text
stringlengths
2
999k
"""An implementation of matrix capsules with EM routing. """ import tensorflow as tf from core import _conv2d_wrapper, capsules_init, capsules_conv, capsules_fc slim = tf.contrib.slim # ------------------------------------------------------------------------------# # -------------------------------- capsules net --------------------------------# # ------------------------------------------------------------------------------# def capsules_v0(inputs, num_classes, iterations, name='CapsuleEM-V0'): """Replicate the network in `Matrix Capsules with EM Routing.` """ with tf.variable_scope(name) as scope: # inputs [N, H, W, C] -> conv2d, 5x5, strides 2, channels 32 -> nets [N, OH, OW, 32] nets = _conv2d_wrapper( inputs, shape=[5, 5, 1, 32], strides=[1, 2, 2, 1], padding='SAME', add_bias=True, activation_fn=tf.nn.relu, name='conv1' ) # inputs [N, H, W, C] -> conv2d, 1x1, strides 1, channels 32x(4x4+1) -> (poses, activations) nets = capsules_init( nets, shape=[1, 1, 32, 32], strides=[1, 1, 1, 1], padding='VALID', pose_shape=[4, 4], name='capsule_init' ) # inputs: (poses, activations) -> capsule-conv 3x3x32x32x4x4, strides 2 -> (poses, activations) nets = capsules_conv( nets, shape=[3, 3, 32, 32], strides=[1, 2, 2, 1], iterations=iterations, name='capsule_conv1' ) # inputs: (poses, activations) -> capsule-conv 3x3x32x32x4x4, strides 1 -> (poses, activations) nets = capsules_conv( nets, shape=[3, 3, 32, 32], strides=[1, 1, 1, 1], iterations=iterations, name='capsule_conv2' ) # inputs: (poses, activations) -> capsule-fc 1x1x32x10x4x4 shared view transform matrix within each channel -> (poses, activations) nets = capsules_fc( nets, num_classes, iterations=iterations, name='capsule_fc' ) poses, activations = nets return poses, activations # ------------------------------------------------------------------------------# # ------------------------------------ loss ------------------------------------# # ------------------------------------------------------------------------------# def spread_loss(labels, activations, margin, name): """This adds spread loss to total loss. :param labels: [N, O], where O is number of output classes, one hot vector, tf.uint8. :param activations: [N, O], activations. :param margin: margin 0.2 - 0.9 fixed schedule during training. :return: spread loss """ activations_shape = activations.get_shape().as_list() with tf.variable_scope(name) as scope: mask_t = tf.equal(labels, 1) mask_i = tf.equal(labels, 0) activations_t = tf.reshape( tf.boolean_mask(activations, mask_t), [activations_shape[0], 1] ) activations_i = tf.reshape( tf.boolean_mask(activations, mask_i), [activations_shape[0], activations_shape[1] - 1] ) # margin = tf.Print( # margin, [margin], 'margin', summarize=20 # ) gap_mit = tf.reduce_sum( tf.square( tf.nn.relu( margin - (activations_t - activations_i) ) ) ) # tf.add_to_collection( # tf.GraphKeys.LOSSES, gap_mit # ) # # total_loss = tf.add_n( # tf.get_collection( # tf.GraphKeys.LOSSES # ), name='total_loss' # ) tf.losses.add_loss(gap_mit) return gap_mit # ------------------------------------------------------------------------------#
import re from textwrap import dedent from unittest import mock from unittest.mock import PropertyMock import pytest from get_pr_info import extract_target_section, get_pr_number_from_commit_message, get_pr_summary from github import BadCredentialsException, UnknownObjectException class TestGetPrNumberFromCommitMessage: @pytest.fixture(autouse=True) def setUp(self): self.pattern = re.compile(r"#(\d*)") def test_not_match(self): actual = get_pr_number_from_commit_message("abcdefg", self.pattern) expected = 0 assert actual == expected def test_match(self): actual = get_pr_number_from_commit_message("ab#123cd", self.pattern) expected = 123 assert actual == expected def test_multi_match(self): actual = get_pr_number_from_commit_message("ab#123cd#456ef", self.pattern) expected = 123 assert actual == expected def test_second_line_match(self): # 2行目にPR番号が含まれている場合 actual = get_pr_number_from_commit_message("abc\ncd#123ef", self.pattern) expected = 0 assert actual == expected def test_blank_str(self): actual = get_pr_number_from_commit_message("", self.pattern) expected = 0 assert actual == expected class TestGetPrInfo: @pytest.fixture(autouse=True) def setUp(self): mock_client = mock.Mock() mock_repo = mock.Mock() mock_pull = mock.Mock() with mock.patch("get_pr_info.Github") as mock_github: mock_github.return_value = mock_client mock_client.get_repo.return_value = mock_repo mock_repo.get_pull.return_value = mock_pull self.mock_github = mock_github self.mock_client = mock_client self.mock_repo = mock_repo self.mock_pull = mock_pull yield def test_nomal(self): mock_body = PropertyMock(return_value="PR_INFO") type(self.mock_pull).body = mock_body actual = get_pr_summary(999, "GITHUB_TOKEN", "REPOSITORY_NAME") expected = "PR_INFO" assert actual == expected self.mock_github.assert_called_once_with("GITHUB_TOKEN") self.mock_client.get_repo.assert_called_once_with("REPOSITORY_NAME") self.mock_repo.get_pull.assert_called_once_with(999) assert mock_body.call_count == 1 def test_bad_credential(self): # トークンが誤っている場合 # APIにアクセスしたくないため、モックで例外を投げている # ユニットテストとしては意味がないが、仕様記載の意味で記載しておく # NOTE: トークンが誤っている場合でもgithubインスタンスの生成時にはエラーとならず、GitHub操作をした際にエラーとなる self.mock_client.get_repo.side_effect = BadCredentialsException( 401, data={ "message": "Bad credentials", "documentation_url": "https://docs.github.com/rest", }, ) with pytest.raises(BadCredentialsException): get_pr_summary(999, "GITHUB_TOKEN", "REPOSITORY_NAME") self.mock_github.assert_called_once_with("GITHUB_TOKEN") self.mock_client.get_repo.assert_called_once_with("REPOSITORY_NAME") self.mock_repo.get_pull.assert_not_called() def test_not_exists_repository(self): # リポジトリが存在しない場合 # APIにアクセスしたくないため、モックで例外を投げている # ユニットテストとしては意味がないが、仕様記載の意味で記載しておく self.mock_client.get_repo.side_effect = UnknownObjectException( 404, data={ "message": "Not Found", "documentation_url": "https://docs.github.com/rest/reference/repos#get-a-repository", # noqa }, ) with pytest.raises(UnknownObjectException): get_pr_summary(999, "GITHUB_TOKEN", "REPOSITORY_NAME") self.mock_github.assert_called_once_with("GITHUB_TOKEN") self.mock_client.get_repo.assert_called_once_with("REPOSITORY_NAME") self.mock_repo.get_pull.assert_not_called() def test_not_exists_pr_number(self): # PR番号が存在しない場合 # APIにアクセスしたくないため、モックで例外を投げている # ユニットテストとしては意味がないが、仕様記載の意味で記載しておく self.mock_repo.get_pull.side_effect = UnknownObjectException( 404, data={ "message": "Not Found", "documentation_url": "https://docs.github.com/rest/reference/pulls#get-a-pull-request", # noqa }, ) with pytest.raises(UnknownObjectException): get_pr_summary(999, "GITHUB_TOKEN", "REPOSITORY_NAME") self.mock_github.assert_called_once_with("GITHUB_TOKEN") self.mock_client.get_repo.assert_called_once_with("REPOSITORY_NAME") self.mock_repo.get_pull.assert_called_once_with(999) class TestGetIntegrationTestPoint: def test_nomal(self): summary = dedent( """\ ## 概要 - 現状(As is) - こうなんです - 理想(To be) - こうなりたい - 問題(Problem) - こまってる - 解決・やったこと(Action) - これをやった ## 結合テスト観点 - 対応概要 - こうやった - 観点 - こういうこと1 - 条件: こうしてほしい2 - こういうこと2 - 条件: こうしてほしい2 - 担当 - API yamap55 """ ) actual = extract_target_section(summary, "## 結合テスト観点") expected = dedent( """\ ## 結合テスト観点 - 対応概要 - こうやった - 観点 - こういうこと1 - 条件: こうしてほしい2 - こういうこと2 - 条件: こうしてほしい2 - 担当 - API yamap55""" ) assert actual == expected def test_not_exists_target_section(self): summary = "" actual = extract_target_section(summary, "## 結合テスト観点") expected = "" assert actual == expected def test_another_section_at_the_end(self): # 対象行より後ろに別のセクションが存在する場合 summary = dedent( """\ ## 概要 - 現状(As is) - こうなんです - 理想(To be) - こうなりたい - 問題(Problem) - こまってる - 解決・やったこと(Action) - これをやった ## 結合テスト観点 - 対応概要 - こうやった - 観点 - こういうこと1 - 条件: こうしてほしい2 - こういうこと2 - 条件: こうしてほしい2 - 担当 - API yamap55 ## 対象外セクション - 対象外です """ ) actual = extract_target_section(summary, "## 結合テスト観点") expected = dedent( """\ ## 結合テスト観点 - 対応概要 - こうやった - 観点 - こういうこと1 - 条件: こうしてほしい2 - こういうこと2 - 条件: こうしてほしい2 - 担当 - API yamap55 """ ) assert actual == expected @pytest.mark.parametrize("line_separator", ["\n", "\r\n", "\r"]) def test_various_line_separator(self, line_separator): summary = f"## HOGE{line_separator}## TARGET_ROW{line_separator}## HUGA" actual = extract_target_section(summary, "## TARGET_ROW") expected = "## TARGET_ROW" assert actual == expected
#!/usr/bin/env python # coding: utf-8 # ### - Ensemble/Blend the 4 model predictions into a single prediction # In[1]: import os import datetime from time import time import pathlib import pandas as pd import numpy as np from collections import defaultdict from collections import Counter # In[2]: from sklearn.metrics import precision_recall_curve,average_precision_score from sklearn.metrics import log_loss, roc_curve from sklearn.metrics import auc,roc_auc_score # In[3]: from numba import njit from scipy.optimize import minimize, fsolve # In[4]: # The two options here are "" and "_subsample" file_indicator = "" data_dir = pathlib.Path("../2.data_split/model_data") # In[5]: cp_test = pathlib.Path(f"{data_dir}/cp/test_lvl4_data{file_indicator}.csv.gz") L1000_test = pathlib.Path(f"{data_dir}/L1/test_lvl4_data.csv.gz") cp_L1000_test = pathlib.Path(f"{data_dir}/merged/test_lvl4_data.csv.gz") # In[6]: model_preds_dir = '../L1000_CP_model_predictions/' # In[7]: df_cp_test = pd.read_csv(cp_test, compression='gzip',low_memory = False) df_L1000_test = pd.read_csv(L1000_test, compression='gzip',low_memory = False) df_cp_L1000_test = pd.read_csv(cp_L1000_test, compression='gzip',low_memory = False) # In[8]: df_cp_L1000_test.shape # In[9]: ##resnet df_cp_resnet_test = pd.read_csv(os.path.join(model_preds_dir, f'cp_test_preds_resnet{file_indicator}.csv')) df_L1000_resnet_test = pd.read_csv(os.path.join(model_preds_dir, 'L1000_test_preds_resnet.csv')) df_cp_L1000_resnet_test = pd.read_csv(os.path.join(model_preds_dir, 'cp_L1000_test_preds_resnet.csv')) # In[10]: print(df_cp_L1000_resnet_test.shape) df_cp_L1000_resnet_test.head() # In[11]: ##1-d cnn df_cp_cnn_test = pd.read_csv(os.path.join(model_preds_dir, f'cp_test_preds_1dcnn{file_indicator}.csv')) df_L1000_cnn_test = pd.read_csv(os.path.join(model_preds_dir, 'L1000_test_preds_1dcnn.csv')) df_cp_L1000_cnn_test = pd.read_csv(os.path.join(model_preds_dir, 'cp_L1000_test_preds_1dcnn.csv')) # In[12]: print(df_cp_L1000_cnn_test.shape) df_cp_L1000_cnn_test.head() # In[13]: ##tabnet df_cp_tabnet_test = pd.read_csv(os.path.join(model_preds_dir, f'cp_test_preds_tabnet{file_indicator}.csv')) df_L1000_tabnet_test = pd.read_csv(os.path.join(model_preds_dir, 'L1000_test_preds_tabnet.csv')) df_cp_L1000_tabnet_test = pd.read_csv(os.path.join(model_preds_dir, 'cp_L1000_test_preds_tabnet.csv')) # In[14]: df_cp_L1000_tabnet_test.shape # In[15]: ##stagedNN df_cp_simplenn_test = pd.read_csv(os.path.join(model_preds_dir, f'cp_test_preds_simplenn{file_indicator}.csv')) df_L1000_simplenn_test = pd.read_csv(os.path.join(model_preds_dir, 'L1000_test_preds_simplenn.csv')) df_cp_L1000_simplenn_test = pd.read_csv(os.path.join(model_preds_dir, 'cp_L1000_test_preds_simplenn.csv')) # In[16]: df_cp_L1000_simplenn_test.shape # In[17]: df_cp_tst_targets = df_cp_test[df_cp_cnn_test.columns] df_L1000_tst_targets = df_L1000_test[df_L1000_cnn_test.columns] df_cp_L1000_tst_targets = df_cp_L1000_test[df_cp_L1000_cnn_test.columns] # In[18]: df_cp_tst_targets.shape # In[19]: df_L1000_tst_targets.shape # In[20]: df_cp_L1000_tst_targets.shape # #### - Resnet, 1d-cnn, Tabnet, Simplenn --> 4 model predictions # In[21]: # CPMP's logloss from https://www.kaggle.com/c/lish-moa/discussion/183010 def log_loss_numpy(y_true, y_pred): y_true_ravel = np.asarray(y_true).ravel() y_pred = np.asarray(y_pred).ravel() y_pred = np.clip(y_pred, 1e-15, 1 - 1e-15) loss = np.where(y_true_ravel == 1, - np.log(y_pred), - np.log(1 - y_pred)) return loss.mean() def func_numpy_metric(weights, oof, y_true): oof_blend = np.tensordot(weights, oof, axes = ((0), (0))) return log_loss_numpy(y_true, oof_blend) def grad_func(weights, oof, y_true): oof_clip = np.clip(oof, 1e-15, 1 - 1e-15) gradients = np.zeros(oof.shape[0]) for i in range(oof.shape[0]): a, b, c = y_true, oof_clip[i], np.zeros((oof.shape[1], oof.shape[2])) for j in range(oof.shape[0]): if j != i: c += weights[j] * oof_clip[j] gradients[i] = -np.mean((-a*b+(b**2)*weights[i]+b*c)/((b**2)*(weights[i]**2)+2*b*c*weights[i]-b*weights[i]+(c**2)-c)) return gradients @njit def grad_func_jit(weights, oof, y_true): oof_clip = np.minimum(1 - 1e-15, np.maximum(oof, 1e-15)) gradients = np.zeros(oof.shape[0]) for i in range(oof.shape[0]): a, b, c = y_true, oof_clip[i], np.zeros((oof.shape[1], oof.shape[2])) for j in range(oof.shape[0]): if j != i: c += weights[j] * oof_clip[j] gradients[i] = -np.mean((-a*b+(b**2)*weights[i]+b*c)/((b**2)*(weights[i]**2)+2*b*c*weights[i]-b*weights[i]+(c**2)-c)) return gradients # In[22]: cp_model_preds = [df_cp_cnn_test, df_cp_resnet_test, df_cp_tabnet_test, df_cp_simplenn_test] L1000_model_preds = [df_L1000_cnn_test, df_L1000_resnet_test, df_L1000_tabnet_test, df_L1000_simplenn_test] cp_L1000_model_preds = [df_cp_L1000_cnn_test, df_cp_L1000_resnet_test, df_cp_L1000_tabnet_test, df_cp_L1000_simplenn_test] # In[23]: models_name = ['1d-Cnn', 'Resnet', 'Tabnet', 'SimpleNN'] def get_optmized_blended_weights(model_oofs, df_targets, num_of_models = 4, models_name = models_name): """ This function assign weights to each of the models used in predicting MOAs based on the log-loss obtained when comparing each model prediction results with the actual MOA (Mechanism of actions) test labels. for more info:https://www.kaggle.com/gogo827jz/optimise-blending-weights-with-bonus-0/notebook """ model_oof_preds = np.zeros((num_of_models, df_targets.shape[0], df_targets.shape[1])) for idx in range(num_of_models): model_oof_preds[idx] = model_oofs[idx].values score_oof = log_loss_numpy(df_targets, model_oof_preds[idx]) print(f'{idx} {models_name[idx]}, Test loss:\t', score_oof) tol = 1e-10 init_guess = [1 / model_oof_preds.shape[0]] * model_oof_preds.shape[0] bnds = [(0, 1) for _ in range(model_oof_preds.shape[0])] cons = { 'type': 'eq', 'fun': lambda x: np.sum(x) - 1, 'jac': lambda x: [1] * len(x) } print('Inital Blend OOF:', func_numpy_metric(init_guess, model_oof_preds, df_targets.values)) start_time = time() res_scipy = minimize(fun = func_numpy_metric, x0 = init_guess, args=(model_oof_preds, df_targets.values), method = 'SLSQP', ##L-BFGS-B ##SLSQP jac = grad_func_jit, # grad_func bounds = bnds, constraints = cons, tol = tol) print(f'[{str(datetime.timedelta(seconds = time() - start_time))[2:7]}] Optimised Blend OOF:', res_scipy.fun) print('Optimised Weights:', res_scipy.x) return model_oof_preds, res_scipy.x # In[24]: _, L1000_model_weights = get_optmized_blended_weights(L1000_model_preds, df_L1000_tst_targets,) # In[25]: _, cp_model_weights = get_optmized_blended_weights(cp_model_preds, df_cp_tst_targets,) # In[26]: _, cp_L1000_model_weights = get_optmized_blended_weights(cp_L1000_model_preds, df_cp_L1000_tst_targets) # In[27]: def model_eval_results(df_tst, df_tst_y, df_preds): """ This function prints out the model evaluation results from the train and test predictions. The evaluation metrics used in assessing the performance of the models are: ROC AUC score, log loss and Precision-Recall AUC score """ eval_metrics = ['log loss', 'ROC AUC score', 'PR-AUC/Average_precision_score',] moa_class_list = df_tst['moa'].unique() val_moas = [moa for moa_list in moa_class_list for moa in moa_list.split('|')] print('-' * 10, 'Test data prediction results', '-' * 10) print(f'{eval_metrics[0]}:', log_loss(np.ravel(df_tst_y), np.ravel(df_preds))) print(f'{eval_metrics[1]}:', roc_auc_score(df_tst_y[val_moas],df_preds[val_moas], average='macro')) print(f'{eval_metrics[2]}:', average_precision_score(df_tst_y[val_moas], df_preds[val_moas], average="micro")) # In[28]: ##[1.57502187e-01,1.15142271e-16,0.00000000e+00,8.42497813e-01] <-- modify the model weights df_L1000_blend = pd.DataFrame(np.zeros(df_L1000_cnn_test.shape), columns = df_L1000_cnn_test.columns) df_L1000_blend = df_L1000_cnn_test*0.45 + df_L1000_resnet_test*0.05 + df_L1000_tabnet_test*0.05 + df_L1000_simplenn_test*0.45 # In[29]: 0.45+(0.05*2)+0.45 # In[30]: model_eval_results(df_L1000_test, df_L1000_tst_targets, df_L1000_blend) # In[31]: ##[4.29598527e-01 3.27312317e-01 2.43089156e-01 5.42101086e-18] <-- modify the model weights df_cp_blend = pd.DataFrame(np.zeros(df_cp_cnn_test.shape), columns = df_cp_cnn_test.columns) df_cp_blend = df_cp_cnn_test*0.35 + df_cp_resnet_test*0.35 + df_cp_tabnet_test*0.25 + df_cp_simplenn_test*0.05 # In[32]: 0.35+0.35+0.25+0.05 # In[33]: model_eval_results(df_cp_test, df_cp_tst_targets, df_cp_blend) # In[34]: ##[0.28574384 0.09796798 0.06528908 0.5509991 ] <-- modify the model weights df_cp_L1000_blend = pd.DataFrame(np.zeros(df_cp_L1000_cnn_test.shape), columns = df_cp_L1000_cnn_test.columns) df_cp_L1000_blend = df_cp_L1000_cnn_test*0.30 + df_cp_L1000_resnet_test*0.20 + df_cp_L1000_tabnet_test*0.15 + df_cp_L1000_simplenn_test*0.35 # In[35]: 0.30+0.20+0.15+0.35 # In[36]: model_eval_results(df_cp_L1000_test, df_cp_L1000_tst_targets, df_cp_L1000_blend) # In[37]: def save_to_csv(df, path, file_name, compress=None): """save dataframes to csv""" if not os.path.exists(path): os.mkdir(path) df.to_csv(os.path.join(path, file_name), index=False, compression=compress) # In[38]: save_to_csv(df_cp_blend, model_preds_dir, f'cp_test_preds_blend{file_indicator}.csv') save_to_csv(df_L1000_blend, model_preds_dir, 'L1000_test_preds_blend.csv') save_to_csv(df_cp_L1000_blend, model_preds_dir, 'cp_L1000_test_preds_blend.csv')
""" Base module for pyltr. We import all packages since it's not particularly expensive. """ from . import data from . import metrics from . import models from . import util
# -*- coding: utf-8 -*- """ Sahana Eden Evacuees Registry Model @copyright: 2015-2017 (c) Sahana Software Foundation @license: MIT Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ __all__ = ("S3EVRCaseModel", "evr_rheader", "evr_AddGroupMembers", ) from gluon import * from ..s3 import * # ============================================================================= class S3EVRCaseModel(S3Model): names = ("evr_case", "evr_medical_details", ) def model(self): T = current.T settings = current.deployment_settings define_table = self.define_table person_id = self.pr_person_id # --------------------------------------------------------------------- # Case Data # enable_evr_organisation = settings.get_evr_link_to_organisation() organisation_label = settings.get_hrm_organisation_label() org_organisation_represent = self.org_OrganisationRepresent() org_widget = S3HierarchyWidget(lookup="org_organisation", represent=org_organisation_represent, multiple=False, leafonly=False,) tablename = "evr_case" define_table(tablename, person_id(ondelete = "CASCADE"), self.org_organisation_id( empty = not settings.get_hrm_org_required(), label = organisation_label, requires = self.org_organisation_requires(required=True), comment = DIV(_class="tooltip", _title="%s|%s" % (T("Designed Organisation"), T("Organisation designed to take care of evacuee"))), widget = org_widget, readable = enable_evr_organisation, writable = enable_evr_organisation, ), Field("fiscal_code", "string", length=16, label = T("Fiscal Code"), comment = DIV(_class="tooltip", _title="%s|%s" % (T("Fiscal Code"), T("Insert the fiscal code with no spaces") ) ), ), s3_comments(), *s3_meta_fields()) # If fiscal code is present, it's unique # fiscal_code = db.evr_case.fiscal_code # fiscal_code.requires = IS_EMPTY_OR( # IS_NOT_IN_DB(db(db.evr_case.deleted != True), # fiscal_code), # null='' # ) self.configure(tablename, onaccept = self.evr_case_onaccept, ) # --------------------------------------------------------------------- # Medical Details # # @todo: use string-codes for option fields for better # maintainability/interoperability # evr_therapy_opts = {1: T("Vital Long-Term Medication"), 2: T("Dialysis"), 3: T("Chronic Oxygen Supply"), 4: T("Intermittend Ventilator Support"), 5: T("Ventilator Dependend"), 6: T("Cardiac Assist Device"), } evr_allergy_opts = {1: T("Drug"), 2: T("Food"), 3: T("Olive Tree"), 4: T("Grass"), 5: T("Dust"), 6: T("Other"), } evr_disability_opts = {1: T("Visually Impaired"), 2: T("Blind"), 3: T("Hearing-Impaired"), 4: T("Deaf"), 5: T("Deaf-Mute"), 6: T("Deaf-Blind"), 7: T("Aphasic"), 8: T("Mobility-Impaired"), 9: T("Paralysed"), 10: T("Amputated"), 11: T("Other Physical Disability"), 12: T("Mentally Disabled"), } evr_aids_appliances_opts = {1: ("Guide Dog"), 2: ("Wheelchair"), 3: ("Walking stick"), 4: ("Crutch"), 5: ("Tripod"), 6: ("Artificial limb"), 7: ("Catheter"), 8: ("Sanity Napkin"), } def med_multiopt_field(fieldname, options, label=None): """ Simple generator for option fields """ return Field(fieldname, "list:integer", label = label, represent = S3Represent(options = options, multiple = True), requires = IS_IN_SET(options, multiple = True), widget = S3MultiSelectWidget(filter = False, selectedList = 3, noneSelectedText = "Select", ) ) evr_source_opts = {1: "Self", 2: "Mother", 3: "Father", 4: "Uncle", 5: "Grandfather", 6: "Grandmother", 7: "Official", 8: "Attendant", 9: "Neighbour", 10: "Teacher", 11: "Priest", 12: "Other", } tablename = "evr_medical_details" define_table(tablename, person_id(), med_multiopt_field("therapy", evr_therapy_opts, label = T("Therapy"), ), Field("therapy_comment"), Field("pregnancy", "boolean", label = T("Pregnancy"), ), med_multiopt_field("allergy", evr_allergy_opts, label = T("Allergies"), ), Field("diet", label = T("Food intolerance"), ), med_multiopt_field("disability", evr_disability_opts, label = T("Disabilities"), ), Field("self_sufficient", "boolean", label = T("Self-Sufficient"), ), med_multiopt_field("aids_appliances", evr_aids_appliances_opts, label = T("Aids and Appliances"), ), Field("declared_by_name", label = T("Declared by (Name)"), ), Field("declared_by_relationship", "integer", label = T("Declared by (Relationship)"), represent=S3Represent(options=evr_source_opts), requires = IS_IN_SET(evr_source_opts, zero=None), ), Field("declared_by_phone", label = T("Declared by (Phone)"), requires = IS_NULL_OR(IS_PHONE_NUMBER()), ), Field("declared_by_email", label = T("Declared by (Email)"), requires = IS_NULL_OR(IS_EMAIL()), ), Field("has_attendant", "boolean", label = T("Has Attendant"), ), Field("attendant_name", label = T("Attendant (Name)"), ), Field("attendant_phone", label = T("Attendant (Phone)"), requires = IS_NULL_OR(IS_PHONE_NUMBER()), ), Field("attendant_email", label = T("Attendant (Email)"), requires = IS_NULL_OR(IS_EMAIL()), ), s3_comments(), *s3_meta_fields()) # --------------------------------------------------------------------- # Socio-economic Background # tablename = "evr_background" define_table(tablename, person_id(), Field("legal_measure", label = T("Legal measure / Home warrant"), comment = DIV(_class="tooltip", _title="%s|%s" % (T("Legal measure / Home warrant"), T("Evacuee subject to special or legal measures/penalities") ) ), ), Field("diet_restrictions", label = T("Food Restrictions") ), Field("social_welfare", label = T("Social Welfare"), comment = DIV(_class="tooltip", _title="%s|%s" % (T("Social Welfare"), T("Evacuee subject to Social Welfare") ) ), ), Field("interpreter", label = T("Interpreter / Cultural Mediator Required"), comment = DIV(_class="tooltip", _title="%s|%s" % (T("Interpreter / Cultural Mediator"), T("Specific language interpreter and/or cultural mediator required") ) ), ), Field("home_help", "boolean", label = T("Home Help"), comment = DIV(_class="tooltip", _title="%s|%s" % (T("Home Help"), T("Evacuee requiring dedicated assistance at home") ) ), ), Field("distance_from_shelter", "integer", label = T("Working Distance from Shelter (km)") ), Field("job_lost_by_event", "boolean", label = T("Job lost by event") ), Field("domestic_animal", "boolean", label = T("With Domestic Animals") ), Field("car_available", "boolean", label = T("Car available") ), s3_comments(), *s3_meta_fields()) # ------------------------------------------------------------------------- @staticmethod def evr_case_onaccept(form): """ After DB I/O, check the correctness of fiscal code (ITALY) @ToDo: The function should be made a deployment_setting when anyone else wishes to use this module """ # Initialization fiscal_code = form.vars.fiscal_code if fiscal_code == "" or fiscal_code == None: return fiscal_code = fiscal_code.upper() MALE = 3 CONSONANTS = "BCDFGHJKLMNPQRSTVWXYZ" VOWELS = "AEIOU" MONTHS = "ABCDEHLMPRST" T = current.T ptable = current.s3db.pr_person query = (form.vars.person_id == ptable.id) row = current.db(query).select(ptable.first_name, ptable.last_name, ptable.date_of_birth, ptable.gender, limitby = (0, 1) ).first() name = row.first_name.upper() surname = row.last_name.upper() date_of_birth = row.date_of_birth year = date_of_birth.year month = date_of_birth.month day = date_of_birth.day gender = row.gender # Check surname cons = "" for c in surname: if c in CONSONANTS: cons += c vow = "" for c in surname: if c in VOWELS: vow += c chars = cons + vow if len(chars) < 3: chars += ["X", "X"] if fiscal_code[:3] != chars[0:3].upper(): current.response.warning = T("Warning: fiscal code isn't \ consistent with personal data") return # Check name cons = "" for c in name: if c in CONSONANTS: cons += c if len(cons) > 3: chars = cons[0] + cons[2] + cons[3] else: vow = "" for c in name: if c in VOWELS: vow += c chars = cons + vow if len(chars) < 3: chars += ["X", "X"] if fiscal_code[3:6] != chars[0:3].upper(): current.response.warning = T("Warning: fiscal code isn't \ consistent with personal data") return # Check date of birth and gender year = str(year)[2:4] # Convert to string and take only the last two elements if fiscal_code[6:8] != year or \ fiscal_code[8] != MONTHS[month - 1]: current.response.warning = T("Warning: fiscal code isn't \ consistent with personal data") return if gender == MALE: birthday_in_cf = fiscal_code[9:11] if not birthday_in_cf.isdigit(): current.response.warning = T("Warning: fiscal code isn't \ consistent with personal data") return else: birthday_in_cf = int(birthday_in_cf) if birthday_in_cf != day: current.response.warning = T("Warning: fiscal code isn't \ consistent with personal data") return else: # if gender == FEMALE if fiscal_code[9:11] != str(day + 40): current.response.warning = T("Warning: fiscal code isn't \ consistent with personal data") return return # ============================================================================= def evr_rheader(r): """ EVR Resource Headers @param r: the S3Request """ T = current.T settings = current.deployment_settings if r.representation != "html" or not r.record: return None resourcename = r.name rheader_fields = None if resourcename == "person": tabs = [(T("Person"), None), (T("Addresses"), "address"), (T("Contact Data"), "contacts"), (T("Groups"), "group_membership"), # these can be hidden since inline in the main form, # but can enabled to verify the functionality: #(T("Identity Documents"), "identity"), #(T("Case Details"), "case"), (T("Images"), "image"), (T("Medical Information"), "medical_details"), (T("Socio-Economic Background"), "background"), ] if settings.get_evr_show_physical_description(): tabs.append((T("Physical Description"), "physical_description")) if settings.has_module("cr"): tabs.append((T("Shelter Registration"), "shelter_registration")) rheader_fields = [["first_name", "last_name"], ["date_of_birth"], ] # Show profile picture in rheader itable = current.s3db.pr_image query = (itable.pe_id == r.record.pe_id) & \ (itable.profile == True) image = current.db(query).select(itable.image, limitby=(0, 1)).first() if image: image = itable.image.represent(image.image) else: image = A(IMG(_src=URL(c="static", f="img", args="blank-user.gif"), _height=60, _title=T("No image available")), _class="th", _href=URL(f="person", args=[r.id, "image", "create"]), ) return DIV(DIV(image, _style="float:left"), S3ResourceHeader(rheader_fields, tabs)(r)) elif resourcename == "group": tabs = [("Group Details", None), (T("Contact Data"), "contact"), (T("Members"), "group_membership"), ] # Show "Add Members" tab only when we action it explicitly # (=> from action-button in the group members list) if r.method == "add_members": tabs.append((T("Add Members"), "add_members")) rheader_fields = [["name"], ["description"], ] return S3ResourceHeader(rheader_fields, tabs)(r) return None # ============================================================================= class evr_AddGroupMembers(S3Method): """ Custom method to select multiple persons from a filtered list and add them to a group """ # ------------------------------------------------------------------------- def apply_method(self, r, **attr): """ Entry point for REST controller @param r: the S3Request @param attr: dictionary of parameters for the method handler @return: output object to send to the view """ # Add button "Add Members" to members tab if r.http in ("GET", "POST"): if r.representation == "html" and r.id or \ r.representation == "aadata": return self.add_members(r, **attr) else: r.error(415, current.ERROR.BAD_FORMAT) else: r.error(405, current.ERROR.BAD_METHOD) # ------------------------------------------------------------------------- def add_members(self, r, **attr): """ Add-members action: renders a filtered multi-select datatable form, and creates group_memberships on POST @param r: the S3Request @param attr: dictionary of parameters for the method handler @return: output object to send to the view """ T = current.T db = current.db s3db = current.s3db unaffiliated = ((S3FieldSelector("group_membership.id") == None) & \ (S3FieldSelector("case.id") != None)) if r.http == "POST": # Form submission group_id = r.id added = 0 post_vars = r.post_vars if all([name in post_vars for name in ("add", "selected", "mode")]): # Get selection selected = post_vars.selected if selected: selected = selected.split(",") else: selected = [] # Handle exclusion filter if post_vars.mode == "Exclusive": if "filterURL" in post_vars: filters = S3URLQuery.parse_url(post_vars.filterURL) else: filters = None query = unaffiliated & \ (~(S3FieldSelector("id").belongs(selected))) resource = s3db.resource("pr_person", filter=query, vars=filters) rows = resource.select(["id"], as_rows=True) selected = [str(row.id) for row in rows] # Avoid duplicates gtable = s3db.pr_group_membership query = (gtable.group_id == group_id) & \ (gtable.person_id.belongs(selected)) & \ (gtable.deleted != True) rows = db(query).select(gtable.person_id) skip = set(row.person_id for row in rows) # Add new group members for record_id in selected: try: person_id = int(record_id.strip()) except ValueError: continue if person_id in skip: continue gtable.insert(group_id = group_id, person_id = person_id, ) added += 1 # Confirmation message (in session because we redirect) session = current.session if not selected: session.warning = T("No Persons Selected!") else: session.confirmation = T("%(number)s Members added to Group") % \ dict(number=added) # Go back to list of existing group members redirect(r.url(method = "", id = group_id, component = "group_membership")) else: resource = s3db.resource("pr_person", vars=r.get_vars) resource.add_filter(unaffiliated) get_config = resource.get_config # Filter widgets filter_widgets = get_config("filter_widgets", []) filter_widgets.append(S3DateFilter("created_on", label = T("Registered on"), ) ) # List fields list_fields = ["id", "first_name", "last_name", "gender", "date_of_birth", ] response = current.response # Data table boundaries get_vars = self.request.get_vars if "displayStart" in get_vars: start = int(get_vars["displayStart"]) else: start = None if "pageLength" in get_vars: display_length = int(get_vars["pageLength"]) else: display_length = response.s3.ROWSPERPAGE limit = 4 * display_length # Apply datatable filter and sorting totalrows = resource.count() filter, orderby, left = resource.datatable_filter(list_fields, get_vars) if not orderby: # Most recently created records on top orderby = "pr_person.created_on desc" resource.add_filter(filter) # Retrieve the data data = resource.select(list_fields, start=start, limit=limit, orderby=orderby, left=left, count=True, represent=True) filteredrows = data["numrows"] # Generate the datatable dt = S3DataTable(data["rfields"], data["rows"]) dt_id = "datatable" # Bulk Action dt_bulk_actions = [(T("Add as Group Members"), "add")] if r.representation == "html": # Page load # Custom open-button, no delete-option resource.configure(deletable = False) open_url = URL(f = "person", args = ["[id]"]) S3CRUD.action_buttons(r, deletable = False, read_url = open_url, update_url = open_url) # Need no export formats (as this is a form) response.s3.no_formats = True # Data table (items) items = dt.html(totalrows, filteredrows, dt_id, dt_ajax_url=URL(c="evr", f="group", args=["add_members"], vars={}, extension="aadata", ), dt_bulk_actions=dt_bulk_actions, dt_pageLength=display_length, dt_pagination="true", dt_searching="false", ) resource.configure(deletable = False) # Filter form if filter_widgets: # Where to retrieve filtered data from: _vars = resource.crud._remove_filters(r.get_vars) filter_submit_url = r.url(vars=_vars) # Where to retrieve updated filter options from: filter_ajax_url = URL(f="person", args=["filter.options"], vars={}, ) # Define filter form filter_clear = get_config("filter_clear", True) filter_submit = get_config("filter_submit", True) filter_form = S3FilterForm(filter_widgets, clear=filter_clear, submit=filter_submit, ajax=True, url=filter_submit_url, ajaxurl=filter_ajax_url, _class="filter-form", _id="datatable-filter-form", ) # Render filter form fresource = s3db.resource(resource.tablename) alias = resource.alias if r.component else None ff = filter_form.html(fresource, r.get_vars, target="datatable", alias=alias) else: ff = "" output = dict(items = items, title = T("Add Members to Group"), addheader = "%s:" % T("Select People to add them to the Group"), list_filter_form = ff, ) response.view = "list_filter.html" return output else: # Ajax refresh if "draw" in get_vars: echo = int(get_vars.draw) else: echo = None items = dt.json(totalrows, filteredrows, dt_id, echo, dt_bulk_actions=dt_bulk_actions, ) response.headers["Content-Type"] = "application/json" return items # END =========================================================================
""" Django settings for rindr project. Generated by 'django-admin startproject' using Django 3.2.8. For more information on this file, see https://docs.djangoproject.com/en/3.2/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/3.2/ref/settings/ """ from pathlib import Path from decouple import config # Build paths inside the project like this: BASE_DIR / 'subdir'. BASE_DIR = Path(__file__).resolve().parent.parent # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/3.2/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = config("SECRET_KEY") # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'type', 'ticket', 'django_bootstrap5', 'jquery', 'dashboard', 'mathfilters', 'BI' ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'rindr.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'rindr.wsgi.application' # Database # https://docs.djangoproject.com/en/3.2/ref/settings/#databases #DATABASES = { # 'default': { # 'ENGINE': 'django.db.backends.sqlite3', # 'NAME': BASE_DIR / 'db.sqlite3', # } #} DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': 'rindr', 'USER': 'rindr', 'PASSWORD': 'freya', 'HOST': '10.100.102.161', 'PORT': '' } } # Password validation # https://docs.djangoproject.com/en/3.2/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/3.2/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'UTC' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/3.2/howto/static-files/ STATIC_URL = '/static/' # Default primary key field type # https://docs.djangoproject.com/en/3.2/ref/settings/#default-auto-field DEFAULT_AUTO_FIELD = 'django.db.models.BigAutoField' LOGIN_URL="/login"
"""The helper module for the flip interfaces. """ from enum import Enum from apysc._type.boolean import Boolean class Axis(Enum): X = 'x' Y = 'y' def make_flip_update_expression( *, before_value: Boolean, after_value: Boolean, axis: Axis, interface_variable_name: str) -> str: """ Make a flipping value updating expression. Parameters ---------- before_value : Boolean Before updating flipping value. after_value : Boolean After updating flipping value. axis : Axis X or y axis value. interface_variable_name : str Interface instance variable name. Returns ------- expression : str Made expression string. """ from apysc._type import value_util before_value_str: str = value_util.get_value_str_for_expression( value=before_value) after_value_str: str = value_util.get_value_str_for_expression( value=after_value) expression: str = ( f'if ({before_value_str}) {{' f'\n {interface_variable_name}.flip("{axis.value}");' '\n}' f'\nif ({after_value_str}) {{' f'\n {interface_variable_name}.flip("{axis.value}");' '\n}' f'\n{before_value_str} = {after_value_str};' ) return expression
from django.contrib import admin from .models import Meeting, MeetingMinutes, Resource, Event # Register your models here. admin.site.register(Meeting) admin.site.register(MeetingMinutes) admin.site.register(Resource) admin.site.register(Event)
# flake8: noqa E501 from hmda.models.hmda_data_file import HmdaDataFile # Access this using HMDA_DATA_FILES[geo][field_descriptions][records] LOAN_FILE_METADATA = { 'nationwide': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_nationwide_first-lien-owner-occupied-1-4-family-records_labels.zip', '7036352', '482.83 MB'), '2007': HmdaDataFile('hmda_2007_nationwide_first-lien-owner-occupied-1-4-family-records_labels.zip', '7201366', '453.04 MB'), '2017': HmdaDataFile('hmda_2017_nationwide_first-lien-owner-occupied-1-4-family-records_labels.zip', '5986659', '369.82 MB'), '2015': HmdaDataFile('hmda_2015_nationwide_first-lien-owner-occupied-1-4-family-records_labels.zip', '6113423', '485.63 MB'), '2014': HmdaDataFile('hmda_2014_nationwide_first-lien-owner-occupied-1-4-family-records_labels.zip', '4832425', '323.43 MB'), '2008': HmdaDataFile('hmda_2008_nationwide_first-lien-owner-occupied-1-4-family-records_labels.zip', '5526941', '330.65 MB'), '2009': HmdaDataFile('hmda_2009_nationwide_first-lien-owner-occupied-1-4-family-records_labels.zip', '7783986', '467.08 MB'), '2011': HmdaDataFile('hmda_2011_nationwide_first-lien-owner-occupied-1-4-family-records_labels.zip', '5946435', '399.41 MB'), '2010': HmdaDataFile('hmda_2010_nationwide_first-lien-owner-occupied-1-4-family-records_labels.zip', '6764902', '455.07 MB'), '2013': HmdaDataFile('hmda_2013_nationwide_first-lien-owner-occupied-1-4-family-records_labels.zip', '7126202', '492.02 MB'), '2012': HmdaDataFile('hmda_2012_nationwide_first-lien-owner-occupied-1-4-family-records_labels.zip', '8298882', '573.78 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_nationwide_all-records_labels.zip', '16332987', '1.2 GB'), '2007': HmdaDataFile('hmda_2007_nationwide_all-records_labels.zip', '26605695', '1.72 GB'), '2017': HmdaDataFile('hmda_2017_nationwide_all-records_labels.zip', '14285496', '986 MB'), '2015': HmdaDataFile('hmda_2015_nationwide_all-records_labels.zip', '14374184', '1.21 GB'), '2014': HmdaDataFile('hmda_2014_nationwide_all-records_labels.zip', '12049341', '862.92 MB'), '2008': HmdaDataFile('hmda_2008_nationwide_all-records_labels.zip', '17391570', '1.06 GB'), '2009': HmdaDataFile('hmda_2009_nationwide_all-records_labels.zip', '19493491', '1.29 GB'), '2011': HmdaDataFile('hmda_2011_nationwide_all-records_labels.zip', '14873415', '1.08 GB'), '2010': HmdaDataFile('hmda_2010_nationwide_all-records_labels.zip', '16348557', '1.19 GB'), '2013': HmdaDataFile('hmda_2013_nationwide_all-records_labels.zip', '17016159', '1.27 GB'), '2012': HmdaDataFile('hmda_2012_nationwide_all-records_labels.zip', '18691551', '1.4 GB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_nationwide_originated-records_labels.zip', '8377907', '457.12 MB'), '2007': HmdaDataFile('hmda_2007_nationwide_originated-records_labels.zip', '10441545', '528.7 MB'), '2017': HmdaDataFile('hmda_2017_nationwide_originated-records_labels.zip', '7339057', '247.2 MB'), '2015': HmdaDataFile('hmda_2015_nationwide_originated-records_labels.zip', '7404258', '461.08 MB'), '2014': HmdaDataFile('hmda_2014_nationwide_originated-records_labels.zip', '6039826', '331.36 MB'), '2008': HmdaDataFile('hmda_2008_nationwide_originated-records_labels.zip', '7177262', '360.36 MB'), '2009': HmdaDataFile('hmda_2009_nationwide_originated-records_labels.zip', '8950936', '416.67 MB'), '2011': HmdaDataFile('hmda_2011_nationwide_originated-records_labels.zip', '7095262', '381.6 MB'), '2010': HmdaDataFile('hmda_2010_nationwide_originated-records_labels.zip', '7863337', '419.27 MB'), '2013': HmdaDataFile('hmda_2013_nationwide_originated-records_labels.zip', '8706657', '476.47 MB'), '2012': HmdaDataFile('hmda_2012_nationwide_originated-records_labels.zip', '9783966', '529.5 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_nationwide_first-lien-owner-occupied-1-4-family-records_codes.zip', '7036352', '165.84 MB'), '2007': HmdaDataFile('hmda_2007_nationwide_first-lien-owner-occupied-1-4-family-records_codes.zip', '7201366', '141.73 MB'), '2017': HmdaDataFile('hmda_2017_nationwide_first-lien-owner-occupied-1-4-family-records_codes.zip', '5986659', '77.47 MB'), '2015': HmdaDataFile('hmda_2015_nationwide_first-lien-owner-occupied-1-4-family-records_codes.zip', '6113423', '144.37 MB'), '2014': HmdaDataFile('hmda_2014_nationwide_first-lien-owner-occupied-1-4-family-records_codes.zip', '4787867', '113.54 MB'), '2008': HmdaDataFile('hmda_2008_nationwide_first-lien-owner-occupied-1-4-family-records_codes.zip', '5526941', '107.3 MB'), '2009': HmdaDataFile('hmda_2009_nationwide_first-lien-owner-occupied-1-4-family-records_codes.zip', '7783986', '140.57 MB'), '2011': HmdaDataFile('hmda_2011_nationwide_first-lien-owner-occupied-1-4-family-records_codes.zip', '5946435', '132 MB'), '2010': HmdaDataFile('hmda_2010_nationwide_first-lien-owner-occupied-1-4-family-records_codes.zip', '6764902', '149.36 MB'), '2013': HmdaDataFile('hmda_2013_nationwide_first-lien-owner-occupied-1-4-family-records_codes.zip', '7126202', '166.47 MB'), '2012': HmdaDataFile('hmda_2012_nationwide_first-lien-owner-occupied-1-4-family-records_codes.zip', '8298882', '189.65 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_nationwide_all-records_codes.zip', '16332987', '384.11 MB'), '2007': HmdaDataFile('hmda_2007_nationwide_all-records_codes.zip', '26605695', '461.15 MB'), '2017': HmdaDataFile('hmda_2017_nationwide_all-records_codes.zip', '14285496', '182.02 MB'), '2015': HmdaDataFile('hmda_2015_nationwide_all-records_codes.zip', '14374184', '337.27 MB'), '2014': HmdaDataFile('hmda_2014_nationwide_all-records_codes.zip', '11875464', '278.4 MB'), '2008': HmdaDataFile('hmda_2008_nationwide_all-records_codes.zip', '17391570', '309.22 MB'), '2009': HmdaDataFile('hmda_2009_nationwide_all-records_codes.zip', '19493491', '331.31 MB'), '2011': HmdaDataFile('hmda_2011_nationwide_all-records_codes.zip', '14873415', '335.22 MB'), '2010': HmdaDataFile('hmda_2010_nationwide_all-records_codes.zip', '16348557', '367.78 MB'), '2013': HmdaDataFile('hmda_2013_nationwide_all-records_codes.zip', '17016159', '400.19 MB'), '2012': HmdaDataFile('hmda_2012_nationwide_all-records_codes.zip', '18691551', '434.69 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_nationwide_originated-records_codes.zip', '8377907', '196.62 MB'), '2007': HmdaDataFile('hmda_2007_nationwide_originated-records_codes.zip', '10441545', '199.55 MB'), '2017': HmdaDataFile('hmda_2017_nationwide_originated-records_codes.zip', '7339057', '94.95 MB'), '2015': HmdaDataFile('hmda_2015_nationwide_originated-records_codes.zip', '7404258', '173.96 MB'), '2014': HmdaDataFile('hmda_2014_nationwide_originated-records_codes.zip', '5979766', '140.82 MB'), '2008': HmdaDataFile('hmda_2008_nationwide_originated-records_codes.zip', '7177262', '137.98 MB'), '2009': HmdaDataFile('hmda_2009_nationwide_originated-records_codes.zip', '8950936', '162.04 MB'), '2011': HmdaDataFile('hmda_2011_nationwide_originated-records_codes.zip', '7095262', '157.4 MB'), '2010': HmdaDataFile('hmda_2010_nationwide_originated-records_codes.zip', '7863337', '173.45 MB'), '2013': HmdaDataFile('hmda_2013_nationwide_originated-records_codes.zip', '8706657', '203.33 MB'), '2012': HmdaDataFile('hmda_2012_nationwide_originated-records_codes.zip', '9783966', '224.11 MB') } } }, 'va': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_va_first-lien-owner-occupied-1-4-family-records_labels.zip', '216152', '11.27 MB'), '2007': HmdaDataFile('hmda_2007_va_first-lien-owner-occupied-1-4-family-records_labels.zip', '228323', '11.15 MB'), '2017': HmdaDataFile('hmda_2017_va_first-lien-owner-occupied-1-4-family-records_labels.zip', '175737', '5.58 MB'), '2015': HmdaDataFile('hmda_2015_va_first-lien-owner-occupied-1-4-family-records_labels.zip', '191048', '11.13 MB'), '2014': HmdaDataFile('hmda_2014_va_first-lien-owner-occupied-1-4-family-records_labels.zip', '147744', '7.63 MB'), '2008': HmdaDataFile('hmda_2008_va_first-lien-owner-occupied-1-4-family-records_labels.zip', '186185', '8.91 MB'), '2009': HmdaDataFile('hmda_2009_va_first-lien-owner-occupied-1-4-family-records_labels.zip', '273787', '12.14 MB'), '2011': HmdaDataFile('hmda_2011_va_first-lien-owner-occupied-1-4-family-records_labels.zip', '205670', '10.53 MB'), '2010': HmdaDataFile('hmda_2010_va_first-lien-owner-occupied-1-4-family-records_labels.zip', '228664', '11.48 MB'), '2013': HmdaDataFile('hmda_2013_va_first-lien-owner-occupied-1-4-family-records_labels.zip', '244599', '12.77 MB'), '2012': HmdaDataFile('hmda_2012_va_first-lien-owner-occupied-1-4-family-records_labels.zip', '288436', '14.9 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_va_all-records_labels.zip', '494057', '27.35 MB'), '2007': HmdaDataFile('hmda_2007_va_all-records_labels.zip', '784919', '38.17 MB'), '2017': HmdaDataFile('hmda_2017_va_all-records_labels.zip', '411507', '14.48 MB'), '2015': HmdaDataFile('hmda_2015_va_all-records_labels.zip', '445447', '27.97 MB'), '2014': HmdaDataFile('hmda_2014_va_all-records_labels.zip', '365572', '20.34 MB'), '2008': HmdaDataFile('hmda_2008_va_all-records_labels.zip', '539572', '26.49 MB'), '2009': HmdaDataFile('hmda_2009_va_all-records_labels.zip', '637212', '29.34 MB'), '2011': HmdaDataFile('hmda_2011_va_all-records_labels.zip', '482943', '27.06 MB'), '2010': HmdaDataFile('hmda_2010_va_all-records_labels.zip', '517819', '28.54 MB'), '2013': HmdaDataFile('hmda_2013_va_all-records_labels.zip', '563167', '31.8 MB'), '2012': HmdaDataFile('hmda_2012_va_all-records_labels.zip', '634102', '35.59 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_va_originated-records_labels.zip', '252237', '13.42 MB'), '2007': HmdaDataFile('hmda_2007_va_originated-records_labels.zip', '327766', '16.15 MB'), '2017': HmdaDataFile('hmda_2017_va_originated-records_labels.zip', '211218', '6.89 MB'), '2015': HmdaDataFile('hmda_2015_va_originated-records_labels.zip', '227837', '13.49 MB'), '2014': HmdaDataFile('hmda_2014_va_originated-records_labels.zip', '183729', '9.73 MB'), '2008': HmdaDataFile('hmda_2008_va_originated-records_labels.zip', '234813', '11.47 MB'), '2009': HmdaDataFile('hmda_2009_va_originated-records_labels.zip', '308658', '13.99 MB'), '2011': HmdaDataFile('hmda_2011_va_originated-records_labels.zip', '239310', '12.46 MB'), '2010': HmdaDataFile('hmda_2010_va_originated-records_labels.zip', '260214', '13.38 MB'), '2013': HmdaDataFile('hmda_2013_va_originated-records_labels.zip', '294145', '15.54 MB'), '2012': HmdaDataFile('hmda_2012_va_originated-records_labels.zip', '334770', '17.51 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_va_first-lien-owner-occupied-1-4-family-records_codes.zip', '216152', '7.74 MB'), '2007': HmdaDataFile('hmda_2007_va_first-lien-owner-occupied-1-4-family-records_codes.zip', '228323', '7.71 MB'), '2017': HmdaDataFile('hmda_2017_va_first-lien-owner-occupied-1-4-family-records_codes.zip', '175737', '3.89 MB'), '2015': HmdaDataFile('hmda_2015_va_first-lien-owner-occupied-1-4-family-records_codes.zip', '191048', '7.65 MB'), '2014': HmdaDataFile('hmda_2014_va_first-lien-owner-occupied-1-4-family-records_codes.zip', '147744', '5.26 MB'), '2008': HmdaDataFile('hmda_2008_va_first-lien-owner-occupied-1-4-family-records_codes.zip', '186185', '6.21 MB'), '2009': HmdaDataFile('hmda_2009_va_first-lien-owner-occupied-1-4-family-records_codes.zip', '273787', '8.61 MB'), '2011': HmdaDataFile('hmda_2011_va_first-lien-owner-occupied-1-4-family-records_codes.zip', '205670', '7.08 MB'), '2010': HmdaDataFile('hmda_2010_va_first-lien-owner-occupied-1-4-family-records_codes.zip', '228664', '7.72 MB'), '2013': HmdaDataFile('hmda_2013_va_first-lien-owner-occupied-1-4-family-records_codes.zip', '244599', '8.81 MB'), '2012': HmdaDataFile('hmda_2012_va_first-lien-owner-occupied-1-4-family-records_codes.zip', '288436', '10.21 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_va_all-records_codes.zip', '494057', '18.2 MB'), '2007': HmdaDataFile('hmda_2007_va_all-records_codes.zip', '784919', '25.76 MB'), '2017': HmdaDataFile('hmda_2017_va_all-records_codes.zip', '411507', '9.31 MB'), '2015': HmdaDataFile('hmda_2015_va_all-records_codes.zip', '445447', '18.51 MB'), '2014': HmdaDataFile('hmda_2014_va_all-records_codes.zip', '365572', '13.57 MB'), '2008': HmdaDataFile('hmda_2008_va_all-records_codes.zip', '539572', '17.99 MB'), '2009': HmdaDataFile('hmda_2009_va_all-records_codes.zip', '637212', '20.26 MB'), '2011': HmdaDataFile('hmda_2011_va_all-records_codes.zip', '482943', '17.83 MB'), '2010': HmdaDataFile('hmda_2010_va_all-records_codes.zip', '517819', '18.81 MB'), '2013': HmdaDataFile('hmda_2013_va_all-records_codes.zip', '563167', '21.36 MB'), '2012': HmdaDataFile('hmda_2012_va_all-records_codes.zip', '634102', '23.86 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_va_originated-records_codes.zip', '252237', '9.19 MB'), '2007': HmdaDataFile('hmda_2007_va_originated-records_codes.zip', '327766', '11.21 MB'), '2017': HmdaDataFile('hmda_2017_va_originated-records_codes.zip', '211218', '4.75 MB'), '2015': HmdaDataFile('hmda_2015_va_originated-records_codes.zip', '227837', '9.22 MB'), '2014': HmdaDataFile('hmda_2014_va_originated-records_codes.zip', '183729', '6.67 MB'), '2008': HmdaDataFile('hmda_2008_va_originated-records_codes.zip', '234813', '7.98 MB'), '2009': HmdaDataFile('hmda_2009_va_originated-records_codes.zip', '308658', '9.9 MB'), '2011': HmdaDataFile('hmda_2011_va_originated-records_codes.zip', '239310', '8.34 MB'), '2010': HmdaDataFile('hmda_2010_va_originated-records_codes.zip', '260214', '8.98 MB'), '2013': HmdaDataFile('hmda_2013_va_originated-records_codes.zip', '294145', '10.63 MB'), '2012': HmdaDataFile('hmda_2012_va_originated-records_codes.zip', '334770', '11.93 MB') } } }, 'co': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_co_first-lien-owner-occupied-1-4-family-records_labels.zip', '228866', '11.12 MB'), '2007': HmdaDataFile('hmda_2007_co_first-lien-owner-occupied-1-4-family-records_labels.zip', '144805', '6.71 MB'), '2017': HmdaDataFile('hmda_2017_co_first-lien-owner-occupied-1-4-family-records_labels.zip', '182654', '5.82 MB'), '2015': HmdaDataFile('hmda_2015_co_first-lien-owner-occupied-1-4-family-records_labels.zip', '194123', '10.51 MB'), '2014': HmdaDataFile('hmda_2014_co_first-lien-owner-occupied-1-4-family-records_labels.zip', '139220', '6.92 MB'), '2008': HmdaDataFile('hmda_2008_co_first-lien-owner-occupied-1-4-family-records_labels.zip', '128542', '5.81 MB'), '2009': HmdaDataFile('hmda_2009_co_first-lien-owner-occupied-1-4-family-records_labels.zip', '209511', '8.79 MB'), '2011': HmdaDataFile('hmda_2011_co_first-lien-owner-occupied-1-4-family-records_labels.zip', '149880', '7.07 MB'), '2010': HmdaDataFile('hmda_2010_co_first-lien-owner-occupied-1-4-family-records_labels.zip', '180911', '8.7 MB'), '2013': HmdaDataFile('hmda_2013_co_first-lien-owner-occupied-1-4-family-records_labels.zip', '192627', '9.59 MB'), '2012': HmdaDataFile('hmda_2012_co_first-lien-owner-occupied-1-4-family-records_labels.zip', '222498', '10.92 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_co_all-records_labels.zip', '483436', '25.25 MB'), '2007': HmdaDataFile('hmda_2007_co_all-records_labels.zip', '537363', '25.41 MB'), '2017': HmdaDataFile('hmda_2017_co_all-records_labels.zip', '404517', '14.76 MB'), '2015': HmdaDataFile('hmda_2015_co_all-records_labels.zip', '409511', '23.35 MB'), '2014': HmdaDataFile('hmda_2014_co_all-records_labels.zip', '313445', '16.62 MB'), '2008': HmdaDataFile('hmda_2008_co_all-records_labels.zip', '370468', '17.59 MB'), '2009': HmdaDataFile('hmda_2009_co_all-records_labels.zip', '492317', '21.47 MB'), '2011': HmdaDataFile('hmda_2011_co_all-records_labels.zip', '366969', '18.87 MB'), '2010': HmdaDataFile('hmda_2010_co_all-records_labels.zip', '413027', '21.58 MB'), '2013': HmdaDataFile('hmda_2013_co_all-records_labels.zip', '427952', '22.81 MB'), '2012': HmdaDataFile('hmda_2012_co_all-records_labels.zip', '474846', '24.96 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_co_originated-records_labels.zip', '263402', '13.07 MB'), '2007': HmdaDataFile('hmda_2007_co_originated-records_labels.zip', '218842', '10.18 MB'), '2017': HmdaDataFile('hmda_2017_co_originated-records_labels.zip', '216848', '7.17 MB'), '2015': HmdaDataFile('hmda_2015_co_originated-records_labels.zip', '227578', '12.54 MB'), '2014': HmdaDataFile('hmda_2014_co_originated-records_labels.zip', '169959', '8.6 MB'), '2008': HmdaDataFile('hmda_2008_co_originated-records_labels.zip', '162244', '7.43 MB'), '2009': HmdaDataFile('hmda_2009_co_originated-records_labels.zip', '236219', '9.99 MB'), '2011': HmdaDataFile('hmda_2011_co_originated-records_labels.zip', '179323', '8.69 MB'), '2010': HmdaDataFile('hmda_2010_co_originated-records_labels.zip', '207951', '10.35 MB'), '2013': HmdaDataFile('hmda_2013_co_originated-records_labels.zip', '235157', '11.95 MB'), '2012': HmdaDataFile('hmda_2012_co_originated-records_labels.zip', '263229', '13.2 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_co_first-lien-owner-occupied-1-4-family-records_codes.zip', '228866', '7.81 MB'), '2007': HmdaDataFile('hmda_2007_co_first-lien-owner-occupied-1-4-family-records_codes.zip', '144805', '4.75 MB'), '2017': HmdaDataFile('hmda_2017_co_first-lien-owner-occupied-1-4-family-records_codes.zip', '182654', '4.07 MB'), '2015': HmdaDataFile('hmda_2015_co_first-lien-owner-occupied-1-4-family-records_codes.zip', '194123', '7.52 MB'), '2014': HmdaDataFile('hmda_2014_co_first-lien-owner-occupied-1-4-family-records_codes.zip', '139220', '4.9 MB'), '2008': HmdaDataFile('hmda_2008_co_first-lien-owner-occupied-1-4-family-records_codes.zip', '128542', '4.11 MB'), '2009': HmdaDataFile('hmda_2009_co_first-lien-owner-occupied-1-4-family-records_codes.zip', '209511', '6.34 MB'), '2011': HmdaDataFile('hmda_2011_co_first-lien-owner-occupied-1-4-family-records_codes.zip', '149880', '4.88 MB'), '2010': HmdaDataFile('hmda_2010_co_first-lien-owner-occupied-1-4-family-records_codes.zip', '180911', '6.03 MB'), '2013': HmdaDataFile('hmda_2013_co_first-lien-owner-occupied-1-4-family-records_codes.zip', '192627', '6.74 