTRY MODE: ENTER TIME HHMM OR <X> TO QUIT') data = (schedule,) sql = 'select id, section, depart_station, arrive_station from timings ' +\ 'where schedule = ? order by id' count, ds_timings = self.db_read(sql, data) if count < 0: return last_time = '0000' for timing_row in ds_timings: #build the input prompt strings depart_station = timing_row[2] arrive_station = timing_row[3] t2 = (depart_station,) sql = 'select short_name from station where station = ?' count, ds_departs = self.db_read(sql, t2) if count < 0: return for station_row in ds_departs: depart_name = station_row[0] t2 = (arrive_station,) sql = 'select short_name from station where station = ?' count, ds_arrives = self.db_read(sql, t2) if count < 0: return for station_row in ds_arrives: arrive_name = station_row[0] #get the departing time re_enter = True while re_enter: new_time = raw_input('TIME DEPARTING ' + depart_station + ' ' + depart_name + ' >') if new_time == 'x': print('EXITING INPUT OF TIMINGS FOR SCHEDULE') return if self.validate_time(new_time, last_time) == 0: departure_time = new_time last_time = new_time re_enter = False #get the arriving time re_enter = True while re_enter: new_time = raw_input('TIME ARRIVING ' + arrive_station + ' ' + arrive_name + ' >') if new_time == 'x': print('EXITING INPUT OF TIMINGS FOR SCHEDULE') return if self.validate_time(new_time, last_time) == 0: arrival_time = new_time last_time = new_time re_enter = False data = (departure_time, arrival_time, timing_row[0]) sql = 'update timings set planned_depart = ?, planned_arrive = ? where id = ?' if self.db_update(sql, data) != 0: return print('UPDATE OF SCHEDULE TIMINGS FOR ' + schedule + ' COMPLETED') return def chtims(self, message): """allows changes to the timings of an individual section. This routine can also be used for batch loading times from a file. Enter the route, section and depart and arrive times. note that there is no validation on timings on previous or following sections, only within the section itself. """ if self.show_access(message, 'CHTIMS schedule;section;depart;arrive', 'S') != 0: return #schedule code ----------------------------------------------------------------------------- schedule, rc = self.extract_field(message, 0, 'SCHEDULE CODE') if rc > 0: return #read the database data = (schedule, 'I') sql = 'select id from schedule where schedule = ? and status = ?' count, dummy = self.db_read(sql, data) if count < 0: return if count == 0: print('* SCHEDULE DOES NOT EXIST OR IS ACTIVE AND CANNOT BE AMENDED') return #section code------------------------------------------------------------------------------- section, rc = self.extract_field(message, 1, 'SECTION CODE') if rc > 0: return #read the database data = (schedule, section) sql = 'select depart_station, arrive_station, id from timings ' +\ 'where schedule = ? and section = ?' count, ds_sections = self.db_read(sql, data) if count < 0: return if count == 0: print('* SCHEDULE/SECTION DOES NOT EXIST') return for row in ds_sections: departing = row[0] arriving = row[1] timings_id = row[2] #depart time ----------------------------------------------------------------- depart_time, rc = self.extract_field(message, 2, 'DEPARTURE TIME') if rc > 0: return if len(depart_time) != 4: print('* TIME MUST BE ENTERED IN FORMAT HHMM') return hours = int(depart_time[0:2]) if hours < 0 or hours > 23: print('* HOURS MUST BE ENTERED IN RANGE 00-23') return minutes = int(depart_time[2:4]) if minutes < 0 or minutes > 59: print('* MINUTES MUST BE ENTERED IN RANGE 00-59') return #arrival time ----------------------------------------------------------------- arrive_time, rc = self.extract_field(message, 3, 'ARRIVAL TIME') if rc > 0: return if self.validate_time(arrive_time, depart_time) != 0: return #carry out the update and report ---------------------------------------------- data = (depart_time, arrive_time, timings_id) sql = 'update timings set planned_depart = ?, planned_arrive = ? where id = ?' if self.db_update(sql, data) != 0: return print('SCHEDULE TIMINGS CHANGED FOR:' + schedule, departing + ':' + depart_time + arriving + ':' + arrive_time) return def validate_time(self, hhmm, prev_time): """internal routine to validate a given time to make sure it corresponds to an hhmm format. if a previous_time is entered then it makes sure that the new time is later, unless the previous time > 2000 (8pm) and the new time is less than 0400 (4am), in which case a new day is assumed """ if len(hhmm) != 4: print('* TIME MUST BE ENTERED IN FORMAT HHMM') return 1 try: hours = int(hhmm[0:2]) if hours < 0 or hours > 23: print('* HOURS MUST BE ENTERED IN RANGE 00-23') return 2 minutes = int(hhmm[2:4]) if minutes < 0 or minutes > 59: print('* MINUTES MUST BE ENTERED IN RANGE 00-59') return 3 except: print('* TIME MUST BE ENTERED IN MINUTES AND HOURS') return 5 if prev_time > '2100': if hhmm < '0300': return 0 if hhmm < prev_time: print('* NEW TIME MUST BE LATE THAN PREVIOUS TIME') return 4 return 0 def timing(self, message): """Lists times and associated information for a schedule, including station type, instructions """ if self.show_access(message, 'TIMING schedule', 'R') != 0: return #schedule code ----------------------------------------------------------------------------- schedule, rc = self.extract_field(message, 0, 'SCHEDULE CODE') if rc > 0: return #get the schedule detail to display data = (schedule,) sql = 'select name, direction, status, route, run_days from schedule where schedule = ?' count, ds_schedules = self.db_read(sql, data) if count < 0: return if count == 0: print('NO SCHEDULE TO DISPLAY') return else: for row in ds_schedules: schedule_name = row[0] schedule_dirn = row[1] schedule_stat = row[2] schedule_route = row[3] schedule_days = row[4] data = (schedule_route,) sql = 'select default_direction from route where route = ?' count, ds_routes = self.db_read(sql, data) if count < 0: return for row in ds_routes: default_direction = row[0] if schedule_dirn == 'N': direction = 'NORTH' elif schedule_dirn == 'S': direction = 'SOUTH' elif schedule_dirn == 'E': direction = 'EAST' elif schedule_dirn == 'W': direction = 'WEST' elif schedule_dirn == 'U': direction = 'UP' elif schedule_dirn == 'D': direction = 'DOWN' else: direction = 'NOT KNOWN' if schedule_stat == 'I': status = 'INACTIVE' elif schedule_stat == 'A': status = 'ACTIVE' elif schedule_stat == 'R': status = 'RUNNING' else: status = 'NOT KNOWN' rundays = '' if schedule_days[0:1] == '1': rundays = ' MON' if schedule_days[1:2] == '2': rundays = rundays + ' TUE' if schedule_days[2:3] == '3': rundays = rundays + ' WED' if schedule_days[3:4] == '4': rundays = rundays + ' THU' if schedule_days[4:5] == '5': rundays = rundays + ' FRI' if schedule_days[5:6] == '6': rundays = rundays + ' SAT' if schedule_days[6:7] == '7': rundays = rundays + ' SUN' if schedule_days[7:8] == '8': rundays = rundays + ' HOL' print('SCHEDULE:', schedule, schedule_name,' (SCHEDULE STATUS:' + status + ')') print('DIRECTION:',direction, ' RUNS:', rundays) data = (schedule,) sql = 'select instruction from instructions where schedule = ?' count, ds_instructions = self.db_read(sql, data) for row in ds_instructions: print(' - ', row[0]) data = (schedule_route,) sql = 'select instruction from instructions where route = ?' count, ds_instructions = self.db_read(sql, data) for row in ds_instructions: print(' - ', row[0]) print(' ' ) # build the column titles ------------------------------------------ titles = self.x_field('STATION===', self.staxsize) + ' ' + \ self.x_field('NAME====', 8) + ' ' +\ self.x_field('TYPE======', self.statsize) + ' ' +\ self.x_field('=ARR', 4) + ' ' +\ self.x_field('=DEP', 4) + ' ' +\ self.x_field('INSTRUCTIONS =========================', 40) data = (schedule,) if default_direction == schedule_dirn: sql = 'select id, section, depart_station, arrive_station, planned_depart, ' +\ 'planned_arrive from timings where schedule = ? order by section' else: sql = 'select id, section, depart_station, arrive_station, planned_depart, ' +\ 'planned_arrive from timings where schedule = ? order by section DESC' timing_count, ds_timings = self.db_read(sql, data) if count < 0: return #report the extracted data ----------------------------------------- line_count = 0 arrival = ' ' depart_station = '' arrive_station = '' arrive_name = '' depart_name = '' station_type = '' planned_arrive = '' dummy = '' instructions = '' for row in ds_timings: depart_station = row[2] arrive_station = row[3] planned_depart = row[4] planned_arrive = row[5] if line_count == 0: print(titles) #get the name for the departure station data = (depart_station,) sql = 'select short_name, stationtype from station where station = ?' stax_count, ds_departs = self.db_read(sql, data) if stax_count < 0: return for stax_row in ds_departs: depart_name = stax_row[0] station_type = stax_row[1] #get any station instructions - just print the first one sql = 'select instruction from instructions where station = ? limit 1' count, ds_instructions = self.db_read(sql, data) instructions = ' ' for inst_row in ds_instructions: instructions = inst_row[0] if not(planned_depart.strip() == '' and planned_arrive.strip() == ''): print(self.x_field(row[2], self.staxsize) + " " + self.x_field(depart_name, 8) + " " + self.x_field(station_type, self.statsize) + " " + self.x_field(arrival, 4) + " " + self.x_field(row[4], 4) + " " + self.x_field(instructions, 40)) arrival = planned_arrive #get any station instructions - now print the rest sql = 'select instruction from instructions where station = ?' count, ds_instructions = self.db_read(sql, data) line = 0 dummy = ' ' for inst_row in ds_instructions: line = line + 1 instructions = inst_row[0] if line != 1: print(self.x_field(dummy, self.staxsize) + " " + self.x_field(dummy, 8) + " " + self.x_field(dummy, self.statsize) + " " + self.x_field(dummy, 4) + " " + self.x_field(dummy, 4) + " " + self.x_field(instructions, 40)) line_count = line_count + 1 if line_count > 20: line_count = 0 reply = raw_input('+') if reply == 'x': break #get the long name for the arrive station (for the last entry) sql = 'select short_name, stationtype from station where station = ?' data = (arrive_station,) stax_count, ds_arrives = self.db_read(sql, data) for stax_row in ds_arrives: arrive_name = stax_row[0] station_type = stax_row[1] #get any station instructions - just print the first one sql = 'select instruction from instructions where station = ? limit 1' instructions = ' ' count, ds_instructions = self.db_read(sql, data) for row in ds_instructions: instructions = row[0] print(self.x_field(arrive_station, self.staxsize) + " " + self.x_field(arrive_name, 8) + " " + self.x_field(station_type, self.statsize) + " " + self.x_field(planned_arrive, 4) + " " + self.x_field(dummy, 4) + " " + self.x_field(instructions, 40)) #get any station instructions - now print the rest sql = 'select instruction from instructions where station = ?' count, ds_instructions = self.db_read(sql, data) line = 0 for row in ds_instructions: line = line + 1 instructions = row[0] if line != 1: print(self.x_field(dummy, self.staxsize) + " " + self.x_field(dummy, 8) + " " + self.x_field(dummy, self.statsize) + " " + self.x_field(dummy, 4) + " " + self.x_field(dummy, 4) + " " + self.x_field(instructions, 40)) print(' ** END OF DATA: ' + str(timing_count) + ' RECORDS DISPLAYED **') return def ldtims(self, message): """Gives detail of Timing records for checking timetables vs routes """ if self.show_access(message, 'LDTIMS schedule', 'R') != 0: return #schedule code ----------------------------------------------------------------------------- schedule, rc = self.extract_field(message, 0, 'SCHEDULE CODE') if rc > 0: return #get the schedule detail to display data = (schedule,) sql = 'select name, direction, status, route from schedule where schedule = ?' count, ds_schedules = self.db_read(sql, data) if count < 0: return if count == 0: print('NO SCHEDULE TO DISPLAY') return else: for row in ds_schedules: schedule_name = row[0] schedule_dirn = row[1] schedule_stat = row[2] if schedule_dirn == 'N': direction = 'NORTH' elif schedule_dirn == 'S': direction = 'SOUTH' elif schedule_dirn == 'E': direction = 'EAST' elif schedule_dirn == 'WEST': direction = 'WEST' elif schedule_dirn == 'U': direction = 'UP' elif schedule_dirn == 'D': direction = 'DOWN' else: direction = 'NOT KNOWN' if schedule_stat == 'I': status = 'INACTIVE' elif schedule_stat == 'A': status = 'ACTIVE' elif schedule_stat == 'R': status = 'RUNNING' else: status = 'NOT KNOWN' print('SCHEDULE: ', schedule, schedule_name,' (SCHEDULE STATUS: ' + status + ')') print(' DIRECTION:',direction) # build the column titles ------------------------------------------ titles = self.x_field('SECTION===', 10) + ' ' + \ self.x_field('DEPARTS===', self.staxsize) + ' ' +\ self.x_field('=DEP', 4) + ' ' +\ self.x_field('ARRIVES===', self.staxsize) + ' ' +\ self.x_field('=ARR', 4) data = (schedule,) sql = 'select id, section, depart_station, arrive_station, planned_depart, ' +\ 'planned_arrive from timings where schedule = ? order by section' timing_count, ds_timings = self.db_read(sql, data) if count < 0: return #report the extracted data ----------------------------------------- line_count = 0 for row in ds_timings: section = row[1] depart_station = row[2] arrive_station = row[3] planned_depart = row[4] planned_arrive = row[5] if line_count == 0: print(titles) print(self.x_field(section , 10) + " " + self.x_field(depart_station, self.staxsize) + " " + self.x_field(planned_depart, 4) + " " + self.x_field(arrive_station, self.staxsize) + " " + self.x_field(planned_arrive, 4)) line_count = line_count + 1 if line_count > 20: line_count = 0 reply = raw_input('+') if reply == 'x': break print(' ** END OF DATA: ' + str(timing_count) + ' RECORDS DISPLAYED **') return def prtims(self, message, Params): """Prints times and associated information for a schedule, including station type, instructions """ if self.show_access(message, 'PRTIMS schedule', 'R') != 0: return #schedule code ----------------------------------------------------------------------------- schedule, rc = self.extract_field(message, 0, 'SCHEDULE CODE') if rc > 0: return self.temp = {} i = 0 #get the schedule detail to display data = (schedule,) sql = 'select name, direction, status, route from schedule where schedule = ?' count, ds_schedules = self.db_read(sql, data) if count < 0: return if count == 0: print('NO SCHEDULE TO DISPLAY') return else: for row in ds_schedules: schedule_name = row[0] schedule_dirn = row[1] schedule_stat = row[2] schedule_route = row[3] if schedule_dirn == 'N': direction = 'NORTH' elif schedule_dirn == 'S': direction = 'SOUTH' elif schedule_dirn == 'E': direction = 'EAST' elif schedule_dirn == 'WEST': direction = 'WEST' elif schedule_dirn == 'U': direction = 'UP' elif schedule_dirn == 'D': direction = 'DOWN' else: direction = 'NOT KNOWN' if schedule_stat == 'I': status = 'INACTIVE' elif schedule_stat == 'A': status = 'ACTIVE' elif schedule_stat == 'R': status = 'RUNNING' else: status = 'NOT KNOWN' print_line = ('SCHEDULE: ' + schedule + ' ' + schedule_name +' (SCHEDULE STATUS:' + status + ')') self.temp[i]= print_line i = i + 1 print_line = (' DIRECTION: ' + direction) self.temp[i]= print_line i = i + 1 t = (schedule,) sql = 'select instruction from instructions where schedule = ?' count, ds_instructions = self.db_read(sql, t) for row in ds_instructions: print_line = (' - ' + row[0]) self.temp[i]= print_line i = i + 1 t = (schedule_route,) sql = 'select instruction from instructions where route = ?' count, ds_instructions = self.db_read(sql, t) for row in ds_instructions: print_line = (' - ' + row[0]) self.temp[i]= print_line i = i + 1 print_line = (' ' ) self.temp[i]= print_line i = i + 1 # build the column titles ------------------------------------------ titles = self.x_field('STATION===', self.staxsize) + ' ' + \ self.x_field('NAME====', 8) + ' ' +\ self.x_field('TYPE======', self.statsize) + ' ' +\ self.x_field('=ARR', 4) + ' ' +\ self.x_field('=DEP', 4) + ' ' +\ self.x_field('INSTRUCTIONS =========================', 40) data = (schedule,) sql = 'select id, section, depart_station, arrive_station, planned_depart, ' +\ 'planned_arrive from timings where schedule = ? order by id' timing_count, ds_timings = self.db_read(sql, data) if timing_count < 0: return #report the extracted data ----------------------------------------- arrival = ' ' for row in ds_timings: depart_station = row[2] arrive_station = row[3] planned_depart = row[4] planned_arrive = row[5] #get the name for the departure station data = (depart_station,) sql = 'select short_name, stationtype from station where station = ?' stax_count, ds_departs = self.db_read(sql, data) if stax_count < 0: return for stax_row in ds_departs: depart_name = stax_row[0] station_type = stax_row[1] #get any station instructions - just print the first one sql = 'select instruction from instructions where station = ? limit 1' count, ds_instructions = self.db_read(sql, data) instructions = ' ' for inst_row in ds_instructions: instructions = inst_row[0] if not(planned_depart.strip() == '' and planned_arrive.strip() == ''): print_line = (self.x_field(depart_station, self.staxsize) + ' ' + self.x_field(depart_name, 8) + ' ' + self.x_field(station_type, self.statsize) + ' ' + self.x_field(arrival, 4) + ' ' + self.x_field(planned_depart, 4) + ' ' + self.x_field(instructions, 40)) arrival = planned_arrive self.temp[i]= print_line i = i + 1 #get any station instructions - now print the rest sql = 'select instruction from instructions where station = ?' count, ds_instructions = self.db_read(sql, data) line = 0 dummy = ' ' for inst_row in ds_instructions: line = line + 1 instructions = inst_row[0] if line != 1: print_line = (self.x_field(dummy, self.staxsize) + ' ' + self.x_field(dummy, 8) + ' ' + self.x_field(dummy, self.statsize) + ' ' + self.x_field(dummy, 4) + ' ' + self.x_field(dummy, 4) + ' ' + self.x_field(instructions, 40)) self.temp[i]= print_line i = i + 1 #get the long name for the arrive station (for the last entry) sql = 'select short_name, stationtype from station where station = ?' data = (arrive_station,) stax_count, ds_arrives = self.db_read(sql, data) for stax_row in ds_arrives: arrive_name = stax_row[0] station_type = stax_row[1] #get any station instructions - just print the first one sql = 'select instruction from instructions where station = ? limit 1' instructions = ' ' count, ds_instructions = self.db_read(sql, data) for row in ds_instructions: instructions = row[0] print_line = (self.x_field(arrive_station, self.staxsize) + ' ' + self.x_field(arrive_name, 8) + ' ' + self.x_field(station_type, self.statsize) + ' ' + self.x_field(planned_arrive, 4) + ' ' + self.x_field(dummy, 4) + ' ' + self.x_field(instructions, 40)) self.temp[i]= print_line i = i + 1 #get any station instructions - now print the rest sql = 'select instruction from instructions where station = ?' count, ds_instructions = self.db_read(sql, data) line = 0 for row in ds_instructions: line = line + 1 instructions = row[0] if line != 1: print_line = (self.x_field(dummy, self.staxsize) + ' ' + self.x_field(dummy, 8) + ' ' + self.x_field(dummy, self.statsize) + ' ' + self.x_field(dummy, 4) + ' ' + self.x_field(dummy, 4) + ' ' + self.x_field(instructions, 40)) self.temp[i]= print_line i = i + 1 #report the extracted data --------------------------------------- self.print_report (titles = titles, report_id = 'PRTIMS', report_name = 'TIMETABLE FOR ' + schedule, Params = Params) return
import numpy as np from graphidx.idx import BiAdjacent def square(): head = np.array([0, 0, 1, 2]) tail = np.array([1, 2, 3, 3]) return BiAdjacent(head, tail) def test_sqare(): neigh = square() assert repr(neigh) == "BiAdjacent[m = 4, n = 4]" assert set(neigh[0]) == {1, 2} assert set(neigh[1]) == {0, 3} assert set(neigh[2]) == {0, 3} assert set(neigh[3]) == {1, 2} def test_1(): head = np.array([0, 1, 2, 3], dtype=np.int32) tail = np.array([1, 3, 1, 2], dtype=np.int32) index = BiAdjacent(head, tail) assert repr(index) == "BiAdjacent[m = 4, n = 4]" i2 = index[2] assert len(i2) == 2 assert list(i2) == [1, 3] assert list(index[0]) == [1] assert list(index[1]) == [0, 3, 2]
############################################################################## # # Copyright (c) 2001 Zope Foundation and Contributors # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this # distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE # ############################################################################## """ PluginRegistry interface declarations """ from zope.interface import Interface class IPluginRegistry(Interface): """ Manage a set of plugin definitions, grouped by type. """ def listPluginTypeInfo(): """ Return a sequence of mappings describing our plugin types. o Keys for the mappings must include: 'id' -- a string used to identify the plugin type (should be the __name__ of the interface) 'interface' -- the plugin type interface 'methods' -- the methods expected by the plugin type interface 'title' -- a display title for the plugin type 'description' -- a description of what the plugins do """ def listPlugins(plugin_type): """ Return a sequence of tuples, one for each plugin of the given type. o 'plugin_type' must be one of the known types, else raise KeyError. o Tuples will be of the form, '(plugin_id, plugin)'. """ def listPluginIds(plugin_type): """ Return a sequence of plugin ids o Return ids for each active plugin of the given type. o 'plugin_type' must be one of the known types, else raise KeyError. """ def activatePlugin(plugin_type, plugin_id): """ Activate a plugin of the given type. o 'plugin_type' must be one of the known types, else raise KeyError. o 'plugin_id' must be the ID of an available plugin, else raise KeyError. o Append 'plugin_id' to the list of active plugins for the given 'plugin_type'. """ def deactivatePlugin(plugin_type, plugin_id): """ Deactivate a plugin of the given type. o 'plugin_type' must be one of the known types, else raise KeyError. o 'plugin_id' must be an ID of an existing plugin of that type, else raise KeyError. """ def movePluginsUp(plugin_type, ids_to_move): """ Move a set of plugins "up" in their list. o 'plugin_type' must be one of the known types, else raise KeyError. o 'ids_to_move' must be a sequence of ids of current plugins for that type. - If any item is not the ID of a current plugin, raise ValueError. """ def movePluginsTop(plugin_type, ids_to_move): """ Move a set of plugins to the "top" in their list. o 'plugin_type' must be one of the known types, else raise KeyError. o 'ids_to_move' must be a sequence of ids of current plugins for that type. - If any item is not the ID of a current plugin, raise ValueError. - Moving one plugin to top has obvious result; moving more than one plugin to top puts them one by one at the top iow, last in the list gets to top """ def movePluginsDown(plugin_type, ids_to_move): """ Move a set of plugins "down" in their list. o 'plugin_type' must be one of the known types, else raise KeyError. o 'ids_to_move' must be a sequence of indexes of items in the current list of plugins for that type. - If any item is not the ID of a current plugin, raise ValueError. """
# -*- coding: utf-8 - # # This file is part of gunicorn released under the MIT license. # See the NOTICE for more information. try: import unittest.mock as mock except ImportError: import mock from gunicorn import sock @mock.patch('os.stat') def test_create_sockets_unix_bytes(stat): conf = mock.Mock(address=[b'127.0.0.1:8000']) log = mock.Mock() with mock.patch.object(sock.UnixSocket, '__init__', lambda *args: None): listeners = sock.create_sockets(conf, log) assert len(listeners) == 1 print(type(listeners[0])) assert isinstance(listeners[0], sock.UnixSocket) @mock.patch('os.stat') def test_create_sockets_unix_strings(stat): conf = mock.Mock(address=['127.0.0.1:8000']) log = mock.Mock() with mock.patch.object(sock.UnixSocket, '__init__', lambda *args: None): listeners = sock.create_sockets(conf, log) assert len(listeners) == 1 assert isinstance(listeners[0], sock.UnixSocket) def test_socket_close(): listener1 = mock.Mock() listener1.getsockname.return_value = ('127.0.0.1', '80') listener2 = mock.Mock() listener2.getsockname.return_value = ('192.168.2.5', '80') sock.close_sockets([listener1, listener2]) listener1.close.assert_called_with() listener2.close.assert_called_with() @mock.patch('os.unlink') def test_unix_socket_close_unlink(unlink): listener = mock.Mock() listener.getsockname.return_value = '/var/run/test.sock' sock.close_sockets([listener]) listener.close.assert_called_with() unlink.assert_called_once_with('/var/run/test.sock') @mock.patch('os.unlink') def test_unix_socket_close_without_unlink(unlink): listener = mock.Mock() listener.getsockname.return_value = '/var/run/test.sock' sock.close_sockets([listener], False) listener.close.assert_called_with() assert not unlink.called, 'unlink should not have been called'
#!/usr/bin/env python3 ############################################################################### # # # RMG - Reaction Mechanism Generator # # # # Copyright (c) 2002-2021 Prof. William H. Green (whgreen@mit.edu), # # Prof. Richard H. West (r.west@neu.edu) and the RMG Team (rmg_dev@mit.edu) # # # # Permission is hereby granted, free of charge, to any person obtaining a # # copy of this software and associated documentation files (the 'Software'), # # to deal in the Software without restriction, including without limitation # # the rights to use, copy, modify, merge, publish, distribute, sublicense, # # and/or sell copies of the Software, and to permit persons to whom the # # Software is furnished to do so, subject to the following conditions: # # # # The above copyright notice and this permission notice shall be included in # # all copies or substantial portions of the Software. # # # # THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # # DEALINGS IN THE SOFTWARE. # # # ############################################################################### """ This module provides classes for fitting atom energies based on a very small, predetermined set of molecules. """ import importlib import json import logging from collections import Counter from typing import Dict, Hashable, List, Union import numpy as np from scipy.stats import distributions from rmgpy import constants from rmgpy.molecule import get_element, Molecule import arkane.encorr.data as data from arkane.encorr.reference import ReferenceDatabase from arkane.modelchem import LevelOfTheory, CompositeLevelOfTheory # List of species labels that will be used for fitting (labels should match reference database) SPECIES_LABELS = [ 'Dihydrogen', 'Dinitrogen', 'Dioxygen', 'Disulfur', 'Difluorine', 'Dichlorine', 'Dibromine', 'Hydrogen fluoride', 'Hydrogen chloride', 'Hydrogen bromide', 'Hydrogen sulfide', 'Water', 'Methane', 'Methyl', 'Ammonia', 'Chloromethane' ] class AEJob: """ A job for fitting atom energies. """ def __init__(self, species_energies: Dict[str, float], level_of_theory: Union[LevelOfTheory, CompositeLevelOfTheory] = None, write_to_database: bool = False, overwrite: bool = False): """ Initialize an AEJob instance. Notes: The species energies should be provided as a dictionary containing the species labels as keys and their single- point electronic energies in Hartree as values. The energies should be calculated using the experimental geometry provided for the species in the reference database, and the zero-point energy should not be included in the electronic energy. Args: species_energies: Dictionary of species labels with single-point electronic energies (Hartree). level_of_theory: Dictionary key for saving atom energies to the database. write_to_database: Save the fitted atom energies directly to the RMG database. overwrite: Overwrite atom energies in the RMG database if they already exist. """ self.spcs_energies = species_energies self.level_of_theory = level_of_theory self.write_to_database = write_to_database self.overwrite = overwrite self.ae = AE(species_energies) def execute(self, output_file: str = None): """ Execute the atom energy job. Args: output_file: Write the fitted energies to this file. """ if self.level_of_theory is None: logging.info('Fitting atom energies') else: logging.info(f'Fitting atom energies for {self.level_of_theory}') self.ae.fit() if output_file is not None: with open(output_file, 'a') as f: if self.level_of_theory is not None: f.write(f'# {self.level_of_theory}\n') for element, energy in self.ae.atom_energies.items(): f.write(f'# {element:2}: {energy:15.8f} +/- {self.ae.confidence_intervals[element]:.8f} Hartree\n') f.writelines(self.ae.format_atom_energies( 'atom_energies' if self.level_of_theory is None else self.level_of_theory)) if self.write_to_database: if self.level_of_theory is None: raise Exception('Level of theory is required for writing to database') try: self.ae.write_to_database(self.level_of_theory, overwrite=self.overwrite) except ValueError as e: logging.warning('Could not write atom energies to database. Captured error:') logging.warning(str(e)) class AE: """ A class for fitting atom energies. """ ref_data_src = 'CCCBDB' # Use CCCBDB data ref_data = None # Dictionary of reference data entries def __init__(self, species_energies: Dict[str, float]): self.species_energies = species_energies # Hartree self.atom_energies = None self.confidence_intervals = None for lbl in SPECIES_LABELS: if lbl not in self.species_energies: logging.warning(f'{lbl} missing from provided species energies!') @classmethod def _load_refdata(cls): if cls.ref_data is None: logging.info('Loading reference database') db = ReferenceDatabase() db.load() cls.ref_data = {lbl: spc for lbl, spc in zip(SPECIES_LABELS, db.get_species_from_label(SPECIES_LABELS))} def fit(self): """ Fit atom energies using the provided species energies and corresponding atomization energies from the reference data. """ self._load_refdata() mols = [ Molecule().from_adjacency_list( self.ref_data[lbl].adjacency_list, raise_atomtype_exception=False, raise_charge_exception=False ) for lbl in self.species_energies ] atom_counts = [Counter(atom.element.symbol for atom in mol.atoms) for mol in mols] elements = sorted({element for ac in atom_counts for element in ac}, key=lambda s: get_element(s).number) x = np.array([[ac[element] for element in elements] for ac in atom_counts]) # Nmols x Nelements atomization_energies = np.array([ self.ref_data[lbl].reference_data[self.ref_data_src].atomization_energy.value_si / constants.E_h / constants.Na for lbl in self.species_energies ]) zpes = np.array([ self.ref_data[lbl].reference_data[self.ref_data_src].zpe.value_si / constants.E_h / constants.Na for lbl in self.species_energies ]) elec_energies = np.array(list(self.species_energies.values())) # Should already be in Hartree y = atomization_energies + elec_energies + zpes w = np.linalg.solve(x.T @ x, x.T @ y) self.atom_energies = dict(zip(elements, w)) # Get confidence intervals n = len(y) # Ndata k = len(w) # Nparam ypred = x @ w sigma2 = np.sum((y - ypred)**2) / (n - k - 1) # MSE cov = sigma2 * np.linalg.inv(x.T @ x) # covariance matrix se = np.sqrt(np.diag(cov)) # standard error alpha = 0.05 # 95% confidence level tdist = distributions.t.ppf(1 - alpha/2, n - k - 1) # student-t ci = tdist * se # confidence interval half-width self.confidence_intervals = dict(zip(elements, ci)) # Parameter estimates are w +/- ci def write_to_database(self, key: Hashable, overwrite: bool = False, alternate_path: str = None): """ Write atom energies to database. Args: key: Dictionary key to use for atom energies in database. overwrite: Overwrite existing atom energies. alternate_path: Write atom energies and existing database to this path instead. """ if self.atom_energies is None: raise ValueError('No atom energies available for writing') data_path = data.quantum_corrections_path with open(data_path) as f: lines = f.readlines() ae_formatted = self.format_atom_energies(key, indent=True) # Add new atom energies to file without changing existing formatting for i, line in enumerate(lines): if 'atom_energies' in line: if key in data.atom_energies: if overwrite: # Does not overwrite comments del_idx_start = del_idx_end = None for j, line2 in enumerate(lines[i:]): if repr(key) in line2: del_idx_start = i + j del_idx_end = None elif line2.rstrip() == ' },': # Can't have a comment after final brace del_idx_end = i + j + 1 if del_idx_start is not None and del_idx_end is not None: if (lines[del_idx_start - 1].lstrip().startswith('#') or lines[del_idx_end + 1].lstrip().startswith('#')): logging.warning('There may be left over comments from previous atom energies') lines[del_idx_start:del_idx_end] = ae_formatted break else: raise ValueError(f'{key} already exists. Set `overwrite` to True.') else: lines[(i+1):(i+1)] = ['\n'] + ae_formatted break with open(data_path if alternate_path is None else alternate_path, 'w') as f: f.writelines(lines) # Reload data to update atom energy dictionary if alternate_path is None: importlib.reload(data) def format_atom_energies(self, key: Hashable, indent: bool = False) -> List[str]: """ Obtain a list of nicely formatted atom energies suitable for writelines. Args: key: Dictionary key to use for formatting dictionary. indent: Indent each line. Returns: Formatted list of atom energies. """ ae_formatted = json.dumps(self.atom_energies, indent=4).replace('"', "'").split('\n') ae_formatted[0] = f'"{key}": ' + ae_formatted[0] ae_formatted[-1] += ',' ae_formatted = [e + '\n' for e in ae_formatted] if indent: ae_formatted = [' ' + e for e in ae_formatted] return ae_formatted
import json import os from tempfile import mkstemp import pytest from guillotina import testing from guillotina.commands import get_settings from guillotina.commands.run import RunCommand DATABASE = os.environ.get('DATABASE', 'DUMMY') def test_run_command(command_arguments): _, filepath = mkstemp(suffix='.py') _, filepath2 = mkstemp() with open(filepath, 'w') as fi: fi.write(f''' async def run(app): with open("{filepath2}", 'w') as fi: fi.write("foobar") ''') command_arguments.script = filepath command = RunCommand(command_arguments) settings = testing.get_settings() command.run_command(settings=settings) with open(filepath2) as fi: assert fi.read() == 'foobar' @pytest.mark.skipif(DATABASE != 'postgres', reason="Cockroach does not have cascade support") def test_run_command_with_container(command_arguments, container_command): _, filepath = mkstemp(suffix='.py') _, filepath2 = mkstemp() with open(filepath, 'w') as fi: fi.write(f''' async def run(container): with open("{filepath2}", 'w') as fi: fi.write('foobar') ''') command_arguments.script = filepath command = RunCommand(command_arguments) command.run_command(settings=container_command['settings']) with open(filepath2) as fi: assert fi.read() == 'foobar' def test_get_settings(): settings = get_settings('doesnotexist.json', [ 'foobar=foobar', 'foo.bar=foobar' ]) assert settings['foobar'] == 'foobar' assert settings['foo']['bar'] == 'foobar' def test_get_settings_with_environment_variables(): os.environ.update({ 'G_foobar': 'foobar', 'G_foo__bar': 'foobar', 'G_foo__bar1__bar2': json.dumps({ 'foo': 'bar' }) }) settings = get_settings('doesnotexist.json') assert settings['foobar'] == 'foobar' assert settings['foo']['bar'] == 'foobar' assert settings['foo']['bar1']['bar2'] == {'foo': 'bar'}
import torch import torch.nn as nn import torch.nn.quantized as nnq from torch.quantization import QuantStub, DeQuantStub import torchvision import unittest import os from neural_compressor.adaptor import FRAMEWORKS from neural_compressor.model import MODELS from neural_compressor.adaptor.pytorch import PyTorchVersionMode import neural_compressor.adaptor.pytorch as nc_torch from neural_compressor.experimental import Quantization, common from neural_compressor.conf.config import Quantization_Conf from neural_compressor.utils.pytorch import load from neural_compressor.utils.utility import recover import shutil import copy import numpy as np import yaml try: try: import intel_pytorch_extension as ipex except: import intel_extension_for_pytorch as ipex TEST_IPEX = True except: TEST_IPEX = False PT_VERSION = nc_torch.get_torch_version() if PT_VERSION >= PyTorchVersionMode.PT18.value: FX_MODE = True else: FX_MODE = False fake_dyn_yaml = ''' model: name: imagenet framework: pytorch quantization: approach: post_training_dynamic_quant op_wise: { 'decoder': { 'activation': {'dtype': ['fp32']}, 'weight': {'dtype': ['fp32']} } } evaluation: accuracy: metric: topk: 1 performance: warmup: 5 iteration: 10 tuning: accuracy_criterion: relative: 0.01 exit_policy: timeout: 0 random_seed: 9527 workspace: path: saved ''' fake_ptq_yaml = ''' model: name: imagenet framework: pytorch quantization: op_wise: { 'quant': { 'activation': {'dtype': ['fp32']}, 'weight': {'dtype': ['fp32']} }, 'layer1.0.conv1': { 'activation': {'dtype': ['fp32']}, 'weight': {'dtype': ['fp32']} }, 'layer1.0.conv2': { 'activation': {'dtype': ['fp32']}, 'weight': {'dtype': ['fp32']} }, 'layer2.0.conv1': { 'activation': {'dtype': ['uint8'], 'algorithm': ['minmax'], 'granularity': ['per_tensor'], 'scheme':['sym']}, 'weight': {'dtype': ['int8'], 'algorithm': ['minmax'], 'granularity': ['per_channel'], 'scheme':['sym']} }, 'layer3.0.conv1': { 'activation': {'dtype': ['uint8'], 'algorithm': ['kl'], 'granularity': ['per_tensor'], 'scheme':['sym']}, 'weight': {'dtype': ['int8'], 'algorithm': ['minmax'], 'granularity': ['per_channel'], 'scheme':['sym']} }, 'layer1.0.add_relu': { 'activation': {'dtype': ['fp32']}, 'weight': {'dtype': ['fp32']} }, } evaluation: accuracy: metric: topk: 1 performance: warmup: 1 iteration: 10 tuning: accuracy_criterion: relative: 0.01 exit_policy: timeout: 0 random_seed: 9527 workspace: path: saved ''' fake_ptq_yaml_for_fx = ''' model: name: imagenet framework: pytorch_fx quantization: op_wise: { 'quant': { 'activation': {'dtype': ['fp32']}, 'weight': {'dtype': ['fp32']} }, 'layer1.0.conv1': { 'activation': {'dtype': ['fp32']}, 'weight': {'dtype': ['fp32']} }, 'layer1.0.conv2': { 'activation': {'dtype': ['fp32']}, 'weight': {'dtype': ['fp32']} }, 'layer2.0.conv1': { 'activation': {'dtype': ['uint8'], 'algorithm': ['minmax'], 'granularity': ['per_tensor'], 'scheme':['sym']}, 'weight': {'dtype': ['int8'], 'algorithm': ['minmax'], 'granularity': ['per_channel'], 'scheme':['sym']} }, 'layer3.0.conv1': { 'activation': {'dtype': ['uint8'], 'algorithm': ['kl'], 'granularity': ['per_tensor'], 'scheme':['sym']}, 'weight': {'dtype': ['int8'], 'algorithm': ['minmax'], 'granularity': ['per_channel'], 'scheme':['sym']} }, 'layer1.0.add_relu': { 'activation': {'dtype': ['fp32']}, 'weight': {'dtype': ['fp32']} }, 'default_qconfig': { 'activation': {'dtype': ['fp32']}, 'weight': {'dtype': ['fp32']} } } evaluation: accuracy: metric: topk: 1 performance: warmup: 5 iteration: 10 tuning: accuracy_criterion: relative: 0.01 exit_policy: timeout: 0 random_seed: 9527 workspace: path: saved ''' fake_qat_yaml = ''' model: name: imagenet framework: pytorch quantization: approach: quant_aware_training train: end_epoch: 1 iteration: 1 optimizer: SGD: learning_rate: 0.0001 criterion: CrossEntropyLoss: reduction: mean op_wise: { 'quant': { 'activation': {'dtype': ['fp32']}, 'weight': {'dtype': ['fp32']} }, 'layer1.0.conv1': { 'activation': {'dtype': ['fp32']}, 'weight': {'dtype': ['fp32']} }, 'layer1.0.conv2': { 'activation': {'dtype': ['fp32']}, 'weight': {'dtype': ['fp32']} }, 'layer2.0.conv1': { 'activation': {'dtype': ['uint8'], 'algorithm': ['minmax'], 'granularity': ['per_tensor'], 'scheme':['sym']}, 'weight': {'dtype': ['int8'], 'algorithm': ['minmax'], 'granularity': ['per_channel'], 'scheme':['sym']} }, 'layer3.0.conv1': { 'activation': {'dtype': ['uint8'], 'algorithm': ['kl'], 'granularity': ['per_tensor'], 'scheme':['sym']}, 'weight': {'dtype': ['int8'], 'algorithm': ['minmax'], 'granularity': ['per_channel'], 'scheme':['sym']} }, 'layer1.0.add_relu': { 'activation': {'dtype': ['fp32']}, 'weight': {'dtype': ['fp32']} } } evaluation: accuracy: metric: topk: 1 tuning: accuracy_criterion: relative: 0.01 exit_policy: timeout: 0 random_seed: 9527 workspace: path: saved ''' def build_pytorch_yaml(): with open('ptq_yaml.yaml', 'w', encoding="utf-8") as f: f.write(fake_ptq_yaml) with open('dynamic_yaml.yaml', 'w', encoding="utf-8") as f: f.write(fake_dyn_yaml) with open('qat_yaml.yaml', 'w', encoding="utf-8") as f: f.write(fake_qat_yaml) def build_pytorch_fx_yaml(): if PT_VERSION >= PyTorchVersionMode.PT19.value: fake_fx_ptq_yaml = fake_ptq_yaml_for_fx else: fake_fx_ptq_yaml = fake_ptq_yaml.replace('pytorch', 'pytorch_fx') with open('fx_ptq_yaml.yaml', 'w', encoding="utf-8") as f: f.write(fake_fx_ptq_yaml) fake_fx_dyn_yaml = fake_dyn_yaml.replace('pytorch', 'pytorch_fx') with open('fx_dynamic_yaml.yaml', 'w', encoding="utf-8") as f: f.write(fake_fx_dyn_yaml) fake_fx_qat_yaml = fake_qat_yaml.replace('pytorch', 'pytorch_fx') with open('fx_qat_yaml.yaml', 'w', encoding="utf-8") as f: f.write(fake_fx_qat_yaml) def build_ipex_yaml(): fake_yaml = ''' model: name: imagenet framework: pytorch_ipex evaluation: accuracy: metric: topk: 1 performance: warmup: 5 iteration: 10 tuning: accuracy_criterion: relative: 0.01 exit_policy: timeout: 0 random_seed: 9527 workspace: path: saved ''' with open('ipex_yaml.yaml', 'w', encoding="utf-8") as f: f.write(fake_yaml) def build_dump_tensors_yaml(): fake_yaml = ''' model: name: imagenet framework: pytorch evaluation: accuracy: metric: topk: 1 tuning: accuracy_criterion: relative: 0.01 exit_policy: timeout: 0 random_seed: 9527 workspace: path: saved tensorboard: true ''' with open('dump_yaml.yaml', 'w', encoding="utf-8") as f: f.write(fake_yaml) class M(torch.nn.Module): def __init__(self): super().__init__() self.quant = QuantStub() self.conv = nn.Conv2d(3, 1, 1) self.linear = nn.Linear(224 * 224, 5) self.dequant = DeQuantStub() def forward(self, x): x = self.quant(x) x = self.conv(x) x = x.view(1, -1) x = self.linear(x) x = self.dequant(x) return x class FP32Model(torch.nn.Module): def __init__(self): super().__init__() def forward(self, x): times = x.size(1) if times == 1: return x + x return x class DynamicModel(torch.nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(1, 1, 1) def forward(self, x): if x is not None: x = self.conv(x) return x class SubModel(torch.nn.Module): def __init__(self, bypass=True): super().__init__() self.quant = QuantStub() self.conv = nn.Conv2d(1, 1, 1) self.conv1 = nn.Conv2d(1, 1, 1) self.bn = nn.BatchNorm2d(1) self.relu = nn.ReLU() self.fp32 = FP32Model() self.norm = nn.LayerNorm([1, 224, 224]) self.dequant = DeQuantStub() self.bypass = bypass def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.quant(x) x = self.relu(x) x = self.conv1(x) x = self.dequant(x) if not self.bypass: x = self.fp32(x) x = self.norm(x) return x class PartialQuantModel(torch.nn.Module): def __init__(self): super().__init__() self.quant = QuantStub() self.conv = nn.Conv2d(3, 1, 1) self.bn = nn.BatchNorm2d(1) self.conv1 = nn.Conv2d(1, 1, 1) self.bn1 = nn.BatchNorm2d(1) self.conv2 = nn.Conv2d(1, 1, 1) self.linear = nn.Linear(224 * 224, 1) self.dequant = DeQuantStub() self.sub = SubModel(bypass=False) def forward(self, x): x = self.conv(x) x = self.bn(x) x = self.conv1(x) x = self.bn1(x) x = self.sub(x) x = self.quant(x) x = self.conv2(x) x = x.view(1, -1) x = self.linear(x) x = self.dequant(x) return x class DynamicControlModel(torch.nn.Module): def __init__(self): super().__init__() self.conv = nn.Conv2d(3, 1, 1) self.bn = nn.BatchNorm2d(1) self.linear = nn.Linear(224 * 224, 1) self.sub = SubModel() self.fp32 = FP32Model() self.dyn = DynamicModel() def forward(self, x): x = self.conv(x) x = self.dyn(x) x = self.bn(x) x = self.sub(x) x = self.fp32(x) x = x.view(1, -1) x = self.linear(x) return x def eval_func(model): # switch to evaluate mode model.eval() with torch.no_grad(): input = torch.randn(1, 3, 224, 224) # compute output output = model(input) return 0.0 def q_func(model): optimizer = torch.optim.SGD(model.parameters(), lr=0.0001) # switch to evaluate mode model.train() input = torch.randn(1, 3, 224, 224) # compute output output = model(input) loss = output.mean() optimizer.zero_grad() loss.backward() optimizer.step() return model class TestPytorchAdaptor(unittest.TestCase): framework_specific_info = {"device": "cpu", "approach": "post_training_static_quant", "random_seed": 1234, "q_dataloader": None, "workspace_path": "./"} framework = "pytorch" adaptor = FRAMEWORKS[framework](framework_specific_info) model = torchvision.models.quantization.resnet18() nc_model = MODELS['pytorch'](model) @classmethod def setUpClass(self): build_pytorch_yaml() build_dump_tensors_yaml() @classmethod def tearDownClass(self): os.remove('ptq_yaml.yaml') os.remove('dynamic_yaml.yaml') os.remove('qat_yaml.yaml') os.remove('dump_yaml.yaml') shutil.rmtree('./saved', ignore_errors=True) shutil.rmtree('runs', ignore_errors=True) def test_get_all_weight_name(self): assert len(list(self.nc_model.get_all_weight_names())) == 62 def test_get_weight(self): for name, param in self.model.named_parameters(): if name == "layer4.1.conv2.weight": param.data.fill_(0.0) if name == "fc.bias": param.data.fill_(0.1) assert int(torch.sum(self.nc_model.get_weight("layer4.1.conv2.weight"))) == 0 assert torch.allclose( torch.sum( self.nc_model.get_weight("fc.bias")), torch.tensor(100.)) def test_get_input(self): model = MODELS['pytorch'](torchvision.models.quantization.resnet18()) model.model.eval().fuse_model() model.register_forward_pre_hook() rand_input = torch.rand(100, 3, 224, 224).float() model.model(rand_input) assert torch.equal(model.get_inputs('x'), rand_input) model.remove_hooks() def test_update_weights(self): self.nc_model.update_weights('fc.bias', torch.zeros([1000])) assert int(torch.sum(self.nc_model.get_weight("fc.bias"))) == 0 def test_get_gradient(self): with self.assertRaises(AssertionError): self.nc_model.get_gradient('fc.bias') for name, tensor in self.nc_model._model.named_parameters(): if name == 'fc.bias': tensor.grad = torch.zeros_like(tensor) break assert torch.equal(torch.Tensor(self.nc_model.get_gradient('fc.bias')), torch.zeros_like(tensor)) rand_input = torch.rand(100, 3, 224, 224).float() rand_input.grad = torch.ones_like(rand_input) assert torch.equal(torch.Tensor(self.nc_model.get_gradient(rand_input)), torch.ones_like(rand_input)) def test_report_sparsity(self): df, total_sparsity = self.nc_model.report_sparsity() self.assertTrue(total_sparsity > 0) self.assertTrue(len(df) == 22) def test_quantization_saved(self): for fake_yaml in ['dynamic_yaml.yaml', 'qat_yaml.yaml', 'ptq_yaml.yaml']: model = M() quantizer = Quantization(fake_yaml) quantizer.conf.usr_cfg.tuning.exit_policy['performance_only'] = True dataset = quantizer.dataset('dummy', (100, 3, 224, 224), label=True) quantizer.model = model quantizer.calib_dataloader = common.DataLoader(dataset) quantizer.eval_dataloader = common.DataLoader(dataset) q_model = quantizer.fit() eval_func(q_model) q_model.save('./saved') # Load configure and weights by neural_compressor.utils saved_model = load("./saved", model) eval_func(saved_model) # recover int8 model from history history_file = './saved/history.snapshot' model_recover = recover(model, history_file, 0) eval_func(model_recover) self.assertEqual(type(saved_model.conv), \ type(model_recover.conv)) shutil.rmtree('./saved', ignore_errors=True) from neural_compressor.experimental import Benchmark evaluator = Benchmark('ptq_yaml.yaml') # Load configure and weights by neural_compressor.model evaluator.model = model evaluator.b_dataloader = common.DataLoader(dataset) evaluator() evaluator.model = model evaluator() for fake_yaml in ['qat_yaml.yaml', 'ptq_yaml.yaml']: model = copy.deepcopy(self.model) if fake_yaml == 'ptq_yaml.yaml': model.eval().fuse_model() conf = Quantization_Conf(fake_yaml) quantizer = Quantization(conf) dataset = quantizer.dataset('dummy', (100, 3, 224, 224)) quantizer.model = model if fake_yaml == 'qat_yaml.yaml': quantizer.q_func = q_func else: quantizer.calib_dataloader = common.DataLoader(dataset) quantizer.eval_func = eval_func q_model = quantizer.fit() q_model.save('./saved') # Load configure and weights by neural_compressor.utils saved_model = load("./saved", model) eval_func(saved_model) shutil.rmtree('./saved', ignore_errors=True) def test_quantization_new_saved(self): for fake_yaml in ['dynamic_yaml.yaml', 'qat_yaml.yaml', 'ptq_yaml.yaml']: model = M() quantizer = Quantization(fake_yaml) quantizer.conf.usr_cfg.tuning.exit_policy['performance_only'] = True dataset = quantizer.dataset('dummy', (100, 3, 224, 224), label=True) quantizer.model = model quantizer.calib_dataloader = common.DataLoader(dataset) quantizer.eval_dataloader = common.DataLoader(dataset) q_model = quantizer.fit() eval_func(q_model) torch.save(q_model.quantized_state_dict(), './saved/model.pt') # Load configure and weights by neural_compressor.utils from neural_compressor.experimental.common import Model common_model = Model(model) common_model.load_quantized_state_dict(torch.load('./saved/model.pt')) eval_func(common_model) self.assertEqual(type(q_model._model.linear), \ type(common_model._model.linear)) shutil.rmtree('./saved', ignore_errors=True) def test_non_quant_module(self): for fake_yaml in ['qat_yaml.yaml', 'ptq_yaml.yaml']: model = PartialQuantModel() conf = Quantization_Conf(fake_yaml) quantizer = Quantization(conf) dataset = quantizer.dataset('dummy', (1, 3, 224, 224)) non_quant_dict = {'non_quant_module_name': ['conv', 'conv1', 'sub.conv'], \ 'non_quant_module_class': ['BatchNorm2d', 'FP32Model']} quantizer.model = common.Model(model, **non_quant_dict) if fake_yaml == 'qat_yaml.yaml': quantizer.q_func = q_func else: quantizer.calib_dataloader = common.DataLoader(dataset) quantizer.eval_func = eval_func q_model = quantizer.fit() q_model.save('./saved') saved_model = load("./saved", model, **non_quant_dict) eval_func(saved_model) shutil.rmtree('./saved', ignore_errors=True) def test_workspace_path(self): model = M() quantizer = Quantization('ptq_yaml.yaml') quantizer.conf.usr_cfg.tuning.exit_policy['performance_only'] = True dataset = quantizer.dataset('dummy', (100, 3, 224, 224), label=True) quantizer.model = model quantizer.calib_dataloader = common.DataLoader(dataset) quantizer.eval_dataloader = common.DataLoader(dataset) q_model = quantizer.fit() eval_func(q_model) torch.save(q_model.quantized_state_dict(), './saved/best_model.pt') # Load configure and weights by workspace_path from neural_compressor.experimental.common import Model common_model = Model(model) common_model.workspace_path = './saved' eval_func(common_model) self.assertEqual(type(q_model._model.linear), \ type(common_model._model.linear)) shutil.rmtree('./saved', ignore_errors=True) def test_get_graph_info(self): from neural_compressor.model.torch_model import PyTorchModel model = PyTorchModel(self.model) op_map = model.graph_info self.assertTrue(op_map['conv1'] == 'Conv2d') def test_tensorboard(self): model = copy.deepcopy(self.nc_model) model.model.eval().fuse_model() quantizer = Quantization('dump_yaml.yaml') dataset = quantizer.dataset('dummy', (100, 3, 224, 224), label=True) quantizer.model = model.model quantizer.calib_dataloader = common.DataLoader(dataset) quantizer.eval_func = eval_func quantizer.fit() self.assertTrue(True if os.path.exists('runs/eval/baseline_acc0.0') else False) quantizer.eval_dataloader = common.DataLoader(dataset) quantizer.eval_func = None quantizer.fit() self.assertTrue(True if os.path.exists('runs/eval/baseline_acc0.0') else False) def test_tensor_dump_and_set(self): model = copy.deepcopy(self.nc_model) model.model.eval().fuse_model() quantizer = Quantization('ptq_yaml.yaml') dataset = quantizer.dataset('dummy', (100, 3, 224, 224), label=True) dataloader = common.DataLoader(dataset) dataloader = common._generate_common_dataloader(dataloader, 'pytorch') quantizer.eval_dataloader = dataloader quantizer.calib_dataloader = dataloader quantizer.model = model.model q_model = quantizer.fit() quantizer.strategy.adaptor.inspect_tensor( model, dataloader, op_list=['conv1.0', 'layer1.0.conv1.0'], iteration_list=[1, 2], inspect_type='all', save_to_disk=True) load_array = lambda *a, **k: np.load(*a, allow_pickle=True, **k) a = load_array('saved/dump_tensor/activation_iter1.npz') w = load_array('saved/dump_tensor/weight.npz') if PT_VERSION >= PyTorchVersionMode.PT18.value: self.assertTrue(w['conv1.0'].item()['conv1.0.weight'].shape[0] == a['conv1.0'].item()['conv1.0.output0'].shape[1]) else: self.assertTrue(w['conv1.0'].item()['conv1.0.weight'].shape[0] == a['conv1.0'].item()['conv1.1.output0'].shape[1]) data = np.random.random(w['conv1.0'].item()['conv1.0.weight'].shape).astype(np.float32) quantizer.strategy.adaptor.set_tensor(q_model, {'conv1.0.weight': data}) changed_tensor = q_model.get_weight('conv1.weight') scales = changed_tensor.q_per_channel_scales() changed_tensor_fp32 = torch.dequantize(changed_tensor) self.assertTrue(np.allclose(data, changed_tensor_fp32.numpy(), atol=2 / np.min(scales.numpy()))) quantizer.strategy.adaptor.inspect_tensor( q_model, dataloader, op_list=['conv1.0', 'layer1.0.conv1.0'], iteration_list=[1, 2], inspect_type='all', save_to_disk=False) def test_get_graph_info(self): from neural_compressor.adaptor.pytorch import get_ops_recursively model = copy.deepcopy(self.model) op_map = {} get_ops_recursively(model, '', op_map) self.assertTrue(op_map['conv1'] == 'Conv2d') def test_forward_wrapper(self): vision_model = torchvision.models.resnet18() class dummymodel(torch.nn.Module): def __init__(self, model): super(dummymodel, self).__init__() self._model = model def forward(self,input=None): return self._model(input) data = [[{'input': torch.rand(3,224,224)}, torch.ones(1,1)], ] # dataloader.batch_size=100 dataloader = common.DataLoader(data, batch_size=1) quantizer = Quantization('dynamic_yaml.yaml') model = dummymodel(vision_model) quantizer.model = model quantizer.calib_dataloader = dataloader quantizer.eval_dataloader = dataloader quantizer.fit() def test_floatfunctions_fallback(self): class ModelWithFunctionals(torch.nn.Module): def __init__(self): super(ModelWithFunctionals, self).__init__() self.mycat = nnq.FloatFunctional() self.myadd = nnq.FloatFunctional() self.myadd_relu = nnq.FloatFunctional() # Tracing doesnt work yet for c10 ops with scalar inputs # https://github.com/pytorch/pytorch/issues/27097 self.my_scalar_add = nnq.FloatFunctional() self.mymul = nnq.FloatFunctional() self.my_scalar_mul = nnq.FloatFunctional() self.quant = QuantStub() self.dequant = DeQuantStub() def forward(self, x): x = self.quant(x) y = self.mycat.cat([x, x, x]) z = self.myadd.add(y, y) w = self.myadd_relu.add_relu(z, z) # Tracing doesnt work yet for c10 ops with scalar inputs # https://github.com/pytorch/pytorch/issues/27097 w = self.my_scalar_add.add_scalar(w, -0.5) w = self.mymul.mul(w, w) w = self.my_scalar_mul.mul_scalar(w, 0.5) w = self.dequant(w) return w model = ModelWithFunctionals() model = MODELS['pytorch'](model) x = torch.rand(10, 1, dtype=torch.float) y = model.model(x) fallback_ops = [] q_capability = self.adaptor.query_fw_capability(model) for k, v in q_capability["opwise"].items(): if k[0] != "quant" and k[0] != "dequant": fallback_ops.append(k[0]) model.model.qconfig = torch.quantization.default_qconfig model.model.quant.qconfig = torch.quantization.default_qconfig if PT_VERSION >= PyTorchVersionMode.PT18.value: model.model.dequant.qconfig = torch.quantization.default_qconfig nc_torch._fallback_quantizable_ops_recursively( model.model, '', fallback_ops, op_qcfgs={}) torch.quantization.add_observer_(model.model) model.model(x) torch.quantization.convert(model.model, self.adaptor.q_mapping, inplace=True) qy = model.model(x) tol = {'atol': 1e-01, 'rtol': 1e-03} self.assertTrue(np.allclose(y, qy, **tol)) @unittest.skipIf(not TEST_IPEX, "Unsupport Intel PyTorch Extension") class TestPytorchIPEXAdaptor(unittest.TestCase): @classmethod def setUpClass(self): build_ipex_yaml() @classmethod def tearDownClass(self): os.remove('ipex_yaml.yaml') shutil.rmtree('./saved', ignore_errors=True) shutil.rmtree('runs', ignore_errors=True) def test_tuning_ipex(self): from neural_compressor.experimental import Quantization model = M() quantizer = Quantization('ipex_yaml.yaml') quantizer.conf.usr_cfg.tuning.exit_policy['performance_only'] = True dataset = quantizer.dataset('dummy', (100, 3, 224, 224), label=True) quantizer.model = model quantizer.calib_dataloader = common.DataLoader(dataset) quantizer.eval_dataloader = common.DataLoader(dataset) nc_model = quantizer.fit() nc_model.save('./saved') try: script_model = torch.jit.script(model.to(ipex.DEVICE)) except: script_model = torch.jit.trace(model.to(ipex.DEVICE), torch.randn(10, 3, 224, 224).to(ipex.DEVICE)) from neural_compressor.experimental import Benchmark evaluator = Benchmark('ipex_yaml.yaml') evaluator.model = script_model evaluator.b_dataloader = common.DataLoader(dataset) results = evaluator() @unittest.skipIf(not FX_MODE, "Unsupport Fx Mode with PyTorch Version Below 1.8") class TestPytorchFXAdaptor(unittest.TestCase): @classmethod def setUpClass(self): build_pytorch_fx_yaml() @classmethod def tearDownClass(self): os.remove('fx_ptq_yaml.yaml') os.remove('fx_dynamic_yaml.yaml') shutil.rmtree('./saved', ignore_errors=True) shutil.rmtree('runs', ignore_errors=True) def test_fx_quant(self): for fake_yaml in ['fx_qat_yaml.yaml', 'fx_ptq_yaml.yaml']: model_origin = torchvision.models.resnet18() # run fx_quant in neural_compressor and save the quantized GraphModule quantizer = Quantization(fake_yaml) dataset = quantizer.dataset('dummy', (10, 3, 224, 224), label=True) quantizer.eval_func = eval_func if fake_yaml == 'fx_qat_yaml.yaml': quantizer.q_func = q_func else: quantizer.calib_dataloader = common.DataLoader(dataset) quantizer.model = common.Model(model_origin, **{'prepare_custom_config_dict': \ {'non_traceable_module_name': ['a']}, 'convert_custom_config_dict': \ {'preserved_attributes': []} }) q_model = quantizer.fit() q_model.save('./saved') # Load configure and weights with neural_compressor.utils model_fx = load('./saved', model_origin, **{'prepare_custom_config_dict': \ {'non_traceable_module_name': ['a']}, 'convert_custom_config_dict': \ {'preserved_attributes': []} }) self.assertTrue(isinstance(model_fx, torch.fx.graph_module.GraphModule)) # recover int8 model with only tune_cfg history_file = './saved/history.snapshot' model_fx_recover = recover(model_origin, history_file, 0, **{'prepare_custom_config_dict': \ {'non_traceable_module_name': ['a']}, 'convert_custom_config_dict': \ {'preserved_attributes': []} }) self.assertEqual(model_fx.code, model_fx_recover.code) shutil.rmtree('./saved', ignore_errors=True) for fake_yaml in ['fx_qat_yaml.yaml', 'fx_ptq_yaml.yaml']: model_origin = M() # run fx_quant in neural_compressor and save the quantized GraphModule quantizer = Quantization(fake_yaml) quantizer.conf.usr_cfg.tuning.exit_policy['performance_only'] = True dataset = quantizer.dataset('dummy', (10, 3, 224, 224), label=True) quantizer.calib_dataloader = common.DataLoader(dataset) quantizer.eval_dataloader = common.DataLoader(dataset) quantizer.model = common.Model(model_origin, **{'prepare_custom_config_dict': \ {'non_traceable_module_name': ['a']}, 'convert_custom_config_dict': \ {'preserved_attributes': []} }) q_model = quantizer.fit() q_model.save('./saved') # Load configure and weights with neural_compressor.utils model_fx = load('./saved', model_origin, **{'prepare_custom_config_dict': \ {'non_traceable_module_name': ['a']}, 'convert_custom_config_dict': \ {'preserved_attributes': []} }) self.assertTrue(isinstance(model_fx, torch.fx.graph_module.GraphModule)) shutil.rmtree('./saved', ignore_errors=True) @unittest.skipIf(PT_VERSION < PyTorchVersionMode.PT19.value, "Please use PyTroch 1.9 or higher version for dynamic quantization with pytorch_fx backend") def test_fx_dynamic_quant(self): # Model Definition class LSTMModel(nn.Module): '''Container module with an encoder, a recurrent module, and a decoder.''' def __init__(self, ntoken, ninp, nhid, nlayers, dropout=0.5): super(LSTMModel, self).__init__() self.drop = nn.Dropout(dropout) self.encoder = nn.Embedding(ntoken, ninp) self.rnn = nn.LSTM(ninp, nhid, nlayers, dropout=dropout) self.decoder = nn.Linear(nhid, ntoken) self.init_weights() self.nhid = nhid self.nlayers = nlayers def init_weights(self): initrange = 0.1 self.encoder.weight.data.uniform_(-initrange, initrange) self.decoder.bias.data.zero_() self.decoder.weight.data.uniform_(-initrange, initrange) def forward(self, input, hidden): emb = self.drop(self.encoder(input)) output, hidden = self.rnn(emb, hidden) output = self.drop(output) decoded = self.decoder(output) return decoded, hidden model = LSTMModel( ntoken = 10, ninp = 512, nhid = 256, nlayers = 5, ) # run fx_quant in neural_compressor and save the quantized GraphModule model.eval() quantizer = Quantization('fx_dynamic_yaml.yaml') quantizer.model = common.Model(model, **{'prepare_custom_config_dict': \ {'non_traceable_module_name': ['a']}, 'convert_custom_config_dict': \ {'preserved_attributes': []} }) q_model = quantizer.fit() q_model.save('./saved') # Load configure and weights by neural_compressor.utils model_fx = load("./saved", model, **{'prepare_custom_config_dict': \ {'non_traceable_module_name': ['a']}, 'convert_custom_config_dict': \ {'preserved_attributes': []} }) self.assertTrue(isinstance(model_fx, torch.fx.graph_module.GraphModule)) # recover int8 model with only tune_cfg history_file = './saved/history.snapshot' model_fx_recover = recover(model, history_file, 0, **{'prepare_custom_config_dict': \ {'non_traceable_module_name': ['a']}, 'convert_custom_config_dict': \ {'preserved_attributes': []} }) self.assertEqual(model_fx.code, model_fx_recover.code) shutil.rmtree('./saved', ignore_errors=True) def test_fx_sub_module_quant(self): for fake_yaml in ['fx_qat_yaml.yaml', 'fx_ptq_yaml.yaml']: model_origin = DynamicControlModel() # run fx_quant in neural_compressor and save the quantized GraphModule quantizer = Quantization(fake_yaml) dataset = quantizer.dataset('dummy', (1, 3, 224, 224), label=True) quantizer.eval_func = eval_func if fake_yaml == 'fx_qat_yaml.yaml': quantizer.q_func = q_func else: quantizer.calib_dataloader = common.DataLoader(dataset) quantizer.model = common.Model(model_origin, **{'prepare_custom_config_dict': \ {'non_traceable_module_name': ['a']}, 'convert_custom_config_dict': \ {'preserved_attributes': []} }) q_model = quantizer.fit() q_model.save('./saved') # Load configure and weights with neural_compressor.utils model_fx = load('./saved/best_model.pt', model_origin, **{'prepare_custom_config_dict': \ {'non_traceable_module_name': ['a']}, 'convert_custom_config_dict': \ {'preserved_attributes': []} }) self.assertTrue(isinstance(model_fx.sub, torch.fx.graph_module.GraphModule)) # recover int8 model with only tune_cfg history_file = './saved/history.snapshot' model_fx_recover = recover(model_origin, history_file, 0, **{'prepare_custom_config_dict': \ {'non_traceable_module_name': ['a']}, 'convert_custom_config_dict': \ {'preserved_attributes': []} }) self.assertEqual(model_fx.sub.code, model_fx_recover.sub.code) shutil.rmtree('./saved', ignore_errors=True) if __name__ == "__main__": unittest.main()