MB'), '2012': HmdaDataFile('hmda_2012_co_first-lien-owner-occupied-1-4-family-records_codes.zip', '222498', '7.6 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_co_all-records_codes.zip', '483436', '17.2 MB'), '2007': HmdaDataFile('hmda_2007_co_all-records_codes.zip', '537363', '17.72 MB'), '2017': HmdaDataFile('hmda_2017_co_all-records_codes.zip', '404517', '9.9 MB'), '2015': HmdaDataFile('hmda_2015_co_all-records_codes.zip', '409511', '16.01 MB'), '2014': HmdaDataFile('hmda_2014_co_all-records_codes.zip', '313445', '11.43 MB'), '2008': HmdaDataFile('hmda_2008_co_all-records_codes.zip', '370468', '12.3 MB'), '2009': HmdaDataFile('hmda_2009_co_all-records_codes.zip', '492317', '15.15 MB'), '2011': HmdaDataFile('hmda_2011_co_all-records_codes.zip', '366969', '12.63 MB'), '2010': HmdaDataFile('hmda_2010_co_all-records_codes.zip', '413027', '14.47 MB'), '2013': HmdaDataFile('hmda_2013_co_all-records_codes.zip', '427952', '15.58 MB'), '2012': HmdaDataFile('hmda_2012_co_all-records_codes.zip', '474846', '16.87 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_co_originated-records_codes.zip', '263402', '9.15 MB'), '2007': HmdaDataFile('hmda_2007_co_originated-records_codes.zip', '218842', '7.18 MB'), '2017': HmdaDataFile('hmda_2017_co_originated-records_codes.zip', '216848', '4.99 MB'), '2015': HmdaDataFile('hmda_2015_co_originated-records_codes.zip', '227578', '8.91 MB'), '2014': HmdaDataFile('hmda_2014_co_originated-records_codes.zip', '169959', '6.05 MB'), '2008': HmdaDataFile('hmda_2008_co_originated-records_codes.zip', '162244', '5.23 MB'), '2009': HmdaDataFile('hmda_2009_co_originated-records_codes.zip', '236219', '7.16 MB'), '2011': HmdaDataFile('hmda_2011_co_originated-records_codes.zip', '179323', '5.95 MB'), '2010': HmdaDataFile('hmda_2010_co_originated-records_codes.zip', '207951', '7.15 MB'), '2013': HmdaDataFile('hmda_2013_co_originated-records_codes.zip', '235157', '8.37 MB'), '2012': HmdaDataFile('hmda_2012_co_originated-records_codes.zip', '263229', '9.16 MB') } } }, 'vi': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_vi_first-lien-owner-occupied-1-4-family-records_labels.zip', '0', '647 bytes'), '2007': HmdaDataFile('hmda_2007_vi_first-lien-owner-occupied-1-4-family-records_labels.zip', '0', '647 bytes'), '2017': HmdaDataFile('hmda_2017_vi_first-lien-owner-occupied-1-4-family-records_labels.zip', '15', '1.55 KB'), '2015': HmdaDataFile('hmda_2015_vi_first-lien-owner-occupied-1-4-family-records_labels.zip', '0', '647 bytes'), '2014': HmdaDataFile('hmda_2014_vi_first-lien-owner-occupied-1-4-family-records_labels.zip', '0', '647 bytes'), '2008': HmdaDataFile('hmda_2008_vi_first-lien-owner-occupied-1-4-family-records_labels.zip', '0', '647 bytes'), '2009': HmdaDataFile('hmda_2009_vi_first-lien-owner-occupied-1-4-family-records_labels.zip', '0', '647 bytes'), '2011': HmdaDataFile('hmda_2011_vi_first-lien-owner-occupied-1-4-family-records_labels.zip', '0', '647 bytes'), '2010': HmdaDataFile('hmda_2010_vi_first-lien-owner-occupied-1-4-family-records_labels.zip', '0', '647 bytes'), '2013': HmdaDataFile('hmda_2013_vi_first-lien-owner-occupied-1-4-family-records_labels.zip', '0', '647 bytes'), '2012': HmdaDataFile('hmda_2012_vi_first-lien-owner-occupied-1-4-family-records_labels.zip', '0', '647 bytes') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_vi_all-records_labels.zip', '0', '581 bytes'), '2007': HmdaDataFile('hmda_2007_vi_all-records_labels.zip', '0', '581 bytes'), '2017': HmdaDataFile('hmda_2017_vi_all-records_labels.zip', '47', '2.39 KB'), '2015': HmdaDataFile('hmda_2015_vi_all-records_labels.zip', '0', '581 bytes'), '2014': HmdaDataFile('hmda_2014_vi_all-records_labels.zip', '0', '581 bytes'), '2008': HmdaDataFile('hmda_2008_vi_all-records_labels.zip', '0', '581 bytes'), '2009': HmdaDataFile('hmda_2009_vi_all-records_labels.zip', '0', '581 bytes'), '2011': HmdaDataFile('hmda_2011_vi_all-records_labels.zip', '0', '581 bytes'), '2010': HmdaDataFile('hmda_2010_vi_all-records_labels.zip', '0', '581 bytes'), '2013': HmdaDataFile('hmda_2013_vi_all-records_labels.zip', '0', '581 bytes'), '2012': HmdaDataFile('hmda_2012_vi_all-records_labels.zip', '0', '581 bytes') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_vi_originated-records_labels.zip', '0', '595 bytes'), '2007': HmdaDataFile('hmda_2007_vi_originated-records_labels.zip', '0', '595 bytes'), '2017': HmdaDataFile('hmda_2017_vi_originated-records_labels.zip', '23', '1.73 KB'), '2015': HmdaDataFile('hmda_2015_vi_originated-records_labels.zip', '0', '595 bytes'), '2014': HmdaDataFile('hmda_2014_vi_originated-records_labels.zip', '0', '595 bytes'), '2008': HmdaDataFile('hmda_2008_vi_originated-records_labels.zip', '0', '595 bytes'), '2009': HmdaDataFile('hmda_2009_vi_originated-records_labels.zip', '0', '595 bytes'), '2011': HmdaDataFile('hmda_2011_vi_originated-records_labels.zip', '0', '595 bytes'), '2010': HmdaDataFile('hmda_2010_vi_originated-records_labels.zip', '0', '595 bytes'), '2013': HmdaDataFile('hmda_2013_vi_originated-records_labels.zip', '0', '595 bytes'), '2012': HmdaDataFile('hmda_2012_vi_originated-records_labels.zip', '0', '595 bytes') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_vi_first-lien-owner-occupied-1-4-family-records_codes.zip', '0', '540 bytes'), '2007': HmdaDataFile('hmda_2007_vi_first-lien-owner-occupied-1-4-family-records_codes.zip', '0', '540 bytes'), '2017': HmdaDataFile('hmda_2017_vi_first-lien-owner-occupied-1-4-family-records_codes.zip', '15', '940 bytes'), '2015': HmdaDataFile('hmda_2015_vi_first-lien-owner-occupied-1-4-family-records_codes.zip', '0', '540 bytes'), '2014': HmdaDataFile('hmda_2014_vi_first-lien-owner-occupied-1-4-family-records_codes.zip', '0', '540 bytes'), '2008': HmdaDataFile('hmda_2008_vi_first-lien-owner-occupied-1-4-family-records_codes.zip', '0', '540 bytes'), '2009': HmdaDataFile('hmda_2009_vi_first-lien-owner-occupied-1-4-family-records_codes.zip', '0', '540 bytes'), '2011': HmdaDataFile('hmda_2011_vi_first-lien-owner-occupied-1-4-family-records_codes.zip', '0', '540 bytes'), '2010': HmdaDataFile('hmda_2010_vi_first-lien-owner-occupied-1-4-family-records_codes.zip', '0', '540 bytes'), '2013': HmdaDataFile('hmda_2013_vi_first-lien-owner-occupied-1-4-family-records_codes.zip', '0', '540 bytes'), '2012': HmdaDataFile('hmda_2012_vi_first-lien-owner-occupied-1-4-family-records_codes.zip', '0', '540 bytes') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_vi_all-records_codes.zip', '0', '474 bytes'), '2007': HmdaDataFile('hmda_2007_vi_all-records_codes.zip', '0', '474 bytes'), '2017': HmdaDataFile('hmda_2017_vi_all-records_codes.zip', '47', '1.37 KB'), '2015': HmdaDataFile('hmda_2015_vi_all-records_codes.zip', '0', '474 bytes'), '2014': HmdaDataFile('hmda_2014_vi_all-records_codes.zip', '0', '474 bytes'), '2008': HmdaDataFile('hmda_2008_vi_all-records_codes.zip', '0', '474 bytes'), '2009': HmdaDataFile('hmda_2009_vi_all-records_codes.zip', '0', '474 bytes'), '2011': HmdaDataFile('hmda_2011_vi_all-records_codes.zip', '0', '474 bytes'), '2010': HmdaDataFile('hmda_2010_vi_all-records_codes.zip', '0', '474 bytes'), '2013': HmdaDataFile('hmda_2013_vi_all-records_codes.zip', '0', '474 bytes'), '2012': HmdaDataFile('hmda_2012_vi_all-records_codes.zip', '0', '474 bytes') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_vi_originated-records_codes.zip', '0', '488 bytes'), '2007': HmdaDataFile('hmda_2007_vi_originated-records_codes.zip', '0', '488 bytes'), '2017': HmdaDataFile('hmda_2017_vi_originated-records_codes.zip', '23', '1.03 KB'), '2015': HmdaDataFile('hmda_2015_vi_originated-records_codes.zip', '0', '488 bytes'), '2014': HmdaDataFile('hmda_2014_vi_originated-records_codes.zip', '0', '488 bytes'), '2008': HmdaDataFile('hmda_2008_vi_originated-records_codes.zip', '0', '488 bytes'), '2009': HmdaDataFile('hmda_2009_vi_originated-records_codes.zip', '0', '488 bytes'), '2011': HmdaDataFile('hmda_2011_vi_originated-records_codes.zip', '0', '488 bytes'), '2010': HmdaDataFile('hmda_2010_vi_originated-records_codes.zip', '0', '488 bytes'), '2013': HmdaDataFile('hmda_2013_vi_originated-records_codes.zip', '0', '488 bytes'), '2012': HmdaDataFile('hmda_2012_vi_originated-records_codes.zip', '0', '488 bytes') } } }, 'ak': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_ak_first-lien-owner-occupied-1-4-family-records_labels.zip', '15356', '685.22 KB'), '2007': HmdaDataFile('hmda_2007_ak_first-lien-owner-occupied-1-4-family-records_labels.zip', '16758', '627.93 KB'), '2017': HmdaDataFile('hmda_2017_ak_first-lien-owner-occupied-1-4-family-records_labels.zip', '12579', '350.04 KB'), '2015': HmdaDataFile('hmda_2015_ak_first-lien-owner-occupied-1-4-family-records_labels.zip', '14511', '637.91 KB'), '2014': HmdaDataFile('hmda_2014_ak_first-lien-owner-occupied-1-4-family-records_labels.zip', '12147', '530.18 KB'), '2008': HmdaDataFile('hmda_2008_ak_first-lien-owner-occupied-1-4-family-records_labels.zip', '15576', '536.13 KB'), '2009': HmdaDataFile('hmda_2009_ak_first-lien-owner-occupied-1-4-family-records_labels.zip', '23301', '812.74 KB'), '2011': HmdaDataFile('hmda_2011_ak_first-lien-owner-occupied-1-4-family-records_labels.zip', '16974', '682.85 KB'), '2010': HmdaDataFile('hmda_2010_ak_first-lien-owner-occupied-1-4-family-records_labels.zip', '18636', '750.13 KB'), '2013': HmdaDataFile('hmda_2013_ak_first-lien-owner-occupied-1-4-family-records_labels.zip', '17337', '684.52 KB'), '2012': HmdaDataFile('hmda_2012_ak_first-lien-owner-occupied-1-4-family-records_labels.zip', '22064', '872.42 KB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_ak_all-records_labels.zip', '36105', '1.77 MB'), '2007': HmdaDataFile('hmda_2007_ak_all-records_labels.zip', '48143', '2.05 MB'), '2017': HmdaDataFile('hmda_2017_ak_all-records_labels.zip', '28632', '904.87 KB'), '2015': HmdaDataFile('hmda_2015_ak_all-records_labels.zip', '33421', '1.59 MB'), '2014': HmdaDataFile('hmda_2014_ak_all-records_labels.zip', '26499', '1.29 MB'), '2008': HmdaDataFile('hmda_2008_ak_all-records_labels.zip', '36410', '1.47 MB'), '2009': HmdaDataFile('hmda_2009_ak_all-records_labels.zip', '51821', '2.02 MB'), '2011': HmdaDataFile('hmda_2011_ak_all-records_labels.zip', '36900', '1.62 MB'), '2010': HmdaDataFile('hmda_2010_ak_all-records_labels.zip', '41203', '1.81 MB'), '2013': HmdaDataFile('hmda_2013_ak_all-records_labels.zip', '39394', '1.81 MB'), '2012': HmdaDataFile('hmda_2012_ak_all-records_labels.zip', '46691', '2.09 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_ak_originated-records_labels.zip', '17503', '792.19 KB'), '2007': HmdaDataFile('hmda_2007_ak_originated-records_labels.zip', '21167', '801.83 KB'), '2017': HmdaDataFile('hmda_2017_ak_originated-records_labels.zip', '14430', '400.6 KB'), '2015': HmdaDataFile('hmda_2015_ak_originated-records_labels.zip', '16680', '749.38 KB'), '2014': HmdaDataFile('hmda_2014_ak_originated-records_labels.zip', '14272', '633.57 KB'), '2008': HmdaDataFile('hmda_2008_ak_originated-records_labels.zip', '17485', '614.3 KB'), '2009': HmdaDataFile('hmda_2009_ak_originated-records_labels.zip', '24987', '878.94 KB'), '2011': HmdaDataFile('hmda_2011_ak_originated-records_labels.zip', '19236', '785.43 KB'), '2010': HmdaDataFile('hmda_2010_ak_originated-records_labels.zip', '20697', '847.87 KB'), '2013': HmdaDataFile('hmda_2013_ak_originated-records_labels.zip', '20363', '840.47 KB'), '2012': HmdaDataFile('hmda_2012_ak_originated-records_labels.zip', '24887', '1.02 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_ak_first-lien-owner-occupied-1-4-family-records_codes.zip', '15356', '426.06 KB'), '2007': HmdaDataFile('hmda_2007_ak_first-lien-owner-occupied-1-4-family-records_codes.zip', '16758', '411.75 KB'), '2017': HmdaDataFile('hmda_2017_ak_first-lien-owner-occupied-1-4-family-records_codes.zip', '12579', '240.69 KB'), '2015': HmdaDataFile('hmda_2015_ak_first-lien-owner-occupied-1-4-family-records_codes.zip', '14511', '394.05 KB'), '2014': HmdaDataFile('hmda_2014_ak_first-lien-owner-occupied-1-4-family-records_codes.zip', '12147', '329.2 KB'), '2008': HmdaDataFile('hmda_2008_ak_first-lien-owner-occupied-1-4-family-records_codes.zip', '15576', '364.56 KB'), '2009': HmdaDataFile('hmda_2009_ak_first-lien-owner-occupied-1-4-family-records_codes.zip', '23301', '544.64 KB'), '2011': HmdaDataFile('hmda_2011_ak_first-lien-owner-occupied-1-4-family-records_codes.zip', '16974', '426.2 KB'), '2010': HmdaDataFile('hmda_2010_ak_first-lien-owner-occupied-1-4-family-records_codes.zip', '18636', '464.07 KB'), '2013': HmdaDataFile('hmda_2013_ak_first-lien-owner-occupied-1-4-family-records_codes.zip', '17337', '417.9 KB'), '2012': HmdaDataFile('hmda_2012_ak_first-lien-owner-occupied-1-4-family-records_codes.zip', '22064', '530.98 KB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_ak_all-records_codes.zip', '36105', '1.07 MB'), '2007': HmdaDataFile('hmda_2007_ak_all-records_codes.zip', '48143', '1.24 MB'), '2017': HmdaDataFile('hmda_2017_ak_all-records_codes.zip', '28632', '571.83 KB'), '2015': HmdaDataFile('hmda_2015_ak_all-records_codes.zip', '33421', '951.9 KB'), '2014': HmdaDataFile('hmda_2014_ak_all-records_codes.zip', '26499', '778.42 KB'), '2008': HmdaDataFile('hmda_2008_ak_all-records_codes.zip', '36410', '899.28 KB'), '2009': HmdaDataFile('hmda_2009_ak_all-records_codes.zip', '51821', '1.29 MB'), '2011': HmdaDataFile('hmda_2011_ak_all-records_codes.zip', '36900', '992.55 KB'), '2010': HmdaDataFile('hmda_2010_ak_all-records_codes.zip', '41203', '1.1 MB'), '2013': HmdaDataFile('hmda_2013_ak_all-records_codes.zip', '39394', '1.01 MB'), '2012': HmdaDataFile('hmda_2012_ak_all-records_codes.zip', '46691', '1.17 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_ak_originated-records_codes.zip', '17503', '490.92 KB'), '2007': HmdaDataFile('hmda_2007_ak_originated-records_codes.zip', '21167', '527.65 KB'), '2017': HmdaDataFile('hmda_2017_ak_originated-records_codes.zip', '14430', '275.46 KB'), '2015': HmdaDataFile('hmda_2015_ak_originated-records_codes.zip', '16680', '458.98 KB'), '2014': HmdaDataFile('hmda_2014_ak_originated-records_codes.zip', '14272', '392.19 KB'), '2008': HmdaDataFile('hmda_2008_ak_originated-records_codes.zip', '17485', '413.46 KB'), '2009': HmdaDataFile('hmda_2009_ak_originated-records_codes.zip', '24987', '583.23 KB'), '2011': HmdaDataFile('hmda_2011_ak_originated-records_codes.zip', '19236', '488.12 KB'), '2010': HmdaDataFile('hmda_2010_ak_originated-records_codes.zip', '20697', '518.32 KB'), '2013': HmdaDataFile('hmda_2013_ak_originated-records_codes.zip', '20363', '514.87 KB'), '2012': HmdaDataFile('hmda_2012_ak_originated-records_codes.zip', '24887', '617.44 KB') } } }, 'al': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_al_first-lien-owner-occupied-1-4-family-records_labels.zip', '86522', '4.16 MB'), '2007': HmdaDataFile('hmda_2007_al_first-lien-owner-occupied-1-4-family-records_labels.zip', '106195', '4.88 MB'), '2017': HmdaDataFile('hmda_2017_al_first-lien-owner-occupied-1-4-family-records_labels.zip', '80115', '2.33 MB'), '2015': HmdaDataFile('hmda_2015_al_first-lien-owner-occupied-1-4-family-records_labels.zip', '75252', '4.13 MB'), '2014': HmdaDataFile('hmda_2014_al_first-lien-owner-occupied-1-4-family-records_labels.zip', '63808', '3.06 MB'), '2008': HmdaDataFile('hmda_2008_al_first-lien-owner-occupied-1-4-family-records_labels.zip', '89932', '4.1 MB'), '2009': HmdaDataFile('hmda_2009_al_first-lien-owner-occupied-1-4-family-records_labels.zip', '103427', '4.47 MB'), '2011': HmdaDataFile('hmda_2011_al_first-lien-owner-occupied-1-4-family-records_labels.zip', '75467', '3.54 MB'), '2010': HmdaDataFile('hmda_2010_al_first-lien-owner-occupied-1-4-family-records_labels.zip', '87005', '3.98 MB'), '2013': HmdaDataFile('hmda_2013_al_first-lien-owner-occupied-1-4-family-records_labels.zip', '93236', '4.39 MB'), '2012': HmdaDataFile('hmda_2012_al_first-lien-owner-occupied-1-4-family-records_labels.zip', '99531', '4.7 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_al_all-records_labels.zip', '226918', '11.95 MB'), '2007': HmdaDataFile('hmda_2007_al_all-records_labels.zip', '367991', '17.47 MB'), '2017': HmdaDataFile('hmda_2017_al_all-records_labels.zip', '209002', '7.08 MB'), '2015': HmdaDataFile('hmda_2015_al_all-records_labels.zip', '205039', '11.99 MB'), '2014': HmdaDataFile('hmda_2014_al_all-records_labels.zip', '182825', '9.57 MB'), '2008': HmdaDataFile('hmda_2008_al_all-records_labels.zip', '286567', '13.72 MB'), '2009': HmdaDataFile('hmda_2009_al_all-records_labels.zip', '294820', '13.87 MB'), '2011': HmdaDataFile('hmda_2011_al_all-records_labels.zip', '228420', '11.89 MB'), '2010': HmdaDataFile('hmda_2010_al_all-records_labels.zip', '249347', '12.77 MB'), '2013': HmdaDataFile('hmda_2013_al_all-records_labels.zip', '253915', '13.16 MB'), '2012': HmdaDataFile('hmda_2012_al_all-records_labels.zip', '264313', '13.66 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_al_originated-records_labels.zip', '109870', '5.39 MB'), '2007': HmdaDataFile('hmda_2007_al_originated-records_labels.zip', '153334', '7.1 MB'), '2017': HmdaDataFile('hmda_2017_al_originated-records_labels.zip', '103096', '3.05 MB'), '2015': HmdaDataFile('hmda_2015_al_originated-records_labels.zip', '98097', '5.48 MB'), '2014': HmdaDataFile('hmda_2014_al_originated-records_labels.zip', '85899', '4.21 MB'), '2008': HmdaDataFile('hmda_2008_al_originated-records_labels.zip', '119306', '5.51 MB'), '2009': HmdaDataFile('hmda_2009_al_originated-records_labels.zip', '126063', '5.57 MB'), '2011': HmdaDataFile('hmda_2011_al_originated-records_labels.zip', '97761', '4.65 MB'), '2010': HmdaDataFile('hmda_2010_al_originated-records_labels.zip', '106706', '4.95 MB'), '2013': HmdaDataFile('hmda_2013_al_originated-records_labels.zip', '118638', '5.68 MB'), '2012': HmdaDataFile('hmda_2012_al_originated-records_labels.zip', '123170', '5.93 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_al_first-lien-owner-occupied-1-4-family-records_codes.zip', '86522', '2.77 MB'), '2007': HmdaDataFile('hmda_2007_al_first-lien-owner-occupied-1-4-family-records_codes.zip', '106195', '3.34 MB'), '2017': HmdaDataFile('hmda_2017_al_first-lien-owner-occupied-1-4-family-records_codes.zip', '80115', '1.67 MB'), '2015': HmdaDataFile('hmda_2015_al_first-lien-owner-occupied-1-4-family-records_codes.zip', '75252', '2.81 MB'), '2014': HmdaDataFile('hmda_2014_al_first-lien-owner-occupied-1-4-family-records_codes.zip', '63808', '2.06 MB'), '2008': HmdaDataFile('hmda_2008_al_first-lien-owner-occupied-1-4-family-records_codes.zip', '89932', '2.83 MB'), '2009': HmdaDataFile('hmda_2009_al_first-lien-owner-occupied-1-4-family-records_codes.zip', '103427', '3.06 MB'), '2011': HmdaDataFile('hmda_2011_al_first-lien-owner-occupied-1-4-family-records_codes.zip', '75467', '2.35 MB'), '2010': HmdaDataFile('hmda_2010_al_first-lien-owner-occupied-1-4-family-records_codes.zip', '87005', '2.64 MB'), '2013': HmdaDataFile('hmda_2013_al_first-lien-owner-occupied-1-4-family-records_codes.zip', '93236', '2.92 MB'), '2012': HmdaDataFile('hmda_2012_al_first-lien-owner-occupied-1-4-family-records_codes.zip', '99531', '3.15 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_al_all-records_codes.zip', '226918', '7.69 MB'), '2007': HmdaDataFile('hmda_2007_al_all-records_codes.zip', '367991', '11.49 MB'), '2017': HmdaDataFile('hmda_2017_al_all-records_codes.zip', '209002', '4.77 MB'), '2015': HmdaDataFile('hmda_2015_al_all-records_codes.zip', '205039', '7.82 MB'), '2014': HmdaDataFile('hmda_2014_al_all-records_codes.zip', '182825', '6.25 MB'), '2008': HmdaDataFile('hmda_2008_al_all-records_codes.zip', '286567', '9.04 MB'), '2009': HmdaDataFile('hmda_2009_al_all-records_codes.zip', '294820', '9.23 MB'), '2011': HmdaDataFile('hmda_2011_al_all-records_codes.zip', '228420', '7.78 MB'), '2010': HmdaDataFile('hmda_2010_al_all-records_codes.zip', '249347', '8.38 MB'), '2013': HmdaDataFile('hmda_2013_al_all-records_codes.zip', '253915', '8.52 MB'), '2012': HmdaDataFile('hmda_2012_al_all-records_codes.zip', '264313', '9.06 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_al_originated-records_codes.zip', '109870', '3.56 MB'), '2007': HmdaDataFile('hmda_2007_al_originated-records_codes.zip', '153334', '4.85 MB'), '2017': HmdaDataFile('hmda_2017_al_originated-records_codes.zip', '103096', '2.14 MB'), '2015': HmdaDataFile('hmda_2015_al_originated-records_codes.zip', '98097', '3.71 MB'), '2014': HmdaDataFile('hmda_2014_al_originated-records_codes.zip', '85899', '2.8 MB'), '2008': HmdaDataFile('hmda_2008_al_originated-records_codes.zip', '119306', '3.78 MB'), '2009': HmdaDataFile('hmda_2009_al_originated-records_codes.zip', '126063', '3.8 MB'), '2011': HmdaDataFile('hmda_2011_al_originated-records_codes.zip', '97761', '3.07 MB'), '2010': HmdaDataFile('hmda_2010_al_originated-records_codes.zip', '106706', '3.27 MB'), '2013': HmdaDataFile('hmda_2013_al_originated-records_codes.zip', '118638', '3.76 MB'), '2012': HmdaDataFile('hmda_2012_al_originated-records_codes.zip', '123170', '3.94 MB') } } }, 'ar': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_ar_first-lien-owner-occupied-1-4-family-records_labels.zip', '49025', '2.38 MB'), '2007': HmdaDataFile('hmda_2007_ar_first-lien-owner-occupied-1-4-family-records_labels.zip', '55026', '2.46 MB'), '2017': HmdaDataFile('hmda_2017_ar_first-lien-owner-occupied-1-4-family-records_labels.zip', '45327', '1.49 MB'), '2015': HmdaDataFile('hmda_2015_ar_first-lien-owner-occupied-1-4-family-records_labels.zip', '42845', '2.26 MB'), '2014': HmdaDataFile('hmda_2014_ar_first-lien-owner-occupied-1-4-family-records_labels.zip', '37601', '1.77 MB'), '2008': HmdaDataFile('hmda_2008_ar_first-lien-owner-occupied-1-4-family-records_labels.zip', '49034', '2.14 MB'), '2009': HmdaDataFile('hmda_2009_ar_first-lien-owner-occupied-1-4-family-records_labels.zip', '61531', '2.65 MB'), '2011': HmdaDataFile('hmda_2011_ar_first-lien-owner-occupied-1-4-family-records_labels.zip', '46801', '2.1 MB'), '2010': HmdaDataFile('hmda_2010_ar_first-lien-owner-occupied-1-4-family-records_labels.zip', '54493', '2.37 MB'), '2013': HmdaDataFile('hmda_2013_ar_first-lien-owner-occupied-1-4-family-records_labels.zip', '54893', '2.56 MB'), '2012': HmdaDataFile('hmda_2012_ar_first-lien-owner-occupied-1-4-family-records_labels.zip', '61834', '2.8 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_ar_all-records_labels.zip', '131352', '6.97 MB'), '2007': HmdaDataFile('hmda_2007_ar_all-records_labels.zip', '179146', '8.6 MB'), '2017': HmdaDataFile('hmda_2017_ar_all-records_labels.zip', '125392', '4.6 MB'), '2015': HmdaDataFile('hmda_2015_ar_all-records_labels.zip', '118384', '6.72 MB'), '2014': HmdaDataFile('hmda_2014_ar_all-records_labels.zip', '108526', '5.63 MB'), '2008': HmdaDataFile('hmda_2008_ar_all-records_labels.zip', '141191', '6.71 MB'), '2009': HmdaDataFile('hmda_2009_ar_all-records_labels.zip', '159208', '7.41 MB'), '2011': HmdaDataFile('hmda_2011_ar_all-records_labels.zip', '127757', '6.44 MB'), '2010': HmdaDataFile('hmda_2010_ar_all-records_labels.zip', '142441', '7.13 MB'), '2013': HmdaDataFile('hmda_2013_ar_all-records_labels.zip', '146285', '7.61 MB'), '2012': HmdaDataFile('hmda_2012_ar_all-records_labels.zip', '154830', '7.85 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_ar_originated-records_labels.zip', '65762', '3.27 MB'), '2007': HmdaDataFile('hmda_2007_ar_originated-records_labels.zip', '83327', '3.71 MB'), '2017': HmdaDataFile('hmda_2017_ar_originated-records_labels.zip', '62259', '2.05 MB'), '2015': HmdaDataFile('hmda_2015_ar_originated-records_labels.zip', '59384', '3.2 MB'), '2014': HmdaDataFile('hmda_2014_ar_originated-records_labels.zip', '52994', '2.56 MB'), '2008': HmdaDataFile('hmda_2008_ar_originated-records_labels.zip', '71395', '3.11 MB'), '2009': HmdaDataFile('hmda_2009_ar_originated-records_labels.zip', '78016', '3.4 MB'), '2011': HmdaDataFile('hmda_2011_ar_originated-records_labels.zip', '62549', '2.86 MB'), '2010': HmdaDataFile('hmda_2010_ar_originated-records_labels.zip', '69315', '3.08 MB'), '2013': HmdaDataFile('hmda_2013_ar_originated-records_labels.zip', '73125', '3.48 MB'), '2012': HmdaDataFile('hmda_2012_ar_originated-records_labels.zip', '79283', '3.68 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_ar_first-lien-owner-occupied-1-4-family-records_codes.zip', '49025', '1.56 MB'), '2007': HmdaDataFile('hmda_2007_ar_first-lien-owner-occupied-1-4-family-records_codes.zip', '55026', '1.62 MB'), '2017': HmdaDataFile('hmda_2017_ar_first-lien-owner-occupied-1-4-family-records_codes.zip', '45327', '1.04 MB'), '2015': HmdaDataFile('hmda_2015_ar_first-lien-owner-occupied-1-4-family-records_codes.zip', '42845', '1.51 MB'), '2014': HmdaDataFile('hmda_2014_ar_first-lien-owner-occupied-1-4-family-records_codes.zip', '37601', '1.16 MB'), '2008': HmdaDataFile('hmda_2008_ar_first-lien-owner-occupied-1-4-family-records_codes.zip', '49034', '1.41 MB'), '2009': HmdaDataFile('hmda_2009_ar_first-lien-owner-occupied-1-4-family-records_codes.zip', '61531', '1.81 MB'), '2011': HmdaDataFile('hmda_2011_ar_first-lien-owner-occupied-1-4-family-records_codes.zip', '46801', '1.35 MB'), '2010': HmdaDataFile('hmda_2010_ar_first-lien-owner-occupied-1-4-family-records_codes.zip', '54493', '1.53 MB'), '2013': HmdaDataFile('hmda_2013_ar_first-lien-owner-occupied-1-4-family-records_codes.zip', '54893', '1.65 MB'), '2012': HmdaDataFile('hmda_2012_ar_first-lien-owner-occupied-1-4-family-records_codes.zip', '61834', '1.81 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_ar_all-records_codes.zip', '131352', '4.44 MB'), '2007': HmdaDataFile('hmda_2007_ar_all-records_codes.zip', '179146', '5.43 MB'), '2017': HmdaDataFile('hmda_2017_ar_all-records_codes.zip', '125392', '3.01 MB'), '2015': HmdaDataFile('hmda_2015_ar_all-records_codes.zip', '118384', '4.33 MB'), '2014': HmdaDataFile('hmda_2014_ar_all-records_codes.zip', '108526', '3.58 MB'), '2008': HmdaDataFile('hmda_2008_ar_all-records_codes.zip', '141191', '4.14 MB'), '2009': HmdaDataFile('hmda_2009_ar_all-records_codes.zip', '159208', '4.87 MB'), '2011': HmdaDataFile('hmda_2011_ar_all-records_codes.zip', '127757', '4.13 MB'), '2010': HmdaDataFile('hmda_2010_ar_all-records_codes.zip', '142441', '4.51 MB'), '2013': HmdaDataFile('hmda_2013_ar_all-records_codes.zip', '146285', '4.87 MB'), '2012': HmdaDataFile('hmda_2012_ar_all-records_codes.zip', '154830', '5.04 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_ar_originated-records_codes.zip', '65762', '2.1 MB'), '2007': HmdaDataFile('hmda_2007_ar_originated-records_codes.zip', '83327', '2.43 MB'), '2017': HmdaDataFile('hmda_2017_ar_originated-records_codes.zip', '62259', '1.41 MB'), '2015': HmdaDataFile('hmda_2015_ar_originated-records_codes.zip', '59384', '2.11 MB'), '2014': HmdaDataFile('hmda_2014_ar_originated-records_codes.zip', '52994', '1.65 MB'), '2008': HmdaDataFile('hmda_2008_ar_originated-records_codes.zip', '71395', '2.03 MB'), '2009': HmdaDataFile('hmda_2009_ar_originated-records_codes.zip', '78016', '2.3 MB'), '2011': HmdaDataFile('hmda_2011_ar_originated-records_codes.zip', '62549', '1.82 MB'), '2010': HmdaDataFile('hmda_2010_ar_originated-records_codes.zip', '69315', '1.96 MB'), '2013': HmdaDataFile('hmda_2013_ar_originated-records_codes.zip', '73125', '2.21 MB'), '2012': HmdaDataFile('hmda_2012_ar_originated-records_codes.zip', '79283', '2.34 MB') } } }, 'vt': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_vt_first-lien-owner-occupied-1-4-family-records_labels.zip', '11252', '465.67 KB'), '2007': HmdaDataFile('hmda_2007_vt_first-lien-owner-occupied-1-4-family-records_labels.zip', '13430', '571.04 KB'), '2017': HmdaDataFile('hmda_2017_vt_first-lien-owner-occupied-1-4-family-records_labels.zip', '9250', '291.43 KB'), '2015': HmdaDataFile('hmda_2015_vt_first-lien-owner-occupied-1-4-family-records_labels.zip', '10215', '455.27 KB'), '2014': HmdaDataFile('hmda_2014_vt_first-lien-owner-occupied-1-4-family-records_labels.zip', '8361', '346.05 KB'), '2008': HmdaDataFile('hmda_2008_vt_first-lien-owner-occupied-1-4-family-records_labels.zip', '12079', '491.28 KB'), '2009': HmdaDataFile('hmda_2009_vt_first-lien-owner-occupied-1-4-family-records_labels.zip', '21026', '782.79 KB'), '2011': HmdaDataFile('hmda_2011_vt_first-lien-owner-occupied-1-4-family-records_labels.zip', '13512', '578.18 KB'), '2010': HmdaDataFile('hmda_2010_vt_first-lien-owner-occupied-1-4-family-records_labels.zip', '15651', '620.42 KB'), '2013': HmdaDataFile('hmda_2013_vt_first-lien-owner-occupied-1-4-family-records_labels.zip', '14400', '594.85 KB'), '2012': HmdaDataFile('hmda_2012_vt_first-lien-owner-occupied-1-4-family-records_labels.zip', '17914', '703.52 KB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_vt_all-records_labels.zip', '25971', '1.19 MB'), '2007': HmdaDataFile('hmda_2007_vt_all-records_labels.zip', '43664', '1.95 MB'), '2017': HmdaDataFile('hmda_2017_vt_all-records_labels.zip', '22335', '765.5 KB'), '2015': HmdaDataFile('hmda_2015_vt_all-records_labels.zip', '24028', '1.19 MB'), '2014': HmdaDataFile('hmda_2014_vt_all-records_labels.zip', '20816', '953.84 KB'), '2008': HmdaDataFile('hmda_2008_vt_all-records_labels.zip', '33040', '1.44 MB'), '2009': HmdaDataFile('hmda_2009_vt_all-records_labels.zip', '46532', '1.87 MB'), '2011': HmdaDataFile('hmda_2011_vt_all-records_labels.zip', '32687', '1.56 MB'), '2010': HmdaDataFile('hmda_2010_vt_all-records_labels.zip', '36637', '1.61 MB'), '2013': HmdaDataFile('hmda_2013_vt_all-records_labels.zip', '32790', '1.49 MB'), '2012': HmdaDataFile('hmda_2012_vt_all-records_labels.zip', '37869', '1.66 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_vt_originated-records_labels.zip', '15176', '645.84 KB'), '2007': HmdaDataFile('hmda_2007_vt_originated-records_labels.zip', '20755', '882.15 KB'), '2017': HmdaDataFile('hmda_2017_vt_originated-records_labels.zip', '13325', '425.68 KB'), '2015': HmdaDataFile('hmda_2015_vt_originated-records_labels.zip', '14053', '645.96 KB'), '2014': HmdaDataFile('hmda_2014_vt_originated-records_labels.zip', '11893', '504.52 KB'), '2008': HmdaDataFile('hmda_2008_vt_originated-records_labels.zip', '17432', '722.72 KB'), '2009': HmdaDataFile('hmda_2009_vt_originated-records_labels.zip', '25699', '980.48 KB'), '2011': HmdaDataFile('hmda_2011_vt_originated-records_labels.zip', '17791', '786.1 KB'), '2010': HmdaDataFile('hmda_2010_vt_originated-records_labels.zip', '19808', '804.9 KB'), '2013': HmdaDataFile('hmda_2013_vt_originated-records_labels.zip', '19293', '814.7 KB'), '2012': HmdaDataFile('hmda_2012_vt_originated-records_labels.zip', '22745', '914.05 KB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_vt_first-lien-owner-occupied-1-4-family-records_codes.zip', '11252', '290.62 KB'), '2007': HmdaDataFile('hmda_2007_vt_first-lien-owner-occupied-1-4-family-records_codes.zip', '13430', '365.86 KB'), '2017': HmdaDataFile('hmda_2017_vt_first-lien-owner-occupied-1-4-family-records_codes.zip', '9250', '198.27 KB'), '2015': HmdaDataFile('hmda_2015_vt_first-lien-owner-occupied-1-4-family-records_codes.zip', '10215', '285.97 KB'), '2014': HmdaDataFile('hmda_2014_vt_first-lien-owner-occupied-1-4-family-records_codes.zip', '8361', '216.87 KB'), '2008': HmdaDataFile('hmda_2008_vt_first-lien-owner-occupied-1-4-family-records_codes.zip', '12079', '314.55 KB'), '2009': HmdaDataFile('hmda_2009_vt_first-lien-owner-occupied-1-4-family-records_codes.zip', '21026', '510.88 KB'), '2011': HmdaDataFile('hmda_2011_vt_first-lien-owner-occupied-1-4-family-records_codes.zip', '13512', '361.01 KB'), '2010': HmdaDataFile('hmda_2010_vt_first-lien-owner-occupied-1-4-family-records_codes.zip', '15651', '386.89 KB'), '2013': HmdaDataFile('hmda_2013_vt_first-lien-owner-occupied-1-4-family-records_codes.zip', '14400', '367.68 KB'), '2012': HmdaDataFile('hmda_2012_vt_first-lien-owner-occupied-1-4-family-records_codes.zip', '17914', '433.81 KB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_vt_all-records_codes.zip', '25971', '716.41 KB'), '2007': HmdaDataFile('hmda_2007_vt_all-records_codes.zip', '43664', '1.22 MB'), '2017': HmdaDataFile('hmda_2017_vt_all-records_codes.zip', '22335', '486.85 KB'), '2015': HmdaDataFile('hmda_2015_vt_all-records_codes.zip', '24028', '719.81 KB'), '2014': HmdaDataFile('hmda_2014_vt_all-records_codes.zip', '20816', '576.12 KB'), '2008': HmdaDataFile('hmda_2008_vt_all-records_codes.zip', '33040', '900.48 KB'), '2009': HmdaDataFile('hmda_2009_vt_all-records_codes.zip', '46532', '1.2 MB'), '2011': HmdaDataFile('hmda_2011_vt_all-records_codes.zip', '32687', '942.34 KB'), '2010': HmdaDataFile('hmda_2010_vt_all-records_codes.zip', '36637', '971.16 KB'), '2013': HmdaDataFile('hmda_2013_vt_all-records_codes.zip', '32790', '897.96 KB'), '2012': HmdaDataFile('hmda_2012_vt_all-records_codes.zip', '37869', '998.22 KB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_vt_originated-records_codes.zip', '15176', '399.34 KB'), '2007': HmdaDataFile('hmda_2007_vt_originated-records_codes.zip', '20755', '567.25 KB'), '2017': HmdaDataFile('hmda_2017_vt_originated-records_codes.zip', '13325', '283.84 KB'), '2015': HmdaDataFile('hmda_2015_vt_originated-records_codes.zip', '14053', '403.29 KB'), '2014': HmdaDataFile('hmda_2014_vt_originated-records_codes.zip', '11893', '311.95 KB'), '2008': HmdaDataFile('hmda_2008_vt_originated-records_codes.zip', '17432', '462.77 KB'), '2009': HmdaDataFile('hmda_2009_vt_originated-records_codes.zip', '25699', '638.61 KB'), '2011': HmdaDataFile('hmda_2011_vt_originated-records_codes.zip', '17791', '486.47 KB'), '2010': HmdaDataFile('hmda_2010_vt_originated-records_codes.zip', '19808', '497.91 KB'), '2013': HmdaDataFile('hmda_2013_vt_originated-records_codes.zip', '19293', '501.93 KB'), '2012': HmdaDataFile('hmda_2012_vt_originated-records_codes.zip', '22745', '561.59 KB') } } }, 'il': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_il_first-lien-owner-occupied-1-4-family-records_labels.zip', '278035', '14.02 MB'), '2007': HmdaDataFile('hmda_2007_il_first-lien-owner-occupied-1-4-family-records_labels.zip', '346807', '16.76 MB'), '2017': HmdaDataFile('hmda_2017_il_first-lien-owner-occupied-1-4-family-records_labels.zip', '225445', '7.03 MB'), '2015': HmdaDataFile('hmda_2015_il_first-lien-owner-occupied-1-4-family-records_labels.zip', '245110', '13.66 MB'), '2014': HmdaDataFile('hmda_2014_il_first-lien-owner-occupied-1-4-family-records_labels.zip', '193991', '9.89 MB'), '2008': HmdaDataFile('hmda_2008_il_first-lien-owner-occupied-1-4-family-records_labels.zip', '278003', '13.04 MB'), '2009': HmdaDataFile('hmda_2009_il_first-lien-owner-occupied-1-4-family-records_labels.zip', '396141', '17.05 MB'), '2011': HmdaDataFile('hmda_2011_il_first-lien-owner-occupied-1-4-family-records_labels.zip', '282861', '13.82 MB'), '2010': HmdaDataFile('hmda_2010_il_first-lien-owner-occupied-1-4-family-records_labels.zip', '343779', '16.76 MB'), '2013': HmdaDataFile('hmda_2013_il_first-lien-owner-occupied-1-4-family-records_labels.zip', '295909', '14.97 MB'), '2012': HmdaDataFile('hmda_2012_il_first-lien-owner-occupied-1-4-family-records_labels.zip', '378550', '18.82 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_il_all-records_labels.zip', '583019', '31.48 MB'), '2007': HmdaDataFile('hmda_2007_il_all-records_labels.zip', '1117310', '53.26 MB'), '2017': HmdaDataFile('hmda_2017_il_all-records_labels.zip', '502511', '18.63 MB'), '2015': HmdaDataFile('hmda_2015_il_all-records_labels.zip', '517360', '30.86 MB'), '2014': HmdaDataFile('hmda_2014_il_all-records_labels.zip', '437239', '23.79 MB'), '2008': HmdaDataFile('hmda_2008_il_all-records_labels.zip', '761632', '36.35 MB'), '2009': HmdaDataFile('hmda_2009_il_all-records_labels.zip', '849782', '37.88 MB'), '2011': HmdaDataFile('hmda_2011_il_all-records_labels.zip', '620832', '33.1 MB'), '2010': HmdaDataFile('hmda_2010_il_all-records_labels.zip', '716356', '37.81 MB'), '2013': HmdaDataFile('hmda_2013_il_all-records_labels.zip', '637258', '34.91 MB'), '2012': HmdaDataFile('hmda_2012_il_all-records_labels.zip', '754118', '40.71 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_il_originated-records_labels.zip', '317597', '16.17 MB'), '2007': HmdaDataFile('hmda_2007_il_originated-records_labels.zip', '470592', '22.68 MB'), '2017': HmdaDataFile('hmda_2017_il_originated-records_labels.zip', '265490', '8.51 MB'), '2015': HmdaDataFile('hmda_2015_il_originated-records_labels.zip', '284551', '16.06 MB'), '2014': HmdaDataFile('hmda_2014_il_originated-records_labels.zip', '232557', '11.98 MB'), '2008': HmdaDataFile('hmda_2008_il_originated-records_labels.zip', '339543', '16.11 MB'), '2009': HmdaDataFile('hmda_2009_il_originated-records_labels.zip', '432707', '18.86 MB'), '2011': HmdaDataFile('hmda_2011_il_originated-records_labels.zip', '319004', '15.78 MB'), '2010': HmdaDataFile('hmda_2010_il_originated-records_labels.zip', '378335', '18.65 MB'), '2013': HmdaDataFile('hmda_2013_il_originated-records_labels.zip', '344172', '17.61 MB'), '2012': HmdaDataFile('hmda_2012_il_originated-records_labels.zip', '424748', '21.38 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_il_first-lien-owner-occupied-1-4-family-records_codes.zip', '278035', '10.15 MB'), '2007': HmdaDataFile('hmda_2007_il_first-lien-owner-occupied-1-4-family-records_codes.zip', '346807', '12.31 MB'), '2017': HmdaDataFile('hmda_2017_il_first-lien-owner-occupied-1-4-family-records_codes.zip', '225445', '5.06 MB'), '2015': HmdaDataFile('hmda_2015_il_first-lien-owner-occupied-1-4-family-records_codes.zip', '245110', '9.83 MB'), '2014': HmdaDataFile('hmda_2014_il_first-lien-owner-occupied-1-4-family-records_codes.zip', '193991', '7.12 MB'), '2008': HmdaDataFile('hmda_2008_il_first-lien-owner-occupied-1-4-family-records_codes.zip', '278003', '9.54 MB'), '2009': HmdaDataFile('hmda_2009_il_first-lien-owner-occupied-1-4-family-records_codes.zip', '396141', '12.55 MB'), '2011': HmdaDataFile('hmda_2011_il_first-lien-owner-occupied-1-4-family-records_codes.zip', '282861', '9.82 MB'), '2010': HmdaDataFile('hmda_2010_il_first-lien-owner-occupied-1-4-family-records_codes.zip', '343779', '11.91 MB'), '2013': HmdaDataFile('hmda_2013_il_first-lien-owner-occupied-1-4-family-records_codes.zip', '295909', '10.83 MB'), '2012': HmdaDataFile('hmda_2012_il_first-lien-owner-occupied-1-4-family-records_codes.zip', '378550', '13.52 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_il_all-records_codes.zip', '583019', '22.25 MB'), '2007': HmdaDataFile('hmda_2007_il_all-records_codes.zip', '1117310', '37.59 MB'), '2017': HmdaDataFile('hmda_2017_il_all-records_codes.zip', '502511', '12.69 MB'), '2015': HmdaDataFile('hmda_2015_il_all-records_codes.zip', '517360', '21.34 MB'), '2014': HmdaDataFile('hmda_2014_il_all-records_codes.zip', '437239', '16.64 MB'), '2008': HmdaDataFile('hmda_2008_il_all-records_codes.zip', '761632', '25.64 MB'), '2009': HmdaDataFile('hmda_2009_il_all-records_codes.zip', '849782', '26.91 MB'), '2011': HmdaDataFile('hmda_2011_il_all-records_codes.zip', '620832', '22.91 MB'), '2010': HmdaDataFile('hmda_2010_il_all-records_codes.zip', '716356', '26.12 MB'), '2013': HmdaDataFile('hmda_2013_il_all-records_codes.zip', '637258', '24.68 MB'), '2012': HmdaDataFile('hmda_2012_il_all-records_codes.zip', '754118', '28.69 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_il_originated-records_codes.zip', '317597', '11.62 MB'), '2007': HmdaDataFile('hmda_2007_il_originated-records_codes.zip', '470592', '16.53 MB'), '2017': HmdaDataFile('hmda_2017_il_originated-records_codes.zip', '265490', '6.03 MB'), '2015': HmdaDataFile('hmda_2015_il_originated-records_codes.zip', '284551', '11.44 MB'), '2014': HmdaDataFile('hmda_2014_il_originated-records_codes.zip', '232557', '8.54 MB'), '2008': HmdaDataFile('hmda_2008_il_originated-records_codes.zip', '339543', '11.68 MB'), '2009': HmdaDataFile('hmda_2009_il_originated-records_codes.zip', '432707', '13.79 MB'), '2011': HmdaDataFile('hmda_2011_il_originated-records_codes.zip', '319004', '11.14 MB'), '2010': HmdaDataFile('hmda_2010_il_originated-records_codes.zip', '378335', '13.17 MB'), '2013': HmdaDataFile('hmda_2013_il_originated-records_codes.zip', '344172', '12.64 MB'), '2012': HmdaDataFile('hmda_2012_il_originated-records_codes.zip', '424748', '15.26 MB') } } }, 'ga': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_ga_first-lien-owner-occupied-1-4-family-records_labels.zip', '225258', '11.78 MB'), '2007': HmdaDataFile('hmda_2007_ga_first-lien-owner-occupied-1-4-family-records_labels.zip', '236346', '11.17 MB'), '2017': HmdaDataFile('hmda_2017_ga_first-lien-owner-occupied-1-4-family-records_labels.zip', '203948', '6.37 MB'), '2015': HmdaDataFile('hmda_2015_ga_first-lien-owner-occupied-1-4-family-records_labels.zip', '193285', '11.11 MB'), '2014': HmdaDataFile('hmda_2014_ga_first-lien-owner-occupied-1-4-family-records_labels.zip', '147432', '7.81 MB'), '2008': HmdaDataFile('hmda_2008_ga_first-lien-owner-occupied-1-4-family-records_labels.zip', '179658', '8.42 MB'), '2009': HmdaDataFile('hmda_2009_ga_first-lien-owner-occupied-1-4-family-records_labels.zip', '220141', '9.84 MB'), '2011': HmdaDataFile('hmda_2011_ga_first-lien-owner-occupied-1-4-family-records_labels.zip', '165891', '8.32 MB'), '2010': HmdaDataFile('hmda_2010_ga_first-lien-owner-occupied-1-4-family-records_labels.zip', '171421', '8.49 MB'), '2013': HmdaDataFile('hmda_2013_ga_first-lien-owner-occupied-1-4-family-records_labels.zip', '210048', '10.77 MB'), '2012': HmdaDataFile('hmda_2012_ga_first-lien-owner-occupied-1-4-family-records_labels.zip', '229259', '11.67 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_ga_all-records_labels.zip', '547637', '30.4 MB'), '2007': HmdaDataFile('hmda_2007_ga_all-records_labels.zip', '899812', '43.49 MB'), '2017': HmdaDataFile('hmda_2017_ga_all-records_labels.zip', '501310', '18.01 MB'), '2015': HmdaDataFile('hmda_2015_ga_all-records_labels.zip', '478359', '29.23 MB'), '2014': HmdaDataFile('hmda_2014_ga_all-records_labels.zip', '391231', '22.06 MB'), '2008': HmdaDataFile('hmda_2008_ga_all-records_labels.zip', '583802', '28.24 MB'), '2009': HmdaDataFile('hmda_2009_ga_all-records_labels.zip', '612188', '28.44 MB'), '2011': HmdaDataFile('hmda_2011_ga_all-records_labels.zip', '444258', '24.51 MB'), '2010': HmdaDataFile('hmda_2010_ga_all-records_labels.zip', '466839', '25.16 MB'), '2013': HmdaDataFile('hmda_2013_ga_all-records_labels.zip', '537898', '29.53 MB'), '2012': HmdaDataFile('hmda_2012_ga_all-records_labels.zip', '559464', '30.51 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_ga_originated-records_labels.zip', '264802', '14.07 MB'), '2007': HmdaDataFile('hmda_2007_ga_originated-records_labels.zip', '352181', '16.55 MB'), '2017': HmdaDataFile('hmda_2017_ga_originated-records_labels.zip', '244731', '7.97 MB'), '2015': HmdaDataFile('hmda_2015_ga_originated-records_labels.zip', '232822', '13.6 MB'), '2014': HmdaDataFile('hmda_2014_ga_originated-records_labels.zip', '185375', '10 MB'), '2008': HmdaDataFile('hmda_2008_ga_originated-records_labels.zip', '244230', '11.53 MB'), '2009': HmdaDataFile('hmda_2009_ga_originated-records_labels.zip', '261989', '11.88 MB'), '2011': HmdaDataFile('hmda_2011_ga_originated-records_labels.zip', '204582', '10.57 MB'), '2010': HmdaDataFile('hmda_2010_ga_originated-records_labels.zip', '208728', '10.42 MB'), '2013': HmdaDataFile('hmda_2013_ga_originated-records_labels.zip', '262544', '13.64 MB'), '2012': HmdaDataFile('hmda_2012_ga_originated-records_labels.zip', '277607', '14.27 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_ga_first-lien-owner-occupied-1-4-family-records_codes.zip', '225258', '8.23 MB'), '2007': HmdaDataFile('hmda_2007_ga_first-lien-owner-occupied-1-4-family-records_codes.zip', '236346', '7.88 MB'), '2017': HmdaDataFile('hmda_2017_ga_first-lien-owner-occupied-1-4-family-records_codes.zip', '203948', '4.43 MB'), '2015': HmdaDataFile('hmda_2015_ga_first-lien-owner-occupied-1-4-family-records_codes.zip', '193285', '7.71 MB'), '2014': HmdaDataFile('hmda_2014_ga_first-lien-owner-occupied-1-4-family-records_codes.zip', '147432', '5.46 MB'), '2008': HmdaDataFile('hmda_2008_ga_first-lien-owner-occupied-1-4-family-records_codes.zip', '179658', '5.94 MB'), '2009': HmdaDataFile('hmda_2009_ga_first-lien-owner-occupied-1-4-family-records_codes.zip', '220141', '7.02 MB'), '2011': HmdaDataFile('hmda_2011_ga_first-lien-owner-occupied-1-4-family-records_codes.zip', '165891', '5.63 MB'), '2010': HmdaDataFile('hmda_2010_ga_first-lien-owner-occupied-1-4-family-records_codes.zip', '171421', '5.76 MB'), '2013': HmdaDataFile('hmda_2013_ga_first-lien-owner-occupied-1-4-family-records_codes.zip', '210048', '7.54 MB'), '2012': HmdaDataFile('hmda_2012_ga_first-lien-owner-occupied-1-4-family-records_codes.zip', '229259', '8.16 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_ga_all-records_codes.zip', '547637', '20.69 MB'), '2007': HmdaDataFile('hmda_2007_ga_all-records_codes.zip', '899812', '29.71 MB'), '2017': HmdaDataFile('hmda_2017_ga_all-records_codes.zip', '501310', '11.97 MB'), '2015': HmdaDataFile('hmda_2015_ga_all-records_codes.zip', '478359', '19.47 MB'), '2014': HmdaDataFile('hmda_2014_ga_all-records_codes.zip', '391231', '14.94 MB'), '2008': HmdaDataFile('hmda_2008_ga_all-records_codes.zip', '583802', '19.31 MB'), '2009': HmdaDataFile('hmda_2009_ga_all-records_codes.zip', '612188', '19.6 MB'), '2011': HmdaDataFile('hmda_2011_ga_all-records_codes.zip', '444258', '16.2 MB'), '2010': HmdaDataFile('hmda_2010_ga_all-records_codes.zip', '466839', '16.61 MB'), '2013': HmdaDataFile('hmda_2013_ga_all-records_codes.zip', '537898', '20.11 MB'), '2012': HmdaDataFile('hmda_2012_ga_all-records_codes.zip', '559464', '20.8 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_ga_originated-records_codes.zip', '264802', '9.77 MB'), '2007': HmdaDataFile('hmda_2007_ga_originated-records_codes.zip', '352181', '11.59 MB'), '2017': HmdaDataFile('hmda_2017_ga_originated-records_codes.zip', '244731', '5.49 MB'), '2015': HmdaDataFile('hmda_2015_ga_originated-records_codes.zip', '232822', '9.35 MB'), '2014': HmdaDataFile('hmda_2014_ga_originated-records_codes.zip', '185375', '6.91 MB'), '2008': HmdaDataFile('hmda_2008_ga_originated-records_codes.zip', '244230', '8.04 MB'), '2009': HmdaDataFile('hmda_2009_ga_originated-records_codes.zip', '261989', '8.4 MB'), '2011': HmdaDataFile('hmda_2011_ga_originated-records_codes.zip', '204582', '7.11 MB'), '2010': HmdaDataFile('hmda_2010_ga_originated-records_codes.zip', '208728', '7.02 MB'), '2013': HmdaDataFile('hmda_2013_ga_originated-records_codes.zip', '262544', '9.46 MB'), '2012': HmdaDataFile('hmda_2012_ga_originated-records_codes.zip', '277607', '9.89 MB') } } }, 'in': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_in_first-lien-owner-occupied-1-4-family-records_labels.zip', '149979', '7.55 MB'), '2007': HmdaDataFile('hmda_2007_in_first-lien-owner-occupied-1-4-family-records_labels.zip', '145394', '6.8 MB'), '2017': HmdaDataFile('hmda_2017_in_first-lien-owner-occupied-1-4-family-records_labels.zip', '135246', '4.03 MB'), '2015': HmdaDataFile('hmda_2015_in_first-lien-owner-occupied-1-4-family-records_labels.zip', '134522', '7.59 MB'), '2014': HmdaDataFile('hmda_2014_in_first-lien-owner-occupied-1-4-family-records_labels.zip', '108789', '5.36 MB'), '2008': HmdaDataFile('hmda_2008_in_first-lien-owner-occupied-1-4-family-records_labels.zip', '124555', '5.73 MB'), '2009': HmdaDataFile('hmda_2009_in_first-lien-owner-occupied-1-4-family-records_labels.zip', '187145', '8.03 MB'), '2011': HmdaDataFile('hmda_2011_in_first-lien-owner-occupied-1-4-family-records_labels.zip', '141707', '6.73 MB'), '2010': HmdaDataFile('hmda_2010_in_first-lien-owner-occupied-1-4-family-records_labels.zip', '161225', '7.29 MB'), '2013': HmdaDataFile('hmda_2013_in_first-lien-owner-occupied-1-4-family-records_labels.zip', '159649', '7.66 MB'), '2012': HmdaDataFile('hmda_2012_in_first-lien-owner-occupied-1-4-family-records_labels.zip', '188614', '8.83 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_in_all-records_labels.zip', '319123', '17.64 MB'), '2007': HmdaDataFile('hmda_2007_in_all-records_labels.zip', '474561', '24.38 MB'), '2017': HmdaDataFile('hmda_2017_in_all-records_labels.zip', '292152', '10.14 MB'), '2015': HmdaDataFile('hmda_2015_in_all-records_labels.zip', '288746', '17.61 MB'), '2014': HmdaDataFile('hmda_2014_in_all-records_labels.zip', '248347', '13.51 MB'), '2008': HmdaDataFile('hmda_2008_in_all-records_labels.zip', '348681', '17.43 MB'), '2009': HmdaDataFile('hmda_2009_in_all-records_labels.zip', '421392', '19.89 MB'), '2011': HmdaDataFile('hmda_2011_in_all-records_labels.zip', '322061', '17.24 MB'), '2010': HmdaDataFile('hmda_2010_in_all-records_labels.zip', '359860', '18.65 MB'), '2013': HmdaDataFile('hmda_2013_in_all-records_labels.zip', '344116', '18.48 MB'), '2012': HmdaDataFile('hmda_2012_in_all-records_labels.zip', '385267', '20.36 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_in_originated-records_labels.zip', '172307', '8.79 MB'), '2007': HmdaDataFile('hmda_2007_in_originated-records_labels.zip', '199213', '9.38 MB'), '2017': HmdaDataFile('hmda_2017_in_originated-records_labels.zip', '158693', '4.9 MB'), '2015': HmdaDataFile('hmda_2015_in_originated-records_labels.zip', '156109', '8.92 MB'), '2014': HmdaDataFile('hmda_2014_in_originated-records_labels.zip', '130131', '6.52 MB'), '2008': HmdaDataFile('hmda_2008_in_originated-records_labels.zip', '155308', '7.25 MB'), '2009': HmdaDataFile('hmda_2009_in_originated-records_labels.zip', '207593', '9.02 MB'), '2011': HmdaDataFile('hmda_2011_in_originated-records_labels.zip', '160424', '7.77 MB'), '2010': HmdaDataFile('hmda_2010_in_originated-records_labels.zip', '179820', '8.27 MB'), '2013': HmdaDataFile('hmda_2013_in_originated-records_labels.zip', '184428', '8.97 MB'), '2012': HmdaDataFile('hmda_2012_in_originated-records_labels.zip', '210891', '10.05 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_in_first-lien-owner-occupied-1-4-family-records_codes.zip', '149979', '5.05 MB'), '2007': HmdaDataFile('hmda_2007_in_first-lien-owner-occupied-1-4-family-records_codes.zip', '145394', '4.63 MB'), '2017': HmdaDataFile('hmda_2017_in_first-lien-owner-occupied-1-4-family-records_codes.zip', '135246', '2.85 MB'), '2015': HmdaDataFile('hmda_2015_in_first-lien-owner-occupied-1-4-family-records_codes.zip', '134522', '5.11 MB'), '2014': HmdaDataFile('hmda_2014_in_first-lien-owner-occupied-1-4-family-records_codes.zip', '108789', '3.62 MB'), '2008': HmdaDataFile('hmda_2008_in_first-lien-owner-occupied-1-4-family-records_codes.zip', '124555', '3.9 MB'), '2009': HmdaDataFile('hmda_2009_in_first-lien-owner-occupied-1-4-family-records_codes.zip', '187145', '5.67 MB'), '2011': HmdaDataFile('hmda_2011_in_first-lien-owner-occupied-1-4-family-records_codes.zip', '141707', '4.43 MB'), '2010': HmdaDataFile('hmda_2010_in_first-lien-owner-occupied-1-4-family-records_codes.zip', '161225', '4.82 MB'), '2013': HmdaDataFile('hmda_2013_in_first-lien-owner-occupied-1-4-family-records_codes.zip', '159649', '5.11 MB'), '2012': HmdaDataFile('hmda_2012_in_first-lien-owner-occupied-1-4-family-records_codes.zip', '188614', '5.87 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_in_all-records_codes.zip', '319123', '11.54 MB'), '2007': HmdaDataFile('hmda_2007_in_all-records_codes.zip', '474561', '16.44 MB'), '2017': HmdaDataFile('hmda_2017_in_all-records_codes.zip', '292152', '6.68 MB'), '2015': HmdaDataFile('hmda_2015_in_all-records_codes.zip', '288746', '11.46 MB'), '2014': HmdaDataFile('hmda_2014_in_all-records_codes.zip', '248347', '8.9 MB'), '2008': HmdaDataFile('hmda_2008_in_all-records_codes.zip', '348681', '11.68 MB'), '2009': HmdaDataFile('hmda_2009_in_all-records_codes.zip', '421392', '13.64 MB'), '2011': HmdaDataFile('hmda_2011_in_all-records_codes.zip', '322061', '11.1 MB'), '2010': HmdaDataFile('hmda_2010_in_all-records_codes.zip', '359860', '12.06 MB'), '2013': HmdaDataFile('hmda_2013_in_all-records_codes.zip', '344116', '12.12 MB'), '2012': HmdaDataFile('hmda_2012_in_all-records_codes.zip', '385267', '13.31 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_in_originated-records_codes.zip', '172307', '5.84 MB'), '2007': HmdaDataFile('hmda_2007_in_originated-records_codes.zip', '199213', '6.61 MB'), '2017': HmdaDataFile('hmda_2017_in_originated-records_codes.zip', '158693', '3.43 MB'), '2015': HmdaDataFile('hmda_2015_in_originated-records_codes.zip', '156109', '5.98 MB'), '2014': HmdaDataFile('hmda_2014_in_originated-records_codes.zip', '130131', '4.37 MB'), '2008': HmdaDataFile('hmda_2008_in_originated-records_codes.zip', '155308', '4.94 MB'), '2009': HmdaDataFile('hmda_2009_in_originated-records_codes.zip', '207593', '6.34 MB'), '2011': HmdaDataFile('hmda_2011_in_originated-records_codes.zip', '160424', '5.09 MB'), '2010': HmdaDataFile('hmda_2010_in_originated-records_codes.zip', '179820', '5.44 MB'), '2013': HmdaDataFile('hmda_2013_in_originated-records_codes.zip', '184428', '5.94 MB'), '2012': HmdaDataFile('hmda_2012_in_originated-records_codes.zip', '210891', '6.64 MB') } } }, 'ia': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_ia_first-lien-owner-occupied-1-4-family-records_labels.zip', '71680', '3.32 MB'), '2007': HmdaDataFile('hmda_2007_ia_first-lien-owner-occupied-1-4-family-records_labels.zip', '65703', '3.02 MB'), '2017': HmdaDataFile('hmda_2017_ia_first-lien-owner-occupied-1-4-family-records_labels.zip', '60347', '1.83 MB'), '2015': HmdaDataFile('hmda_2015_ia_first-lien-owner-occupied-1-4-family-records_labels.zip', '63773', '3.32 MB'), '2014': HmdaDataFile('hmda_2014_ia_first-lien-owner-occupied-1-4-family-records_labels.zip', '52784', '2.39 MB'), '2008': HmdaDataFile('hmda_2008_ia_first-lien-owner-occupied-1-4-family-records_labels.zip', '60097', '2.72 MB'), '2009': HmdaDataFile('hmda_2009_ia_first-lien-owner-occupied-1-4-family-records_labels.zip', '96858', '3.85 MB'), '2011': HmdaDataFile('hmda_2011_ia_first-lien-owner-occupied-1-4-family-records_labels.zip', '72565', '3.17 MB'), '2010': HmdaDataFile('hmda_2010_ia_first-lien-owner-occupied-1-4-family-records_labels.zip', '84923', '3.79 MB'), '2013': HmdaDataFile('hmda_2013_ia_first-lien-owner-occupied-1-4-family-records_labels.zip', '76061', '3.38 MB'), '2012': HmdaDataFile('hmda_2012_ia_first-lien-owner-occupied-1-4-family-records_labels.zip', '93906', '4.12 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_ia_all-records_labels.zip', '149227', '7.39 MB'), '2007': HmdaDataFile('hmda_2007_ia_all-records_labels.zip', '197991', '9.31 MB'), '2017': HmdaDataFile('hmda_2017_ia_all-records_labels.zip', '127446', '4.12 MB'), '2015': HmdaDataFile('hmda_2015_ia_all-records_labels.zip', '136795', '7.68 MB'), '2014': HmdaDataFile('hmda_2014_ia_all-records_labels.zip', '115594', '5.62 MB'), '2008': HmdaDataFile('hmda_2008_ia_all-records_labels.zip', '157339', '7.52 MB'), '2009': HmdaDataFile('hmda_2009_ia_all-records_labels.zip', '200497', '8.54 MB'), '2011': HmdaDataFile('hmda_2011_ia_all-records_labels.zip', '150683', '7.18 MB'), '2010': HmdaDataFile('hmda_2010_ia_all-records_labels.zip', '172100', '8.41 MB'), '2013': HmdaDataFile('hmda_2013_ia_all-records_labels.zip', '160707', '7.67 MB'), '2012': HmdaDataFile('hmda_2012_ia_all-records_labels.zip', '181237', '8.53 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_ia_originated-records_labels.zip', '90932', '4.27 MB'), '2007': HmdaDataFile('hmda_2007_ia_originated-records_labels.zip', '93343', '4.31 MB'), '2017': HmdaDataFile('hmda_2017_ia_originated-records_labels.zip', '79977', '2.43 MB'), '2015': HmdaDataFile('hmda_2015_ia_originated-records_labels.zip', '83214', '4.37 MB'), '2014': HmdaDataFile('hmda_2014_ia_originated-records_labels.zip', '71413', '3.26 MB'), '2008': HmdaDataFile('hmda_2008_ia_originated-records_labels.zip', '78965', '3.63 MB'), '2009': HmdaDataFile('hmda_2009_ia_originated-records_labels.zip', '112522', '4.57 MB'), '2011': HmdaDataFile('hmda_2011_ia_originated-records_labels.zip', '87178', '3.88 MB'), '2010': HmdaDataFile('hmda_2010_ia_originated-records_labels.zip', '100132', '4.56 MB'), '2013': HmdaDataFile('hmda_2013_ia_originated-records_labels.zip', '95886', '4.34 MB'), '2012': HmdaDataFile('hmda_2012_ia_originated-records_labels.zip', '111610', '4.98 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_ia_first-lien-owner-occupied-1-4-family-records_codes.zip', '71680', '2.17 MB'), '2007': HmdaDataFile('hmda_2007_ia_first-lien-owner-occupied-1-4-family-records_codes.zip', '65703', '2.02 MB'), '2017': HmdaDataFile('hmda_2017_ia_first-lien-owner-occupied-1-4-family-records_codes.zip', '60347', '1.29 MB'), '2015': HmdaDataFile('hmda_2015_ia_first-lien-owner-occupied-1-4-family-records_codes.zip', '63773', '2.2 MB'), '2014': HmdaDataFile('hmda_2014_ia_first-lien-owner-occupied-1-4-family-records_codes.zip', '52784', '1.56 MB'), '2008': HmdaDataFile('hmda_2008_ia_first-lien-owner-occupied-1-4-family-records_codes.zip', '60097', '1.82 MB'), '2009': HmdaDataFile('hmda_2009_ia_first-lien-owner-occupied-1-4-family-records_codes.zip', '96858', '2.64 MB'), '2011': HmdaDataFile('hmda_2011_ia_first-lien-owner-occupied-1-4-family-records_codes.zip', '72565', '2.05 MB'), '2010': HmdaDataFile('hmda_2010_ia_first-lien-owner-occupied-1-4-family-records_codes.zip', '84923', '2.46 MB'), '2013': HmdaDataFile('hmda_2013_ia_first-lien-owner-occupied-1-4-family-records_codes.zip', '76061', '2.18 MB'), '2012': HmdaDataFile('hmda_2012_ia_first-lien-owner-occupied-1-4-family-records_codes.zip', '93906', '2.66 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_ia_all-records_codes.zip', '149227', '4.65 MB'), '2007': HmdaDataFile('hmda_2007_ia_all-records_codes.zip', '197991', '6.1 MB'), '2017': HmdaDataFile('hmda_2017_ia_all-records_codes.zip', '127446', '2.7 MB'), '2015': HmdaDataFile('hmda_2015_ia_all-records_codes.zip', '136795', '4.9 MB'), '2014': HmdaDataFile('hmda_2014_ia_all-records_codes.zip', '115594', '3.51 MB'), '2008': HmdaDataFile('hmda_2008_ia_all-records_codes.zip', '157339', '4.92 MB'), '2009': HmdaDataFile('hmda_2009_ia_all-records_codes.zip', '200497', '5.67 MB'), '2011': HmdaDataFile('hmda_2011_ia_all-records_codes.zip', '150683', '4.49 MB'), '2010': HmdaDataFile('hmda_2010_ia_all-records_codes.zip', '172100', '5.28 MB'), '2013': HmdaDataFile('hmda_2013_ia_all-records_codes.zip', '160707', '4.75 MB'), '2012': HmdaDataFile('hmda_2012_ia_all-records_codes.zip', '181237', '5.31 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_ia_originated-records_codes.zip', '90932', '2.74 MB'), '2007': HmdaDataFile('hmda_2007_ia_originated-records_codes.zip', '93343', '2.86 MB'), '2017': HmdaDataFile('hmda_2017_ia_originated-records_codes.zip', '79977', '1.67 MB'), '2015': HmdaDataFile('hmda_2015_ia_originated-records_codes.zip', '83214', '2.85 MB'), '2014': HmdaDataFile('hmda_2014_ia_originated-records_codes.zip', '71413', '2.08 MB'), '2008': HmdaDataFile('hmda_2008_ia_originated-records_codes.zip', '78965', '2.41 MB'), '2009': HmdaDataFile('hmda_2009_ia_originated-records_codes.zip', '112522', '3.11 MB'), '2011': HmdaDataFile('hmda_2011_ia_originated-records_codes.zip', '87178', '2.48 MB'), '2010': HmdaDataFile('hmda_2010_ia_originated-records_codes.zip', '100132', '2.93 MB'), '2013': HmdaDataFile('hmda_2013_ia_originated-records_codes.zip', '95886', '2.76 MB'), '2012': HmdaDataFile('hmda_2012_ia_originated-records_codes.zip', '111610', '3.18 MB') } } }, 'az': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_az_first-lien-owner-occupied-1-4-family-records_labels.zip', '201543', '9.98 MB'), '2007': HmdaDataFile('hmda_2007_az_first-lien-owner-occupied-1-4-family-records_labels.zip', '198791', '8.9 MB'), '2017': HmdaDataFile('hmda_2017_az_first-lien-owner-occupied-1-4-family-records_labels.zip', '177849', '5.45 MB'), '2015': HmdaDataFile('hmda_2015_az_first-lien-owner-occupied-1-4-family-records_labels.zip', '166410', '8.87 MB'), '2014': HmdaDataFile('hmda_2014_az_first-lien-owner-occupied-1-4-family-records_labels.zip', '124580', '6.3 MB'), '2008': HmdaDataFile('hmda_2008_az_first-lien-owner-occupied-1-4-family-records_labels.zip', '129343', '5.73 MB'), '2009': HmdaDataFile('hmda_2009_az_first-lien-owner-occupied-1-4-family-records_labels.zip', '161393', '6.71 MB'), '2011': HmdaDataFile('hmda_2011_az_first-lien-owner-occupied-1-4-family-records_labels.zip', '114583', '5.41 MB'), '2010': HmdaDataFile('hmda_2010_az_first-lien-owner-occupied-1-4-family-records_labels.zip', '132138', '6.21 MB'), '2013': HmdaDataFile('hmda_2013_az_first-lien-owner-occupied-1-4-family-records_labels.zip', '176268', '8.6 MB'), '2012': HmdaDataFile('hmda_2012_az_first-lien-owner-occupied-1-4-family-records_labels.zip', '197491', '9.59 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_az_all-records_labels.zip', '478386', '24.75 MB'), '2007': HmdaDataFile('hmda_2007_az_all-records_labels.zip', '803675', '35.11 MB'), '2017': HmdaDataFile('hmda_2017_az_all-records_labels.zip', '428411', '14.46 MB'), '2015': HmdaDataFile('hmda_2015_az_all-records_labels.zip', '391879', '22 MB'), '2014': HmdaDataFile('hmda_2014_az_all-records_labels.zip', '317345', '16.74 MB'), '2008': HmdaDataFile('hmda_2008_az_all-records_labels.zip', '425680', '19.23 MB'), '2009': HmdaDataFile('hmda_2009_az_all-records_labels.zip', '441291', '18.88 MB'), '2011': HmdaDataFile('hmda_2011_az_all-records_labels.zip', '313348', '16.05 MB'), '2010': HmdaDataFile('hmda_2010_az_all-records_labels.zip', '350571', '17.93 MB'), '2013': HmdaDataFile('hmda_2013_az_all-records_labels.zip', '428383', '22.29 MB'), '2012': HmdaDataFile('hmda_2012_az_all-records_labels.zip', '458365', '23.72 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_az_originated-records_labels.zip', '236688', '11.85 MB'), '2007': HmdaDataFile('hmda_2007_az_originated-records_labels.zip', '292272', '13.05 MB'), '2017': HmdaDataFile('hmda_2017_az_originated-records_labels.zip', '213547', '6.63 MB'), '2015': HmdaDataFile('hmda_2015_az_originated-records_labels.zip', '198908', '10.8 MB'), '2014': HmdaDataFile('hmda_2014_az_originated-records_labels.zip', '155001', '7.95 MB'), '2008': HmdaDataFile('hmda_2008_az_originated-records_labels.zip', '165011', '7.37 MB'), '2009': HmdaDataFile('hmda_2009_az_originated-records_labels.zip', '190609', '7.98 MB'), '2011': HmdaDataFile('hmda_2011_az_originated-records_labels.zip', '146231', '7.09 MB'), '2010': HmdaDataFile('hmda_2010_az_originated-records_labels.zip', '160055', '7.73 MB'), '2013': HmdaDataFile('hmda_2013_az_originated-records_labels.zip', '224986', '11.14 MB'), '2012': HmdaDataFile('hmda_2012_az_originated-records_labels.zip', '247572', '12.19 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_az_first-lien-owner-occupied-1-4-family-records_codes.zip', '201543', '7.26 MB'), '2007': HmdaDataFile('hmda_2007_az_first-lien-owner-occupied-1-4-family-records_codes.zip', '198791', '6.42 MB'), '2017': HmdaDataFile('hmda_2017_az_first-lien-owner-occupied-1-4-family-records_codes.zip', '177849', '3.82 MB'), '2015': HmdaDataFile('hmda_2015_az_first-lien-owner-occupied-1-4-family-records_codes.zip', '166410', '6.44 MB'), '2014': HmdaDataFile('hmda_2014_az_first-lien-owner-occupied-1-4-family-records_codes.zip', '124580', '4.59 MB'), '2008': HmdaDataFile('hmda_2008_az_first-lien-owner-occupied-1-4-family-records_codes.zip', '129343', '4.15 MB'), '2009': HmdaDataFile('hmda_2009_az_first-lien-owner-occupied-1-4-family-records_codes.zip', '161393', '4.89 MB'), '2011': HmdaDataFile('hmda_2011_az_first-lien-owner-occupied-1-4-family-records_codes.zip', '114583', '3.79 MB'), '2010': HmdaDataFile('hmda_2010_az_first-lien-owner-occupied-1-4-family-records_codes.zip', '132138', '4.33 MB'), '2013': HmdaDataFile('hmda_2013_az_first-lien-owner-occupied-1-4-family-records_codes.zip', '176268', '6.24 MB'), '2012': HmdaDataFile('hmda_2012_az_first-lien-owner-occupied-1-4-family-records_codes.zip', '197491', '6.92 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_az_all-records_codes.zip', '478386', '17.45 MB'), '2007': HmdaDataFile('hmda_2007_az_all-records_codes.zip', '803675', '24.35 MB'), '2017': HmdaDataFile('hmda_2017_az_all-records_codes.zip', '428411', '9.68 MB'), '2015': HmdaDataFile('hmda_2015_az_all-records_codes.zip', '391879', '15.26 MB'), '2014': HmdaDataFile('hmda_2014_az_all-records_codes.zip', '317345', '11.78 MB'), '2008': HmdaDataFile('hmda_2008_az_all-records_codes.zip', '425680', '13.42 MB'), '2009': HmdaDataFile('hmda_2009_az_all-records_codes.zip', '441291', '13.49 MB'), '2011': HmdaDataFile('hmda_2011_az_all-records_codes.zip', '313348', '10.91 MB'), '2010': HmdaDataFile('hmda_2010_az_all-records_codes.zip', '350571', '12.17 MB'), '2013': HmdaDataFile('hmda_2013_az_all-records_codes.zip', '428383', '15.68 MB'), '2012': HmdaDataFile('hmda_2012_az_all-records_codes.zip', '458365', '16.67 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_az_originated-records_codes.zip', '236688', '8.56 MB'), '2007': HmdaDataFile('hmda_2007_az_originated-records_codes.zip', '292272', '9.39 MB'), '2017': HmdaDataFile('hmda_2017_az_originated-records_codes.zip', '213547', '4.61 MB'), '2015': HmdaDataFile('hmda_2015_az_originated-records_codes.zip', '198908', '7.79 MB'), '2014': HmdaDataFile('hmda_2014_az_originated-records_codes.zip', '155001', '5.74 MB'), '2008': HmdaDataFile('hmda_2008_az_originated-records_codes.zip', '165011', '5.32 MB'), '2009': HmdaDataFile('hmda_2009_az_originated-records_codes.zip', '190609', '5.81 MB'), '2011': HmdaDataFile('hmda_2011_az_originated-records_codes.zip', '146231', '4.94 MB'), '2010': HmdaDataFile('hmda_2010_az_originated-records_codes.zip', '160055', '5.38 MB'), '2013': HmdaDataFile('hmda_2013_az_originated-records_codes.zip', '224986', '8.02 MB'), '2012': HmdaDataFile('hmda_2012_az_originated-records_codes.zip', '247572', '8.75 MB') } } }, 'id': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_id_first-lien-owner-occupied-1-4-family-records_labels.zip', '49270', '2.03 MB'), '2007': HmdaDataFile('hmda_2007_id_first-lien-owner-occupied-1-4-family-records_labels.zip', '45546', '1.84 MB'), '2017': HmdaDataFile('hmda_2017_id_first-lien-owner-occupied-1-4-family-records_labels.zip', '43374', '1.27 MB'), '2015': HmdaDataFile('hmda_2015_id_first-lien-owner-occupied-1-4-family-records_labels.zip', '41252', '1.97 MB'), '2014': HmdaDataFile('hmda_2014_id_first-lien-owner-occupied-1-4-family-records_labels.zip', '30539', '1.29 MB'), '2008': HmdaDataFile('hmda_2008_id_first-lien-owner-occupied-1-4-family-records_labels.zip', '36308', '1.49 MB'), '2009': HmdaDataFile('hmda_2009_id_first-lien-owner-occupied-1-4-family-records_labels.zip', '49056', '1.87 MB'), '2011': HmdaDataFile('hmda_2011_id_first-lien-owner-occupied-1-4-family-records_labels.zip', '30665', '1.26 MB'), '2010': HmdaDataFile('hmda_2010_id_first-lien-owner-occupied-1-4-family-records_labels.zip', '37182', '1.47 MB'), '2013': HmdaDataFile('hmda_2013_id_first-lien-owner-occupied-1-4-family-records_labels.zip', '41770', '1.75 MB'), '2012': HmdaDataFile('hmda_2012_id_first-lien-owner-occupied-1-4-family-records_labels.zip', '46607', '1.91 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_id_all-records_labels.zip', '103880', '4.67 MB'), '2007': HmdaDataFile('hmda_2007_id_all-records_labels.zip', '156706', '6.54 MB'), '2017': HmdaDataFile('hmda_2017_id_all-records_labels.zip', '92755', '3.01 MB'), '2015': HmdaDataFile('hmda_2015_id_all-records_labels.zip', '89063', '4.72 MB'), '2014': HmdaDataFile('hmda_2014_id_all-records_labels.zip', '70222', '3.27 MB'), '2008': HmdaDataFile('hmda_2008_id_all-records_labels.zip', '108689', '4.65 MB'), '2009': HmdaDataFile('hmda_2009_id_all-records_labels.zip', '125244', '5.05 MB'), '2011': HmdaDataFile('hmda_2011_id_all-records_labels.zip', '77672', '3.5 MB'), '2010': HmdaDataFile('hmda_2010_id_all-records_labels.zip', '94170', '4.16 MB'), '2013': HmdaDataFile('hmda_2013_id_all-records_labels.zip', '97051', '4.49 MB'), '2012': HmdaDataFile('hmda_2012_id_all-records_labels.zip', '103766', '4.64 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_id_originated-records_labels.zip', '59151', '2.48 MB'), '2007': HmdaDataFile('hmda_2007_id_originated-records_labels.zip', '67396', '2.74 MB'), '2017': HmdaDataFile('hmda_2017_id_originated-records_labels.zip', '54102', '1.62 MB'), '2015': HmdaDataFile('hmda_2015_id_originated-records_labels.zip', '50554', '2.46 MB'), '2014': HmdaDataFile('hmda_2014_id_originated-records_labels.zip', '38605', '1.67 MB'), '2008': HmdaDataFile('hmda_2008_id_originated-records_labels.zip', '46531', '1.93 MB'), '2009': HmdaDataFile('hmda_2009_id_originated-records_labels.zip', '56985', '2.2 MB'), '2011': HmdaDataFile('hmda_2011_id_originated-records_labels.zip', '37943', '1.6 MB'), '2010': HmdaDataFile('hmda_2010_id_originated-records_labels.zip', '44663', '1.79 MB'), '2013': HmdaDataFile('hmda_2013_id_originated-records_labels.zip', '53109', '2.27 MB'), '2012': HmdaDataFile('hmda_2012_id_originated-records_labels.zip', '57188', '2.39 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_id_first-lien-owner-occupied-1-4-family-records_codes.zip', '49270', '1.31 MB'), '2007': HmdaDataFile('hmda_2007_id_first-lien-owner-occupied-1-4-family-records_codes.zip', '45546', '1.22 MB'), '2017': HmdaDataFile('hmda_2017_id_first-lien-owner-occupied-1-4-family-records_codes.zip', '43374', '882.08 KB'), '2015': HmdaDataFile('hmda_2015_id_first-lien-owner-occupied-1-4-family-records_codes.zip', '41252', '1.28 MB'), '2014': HmdaDataFile('hmda_2014_id_first-lien-owner-occupied-1-4-family-records_codes.zip', '30539', '834.4 KB'), '2008': HmdaDataFile('hmda_2008_id_first-lien-owner-occupied-1-4-family-records_codes.zip', '36308', '1 MB'), '2009': HmdaDataFile('hmda_2009_id_first-lien-owner-occupied-1-4-family-records_codes.zip', '49056', '1.27 MB'), '2011': HmdaDataFile('hmda_2011_id_first-lien-owner-occupied-1-4-family-records_codes.zip', '30665', '802.44 KB'), '2010': HmdaDataFile('hmda_2010_id_first-lien-owner-occupied-1-4-family-records_codes.zip', '37182', '944.45 KB'), '2013': HmdaDataFile('hmda_2013_id_first-lien-owner-occupied-1-4-family-records_codes.zip', '41770', '1.12 MB'), '2012': HmdaDataFile('hmda_2012_id_first-lien-owner-occupied-1-4-family-records_codes.zip', '46607', '1.21 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_id_all-records_codes.zip', '103880', '2.88 MB'), '2007': HmdaDataFile('hmda_2007_id_all-records_codes.zip', '156706', '4.26 MB'), '2017': HmdaDataFile('hmda_2017_id_all-records_codes.zip', '92755', '1.96 MB'), '2015': HmdaDataFile('hmda_2015_id_all-records_codes.zip', '89063', '2.95 MB'), '2014': HmdaDataFile('hmda_2014_id_all-records_codes.zip', '70222', '2.02 MB'), '2008': HmdaDataFile('hmda_2008_id_all-records_codes.zip', '108689', '3.03 MB'), '2009': HmdaDataFile('hmda_2009_id_all-records_codes.zip', '125244', '3.33 MB'), '2011': HmdaDataFile('hmda_2011_id_all-records_codes.zip', '77672', '2.17 MB'), '2010': HmdaDataFile('hmda_2010_id_all-records_codes.zip', '94170', '2.57 MB'), '2013': HmdaDataFile('hmda_2013_id_all-records_codes.zip', '97051', '2.76 MB'), '2012': HmdaDataFile('hmda_2012_id_all-records_codes.zip', '103766', '2.85 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_id_originated-records_codes.zip', '59151', '1.59 MB'), '2007': HmdaDataFile('hmda_2007_id_originated-records_codes.zip', '67396', '1.83 MB'), '2017': HmdaDataFile('hmda_2017_id_originated-records_codes.zip', '54102', '1.11 MB'), '2015': HmdaDataFile('hmda_2015_id_originated-records_codes.zip', '50554', '1.59 MB'), '2014': HmdaDataFile('hmda_2014_id_originated-records_codes.zip', '38605', '1.07 MB'), '2008': HmdaDataFile('hmda_2008_id_originated-records_codes.zip', '46531', '1.29 MB'), '2009': HmdaDataFile('hmda_2009_id_originated-records_codes.zip', '56985', '1.49 MB'), '2011': HmdaDataFile('hmda_2011_id_originated-records_codes.zip', '37943', '1.02 MB'), '2010': HmdaDataFile('hmda_2010_id_originated-records_codes.zip', '44663', '1.14 MB'), '2013': HmdaDataFile('hmda_2013_id_originated-records_codes.zip', '53109', '1.45 MB'), '2012': HmdaDataFile('hmda_2012_id_originated-records_codes.zip', '57188', '1.51 MB') } } }, 'ct': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_ct_first-lien-owner-occupied-1-4-family-records_labels.zip', '66025', '3.2 MB'), '2007': HmdaDataFile('hmda_2007_ct_first-lien-owner-occupied-1-4-family-records_labels.zip', '89152', '4.26 MB'), '2017': HmdaDataFile('hmda_2017_ct_first-lien-owner-occupied-1-4-family-records_labels.zip', '57398', '1.83 MB'), '2015': HmdaDataFile('hmda_2015_ct_first-lien-owner-occupied-1-4-family-records_labels.zip', '59656', '3.12 MB'), '2014': HmdaDataFile('hmda_2014_ct_first-lien-owner-occupied-1-4-family-records_labels.zip', '49553', '2.54 MB'), '2008': HmdaDataFile('hmda_2008_ct_first-lien-owner-occupied-1-4-family-records_labels.zip', '68658', '3.22 MB'), '2009': HmdaDataFile('hmda_2009_ct_first-lien-owner-occupied-1-4-family-records_labels.zip', '104310', '4.56 MB'), '2011': HmdaDataFile('hmda_2011_ct_first-lien-owner-occupied-1-4-family-records_labels.zip', '78978', '3.93 MB'), '2010': HmdaDataFile('hmda_2010_ct_first-lien-owner-occupied-1-4-family-records_labels.zip', '93797', '4.54 MB'), '2013': HmdaDataFile('hmda_2013_ct_first-lien-owner-occupied-1-4-family-records_labels.zip', '87390', '4.18 MB'), '2012': HmdaDataFile('hmda_2012_ct_first-lien-owner-occupied-1-4-family-records_labels.zip', '105049', '4.95 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_ct_all-records_labels.zip', '146885', '7.73 MB'), '2007': HmdaDataFile('hmda_2007_ct_all-records_labels.zip', '301760', '15.1 MB'), '2017': HmdaDataFile('hmda_2017_ct_all-records_labels.zip', '129401', '4.77 MB'), '2015': HmdaDataFile('hmda_2015_ct_all-records_labels.zip', '132491', '7.44 MB'), '2014': HmdaDataFile('hmda_2014_ct_all-records_labels.zip', '114931', '6.31 MB'), '2008': HmdaDataFile('hmda_2008_ct_all-records_labels.zip', '193168', '9.76 MB'), '2009': HmdaDataFile('hmda_2009_ct_all-records_labels.zip', '235997', '11.17 MB'), '2011': HmdaDataFile('hmda_2011_ct_all-records_labels.zip', '177460', '9.5 MB'), '2010': HmdaDataFile('hmda_2010_ct_all-records_labels.zip', '204936', '10.79 MB'), '2013': HmdaDataFile('hmda_2013_ct_all-records_labels.zip', '187158', '9.86 MB'), '2012': HmdaDataFile('hmda_2012_ct_all-records_labels.zip', '214191', '11.09 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_ct_originated-records_labels.zip', '75239', '3.73 MB'), '2007': HmdaDataFile('hmda_2007_ct_originated-records_labels.zip', '126259', '6.09 MB'), '2017': HmdaDataFile('hmda_2017_ct_originated-records_labels.zip', '67000', '2.19 MB'), '2015': HmdaDataFile('hmda_2015_ct_originated-records_labels.zip', '68865', '3.65 MB'), '2014': HmdaDataFile('hmda_2014_ct_originated-records_labels.zip', '58456', '3.04 MB'), '2008': HmdaDataFile('hmda_2008_ct_originated-records_labels.zip', '84484', '4.01 MB'), '2009': HmdaDataFile('hmda_2009_ct_originated-records_labels.zip', '113317', '5.04 MB'), '2011': HmdaDataFile('hmda_2011_ct_originated-records_labels.zip', '87795', '4.47 MB'), '2010': HmdaDataFile('hmda_2010_ct_originated-records_labels.zip', '102545', '5.08 MB'), '2013': HmdaDataFile('hmda_2013_ct_originated-records_labels.zip', '98739', '4.8 MB'), '2012': HmdaDataFile('hmda_2012_ct_originated-records_labels.zip', '115361', '5.49 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_ct_first-lien-owner-occupied-1-4-family-records_codes.zip', '66025', '2.19 MB'), '2007': HmdaDataFile('hmda_2007_ct_first-lien-owner-occupied-1-4-family-records_codes.zip', '89152', '2.98 MB'), '2017': HmdaDataFile('hmda_2017_ct_first-lien-owner-occupied-1-4-family-records_codes.zip', '57398', '1.3 MB'), '2015': HmdaDataFile('hmda_2015_ct_first-lien-owner-occupied-1-4-family-records_codes.zip', '59656', '2.2 MB'), '2014': HmdaDataFile('hmda_2014_ct_first-lien-owner-occupied-1-4-family-records_codes.zip', '49553', '1.74 MB'), '2008': HmdaDataFile('hmda_2008_ct_first-lien-owner-occupied-1-4-family-records_codes.zip', '68658', '2.25 MB'), '2009': HmdaDataFile('hmda_2009_ct_first-lien-owner-occupied-1-4-family-records_codes.zip', '104310', '3.22 MB'), '2011': HmdaDataFile('hmda_2011_ct_first-lien-owner-occupied-1-4-family-records_codes.zip', '78978', '2.66 MB'), '2010': HmdaDataFile('hmda_2010_ct_first-lien-owner-occupied-1-4-family-records_codes.zip', '93797', '3.09 MB'), '2013': HmdaDataFile('hmda_2013_ct_first-lien-owner-occupied-1-4-family-records_codes.zip', '87390', '2.84 MB'), '2012': HmdaDataFile('hmda_2012_ct_first-lien-owner-occupied-1-4-family-records_codes.zip', '105049', '3.31 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_ct_all-records_codes.zip', '146885', '5.17 MB'), '2007': HmdaDataFile('hmda_2007_ct_all-records_codes.zip', '301760', '10.45 MB'), '2017': HmdaDataFile('hmda_2017_ct_all-records_codes.zip', '129401', '3.24 MB'), '2015': HmdaDataFile('hmda_2015_ct_all-records_codes.zip', '132491', '5.05 MB'), '2014': HmdaDataFile('hmda_2014_ct_all-records_codes.zip', '114931', '4.22 MB'), '2008': HmdaDataFile('hmda_2008_ct_all-records_codes.zip', '193168', '6.73 MB'), '2009': HmdaDataFile('hmda_2009_ct_all-records_codes.zip', '235997', '7.73 MB'), '2011': HmdaDataFile('hmda_2011_ct_all-records_codes.zip', '177460', '6.28 MB'), '2010': HmdaDataFile('hmda_2010_ct_all-records_codes.zip', '204936', '7.18 MB'), '2013': HmdaDataFile('hmda_2013_ct_all-records_codes.zip', '187158', '6.56 MB'), '2012': HmdaDataFile('hmda_2012_ct_all-records_codes.zip', '214191', '7.31 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_ct_originated-records_codes.zip', '75239', '2.54 MB'), '2007': HmdaDataFile('hmda_2007_ct_originated-records_codes.zip', '126259', '4.28 MB'), '2017': HmdaDataFile('hmda_2017_ct_originated-records_codes.zip', '67000', '1.55 MB'), '2015': HmdaDataFile('hmda_2015_ct_originated-records_codes.zip', '68865', '2.57 MB'), '2014': HmdaDataFile('hmda_2014_ct_originated-records_codes.zip', '58456', '2.07 MB'), '2008': HmdaDataFile('hmda_2008_ct_originated-records_codes.zip', '84484', '2.79 MB'), '2009': HmdaDataFile('hmda_2009_ct_originated-records_codes.zip', '113317', '3.55 MB'), '2011': HmdaDataFile('hmda_2011_ct_originated-records_codes.zip', '87795', '3.04 MB'), '2010': HmdaDataFile('hmda_2010_ct_originated-records_codes.zip', '102545', '3.46 MB'), '2013': HmdaDataFile('hmda_2013_ct_originated-records_codes.zip', '98739', '3.24 MB'), '2012': HmdaDataFile('hmda_2012_ct_originated-records_codes.zip', '115361', '3.66 MB') } } }, 'nh': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_nh_first-lien-owner-occupied-1-4-family-records_labels.zip', '32293', '1.45 MB'), '2007': HmdaDataFile('hmda_2007_nh_first-lien-owner-occupied-1-4-family-records_labels.zip', '30786', '1.35 MB'), '2017': HmdaDataFile('hmda_2017_nh_first-lien-owner-occupied-1-4-family-records_labels.zip', '28246', '825.86 KB'), '2015': HmdaDataFile('hmda_2015_nh_first-lien-owner-occupied-1-4-family-records_labels.zip', '27470', '1.33 MB'), '2014': HmdaDataFile('hmda_2014_nh_first-lien-owner-occupied-1-4-family-records_labels.zip', '21418', '953.08 KB'), '2008': HmdaDataFile('hmda_2008_nh_first-lien-owner-occupied-1-4-family-records_labels.zip', '25186', '1.1 MB'), '2009': HmdaDataFile('hmda_2009_nh_first-lien-owner-occupied-1-4-family-records_labels.zip', '40099', '1.65 MB'), '2011': HmdaDataFile('hmda_2011_nh_first-lien-owner-occupied-1-4-family-records_labels.zip', '30214', '1.28 MB'), '2010': HmdaDataFile('hmda_2010_nh_first-lien-owner-occupied-1-4-family-records_labels.zip', '35463', '1.49 MB'), '2013': HmdaDataFile('hmda_2013_nh_first-lien-owner-occupied-1-4-family-records_labels.zip', '34908', '1.55 MB'), '2012': HmdaDataFile('hmda_2012_nh_first-lien-owner-occupied-1-4-family-records_labels.zip', '41909', '1.8 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_nh_all-records_labels.zip', '72628', '3.51 MB'), '2007': HmdaDataFile('hmda_2007_nh_all-records_labels.zip', '116500', '5.13 MB'), '2017': HmdaDataFile('hmda_2017_nh_all-records_labels.zip', '65016', '2 MB'), '2015': HmdaDataFile('hmda_2015_nh_all-records_labels.zip', '63482', '3.36 MB'), '2014': HmdaDataFile('hmda_2014_nh_all-records_labels.zip', '53373', '2.55 MB'), '2008': HmdaDataFile('hmda_2008_nh_all-records_labels.zip', '78591', '3.53 MB'), '2009': HmdaDataFile('hmda_2009_nh_all-records_labels.zip', '100680', '4.29 MB'), '2011': HmdaDataFile('hmda_2011_nh_all-records_labels.zip', '75090', '3.48 MB'), '2010': HmdaDataFile('hmda_2010_nh_all-records_labels.zip', '85990', '3.93 MB'), '2013': HmdaDataFile('hmda_2013_nh_all-records_labels.zip', '80737', '3.88 MB'), '2012': HmdaDataFile('hmda_2012_nh_all-records_labels.zip', '92574', '4.33 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_nh_originated-records_labels.zip', '38262', '1.76 MB'), '2007': HmdaDataFile('hmda_2007_nh_originated-records_labels.zip', '46139', '2.02 MB'), '2017': HmdaDataFile('hmda_2017_nh_originated-records_labels.zip', '34290', '1.02 MB'), '2015': HmdaDataFile('hmda_2015_nh_originated-records_labels.zip', '33120', '1.64 MB'), '2014': HmdaDataFile('hmda_2014_nh_originated-records_labels.zip', '26589', '1.21 MB'), '2008': HmdaDataFile('hmda_2008_nh_originated-records_labels.zip', '32850', '1.46 MB'), '2009': HmdaDataFile('hmda_2009_nh_originated-records_labels.zip', '45790', '1.91 MB'), '2011': HmdaDataFile('hmda_2011_nh_originated-records_labels.zip', '35321', '1.53 MB'), '2010': HmdaDataFile('hmda_2010_nh_originated-records_labels.zip', '40696', '1.75 MB'), '2013': HmdaDataFile('hmda_2013_nh_originated-records_labels.zip', '41589', '1.88 MB'), '2012': HmdaDataFile('hmda_2012_nh_originated-records_labels.zip', '48098', '2.12 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_nh_first-lien-owner-occupied-1-4-family-records_codes.zip', '32293', '929.81 KB'), '2007': HmdaDataFile('hmda_2007_nh_first-lien-owner-occupied-1-4-family-records_codes.zip', '30786', '870.93 KB'), '2017': HmdaDataFile('hmda_2017_nh_first-lien-owner-occupied-1-4-family-records_codes.zip', '28246', '579.48 KB'), '2015': HmdaDataFile('hmda_2015_nh_first-lien-owner-occupied-1-4-family-records_codes.zip', '27470', '880.79 KB'), '2014': HmdaDataFile('hmda_2014_nh_first-lien-owner-occupied-1-4-family-records_codes.zip', '21418', '605.7 KB'), '2008': HmdaDataFile('hmda_2008_nh_first-lien-owner-occupied-1-4-family-records_codes.zip', '25186', '724.38 KB'), '2009': HmdaDataFile('hmda_2009_nh_first-lien-owner-occupied-1-4-family-records_codes.zip', '40099', '1.1 MB'), '2011': HmdaDataFile('hmda_2011_nh_first-lien-owner-occupied-1-4-family-records_codes.zip', '30214', '801.84 KB'), '2010': HmdaDataFile('hmda_2010_nh_first-lien-owner-occupied-1-4-family-records_codes.zip', '35463', '934.66 KB'), '2013': HmdaDataFile('hmda_2013_nh_first-lien-owner-occupied-1-4-family-records_codes.zip', '34908', '991.18 KB'), '2012': HmdaDataFile('hmda_2012_nh_first-lien-owner-occupied-1-4-family-records_codes.zip', '41909', '1.14 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_nh_all-records_codes.zip', '72628', '2.16 MB'), '2007': HmdaDataFile('hmda_2007_nh_all-records_codes.zip', '116500', '3.28 MB'), '2017': HmdaDataFile('hmda_2017_nh_all-records_codes.zip', '65016', '1.3 MB'), '2015': HmdaDataFile('hmda_2015_nh_all-records_codes.zip', '63482', '2.15 MB'), '2014': HmdaDataFile('hmda_2014_nh_all-records_codes.zip', '53373', '1.56 MB'), '2008': HmdaDataFile('hmda_2008_nh_all-records_codes.zip', '78591', '2.27 MB'), '2009': HmdaDataFile('hmda_2009_nh_all-records_codes.zip', '100680', '2.81 MB'), '2011': HmdaDataFile('hmda_2011_nh_all-records_codes.zip', '75090', '2.12 MB'), '2010': HmdaDataFile('hmda_2010_nh_all-records_codes.zip', '85990', '2.4 MB'), '2013': HmdaDataFile('hmda_2013_nh_all-records_codes.zip', '80737', '2.4 MB'), '2012': HmdaDataFile('hmda_2012_nh_all-records_codes.zip', '92574', '2.66 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_nh_originated-records_codes.zip', '38262', '1.12 MB'), '2007': HmdaDataFile('hmda_2007_nh_originated-records_codes.zip', '46139', '1.31 MB'), '2017': HmdaDataFile('hmda_2017_nh_originated-records_codes.zip', '34290', '702.18 KB'), '2015': HmdaDataFile('hmda_2015_nh_originated-records_codes.zip', '33120', '1.08 MB'), '2014': HmdaDataFile('hmda_2014_nh_originated-records_codes.zip', '26589', '760.91 KB'), '2008': HmdaDataFile('hmda_2008_nh_originated-records_codes.zip', '32850', '959.54 KB'), '2009': HmdaDataFile('hmda_2009_nh_originated-records_codes.zip', '45790', '1.27 MB'), '2011': HmdaDataFile('hmda_2011_nh_originated-records_codes.zip', '35321', '955.91 KB'), '2010': HmdaDataFile('hmda_2010_nh_originated-records_codes.zip', '40696', '1.09 MB'), '2013': HmdaDataFile('hmda_2013_nh_originated-records_codes.zip', '41589', '1.2 MB'), '2012': HmdaDataFile('hmda_2012_nh_originated-records_codes.zip', '48098', '1.33 MB') } } }, 'nj': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_nj_first-lien-owner-occupied-1-4-family-records_labels.zip', '168437', '8.44 MB'), '2007': HmdaDataFile('hmda_2007_nj_first-lien-owner-occupied-1-4-family-records_labels.zip', '222771', '10.95 MB'), '2017': HmdaDataFile('hmda_2017_nj_first-lien-owner-occupied-1-4-family-records_labels.zip', '141365', '4.57 MB'), '2015': HmdaDataFile('hmda_2015_nj_first-lien-owner-occupied-1-4-family-records_labels.zip', '147544', '8.22 MB'), '2014': HmdaDataFile('hmda_2014_nj_first-lien-owner-occupied-1-4-family-records_labels.zip', '113481', '5.78 MB'), '2008': HmdaDataFile('hmda_2008_nj_first-lien-owner-occupied-1-4-family-records_labels.zip', '166597', '8.06 MB'), '2009': HmdaDataFile('hmda_2009_nj_first-lien-owner-occupied-1-4-family-records_labels.zip', '247580', '11.18 MB'), '2011': HmdaDataFile('hmda_2011_nj_first-lien-owner-occupied-1-4-family-records_labels.zip', '184520', '9.28 MB'), '2010': HmdaDataFile('hmda_2010_nj_first-lien-owner-occupied-1-4-family-records_labels.zip', '206564', '10.4 MB'), '2013': HmdaDataFile('hmda_2013_nj_first-lien-owner-occupied-1-4-family-records_labels.zip', '194532', '9.73 MB'), '2012': HmdaDataFile('hmda_2012_nj_first-lien-owner-occupied-1-4-family-records_labels.zip', '237169', '11.87 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_nj_all-records_labels.zip', '399389', '21.26 MB'), '2007': HmdaDataFile('hmda_2007_nj_all-records_labels.zip', '808103', '39.11 MB'), '2017': HmdaDataFile('hmda_2017_nj_all-records_labels.zip', '349563', '12.38 MB'), '2015': HmdaDataFile('hmda_2015_nj_all-records_labels.zip', '354746', '21.29 MB'), '2014': HmdaDataFile('hmda_2014_nj_all-records_labels.zip', '289377', '15.65 MB'), '2008': HmdaDataFile('hmda_2008_nj_all-records_labels.zip', '514816', '25.05 MB'), '2009': HmdaDataFile('hmda_2009_nj_all-records_labels.zip', '613066', '28.18 MB'), '2011': HmdaDataFile('hmda_2011_nj_all-records_labels.zip', '451221', '24.28 MB'), '2010': HmdaDataFile('hmda_2010_nj_all-records_labels.zip', '499489', '27 MB'), '2013': HmdaDataFile('hmda_2013_nj_all-records_labels.zip', '460264', '24.64 MB'), '2012': HmdaDataFile('hmda_2012_nj_all-records_labels.zip', '541802', '29.13 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_nj_originated-records_labels.zip', '194913', '9.86 MB'), '2007': HmdaDataFile('hmda_2007_nj_originated-records_labels.zip', '317276', '15.57 MB'), '2017': HmdaDataFile('hmda_2017_nj_originated-records_labels.zip', '169196', '5.6 MB'), '2015': HmdaDataFile('hmda_2015_nj_originated-records_labels.zip', '171685', '9.68 MB'), '2014': HmdaDataFile('hmda_2014_nj_originated-records_labels.zip', '135675', '6.98 MB'), '2008': HmdaDataFile('hmda_2008_nj_originated-records_labels.zip', '208721', '10.17 MB'), '2009': HmdaDataFile('hmda_2009_nj_originated-records_labels.zip', '274489', '12.53 MB'), '2011': HmdaDataFile('hmda_2011_nj_originated-records_labels.zip', '210948', '10.71 MB'), '2010': HmdaDataFile('hmda_2010_nj_originated-records_labels.zip', '232001', '11.8 MB'), '2013': HmdaDataFile('hmda_2013_nj_originated-records_labels.zip', '226181', '11.43 MB'), '2012': HmdaDataFile('hmda_2012_nj_originated-records_labels.zip', '269377', '13.64 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_nj_first-lien-owner-occupied-1-4-family-records_codes.zip', '168437', '6.08 MB'), '2007': HmdaDataFile('hmda_2007_nj_first-lien-owner-occupied-1-4-family-records_codes.zip', '222771', '7.81 MB'), '2017': HmdaDataFile('hmda_2017_nj_first-lien-owner-occupied-1-4-family-records_codes.zip', '141365', '3.22 MB'), '2015': HmdaDataFile('hmda_2015_nj_first-lien-owner-occupied-1-4-family-records_codes.zip', '147544', '5.93 MB'), '2014': HmdaDataFile('hmda_2014_nj_first-lien-owner-occupied-1-4-family-records_codes.zip', '113481', '4.17 MB'), '2008': HmdaDataFile('hmda_2008_nj_first-lien-owner-occupied-1-4-family-records_codes.zip', '166597', '5.77 MB'), '2009': HmdaDataFile('hmda_2009_nj_first-lien-owner-occupied-1-4-family-records_codes.zip', '247580', '8.06 MB'), '2011': HmdaDataFile('hmda_2011_nj_first-lien-owner-occupied-1-4-family-records_codes.zip', '184520', '6.49 MB'), '2010': HmdaDataFile('hmda_2010_nj_first-lien-owner-occupied-1-4-family-records_codes.zip', '206564', '7.36 MB'), '2013': HmdaDataFile('hmda_2013_nj_first-lien-owner-occupied-1-4-family-records_codes.zip', '194532', '6.89 MB'), '2012': HmdaDataFile('hmda_2012_nj_first-lien-owner-occupied-1-4-family-records_codes.zip', '237169', '8.4 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_nj_all-records_codes.zip', '399389', '14.78 MB'), '2007': HmdaDataFile('hmda_2007_nj_all-records_codes.zip', '808103', '27.04 MB'), '2017': HmdaDataFile('hmda_2017_nj_all-records_codes.zip', '349563', '8.1 MB'), '2015': HmdaDataFile('hmda_2015_nj_all-records_codes.zip', '354746', '14.72 MB'), '2014': HmdaDataFile('hmda_2014_nj_all-records_codes.zip', '289377', '10.83 MB'), '2008': HmdaDataFile('hmda_2008_nj_all-records_codes.zip', '514816', '17.43 MB'), '2009': HmdaDataFile('hmda_2009_nj_all-records_codes.zip', '613066', '19.76 MB'), '2011': HmdaDataFile('hmda_2011_nj_all-records_codes.zip', '451221', '16.47 MB'), '2010': HmdaDataFile('hmda_2010_nj_all-records_codes.zip', '499489', '18.44 MB'), '2013': HmdaDataFile('hmda_2013_nj_all-records_codes.zip', '460264', '16.86 MB'), '2012': HmdaDataFile('hmda_2012_nj_all-records_codes.zip', '541802', '19.93 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_nj_originated-records_codes.zip', '194913', '7.06 MB'), '2007': HmdaDataFile('hmda_2007_nj_originated-records_codes.zip', '317276', '11.05 MB'), '2017': HmdaDataFile('hmda_2017_nj_originated-records_codes.zip', '169196', '3.91 MB'), '2015': HmdaDataFile('hmda_2015_nj_originated-records_codes.zip', '171685', '6.93 MB'), '2014': HmdaDataFile('hmda_2014_nj_originated-records_codes.zip', '135675', '5 MB'), '2008': HmdaDataFile('hmda_2008_nj_originated-records_codes.zip', '208721', '7.24 MB'), '2009': HmdaDataFile('hmda_2009_nj_originated-records_codes.zip', '274489', '9.01 MB'), '2011': HmdaDataFile('hmda_2011_nj_originated-records_codes.zip', '210948', '7.44 MB'), '2010': HmdaDataFile('hmda_2010_nj_originated-records_codes.zip', '232001', '8.28 MB'), '2013': HmdaDataFile('hmda_2013_nj_originated-records_codes.zip', '226181', '8.05 MB'), '2012': HmdaDataFile('hmda_2012_nj_originated-records_codes.zip', '269377', '9.59 MB') } } }, 'nm': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_nm_first-lien-owner-occupied-1-4-family-records_labels.zip', '32653', '1.47 MB'), '2007': HmdaDataFile('hmda_2007_nm_first-lien-owner-occupied-1-4-family-records_labels.zip', '47002', '2.07 MB'), '2017': HmdaDataFile('hmda_2017_nm_first-lien-owner-occupied-1-4-family-records_labels.zip', '28982', '924.59 KB'), '2015': HmdaDataFile('hmda_2015_nm_first-lien-owner-occupied-1-4-family-records_labels.zip', '29038', '1.45 MB'), '2014': HmdaDataFile('hmda_2014_nm_first-lien-owner-occupied-1-4-family-records_labels.zip', '24491', '1.13 MB'), '2008': HmdaDataFile('hmda_2008_nm_first-lien-owner-occupied-1-4-family-records_labels.zip', '35421', '1.54 MB'), '2009': HmdaDataFile('hmda_2009_nm_first-lien-owner-occupied-1-4-family-records_labels.zip', '45147', '1.83 MB'), '2011': HmdaDataFile('hmda_2011_nm_first-lien-owner-occupied-1-4-family-records_labels.zip', '31586', '1.35 MB'), '2010': HmdaDataFile('hmda_2010_nm_first-lien-owner-occupied-1-4-family-records_labels.zip', '36691', '1.68 MB'), '2013': HmdaDataFile('hmda_2013_nm_first-lien-owner-occupied-1-4-family-records_labels.zip', '38141', '1.77 MB'), '2012': HmdaDataFile('hmda_2012_nm_first-lien-owner-occupied-1-4-family-records_labels.zip', '42629', '1.91 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_nm_all-records_labels.zip', '89390', '4.48 MB'), '2007': HmdaDataFile('hmda_2007_nm_all-records_labels.zip', '178911', '8.19 MB'), '2017': HmdaDataFile('hmda_2017_nm_all-records_labels.zip', '80423', '2.86 MB'), '2015': HmdaDataFile('hmda_2015_nm_all-records_labels.zip', '79236', '4.37 MB'), '2014': HmdaDataFile('hmda_2014_nm_all-records_labels.zip', '71841', '3.67 MB'), '2008': HmdaDataFile('hmda_2008_nm_all-records_labels.zip', '114678', '5.3 MB'), '2009': HmdaDataFile('hmda_2009_nm_all-records_labels.zip', '123495', '5.37 MB'), '2011': HmdaDataFile('hmda_2011_nm_all-records_labels.zip', '90785', '4.39 MB'), '2010': HmdaDataFile('hmda_2010_nm_all-records_labels.zip', '104045', '5.33 MB'), '2013': HmdaDataFile('hmda_2013_nm_all-records_labels.zip', '102217', '5.23 MB'), '2012': HmdaDataFile('hmda_2012_nm_all-records_labels.zip', '108074', '5.4 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_nm_originated-records_labels.zip', '41334', '1.93 MB'), '2007': HmdaDataFile('hmda_2007_nm_originated-records_labels.zip', '69876', '3.15 MB'), '2017': HmdaDataFile('hmda_2017_nm_originated-records_labels.zip', '37465', '1.24 MB'), '2015': HmdaDataFile('hmda_2015_nm_originated-records_labels.zip', '37572', '1.93 MB'), '2014': HmdaDataFile('hmda_2014_nm_originated-records_labels.zip', '32547', '1.57 MB'), '2008': HmdaDataFile('hmda_2008_nm_originated-records_labels.zip', '46512', '2.09 MB'), '2009': HmdaDataFile('hmda_2009_nm_originated-records_labels.zip', '54007', '2.27 MB'), '2011': HmdaDataFile('hmda_2011_nm_originated-records_labels.zip', '39979', '1.8 MB'), '2010': HmdaDataFile('hmda_2010_nm_originated-records_labels.zip', '45261', '2.12 MB'), '2013': HmdaDataFile('hmda_2013_nm_originated-records_labels.zip', '49389', '2.34 MB'), '2012': HmdaDataFile('hmda_2012_nm_originated-records_labels.zip', '53038', '2.41 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_nm_first-lien-owner-occupied-1-4-family-records_codes.zip', '32653', '980.97 KB'), '2007': HmdaDataFile('hmda_2007_nm_first-lien-owner-occupied-1-4-family-records_codes.zip', '47002', '1.42 MB'), '2017': HmdaDataFile('hmda_2017_nm_first-lien-owner-occupied-1-4-family-records_codes.zip', '28982', '644.64 KB'), '2015': HmdaDataFile('hmda_2015_nm_first-lien-owner-occupied-1-4-family-records_codes.zip', '29038', '989.53 KB'), '2014': HmdaDataFile('hmda_2014_nm_first-lien-owner-occupied-1-4-family-records_codes.zip', '24491', '759.74 KB'), '2008': HmdaDataFile('hmda_2008_nm_first-lien-owner-occupied-1-4-family-records_codes.zip', '35421', '1.05 MB'), '2009': HmdaDataFile('hmda_2009_nm_first-lien-owner-occupied-1-4-family-records_codes.zip', '45147', '1.26 MB'), '2011': HmdaDataFile('hmda_2011_nm_first-lien-owner-occupied-1-4-family-records_codes.zip', '31586', '892.04 KB'), '2010': HmdaDataFile('hmda_2010_nm_first-lien-owner-occupied-1-4-family-records_codes.zip', '36691', '1.12 MB'), '2013': HmdaDataFile('hmda_2013_nm_first-lien-owner-occupied-1-4-family-records_codes.zip', '38141', '1.18 MB'), '2012': HmdaDataFile('hmda_2012_nm_first-lien-owner-occupied-1-4-family-records_codes.zip', '42629', '1.26 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_nm_all-records_codes.zip', '89390', '2.89 MB'), '2007': HmdaDataFile('hmda_2007_nm_all-records_codes.zip', '178911', '5.48 MB'), '2017': HmdaDataFile('hmda_2017_nm_all-records_codes.zip', '80423', '1.88 MB'), '2015': HmdaDataFile('hmda_2015_nm_all-records_codes.zip', '79236', '2.87 MB'), '2014': HmdaDataFile('hmda_2014_nm_all-records_codes.zip', '71841', '2.38 MB'), '2008': HmdaDataFile('hmda_2008_nm_all-records_codes.zip', '114678', '3.55 MB'), '2009': HmdaDataFile('hmda_2009_nm_all-records_codes.zip', '123495', '3.6 MB'), '2011': HmdaDataFile('hmda_2011_nm_all-records_codes.zip', '90785', '2.81 MB'), '2010': HmdaDataFile('hmda_2010_nm_all-records_codes.zip', '104045', '3.42 MB'), '2013': HmdaDataFile('hmda_2013_nm_all-records_codes.zip', '102217', '3.39 MB'), '2012': HmdaDataFile('hmda_2012_nm_all-records_codes.zip', '108074', '3.48 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_nm_originated-records_codes.zip', '41334', '1.3 MB'), '2007': HmdaDataFile('hmda_2007_nm_originated-records_codes.zip', '69876', '2.15 MB'), '2017': HmdaDataFile('hmda_2017_nm_originated-records_codes.zip', '37465', '864.54 KB'), '2015': HmdaDataFile('hmda_2015_nm_originated-records_codes.zip', '37572', '1.32 MB'), '2014': HmdaDataFile('hmda_2014_nm_originated-records_codes.zip', '32547', '1.05 MB'), '2008': HmdaDataFile('hmda_2008_nm_originated-records_codes.zip', '46512', '1.43 MB'), '2009': HmdaDataFile('hmda_2009_nm_originated-records_codes.zip', '54007', '1.56 MB'), '2011': HmdaDataFile('hmda_2011_nm_originated-records_codes.zip', '39979', '1.19 MB'), '2010': HmdaDataFile('hmda_2010_nm_originated-records_codes.zip', '45261', '1.4 MB'), '2013': HmdaDataFile('hmda_2013_nm_originated-records_codes.zip', '49389', '1.56 MB'), '2012': HmdaDataFile('hmda_2012_nm_originated-records_codes.zip', '53038', '1.59 MB') } } }, 'tx': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_tx_first-lien-owner-occupied-1-4-family-records_labels.zip', '513200', '26.59 MB'), '2007': HmdaDataFile('hmda_2007_tx_first-lien-owner-occupied-1-4-family-records_labels.zip', '454756', '22.34 MB'), '2017': HmdaDataFile('hmda_2017_tx_first-lien-owner-occupied-1-4-family-records_labels.zip', '457884', '15.35 MB'), '2015': HmdaDataFile('hmda_2015_tx_first-lien-owner-occupied-1-4-family-records_labels.zip', '460596', '26.85 MB'), '2014': HmdaDataFile('hmda_2014_tx_first-lien-owner-occupied-1-4-family-records_labels.zip', '391921', '20.38 MB'), '2008': HmdaDataFile('hmda_2008_tx_first-lien-owner-occupied-1-4-family-records_labels.zip', '364311', '17.57 MB'), '2009': HmdaDataFile('hmda_2009_tx_first-lien-owner-occupied-1-4-family-records_labels.zip', '448222', '20.5 MB'), '2011': HmdaDataFile('hmda_2011_tx_first-lien-owner-occupied-1-4-family-records_labels.zip', '391184', '19.56 MB'), '2010': HmdaDataFile('hmda_2010_tx_first-lien-owner-occupied-1-4-family-records_labels.zip', '405050', '20.17 MB'), '2013': HmdaDataFile('hmda_2013_tx_first-lien-owner-occupied-1-4-family-records_labels.zip', '503627', '26.39 MB'), '2012': HmdaDataFile('hmda_2012_tx_first-lien-owner-occupied-1-4-family-records_labels.zip', '502655', '26.28 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_tx_all-records_labels.zip', '1266767', '70.12 MB'), '2007': HmdaDataFile('hmda_2007_tx_all-records_labels.zip', '1723576', '83.63 MB'), '2017': HmdaDataFile('hmda_2017_tx_all-records_labels.zip', '1148206', '42.77 MB'), '2015': HmdaDataFile('hmda_2015_tx_all-records_labels.zip', '1139573', '71.35 MB'), '2014': HmdaDataFile('hmda_2014_tx_all-records_labels.zip', '1011598', '55.94 MB'), '2008': HmdaDataFile('hmda_2008_tx_all-records_labels.zip', '1204457', '58.59 MB'), '2009': HmdaDataFile('hmda_2009_tx_all-records_labels.zip', '1242037', '57.86 MB'), '2011': HmdaDataFile('hmda_2011_tx_all-records_labels.zip', '1038591', '56.64 MB'), '2010': HmdaDataFile('hmda_2010_tx_all-records_labels.zip', '1063486', '58.04 MB'), '2013': HmdaDataFile('hmda_2013_tx_all-records_labels.zip', '1254738', '70.8 MB'), '2012': HmdaDataFile('hmda_2012_tx_all-records_labels.zip', '1221801', '69.13 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_tx_originated-records_labels.zip', '613325', '32.57 MB'), '2007': HmdaDataFile('hmda_2007_tx_originated-records_labels.zip', '653817', '32.47 MB'), '2017': HmdaDataFile('hmda_2017_tx_originated-records_labels.zip', '559492', '19.3 MB'), '2015': HmdaDataFile('hmda_2015_tx_originated-records_labels.zip', '557266', '33.01 MB'), '2014': HmdaDataFile('hmda_2014_tx_originated-records_labels.zip', '484747', '25.75 MB'), '2008': HmdaDataFile('hmda_2008_tx_originated-records_labels.zip', '473701', '23.41 MB'), '2009': HmdaDataFile('hmda_2009_tx_originated-records_labels.zip', '520422', '24.41 MB'), '2011': HmdaDataFile('hmda_2011_tx_originated-records_labels.zip', '466338', '24 MB'), '2010': HmdaDataFile('hmda_2010_tx_originated-records_labels.zip', '476566', '24.45 MB'), '2013': HmdaDataFile('hmda_2013_tx_originated-records_labels.zip', '611180', '32.38 MB'), '2012': HmdaDataFile('hmda_2012_tx_originated-records_labels.zip', '594151', '31.5 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_tx_first-lien-owner-occupied-1-4-family-records_codes.zip', '513200', '18.9 MB'), '2007': HmdaDataFile('hmda_2007_tx_first-lien-owner-occupied-1-4-family-records_codes.zip', '454756', '16.07 MB'), '2017': HmdaDataFile('hmda_2017_tx_first-lien-owner-occupied-1-4-family-records_codes.zip', '457884', '10.67 MB'), '2015': HmdaDataFile('hmda_2015_tx_first-lien-owner-occupied-1-4-family-records_codes.zip', '460596', '19.03 MB'), '2014': HmdaDataFile('hmda_2014_tx_first-lien-owner-occupied-1-4-family-records_codes.zip', '391921', '14.47 MB'), '2008': HmdaDataFile('hmda_2008_tx_first-lien-owner-occupied-1-4-family-records_codes.zip', '364311', '12.62 MB'), '2009': HmdaDataFile('hmda_2009_tx_first-lien-owner-occupied-1-4-family-records_codes.zip', '448222', '14.81 MB'), '2011': HmdaDataFile('hmda_2011_tx_first-lien-owner-occupied-1-4-family-records_codes.zip', '391184', '13.52 MB'), '2010': HmdaDataFile('hmda_2010_tx_first-lien-owner-occupied-1-4-family-records_codes.zip', '405050', '13.93 MB'), '2013': HmdaDataFile('hmda_2013_tx_first-lien-owner-occupied-1-4-family-records_codes.zip', '503627', '18.83 MB'), '2012': HmdaDataFile('hmda_2012_tx_first-lien-owner-occupied-1-4-family-records_codes.zip', '502655', '18.62 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_tx_all-records_codes.zip', '1266767', '48.14 MB'), '2007': HmdaDataFile('hmda_2007_tx_all-records_codes.zip', '1723576', '58.17 MB'), '2017': HmdaDataFile('hmda_2017_tx_all-records_codes.zip', '1148206', '27.41 MB'), '2015': HmdaDataFile('hmda_2015_tx_all-records_codes.zip', '1139573', '48.5 MB'), '2014': HmdaDataFile('hmda_2014_tx_all-records_codes.zip', '1011598', '38.26 MB'), '2008': HmdaDataFile('hmda_2008_tx_all-records_codes.zip', '1204457', '40.77 MB'), '2009': HmdaDataFile('hmda_2009_tx_all-records_codes.zip', '1242037', '40.49 MB'), '2011': HmdaDataFile('hmda_2011_tx_all-records_codes.zip', '1038591', '38.13 MB'), '2010': HmdaDataFile('hmda_2010_tx_all-records_codes.zip', '1063486', '39.1 MB'), '2013': HmdaDataFile('hmda_2013_tx_all-records_codes.zip', '1254738', '48.99 MB'), '2012': HmdaDataFile('hmda_2012_tx_all-records_codes.zip', '1221801', '47.68 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_tx_originated-records_codes.zip', '613325', '23.08 MB'), '2007': HmdaDataFile('hmda_2007_tx_originated-records_codes.zip', '653817', '23.29 MB'), '2017': HmdaDataFile('hmda_2017_tx_originated-records_codes.zip', '559492', '13.3 MB'), '2015': HmdaDataFile('hmda_2015_tx_originated-records_codes.zip', '557266', '23.23 MB'), '2014': HmdaDataFile('hmda_2014_tx_originated-records_codes.zip', '484747', '18.19 MB'), '2008': HmdaDataFile('hmda_2008_tx_originated-records_codes.zip', '473701', '16.77 MB'), '2009': HmdaDataFile('hmda_2009_tx_originated-records_codes.zip', '520422', '17.57 MB'), '2011': HmdaDataFile('hmda_2011_tx_originated-records_codes.zip', '466338', '16.56 MB'), '2010': HmdaDataFile('hmda_2010_tx_originated-records_codes.zip', '476566', '16.85 MB'), '2013': HmdaDataFile('hmda_2013_tx_originated-records_codes.zip', '611180', '22.91 MB'), '2012': HmdaDataFile('hmda_2012_tx_originated-records_codes.zip', '594151', '22.16 MB') } } }, 'la': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_la_first-lien-owner-occupied-1-4-family-records_labels.zip', '72627', '3.46 MB'), '2007': HmdaDataFile('hmda_2007_la_first-lien-owner-occupied-1-4-family-records_labels.zip', '86710', '4.14 MB'), '2017': HmdaDataFile('hmda_2017_la_first-lien-owner-occupied-1-4-family-records_labels.zip', '61729', '1.89 MB'), '2015': HmdaDataFile('hmda_2015_la_first-lien-owner-occupied-1-4-family-records_labels.zip', '67942', '3.69 MB'), '2014': HmdaDataFile('hmda_2014_la_first-lien-owner-occupied-1-4-family-records_labels.zip', '59398', '2.86 MB'), '2008': HmdaDataFile('hmda_2008_la_first-lien-owner-occupied-1-4-family-records_labels.zip', '69191', '3.26 MB'), '2009': HmdaDataFile('hmda_2009_la_first-lien-owner-occupied-1-4-family-records_labels.zip', '81760', '3.74 MB'), '2011': HmdaDataFile('hmda_2011_la_first-lien-owner-occupied-1-4-family-records_labels.zip', '69735', '3.2 MB'), '2010': HmdaDataFile('hmda_2010_la_first-lien-owner-occupied-1-4-family-records_labels.zip', '75645', '3.55 MB'), '2013': HmdaDataFile('hmda_2013_la_first-lien-owner-occupied-1-4-family-records_labels.zip', '77713', '3.68 MB'), '2012': HmdaDataFile('hmda_2012_la_first-lien-owner-occupied-1-4-family-records_labels.zip', '86148', '4.02 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_la_all-records_labels.zip', '195937', '10.16 MB'), '2007': HmdaDataFile('hmda_2007_la_all-records_labels.zip', '300738', '14.74 MB'), '2017': HmdaDataFile('hmda_2017_la_all-records_labels.zip', '173079', '6.06 MB'), '2015': HmdaDataFile('hmda_2015_la_all-records_labels.zip', '180533', '10.55 MB'), '2014': HmdaDataFile('hmda_2014_la_all-records_labels.zip', '170514', '8.9 MB'), '2008': HmdaDataFile('hmda_2008_la_all-records_labels.zip', '221773', '11.04 MB'), '2009': HmdaDataFile('hmda_2009_la_all-records_labels.zip', '231242', '11.32 MB'), '2011': HmdaDataFile('hmda_2011_la_all-records_labels.zip', '210644', '10.99 MB'), '2010': HmdaDataFile('hmda_2010_la_all-records_labels.zip', '214403', '11.27 MB'), '2013': HmdaDataFile('hmda_2013_la_all-records_labels.zip', '219546', '11.6 MB'), '2012': HmdaDataFile('hmda_2012_la_all-records_labels.zip', '231946', '12.12 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_la_originated-records_labels.zip', '94261', '4.64 MB'), '2007': HmdaDataFile('hmda_2007_la_originated-records_labels.zip', '126278', '6.16 MB'), '2017': HmdaDataFile('hmda_2017_la_originated-records_labels.zip', '83323', '2.62 MB'), '2015': HmdaDataFile('hmda_2015_la_originated-records_labels.zip', '89327', '4.95 MB'), '2014': HmdaDataFile('hmda_2014_la_originated-records_labels.zip', '81230', '4.06 MB'), '2008': HmdaDataFile('hmda_2008_la_originated-records_labels.zip', '97778', '4.77 MB'), '2009': HmdaDataFile('hmda_2009_la_originated-records_labels.zip', '103928', '4.89 MB'), '2011': HmdaDataFile('hmda_2011_la_originated-records_labels.zip', '90349', '4.38 MB'), '2010': HmdaDataFile('hmda_2010_la_originated-records_labels.zip', '96150', '4.64 MB'), '2013': HmdaDataFile('hmda_2013_la_originated-records_labels.zip', '101849', '4.89 MB'), '2012': HmdaDataFile('hmda_2012_la_originated-records_labels.zip', '107636', '5.1 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_la_first-lien-owner-occupied-1-4-family-records_codes.zip', '72627', '2.33 MB'), '2007': HmdaDataFile('hmda_2007_la_first-lien-owner-occupied-1-4-family-records_codes.zip', '86710', '2.79 MB'), '2017': HmdaDataFile('hmda_2017_la_first-lien-owner-occupied-1-4-family-records_codes.zip', '61729', '1.36 MB'), '2015': HmdaDataFile('hmda_2015_la_first-lien-owner-occupied-1-4-family-records_codes.zip', '67942', '2.53 MB'), '2014': HmdaDataFile('hmda_2014_la_first-lien-owner-occupied-1-4-family-records_codes.zip', '59398', '1.93 MB'), '2008': HmdaDataFile('hmda_2008_la_first-lien-owner-occupied-1-4-family-records_codes.zip', '69191', '2.23 MB'), '2009': HmdaDataFile('hmda_2009_la_first-lien-owner-occupied-1-4-family-records_codes.zip', '81760', '2.59 MB'), '2011': HmdaDataFile('hmda_2011_la_first-lien-owner-occupied-1-4-family-records_codes.zip', '69735', '2.12 MB'), '2010': HmdaDataFile('hmda_2010_la_first-lien-owner-occupied-1-4-family-records_codes.zip', '75645', '2.36 MB'), '2013': HmdaDataFile('hmda_2013_la_first-lien-owner-occupied-1-4-family-records_codes.zip', '77713', '2.44 MB'), '2012': HmdaDataFile('hmda_2012_la_first-lien-owner-occupied-1-4-family-records_codes.zip', '86148', '2.66 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_la_all-records_codes.zip', '195937', '6.65 MB'), '2007': HmdaDataFile('hmda_2007_la_all-records_codes.zip', '300738', '9.84 MB'), '2017': HmdaDataFile('hmda_2017_la_all-records_codes.zip', '173079', '4 MB'), '2015': HmdaDataFile('hmda_2015_la_all-records_codes.zip', '180533', '6.97 MB'), '2014': HmdaDataFile('hmda_2014_la_all-records_codes.zip', '170514', '5.81 MB'), '2008': HmdaDataFile('hmda_2008_la_all-records_codes.zip', '221773', '7.43 MB'), '2009': HmdaDataFile('hmda_2009_la_all-records_codes.zip', '231242', '7.74 MB'), '2011': HmdaDataFile('hmda_2011_la_all-records_codes.zip', '210644', '7.15 MB'), '2010': HmdaDataFile('hmda_2010_la_all-records_codes.zip', '214403', '7.36 MB'), '2013': HmdaDataFile('hmda_2013_la_all-records_codes.zip', '219546', '7.57 MB'), '2012': HmdaDataFile('hmda_2012_la_all-records_codes.zip', '231946', '7.91 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_la_originated-records_codes.zip', '94261', '3.12 MB'), '2007': HmdaDataFile('hmda_2007_la_originated-records_codes.zip', '126278', '4.18 MB'), '2017': HmdaDataFile('hmda_2017_la_originated-records_codes.zip', '83323', '1.86 MB'), '2015': HmdaDataFile('hmda_2015_la_originated-records_codes.zip', '89327', '3.37 MB'), '2014': HmdaDataFile('hmda_2014_la_originated-records_codes.zip', '81230', '2.72 MB'), '2008': HmdaDataFile('hmda_2008_la_originated-records_codes.zip', '97778', '3.29 MB'), '2009': HmdaDataFile('hmda_2009_la_originated-records_codes.zip', '103928', '3.38 MB'), '2011': HmdaDataFile('hmda_2011_la_originated-records_codes.zip', '90349', '2.9 MB'), '2010': HmdaDataFile('hmda_2010_la_originated-records_codes.zip', '96150', '3.06 MB'), '2013': HmdaDataFile('hmda_2013_la_originated-records_codes.zip', '101849', '3.22 MB'), '2012': HmdaDataFile('hmda_2012_la_originated-records_codes.zip', '107636', '3.34 MB') } } }, 'wa': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_wa_first-lien-owner-occupied-1-4-family-records_labels.zip', '225231', '11.2 MB'), '2007': HmdaDataFile('hmda_2007_wa_first-lien-owner-occupied-1-4-family-records_labels.zip', '215619', '10.08 MB'), '2017': HmdaDataFile('hmda_2017_wa_first-lien-owner-occupied-1-4-family-records_labels.zip', '191532', '6.03 MB'), '2015': HmdaDataFile('hmda_2015_wa_first-lien-owner-occupied-1-4-family-records_labels.zip', '183367', '10.31 MB'), '2014': HmdaDataFile('hmda_2014_wa_first-lien-owner-occupied-1-4-family-records_labels.zip', '133913', '6.66 MB'), '2008': HmdaDataFile('hmda_2008_wa_first-lien-owner-occupied-1-4-family-records_labels.zip', '165363', '7.57 MB'), '2009': HmdaDataFile('hmda_2009_wa_first-lien-owner-occupied-1-4-family-records_labels.zip', '255387', '10.98 