# -*- coding: utf-8 -*- # Generated by Django 1.11.4 on 2017-08-23 16:50 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Lekarstv', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=150, verbose_name='ะะฐะธะผะตะฝะพะฒะฐะฝะธะต')), ('price', models.IntegerField(verbose_name='ั†ะตะฝะฐ')), ('address', models.TextField(verbose_name='ะะดั€ะตั ะฐะฟั‚ะตะบะธ')), ('photo', models.ImageField(blank=True, default='', upload_to='Lekarstv/images', verbose_name='ะธะทะพะฑั€ะฐะถะตะฝะธะต')), ], options={ 'verbose_name': 'ะ›ะตะบะฐั€ัั‚ะฒะพ', 'verbose_name_plural': 'ะ›ะตะบะฐั€ัั‚ะฒะฐ', }, ), ]
from resources import relu, learnFunc, dot class HiddenBlock: def __init__(self, weights, bias): self.weights = weights self.bias = bias def feedForward(self, hidden_inputs): output = [ relu( dot(hidden_inputs, weights) + self.bias ) for weights in self.weights] return output def train(self, hidden_inputs, hidden_errors): error = sum(hidden_errors) / len(hidden_errors) predictions = self.feedForward(hidden_inputs) prevErrors = [] for y in range(len(self.weights)): for x in range(len(self.weights[0])): prevError = error*relu(predictions[y], deriv=True)*self.weights[y][x] prevErrors.append(prevError) for y in range(len(self.weights)): for x in range(len(self.weights[0])): update = error*relu(predictions[y], deriv=True)*hidden_inputs[x] learn_rate = learnFunc(update) self.weights[y][x] -= learn_rate*update biasUpdate = 0 for x in range(len(self.weights)): biasUpdate += error*relu(predictions[x], deriv=True)/len(predictions) learn_rate = learnFunc(biasUpdate) self.bias -= learn_rate*biasUpdate return prevErrors
# pep8: disable=E501 from __future__ import print_function import collections import os import pandas import shutil import unittest import pandas as pd import sklearn.datasets as datasets import tensorflow as tf from mlflow import tensorflow, pyfunc from mlflow import tracking from mlflow.utils.file_utils import TempDir class TestModelExport(unittest.TestCase): def helper(self, feature_spec, tmp, estimator, df): """ This functions handles exporting, logging, loading back, and predicting on an estimator for testing purposes. """ receiver_fn = tf.estimator.export.build_raw_serving_input_receiver_fn(feature_spec) saved_estimator_path = tmp.path("model") os.makedirs(saved_estimator_path) # Saving TensorFlow model. saved_estimator_path = estimator.export_savedmodel(saved_estimator_path, receiver_fn).decode("utf-8") # Logging the TensorFlow model just saved. tensorflow.log_saved_model(saved_model_dir=saved_estimator_path, signature_def_key="predict", artifact_path=tmp.path("hello")) # Loading the saved TensorFlow model as a pyfunc. x = pyfunc.load_pyfunc(saved_estimator_path) # Predicting on the dataset using the pyfunc. return x.predict(df) def test_log_saved_model(self): # This tests model logging capabilities on the sklearn.iris dataset. iris = datasets.load_iris() X = iris.data[:, :2] # we only take the first two features. y = iris.target trainingFeatures = {} for i in range(0, 2): # TensorFlow is fickle about feature names, so we remove offending characters iris.feature_names[i] = iris.feature_names[i].replace(" ", "") iris.feature_names[i] = iris.feature_names[i].replace("(", "") iris.feature_names[i] = iris.feature_names[i].replace(")", "") trainingFeatures[iris.feature_names[i]] = iris.data[:, i:i+1] tf_feat_cols = [] feature_names = iris.feature_names[:2] # Creating TensorFlow-specific numeric columns for input. for col in iris.feature_names[:2]: tf_feat_cols.append(tf.feature_column.numeric_column(col)) # Creating input training function. input_train = tf.estimator.inputs.numpy_input_fn(trainingFeatures, y, shuffle=False, batch_size=1) # Creating Deep Neural Network Regressor. estimator = tf.estimator.DNNRegressor(feature_columns=tf_feat_cols, hidden_units=[1]) # Training and creating expected predictions on training dataset. estimator.train(input_train, steps=10) # Saving the estimator's prediction on the training data; assume the DNNRegressor # produces a single output column named 'predictions' pred_col = "predictions" estimator_preds = [s[pred_col] for s in estimator.predict(input_train)] estimator_preds_df = pd.DataFrame({pred_col: estimator_preds}) old_tracking_uri = tracking.get_tracking_uri() # should_start_run tests whether or not calling log_model() automatically starts a run. for should_start_run in [False, True]: with TempDir(chdr=True, remove_on_exit=True) as tmp: try: # Creating dict of features names (str) to placeholders (tensors) feature_spec = {} for name in feature_names: feature_spec[name] = tf.placeholder("float", name=name, shape=[150]) tracking.set_tracking_uri("test") if should_start_run: tracking.start_run() pyfunc_preds_df = self.helper(feature_spec, tmp, estimator, pandas.DataFrame(data=X, columns=feature_names)) # Asserting that the loaded model predictions are as expected. assert estimator_preds_df.equals(pyfunc_preds_df) finally: # Restoring the old logging location. tracking.end_run() tracking.set_tracking_uri(old_tracking_uri) def test_categorical_columns(self): """ This tests logging capabilities on datasets with categorical columns. See https://github.com/tensorflow/tensorflow/blob/master/tensorflow/examples/get_started/\ regression/imports85.py for reference code. """ with TempDir(chdr=False, remove_on_exit=True) as tmp: path = os.path.abspath("tests/data/uci-autos-imports-85.data") # Order is important for the csv-readers, so we use an OrderedDict here. defaults = collections.OrderedDict([ ("body-style", [""]), ("curb-weight", [0.0]), ("highway-mpg", [0.0]), ("price", [0.0]) ]) types = collections.OrderedDict((key, type(value[0])) for key, value in defaults.items()) df = pandas.read_csv(path, names=types.keys(), dtype=types, na_values="?") df = df.dropna() # Extract the label from the features dataframe. y_train = df.pop("price") # Creating the input training function required. trainingFeatures = {} for i in df: trainingFeatures[i] = df[i].values input_train = tf.estimator.inputs.numpy_input_fn(trainingFeatures, y_train.values, shuffle=False, batch_size=1) # Creating the feature columns required for the DNNRegressor. body_style_vocab = ["hardtop", "wagon", "sedan", "hatchback", "convertible"] body_style = tf.feature_column.categorical_column_with_vocabulary_list( key="body-style", vocabulary_list=body_style_vocab) feature_columns = [ tf.feature_column.numeric_column(key="curb-weight"), tf.feature_column.numeric_column(key="highway-mpg"), # Since this is a DNN model, convert categorical columns from sparse # to dense. # Wrap them in an `indicator_column` to create a # one-hot vector from the input. tf.feature_column.indicator_column(body_style) ] # Build a DNNRegressor, with 2x20-unit hidden layers, with the feature columns # defined above as input. estimator = tf.estimator.DNNRegressor( hidden_units=[20, 20], feature_columns=feature_columns) # Training the estimator. estimator.train(input_fn=input_train, steps=10) # Saving the estimator's prediction on the training data; assume the DNNRegressor # produces a single output column named 'predictions' pred_col = "predictions" estimator_preds = [s[pred_col] for s in estimator.predict(input_train)] estimator_preds_df = pd.DataFrame({pred_col: estimator_preds}) # Setting the logging such that it is in the temp folder and deleted after the test. old_tracking_dir = tracking.get_tracking_uri() tracking_dir = os.path.abspath(tmp.path("mlruns")) tracking.set_tracking_uri("file://%s" % tracking_dir) tracking.start_run() try: # Creating dict of features names (str) to placeholders (tensors) feature_spec = {} feature_spec["body-style"] = tf.placeholder("string", name="body-style", shape=[None]) feature_spec["curb-weight"] = tf.placeholder("float", name="curb-weight", shape=[None]) feature_spec["highway-mpg"] = tf.placeholder("float", name="highway-mpg", shape=[None]) pyfunc_preds_df = self.helper(feature_spec, tmp, estimator, df) # Asserting that the loaded model predictions are as expected. Allow for some # imprecision as this is expected with TensorFlow. pandas.testing.assert_frame_equal( pyfunc_preds_df, estimator_preds_df, check_less_precise=6) finally: # Restoring the old logging location. tracking.end_run() tracking.set_tracking_uri(old_tracking_dir)
#!/usr/bin/env python3 # Copyright (c) 2018 The Refnet Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the behavior of RPC importprivkey on set and unset labels of addresses. It tests different cases in which an address is imported with importaddress with or without a label and then its private key is imported with importprivkey with and without a label. """ from test_framework.test_framework import RefnetTestFramework from test_framework.wallet_util import test_address class ImportWithLabel(RefnetTestFramework): def set_test_params(self): self.num_nodes = 2 self.setup_clean_chain = True def skip_test_if_missing_module(self): self.skip_if_no_wallet() def run_test(self): """Main test logic""" self.log.info( "Test importaddress with label and importprivkey without label." ) self.log.info("Import a watch-only address with a label.") address = self.nodes[0].getnewaddress() label = "Test Label" self.nodes[1].importaddress(address, label) test_address(self.nodes[1], address, iswatchonly=True, ismine=False, label=label) self.log.info( "Import the watch-only address's private key without a " "label and the address should keep its label." ) priv_key = self.nodes[0].dumpprivkey(address) self.nodes[1].importprivkey(priv_key) test_address(self.nodes[1], address, label=label) self.log.info( "Test importaddress without label and importprivkey with label." ) self.log.info("Import a watch-only address without a label.") address2 = self.nodes[0].getnewaddress() self.nodes[1].importaddress(address2) test_address(self.nodes[1], address2, iswatchonly=True, ismine=False, label="") self.log.info( "Import the watch-only address's private key with a " "label and the address should have its label updated." ) priv_key2 = self.nodes[0].dumpprivkey(address2) label2 = "Test Label 2" self.nodes[1].importprivkey(priv_key2, label2) test_address(self.nodes[1], address2, label=label2) self.log.info("Test importaddress with label and importprivkey with label.") self.log.info("Import a watch-only address with a label.") address3 = self.nodes[0].getnewaddress() label3_addr = "Test Label 3 for importaddress" self.nodes[1].importaddress(address3, label3_addr) test_address(self.nodes[1], address3, iswatchonly=True, ismine=False, label=label3_addr) self.log.info( "Import the watch-only address's private key with a " "label and the address should have its label updated." ) priv_key3 = self.nodes[0].dumpprivkey(address3) label3_priv = "Test Label 3 for importprivkey" self.nodes[1].importprivkey(priv_key3, label3_priv) test_address(self.nodes[1], address3, label=label3_priv) self.log.info( "Test importprivkey won't label new dests with the same " "label as others labeled dests for the same key." ) self.log.info("Import a watch-only legacy address with a label.") address4 = self.nodes[0].getnewaddress() label4_addr = "Test Label 4 for importaddress" self.nodes[1].importaddress(address4, label4_addr) test_address(self.nodes[1], address4, iswatchonly=True, ismine=False, label=label4_addr, embedded=None) self.log.info( "Import the watch-only address's private key without a " "label and new destinations for the key should have an " "empty label while the 'old' destination should keep " "its label." ) priv_key4 = self.nodes[0].dumpprivkey(address4) self.nodes[1].importprivkey(priv_key4) embedded_addr = self.nodes[1].getaddressinfo(address4)['embedded']['address'] test_address(self.nodes[1], embedded_addr, label="") test_address(self.nodes[1], address4, label=label4_addr) self.stop_nodes() if __name__ == "__main__": ImportWithLabel().main()
from matplotlib import cm, rcParams import matplotlib.pyplot as plt import numpy as np import math as math import random as rand """ G(phi) function in Rinzel & Lewis' article (2003) under weak coupling """ """ This is under weak coupling theory, although one can note that gamma only serves to scale the function """ c = ['#aa3863', '#d97020', '#ef9f07', '#449775', '#3b7d86'] rcParams.update({'figure.autolayout': True}) def T(I): return math.log(I/(I-1)) def G(phi, I, gamma): if phi != 0 and phi != 1: return gamma*(2/T(I))*(phi*math.sinh((1-phi)*T(I)) - (1-phi)*math.sinh(phi*T(I))) + gamma*(beta/(I*T(I)*T(I)))*(math.exp(phi*T(I)) - math.exp((1-phi)*T(I))) else : return 0 """ Varying Gamma """ gamma = [0.4, 0.3, 0.2, 0.1, 0.01] beta = 0.1 I = 1.8 plt.figure(figsize=(8,5)) vector_phi = np.linspace(0,1,1000) zero_line = np.zeros(len(vector_phi)) plt.plot(vector_phi, zero_line, color='black', linestyle='--') k = 0 for g in gamma : vector_G = [] for el in vector_phi: vector_G.append(G(el, I, g)) vector_G = np.array(vector_G) plt.plot(vector_phi, vector_G, label=f'$\gamma = {g}$', color = c[k]) k += 1 plt.xlabel('$\phi$', size=14) plt.ylabel('$G(\phi)$', size=14) plt.title(f'G function for $I={I}, \\beta={beta}$') zero_crossings = np.where(np.diff(np.sign(vector_G-zero_line)))[0] print(zero_crossings) plt.legend(loc='upper left') plt.savefig(f'G_function_range_gammas_I={I}.png', dpi=600) plt.show() plt.close() """ Varying I """ """ gamma = 1 beta = 0.2 I = [1.15, 1.2, 1.4] plt.figure(figsize=(8,5)) vector_phi = np.linspace(0,1,1000) zero_line = np.zeros(len(vector_phi)) plt.plot(vector_phi, zero_line, linestyle='--', color='k') k = 0 for current in I : vector_G = [] for el in vector_phi: vector_G.append(G(el, current, gamma)) vector_G = np.array(vector_G) plt.plot(vector_phi, vector_G, label=f'$I = {current}$', color = c[k]) k += 1 plt.xlabel('$\phi$', size=14) plt.ylabel('$G(\phi)$', size=14) zero_crossings = np.where(np.diff(np.sign(vector_G-zero_line)))[0] print(zero_crossings) plt.legend() plt.show() """
# -*- coding: utf-8 -*- from __future__ import division, print_function __all__ = ["StarryBaseOp"] import pkg_resources from theano import gof from ..build_utils import get_compile_args, get_cache_version class StarryBaseOp(gof.COp): __props__ = () func_file = None func_name = None def __init__(self): super(StarryBaseOp, self).__init__(self.func_file, self.func_name) def c_code_cache_version(self): return get_cache_version() def c_headers(self, compiler): return ["theano_helpers.h"] def c_header_dirs(self, compiler): return [ pkg_resources.resource_filename(__name__, "include"), pkg_resources.resource_filename(__name__, "starry/starry"), pkg_resources.resource_filename(__name__, "starry/lib/eigen_3.3.3"), pkg_resources.resource_filename(__name__, "starry/lib/boost_1_66_0"), ] def c_compile_args(self, compiler): return get_compile_args(compiler)
from tkinter import * from tkinter.filedialog import askopenfilename import time Tk().withdraw() # we don't want a full GUI, so keep the root window from appearing filename = askopenfilename() # show an "Open" dialog box and return the path to the selected file print(filename) time.sleep(1)
# Filename: analyst.py """Analyst is a tool to look up (and export selected) data and insights from exported data from chats and channels in Telegram using Python and PyQt5.""" import sys import pandas as pd from pathlib import Path from PyQt5 import QtWidgets, QtCore from PyQt5 import uic from backend import ( converter, handler, ) __version__ = '0.1' __author__ = 'Artyom Filippenko' df = pd.DataFrame({'a': ['Mary', 'Jim', 'John'], 'b': [100, 200, 300], 'c': ['a', 'b', 'c']}) # VARS SECTION # IMPORT LOCALE IMPORT_WINDOW_TITLE = 'TelegramData Analyst - Import' IMPORT_WINDOW_MSG = 'This software is designed for analysis of Telegram channels and chats.' IMPORT_BROWSE_MSG = 'Open file' IMPORT_PATHLINE_MSG = 'Please, add path to JSON file, exported from Telegram Application...' IMPORT_BROWSE_BTN_NAME = 'Browse' IMPORT_ANALYSE_BTN_NAME = 'Analyze' IMPORT_PATH_MSG = 'File' # ANALYST LOCALE ANALYST_WINDOW_TITLE = 'TelegramData Analyst - Explorer' ANALYST_STATUSBAR_PREFIX_MSG = 'Exploring data from json-file:' ANALYST_WINDOW_MSG = 'Analyzing file' ANALYST_RETURN_BTN_NAME = 'Return to import...' ANALYST_EXPORT_BTN_NAME = 'Export results...' # ANALYST LOCALE #ALERT_WINDOW_TITLE = 'Alert!' # UI path IMPORT_UI_PATH = './frontend/import_data.ui' MAIN_UI_PATH = './frontend/workspace.ui' #ALERT_UI_PATH = './frontend/alert.ui' class ImportWindow(QtWidgets.QDialog): def __init__(self, parent=None): super().__init__(parent) self._build() self.ui.show() def _build(self): self.ui = uic.loadUi(IMPORT_UI_PATH) # Locale self.ui.setWindowTitle(IMPORT_WINDOW_TITLE) self.ui.import_description_message.setText(IMPORT_WINDOW_MSG) self.ui.browse_files_btn.setText(IMPORT_BROWSE_BTN_NAME) self.ui.analyse_file_btn.setText(IMPORT_ANALYSE_BTN_NAME) self.ui.import_file_pathline.setText(IMPORT_PATHLINE_MSG) # Loading UI logic self.ui.browse_files_btn.clicked.connect(self._browse_files) self.ui.analyse_file_btn.clicked.connect(self._open_analyst) def _browse_files(self): import_file = QtWidgets.QFileDialog.getOpenFileName(self, IMPORT_BROWSE_MSG, './', "Json file (*.json)") self.ui.import_file_pathline.setText(import_file[0]) def _open_analyst(self): if self.ui.import_file_pathline.text() == IMPORT_PATHLINE_MSG: json_file_path = '' else: json_file_path = Path(self.ui.import_file_pathline.text()) self.analyst = AnalysisWindow(self) self.analyst.import_json_file(json_file_path) self.analyst.update_table_view self.analyst.ui.statusbar.showMessage(ANALYST_STATUSBAR_PREFIX_MSG + ' ' + \ str(json_file_path)) self.ui.hide() class AnalysisWindow(QtWidgets.QMainWindow): def __init__(self, parent=None): super().__init__(parent, QtCore.Qt.Window) self._build() self.ui.show() #self.import_json_file() #self.update_table_view() def _build(self): self.ui = uic.loadUi(MAIN_UI_PATH) # Locale self.ui.setWindowTitle(ANALYST_WINDOW_TITLE) self.ui.return_btn.setText(ANALYST_RETURN_BTN_NAME) self.ui.export_btn.setText(ANALYST_EXPORT_BTN_NAME) # Loading UI logic self.ui.return_btn.clicked.connect(self._return_to_import) def _return_to_import(self): self.ui.close() self.parent().ui.show() def import_json_file(self, json_file_path): self._data = converter.convert_tg_json(json_file_path) def update_table_view(self): self.ui.test_msg.setText(str(df.columns)) self.model = handler.pandasModel(self._data) self.ui.table_view.setModel(self.model) self.ui.table_view.show() def main(): app = QtWidgets.QApplication(sys.argv) window = ImportWindow() #window.show() sys.exit(app.exec_()) if __name__ == '__main__': main()
############################################################### # pytest -v --capture=no tests/1_local/test_name.py # pytest -v tests/1_local/test_name.py # pytest -v --capture=no tests/1_local/test_name.py:Test_name.<METHIDNAME> ############################################################### import pytest from cloudmesh.common.StopWatch import StopWatch from cloudmesh.common3.host import Host from cloudmesh.common.Printer import Printer from cloudmesh.common3.Benchmark import Benchmark from cloudmesh.common.util import HEADING Benchmark.debug() # multiping only works if you have root, so we can not use it # from multiping import MultiPing hosts = ['127.0.0.1', 'localhost', 'www.indiana.edu', 'www.pbs.org', 'www.github.com', 'www.redhat.com', 'www.openstack.org', 'www.bbc.com', 'www.ec2instances.info', 'aws.amazon.com'] @pytest.mark.incremental class TestPing: def ping(self, processors=1): StopWatch.start(f"total p={processors} c=1") r = Host.ping(hosts, processors=processors, count=1) StopWatch.stop(f"total p={processors} c=1") return r def test_internal_ping(self): HEADING() StopWatch.start("total _ping") for host in hosts: location = { 'ip': host, 'count': 1, } StopWatch.start(f"ping {host}") result = Host._ping(location) StopWatch.stop(f"ping {host}") StopWatch.stop("total _ping") assert result['success'] def test_ping_processor(self): HEADING() print() for processors in range(1, len(hosts)): print("Processors:", processors) results = self.ping(processors=processors) print(Printer.write(results, order=['host', 'success', 'max', 'min', 'stddev'] )) for result in results: assert result['success'] # # only works if you have root, so not suitable # # def test_multi_ping(self): # ping = MultiPing(hosts) # responses, no_responses = ping(hosts, timeout=2, retry=1) def test_benchmark(self): HEADING() StopWatch.benchmark(csv=True, sysinfo=False)
import tensorflow as tf from networks.network import Network #define n_classes = 21 _feat_stride = [16,] anchor_scales = [8, 16, 32] class VGGnet_train(Network): def __init__(self, trainable=True): self.inputs = [] self.data = tf.placeholder(tf.float32, shape=[None, None, None, 3]) #self.im_info = tf.placeholder(tf.float32, shape=[None, 3]) #self.gt_boxes = tf.placeholder(tf.float32, shape=[None, 5]) self.keep_prob = tf.placeholder(tf.float32) self.segmentation=tf.placeholder(tf.float32,shape=[None,900]) self.rois=tf.placeholder(tf.float32,shape=[None,5]) #self.mweights=tf.placeholder(tf.float32,shape=[None,2]) self.sweights=tf.placeholder(tf.bool,shape=[None]) self.labels=tf.placeholder(tf.int32,shape=[None]) self.layers = dict({'data':self.data, 'segmentation':self.segmentation, 'sweight':self.sweights, 'labels': self.labels, "rois": self.rois}) self.trainable = trainable self.setup() def setup(self): (self.feed('data') .conv(3, 3, 64, 1, 1, name='conv1_1', trainable=False) .conv(3, 3, 64, 1, 1, name='conv1_2', trainable=False) .max_pool(2, 2, 2, 2, padding='VALID', name='pool1') .conv(3, 3, 128, 1, 1, name='conv2_1', trainable=False) .conv(3, 3, 128, 1, 1, name='conv2_2', trainable=False) .max_pool(2, 2, 2, 2, padding='VALID', name='pool2') .conv(3, 3, 256, 1, 1, name='conv3_1') .conv(3, 3, 256, 1, 1, name='conv3_2') .conv(3, 3, 256, 1, 1, name='conv3_3') .max_pool(2, 2, 2, 2, padding='VALID', name='pool3') .conv(3, 3, 512, 1, 1, name='conv4_1') .conv(3, 3, 512, 1, 1, name='conv4_2') .conv(3, 3, 512, 1, 1, name='conv4_3')) #=========ROIPOOLING======= (self.feed('conv4_3','rois') .roi_pool(7, 7, 1.0/16, name='pool_4') .conv(3, 3, 512, 1, 1, name='conv5_1') .conv(3, 3, 512, 1, 1, name='conv5_2') .conv(3, 3, 512, 1, 1, name='conv5_3') .max_pool(2, 2, 2, 2, padding='VALID', name='pool5')) #========= RPN ============ # (self.feed('conv5_3') # .conv(3,3,512,1,1,name='rpn_conv/3x3') # .conv(1,1,len(anchor_scales)*3*2 ,1 , 1, padding='VALID', relu = False, name='rpn_cls_score'))# # (self.feed('rpn_cls_score','gt_boxes','im_info','data') # .anchor_target_layer(_feat_stride, anchor_scales, name = 'rpn-data' ))# # # Loss of rpn_cls & rpn_boxes # (self.feed('rpn_conv/3x3') # .conv(1,1,len(anchor_scales)*3*4, 1, 1, padding='VALID', relu = False, name='rpn_bbox_pred')) #========= RoI Proposal ============ # (self.feed('rpn_cls_score') # .reshape_layer(2,name = 'rpn_cls_score_reshape') # .softmax(name='rpn_cls_prob')) # # (self.feed('rpn_cls_prob') # .reshape_layer(len(anchor_scales)*3*2,name = 'rpn_cls_prob_reshape')) # # (self.feed('rpn_cls_prob_reshape','rpn_bbox_pred','im_info') # .proposal_layer(_feat_stride, anchor_scales, 'TRAIN',name = 'rpn_rois')) # # (self.feed('rpn_rois','gt_boxes') # .proposal_target_layer(n_classes,name = 'roi-data')) #========= RCNN ============ (self.feed('pool5') .fc(1024, name='fc6') .dropout(0.5, name='drop6') .fc(1024, name='fc7') .dropout(0.5, name='drop7') .fc(n_classes, relu=False, name='cls_score') .softmax(name='cls_prob')) # (self.feed('drop7') # .fc(n_classes*4, relu=False, name='bbox_pred')) #==========segment network=== (self.feed('conv5_3') .conv(1,1,512,1 , 1, padding='VALID', name='conv5_4') .fc(512, name='fc8') .fc(900, relu=False, name='seg_score'))
""" KMP pattern matching algorithm. Finds matching patterns in text in linear time. Text: A longer string of length n. (n > m) Pattern: Substring to be searched for of length m. Works by precompiling the pattern string to create a LPS string array. LPS: Longest Proper Prefix. Longest prefix string that is also a suffix Time Complexity: O(n+m) Space Complexity: O(m) """ def compute_lps(pattern: str, m: int) -> list: """ Algorithm to compute LPS for given pattern. """ lps = [0] * m i, j = 1, 0 # j = length of previous longest prefix-suffix while i < m: if pattern[i] == pattern[j]: j += 1 lps[i] = j i += 1 else: # backtrack j. It cannot suddenly reduce to 0 as we might have a # suffix - prefix pair ending at j if j > 0: j = lps[j - 1] else: i += 1 return lps def kmp(text: str, pattern: str) -> None: n, m = len(text), len(pattern) lps = compute_lps(pattern, m) i, j = 0, 0 while i < n: if text[i] == pattern[j]: i += 1 j += 1 if j == m: print("pattern", pattern, "found at location", i - j) j = lps[j - 1] elif i < n and pattern[j] != text[i]: if j > 0: j = lps[j - 1] else: i += 1 if __name__ == "__main__": text = "ABABABCABABABCABABABCABABACABABAC" pattern = "ABABAC" kmp(text, pattern) pattern = "AAACAAAAAC" kmp(text, pattern)
class HTTPException(Exception): """ Exception which happens when HTTP status code is not 200 (OK). """ def __init__(self, code, url) -> None: self.error = f"While requesting to {url}, request returned status {code}." def __str__(self) -> str: return self.error class NoCatalogResult(Exception): """ Exception which happens when there is no product with given product id. """ def __init__(self, product_id) -> None: self.error = f"There is no catalog result with id {product_id}." def __str__(self) -> str: return self.error
# Copyright 2013-2014 MongoDB, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Maximum # of documents to process before recording timestamp # default = -1 (no maximum) DEFAULT_BATCH_SIZE = -1 # Interval in seconds between doc manager flushes (i.e. auto commit) # default = None (never auto commit) DEFAULT_COMMIT_INTERVAL = None # Maximum # of documents to send in a single bulk request through a # DocManager. DEFAULT_MAX_BULK = 1000 # The default MongoDB field that will serve as the unique key for the # target system. DEFAULT_UNIQUE_KEY = "_id" # Default host and facility for logging to the syslog. DEFAULT_SYSLOG_HOST = "localhost:512" DEFAULT_SYSLOG_FACILITY = "user" # ROTATING LOGFILE # The type of interval # (seconds, minutes, hours... c.f. logging.handlers.TimedRotatingFileHandler) DEFAULT_LOGFILE_WHEN = "midnight" # The rollover interval DEFAULT_LOGFILE_INTERVAL = 1 # Number of log files to keep DEFAULT_LOGFILE_BACKUPCOUNT = 7
""" mcpython - a minecraft clone written in python licenced under the MIT-licence (https://github.com/mcpython4-coding/core) Contributors: uuk, xkcdjerry (inactive) Based on the game of fogleman (https://github.com/fogleman/Minecraft), licenced under the MIT-licence Original game "minecraft" by Mojang Studios (www.minecraft.net), licenced under the EULA (https://account.mojang.com/documents/minecraft_eula) Mod loader inspired by "Minecraft Forge" (https://github.com/MinecraftForge/MinecraftForge) and similar This project is not official by mojang and does not relate to it. """ import asyncio import mcpython.engine.ResourceLoader import mcpython.util.texture import PIL.Image import pyglet from mcpython.engine.rendering.RenderingLayerManager import MIDDLE_GROUND from mcpython.util.annotation import onlyInClient from pyglet.window import mouse from .AbstractUIPart import AbstractUIPart IMAGE = asyncio.get_event_loop().run_until_complete( mcpython.engine.ResourceLoader.read_image( "assets/minecraft/textures/gui/container/creative_inventory/tabs.png" ) ) scroll_active = mcpython.util.texture.to_pyglet_image( IMAGE.crop((233, 0, 243, 14)).resize((20, 28), PIL.Image.NEAREST) ) scroll_inactive = mcpython.util.texture.to_pyglet_image( IMAGE.crop((244, 0, 255, 14)).resize((20, 28), PIL.Image.NEAREST) ) class UIScrollBar(AbstractUIPart): """ Class representing a scroll bar in a gui-state of the game The user is needed to work with the values returned by this system (on_scroll) """ def __init__(self, position: tuple, scroll_distance: int, on_scroll=None): super().__init__(position, (0, 0)) self.selected = False self.bar_position = position self.bar_sprite = pyglet.sprite.Sprite(scroll_active) self.scroll_distance = scroll_distance self.on_scroll = on_scroll self.active = True def move(self, delta: int): x, y = self.bar_position self.bar_position = x, max( self.position[1], min(self.position[1] + self.scroll_distance, y + delta) ) if self.on_scroll: self.on_scroll(0, 0, 0, delta, 0, 0, self.get_status()) def bind_to_eventbus(self): self.master[0].eventbus.subscribe("user:mouse:press", self.on_mouse_press) self.master[0].eventbus.subscribe("user:mouse:release", self.on_mouse_release) self.master[0].eventbus.subscribe("user:mouse:drag", self.on_mouse_drag) self.master[0].eventbus.subscribe( MIDDLE_GROUND.getRenderingEvent(), self.on_draw ) def on_mouse_press(self, x, y, button, mod): if not self.active: return if button != mouse.LEFT: return bx, by = self.bar_position if 0 <= x - bx <= 20 and 0 <= y - by <= 28: self.selected = True def on_mouse_release(self, x, y, button, mod): self.selected = False def on_mouse_drag(self, x, y, dx, dy, button, mod): if not self.active: return if button == mouse.LEFT and self.selected: self.bar_position = ( self.position[0], max(self.position[1], min(self.position[1] + self.scroll_distance, y)), ) if self.on_scroll: self.on_scroll(x, y, dx, dy, button, mod, self.get_status()) def on_draw(self): if not self.active: return if self.bar_sprite.position != self.bar_position: self.bar_sprite.position = self.bar_position self.bar_sprite.draw() def get_status(self) -> float: """ Will return the status as an float between 0 and 1 where 0 is the downer end and 1 the upper """ if not self.active: return 0 return (self.bar_position[1] - self.position[1]) / self.scroll_distance def set_status(self, status: float): self.bar_position = ( self.bar_position[0], self.position[1] + status * self.scroll_distance, ) def set_size_respective(self, position: tuple, scroll_distance: int): if not self.active: return status = self.get_status() self.position = position self.bar_position = ( self.position[0], self.position[1] + status * scroll_distance, ) self.scroll_distance = scroll_distance