MB'), '2011': HmdaDataFile('hmda_2011_wa_first-lien-owner-occupied-1-4-family-records_labels.zip', '174449', '8.42 MB'), '2010': HmdaDataFile('hmda_2010_wa_first-lien-owner-occupied-1-4-family-records_labels.zip', '211008', '10.2 MB'), '2013': HmdaDataFile('hmda_2013_wa_first-lien-owner-occupied-1-4-family-records_labels.zip', '201071', '10.04 MB'), '2012': HmdaDataFile('hmda_2012_wa_first-lien-owner-occupied-1-4-family-records_labels.zip', '245095', '11.94 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_wa_all-records_labels.zip', '466566', '24.68 MB'), '2007': HmdaDataFile('hmda_2007_wa_all-records_labels.zip', '722481', '33.39 MB'), '2017': HmdaDataFile('hmda_2017_wa_all-records_labels.zip', '402196', '13.8 MB'), '2015': HmdaDataFile('hmda_2015_wa_all-records_labels.zip', '387805', '23.58 MB'), '2014': HmdaDataFile('hmda_2014_wa_all-records_labels.zip', '311425', '16.4 MB'), '2008': HmdaDataFile('hmda_2008_wa_all-records_labels.zip', '485622', '22.64 MB'), '2009': HmdaDataFile('hmda_2009_wa_all-records_labels.zip', '590758', '25.93 MB'), '2011': HmdaDataFile('hmda_2011_wa_all-records_labels.zip', '406149', '20.95 MB'), '2010': HmdaDataFile('hmda_2010_wa_all-records_labels.zip', '473922', '24.62 MB'), '2013': HmdaDataFile('hmda_2013_wa_all-records_labels.zip', '448753', '23.93 MB'), '2012': HmdaDataFile('hmda_2012_wa_all-records_labels.zip', '519479', '27.08 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_wa_originated-records_labels.zip', '263712', '13.26 MB'), '2007': HmdaDataFile('hmda_2007_wa_originated-records_labels.zip', '310267', '14.49 MB'), '2017': HmdaDataFile('hmda_2017_wa_originated-records_labels.zip', '230076', '7.35 MB'), '2015': HmdaDataFile('hmda_2015_wa_originated-records_labels.zip', '218772', '12.48 MB'), '2014': HmdaDataFile('hmda_2014_wa_originated-records_labels.zip', '166279', '8.37 MB'), '2008': HmdaDataFile('hmda_2008_wa_originated-records_labels.zip', '207841', '9.62 MB'), '2009': HmdaDataFile('hmda_2009_wa_originated-records_labels.zip', '286416', '12.41 MB'), '2011': HmdaDataFile('hmda_2011_wa_originated-records_labels.zip', '205550', '10.07 MB'), '2010': HmdaDataFile('hmda_2010_wa_originated-records_labels.zip', '241128', '11.8 MB'), '2013': HmdaDataFile('hmda_2013_wa_originated-records_labels.zip', '246580', '12.48 MB'), '2012': HmdaDataFile('hmda_2012_wa_originated-records_labels.zip', '287748', '14.21 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_wa_first-lien-owner-occupied-1-4-family-records_codes.zip', '225231', '7.74 MB'), '2007': HmdaDataFile('hmda_2007_wa_first-lien-owner-occupied-1-4-family-records_codes.zip', '215619', '7.08 MB'), '2017': HmdaDataFile('hmda_2017_wa_first-lien-owner-occupied-1-4-family-records_codes.zip', '191532', '4.12 MB'), '2015': HmdaDataFile('hmda_2015_wa_first-lien-owner-occupied-1-4-family-records_codes.zip', '183367', '7.25 MB'), '2014': HmdaDataFile('hmda_2014_wa_first-lien-owner-occupied-1-4-family-records_codes.zip', '133913', '4.63 MB'), '2008': HmdaDataFile('hmda_2008_wa_first-lien-owner-occupied-1-4-family-records_codes.zip', '165363', '5.29 MB'), '2009': HmdaDataFile('hmda_2009_wa_first-lien-owner-occupied-1-4-family-records_codes.zip', '255387', '7.8 MB'), '2011': HmdaDataFile('hmda_2011_wa_first-lien-owner-occupied-1-4-family-records_codes.zip', '174449', '5.8 MB'), '2010': HmdaDataFile('hmda_2010_wa_first-lien-owner-occupied-1-4-family-records_codes.zip', '211008', '6.97 MB'), '2013': HmdaDataFile('hmda_2013_wa_first-lien-owner-occupied-1-4-family-records_codes.zip', '201071', '6.95 MB'), '2012': HmdaDataFile('hmda_2012_wa_first-lien-owner-occupied-1-4-family-records_codes.zip', '245095', '8.25 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_wa_all-records_codes.zip', '466566', '16.4 MB'), '2007': HmdaDataFile('hmda_2007_wa_all-records_codes.zip', '722481', '22.74 MB'), '2017': HmdaDataFile('hmda_2017_wa_all-records_codes.zip', '402196', '8.75 MB'), '2015': HmdaDataFile('hmda_2015_wa_all-records_codes.zip', '387805', '15.87 MB'), '2014': HmdaDataFile('hmda_2014_wa_all-records_codes.zip', '311425', '10.92 MB'), '2008': HmdaDataFile('hmda_2008_wa_all-records_codes.zip', '485622', '15.32 MB'), '2009': HmdaDataFile('hmda_2009_wa_all-records_codes.zip', '590758', '17.9 MB'), '2011': HmdaDataFile('hmda_2011_wa_all-records_codes.zip', '406149', '13.93 MB'), '2010': HmdaDataFile('hmda_2010_wa_all-records_codes.zip', '473922', '16.26 MB'), '2013': HmdaDataFile('hmda_2013_wa_all-records_codes.zip', '448753', '15.96 MB'), '2012': HmdaDataFile('hmda_2012_wa_all-records_codes.zip', '519479', '18.1 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_wa_originated-records_codes.zip', '263712', '9.1 MB'), '2007': HmdaDataFile('hmda_2007_wa_originated-records_codes.zip', '310267', '10.15 MB'), '2017': HmdaDataFile('hmda_2017_wa_originated-records_codes.zip', '230076', '4.96 MB'), '2015': HmdaDataFile('hmda_2015_wa_originated-records_codes.zip', '218772', '8.71 MB'), '2014': HmdaDataFile('hmda_2014_wa_originated-records_codes.zip', '166279', '5.77 MB'), '2008': HmdaDataFile('hmda_2008_wa_originated-records_codes.zip', '207841', '6.67 MB'), '2009': HmdaDataFile('hmda_2009_wa_originated-records_codes.zip', '286416', '8.79 MB'), '2011': HmdaDataFile('hmda_2011_wa_originated-records_codes.zip', '205550', '6.9 MB'), '2010': HmdaDataFile('hmda_2010_wa_originated-records_codes.zip', '241128', '8.02 MB'), '2013': HmdaDataFile('hmda_2013_wa_originated-records_codes.zip', '246580', '8.58 MB'), '2012': HmdaDataFile('hmda_2012_wa_originated-records_codes.zip', '287748', '9.76 MB') } } }, 'nc': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_nc_first-lien-owner-occupied-1-4-family-records_labels.zip', '220677', '10.93 MB'), '2007': HmdaDataFile('hmda_2007_nc_first-lien-owner-occupied-1-4-family-records_labels.zip', '228163', '10.68 MB'), '2017': HmdaDataFile('hmda_2017_nc_first-lien-owner-occupied-1-4-family-records_labels.zip', '196986', '6.12 MB'), '2015': HmdaDataFile('hmda_2015_nc_first-lien-owner-occupied-1-4-family-records_labels.zip', '190281', '11.14 MB'), '2014': HmdaDataFile('hmda_2014_nc_first-lien-owner-occupied-1-4-family-records_labels.zip', '154486', '7.77 MB'), '2008': HmdaDataFile('hmda_2008_nc_first-lien-owner-occupied-1-4-family-records_labels.zip', '202793', '9.24 MB'), '2009': HmdaDataFile('hmda_2009_nc_first-lien-owner-occupied-1-4-family-records_labels.zip', '263921', '11.18 MB'), '2011': HmdaDataFile('hmda_2011_nc_first-lien-owner-occupied-1-4-family-records_labels.zip', '189738', '9.12 MB'), '2010': HmdaDataFile('hmda_2010_nc_first-lien-owner-occupied-1-4-family-records_labels.zip', '211447', '10.31 MB'), '2013': HmdaDataFile('hmda_2013_nc_first-lien-owner-occupied-1-4-family-records_labels.zip', '224534', '11.35 MB'), '2012': HmdaDataFile('hmda_2012_nc_first-lien-owner-occupied-1-4-family-records_labels.zip', '240943', '12.17 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_nc_all-records_labels.zip', '519897', '27.86 MB'), '2007': HmdaDataFile('hmda_2007_nc_all-records_labels.zip', '779619', '36.44 MB'), '2017': HmdaDataFile('hmda_2017_nc_all-records_labels.zip', '464109', '16.24 MB'), '2015': HmdaDataFile('hmda_2015_nc_all-records_labels.zip', '457002', '29.06 MB'), '2014': HmdaDataFile('hmda_2014_nc_all-records_labels.zip', '392549', '21.12 MB'), '2008': HmdaDataFile('hmda_2008_nc_all-records_labels.zip', '575937', '26.69 MB'), '2009': HmdaDataFile('hmda_2009_nc_all-records_labels.zip', '617968', '27.09 MB'), '2011': HmdaDataFile('hmda_2011_nc_all-records_labels.zip', '476288', '24.93 MB'), '2010': HmdaDataFile('hmda_2010_nc_all-records_labels.zip', '511912', '26.98 MB'), '2013': HmdaDataFile('hmda_2013_nc_all-records_labels.zip', '562524', '30.51 MB'), '2012': HmdaDataFile('hmda_2012_nc_all-records_labels.zip', '578793', '31.47 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_nc_originated-records_labels.zip', '262765', '13.32 MB'), '2007': HmdaDataFile('hmda_2007_nc_originated-records_labels.zip', '337640', '15.84 MB'), '2017': HmdaDataFile('hmda_2017_nc_originated-records_labels.zip', '240128', '7.69 MB'), '2015': HmdaDataFile('hmda_2015_nc_originated-records_labels.zip', '231114', '13.82 MB'), '2014': HmdaDataFile('hmda_2014_nc_originated-records_labels.zip', '192473', '9.85 MB'), '2008': HmdaDataFile('hmda_2008_nc_originated-records_labels.zip', '260693', '12.04 MB'), '2009': HmdaDataFile('hmda_2009_nc_originated-records_labels.zip', '303410', '13.01 MB'), '2011': HmdaDataFile('hmda_2011_nc_originated-records_labels.zip', '227079', '11.18 MB'), '2010': HmdaDataFile('hmda_2010_nc_originated-records_labels.zip', '248590', '12.36 MB'), '2013': HmdaDataFile('hmda_2013_nc_originated-records_labels.zip', '278062', '14.32 MB'), '2012': HmdaDataFile('hmda_2012_nc_originated-records_labels.zip', '289407', '14.88 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_nc_first-lien-owner-occupied-1-4-family-records_codes.zip', '220677', '7.49 MB'), '2007': HmdaDataFile('hmda_2007_nc_first-lien-owner-occupied-1-4-family-records_codes.zip', '228163', '7.37 MB'), '2017': HmdaDataFile('hmda_2017_nc_first-lien-owner-occupied-1-4-family-records_codes.zip', '196986', '4.24 MB'), '2015': HmdaDataFile('hmda_2015_nc_first-lien-owner-occupied-1-4-family-records_codes.zip', '190281', '7.64 MB'), '2014': HmdaDataFile('hmda_2014_nc_first-lien-owner-occupied-1-4-family-records_codes.zip', '154486', '5.35 MB'), '2008': HmdaDataFile('hmda_2008_nc_first-lien-owner-occupied-1-4-family-records_codes.zip', '202793', '6.4 MB'), '2009': HmdaDataFile('hmda_2009_nc_first-lien-owner-occupied-1-4-family-records_codes.zip', '263921', '7.94 MB'), '2011': HmdaDataFile('hmda_2011_nc_first-lien-owner-occupied-1-4-family-records_codes.zip', '189738', '6.03 MB'), '2010': HmdaDataFile('hmda_2010_nc_first-lien-owner-occupied-1-4-family-records_codes.zip', '211447', '6.9 MB'), '2013': HmdaDataFile('hmda_2013_nc_first-lien-owner-occupied-1-4-family-records_codes.zip', '224534', '7.74 MB'), '2012': HmdaDataFile('hmda_2012_nc_first-lien-owner-occupied-1-4-family-records_codes.zip', '240943', '8.33 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_nc_all-records_codes.zip', '519897', '18.52 MB'), '2007': HmdaDataFile('hmda_2007_nc_all-records_codes.zip', '779619', '24.55 MB'), '2017': HmdaDataFile('hmda_2017_nc_all-records_codes.zip', '464109', '10.37 MB'), '2015': HmdaDataFile('hmda_2015_nc_all-records_codes.zip', '457002', '19.13 MB'), '2014': HmdaDataFile('hmda_2014_nc_all-records_codes.zip', '392549', '13.94 MB'), '2008': HmdaDataFile('hmda_2008_nc_all-records_codes.zip', '575937', '17.94 MB'), '2009': HmdaDataFile('hmda_2009_nc_all-records_codes.zip', '617968', '18.62 MB'), '2011': HmdaDataFile('hmda_2011_nc_all-records_codes.zip', '476288', '15.9 MB'), '2010': HmdaDataFile('hmda_2010_nc_all-records_codes.zip', '511912', '17.45 MB'), '2013': HmdaDataFile('hmda_2013_nc_all-records_codes.zip', '562524', '20.11 MB'), '2012': HmdaDataFile('hmda_2012_nc_all-records_codes.zip', '578793', '20.81 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_nc_originated-records_codes.zip', '262765', '9.11 MB'), '2007': HmdaDataFile('hmda_2007_nc_originated-records_codes.zip', '337640', '10.93 MB'), '2017': HmdaDataFile('hmda_2017_nc_originated-records_codes.zip', '240128', '5.27 MB'), '2015': HmdaDataFile('hmda_2015_nc_originated-records_codes.zip', '231114', '9.42 MB'), '2014': HmdaDataFile('hmda_2014_nc_originated-records_codes.zip', '192473', '6.73 MB'), '2008': HmdaDataFile('hmda_2008_nc_originated-records_codes.zip', '260693', '8.29 MB'), '2009': HmdaDataFile('hmda_2009_nc_originated-records_codes.zip', '303410', '9.19 MB'), '2011': HmdaDataFile('hmda_2011_nc_originated-records_codes.zip', '227079', '7.35 MB'), '2010': HmdaDataFile('hmda_2010_nc_originated-records_codes.zip', '248590', '8.23 MB'), '2013': HmdaDataFile('hmda_2013_nc_originated-records_codes.zip', '278062', '9.71 MB'), '2012': HmdaDataFile('hmda_2012_nc_originated-records_codes.zip', '289407', '10.13 MB') } } }, 'nd': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_nd_first-lien-owner-occupied-1-4-family-records_labels.zip', '15775', '603.58 KB'), '2007': HmdaDataFile('hmda_2007_nd_first-lien-owner-occupied-1-4-family-records_labels.zip', '11613', '456.02 KB'), '2017': HmdaDataFile('hmda_2017_nd_first-lien-owner-occupied-1-4-family-records_labels.zip', '12661', '336.26 KB'), '2015': HmdaDataFile('hmda_2015_nd_first-lien-owner-occupied-1-4-family-records_labels.zip', '15228', '660.94 KB'), '2014': HmdaDataFile('hmda_2014_nd_first-lien-owner-occupied-1-4-family-records_labels.zip', '12935', '513.04 KB'), '2008': HmdaDataFile('hmda_2008_nd_first-lien-owner-occupied-1-4-family-records_labels.zip', '12079', '485.38 KB'), '2009': HmdaDataFile('hmda_2009_nd_first-lien-owner-occupied-1-4-family-records_labels.zip', '17245', '600.63 KB'), '2011': HmdaDataFile('hmda_2011_nd_first-lien-owner-occupied-1-4-family-records_labels.zip', '14852', '543.35 KB'), '2010': HmdaDataFile('hmda_2010_nd_first-lien-owner-occupied-1-4-family-records_labels.zip', '16629', '606.86 KB'), '2013': HmdaDataFile('hmda_2013_nd_first-lien-owner-occupied-1-4-family-records_labels.zip', '17550', '663.49 KB'), '2012': HmdaDataFile('hmda_2012_nd_first-lien-owner-occupied-1-4-family-records_labels.zip', '19995', '730.61 KB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_nd_all-records_labels.zip', '32670', '1.35 MB'), '2007': HmdaDataFile('hmda_2007_nd_all-records_labels.zip', '32081', '1.34 MB'), '2017': HmdaDataFile('hmda_2017_nd_all-records_labels.zip', '25521', '733.11 KB'), '2015': HmdaDataFile('hmda_2015_nd_all-records_labels.zip', '31382', '1.48 MB'), '2014': HmdaDataFile('hmda_2014_nd_all-records_labels.zip', '27698', '1.18 MB'), '2008': HmdaDataFile('hmda_2008_nd_all-records_labels.zip', '28946', '1.25 MB'), '2009': HmdaDataFile('hmda_2009_nd_all-records_labels.zip', '35789', '1.37 MB'), '2011': HmdaDataFile('hmda_2011_nd_all-records_labels.zip', '30234', '1.22 MB'), '2010': HmdaDataFile('hmda_2010_nd_all-records_labels.zip', '32754', '1.34 MB'), '2013': HmdaDataFile('hmda_2013_nd_all-records_labels.zip', '35576', '1.48 MB'), '2012': HmdaDataFile('hmda_2012_nd_all-records_labels.zip', '37581', '1.53 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_nd_originated-records_labels.zip', '19580', '772.47 KB'), '2007': HmdaDataFile('hmda_2007_nd_originated-records_labels.zip', '17673', '689.98 KB'), '2017': HmdaDataFile('hmda_2017_nd_originated-records_labels.zip', '16016', '429.87 KB'), '2015': HmdaDataFile('hmda_2015_nd_originated-records_labels.zip', '19045', '847.76 KB'), '2014': HmdaDataFile('hmda_2014_nd_originated-records_labels.zip', '17180', '693.97 KB'), '2008': HmdaDataFile('hmda_2008_nd_originated-records_labels.zip', '16806', '683.54 KB'), '2009': HmdaDataFile('hmda_2009_nd_originated-records_labels.zip', '21080', '749.43 KB'), '2011': HmdaDataFile('hmda_2011_nd_originated-records_labels.zip', '18548', '698.61 KB'), '2010': HmdaDataFile('hmda_2010_nd_originated-records_labels.zip', '20218', '761.83 KB'), '2013': HmdaDataFile('hmda_2013_nd_originated-records_labels.zip', '22042', '860.22 KB'), '2012': HmdaDataFile('hmda_2012_nd_originated-records_labels.zip', '24096', '905.02 KB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_nd_first-lien-owner-occupied-1-4-family-records_codes.zip', '15775', '388.61 KB'), '2007': HmdaDataFile('hmda_2007_nd_first-lien-owner-occupied-1-4-family-records_codes.zip', '11613', '292.47 KB'), '2017': HmdaDataFile('hmda_2017_nd_first-lien-owner-occupied-1-4-family-records_codes.zip', '12661', '238.72 KB'), '2015': HmdaDataFile('hmda_2015_nd_first-lien-owner-occupied-1-4-family-records_codes.zip', '15228', '425.66 KB'), '2014': HmdaDataFile('hmda_2014_nd_first-lien-owner-occupied-1-4-family-records_codes.zip', '12935', '330.05 KB'), '2008': HmdaDataFile('hmda_2008_nd_first-lien-owner-occupied-1-4-family-records_codes.zip', '12079', '313.83 KB'), '2009': HmdaDataFile('hmda_2009_nd_first-lien-owner-occupied-1-4-family-records_codes.zip', '17245', '399.68 KB'), '2011': HmdaDataFile('hmda_2011_nd_first-lien-owner-occupied-1-4-family-records_codes.zip', '14852', '348.81 KB'), '2010': HmdaDataFile('hmda_2010_nd_first-lien-owner-occupied-1-4-family-records_codes.zip', '16629', '390.2 KB'), '2013': HmdaDataFile('hmda_2013_nd_first-lien-owner-occupied-1-4-family-records_codes.zip', '17550', '426.9 KB'), '2012': HmdaDataFile('hmda_2012_nd_first-lien-owner-occupied-1-4-family-records_codes.zip', '19995', '472.27 KB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_nd_all-records_codes.zip', '32670', '832.59 KB'), '2007': HmdaDataFile('hmda_2007_nd_all-records_codes.zip', '32081', '834.25 KB'), '2017': HmdaDataFile('hmda_2017_nd_all-records_codes.zip', '25521', '487.38 KB'), '2015': HmdaDataFile('hmda_2015_nd_all-records_codes.zip', '31382', '919.39 KB'), '2014': HmdaDataFile('hmda_2014_nd_all-records_codes.zip', '27698', '726.15 KB'), '2008': HmdaDataFile('hmda_2008_nd_all-records_codes.zip', '28946', '781.35 KB'), '2009': HmdaDataFile('hmda_2009_nd_all-records_codes.zip', '35789', '876.82 KB'), '2011': HmdaDataFile('hmda_2011_nd_all-records_codes.zip', '30234', '748.63 KB'), '2010': HmdaDataFile('hmda_2010_nd_all-records_codes.zip', '32754', '826.34 KB'), '2013': HmdaDataFile('hmda_2013_nd_all-records_codes.zip', '35576', '908.14 KB'), '2012': HmdaDataFile('hmda_2012_nd_all-records_codes.zip', '37581', '943.93 KB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_nd_originated-records_codes.zip', '19580', '486.75 KB'), '2007': HmdaDataFile('hmda_2007_nd_originated-records_codes.zip', '17673', '439.38 KB'), '2017': HmdaDataFile('hmda_2017_nd_originated-records_codes.zip', '16016', '299.25 KB'), '2015': HmdaDataFile('hmda_2015_nd_originated-records_codes.zip', '19045', '537.29 KB'), '2014': HmdaDataFile('hmda_2014_nd_originated-records_codes.zip', '17180', '437.05 KB'), '2008': HmdaDataFile('hmda_2008_nd_originated-records_codes.zip', '16806', '438.4 KB'), '2009': HmdaDataFile('hmda_2009_nd_originated-records_codes.zip', '21080', '495.22 KB'), '2011': HmdaDataFile('hmda_2011_nd_originated-records_codes.zip', '18548', '440.47 KB'), '2010': HmdaDataFile('hmda_2010_nd_originated-records_codes.zip', '20218', '482.84 KB'), '2013': HmdaDataFile('hmda_2013_nd_originated-records_codes.zip', '22042', '542.74 KB'), '2012': HmdaDataFile('hmda_2012_nd_originated-records_codes.zip', '24096', '576.32 KB') } } }, 'ne': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_ne_first-lien-owner-occupied-1-4-family-records_labels.zip', '42823', '1.96 MB'), '2007': HmdaDataFile('hmda_2007_ne_first-lien-owner-occupied-1-4-family-records_labels.zip', '35882', '1.57 MB'), '2017': HmdaDataFile('hmda_2017_ne_first-lien-owner-occupied-1-4-family-records_labels.zip', '34951', '1.05 MB'), '2015': HmdaDataFile('hmda_2015_ne_first-lien-owner-occupied-1-4-family-records_labels.zip', '38670', '1.94 MB'), '2014': HmdaDataFile('hmda_2014_ne_first-lien-owner-occupied-1-4-family-records_labels.zip', '30830', '1.5 MB'), '2008': HmdaDataFile('hmda_2008_ne_first-lien-owner-occupied-1-4-family-records_labels.zip', '33590', '1.44 MB'), '2009': HmdaDataFile('hmda_2009_ne_first-lien-owner-occupied-1-4-family-records_labels.zip', '56987', '2.26 MB'), '2011': HmdaDataFile('hmda_2011_ne_first-lien-owner-occupied-1-4-family-records_labels.zip', '42269', '1.83 MB'), '2010': HmdaDataFile('hmda_2010_ne_first-lien-owner-occupied-1-4-family-records_labels.zip', '51870', '2.25 MB'), '2013': HmdaDataFile('hmda_2013_ne_first-lien-owner-occupied-1-4-family-records_labels.zip', '45909', '2.1 MB'), '2012': HmdaDataFile('hmda_2012_ne_first-lien-owner-occupied-1-4-family-records_labels.zip', '57432', '2.6 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_ne_all-records_labels.zip', '89068', '4.35 MB'), '2007': HmdaDataFile('hmda_2007_ne_all-records_labels.zip', '112752', '5.1 MB'), '2017': HmdaDataFile('hmda_2017_ne_all-records_labels.zip', '74966', '2.4 MB'), '2015': HmdaDataFile('hmda_2015_ne_all-records_labels.zip', '82331', '4.47 MB'), '2014': HmdaDataFile('hmda_2014_ne_all-records_labels.zip', '68559', '3.58 MB'), '2008': HmdaDataFile('hmda_2008_ne_all-records_labels.zip', '88586', '3.98 MB'), '2009': HmdaDataFile('hmda_2009_ne_all-records_labels.zip', '117158', '4.99 MB'), '2011': HmdaDataFile('hmda_2011_ne_all-records_labels.zip', '90603', '4.29 MB'), '2010': HmdaDataFile('hmda_2010_ne_all-records_labels.zip', '105043', '4.96 MB'), '2013': HmdaDataFile('hmda_2013_ne_all-records_labels.zip', '97423', '4.78 MB'), '2012': HmdaDataFile('hmda_2012_ne_all-records_labels.zip', '113860', '5.56 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_ne_originated-records_labels.zip', '52019', '2.41 MB'), '2007': HmdaDataFile('hmda_2007_ne_originated-records_labels.zip', '51923', '2.26 MB'), '2017': HmdaDataFile('hmda_2017_ne_originated-records_labels.zip', '43786', '1.32 MB'), '2015': HmdaDataFile('hmda_2015_ne_originated-records_labels.zip', '48157', '2.46 MB'), '2014': HmdaDataFile('hmda_2014_ne_originated-records_labels.zip', '39960', '1.98 MB'), '2008': HmdaDataFile('hmda_2008_ne_originated-records_labels.zip', '44333', '1.92 MB'), '2009': HmdaDataFile('hmda_2009_ne_originated-records_labels.zip', '65475', '2.65 MB'), '2011': HmdaDataFile('hmda_2011_ne_originated-records_labels.zip', '50258', '2.23 MB'), '2010': HmdaDataFile('hmda_2010_ne_originated-records_labels.zip', '59744', '2.64 MB'), '2013': HmdaDataFile('hmda_2013_ne_originated-records_labels.zip', '56003', '2.6 MB'), '2012': HmdaDataFile('hmda_2012_ne_originated-records_labels.zip', '67081', '3.09 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_ne_first-lien-owner-occupied-1-4-family-records_codes.zip', '42823', '1.28 MB'), '2007': HmdaDataFile('hmda_2007_ne_first-lien-owner-occupied-1-4-family-records_codes.zip', '35882', '1.06 MB'), '2017': HmdaDataFile('hmda_2017_ne_first-lien-owner-occupied-1-4-family-records_codes.zip', '34951', '753.37 KB'), '2015': HmdaDataFile('hmda_2015_ne_first-lien-owner-occupied-1-4-family-records_codes.zip', '38670', '1.3 MB'), '2014': HmdaDataFile('hmda_2014_ne_first-lien-owner-occupied-1-4-family-records_codes.zip', '30830', '988.96 KB'), '2008': HmdaDataFile('hmda_2008_ne_first-lien-owner-occupied-1-4-family-records_codes.zip', '33590', '983.97 KB'), '2009': HmdaDataFile('hmda_2009_ne_first-lien-owner-occupied-1-4-family-records_codes.zip', '56987', '1.58 MB'), '2011': HmdaDataFile('hmda_2011_ne_first-lien-owner-occupied-1-4-family-records_codes.zip', '42269', '1.2 MB'), '2010': HmdaDataFile('hmda_2010_ne_first-lien-owner-occupied-1-4-family-records_codes.zip', '51870', '1.48 MB'), '2013': HmdaDataFile('hmda_2013_ne_first-lien-owner-occupied-1-4-family-records_codes.zip', '45909', '1.37 MB'), '2012': HmdaDataFile('hmda_2012_ne_first-lien-owner-occupied-1-4-family-records_codes.zip', '57432', '1.7 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_ne_all-records_codes.zip', '89068', '2.76 MB'), '2007': HmdaDataFile('hmda_2007_ne_all-records_codes.zip', '112752', '3.37 MB'), '2017': HmdaDataFile('hmda_2017_ne_all-records_codes.zip', '74966', '1.6 MB'), '2015': HmdaDataFile('hmda_2015_ne_all-records_codes.zip', '82331', '2.91 MB'), '2014': HmdaDataFile('hmda_2014_ne_all-records_codes.zip', '68559', '2.27 MB'), '2008': HmdaDataFile('hmda_2008_ne_all-records_codes.zip', '88586', '2.64 MB'), '2009': HmdaDataFile('hmda_2009_ne_all-records_codes.zip', '117158', '3.39 MB'), '2011': HmdaDataFile('hmda_2011_ne_all-records_codes.zip', '90603', '2.71 MB'), '2010': HmdaDataFile('hmda_2010_ne_all-records_codes.zip', '105043', '3.16 MB'), '2013': HmdaDataFile('hmda_2013_ne_all-records_codes.zip', '97423', '3.04 MB'), '2012': HmdaDataFile('hmda_2012_ne_all-records_codes.zip', '113860', '3.54 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_ne_originated-records_codes.zip', '52019', '1.56 MB'), '2007': HmdaDataFile('hmda_2007_ne_originated-records_codes.zip', '51923', '1.52 MB'), '2017': HmdaDataFile('hmda_2017_ne_originated-records_codes.zip', '43786', '932.71 KB'), '2015': HmdaDataFile('hmda_2015_ne_originated-records_codes.zip', '48157', '1.64 MB'), '2014': HmdaDataFile('hmda_2014_ne_originated-records_codes.zip', '39960', '1.29 MB'), '2008': HmdaDataFile('hmda_2008_ne_originated-records_codes.zip', '44333', '1.3 MB'), '2009': HmdaDataFile('hmda_2009_ne_originated-records_codes.zip', '65475', '1.84 MB'), '2011': HmdaDataFile('hmda_2011_ne_originated-records_codes.zip', '50258', '1.45 MB'), '2010': HmdaDataFile('hmda_2010_ne_originated-records_codes.zip', '59744', '1.72 MB'), '2013': HmdaDataFile('hmda_2013_ne_originated-records_codes.zip', '56003', '1.69 MB'), '2012': HmdaDataFile('hmda_2012_ne_originated-records_codes.zip', '67081', '2.01 MB') } } }, 'tn': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_tn_first-lien-owner-occupied-1-4-family-records_labels.zip', '144529', '7.15 MB'), '2007': HmdaDataFile('hmda_2007_tn_first-lien-owner-occupied-1-4-family-records_labels.zip', '151937', '7.17 MB'), '2017': HmdaDataFile('hmda_2017_tn_first-lien-owner-occupied-1-4-family-records_labels.zip', '133331', '4.11 MB'), '2015': HmdaDataFile('hmda_2015_tn_first-lien-owner-occupied-1-4-family-records_labels.zip', '126852', '7.13 MB'), '2014': HmdaDataFile('hmda_2014_tn_first-lien-owner-occupied-1-4-family-records_labels.zip', '103024', '5.17 MB'), '2008': HmdaDataFile('hmda_2008_tn_first-lien-owner-occupied-1-4-family-records_labels.zip', '123580', '5.68 MB'), '2009': HmdaDataFile('hmda_2009_tn_first-lien-owner-occupied-1-4-family-records_labels.zip', '160077', '6.99 MB'), '2011': HmdaDataFile('hmda_2011_tn_first-lien-owner-occupied-1-4-family-records_labels.zip', '113228', '5.37 MB'), '2010': HmdaDataFile('hmda_2010_tn_first-lien-owner-occupied-1-4-family-records_labels.zip', '128508', '6.09 MB'), '2013': HmdaDataFile('hmda_2013_tn_first-lien-owner-occupied-1-4-family-records_labels.zip', '141210', '6.95 MB'), '2012': HmdaDataFile('hmda_2012_tn_first-lien-owner-occupied-1-4-family-records_labels.zip', '151750', '7.48 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_tn_all-records_labels.zip', '350490', '18.5 MB'), '2007': HmdaDataFile('hmda_2007_tn_all-records_labels.zip', '512117', '24.54 MB'), '2017': HmdaDataFile('hmda_2017_tn_all-records_labels.zip', '326416', '11.11 MB'), '2015': HmdaDataFile('hmda_2015_tn_all-records_labels.zip', '305114', '18.47 MB'), '2014': HmdaDataFile('hmda_2014_tn_all-records_labels.zip', '265214', '14.16 MB'), '2008': HmdaDataFile('hmda_2008_tn_all-records_labels.zip', '365839', '17.39 MB'), '2009': HmdaDataFile('hmda_2009_tn_all-records_labels.zip', '406028', '18.65 MB'), '2011': HmdaDataFile('hmda_2011_tn_all-records_labels.zip', '304377', '16.01 MB'), '2010': HmdaDataFile('hmda_2010_tn_all-records_labels.zip', '335917', '17.65 MB'), '2013': HmdaDataFile('hmda_2013_tn_all-records_labels.zip', '358454', '19.31 MB'), '2012': HmdaDataFile('hmda_2012_tn_all-records_labels.zip', '373362', '20.16 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_tn_originated-records_labels.zip', '174965', '8.84 MB'), '2007': HmdaDataFile('hmda_2007_tn_originated-records_labels.zip', '217392', '10.46 MB'), '2017': HmdaDataFile('hmda_2017_tn_originated-records_labels.zip', '164577', '5.23 MB'), '2015': HmdaDataFile('hmda_2015_tn_originated-records_labels.zip', '155616', '8.89 MB'), '2014': HmdaDataFile('hmda_2014_tn_originated-records_labels.zip', '131171', '6.76 MB'), '2008': HmdaDataFile('hmda_2008_tn_originated-records_labels.zip', '163188', '7.73 MB'), '2009': HmdaDataFile('hmda_2009_tn_originated-records_labels.zip', '187776', '8.43 MB'), '2011': HmdaDataFile('hmda_2011_tn_originated-records_labels.zip', '137943', '6.74 MB'), '2010': HmdaDataFile('hmda_2010_tn_originated-records_labels.zip', '153282', '7.46 MB'), '2013': HmdaDataFile('hmda_2013_tn_originated-records_labels.zip', '172612', '8.61 MB'), '2012': HmdaDataFile('hmda_2012_tn_originated-records_labels.zip', '180686', '9.04 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_tn_first-lien-owner-occupied-1-4-family-records_codes.zip', '144529', '4.86 MB'), '2007': HmdaDataFile('hmda_2007_tn_first-lien-owner-occupied-1-4-family-records_codes.zip', '151937', '4.92 MB'), '2017': HmdaDataFile('hmda_2017_tn_first-lien-owner-occupied-1-4-family-records_codes.zip', '133331', '2.88 MB'), '2015': HmdaDataFile('hmda_2015_tn_first-lien-owner-occupied-1-4-family-records_codes.zip', '126852', '4.92 MB'), '2014': HmdaDataFile('hmda_2014_tn_first-lien-owner-occupied-1-4-family-records_codes.zip', '103024', '3.53 MB'), '2008': HmdaDataFile('hmda_2008_tn_first-lien-owner-occupied-1-4-family-records_codes.zip', '123580', '3.92 MB'), '2009': HmdaDataFile('hmda_2009_tn_first-lien-owner-occupied-1-4-family-records_codes.zip', '160077', '4.89 MB'), '2011': HmdaDataFile('hmda_2011_tn_first-lien-owner-occupied-1-4-family-records_codes.zip', '113228', '3.56 MB'), '2010': HmdaDataFile('hmda_2010_tn_first-lien-owner-occupied-1-4-family-records_codes.zip', '128508', '4.04 MB'), '2013': HmdaDataFile('hmda_2013_tn_first-lien-owner-occupied-1-4-family-records_codes.zip', '141210', '4.68 MB'), '2012': HmdaDataFile('hmda_2012_tn_first-lien-owner-occupied-1-4-family-records_codes.zip', '151750', '5.03 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_tn_all-records_codes.zip', '350490', '12.18 MB'), '2007': HmdaDataFile('hmda_2007_tn_all-records_codes.zip', '512117', '16.43 MB'), '2017': HmdaDataFile('hmda_2017_tn_all-records_codes.zip', '326416', '7.18 MB'), '2015': HmdaDataFile('hmda_2015_tn_all-records_codes.zip', '305114', '12.28 MB'), '2014': HmdaDataFile('hmda_2014_tn_all-records_codes.zip', '265214', '9.33 MB'), '2008': HmdaDataFile('hmda_2008_tn_all-records_codes.zip', '365839', '11.7 MB'), '2009': HmdaDataFile('hmda_2009_tn_all-records_codes.zip', '406028', '12.76 MB'), '2011': HmdaDataFile('hmda_2011_tn_all-records_codes.zip', '304377', '10.33 MB'), '2010': HmdaDataFile('hmda_2010_tn_all-records_codes.zip', '335917', '11.45 MB'), '2013': HmdaDataFile('hmda_2013_tn_all-records_codes.zip', '358454', '12.68 MB'), '2012': HmdaDataFile('hmda_2012_tn_all-records_codes.zip', '373362', '13.3 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_tn_originated-records_codes.zip', '174965', '6 MB'), '2007': HmdaDataFile('hmda_2007_tn_originated-records_codes.zip', '217392', '7.22 MB'), '2017': HmdaDataFile('hmda_2017_tn_originated-records_codes.zip', '164577', '3.62 MB'), '2015': HmdaDataFile('hmda_2015_tn_originated-records_codes.zip', '155616', '6.1 MB'), '2014': HmdaDataFile('hmda_2014_tn_originated-records_codes.zip', '131171', '4.61 MB'), '2008': HmdaDataFile('hmda_2008_tn_originated-records_codes.zip', '163188', '5.35 MB'), '2009': HmdaDataFile('hmda_2009_tn_originated-records_codes.zip', '187776', '5.9 MB'), '2011': HmdaDataFile('hmda_2011_tn_originated-records_codes.zip', '137943', '4.45 MB'), '2010': HmdaDataFile('hmda_2010_tn_originated-records_codes.zip', '153282', '4.93 MB'), '2013': HmdaDataFile('hmda_2013_tn_originated-records_codes.zip', '172612', '5.75 MB'), '2012': HmdaDataFile('hmda_2012_tn_originated-records_codes.zip', '180686', '6.04 MB') } } }, 'ny': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_ny_first-lien-owner-occupied-1-4-family-records_labels.zip', '199204', '10.43 MB'), '2007': HmdaDataFile('hmda_2007_ny_first-lien-owner-occupied-1-4-family-records_labels.zip', '281690', '14.06 MB'), '2017': HmdaDataFile('hmda_2017_ny_first-lien-owner-occupied-1-4-family-records_labels.zip', '187337', '6.57 MB'), '2015': HmdaDataFile('hmda_2015_ny_first-lien-owner-occupied-1-4-family-records_labels.zip', '182621', '10.44 MB'), '2014': HmdaDataFile('hmda_2014_ny_first-lien-owner-occupied-1-4-family-records_labels.zip', '156647', '8.24 MB'), '2008': HmdaDataFile('hmda_2008_ny_first-lien-owner-occupied-1-4-family-records_labels.zip', '195917', '9.68 MB'), '2009': HmdaDataFile('hmda_2009_ny_first-lien-owner-occupied-1-4-family-records_labels.zip', '245556', '11.46 MB'), '2011': HmdaDataFile('hmda_2011_ny_first-lien-owner-occupied-1-4-family-records_labels.zip', '201157', '10.32 MB'), '2010': HmdaDataFile('hmda_2010_ny_first-lien-owner-occupied-1-4-family-records_labels.zip', '217296', '11.01 MB'), '2013': HmdaDataFile('hmda_2013_ny_first-lien-owner-occupied-1-4-family-records_labels.zip', '225700', '11.8 MB'), '2012': HmdaDataFile('hmda_2012_ny_first-lien-owner-occupied-1-4-family-records_labels.zip', '242701', '12.39 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_ny_all-records_labels.zip', '477313', '26.86 MB'), '2007': HmdaDataFile('hmda_2007_ny_all-records_labels.zip', '1009451', '51.35 MB'), '2017': HmdaDataFile('hmda_2017_ny_all-records_labels.zip', '446902', '17.47 MB'), '2015': HmdaDataFile('hmda_2015_ny_all-records_labels.zip', '439654', '27.13 MB'), '2014': HmdaDataFile('hmda_2014_ny_all-records_labels.zip', '389279', '22.13 MB'), '2008': HmdaDataFile('hmda_2008_ny_all-records_labels.zip', '644647', '33.21 MB'), '2009': HmdaDataFile('hmda_2009_ny_all-records_labels.zip', '645487', '31.84 MB'), '2011': HmdaDataFile('hmda_2011_ny_all-records_labels.zip', '503733', '28.17 MB'), '2010': HmdaDataFile('hmda_2010_ny_all-records_labels.zip', '529869', '29.46 MB'), '2013': HmdaDataFile('hmda_2013_ny_all-records_labels.zip', '539217', '30.46 MB'), '2012': HmdaDataFile('hmda_2012_ny_all-records_labels.zip', '566980', '31.53 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_ny_originated-records_labels.zip', '246292', '13.15 MB'), '2007': HmdaDataFile('hmda_2007_ny_originated-records_labels.zip', '398639', '20.13 MB'), '2017': HmdaDataFile('hmda_2017_ny_originated-records_labels.zip', '236499', '8.45 MB'), '2015': HmdaDataFile('hmda_2015_ny_originated-records_labels.zip', '228054', '13.23 MB'), '2014': HmdaDataFile('hmda_2014_ny_originated-records_labels.zip', '198817', '10.63 MB'), '2008': HmdaDataFile('hmda_2008_ny_originated-records_labels.zip', '252826', '12.72 MB'), '2009': HmdaDataFile('hmda_2009_ny_originated-records_labels.zip', '281652', '13.38 MB'), '2011': HmdaDataFile('hmda_2011_ny_originated-records_labels.zip', '238554', '12.42 MB'), '2010': HmdaDataFile('hmda_2010_ny_originated-records_labels.zip', '252729', '13.07 MB'), '2013': HmdaDataFile('hmda_2013_ny_originated-records_labels.zip', '271829', '14.42 MB'), '2012': HmdaDataFile('hmda_2012_ny_originated-records_labels.zip', '285106', '14.71 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_ny_first-lien-owner-occupied-1-4-family-records_codes.zip', '199204', '7.47 MB'), '2007': HmdaDataFile('hmda_2007_ny_first-lien-owner-occupied-1-4-family-records_codes.zip', '281690', '10.14 MB'), '2017': HmdaDataFile('hmda_2017_ny_first-lien-owner-occupied-1-4-family-records_codes.zip', '187337', '4.66 MB'), '2015': HmdaDataFile('hmda_2015_ny_first-lien-owner-occupied-1-4-family-records_codes.zip', '182621', '7.46 MB'), '2014': HmdaDataFile('hmda_2014_ny_first-lien-owner-occupied-1-4-family-records_codes.zip', '156647', '5.87 MB'), '2008': HmdaDataFile('hmda_2008_ny_first-lien-owner-occupied-1-4-family-records_codes.zip', '195917', '6.98 MB'), '2009': HmdaDataFile('hmda_2009_ny_first-lien-owner-occupied-1-4-family-records_codes.zip', '245556', '8.36 MB'), '2011': HmdaDataFile('hmda_2011_ny_first-lien-owner-occupied-1-4-family-records_codes.zip', '201157', '7.36 MB'), '2010': HmdaDataFile('hmda_2010_ny_first-lien-owner-occupied-1-4-family-records_codes.zip', '217296', '7.85 MB'), '2013': HmdaDataFile('hmda_2013_ny_first-lien-owner-occupied-1-4-family-records_codes.zip', '225700', '8.44 MB'), '2012': HmdaDataFile('hmda_2012_ny_first-lien-owner-occupied-1-4-family-records_codes.zip', '242701', '8.82 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_ny_all-records_codes.zip', '477313', '18.61 MB'), '2007': HmdaDataFile('hmda_2007_ny_all-records_codes.zip', '1009451', '35.76 MB'), '2017': HmdaDataFile('hmda_2017_ny_all-records_codes.zip', '446902', '11.54 MB'), '2015': HmdaDataFile('hmda_2015_ny_all-records_codes.zip', '439654', '18.57 MB'), '2014': HmdaDataFile('hmda_2014_ny_all-records_codes.zip', '389279', '15.25 MB'), '2008': HmdaDataFile('hmda_2008_ny_all-records_codes.zip', '644647', '23.18 MB'), '2009': HmdaDataFile('hmda_2009_ny_all-records_codes.zip', '645487', '22.45 MB'), '2011': HmdaDataFile('hmda_2011_ny_all-records_codes.zip', '503733', '19.55 MB'), '2010': HmdaDataFile('hmda_2010_ny_all-records_codes.zip', '529869', '20.47 MB'), '2013': HmdaDataFile('hmda_2013_ny_all-records_codes.zip', '539217', '21.23 MB'), '2012': HmdaDataFile('hmda_2012_ny_all-records_codes.zip', '566980', '21.92 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_ny_originated-records_codes.zip', '246292', '9.34 MB'), '2007': HmdaDataFile('hmda_2007_ny_originated-records_codes.zip', '398639', '14.43 MB'), '2017': HmdaDataFile('hmda_2017_ny_originated-records_codes.zip', '236499', '5.9 MB'), '2015': HmdaDataFile('hmda_2015_ny_originated-records_codes.zip', '228054', '9.33 MB'), '2014': HmdaDataFile('hmda_2014_ny_originated-records_codes.zip', '198817', '7.49 MB'), '2008': HmdaDataFile('hmda_2008_ny_originated-records_codes.zip', '252826', '9.14 MB'), '2009': HmdaDataFile('hmda_2009_ny_originated-records_codes.zip', '281652', '9.73 MB'), '2011': HmdaDataFile('hmda_2011_ny_originated-records_codes.zip', '238554', '8.78 MB'), '2010': HmdaDataFile('hmda_2010_ny_originated-records_codes.zip', '252729', '9.27 MB'), '2013': HmdaDataFile('hmda_2013_ny_originated-records_codes.zip', '271829', '10.23 MB'), '2012': HmdaDataFile('hmda_2012_ny_originated-records_codes.zip', '285106', '10.38 MB') } } }, 'pa': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_pa_first-lien-owner-occupied-1-4-family-records_labels.zip', '226492', '11.67 MB'), '2007': HmdaDataFile('hmda_2007_pa_first-lien-owner-occupied-1-4-family-records_labels.zip', '276621', '13.86 MB'), '2017': HmdaDataFile('hmda_2017_pa_first-lien-owner-occupied-1-4-family-records_labels.zip', '200046', '6.74 MB'), '2015': HmdaDataFile('hmda_2015_pa_first-lien-owner-occupied-1-4-family-records_labels.zip', '206884', '12.08 MB'), '2014': HmdaDataFile('hmda_2014_pa_first-lien-owner-occupied-1-4-family-records_labels.zip', '175312', '8.94 MB'), '2008': HmdaDataFile('hmda_2008_pa_first-lien-owner-occupied-1-4-family-records_labels.zip', '230119', '11.38 MB'), '2009': HmdaDataFile('hmda_2009_pa_first-lien-owner-occupied-1-4-family-records_labels.zip', '318871', '14.7 MB'), '2011': HmdaDataFile('hmda_2011_pa_first-lien-owner-occupied-1-4-family-records_labels.zip', '247649', '12.37 MB'), '2010': HmdaDataFile('hmda_2010_pa_first-lien-owner-occupied-1-4-family-records_labels.zip', '280178', '14.07 MB'), '2013': HmdaDataFile('hmda_2013_pa_first-lien-owner-occupied-1-4-family-records_labels.zip', '269808', '13.79 MB'), '2012': HmdaDataFile('hmda_2012_pa_first-lien-owner-occupied-1-4-family-records_labels.zip', '313974', '15.99 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_pa_all-records_labels.zip', '526005', '29.04 MB'), '2007': HmdaDataFile('hmda_2007_pa_all-records_labels.zip', '992904', '49.57 MB'), '2017': HmdaDataFile('hmda_2017_pa_all-records_labels.zip', '473757', '17.91 MB'), '2015': HmdaDataFile('hmda_2015_pa_all-records_labels.zip', '481331', '30.25 MB'), '2014': HmdaDataFile('hmda_2014_pa_all-records_labels.zip', '427665', '23.41 MB'), '2008': HmdaDataFile('hmda_2008_pa_all-records_labels.zip', '713995', '35.8 MB'), '2009': HmdaDataFile('hmda_2009_pa_all-records_labels.zip', '768245', '37 MB'), '2011': HmdaDataFile('hmda_2011_pa_all-records_labels.zip', '593240', '32.54 MB'), '2010': HmdaDataFile('hmda_2010_pa_all-records_labels.zip', '659124', '36.22 MB'), '2013': HmdaDataFile('hmda_2013_pa_all-records_labels.zip', '619770', '34.49 MB'), '2012': HmdaDataFile('hmda_2012_pa_all-records_labels.zip', '695500', '38.56 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_pa_originated-records_labels.zip', '273334', '14.35 MB'), '2007': HmdaDataFile('hmda_2007_pa_originated-records_labels.zip', '427955', '21.49 MB'), '2017': HmdaDataFile('hmda_2017_pa_originated-records_labels.zip', '249620', '8.62 MB'), '2015': HmdaDataFile('hmda_2015_pa_originated-records_labels.zip', '254361', '15.02 MB'), '2014': HmdaDataFile('hmda_2014_pa_originated-records_labels.zip', '222765', '11.62 MB'), '2008': HmdaDataFile('hmda_2008_pa_originated-records_labels.zip', '322031', '16.08 MB'), '2009': HmdaDataFile('hmda_2009_pa_originated-records_labels.zip', '374957', '17.61 MB'), '2011': HmdaDataFile('hmda_2011_pa_originated-records_labels.zip', '297874', '15.19 MB'), '2010': HmdaDataFile('hmda_2010_pa_originated-records_labels.zip', '334150', '17.16 MB'), '2013': HmdaDataFile('hmda_2013_pa_originated-records_labels.zip', '328425', '16.99 MB'), '2012': HmdaDataFile('hmda_2012_pa_originated-records_labels.zip', '369571', '19.04 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_pa_first-lien-owner-occupied-1-4-family-records_codes.zip', '226492', '8.16 MB'), '2007': HmdaDataFile('hmda_2007_pa_first-lien-owner-occupied-1-4-family-records_codes.zip', '276621', '9.82 MB'), '2017': HmdaDataFile('hmda_2017_pa_first-lien-owner-occupied-1-4-family-records_codes.zip', '200046', '4.79 MB'), '2015': HmdaDataFile('hmda_2015_pa_first-lien-owner-occupied-1-4-family-records_codes.zip', '206884', '8.4 MB'), '2014': HmdaDataFile('hmda_2014_pa_first-lien-owner-occupied-1-4-family-records_codes.zip', '175312', '6.24 MB'), '2008': HmdaDataFile('hmda_2008_pa_first-lien-owner-occupied-1-4-family-records_codes.zip', '230119', '8.1 MB'), '2009': HmdaDataFile('hmda_2009_pa_first-lien-owner-occupied-1-4-family-records_codes.zip', '318871', '10.64 MB'), '2011': HmdaDataFile('hmda_2011_pa_first-lien-owner-occupied-1-4-family-records_codes.zip', '247649', '8.65 MB'), '2010': HmdaDataFile('hmda_2010_pa_first-lien-owner-occupied-1-4-family-records_codes.zip', '280178', '9.85 MB'), '2013': HmdaDataFile('hmda_2013_pa_first-lien-owner-occupied-1-4-family-records_codes.zip', '269808', '9.72 MB'), '2012': HmdaDataFile('hmda_2012_pa_first-lien-owner-occupied-1-4-family-records_codes.zip', '313974', '11.2 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_pa_all-records_codes.zip', '526005', '19.65 MB'), '2007': HmdaDataFile('hmda_2007_pa_all-records_codes.zip', '992904', '34.13 MB'), '2017': HmdaDataFile('hmda_2017_pa_all-records_codes.zip', '473757', '11.77 MB'), '2015': HmdaDataFile('hmda_2015_pa_all-records_codes.zip', '481331', '20.19 MB'), '2014': HmdaDataFile('hmda_2014_pa_all-records_codes.zip', '427665', '15.79 MB'), '2008': HmdaDataFile('hmda_2008_pa_all-records_codes.zip', '713995', '24.78 MB'), '2009': HmdaDataFile('hmda_2009_pa_all-records_codes.zip', '768245', '25.9 MB'), '2011': HmdaDataFile('hmda_2011_pa_all-records_codes.zip', '593240', '22.19 MB'), '2010': HmdaDataFile('hmda_2010_pa_all-records_codes.zip', '659124', '24.67 MB'), '2013': HmdaDataFile('hmda_2013_pa_all-records_codes.zip', '619770', '23.66 MB'), '2012': HmdaDataFile('hmda_2012_pa_all-records_codes.zip', '695500', '26.36 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_pa_originated-records_codes.zip', '273334', '9.99 MB'), '2007': HmdaDataFile('hmda_2007_pa_originated-records_codes.zip', '427955', '15.19 MB'), '2017': HmdaDataFile('hmda_2017_pa_originated-records_codes.zip', '249620', '6.04 MB'), '2015': HmdaDataFile('hmda_2015_pa_originated-records_codes.zip', '254361', '10.34 MB'), '2014': HmdaDataFile('hmda_2014_pa_originated-records_codes.zip', '222765', '8.07 MB'), '2008': HmdaDataFile('hmda_2008_pa_originated-records_codes.zip', '322031', '11.45 MB'), '2009': HmdaDataFile('hmda_2009_pa_originated-records_codes.zip', '374957', '12.74 MB'), '2011': HmdaDataFile('hmda_2011_pa_originated-records_codes.zip', '297874', '10.53 MB'), '2010': HmdaDataFile('hmda_2010_pa_originated-records_codes.zip', '334150', '11.94 MB'), '2013': HmdaDataFile('hmda_2013_pa_originated-records_codes.zip', '328425', '11.84 MB'), '2012': HmdaDataFile('hmda_2012_pa_originated-records_codes.zip', '369571', '13.21 MB') } } }, 'ca': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_ca_first-lien-owner-occupied-1-4-family-records_labels.zip', '1007181', '54.33 MB'), '2007': HmdaDataFile('hmda_2007_ca_first-lien-owner-occupied-1-4-family-records_labels.zip', '870274', '44.14 MB'), '2017': HmdaDataFile('hmda_2017_ca_first-lien-owner-occupied-1-4-family-records_labels.zip', '721751', '25.58 MB'), '2015': HmdaDataFile('hmda_2015_ca_first-lien-owner-occupied-1-4-family-records_labels.zip', '840549', '50.22 MB'), '2014': HmdaDataFile('hmda_2014_ca_first-lien-owner-occupied-1-4-family-records_labels.zip', '617503', '32.89 MB'), '2008': HmdaDataFile('hmda_2008_ca_first-lien-owner-occupied-1-4-family-records_labels.zip', '540095', '26.82 MB'), '2009': HmdaDataFile('hmda_2009_ca_first-lien-owner-occupied-1-4-family-records_labels.zip', '871218', '40.28 MB'), '2011': HmdaDataFile('hmda_2011_ca_first-lien-owner-occupied-1-4-family-records_labels.zip', '777800', '41.39 MB'), '2010': HmdaDataFile('hmda_2010_ca_first-lien-owner-occupied-1-4-family-records_labels.zip', '867778', '45.96 MB'), '2013': HmdaDataFile('hmda_2013_ca_first-lien-owner-occupied-1-4-family-records_labels.zip', '943566', '51.22 MB'), '2012': HmdaDataFile('hmda_2012_ca_first-lien-owner-occupied-1-4-family-records_labels.zip', '1179705', '63.7 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_ca_all-records_labels.zip', '2235971', '128.67 MB'), '2007': HmdaDataFile('hmda_2007_ca_all-records_labels.zip', '3425570', '178.89 MB'), '2017': HmdaDataFile('hmda_2017_ca_all-records_labels.zip', '1714459', '68.82 MB'), '2015': HmdaDataFile('hmda_2015_ca_all-records_labels.zip', '1878495', '120.02 MB'), '2014': HmdaDataFile('hmda_2014_ca_all-records_labels.zip', '1436457', '81.73 MB'), '2008': HmdaDataFile('hmda_2008_ca_all-records_labels.zip', '1843875', '91.09 MB'), '2009': HmdaDataFile('hmda_2009_ca_all-records_labels.zip', '2186032', '102.95 MB'), '2011': HmdaDataFile('hmda_2011_ca_all-records_labels.zip', '1914815', '108.47 MB'), '2010': HmdaDataFile('hmda_2010_ca_all-records_labels.zip', '2007593', '113.6 MB'), '2013': HmdaDataFile('hmda_2013_ca_all-records_labels.zip', '2161214', '124.84 MB'), '2012': HmdaDataFile('hmda_2012_ca_all-records_labels.zip', '2541978', '146.32 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_ca_originated-records_labels.zip', '1172541', '63.86 MB'), '2007': HmdaDataFile('hmda_2007_ca_originated-records_labels.zip', '1233502', '62.47 MB'), '2017': HmdaDataFile('hmda_2017_ca_originated-records_labels.zip', '877753', '31.88 MB'), '2015': HmdaDataFile('hmda_2015_ca_originated-records_labels.zip', '993335', '60.03 MB'), '2014': HmdaDataFile('hmda_2014_ca_originated-records_labels.zip', '750422', '40.44 MB'), '2008': HmdaDataFile('hmda_2008_ca_originated-records_labels.zip', '672822', '33.65 MB'), '2009': HmdaDataFile('hmda_2009_ca_originated-records_labels.zip', '972974', '45.3 MB'), '2011': HmdaDataFile('hmda_2011_ca_originated-records_labels.zip', '917070', '49.28 MB'), '2010': HmdaDataFile('hmda_2010_ca_originated-records_labels.zip', '980348', '52.43 MB'), '2013': HmdaDataFile('hmda_2013_ca_originated-records_labels.zip', '1153965', '63.32 MB'), '2012': HmdaDataFile('hmda_2012_ca_originated-records_labels.zip', '1391720', '75.92 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_ca_first-lien-owner-occupied-1-4-family-records_codes.zip', '1007181', '40 MB'), '2007': HmdaDataFile('hmda_2007_ca_first-lien-owner-occupied-1-4-family-records_codes.zip', '870274', '32.16 MB'), '2017': HmdaDataFile('hmda_2017_ca_first-lien-owner-occupied-1-4-family-records_codes.zip', '721751', '17.18 MB'), '2015': HmdaDataFile('hmda_2015_ca_first-lien-owner-occupied-1-4-family-records_codes.zip', '840549', '35.92 MB'), '2014': HmdaDataFile('hmda_2014_ca_first-lien-owner-occupied-1-4-family-records_codes.zip', '617503', '24.08 MB'), '2008': HmdaDataFile('hmda_2008_ca_first-lien-owner-occupied-1-4-family-records_codes.zip', '540095', '19.47 MB'), '2009': HmdaDataFile('hmda_2009_ca_first-lien-owner-occupied-1-4-family-records_codes.zip', '871218', '29.59 MB'), '2011': HmdaDataFile('hmda_2011_ca_first-lien-owner-occupied-1-4-family-records_codes.zip', '777800', '30.2 MB'), '2010': HmdaDataFile('hmda_2010_ca_first-lien-owner-occupied-1-4-family-records_codes.zip', '867778', '33.54 MB'), '2013': HmdaDataFile('hmda_2013_ca_first-lien-owner-occupied-1-4-family-records_codes.zip', '943566', '37.62 MB'), '2012': HmdaDataFile('hmda_2012_ca_first-lien-owner-occupied-1-4-family-records_codes.zip', '1179705', '46.88 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_ca_all-records_codes.zip', '2235971', '91.67 MB'), '2007': HmdaDataFile('hmda_2007_ca_all-records_codes.zip', '3425570', '117.94 MB'), '2017': HmdaDataFile('hmda_2017_ca_all-records_codes.zip', '1714459', '42.19 MB'), '2015': HmdaDataFile('hmda_2015_ca_all-records_codes.zip', '1878495', '82.3 MB'), '2014': HmdaDataFile('hmda_2014_ca_all-records_codes.zip', '1436457', '57.96 MB'), '2008': HmdaDataFile('hmda_2008_ca_all-records_codes.zip', '1843875', '63.68 MB'), '2009': HmdaDataFile('hmda_2009_ca_all-records_codes.zip', '2186032', '72.66 MB'), '2011': HmdaDataFile('hmda_2011_ca_all-records_codes.zip', '1914815', '76.92 MB'), '2010': HmdaDataFile('hmda_2010_ca_all-records_codes.zip', '2007593', '80.32 MB'), '2013': HmdaDataFile('hmda_2013_ca_all-records_codes.zip', '2161214', '88.6 MB'), '2012': HmdaDataFile('hmda_2012_ca_all-records_codes.zip', '2541978', '104.3 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_ca_originated-records_codes.zip', '1172541', '46.78 MB'), '2007': HmdaDataFile('hmda_2007_ca_originated-records_codes.zip', '1233502', '45.28 MB'), '2017': HmdaDataFile('hmda_2017_ca_originated-records_codes.zip', '877753', '21.13 MB'), '2015': HmdaDataFile('hmda_2015_ca_originated-records_codes.zip', '993335', '42.66 MB'), '2014': HmdaDataFile('hmda_2014_ca_originated-records_codes.zip', '750422', '29.45 MB'), '2008': HmdaDataFile('hmda_2008_ca_originated-records_codes.zip', '672822', '24.32 MB'), '2009': HmdaDataFile('hmda_2009_ca_originated-records_codes.zip', '972974', '33.15 MB'), '2011': HmdaDataFile('hmda_2011_ca_originated-records_codes.zip', '917070', '35.8 MB'), '2010': HmdaDataFile('hmda_2010_ca_originated-records_codes.zip', '980348', '38.11 MB'), '2013': HmdaDataFile('hmda_2013_ca_originated-records_codes.zip', '1153965', '46.26 MB'), '2012': HmdaDataFile('hmda_2012_ca_originated-records_codes.zip', '1391720', '55.58 MB') } } }, 'nv': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_nv_first-lien-owner-occupied-1-4-family-records_labels.zip', '84481', '3.96 MB'), '2007': HmdaDataFile('hmda_2007_nv_first-lien-owner-occupied-1-4-family-records_labels.zip', '73747', '3.21 MB'), '2017': HmdaDataFile('hmda_2017_nv_first-lien-owner-occupied-1-4-family-records_labels.zip', '76783', '2.28 MB'), '2015': HmdaDataFile('hmda_2015_nv_first-lien-owner-occupied-1-4-family-records_labels.zip', '69214', '3.49 MB'), '2014': HmdaDataFile('hmda_2014_nv_first-lien-owner-occupied-1-4-family-records_labels.zip', '49799', '2.4 MB'), '2008': HmdaDataFile('hmda_2008_nv_first-lien-owner-occupied-1-4-family-records_labels.zip', '48287', '1.93 MB'), '2009': HmdaDataFile('hmda_2009_nv_first-lien-owner-occupied-1-4-family-records_labels.zip', '59437', '2.29 MB'), '2011': HmdaDataFile('hmda_2011_nv_first-lien-owner-occupied-1-4-family-records_labels.zip', '39765', '1.65 MB'), '2010': HmdaDataFile('hmda_2010_nv_first-lien-owner-occupied-1-4-family-records_labels.zip', '47126', '2.01 MB'), '2013': HmdaDataFile('hmda_2013_nv_first-lien-owner-occupied-1-4-family-records_labels.zip', '62574', '2.95 MB'), '2012': HmdaDataFile('hmda_2012_nv_first-lien-owner-occupied-1-4-family-records_labels.zip', '67783', '3.09 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_nv_all-records_labels.zip', '196764', '9.88 MB'), '2007': HmdaDataFile('hmda_2007_nv_all-records_labels.zip', '326985', '14.53 MB'), '2017': HmdaDataFile('hmda_2017_nv_all-records_labels.zip', '178587', '5.91 MB'), '2015': HmdaDataFile('hmda_2015_nv_all-records_labels.zip', '158259', '8.69 MB'), '2014': HmdaDataFile('hmda_2014_nv_all-records_labels.zip', '119744', '6.27 MB'), '2008': HmdaDataFile('hmda_2008_nv_all-records_labels.zip', '163606', '6.93 MB'), '2009': HmdaDataFile('hmda_2009_nv_all-records_labels.zip', '168658', '6.88 MB'), '2011': HmdaDataFile('hmda_2011_nv_all-records_labels.zip', '112858', '5.27 MB'), '2010': HmdaDataFile('hmda_2010_nv_all-records_labels.zip', '126313', '5.98 MB'), '2013': HmdaDataFile('hmda_2013_nv_all-records_labels.zip', '151453', '7.8 MB'), '2012': HmdaDataFile('hmda_2012_nv_all-records_labels.zip', '161343', '8.12 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_nv_originated-records_labels.zip', '97926', '4.69 MB'), '2007': HmdaDataFile('hmda_2007_nv_originated-records_labels.zip', '113248', '5 MB'), '2017': HmdaDataFile('hmda_2017_nv_originated-records_labels.zip', '91540', '2.8 MB'), '2015': HmdaDataFile('hmda_2015_nv_originated-records_labels.zip', '81624', '4.21 MB'), '2014': HmdaDataFile('hmda_2014_nv_originated-records_labels.zip', '61757', '3.04 MB'), '2008': HmdaDataFile('hmda_2008_nv_originated-records_labels.zip', '62592', '2.58 MB'), '2009': HmdaDataFile('hmda_2009_nv_originated-records_labels.zip', '70049', '2.77 MB'), '2011': HmdaDataFile('hmda_2011_nv_originated-records_labels.zip', '51445', '2.24 MB'), '2010': HmdaDataFile('hmda_2010_nv_originated-records_labels.zip', '57173', '2.51 MB'), '2013': HmdaDataFile('hmda_2013_nv_originated-records_labels.zip', '82011', '3.96 MB'), '2012': HmdaDataFile('hmda_2012_nv_originated-records_labels.zip', '86528', '4.04 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_nv_first-lien-owner-occupied-1-4-family-records_codes.zip', '84481', '2.78 MB'), '2007': HmdaDataFile('hmda_2007_nv_first-lien-owner-occupied-1-4-family-records_codes.zip', '73747', '2.26 MB'), '2017': HmdaDataFile('hmda_2017_nv_first-lien-owner-occupied-1-4-family-records_codes.zip', '76783', '1.59 MB'), '2015': HmdaDataFile('hmda_2015_nv_first-lien-owner-occupied-1-4-family-records_codes.zip', '69214', '2.48 MB'), '2014': HmdaDataFile('hmda_2014_nv_first-lien-owner-occupied-1-4-family-records_codes.zip', '49799', '1.68 MB'), '2008': HmdaDataFile('hmda_2008_nv_first-lien-owner-occupied-1-4-family-records_codes.zip', '48287', '1.36 MB'), '2009': HmdaDataFile('hmda_2009_nv_first-lien-owner-occupied-1-4-family-records_codes.zip', '59437', '1.63 MB'), '2011': HmdaDataFile('hmda_2011_nv_first-lien-owner-occupied-1-4-family-records_codes.zip', '39765', '1.13 MB'), '2010': HmdaDataFile('hmda_2010_nv_first-lien-owner-occupied-1-4-family-records_codes.zip', '47126', '1.37 MB'), '2013': HmdaDataFile('hmda_2013_nv_first-lien-owner-occupied-1-4-family-records_codes.zip', '62574', '2.07 MB'), '2012': HmdaDataFile('hmda_2012_nv_first-lien-owner-occupied-1-4-family-records_codes.zip', '67783', '2.17 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_nv_all-records_codes.zip', '196764', '6.71 MB'), '2007': HmdaDataFile('hmda_2007_nv_all-records_codes.zip', '326985', '9.91 MB'), '2017': HmdaDataFile('hmda_2017_nv_all-records_codes.zip', '178587', '3.8 MB'), '2015': HmdaDataFile('hmda_2015_nv_all-records_codes.zip', '158259', '5.91 MB'), '2014': HmdaDataFile('hmda_2014_nv_all-records_codes.zip', '119744', '4.26 MB'), '2008': HmdaDataFile('hmda_2008_nv_all-records_codes.zip', '163606', '4.74 MB'), '2009': HmdaDataFile('hmda_2009_nv_all-records_codes.zip', '168658', '4.74 MB'), '2011': HmdaDataFile('hmda_2011_nv_all-records_codes.zip', '112858', '3.48 MB'), '2010': HmdaDataFile('hmda_2010_nv_all-records_codes.zip', '126313', '3.93 MB'), '2013': HmdaDataFile('hmda_2013_nv_all-records_codes.zip', '151453', '5.33 MB'), '2012': HmdaDataFile('hmda_2012_nv_all-records_codes.zip', '161343', '5.54 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_nv_originated-records_codes.zip', '97926', '3.28 MB'), '2007': HmdaDataFile('hmda_2007_nv_originated-records_codes.zip', '113248', '3.54 MB'), '2017': HmdaDataFile('hmda_2017_nv_originated-records_codes.zip', '91540', '1.93 MB'), '2015': HmdaDataFile('hmda_2015_nv_originated-records_codes.zip', '81624', '2.98 MB'), '2014': HmdaDataFile('hmda_2014_nv_originated-records_codes.zip', '61757', '2.13 MB'), '2008': HmdaDataFile('hmda_2008_nv_originated-records_codes.zip', '62592', '1.82 MB'), '2009': HmdaDataFile('hmda_2009_nv_originated-records_codes.zip', '70049', '1.98 MB'), '2011': HmdaDataFile('hmda_2011_nv_originated-records_codes.zip', '51445', '1.52 MB'), '2010': HmdaDataFile('hmda_2010_nv_originated-records_codes.zip', '57173', '1.7 MB'), '2013': HmdaDataFile('hmda_2013_nv_originated-records_codes.zip', '82011', '2.79 MB'), '2012': HmdaDataFile('hmda_2012_nv_originated-records_codes.zip', '86528', '2.82 MB') } } }, 'pr': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_pr_first-lien-owner-occupied-1-4-family-records_labels.zip', '16754', '783.1 KB'), '2007': HmdaDataFile('hmda_2007_pr_first-lien-owner-occupied-1-4-family-records_labels.zip', '35822', '1.56 MB'), '2017': HmdaDataFile('hmda_2017_pr_first-lien-owner-occupied-1-4-family-records_labels.zip', '12257', '361.87 KB'), '2015': HmdaDataFile('hmda_2015_pr_first-lien-owner-occupied-1-4-family-records_labels.zip', '18782', '893.63 KB'), '2014': HmdaDataFile('hmda_2014_pr_first-lien-owner-occupied-1-4-family-records_labels.zip', '20640', '942.76 KB'), '2008': HmdaDataFile('hmda_2008_pr_first-lien-owner-occupied-1-4-family-records_labels.zip', '36283', '1.5 MB'), '2009': HmdaDataFile('hmda_2009_pr_first-lien-owner-occupied-1-4-family-records_labels.zip', '34669', '1.37 MB'), '2011': HmdaDataFile('hmda_2011_pr_first-lien-owner-occupied-1-4-family-records_labels.zip', '25832', '1.11 MB'), '2010': HmdaDataFile('hmda_2010_pr_first-lien-owner-occupied-1-4-family-records_labels.zip', '25342', '1.08 MB'), '2013': HmdaDataFile('hmda_2013_pr_first-lien-owner-occupied-1-4-family-records_labels.zip', '30144', '1.35 MB'), '2012': HmdaDataFile('hmda_2012_pr_first-lien-owner-occupied-1-4-family-records_labels.zip', '31083', '1.38 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_pr_all-records_labels.zip', '55699', '2.78 MB'), '2007': HmdaDataFile('hmda_2007_pr_all-records_labels.zip', '141905', '6.23 MB'), '2017': HmdaDataFile('hmda_2017_pr_all-records_labels.zip', '41775', '1.3 MB'), '2015': HmdaDataFile('hmda_2015_pr_all-records_labels.zip', '58798', '2.92 MB'), '2014': HmdaDataFile('hmda_2014_pr_all-records_labels.zip', '69716', '3.45 MB'), '2008': HmdaDataFile('hmda_2008_pr_all-records_labels.zip', '121121', '5.16 MB'), '2009': HmdaDataFile('hmda_2009_pr_all-records_labels.zip', '117907', '4.79 MB'), '2011': HmdaDataFile('hmda_2011_pr_all-records_labels.zip', '85316', '3.93 MB'), '2010': HmdaDataFile('hmda_2010_pr_all-records_labels.zip', '83046', '3.88 MB'), '2013': HmdaDataFile('hmda_2013_pr_all-records_labels.zip', '96530', '4.63 MB'), '2012': HmdaDataFile('hmda_2012_pr_all-records_labels.zip', '87162', '4.17 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_pr_originated-records_labels.zip', '26124', '1.23 MB'), '2007': HmdaDataFile('hmda_2007_pr_originated-records_labels.zip', '57036', '2.51 MB'), '2017': HmdaDataFile('hmda_2017_pr_originated-records_labels.zip', '19395', '576.04 KB'), '2015': HmdaDataFile('hmda_2015_pr_originated-records_labels.zip', '28616', '1.37 MB'), '2014': HmdaDataFile('hmda_2014_pr_originated-records_labels.zip', '30528', '1.42 MB'), '2008': HmdaDataFile('hmda_2008_pr_originated-records_labels.zip', '50632', '2.14 MB'), '2009': HmdaDataFile('hmda_2009_pr_originated-records_labels.zip', '46237', '1.86 MB'), '2011': HmdaDataFile('hmda_2011_pr_originated-records_labels.zip', '37660', '1.66 MB'), '2010': HmdaDataFile('hmda_2010_pr_originated-records_labels.zip', '35121', '1.55 MB'), '2013': HmdaDataFile('hmda_2013_pr_originated-records_labels.zip', '40075', '1.8 MB'), '2012': HmdaDataFile('hmda_2012_pr_originated-records_labels.zip', '40616', '1.81 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_pr_first-lien-owner-occupied-1-4-family-records_codes.zip', '16754', '536.87 KB'), '2007': HmdaDataFile('hmda_2007_pr_first-lien-owner-occupied-1-4-family-records_codes.zip', '35822', '1.08 MB'), '2017': HmdaDataFile('hmda_2017_pr_first-lien-owner-occupied-1-4-family-records_codes.zip', '12257', '255.16 KB'), '2015': HmdaDataFile('hmda_2015_pr_first-lien-owner-occupied-1-4-family-records_codes.zip', '18782', '614.78 KB'), '2014': HmdaDataFile('hmda_2014_pr_first-lien-owner-occupied-1-4-family-records_codes.zip', '20640', '647.5 KB'), '2008': HmdaDataFile('hmda_2008_pr_first-lien-owner-occupied-1-4-family-records_codes.zip', '36283', '1.05 MB'), '2009': HmdaDataFile('hmda_2009_pr_first-lien-owner-occupied-1-4-family-records_codes.zip', '34669', '973.6 KB'), '2011': HmdaDataFile('hmda_2011_pr_first-lien-owner-occupied-1-4-family-records_codes.zip', '25832', '756.02 KB'), '2010': HmdaDataFile('hmda_2010_pr_first-lien-owner-occupied-1-4-family-records_codes.zip', '25342', '737.14 KB'), '2013': HmdaDataFile('hmda_2013_pr_first-lien-owner-occupied-1-4-family-records_codes.zip', '30144', '925.82 KB'), '2012': HmdaDataFile('hmda_2012_pr_first-lien-owner-occupied-1-4-family-records_codes.zip', '31083', '942.8 KB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_pr_all-records_codes.zip', '55699', '1.82 MB'), '2007': HmdaDataFile('hmda_2007_pr_all-records_codes.zip', '141905', '4.18 MB'), '2017': HmdaDataFile('hmda_2017_pr_all-records_codes.zip', '41775', '873.01 KB'), '2015': HmdaDataFile('hmda_2015_pr_all-records_codes.zip', '58798', '1.94 MB'), '2014': HmdaDataFile('hmda_2014_pr_all-records_codes.zip', '69716', '2.27 MB'), '2008': HmdaDataFile('hmda_2008_pr_all-records_codes.zip', '121121', '3.48 MB'), '2009': HmdaDataFile('hmda_2009_pr_all-records_codes.zip', '117907', '3.28 MB'), '2011': HmdaDataFile('hmda_2011_pr_all-records_codes.zip', '85316', '2.56 MB'), '2010': HmdaDataFile('hmda_2010_pr_all-records_codes.zip', '83046', '2.54 MB'), '2013': HmdaDataFile('hmda_2013_pr_all-records_codes.zip', '96530', '3.04 MB'), '2012': HmdaDataFile('hmda_2012_pr_all-records_codes.zip', '87162', '2.75 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_pr_originated-records_codes.zip', '26124', '835.09 KB'), '2007': HmdaDataFile('hmda_2007_pr_originated-records_codes.zip', '57036', '1.73 MB'), '2017': HmdaDataFile('hmda_2017_pr_originated-records_codes.zip', '19395', '406.77 KB'), '2015': HmdaDataFile('hmda_2015_pr_originated-records_codes.zip', '28616', '942.61 KB'), '2014': HmdaDataFile('hmda_2014_pr_originated-records_codes.zip', '30528', '963.45 KB'), '2008': HmdaDataFile('hmda_2008_pr_originated-records_codes.zip', '50632', '1.49 MB'), '2009': HmdaDataFile('hmda_2009_pr_originated-records_codes.zip', '46237', '1.32 MB'), '2011': HmdaDataFile('hmda_2011_pr_originated-records_codes.zip', '37660', '1.13 MB'), '2010': HmdaDataFile('hmda_2010_pr_originated-records_codes.zip', '35121', '1.05 MB'), '2013': HmdaDataFile('hmda_2013_pr_originated-records_codes.zip', '40075', '1.23 MB'), '2012': HmdaDataFile('hmda_2012_pr_originated-records_codes.zip', '40616', '1.24 MB') } } }, 'de': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_de_first-lien-owner-occupied-1-4-family-records_labels.zip', '21457', '907.27 KB'), '2007': HmdaDataFile('hmda_2007_de_first-lien-owner-occupied-1-4-family-records_labels.zip', '24785', '1.05 MB'), '2017': HmdaDataFile('hmda_2017_de_first-lien-owner-occupied-1-4-family-records_labels.zip', '18891', '540.64 KB'), '2015': HmdaDataFile('hmda_2015_de_first-lien-owner-occupied-1-4-family-records_labels.zip', '18365', '848.09 KB'), '2014': HmdaDataFile('hmda_2014_de_first-lien-owner-occupied-1-4-family-records_labels.zip', '14206', '642.68 KB'), '2008': HmdaDataFile('hmda_2008_de_first-lien-owner-occupied-1-4-family-records_labels.zip', '19350', '807.78 KB'), '2009': HmdaDataFile('hmda_2009_de_first-lien-owner-occupied-1-4-family-records_labels.zip', '26431', '1.05 MB'), '2011': HmdaDataFile('hmda_2011_de_first-lien-owner-occupied-1-4-family-records_labels.zip', '18557', '764.88 KB'), '2010': HmdaDataFile('hmda_2010_de_first-lien-owner-occupied-1-4-family-records_labels.zip', '21244', '862.31 KB'), '2013': HmdaDataFile('hmda_2013_de_first-lien-owner-occupied-1-4-family-records_labels.zip', '22603', '952.26 KB'), '2012': HmdaDataFile('hmda_2012_de_first-lien-owner-occupied-1-4-family-records_labels.zip', '25372', '1.06 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_de_all-records_labels.zip', '56002', '2.64 MB'), '2007': HmdaDataFile('hmda_2007_de_all-records_labels.zip', '102001', '4.48 MB'), '2017': HmdaDataFile('hmda_2017_de_all-records_labels.zip', '49695', '1.64 MB'), '2015': HmdaDataFile('hmda_2015_de_all-records_labels.zip', '48176', '2.44 MB'), '2014': HmdaDataFile('hmda_2014_de_all-records_labels.zip', '39784', '2 MB'), '2008': HmdaDataFile('hmda_2008_de_all-records_labels.zip', '68856', '3.06 MB'), '2009': HmdaDataFile('hmda_2009_de_all-records_labels.zip', '72398', '3.14 MB'), '2011': HmdaDataFile('hmda_2011_de_all-records_labels.zip', '52039', '2.43 MB'), '2010': HmdaDataFile('hmda_2010_de_all-records_labels.zip', '57559', '2.66 MB'), '2013': HmdaDataFile('hmda_2013_de_all-records_labels.zip', '59314', '2.83 MB'), '2012': HmdaDataFile('hmda_2012_de_all-records_labels.zip', '65069', '3.06 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_de_originated-records_labels.zip', '27296', '1.18 MB'), '2007': HmdaDataFile('hmda_2007_de_originated-records_labels.zip', '40053', '1.69 MB'), '2017': HmdaDataFile('hmda_2017_de_originated-records_labels.zip', '24719', '718.05 KB'), '2015': HmdaDataFile('hmda_2015_de_originated-records_labels.zip', '24062', '1.14 MB'), '2014': HmdaDataFile('hmda_2014_de_originated-records_labels.zip', '19181', '882.64 KB'), '2008': HmdaDataFile('hmda_2008_de_originated-records_labels.zip', '27619', '1.17 MB'), '2009': HmdaDataFile('hmda_2009_de_originated-records_labels.zip', '32995', '1.31 MB'), '2011': HmdaDataFile('hmda_2011_de_originated-records_labels.zip', '24377', '1.01 MB'), '2010': HmdaDataFile('hmda_2010_de_originated-records_labels.zip', '26997', '1.1 MB'), '2013': HmdaDataFile('hmda_2013_de_originated-records_labels.zip', '30167', '1.28 MB'), '2012': HmdaDataFile('hmda_2012_de_originated-records_labels.zip', '32868', '1.38 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_de_first-lien-owner-occupied-1-4-family-records_codes.zip', '21457', '600.87 KB'), '2007': HmdaDataFile('hmda_2007_de_first-lien-owner-occupied-1-4-family-records_codes.zip', '24785', '699.02 KB'), '2017': HmdaDataFile('hmda_2017_de_first-lien-owner-occupied-1-4-family-records_codes.zip', '18891', '376.86 KB'), '2015': HmdaDataFile('hmda_2015_de_first-lien-owner-occupied-1-4-family-records_codes.zip', '18365', '563.01 KB'), '2014': HmdaDataFile('hmda_2014_de_first-lien-owner-occupied-1-4-family-records_codes.zip', '14206', '424.11 KB'), '2008': HmdaDataFile('hmda_2008_de_first-lien-owner-occupied-1-4-family-records_codes.zip', '19350', '544.41 KB'), '2009': HmdaDataFile('hmda_2009_de_first-lien-owner-occupied-1-4-family-records_codes.zip', '26431', '709.46 KB'), '2011': HmdaDataFile('hmda_2011_de_first-lien-owner-occupied-1-4-family-records_codes.zip', '18557', '497.81 KB'), '2010': HmdaDataFile('hmda_2010_de_first-lien-owner-occupied-1-4-family-records_codes.zip', '21244', '559.01 KB'), '2013': HmdaDataFile('hmda_2013_de_first-lien-owner-occupied-1-4-family-records_codes.zip', '22603', '621.51 KB'), '2012': HmdaDataFile('hmda_2012_de_first-lien-owner-occupied-1-4-family-records_codes.zip', '25372', '689 KB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_de_all-records_codes.zip', '56002', '1.68 MB'), '2007': HmdaDataFile('hmda_2007_de_all-records_codes.zip', '102001', '2.91 MB'), '2017': HmdaDataFile('hmda_2017_de_all-records_codes.zip', '49695', '1.09 MB'), '2015': HmdaDataFile('hmda_2015_de_all-records_codes.zip', '48176', '1.54 MB'), '2014': HmdaDataFile('hmda_2014_de_all-records_codes.zip', '39784', '1.26 MB'), '2008': HmdaDataFile('hmda_2008_de_all-records_codes.zip', '68856', '2 MB'), '2009': HmdaDataFile('hmda_2009_de_all-records_codes.zip', '72398', '2.07 MB'), '2011': HmdaDataFile('hmda_2011_de_all-records_codes.zip', '52039', '1.52 MB'), '2010': HmdaDataFile('hmda_2010_de_all-records_codes.zip', '57559', '1.66 MB'), '2013': HmdaDataFile('hmda_2013_de_all-records_codes.zip', '59314', '1.77 MB'), '2012': HmdaDataFile('hmda_2012_de_all-records_codes.zip', '65069', '1.92 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_de_originated-records_codes.zip', '27296', '769.27 KB'), '2007': HmdaDataFile('hmda_2007_de_originated-records_codes.zip', '40053', '1.12 MB'), '2017': HmdaDataFile('hmda_2017_de_originated-records_codes.zip', '24719', '494.64 KB'), '2015': HmdaDataFile('hmda_2015_de_originated-records_codes.zip', '24062', '748.52 KB'), '2014': HmdaDataFile('hmda_2014_de_originated-records_codes.zip', '19181', '575.97 KB'), '2008': HmdaDataFile('hmda_2008_de_originated-records_codes.zip', '27619', '775.49 KB'), '2009': HmdaDataFile('hmda_2009_de_originated-records_codes.zip', '32995', '882.98 KB'), '2011': HmdaDataFile('hmda_2011_de_originated-records_codes.zip', '24377', '652.39 KB'), '2010': HmdaDataFile('hmda_2010_de_originated-records_codes.zip', '26997', '709.17 KB'), '2013': HmdaDataFile('hmda_2013_de_originated-records_codes.zip', '30167', '829.22 KB'), '2012': HmdaDataFile('hmda_2012_de_originated-records_codes.zip', '32868', '897.42 KB') } } }, 'dc': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_dc_first-lien-owner-occupied-1-4-family-records_labels.zip', '15924', '720.67 KB'), '2007': HmdaDataFile('hmda_2007_dc_first-lien-owner-occupied-1-4-family-records_labels.zip', '16676', '696.13 KB'), '2017': HmdaDataFile('hmda_2017_dc_first-lien-owner-occupied-1-4-family-records_labels.zip', '12419', '384.38 KB'), '2015': HmdaDataFile('hmda_2015_dc_first-lien-owner-occupied-1-4-family-records_labels.zip', '14290', '659.64 KB'), '2014': HmdaDataFile('hmda_2014_dc_first-lien-owner-occupied-1-4-family-records_labels.zip', '11399', '518.92 KB'), '2008': HmdaDataFile('hmda_2008_dc_first-lien-owner-occupied-1-4-family-records_labels.zip', '12148', '506.83 KB'), '2009': HmdaDataFile('hmda_2009_dc_first-lien-owner-occupied-1-4-family-records_labels.zip', '18262', '731.02 KB'), '2011': HmdaDataFile('hmda_2011_dc_first-lien-owner-occupied-1-4-family-records_labels.zip', '15280', '677.01 KB'), '2010': HmdaDataFile('hmda_2010_dc_first-lien-owner-occupied-1-4-family-records_labels.zip', '16225', '712.21 KB'), '2013': HmdaDataFile('hmda_2013_dc_first-lien-owner-occupied-1-4-family-records_labels.zip', '17499', '785.67 KB'), '2012': HmdaDataFile('hmda_2012_dc_first-lien-owner-occupied-1-4-family-records_labels.zip', '20716', '908.46 KB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_dc_all-records_labels.zip', '38399', '1.87 MB'), '2007': HmdaDataFile('hmda_2007_dc_all-records_labels.zip', '53480', '2.43 MB'), '2017': HmdaDataFile('hmda_2017_dc_all-records_labels.zip', '30927', '1.07 MB'), '2015': HmdaDataFile('hmda_2015_dc_all-records_labels.zip', '34958', '1.77 MB'), '2014': HmdaDataFile('hmda_2014_dc_all-records_labels.zip', '28672', '1.42 MB'), '2008': HmdaDataFile('hmda_2008_dc_all-records_labels.zip', '33505', '1.55 MB'), '2009': HmdaDataFile('hmda_2009_dc_all-records_labels.zip', '43540', '1.9 MB'), '2011': HmdaDataFile('hmda_2011_dc_all-records_labels.zip', '37657', '1.81 MB'), '2010': HmdaDataFile('hmda_2010_dc_all-records_labels.zip', '38173', '1.84 MB'), '2013': HmdaDataFile('hmda_2013_dc_all-records_labels.zip', '43020', '2.11 MB'), '2012': HmdaDataFile('hmda_2012_dc_all-records_labels.zip', '48621', '2.34 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_dc_originated-records_labels.zip', '19324', '891.94 KB'), '2007': HmdaDataFile('hmda_2007_dc_originated-records_labels.zip', '23948', '998.05 KB'), '2017': HmdaDataFile('hmda_2017_dc_originated-records_labels.zip', '15414', '483 KB'), '2015': HmdaDataFile('hmda_2015_dc_originated-records_labels.zip', '17821', '839.5 KB'), '2014': HmdaDataFile('hmda_2014_dc_originated-records_labels.zip', '14547', '676.21 KB'), '2008': HmdaDataFile('hmda_2008_dc_originated-records_labels.zip', '15212', '643.03 KB'), '2009': HmdaDataFile('hmda_2009_dc_originated-records_labels.zip', '20287', '823.05 KB'), '2011': HmdaDataFile('hmda_2011_dc_originated-records_labels.zip', '18123', '817.1 KB'), '2010': HmdaDataFile('hmda_2010_dc_originated-records_labels.zip', '18511', '828.68 KB'), '2013': HmdaDataFile('hmda_2013_dc_originated-records_labels.zip', '21877', '1 MB'), '2012': HmdaDataFile('hmda_2012_dc_originated-records_labels.zip', '24842', '1.12 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_dc_first-lien-owner-occupied-1-4-family-records_codes.zip', '15924', '457.4 KB'), '2007': HmdaDataFile('hmda_2007_dc_first-lien-owner-occupied-1-4-family-records_codes.zip', '16676', '454.07 KB'), '2017': HmdaDataFile('hmda_2017_dc_first-lien-owner-occupied-1-4-family-records_codes.zip', '12419', '259.55 KB'), '2015': HmdaDataFile('hmda_2015_dc_first-lien-owner-occupied-1-4-family-records_codes.zip', '14290', '415.87 KB'), '2014': HmdaDataFile('hmda_2014_dc_first-lien-owner-occupied-1-4-family-records_codes.zip', '11399', '327.64 KB'), '2008': HmdaDataFile('hmda_2008_dc_first-lien-owner-occupied-1-4-family-records_codes.zip', '12148', '331.88 KB'), '2009': HmdaDataFile('hmda_2009_dc_first-lien-owner-occupied-1-4-family-records_codes.zip', '18262', '485.74 KB'), '2011': HmdaDataFile('hmda_2011_dc_first-lien-owner-occupied-1-4-family-records_codes.zip', '15280', '423.44 KB'), '2010': HmdaDataFile('hmda_2010_dc_first-lien-owner-occupied-1-4-family-records_codes.zip', '16225', '446.48 KB'), '2013': HmdaDataFile('hmda_2013_dc_first-lien-owner-occupied-1-4-family-records_codes.zip', '17499', '493.75 KB'), '2012': HmdaDataFile('hmda_2012_dc_first-lien-owner-occupied-1-4-family-records_codes.zip', '20716', '567.98 KB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_dc_all-records_codes.zip', '38399', '1.15 MB'), '2007': HmdaDataFile('hmda_2007_dc_all-records_codes.zip', '53480', '1.55 MB'), '2017': HmdaDataFile('hmda_2017_dc_all-records_codes.zip', '30927', '685.42 KB'), '2015': HmdaDataFile('hmda_2015_dc_all-records_codes.zip', '34958', '1.07 MB'), '2014': HmdaDataFile('hmda_2014_dc_all-records_codes.zip', '28672', '862.7 KB'), '2008': HmdaDataFile('hmda_2008_dc_all-records_codes.zip', '33505', '982.73 KB'), '2009': HmdaDataFile('hmda_2009_dc_all-records_codes.zip', '43540', '1.21 MB'), '2011': HmdaDataFile('hmda_2011_dc_all-records_codes.zip', '37657', '1.1 MB'), '2010': HmdaDataFile('hmda_2010_dc_all-records_codes.zip', '38173', '1.11 MB'), '2013': HmdaDataFile('hmda_2013_dc_all-records_codes.zip', '43020', '1.28 MB'), '2012': HmdaDataFile('hmda_2012_dc_all-records_codes.zip', '48621', '1.42 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_dc_originated-records_codes.zip', '19324', '561.87 KB'), '2007': HmdaDataFile('hmda_2007_dc_originated-records_codes.zip', '23948', '647.59 KB'), '2017': HmdaDataFile('hmda_2017_dc_originated-records_codes.zip', '15414', '321.38 KB'), '2015': HmdaDataFile('hmda_2015_dc_originated-records_codes.zip', '17821', '524.36 KB'), '2014': HmdaDataFile('hmda_2014_dc_originated-records_codes.zip', '14547', '423.92 KB'), '2008': HmdaDataFile('hmda_2008_dc_originated-records_codes.zip', '15212', '416.59 KB'), '2009': HmdaDataFile('hmda_2009_dc_originated-records_codes.zip', '20287', '542.45 KB'), '2011': HmdaDataFile('hmda_2011_dc_originated-records_codes.zip', '18123', '507.21 KB'), '2010': HmdaDataFile('hmda_2010_dc_originated-records_codes.zip', '18511', '514.35 KB'), '2013': HmdaDataFile('hmda_2013_dc_originated-records_codes.zip', '21877', '626.77 KB'), '2012': HmdaDataFile('hmda_2012_dc_originated-records_codes.zip', '24842', '691.5 KB') } } }, 'wi': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_wi_first-lien-owner-occupied-1-4-family-records_labels.zip', '141247', '6.63 MB'), '2007': HmdaDataFile('hmda_2007_wi_first-lien-owner-occupied-1-4-family-records_labels.zip', '140939', '6.7 MB'), '2017': HmdaDataFile('hmda_2017_wi_first-lien-owner-occupied-1-4-family-records_labels.zip', '118149', '3.66 MB'), '2015': HmdaDataFile('hmda_2015_wi_first-lien-owner-occupied-1-4-family-records_labels.zip', '126112', '6.94 MB'), '2014': HmdaDataFile('hmda_2014_wi_first-lien-owner-occupied-1-4-family-records_labels.zip', '99338', '5.08 MB'), '2008': HmdaDataFile('hmda_2008_wi_first-lien-owner-occupied-1-4-family-records_labels.zip', '140787', '6.42 MB'), '2009': HmdaDataFile('hmda_2009_wi_first-lien-owner-occupied-1-4-family-records_labels.zip', '233978', '9.45 MB'), '2011': HmdaDataFile('hmda_2011_wi_first-lien-owner-occupied-1-4-family-records_labels.zip', '159084', '7.03 MB'), '2010': HmdaDataFile('hmda_2010_wi_first-lien-owner-occupied-1-4-family-records_labels.zip', '197382', '8.86 MB'), '2013': HmdaDataFile('hmda_2013_wi_first-lien-owner-occupied-1-4-family-records_labels.zip', '155945', '7.35 MB'), '2012': HmdaDataFile('hmda_2012_wi_first-lien-owner-occupied-1-4-family-records_labels.zip', '219594', '10.08 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_wi_all-records_labels.zip', '277224', '14.04 MB'), '2007': HmdaDataFile('hmda_2007_wi_all-records_labels.zip', '460622', '22.04 MB'), '2017': HmdaDataFile('hmda_2017_wi_all-records_labels.zip', '237542', '8.25 MB'), '2015': HmdaDataFile('hmda_2015_wi_all-records_labels.zip', '250077', '14.91 MB'), '2014': HmdaDataFile('hmda_2014_wi_all-records_labels.zip', '207239', '11.5 MB'), '2008': HmdaDataFile('hmda_2008_wi_all-records_labels.zip', '359119', '16.92 MB'), '2009': HmdaDataFile('hmda_2009_wi_all-records_labels.zip', '475760', '20.37 MB'), '2011': HmdaDataFile('hmda_2011_wi_all-records_labels.zip', '324321', '15.85 MB'), '2010': HmdaDataFile('hmda_2010_wi_all-records_labels.zip', '394638', '19.35 MB'), '2013': HmdaDataFile('hmda_2013_wi_all-records_labels.zip', '306118', '15.66 MB'), '2012': HmdaDataFile('hmda_2012_wi_all-records_labels.zip', '398029', '19.93 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_wi_originated-records_labels.zip', '168678', '8.06 MB'), '2007': HmdaDataFile('hmda_2007_wi_originated-records_labels.zip', '211916', '10.01 MB'), '2017': HmdaDataFile('hmda_2017_wi_originated-records_labels.zip', '146251', '4.59 MB'), '2015': HmdaDataFile('hmda_2015_wi_originated-records_labels.zip', '153515', '8.58 MB'), '2014': HmdaDataFile('hmda_2014_wi_originated-records_labels.zip', '124916', '6.51 MB'), '2008': HmdaDataFile('hmda_2008_wi_originated-records_labels.zip', '187234', '8.58 MB'), '2009': HmdaDataFile('hmda_2009_wi_originated-records_labels.zip', '270190', '11.1 MB'), '2011': HmdaDataFile('hmda_2011_wi_originated-records_labels.zip', '188288', '8.56 MB'), '2010': HmdaDataFile('hmda_2010_wi_originated-records_labels.zip', '228537', '10.45 MB'), '2013': HmdaDataFile('hmda_2013_wi_originated-records_labels.zip', '188524', '9.07 MB'), '2012': HmdaDataFile('hmda_2012_wi_originated-records_labels.zip', '253728', '11.88 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_wi_first-lien-owner-occupied-1-4-family-records_codes.zip', '141247', '4.45 MB'), '2007': HmdaDataFile('hmda_2007_wi_first-lien-owner-occupied-1-4-family-records_codes.zip', '140939', '4.6 MB'), '2017': HmdaDataFile('hmda_2017_wi_first-lien-owner-occupied-1-4-family-records_codes.zip', '118149', '2.59 MB'), '2015': HmdaDataFile('hmda_2015_wi_first-lien-owner-occupied-1-4-family-records_codes.zip', '126112', '4.69 MB'), '2014': HmdaDataFile('hmda_2014_wi_first-lien-owner-occupied-1-4-family-records_codes.zip', '99338', '3.39 MB'), '2008': HmdaDataFile('hmda_2008_wi_first-lien-owner-occupied-1-4-family-records_codes.zip', '140787', '4.45 MB'), '2009': HmdaDataFile('hmda_2009_wi_first-lien-owner-occupied-1-4-family-records_codes.zip', '233978', '6.72 MB'), '2011': HmdaDataFile('hmda_2011_wi_first-lien-owner-occupied-1-4-family-records_codes.zip', '159084', '4.64 MB'), '2010': HmdaDataFile('hmda_2010_wi_first-lien-owner-occupied-1-4-family-records_codes.zip', '197382', '5.93 MB'), '2013': HmdaDataFile('hmda_2013_wi_first-lien-owner-occupied-1-4-family-records_codes.zip', '155945', '4.93 MB'), '2012': HmdaDataFile('hmda_2012_wi_first-lien-owner-occupied-1-4-family-records_codes.zip', '219594', '6.71 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_wi_all-records_codes.zip', '277224', '9.08 MB'), '2007': HmdaDataFile('hmda_2007_wi_all-records_codes.zip', '460622', '14.82 MB'), '2017': HmdaDataFile('hmda_2017_wi_all-records_codes.zip', '237542', '5.41 MB'), '2015': HmdaDataFile('hmda_2015_wi_all-records_codes.zip', '250077', '9.7 MB'), '2014': HmdaDataFile('hmda_2014_wi_all-records_codes.zip', '207239', '7.39 MB'), '2008': HmdaDataFile('hmda_2008_wi_all-records_codes.zip', '359119', '11.47 MB'), '2009': HmdaDataFile('hmda_2009_wi_all-records_codes.zip', '475760', '14.08 MB'), '2011': HmdaDataFile('hmda_2011_wi_all-records_codes.zip', '324321', '10.14 MB'), '2010': HmdaDataFile('hmda_2010_wi_all-records_codes.zip', '394638', '12.55 MB'), '2013': HmdaDataFile('hmda_2013_wi_all-records_codes.zip', '306118', '10.17 MB'), '2012': HmdaDataFile('hmda_2012_wi_all-records_codes.zip', '398029', '12.88 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_wi_originated-records_codes.zip', '168678', '5.37 MB'), '2007': HmdaDataFile('hmda_2007_wi_originated-records_codes.zip', '211916', '6.85 MB'), '2017': HmdaDataFile('hmda_2017_wi_originated-records_codes.zip', '146251', '3.19 MB'), '2015': HmdaDataFile('hmda_2015_wi_originated-records_codes.zip', '153515', '5.74 MB'), '2014': HmdaDataFile('hmda_2014_wi_originated-records_codes.zip', '124916', '4.3 MB'), '2008': HmdaDataFile('hmda_2008_wi_originated-records_codes.zip', '187234', '5.9 MB'), '2009': HmdaDataFile('hmda_2009_wi_originated-records_codes.zip', '270190', '7.86 MB'), '2011': HmdaDataFile('hmda_2011_wi_originated-records_codes.zip', '188288', '5.6 MB'), '2010': HmdaDataFile('hmda_2010_wi_originated-records_codes.zip', '228537', '6.95 MB'), '2013': HmdaDataFile('hmda_2013_wi_originated-records_codes.zip', '188524', '6.03 MB'), '2012': HmdaDataFile('hmda_2012_wi_originated-records_codes.zip', '253728', '7.85 MB') } } }, 'wv': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_wv_first-lien-owner-occupied-1-4-family-records_labels.zip', '23752', '1.15 MB'), '2007': HmdaDataFile('hmda_2007_wv_first-lien-owner-occupied-1-4-family-records_labels.zip', '32932', '1.43 MB'), '2017': HmdaDataFile('hmda_2017_wv_first-lien-owner-occupied-1-4-family-records_labels.zip', '22635', '775.09 KB'), '2015': HmdaDataFile('hmda_2015_wv_first-lien-owner-occupied-1-4-family-records_labels.zip', '22216', '1.16 MB'), '2014': HmdaDataFile('hmda_2014_wv_first-lien-owner-occupied-1-4-family-records_labels.zip', '20952', '925.27 KB'), '2008': HmdaDataFile('hmda_2008_wv_first-lien-owner-occupied-1-4-family-records_labels.zip', '27892', '1.25 MB'), '2009': HmdaDataFile('hmda_2009_wv_first-lien-owner-occupied-1-4-family-records_labels.zip', '31766', '1.38 MB'), '2011': HmdaDataFile('hmda_2011_wv_first-lien-owner-occupied-1-4-family-records_labels.zip', '25662', '1.09 MB'), '2010': HmdaDataFile('hmda_2010_wv_first-lien-owner-occupied-1-4-family-records_labels.zip', '26690', '1.13 MB'), '2013': HmdaDataFile('hmda_2013_wv_first-lien-owner-occupied-1-4-family-records_labels.zip', '29841', '1.37 MB'), '2012': HmdaDataFile('hmda_2012_wv_first-lien-owner-occupied-1-4-family-records_labels.zip', '30400', '1.36 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_wv_all-records_labels.zip', '59932', '3.14 MB'), '2007': HmdaDataFile('hmda_2007_wv_all-records_labels.zip', '108639', '4.82 MB'), '2017': HmdaDataFile('hmda_2017_wv_all-records_labels.zip', '56407', '2.02 MB'), '2015': HmdaDataFile('hmda_2015_wv_all-records_labels.zip', '56189', '3.18 MB'), '2014': HmdaDataFile('hmda_2014_wv_all-records_labels.zip', '53804', '2.59 MB'), '2008': HmdaDataFile('hmda_2008_wv_all-records_labels.zip', '82256', '3.81 MB'), '2009': HmdaDataFile('hmda_2009_wv_all-records_labels.zip', '78726', '3.62 MB'), '2011': HmdaDataFile('hmda_2011_wv_all-records_labels.zip', '65054', '3.02 MB'), '2010': HmdaDataFile('hmda_2010_wv_all-records_labels.zip', '67127', '3.14 MB'), '2013': HmdaDataFile('hmda_2013_wv_all-records_labels.zip', '71730', '3.58 MB'), '2012': HmdaDataFile('hmda_2012_wv_all-records_labels.zip', '71668', '3.48 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_wv_originated-records_labels.zip', '31084', '1.54 MB'), '2007': HmdaDataFile('hmda_2007_wv_originated-records_labels.zip', '49942', '2.16 MB'), '2017': HmdaDataFile('hmda_2017_wv_originated-records_labels.zip', '29490', '1.02 MB'), '2015': HmdaDataFile('hmda_2015_wv_originated-records_labels.zip', '29892', '1.59 MB'), '2014': HmdaDataFile('hmda_2014_wv_originated-records_labels.zip', '28288', '1.28 MB'), '2008': HmdaDataFile('hmda_2008_wv_originated-records_labels.zip', '39173', '1.77 MB'), '2009': HmdaDataFile('hmda_2009_wv_originated-records_labels.zip', '40090', '1.78 MB'), '2011': HmdaDataFile('hmda_2011_wv_originated-records_labels.zip', '33089', '1.44 MB'), '2010': HmdaDataFile('hmda_2010_wv_originated-records_labels.zip', '34262', '1.49 MB'), '2013': HmdaDataFile('hmda_2013_wv_originated-records_labels.zip', '38630', '1.82 MB'), '2012': HmdaDataFile('hmda_2012_wv_originated-records_labels.zip', '38585', '1.77 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_wv_first-lien-owner-occupied-1-4-family-records_codes.zip', '23752', '731.44 KB'), '2007': HmdaDataFile('hmda_2007_wv_first-lien-owner-occupied-1-4-family-records_codes.zip', '32932', '927.05 KB'), '2017': HmdaDataFile('hmda_2017_wv_first-lien-owner-occupied-1-4-family-records_codes.zip', '22635', '535.47 KB'), '2015': HmdaDataFile('hmda_2015_wv_first-lien-owner-occupied-1-4-family-records_codes.zip', '22216', '750.99 KB'), '2014': HmdaDataFile('hmda_2014_wv_first-lien-owner-occupied-1-4-family-records_codes.zip', '20952', '586.49 KB'), '2008': HmdaDataFile('hmda_2008_wv_first-lien-owner-occupied-1-4-family-records_codes.zip', '27892', '805.27 KB'), '2009': HmdaDataFile('hmda_2009_wv_first-lien-owner-occupied-1-4-family-records_codes.zip', '31766', '906.21 KB'), '2011': HmdaDataFile('hmda_2011_wv_first-lien-owner-occupied-1-4-family-records_codes.zip', '25662', '682.61 KB'), '2010': HmdaDataFile('hmda_2010_wv_first-lien-owner-occupied-1-4-family-records_codes.zip', '26690', '718.48 KB'), '2013': HmdaDataFile('hmda_2013_wv_first-lien-owner-occupied-1-4-family-records_codes.zip', '29841', '869.85 KB'), '2012': HmdaDataFile('hmda_2012_wv_first-lien-owner-occupied-1-4-family-records_codes.zip', '30400', '859.14 KB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_wv_all-records_codes.zip', '59932', '1.9 MB'), '2007': HmdaDataFile('hmda_2007_wv_all-records_codes.zip', '108639', '3.05 MB'), '2017': HmdaDataFile('hmda_2017_wv_all-records_codes.zip', '56407', '1.32 MB'), '2015': HmdaDataFile('hmda_2015_wv_all-records_codes.zip', '56189', '1.97 MB'), '2014': HmdaDataFile('hmda_2014_wv_all-records_codes.zip', '53804', '1.57 MB'), '2008': HmdaDataFile('hmda_2008_wv_all-records_codes.zip', '82256', '2.4 MB'), '2009': HmdaDataFile('hmda_2009_wv_all-records_codes.zip', '78726', '2.31 MB'), '2011': HmdaDataFile('hmda_2011_wv_all-records_codes.zip', '65054', '1.83 MB'), '2010': HmdaDataFile('hmda_2010_wv_all-records_codes.zip', '67127', '1.91 MB'), '2013': HmdaDataFile('hmda_2013_wv_all-records_codes.zip', '71730', '2.18 MB'), '2012': HmdaDataFile('hmda_2012_wv_all-records_codes.zip', '71668', '2.12 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_wv_originated-records_codes.zip', '31084', '966.37 KB'), '2007': HmdaDataFile('hmda_2007_wv_originated-records_codes.zip', '49942', '1.39 MB'), '2017': HmdaDataFile('hmda_2017_wv_originated-records_codes.zip', '29490', '694.72 KB'), '2015': HmdaDataFile('hmda_2015_wv_originated-records_codes.zip', '29892', '1.02 MB'), '2014': HmdaDataFile('hmda_2014_wv_originated-records_codes.zip', '28288', '806.54 KB'), '2008': HmdaDataFile('hmda_2008_wv_originated-records_codes.zip', '39173', '1.14 MB'), '2009': HmdaDataFile('hmda_2009_wv_originated-records_codes.zip', '40090', '1.16 MB'), '2011': HmdaDataFile('hmda_2011_wv_originated-records_codes.zip', '33089', '896.24 KB'), '2010': HmdaDataFile('hmda_2010_wv_originated-records_codes.zip', '34262', '933.86 KB'), '2013': HmdaDataFile('hmda_2013_wv_originated-records_codes.zip', '38630', '1.14 MB'), '2012': HmdaDataFile('hmda_2012_wv_originated-records_codes.zip', '38585', '1.11 MB') } } }, 'hi': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_hi_first-lien-owner-occupied-1-4-family-records_labels.zip', '25790', '1.11 MB'), '2007': HmdaDataFile('hmda_2007_hi_first-lien-owner-occupied-1-4-family-records_labels.zip', '26443', '1.11 MB'), '2017': HmdaDataFile('hmda_2017_hi_first-lien-owner-occupied-1-4-family-records_labels.zip', '20146', '641.16 KB'), '2015': HmdaDataFile('hmda_2015_hi_first-lien-owner-occupied-1-4-family-records_labels.zip', '21679', '993.8 KB'), '2014': HmdaDataFile('hmda_2014_hi_first-lien-owner-occupied-1-4-family-records_labels.zip', '16100', '691.11 KB'), '2008': HmdaDataFile('hmda_2008_hi_first-lien-owner-occupied-1-4-family-records_labels.zip', '19577', '808.1 KB'), '2009': HmdaDataFile('hmda_2009_hi_first-lien-owner-occupied-1-4-family-records_labels.zip', '31476', '1.18 MB'), '2011': HmdaDataFile('hmda_2011_hi_first-lien-owner-occupied-1-4-family-records_labels.zip', '22003', '927.28 KB'), '2010': HmdaDataFile('hmda_2010_hi_first-lien-owner-occupied-1-4-family-records_labels.zip', '24636', '1.02 MB'), '2013': HmdaDataFile('hmda_2013_hi_first-lien-owner-occupied-1-4-family-records_labels.zip', '26347', '1.13 MB'), '2012': HmdaDataFile('hmda_2012_hi_first-lien-owner-occupied-1-4-family-records_labels.zip', '31689', '1.34 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_hi_all-records_labels.zip', '57857', '2.66 MB'), '2007': HmdaDataFile('hmda_2007_hi_all-records_labels.zip', '97609', '4.13 MB'), '2017': HmdaDataFile('hmda_2017_hi_all-records_labels.zip', '44868', '1.52 MB'), '2015': HmdaDataFile('hmda_2015_hi_all-records_labels.zip', '48255', '2.42 MB'), '2014': HmdaDataFile('hmda_2014_hi_all-records_labels.zip', '39152', '1.81 MB'), '2008': HmdaDataFile('hmda_2008_hi_all-records_labels.zip', '58044', '2.51 MB'), '2009': HmdaDataFile('hmda_2009_hi_all-records_labels.zip', '72505', '2.88 MB'), '2011': HmdaDataFile('hmda_2011_hi_all-records_labels.zip', '52036', '2.39 MB'), '2010': HmdaDataFile('hmda_2010_hi_all-records_labels.zip', '57360', '2.61 MB'), '2013': HmdaDataFile('hmda_2013_hi_all-records_labels.zip', '62718', '2.93 MB'), '2012': HmdaDataFile('hmda_2012_hi_all-records_labels.zip', '69807', '3.22 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_hi_originated-records_labels.zip', '32822', '1.42 MB'), '2007': HmdaDataFile('hmda_2007_hi_originated-records_labels.zip', '39270', '1.64 MB'), '2017': HmdaDataFile('hmda_2017_hi_originated-records_labels.zip', '26553', '842.99 KB'), '2015': HmdaDataFile('hmda_2015_hi_originated-records_labels.zip', '28778', '1.34 MB'), '2014': HmdaDataFile('hmda_2014_hi_originated-records_labels.zip', '22377', '977.23 KB'), '2008': HmdaDataFile('hmda_2008_hi_originated-records_labels.zip', '25770', '1.07 MB'), '2009': HmdaDataFile('hmda_2009_hi_originated-records_labels.zip', '36594', '1.37 MB'), '2011': HmdaDataFile('hmda_2011_hi_originated-records_labels.zip', '27526', '1.18 MB'), '2010': HmdaDataFile('hmda_2010_hi_originated-records_labels.zip', '29807', '1.25 MB'), '2013': HmdaDataFile('hmda_2013_hi_originated-records_labels.zip', '36581', '1.6 MB'), '2012': HmdaDataFile('hmda_2012_hi_originated-records_labels.zip', '40668', '1.75 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_hi_first-lien-owner-occupied-1-4-family-records_codes.zip', '25790', '747.28 KB'), '2007': HmdaDataFile('hmda_2007_hi_first-lien-owner-occupied-1-4-family-records_codes.zip', '26443', '769.57 KB'), '2017': HmdaDataFile('hmda_2017_hi_first-lien-owner-occupied-1-4-family-records_codes.zip', '20146', '442.43 KB'), '2015': HmdaDataFile('hmda_2015_hi_first-lien-owner-occupied-1-4-family-records_codes.zip', '21679', '682.34 KB'), '2014': HmdaDataFile('hmda_2014_hi_first-lien-owner-occupied-1-4-family-records_codes.zip', '16100', '467.14 KB'), '2008': HmdaDataFile('hmda_2008_hi_first-lien-owner-occupied-1-4-family-records_codes.zip', '19577', '565.45 KB'), '2009': HmdaDataFile('hmda_2009_hi_first-lien-owner-occupied-1-4-family-records_codes.zip', '31476', '829.34 KB'), '2011': HmdaDataFile('hmda_2011_hi_first-lien-owner-occupied-1-4-family-records_codes.zip', '22003', '617.15 KB'), '2010': HmdaDataFile('hmda_2010_hi_first-lien-owner-occupied-1-4-family-records_codes.zip', '24636', '682.86 KB'), '2013': HmdaDataFile('hmda_2013_hi_first-lien-owner-occupied-1-4-family-records_codes.zip', '26347', '767.75 KB'), '2012': HmdaDataFile('hmda_2012_hi_first-lien-owner-occupied-1-4-family-records_codes.zip', '31689', '898.68 KB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_hi_all-records_codes.zip', '57857', '1.73 MB'), '2007': HmdaDataFile('hmda_2007_hi_all-records_codes.zip', '97609', '2.81 MB'), '2017': HmdaDataFile('hmda_2017_hi_all-records_codes.zip', '44868', '991.92 KB'), '2015': HmdaDataFile('hmda_2015_hi_all-records_codes.zip', '48255', '1.59 MB'), '2014': HmdaDataFile('hmda_2014_hi_all-records_codes.zip', '39152', '1.17 MB'), '2008': HmdaDataFile('hmda_2008_hi_all-records_codes.zip', '58044', '1.7 MB'), '2009': HmdaDataFile('hmda_2009_hi_all-records_codes.zip', '72505', '1.97 MB'), '2011': HmdaDataFile('hmda_2011_hi_all-records_codes.zip', '52036', '1.54 MB'), '2010': HmdaDataFile('hmda_2010_hi_all-records_codes.zip', '57360', '1.69 MB'), '2013': HmdaDataFile('hmda_2013_hi_all-records_codes.zip', '62718', '1.9 MB'), '2012': HmdaDataFile('hmda_2012_hi_all-records_codes.zip', '69807', '2.09 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_hi_originated-records_codes.zip', '32822', '955.73 KB'), '2007': HmdaDataFile('hmda_2007_hi_originated-records_codes.zip', '39270', '1.15 MB'), '2017': HmdaDataFile('hmda_2017_hi_originated-records_codes.zip', '26553', '577.19 KB'), '2015': HmdaDataFile('hmda_2015_hi_originated-records_codes.zip', '28778', '909.22 KB'), '2014': HmdaDataFile('hmda_2014_hi_originated-records_codes.zip', '22377', '650.88 KB'), '2008': HmdaDataFile('hmda_2008_hi_originated-records_codes.zip', '25770', '741.44 KB'), '2009': HmdaDataFile('hmda_2009_hi_originated-records_codes.zip', '36594', '946.61 KB'), '2011': HmdaDataFile('hmda_2011_hi_originated-records_codes.zip', '27526', '777.03 KB'), '2010': HmdaDataFile('hmda_2010_hi_originated-records_codes.zip', '29807', '833.67 KB'), '2013': HmdaDataFile('hmda_2013_hi_originated-records_codes.zip', '36581', '1.06 MB'), '2012': HmdaDataFile('hmda_2012_hi_originated-records_codes.zip', '40668', '1.17 MB') } } }, 'ok': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_ok_first-lien-owner-occupied-1-4-family-records_labels.zip', '61711', '2.99 MB'), '2007': HmdaDataFile('hmda_2007_ok_first-lien-owner-occupied-1-4-family-records_labels.zip', '71771', '3.36 MB'), '2017': HmdaDataFile('hmda_2017_ok_first-lien-owner-occupied-1-4-family-records_labels.zip', '56021', '1.71 MB'), '2015': HmdaDataFile('hmda_2015_ok_first-lien-owner-occupied-1-4-family-records_labels.zip', '57409', '3.04 MB'), '2014': HmdaDataFile('hmda_2014_ok_first-lien-owner-occupied-1-4-family-records_labels.zip', '53820', '2.56 MB'), '2008': HmdaDataFile('hmda_2008_ok_first-lien-owner-occupied-1-4-family-records_labels.zip', '64839', '3.04 MB'), '2009': HmdaDataFile('hmda_2009_ok_first-lien-owner-occupied-1-4-family-records_labels.zip', '83962', '3.72 MB'), '2011': HmdaDataFile('hmda_2011_ok_first-lien-owner-occupied-1-4-family-records_labels.zip', '62083', '2.92 MB'), '2010': HmdaDataFile('hmda_2010_ok_first-lien-owner-occupied-1-4-family-records_labels.zip', '68205', '3.24 MB'), '2013': HmdaDataFile('hmda_2013_ok_first-lien-owner-occupied-1-4-family-records_labels.zip', '68275', '3.28 MB'), '2012': HmdaDataFile('hmda_2012_ok_first-lien-owner-occupied-1-4-family-records_labels.zip', '77297', '3.66 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_ok_all-records_labels.zip', '165463', '8.55 MB'), '2007': HmdaDataFile('hmda_2007_ok_all-records_labels.zip', '250763', '12.15 MB'), '2017': HmdaDataFile('hmda_2017_ok_all-records_labels.zip', '150838', '5.09 MB'), '2015': HmdaDataFile('hmda_2015_ok_all-records_labels.zip', '152804', '8.67 MB'), '2014': HmdaDataFile('hmda_2014_ok_all-records_labels.zip', '146824', '7.59 MB'), '2008': HmdaDataFile('hmda_2008_ok_all-records_labels.zip', '194552', '9.58 MB'), '2009': HmdaDataFile('hmda_2009_ok_all-records_labels.zip', '219393', '10.29 MB'), '2011': HmdaDataFile('hmda_2011_ok_all-records_labels.zip', '163798', '8.6 MB'), '2010': HmdaDataFile('hmda_2010_ok_all-records_labels.zip', '177023', '9.25 MB'), '2013': HmdaDataFile('hmda_2013_ok_all-records_labels.zip', '180860', '9.5 MB'), '2012': HmdaDataFile('hmda_2012_ok_all-records_labels.zip', '189005', '9.82 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_ok_originated-records_labels.zip', '84730', '4.21 MB'), '2007': HmdaDataFile('hmda_2007_ok_originated-records_labels.zip', '107739', '5.16 MB'), '2017': HmdaDataFile('hmda_2017_ok_originated-records_labels.zip', '78302', '2.43 MB'), '2015': HmdaDataFile('hmda_2015_ok_originated-records_labels.zip', '79611', '4.27 MB'), '2014': HmdaDataFile('hmda_2014_ok_originated-records_labels.zip', '76088', '3.74 MB'), '2008': HmdaDataFile('hmda_2008_ok_originated-records_labels.zip', '90679', '4.34 MB'), '2009': HmdaDataFile('hmda_2009_ok_originated-records_labels.zip', '105102', '4.8 MB'), '2011': HmdaDataFile('hmda_2011_ok_originated-records_labels.zip', '81562', '3.94 MB'), '2010': HmdaDataFile('hmda_2010_ok_originated-records_labels.zip', '87420', '4.24 MB'), '2013': HmdaDataFile('hmda_2013_ok_originated-records_labels.zip', '91830', '4.49 MB'), '2012': HmdaDataFile('hmda_2012_ok_originated-records_labels.zip', '98582', '4.73 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_ok_first-lien-owner-occupied-1-4-family-records_codes.zip', '61711', '2.07 MB'), '2007': HmdaDataFile('hmda_2007_ok_first-lien-owner-occupied-1-4-family-records_codes.zip', '71771', '2.36 MB'), '2017': HmdaDataFile('hmda_2017_ok_first-lien-owner-occupied-1-4-family-records_codes.zip', '56021', '1.24 MB'), '2015': HmdaDataFile('hmda_2015_ok_first-lien-owner-occupied-1-4-family-records_codes.zip', '57409', '2.11 MB'), '2014': HmdaDataFile('hmda_2014_ok_first-lien-owner-occupied-1-4-family-records_codes.zip', '53820', '1.76 MB'), '2008': HmdaDataFile('hmda_2008_ok_first-lien-owner-occupied-1-4-family-records_codes.zip', '64839', '2.14 MB'), '2009': HmdaDataFile('hmda_2009_ok_first-lien-owner-occupied-1-4-family-records_codes.zip', '83962', '2.65 MB'), '2011': HmdaDataFile('hmda_2011_ok_first-lien-owner-occupied-1-4-family-records_codes.zip', '62083', '1.97 MB'), '2010': HmdaDataFile('hmda_2010_ok_first-lien-owner-occupied-1-4-family-records_codes.zip', '68205', '2.2 MB'), '2013': HmdaDataFile('hmda_2013_ok_first-lien-owner-occupied-1-4-family-records_codes.zip', '68275', '2.25 MB'), '2012': HmdaDataFile('hmda_2012_ok_first-lien-owner-occupied-1-4-family-records_codes.zip', '77297', '2.49 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_ok_all-records_codes.zip', '165463', '5.67 MB'), '2007': HmdaDataFile('hmda_2007_ok_all-records_codes.zip', '250763', '8.32 MB'), '2017': HmdaDataFile('hmda_2017_ok_all-records_codes.zip', '150838', '3.38 MB'), '2015': HmdaDataFile('hmda_2015_ok_all-records_codes.zip', '152804', '5.81 MB'), '2014': HmdaDataFile('hmda_2014_ok_all-records_codes.zip', '146824', '5.04 MB'), '2008': HmdaDataFile('hmda_2008_ok_all-records_codes.zip', '194552', '6.58 MB'), '2009': HmdaDataFile('hmda_2009_ok_all-records_codes.zip', '219393', '7.12 MB'), '2011': HmdaDataFile('hmda_2011_ok_all-records_codes.zip', '163798', '5.66 MB'), '2010': HmdaDataFile('hmda_2010_ok_all-records_codes.zip', '177023', '6.13 MB'), '2013': HmdaDataFile('hmda_2013_ok_all-records_codes.zip', '180860', '6.33 MB'), '2012': HmdaDataFile('hmda_2012_ok_all-records_codes.zip', '189005', '6.53 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_ok_originated-records_codes.zip', '84730', '2.89 MB'), '2007': HmdaDataFile('hmda_2007_ok_originated-records_codes.zip', '107739', '3.62 MB'), '2017': HmdaDataFile('hmda_2017_ok_originated-records_codes.zip', '78302', '1.73 MB'), '2015': HmdaDataFile('hmda_2015_ok_originated-records_codes.zip', '79611', '2.95 MB'), '2014': HmdaDataFile('hmda_2014_ok_originated-records_codes.zip', '76088', '2.55 MB'), '2008': HmdaDataFile('hmda_2008_ok_originated-records_codes.zip', '90679', '3.04 MB'), '2009': HmdaDataFile('hmda_2009_ok_originated-records_codes.zip', '105102', '3.39 MB'), '2011': HmdaDataFile('hmda_2011_ok_originated-records_codes.zip', '81562', '2.64 MB'), '2010': HmdaDataFile('hmda_2010_ok_originated-records_codes.zip', '87420', '2.87 MB'), '2013': HmdaDataFile('hmda_2013_ok_originated-records_codes.zip', '91830', '3.05 MB'), '2012': HmdaDataFile('hmda_2012_ok_originated-records_codes.zip', '98582', '3.19 MB') } } }, 'fl': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_fl_first-lien-owner-occupied-1-4-family-records_labels.zip', '415338', '21.43 MB'), '2007': HmdaDataFile('hmda_2007_fl_first-lien-owner-occupied-1-4-family-records_labels.zip', '501111', '25.12 MB'), '2017': HmdaDataFile('hmda_2017_fl_first-lien-owner-occupied-1-4-family-records_labels.zip', '396688', '13.19 MB'), '2015': HmdaDataFile('hmda_2015_fl_first-lien-owner-occupied-1-4-family-records_labels.zip', '347883', '21.05 MB'), '2014': HmdaDataFile('hmda_2014_fl_first-lien-owner-occupied-1-4-family-records_labels.zip', '272904', '13.99 MB'), '2008': HmdaDataFile('hmda_2008_fl_first-lien-owner-occupied-1-4-family-records_labels.zip', '258117', '12.67 MB'), '2009': HmdaDataFile('hmda_2009_fl_first-lien-owner-occupied-1-4-family-records_labels.zip', '263772', '12.4 MB'), '2011': HmdaDataFile('hmda_2011_fl_first-lien-owner-occupied-1-4-family-records_labels.zip', '231239', '11.59 MB'), '2010': HmdaDataFile('hmda_2010_fl_first-lien-owner-occupied-1-4-family-records_labels.zip', '240644', '12.01 MB'), '2013': HmdaDataFile('hmda_2013_fl_first-lien-owner-occupied-1-4-family-records_labels.zip', '365896', '19.08 MB'), '2012': HmdaDataFile('hmda_2012_fl_first-lien-owner-occupied-1-4-family-records_labels.zip', '373288', '19.2 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_fl_all-records_labels.zip', '1043942', '58 MB'), '2007': HmdaDataFile('hmda_2007_fl_all-records_labels.zip', '2006660', '102.81 MB'), '2017': HmdaDataFile('hmda_2017_fl_all-records_labels.zip', '1018763', '38.28 MB'), '2015': HmdaDataFile('hmda_2015_fl_all-records_labels.zip', '893206', '57.89 MB'), '2014': HmdaDataFile('hmda_2014_fl_all-records_labels.zip', '732825', '40.79 MB'), '2008': HmdaDataFile('hmda_2008_fl_all-records_labels.zip', '962944', '49.47 MB'), '2009': HmdaDataFile('hmda_2009_fl_all-records_labels.zip', '806975', '40.26 MB'), '2011': HmdaDataFile('hmda_2011_fl_all-records_labels.zip', '647776', '35.66 MB'), '2010': HmdaDataFile('hmda_2010_fl_all-records_labels.zip', '675688', '37.38 MB'), '2013': HmdaDataFile('hmda_2013_fl_all-records_labels.zip', '948672', '53.81 MB'), '2012': HmdaDataFile('hmda_2012_fl_all-records_labels.zip', '919923', '51.66 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_fl_originated-records_labels.zip', '506394', '26.46 MB'), '2007': HmdaDataFile('hmda_2007_fl_originated-records_labels.zip', '735174', '36.57 MB'), '2017': HmdaDataFile('hmda_2017_fl_originated-records_labels.zip', '492702', '16.61 MB'), '2015': HmdaDataFile('hmda_2015_fl_originated-records_labels.zip', '434779', '26.78 MB'), '2014': HmdaDataFile('hmda_2014_fl_originated-records_labels.zip', '349696', '18.14 MB'), '2008': HmdaDataFile('hmda_2008_fl_originated-records_labels.zip', '344859', '17 MB'), '2009': HmdaDataFile('hmda_2009_fl_originated-records_labels.zip', '318689', '15.06 MB'), '2011': HmdaDataFile('hmda_2011_fl_originated-records_labels.zip', '288632', '14.64 MB'), '2010': HmdaDataFile('hmda_2010_fl_originated-records_labels.zip', '292476', '14.8 MB'), '2013': HmdaDataFile('hmda_2013_fl_originated-records_labels.zip', '467201', '24.7 MB'), '2012': HmdaDataFile('hmda_2012_fl_originated-records_labels.zip', '462049', '24.13 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_fl_first-lien-owner-occupied-1-4-family-records_codes.zip', '415338', '15.17 MB'), '2007': HmdaDataFile('hmda_2007_fl_first-lien-owner-occupied-1-4-family-records_codes.zip', '501111', '17.95 MB'), '2017': HmdaDataFile('hmda_2017_fl_first-lien-owner-occupied-1-4-family-records_codes.zip', '396688', '9.14 MB'), '2015': HmdaDataFile('hmda_2015_fl_first-lien-owner-occupied-1-4-family-records_codes.zip', '347883', '14.62 MB'), '2014': HmdaDataFile('hmda_2014_fl_first-lien-owner-occupied-1-4-family-records_codes.zip', '272904', '9.87 MB'), '2008': HmdaDataFile('hmda_2008_fl_first-lien-owner-occupied-1-4-family-records_codes.zip', '258117', '8.93 MB'), '2009': HmdaDataFile('hmda_2009_fl_first-lien-owner-occupied-1-4-family-records_codes.zip', '263772', '8.88 MB'), '2011': HmdaDataFile('hmda_2011_fl_first-lien-owner-occupied-1-4-family-records_codes.zip', '231239', '8 MB'), '2010': HmdaDataFile('hmda_2010_fl_first-lien-owner-occupied-1-4-family-records_codes.zip', '240644', '8.28 MB'), '2013': HmdaDataFile('hmda_2013_fl_first-lien-owner-occupied-1-4-family-records_codes.zip', '365896', '13.41 MB'), '2012': HmdaDataFile('hmda_2012_fl_first-lien-owner-occupied-1-4-family-records_codes.zip', '373288', '13.48 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_fl_all-records_codes.zip', '1043942', '40.03 MB'), '2007': HmdaDataFile('hmda_2007_fl_all-records_codes.zip', '2006660', '71.9 MB'), '2017': HmdaDataFile('hmda_2017_fl_all-records_codes.zip', '1018763', '24.91 MB'), '2015': HmdaDataFile('hmda_2015_fl_all-records_codes.zip', '893206', '38.26 MB'), '2014': HmdaDataFile('hmda_2014_fl_all-records_codes.zip', '732825', '28.16 MB'), '2008': HmdaDataFile('hmda_2008_fl_all-records_codes.zip', '962944', '34.41 MB'), '2009': HmdaDataFile('hmda_2009_fl_all-records_codes.zip', '806975', '28.11 MB'), '2011': HmdaDataFile('hmda_2011_fl_all-records_codes.zip', '647776', '23.83 MB'), '2010': HmdaDataFile('hmda_2010_fl_all-records_codes.zip', '675688', '24.98 MB'), '2013': HmdaDataFile('hmda_2013_fl_all-records_codes.zip', '948672', '36.68 MB'), '2012': HmdaDataFile('hmda_2012_fl_all-records_codes.zip', '919923', '35.16 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_fl_originated-records_codes.zip', '506394', '18.65 MB'), '2007': HmdaDataFile('hmda_2007_fl_originated-records_codes.zip', '735174', '26.09 MB'), '2017': HmdaDataFile('hmda_2017_fl_originated-records_codes.zip', '492702', '11.34 MB'), '2015': HmdaDataFile('hmda_2015_fl_originated-records_codes.zip', '434779', '18.42 MB'), '2014': HmdaDataFile('hmda_2014_fl_originated-records_codes.zip', '349696', '12.69 MB'), '2008': HmdaDataFile('hmda_2008_fl_originated-records_codes.zip', '344859', '11.94 MB'), '2009': HmdaDataFile('hmda_2009_fl_originated-records_codes.zip', '318689', '10.73 MB'), '2011': HmdaDataFile('hmda_2011_fl_originated-records_codes.zip', '288632', '10.03 MB'), '2010': HmdaDataFile('hmda_2010_fl_originated-records_codes.zip', '292476', '10.16 MB'), '2013': HmdaDataFile('hmda_2013_fl_originated-records_codes.zip', '467201', '17.24 MB'), '2012': HmdaDataFile('hmda_2012_fl_originated-records_codes.zip', '462049', '16.84 MB') } } }, 'wy': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_wy_first-lien-owner-occupied-1-4-family-records_labels.zip', '12342', '483.6 KB'), '2007': HmdaDataFile('hmda_2007_wy_first-lien-owner-occupied-1-4-family-records_labels.zip', '13857', '521.55 KB'), '2017': HmdaDataFile('hmda_2017_wy_first-lien-owner-occupied-1-4-family-records_labels.zip', '10510', '270.62 KB'), '2015': HmdaDataFile('hmda_2015_wy_first-lien-owner-occupied-1-4-family-records_labels.zip', '11880', '503.22 KB'), '2014': HmdaDataFile('hmda_2014_wy_first-lien-owner-occupied-1-4-family-records_labels.zip', '10422', '425.8 KB'), '2008': HmdaDataFile('hmda_2008_wy_first-lien-owner-occupied-1-4-family-records_labels.zip', '12387', '474.69 KB'), '2009': HmdaDataFile('hmda_2009_wy_first-lien-owner-occupied-1-4-family-records_labels.zip', '16912', '594.41 KB'), '2011': HmdaDataFile('hmda_2011_wy_first-lien-owner-occupied-1-4-family-records_labels.zip', '11423', '470.67 KB'), '2010': HmdaDataFile('hmda_2010_wy_first-lien-owner-occupied-1-4-family-records_labels.zip', '12694', '489.69 KB'), '2013': HmdaDataFile('hmda_2013_wy_first-lien-owner-occupied-1-4-family-records_labels.zip', '14178', '537.95 KB'), '2012': HmdaDataFile('hmda_2012_wy_first-lien-owner-occupied-1-4-family-records_labels.zip', '15410', '568.4 KB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_wy_all-records_labels.zip', '30163', '1.29 MB'), '2007': HmdaDataFile('hmda_2007_wy_all-records_labels.zip', '48234', '1.94 MB'), '2017': HmdaDataFile('hmda_2017_wy_all-records_labels.zip', '26154', '743.51 KB'), '2015': HmdaDataFile('hmda_2015_wy_all-records_labels.zip', '28641', '1.34 MB'), '2014': HmdaDataFile('hmda_2014_wy_all-records_labels.zip', '25049', '1.13 MB'), '2008': HmdaDataFile('hmda_2008_wy_all-records_labels.zip', '35748', '1.45 MB'), '2009': HmdaDataFile('hmda_2009_wy_all-records_labels.zip', '41659', '1.59 MB'), '2011': HmdaDataFile('hmda_2011_wy_all-records_labels.zip', '28465', '1.31 MB'), '2010': HmdaDataFile('hmda_2010_wy_all-records_labels.zip', '32035', '1.37 MB'), '2013': HmdaDataFile('hmda_2013_wy_all-records_labels.zip', '32956', '1.37 MB'), '2012': HmdaDataFile('hmda_2012_wy_all-records_labels.zip', '34092', '1.4 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_wy_originated-records_labels.zip', '15484', '616.35 KB'), '2007': HmdaDataFile('hmda_2007_wy_originated-records_labels.zip', '21052', '815.34 KB'), '2017': HmdaDataFile('hmda_2017_wy_originated-records_labels.zip', '13702', '356.27 KB'), '2015': HmdaDataFile('hmda_2015_wy_originated-records_labels.zip', '15107', '651.6 KB'), '2014': HmdaDataFile('hmda_2014_wy_originated-records_labels.zip', '13556', '566.41 KB'), '2008': HmdaDataFile('hmda_2008_wy_originated-records_labels.zip', '16892', '658.73 KB'), '2009': HmdaDataFile('hmda_2009_wy_originated-records_labels.zip', '20290', '727.57 KB'), '2011': HmdaDataFile('hmda_2011_wy_originated-records_labels.zip', '14507', '613.35 KB'), '2010': HmdaDataFile('hmda_2010_wy_originated-records_labels.zip', '15602', '616.08 KB'), '2013': HmdaDataFile('hmda_2013_wy_originated-records_labels.zip', '17900', '691.83 KB'), '2012': HmdaDataFile('hmda_2012_wy_originated-records_labels.zip', '19114', '723.04 