#! /usr/bin/env python # Copyright 2010, 2011 Martin C. Frith import fileinput, itertools, optparse, os, signal, sys def batches(lines): for line in lines: if line.startswith("# batch"): yield line else: print line, while True: yield None def lastMergeBatches(fileNames): files = map(fileinput.input, fileNames) b = map(batches, files) for i in itertools.izip(*b): j = filter(None, i) if j: print j[0], else: break if __name__ == "__main__": signal.signal(signal.SIGPIPE, signal.SIG_DFL) # avoid silly error message usage = "%prog files" description = "Read files of lastal output, merge corresponding batches, and write them." op = optparse.OptionParser(usage=usage, description=description) opts, args = op.parse_args() if not args: op.error("please give me some file names") try: lastMergeBatches(args) except KeyboardInterrupt: pass # avoid silly error message except Exception, e: prog = os.path.basename(sys.argv[0]) sys.exit(prog + ": error: " + str(e))
# Copyright 2021, joshiayus Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of joshiayus Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import re import os import sys import click import pathlib import logging import subprocess from urllib import (request, parse) try: from gettext import gettext as _ # pylint: disable=unused-import except ImportError: _ = lambda msg: msg CONNECTION_LIMIT_EXCEED_EXCEPTION_MESSAGE = """Invalid connection limit %d. LinkedIn does not allow to send over 80 invitations per-day to a non-premium account. Please be patient and make sure that the connection limit is between (0, 80] and you are not running the bot in a day more than once otherwise LinkedIn will block your IP.""" LOG_DIR_PATH = pathlib.Path(__file__).resolve().parent.parent.parent / 'logs' # Variable's value decides whether logging to stream is allowed in the entire # project. # # Note: You must not update the value of this variable directly, you must call # the `TurnOnLoggingLevelDebug()` function to update its value otherwise you may # update the value of this variable but this particular module will not have any # effect of that change. LOGGING_TO_STREAM_ENABLED = False # We want to create the log directory if it does not exists otherwise the file # handlers for loggers used in other modules will complain about its absence. if not os.path.exists(LOG_DIR_PATH): os.mkdir(LOG_DIR_PATH) LOG_FORMAT_STR = '%(asctime)s:%(name)s:%(levelname)s:%(funcName)s\n%(message)s' # pylint: disable=line-too-long INB_VERSION = '1.0.0' logger = logging.getLogger(__name__) logger.setLevel(logging.DEBUG) file_handler = logging.FileHandler(LOG_DIR_PATH / __name__, mode='a') file_handler.setFormatter(logging.Formatter(LOG_FORMAT_STR)) logger.addHandler(file_handler) def TurnOnLoggingToStream() -> None: global LOGGING_TO_STREAM_ENABLED LOGGING_TO_STREAM_ENABLED = True stream_handler = logging.StreamHandler(sys.stderr) stream_handler.setFormatter(logging.Formatter(LOG_FORMAT_STR)) logger.addHandler(stream_handler) _CHROME_BINARY_NOT_FOUND_MSG = _('Google Chrome binary is not present in path %s.') _CHROME_BINARIES_NOT_FOUND_MSG = _( 'Google Chrome binary is not present in the following paths\n' '%s') _CHROME_DRIVER_BINARY = 'chromedriver' _CHROME_DRIVER_ZIP_FILE = None # Chromedriver that comes with the repository is only compatible with the Google # Chrome version _GOOGLE_CHROME_COMPATIBLE_VERSION_WITH_INSTALLED_CHROMEDRIVER. # # This version must be changed with the installed 'chromedriver' version that # comes with the repository. _GOOGLE_CHROME_COMPATIBLE_VERSION_WITH_INSTALLED_CHROMEDRIVER = '96.0.4664.110' def _ExtractChromeDriverZip(chromedriver_zip: str) -> None: """Utility routine to `unzip` the downloaded `chromedriver` archive present at path `chromedriver_zip`. This function will extract all the contents of `chromedriver` archive in the same directory where the archive is installed. Args: chromedriver_zip: `Chromedriver` archive file path. """ import zipfile # pylint: disable=import-outside-toplevel driver_dir = pathlib.PurePath(chromedriver_zip).parent with zipfile.ZipFile(chromedriver_zip, 'r') as zip_f: zip_f.extractall(driver_dir) def _RetrieveChromeDriverZip(url: str, dest: str, verbose: bool = True) -> str: """Utility function to download `chromedriver` zip file at the specified URL. Utility function to download and store `chromedriver` zip file in the destination `dest`. This function also sets the value of `_CHROME_DRIVER_ZIP_FILE` variable equals to the `chromedriver` zip file name at the specified URL so to later use the archive file name to extract the `chromedriver` executable from it. Args: url: URL to download the file from. dest: Destination where to place the file after downloading. verbose: If `True` shows the downloading status. Returns: Destination where the file is placed after installing. """ u = request.urlopen(url) scheme, netloc, path, query, fragment = parse.urlsplit(url) # pylint: disable=unused-variable filename = os.path.basename(path) if not filename: filename = 'downloaded' global _CHROME_DRIVER_ZIP_FILE _CHROME_DRIVER_ZIP_FILE = filename if dest: filename = os.path.join(dest, filename) with open(filename, 'wb') as f: if verbose: meta = u.info() if hasattr(meta, 'getheaders'): meta_func = meta.getheaders else: meta_func = meta.get_all meta_length = meta_func('Content-Length') file_size = None if meta_length: file_size = int(meta_length[0]) click.echo(_('Downloading: %s Bytes: %s') % (url, file_size)) file_size_dl = 0 block_size = 8192 while True: buffer = u.read(block_size) if not buffer: break file_size_dl += len(buffer) f.write(buffer) if verbose: status = '{0:16}'.format(file_size_dl) # pylint: disable=consider-using-f-string if file_size: status += ' [{0:6.2f}%]'.format(file_size_dl * 100 / file_size) # pylint: disable=consider-using-f-string status += chr(13) click.echo(f'{status}\r', None, False) if verbose: click.echo('') return filename def _GetGoogleChromeBinaryVersion() -> str: """Returns the `Google Chrome` version the user is using in its system. This function returns the `Google Chrome` version independent of the platform the user is running. This function creates a child process using `subprocess` module to talk to the shell and retrieve the `Google Chrome` version present in the system. This function checks the following locations where the `Google Chrome` executable could be present in user's system. * `Linux` On `linux` platform this function checks if the binary `google-chrome` and `google-chrome-stable` is present, if yes this function in its child process will provide a flag `--version` to the `Google Chrome` binary present in order to retrieve the version string. The child process calls for `linux` platform looks something like the following: * If `google-chrome` is present. ```shell google-chrome --version ``` * If `google-chrome` is not present. ```shell google-chrome-stable --version ``` * `MacOS` On `MacOs` platform this function will create a child process and will provide `--version` flag to the `Google Chrome` executable present in the path `/Applications/Google Chrome.app/Contents/MacOS/Google Chrome`. The child process call for `linux` platform looks something like the following: ```shell /Applications/Google Chrome.app/Contents/MacOS/Google Chrome --version ``` @TODO(joshiayush): Find alternative paths on `MacOS`. * `Windows` God forbid if you are on `Windows` because there is no tested version of this function on `Windows` but so far what we've come up with is the following: This function will search for the `Google Chrome` executable in the following paths: ```python chrome_binary_path = ( '%ProgramFiles%\\Google\\Chrome\\Application\\chrome.exe', '%ProgramFiles(x86)%\\Google\\Chrome\\Application\\chrome.exe', '%LocalAppData%\\Google\\Chrome\\Application\\chrome.exe', 'C:\\Users\\USER\\AppData\\Local\\Google\\Chrome\\Application\\chrome.exe' ) ``` and will try to execute the following commands in its child process to retrieve the `Google Chrome` version. ```shell wmic datafile where name=${path} get Version /value ``` where path is the `element` of `chrome_binary_path` tuple on `Windows`. Returns: `Google Chrome` version. """ version_regex = r'[0-9]{2}.[0-9]{1}.[0-9]{4}.[0-9]{3}' if sys.platform == 'linux': chrome_binaries = ['google-chrome', 'google-chrome-stable'] chrome_binary_path = [] for binary in chrome_binaries: try: chrome_binary_path.append( subprocess.check_output(['whereis', '-b', binary]).decode('utf-8')[len(binary) + 1::].strip()) except subprocess.CalledProcessError as exc: logger.error(('CalledProcessError: Exit code %d.' '\n%s.'), exc.returncode, exc.output) continue for i in range(len(chrome_binary_path)): if chrome_binary_path[i] == '': chrome_binary_path = chrome_binary_path[0:i:] + chrome_binary_path[i + 1::] for path in chrome_binary_path: try: version = subprocess.check_output([path, '--version']).decode('utf-8') except subprocess.CalledProcessError: logger.error(_CHROME_BINARY_NOT_FOUND_MSG, path) continue else: version = re.search(version_regex, version) return version.group(0) raise FileNotFoundError(_CHROME_BINARIES_NOT_FOUND_MSG % (', '.join(chrome_binary_path))) elif sys.platform == 'darwin': chrome_binary_path = ( r'/Applications/Google Chrome.app/Contents/MacOS/Google Chrome') for path in chrome_binary_path: try: version = subprocess.check_output([path, '--version']).decode('utf-8') except subprocess.CalledProcessError: logger.error(_CHROME_BINARY_NOT_FOUND_MSG, path) continue else: version = re.search(version_regex, version) return version.group(0) raise FileNotFoundError(_CHROME_BINARIES_NOT_FOUND_MSG % (', '.join(chrome_binary_path))) elif sys.platform in ('win32', 'cygwin'): chrome_binary_path = ( r'%ProgramFiles%\Google\Chrome\Application\chrome.exe', r'%ProgramFiles(x86)%\Google\Chrome\Application\chrome.exe', r'%LocalAppData%\Google\Chrome\Application\chrome.exe', r'C:\Users\USER\AppData\Local\Google\Chrome\Application\chrome.exe') for path in chrome_binary_path: try: version = subprocess.check_output([ 'wmic', 'datafile', 'where', f'name={path}', 'get', 'Version', '/value' ]).decode('utf-8') except subprocess.CalledProcessError: logger.error(_CHROME_BINARY_NOT_FOUND_MSG, path) continue else: version = re.search(version_regex, version) return version.group(0) raise FileNotFoundError(_CHROME_BINARIES_NOT_FOUND_MSG % (', '.join(chrome_binary_path))) def _CheckIfChromeDriverIsCompatibleWithGoogleChromeInstalled() -> str: """Checks if the `chromedriver` that comes with the `inb` repository is compatible with the `Google Chrome` version the user is using in its system. This function checks if the `Google Chrome` version the user is using in its system matches against the `Google Chrome` version supported by `chromedriver` that comes with the `inb` repository which is `_GOOGLE_CHROME_COMPATIBLE_VERSION_WITH_INSTALLED_CHROMEDRIVER`. Returns: True if the `chromedriver` is compatible with the `Google Chrome` installed. """ google_chrome_version = _GetGoogleChromeBinaryVersion() if google_chrome_version == _GOOGLE_CHROME_COMPATIBLE_VERSION_WITH_INSTALLED_CHROMEDRIVER: # pylint: disable=line-too-long return True return False def _GetPlatformSpecificChromeDriverUrlForGoogleChromeMajor(major: str) -> str: """Returns the platform specific `chromedriver` version that is compatible with the `Google Chrome` major given as `major`. This function only supports `Google Chrome` major that is present in the following list of `chromedriver` releases: ```python ( '95.0.4638.69', '96.0.4664.45', '97.0.4692.36', ) ``` `Google Chrome` version against a major that is not present in the above list will not receive a compatible version of `chromedriver` through this function. Args: major: `Google Chrome` major. Returns: Platform specific `chromedriver` file URL that is compatible with `Google Chrome` with the give `major` as major. """ chromedriver_storage_googleapis = 'https://chromedriver.storage.googleapis.com' # pylint: disable=line-too-long for release in ( '95.0.4638.69', '96.0.4664.45', '97.0.4692.36', ): if release.startswith(major): if sys.platform == 'linux': return f'{chromedriver_storage_googleapis}/{release}/{_CHROME_DRIVER_BINARY}_linux64.zip' # pylint: disable=line-too-long elif sys.platform == 'darwin': return f'{chromedriver_storage_googleapis}/{release}/{_CHROME_DRIVER_BINARY}_mac64.zip' # pylint: disable=line-too-long elif sys.platform in ('win32', 'cygwin'): return f'{chromedriver_storage_googleapis}/{release}/{_CHROME_DRIVER_BINARY}_win32.zip' # pylint: disable=line-too-long def _GetPlatformSpecificChromeDriverCompatibleVersionUrl( google_chrome_version: str) -> str: """Returns the platform specific `chromedriver` version URL that is compatible with the `Google Chrome` version given as `google_chrome_version`. This function takes out the `major` version from the `google_chrome_version` string and calls the function `_GetPlatformSpecificChromeDriverUrlForGoogleChromeMajor()` with the major that we just took out to receive a compatible `chromedriver` version URL. Args: google_chrome_version: `Google Chrome` version. Returns: `Chromedriver` version URL that is compatible with the `Google Chrome` version given as `google_chrome_version`. """ major_regex = re.compile(r'^[0-9]{2}') google_chrome_major = re.search(major_regex, google_chrome_version).group(0) return _GetPlatformSpecificChromeDriverUrlForGoogleChromeMajor( google_chrome_major) def _InstallGoogleChromeCompatibleChromeDriver() -> None: """Installs `Google Chrome` compatible `chromedriver`. This function installs a `Google Chrome` compatible `chromedriver` version. Because user's can have different versions of `Google Chrome` installed in their system so we need to handle the case where the `chromedriver` that comes with the `inb` repository is not compatible with the `Google Chrome` version they are using on their system. To handle the above case we install the compatible version of `chromedriver` from the `googleapis` by calling the function `_GetPlatformSpecificChromeDriverCompatibleVersionUrl()` to return the URL for `chromedriver` and then later using that URL with function `_RetrieveChromeDriverZip()` to install `chromedriver` from `googleapis`. Once the `chromedriver` is installed we know that it is in a form of zip so we need to extract it and we do so by calling the function `_ExtractChromeDriverZip()` with the zip file path. """ _RetrieveChromeDriverZip( _GetPlatformSpecificChromeDriverCompatibleVersionUrl( _GetGoogleChromeBinaryVersion()), True if LOGGING_TO_STREAM_ENABLED else False) _ExtractChromeDriverZip( os.path.join(_GetInstalledChromeDriverDirectoryPath(), _CHROME_DRIVER_ZIP_FILE)) def _GetInstalledChromeDriverDirectoryPath() -> str: """Returns the absolute filesystem path to the directory where `chromedriver` that comes with the `inb` repository is installed. Returns: Absolute filesystem path the `chromedriver` directory. """ dir_path = os.path.dirname(os.path.abspath(__file__)) last_inb_indx = dir_path.rfind('inb') return os.path.join(dir_path[:last_inb_indx:], 'driver') def ChromeDriverAbsolutePath() -> str: """Returns the absolute filesystem path to the `chromedriver` installed inside the `driver` directory. This function checks if the `chromedriver` that comes with the `inb` repository is compatible with the `Google Chrome` installed in the user's system; if yes it returns the absolute filesystem path to the `chromedriver` installed inside the `driver` directory. If the `chromedriver` if not compatible with the `Google Chrome` version the user is using in its system then this function tries to install a compatible `chromedriver` inside the directory `driver` and if successful, it returns the absolute filesystem path to the `chromedriver`. Returns: Absolute path to `chromedriver`. """ if _CheckIfChromeDriverIsCompatibleWithGoogleChromeInstalled(): return os.path.join(_GetInstalledChromeDriverDirectoryPath(), _CHROME_DRIVER_BINARY) _InstallGoogleChromeCompatibleChromeDriver() return os.path.join(_GetInstalledChromeDriverDirectoryPath(), _CHROME_DRIVER_BINARY) def GetLinkedInUrl() -> str: """Returns URL to LinkedIn.""" return 'https://www.linkedin.com' def GetLinkedInLoginPageUrl() -> str: """Returns URL to LinkedIn's login page.""" return GetLinkedInUrl() + '/login/' def GetLinkedInMyNetworkPageUrl() -> str: """Returns URL to LinkedIn's `MyNetwork` page.""" return GetLinkedInUrl() + '/mynetwork/'
# -*- coding: utf-8 -*- # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import proto # type: ignore from google.ads.googleads.v7.enums.types import response_content_type as gage_response_content_type from google.ads.googleads.v7.resources.types import feed_item as gagr_feed_item from google.protobuf import field_mask_pb2 # type: ignore from google.rpc import status_pb2 # type: ignore __protobuf__ = proto.module( package='google.ads.googleads.v7.services', marshal='google.ads.googleads.v7', manifest={ 'GetFeedItemRequest', 'MutateFeedItemsRequest', 'FeedItemOperation', 'MutateFeedItemsResponse', 'MutateFeedItemResult', }, ) class GetFeedItemRequest(proto.Message): r"""Request message for [FeedItemService.GetFeedItem][google.ads.googleads.v7.services.FeedItemService.GetFeedItem]. Attributes: resource_name (str): Required. The resource name of the feed item to fetch. """ resource_name = proto.Field( proto.STRING, number=1, ) class MutateFeedItemsRequest(proto.Message): r"""Request message for [FeedItemService.MutateFeedItems][google.ads.googleads.v7.services.FeedItemService.MutateFeedItems]. Attributes: customer_id (str): Required. The ID of the customer whose feed items are being modified. operations (Sequence[google.ads.googleads.v7.services.types.FeedItemOperation]): Required. The list of operations to perform on individual feed items. partial_failure (bool): If true, successful operations will be carried out and invalid operations will return errors. If false, all operations will be carried out in one transaction if and only if they are all valid. Default is false. validate_only (bool): If true, the request is validated but not executed. Only errors are returned, not results. response_content_type (google.ads.googleads.v7.enums.types.ResponseContentTypeEnum.ResponseContentType): The response content type setting. Determines whether the mutable resource or just the resource name should be returned post mutation. """ customer_id = proto.Field( proto.STRING, number=1, ) operations = proto.RepeatedField( proto.MESSAGE, number=2, message='FeedItemOperation', ) partial_failure = proto.Field( proto.BOOL, number=3, ) validate_only = proto.Field( proto.BOOL, number=4, ) response_content_type = proto.Field( proto.ENUM, number=5, enum=gage_response_content_type.ResponseContentTypeEnum.ResponseContentType, ) class FeedItemOperation(proto.Message): r"""A single operation (create, update, remove) on an feed item. Attributes: update_mask (google.protobuf.field_mask_pb2.FieldMask): FieldMask that determines which resource fields are modified in an update. create (google.ads.googleads.v7.resources.types.FeedItem): Create operation: No resource name is expected for the new feed item. update (google.ads.googleads.v7.resources.types.FeedItem): Update operation: The feed item is expected to have a valid resource name. remove (str): Remove operation: A resource name for the removed feed item is expected, in this format: ``customers/{customer_id}/feedItems/{feed_id}~{feed_item_id}`` """ update_mask = proto.Field( proto.MESSAGE, number=4, message=field_mask_pb2.FieldMask, ) create = proto.Field( proto.MESSAGE, number=1, oneof='operation', message=gagr_feed_item.FeedItem, ) update = proto.Field( proto.MESSAGE, number=2, oneof='operation', message=gagr_feed_item.FeedItem, ) remove = proto.Field( proto.STRING, number=3, oneof='operation', ) class MutateFeedItemsResponse(proto.Message): r"""Response message for an feed item mutate. Attributes: partial_failure_error (google.rpc.status_pb2.Status): Errors that pertain to operation failures in the partial failure mode. Returned only when partial_failure = true and all errors occur inside the operations. If any errors occur outside the operations (e.g. auth errors), we return an RPC level error. results (Sequence[google.ads.googleads.v7.services.types.MutateFeedItemResult]): All results for the mutate. """ partial_failure_error = proto.Field( proto.MESSAGE, number=3, message=status_pb2.Status, ) results = proto.RepeatedField( proto.MESSAGE, number=2, message='MutateFeedItemResult', ) class MutateFeedItemResult(proto.Message): r"""The result for the feed item mutate. Attributes: resource_name (str): Returned for successful operations. feed_item (google.ads.googleads.v7.resources.types.FeedItem): The mutated feed item with only mutable fields after mutate. The field will only be returned when response_content_type is set to "MUTABLE_RESOURCE". """ resource_name = proto.Field( proto.STRING, number=1, ) feed_item = proto.Field( proto.MESSAGE, number=2, message=gagr_feed_item.FeedItem, ) __all__ = tuple(sorted(__protobuf__.manifest))
"""distutils.command.config Implements the Distutils 'config' command, a (mostly) empty command class that exists mainly to be sub-classed by specific module distributions and applications. The idea is that while every "config" command is different, at least they're all named the same, and users always see "config" in the list of standard commands. Also, this is a good place to put common configure-like tasks: "try to compile this C code", or "figure out where this header file lives". """ import os, re from distutils.core import Command from distutils.errors import DistutilsExecError from distutils.sysconfig import customize_compiler from distutils import log LANG_EXT = {"c": ".c", "c++": ".cxx"} class config(Command): description = "prepare to build" user_options = [ ("compiler=", None, "specify the compiler type"), ("cc=", None, "specify the compiler executable"), ("include-dirs=", "I", "list of directories to search for header files"), ("define=", "D", "C preprocessor macros to define"), ("undef=", "U", "C preprocessor macros to undefine"), ("libraries=", "l", "external C libraries to link with"), ("library-dirs=", "L", "directories to search for external C libraries"), ("noisy", None, "show every action (compile, link, run, ...) taken"), ( "dump-source", None, "dump generated source files before attempting to compile them", ), ] # The three standard command methods: since the "config" command # does nothing by default, these are empty. def initialize_options(self): self.compiler = None self.cc = None self.include_dirs = None self.libraries = None self.library_dirs = None # maximal output for now self.noisy = 1 self.dump_source = 1 # list of temporary files generated along-the-way that we have # to clean at some point self.temp_files = [] def finalize_options(self): if self.include_dirs is None: self.include_dirs = self.distribution.include_dirs or [] elif isinstance(self.include_dirs, str): self.include_dirs = self.include_dirs.split(os.pathsep) if self.libraries is None: self.libraries = [] elif isinstance(self.libraries, str): self.libraries = [self.libraries] if self.library_dirs is None: self.library_dirs = [] elif isinstance(self.library_dirs, str): self.library_dirs = self.library_dirs.split(os.pathsep) def run(self): pass # Utility methods for actual "config" commands. The interfaces are # loosely based on Autoconf macros of similar names. Sub-classes # may use these freely. def _check_compiler(self): """Check that 'self.compiler' really is a CCompiler object; if not, make it one. """ # We do this late, and only on-demand, because this is an expensive # import. from distutils.ccompiler import CCompiler, new_compiler if not isinstance(self.compiler, CCompiler): self.compiler = new_compiler( compiler=self.compiler, dry_run=self.dry_run, force=1 ) customize_compiler(self.compiler) if self.include_dirs: self.compiler.set_include_dirs(self.include_dirs) if self.libraries: self.compiler.set_libraries(self.libraries) if self.library_dirs: self.compiler.set_library_dirs(self.library_dirs) def _gen_temp_sourcefile(self, body, headers, lang): filename = "_configtest" + LANG_EXT[lang] with open(filename, "w") as file: if headers: for header in headers: file.write("#include <%s>\n" % header) file.write("\n") file.write(body) if body[-1] != "\n": file.write("\n") return filename def _preprocess(self, body, headers, include_dirs, lang): src = self._gen_temp_sourcefile(body, headers, lang) out = "_configtest.i" self.temp_files.extend([src, out]) self.compiler.preprocess(src, out, include_dirs=include_dirs) return (src, out) def _compile(self, body, headers, include_dirs, lang): src = self._gen_temp_sourcefile(body, headers, lang) if self.dump_source: dump_file(src, "compiling '%s':" % src) (obj,) = self.compiler.object_filenames([src]) self.temp_files.extend([src, obj]) self.compiler.compile([src], include_dirs=include_dirs) return (src, obj) def _link(self, body, headers, include_dirs, libraries, library_dirs, lang): (src, obj) = self._compile(body, headers, include_dirs, lang) prog = os.path.splitext(os.path.basename(src))[0] self.compiler.link_executable( [obj], prog, libraries=libraries, library_dirs=library_dirs, target_lang=lang, ) if self.compiler.exe_extension is not None: prog = prog + self.compiler.exe_extension self.temp_files.append(prog) return (src, obj, prog) def _clean(self, *filenames): if not filenames: filenames = self.temp_files self.temp_files = [] log.info("removing: %s", " ".join(filenames)) for filename in filenames: try: os.remove(filename) except OSError: pass # XXX these ignore the dry-run flag: what to do, what to do? even if # you want a dry-run build, you still need some sort of configuration # info. My inclination is to make it up to the real config command to # consult 'dry_run', and assume a default (minimal) configuration if # true. The problem with trying to do it here is that you'd have to # return either true or false from all the 'try' methods, neither of # which is correct. # XXX need access to the header search path and maybe default macros. def try_cpp(self, body=None, headers=None, include_dirs=None, lang="c"): """Construct a source file from 'body' (a string containing lines of C/C++ code) and 'headers' (a list of header files to include) and run it through the preprocessor. Return true if the preprocessor succeeded, false if there were any errors. ('body' probably isn't of much use, but what the heck.) """ from distutils.ccompiler import CompileError self._check_compiler() ok = True try: self._preprocess(body, headers, include_dirs, lang) except CompileError: ok = False self._clean() return ok def search_cpp(self, pattern, body=None, headers=None, include_dirs=None, lang="c"): """Construct a source file (just like 'try_cpp()'), run it through the preprocessor, and return true if any line of the output matches 'pattern'. 'pattern' should either be a compiled regex object or a string containing a regex. If both 'body' and 'headers' are None, preprocesses an empty file -- which can be useful to determine the symbols the preprocessor and compiler set by default. """ self._check_compiler() src, out = self._preprocess(body, headers, include_dirs, lang) if isinstance(pattern, str): pattern = re.compile(pattern) with open(out) as file: match = False while True: line = file.readline() if line == "": break if pattern.search(line): match = True break self._clean() return match def try_compile(self, body, headers=None, include_dirs=None, lang="c"): """Try to compile a source file built from 'body' and 'headers'. Return true on success, false otherwise. """ from distutils.ccompiler import CompileError self._check_compiler() try: self._compile(body, headers, include_dirs, lang) ok = True except CompileError: ok = False log.info(ok and "success!" or "failure.") self._clean() return ok def try_link( self, body, headers=None, include_dirs=None, libraries=None, library_dirs=None, lang="c", ): """Try to compile and link a source file, built from 'body' and 'headers', to executable form. Return true on success, false otherwise. """ from distutils.ccompiler import CompileError, LinkError self._check_compiler() try: self._link(body, headers, include_dirs, libraries, library_dirs, lang) ok = True except (CompileError, LinkError): ok = False log.info(ok and "success!" or "failure.") self._clean() return ok def try_run( self, body, headers=None, include_dirs=None, libraries=None, library_dirs=None, lang="c", ): """Try to compile, link to an executable, and run a program built from 'body' and 'headers'. Return true on success, false otherwise. """ from distutils.ccompiler import CompileError, LinkError self._check_compiler() try: src, obj, exe = self._link( body, headers, include_dirs, libraries, library_dirs, lang ) self.spawn([exe]) ok = True except (CompileError, LinkError, DistutilsExecError): ok = False log.info(ok and "success!" or "failure.") self._clean() return ok # -- High-level methods -------------------------------------------- # (these are the ones that are actually likely to be useful # when implementing a real-world config command!) def check_func( self, func, headers=None, include_dirs=None, libraries=None, library_dirs=None, decl=0, call=0, ): """Determine if function 'func' is available by constructing a source file that refers to 'func', and compiles and links it. If everything succeeds, returns true; otherwise returns false. The constructed source file starts out by including the header files listed in 'headers'. If 'decl' is true, it then declares 'func' (as "int func()"); you probably shouldn't supply 'headers' and set 'decl' true in the same call, or you might get errors about a conflicting declarations for 'func'. Finally, the constructed 'main()' function either references 'func' or (if 'call' is true) calls it. 'libraries' and 'library_dirs' are used when linking. """ self._check_compiler() body = [] if decl: body.append("int %s ();" % func) body.append("int main () {") if call: body.append(" %s();" % func) else: body.append(" %s;" % func) body.append("}") body = "\n".join(body) + "\n" return self.try_link(body, headers, include_dirs, libraries, library_dirs) def check_lib( self, library, library_dirs=None, headers=None, include_dirs=None, other_libraries=[], ): """Determine if 'library' is available to be linked against, without actually checking that any particular symbols are provided by it. 'headers' will be used in constructing the source file to be compiled, but the only effect of this is to check if all the header files listed are available. Any libraries listed in 'other_libraries' will be included in the link, in case 'library' has symbols that depend on other libraries. """ self._check_compiler() return self.try_link( "int main (void) { }", headers, include_dirs, [library] + other_libraries, library_dirs, ) def check_header(self, header, include_dirs=None, library_dirs=None, lang="c"): """Determine if the system header file named by 'header_file' exists and can be found by the preprocessor; return true if so, false otherwise. """ return self.try_cpp( body="/* No body */", headers=[header], include_dirs=include_dirs ) def dump_file(filename, head=None): """Dumps a file content into log.info. If head is not None, will be dumped before the file content. """ if head is None: log.info("%s", filename) else: log.info(head) file = open(filename) try: log.info(file.read()) finally: file.close()
import _plotly_utils.basevalidators class HoverinfosrcValidator(_plotly_utils.basevalidators.SrcValidator): def __init__(self, plotly_name="hoverinfosrc", parent_name="splom", **kwargs): super(HoverinfosrcValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "none"), **kwargs, )
from PIL import Image from datetime import datetime import sys import base64 from io import BytesIO import platform import urllib.parse IMG_FOLDER = '' if platform.system() == 'Linux': IMG_FOLDER = 'images/' elif platform.system() == 'Windows': IMG_FOLDER = '.\\images\\' def get_base64_image(filename: str = '.\\images\\face_dither.png') -> str: try: encoded_image = b'' image_format = '' with Image.open(filename) as image: image_format = image.format # print(f'Format is: {image_format}') # print(f'Mode is: {image.mode}') buffer = BytesIO() image.save(buffer, image.format) image_bytes = buffer.getvalue() encoded_image = base64.b64encode(image_bytes) # ****** Below is simply for testing if the image ****** # data stored in the file is correct or not. # ------------------------------------------------------ # image_buffer = BytesIO(base64.b64decode(encoded_image)) # with Image.open(image_buffer) as fil_image: # new_filename = 'Robert' + datetime.now().strftime('_%Y%m%d_%H%M%S') \ # + '.' + image_format.lower() # fil_image.save(IMG_FOLDER + new_filename, image_format) # ------------------------------------------------------ print(f'The Base64 image = {urllib.parse.quote(encoded_image.decode())}') return encoded_image.decode() except Exception as ex: print(f'No image found: {ex}') if __name__ == '__main__': if len(sys.argv) == 2: # print(f'The param = {sys.argv[1]}') get_base64_image(sys.argv[1]) else: get_base64_image()
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # ------------------------------------------------------------------- # Date: 2021/01/06 # Author: Shaun # ๆช”ๆกˆๅŠŸ่ƒฝๆ่ฟฐ: # ่‡ชๅ‹•ๆŠ“ๅ–ๆฉŸๅฐ็‹€ๆ…‹๏ผŒๆ›ดๆ–ฐ่ณ‡ๆ–™ๅบซ๏ผŒ้…ๅˆbash่…ณๆœฌ๏ผŒๅฏซๅ…ฅ็ณป็ตฑๆŽ’็จ‹crontab -e # ------------------------------------------------------------------- import socket # import pymysql import os import time from datetime import datetime # cnc_config = [('cnc27', "192.168.3.27"), ('cnc28', "192.168.3.28"), ('cnc29', "192.168.3.29"), ('cnc43', "192.168.3.43"), # ('cnc44', "192.168.3.44"), ('cnc45', "192.168.3.45"), ('cnc46', "192.168.3.46")] # cnc_config = [('cnc27', "192.168.3.27"), ('cnc28', "192.168.3.28"), ('cnc29', "192.168.3.29"), ('cnc46', "192.168.3.46")] cnc_config = [('cnc46', "192.168.3.46")] def get_from_brother(ip='127.0.0.1', port=10000): client = socket.socket(socket.AF_INET, socket.SOCK_STREAM) client.settimeout(10) try: client.connect((ip, port)) # ๅ–ๅพ—ๅทฅไปถๆ•ธ # instruct = '%CLOD WKCNTR ย ' + os.linesep + '00%' instruct = '%CLOD WKCNTR 00\r\n%' # instruct = '%CLOD PRD3 00\r\n%' # instruct = '%CIOCREF GRN 00\r\n%' client.send(instruct.encode()) # lines = client.recv(3096).decode().split(os.linesep) lines = client.recv(1500).decode() # arr= [line.strip() for line in lines] # n=0 # for e in arr: # v1=e.split(',') # if n>1: # # v1[1]=datetime.fromtimestamp(int(v1[1]) / 1e3) # v1[1]=datetime.fromtimestamp(int(v1[1])) # # date=v1[1] # n+=1 # print(v1) # print(lines) # lines = client.recv(1024).decode() print(lines) lines = lines.split(os.linesep) lines = [line for line in lines if line.startswith('A01')] # ้ธๅ‡บไปฅA01้–‹้ ญ็š„่กŒ fields = lines[0].split(',') # ๆ‹†ๅˆ†ๅ‡บๅญ—ๆฎต๏ผŒ็ฌฌ3ๅ€‹ๅญ—ๆฎตๅฐฑๆ˜ฏ็›ฎๆจ™[ๅทฅไปถ่จˆๆ•ธ] parts = int(fields[2].strip()) print('้ƒจๅ“ๆ•ธ้‡:',int(fields[2].strip()),'\n') # ๅ–ๅพ—็‹€ๆ…‹ # instruct = '%CLOD WKCNTR 00\r\n%' instruct = '%CLOD PRD3 00\r\n%' client.sendall(instruct.encode()) flag = True data='' while flag: lines = client.recv(1500).decode() # print('len:',len(lines),lines) data+=lines if lines[-1]=='%': flag = False log=data.split('\n') # print(data,'len:',len(data)) for i in range(10): print(log[i]) return parts except Exception as e: print(ip, e) return -1 finally: client.close() # def save_db(name='J44', qty=-1): # try: # conn = pymysql.Connect(user='root', password='1234', database='dademes', charset='utf8') # cus = conn.cursor() # if qty == -1: # cus.execute('update kbequipment set running=%s where name=%s', ('ๅ…ณๆœบ', name)) # else: # cus.execute('update kbequipment set running=%s, status=%s where name=%s', ('ๆญฃๅธธ', qty, name)) # conn.commit() # cus.close() # conn.close() # except Exception as e: # print('ๆœบๅฐๅท=%sไฟๅญ˜ๆ•ฐๆฎๅผ‚ๅธธ,%s' % (name, e)) if __name__ == '__main__': try: for cnc_name, ip in cnc_config: print('ๆญฃๅœจ่ฎ€ๅ–ๆฉŸๅฐ่™Ÿ=%s,ip=%s' % (cnc_name, ip)) qty = get_from_brother(ip=ip) print(qty) # save_db(qty=qty, name=cnc_name) except Exception as e: print('__main__', e) finally: print('CNCๆ•ธๆ“š่ฎ€ๅ–ๅฎŒ็•ข... 30็ง’ๅพŒๅ†ๆฌก่ฎ€ๅ–...') # time.sleep(10)
""" Package defining various dynamic forward models as well as convenience methods to generate the right hand sides (RHS) of the related partial differential equations. Currently, the following forward models are implemented: #. An advection equation for images #. An advection equation for maps #. The EPDiff-equation parameterized using the vector-valued momentum for images #. The EPDiff-equation parameterized using the vector-valued momentum for maps #. The EPDiff-equation parameterized using the scalar-valued momentum for images #. The EPDiff-equation parameterized using the scalar-valued momentum for maps The images are expected to be tensors of dimension: BxCxXxYxZ (or BxCxX in 1D and BxCxXxY in 2D), where B is the batch-size, C the number of channels, and X, Y, and Z are the spatial coordinate indices. Futhermore the following (RHSs) are provided #. Image advection #. Map advection #. Scalar conservation law #. EPDiff """ from __future__ import print_function from __future__ import absolute_import from builtins import range from builtins import object from abc import ABCMeta, abstractmethod import numpy as np from . import finite_differences_multi_channel as fdm from . import utils from .data_wrapper import MyTensor from future.utils import with_metaclass import torch.nn as nn import torch class RHSLibrary(object): """ Convenience class to quickly generate various right hand sides (RHSs) of popular partial differential equations. In this way new forward models can be written with minimal code duplication. """ def __init__(self, spacing, use_neumann_BC_for_map=False): """ Constructor :param spacing: Spacing for the images. This will be an array with 1, 2, or 3 entries in 1D, 2D, and 3D respectively. """ self.spacing = spacing """spatial spacing""" self.spacing_min = np.min(spacing) """ min of the spacing""" self.spacing_ratio = spacing/self.spacing_min self.fdt_ne = fdm.FD_torch_multi_channel(spacing,mode='neumann_zero') """torch finite differencing support neumann zero""" self.fdt_le = fdm.FD_torch_multi_channel( spacing, mode='linear') """torch finite differencing support linear extrapolation""" self.fdt_di = fdm.FD_torch_multi_channel(spacing, mode='dirichlet_zero') """torch finite differencing support dirichlet zero""" self.dim = len(self.spacing) """spatial dimension""" self.use_neumann_BC_for_map = use_neumann_BC_for_map """If True uses zero Neumann boundary conditions also for evolutions of the map, if False uses linear extrapolation""" def rhs_advect_image_multiNC(self,I,v): ''' Advects a batch of images which can be multi-channel. Expected image format here, is BxCxXxYxZ, where B is the number of images (batch size), C, the number of channels per image and X, Y, Z are the spatial coordinates (X only in 1D; X,Y only in 2D) :math:`-\\nabla I^Tv` :param I: Image batch BxCIxXxYxZ :param v: Velocity fields (this will be one velocity field per image) BxCxXxYxZ :return: Returns the RHS of the advection equations involved BxCxXxYxZ ''' rhs_ret= self._rhs_advect_image_multiN(I, v ) return rhs_ret def _rhs_advect_image_multiN(self,I,v): """ :param I: One-channel input image: Bx1xXxYxZ :param v: velocity field BxCxXxYxZ :return: Returns the RHS of the advection equation for one channel BxXxYxZ """ if self.dim == 1: rhs_ret = -self.fdt_ne.dXc(I) * v[:,0:1] elif self.dim == 2: rhs_ret = -self.fdt_ne.dXc(I) * v[:,0:1] -self.fdt_ne.dYc(I)*v[:,1:2] elif self.dim == 3: rhs_ret = -self.fdt_ne.dXc(I) * v[:,0:1] -self.fdt_ne.dYc(I)*v[:,1:2]-self.fdt_ne.dZc(I)*v[:,2:3] else: raise ValueError('Only supported up to dimension 3') return rhs_ret def rhs_scalar_conservation_multiNC(self, I, v): """ Scalar conservation law for a batch of images which can be multi-channel. Expected image format here, is BxCxXxYxZ, where B is the number of images (batch size), C, the number of channels per image and X, Y, Z are the spatial coordinates (X only in 1D; X,Y only in 2D) :math:`-div(Iv)` :param I: Image batch BxCIxXxYxZ :param v: Velocity fields (this will be one velocity field per image) BxCxXxYxZ :return: Returns the RHS of the scalar conservation law equations involved BxCxXxYxZ """ rhs_ret=self._rhs_scalar_conservation_multiN(I, v) return rhs_ret def _rhs_scalar_conservation_multiN(self, I, v): """ :param I: One-channel input image: Bx1xXxYxZ :param v: velocity field BxCxXxYxZ :return: Returns the RHS of the scalar-conservation law equation for one channel BxXxYxZ """ if self.dim==1: rhs_ret = -self.fdt_ne.dXc(I*v[:,0:1]) elif self.dim==2: rhs_ret = -self.fdt_ne.dXc(I*v[:,0:1]) -self.fdt_ne.dYc(I*v[:,1:2]) elif self.dim==3: rhs_ret = -self.fdt_ne.dXc(I* v[:,0:1]) -self.fdt_ne.dYc(I*v[:,1:2])-self.fdt_ne.dZc(I*v[:,2:3]) else: raise ValueError('Only supported up to dimension 3') return rhs_ret def rhs_lagrangian_evolve_map_multiNC(self, phi, v): """ Evolves a set of N maps (for N images). Expected format here, is BxCxXxYxZ, where B is the number of images/maps (batch size), C, the number of channels per (here the spatial dimension for the map coordinate functions), and X, Y, Z are the spatial coordinates (X only in 1D; X,Y only in 2D). This is used to evolve the map going from source to target image. Requires interpolation so should if at all possible not be used as part of an optimization. the idea of compute inverse map is due to the map is defined in the source space, referring to point move to where,(compared with the target space, refers to where it comes from) in this situation, we only need to capture the velocity at that place and accumulate along the time step since advecton function is moves the image (or phi based image) by v step, which means v is shared by different coordinate, so it is safe to compute in this way. :math:`v\circ\phi` :param phi: map batch BxCxXxYxZ :param v: Velocity fields (this will be one velocity field per map) BxCxXxYxZ :return: Returns the RHS of the evolution equations involved BxCxXxYxZ :param phi: :param v: :return: """ rhs_ret = utils.compute_warped_image_multiNC(v, phi, spacing=self.spacing, spline_order=1,zero_boundary=False) return rhs_ret def rhs_advect_map_multiNC(self, phi, v): ''' Advects a set of N maps (for N images). Expected format here, is BxCxXxYxZ, where B is the number of images/maps (batch size), C, the number of channels per (here the spatial dimension for the map coordinate functions), and X, Y, Z are the spatial coordinates (X only in 1D; X,Y only in 2D) :math:`-D\\phi v` :param phi: map batch BxCxXxYxZ :param v: Velocity fields (this will be one velocity field per map) BxCxXxYxZ :return: Returns the RHS of the advection equations involved BxCxXxYxZ ''' sz = phi.size() rhs_ret = self._rhs_advect_map_call(phi, v) return rhs_ret def _rhs_advect_map_call(self,phi,v): """ :param phi: map batch BxCxXxYxZ :param v: Velocity fields (this will be one velocity field per map) BxCxXxYxZ :return rhsphi: Returns the RHS of the advection equations involved BxCxXxYxZ """ fdc = self.fdt_le # use order boundary conditions (interpolation) if self.dim==1: dxc_phi = -fdc.dXc(phi) rhsphi = v[:, 0:1] * dxc_phi elif self.dim==2: dxc_phi = -fdc.dXc(phi) dyc_phi = -fdc.dYc(phi) rhsphi = v[:, 0:1] * dxc_phi + v[:, 1:2] * dyc_phi elif self.dim==3: dxc_phi = -fdc.dXc(phi) dyc_phi = -fdc.dYc(phi) dzc_phi = -fdc.dZc(phi) rhsphi = v[:,0:1]*dxc_phi + v[:,1:2]*dyc_phi + v[:,2:3]*dzc_phi else: raise ValueError('Only supported up to dimension 3') return rhsphi def rhs_epdiff_multiNC(self, m, v): ''' Computes the right hand side of the EPDiff equation for of N momenta (for N images). Expected format here, is BxCxXxYxZ, where B is the number of momenta (batch size), C, the number of channels per (here the spatial dimension for the momenta), and X, Y, Z are the spatial coordinates (X only in 1D; X,Y only in 2D) a new version, where batch is no longer calculated separately :math:`-(div(m_1v),...,div(m_dv))^T-(Dv)^Tm` :param m: momenta batch BxCXxYxZ :param v: Velocity fields (this will be one velocity field per momentum) BxCXxYxZ :return: Returns the RHS of the EPDiff equations involved BxCXxYxZ ''' sz = m.size() rhs_ret = MyTensor(sz).zero_() rhs_ret = self._rhs_epdiff_call(m, v, rhs_ret) return rhs_ret def _rhs_epdiff_call(self, m, v,rhsm): """ :param m: momenta batch BxCxXxYxZ :param v: Velocity fields (this will be one velocity field per momentum) BxCxXxYxZ :return rhsm: Returns the RHS of the EPDiff equations involved BxCxXxYxZ """ # if self.use_neumann_BC_for_map: # fdc = self.fdt_ne # use zero Neumann boundary conditions # else: # fdc = self.fdt_le # do linear extrapolation fdc = self.fdt_ne #fdc = self.fdt_le if self.dim == 1: dxc_mv0 = -fdc.dXc(m*v[:,0:1]) dxc_v = -fdc.dXc(v) dxc_v_multi_m = dxc_v * m rhsm[:]= dxc_mv0 + dxc_v_multi_m elif self.dim == 2: # (m_1,...,m_d)^T_t = -(div(m_1v),...,div(m_dv))^T-(Dv)^Tm (EPDiff equation) dxc_mv0 = -fdc.dXc(m*v[:,0:1]) dyc_mv1 = -fdc.dYc(m*v[:,1:2]) dc_mv_sum = dxc_mv0 + dyc_mv1 dxc_v = -fdc.dXc(v) dyc_v = -fdc.dYc(v) dxc_v_multi_m = dxc_v * m dyc_v_multi_m = dyc_v * m dxc_v_multi_m_sum = torch.sum(dxc_v_multi_m, 1) dyc_v_multi_m_sum = torch.sum(dyc_v_multi_m, 1) rhsm[:,0, :, :] = dc_mv_sum[:,0] + dxc_v_multi_m_sum rhsm[:,1, :, :] = dc_mv_sum[:,1] + dyc_v_multi_m_sum elif self.dim == 3: dxc_mv0 = -fdc.dXc(m*v[:,0:1]) dyc_mv1 = -fdc.dYc(m*v[:,1:2]) dzc_mv2 = -fdc.dZc(m*v[:,2:3]) dc_mv_sum = dxc_mv0 + dyc_mv1 + dzc_mv2 dxc_v = -fdc.dXc(v) dyc_v = -fdc.dYc(v) dzc_v = -fdc.dZc(v) dxc_v_multi_m = dxc_v*m dyc_v_multi_m = dyc_v*m dzc_v_multi_m = dzc_v*m dxc_v_multi_m_sum = torch.sum(dxc_v_multi_m,1) dyc_v_multi_m_sum = torch.sum(dyc_v_multi_m,1) dzc_v_multi_m_sum = torch.sum(dzc_v_multi_m,1) rhsm[:, 0] = dc_mv_sum[:,0] + dxc_v_multi_m_sum rhsm[:, 1] = dc_mv_sum[:,1] + dyc_v_multi_m_sum rhsm[:, 2] = dc_mv_sum[:,2] + dzc_v_multi_m_sum else: raise ValueError('Only supported up to dimension ') return rhsm def rhs_adapt_epdiff_wkw_multiNC(self, m, v,w, sm_wm,smoother): ''' Computes the right hand side of the EPDiff equation for of N momenta (for N images). Expected format here, is BxCxXxYxZ, where B is the number of momenta (batch size), C, the number of channels per (here the spatial dimension for the momenta), and X, Y, Z are the spatial coordinates (X only in 1D; X,Y only in 2D) a new version, where batch is no longer calculated separately :math:`-(div(m_1v),...,div(m_dv))^T-(Dv)^Tm` :param m: momenta batch BxCXxYxZ :param v: Velocity fields (this will be one velocity field per momentum) BxCXxYxZ :return: Returns the RHS of the EPDiff equations involved BxCXxYxZ ''' sz = m.size() rhs_ret = MyTensor(sz).zero_() rhs_ret = self._rhs_adapt_epdiff_wkw_call(m, v,w,sm_wm,smoother, rhs_ret) return rhs_ret def _rhs_adapt_epdiff_wkw_call(self, m, v,w,sm_wm, smoother, rhsm): """ :param m: momenta batch BxCxXxYxZ :param sm_wm: smoothed(wm) batch x K x dim x X x Y x ... :param w: smoothed(wm) batch x K x X x Y x ... :param v: Velocity fields (this will be one velocity field per momentum) BxCxXxYxZ :return rhsm: Returns the RHS of the EPDiff equations involved BxCxXxYxZ """ # if self.use_neumann_BC_for_map: # fdc = self.fdt_ne # use zero Neumann boundary conditions # else: # fdc = self.fdt_le # do linear extrapolation fdc = self.fdt_ne rhs = self._rhs_epdiff_call(m,v,rhsm) ret_var = torch.empty_like(rhs) # ret_var, rhs should batch x dim x X x Yx .. dim = m.shape[1] sz = [m.shape[0]]+[1]+list(m.shape[1:]) # batchx1xdimx X x Y m = m.view(*sz) m_sm_wm = m* sm_wm m_sm_wm = m_sm_wm.sum(dim=2) sm_m_sm_wm = smoother.smooth(m_sm_wm) # batchx K x X xY... dxc_w = fdc.dXc(w) dc_w_list = [dxc_w] if dim == 2 or dim == 3: dyc_w = fdc.dYc(w) dc_w_list.append(dyc_w) if dim == 3: dzc_w = fdc.dZc(w) # batch x K x X xY ... dc_w_list.append(dzc_w) for i in range(dim): ret_var[:, i] = rhs[:, i] + (sm_m_sm_wm* dc_w_list[i]).sum(1) return ret_var class ForwardModel(with_metaclass(ABCMeta, object)): """ Abstract forward model class. Should never be instantiated. Derived classes require the definition of f(self,t,x,u,pars) and u(self,t,pars). These functions will be used for integration: x'(t) = f(t,x(t),u(t)) """ def __init__(self, sz, spacing, params=None): ''' Constructor of abstract forward model class :param sz: size of images :param spacing: numpy array for spacing in x,y,z directions ''' self.dim = spacing.size # spatial dimension of the problem """spatial dimension""" self.spacing = spacing """spatial spacing""" self.sz = sz """image size (BxCxXxYxZ)""" self.params = params """ParameterDict instance holding parameters""" self.rhs = RHSLibrary(self.spacing) """rhs library support""" if self.dim>3 or self.dim<1: raise ValueError('Forward models are currently only supported in dimensions 1 to 3') self.debug_mode_on =False @abstractmethod def f(self,t,x,u,pars,variables_from_optimizer=None): """ Function to be integrated :param t: time :param x: state :param u: input :param pars: optional parameters :param variables_from_optimizer: variables that can be passed from the optimizer :return: the function value, should return a list (to support easy concatenations of states) """ pass def u(self,t,pars,variables_from_optimizer=None): """ External input :param t: time :param pars: parameters :param variables_from_optimizer: variables that can be passed from the optimizer :return: the external input """ return [] class AdvectMap(ForwardModel): """ Forward model to advect an n-D map using a transport equation: :math:`\\Phi_t + D\\Phi v = 0`. v is treated as an external argument and \Phi is the state """ def __init__(self, sz, spacing, params=None,compute_inverse_map=False): super(AdvectMap,self).__init__(sz,spacing,params) self.compute_inverse_map = compute_inverse_map """If True then computes the inverse map on the fly for a map-based solution""" def u(self,t, pars, variables_from_optimizer=None): """ External input, to hold the velocity field :param t: time (ignored; not time-dependent) :param pars: assumes an n-D velocity field is passed as the only input argument :param variables_from_optimizer: variables that can be passed from the optimizer :return: Simply returns this velocity field """ return pars['v'] def f(self,t, x, u, pars=None, variables_from_optimizer=None): """ Function to be integrated, i.e., right hand side of transport equation: :math:`-D\\phi v` :param t: time (ignored; not time-dependent) :param x: state, here the map, \Phi, itself (assumes 3D-5D array; [nrI,0,:,:] x-coors; [nrI,1,:,:] y-coors; ... :param u: external input, will be the velocity field here :param pars: ignored (does not expect any additional inputs) :param variables_from_optimizer: variables that can be passed from the optimizer :return: right hand side [phi] """ if self.compute_inverse_map: return [self.rhs.rhs_advect_map_multiNC(x[0], u),self.rhs.rhs_lagrangian_evolve_map_multiNC(x[1], u)] else: return [self.rhs.rhs_advect_map_multiNC(x[0],u)] class AdvectImage(ForwardModel): """ Forward model to advect an image using a transport equation: :math:`I_t + \\nabla I^Tv = 0`. v is treated as an external argument and I is the state """ def __init__(self, sz, spacing, params=None): super(AdvectImage, self).__init__(sz, spacing,params) def u(self,t, pars, variables_from_optimizer=None): """ External input, to hold the velocity field :param t: time (ignored; not time-dependent) :param pars: assumes an n-D velocity field is passed as the only input argument :param variables_from_optimizer: variables that can be passed from the optimizer :return: Simply returns this velocity field """ return pars['v'] def f(self,t, x, u, pars=None, variables_from_optimizer=None): """ Function to be integrated, i.e., right hand side of transport equation: :math:`-\\nabla I^T v` :param t: time (ignored; not time-dependent) :param x: state, here the image, I, itself (supports multiple images and channels) :param u: external input, will be the velocity field here :param pars: ignored (does not expect any additional inputs) :param variables_from_optimizer: variables that can be passed from the optimizer :return: right hand side [I] """ return [self.rhs.rhs_advect_image_multiNC(x[0],u)] class EPDiffImage(ForwardModel): """ Forward model for the EPdiff equation. State is the momentum, m, and the image I: :math:`(m_1,...,m_d)^T_t = -(div(m_1v),...,div(m_dv))^T-(Dv)^Tm` :math:`v=Km` :math:`I_t+\\nabla I^Tv=0` """ def __init__(self, sz, spacing, smoother, params=None): super(EPDiffImage, self).__init__(sz, spacing,params) self.smoother = smoother def f(self,t, x, u, pars=None, variables_from_optimizer=None): """ Function to be integrated, i.e., right hand side of the EPDiff equation: :math:`-(div(m_1v),...,div(m_dv))^T-(Dv)^Tm` :math:`-\\nabla I^Tv` :param t: time (ignored; not time-dependent) :param x: state, here the vector momentum, m, and the image, I :param u: ignored, no external input :param pars: ignored (does not expect any additional inputs) :param variables_from_optimizer: variables that can be passed from the optimizer :return: right hand side [m,I] """ # assume x[0] is m and x[1] is I for the state m = x[0] I = x[1] v = self.smoother.smooth(m,None,utils.combine_dict(pars,{'I': I}),variables_from_optimizer) # print('max(|v|) = ' + str( v.abs().max() )) return [self.rhs.rhs_epdiff_multiNC(m,v), self.rhs.rhs_advect_image_multiNC(I,v)] class EPDiffMap(ForwardModel): """ Forward model for the EPDiff equation. State is the momentum, m, and the transform, :math:`\\phi` (mapping the source image to the target image). :math:`(m_1,...,m_d)^T_t = -(div(m_1v),...,div(m_dv))^T-(Dv)^Tm` :math:`v=Km` :math:`\\phi_t+D\\phi v=0` """ def __init__(self, sz, spacing, smoother, params=None,compute_inverse_map=False): super(EPDiffMap, self).__init__(sz,spacing,params) self.compute_inverse_map = compute_inverse_map """If True then computes the inverse map on the fly for a map-based solution""" self.smoother = smoother self.use_net = True if self.params['smoother']['type'] == 'adaptiveNet' else False def debugging(self,input,t): x = utils.checkNan(input) if np.sum(x): print("find nan at {} step".format(t)) print("flag m: {}, ".format(x[0])) print("flag v: {},".format(x[1])) print("flag phi: {},".format(x[2])) print("flag new_m: {},".format(x[3])) print("flag new_phi: {},".format(x[4])) raise ValueError("nan error") def f(self,t, x, u, pars=None, variables_from_optimizer=None): """ Function to be integrated, i.e., right hand side of the EPDiff equation: :math:`-(div(m_1v),...,div(m_dv))^T-(Dv)^Tm' :math:`-D\\phi v` :param t: time (ignored; not time-dependent) :param x: state, here the image, vector momentum, m, and the map, :math:`\\phi` :param u: ignored, no external input :param pars: ignored (does not expect any additional inputs) :param variables_from_optimizer: variables that can be passed from the optimizer :return: right hand side [m,phi] """ # assume x[0] is m and x[1] is phi for the state m = x[0] m = m.clamp(max=1., min=-1.) phi = x[1] if self.compute_inverse_map: phi_inv = x[2] if not self.use_net: v = self.smoother.smooth(m,None,utils.combine_dict(pars,{'phi':phi}),variables_from_optimizer) else: v = self.smoother.adaptive_smooth(m, phi, using_map=True) # print('max(|v|) = ' + str( v.abs().max() )) if self.compute_inverse_map: ret_val= [self.rhs.rhs_epdiff_multiNC(m,v), self.rhs.rhs_advect_map_multiNC(phi,v), self.rhs.rhs_lagrangian_evolve_map_multiNC(phi_inv,v)] else: new_m = self.rhs.rhs_epdiff_multiNC(m,v) new_phi = self.rhs.rhs_advect_map_multiNC(phi,v) ret_val= [new_m, new_phi] return ret_val class EPDiffAdaptMap(ForwardModel): """ Forward model for the EPDiff equation. State is the momentum, m, and the transform, :math:`\\phi` (mapping the source image to the target image). :math:`(m_1,...,m_d)^T_t = -(div(m_1v),...,div(m_dv))^T-(Dv)^Tm` :math:`v=Km` :math:`\\phi_t+D\\phi v=0` """ def __init__(self, sz, spacing, smoother, params=None, compute_inverse_map=False, update_sm_by_advect= True, update_sm_with_interpolation=True,compute_on_initial_map=True): super(EPDiffAdaptMap, self).__init__(sz, spacing, params) from . import module_parameters as pars from . import smoother_factory as sf self.compute_inverse_map = compute_inverse_map """If True then computes the inverse map on the fly for a map-based solution""" self.smoother = smoother self.update_sm_by_advect = update_sm_by_advect self.use_the_first_step_penalty = True self.update_sm_with_interpolation = update_sm_with_interpolation self.compute_on_initial_map=compute_on_initial_map self.update_sm_weight=None self.velocity_mask = None self.debug_mode_on = False s_m_params = pars.ParameterDict() s_m_params['smoother']['type'] = 'gaussian' s_m_params['smoother']['gaussian_std'] =self.params['smoother']['deep_smoother']['deep_network_local_weight_smoothing'] self.embedded_smoother = sf.SmootherFactory(sz[2:], spacing).create_smoother( s_m_params) """ if only take the first step penalty as the total penalty, otherwise accumluate the penalty""" def debug_nan(self, input, t,name=''): x = utils.checkNan([input]) if np.sum(x): # print(input[0]) print("find nan at {} step, {} with number {}".format(t,name,x[0])) raise ValueError("nan error") def init_zero_sm_weight(self,sm_weight): self.update_sm_weight = torch.zeros_like(sm_weight).detach() def init_velocity_mask(self,velocity_mask): self.velocity_mask = velocity_mask def debug_distrib(self,var,name): var = var.detach().cpu().numpy() density,_= np.histogram(var,[-100,-10,-1,0,1,10,100],density=True) print("{} distri:{}".format(name,density)) def f(self, t, x, u, pars=None, variables_from_optimizer=None): """ Function to be integrated, i.e., right hand side of the EPDiff equation: :math:`-(div(m_1v),...,div(m_dv))^T-(Dv)^Tm' :math:`-D\\phi v` :param t: time (ignored; not time-dependent) :param x: state, here the image, vector momentum, m, and the map, :math:`\\phi` :param u: ignored, no external input :param pars: ignored (does not expect any additional inputs) :param variables_from_optimizer: variables that can be passed from the optimizer :return: right hand side [m,phi] """ # assume x[0] is m and x[1] is phi for the state m = x[0] m=m.clamp(max=1., min=-1.) phi = x[1] return_val_name = [] sm_weight = None if self.update_sm_by_advect: if not self.update_sm_with_interpolation: sm_weight_pre = x[2] sm_weight = self.embedded_smoother.smooth(sm_weight_pre) v, extra_ret = self.smoother.smooth(m, None, {'w':sm_weight},multi_output=True) if self.velocity_mask is not None: v = v* self.velocity_mask new_phi = self.rhs.rhs_advect_map_multiNC(phi, v) new_sm_weight_pre = self.rhs.rhs_advect_map_multiNC(sm_weight_pre, v) new_m = self.rhs.rhs_adapt_epdiff_wkw_multiNC(m, v, new_sm_weight_pre, extra_ret, self.embedded_smoother) ret_val = [new_m, new_phi,new_sm_weight_pre] return_val_name =['new_m','new_phi','new_sm_weight'] else: if self.compute_on_initial_map: sm_weight = x[2] sm_phi = x[3] new_sm_weight = utils.compute_warped_image_multiNC(sm_weight, sm_phi, self.spacing, 1, zero_boundary=False) pre_weight = sm_weight new_sm_weight = self.embedded_smoother.smooth(new_sm_weight) #print('t{},m min, mean,max {} {} {}'.format(t,m.min().item(),m.mean().item(),m.max().item())) v,extra_ret = self.smoother.smooth(m,None,{'w': new_sm_weight},multi_output=True) if self.velocity_mask is not None: v = v * self.velocity_mask new_m = self.rhs.rhs_adapt_epdiff_wkw_multiNC(m,v,pre_weight,extra_ret,self.embedded_smoother) new_phi = self.rhs.rhs_advect_map_multiNC(phi, v) new_sm_phi = self.rhs.rhs_advect_map_multiNC(sm_phi, v) new_sm_weight = self.update_sm_weight.detach() ret_val = [new_m, new_phi,new_sm_weight,new_sm_phi] return_val_name = ['new_m', 'new_phi', 'new_sm_weight','new_sm_phi'] else: #todo just attention here is what we currently used sm_weight = x[2] new_sm_weight = utils.compute_warped_image_multiNC(sm_weight, phi, self.spacing, 1, zero_boundary=False) pre_weight = sm_weight new_sm_weight = self.embedded_smoother.smooth(new_sm_weight) v, extra_ret = self.smoother.smooth(m, None,{'w':new_sm_weight}, multi_output=True) if self.velocity_mask is not None: v = v * self.velocity_mask new_m = self.rhs.rhs_adapt_epdiff_wkw_multiNC(m,v,pre_weight,extra_ret,self.embedded_smoother) new_phi = self.rhs.rhs_advect_map_multiNC(phi, v) new_sm_weight = self.update_sm_weight.detach() ret_val = [new_m, new_phi, new_sm_weight] return_val_name = ['new_m', 'new_phi', 'new_sm_weight'] else: if not t==0: if self.use_the_first_step_penalty: self.smoother.disable_penalty_computation() else: self.smoother.enable_accumulated_penalty() I = utils.compute_warped_image_multiNC(pars['I0'], phi, self.spacing, 1,zero_boundary=True) pars['I'] = I.detach() # TODO check whether I should be detached here v = self.smoother.smooth(m, None, pars, variables_from_optimizer) if self.velocity_mask is not None: v = v * self.velocity_mask new_m = self.rhs.rhs_epdiff_multiNC(m, v) new_phi = self.rhs.rhs_advect_map_multiNC(phi, v) ret_val = [new_m, new_phi] return_val_name =['new_m','new_phi'] if self.debug_mode_on: toshows = [m, v,phi]+ret_val if sm_weight is None else [m, v,phi]+ret_val +[sm_weight] name = ['m', 'v','phi']+return_val_name if sm_weight is None else ['m', 'v','phi']+return_val_name +['sm_weight'] for i, toshow in enumerate(toshows): print('t{},{} min, mean,max {} {} {}'.format(t, name[i], toshow.min().item(), toshow.mean().item(), toshow.max().item())) self.debug_distrib(toshow, name[i]) self.debug_nan(toshow,t,name[i]) return ret_val # print('max(|v|) = ' + str( v.abs().max() )) class EPDiffScalarMomentum(ForwardModel): """ Base class for scalar momentum EPDiff solutions. Defines a smoother that can be commonly used. """ def __init__(self, sz, spacing, smoother, params): super(EPDiffScalarMomentum,self).__init__(sz,spacing,params) self.smoother = smoother class EPDiffScalarMomentumImage(EPDiffScalarMomentum): """ Forward model for the scalar momentum EPdiff equation. State is the scalar momentum, lam, and the image I :math:`(m_1,...,m_d)^T_t = -(div(m_1v),...,div(m_dv))^T-(Dv)^Tm` :math:`v=Km` :math:'m=\\lambda\\nabla I` :math:`I_t+\\nabla I^Tv=0` :math:`\\lambda_t + div(\\lambda v)=0` """ def __init__(self, sz, spacing, smoother, params=None): super(EPDiffScalarMomentumImage, self).__init__(sz, spacing, smoother, params) def f(self, t, x, u, pars=None, variables_from_optimizer=None): """ Function to be integrated, i.e., right hand side of the EPDiff equation: :math:`-(div(m_1v),...,div(m_dv))^T-(Dv)^Tm` :math:`-\\nabla I^Tv` :math: `-div(\\lambda v)` :param t: time (ignored; not time-dependent) :param x: state, here the scalar momentum, lam, and the image, I, itself :param u: no external input :param pars: ignored (does not expect any additional inputs) :param variables_from_optimizer: variables that can be passed from the optimizer :return: right hand side [lam,I] """ # assume x[0] is \lambda and x[1] is I for the state lam = x[0] I = x[1] # now compute the momentum m = utils.compute_vector_momentum_from_scalar_momentum_multiNC(lam, I, self.sz, self.spacing) v = self.smoother.smooth(m,None,utils.combine_dict(pars,{'I':I}),variables_from_optimizer) # advection for I, scalar-conservation law for lam return [self.rhs.rhs_scalar_conservation_multiNC(lam, v), self.rhs.rhs_advect_image_multiNC(I, v)] class EPDiffScalarMomentumMap(EPDiffScalarMomentum): """ Forward model for the scalar momentum EPDiff equation. State is the scalar momentum, lam, the image, I, and the transform, phi. :math:`(m_1,...,m_d)^T_t = -(div(m_1v),...,div(m_dv))^T-(Dv)^Tm` :math:`v=Km` :math:`m=\\lambda\\nabla I` :math:`I_t+\\nabla I^Tv=0` :math:`\\lambda_t + div(\\lambda v)=0` :math:`\\Phi_t+D\\Phi v=0` """ def __init__(self, sz, spacing, smoother, params=None, compute_inverse_map=False): super(EPDiffScalarMomentumMap, self).__init__(sz,spacing, smoother, params) self.compute_inverse_map = compute_inverse_map """If True then computes the inverse map on the fly for a map-based solution""" def f(self,t, x, u, pars=None, variables_from_optimizer=None): """ Function to be integrated, i.e., right hand side of the EPDiff equation: :math:`-(div(m_1v),...,div(m_dv))^T-(Dv)^Tm` :math:`-\\nabla I^Tv` :math:`-div(\\lambda v)` :math:`-D\\Phi v` :param t: time (ignored; not time-dependent) :param x: state, here the scalar momentum, lam, the image, I, and the transform, :math:`\\phi` :param u: ignored, no external input :param pars: ignored (does not expect any additional inputs) :param variables_from_optimizer: variables that can be passed from the optimizer :return: right hand side [lam,I,phi] """ # assume x[0] is lam and x[1] is I and x[2] is phi for the state lam = x[0] I = x[1] phi = x[2] if self.compute_inverse_map: phi_inv = x[3] # now compute the momentum m = utils.compute_vector_momentum_from_scalar_momentum_multiNC(lam, I, self.sz, self.spacing) # todo: replace this by phi again #v = self.smoother.smooth(m,None,[phi,True],variables_from_optimizer) v = self.smoother.smooth(m,None,utils.combine_dict(pars,{'I':I}),variables_from_optimizer) if self.compute_inverse_map: ret_val = [self.rhs.rhs_scalar_conservation_multiNC(lam,v), self.rhs.rhs_advect_image_multiNC(I,v), self.rhs.rhs_advect_map_multiNC(phi,v), self.rhs.rhs_lagrangian_evolve_map_multiNC(phi_inv,v)] else: ret_val = [self.rhs.rhs_scalar_conservation_multiNC(lam,v), self.rhs.rhs_advect_image_multiNC(I,v), self.rhs.rhs_advect_map_multiNC(phi,v)] return ret_val