KB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_wy_first-lien-owner-occupied-1-4-family-records_codes.zip', '12342', '312.27 KB'), '2007': HmdaDataFile('hmda_2007_wy_first-lien-owner-occupied-1-4-family-records_codes.zip', '13857', '338.82 KB'), '2017': HmdaDataFile('hmda_2017_wy_first-lien-owner-occupied-1-4-family-records_codes.zip', '10510', '187.36 KB'), '2015': HmdaDataFile('hmda_2015_wy_first-lien-owner-occupied-1-4-family-records_codes.zip', '11880', '319.17 KB'), '2014': HmdaDataFile('hmda_2014_wy_first-lien-owner-occupied-1-4-family-records_codes.zip', '10422', '275.68 KB'), '2008': HmdaDataFile('hmda_2008_wy_first-lien-owner-occupied-1-4-family-records_codes.zip', '12387', '309.95 KB'), '2009': HmdaDataFile('hmda_2009_wy_first-lien-owner-occupied-1-4-family-records_codes.zip', '16912', '397.25 KB'), '2011': HmdaDataFile('hmda_2011_wy_first-lien-owner-occupied-1-4-family-records_codes.zip', '11423', '302.39 KB'), '2010': HmdaDataFile('hmda_2010_wy_first-lien-owner-occupied-1-4-family-records_codes.zip', '12694', '313.52 KB'), '2013': HmdaDataFile('hmda_2013_wy_first-lien-owner-occupied-1-4-family-records_codes.zip', '14178', '348.1 KB'), '2012': HmdaDataFile('hmda_2012_wy_first-lien-owner-occupied-1-4-family-records_codes.zip', '15410', '368.87 KB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_wy_all-records_codes.zip', '30163', '802.03 KB'), '2007': HmdaDataFile('hmda_2007_wy_all-records_codes.zip', '48234', '1.23 MB'), '2017': HmdaDataFile('hmda_2017_wy_all-records_codes.zip', '26154', '481.64 KB'), '2015': HmdaDataFile('hmda_2015_wy_all-records_codes.zip', '28641', '812.32 KB'), '2014': HmdaDataFile('hmda_2014_wy_all-records_codes.zip', '25049', '695.65 KB'), '2008': HmdaDataFile('hmda_2008_wy_all-records_codes.zip', '35748', '923.02 KB'), '2009': HmdaDataFile('hmda_2009_wy_all-records_codes.zip', '41659', '1.02 MB'), '2011': HmdaDataFile('hmda_2011_wy_all-records_codes.zip', '28465', '807.3 KB'), '2010': HmdaDataFile('hmda_2010_wy_all-records_codes.zip', '32035', '844.63 KB'), '2013': HmdaDataFile('hmda_2013_wy_all-records_codes.zip', '32956', '857.37 KB'), '2012': HmdaDataFile('hmda_2012_wy_all-records_codes.zip', '34092', '878.55 KB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_wy_originated-records_codes.zip', '15484', '395.6 KB'), '2007': HmdaDataFile('hmda_2007_wy_originated-records_codes.zip', '21052', '528.23 KB'), '2017': HmdaDataFile('hmda_2017_wy_originated-records_codes.zip', '13702', '246.43 KB'), '2015': HmdaDataFile('hmda_2015_wy_originated-records_codes.zip', '15107', '410.78 KB'), '2014': HmdaDataFile('hmda_2014_wy_originated-records_codes.zip', '13556', '363.31 KB'), '2008': HmdaDataFile('hmda_2008_wy_originated-records_codes.zip', '16892', '430.54 KB'), '2009': HmdaDataFile('hmda_2009_wy_originated-records_codes.zip', '20290', '484.44 KB'), '2011': HmdaDataFile('hmda_2011_wy_originated-records_codes.zip', '14507', '390.89 KB'), '2010': HmdaDataFile('hmda_2010_wy_originated-records_codes.zip', '15602', '393.56 KB'), '2013': HmdaDataFile('hmda_2013_wy_originated-records_codes.zip', '17900', '445.73 KB'), '2012': HmdaDataFile('hmda_2012_wy_originated-records_codes.zip', '19114', '467.43 KB') } } }, 'me': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_me_first-lien-owner-occupied-1-4-family-records_labels.zip', '25576', '1.12 MB'), '2007': HmdaDataFile('hmda_2007_me_first-lien-owner-occupied-1-4-family-records_labels.zip', '28469', '1.25 MB'), '2017': HmdaDataFile('hmda_2017_me_first-lien-owner-occupied-1-4-family-records_labels.zip', '23089', '660.63 KB'), '2015': HmdaDataFile('hmda_2015_me_first-lien-owner-occupied-1-4-family-records_labels.zip', '22073', '1.06 MB'), '2014': HmdaDataFile('hmda_2014_me_first-lien-owner-occupied-1-4-family-records_labels.zip', '18699', '819.03 KB'), '2008': HmdaDataFile('hmda_2008_me_first-lien-owner-occupied-1-4-family-records_labels.zip', '23318', '1.01 MB'), '2009': HmdaDataFile('hmda_2009_me_first-lien-owner-occupied-1-4-family-records_labels.zip', '35977', '1.45 MB'), '2011': HmdaDataFile('hmda_2011_me_first-lien-owner-occupied-1-4-family-records_labels.zip', '24858', '1.05 MB'), '2010': HmdaDataFile('hmda_2010_me_first-lien-owner-occupied-1-4-family-records_labels.zip', '29685', '1.3 MB'), '2013': HmdaDataFile('hmda_2013_me_first-lien-owner-occupied-1-4-family-records_labels.zip', '28892', '1.25 MB'), '2012': HmdaDataFile('hmda_2012_me_first-lien-owner-occupied-1-4-family-records_labels.zip', '32810', '1.4 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_me_all-records_labels.zip', '64142', '3.02 MB'), '2007': HmdaDataFile('hmda_2007_me_all-records_labels.zip', '102877', '4.79 MB'), '2017': HmdaDataFile('hmda_2017_me_all-records_labels.zip', '58188', '1.77 MB'), '2015': HmdaDataFile('hmda_2015_me_all-records_labels.zip', '56450', '2.96 MB'), '2014': HmdaDataFile('hmda_2014_me_all-records_labels.zip', '50231', '2.36 MB'), '2008': HmdaDataFile('hmda_2008_me_all-records_labels.zip', '74281', '3.56 MB'), '2009': HmdaDataFile('hmda_2009_me_all-records_labels.zip', '88765', '4 MB'), '2011': HmdaDataFile('hmda_2011_me_all-records_labels.zip', '65903', '3.22 MB'), '2010': HmdaDataFile('hmda_2010_me_all-records_labels.zip', '75911', '3.76 MB'), '2013': HmdaDataFile('hmda_2013_me_all-records_labels.zip', '71008', '3.35 MB'), '2012': HmdaDataFile('hmda_2012_me_all-records_labels.zip', '79176', '3.7 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_me_originated-records_labels.zip', '33761', '1.53 MB'), '2007': HmdaDataFile('hmda_2007_me_originated-records_labels.zip', '44333', '2.01 MB'), '2017': HmdaDataFile('hmda_2017_me_originated-records_labels.zip', '31503', '929.28 KB'), '2015': HmdaDataFile('hmda_2015_me_originated-records_labels.zip', '29602', '1.45 MB'), '2014': HmdaDataFile('hmda_2014_me_originated-records_labels.zip', '25962', '1.19 MB'), '2008': HmdaDataFile('hmda_2008_me_originated-records_labels.zip', '34638', '1.54 MB'), '2009': HmdaDataFile('hmda_2009_me_originated-records_labels.zip', '45092', '1.88 MB'), '2011': HmdaDataFile('hmda_2011_me_originated-records_labels.zip', '32181', '1.43 MB'), '2010': HmdaDataFile('hmda_2010_me_originated-records_labels.zip', '37475', '1.73 MB'), '2013': HmdaDataFile('hmda_2013_me_originated-records_labels.zip', '37720', '1.67 MB'), '2012': HmdaDataFile('hmda_2012_me_originated-records_labels.zip', '41515', '1.82 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_me_first-lien-owner-occupied-1-4-family-records_codes.zip', '25576', '725.36 KB'), '2007': HmdaDataFile('hmda_2007_me_first-lien-owner-occupied-1-4-family-records_codes.zip', '28469', '820.97 KB'), '2017': HmdaDataFile('hmda_2017_me_first-lien-owner-occupied-1-4-family-records_codes.zip', '23089', '468.44 KB'), '2015': HmdaDataFile('hmda_2015_me_first-lien-owner-occupied-1-4-family-records_codes.zip', '22073', '702.08 KB'), '2014': HmdaDataFile('hmda_2014_me_first-lien-owner-occupied-1-4-family-records_codes.zip', '18699', '527.54 KB'), '2008': HmdaDataFile('hmda_2008_me_first-lien-owner-occupied-1-4-family-records_codes.zip', '23318', '660.77 KB'), '2009': HmdaDataFile('hmda_2009_me_first-lien-owner-occupied-1-4-family-records_codes.zip', '35977', '975.94 KB'), '2011': HmdaDataFile('hmda_2011_me_first-lien-owner-occupied-1-4-family-records_codes.zip', '24858', '674.23 KB'), '2010': HmdaDataFile('hmda_2010_me_first-lien-owner-occupied-1-4-family-records_codes.zip', '29685', '841.65 KB'), '2013': HmdaDataFile('hmda_2013_me_first-lien-owner-occupied-1-4-family-records_codes.zip', '28892', '797.28 KB'), '2012': HmdaDataFile('hmda_2012_me_first-lien-owner-occupied-1-4-family-records_codes.zip', '32810', '894.15 KB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_me_all-records_codes.zip', '64142', '1.89 MB'), '2007': HmdaDataFile('hmda_2007_me_all-records_codes.zip', '102877', '3.1 MB'), '2017': HmdaDataFile('hmda_2017_me_all-records_codes.zip', '58188', '1.16 MB'), '2015': HmdaDataFile('hmda_2015_me_all-records_codes.zip', '56450', '1.88 MB'), '2014': HmdaDataFile('hmda_2014_me_all-records_codes.zip', '50231', '1.46 MB'), '2008': HmdaDataFile('hmda_2008_me_all-records_codes.zip', '74281', '2.32 MB'), '2009': HmdaDataFile('hmda_2009_me_all-records_codes.zip', '88765', '2.65 MB'), '2011': HmdaDataFile('hmda_2011_me_all-records_codes.zip', '65903', '2.01 MB'), '2010': HmdaDataFile('hmda_2010_me_all-records_codes.zip', '75911', '2.35 MB'), '2013': HmdaDataFile('hmda_2013_me_all-records_codes.zip', '71008', '2.07 MB'), '2012': HmdaDataFile('hmda_2012_me_all-records_codes.zip', '79176', '2.29 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_me_originated-records_codes.zip', '33761', '987 KB'), '2007': HmdaDataFile('hmda_2007_me_originated-records_codes.zip', '44333', '1.33 MB'), '2017': HmdaDataFile('hmda_2017_me_originated-records_codes.zip', '31503', '654.38 KB'), '2015': HmdaDataFile('hmda_2015_me_originated-records_codes.zip', '29602', '954.33 KB'), '2014': HmdaDataFile('hmda_2014_me_originated-records_codes.zip', '25962', '765.27 KB'), '2008': HmdaDataFile('hmda_2008_me_originated-records_codes.zip', '34638', '1.02 MB'), '2009': HmdaDataFile('hmda_2009_me_originated-records_codes.zip', '45092', '1.26 MB'), '2011': HmdaDataFile('hmda_2011_me_originated-records_codes.zip', '32181', '909.63 KB'), '2010': HmdaDataFile('hmda_2010_me_originated-records_codes.zip', '37475', '1.11 MB'), '2013': HmdaDataFile('hmda_2013_me_originated-records_codes.zip', '37720', '1.06 MB'), '2012': HmdaDataFile('hmda_2012_me_originated-records_codes.zip', '41515', '1.15 MB') } } }, 'md': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_md_first-lien-owner-occupied-1-4-family-records_labels.zip', '151314', '7.51 MB'), '2007': HmdaDataFile('hmda_2007_md_first-lien-owner-occupied-1-4-family-records_labels.zip', '189965', '9.14 MB'), '2017': HmdaDataFile('hmda_2017_md_first-lien-owner-occupied-1-4-family-records_labels.zip', '124206', '4 MB'), '2015': HmdaDataFile('hmda_2015_md_first-lien-owner-occupied-1-4-family-records_labels.zip', '131786', '7.26 MB'), '2014': HmdaDataFile('hmda_2014_md_first-lien-owner-occupied-1-4-family-records_labels.zip', '98965', '5.23 MB'), '2008': HmdaDataFile('hmda_2008_md_first-lien-owner-occupied-1-4-family-records_labels.zip', '133536', '6.34 MB'), '2009': HmdaDataFile('hmda_2009_md_first-lien-owner-occupied-1-4-family-records_labels.zip', '193122', '8.53 MB'), '2011': HmdaDataFile('hmda_2011_md_first-lien-owner-occupied-1-4-family-records_labels.zip', '142588', '7.11 MB'), '2010': HmdaDataFile('hmda_2010_md_first-lien-owner-occupied-1-4-family-records_labels.zip', '166872', '8.22 MB'), '2013': HmdaDataFile('hmda_2013_md_first-lien-owner-occupied-1-4-family-records_labels.zip', '161491', '8.05 MB'), '2012': HmdaDataFile('hmda_2012_md_first-lien-owner-occupied-1-4-family-records_labels.zip', '195908', '9.85 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_md_all-records_labels.zip', '358958', '19.06 MB'), '2007': HmdaDataFile('hmda_2007_md_all-records_labels.zip', '656616', '31.96 MB'), '2017': HmdaDataFile('hmda_2017_md_all-records_labels.zip', '301879', '10.75 MB'), '2015': HmdaDataFile('hmda_2015_md_all-records_labels.zip', '316012', '18.68 MB'), '2014': HmdaDataFile('hmda_2014_md_all-records_labels.zip', '247561', '14.04 MB'), '2008': HmdaDataFile('hmda_2008_md_all-records_labels.zip', '393039', '19.26 MB'), '2009': HmdaDataFile('hmda_2009_md_all-records_labels.zip', '467697', '21.73 MB'), '2011': HmdaDataFile('hmda_2011_md_all-records_labels.zip', '347645', '18.89 MB'), '2010': HmdaDataFile('hmda_2010_md_all-records_labels.zip', '385128', '20.7 MB'), '2013': HmdaDataFile('hmda_2013_md_all-records_labels.zip', '385383', '20.95 MB'), '2012': HmdaDataFile('hmda_2012_md_all-records_labels.zip', '439566', '23.91 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_md_originated-records_labels.zip', '171556', '8.64 MB'), '2007': HmdaDataFile('hmda_2007_md_originated-records_labels.zip', '261984', '12.73 MB'), '2017': HmdaDataFile('hmda_2017_md_originated-records_labels.zip', '144610', '4.78 MB'), '2015': HmdaDataFile('hmda_2015_md_originated-records_labels.zip', '152541', '8.53 MB'), '2014': HmdaDataFile('hmda_2014_md_originated-records_labels.zip', '118429', '6.33 MB'), '2008': HmdaDataFile('hmda_2008_md_originated-records_labels.zip', '162234', '7.83 MB'), '2009': HmdaDataFile('hmda_2009_md_originated-records_labels.zip', '210794', '9.48 MB'), '2011': HmdaDataFile('hmda_2011_md_originated-records_labels.zip', '159707', '8.13 MB'), '2010': HmdaDataFile('hmda_2010_md_originated-records_labels.zip', '182102', '9.04 MB'), '2013': HmdaDataFile('hmda_2013_md_originated-records_labels.zip', '187825', '9.46 MB'), '2012': HmdaDataFile('hmda_2012_md_originated-records_labels.zip', '219387', '11.11 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_md_first-lien-owner-occupied-1-4-family-records_codes.zip', '151314', '5.32 MB'), '2007': HmdaDataFile('hmda_2007_md_first-lien-owner-occupied-1-4-family-records_codes.zip', '189965', '6.47 MB'), '2017': HmdaDataFile('hmda_2017_md_first-lien-owner-occupied-1-4-family-records_codes.zip', '124206', '2.79 MB'), '2015': HmdaDataFile('hmda_2015_md_first-lien-owner-occupied-1-4-family-records_codes.zip', '131786', '5.19 MB'), '2014': HmdaDataFile('hmda_2014_md_first-lien-owner-occupied-1-4-family-records_codes.zip', '98965', '3.67 MB'), '2008': HmdaDataFile('hmda_2008_md_first-lien-owner-occupied-1-4-family-records_codes.zip', '133536', '4.46 MB'), '2009': HmdaDataFile('hmda_2009_md_first-lien-owner-occupied-1-4-family-records_codes.zip', '193122', '6.08 MB'), '2011': HmdaDataFile('hmda_2011_md_first-lien-owner-occupied-1-4-family-records_codes.zip', '142588', '4.91 MB'), '2010': HmdaDataFile('hmda_2010_md_first-lien-owner-occupied-1-4-family-records_codes.zip', '166872', '5.7 MB'), '2013': HmdaDataFile('hmda_2013_md_first-lien-owner-occupied-1-4-family-records_codes.zip', '161491', '5.68 MB'), '2012': HmdaDataFile('hmda_2012_md_first-lien-owner-occupied-1-4-family-records_codes.zip', '195908', '6.88 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_md_all-records_codes.zip', '358958', '13.18 MB'), '2007': HmdaDataFile('hmda_2007_md_all-records_codes.zip', '656616', '22.08 MB'), '2017': HmdaDataFile('hmda_2017_md_all-records_codes.zip', '301879', '6.99 MB'), '2015': HmdaDataFile('hmda_2015_md_all-records_codes.zip', '316012', '12.83 MB'), '2014': HmdaDataFile('hmda_2014_md_all-records_codes.zip', '247561', '9.61 MB'), '2008': HmdaDataFile('hmda_2008_md_all-records_codes.zip', '393039', '13.28 MB'), '2009': HmdaDataFile('hmda_2009_md_all-records_codes.zip', '467697', '15.2 MB'), '2011': HmdaDataFile('hmda_2011_md_all-records_codes.zip', '347645', '12.83 MB'), '2010': HmdaDataFile('hmda_2010_md_all-records_codes.zip', '385128', '14.08 MB'), '2013': HmdaDataFile('hmda_2013_md_all-records_codes.zip', '385383', '14.56 MB'), '2012': HmdaDataFile('hmda_2012_md_all-records_codes.zip', '439566', '16.52 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_md_originated-records_codes.zip', '171556', '6.1 MB'), '2007': HmdaDataFile('hmda_2007_md_originated-records_codes.zip', '261984', '9.04 MB'), '2017': HmdaDataFile('hmda_2017_md_originated-records_codes.zip', '144610', '3.3 MB'), '2015': HmdaDataFile('hmda_2015_md_originated-records_codes.zip', '152541', '6.06 MB'), '2014': HmdaDataFile('hmda_2014_md_originated-records_codes.zip', '118429', '4.41 MB'), '2008': HmdaDataFile('hmda_2008_md_originated-records_codes.zip', '162234', '5.51 MB'), '2009': HmdaDataFile('hmda_2009_md_originated-records_codes.zip', '210794', '6.75 MB'), '2011': HmdaDataFile('hmda_2011_md_originated-records_codes.zip', '159707', '5.59 MB'), '2010': HmdaDataFile('hmda_2010_md_originated-records_codes.zip', '182102', '6.24 MB'), '2013': HmdaDataFile('hmda_2013_md_originated-records_codes.zip', '187825', '6.64 MB'), '2012': HmdaDataFile('hmda_2012_md_originated-records_codes.zip', '219387', '7.7 MB') } } }, 'ma': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_ma_first-lien-owner-occupied-1-4-family-records_labels.zip', '168663', '8.43 MB'), '2007': HmdaDataFile('hmda_2007_ma_first-lien-owner-occupied-1-4-family-records_labels.zip', '148532', '7.1 MB'), '2017': HmdaDataFile('hmda_2017_ma_first-lien-owner-occupied-1-4-family-records_labels.zip', '129891', '4.16 MB'), '2015': HmdaDataFile('hmda_2015_ma_first-lien-owner-occupied-1-4-family-records_labels.zip', '144027', '7.64 MB'), '2014': HmdaDataFile('hmda_2014_ma_first-lien-owner-occupied-1-4-family-records_labels.zip', '109057', '5.41 MB'), '2008': HmdaDataFile('hmda_2008_ma_first-lien-owner-occupied-1-4-family-records_labels.zip', '126855', '6.11 MB'), '2009': HmdaDataFile('hmda_2009_ma_first-lien-owner-occupied-1-4-family-records_labels.zip', '229420', '10.04 MB'), '2011': HmdaDataFile('hmda_2011_ma_first-lien-owner-occupied-1-4-family-records_labels.zip', '177890', '8.46 MB'), '2010': HmdaDataFile('hmda_2010_ma_first-lien-owner-occupied-1-4-family-records_labels.zip', '212589', '10.01 MB'), '2013': HmdaDataFile('hmda_2013_ma_first-lien-owner-occupied-1-4-family-records_labels.zip', '186856', '9.2 MB'), '2012': HmdaDataFile('hmda_2012_ma_first-lien-owner-occupied-1-4-family-records_labels.zip', '252396', '12.13 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_ma_all-records_labels.zip', '350131', '18.93 MB'), '2007': HmdaDataFile('hmda_2007_ma_all-records_labels.zip', '507509', '24.85 MB'), '2017': HmdaDataFile('hmda_2017_ma_all-records_labels.zip', '282546', '10.31 MB'), '2015': HmdaDataFile('hmda_2015_ma_all-records_labels.zip', '299991', '17.01 MB'), '2014': HmdaDataFile('hmda_2014_ma_all-records_labels.zip', '246533', '13.15 MB'), '2008': HmdaDataFile('hmda_2008_ma_all-records_labels.zip', '337077', '17.11 MB'), '2009': HmdaDataFile('hmda_2009_ma_all-records_labels.zip', '493549', '22.81 MB'), '2011': HmdaDataFile('hmda_2011_ma_all-records_labels.zip', '400586', '20.86 MB'), '2010': HmdaDataFile('hmda_2010_ma_all-records_labels.zip', '458768', '23.77 MB'), '2013': HmdaDataFile('hmda_2013_ma_all-records_labels.zip', '405166', '21.77 MB'), '2012': HmdaDataFile('hmda_2012_ma_all-records_labels.zip', '516205', '27.13 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_ma_originated-records_labels.zip', '201756', '10.26 MB'), '2007': HmdaDataFile('hmda_2007_ma_originated-records_labels.zip', '214170', '10.35 MB'), '2017': HmdaDataFile('hmda_2017_ma_originated-records_labels.zip', '162474', '5.34 MB'), '2015': HmdaDataFile('hmda_2015_ma_originated-records_labels.zip', '173355', '9.34 MB'), '2014': HmdaDataFile('hmda_2014_ma_originated-records_labels.zip', '137873', '6.99 MB'), '2008': HmdaDataFile('hmda_2008_ma_originated-records_labels.zip', '159312', '7.79 MB'), '2009': HmdaDataFile('hmda_2009_ma_originated-records_labels.zip', '255679', '11.37 MB'), '2011': HmdaDataFile('hmda_2011_ma_originated-records_labels.zip', '205164', '9.93 MB'), '2010': HmdaDataFile('hmda_2010_ma_originated-records_labels.zip', '239023', '11.5 MB'), '2013': HmdaDataFile('hmda_2013_ma_originated-records_labels.zip', '224809', '11.32 MB'), '2012': HmdaDataFile('hmda_2012_ma_originated-records_labels.zip', '288584', '14 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_ma_first-lien-owner-occupied-1-4-family-records_codes.zip', '168663', '5.88 MB'), '2007': HmdaDataFile('hmda_2007_ma_first-lien-owner-occupied-1-4-family-records_codes.zip', '148532', '5 MB'), '2017': HmdaDataFile('hmda_2017_ma_first-lien-owner-occupied-1-4-family-records_codes.zip', '129891', '2.95 MB'), '2015': HmdaDataFile('hmda_2015_ma_first-lien-owner-occupied-1-4-family-records_codes.zip', '144027', '5.53 MB'), '2014': HmdaDataFile('hmda_2014_ma_first-lien-owner-occupied-1-4-family-records_codes.zip', '109057', '3.83 MB'), '2008': HmdaDataFile('hmda_2008_ma_first-lien-owner-occupied-1-4-family-records_codes.zip', '126855', '4.32 MB'), '2009': HmdaDataFile('hmda_2009_ma_first-lien-owner-occupied-1-4-family-records_codes.zip', '229420', '7.29 MB'), '2011': HmdaDataFile('hmda_2011_ma_first-lien-owner-occupied-1-4-family-records_codes.zip', '177890', '5.8 MB'), '2010': HmdaDataFile('hmda_2010_ma_first-lien-owner-occupied-1-4-family-records_codes.zip', '212589', '6.88 MB'), '2013': HmdaDataFile('hmda_2013_ma_first-lien-owner-occupied-1-4-family-records_codes.zip', '186856', '6.35 MB'), '2012': HmdaDataFile('hmda_2012_ma_first-lien-owner-occupied-1-4-family-records_codes.zip', '252396', '8.35 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_ma_all-records_codes.zip', '350131', '13.03 MB'), '2007': HmdaDataFile('hmda_2007_ma_all-records_codes.zip', '507509', '17.13 MB'), '2017': HmdaDataFile('hmda_2017_ma_all-records_codes.zip', '282546', '6.92 MB'), '2015': HmdaDataFile('hmda_2015_ma_all-records_codes.zip', '299991', '11.87 MB'), '2014': HmdaDataFile('hmda_2014_ma_all-records_codes.zip', '246533', '9.05 MB'), '2008': HmdaDataFile('hmda_2008_ma_all-records_codes.zip', '337077', '11.88 MB'), '2009': HmdaDataFile('hmda_2009_ma_all-records_codes.zip', '493549', '16.23 MB'), '2011': HmdaDataFile('hmda_2011_ma_all-records_codes.zip', '400586', '14.19 MB'), '2010': HmdaDataFile('hmda_2010_ma_all-records_codes.zip', '458768', '16.27 MB'), '2013': HmdaDataFile('hmda_2013_ma_all-records_codes.zip', '405166', '14.9 MB'), '2012': HmdaDataFile('hmda_2012_ma_all-records_codes.zip', '516205', '18.65 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_ma_originated-records_codes.zip', '201756', '7.12 MB'), '2007': HmdaDataFile('hmda_2007_ma_originated-records_codes.zip', '214170', '7.34 MB'), '2017': HmdaDataFile('hmda_2017_ma_originated-records_codes.zip', '162474', '3.73 MB'), '2015': HmdaDataFile('hmda_2015_ma_originated-records_codes.zip', '173355', '6.7 MB'), '2014': HmdaDataFile('hmda_2014_ma_originated-records_codes.zip', '137873', '4.9 MB'), '2008': HmdaDataFile('hmda_2008_ma_originated-records_codes.zip', '159312', '5.51 MB'), '2009': HmdaDataFile('hmda_2009_ma_originated-records_codes.zip', '255679', '8.23 MB'), '2011': HmdaDataFile('hmda_2011_ma_originated-records_codes.zip', '205164', '6.77 MB'), '2010': HmdaDataFile('hmda_2010_ma_originated-records_codes.zip', '239023', '7.91 MB'), '2013': HmdaDataFile('hmda_2013_ma_originated-records_codes.zip', '224809', '7.79 MB'), '2012': HmdaDataFile('hmda_2012_ma_originated-records_codes.zip', '288584', '9.58 MB') } } }, 'oh': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_oh_first-lien-owner-occupied-1-4-family-records_labels.zip', '232207', '11.88 MB'), '2007': HmdaDataFile('hmda_2007_oh_first-lien-owner-occupied-1-4-family-records_labels.zip', '224598', '11.06 MB'), '2017': HmdaDataFile('hmda_2017_oh_first-lien-owner-occupied-1-4-family-records_labels.zip', '208362', '6.69 MB'), '2015': HmdaDataFile('hmda_2015_oh_first-lien-owner-occupied-1-4-family-records_labels.zip', '204738', '11.72 MB'), '2014': HmdaDataFile('hmda_2014_oh_first-lien-owner-occupied-1-4-family-records_labels.zip', '174084', '8.93 MB'), '2008': HmdaDataFile('hmda_2008_oh_first-lien-owner-occupied-1-4-family-records_labels.zip', '186092', '9.03 MB'), '2009': HmdaDataFile('hmda_2009_oh_first-lien-owner-occupied-1-4-family-records_labels.zip', '282249', '12.44 MB'), '2011': HmdaDataFile('hmda_2011_oh_first-lien-owner-occupied-1-4-family-records_labels.zip', '219789', '10.95 MB'), '2010': HmdaDataFile('hmda_2010_oh_first-lien-owner-occupied-1-4-family-records_labels.zip', '258240', '12.72 MB'), '2013': HmdaDataFile('hmda_2013_oh_first-lien-owner-occupied-1-4-family-records_labels.zip', '267654', '13.76 MB'), '2012': HmdaDataFile('hmda_2012_oh_first-lien-owner-occupied-1-4-family-records_labels.zip', '302970', '15.14 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_oh_all-records_labels.zip', '493271', '27.33 MB'), '2007': HmdaDataFile('hmda_2007_oh_all-records_labels.zip', '774401', '39.17 MB'), '2017': HmdaDataFile('hmda_2017_oh_all-records_labels.zip', '448269', '16.35 MB'), '2015': HmdaDataFile('hmda_2015_oh_all-records_labels.zip', '439676', '27.18 MB'), '2014': HmdaDataFile('hmda_2014_oh_all-records_labels.zip', '394459', '21.93 MB'), '2008': HmdaDataFile('hmda_2008_oh_all-records_labels.zip', '533639', '27.2 MB'), '2009': HmdaDataFile('hmda_2009_oh_all-records_labels.zip', '624555', '29.69 MB'), '2011': HmdaDataFile('hmda_2011_oh_all-records_labels.zip', '489066', '26.92 MB'), '2010': HmdaDataFile('hmda_2010_oh_all-records_labels.zip', '555119', '30.3 MB'), '2013': HmdaDataFile('hmda_2013_oh_all-records_labels.zip', '578940', '32.56 MB'), '2012': HmdaDataFile('hmda_2012_oh_all-records_labels.zip', '618867', '34.01 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_oh_originated-records_labels.zip', '262449', '13.71 MB'), '2007': HmdaDataFile('hmda_2007_oh_originated-records_labels.zip', '313279', '15.77 MB'), '2017': HmdaDataFile('hmda_2017_oh_originated-records_labels.zip', '241167', '7.96 MB'), '2015': HmdaDataFile('hmda_2015_oh_originated-records_labels.zip', '235058', '13.65 MB'), '2014': HmdaDataFile('hmda_2014_oh_originated-records_labels.zip', '203927', '10.71 MB'), '2008': HmdaDataFile('hmda_2008_oh_originated-records_labels.zip', '231697', '11.5 MB'), '2009': HmdaDataFile('hmda_2009_oh_originated-records_labels.zip', '309496', '13.92 MB'), '2011': HmdaDataFile('hmda_2011_oh_originated-records_labels.zip', '245688', '12.6 MB'), '2010': HmdaDataFile('hmda_2010_oh_originated-records_labels.zip', '283698', '14.38 MB'), '2013': HmdaDataFile('hmda_2013_oh_originated-records_labels.zip', '306698', '15.95 MB'), '2012': HmdaDataFile('hmda_2012_oh_originated-records_labels.zip', '336141', '16.99 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_oh_first-lien-owner-occupied-1-4-family-records_codes.zip', '232207', '8.28 MB'), '2007': HmdaDataFile('hmda_2007_oh_first-lien-owner-occupied-1-4-family-records_codes.zip', '224598', '7.85 MB'), '2017': HmdaDataFile('hmda_2017_oh_first-lien-owner-occupied-1-4-family-records_codes.zip', '208362', '4.84 MB'), '2015': HmdaDataFile('hmda_2015_oh_first-lien-owner-occupied-1-4-family-records_codes.zip', '204738', '8.2 MB'), '2014': HmdaDataFile('hmda_2014_oh_first-lien-owner-occupied-1-4-family-records_codes.zip', '174084', '6.26 MB'), '2008': HmdaDataFile('hmda_2008_oh_first-lien-owner-occupied-1-4-family-records_codes.zip', '186092', '6.43 MB'), '2009': HmdaDataFile('hmda_2009_oh_first-lien-owner-occupied-1-4-family-records_codes.zip', '282249', '9.02 MB'), '2011': HmdaDataFile('hmda_2011_oh_first-lien-owner-occupied-1-4-family-records_codes.zip', '219789', '7.49 MB'), '2010': HmdaDataFile('hmda_2010_oh_first-lien-owner-occupied-1-4-family-records_codes.zip', '258240', '8.73 MB'), '2013': HmdaDataFile('hmda_2013_oh_first-lien-owner-occupied-1-4-family-records_codes.zip', '267654', '9.51 MB'), '2012': HmdaDataFile('hmda_2012_oh_first-lien-owner-occupied-1-4-family-records_codes.zip', '302970', '10.48 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_oh_all-records_codes.zip', '493271', '18.52 MB'), '2007': HmdaDataFile('hmda_2007_oh_all-records_codes.zip', '774401', '27.06 MB'), '2017': HmdaDataFile('hmda_2017_oh_all-records_codes.zip', '448269', '10.89 MB'), '2015': HmdaDataFile('hmda_2015_oh_all-records_codes.zip', '439676', '18.32 MB'), '2014': HmdaDataFile('hmda_2014_oh_all-records_codes.zip', '394459', '14.89 MB'), '2008': HmdaDataFile('hmda_2008_oh_all-records_codes.zip', '533639', '18.82 MB'), '2009': HmdaDataFile('hmda_2009_oh_all-records_codes.zip', '624555', '20.88 MB'), '2011': HmdaDataFile('hmda_2011_oh_all-records_codes.zip', '489066', '17.97 MB'), '2010': HmdaDataFile('hmda_2010_oh_all-records_codes.zip', '555119', '20.35 MB'), '2013': HmdaDataFile('hmda_2013_oh_all-records_codes.zip', '578940', '22.01 MB'), '2012': HmdaDataFile('hmda_2012_oh_all-records_codes.zip', '618867', '23.02 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_oh_originated-records_codes.zip', '262449', '9.52 MB'), '2007': HmdaDataFile('hmda_2007_oh_originated-records_codes.zip', '313279', '11.21 MB'), '2017': HmdaDataFile('hmda_2017_oh_originated-records_codes.zip', '241167', '5.68 MB'), '2015': HmdaDataFile('hmda_2015_oh_originated-records_codes.zip', '235058', '9.5 MB'), '2014': HmdaDataFile('hmda_2014_oh_originated-records_codes.zip', '203927', '7.49 MB'), '2008': HmdaDataFile('hmda_2008_oh_originated-records_codes.zip', '231697', '8.17 MB'), '2009': HmdaDataFile('hmda_2009_oh_originated-records_codes.zip', '309496', '10.06 MB'), '2011': HmdaDataFile('hmda_2011_oh_originated-records_codes.zip', '245688', '8.63 MB'), '2010': HmdaDataFile('hmda_2010_oh_originated-records_codes.zip', '283698', '9.88 MB'), '2013': HmdaDataFile('hmda_2013_oh_originated-records_codes.zip', '306698', '10.96 MB'), '2012': HmdaDataFile('hmda_2012_oh_originated-records_codes.zip', '336141', '11.68 MB') } } }, 'ut': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_ut_first-lien-owner-occupied-1-4-family-records_labels.zip', '106374', '4.72 MB'), '2007': HmdaDataFile('hmda_2007_ut_first-lien-owner-occupied-1-4-family-records_labels.zip', '94558', '4.04 MB'), '2017': HmdaDataFile('hmda_2017_ut_first-lien-owner-occupied-1-4-family-records_labels.zip', '87920', '2.62 MB'), '2015': HmdaDataFile('hmda_2015_ut_first-lien-owner-occupied-1-4-family-records_labels.zip', '88686', '4.42 MB'), '2014': HmdaDataFile('hmda_2014_ut_first-lien-owner-occupied-1-4-family-records_labels.zip', '62864', '2.8 MB'), '2008': HmdaDataFile('hmda_2008_ut_first-lien-owner-occupied-1-4-family-records_labels.zip', '83133', '3.43 MB'), '2009': HmdaDataFile('hmda_2009_ut_first-lien-owner-occupied-1-4-family-records_labels.zip', '117282', '4.64 MB'), '2011': HmdaDataFile('hmda_2011_ut_first-lien-owner-occupied-1-4-family-records_labels.zip', '66630', '2.88 MB'), '2010': HmdaDataFile('hmda_2010_ut_first-lien-owner-occupied-1-4-family-records_labels.zip', '90322', '3.86 MB'), '2013': HmdaDataFile('hmda_2013_ut_first-lien-owner-occupied-1-4-family-records_labels.zip', '82759', '3.71 MB'), '2012': HmdaDataFile('hmda_2012_ut_first-lien-owner-occupied-1-4-family-records_labels.zip', '108573', '4.87 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_ut_all-records_labels.zip', '227871', '11.21 MB'), '2007': HmdaDataFile('hmda_2007_ut_all-records_labels.zip', '319327', '14.16 MB'), '2017': HmdaDataFile('hmda_2017_ut_all-records_labels.zip', '198425', '6.62 MB'), '2015': HmdaDataFile('hmda_2015_ut_all-records_labels.zip', '192509', '10.37 MB'), '2014': HmdaDataFile('hmda_2014_ut_all-records_labels.zip', '144848', '7.1 MB'), '2008': HmdaDataFile('hmda_2008_ut_all-records_labels.zip', '226654', '9.81 MB'), '2009': HmdaDataFile('hmda_2009_ut_all-records_labels.zip', '279791', '11.41 MB'), '2011': HmdaDataFile('hmda_2011_ut_all-records_labels.zip', '166439', '7.98 MB'), '2010': HmdaDataFile('hmda_2010_ut_all-records_labels.zip', '212181', '10.08 MB'), '2013': HmdaDataFile('hmda_2013_ut_all-records_labels.zip', '192653', '9.53 MB'), '2012': HmdaDataFile('hmda_2012_ut_all-records_labels.zip', '230544', '11.39 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_ut_originated-records_labels.zip', '126325', '5.77 MB'), '2007': HmdaDataFile('hmda_2007_ut_originated-records_labels.zip', '136628', '5.96 MB'), '2017': HmdaDataFile('hmda_2017_ut_originated-records_labels.zip', '108018', '3.29 MB'), '2015': HmdaDataFile('hmda_2015_ut_originated-records_labels.zip', '105929', '5.36 MB'), '2014': HmdaDataFile('hmda_2014_ut_originated-records_labels.zip', '76563', '3.49 MB'), '2008': HmdaDataFile('hmda_2008_ut_originated-records_labels.zip', '98555', '4.16 MB'), '2009': HmdaDataFile('hmda_2009_ut_originated-records_labels.zip', '127680', '5.13 MB'), '2011': HmdaDataFile('hmda_2011_ut_originated-records_labels.zip', '77763', '3.46 MB'), '2010': HmdaDataFile('hmda_2010_ut_originated-records_labels.zip', '101108', '4.4 MB'), '2013': HmdaDataFile('hmda_2013_ut_originated-records_labels.zip', '99424', '4.53 MB'), '2012': HmdaDataFile('hmda_2012_ut_originated-records_labels.zip', '125331', '5.73 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_ut_first-lien-owner-occupied-1-4-family-records_codes.zip', '106374', '3.15 MB'), '2007': HmdaDataFile('hmda_2007_ut_first-lien-owner-occupied-1-4-family-records_codes.zip', '94558', '2.78 MB'), '2017': HmdaDataFile('hmda_2017_ut_first-lien-owner-occupied-1-4-family-records_codes.zip', '87920', '1.85 MB'), '2015': HmdaDataFile('hmda_2015_ut_first-lien-owner-occupied-1-4-family-records_codes.zip', '88686', '3.08 MB'), '2014': HmdaDataFile('hmda_2014_ut_first-lien-owner-occupied-1-4-family-records_codes.zip', '62864', '1.88 MB'), '2008': HmdaDataFile('hmda_2008_ut_first-lien-owner-occupied-1-4-family-records_codes.zip', '83133', '2.4 MB'), '2009': HmdaDataFile('hmda_2009_ut_first-lien-owner-occupied-1-4-family-records_codes.zip', '117282', '3.31 MB'), '2011': HmdaDataFile('hmda_2011_ut_first-lien-owner-occupied-1-4-family-records_codes.zip', '66630', '1.92 MB'), '2010': HmdaDataFile('hmda_2010_ut_first-lien-owner-occupied-1-4-family-records_codes.zip', '90322', '2.56 MB'), '2013': HmdaDataFile('hmda_2013_ut_first-lien-owner-occupied-1-4-family-records_codes.zip', '82759', '2.48 MB'), '2012': HmdaDataFile('hmda_2012_ut_first-lien-owner-occupied-1-4-family-records_codes.zip', '108573', '3.28 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_ut_all-records_codes.zip', '227871', '7.32 MB'), '2007': HmdaDataFile('hmda_2007_ut_all-records_codes.zip', '319327', '9.65 MB'), '2017': HmdaDataFile('hmda_2017_ut_all-records_codes.zip', '198425', '4.41 MB'), '2015': HmdaDataFile('hmda_2015_ut_all-records_codes.zip', '192509', '6.96 MB'), '2014': HmdaDataFile('hmda_2014_ut_all-records_codes.zip', '144848', '4.66 MB'), '2008': HmdaDataFile('hmda_2008_ut_all-records_codes.zip', '226654', '6.76 MB'), '2009': HmdaDataFile('hmda_2009_ut_all-records_codes.zip', '279791', '7.94 MB'), '2011': HmdaDataFile('hmda_2011_ut_all-records_codes.zip', '166439', '5.23 MB'), '2010': HmdaDataFile('hmda_2010_ut_all-records_codes.zip', '212181', '6.6 MB'), '2013': HmdaDataFile('hmda_2013_ut_all-records_codes.zip', '192653', '6.29 MB'), '2012': HmdaDataFile('hmda_2012_ut_all-records_codes.zip', '230544', '7.57 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_ut_originated-records_codes.zip', '126325', '3.86 MB'), '2007': HmdaDataFile('hmda_2007_ut_originated-records_codes.zip', '136628', '4.14 MB'), '2017': HmdaDataFile('hmda_2017_ut_originated-records_codes.zip', '108018', '2.31 MB'), '2015': HmdaDataFile('hmda_2015_ut_originated-records_codes.zip', '105929', '3.72 MB'), '2014': HmdaDataFile('hmda_2014_ut_originated-records_codes.zip', '76563', '2.34 MB'), '2008': HmdaDataFile('hmda_2008_ut_originated-records_codes.zip', '98555', '2.91 MB'), '2009': HmdaDataFile('hmda_2009_ut_originated-records_codes.zip', '127680', '3.64 MB'), '2011': HmdaDataFile('hmda_2011_ut_originated-records_codes.zip', '77763', '2.3 MB'), '2010': HmdaDataFile('hmda_2010_ut_originated-records_codes.zip', '101108', '2.91 MB'), '2013': HmdaDataFile('hmda_2013_ut_originated-records_codes.zip', '99424', '3.03 MB'), '2012': HmdaDataFile('hmda_2012_ut_originated-records_codes.zip', '125331', '3.84 MB') } } }, 'mo': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_mo_first-lien-owner-occupied-1-4-family-records_labels.zip', '139247', '6.75 MB'), '2007': HmdaDataFile('hmda_2007_mo_first-lien-owner-occupied-1-4-family-records_labels.zip', '154268', '7.4 MB'), '2017': HmdaDataFile('hmda_2017_mo_first-lien-owner-occupied-1-4-family-records_labels.zip', '118901', '3.83 MB'), '2015': HmdaDataFile('hmda_2015_mo_first-lien-owner-occupied-1-4-family-records_labels.zip', '121654', '6.63 MB'), '2014': HmdaDataFile('hmda_2014_mo_first-lien-owner-occupied-1-4-family-records_labels.zip', '95718', '4.8 MB'), '2008': HmdaDataFile('hmda_2008_mo_first-lien-owner-occupied-1-4-family-records_labels.zip', '132777', '6.15 MB'), '2009': HmdaDataFile('hmda_2009_mo_first-lien-owner-occupied-1-4-family-records_labels.zip', '186579', '8.07 MB'), '2011': HmdaDataFile('hmda_2011_mo_first-lien-owner-occupied-1-4-family-records_labels.zip', '130134', '6.22 MB'), '2010': HmdaDataFile('hmda_2010_mo_first-lien-owner-occupied-1-4-family-records_labels.zip', '158585', '7.57 MB'), '2013': HmdaDataFile('hmda_2013_mo_first-lien-owner-occupied-1-4-family-records_labels.zip', '146638', '7.2 MB'), '2012': HmdaDataFile('hmda_2012_mo_first-lien-owner-occupied-1-4-family-records_labels.zip', '175614', '8.39 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_mo_all-records_labels.zip', '312237', '16.09 MB'), '2007': HmdaDataFile('hmda_2007_mo_all-records_labels.zip', '531617', '25.33 MB'), '2017': HmdaDataFile('hmda_2017_mo_all-records_labels.zip', '277843', '9.61 MB'), '2015': HmdaDataFile('hmda_2015_mo_all-records_labels.zip', '276661', '16.28 MB'), '2014': HmdaDataFile('hmda_2014_mo_all-records_labels.zip', '232023', '12.42 MB'), '2008': HmdaDataFile('hmda_2008_mo_all-records_labels.zip', '379587', '17.83 MB'), '2009': HmdaDataFile('hmda_2009_mo_all-records_labels.zip', '447918', '19.75 MB'), '2011': HmdaDataFile('hmda_2011_mo_all-records_labels.zip', '309645', '15.9 MB'), '2010': HmdaDataFile('hmda_2010_mo_all-records_labels.zip', '360738', '18.59 MB'), '2013': HmdaDataFile('hmda_2013_mo_all-records_labels.zip', '347186', '18.19 MB'), '2012': HmdaDataFile('hmda_2012_mo_all-records_labels.zip', '384551', '19.69 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_mo_originated-records_labels.zip', '165943', '8.21 MB'), '2007': HmdaDataFile('hmda_2007_mo_originated-records_labels.zip', '218490', '10.7 MB'), '2017': HmdaDataFile('hmda_2017_mo_originated-records_labels.zip', '145419', '4.81 MB'), '2015': HmdaDataFile('hmda_2015_mo_originated-records_labels.zip', '147519', '8.15 MB'), '2014': HmdaDataFile('hmda_2014_mo_originated-records_labels.zip', '120463', '6.22 MB'), '2008': HmdaDataFile('hmda_2008_mo_originated-records_labels.zip', '169405', '8.03 MB'), '2009': HmdaDataFile('hmda_2009_mo_originated-records_labels.zip', '211924', '9.41 MB'), '2011': HmdaDataFile('hmda_2011_mo_originated-records_labels.zip', '154134', '7.55 MB'), '2010': HmdaDataFile('hmda_2010_mo_originated-records_labels.zip', '182546', '8.84 MB'), '2013': HmdaDataFile('hmda_2013_mo_originated-records_labels.zip', '178486', '8.86 MB'), '2012': HmdaDataFile('hmda_2012_mo_originated-records_labels.zip', '204935', '9.93 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_mo_first-lien-owner-occupied-1-4-family-records_codes.zip', '139247', '4.66 MB'), '2007': HmdaDataFile('hmda_2007_mo_first-lien-owner-occupied-1-4-family-records_codes.zip', '154268', '5.21 MB'), '2017': HmdaDataFile('hmda_2017_mo_first-lien-owner-occupied-1-4-family-records_codes.zip', '118901', '2.73 MB'), '2015': HmdaDataFile('hmda_2015_mo_first-lien-owner-occupied-1-4-family-records_codes.zip', '121654', '4.64 MB'), '2014': HmdaDataFile('hmda_2014_mo_first-lien-owner-occupied-1-4-family-records_codes.zip', '95718', '3.31 MB'), '2008': HmdaDataFile('hmda_2008_mo_first-lien-owner-occupied-1-4-family-records_codes.zip', '132777', '4.34 MB'), '2009': HmdaDataFile('hmda_2009_mo_first-lien-owner-occupied-1-4-family-records_codes.zip', '186579', '5.81 MB'), '2011': HmdaDataFile('hmda_2011_mo_first-lien-owner-occupied-1-4-family-records_codes.zip', '130134', '4.23 MB'), '2010': HmdaDataFile('hmda_2010_mo_first-lien-owner-occupied-1-4-family-records_codes.zip', '158585', '5.17 MB'), '2013': HmdaDataFile('hmda_2013_mo_first-lien-owner-occupied-1-4-family-records_codes.zip', '146638', '4.98 MB'), '2012': HmdaDataFile('hmda_2012_mo_first-lien-owner-occupied-1-4-family-records_codes.zip', '175614', '5.75 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_mo_all-records_codes.zip', '312237', '10.71 MB'), '2007': HmdaDataFile('hmda_2007_mo_all-records_codes.zip', '531617', '17.33 MB'), '2017': HmdaDataFile('hmda_2017_mo_all-records_codes.zip', '277843', '6.33 MB'), '2015': HmdaDataFile('hmda_2015_mo_all-records_codes.zip', '276661', '10.94 MB'), '2014': HmdaDataFile('hmda_2014_mo_all-records_codes.zip', '232023', '8.21 MB'), '2008': HmdaDataFile('hmda_2008_mo_all-records_codes.zip', '379587', '12.23 MB'), '2009': HmdaDataFile('hmda_2009_mo_all-records_codes.zip', '447918', '13.74 MB'), '2011': HmdaDataFile('hmda_2011_mo_all-records_codes.zip', '309645', '10.46 MB'), '2010': HmdaDataFile('hmda_2010_mo_all-records_codes.zip', '360738', '12.3 MB'), '2013': HmdaDataFile('hmda_2013_mo_all-records_codes.zip', '347186', '12.14 MB'), '2012': HmdaDataFile('hmda_2012_mo_all-records_codes.zip', '384551', '13.07 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_mo_originated-records_codes.zip', '165943', '5.62 MB'), '2007': HmdaDataFile('hmda_2007_mo_originated-records_codes.zip', '218490', '7.52 MB'), '2017': HmdaDataFile('hmda_2017_mo_originated-records_codes.zip', '145419', '3.37 MB'), '2015': HmdaDataFile('hmda_2015_mo_originated-records_codes.zip', '147519', '5.65 MB'), '2014': HmdaDataFile('hmda_2014_mo_originated-records_codes.zip', '120463', '4.26 MB'), '2008': HmdaDataFile('hmda_2008_mo_originated-records_codes.zip', '169405', '5.64 MB'), '2009': HmdaDataFile('hmda_2009_mo_originated-records_codes.zip', '211924', '6.73 MB'), '2011': HmdaDataFile('hmda_2011_mo_originated-records_codes.zip', '154134', '5.1 MB'), '2010': HmdaDataFile('hmda_2010_mo_originated-records_codes.zip', '182546', '5.99 MB'), '2013': HmdaDataFile('hmda_2013_mo_originated-records_codes.zip', '178486', '6.06 MB'), '2012': HmdaDataFile('hmda_2012_mo_originated-records_codes.zip', '204935', '6.74 MB') } } }, 'mn': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_mn_first-lien-owner-occupied-1-4-family-records_labels.zip', '150929', '7.76 MB'), '2007': HmdaDataFile('hmda_2007_mn_first-lien-owner-occupied-1-4-family-records_labels.zip', '114958', '5.46 MB'), '2017': HmdaDataFile('hmda_2017_mn_first-lien-owner-occupied-1-4-family-records_labels.zip', '127113', '3.8 MB'), '2015': HmdaDataFile('hmda_2015_mn_first-lien-owner-occupied-1-4-family-records_labels.zip', '135112', '7.39 MB'), '2014': HmdaDataFile('hmda_2014_mn_first-lien-owner-occupied-1-4-family-records_labels.zip', '100659', '5.19 MB'), '2008': HmdaDataFile('hmda_2008_mn_first-lien-owner-occupied-1-4-family-records_labels.zip', '101137', '4.61 MB'), '2009': HmdaDataFile('hmda_2009_mn_first-lien-owner-occupied-1-4-family-records_labels.zip', '172464', '7.33 MB'), '2011': HmdaDataFile('hmda_2011_mn_first-lien-owner-occupied-1-4-family-records_labels.zip', '130723', '6.42 MB'), '2010': HmdaDataFile('hmda_2010_mn_first-lien-owner-occupied-1-4-family-records_labels.zip', '155626', '7.58 MB'), '2013': HmdaDataFile('hmda_2013_mn_first-lien-owner-occupied-1-4-family-records_labels.zip', '158942', '7.98 MB'), '2012': HmdaDataFile('hmda_2012_mn_first-lien-owner-occupied-1-4-family-records_labels.zip', '195258', '9.69 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_mn_all-records_labels.zip', '308571', '16.84 MB'), '2007': HmdaDataFile('hmda_2007_mn_all-records_labels.zip', '396721', '18.97 MB'), '2017': HmdaDataFile('hmda_2017_mn_all-records_labels.zip', '269551', '8.68 MB'), '2015': HmdaDataFile('hmda_2015_mn_all-records_labels.zip', '280012', '16.44 MB'), '2014': HmdaDataFile('hmda_2014_mn_all-records_labels.zip', '220146', '12.02 MB'), '2008': HmdaDataFile('hmda_2008_mn_all-records_labels.zip', '272913', '12.87 MB'), '2009': HmdaDataFile('hmda_2009_mn_all-records_labels.zip', '379860', '16.84 MB'), '2011': HmdaDataFile('hmda_2011_mn_all-records_labels.zip', '282982', '14.91 MB'), '2010': HmdaDataFile('hmda_2010_mn_all-records_labels.zip', '332542', '17.42 MB'), '2013': HmdaDataFile('hmda_2013_mn_all-records_labels.zip', '332594', '17.76 MB'), '2012': HmdaDataFile('hmda_2012_mn_all-records_labels.zip', '382934', '20.31 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_mn_originated-records_labels.zip', '176922', '9.23 MB'), '2007': HmdaDataFile('hmda_2007_mn_originated-records_labels.zip', '171217', '8.27 MB'), '2017': HmdaDataFile('hmda_2017_mn_originated-records_labels.zip', '154164', '4.74 MB'), '2015': HmdaDataFile('hmda_2015_mn_originated-records_labels.zip', '160605', '8.94 MB'), '2014': HmdaDataFile('hmda_2014_mn_originated-records_labels.zip', '123374', '6.47 MB'), '2008': HmdaDataFile('hmda_2008_mn_originated-records_labels.zip', '130815', '6.14 MB'), '2009': HmdaDataFile('hmda_2009_mn_originated-records_labels.zip', '195958', '8.53 MB'), '2011': HmdaDataFile('hmda_2011_mn_originated-records_labels.zip', '151782', '7.55 MB'), '2010': HmdaDataFile('hmda_2010_mn_originated-records_labels.zip', '177556', '8.84 MB'), '2013': HmdaDataFile('hmda_2013_mn_originated-records_labels.zip', '187475', '9.52 MB'), '2012': HmdaDataFile('hmda_2012_mn_originated-records_labels.zip', '222116', '11.23 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_mn_first-lien-owner-occupied-1-4-family-records_codes.zip', '150929', '5.39 MB'), '2007': HmdaDataFile('hmda_2007_mn_first-lien-owner-occupied-1-4-family-records_codes.zip', '114958', '3.87 MB'), '2017': HmdaDataFile('hmda_2017_mn_first-lien-owner-occupied-1-4-family-records_codes.zip', '127113', '2.69 MB'), '2015': HmdaDataFile('hmda_2015_mn_first-lien-owner-occupied-1-4-family-records_codes.zip', '135112', '5.14 MB'), '2014': HmdaDataFile('hmda_2014_mn_first-lien-owner-occupied-1-4-family-records_codes.zip', '100659', '3.62 MB'), '2008': HmdaDataFile('hmda_2008_mn_first-lien-owner-occupied-1-4-family-records_codes.zip', '101137', '3.28 MB'), '2009': HmdaDataFile('hmda_2009_mn_first-lien-owner-occupied-1-4-family-records_codes.zip', '172464', '5.3 MB'), '2011': HmdaDataFile('hmda_2011_mn_first-lien-owner-occupied-1-4-family-records_codes.zip', '130723', '4.45 MB'), '2010': HmdaDataFile('hmda_2010_mn_first-lien-owner-occupied-1-4-family-records_codes.zip', '155626', '5.29 MB'), '2013': HmdaDataFile('hmda_2013_mn_first-lien-owner-occupied-1-4-family-records_codes.zip', '158942', '5.58 MB'), '2012': HmdaDataFile('hmda_2012_mn_first-lien-owner-occupied-1-4-family-records_codes.zip', '195258', '6.78 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_mn_all-records_codes.zip', '308571', '11.31 MB'), '2007': HmdaDataFile('hmda_2007_mn_all-records_codes.zip', '396721', '13.04 MB'), '2017': HmdaDataFile('hmda_2017_mn_all-records_codes.zip', '269551', '5.62 MB'), '2015': HmdaDataFile('hmda_2015_mn_all-records_codes.zip', '280012', '10.99 MB'), '2014': HmdaDataFile('hmda_2014_mn_all-records_codes.zip', '220146', '8.1 MB'), '2008': HmdaDataFile('hmda_2008_mn_all-records_codes.zip', '272913', '8.89 MB'), '2009': HmdaDataFile('hmda_2009_mn_all-records_codes.zip', '379860', '11.74 MB'), '2011': HmdaDataFile('hmda_2011_mn_all-records_codes.zip', '282982', '10.01 MB'), '2010': HmdaDataFile('hmda_2010_mn_all-records_codes.zip', '332542', '11.73 MB'), '2013': HmdaDataFile('hmda_2013_mn_all-records_codes.zip', '332594', '12.03 MB'), '2012': HmdaDataFile('hmda_2012_mn_all-records_codes.zip', '382934', '13.81 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_mn_originated-records_codes.zip', '176922', '6.37 MB'), '2007': HmdaDataFile('hmda_2007_mn_originated-records_codes.zip', '171217', '5.84 MB'), '2017': HmdaDataFile('hmda_2017_mn_originated-records_codes.zip', '154164', '3.32 MB'), '2015': HmdaDataFile('hmda_2015_mn_originated-records_codes.zip', '160605', '6.15 MB'), '2014': HmdaDataFile('hmda_2014_mn_originated-records_codes.zip', '123374', '4.48 MB'), '2008': HmdaDataFile('hmda_2008_mn_originated-records_codes.zip', '130815', '4.36 MB'), '2009': HmdaDataFile('hmda_2009_mn_originated-records_codes.zip', '195958', '6.13 MB'), '2011': HmdaDataFile('hmda_2011_mn_originated-records_codes.zip', '151782', '5.2 MB'), '2010': HmdaDataFile('hmda_2010_mn_originated-records_codes.zip', '177556', '6.12 MB'), '2013': HmdaDataFile('hmda_2013_mn_originated-records_codes.zip', '187475', '6.6 MB'), '2012': HmdaDataFile('hmda_2012_mn_originated-records_codes.zip', '222116', '7.82 MB') } } }, 'mi': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_mi_first-lien-owner-occupied-1-4-family-records_labels.zip', '225509', '11.38 MB'), '2007': HmdaDataFile('hmda_2007_mi_first-lien-owner-occupied-1-4-family-records_labels.zip', '202641', '10.01 MB'), '2017': HmdaDataFile('hmda_2017_mi_first-lien-owner-occupied-1-4-family-records_labels.zip', '200696', '6.21 MB'), '2015': HmdaDataFile('hmda_2015_mi_first-lien-owner-occupied-1-4-family-records_labels.zip', '198320', '11.13 MB'), '2014': HmdaDataFile('hmda_2014_mi_first-lien-owner-occupied-1-4-family-records_labels.zip', '162424', '8.1 MB'), '2008': HmdaDataFile('hmda_2008_mi_first-lien-owner-occupied-1-4-family-records_labels.zip', '149102', '7.25 MB'), '2009': HmdaDataFile('hmda_2009_mi_first-lien-owner-occupied-1-4-family-records_labels.zip', '194235', '8.77 MB'), '2011': HmdaDataFile('hmda_2011_mi_first-lien-owner-occupied-1-4-family-records_labels.zip', '168948', '8.4 MB'), '2010': HmdaDataFile('hmda_2010_mi_first-lien-owner-occupied-1-4-family-records_labels.zip', '175445', '8.52 MB'), '2013': HmdaDataFile('hmda_2013_mi_first-lien-owner-occupied-1-4-family-records_labels.zip', '239554', '11.94 MB'), '2012': HmdaDataFile('hmda_2012_mi_first-lien-owner-occupied-1-4-family-records_labels.zip', '274203', '13.44 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_mi_all-records_labels.zip', '470652', '25.31 MB'), '2007': HmdaDataFile('hmda_2007_mi_all-records_labels.zip', '780713', '38.5 MB'), '2017': HmdaDataFile('hmda_2017_mi_all-records_labels.zip', '437181', '14.82 MB'), '2015': HmdaDataFile('hmda_2015_mi_all-records_labels.zip', '424672', '25.71 MB'), '2014': HmdaDataFile('hmda_2014_mi_all-records_labels.zip', '361546', '19.18 MB'), '2008': HmdaDataFile('hmda_2008_mi_all-records_labels.zip', '472702', '23.46 MB'), '2009': HmdaDataFile('hmda_2009_mi_all-records_labels.zip', '504304', '23.62 MB'), '2011': HmdaDataFile('hmda_2011_mi_all-records_labels.zip', '396764', '21.31 MB'), '2010': HmdaDataFile('hmda_2010_mi_all-records_labels.zip', '419300', '22.02 MB'), '2013': HmdaDataFile('hmda_2013_mi_all-records_labels.zip', '521030', '27.85 MB'), '2012': HmdaDataFile('hmda_2012_mi_all-records_labels.zip', '573645', '30.22 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_mi_originated-records_labels.zip', '262757', '13.58 MB'), '2007': HmdaDataFile('hmda_2007_mi_originated-records_labels.zip', '294627', '14.81 MB'), '2017': HmdaDataFile('hmda_2017_mi_originated-records_labels.zip', '241945', '7.74 MB'), '2015': HmdaDataFile('hmda_2015_mi_originated-records_labels.zip', '233520', '13.34 MB'), '2014': HmdaDataFile('hmda_2014_mi_originated-records_labels.zip', '194126', '9.91 MB'), '2008': HmdaDataFile('hmda_2008_mi_originated-records_labels.zip', '191860', '9.52 MB'), '2009': HmdaDataFile('hmda_2009_mi_originated-records_labels.zip', '224166', '10.41 MB'), '2011': HmdaDataFile('hmda_2011_mi_originated-records_labels.zip', '196360', '10.06 MB'), '2010': HmdaDataFile('hmda_2010_mi_originated-records_labels.zip', '202252', '10.19 MB'), '2013': HmdaDataFile('hmda_2013_mi_originated-records_labels.zip', '280253', '14.18 MB'), '2012': HmdaDataFile('hmda_2012_mi_originated-records_labels.zip', '312194', '15.55 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_mi_first-lien-owner-occupied-1-4-family-records_codes.zip', '225509', '7.89 MB'), '2007': HmdaDataFile('hmda_2007_mi_first-lien-owner-occupied-1-4-family-records_codes.zip', '202641', '7.07 MB'), '2017': HmdaDataFile('hmda_2017_mi_first-lien-owner-occupied-1-4-family-records_codes.zip', '200696', '4.39 MB'), '2015': HmdaDataFile('hmda_2015_mi_first-lien-owner-occupied-1-4-family-records_codes.zip', '198320', '7.82 MB'), '2014': HmdaDataFile('hmda_2014_mi_first-lien-owner-occupied-1-4-family-records_codes.zip', '162424', '5.66 MB'), '2008': HmdaDataFile('hmda_2008_mi_first-lien-owner-occupied-1-4-family-records_codes.zip', '149102', '5.08 MB'), '2009': HmdaDataFile('hmda_2009_mi_first-lien-owner-occupied-1-4-family-records_codes.zip', '194235', '6.2 MB'), '2011': HmdaDataFile('hmda_2011_mi_first-lien-owner-occupied-1-4-family-records_codes.zip', '168948', '5.72 MB'), '2010': HmdaDataFile('hmda_2010_mi_first-lien-owner-occupied-1-4-family-records_codes.zip', '175445', '5.8 MB'), '2013': HmdaDataFile('hmda_2013_mi_first-lien-owner-occupied-1-4-family-records_codes.zip', '239554', '8.26 MB'), '2012': HmdaDataFile('hmda_2012_mi_first-lien-owner-occupied-1-4-family-records_codes.zip', '274203', '9.28 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_mi_all-records_codes.zip', '470652', '16.94 MB'), '2007': HmdaDataFile('hmda_2007_mi_all-records_codes.zip', '780713', '26.45 MB'), '2017': HmdaDataFile('hmda_2017_mi_all-records_codes.zip', '437181', '9.61 MB'), '2015': HmdaDataFile('hmda_2015_mi_all-records_codes.zip', '424672', '17.31 MB'), '2014': HmdaDataFile('hmda_2014_mi_all-records_codes.zip', '361546', '12.87 MB'), '2008': HmdaDataFile('hmda_2008_mi_all-records_codes.zip', '472702', '16.04 MB'), '2009': HmdaDataFile('hmda_2009_mi_all-records_codes.zip', '504304', '16.25 MB'), '2011': HmdaDataFile('hmda_2011_mi_all-records_codes.zip', '396764', '14.07 MB'), '2010': HmdaDataFile('hmda_2010_mi_all-records_codes.zip', '419300', '14.52 MB'), '2013': HmdaDataFile('hmda_2013_mi_all-records_codes.zip', '521030', '18.59 MB'), '2012': HmdaDataFile('hmda_2012_mi_all-records_codes.zip', '573645', '20.21 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_mi_originated-records_codes.zip', '262757', '9.39 MB'), '2007': HmdaDataFile('hmda_2007_mi_originated-records_codes.zip', '294627', '10.53 MB'), '2017': HmdaDataFile('hmda_2017_mi_originated-records_codes.zip', '241945', '5.41 MB'), '2015': HmdaDataFile('hmda_2015_mi_originated-records_codes.zip', '233520', '9.29 MB'), '2014': HmdaDataFile('hmda_2014_mi_originated-records_codes.zip', '194126', '6.88 MB'), '2008': HmdaDataFile('hmda_2008_mi_originated-records_codes.zip', '191860', '6.67 MB'), '2009': HmdaDataFile('hmda_2009_mi_originated-records_codes.zip', '224166', '7.37 MB'), '2011': HmdaDataFile('hmda_2011_mi_originated-records_codes.zip', '196360', '6.83 MB'), '2010': HmdaDataFile('hmda_2010_mi_originated-records_codes.zip', '202252', '6.96 MB'), '2013': HmdaDataFile('hmda_2013_mi_originated-records_codes.zip', '280253', '9.73 MB'), '2012': HmdaDataFile('hmda_2012_mi_originated-records_codes.zip', '312194', '10.66 MB') } } }, 'ri': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_ri_first-lien-owner-occupied-1-4-family-records_labels.zip', '22014', '1 MB'), '2007': HmdaDataFile('hmda_2007_ri_first-lien-owner-occupied-1-4-family-records_labels.zip', '24278', '1.09 MB'), '2017': HmdaDataFile('hmda_2017_ri_first-lien-owner-occupied-1-4-family-records_labels.zip', '19545', '600.94 KB'), '2015': HmdaDataFile('hmda_2015_ri_first-lien-owner-occupied-1-4-family-records_labels.zip', '19238', '896.87 KB'), '2014': HmdaDataFile('hmda_2014_ri_first-lien-owner-occupied-1-4-family-records_labels.zip', '14179', '687.6 KB'), '2008': HmdaDataFile('hmda_2008_ri_first-lien-owner-occupied-1-4-family-records_labels.zip', '18140', '802.68 KB'), '2009': HmdaDataFile('hmda_2009_ri_first-lien-owner-occupied-1-4-family-records_labels.zip', '29449', '1.2 MB'), '2011': HmdaDataFile('hmda_2011_ri_first-lien-owner-occupied-1-4-family-records_labels.zip', '20369', '903.7 KB'), '2010': HmdaDataFile('hmda_2010_ri_first-lien-owner-occupied-1-4-family-records_labels.zip', '24263', '1.09 MB'), '2013': HmdaDataFile('hmda_2013_ri_first-lien-owner-occupied-1-4-family-records_labels.zip', '24398', '1.11 MB'), '2012': HmdaDataFile('hmda_2012_ri_first-lien-owner-occupied-1-4-family-records_labels.zip', '28863', '1.3 