from collections.abc import Mapping from datetime import datetime import logging from typing import Optional from stackdriver_log_formatter.serializer import DefaultFunc, dumps class StackdriverLogFormatter(logging.Formatter): """Log formatter suitable for Stackdriver Logging. This formatter print log as a single-line json with appropriate fields. For detailed information about each fields, refer to Stackdriver's API document [1]_ and fluent-plugin-google-cloud source [2]_. References ---------- .. [1]: https://cloud.google.com/logging/docs/reference/v2/rest/v2/LogEntry .. [2]: https://github.com/GoogleCloudPlatform/fluent-plugin-google-cloud Example ------- >>> # setup >>> logging.basicConfig(level=logging.INFO, stream=sys.stdout) >>> logging.root.handlers[0].setFormatter(StackdriverLogFormatter()) >>> # logging >>> logger = logging.getLogger(__name__) >>> logger.info('Hello world') >>> # With custom fields (shown in 'jsonPayload' in Stackdriver) >>> logger.info('bla bla bla', {'customFiled': 123}) >>> logger.info('bla bla bla: %(customeField)s', {'customFiled': 123}) >>> # With exception >>> try: ... 1 / 0 ... except Exception: ... logger.exception('Oops, an error occured!') """ DATE_FORMAT = '%Y-%m-%dT%H:%M:%S.%fZ' def __init__(self, *, default: DefaultFunc=None): """Initialize formatter. Keyword Arguments ----------------- default: function or None, optional A function called to serialize non-standard objects. It should return a json serializable version of the object or raise a TypeError. """ self.default = default def formatTime(self, record: logging.LogRecord, datefmt: Optional[str]=None) -> str: """Return the creation time of the specified LogRecord as formatted text. The format is always ISO8601 in UTC ('Z'-suffixed), so `datefmt` argument is ignored. We use `datetime.datetime` rather than `time.time` to print subseconds. """ return datetime.utcfromtimestamp(record.created).strftime(self.DATE_FORMAT) def usesTime(self) -> bool: """Check if the format uses the creation time of the record. This is always true. """ return True def format(self, record: logging.LogRecord) -> str: """Format the specified record as text. This will be a single-line json with appropriate fields. """ record.message = record.getMessage() record.asctime = self.formatTime(record) if record.exc_info and not record.exc_text: record.exc_text = self.formatException(record.exc_info) log_obj = { 'severity': record.levelname, 'time': record.asctime, 'message': record.message, 'logger': record.name, 'module': record.module, 'logging.googleapis.com/sourceLocation': { 'file': record.pathname, 'line': record.lineno, 'function': record.funcName, }, 'process': { 'name': record.processName, 'id': record.process, }, 'thread': { 'name': record.threadName, 'id': record.thread, }, } if record.exc_info: log_obj['exceptionType'] = type(record.exc_info[1]).__name__ if record.exc_text: log_obj['stackTrace'] = record.exc_text if record.stack_info: log_obj['stackInfo'] = self.formatStack(record.stack_info) if isinstance(record.args, Mapping): for k, v in record.args.items(): if k in log_obj or k in ('exceptionType', 'stackTrace', 'stackInfo'): continue log_obj.setdefault(k, v) return dumps(log_obj, default=self.default)
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """This script is used to synthesize generated parts of this library.""" import logging from pathlib import Path import subprocess import synthtool as s from synthtool.languages import php from synthtool import _tracked_paths logging.basicConfig(level=logging.DEBUG) src = Path(f"../{php.STAGING_DIR}/Redis").resolve() dest = Path().resolve() # Added so that we can pass copy_excludes in the owlbot_main() call _tracked_paths.add(src) php.owlbot_main( src=src, dest=dest, copy_excludes=[ src / "*/src/V1/CloudRedisClient.php", src / "*/src/V1beta1/CloudRedisClient.php" ] ) # document and utilize apiEndpoint instead of serviceAddress s.replace( "**/Gapic/*GapicClient.php", r"'serviceAddress' =>", r"'apiEndpoint' =>") s.replace( "**/Gapic/*GapicClient.php", r"@type string \$serviceAddress\n\s+\*\s+The address", r"""@type string $serviceAddress * **Deprecated**. This option will be removed in a future major release. Please * utilize the `$apiEndpoint` option instead. * @type string $apiEndpoint * The address""") s.replace( "**/Gapic/*GapicClient.php", r"\$transportConfig, and any \$serviceAddress", r"$transportConfig, and any `$apiEndpoint`") # V1 is GA, so remove @experimental tags s.replace( 'src/V1/**/*Client.php', r'^(\s+\*\n)?\s+\*\s@experimental\n', '') # Change the wording for the deprecation warning. s.replace( 'src/*/*_*.php', r'will be removed in the next major release', 'will be removed in a future release') # Fix class references in gapic samples for version in ['V1', 'V1beta1']: pathExpr = 'src/' + version + '/Gapic/CloudRedisGapicClient.php' types = { 'new CloudRedisClient': r'new Google\\Cloud\\Redis\\'+ version + r'\\CloudRedisClient', 'new Instance': r'new Google\\Cloud\\Redis\\' + version + r'\\Instance', '= Tier::': r'= Google\\Cloud\\Redis\\' + version + r'\\Instance\\Tier::', 'new FieldMask': r'new Google\\Protobuf\\FieldMask', 'new InputConfig': r'new Google\\Cloud\\Redis\\' + version + r'\\InputConfig', 'new OutputConfig': r'new Google\\Cloud\\Redis\\' + version + r'\\OutputConfig', '= DataProtectionMode': r'= Google\\Cloud\\Redis\\' + version + r'\\FailoverInstanceRequest\\DataProtectionMode::' } for search, replace in types.items(): s.replace( pathExpr, search, replace ) ### [START] protoc backwards compatibility fixes # roll back to private properties. s.replace( "src/**/V*/**/*.php", r"Generated from protobuf field ([^\n]{0,})\n\s{5}\*/\n\s{4}protected \$", r"""Generated from protobuf field \1 */ private $""") # prevent proto messages from being marked final s.replace( "src/**/V*/**/*.php", r"final class", r"class") # Replace "Unwrapped" with "Value" for method names. s.replace( "src/**/V*/**/*.php", r"public function ([s|g]\w{3,})Unwrapped", r"public function \1Value" ) ### [END] protoc backwards compatibility fixes # fix relative cloud.google.com links s.replace( "src/**/V*/**/*.php", r"(.{0,})\]\((/.{0,})\)", r"\1](https://cloud.google.com\2)" )
#import libraries of python opencv import cv2 # capture video/ video path cap = cv2.VideoCapture('cars.mp4') #use trained cars XML classifiers car_cascade = cv2.CascadeClassifier('haarcascade_cars.xml') #read until video is completed while True: #capture frame by frame ret, frame = cap.read() #convert video into gray scale of each frames gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) #detect cars in the video cars = car_cascade.detectMultiScale(gray, 1.1, 3) #cv2.im_write(cars) #to draw a rectangle in each cars for (x,y,w,h) in cars: cv2.rectangle(frame,(x,y),(x+w,y+h),(0,255,0),2) cv2.imshow('video', frame) crop_img = frame[y:y+h,x:x+w] #press Q on keyboard to exit if cv2.waitKey(25) & 0xFF == ord('q'): break #release the video-capture object cap.release() #close all the frames cv2.destroyAllWindows()
""" A WebSub Hub is an implementation that handles subscription requests and distributes the content to subscribers when the corresponding topic URL has been updated. Hubs MUST support subscription requests with a secret and deliver [authenticated requests](https://www.w3.org/TR/websub/#authenticated-content-distribution) when requested. Hubs MUST deliver the full contents of the topic URL in the request, and MAY reduce the payload to a diff if the content type supports it. The conformance criteria are described in Conformance Classes above. """ class Hub: ...
#!/usr/bin/env python import os import os.path import re import sys import time import json import random from subprocess import check_call, call, check_output, Popen, PIPE, CalledProcessError netmask = ('127.0.0.1', '127.0.0.0') rpc_param = { 'target_ip': '127.0.0.1', 'port': 3260, 'initiator_name': 'ANY', 'netmask': netmask, 'lun_total': 3, 'malloc_bdev_size': 64, 'malloc_block_size': 512, 'queue_depth': 64, 'target_name': 'Target3', 'alias_name': 'Target3_alias', 'chap_disable': 1, 'chap_mutal': 0, 'chap_required': 0, 'chap_auth_group': 0, 'trace_flag': 'rpc' } class RpcException(Exception): def __init__(self, retval, *args): super(RpcException, self).__init__(*args) self.retval = retval class spdk_rpc(object): def __init__(self, rpc_py): self.rpc_py = rpc_py def __getattr__(self, name): def call(*args): cmd = "python {} {}".format(self.rpc_py, name) for arg in args: cmd += " {}".format(arg) return check_output(cmd, shell=True) return call def verify(expr, retcode, msg): if not expr: raise RpcException(retcode, msg) def verify_trace_flag_rpc_methods(rpc_py, rpc_param): rpc = spdk_rpc(rpc_py) output = rpc.get_trace_flags() jsonvalue = json.loads(output) verify(not jsonvalue[rpc_param['trace_flag']], 1, "get_trace_flags returned {}, expected false".format(jsonvalue)) rpc.set_trace_flag(rpc_param['trace_flag']) output = rpc.get_trace_flags() jsonvalue = json.loads(output) verify(jsonvalue[rpc_param['trace_flag']], 1, "get_trace_flags returned {}, expected true".format(jsonvalue)) rpc.clear_trace_flag(rpc_param['trace_flag']) output = rpc.get_trace_flags() jsonvalue = json.loads(output) verify(not jsonvalue[rpc_param['trace_flag']], 1, "get_trace_flags returned {}, expected false".format(jsonvalue)) print "verify_trace_flag_rpc_methods passed" def verify_iscsi_connection_rpc_methods(rpc_py): rpc = spdk_rpc(rpc_py) output = rpc.get_iscsi_connections() jsonvalue = json.loads(output) verify(not jsonvalue, 1, "get_iscsi_connections returned {}, expected empty".format(jsonvalue)) portal_tag = '1' initiator_tag = '1' rpc.construct_malloc_bdev(rpc_param['malloc_bdev_size'], rpc_param['malloc_block_size']) rpc.add_portal_group(portal_tag, "{}:{}".format(rpc_param['target_ip'], str(rpc_param['port']))) rpc.add_initiator_group(initiator_tag, rpc_param['initiator_name'], rpc_param['netmask'][0]) lun_mapping = "Malloc" + str(rpc_param['lun_total']) + ":0" net_mapping = portal_tag + ":" + initiator_tag rpc.construct_target_node(rpc_param['target_name'], rpc_param['alias_name'], lun_mapping, net_mapping, rpc_param['queue_depth'], rpc_param['chap_disable'], rpc_param['chap_mutal'], rpc_param['chap_required'], rpc_param['chap_auth_group']) check_output('iscsiadm -m discovery -t st -p {}'.format(rpc_param['target_ip']), shell=True) check_output('iscsiadm -m node --login', shell=True) name = json.loads(rpc.get_target_nodes())[0]['name'] output = rpc.get_iscsi_connections() jsonvalues = json.loads(output) verify(jsonvalues[0]['target_node_name'] == rpc_param['target_name'], 1, "target node name vaule is {}, expected {}".format(jsonvalues[0]['target_node_name'], rpc_param['target_name'])) verify(jsonvalues[0]['id'] == 0, 1, "device id value is {}, expected 0".format(jsonvalues[0]['id'])) verify(jsonvalues[0]['initiator_addr'] == rpc_param['target_ip'], 1, "initiator address values is {}, expected {}".format(jsonvalues[0]['initiator_addr'], rpc_param['target_ip'])) verify(jsonvalues[0]['target_addr'] == rpc_param['target_ip'], 1, "target address values is {}, expected {}".format(jsonvalues[0]['target_addr'], rpc_param['target_ip'])) check_output('iscsiadm -m node --logout', shell=True) check_output('iscsiadm -m node -o delete', shell=True) rpc.delete_initiator_group(initiator_tag) rpc.delete_portal_group(portal_tag) rpc.delete_target_node(name) output = rpc.get_iscsi_connections() jsonvalues = json.loads(output) verify(not jsonvalues, 1, "get_iscsi_connections returned {}, expected empty".format(jsonvalues)) print "verify_iscsi_connection_rpc_methods passed" def verify_scsi_devices_rpc_methods(rpc_py): rpc = spdk_rpc(rpc_py) output = rpc.get_scsi_devices() jsonvalue = json.loads(output) verify(not jsonvalue, 1, "get_scsi_devices returned {}, expected empty".format(jsonvalue)) portal_tag = '1' initiator_tag = '1' rpc.construct_malloc_bdev(rpc_param['malloc_bdev_size'], rpc_param['malloc_block_size']) rpc.add_portal_group(portal_tag, "{}:{}".format(rpc_param['target_ip'], str(rpc_param['port']))) rpc.add_initiator_group(initiator_tag, rpc_param['initiator_name'], rpc_param['netmask'][0]) lun_mapping = "Malloc" + str(rpc_param['lun_total']) + ":0" net_mapping = portal_tag + ":" + initiator_tag rpc.construct_target_node(rpc_param['target_name'], rpc_param['alias_name'], lun_mapping, net_mapping, rpc_param['queue_depth'], rpc_param['chap_disable'], rpc_param['chap_mutal'], rpc_param['chap_required'], rpc_param['chap_auth_group']) check_output('iscsiadm -m discovery -t st -p {}'.format(rpc_param['target_ip']), shell=True) check_output('iscsiadm -m node --login', shell=True) name = json.loads(rpc.get_target_nodes())[0]['name'] output = rpc.get_scsi_devices() jsonvalues = json.loads(output) verify(jsonvalues[0]['device_name'] == rpc_param['target_name'], 1, "device name vaule is {}, expected {}".format(jsonvalues[0]['device_name'], rpc_param['target_name'])) verify(jsonvalues[0]['id'] == 0, 1, "device id value is {}, expected 0".format(jsonvalues[0]['id'])) check_output('iscsiadm -m node --logout', shell=True) check_output('iscsiadm -m node -o delete', shell=True) rpc.delete_initiator_group(initiator_tag) rpc.delete_portal_group(portal_tag) rpc.delete_target_node(name) output = rpc.get_scsi_devices() jsonvalues = json.loads(output) verify(not jsonvalues, 1, "get_scsi_devices returned {}, expected empty".format(jsonvalues)) print "verify_scsi_devices_rpc_methods passed" def verify_luns_rpc_methods(rpc_py, rpc_param): rpc = spdk_rpc(rpc_py) output = rpc.get_luns() jsonvalue = json.loads(output) verify(not jsonvalue, 1, "get_luns returned {}, expected empty".format(jsonvalue)) for i in range(1, rpc_param['lun_total'] + 1): rpc.construct_malloc_bdev(rpc_param['malloc_bdev_size'], rpc_param['malloc_block_size']) output = rpc.get_luns() jsonvalue = json.loads(output) verify(not jsonvalue, 1, "get_luns returned {}, expected empty".format(jsonvalue)) print "verify_luns_rpc_methods passed" def verify_portal_groups_rpc_methods(rpc_py, rpc_param): rpc = spdk_rpc(rpc_py) output = rpc.get_portal_groups() jsonvalues = json.loads(output) verify(not jsonvalues, 1, "get_portal_groups returned {} groups, expected empty".format(jsonvalues)) lo_ip = ('127.0.0.1', '127.0.0.6') nics = json.loads(rpc.get_interfaces()) for x in nics: if x["ifc_index"] == 'lo': rpc.add_ip_address(x["ifc_index"], lo_ip[1]) for idx, value in enumerate(lo_ip): # The portal group tag must start at 1 tag = idx + 1 rpc.add_portal_group(tag, "{}:{}".format(value, rpc_param['port'])) output = rpc.get_portal_groups() jsonvalues = json.loads(output) verify(len(jsonvalues) == tag, 1, "get_portal_groups returned {} groups, expected {}".format(len(jsonvalues), tag)) tag_list = [] for idx, value in enumerate(jsonvalues): verify(value['portals'][0]['host'] == lo_ip[idx], 1, "host value is {}, expected {}".format(value['portals'][0]['host'], rpc_param['target_ip'])) verify(value['portals'][0]['port'] == str(rpc_param['port']), 1, "port value is {}, expected {}".format(value['portals'][0]['port'], str(rpc_param['port']))) tag_list.append(value['tag']) verify(value['tag'] == idx + 1, 1, "tag value is {}, expected {}".format(value['tag'], idx + 1)) for idx, value in enumerate(tag_list): rpc.delete_portal_group(value) output = rpc.get_portal_groups() jsonvalues = json.loads(output) verify(len(jsonvalues) == (len(tag_list) - (idx + 1)), 1, "get_portal_group returned {} groups, expected {}".format(len(jsonvalues), (len(tag_list) - (idx + 1)))) if not jsonvalues: break for jidx, jvalue in enumerate(jsonvalues): verify(jvalue['portals'][0]['host'] == lo_ip[idx + jidx + 1], 1, "host value is {}, expected {}".format(jvalue['portals'][0]['host'], lo_ip[idx + jidx + 1])) verify(jvalue['portals'][0]['port'] == str(rpc_param['port']), 1, "port value is {}, expected {}".format(jvalue['portals'][0]['port'], str(rpc_param['port']))) verify(jvalue['tag'] != value or jvalue['tag'] == tag_list[idx + jidx + 1], 1, "tag value is {}, expected {} and not {}".format(jvalue['tag'], tag_list[idx + jidx + 1], value)) for x in nics: if x["ifc_index"] == 'lo': rpc.delete_ip_address(x["ifc_index"], lo_ip[1]) print "verify_portal_groups_rpc_methods passed" def verify_initiator_groups_rpc_methods(rpc_py, rpc_param): rpc = spdk_rpc(rpc_py) output = rpc.get_initiator_groups() jsonvalues = json.loads(output) verify(not jsonvalues, 1, "get_initiator_groups returned {}, expected empty".format(jsonvalues)) for idx, value in enumerate(rpc_param['netmask']): # The initiator group tag must start at 1 tag = idx + 1 rpc.add_initiator_group(tag, rpc_param['initiator_name'], value) output = rpc.get_initiator_groups() jsonvalues = json.loads(output) verify(len(jsonvalues) == tag, 1, "get_initiator_groups returned {} groups, expected {}".format(len(jsonvalues), tag)) tag_list = [] for idx, value in enumerate(jsonvalues): verify(value['initiators'][0] == rpc_param['initiator_name'], 1, "initiator value is {}, expected {}".format(value['initiators'][0], rpc_param['initiator_name'])) tag_list.append(value['tag']) verify(value['tag'] == idx + 1, 1, "tag value is {}, expected {}".format(value['tag'], idx + 1)) verify(value['netmasks'][0] == rpc_param['netmask'][idx], 1, "netmasks value is {}, expected {}".format(value['netmasks'][0], rpc_param['netmask'][idx])) for idx, value in enumerate(tag_list): rpc.delete_initiator_group(value) output = rpc.get_initiator_groups() jsonvalues = json.loads(output) verify(len(jsonvalues) == (len(tag_list) - (idx + 1)), 1, "get_initiator_groups returned {} groups, expected {}".format(len(jsonvalues), (len(tag_list) - (idx + 1)))) if not jsonvalues: break for jidx, jvalue in enumerate(jsonvalues): verify(jvalue['initiators'][0] == rpc_param['initiator_name'], 1, "initiator value is {}, expected {}".format(jvalue['initiators'][0], rpc_param['initiator_name'])) verify(jvalue['tag'] != value or jvalue['tag'] == tag_list[idx + jidx + 1], 1, "tag value is {}, expected {} and not {}".format(jvalue['tag'], tag_list[idx + jidx + 1], value)) verify(jvalue['netmasks'][0] == rpc_param['netmask'][idx + jidx + 1], 1, "netmasks value is {}, expected {}".format(jvalue['netmasks'][0], rpc_param['netmask'][idx + jidx + 1])) print "verify_initiator_groups_rpc_method passed." def verify_target_nodes_rpc_methods(rpc_py, rpc_param): rpc = spdk_rpc(rpc_py) portal_tag = '1' initiator_tag = '1' output = rpc.get_target_nodes() jsonvalues = json.loads(output) verify(not jsonvalues, 1, "get_target_nodes returned {}, expected empty".format(jsonvalues)) rpc.construct_malloc_bdev(rpc_param['malloc_bdev_size'], rpc_param['malloc_block_size']) rpc.add_portal_group(portal_tag, "{}:{}".format(rpc_param['target_ip'], str(rpc_param['port']))) rpc.add_initiator_group(initiator_tag, rpc_param['initiator_name'], rpc_param['netmask'][0]) lun_mapping = "Malloc" + str(rpc_param['lun_total']) + ":0" net_mapping = portal_tag + ":" + initiator_tag rpc.construct_target_node(rpc_param['target_name'], rpc_param['alias_name'], lun_mapping, net_mapping, rpc_param['queue_depth'], rpc_param['chap_disable'], rpc_param['chap_mutal'], rpc_param['chap_required'], rpc_param['chap_auth_group']) output = rpc.get_target_nodes() jsonvalues = json.loads(output) verify(len(jsonvalues) == 1, 1, "get_target_nodes returned {} nodes, expected 1".format(len(jsonvalues))) verify(jsonvalues[0]['luns'][0]['name'] == "Malloc" + str(rpc_param['lun_total']), 1, "lun_name value is {}, expected Malloc{}".format(jsonvalues[0]['luns'][0]['name'], str(rpc_param['lun_total']))) name = jsonvalues[0]['name'] verify(name == "iqn.2016-06.io.spdk:" + rpc_param['target_name'], 1, "target name value is {}, expected {}".format(name, "iqn.2016-06.io.spdk:" + rpc_param['target_name'])) verify(jsonvalues[0]['alias_name'] == rpc_param['alias_name'], 1, "target alias_name value is {}, expected {}".format(jsonvalues[0]['alias_name'], rpc_param['alias_name'])) verify(jsonvalues[0]['luns'][0]['id'] == 0, 1, "lun id value is {}, expected 0".format(jsonvalues[0]['luns'][0]['id'])) verify(jsonvalues[0]['pg_ig_maps'][0]['ig_tag'] == int(initiator_tag), 1, "initiator group tag value is {}, expected {}".format(jsonvalues[0]['pg_ig_maps'][0]['ig_tag'], initiator_tag)) verify(jsonvalues[0]['queue_depth'] == rpc_param['queue_depth'], 1, "queue depth value is {}, expected {}".format(jsonvalues[0]['queue_depth'], rpc_param['queue_depth'])) verify(jsonvalues[0]['pg_ig_maps'][0]['pg_tag'] == int(portal_tag), 1, "portal group tag value is {}, expected {}".format(jsonvalues[0]['pg_ig_maps'][0]['pg_tag'], portal_tag)) verify(jsonvalues[0]['chap_disabled'] == rpc_param['chap_disable'], 1, "chap disable value is {}, expected {}".format(jsonvalues[0]['chap_disabled'], rpc_param['chap_disable'])) verify(jsonvalues[0]['chap_mutual'] == rpc_param['chap_mutal'], 1, "chap mutual value is {}, expected {}".format(jsonvalues[0]['chap_mutual'], rpc_param['chap_mutal'])) verify(jsonvalues[0]['chap_required'] == rpc_param['chap_required'], 1, "chap required value is {}, expected {}".format(jsonvalues[0]['chap_required'], rpc_param['chap_required'])) verify(jsonvalues[0]['chap_auth_group'] == rpc_param['chap_auth_group'], 1, "chap auth group value is {}, expected {}".format(jsonvalues[0]['chap_auth_group'], rpc_param['chap_auth_group'])) rpc.delete_target_node(name) output = rpc.get_target_nodes() jsonvalues = json.loads(output) verify(not jsonvalues, 1, "get_target_nodes returned {}, expected empty".format(jsonvalues)) rpc.construct_target_node(rpc_param['target_name'], rpc_param['alias_name'], lun_mapping, net_mapping, rpc_param['queue_depth'], rpc_param['chap_disable'], rpc_param['chap_mutal'], rpc_param['chap_required'], rpc_param['chap_auth_group']) rpc.delete_portal_group(portal_tag) rpc.delete_initiator_group(initiator_tag) rpc.delete_target_node(name) output = rpc.get_target_nodes() jsonvalues = json.loads(output) if not jsonvalues: print "This issue will be fixed later." print "verify_target_nodes_rpc_methods passed." def verify_get_interfaces(rpc_py): rpc = spdk_rpc(rpc_py) nics = json.loads(rpc.get_interfaces()) nics_names = set(x["name"].encode('ascii', 'ignore') for x in nics) # parse ip link show to verify the get_interfaces result ifcfg_nics = set(re.findall("\S+:\s(\S+):\s<.*", check_output(["ip", "link", "show"]))) verify(nics_names == ifcfg_nics, 1, "get_interfaces returned {}".format(nics)) print "verify_get_interfaces passed." def help_get_interface_ip_list(rpc_py, nic_name): rpc = spdk_rpc(rpc_py) nics = json.loads(rpc.get_interfaces()) nic = filter(lambda x: x["name"] == nic_name, nics) verify(len(nic) != 0, 1, "Nic name: {} is not found in {}".format(nic_name, [x["name"] for x in nics])) return nic[0]["ip_addr"] def verify_add_delete_ip_address(rpc_py): rpc = spdk_rpc(rpc_py) nics = json.loads(rpc.get_interfaces()) # add ip on up to first 2 nics for x in nics[:2]: faked_ip = "123.123.{}.{}".format(random.randint(1, 254), random.randint(1, 254)) rpc.add_ip_address(x["ifc_index"], faked_ip) verify(faked_ip in help_get_interface_ip_list(rpc_py, x["name"]), 1, "add ip {} to nic {} failed.".format(faked_ip, x["name"])) try: check_call(["ping", "-c", "1", "-W", "1", faked_ip]) except: verify(False, 1, "ping ip {} for {} was failed(adding was successful)".format (faked_ip, x["name"])) rpc.delete_ip_address(x["ifc_index"], faked_ip) verify(faked_ip not in help_get_interface_ip_list(rpc_py, x["name"]), 1, "delete ip {} from nic {} failed.(adding and ping were successful)".format (faked_ip, x["name"])) # ping should be failed and throw an CalledProcessError exception try: check_call(["ping", "-c", "1", "-W", "1", faked_ip]) except CalledProcessError as _: pass except Exception as e: verify(False, 1, "Unexpected exception was caught {}(adding/ping/delete were successful)".format (str(e))) else: verify(False, 1, "ip {} for {} could be pinged after delete ip(adding/ping/delete were successful)".format (faked_ip, x["name"])) print "verify_add_delete_ip_address passed." def verify_add_nvme_bdev_rpc_methods(rpc_py): rpc = spdk_rpc(rpc_py) test_pass = 0 output = check_output(["lspci", "-mm", "-nn"]) addrs = re.findall('^([0-9]{2}:[0-9]{2}.[0-9]) "Non-Volatile memory controller \[0108\]".*-p02', output, re.MULTILINE) for addr in addrs: ctrlr_address = "-b Nvme0 -t pcie -a 0000:{}".format(addr) rpc.construct_nvme_bdev(ctrlr_address) print "add nvme device passed first time" test_pass = 0 try: rpc.construct_nvme_bdev(ctrlr_address) except Exception as e: print "add nvme device passed second time" test_pass = 1 pass else: pass verify(test_pass == 1, 1, "add nvme device passed second time") print "verify_add_nvme_bdev_rpc_methods passed." if __name__ == "__main__": rpc_py = sys.argv[1] try: verify_trace_flag_rpc_methods(rpc_py, rpc_param) verify_get_interfaces(rpc_py) verify_add_delete_ip_address(rpc_py) verify_luns_rpc_methods(rpc_py, rpc_param) verify_portal_groups_rpc_methods(rpc_py, rpc_param) verify_initiator_groups_rpc_methods(rpc_py, rpc_param) verify_target_nodes_rpc_methods(rpc_py, rpc_param) verify_scsi_devices_rpc_methods(rpc_py) verify_iscsi_connection_rpc_methods(rpc_py) verify_add_nvme_bdev_rpc_methods(rpc_py) except RpcException as e: print "{}. Exiting with status {}".format(e.message, e.retval) raise e except Exception as e: raise e sys.exit(0)
# Copyright (c) 2019-2021 Micro Focus or one of its affiliates. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function, division, absolute_import import mock from .base import VerticaPythonUnitTestCase from aiovertica.messages import NoticeResponse from aiovertica.errors import QueryError class NoticeTestCase(VerticaPythonUnitTestCase): SAMPLE_DATA = {b'S': 'FATAL', b'H': 'This is a test hint', b'L': '9999', b'M': 'Failure is on purpose'} @mock.patch.object(NoticeResponse, '_unpack_data') def test_error_message(self, mock_unpack_data): mock_unpack_data.return_value = NoticeTestCase.SAMPLE_DATA notice = NoticeResponse(b'ignored-due-to-mock') self.assertEqual( notice.error_message(), 'Severity: FATAL, Message: Failure is on purpose, Hint: This is a test hint, Line: 9999' ) @mock.patch.object(NoticeResponse, '_unpack_data') def test_attribute_properties(self, mock_unpack_data): mock_unpack_data.return_value = NoticeTestCase.SAMPLE_DATA notice = NoticeResponse(b'ignored-due-to-mock') self.assertEqual(notice.severity, 'FATAL') self.assertEqual(notice.hint, 'This is a test hint') # yes, line is still a string. self.assertEqual(notice.line, '9999') self.assertEqual(notice.message, 'Failure is on purpose') self.assertIsNone(notice.detail) self.assertIsNone(notice.sqlstate) @mock.patch.object(NoticeResponse, '_unpack_data') def test_labeled_values(self, mock_unpack_data): mock_unpack_data.return_value = NoticeTestCase.SAMPLE_DATA notice = NoticeResponse(b'ignored-due-to-mock') self.assertEqual(notice.values, { 'Severity': 'FATAL', 'Hint': 'This is a test hint', 'Line': '9999', 'Message': 'Failure is on purpose'}) @mock.patch.object(NoticeResponse, '_unpack_data') def test_query_error(self, mock_unpack_data): mock_unpack_data.return_value = NoticeTestCase.SAMPLE_DATA notice = NoticeResponse(b'ignored-due-to-mock') query_error = QueryError(notice, 'Select Fake();') self.assertEqual(query_error.severity, 'FATAL') self.assertEqual(query_error.hint, 'This is a test hint') self.assertEqual(query_error.line, '9999') self.assertEqual(query_error.message, 'Failure is on purpose') self.assertIsNone(query_error.detail) self.assertIsNone(query_error.sqlstate) self.assertEqual( str(query_error), 'Severity: FATAL, Message: Failure is on purpose, Hint: This is a test hint, Line: 9999, SQL: \'Select Fake();\'')
import operator class SegmentTree(object): def __init__(self, capacity, operation, neutral_element): """Build a Segment Tree data structure. https://en.wikipedia.org/wiki/Segment_tree Can be used as regular array, but with two important differences: a) setting item's value is slightly slower. It is O(lg capacity) instead of O(1). b) user has access to an efficient ( O(log segment size) ) `reduce` operation which reduces `operation` over a contiguous subsequence of items in the array. Paramters --------- capacity: int Total size of the array - must be a power of two. operation: lambda obj, obj -> obj and operation for combining elements (eg. sum, max) must form a mathematical group together with the set of possible values for array elements (i.e. be associative) neutral_element: obj neutral element for the operation above. eg. float('-inf') for max and 0 for sum. """ assert capacity > 0 and capacity & (capacity - 1) == 0, "capacity must be positive and a power of 2." self._capacity = capacity self._value = [neutral_element for _ in range(2 * capacity)] self._operation = operation def _reduce_helper(self, start, end, node, node_start, node_end): if start == node_start and end == node_end: return self._value[node] mid = (node_start + node_end) // 2 if end <= mid: return self._reduce_helper(start, end, 2 * node, node_start, mid) else: if mid + 1 <= start: return self._reduce_helper(start, end, 2 * node + 1, mid + 1, node_end) else: return self._operation( self._reduce_helper(start, mid, 2 * node, node_start, mid), self._reduce_helper(mid + 1, end, 2 * node + 1, mid + 1, node_end) ) def reduce(self, start=0, end=None): """Returns result of applying `self.operation` to a contiguous subsequence of the array. self.operation(arr[start], operation(arr[start+1], operation(... arr[end]))) Parameters ---------- start: int beginning of the subsequence end: int end of the subsequences Returns ------- reduced: obj result of reducing self.operation over the specified range of array elements. """ if end is None: end = self._capacity if end < 0: end += self._capacity end -= 1 return self._reduce_helper(start, end, 1, 0, self._capacity - 1) def __setitem__(self, idx, val): # index of the leaf idx += self._capacity self._value[idx] = val idx //= 2 while idx >= 1: self._value[idx] = self._operation( self._value[2 * idx], self._value[2 * idx + 1] ) idx //= 2 def __getitem__(self, idx): assert 0 <= idx < self._capacity return self._value[self._capacity + idx] class SumSegmentTree(SegmentTree): def __init__(self, capacity): super(SumSegmentTree, self).__init__( capacity=capacity, operation=operator.add, neutral_element=0.0 ) def sum(self, start=0, end=None): """Returns arr[start] + ... + arr[end]""" return super(SumSegmentTree, self).reduce(start, end) def find_prefixsum_idx(self, prefixsum): """Find the highest index `i` in the array such that sum(arr[0] + arr[1] + ... + arr[i - i]) <= prefixsum if array values are probabilities, this function allows to sample indexes according to the discrete probability efficiently. Parameters ---------- perfixsum: float upperbound on the sum of array prefix Returns ------- idx: int highest index satisfying the prefixsum constraint """ assert 0 <= prefixsum <= self.sum() + 1e-5 idx = 1 while idx < self._capacity: # while non-leaf if self._value[2 * idx] > prefixsum: idx = 2 * idx else: prefixsum -= self._value[2 * idx] idx = 2 * idx + 1 return idx - self._capacity class MinSegmentTree(SegmentTree): def __init__(self, capacity): super(MinSegmentTree, self).__init__( capacity=capacity, operation=min, neutral_element=float('inf') ) def min(self, start=0, end=None): """Returns min(arr[start], ..., arr[end])""" return super(MinSegmentTree, self).reduce(start, end)