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_ri_all-records_labels.zip', '49775', '2.45 MB'), '2007': HmdaDataFile('hmda_2007_ri_all-records_labels.zip', '88662', '4.02 MB'), '2017': HmdaDataFile('hmda_2017_ri_all-records_labels.zip', '44038', '1.51 MB'), '2015': HmdaDataFile('hmda_2015_ri_all-records_labels.zip', '43611', '2.22 MB'), '2014': HmdaDataFile('hmda_2014_ri_all-records_labels.zip', '33941', '1.8 MB'), '2008': HmdaDataFile('hmda_2008_ri_all-records_labels.zip', '51710', '2.4 MB'), '2009': HmdaDataFile('hmda_2009_ri_all-records_labels.zip', '64057', '2.81 MB'), '2011': HmdaDataFile('hmda_2011_ri_all-records_labels.zip', '48785', '2.39 MB'), '2010': HmdaDataFile('hmda_2010_ri_all-records_labels.zip', '55842', '2.75 MB'), '2013': HmdaDataFile('hmda_2013_ri_all-records_labels.zip', '52960', '2.62 MB'), '2012': HmdaDataFile('hmda_2012_ri_all-records_labels.zip', '61996', '3.04 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_ri_originated-records_labels.zip', '27005', '1.25 MB'), '2007': HmdaDataFile('hmda_2007_ri_originated-records_labels.zip', '36923', '1.65 MB'), '2017': HmdaDataFile('hmda_2017_ri_originated-records_labels.zip', '24598', '766.74 KB'), '2015': HmdaDataFile('hmda_2015_ri_originated-records_labels.zip', '23923', '1.13 MB'), '2014': HmdaDataFile('hmda_2014_ri_originated-records_labels.zip', '18005', '891.11 KB'), '2008': HmdaDataFile('hmda_2008_ri_originated-records_labels.zip', '23931', '1.07 MB'), '2009': HmdaDataFile('hmda_2009_ri_originated-records_labels.zip', '33549', '1.38 MB'), '2011': HmdaDataFile('hmda_2011_ri_originated-records_labels.zip', '24337', '1.11 MB'), '2010': HmdaDataFile('hmda_2010_ri_originated-records_labels.zip', '28439', '1.3 MB'), '2013': HmdaDataFile('hmda_2013_ri_originated-records_labels.zip', '29485', '1.37 MB'), '2012': HmdaDataFile('hmda_2012_ri_originated-records_labels.zip', '33911', '1.55 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_ri_first-lien-owner-occupied-1-4-family-records_codes.zip', '22014', '662.47 KB'), '2007': HmdaDataFile('hmda_2007_ri_first-lien-owner-occupied-1-4-family-records_codes.zip', '24278', '740.23 KB'), '2017': HmdaDataFile('hmda_2017_ri_first-lien-owner-occupied-1-4-family-records_codes.zip', '19545', '422.08 KB'), '2015': HmdaDataFile('hmda_2015_ri_first-lien-owner-occupied-1-4-family-records_codes.zip', '19238', '594.54 KB'), '2014': HmdaDataFile('hmda_2014_ri_first-lien-owner-occupied-1-4-family-records_codes.zip', '14179', '455.38 KB'), '2008': HmdaDataFile('hmda_2008_ri_first-lien-owner-occupied-1-4-family-records_codes.zip', '18140', '535.59 KB'), '2009': HmdaDataFile('hmda_2009_ri_first-lien-owner-occupied-1-4-family-records_codes.zip', '29449', '820.78 KB'), '2011': HmdaDataFile('hmda_2011_ri_first-lien-owner-occupied-1-4-family-records_codes.zip', '20369', '581.77 KB'), '2010': HmdaDataFile('hmda_2010_ri_first-lien-owner-occupied-1-4-family-records_codes.zip', '24263', '698.2 KB'), '2013': HmdaDataFile('hmda_2013_ri_first-lien-owner-occupied-1-4-family-records_codes.zip', '24398', '725.42 KB'), '2012': HmdaDataFile('hmda_2012_ri_first-lien-owner-occupied-1-4-family-records_codes.zip', '28863', '844.23 KB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_ri_all-records_codes.zip', '49775', '1.57 MB'), '2007': HmdaDataFile('hmda_2007_ri_all-records_codes.zip', '88662', '2.64 MB'), '2017': HmdaDataFile('hmda_2017_ri_all-records_codes.zip', '44038', '997.28 KB'), '2015': HmdaDataFile('hmda_2015_ri_all-records_codes.zip', '43611', '1.42 MB'), '2014': HmdaDataFile('hmda_2014_ri_all-records_codes.zip', '33941', '1.14 MB'), '2008': HmdaDataFile('hmda_2008_ri_all-records_codes.zip', '51710', '1.58 MB'), '2009': HmdaDataFile('hmda_2009_ri_all-records_codes.zip', '64057', '1.89 MB'), '2011': HmdaDataFile('hmda_2011_ri_all-records_codes.zip', '48785', '1.49 MB'), '2010': HmdaDataFile('hmda_2010_ri_all-records_codes.zip', '55842', '1.73 MB'), '2013': HmdaDataFile('hmda_2013_ri_all-records_codes.zip', '52960', '1.66 MB'), '2012': HmdaDataFile('hmda_2012_ri_all-records_codes.zip', '61996', '1.93 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_ri_originated-records_codes.zip', '27005', '818.97 KB'), '2007': HmdaDataFile('hmda_2007_ri_originated-records_codes.zip', '36923', '1.12 MB'), '2017': HmdaDataFile('hmda_2017_ri_originated-records_codes.zip', '24598', '532.25 KB'), '2015': HmdaDataFile('hmda_2015_ri_originated-records_codes.zip', '23923', '744.4 KB'), '2014': HmdaDataFile('hmda_2014_ri_originated-records_codes.zip', '18005', '586.22 KB'), '2008': HmdaDataFile('hmda_2008_ri_originated-records_codes.zip', '23931', '716.77 KB'), '2009': HmdaDataFile('hmda_2009_ri_originated-records_codes.zip', '33549', '938.52 KB'), '2011': HmdaDataFile('hmda_2011_ri_originated-records_codes.zip', '24337', '705.92 KB'), '2010': HmdaDataFile('hmda_2010_ri_originated-records_codes.zip', '28439', '835.63 KB'), '2013': HmdaDataFile('hmda_2013_ri_originated-records_codes.zip', '29485', '889.58 KB'), '2012': HmdaDataFile('hmda_2012_ri_originated-records_codes.zip', '33911', '1.01 MB') } } }, 'ks': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_ks_first-lien-owner-occupied-1-4-family-records_labels.zip', '57549', '2.68 MB'), '2007': HmdaDataFile('hmda_2007_ks_first-lien-owner-occupied-1-4-family-records_labels.zip', '62611', '2.93 MB'), '2017': HmdaDataFile('hmda_2017_ks_first-lien-owner-occupied-1-4-family-records_labels.zip', '50202', '1.64 MB'), '2015': HmdaDataFile('hmda_2015_ks_first-lien-owner-occupied-1-4-family-records_labels.zip', '52685', '2.73 MB'), '2014': HmdaDataFile('hmda_2014_ks_first-lien-owner-occupied-1-4-family-records_labels.zip', '43216', '2.18 MB'), '2008': HmdaDataFile('hmda_2008_ks_first-lien-owner-occupied-1-4-family-records_labels.zip', '56265', '2.59 MB'), '2009': HmdaDataFile('hmda_2009_ks_first-lien-owner-occupied-1-4-family-records_labels.zip', '78703', '3.32 MB'), '2011': HmdaDataFile('hmda_2011_ks_first-lien-owner-occupied-1-4-family-records_labels.zip', '56542', '2.6 MB'), '2010': HmdaDataFile('hmda_2010_ks_first-lien-owner-occupied-1-4-family-records_labels.zip', '67768', '3.07 MB'), '2013': HmdaDataFile('hmda_2013_ks_first-lien-owner-occupied-1-4-family-records_labels.zip', '62047', '2.98 MB'), '2012': HmdaDataFile('hmda_2012_ks_first-lien-owner-occupied-1-4-family-records_labels.zip', '73455', '3.41 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_ks_all-records_labels.zip', '124922', '6.39 MB'), '2007': HmdaDataFile('hmda_2007_ks_all-records_labels.zip', '194856', '9.65 MB'), '2017': HmdaDataFile('hmda_2017_ks_all-records_labels.zip', '107563', '3.99 MB'), '2015': HmdaDataFile('hmda_2015_ks_all-records_labels.zip', '113367', '6.35 MB'), '2014': HmdaDataFile('hmda_2014_ks_all-records_labels.zip', '96245', '5.33 MB'), '2008': HmdaDataFile('hmda_2008_ks_all-records_labels.zip', '146968', '7.27 MB'), '2009': HmdaDataFile('hmda_2009_ks_all-records_labels.zip', '175095', '8.11 MB'), '2011': HmdaDataFile('hmda_2011_ks_all-records_labels.zip', '126214', '6.44 MB'), '2010': HmdaDataFile('hmda_2010_ks_all-records_labels.zip', '149351', '7.61 MB'), '2013': HmdaDataFile('hmda_2013_ks_all-records_labels.zip', '134547', '7.17 MB'), '2012': HmdaDataFile('hmda_2012_ks_all-records_labels.zip', '149627', '7.77 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_ks_originated-records_labels.zip', '69335', '3.31 MB'), '2007': HmdaDataFile('hmda_2007_ks_originated-records_labels.zip', '86578', '4.16 MB'), '2017': HmdaDataFile('hmda_2017_ks_originated-records_labels.zip', '61197', '2.05 MB'), '2015': HmdaDataFile('hmda_2015_ks_originated-records_labels.zip', '63448', '3.34 MB'), '2014': HmdaDataFile('hmda_2014_ks_originated-records_labels.zip', '53984', '2.79 MB'), '2008': HmdaDataFile('hmda_2008_ks_originated-records_labels.zip', '72280', '3.42 MB'), '2009': HmdaDataFile('hmda_2009_ks_originated-records_labels.zip', '90077', '3.93 MB'), '2011': HmdaDataFile('hmda_2011_ks_originated-records_labels.zip', '66876', '3.14 MB'), '2010': HmdaDataFile('hmda_2010_ks_originated-records_labels.zip', '78256', '3.64 MB'), '2013': HmdaDataFile('hmda_2013_ks_originated-records_labels.zip', '74582', '3.64 MB'), '2012': HmdaDataFile('hmda_2012_ks_originated-records_labels.zip', '84924', '4.01 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_ks_first-lien-owner-occupied-1-4-family-records_codes.zip', '57549', '1.78 MB'), '2007': HmdaDataFile('hmda_2007_ks_first-lien-owner-occupied-1-4-family-records_codes.zip', '62611', '2.02 MB'), '2017': HmdaDataFile('hmda_2017_ks_first-lien-owner-occupied-1-4-family-records_codes.zip', '50202', '1.17 MB'), '2015': HmdaDataFile('hmda_2015_ks_first-lien-owner-occupied-1-4-family-records_codes.zip', '52685', '1.86 MB'), '2014': HmdaDataFile('hmda_2014_ks_first-lien-owner-occupied-1-4-family-records_codes.zip', '43216', '1.46 MB'), '2008': HmdaDataFile('hmda_2008_ks_first-lien-owner-occupied-1-4-family-records_codes.zip', '56265', '1.79 MB'), '2009': HmdaDataFile('hmda_2009_ks_first-lien-owner-occupied-1-4-family-records_codes.zip', '78703', '2.28 MB'), '2011': HmdaDataFile('hmda_2011_ks_first-lien-owner-occupied-1-4-family-records_codes.zip', '56542', '1.71 MB'), '2010': HmdaDataFile('hmda_2010_ks_first-lien-owner-occupied-1-4-family-records_codes.zip', '67768', '2.02 MB'), '2013': HmdaDataFile('hmda_2013_ks_first-lien-owner-occupied-1-4-family-records_codes.zip', '62047', '1.98 MB'), '2012': HmdaDataFile('hmda_2012_ks_first-lien-owner-occupied-1-4-family-records_codes.zip', '73455', '2.25 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_ks_all-records_codes.zip', '124922', '4.16 MB'), '2007': HmdaDataFile('hmda_2007_ks_all-records_codes.zip', '194856', '6.5 MB'), '2017': HmdaDataFile('hmda_2017_ks_all-records_codes.zip', '107563', '2.69 MB'), '2015': HmdaDataFile('hmda_2015_ks_all-records_codes.zip', '113367', '4.18 MB'), '2014': HmdaDataFile('hmda_2014_ks_all-records_codes.zip', '96245', '3.49 MB'), '2008': HmdaDataFile('hmda_2008_ks_all-records_codes.zip', '146968', '4.88 MB'), '2009': HmdaDataFile('hmda_2009_ks_all-records_codes.zip', '175095', '5.5 MB'), '2011': HmdaDataFile('hmda_2011_ks_all-records_codes.zip', '126214', '4.14 MB'), '2010': HmdaDataFile('hmda_2010_ks_all-records_codes.zip', '149351', '4.91 MB'), '2013': HmdaDataFile('hmda_2013_ks_all-records_codes.zip', '134547', '4.67 MB'), '2012': HmdaDataFile('hmda_2012_ks_all-records_codes.zip', '149627', '5.06 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_ks_originated-records_codes.zip', '69335', '2.18 MB'), '2007': HmdaDataFile('hmda_2007_ks_originated-records_codes.zip', '86578', '2.85 MB'), '2017': HmdaDataFile('hmda_2017_ks_originated-records_codes.zip', '61197', '1.44 MB'), '2015': HmdaDataFile('hmda_2015_ks_originated-records_codes.zip', '63448', '2.26 MB'), '2014': HmdaDataFile('hmda_2014_ks_originated-records_codes.zip', '53984', '1.86 MB'), '2008': HmdaDataFile('hmda_2008_ks_originated-records_codes.zip', '72280', '2.34 MB'), '2009': HmdaDataFile('hmda_2009_ks_originated-records_codes.zip', '90077', '2.69 MB'), '2011': HmdaDataFile('hmda_2011_ks_originated-records_codes.zip', '66876', '2.05 MB'), '2010': HmdaDataFile('hmda_2010_ks_originated-records_codes.zip', '78256', '2.38 MB'), '2013': HmdaDataFile('hmda_2013_ks_originated-records_codes.zip', '74582', '2.39 MB'), '2012': HmdaDataFile('hmda_2012_ks_originated-records_codes.zip', '84924', '2.62 MB') } } }, 'mt': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_mt_first-lien-owner-occupied-1-4-family-records_labels.zip', '21366', '875.05 KB'), '2007': HmdaDataFile('hmda_2007_mt_first-lien-owner-occupied-1-4-family-records_labels.zip', '20722', '828.42 KB'), '2017': HmdaDataFile('hmda_2017_mt_first-lien-owner-occupied-1-4-family-records_labels.zip', '18983', '556.44 KB'), '2015': HmdaDataFile('hmda_2015_mt_first-lien-owner-occupied-1-4-family-records_labels.zip', '19758', '888.25 KB'), '2014': HmdaDataFile('hmda_2014_mt_first-lien-owner-occupied-1-4-family-records_labels.zip', '15841', '699.12 KB'), '2008': HmdaDataFile('hmda_2008_mt_first-lien-owner-occupied-1-4-family-records_labels.zip', '19303', '733.23 KB'), '2009': HmdaDataFile('hmda_2009_mt_first-lien-owner-occupied-1-4-family-records_labels.zip', '30035', '1.08 MB'), '2011': HmdaDataFile('hmda_2011_mt_first-lien-owner-occupied-1-4-family-records_labels.zip', '18104', '695.47 KB'), '2010': HmdaDataFile('hmda_2010_mt_first-lien-owner-occupied-1-4-family-records_labels.zip', '21854', '845.34 KB'), '2013': HmdaDataFile('hmda_2013_mt_first-lien-owner-occupied-1-4-family-records_labels.zip', '23631', '959.77 KB'), '2012': HmdaDataFile('hmda_2012_mt_first-lien-owner-occupied-1-4-family-records_labels.zip', '25225', '1 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_mt_all-records_labels.zip', '50537', '2.27 MB'), '2007': HmdaDataFile('hmda_2007_mt_all-records_labels.zip', '72952', '3 MB'), '2017': HmdaDataFile('hmda_2017_mt_all-records_labels.zip', '45597', '1.44 MB'), '2015': HmdaDataFile('hmda_2015_mt_all-records_labels.zip', '46419', '2.32 MB'), '2014': HmdaDataFile('hmda_2014_mt_all-records_labels.zip', '38476', '1.85 MB'), '2008': HmdaDataFile('hmda_2008_mt_all-records_labels.zip', '55795', '2.26 MB'), '2009': HmdaDataFile('hmda_2009_mt_all-records_labels.zip', '72632', '2.81 MB'), '2011': HmdaDataFile('hmda_2011_mt_all-records_labels.zip', '45730', '1.97 MB'), '2010': HmdaDataFile('hmda_2010_mt_all-records_labels.zip', '54464', '2.34 MB'), '2013': HmdaDataFile('hmda_2013_mt_all-records_labels.zip', '56588', '2.52 MB'), '2012': HmdaDataFile('hmda_2012_mt_all-records_labels.zip', '57320', '2.52 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_mt_originated-records_labels.zip', '26863', '1.12 MB'), '2007': HmdaDataFile('hmda_2007_mt_originated-records_labels.zip', '31811', '1.27 MB'), '2017': HmdaDataFile('hmda_2017_mt_originated-records_labels.zip', '24577', '727.45 KB'), '2015': HmdaDataFile('hmda_2015_mt_originated-records_labels.zip', '25376', '1.17 MB'), '2014': HmdaDataFile('hmda_2014_mt_originated-records_labels.zip', '21159', '958.54 KB'), '2008': HmdaDataFile('hmda_2008_mt_originated-records_labels.zip', '26278', '1.02 MB'), '2009': HmdaDataFile('hmda_2009_mt_originated-records_labels.zip', '36202', '1.33 MB'), '2011': HmdaDataFile('hmda_2011_mt_originated-records_labels.zip', '23529', '929.24 KB'), '2010': HmdaDataFile('hmda_2010_mt_originated-records_labels.zip', '27263', '1.08 MB'), '2013': HmdaDataFile('hmda_2013_mt_originated-records_labels.zip', '31007', '1.28 MB'), '2012': HmdaDataFile('hmda_2012_mt_originated-records_labels.zip', '31452', '1.28 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_mt_first-lien-owner-occupied-1-4-family-records_codes.zip', '21366', '564.56 KB'), '2007': HmdaDataFile('hmda_2007_mt_first-lien-owner-occupied-1-4-family-records_codes.zip', '20722', '538.06 KB'), '2017': HmdaDataFile('hmda_2017_mt_first-lien-owner-occupied-1-4-family-records_codes.zip', '18983', '389.92 KB'), '2015': HmdaDataFile('hmda_2015_mt_first-lien-owner-occupied-1-4-family-records_codes.zip', '19758', '575.24 KB'), '2014': HmdaDataFile('hmda_2014_mt_first-lien-owner-occupied-1-4-family-records_codes.zip', '15841', '453.36 KB'), '2008': HmdaDataFile('hmda_2008_mt_first-lien-owner-occupied-1-4-family-records_codes.zip', '19303', '479.86 KB'), '2009': HmdaDataFile('hmda_2009_mt_first-lien-owner-occupied-1-4-family-records_codes.zip', '30035', '726.19 KB'), '2011': HmdaDataFile('hmda_2011_mt_first-lien-owner-occupied-1-4-family-records_codes.zip', '18104', '448.42 KB'), '2010': HmdaDataFile('hmda_2010_mt_first-lien-owner-occupied-1-4-family-records_codes.zip', '21854', '543.67 KB'), '2013': HmdaDataFile('hmda_2013_mt_first-lien-owner-occupied-1-4-family-records_codes.zip', '23631', '616.38 KB'), '2012': HmdaDataFile('hmda_2012_mt_first-lien-owner-occupied-1-4-family-records_codes.zip', '25225', '642.31 KB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_mt_all-records_codes.zip', '50537', '1.41 MB'), '2007': HmdaDataFile('hmda_2007_mt_all-records_codes.zip', '72952', '1.92 MB'), '2017': HmdaDataFile('hmda_2017_mt_all-records_codes.zip', '45597', '947.96 KB'), '2015': HmdaDataFile('hmda_2015_mt_all-records_codes.zip', '46419', '1.45 MB'), '2014': HmdaDataFile('hmda_2014_mt_all-records_codes.zip', '38476', '1.16 MB'), '2008': HmdaDataFile('hmda_2008_mt_all-records_codes.zip', '55795', '1.44 MB'), '2009': HmdaDataFile('hmda_2009_mt_all-records_codes.zip', '72632', '1.84 MB'), '2011': HmdaDataFile('hmda_2011_mt_all-records_codes.zip', '45730', '1.22 MB'), '2010': HmdaDataFile('hmda_2010_mt_all-records_codes.zip', '54464', '1.45 MB'), '2013': HmdaDataFile('hmda_2013_mt_all-records_codes.zip', '56588', '1.56 MB'), '2012': HmdaDataFile('hmda_2012_mt_all-records_codes.zip', '57320', '1.57 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_mt_originated-records_codes.zip', '26863', '722 KB'), '2007': HmdaDataFile('hmda_2007_mt_originated-records_codes.zip', '31811', '828.36 KB'), '2017': HmdaDataFile('hmda_2017_mt_originated-records_codes.zip', '24577', '501.64 KB'), '2015': HmdaDataFile('hmda_2015_mt_originated-records_codes.zip', '25376', '750.19 KB'), '2014': HmdaDataFile('hmda_2014_mt_originated-records_codes.zip', '21159', '615.26 KB'), '2008': HmdaDataFile('hmda_2008_mt_originated-records_codes.zip', '26278', '663.11 KB'), '2009': HmdaDataFile('hmda_2009_mt_originated-records_codes.zip', '36202', '887.48 KB'), '2011': HmdaDataFile('hmda_2011_mt_originated-records_codes.zip', '23529', '592.46 KB'), '2010': HmdaDataFile('hmda_2010_mt_originated-records_codes.zip', '27263', '689.27 KB'), '2013': HmdaDataFile('hmda_2013_mt_originated-records_codes.zip', '31007', '815.5 KB'), '2012': HmdaDataFile('hmda_2012_mt_originated-records_codes.zip', '31452', '815.03 KB') } } }, 'ms': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_ms_first-lien-owner-occupied-1-4-family-records_labels.zip', '37426', '1.74 MB'), '2007': HmdaDataFile('hmda_2007_ms_first-lien-owner-occupied-1-4-family-records_labels.zip', '50509', '2.25 MB'), '2017': HmdaDataFile('hmda_2017_ms_first-lien-owner-occupied-1-4-family-records_labels.zip', '36762', '1.08 MB'), '2015': HmdaDataFile('hmda_2015_ms_first-lien-owner-occupied-1-4-family-records_labels.zip', '33087', '1.71 MB'), '2014': HmdaDataFile('hmda_2014_ms_first-lien-owner-occupied-1-4-family-records_labels.zip', '29718', '1.39 MB'), '2008': HmdaDataFile('hmda_2008_ms_first-lien-owner-occupied-1-4-family-records_labels.zip', '41719', '1.93 MB'), '2009': HmdaDataFile('hmda_2009_ms_first-lien-owner-occupied-1-4-family-records_labels.zip', '46880', '1.96 MB'), '2011': HmdaDataFile('hmda_2011_ms_first-lien-owner-occupied-1-4-family-records_labels.zip', '34477', '1.51 MB'), '2010': HmdaDataFile('hmda_2010_ms_first-lien-owner-occupied-1-4-family-records_labels.zip', '39727', '1.77 MB'), '2013': HmdaDataFile('hmda_2013_ms_first-lien-owner-occupied-1-4-family-records_labels.zip', '40639', '1.88 MB'), '2012': HmdaDataFile('hmda_2012_ms_first-lien-owner-occupied-1-4-family-records_labels.zip', '43832', '1.98 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_ms_all-records_labels.zip', '107199', '5.36 MB'), '2007': HmdaDataFile('hmda_2007_ms_all-records_labels.zip', '173130', '7.83 MB'), '2017': HmdaDataFile('hmda_2017_ms_all-records_labels.zip', '101384', '3.15 MB'), '2015': HmdaDataFile('hmda_2015_ms_all-records_labels.zip', '95532', '5.35 MB'), '2014': HmdaDataFile('hmda_2014_ms_all-records_labels.zip', '89193', '4.45 MB'), '2008': HmdaDataFile('hmda_2008_ms_all-records_labels.zip', '136596', '6.41 MB'), '2009': HmdaDataFile('hmda_2009_ms_all-records_labels.zip', '137988', '6 MB'), '2011': HmdaDataFile('hmda_2011_ms_all-records_labels.zip', '106833', '5.1 MB'), '2010': HmdaDataFile('hmda_2010_ms_all-records_labels.zip', '120079', '5.8 MB'), '2013': HmdaDataFile('hmda_2013_ms_all-records_labels.zip', '115511', '5.75 MB'), '2012': HmdaDataFile('hmda_2012_ms_all-records_labels.zip', '119816', '5.82 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_ms_originated-records_labels.zip', '51684', '2.47 MB'), '2007': HmdaDataFile('hmda_2007_ms_originated-records_labels.zip', '75757', '3.36 MB'), '2017': HmdaDataFile('hmda_2017_ms_originated-records_labels.zip', '51038', '1.5 MB'), '2015': HmdaDataFile('hmda_2015_ms_originated-records_labels.zip', '47435', '2.5 MB'), '2014': HmdaDataFile('hmda_2014_ms_originated-records_labels.zip', '44303', '2.12 MB'), '2008': HmdaDataFile('hmda_2008_ms_originated-records_labels.zip', '63435', '2.92 MB'), '2009': HmdaDataFile('hmda_2009_ms_originated-records_labels.zip', '64926', '2.75 MB'), '2011': HmdaDataFile('hmda_2011_ms_originated-records_labels.zip', '49962', '2.26 MB'), '2010': HmdaDataFile('hmda_2010_ms_originated-records_labels.zip', '55509', '2.53 MB'), '2013': HmdaDataFile('hmda_2013_ms_originated-records_labels.zip', '57688', '2.73 MB'), '2012': HmdaDataFile('hmda_2012_ms_originated-records_labels.zip', '59972', '2.76 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_ms_first-lien-owner-occupied-1-4-family-records_codes.zip', '37426', '1.15 MB'), '2007': HmdaDataFile('hmda_2007_ms_first-lien-owner-occupied-1-4-family-records_codes.zip', '50509', '1.5 MB'), '2017': HmdaDataFile('hmda_2017_ms_first-lien-owner-occupied-1-4-family-records_codes.zip', '36762', '770.12 KB'), '2015': HmdaDataFile('hmda_2015_ms_first-lien-owner-occupied-1-4-family-records_codes.zip', '33087', '1.14 MB'), '2014': HmdaDataFile('hmda_2014_ms_first-lien-owner-occupied-1-4-family-records_codes.zip', '29718', '914.92 KB'), '2008': HmdaDataFile('hmda_2008_ms_first-lien-owner-occupied-1-4-family-records_codes.zip', '41719', '1.3 MB'), '2009': HmdaDataFile('hmda_2009_ms_first-lien-owner-occupied-1-4-family-records_codes.zip', '46880', '1.32 MB'), '2011': HmdaDataFile('hmda_2011_ms_first-lien-owner-occupied-1-4-family-records_codes.zip', '34477', '986.29 KB'), '2010': HmdaDataFile('hmda_2010_ms_first-lien-owner-occupied-1-4-family-records_codes.zip', '39727', '1.16 MB'), '2013': HmdaDataFile('hmda_2013_ms_first-lien-owner-occupied-1-4-family-records_codes.zip', '40639', '1.23 MB'), '2012': HmdaDataFile('hmda_2012_ms_first-lien-owner-occupied-1-4-family-records_codes.zip', '43832', '1.29 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_ms_all-records_codes.zip', '107199', '3.37 MB'), '2007': HmdaDataFile('hmda_2007_ms_all-records_codes.zip', '173130', '5.1 MB'), '2017': HmdaDataFile('hmda_2017_ms_all-records_codes.zip', '101384', '2.07 MB'), '2015': HmdaDataFile('hmda_2015_ms_all-records_codes.zip', '95532', '3.43 MB'), '2014': HmdaDataFile('hmda_2014_ms_all-records_codes.zip', '89193', '2.8 MB'), '2008': HmdaDataFile('hmda_2008_ms_all-records_codes.zip', '136596', '4.22 MB'), '2009': HmdaDataFile('hmda_2009_ms_all-records_codes.zip', '137988', '3.96 MB'), '2011': HmdaDataFile('hmda_2011_ms_all-records_codes.zip', '106833', '3.19 MB'), '2010': HmdaDataFile('hmda_2010_ms_all-records_codes.zip', '120079', '3.65 MB'), '2013': HmdaDataFile('hmda_2013_ms_all-records_codes.zip', '115511', '3.61 MB'), '2012': HmdaDataFile('hmda_2012_ms_all-records_codes.zip', '119816', '3.68 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_ms_originated-records_codes.zip', '51684', '1.61 MB'), '2007': HmdaDataFile('hmda_2007_ms_originated-records_codes.zip', '75757', '2.24 MB'), '2017': HmdaDataFile('hmda_2017_ms_originated-records_codes.zip', '51038', '1.05 MB'), '2015': HmdaDataFile('hmda_2015_ms_originated-records_codes.zip', '47435', '1.65 MB'), '2014': HmdaDataFile('hmda_2014_ms_originated-records_codes.zip', '44303', '1.37 MB'), '2008': HmdaDataFile('hmda_2008_ms_originated-records_codes.zip', '63435', '1.96 MB'), '2009': HmdaDataFile('hmda_2009_ms_originated-records_codes.zip', '64926', '1.84 MB'), '2011': HmdaDataFile('hmda_2011_ms_originated-records_codes.zip', '49962', '1.46 MB'), '2010': HmdaDataFile('hmda_2010_ms_originated-records_codes.zip', '55509', '1.64 MB'), '2013': HmdaDataFile('hmda_2013_ms_originated-records_codes.zip', '57688', '1.76 MB'), '2012': HmdaDataFile('hmda_2012_ms_originated-records_codes.zip', '59972', '1.79 MB') } } }, 'sc': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_sc_first-lien-owner-occupied-1-4-family-records_labels.zip', '108076', '5.05 MB'), '2007': HmdaDataFile('hmda_2007_sc_first-lien-owner-occupied-1-4-family-records_labels.zip', '106873', '4.81 MB'), '2017': HmdaDataFile('hmda_2017_sc_first-lien-owner-occupied-1-4-family-records_labels.zip', '100333', '3.01 MB'), '2015': HmdaDataFile('hmda_2015_sc_first-lien-owner-occupied-1-4-family-records_labels.zip', '92167', '5.02 MB'), '2014': HmdaDataFile('hmda_2014_sc_first-lien-owner-occupied-1-4-family-records_labels.zip', '73174', '3.73 MB'), '2008': HmdaDataFile('hmda_2008_sc_first-lien-owner-occupied-1-4-family-records_labels.zip', '86677', '3.98 MB'), '2009': HmdaDataFile('hmda_2009_sc_first-lien-owner-occupied-1-4-family-records_labels.zip', '110931', '4.77 MB'), '2011': HmdaDataFile('hmda_2011_sc_first-lien-owner-occupied-1-4-family-records_labels.zip', '78145', '3.46 MB'), '2010': HmdaDataFile('hmda_2010_sc_first-lien-owner-occupied-1-4-family-records_labels.zip', '85858', '3.92 MB'), '2013': HmdaDataFile('hmda_2013_sc_first-lien-owner-occupied-1-4-family-records_labels.zip', '100643', '4.76 MB'), '2012': HmdaDataFile('hmda_2012_sc_first-lien-owner-occupied-1-4-family-records_labels.zip', '106107', '5 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_sc_all-records_labels.zip', '257644', '13.17 MB'), '2007': HmdaDataFile('hmda_2007_sc_all-records_labels.zip', '383001', '17.86 MB'), '2017': HmdaDataFile('hmda_2017_sc_all-records_labels.zip', '242772', '8.25 MB'), '2015': HmdaDataFile('hmda_2015_sc_all-records_labels.zip', '225542', '13.41 MB'), '2014': HmdaDataFile('hmda_2014_sc_all-records_labels.zip', '191197', '10.66 MB'), '2008': HmdaDataFile('hmda_2008_sc_all-records_labels.zip', '271908', '13.26 MB'), '2009': HmdaDataFile('hmda_2009_sc_all-records_labels.zip', '291014', '13.32 MB'), '2011': HmdaDataFile('hmda_2011_sc_all-records_labels.zip', '218369', '11.01 MB'), '2010': HmdaDataFile('hmda_2010_sc_all-records_labels.zip', '235957', '12.07 MB'), '2013': HmdaDataFile('hmda_2013_sc_all-records_labels.zip', '259782', '13.73 MB'), '2012': HmdaDataFile('hmda_2012_sc_all-records_labels.zip', '267040', '14.05 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_sc_originated-records_labels.zip', '131134', '6.36 MB'), '2007': HmdaDataFile('hmda_2007_sc_originated-records_labels.zip', '161777', '7.5 MB'), '2017': HmdaDataFile('hmda_2017_sc_originated-records_labels.zip', '123971', '3.87 MB'), '2015': HmdaDataFile('hmda_2015_sc_originated-records_labels.zip', '114336', '6.37 MB'), '2014': HmdaDataFile('hmda_2014_sc_originated-records_labels.zip', '93412', '4.86 MB'), '2008': HmdaDataFile('hmda_2008_sc_originated-records_labels.zip', '118458', '5.61 MB'), '2009': HmdaDataFile('hmda_2009_sc_originated-records_labels.zip', '133057', '5.91 MB'), '2011': HmdaDataFile('hmda_2011_sc_originated-records_labels.zip', '97461', '4.61 MB'), '2010': HmdaDataFile('hmda_2010_sc_originated-records_labels.zip', '105626', '4.87 MB'), '2013': HmdaDataFile('hmda_2013_sc_originated-records_labels.zip', '127479', '6.16 MB'), '2012': HmdaDataFile('hmda_2012_sc_originated-records_labels.zip', '130453', '6.21 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_sc_first-lien-owner-occupied-1-4-family-records_codes.zip', '108076', '3.37 MB'), '2007': HmdaDataFile('hmda_2007_sc_first-lien-owner-occupied-1-4-family-records_codes.zip', '106873', '3.2 MB'), '2017': HmdaDataFile('hmda_2017_sc_first-lien-owner-occupied-1-4-family-records_codes.zip', '100333', '2.11 MB'), '2015': HmdaDataFile('hmda_2015_sc_first-lien-owner-occupied-1-4-family-records_codes.zip', '92167', '3.46 MB'), '2014': HmdaDataFile('hmda_2014_sc_first-lien-owner-occupied-1-4-family-records_codes.zip', '73174', '2.49 MB'), '2008': HmdaDataFile('hmda_2008_sc_first-lien-owner-occupied-1-4-family-records_codes.zip', '86677', '2.67 MB'), '2009': HmdaDataFile('hmda_2009_sc_first-lien-owner-occupied-1-4-family-records_codes.zip', '110931', '3.27 MB'), '2011': HmdaDataFile('hmda_2011_sc_first-lien-owner-occupied-1-4-family-records_codes.zip', '78145', '2.24 MB'), '2010': HmdaDataFile('hmda_2010_sc_first-lien-owner-occupied-1-4-family-records_codes.zip', '85858', '2.58 MB'), '2013': HmdaDataFile('hmda_2013_sc_first-lien-owner-occupied-1-4-family-records_codes.zip', '100643', '3.16 MB'), '2012': HmdaDataFile('hmda_2012_sc_first-lien-owner-occupied-1-4-family-records_codes.zip', '106107', '3.31 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_sc_all-records_codes.zip', '257644', '8.51 MB'), '2007': HmdaDataFile('hmda_2007_sc_all-records_codes.zip', '383001', '11.71 MB'), '2017': HmdaDataFile('hmda_2017_sc_all-records_codes.zip', '242772', '5.31 MB'), '2015': HmdaDataFile('hmda_2015_sc_all-records_codes.zip', '225542', '8.88 MB'), '2014': HmdaDataFile('hmda_2014_sc_all-records_codes.zip', '191197', '6.91 MB'), '2008': HmdaDataFile('hmda_2008_sc_all-records_codes.zip', '271908', '8.77 MB'), '2009': HmdaDataFile('hmda_2009_sc_all-records_codes.zip', '291014', '8.92 MB'), '2011': HmdaDataFile('hmda_2011_sc_all-records_codes.zip', '218369', '6.92 MB'), '2010': HmdaDataFile('hmda_2010_sc_all-records_codes.zip', '235957', '7.67 MB'), '2013': HmdaDataFile('hmda_2013_sc_all-records_codes.zip', '259782', '8.91 MB'), '2012': HmdaDataFile('hmda_2012_sc_all-records_codes.zip', '267040', '9.12 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_sc_originated-records_codes.zip', '131134', '4.24 MB'), '2007': HmdaDataFile('hmda_2007_sc_originated-records_codes.zip', '161777', '5.03 MB'), '2017': HmdaDataFile('hmda_2017_sc_originated-records_codes.zip', '123971', '2.67 MB'), '2015': HmdaDataFile('hmda_2015_sc_originated-records_codes.zip', '114336', '4.36 MB'), '2014': HmdaDataFile('hmda_2014_sc_originated-records_codes.zip', '93412', '3.22 MB'), '2008': HmdaDataFile('hmda_2008_sc_originated-records_codes.zip', '118458', '3.78 MB'), '2009': HmdaDataFile('hmda_2009_sc_originated-records_codes.zip', '133057', '4.05 MB'), '2011': HmdaDataFile('hmda_2011_sc_originated-records_codes.zip', '97461', '2.99 MB'), '2010': HmdaDataFile('hmda_2010_sc_originated-records_codes.zip', '105626', '3.17 MB'), '2013': HmdaDataFile('hmda_2013_sc_originated-records_codes.zip', '127479', '4.06 MB'), '2012': HmdaDataFile('hmda_2012_sc_originated-records_codes.zip', '130453', '4.07 MB') } } }, 'ky': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_ky_first-lien-owner-occupied-1-4-family-records_labels.zip', '81819', '3.99 MB'), '2007': HmdaDataFile('hmda_2007_ky_first-lien-owner-occupied-1-4-family-records_labels.zip', '82043', '3.84 MB'), '2017': HmdaDataFile('hmda_2017_ky_first-lien-owner-occupied-1-4-family-records_labels.zip', '72775', '2.34 MB'), '2015': HmdaDataFile('hmda_2015_ky_first-lien-owner-occupied-1-4-family-records_labels.zip', '71716', '3.98 MB'), '2014': HmdaDataFile('hmda_2014_ky_first-lien-owner-occupied-1-4-family-records_labels.zip', '59329', '3.1 MB'), '2008': HmdaDataFile('hmda_2008_ky_first-lien-owner-occupied-1-4-family-records_labels.zip', '73163', '3.45 MB'), '2009': HmdaDataFile('hmda_2009_ky_first-lien-owner-occupied-1-4-family-records_labels.zip', '103950', '4.54 MB'), '2011': HmdaDataFile('hmda_2011_ky_first-lien-owner-occupied-1-4-family-records_labels.zip', '80580', '3.74 MB'), '2010': HmdaDataFile('hmda_2010_ky_first-lien-owner-occupied-1-4-family-records_labels.zip', '91441', '4.28 MB'), '2013': HmdaDataFile('hmda_2013_ky_first-lien-owner-occupied-1-4-family-records_labels.zip', '89932', '4.39 MB'), '2012': HmdaDataFile('hmda_2012_ky_first-lien-owner-occupied-1-4-family-records_labels.zip', '105634', '5.06 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_ky_all-records_labels.zip', '185587', '10.06 MB'), '2007': HmdaDataFile('hmda_2007_ky_all-records_labels.zip', '285560', '14.05 MB'), '2017': HmdaDataFile('hmda_2017_ky_all-records_labels.zip', '173004', '6.52 MB'), '2015': HmdaDataFile('hmda_2015_ky_all-records_labels.zip', '167714', '10.04 MB'), '2014': HmdaDataFile('hmda_2014_ky_all-records_labels.zip', '149317', '8.6 MB'), '2008': HmdaDataFile('hmda_2008_ky_all-records_labels.zip', '215096', '10.84 MB'), '2009': HmdaDataFile('hmda_2009_ky_all-records_labels.zip', '246427', '11.78 MB'), '2011': HmdaDataFile('hmda_2011_ky_all-records_labels.zip', '203934', '10.77 MB'), '2010': HmdaDataFile('hmda_2010_ky_all-records_labels.zip', '222486', '11.61 MB'), '2013': HmdaDataFile('hmda_2013_ky_all-records_labels.zip', '215281', '11.75 MB'), '2012': HmdaDataFile('hmda_2012_ky_all-records_labels.zip', '239015', '12.85 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_ky_originated-records_labels.zip', '100105', '5.04 MB'), '2007': HmdaDataFile('hmda_2007_ky_originated-records_labels.zip', '121278', '5.84 MB'), '2017': HmdaDataFile('hmda_2017_ky_originated-records_labels.zip', '91096', '3.01 MB'), '2015': HmdaDataFile('hmda_2015_ky_originated-records_labels.zip', '88714', '5.02 MB'), '2014': HmdaDataFile('hmda_2014_ky_originated-records_labels.zip', '76520', '4.06 MB'), '2008': HmdaDataFile('hmda_2008_ky_originated-records_labels.zip', '99394', '4.77 MB'), '2009': HmdaDataFile('hmda_2009_ky_originated-records_labels.zip', '123485', '5.57 MB'), '2011': HmdaDataFile('hmda_2011_ky_originated-records_labels.zip', '98794', '4.7 MB'), '2010': HmdaDataFile('hmda_2010_ky_originated-records_labels.zip', '109716', '5.22 MB'), '2013': HmdaDataFile('hmda_2013_ky_originated-records_labels.zip', '110912', '5.58 MB'), '2012': HmdaDataFile('hmda_2012_ky_originated-records_labels.zip', '125050', '6.13 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_ky_first-lien-owner-occupied-1-4-family-records_codes.zip', '81819', '2.64 MB'), '2007': HmdaDataFile('hmda_2007_ky_first-lien-owner-occupied-1-4-family-records_codes.zip', '82043', '2.59 MB'), '2017': HmdaDataFile('hmda_2017_ky_first-lien-owner-occupied-1-4-family-records_codes.zip', '72775', '1.68 MB'), '2015': HmdaDataFile('hmda_2015_ky_first-lien-owner-occupied-1-4-family-records_codes.zip', '71716', '2.68 MB'), '2014': HmdaDataFile('hmda_2014_ky_first-lien-owner-occupied-1-4-family-records_codes.zip', '59329', '2.06 MB'), '2008': HmdaDataFile('hmda_2008_ky_first-lien-owner-occupied-1-4-family-records_codes.zip', '73163', '2.34 MB'), '2009': HmdaDataFile('hmda_2009_ky_first-lien-owner-occupied-1-4-family-records_codes.zip', '103950', '3.13 MB'), '2011': HmdaDataFile('hmda_2011_ky_first-lien-owner-occupied-1-4-family-records_codes.zip', '80580', '2.43 MB'), '2010': HmdaDataFile('hmda_2010_ky_first-lien-owner-occupied-1-4-family-records_codes.zip', '91441', '2.81 MB'), '2013': HmdaDataFile('hmda_2013_ky_first-lien-owner-occupied-1-4-family-records_codes.zip', '89932', '2.91 MB'), '2012': HmdaDataFile('hmda_2012_ky_first-lien-owner-occupied-1-4-family-records_codes.zip', '105634', '3.33 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_ky_all-records_codes.zip', '185587', '6.56 MB'), '2007': HmdaDataFile('hmda_2007_ky_all-records_codes.zip', '285560', '9.35 MB'), '2017': HmdaDataFile('hmda_2017_ky_all-records_codes.zip', '173004', '4.32 MB'), '2015': HmdaDataFile('hmda_2015_ky_all-records_codes.zip', '167714', '6.5 MB'), '2014': HmdaDataFile('hmda_2014_ky_all-records_codes.zip', '149317', '5.56 MB'), '2008': HmdaDataFile('hmda_2008_ky_all-records_codes.zip', '215096', '7.24 MB'), '2009': HmdaDataFile('hmda_2009_ky_all-records_codes.zip', '246427', '7.96 MB'), '2011': HmdaDataFile('hmda_2011_ky_all-records_codes.zip', '203934', '6.87 MB'), '2010': HmdaDataFile('hmda_2010_ky_all-records_codes.zip', '222486', '7.44 MB'), '2013': HmdaDataFile('hmda_2013_ky_all-records_codes.zip', '215281', '7.63 MB'), '2012': HmdaDataFile('hmda_2012_ky_all-records_codes.zip', '239015', '8.34 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_ky_originated-records_codes.zip', '100105', '3.34 MB'), '2007': HmdaDataFile('hmda_2007_ky_originated-records_codes.zip', '121278', '3.97 MB'), '2017': HmdaDataFile('hmda_2017_ky_originated-records_codes.zip', '91096', '2.12 MB'), '2015': HmdaDataFile('hmda_2015_ky_originated-records_codes.zip', '88714', '3.36 MB'), '2014': HmdaDataFile('hmda_2014_ky_originated-records_codes.zip', '76520', '2.67 MB'), '2008': HmdaDataFile('hmda_2008_ky_originated-records_codes.zip', '99394', '3.22 MB'), '2009': HmdaDataFile('hmda_2009_ky_originated-records_codes.zip', '123485', '3.84 MB'), '2011': HmdaDataFile('hmda_2011_ky_originated-records_codes.zip', '98794', '3.04 MB'), '2010': HmdaDataFile('hmda_2010_ky_originated-records_codes.zip', '109716', '3.39 MB'), '2013': HmdaDataFile('hmda_2013_ky_originated-records_codes.zip', '110912', '3.68 MB'), '2012': HmdaDataFile('hmda_2012_ky_originated-records_codes.zip', '125050', '4.01 MB') } } }, 'or': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_or_first-lien-owner-occupied-1-4-family-records_labels.zip', '114167', '5.46 MB'), '2007': HmdaDataFile('hmda_2007_or_first-lien-owner-occupied-1-4-family-records_labels.zip', '101187', '4.59 MB'), '2017': HmdaDataFile('hmda_2017_or_first-lien-owner-occupied-1-4-family-records_labels.zip', '95129', '2.88 MB'), '2015': HmdaDataFile('hmda_2015_or_first-lien-owner-occupied-1-4-family-records_labels.zip', '97022', '5.17 MB'), '2014': HmdaDataFile('hmda_2014_or_first-lien-owner-occupied-1-4-family-records_labels.zip', '69787', '3.39 MB'), '2008': HmdaDataFile('hmda_2008_or_first-lien-owner-occupied-1-4-family-records_labels.zip', '77187', '3.56 MB'), '2009': HmdaDataFile('hmda_2009_or_first-lien-owner-occupied-1-4-family-records_labels.zip', '118063', '5.04 MB'), '2011': HmdaDataFile('hmda_2011_or_first-lien-owner-occupied-1-4-family-records_labels.zip', '80824', '3.93 MB'), '2010': HmdaDataFile('hmda_2010_or_first-lien-owner-occupied-1-4-family-records_labels.zip', '102166', '4.84 MB'), '2013': HmdaDataFile('hmda_2013_or_first-lien-owner-occupied-1-4-family-records_labels.zip', '102103', '4.92 MB'), '2012': HmdaDataFile('hmda_2012_or_first-lien-owner-occupied-1-4-family-records_labels.zip', '119486', '5.65 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_or_all-records_labels.zip', '249739', '12.75 MB'), '2007': HmdaDataFile('hmda_2007_or_all-records_labels.zip', '376732', '17.18 MB'), '2017': HmdaDataFile('hmda_2017_or_all-records_labels.zip', '211344', '7.17 MB'), '2015': HmdaDataFile('hmda_2015_or_all-records_labels.zip', '214365', '12.36 MB'), '2014': HmdaDataFile('hmda_2014_or_all-records_labels.zip', '168582', '8.75 MB'), '2008': HmdaDataFile('hmda_2008_or_all-records_labels.zip', '251125', '12 MB'), '2009': HmdaDataFile('hmda_2009_or_all-records_labels.zip', '300552', '13.38 MB'), '2011': HmdaDataFile('hmda_2011_or_all-records_labels.zip', '204085', '10.92 MB'), '2010': HmdaDataFile('hmda_2010_or_all-records_labels.zip', '244799', '12.74 MB'), '2013': HmdaDataFile('hmda_2013_or_all-records_labels.zip', '240614', '12.69 MB'), '2012': HmdaDataFile('hmda_2012_or_all-records_labels.zip', '269285', '14.02 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_or_originated-records_labels.zip', '136083', '6.58 MB'), '2007': HmdaDataFile('hmda_2007_or_originated-records_labels.zip', '151933', '7.06 MB'), '2017': HmdaDataFile('hmda_2017_or_originated-records_labels.zip', '116700', '3.65 MB'), '2015': HmdaDataFile('hmda_2015_or_originated-records_labels.zip', '117674', '6.39 MB'), '2014': HmdaDataFile('hmda_2014_or_originated-records_labels.zip', '87626', '4.34 MB'), '2008': HmdaDataFile('hmda_2008_or_originated-records_labels.zip', '97998', '4.65 MB'), '2009': HmdaDataFile('hmda_2009_or_originated-records_labels.zip', '134377', '5.88 MB'), '2011': HmdaDataFile('hmda_2011_or_originated-records_labels.zip', '98243', '4.9 MB'), '2010': HmdaDataFile('hmda_2010_or_originated-records_labels.zip', '118373', '5.68 MB'), '2013': HmdaDataFile('hmda_2013_or_originated-records_labels.zip', '128622', '6.28 MB'), '2012': HmdaDataFile('hmda_2012_or_originated-records_labels.zip', '144891', '7.02 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_or_first-lien-owner-occupied-1-4-family-records_codes.zip', '114167', '3.73 MB'), '2007': HmdaDataFile('hmda_2007_or_first-lien-owner-occupied-1-4-family-records_codes.zip', '101187', '3.17 MB'), '2017': HmdaDataFile('hmda_2017_or_first-lien-owner-occupied-1-4-family-records_codes.zip', '95129', '1.97 MB'), '2015': HmdaDataFile('hmda_2015_or_first-lien-owner-occupied-1-4-family-records_codes.zip', '97022', '3.6 MB'), '2014': HmdaDataFile('hmda_2014_or_first-lien-owner-occupied-1-4-family-records_codes.zip', '69787', '2.33 MB'), '2008': HmdaDataFile('hmda_2008_or_first-lien-owner-occupied-1-4-family-records_codes.zip', '77187', '2.47 MB'), '2009': HmdaDataFile('hmda_2009_or_first-lien-owner-occupied-1-4-family-records_codes.zip', '118063', '3.58 MB'), '2011': HmdaDataFile('hmda_2011_or_first-lien-owner-occupied-1-4-family-records_codes.zip', '80824', '2.65 MB'), '2010': HmdaDataFile('hmda_2010_or_first-lien-owner-occupied-1-4-family-records_codes.zip', '102166', '3.28 MB'), '2013': HmdaDataFile('hmda_2013_or_first-lien-owner-occupied-1-4-family-records_codes.zip', '102103', '3.39 MB'), '2012': HmdaDataFile('hmda_2012_or_first-lien-owner-occupied-1-4-family-records_codes.zip', '119486', '3.83 MB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_or_all-records_codes.zip', '249739', '8.44 MB'), '2007': HmdaDataFile('hmda_2007_or_all-records_codes.zip', '376732', '11.64 MB'), '2017': HmdaDataFile('hmda_2017_or_all-records_codes.zip', '211344', '4.61 MB'), '2015': HmdaDataFile('hmda_2015_or_all-records_codes.zip', '214365', '8.29 MB'), '2014': HmdaDataFile('hmda_2014_or_all-records_codes.zip', '168582', '5.8 MB'), '2008': HmdaDataFile('hmda_2008_or_all-records_codes.zip', '251125', '8.16 MB'), '2009': HmdaDataFile('hmda_2009_or_all-records_codes.zip', '300552', '9.29 MB'), '2011': HmdaDataFile('hmda_2011_or_all-records_codes.zip', '204085', '7.17 MB'), '2010': HmdaDataFile('hmda_2010_or_all-records_codes.zip', '244799', '8.44 MB'), '2013': HmdaDataFile('hmda_2013_or_all-records_codes.zip', '240614', '8.5 MB'), '2012': HmdaDataFile('hmda_2012_or_all-records_codes.zip', '269285', '9.32 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_or_originated-records_codes.zip', '136083', '4.48 MB'), '2007': HmdaDataFile('hmda_2007_or_originated-records_codes.zip', '151933', '4.92 MB'), '2017': HmdaDataFile('hmda_2017_or_originated-records_codes.zip', '116700', '2.48 MB'), '2015': HmdaDataFile('hmda_2015_or_originated-records_codes.zip', '117674', '4.43 MB'), '2014': HmdaDataFile('hmda_2014_or_originated-records_codes.zip', '87626', '2.98 MB'), '2008': HmdaDataFile('hmda_2008_or_originated-records_codes.zip', '97998', '3.24 MB'), '2009': HmdaDataFile('hmda_2009_or_originated-records_codes.zip', '134377', '4.19 MB'), '2011': HmdaDataFile('hmda_2011_or_originated-records_codes.zip', '98243', '3.29 MB'), '2010': HmdaDataFile('hmda_2010_or_originated-records_codes.zip', '118373', '3.84 MB'), '2013': HmdaDataFile('hmda_2013_or_originated-records_codes.zip', '128622', '4.29 MB'), '2012': HmdaDataFile('hmda_2012_or_originated-records_codes.zip', '144891', '4.75 MB') } } }, 'sd': { 'labels': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_sd_first-lien-owner-occupied-1-4-family-records_labels.zip', '17608', '715.46 KB'), '2007': HmdaDataFile('hmda_2007_sd_first-lien-owner-occupied-1-4-family-records_labels.zip', '15984', '612.26 KB'), '2017': HmdaDataFile('hmda_2017_sd_first-lien-owner-occupied-1-4-family-records_labels.zip', '15341', '394.73 KB'), '2015': HmdaDataFile('hmda_2015_sd_first-lien-owner-occupied-1-4-family-records_labels.zip', '15835', '706.73 KB'), '2014': HmdaDataFile('hmda_2014_sd_first-lien-owner-occupied-1-4-family-records_labels.zip', '12839', '526.79 KB'), '2008': HmdaDataFile('hmda_2008_sd_first-lien-owner-occupied-1-4-family-records_labels.zip', '16258', '623.5 KB'), '2009': HmdaDataFile('hmda_2009_sd_first-lien-owner-occupied-1-4-family-records_labels.zip', '24417', '866.74 KB'), '2011': HmdaDataFile('hmda_2011_sd_first-lien-owner-occupied-1-4-family-records_labels.zip', '17828', '666.34 KB'), '2010': HmdaDataFile('hmda_2010_sd_first-lien-owner-occupied-1-4-family-records_labels.zip', '20738', '786.61 KB'), '2013': HmdaDataFile('hmda_2013_sd_first-lien-owner-occupied-1-4-family-records_labels.zip', '19523', '775.49 KB'), '2012': HmdaDataFile('hmda_2012_sd_first-lien-owner-occupied-1-4-family-records_labels.zip', '24459', '981.4 KB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_sd_all-records_labels.zip', '37648', '1.67 MB'), '2007': HmdaDataFile('hmda_2007_sd_all-records_labels.zip', '47432', '1.97 MB'), '2017': HmdaDataFile('hmda_2017_sd_all-records_labels.zip', '33167', '980.45 KB'), '2015': HmdaDataFile('hmda_2015_sd_all-records_labels.zip', '35072', '1.72 MB'), '2014': HmdaDataFile('hmda_2014_sd_all-records_labels.zip', '29763', '1.37 MB'), '2008': HmdaDataFile('hmda_2008_sd_all-records_labels.zip', '41213', '1.78 MB'), '2009': HmdaDataFile('hmda_2009_sd_all-records_labels.zip', '53033', '2.13 MB'), '2011': HmdaDataFile('hmda_2011_sd_all-records_labels.zip', '38426', '1.67 MB'), '2010': HmdaDataFile('hmda_2010_sd_all-records_labels.zip', '45150', '1.96 MB'), '2013': HmdaDataFile('hmda_2013_sd_all-records_labels.zip', '43401', '1.95 MB'), '2012': HmdaDataFile('hmda_2012_sd_all-records_labels.zip', '48753', '2.2 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_sd_originated-records_labels.zip', '20937', '887.21 KB'), '2007': HmdaDataFile('hmda_2007_sd_originated-records_labels.zip', '24091', '970 KB'), '2017': HmdaDataFile('hmda_2017_sd_originated-records_labels.zip', '18871', '517.46 KB'), '2015': HmdaDataFile('hmda_2015_sd_originated-records_labels.zip', '19418', '890.97 KB'), '2014': HmdaDataFile('hmda_2014_sd_originated-records_labels.zip', '16136', '696.36 KB'), '2008': HmdaDataFile('hmda_2008_sd_originated-records_labels.zip', '22824', '912.18 KB'), '2009': HmdaDataFile('hmda_2009_sd_originated-records_labels.zip', '29867', '1.11 MB'), '2011': HmdaDataFile('hmda_2011_sd_originated-records_labels.zip', '21818', '862.15 KB'), '2010': HmdaDataFile('hmda_2010_sd_originated-records_labels.zip', '25068', '980.72 KB'), '2013': HmdaDataFile('hmda_2013_sd_originated-records_labels.zip', '23684', '969.63 KB'), '2012': HmdaDataFile('hmda_2012_sd_originated-records_labels.zip', '28651', '1.18 MB') } }, 'codes': { 'first-lien-owner-occupied-1-4-family-records': { '2016': HmdaDataFile('hmda_2016_sd_first-lien-owner-occupied-1-4-family-records_codes.zip', '17608', '452.93 KB'), '2007': HmdaDataFile('hmda_2007_sd_first-lien-owner-occupied-1-4-family-records_codes.zip', '15984', '392.92 KB'), '2017': HmdaDataFile('hmda_2017_sd_first-lien-owner-occupied-1-4-family-records_codes.zip', '15341', '275.01 KB'), '2015': HmdaDataFile('hmda_2015_sd_first-lien-owner-occupied-1-4-family-records_codes.zip', '15835', '442.1 KB'), '2014': HmdaDataFile('hmda_2014_sd_first-lien-owner-occupied-1-4-family-records_codes.zip', '12839', '334.62 KB'), '2008': HmdaDataFile('hmda_2008_sd_first-lien-owner-occupied-1-4-family-records_codes.zip', '16258', '411.49 KB'), '2009': HmdaDataFile('hmda_2009_sd_first-lien-owner-occupied-1-4-family-records_codes.zip', '24417', '586.34 KB'), '2011': HmdaDataFile('hmda_2011_sd_first-lien-owner-occupied-1-4-family-records_codes.zip', '17828', '429.4 KB'), '2010': HmdaDataFile('hmda_2010_sd_first-lien-owner-occupied-1-4-family-records_codes.zip', '20738', '504.37 KB'), '2013': HmdaDataFile('hmda_2013_sd_first-lien-owner-occupied-1-4-family-records_codes.zip', '19523', '492.06 KB'), '2012': HmdaDataFile('hmda_2012_sd_first-lien-owner-occupied-1-4-family-records_codes.zip', '24459', '623.71 KB') }, 'all-records': { '2016': HmdaDataFile('hmda_2016_sd_all-records_codes.zip', '37648', '1.02 MB'), '2007': HmdaDataFile('hmda_2007_sd_all-records_codes.zip', '47432', '1.24 MB'), '2017': HmdaDataFile('hmda_2017_sd_all-records_codes.zip', '33167', '657.41 KB'), '2015': HmdaDataFile('hmda_2015_sd_all-records_codes.zip', '35072', '1.04 MB'), '2014': HmdaDataFile('hmda_2014_sd_all-records_codes.zip', '29763', '835.84 KB'), '2008': HmdaDataFile('hmda_2008_sd_all-records_codes.zip', '41213', '1.13 MB'), '2009': HmdaDataFile('hmda_2009_sd_all-records_codes.zip', '53033', '1.39 MB'), '2011': HmdaDataFile('hmda_2011_sd_all-records_codes.zip', '38426', '1.03 MB'), '2010': HmdaDataFile('hmda_2010_sd_all-records_codes.zip', '45150', '1.22 MB'), '2013': HmdaDataFile('hmda_2013_sd_all-records_codes.zip', '43401', '1.19 MB'), '2012': HmdaDataFile('hmda_2012_sd_all-records_codes.zip', '48753', '1.35 MB') }, 'originated-records': { '2016': HmdaDataFile('hmda_2016_sd_originated-records_codes.zip', '20937', '557.49 KB'), '2007': HmdaDataFile('hmda_2007_sd_originated-records_codes.zip', '24091', '623.6 KB'), '2017': HmdaDataFile('hmda_2017_sd_originated-records_codes.zip', '18871', '357.8 KB'), '2015': HmdaDataFile('hmda_2015_sd_originated-records_codes.zip', '19418', '553.25 KB'), '2014': HmdaDataFile('hmda_2014_sd_originated-records_codes.zip', '16136', '436.32 KB'), '2008': HmdaDataFile('hmda_2008_sd_originated-records_codes.zip', '22824', '595.53 KB'), '2009': HmdaDataFile('hmda_2009_sd_originated-records_codes.zip', '29867', '746.74 KB'), '2011': HmdaDataFile('hmda_2011_sd_originated-records_codes.zip', '21818', '549.43 KB'), '2010': HmdaDataFile('hmda_2010_sd_originated-records_codes.zip', '25068', '623.74 KB'), '2013': HmdaDataFile('hmda_2013_sd_originated-records_codes.zip', '23684', '608.21 KB'), '2012': HmdaDataFile('hmda_2012_sd_originated-records_codes.zip', '28651', '744.18 KB') } } } }
#!/usr/bin/python # CALCULATION OF GC CONTENT (GENES) import os import logging import argparse import fastalib from fileutils import safe_filename def get_option_args(): args_parser = argparse.ArgumentParser( description='Found GC in FASTA files of a directory', ) args_parser.add_argument( 'path', help='Path where look for FASTA files, use . to use current working dir', ) args_parser.add_argument( '--tron', dest='tron', action='store_const', const=True, default=False, help='Show trace of activity (Disabled by default)', ) args = args_parser.parse_args() logging.basicConfig( level=logging.INFO if args.tron else logging.ERROR, format='%(asctime)s %(levelname)s %(message)s', ) return args if __name__ == '__main__': args = get_option_args() genomes = [fn for fn in os.listdir(args.path) if fn.endswith(".faa")] for filename in genomes: if args.tron: logging.info('Processing {}'.format(filename)) full_name = os.path.join(args.path, filename) data = fastalib.read_fasta_file(full_name) if args.tron: logging.info('Generating output files') num_outputs = 0 for key in data: lines = data[key] filename = safe_filename('result_id_{}.fasta'.format(key)) with open(filename, 'w') as f1: for l in lines: f1.write('{}\n'.format(l)) num_outputs += 1 g, a, t, c = fastalib.count_nucleotydes_gatc(lines) filename = safe_filename('result_GC_{}.fasta'.format(key)) with open(filename, 'w') as f2: f2.write('Guanine: {:d}\n'.format(g)) f2.write('Adenine: {:d}\n'.format(a)) f2.write('Thymine: {:d}\n'.format(t)) f2.write('Cytosine: {:d}\n'.format(c)) p = round(float(c+g)/(a+c+g+t), 9) f2.write('CG proportion: {:9f}\n'.format(p)) num_outputs += 1 if args.tron: logging.info('Finished: files processed {}, generated {}'.format( len(genomes), num_outputs, ))