# coding=utf-8 r""" This code was generated by \ / _ _ _| _ _ | (_)\/(_)(_|\/| |(/_ v1.0.0 / / """ from tests import IntegrationTestCase from tests.holodeck import Request from twilio.base.exceptions import TwilioException from twilio.http.response import Response class BucketTestCase(IntegrationTestCase): def test_create_request(self): self.holodeck.mock(Response(500, '')) with self.assertRaises(TwilioException): self.client.verify.v2.services("VAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX") \ .rate_limits("RKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX") \ .buckets.create(max=1, interval=1) values = {'Max': 1, 'Interval': 1, } self.holodeck.assert_has_request(Request( 'post', 'https://verify.twilio.com/v2/Services/VAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX/RateLimits/RKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX/Buckets', data=values, )) def test_create_bucket_response(self): self.holodeck.mock(Response( 201, ''' { "sid": "BLaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "rate_limit_sid": "RKaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "service_sid": "VAaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "account_sid": "ACaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "max": 5, "interval": 60, "date_created": "2015-07-30T20:00:00Z", "date_updated": "2015-07-30T20:00:00Z", "url": "https://verify.twilio.com/v2/Services/VAaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa/RateLimits/RKaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa/Buckets/BLaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" } ''' )) actual = self.client.verify.v2.services("VAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX") \ .rate_limits("RKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX") \ .buckets.create(max=1, interval=1) self.assertIsNotNone(actual) def test_update_request(self): self.holodeck.mock(Response(500, '')) with self.assertRaises(TwilioException): self.client.verify.v2.services("VAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX") \ .rate_limits("RKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX") \ .buckets("BLXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX").update() self.holodeck.assert_has_request(Request( 'post', 'https://verify.twilio.com/v2/Services/VAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX/RateLimits/RKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX/Buckets/BLXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX', )) def test_update_bucket_response(self): self.holodeck.mock(Response( 200, ''' { "sid": "BLaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "rate_limit_sid": "RKaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "service_sid": "VAaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "account_sid": "ACaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "max": 5, "interval": 60, "date_created": "2015-07-30T20:00:00Z", "date_updated": "2015-07-30T20:00:00Z", "url": "https://verify.twilio.com/v2/Services/VAaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa/RateLimits/RKaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa/Buckets/BLaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" } ''' )) actual = self.client.verify.v2.services("VAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX") \ .rate_limits("RKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX") \ .buckets("BLXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX").update() self.assertIsNotNone(actual) def test_fetch_request(self): self.holodeck.mock(Response(500, '')) with self.assertRaises(TwilioException): self.client.verify.v2.services("VAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX") \ .rate_limits("RKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX") \ .buckets("BLXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX").fetch() self.holodeck.assert_has_request(Request( 'get', 'https://verify.twilio.com/v2/Services/VAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX/RateLimits/RKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX/Buckets/BLXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX', )) def test_fetch_bucket_response(self): self.holodeck.mock(Response( 200, ''' { "sid": "BLaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "rate_limit_sid": "RKaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "service_sid": "VAaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "account_sid": "ACaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "max": 5, "interval": 60, "date_created": "2015-07-30T20:00:00Z", "date_updated": "2015-07-30T20:00:00Z", "url": "https://verify.twilio.com/v2/Services/VAaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa/RateLimits/RKaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa/Buckets/BLaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" } ''' )) actual = self.client.verify.v2.services("VAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX") \ .rate_limits("RKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX") \ .buckets("BLXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX").fetch() self.assertIsNotNone(actual) def test_list_request(self): self.holodeck.mock(Response(500, '')) with self.assertRaises(TwilioException): self.client.verify.v2.services("VAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX") \ .rate_limits("RKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX") \ .buckets.list() self.holodeck.assert_has_request(Request( 'get', 'https://verify.twilio.com/v2/Services/VAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX/RateLimits/RKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX/Buckets', )) def test_read_empty_response(self): self.holodeck.mock(Response( 200, ''' { "buckets": [], "meta": { "page": 0, "page_size": 50, "first_page_url": "https://verify.twilio.com/v2/Services/VAaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa/RateLimits/RKaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa/Buckets?PageSize=50&Page=0", "previous_page_url": null, "url": "https://verify.twilio.com/v2/Services/VAaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa/RateLimits/RKaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa/Buckets?PageSize=50&Page=0", "next_page_url": null, "key": "buckets" } } ''' )) actual = self.client.verify.v2.services("VAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX") \ .rate_limits("RKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX") \ .buckets.list() self.assertIsNotNone(actual) def test_read_full_response(self): self.holodeck.mock(Response( 200, ''' { "buckets": [ { "sid": "BLaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "rate_limit_sid": "RKaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "service_sid": "VAaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "account_sid": "ACaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa", "max": 5, "interval": 60, "date_created": "2015-07-30T20:00:00Z", "date_updated": "2015-07-30T20:00:00Z", "url": "https://verify.twilio.com/v2/Services/VAaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa/RateLimits/RKaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa/Buckets/BLaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa" } ], "meta": { "page": 0, "page_size": 50, "first_page_url": "https://verify.twilio.com/v2/Services/VAaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa/RateLimits/RKaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa/Buckets?PageSize=50&Page=0", "previous_page_url": null, "url": "https://verify.twilio.com/v2/Services/VAaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa/RateLimits/RKaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa/Buckets?PageSize=50&Page=0", "next_page_url": null, "key": "buckets" } } ''' )) actual = self.client.verify.v2.services("VAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX") \ .rate_limits("RKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX") \ .buckets.list() self.assertIsNotNone(actual) def test_delete_request(self): self.holodeck.mock(Response(500, '')) with self.assertRaises(TwilioException): self.client.verify.v2.services("VAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX") \ .rate_limits("RKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX") \ .buckets("BLXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX").delete() self.holodeck.assert_has_request(Request( 'delete', 'https://verify.twilio.com/v2/Services/VAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX/RateLimits/RKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX/Buckets/BLXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX', )) def test_delete_response(self): self.holodeck.mock(Response( 204, None, )) actual = self.client.verify.v2.services("VAXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX") \ .rate_limits("RKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX") \ .buckets("BLXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX").delete() self.assertTrue(actual)
import numpy as np # This class generating new list item given first of list item row and second of list item row class Crossover: @staticmethod def crossover(best): row_begin_index = 0 row_half = 2 cross_list = [] for i in range(len(best) - 1): first_part1 = best[i][row_begin_index:row_half, :] first_part2 = best[i + 1][row_half:, :] cross_list.append(np.concatenate((first_part1, first_part2))) second_part1 = best[i][row_half:, :] second_part2 = best[i + 1][row_begin_index:row_half, :] cross_list.append(np.concatenate((second_part2, second_part1))) return cross_list
from typing import Dict, Any from telegram import Update, ParseMode from telegram.ext import CallbackContext from config.constants import ( USER_DATA_V1_SETTINGS_CAMPUS, USER_DATA_V1_SETTINGS_ONLINE, USER_DATA_V1_INTRA_LOGIN, USER_DATA_V1_INTRA_CAMPUS, USER_DATA_V1_SETTINGS_ACTIVE, USER_DATA_V1_AUTHORIZED, USER_DATA_V1_TELEGRAM_USERNAME, USER_DATA_V1_MATCH_WITH, ) from config.env import ADMIN_IDS from utils.lang import COMMAND_DENIED_NOT_AUTHORIZED def info(data: Dict[str, Any], is_admin_request: bool = False) -> str: fields = [ USER_DATA_V1_INTRA_LOGIN, USER_DATA_V1_INTRA_CAMPUS, USER_DATA_V1_SETTINGS_CAMPUS, USER_DATA_V1_SETTINGS_ONLINE, USER_DATA_V1_SETTINGS_ACTIVE, USER_DATA_V1_TELEGRAM_USERNAME, ] if is_admin_request: fields.append(USER_DATA_V1_MATCH_WITH) return '\n'.join(['{}: {}'.format(x, data.get(x, '???')) for x in fields]) def info_other(upd: Update, ctx: CallbackContext) -> None: param = ctx.args[0] user = None for uid, udata in ctx.dispatcher.user_data.items(): if USER_DATA_V1_INTRA_LOGIN not in udata: continue if udata[USER_DATA_V1_INTRA_LOGIN] == param: user = udata break if str(uid) == param: user = udata break if not user: ctx.bot.send_message(upd.effective_user.id, text='{} not found'.format(param)) return message = info(user, is_admin_request=True) ctx.bot.send_message( upd.effective_user.id, text='```\ntelegram.id: {}\n{}\n```'.format( uid, message ), parse_mode=ParseMode.MARKDOWN ) def info_self(upd: Update, ctx: CallbackContext) -> None: message = info(ctx.user_data) ctx.bot.send_message(upd.effective_user.id, text='```\n{}\n```'.format(message), parse_mode=ParseMode.MARKDOWN) def handler_command_info(upd: Update, ctx: CallbackContext) -> None: if not ctx.user_data.get(USER_DATA_V1_AUTHORIZED, False): ctx.bot.send_message(upd.effective_user.id, text=COMMAND_DENIED_NOT_AUTHORIZED) return if ctx.args and upd.effective_user.id in ADMIN_IDS: return info_other(upd, ctx) return info_self(upd, ctx)
import logging import os import re import sys from typing import Any, Dict import PySimpleGUI as sg # type: ignore from PySimpleGUI.PySimpleGUI import Column # type: ignore from .utils.encryption import encrypt_password, generate_key logger = logging.getLogger(__name__) def login_gui() -> Dict[str, Any]: sg.theme('DarkTeal12') def collapse(layout: list, key: str, visible: bool) -> Column: """ Helper function to hide and un-hide layouts """ return sg.pin(sg.Column(layout, key=key, visible=visible)) def main() -> Dict[str, Any]: """ Main GUI function """ new_user_section = [ [sg.Text('Username'), sg.Input(key='_USERNAME_', tooltip='What is your myASNB account username?')], [sg.Text('Password'), sg.Input(key='_PASSWORD_', password_char="*", tooltip='What is your myASNB account password?')], [sg.Text('Investment Amount (RM)'), sg.Input(key='_INVESTMENT_AMOUNT_', tooltip='How much do you want to invest?', change_submits=True, do_not_clear=True)], ] layout = [ [sg.Text('myASNB Unit Holder Login', font='Helvetica 20', justification='center')], [sg.Checkbox('Login as new user', enable_events=True, key='_CHECKBOX_KEY_', tooltip='Tick to login.')], [collapse(new_user_section, '_SECTION_KEY_', False)], [sg.OK('Start', tooltip='Start the bot (Press: ENTER)', size=(10, 1), bind_return_key=True, focus=True), sg.Cancel('Quit', tooltip='Goodbye.', size=(5, 1))], ] window = sg.Window( 'Six Percent', layout, auto_size_text=False, default_element_size=(25, 1), text_justification='l', return_keyboard_events=True, grab_anywhere=False, ) user_credentials_template = dict(username='', password='', investment_amount='') user_credentials = user_credentials_template.copy() section_toggle = False while True: event, values = window.read() if event == '_CHECKBOX_KEY_': section_toggle = not section_toggle window['_SECTION_KEY_'].update(visible=section_toggle) elif event == '_INVESTMENT_AMOUNT_': window.FindElement(event).Update(re.sub("[^0-9]", "", values[event])) user_credentials = { **user_credentials, 'username': values['_USERNAME_'], 'password': values['_PASSWORD_'], 'investment_amount': values['_INVESTMENT_AMOUNT_'], } if event in (sg.WIN_CLOSED, 'Quit'): logger.info('Exiting program gracefully') window.close() sys.exit() elif event == 'Start': break window.close() if not os.path.isfile('secret.key'): generate_key() # Encrypts user password before storing it if user_credentials['password']: user_credentials['password'] = encrypt_password(user_credentials['password']) return dict() if user_credentials == user_credentials_template else user_credentials user_info = main() return user_info if __name__ == '__main__': logger.info(login_gui())
from random import shuffle class Deck(object): CARD_VALUES = ['A', '2', '3', '4', '5', '6', '7', '8', '9', '10', 'J', 'Q', 'K'] CARD_SUITS = ['H', 'D', 'S', 'C'] @staticmethod def get_shuffled_deck(): deck = Deck() deck.shuffle() return deck def __init__(self): self.cards = [] for cardSuit in self.__class__.CARD_SUITS: for cardValue in self.__class__.CARD_VALUES: self.cards.append(Card(cardValue, cardSuit)) def shuffle(self): shuffle(self.cards) def draw(self): return self.cards.pop() class Card(object): def __init__(self, value, suit): self.value = value self.suit = suit def get_value(self): return self.value def get_suit(self): return self.suit def __str__(self): return self.value + self.suit def __eq__(self, other): try: return self.get_value() + self.get_suit() == other.get_value() + other.get_suit() except AttributeError: return False
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Model script to test TF-TensorRT integration.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from unittest import SkipTest # pylint: disable=g-importing-member from tensorflow.compiler.tf2tensorrt.wrap_py_utils import get_linked_tensorrt_version from tensorflow.python.compiler.tensorrt.test import tf_trt_integration_test_base as trt_test from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops import math_ops from tensorflow.python.platform import test class TrtModeTestBase(trt_test.TfTrtIntegrationTestBase): """Test squeeze on batch dim and some unary operations in TF-TRT.""" def GraphFn(self, x1): q = math_ops.abs(x1) q = q + 1.0 q = q * 3.0 q = array_ops.squeeze(q, 0) q = math_ops.abs(q) q = q + 5.0 return array_ops.identity(q, name="output_0") def GetParams(self): """The input has 1 as a first dimension, which is removed by the squeeze. op in the graph. In explicit batch mode, TensorRT can convert the whole graph. In this mode it is possible to manipulate the batch dimension using the squeeze op. In implicit batch mode TensorRT cannot convert the whole graph. We are not allowed to manipulate (squeeze) the first dimension in implicit batch mode. Therefore the graph will be converted using multiple segments. """ return self.BuildParams(self.GraphFn, dtypes.float32, [[1, 12, 5]], [[12, 5]]) def GetConversionParams(self, run_params, implicit_batch=False): """Return a TrtConversionParams for test.""" conversion_params = super(TrtModeTestBase, self).GetConversionParams(run_params) rewriter_config = self.GetTrtRewriterConfig( run_params=run_params, conversion_params=conversion_params, use_implicit_batch=implicit_batch) return conversion_params._replace(rewriter_config_template=rewriter_config) @classmethod def setUpClass(cls): if cls is TrtModeTestBase: raise SkipTest("TrtModeTestBase defines base class for other test.") super(TrtModeTestBase, cls).setUpClass() class ImplicitBatchTest(TrtModeTestBase): def GetConversionParams(self, run_params): """Return a TrtConversionParams for test using implicit batch mdoe.""" return super(ImplicitBatchTest, self).GetConversionParams(run_params, True) def ExpectedEnginesToBuild(self, run_params): """Check that the expected engine is built. Args: run_params: the run parameters. Returns: the expected engines to build. The squeeze op is not converted by TensorRT in implicit batch mode. Because of this we have two TRTEngineOp in the graphs: one for the subgraph before 'squeeze(q,0)', and another one for the rest of the ops after the 'squeeze(q,0)'. """ return ["TRTEngineOp_0", "TRTEngineOp_1"] class ExplicitBatchTest(TrtModeTestBase): def GetParams(self): """We specify input/output masks with static (known) shapes.""" return self.BuildParamsWithMask( self.GraphFn, dtypes.float32, [[1, 12, 5]], [[12, 5]], input_mask=[[True, True, True]], output_mask=[[True, True]]) def GetConversionParams(self, run_params): """Return a TrtConversionParams for test that enables explicit batch.""" return super(ExplicitBatchTest, self).GetConversionParams(run_params, False) def ExpectedEnginesToBuild(self, run_params): """Check that the expected engine is built. Args: run_params: the run parameters. Returns: the expected engines to build. In explicit batch mode the whole graph is converted using a single engine. """ return ["TRTEngineOp_0"] def ShouldRunTest(self, run_params): # Only run for TRT 6 and above. ver = get_linked_tensorrt_version() return ver[0] >= 6 and (not run_params.use_calibration) class DynamicShapesTest(TrtModeTestBase): """Test with dynamic input shapes. DynamicShapesTest is different from ExplicitBatchTest in that it uses input and output masks to change the input and output shapes to unknown shapes. """ def GetParams(self): """We specify input/output mask with dynamic (unknown) shapes.""" return self.BuildParamsWithMask( self.GraphFn, dtypes.float32, [[1, 12, 5]], [[12, 5]], input_mask=[[False, False, False]], output_mask=[[False, False]]) def GetConversionParams(self, run_params): """Return a TrtConversionParams for test that enables explicit batch.""" return super(DynamicShapesTest, self).GetConversionParams(run_params, False) def ExpectedEnginesToBuild(self, run_params): """Return the expected engines to build.""" return ["TRTEngineOp_0"] def ShouldRunTest(self, run_params): # Only run for TRT 6 and above. ver = get_linked_tensorrt_version() return ver[0] >= 6 and (not run_params.use_calibration) if __name__ == "__main__": test.main()
#!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import List from ax.modelbridge.array import ArrayModelBridge from ax.models.numpy_base import NumpyModel # pyre-fixme[13]: Attribute `model` is never initialized. # pyre-fixme[13]: Attribute `outcomes` is never initialized. # pyre-fixme[13]: Attribute `parameters` is never initialized. class NumpyModelBridge(ArrayModelBridge): """A model bridge for using numpy array-based models. This model bridge interfaces with NumpyModel. Requires that all parameters have been transformed to RangeParameters or FixedParameters with float type and no log scale. """ model: NumpyModel outcomes: List[str] parameters: List[str]
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import dataclasses import json import os from dataclasses import dataclass, field from enum import Enum from typing import Any, Dict, List, Optional, Tuple from .file_utils import cached_property, is_torch_available, is_torch_tpu_available, torch_required from .trainer_utils import EvaluationStrategy from .utils import logging if is_torch_available(): import torch if is_torch_tpu_available(): import torch_xla.core.xla_model as xm logger = logging.get_logger(__name__) def default_logdir() -> str: """ Same default as PyTorch """ import socket from datetime import datetime current_time = datetime.now().strftime("%b%d_%H-%M-%S") return os.path.join("runs", current_time + "_" + socket.gethostname()) @dataclass class TrainingArguments: """ TrainingArguments is the subset of the arguments we use in our example scripts **which relate to the training loop itself**. Using :class:`~transformers.HfArgumentParser` we can turn this class into argparse arguments to be able to specify them on the command line. Parameters: output_dir (:obj:`str`): The output directory where the model predictions and checkpoints will be written. overwrite_output_dir (:obj:`bool`, `optional`, defaults to :obj:`False`): If :obj:`True`, overwrite the content of the output directory. Use this to continue training if :obj:`output_dir` points to a checkpoint directory. do_train (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to run training or not. This argument is not directly used by :class:`~transformers.Trainer`, it's intended to be used by your training/evaluation scripts instead. See the `example scripts <https://github.com/huggingface/transformers/tree/master/examples>`__ for more details. do_eval (:obj:`bool`, `optional`): Whether to run evaluation on the dev set or not. Will be set to :obj:`True` if :obj:`evaluation_strategy` is different from :obj:`"no"`. This argument is not directly used by :class:`~transformers.Trainer`, it's intended to be used by your training/evaluation scripts instead. See the `example scripts <https://github.com/huggingface/transformers/tree/master/examples>`__ for more details. do_predict (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to run predictions on the test set or not. This argument is not directly used by :class:`~transformers.Trainer`, it's intended to be used by your training/evaluation scripts instead. See the `example scripts <https://github.com/huggingface/transformers/tree/master/examples>`__ for more details. evaluation_strategy (:obj:`str` or :class:`~transformers.trainer_utils.EvaluationStrategy`, `optional`, defaults to :obj:`"no"`): The evaluation strategy to adopt during training. Possible values are: * :obj:`"no"`: No evaluation is done during training. * :obj:`"steps"`: Evaluation is done (and logged) every :obj:`eval_steps`. * :obj:`"epoch"`: Evaluation is done at the end of each epoch. prediction_loss_only (:obj:`bool`, `optional`, defaults to `False`): When performing evaluation and predictions, only returns the loss. per_device_train_batch_size (:obj:`int`, `optional`, defaults to 8): The batch size per GPU/TPU core/CPU for training. per_device_eval_batch_size (:obj:`int`, `optional`, defaults to 8): The batch size per GPU/TPU core/CPU for evaluation. gradient_accumulation_steps (:obj:`int`, `optional`, defaults to 1): Number of updates steps to accumulate the gradients for, before performing a backward/update pass. .. warning:: When using gradient accumulation, one step is counted as one step with backward pass. Therefore, logging, evaluation, save will be conducted every ``gradient_accumulation_steps * xxx_step`` training examples. eval_accumulation_steps (:obj:`int`, `optional`): Number of predictions steps to accumulate the output tensors for, before moving the results to the CPU. If left unset, the whole predictions are accumulated on GPU/TPU before being moved to the CPU (faster but requires more memory). learning_rate (:obj:`float`, `optional`, defaults to 5e-5): The initial learning rate for Adam. weight_decay (:obj:`float`, `optional`, defaults to 0): The weight decay to apply (if not zero). adam_beta1 (:obj:`float`, `optional`, defaults to 0.9): The beta1 for the Adam optimizer. adam_beta2 (:obj:`float`, `optional`, defaults to 0.999): The beta2 for the Adam optimizer. adam_epsilon (:obj:`float`, `optional`, defaults to 1e-8): Epsilon for the Adam optimizer. max_grad_norm (:obj:`float`, `optional`, defaults to 1.0): Maximum gradient norm (for gradient clipping). num_train_epochs(:obj:`float`, `optional`, defaults to 3.0): Total number of training epochs to perform (if not an integer, will perform the decimal part percents of the last epoch before stopping training). max_steps (:obj:`int`, `optional`, defaults to -1): If set to a positive number, the total number of training steps to perform. Overrides :obj:`num_train_epochs`. warmup_steps (:obj:`int`, `optional`, defaults to 0): Number of steps used for a linear warmup from 0 to :obj:`learning_rate`. logging_dir (:obj:`str`, `optional`): Tensorboard log directory. Will default to `runs/**CURRENT_DATETIME_HOSTNAME**`. logging_first_step (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to log and evaluate the first :obj:`global_step` or not. logging_steps (:obj:`int`, `optional`, defaults to 500): Number of update steps between two logs. save_steps (:obj:`int`, `optional`, defaults to 500): Number of updates steps before two checkpoint saves. save_total_limit (:obj:`int`, `optional`): If a value is passed, will limit the total amount of checkpoints. Deletes the older checkpoints in :obj:`output_dir`. no_cuda (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to not use CUDA even when it is available or not. seed (:obj:`int`, `optional`, defaults to 42): Random seed for initialization. fp16 (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to use 16-bit (mixed) precision training (through NVIDIA apex) instead of 32-bit training. fp16_opt_level (:obj:`str`, `optional`, defaults to 'O1'): For :obj:`fp16` training, apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. See details on the `apex documentation <https://nvidia.github.io/apex/amp.html>`__. local_rank (:obj:`int`, `optional`, defaults to -1): During distributed training, the rank of the process. tpu_num_cores (:obj:`int`, `optional`): When training on TPU, the number of TPU cores (automatically passed by launcher script). debug (:obj:`bool`, `optional`, defaults to :obj:`False`): When training on TPU, whether to print debug metrics or not. dataloader_drop_last (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether to drop the last incomplete batch (if the length of the dataset is not divisible by the batch size) or not. eval_steps (:obj:`int`, `optional`): Number of update steps between two evaluations if :obj:`evaluation_strategy="steps"`. Will default to the same value as :obj:`logging_steps` if not set. dataloader_num_workers (:obj:`int`, `optional`, defaults to 0): Number of subprocesses to use for data loading (PyTorch only). 0 means that the data will be loaded in the main process. past_index (:obj:`int`, `optional`, defaults to -1): Some models like :doc:`TransformerXL <../model_doc/transformerxl>` or :doc`XLNet <../model_doc/xlnet>` can make use of the past hidden states for their predictions. If this argument is set to a positive int, the ``Trainer`` will use the corresponding output (usually index 2) as the past state and feed it to the model at the next training step under the keyword argument ``mems``. run_name (:obj:`str`, `optional`): A descriptor for the run. Notably used for wandb logging. disable_tqdm (:obj:`bool`, `optional`): Whether or not to disable the tqdm progress bars. Will default to :obj:`True` if the logging level is set to warn or lower (default), :obj:`False` otherwise. remove_unused_columns (:obj:`bool`, `optional`, defaults to :obj:`True`): If using `nlp.Dataset` datasets, whether or not to automatically remove the columns unused by the model forward method. (Note that this behavior is not implemented for :class:`~transformers.TFTrainer` yet.) label_names (:obj:`List[str]`, `optional`): The list of keys in your dictionary of inputs that correspond to the labels. Will eventually default to :obj:`["labels"]` except if the model used is one of the :obj:`XxxForQuestionAnswering` in which case it will default to :obj:`["start_positions", "end_positions"]`. load_best_model_at_end (:obj:`bool`, `optional`, defaults to :obj:`False`): Whether or not to load the best model found during training at the end of training. .. note:: When set to :obj:`True`, the parameters :obj:`save_steps` will be ignored and the model will be saved after each evaluation. metric_for_best_model (:obj:`str`, `optional`): Use in conjunction with :obj:`load_best_model_at_end` to specify the metric to use to compare two different models. Must be the name of a metric returned by the evaluation with or without the prefix :obj:`"eval_"`. Will default to :obj:`"loss"` if unspecified and :obj:`load_best_model_at_end=True` (to use the evaluation loss). If you set this value, :obj:`greater_is_better` will default to :obj:`True`. Don't forget to set it to :obj:`False` if your metric is better when lower. greater_is_better (:obj:`bool`, `optional`): Use in conjunction with :obj:`load_best_model_at_end` and :obj:`metric_for_best_model` to specify if better models should have a greater metric or not. Will default to: - :obj:`True` if :obj:`metric_for_best_model` is set to a value that isn't :obj:`"loss"` or :obj:`"eval_loss"`. - :obj:`False` if :obj:`metric_for_best_model` is not set, or set to :obj:`"loss"` or :obj:`"eval_loss"`. model_parallel (:obj:`bool`, `optional`, defaults to :obj:`False`): If there are more than one devices, whether to use model parallelism to distribute the model's modules across devices or not. ignore_data_skip (:obj:`bool`, `optional`, defaults to :obj:`False`): When resuming training, whether or not to skip the epochs and batches to get the data loading at the same stage as in the previous training. If set to :obj:`True`, the training will begin faster (as that skipping step can take a long time) but will not yield the same results as the interrupted training would have. """ output_dir: str = field( metadata={"help": "The output directory where the model predictions and checkpoints will be written."} ) overwrite_output_dir: bool = field( default=False, metadata={ "help": ( "Overwrite the content of the output directory." "Use this to continue training if output_dir points to a checkpoint directory." ) }, ) do_train: bool = field(default=False, metadata={"help": "Whether to run training."}) do_eval: bool = field(default=None, metadata={"help": "Whether to run eval on the dev set."}) do_predict: bool = field(default=False, metadata={"help": "Whether to run predictions on the test set."}) model_parallel: bool = field( default=False, metadata={ "help": ( "If there are more than one devices, whether to use model parallelism to distribute the " "model's modules across devices." ) }, ) evaluation_strategy: EvaluationStrategy = field( default="no", metadata={"help": "Run evaluation during training at each logging step."}, ) prediction_loss_only: bool = field( default=False, metadata={"help": "When performing evaluation and predictions, only returns the loss."}, ) per_device_train_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for training."} ) per_device_eval_batch_size: int = field( default=8, metadata={"help": "Batch size per GPU/TPU core/CPU for evaluation."} ) per_gpu_train_batch_size: Optional[int] = field( default=None, metadata={ "help": "Deprecated, the use of `--per_device_train_batch_size` is preferred. " "Batch size per GPU/TPU core/CPU for training." }, ) per_gpu_eval_batch_size: Optional[int] = field( default=None, metadata={ "help": "Deprecated, the use of `--per_device_eval_batch_size` is preferred." "Batch size per GPU/TPU core/CPU for evaluation." }, ) gradient_accumulation_steps: int = field( default=1, metadata={"help": "Number of updates steps to accumulate before performing a backward/update pass."}, ) eval_accumulation_steps: Optional[int] = field( default=None, metadata={"help": "Number of predictions steps to accumulate before moving the tensors to the CPU."}, ) learning_rate: float = field(default=5e-5, metadata={"help": "The initial learning rate for Adam."}) weight_decay: float = field(default=0.0, metadata={"help": "Weight decay if we apply some."}) adam_beta1: float = field(default=0.9, metadata={"help": "Beta1 for Adam optimizer"}) adam_beta2: float = field(default=0.999, metadata={"help": "Beta2 for Adam optimizer"}) adam_epsilon: float = field(default=1e-8, metadata={"help": "Epsilon for Adam optimizer."}) max_grad_norm: float = field(default=1.0, metadata={"help": "Max gradient norm."}) num_train_epochs: float = field(default=3.0, metadata={"help": "Total number of training epochs to perform."}) max_steps: int = field( default=-1, metadata={"help": "If > 0: set total number of training steps to perform. Override num_train_epochs."}, ) warmup_steps: int = field(default=0, metadata={"help": "Linear warmup over warmup_steps."}) logging_dir: Optional[str] = field(default_factory=default_logdir, metadata={"help": "Tensorboard log dir."}) logging_first_step: bool = field(default=False, metadata={"help": "Log the first global_step"}) logging_steps: int = field(default=500, metadata={"help": "Log every X updates steps."}) save_steps: int = field(default=500, metadata={"help": "Save checkpoint every X updates steps."}) save_total_limit: Optional[int] = field( default=None, metadata={ "help": ( "Limit the total amount of checkpoints." "Deletes the older checkpoints in the output_dir. Default is unlimited checkpoints" ) }, ) no_cuda: bool = field(default=False, metadata={"help": "Do not use CUDA even when it is available"}) seed: int = field(default=42, metadata={"help": "random seed for initialization"}) fp16: bool = field( default=False, metadata={"help": "Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit"}, ) fp16_opt_level: str = field( default="O1", metadata={ "help": ( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ) }, ) local_rank: int = field(default=-1, metadata={"help": "For distributed training: local_rank"}) tpu_num_cores: Optional[int] = field( default=None, metadata={"help": "TPU: Number of TPU cores (automatically passed by launcher script)"} ) tpu_metrics_debug: bool = field( default=False, metadata={"help": "Deprecated, the use of `--debug` is preferred. TPU: Whether to print debug metrics"}, ) debug: bool = field(default=False, metadata={"help": "Whether to print debug metrics on TPU"}) dataloader_drop_last: bool = field( default=False, metadata={"help": "Drop the last incomplete batch if it is not divisible by the batch size."} ) eval_steps: int = field(default=None, metadata={"help": "Run an evaluation every X steps."}) dataloader_num_workers: int = field( default=0, metadata={ "help": "Number of subprocesses to use for data loading (PyTorch only). 0 means that the data will be loaded in the main process." }, ) past_index: int = field( default=-1, metadata={"help": "If >=0, uses the corresponding part of the output as the past state for next step."}, ) run_name: Optional[str] = field( default=None, metadata={"help": "An optional descriptor for the run. Notably used for wandb logging."} ) disable_tqdm: Optional[bool] = field( default=None, metadata={"help": "Whether or not to disable the tqdm progress bars."} ) remove_unused_columns: Optional[bool] = field( default=True, metadata={"help": "Remove columns not required by the model when using an nlp.Dataset."} ) label_names: Optional[List[str]] = field( default=None, metadata={"help": "The list of keys in your dictionary of inputs that correspond to the labels."} ) load_best_model_at_end: Optional[bool] = field( default=False, metadata={"help": "Whether or not to load the best model found during training at the end of training."}, ) metric_for_best_model: Optional[str] = field( default=None, metadata={"help": "The metric to use to compare two different models."} ) greater_is_better: Optional[bool] = field( default=None, metadata={"help": "Whether the `metric_for_best_model` should be maximized or not."} ) ignore_data_skip: bool = field( default=False, metadata={ "help": "When resuming training, whether or not to skip the first epochs and batches to get to the same training data." }, ) def __post_init__(self): if self.disable_tqdm is None: self.disable_tqdm = logger.getEffectiveLevel() > logging.WARN self.evaluation_strategy = EvaluationStrategy(self.evaluation_strategy) if self.do_eval is False and self.evaluation_strategy != EvaluationStrategy.NO: self.do_eval = True if self.eval_steps is None: self.eval_steps = self.logging_steps if self.load_best_model_at_end and self.metric_for_best_model is None: self.metric_for_best_model = "loss" if self.greater_is_better is None and self.metric_for_best_model is not None: self.greater_is_better = self.metric_for_best_model not in ["loss", "eval_loss"] if self.run_name is None: self.run_name = self.output_dir if is_torch_available() and self.device.type != "cuda" and self.fp16: raise ValueError("AMP (`--fp16`) can only be used on CUDA devices.") @property def train_batch_size(self) -> int: """ The actual batch size for training (may differ from :obj:`per_gpu_train_batch_size` in distributed training). """ if self.per_gpu_train_batch_size: logger.warning( "Using deprecated `--per_gpu_train_batch_size` argument which will be removed in a future " "version. Using `--per_device_train_batch_size` is preferred." ) per_device_batch_size = self.per_gpu_train_batch_size or self.per_device_train_batch_size if not self.model_parallel: train_batch_size = per_device_batch_size * max(1, self.n_gpu) else: train_batch_size = per_device_batch_size return train_batch_size @property def eval_batch_size(self) -> int: """ The actual batch size for evaluation (may differ from :obj:`per_gpu_eval_batch_size` in distributed training). """ if self.per_gpu_eval_batch_size: logger.warning( "Using deprecated `--per_gpu_eval_batch_size` argument which will be removed in a future " "version. Using `--per_device_eval_batch_size` is preferred." ) per_device_batch_size = self.per_gpu_eval_batch_size or self.per_device_eval_batch_size if not self.model_parallel: eval_batch_size = per_device_batch_size * max(1, self.n_gpu) else: eval_batch_size = per_device_batch_size return eval_batch_size @cached_property @torch_required def _setup_devices(self) -> Tuple["torch.device", int]: logger.info("PyTorch: setting up devices") if self.no_cuda: device = torch.device("cpu") n_gpu = 0 elif is_torch_tpu_available(): device = xm.xla_device() n_gpu = 0 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") n_gpu = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs torch.distributed.init_process_group(backend="nccl") device = torch.device("cuda", self.local_rank) n_gpu = 1 if device.type == "cuda": torch.cuda.set_device(device) return device, n_gpu @property @torch_required def device(self) -> "torch.device": """ The device used by this process. """ return self._setup_devices[0] @property @torch_required def n_gpu(self): """ The number of GPUs used by this process. Note: This will only be greater than one when you have multiple GPUs available but are not using distributed training. For distributed training, it will always be 1. """ return self._setup_devices[1] @property @torch_required def parallel_mode(self): """ The current mode used for parallelism if multiple GPUs/TPU cores are available. One of: - :obj:`ParallelMode.NOT_PARALLEL`: no parallelism (CPU or one GPU). - :obj:`ParallelMode.NOT_DISTRIBUTED`: several GPUs in one single process (uses :obj:`torch.nn.DataParallel`). - :obj:`ParallelMode.DISTRIBUTED`: several GPUs, each ahving its own process (uses :obj:`torch.nn.DistributedDataParallel`). - :obj:`ParallelMode.TPU`: several TPU cores. """ if is_torch_tpu_available(): return ParallelMode.TPU elif self.local_rank != -1: return ParallelMode.DISTRIBUTED elif self.n_gpu > 1: return ParallelMode.NOT_DISTRIBUTED else: return ParallelMode.NOT_PARALLEL def to_dict(self): """ Serializes this instance while replace `Enum` by their values (for JSON serialization support). """ d = dataclasses.asdict(self) for k, v in d.items(): if isinstance(v, Enum): d[k] = v.value return d def to_json_string(self): """ Serializes this instance to a JSON string. """ return json.dumps(self.to_dict(), indent=2) def to_sanitized_dict(self) -> Dict[str, Any]: """ Sanitized serialization to use with TensorBoardโ€™s hparams """ d = self.to_dict() d = {**d, **{"train_batch_size": self.train_batch_size, "eval_batch_size": self.eval_batch_size}} valid_types = [bool, int, float, str] if is_torch_available(): valid_types.append(torch.Tensor) return {k: v if type(v) in valid_types else str(v) for k, v in d.items()} class ParallelMode(Enum): NOT_PARALLEL = "not_parallel" NOT_DISTRIBUTED = "not_distributed" DISTRIBUTED = "distributed" TPU = "tpu"
# coding: utf-8 """ Influx API Service No description provided (generated by Openapi Generator https://github.com/openapitools/openapi-generator) # noqa: E501 OpenAPI spec version: 0.1.0 Generated by: https://openapi-generator.tech """ import pprint import re # noqa: F401 import six class VariableAssignment(object): """NOTE: This class is auto generated by OpenAPI Generator. Ref: https://openapi-generator.tech Do not edit the class manually. """ """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ openapi_types = { 'type': 'str', 'id': 'Identifier', 'init': 'Expression' } attribute_map = { 'type': 'type', 'id': 'id', 'init': 'init' } def __init__(self, type=None, id=None, init=None): # noqa: E501 """VariableAssignment - a model defined in OpenAPI""" # noqa: E501 self._type = None self._id = None self._init = None self.discriminator = None if type is not None: self.type = type if id is not None: self.id = id if init is not None: self.init = init @property def type(self): """Gets the type of this VariableAssignment. # noqa: E501 type of AST node # noqa: E501 :return: The type of this VariableAssignment. # noqa: E501 :rtype: str """ return self._type @type.setter def type(self, type): """Sets the type of this VariableAssignment. type of AST node # noqa: E501 :param type: The type of this VariableAssignment. # noqa: E501 :type: str """ self._type = type @property def id(self): """Gets the id of this VariableAssignment. # noqa: E501 :return: The id of this VariableAssignment. # noqa: E501 :rtype: Identifier """ return self._id @id.setter def id(self, id): """Sets the id of this VariableAssignment. :param id: The id of this VariableAssignment. # noqa: E501 :type: Identifier """ self._id = id @property def init(self): """Gets the init of this VariableAssignment. # noqa: E501 :return: The init of this VariableAssignment. # noqa: E501 :rtype: Expression """ return self._init @init.setter def init(self, init): """Sets the init of this VariableAssignment. :param init: The init of this VariableAssignment. # noqa: E501 :type: Expression """ self._init = init def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, VariableAssignment): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
pkgname = "zlib" version = "1.2.11" revision = 0 build_style = "configure" short_desc = "Compression/decompression Library" maintainer = "q66 <q66@chimera-linux.org>" license = "Zlib" homepage = "http://www.zlib.net" distfiles = [f"{homepage}/{pkgname}-{version}.tar.gz"] checksum = ["c3e5e9fdd5004dcb542feda5ee4f0ff0744628baf8ed2dd5d66f8ca1197cb1a1"] options = ["bootstrap"] def do_configure(self): self.do(self.chroot_cwd / "configure", [ "--prefix=/usr", "--shared" ]) @subpackage("zlib-devel") def _devel(self): self.depends = [f"zlib={version}-r{revision}"] self.short_desc = short_desc + " - development files" return [ "usr/include", "usr/lib/pkgconfig", "usr/lib/*.a", "usr/lib/*.so", "usr/share", ]
from nba_py import shotchart from nba_py.player import get_player def test(): pid = get_player('Kevin', 'Durant') assert shotchart.ShotChart(pid)
from __future__ import unicode_literals import unittest from django.test import TestCase from django.core.urlresolvers import reverse from django.contrib.auth import get_user_model from django.contrib.auth.models import Group, Permission from django.utils import six from wagtail.tests.utils import WagtailTestUtils from wagtail.wagtailcore import hooks from wagtail.wagtailusers.models import UserProfile from wagtail.wagtailcore.models import Page, GroupPagePermission class TestUserIndexView(TestCase, WagtailTestUtils): def setUp(self): # create a user that should be visible in the listing self.test_user = get_user_model().objects.create_user(username='testuser', email='testuser@email.com', password='password') self.login() def get(self, params={}): return self.client.get(reverse('wagtailusers_users:index'), params) def test_simple(self): response = self.get() self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'wagtailusers/users/index.html') self.assertContains(response, 'testuser') def test_allows_negative_ids(self): # see https://github.com/torchbox/wagtail/issues/565 get_user_model().objects.create_user('guardian', 'guardian@example.com', 'gu@rd14n', id=-1) response = self.get() self.assertEqual(response.status_code, 200) self.assertContains(response, 'testuser') self.assertContains(response, 'guardian') def test_search(self): response = self.get({'q': "Hello"}) self.assertEqual(response.status_code, 200) self.assertEqual(response.context['query_string'], "Hello") def test_pagination(self): pages = ['0', '1', '-1', '9999', 'Not a page'] for page in pages: response = self.get({'p': page}) self.assertEqual(response.status_code, 200) class TestUserCreateView(TestCase, WagtailTestUtils): def setUp(self): self.login() def get(self, params={}): return self.client.get(reverse('wagtailusers_users:add'), params) def post(self, post_data={}): return self.client.post(reverse('wagtailusers_users:add'), post_data) def test_simple(self): response = self.get() self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'wagtailusers/users/create.html') def test_create(self): response = self.post({ 'username': "testuser", 'email': "test@user.com", 'first_name': "Test", 'last_name': "User", 'password1': "password", 'password2': "password", }) # Should redirect back to index self.assertRedirects(response, reverse('wagtailusers_users:index')) # Check that the user was created users = get_user_model().objects.filter(username='testuser') self.assertEqual(users.count(), 1) self.assertEqual(users.first().email, 'test@user.com') class TestUserEditView(TestCase, WagtailTestUtils): def setUp(self): # Create a user to edit self.test_user = get_user_model().objects.create_user(username='testuser', email='testuser@email.com', password='password') # Login self.login() def get(self, params={}, user_id=None): return self.client.get(reverse('wagtailusers_users:edit', args=(user_id or self.test_user.id, )), params) def post(self, post_data={}, user_id=None): return self.client.post(reverse('wagtailusers_users:edit', args=(user_id or self.test_user.id, )), post_data) def test_simple(self): response = self.get() self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'wagtailusers/users/edit.html') def test_nonexistant_redirect(self): self.assertEqual(self.get(user_id=100000).status_code, 404) def test_edit(self): response = self.post({ 'username': "testuser", 'email': "test@user.com", 'first_name': "Edited", 'last_name': "User", 'password1': "password", 'password2': "password", }) # Should redirect back to index self.assertRedirects(response, reverse('wagtailusers_users:index')) # Check that the user was edited user = get_user_model().objects.get(id=self.test_user.id) self.assertEqual(user.first_name, 'Edited') def test_edit_validation_error(self): # Leave "username" field blank. This should give a validation error response = self.post({ 'username': "", 'email': "test@user.com", 'first_name': "Teset", 'last_name': "User", 'password1': "password", 'password2': "password", }) # Should not redirect to index self.assertEqual(response.status_code, 200) class TestUserProfileCreation(TestCase, WagtailTestUtils): def setUp(self): # Create a user self.test_user = get_user_model().objects.create_user(username='testuser', email='testuser@email.com', password='password') def test_user_created_without_profile(self): self.assertEqual(UserProfile.objects.filter(user=self.test_user).count(), 0) with self.assertRaises(UserProfile.DoesNotExist): self.test_user.userprofile def test_user_profile_created_when_method_called(self): self.assertIsInstance(UserProfile.get_for_user(self.test_user), UserProfile) # and get it from the db too self.assertEqual(UserProfile.objects.filter(user=self.test_user).count(), 1) class TestGroupIndexView(TestCase, WagtailTestUtils): def setUp(self): self.login() def get(self, params={}): return self.client.get(reverse('wagtailusers_groups:index'), params) def test_simple(self): response = self.get() self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'wagtailusers/groups/index.html') def test_search(self): response = self.get({'q': "Hello"}) self.assertEqual(response.status_code, 200) self.assertEqual(response.context['query_string'], "Hello") def test_pagination(self): pages = ['0', '1', '-1', '9999', 'Not a page'] for page in pages: response = self.get({'p': page}) self.assertEqual(response.status_code, 200) class TestGroupCreateView(TestCase, WagtailTestUtils): def setUp(self): self.login() def get(self, params={}): return self.client.get(reverse('wagtailusers_groups:add'), params) def post(self, post_data={}): post_defaults = { 'page_permissions-TOTAL_FORMS': ['0'], 'page_permissions-MAX_NUM_FORMS': ['1000'], 'page_permissions-INITIAL_FORMS': ['0'], } for k, v in six.iteritems(post_defaults): post_data[k] = post_data.get(k, v) return self.client.post(reverse('wagtailusers_groups:add'), post_data) def test_simple(self): response = self.get() self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'wagtailusers/groups/create.html') def test_create_group(self): response = self.post({'name': "test group"}) # Should redirect back to index self.assertRedirects(response, reverse('wagtailusers_groups:index')) # Check that the user was created groups = Group.objects.filter(name='test group') self.assertEqual(groups.count(), 1) def test_group_create_adding_permissions(self): response = self.post({ 'name': "test group", 'page_permissions-0-id': [''], 'page_permissions-0-page': ['1'], 'page_permissions-0-permission_type': ['publish'], 'page_permissions-1-id': [''], 'page_permissions-1-page': ['1'], 'page_permissions-1-permission_type': ['edit'], 'page_permissions-TOTAL_FORMS': ['2'], }) self.assertRedirects(response, reverse('wagtailusers_groups:index')) # The test group now exists, with two page permissions new_group = Group.objects.get(name='test group') self.assertEqual(new_group.page_permissions.all().count(), 2) @unittest.expectedFailure def test_duplicate_page_permissions_error(self): # Try to submit duplicate page permission entries response = self.post({ 'name': "test group", 'page_permissions-0-id': [''], 'page_permissions-0-page': ['1'], 'page_permissions-0-permission_type': ['publish'], 'page_permissions-1-id': [''], 'page_permissions-1-page': ['1'], 'page_permissions-1-permission_type': ['publish'], 'page_permissions-TOTAL_FORMS': ['2'], }) self.assertEqual(response.status_code, 200) # the second form should have errors self.assertEqual(bool(response.context['formset'].errors[0]), False) self.assertEqual(bool(response.context['formset'].errors[1]), True) class TestGroupEditView(TestCase, WagtailTestUtils): def setUp(self): # Create a group to edit self.test_group = Group.objects.create(name='test group') self.root_page = Page.objects.get(id=1) self.root_add_permission = GroupPagePermission.objects.create(page=self.root_page, permission_type='add', group=self.test_group) # Get the hook-registered permissions, and add one to this group self.registered_permissions = Permission.objects.none() for fn in hooks.get_hooks('register_permissions'): self.registered_permissions = self.registered_permissions | fn() self.existing_permission = self.registered_permissions.order_by('pk')[0] self.another_permission = self.registered_permissions.order_by('pk')[1] self.test_group.permissions.add(self.existing_permission) # Login self.login() def get(self, params={}, group_id=None): return self.client.get(reverse('wagtailusers_groups:edit', args=(group_id or self.test_group.id, )), params) def post(self, post_data={}, group_id=None): post_defaults = { 'name': 'test group', 'permissions': [self.existing_permission.id], 'page_permissions-TOTAL_FORMS': ['1'], 'page_permissions-MAX_NUM_FORMS': ['1000'], 'page_permissions-INITIAL_FORMS': ['1'], # as we have one page permission already 'page_permissions-0-id': [self.root_add_permission.id], 'page_permissions-0-page': [self.root_add_permission.page.id], 'page_permissions-0-permission_type': [self.root_add_permission.permission_type] } for k, v in six.iteritems(post_defaults): post_data[k] = post_data.get(k, v) return self.client.post(reverse('wagtailusers_groups:edit', args=(group_id or self.test_group.id, )), post_data) def add_non_registered_perm(self): # Some groups may have django permissions assigned that are not # hook-registered as part of the wagtail interface. We need to ensure # that these permissions are not overwritten by our views. # Tests that use this method are testing the aforementioned # functionality. self.non_registered_perms = Permission.objects.exclude(id__in=self.registered_permissions) self.non_registered_perm = self.non_registered_perms[0] self.test_group.permissions.add(self.non_registered_perm) def test_simple(self): response = self.get() self.assertEqual(response.status_code, 200) self.assertTemplateUsed(response, 'wagtailusers/groups/edit.html') def test_nonexistant_group_redirect(self): self.assertEqual(self.get(group_id=100000).status_code, 404) def test_group_edit(self): response = self.post({'name': "test group edited"}) # Should redirect back to index self.assertRedirects(response, reverse('wagtailusers_groups:index')) # Check that the group was edited group = Group.objects.get(id=self.test_group.id) self.assertEqual(group.name, 'test group edited') def test_group_edit_validation_error(self): # Leave "name" field blank. This should give a validation error response = self.post({'name': ""}) # Should not redirect to index self.assertEqual(response.status_code, 200) def test_group_edit_adding_page_permissions(self): # The test group has one page permission to begin with self.assertEqual(self.test_group.page_permissions.count(), 1) response = self.post({ 'page_permissions-1-id': [''], 'page_permissions-1-page': ['1'], 'page_permissions-1-permission_type': ['publish'], 'page_permissions-2-id': [''], 'page_permissions-2-page': ['1'], 'page_permissions-2-permission_type': ['edit'], 'page_permissions-TOTAL_FORMS': ['3'], }) self.assertRedirects(response, reverse('wagtailusers_groups:index')) # The test group now has three page permissions self.assertEqual(self.test_group.page_permissions.count(), 3) def test_group_edit_deleting_page_permissions(self): # The test group has one page permissions to begin with self.assertEqual(self.test_group.page_permissions.count(), 1) response = self.post({ 'page_permissions-0-DELETE': ['1'], }) self.assertRedirects(response, reverse('wagtailusers_groups:index')) # The test group now has zero page permissions self.assertEqual(self.test_group.page_permissions.count(), 0) def test_group_edit_loads_with_page_permissions_shown(self): # The test group has one page permission to begin with self.assertEqual(self.test_group.page_permissions.count(), 1) response = self.get() self.assertEqual(response.context['formset'].management_form['INITIAL_FORMS'].value(), 1) self.assertEqual(response.context['formset'].forms[0].instance, self.root_add_permission) root_edit_perm = GroupPagePermission.objects.create(page=self.root_page, permission_type='edit', group=self.test_group) # The test group now has two page permissions self.assertEqual(self.test_group.page_permissions.count(), 2) # Reload the page and check the form instances response = self.get() self.assertEqual(response.context['formset'].management_form['INITIAL_FORMS'].value(), 2) self.assertEqual(response.context['formset'].forms[0].instance, self.root_add_permission) self.assertEqual(response.context['formset'].forms[1].instance, root_edit_perm) def test_duplicate_page_permissions_error(self): # Try to submit duplicate page permission entries response = self.post({ 'page_permissions-1-id': [''], 'page_permissions-1-page': [self.root_add_permission.page.id], 'page_permissions-1-permission_type': [self.root_add_permission.permission_type], 'page_permissions-TOTAL_FORMS': ['2'], }) self.assertEqual(response.status_code, 200) # the second form should have errors self.assertEqual(bool(response.context['formset'].errors[0]), False) self.assertEqual(bool(response.context['formset'].errors[1]), True) def test_group_add_registered_django_permissions(self): # The test group has one django permission to begin with self.assertEqual(self.test_group.permissions.count(), 1) response = self.post({ 'permissions': [self.existing_permission.id, self.another_permission.id] }) self.assertRedirects(response, reverse('wagtailusers_groups:index')) self.assertEqual(self.test_group.permissions.count(), 2) def test_group_form_includes_non_registered_permissions_in_initial_data(self): self.add_non_registered_perm() original_permissions = self.test_group.permissions.all() self.assertEqual(original_permissions.count(), 2) response = self.get() # See that the form is set up with the correct initial data self.assertEqual(response.context['form'].initial.get('permissions'), list(original_permissions.values_list('id', flat=True))) def test_group_retains_non_registered_permissions_when_editing(self): self.add_non_registered_perm() original_permissions = list(self.test_group.permissions.all()) # list() to force evaluation # submit the form with no changes (only submitting the exsisting # permission, as in the self.post function definition) self.post() # See that the group has the same permissions as before self.assertEqual(list(self.test_group.permissions.all()), original_permissions) self.assertEqual(self.test_group.permissions.count(), 2) def test_group_retains_non_registered_permissions_when_adding(self): self.add_non_registered_perm() # Add a second registered permission self.post({ 'permissions': [self.existing_permission.id, self.another_permission.id] }) # See that there are now three permissions in total self.assertEqual(self.test_group.permissions.count(), 3) # ...including the non-registered one self.assertIn(self.non_registered_perm, self.test_group.permissions.all()) def test_group_retains_non_registered_permissions_when_deleting(self): self.add_non_registered_perm() # Delete all registered permissions self.post({'permissions': []}) # See that the non-registered permission is still there self.assertEqual(self.test_group.permissions.count(), 1) self.assertEqual(self.test_group.permissions.all()[0], self.non_registered_perm)