''' BGP Genie Ops Object Outputs for IOSXR. ''' import xml.etree.ElementTree as ET class BgpOutput(object): ############################################################################ # BGP INFO ############################################################################ ShowBgpInstances = { "instance": { "test1": { "num_vrfs": 0, "instance_id": 1, "placed_grp": "bgp2_1", "bgp_id": 333 }, "default": { "num_vrfs": 2, "instance_id": 3, "address_families": [ "ipv4 unicast", "vpnv4 unicast", "ipv6 unicast", "vpnv6 unicast" ], "placed_grp": "bgp4_1", "bgp_id": 100 }, "test": { "num_vrfs": 0, "instance_id": 0, "placed_grp": "v4_routing", "bgp_id": 333 }, "test2": { "num_vrfs": 0, "instance_id": 2, "placed_grp": "bgp3_1", "bgp_id": 333}}} ShowPlacementProgramAll = { 'program': {'rcp_fs': {'instance': {'default': {'active': '0/0/CPU0', 'active_state': 'RUNNING', 'group': 'central-services', 'jid': '1168', 'standby': 'NONE', 'standby_state': 'NOT_SPAWNED'}}}, 'bgp': {'instance': {'default': {'active': '0/0/CPU0', 'active_state': 'RUNNING', 'group': 'v4-routing', 'jid': '1018', 'standby': 'NONE', 'standby_state': 'NOT_SPAWNED'}}}, 'ospf': {'instance': {'1': {'active': '0/0/CPU0', 'active_state': 'RUNNING', 'group': 'v4-routing', 'jid': '1018', 'standby': 'NONE', 'standby_state': 'NOT_SPAWNED'}}}, 'statsd_manager_g': {'instance': {'default': {'active': '0/0/CPU0', 'active_state': 'RUNNING', 'group': 'netmgmt', 'jid': '1141', 'standby': 'NONE', 'standby_state': 'NOT_SPAWNED'}}}, 'pim': {'instance': {'default': {'active': '0/0/CPU0', 'active_state': 'RUNNING', 'group': 'mcast-routing', 'jid': '1158', 'standby': 'NONE', 'standby_state': 'NOT_SPAWNED'}}}, 'ipv6_local': {'instance': {'default': {'active': '0/0/CPU0', 'active_state': 'RUNNING', 'group': 'v6-routing', 'jid': '1156', 'standby': 'NONE', 'standby_state': 'NOT_SPAWNED'}}}} } ShowBgpInstanceSessionGroupConfiguration = { "default": { "peer_session": { "SG": { "remote_as": 333, "fall_over_bfd": True, "password_text": "094F471A1A0A464058", "holdtime": 30, "transport_connection_mode": "active-only", "ebgp_multihop_max_hop": 254, "local_replace_as": True, "ps_minimum_holdtime": 3, "keepalive_interval": 10, "shutdown": True, "local_dual_as": True, "local_no_prepend": True, "ebgp_multihop_enable": True, "suppress_four_byte_as_capability": True, "local_as_as_no": 200, "description": "SG_group", "update_source": 'loopback0', "disable_connected_check": True } } } } ShowBgpInstanceAfGroupConfiguration = { "instance": { "default": { "pp_name": { "af_group": { "address_family": "ipv4 unicast", "default_originate": True, "default_originate_route_map": "allpass", "maximum_prefix_max_prefix_no": 429, "maximum_prefix_threshold": 75, "maximum_prefix_restart": 35, "next_hop_self": True, "route_map_name_in": "allpass", "route_map_name_out": "allpass", "route_reflector_client": True, "send_community": "both", "send_comm_ebgp": True, "send_ext_comm_ebgp": True, "soo": "100:1", "soft_reconfiguration": "inbound always", "allowas_in_as_number": 10, "allowas_in": True, "as_override": True } } } } } # ===================== # Process Detail Output # ===================== # 'all all all' ProcessAllOutput = '''\ RP/0/RSP1/CPU0:PE1#show bgp instance all all all process detail BGP instance 0: 'default' ========================= BGP Process Information: BGP is operating in STANDALONE mode Autonomous System number format: ASPLAIN Autonomous System: 100 Router ID: 10.4.1.1 (manually configured) Default Cluster ID: 10.4.1.1 Active Cluster IDs: 10.4.1.1 Fast external fallover enabled Platform RLIMIT max: 2281701376 bytes Maximum limit for BMP buffer size: 435 MB Default value for BMP buffer size: 326 MB Current limit for BMP buffer size: 326 MB Current utilization of BMP buffer limit: 0 B Neighbor logging is enabled Enforce first AS enabled Default local preference: 100 Default keepalive: 60 Non-stop routing is enabled Update delay: 120 Generic scan interval: 60 BGP Speaker process: 3, Node: node0_RSP1_CPU0 Restart count: 32 Total Nbrs Estab/Cfg Default VRFs: 1 0/3 Non-Default VRFs: 2 0/4 Sent Received Updates: 0 0 Notifications: 0 0 Number Memory Used Attributes: 0 0 AS Paths: 0 0 Communities: 0 0 Large Communities: 0 0 Extended communities: 0 0 PMSI Tunnel attr: 0 0 RIBRNH Tunnel attr: 0 0 PPMP attr: 0 0 Tunnel Encap attr: 0 0 PE distinguisher labels: 0 0 Route Reflector Entries: 0 0 Nexthop Entries: 27 10800 Alloc Free Pool 200: 0 0 Pool 300: 1 0 Pool 400: 0 0 Pool 500: 0 0 Pool 600: 0 0 Pool 700: 0 0 Pool 800: 0 0 Pool 900: 0 0 Pool 1200: 0 0 Pool 2200: 0 0 Pool 3300: 0 0 Pool 4000: 0 0 Pool 4500: 0 0 Pool 5000: 0 0 Pool 20000: 0 0 Message logging pool summary: Alloc Free Pool 100: 0 0 Pool 200: 0 0 Pool 500: 0 0 Pool 2200: 0 0 Pool 4500: 0 0 BMP pool summary: Alloc Free Pool 100: 0 0 Pool 200: 0 0 Pool 300: 0 0 Pool 400: 0 0 Pool 500: 0 0 Pool 600: 0 0 Pool 700: 0 0 Pool 800: 0 0 Pool 900: 0 0 Pool 1200: 0 0 Pool 2200: 0 0 Pool 3300: 0 0 Pool 4000: 0 0 Pool 4500: 0 0 Pool 5500: 0 0 Pool 6500: 0 0 Pool 7500: 0 0 Pool 8500: 0 0 Pool 10000: 0 0 Pool 20000: 0 0 Address family: VPNv4 Unicast Dampening is not enabled Client reflection is not enabled in global config Dynamic MED is Disabled Dynamic MED interval : 10 minutes Dynamic MED Timer : Not Running Dynamic MED Periodic Timer : Not Running Scan interval: 60 Total prefixes scanned: 0 Prefixes scanned per segment: 100000 Number of scan segments: 1 Nexthop resolution minimum prefix-length: 0 (not configured) Main Table Version: 3 Table version synced to RIB: 3 Table version acked by RIB: 0 RIB has not converged: version 0 RIB table prefix-limit reached ? [No], version 0 Permanent Network Unconfigured State: Normal mode. BGP Table Version: 3 Attribute download: Disabled Label retention timer value 5 mins Soft Reconfig Entries: 0 Table bit-field size : 1 Chunk element size : 3 Maximum supported label-stack depth: For IPv4 Nexthop: 0 For IPv6 Nexthop: 0 Last 8 Triggers Ver Tbl Ver Trig TID Label Thread Aug 18 12:00:11.883 3 3 3 Aug 18 12:00:08.887 3 3 18 Aug 18 12:00:08.885 0 3 4 Total triggers: 3 Import Thread Aug 18 12:00:11.883 3 3 3 Aug 18 12:00:08.887 3 3 18 Aug 18 12:00:08.885 0 3 18 Total triggers: 3 RIB Thread Aug 18 12:00:08.887 3 3 8 Aug 18 12:00:08.885 1 3 8 Aug 18 12:00:08.882 1 3 6 Total triggers: 3 Update Thread Aug 18 12:00:11.883 3 3 8 Aug 18 12:00:08.887 3 3 8 Aug 18 12:00:08.887 3 3 18 Total triggers: 3 Allocated Freed Remote Prefixes: 0 0 Remote Paths: 0 0 Remote Path-elems: 0 0 Local Prefixes: 0 0 Local Paths: 0 0 Number Mem Used Remote Prefixes: 0 0 Remote Paths: 0 0 Remote Path-elems: 0 0 Remote RDs: 0 0 Local Prefixes: 0 0 Local Paths: 0 0 Local RDs: 2 160 Total Prefixes: 0 0 Total Paths: 0 0 Total Path-elems: 0 0 Imported Paths: 0 0 Total RDs: 2 160 Address family: VPNv6 Unicast Dampening is not enabled Client reflection is enabled in global config Dynamic MED is Disabled Dynamic MED interval : 10 minutes Dynamic MED Timer : Not Running Dynamic MED Periodic Timer : Not Running Scan interval: 60 Total prefixes scanned: 0 Prefixes scanned per segment: 100000 Number of scan segments: 1 Nexthop resolution minimum prefix-length: 0 (not configured) Main Table Version: 3 Table version synced to RIB: 3 Table version acked by RIB: 0 RIB has not converged: version 0 RIB table prefix-limit reached ? [No], version 0 Permanent Network Unconfigured State: Normal mode. BGP Table Version: 3 Attribute download: Disabled Label retention timer value 5 mins Soft Reconfig Entries: 0 Table bit-field size : 1 Chunk element size : 3 Maximum supported label-stack depth: For IPv4 Nexthop: 0 For IPv6 Nexthop: 0 Last 8 Triggers Ver Tbl Ver Trig TID Label Thread Aug 18 12:00:11.883 3 3 3 Aug 18 12:00:08.890 3 3 19 Aug 18 12:00:08.882 0 3 4 Total triggers: 3 Import Thread Aug 18 12:00:11.883 3 3 3 Aug 18 12:00:08.890 3 3 19 Aug 18 12:00:08.882 0 3 19 Total triggers: 3 RIB Thread Aug 18 12:00:08.890 3 3 8 Aug 18 12:00:08.883 1 3 8 Aug 18 12:00:08.882 1 3 6 Total triggers: 3 Update Thread Aug 18 12:00:11.883 3 3 8 Aug 18 12:00:08.890 3 3 8 Aug 18 12:00:08.890 3 3 19 Total triggers: 3 Allocated Freed Remote Prefixes: 0 0 Remote Paths: 0 0 Remote Path-elems: 0 0 Local Prefixes: 0 0 Local Paths: 0 0 Number Mem Used Remote Prefixes: 0 0 Remote Paths: 0 0 Remote Path-elems: 0 0 Remote RDs: 0 0 Local Prefixes: 0 0 Local Paths: 0 0 Local RDs: 2 160 Total Prefixes: 0 0 Total Paths: 0 0 Total Path-elems: 0 0 Imported Paths: 0 0 Total RDs: 2 160 Address family: IPv4 Unicast Dampening is not enabled Client reflection is enabled in global config Dynamic MED is Disabled Dynamic MED interval : 10 minutes Dynamic MED Timer : Not Running Dynamic MED Periodic Timer : Not Running Scan interval: 60 Total prefixes scanned: 0 Prefixes scanned per segment: 100000 Number of scan segments: 1 Nexthop resolution minimum prefix-length: 0 (not configured) Main Table Version: 2 Table version synced to RIB: 2 Table version acked by RIB: 2 IGP notification: IGPs notified RIB has converged: version 4 RIB table prefix-limit reached ? [No], version 0 Permanent Network Unconfigured State: Normal mode. BGP Table Version: 2 Attribute download: Disabled Label retention timer value 5 mins Soft Reconfig Entries: 0 Table bit-field size : 1 Chunk element size : 3 Last 8 Triggers Ver Tbl Ver Trig TID Label Thread Total triggers: 0 Import Thread Aug 18 12:00:11.883 2 2 3 Aug 18 12:00:08.885 2 2 18 Aug 18 12:00:08.881 0 2 18 Total triggers: 3 RIB Thread Aug 18 12:00:11.883 2 2 3 Aug 18 12:00:08.885 2 2 4 Aug 18 12:00:08.885 2 2 18 Aug 18 12:00:08.882 1 2 4 Aug 18 12:00:08.881 1 2 6 Total triggers: 5 Update Thread Aug 18 12:00:11.883 2 2 3 Aug 18 12:00:08.885 2 2 4 Aug 18 12:00:08.885 2 2 18 Aug 18 12:00:08.884 2 2 18 Aug 18 11:55:08.888 1 2 3 Aug 18 11:55:08.883 1 2 9 Total triggers: 6 Allocated Freed Prefixes: 0 0 Paths: 0 0 Path-elems: 0 0 Number Mem Used Prefixes: 0 0 Paths: 0 0 Path-elems: 0 0 BMP Prefixes: 0 0 BMP Paths: 0 0 Address family: IPv6 Unicast Dampening is not enabled Client reflection is enabled in global config Dynamic MED is Disabled Dynamic MED interval : 10 minutes Dynamic MED Timer : Not Running Dynamic MED Periodic Timer : Not Running Scan interval: 60 Total prefixes scanned: 0 Prefixes scanned per segment: 100000 Number of scan segments: 1 Nexthop resolution minimum prefix-length: 0 (not configured) Main Table Version: 2 Table version synced to RIB: 2 Table version acked by RIB: 2 RIB has converged: version 2 RIB table prefix-limit reached ? [No], version 0 Permanent Network Unconfigured State: Normal mode. BGP Table Version: 2 Attribute download: Disabled Label retention timer value 5 mins Soft Reconfig Entries: 0 Table bit-field size : 1 Chunk element size : 3 Last 8 Triggers Ver Tbl Ver Trig TID Label Thread Total triggers: 0 Import Thread Aug 18 12:00:11.883 2 2 3 Aug 18 12:00:08.886 2 2 19 Aug 18 12:00:08.882 0 2 19 Total triggers: 3 RIB Thread Aug 18 12:00:11.883 2 2 3 Aug 18 12:00:08.886 2 2 19 Aug 18 12:00:08.882 1 2 4 Aug 18 12:00:08.882 1 2 6 Total triggers: 4 Update Thread Aug 18 12:00:11.883 2 2 3 Aug 18 12:00:08.886 2 2 19 Aug 18 12:00:08.886 2 2 19 Aug 18 12:00:08.882 1 2 4 Aug 18 11:55:08.888 1 2 3 Aug 18 11:55:08.883 1 2 9 Total triggers: 6 Allocated Freed Prefixes: 0 0 Paths: 0 0 Path-elems: 0 0 Number Mem Used Prefixes: 0 0 Paths: 0 0 Path-elems: 0 0 BMP Prefixes: 0 0 BMP Paths: 0 0 ''' # 'all vrf all ipv4 unicast' ProcessIpv4Output = '''\ RP/0/RSP1/CPU0:PE1#show bgp instance all vrf all ipv4 unicast process detail BGP instance 0: 'default' ========================= VRF: VRF1 --------- BGP Process Information: VRF VRF1 BGP Route Distinguisher: 200:1 BGP is operating in STANDALONE mode Autonomous System number format: ASPLAIN Autonomous System: 100 Router ID: 10.229.11.11 (manually configured) Default Cluster ID: 10.4.1.1 Active Cluster IDs: 10.4.1.1 Fast external fallover enabled Platform RLIMIT max: 2281701376 bytes Maximum limit for BMP buffer size: 435 MB Default value for BMP buffer size: 326 MB Current limit for BMP buffer size: 326 MB Current utilization of BMP buffer limit: 0 B Neighbor logging is enabled Enforce first AS enabled iBGP to IGP redistribution enabled Default local preference: 100 Default keepalive: 60 Non-stop routing is enabled Update delay: 120 Generic scan interval: 60 BGP Speaker process: 3, Node: node0_RSP1_CPU0 Restart count: 32 Total Nbrs Estab/Cfg Default VRFs: 1 0/3 Non-Default VRFs: 2 0/4 This VRF: 0/2 Sent Received Updates: 0 0 Notifications: 0 0 Number Memory Used Attributes: 0 0 AS Paths: 0 0 Communities: 0 0 Large Communities: 0 0 Extended communities: 0 0 PMSI Tunnel attr: 0 0 RIBRNH Tunnel attr: 0 0 PPMP attr: 0 0 Tunnel Encap attr: 0 0 PE distinguisher labels: 0 0 Route Reflector Entries: 0 0 Nexthop Entries: 27 10800 Alloc Free Pool 200: 0 0 Pool 300: 1 0 Pool 400: 0 0 Pool 500: 0 0 Pool 600: 0 0 Pool 700: 0 0 Pool 800: 0 0 Pool 900: 0 0 Pool 1200: 0 0 Pool 2200: 0 0 Pool 3300: 0 0 Pool 4000: 0 0 Pool 4500: 0 0 Pool 5000: 0 0 Pool 20000: 0 0 Message logging pool summary: Alloc Free Pool 100: 0 0 Pool 200: 0 0 Pool 500: 0 0 Pool 2200: 0 0 Pool 4500: 0 0 BMP pool summary: Alloc Free Pool 100: 0 0 Pool 200: 0 0 Pool 300: 0 0 Pool 400: 0 0 Pool 500: 0 0 Pool 600: 0 0 Pool 700: 0 0 Pool 800: 0 0 Pool 900: 0 0 Pool 1200: 0 0 Pool 2200: 0 0 Pool 3300: 0 0 Pool 4000: 0 0 Pool 4500: 0 0 Pool 5500: 0 0 Pool 6500: 0 0 Pool 7500: 0 0 Pool 8500: 0 0 Pool 10000: 0 0 Pool 20000: 0 0 VRF VRF1 Address family: IPv4 Unicast Dampening is not enabled Client reflection is not enabled in global config Dynamic MED is Disabled Dynamic MED interval : 10 minutes Dynamic MED Timer : Not Running Dynamic MED Periodic Timer : Not Running Scan interval: 60 Total prefixes scanned: 0 Prefixes scanned per segment: 100000 Number of scan segments: 1 Nexthop resolution minimum prefix-length: 0 (not configured) Main Table Version: 3 Table version synced to RIB: 3 Table version acked by RIB: 3 IGP notification: IGPs notified RIB has converged: version 2 RIB table prefix-limit reached ? [No], version 0 Permanent Network Unconfigured State: Normal mode. BGP Table Version: 3 Attribute download: Disabled Label retention timer value 5 mins Soft Reconfig Entries: 0 Table bit-field size : 1 Chunk element size : 3 Last 8 Triggers Ver Tbl Ver Trig TID Label Thread Aug 18 12:00:11.883 3 3 3 Aug 18 12:00:08.887 3 3 18 Aug 18 12:00:08.885 0 3 4 Total triggers: 3 Import Thread Aug 18 12:00:11.883 3 3 3 Aug 18 12:00:08.887 3 3 18 Aug 18 12:00:08.885 0 3 18 Total triggers: 3 RIB Thread Aug 18 12:00:08.887 3 3 8 Aug 18 12:00:08.885 1 3 8 Aug 18 12:00:08.882 1 3 6 Total triggers: 3 Update Thread Aug 18 12:00:11.883 3 3 8 Aug 18 12:00:08.887 3 3 8 Aug 18 12:00:08.887 3 3 18 Total triggers: 3 Allocated Freed Prefixes: 0 0 Paths: 0 0 Path-elems: 0 0 Number Mem Used Prefixes: 0 0 Paths: 0 0 Path-elems: 0 0 BMP Prefixes: 0 0 BMP Paths: 0 0 VRF: VRF2 --------- BGP Process Information: VRF VRF2 BGP Route Distinguisher: 200:2 BGP is operating in STANDALONE mode Autonomous System number format: ASPLAIN Autonomous System: 100 Router ID: 10.229.11.11 (manually configured) Default Cluster ID: 10.4.1.1 Active Cluster IDs: 10.4.1.1 Fast external fallover enabled Platform RLIMIT max: 2281701376 bytes Maximum limit for BMP buffer size: 435 MB Default value for BMP buffer size: 326 MB Current limit for BMP buffer size: 326 MB Current utilization of BMP buffer limit: 0 B Neighbor logging is enabled Enforce first AS enabled iBGP to IGP redistribution enabled Default local preference: 100 Default keepalive: 60 Non-stop routing is enabled Update delay: 120 Generic scan interval: 60 BGP Speaker process: 3, Node: node0_RSP1_CPU0 Restart count: 32 Total Nbrs Estab/Cfg Default VRFs: 1 0/3 Non-Default VRFs: 2 0/4 This VRF: 0/2 Sent Received Updates: 0 0 Notifications: 0 0 Number Memory Used Attributes: 0 0 AS Paths: 0 0 Communities: 0 0 Large Communities: 0 0 Extended communities: 0 0 PMSI Tunnel attr: 0 0 RIBRNH Tunnel attr: 0 0 PPMP attr: 0 0 Tunnel Encap attr: 0 0 PE distinguisher labels: 0 0 Route Reflector Entries: 0 0 Nexthop Entries: 27 10800 Alloc Free Pool 200: 0 0 Pool 300: 1 0 Pool 400: 0 0 Pool 500: 0 0 Pool 600: 0 0 Pool 700: 0 0 Pool 800: 0 0 Pool 900: 0 0 Pool 1200: 0 0 Pool 2200: 0 0 Pool 3300: 0 0 Pool 4000: 0 0 Pool 4500: 0 0 Pool 5000: 0 0 Pool 20000: 0 0 Message logging pool summary: Alloc Free Pool 100: 0 0 Pool 200: 0 0 Pool 500: 0 0 Pool 2200: 0 0 Pool 4500: 0 0 BMP pool summary: Alloc Free Pool 100: 0 0 Pool 200: 0 0 Pool 300: 0 0 Pool 400: 0 0 Pool 500: 0 0 Pool 600: 0 0 Pool 700: 0 0 Pool 800: 0 0 Pool 900: 0 0 Pool 1200: 0 0 Pool 2200: 0 0 Pool 3300: 0 0 Pool 4000: 0 0 Pool 4500: 0 0 Pool 5500: 0 0 Pool 6500: 0 0 Pool 7500: 0 0 Pool 8500: 0 0 Pool 10000: 0 0 Pool 20000: 0 0 VRF VRF2 Address family: IPv4 Unicast Dampening is not enabled Client reflection is not enabled in global config Dynamic MED is Disabled Dynamic MED interval : 10 minutes Dynamic MED Timer : Not Running Dynamic MED Periodic Timer : Not Running Scan interval: 60 Total prefixes scanned: 0 Prefixes scanned per segment: 100000 Number of scan segments: 1 Nexthop resolution minimum prefix-length: 0 (not configured) Main Table Version: 3 Table version synced to RIB: 3 Table version acked by RIB: 3 IGP notification: IGPs notified RIB has converged: version 2 RIB table prefix-limit reached ? [No], version 0 Permanent Network Unconfigured State: Normal mode. BGP Table Version: 3 Attribute download: Disabled Label retention timer value 5 mins Soft Reconfig Entries: 0 Table bit-field size : 1 Chunk element size : 3 Last 8 Triggers Ver Tbl Ver Trig TID Label Thread Aug 18 12:00:11.883 3 3 3 Aug 18 12:00:08.887 3 3 18 Aug 18 12:00:08.885 0 3 4 Total triggers: 3 Import Thread Aug 18 12:00:11.883 3 3 3 Aug 18 12:00:08.887 3 3 18 Aug 18 12:00:08.885 0 3 18 Total triggers: 3 RIB Thread Aug 18 12:00:08.887 3 3 8 Aug 18 12:00:08.885 1 3 8 Aug 18 12:00:08.882 1 3 6 Total triggers: 3 Update Thread Aug 18 12:00:11.883 3 3 8 Aug 18 12:00:08.887 3 3 8 Aug 18 12:00:08.887 3 3 18 Total triggers: 3 Allocated Freed Prefixes: 0 0 Paths: 0 0 Path-elems: 0 0 Number Mem Used Prefixes: 0 0 Paths: 0 0 Path-elems: 0 0 BMP Prefixes: 0 0 BMP Paths: 0 0 ''' # 'all vrf all ipv6 unicast' ProcessIpv6Output = '''\ RP/0/RSP1/CPU0:PE1#show bgp instance all vrf all ipv6 unicast process detail BGP instance 0: 'default' ========================= VRF: VRF1 --------- BGP Process Information: VRF VRF1 BGP Route Distinguisher: 200:1 BGP is operating in STANDALONE mode Autonomous System number format: ASPLAIN Autonomous System: 100 Router ID: 10.229.11.11 (manually configured) Default Cluster ID: 10.4.1.1 Active Cluster IDs: 10.4.1.1 Fast external fallover enabled Platform RLIMIT max: 2281701376 bytes Maximum limit for BMP buffer size: 435 MB Default value for BMP buffer size: 326 MB Current limit for BMP buffer size: 326 MB Current utilization of BMP buffer limit: 0 B Neighbor logging is enabled Enforce first AS enabled iBGP to IGP redistribution enabled Default local preference: 100 Default keepalive: 60 Non-stop routing is enabled Update delay: 120 Generic scan interval: 60 BGP Speaker process: 3, Node: node0_RSP1_CPU0 Restart count: 32 Total Nbrs Estab/Cfg Default VRFs: 1 0/3 Non-Default VRFs: 2 0/4 This VRF: 0/2 Sent Received Updates: 0 0 Notifications: 0 0 Number Memory Used Attributes: 0 0 AS Paths: 0 0 Communities: 0 0 Large Communities: 0 0 Extended communities: 0 0 PMSI Tunnel attr: 0 0 RIBRNH Tunnel attr: 0 0 PPMP attr: 0 0 Tunnel Encap attr: 0 0 PE distinguisher labels: 0 0 Route Reflector Entries: 0 0 Nexthop Entries: 27 10800 Alloc Free Pool 200: 0 0 Pool 300: 1 0 Pool 400: 0 0 Pool 500: 0 0 Pool 600: 0 0 Pool 700: 0 0 Pool 800: 0 0 Pool 900: 0 0 Pool 1200: 0 0 Pool 2200: 0 0 Pool 3300: 0 0 Pool 4000: 0 0 Pool 4500: 0 0 Pool 5000: 0 0 Pool 20000: 0 0 Message logging pool summary: Alloc Free Pool 100: 0 0 Pool 200: 0 0 Pool 500: 0 0 Pool 2200: 0 0 Pool 4500: 0 0 BMP pool summary: Alloc Free Pool 100: 0 0 Pool 200: 0 0 Pool 300: 0 0 Pool 400: 0 0 Pool 500: 0 0 Pool 600: 0 0 Pool 700: 0 0 Pool 800: 0 0 Pool 900: 0 0 Pool 1200: 0 0 Pool 2200: 0 0 Pool 3300: 0 0 Pool 4000: 0 0 Pool 4500: 0 0 Pool 5500: 0 0 Pool 6500: 0 0 Pool 7500: 0 0 Pool 8500: 0 0 Pool 10000: 0 0 Pool 20000: 0 0 VRF VRF1 Address family: IPv6 Unicast Dampening is not enabled Client reflection is not enabled in global config Dynamic MED is Disabled Dynamic MED interval : 10 minutes Dynamic MED Timer : Not Running Dynamic MED Periodic Timer : Not Running Scan interval: 60 Total prefixes scanned: 0 Prefixes scanned per segment: 100000 Number of scan segments: 1 Nexthop resolution minimum prefix-length: 0 (not configured) Main Table Version: 3 Table version synced to RIB: 3 Table version acked by RIB: 3 RIB has converged: version 2 RIB table prefix-limit reached ? [No], version 0 Permanent Network Unconfigured State: Normal mode. BGP Table Version: 3 Attribute download: Disabled Label retention timer value 5 mins Soft Reconfig Entries: 0 Table bit-field size : 1 Chunk element size : 3 Last 8 Triggers Ver Tbl Ver Trig TID Label Thread Aug 18 12:00:11.883 3 3 3 Aug 18 12:00:08.890 3 3 19 Aug 18 12:00:08.882 0 3 4 Total triggers: 3 Import Thread Aug 18 12:00:11.883 3 3 3 Aug 18 12:00:08.890 3 3 19 Aug 18 12:00:08.882 0 3 19 Total triggers: 3 RIB Thread Aug 18 12:00:08.890 3 3 8 Aug 18 12:00:08.883 1 3 8 Aug 18 12:00:08.882 1 3 6 Total triggers: 3 Update Thread Aug 18 12:00:11.883 3 3 8 Aug 18 12:00:08.890 3 3 8 Aug 18 12:00:08.890 3 3 19 Total triggers: 3 Allocated Freed Prefixes: 0 0 Paths: 0 0 Path-elems: 0 0 Number Mem Used Prefixes: 0 0 Paths: 0 0 Path-elems: 0 0 BMP Prefixes: 0 0 BMP Paths: 0 0 VRF: VRF2 --------- BGP Process Information: VRF VRF2 BGP Route Distinguisher: 200:2 BGP is operating in STANDALONE mode Autonomous System number format: ASPLAIN Autonomous System: 100 Router ID: 10.229.11.11 (manually configured) Default Cluster ID: 10.4.1.1 Active Cluster IDs: 10.4.1.1 Fast external fallover enabled Platform RLIMIT max: 2281701376 bytes Maximum limit for BMP buffer size: 435 MB Default value for BMP buffer size: 326 MB Current limit for BMP buffer size: 326 MB Current utilization of BMP buffer limit: 0 B Neighbor logging is enabled Enforce first AS enabled iBGP to IGP redistribution enabled Default local preference: 100 Default keepalive: 60 Non-stop routing is enabled Update delay: 120 Generic scan interval: 60 BGP Speaker process: 3, Node: node0_RSP1_CPU0 Restart count: 32 Total Nbrs Estab/Cfg Default VRFs: 1 0/3 Non-Default VRFs: 2 0/4 This VRF: 0/2 Sent Received Updates: 0 0 Notifications: 0 0 Number Memory Used Attributes: 0 0 AS Paths: 0 0 Communities: 0 0 Large Communities: 0 0 Extended communities: 0 0 PMSI Tunnel attr: 0 0 RIBRNH Tunnel attr: 0 0 PPMP attr: 0 0 Tunnel Encap attr: 0 0 PE distinguisher labels: 0 0 Route Reflector Entries: 0 0 Nexthop Entries: 27 10800 Alloc Free Pool 200: 0 0 Pool 300: 1 0 Pool 400: 0 0 Pool 500: 0 0 Pool 600: 0 0 Pool 700: 0 0 Pool 800: 0 0 Pool 900: 0 0 Pool 1200: 0 0 Pool 2200: 0 0 Pool 3300: 0 0 Pool 4000: 0 0 Pool 4500: 0 0 Pool 5000: 0 0 Pool 20000: 0 0 Message logging pool summary: Alloc Free Pool 100: 0 0 Pool 200: 0 0 Pool 500: 0 0 Pool 2200: 0 0 Pool 4500: 0 0 BMP pool summary: Alloc Free Pool 100: 0 0 Pool 200: 0 0 Pool 300: 0 0 Pool 400: 0 0 Pool 500: 0 0 Pool 600: 0 0 Pool 700: 0 0 Pool 800: 0 0 Pool 900: 0 0 Pool 1200: 0 0 Pool 2200: 0 0 Pool 3300: 0 0 Pool 4000: 0 0 Pool 4500: 0 0 Pool 5500: 0 0 Pool 6500: 0 0 Pool 7500: 0 0 Pool 8500: 0 0 Pool 10000: 0 0 Pool 20000: 0 0 VRF VRF2 Address family: IPv6 Unicast Dampening is not enabled Client reflection is not enabled in global config Dynamic MED is Disabled Dynamic MED interval : 10 minutes Dynamic MED Timer : Not Running Dynamic MED Periodic Timer : Not Running Scan interval: 60 Total prefixes scanned: 0 Prefixes scanned per segment: 100000 Number of scan segments: 1 Nexthop resolution minimum prefix-length: 0 (not configured) Main Table Version: 3 Table version synced to RIB: 3 Table version acked by RIB: 3 RIB has converged: version 2 RIB table prefix-limit reached ? [No], version 0 Permanent Network Unconfigured State: Normal mode. BGP Table Version: 3 Attribute download: Disabled Label retention timer value 5 mins Soft Reconfig Entries: 0 Table bit-field size : 1 Chunk element size : 3 Last 8 Triggers Ver Tbl Ver Trig TID Label Thread Aug 18 12:00:11.883 3 3 3 Aug 18 12:00:08.890 3 3 19 Aug 18 12:00:08.882 0 3 4 Total triggers: 3 Import Thread Aug 18 12:00:11.883 3 3 3 Aug 18 12:00:08.890 3 3 19 Aug 18 12:00:08.882 0 3 19 Total triggers: 3 RIB Thread Aug 18 12:00:08.890 3 3 8 Aug 18 12:00:08.883 1 3 8 Aug 18 12:00:08.882 1 3 6 Total triggers: 3 Update Thread Aug 18 12:00:11.883 3 3 8 Aug 18 12:00:08.890 3 3 8 Aug 18 12:00:08.890 3 3 19 Total triggers: 3 Allocated Freed Prefixes: 0 0 Paths: 0 0 Path-elems: 0 0 Number Mem Used Prefixes: 0 0 Paths: 0 0 Path-elems: 0 0 BMP Prefixes: 0 0 BMP Paths: 0 0 ''' # ======================= # Neighbors Detail Output # ======================= # 'all all all' NeighborsAllOutput = '''\ RP/0/RSP1/CPU0:PE1#show bgp instance all all all neighbors detail BGP instance 0: 'default' ========================= BGP neighbor is 10.16.2.2 Remote AS 100, local AS 100, internal link Remote router ID 0.0.0.0 Speaker ID 3 BGP state = Idle (No route to multi-hop neighbor) NSR State: None Last read 00:00:00, Last read before reset 00:00:00 Hold time is 180, keepalive interval is 60 seconds Configured hold time: 180, keepalive: 60, min acceptable hold time: 3 Last write 00:00:00, attempted 0, written 0 Second last write 00:00:00, attempted 0, written 0 Last write before reset 00:00:00, attempted 0, written 0 Second last write before reset 00:00:00, attempted 0, written 0 Last write pulse rcvd not set last full not set pulse count 0 Last write pulse rcvd before reset 00:00:00 Socket not armed for io, not armed for read, not armed for write Last write thread event before reset 00:00:00, second last 00:00:00 Last KA expiry before reset 00:00:00, second last 00:00:00 Last KA error before reset 00:00:00, KA not sent 00:00:00 Last KA start before reset 00:00:00, second last 00:00:00 Precedence: internet Non-stop routing is enabled Entered Neighbor NSR TCP mode: TCP Initial Sync : --- TCP Initial Sync Phase Two : --- TCP Initial Sync Done : --- Multi-protocol capability not received Message stats: InQ depth: 0, OutQ depth: 0 Last_Sent Sent Last_Rcvd Rcvd Open: --- 0 --- 0 Notification: --- 0 --- 0 Update: --- 0 --- 0 Keepalive: --- 0 --- 0 Route_Refresh: --- 0 --- 0 Total: 0 0 Minimum time between advertisement runs is 0 secs Inbound message logging enabled, 3 messages buffered Outbound message logging enabled, 3 messages buffered For Address Family: VPNv4 Unicast BGP neighbor version 0 Update group: 3.1 Filter-group: 3.0 No Refresh request being processed Route refresh request: received 0, sent 0 0 accepted prefixes, 0 are bestpaths Exact no. of prefixes denied : 0. Cumulative no. of prefixes denied: 0. Prefix advertised 0, suppressed 0, withdrawn 0 Maximum prefixes allowed 2097152 Threshold for warning message 75%, restart interval 0 min AIGP is enabled An EoR was not received during read-only mode Last ack version 1, Last synced ack version 0 Outstanding version objects: current 0, max 0 Additional-paths operation: None Send Multicast Attributes For Address Family: VPNv6 Unicast BGP neighbor version 0 Update group: 3.1 Filter-group: 3.0 No Refresh request being processed Route refresh request: received 0, sent 0 0 accepted prefixes, 0 are bestpaths Exact no. of prefixes denied : 0. Cumulative no. of prefixes denied: 0. Prefix advertised 0, suppressed 0, withdrawn 0 Maximum prefixes allowed 1048576 Threshold for warning message 75%, restart interval 0 min AIGP is enabled An EoR was not received during read-only mode Last ack version 1, Last synced ack version 0 Outstanding version objects: current 0, max 0 Additional-paths operation: None Send Multicast Attributes Connections established 0; dropped 0 Local host: 0.0.0.0, Local port: 0, IF Handle: 0x00000000 Foreign host: 10.16.2.2, Foreign port: 0 Last reset 00:00:00 ''' # 'all vrf all ipv4 unicast' NeighborsIpv4Output = '''\ RP/0/RSP1/CPU0:PE1#show bgp instance all vrf all ipv4 unicast neighbors detail BGP instance 0: 'default' ========================= VRF: VRF1 --------- BGP neighbor is 10.1.5.5, vrf VRF1 Remote AS 200, local AS 100, external link Remote router ID 0.0.0.0 Speaker ID 3 BGP state = Idle (No best local address found) NSR State: None Last read 00:00:00, Last read before reset 00:00:00 Hold time is 180, keepalive interval is 60 seconds Configured hold time: 180, keepalive: 60, min acceptable hold time: 3 Last write 00:00:00, attempted 0, written 0 Second last write 00:00:00, attempted 0, written 0 Last write before reset 00:00:00, attempted 0, written 0 Second last write before reset 00:00:00, attempted 0, written 0 Last write pulse rcvd not set last full not set pulse count 0 Last write pulse rcvd before reset 00:00:00 Socket not armed for io, not armed for read, not armed for write Last write thread event before reset 00:00:00, second last 00:00:00 Last KA expiry before reset 00:00:00, second last 00:00:00 Last KA error before reset 00:00:00, KA not sent 00:00:00 Last KA start before reset 00:00:00, second last 00:00:00 Precedence: internet Non-stop routing is enabled Entered Neighbor NSR TCP mode: TCP Initial Sync : --- TCP Initial Sync Phase Two : --- TCP Initial Sync Done : --- Enforcing first AS is enabled Multi-protocol capability not received Message stats: InQ depth: 0, OutQ depth: 0 Last_Sent Sent Last_Rcvd Rcvd Open: --- 0 --- 0 Notification: --- 0 --- 0 Update: --- 0 --- 0 Keepalive: --- 0 --- 0 Route_Refresh: --- 0 --- 0 Total: 0 0 Minimum time between advertisement runs is 0 secs Inbound message logging enabled, 3 messages buffered Outbound message logging enabled, 3 messages buffered For Address Family: IPv4 Unicast BGP neighbor version 0 Update group: 3.1 Filter-group: 3.0 No Refresh request being processed Route refresh request: received 0, sent 0 Policy for incoming advertisements is all-pass Policy for outgoing advertisements is all-pass 0 accepted prefixes, 0 are bestpaths Exact no. of prefixes denied : 0. Cumulative no. of prefixes denied: 0. Prefix advertised 0, suppressed 0, withdrawn 0 Maximum prefixes allowed 1048576 Threshold for warning message 75%, restart interval 0 min An EoR was not received during read-only mode Last ack version 1, Last synced ack version 0 Outstanding version objects: current 0, max 0 Additional-paths operation: None Advertise routes with local-label via Unicast SAFI Connections established 0; dropped 0 Local host: 0.0.0.0, Local port: 0, IF Handle: 0x00000000 Foreign host: 10.1.5.5, Foreign port: 0 Last reset 00:00:00 External BGP neighbor not directly connected. VRF: VRF2 --------- BGP neighbor is 10.186.5.5, vrf VRF2 Remote AS 200, local AS 100, external link Remote router ID 0.0.0.0 Speaker ID 3 BGP state = Idle (No best local address found) NSR State: None Last read 00:00:00, Last read before reset 00:00:00 Hold time is 180, keepalive interval is 60 seconds Configured hold time: 180, keepalive: 60, min acceptable hold time: 3 Last write 00:00:00, attempted 0, written 0 Second last write 00:00:00, attempted 0, written 0 Last write before reset 00:00:00, attempted 0, written 0 Second last write before reset 00:00:00, attempted 0, written 0 Last write pulse rcvd not set last full not set pulse count 0 Last write pulse rcvd before reset 00:00:00 Socket not armed for io, not armed for read, not armed for write Last write thread event before reset 00:00:00, second last 00:00:00 Last KA expiry before reset 00:00:00, second last 00:00:00 Last KA error before reset 00:00:00, KA not sent 00:00:00 Last KA start before reset 00:00:00, second last 00:00:00 Precedence: internet Non-stop routing is enabled Entered Neighbor NSR TCP mode: TCP Initial Sync : --- TCP Initial Sync Phase Two : --- TCP Initial Sync Done : --- Enforcing first AS is enabled Multi-protocol capability not received Message stats: InQ depth: 0, OutQ depth: 0 Last_Sent Sent Last_Rcvd Rcvd Open: --- 0 --- 0 Notification: --- 0 --- 0 Update: --- 0 --- 0 Keepalive: --- 0 --- 0 Route_Refresh: --- 0 --- 0 Total: 0 0 Minimum time between advertisement runs is 0 secs Inbound message logging enabled, 3 messages buffered Outbound message logging enabled, 3 messages buffered For Address Family: IPv4 Unicast BGP neighbor version 0 Update group: 3.1 Filter-group: 3.0 No Refresh request being processed Inbound soft reconfiguration allowed (override route-refresh) Route refresh request: received 0, sent 0 Policy for incoming advertisements is all-pass Policy for outgoing advertisements is all-pass 0 accepted prefixes, 0 are bestpaths Exact no. of prefixes denied : 0. Cumulative no. of prefixes denied: 0. Prefix advertised 0, suppressed 0, withdrawn 0 Maximum prefixes allowed 495 Threshold for warning message 75%, restart interval 0 min An EoR was not received during read-only mode Last ack version 1, Last synced ack version 0 Outstanding version objects: current 0, max 0 Additional-paths operation: None Advertise routes with local-label via Unicast SAFI Connections established 0; dropped 0 Local host: 0.0.0.0, Local port: 0, IF Handle: 0x00000000 Foreign host: 10.186.5.5, Foreign port: 0 Last reset 00:00:00 External BGP neighbor not directly connected. ''' # 'all vrf all ipv6 unicast' NeighborsIpv6Output = '''\ RP/0/RSP1/CPU0:PE1#show bgp instance all vrf all ipv6 unicast neighbors detail BGP instance 0: 'default' ========================= VRF: VRF1 --------- BGP neighbor is 2001:db8:1:5::5, vrf VRF1 Remote AS 200, local AS 100, external link Remote router ID 0.0.0.0 Speaker ID 3 BGP state = Idle (No best local address found) NSR State: None Last read 00:00:00, Last read before reset 00:00:00 Hold time is 180, keepalive interval is 60 seconds Configured hold time: 180, keepalive: 60, min acceptable hold time: 3 Last write 00:00:00, attempted 0, written 0 Second last write 00:00:00, attempted 0, written 0 Last write before reset 00:00:00, attempted 0, written 0 Second last write before reset 00:00:00, attempted 0, written 0 Last write pulse rcvd not set last full not set pulse count 0 Last write pulse rcvd before reset 00:00:00 Socket not armed for io, not armed for read, not armed for write Last write thread event before reset 00:00:00, second last 00:00:00 Last KA expiry before reset 00:00:00, second last 00:00:00 Last KA error before reset 00:00:00, KA not sent 00:00:00 Last KA start before reset 00:00:00, second last 00:00:00 Precedence: internet Non-stop routing is enabled Entered Neighbor NSR TCP mode: TCP Initial Sync : --- TCP Initial Sync Phase Two : --- TCP Initial Sync Done : --- Enforcing first AS is enabled Multi-protocol capability not received Message stats: InQ depth: 0, OutQ depth: 0 Last_Sent Sent Last_Rcvd Rcvd Open: --- 0 --- 0 Notification: --- 0 --- 0 Update: --- 0 --- 0 Keepalive: --- 0 --- 0 Route_Refresh: --- 0 --- 0 Total: 0 0 Minimum time between advertisement runs is 0 secs Inbound message logging enabled, 3 messages buffered Outbound message logging enabled, 3 messages buffered For Address Family: IPv6 Unicast BGP neighbor version 0 Update group: 3.1 Filter-group: 3.0 No Refresh request being processed Route refresh request: received 0, sent 0 Policy for incoming advertisements is all-pass Policy for outgoing advertisements is all-pass 0 accepted prefixes, 0 are bestpaths Exact no. of prefixes denied : 0. Cumulative no. of prefixes denied: 0. Prefix advertised 0, suppressed 0, withdrawn 0 Maximum prefixes allowed 524288 Threshold for warning message 75%, restart interval 0 min An EoR was not received during read-only mode Last ack version 1, Last synced ack version 0 Outstanding version objects: current 0, max 0 Additional-paths operation: None Advertise routes with local-label via Unicast SAFI Connections established 0; dropped 0 Local host: ::, Local port: 0, IF Handle: 0x00000000 Foreign host: 2001:db8:1:5::5, Foreign port: 0 Last reset 00:00:00 External BGP neighbor not directly connected. VRF: VRF2 --------- BGP neighbor is 2001:db8:20:1:5::5, vrf VRF2 Remote AS 200, local AS 100, external link Remote router ID 0.0.0.0 Speaker ID 3 BGP state = Idle (No best local address found) NSR State: None Last read 00:00:00, Last read before reset 00:00:00 Hold time is 180, keepalive interval is 60 seconds Configured hold time: 180, keepalive: 60, min acceptable hold time: 3 Last write 00:00:00, attempted 0, written 0 Second last write 00:00:00, attempted 0, written 0 Last write before reset 00:00:00, attempted 0, written 0 Second last write before reset 00:00:00, attempted 0, written 0 Last write pulse rcvd not set last full not set pulse count 0 Last write pulse rcvd before reset 00:00:00 Socket not armed for io, not armed for read, not armed for write Last write thread event before reset 00:00:00, second last 00:00:00 Last KA expiry before reset 00:00:00, second last 00:00:00 Last KA error before reset 00:00:00, KA not sent 00:00:00 Last KA start before reset 00:00:00, second last 00:00:00 Precedence: internet Non-stop routing is enabled Entered Neighbor NSR TCP mode: TCP Initial Sync : --- TCP Initial Sync Phase Two : --- TCP Initial Sync Done : --- Enforcing first AS is enabled Multi-protocol capability not received Message stats: InQ depth: 0, OutQ depth: 0 Last_Sent Sent Last_Rcvd Rcvd Open: --- 0 --- 0 Notification: --- 0 --- 0 Update: --- 0 --- 0 Keepalive: --- 0 --- 0 Route_Refresh: --- 0 --- 0 Total: 0 0 Minimum time between advertisement runs is 0 secs Inbound message logging enabled, 3 messages buffered Outbound message logging enabled, 3 messages buffered For Address Family: IPv6 Unicast BGP neighbor version 0 Update group: 3.1 Filter-group: 3.0 No Refresh request being processed Route refresh request: received 0, sent 0 Policy for incoming advertisements is all-pass Policy for outgoing advertisements is all-pass 0 accepted prefixes, 0 are bestpaths Exact no. of prefixes denied : 0. Cumulative no. of prefixes denied: 0. Prefix advertised 0, suppressed 0, withdrawn 0 Maximum prefixes allowed 524288 Threshold for warning message 75%, restart interval 0 min An EoR was not received during read-only mode Last ack version 1, Last synced ack version 0 Outstanding version objects: current 0, max 0 Additional-paths operation: None Advertise routes with local-label via Unicast SAFI Connections established 0; dropped 0 Local host: ::, Local port: 0, IF Handle: 0x00000000 Foreign host: 2001:db8:20:1:5::5, Foreign port: 0 Last reset 00:00:00 External BGP neighbor not directly connected. ''' ############################################################################ # BGP TABLE ############################################################################ # ============= # AllAll Output # ============= # 'all all all' InstanceAllOutput = '''\ BGP instance 0: 'default' ========================= Address Family: VPNv4 Unicast ----------------------------- BGP router identifier 10.4.1.1, local AS number 100 BGP generic scan interval 60 secs Non-stop routing is enabled BGP table state: Active Table ID: 0x0 RD version: 0 BGP main routing table version 47 BGP NSR Initial initsync version 5 (Reached) BGP NSR/ISSU Sync-Group versions 0/0 BGP scan interval 60 secs Status codes: s suppressed, d damped, h history, * valid, > best i - internal, r RIB-failure, S stale, N Nexthop-discard Origin codes: i - IGP, e - EGP, ? - incomplete Network Next Hop Metric LocPrf Weight Path Route Distinguisher: 200:1 (default for vrf VRF1) *> 10.1.1.0/24 10.1.5.5 2219 0 200 33299 51178 47751 {27016} e * 10.186.5.5 2219 0 200 33299 51178 47751 {27016} e *> 10.1.2.0/24 10.1.5.5 2219 0 200 33299 51178 47751 {27016} e * 10.186.5.5 2219 0 200 33299 51178 47751 {27016} e *> 10.1.3.0/24 10.1.5.5 2219 0 200 33299 51178 47751 {27016} e * 10.186.5.5 2219 0 200 33299 51178 47751 {27016} e *> 10.1.4.0/24 10.1.5.5 2219 0 200 33299 51178 47751 {27016} e * 10.186.5.5 2219 0 200 33299 51178 47751 {27016} e *> 10.1.5.0/24 10.1.5.5 2219 0 200 33299 51178 47751 {27016} e * 10.186.5.5 2219 0 200 33299 51178 47751 {27016} e *>i10.205.1.0/24 10.64.4.4 2219 100 0 400 33299 51178 47751 {27016} e *>i10.205.2.0/24 10.64.4.4 2219 100 0 400 33299 51178 47751 {27016} e *>i10.205.3.0/24 10.64.4.4 2219 100 0 400 33299 51178 47751 {27016} e *>i10.205.4.0/24 10.64.4.4 2219 100 0 400 33299 51178 47751 {27016} e *>i10.205.5.0/24 10.64.4.4 2219 100 0 400 33299 51178 47751 {27016} e *>i10.169.1.0/24 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e *>i10.169.2.0/24 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e *>i10.169.3.0/24 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e *>i10.169.4.0/24 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e *>i10.169.5.0/24 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e Route Distinguisher: 200:2 (default for vrf VRF2) *> 10.1.1.0/24 10.186.5.5 2219 0 200 33299 51178 47751 {27016} e *> 10.1.2.0/24 10.186.5.5 2219 0 200 33299 51178 47751 {27016} e *> 10.1.3.0/24 10.186.5.5 2219 0 200 33299 51178 47751 {27016} e *> 10.1.4.0/24 10.186.5.5 2219 0 200 33299 51178 47751 {27016} e *> 10.1.5.0/24 10.186.5.5 2219 0 200 33299 51178 47751 {27016} e *>i10.205.1.0/24 10.64.4.4 2219 100 0 400 33299 51178 47751 {27016} e *>i10.205.2.0/24 10.64.4.4 2219 100 0 400 33299 51178 47751 {27016} e *>i10.205.3.0/24 10.64.4.4 2219 100 0 400 33299 51178 47751 {27016} e *>i10.205.4.0/24 10.64.4.4 2219 100 0 400 33299 51178 47751 {27016} e *>i10.205.5.0/24 10.64.4.4 2219 100 0 400 33299 51178 47751 {27016} e *>i10.169.1.0/24 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e *>i10.169.2.0/24 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e *>i10.169.3.0/24 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e *>i10.169.4.0/24 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e *>i10.169.5.0/24 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e Route Distinguisher: 300:1 *>i10.169.1.0/24 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e * i 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e *>i10.169.2.0/24 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e * i 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e *>i10.169.3.0/24 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e * i 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e *>i10.169.4.0/24 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e * i 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e *>i10.169.5.0/24 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e * i 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e Route Distinguisher: 400:1 *>i10.205.1.0/24 10.64.4.4 2219 100 0 400 33299 51178 47751 {27016} e * i 10.64.4.4 2219 100 0 400 33299 51178 47751 {27016} e *>i10.205.2.0/24 10.64.4.4 2219 100 0 400 33299 51178 47751 {27016} e * i 10.64.4.4 2219 100 0 400 33299 51178 47751 {27016} e *>i10.205.3.0/24 10.64.4.4 2219 100 0 400 33299 51178 47751 {27016} e * i 10.64.4.4 2219 100 0 400 33299 51178 47751 {27016} e *>i10.205.4.0/24 10.64.4.4 2219 100 0 400 33299 51178 47751 {27016} e * i 10.64.4.4 2219 100 0 400 33299 51178 47751 {27016} e *>i10.205.5.0/24 10.64.4.4 2219 100 0 400 33299 51178 47751 {27016} e * i 10.64.4.4 2219 100 0 400 33299 51178 47751 {27016} e Processed 40 prefixes, 55 paths Address Family: VPNv6 Unicast ----------------------------- BGP router identifier 10.4.1.1, local AS number 100 BGP generic scan interval 60 secs Non-stop routing is enabled BGP table state: Active Table ID: 0x0 RD version: 0 BGP main routing table version 32 BGP NSR Initial initsync version 5 (Reached) BGP NSR/ISSU Sync-Group versions 0/0 BGP scan interval 60 secs Status codes: s suppressed, d damped, h history, * valid, > best i - internal, r RIB-failure, S stale, N Nexthop-discard Origin codes: i - IGP, e - EGP, ? - incomplete Network Next Hop Metric LocPrf Weight Path Route Distinguisher: 200:1 (default for vrf VRF1) *> 2001:db8:cdc9:121::/64 2001:db8:1:5::5 2219 0 200 33299 51178 47751 {27016} e * 2001:db8:20:1:5::5 2219 0 200 33299 51178 47751 {27016} e *> 2001:db8:cdc9:144::/64 2001:db8:1:5::5 2219 0 200 33299 51178 47751 {27016} e * 2001:db8:20:1:5::5 2219 0 200 33299 51178 47751 {27016} e *> 2001:db8:cdc9:169::/64 2001:db8:1:5::5 2219 0 200 33299 51178 47751 {27016} e * 2001:db8:20:1:5::5 2219 0 200 33299 51178 47751 {27016} e *> 2001:db8:cdc9:190::/64 2001:db8:1:5::5 2219 0 200 33299 51178 47751 {27016} e * 2001:db8:20:1:5::5 2219 0 200 33299 51178 47751 {27016} e *> 2001:db8:cdc9:1b9::/64 2001:db8:1:5::5 2219 0 200 33299 51178 47751 {27016} e * 2001:db8:20:1:5::5 2219 0 200 33299 51178 47751 {27016} e *>i2001:db8:31b9:121::/64 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e *>i2001:db8:31b9:144::/64 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e *>i2001:db8:31b9:169::/64 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e *>i2001:db8:31b9:190::/64 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e *>i2001:db8:31b9:1b9::/64 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e Route Distinguisher: 200:2 (default for vrf VRF2) *> 2001:db8:cdc9:121::/64 2001:db8:20:1:5::5 2219 0 200 33299 51178 47751 {27016} e *> 2001:db8:cdc9:144::/64 2001:db8:20:1:5::5 2219 0 200 33299 51178 47751 {27016} e *> 2001:db8:cdc9:169::/64 2001:db8:20:1:5::5 2219 0 200 33299 51178 47751 {27016} e *> 2001:db8:cdc9:190::/64 2001:db8:20:1:5::5 2219 0 200 33299 51178 47751 {27016} e *> 2001:db8:cdc9:1b9::/64 2001:db8:20:1:5::5 2219 0 200 33299 51178 47751 {27016} e *>i2001:db8:31b9:121::/64 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e *>i2001:db8:31b9:144::/64 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e *>i2001:db8:31b9:169::/64 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e *>i2001:db8:31b9:190::/64 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e *>i2001:db8:31b9:1b9::/64 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e Route Distinguisher: 300:1 *>i2001:db8:31b9:121::/64 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e * i 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e *>i2001:db8:31b9:144::/64 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e * i 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e *>i2001:db8:31b9:169::/64 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e * i 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e *>i2001:db8:31b9:190::/64 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e * i 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e *>i2001:db8:31b9:1b9::/64 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e * i 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e Processed 25 prefixes, 35 paths ''' # 'all vrf all ipv4 unicast' InstanceIpv4Output = '''\ BGP instance 0: 'default' ========================= VRF: VRF1 --------- BGP VRF VRF1, state: Active BGP Route Distinguisher: 200:1 VRF ID: 0x60000001 BGP router identifier 10.229.11.11, local AS number 100 Non-stop routing is enabled BGP table state: Active Table ID: 0xe0000010 RD version: 47 BGP main routing table version 47 BGP NSR Initial initsync version 5 (Reached) BGP NSR/ISSU Sync-Group versions 0/0 Status codes: s suppressed, d damped, h history, * valid, > best i - internal, r RIB-failure, S stale, N Nexthop-discard Origin codes: i - IGP, e - EGP, ? - incomplete Network Next Hop Metric LocPrf Weight Path Route Distinguisher: 200:1 (default for vrf VRF1) *> 10.1.1.0/24 10.1.5.5 2219 0 200 33299 51178 47751 {27016} e * 10.186.5.5 2219 0 200 33299 51178 47751 {27016} e *> 10.1.2.0/24 10.1.5.5 2219 0 200 33299 51178 47751 {27016} e * 10.186.5.5 2219 0 200 33299 51178 47751 {27016} e *> 10.1.3.0/24 10.1.5.5 2219 0 200 33299 51178 47751 {27016} e * 10.186.5.5 2219 0 200 33299 51178 47751 {27016} e *> 10.1.4.0/24 10.1.5.5 2219 0 200 33299 51178 47751 {27016} e * 10.186.5.5 2219 0 200 33299 51178 47751 {27016} e *> 10.1.5.0/24 10.1.5.5 2219 0 200 33299 51178 47751 {27016} e * 10.186.5.5 2219 0 200 33299 51178 47751 {27016} e *>i10.205.1.0/24 10.64.4.4 2219 100 0 400 33299 51178 47751 {27016} e *>i10.205.2.0/24 10.64.4.4 2219 100 0 400 33299 51178 47751 {27016} e *>i10.205.3.0/24 10.64.4.4 2219 100 0 400 33299 51178 47751 {27016} e *>i10.205.4.0/24 10.64.4.4 2219 100 0 400 33299 51178 47751 {27016} e *>i10.205.5.0/24 10.64.4.4 2219 100 0 400 33299 51178 47751 {27016} e *>i10.169.1.0/24 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e *>i10.169.2.0/24 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e *>i10.169.3.0/24 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e *>i10.169.4.0/24 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e *>i10.169.5.0/24 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e Processed 15 prefixes, 20 paths VRF: VRF2 --------- BGP VRF VRF2, state: Active BGP Route Distinguisher: 200:2 VRF ID: 0x60000002 BGP router identifier 10.229.11.11, local AS number 100 Non-stop routing is enabled BGP table state: Active Table ID: 0xe0000011 RD version: 47 BGP main routing table version 47 BGP NSR Initial initsync version 5 (Reached) BGP NSR/ISSU Sync-Group versions 0/0 Status codes: s suppressed, d damped, h history, * valid, > best i - internal, r RIB-failure, S stale, N Nexthop-discard Origin codes: i - IGP, e - EGP, ? - incomplete Network Next Hop Metric LocPrf Weight Path Route Distinguisher: 200:2 (default for vrf VRF2) *> 10.1.1.0/24 10.186.5.5 2219 0 200 33299 51178 47751 {27016} e *> 10.1.2.0/24 10.186.5.5 2219 0 200 33299 51178 47751 {27016} e *> 10.1.3.0/24 10.186.5.5 2219 0 200 33299 51178 47751 {27016} e *> 10.1.4.0/24 10.186.5.5 2219 0 200 33299 51178 47751 {27016} e *> 10.1.5.0/24 10.186.5.5 2219 0 200 33299 51178 47751 {27016} e *>i10.205.1.0/24 10.64.4.4 2219 100 0 400 33299 51178 47751 {27016} e *>i10.205.2.0/24 10.64.4.4 2219 100 0 400 33299 51178 47751 {27016} e *>i10.205.3.0/24 10.64.4.4 2219 100 0 400 33299 51178 47751 {27016} e *>i10.205.4.0/24 10.64.4.4 2219 100 0 400 33299 51178 47751 {27016} e *>i10.205.5.0/24 10.64.4.4 2219 100 0 400 33299 51178 47751 {27016} e *>i10.169.1.0/24 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e *>i10.169.2.0/24 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e *>i10.169.3.0/24 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e *>i10.169.4.0/24 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e *>i10.169.5.0/24 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e Processed 15 prefixes, 15 paths ''' # 'all vrf all ipv6 unicast' InstanceIpv6Output = '''\ ''' ############################################################################ # BGP ROUTES PER PEER ############################################################################ # ============== # Summary Output # ============== # 'all all all' SummaryAllOutput = '''\ BGP instance 0: 'default' ========================= Address Family: VPNv4 Unicast ----------------------------- BGP router identifier 10.4.1.1, local AS number 100 BGP generic scan interval 60 secs Non-stop routing is enabled BGP table state: Active Table ID: 0x0 RD version: 0 BGP main routing table version 47 BGP NSR Initial initsync version 5 (Reached) BGP NSR/ISSU Sync-Group versions 0/0 BGP scan interval 60 secs BGP is operating in STANDALONE mode. Process RcvTblVer bRIB/RIB LabelVer ImportVer SendTblVer StandbyVer Speaker 47 47 47 47 47 0 Neighbor Spk AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down St/PfxRcd 10.16.2.2 0 100 11875 11874 47 0 0 1w1d 10 Address Family: VPNv6 Unicast ----------------------------- BGP router identifier 10.4.1.1, local AS number 100 BGP generic scan interval 60 secs Non-stop routing is enabled BGP table state: Active Table ID: 0x0 RD version: 0 BGP main routing table version 32 BGP NSR Initial initsync version 5 (Reached) BGP NSR/ISSU Sync-Group versions 0/0 BGP scan interval 60 secs BGP is operating in STANDALONE mode. Process RcvTblVer bRIB/RIB LabelVer ImportVer SendTblVer StandbyVer Speaker 32 32 32 32 32 0 Neighbor Spk AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down St/PfxRcd 10.16.2.2 0 100 11875 11874 32 0 0 1w1d 5 ''' # 'all vrf all ipv4' SummaryIpv4Output = '''\ BGP instance 0: 'default' ========================= VRF: VRF1 --------- BGP VRF VRF1, state: Active BGP Route Distinguisher: 200:1 VRF ID: 0x60000001 BGP router identifier 10.229.11.11, local AS number 100 Non-stop routing is enabled BGP table state: Active Table ID: 0xe0000010 RD version: 47 BGP main routing table version 47 BGP NSR Initial initsync version 5 (Reached) BGP NSR/ISSU Sync-Group versions 0/0 BGP is operating in STANDALONE mode. Process RcvTblVer bRIB/RIB LabelVer ImportVer SendTblVer StandbyVer Speaker 47 47 47 47 47 0 Neighbor Spk AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down St/PfxRcd 10.1.5.5 0 200 11858 11864 47 0 0 1w1d 5 ''' # 'all vrf all ipv6' SummaryIpv6Output = '''\ BGP instance 0: 'default' ========================= VRF: VRF2 --------- BGP VRF VRF2, state: Active BGP Route Distinguisher: 300:1 VRF ID: 0x50000002 BGP router identifier 10.229.11.11, local AS number 100 Non-stop routing is enabled BGP table state: Active Table ID: 0xe0000010 RD version: 47 BGP main routing table version 47 BGP NSR Initial initsync version 5 (Reached) BGP NSR/ISSU Sync-Group versions 0/0 BGP is operating in STANDALONE mode. Process RcvTblVer bRIB/RIB LabelVer ImportVer SendTblVer StandbyVer Speaker 47 47 47 47 47 0 Neighbor Spk AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down St/PfxRcd 2001:db8:20:1:5::5 0 200 11858 11864 47 0 0 1w1d 5 ''' # ======================== # Advertised Routes Output # ======================== # 'all all all' AdvertisedAllOutput = '''\ BGP instance 0: 'default' ========================= Address Family: VPNv4 Unicast ----------------------------- Network Next Hop From AS Path Route Distinguisher: 200:1 10.1.1.0/24 10.4.1.1 10.186.5.5 200 33299 51178 47751 {27016}e 10.1.2.0/24 10.4.1.1 10.186.5.5 200 33299 51178 47751 {27016}e Processed 2 prefixes, 2 paths Address Family: VPNv6 Unicast ----------------------------- Network Next Hop From AS Path Route Distinguisher: 200:1 2001:db8:cdc9:121::/64 10.4.1.1 2001:db8:20:1:5::5 200 33299 51178 47751 {27017}e 2001:db8:cdc9:144::/64 10.4.1.1 2001:db8:20:1:5::5 200 33299 51178 47751 {27016}e Processed 2 prefixes, 2 paths ''' # ====================== # Received Routes Output # ====================== # 'all all all' ReceivedAllOutput = '''\ BGP instance 0: 'default' ========================= Address Family: VPNv4 Unicast ----------------------------- BGP router identifier 10.4.1.1, local AS number 100 BGP generic scan interval 60 secs Non-stop routing is enabled BGP table state: Active Table ID: 0x0 RD version: 0 BGP main routing table version 43 BGP NSR Initial initsync version 11 (Reached) BGP NSR/ISSU Sync-Group versions 0/0 BGP scan interval 60 secs Status codes: s suppressed, d damped, h history, * valid, > best i - internal, r RIB-failure, S stale, N Nexthop-discard Origin codes: i - IGP, e - EGP, ? - incomplete Network Next Hop Metric LocPrf Weight Path Route Distinguisher: 300:1 * i10.169.1.0/24 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e Route Distinguisher: 400:1 * i10.9.2.0/24 10.64.4.4 2219 100 0 400 33299 51178 47751 {27016} e Processed 10 prefixes, 10 paths Address Family: VPNv6 Unicast ----------------------------- BGP router identifier 10.4.1.1, local AS number 100 BGP generic scan interval 60 secs Non-stop routing is enabled BGP table state: Active Table ID: 0x0 RD version: 0 BGP main routing table version 43 BGP NSR Initial initsync version 11 (Reached) BGP NSR/ISSU Sync-Group versions 0/0 BGP scan interval 60 secs Status codes: s suppressed, d damped, h history, * valid, > best i - internal, r RIB-failure, S stale, N Nexthop-discard Origin codes: i - IGP, e - EGP, ? - incomplete Network Next Hop Metric LocPrf Weight Path Route Distinguisher: 300:1 * i2001:db8:31b9:121::/64 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e * i2001:db8:31b9:1b9::/64 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e Route Distinguisher: 400:1 * i2001:db8:a69:484::/64 10.64.4.4 2219 100 0 400 33299 51178 47751 {27016} e * i2001:db8:a69:4c9::/64 10.64.4.4 2219 100 0 400 33299 51178 47751 {27016} e Processed 10 prefixes, 10 paths ''' # 'all vrf all ipv4 unicast' ReceivedIpv4Output = '''\ BGP instance 0: 'default' ========================= VRF: VRF1 --------- BGP VRF VRF1, state: Active BGP Route Distinguisher: 200:2 VRF ID: 0x60000002 BGP router identifier 10.229.11.11, local AS number 100 Non-stop routing is enabled BGP table state: Active Table ID: 0xe0000011 RD version: 63 BGP main routing table version 63 BGP NSR Initial initsync version 11 (Reached) BGP NSR/ISSU Sync-Group versions 0/0 Status codes: s suppressed, d damped, h history, * valid, > best i - internal, r RIB-failure, S stale, N Nexthop-discard Origin codes: i - IGP, e - EGP, ? - incomplete Network Next Hop Metric LocPrf Weight Path Route Distinguisher: 200:1 (default for vrf VRF2) * 10.1.1.0/24 10.186.5.5 2219 0 200 33299 51178 47751 {27016} e * 10.1.2.0/24 10.186.5.5 2219 0 200 33299 51178 47751 {27016} e Processed 2 prefixes, 2 paths ''' # 'all vrf all ipv6 unicast' ReceivedIpv6Output = '''\ BGP instance 0: 'default' ========================= VRF: VRF2 --------- BGP VRF VRF2, state: Active BGP Route Distinguisher: 200:3 VRF ID: 0x50000006 BGP router identifier 10.229.11.11, local AS number 100 Non-stop routing is enabled BGP table state: Active Table ID: 0xe0000011 RD version: 63 BGP main routing table version 63 BGP NSR Initial initsync version 11 (Reached) BGP NSR/ISSU Sync-Group versions 0/0 Status codes: s suppressed, d damped, h history, * valid, > best i - internal, r RIB-failure, S stale, N Nexthop-discard Origin codes: i - IGP, e - EGP, ? - incomplete Network Next Hop Metric LocPrf Weight Path Route Distinguisher: 200:2 (default for vrf VRF1) * 10.34.1.0/24 10.196.5.5 2219 0 200 33299 51178 47751 {27016} e * 10.34.2.0/24 10.196.5.5 2219 0 200 33299 51178 47751 {27016} e Processed 2 prefixes, 2 paths ''' # ============= # Routes Output # ============= # 'all all all' RoutesAllOutput = '''\ BGP instance 0: 'default' ========================= Address Family: VPNv4 Unicast ----------------------------- BGP router identifier 10.4.1.1, local AS number 100 BGP generic scan interval 60 secs Non-stop routing is enabled BGP table state: Active Table ID: 0x0 RD version: 0 BGP main routing table version 43 BGP NSR Initial initsync version 11 (Reached) BGP NSR/ISSU Sync-Group versions 0/0 BGP scan interval 60 secs Status codes: s suppressed, d damped, h history, * valid, > best i - internal, r RIB-failure, S stale, N Nexthop-discard Origin codes: i - IGP, e - EGP, ? - incomplete Network Next Hop Metric LocPrf Weight Path Route Distinguisher: 300:1 * i10.169.1.0/24 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e Route Distinguisher: 400:1 * i10.9.2.0/24 10.64.4.4 2219 100 0 400 33299 51178 47751 {27016} e Processed 2 prefixes, 2 paths Address Family: VPNv6 Unicast ----------------------------- BGP router identifier 10.4.1.1, local AS number 100 BGP generic scan interval 60 secs Non-stop routing is enabled BGP table state: Active Table ID: 0x0 RD version: 0 BGP main routing table version 43 BGP NSR Initial initsync version 11 (Reached) BGP NSR/ISSU Sync-Group versions 0/0 BGP scan interval 60 secs Status codes: s suppressed, d damped, h history, * valid, > best i - internal, r RIB-failure, S stale, N Nexthop-discard Origin codes: i - IGP, e - EGP, ? - incomplete Network Next Hop Metric LocPrf Weight Path Route Distinguisher: 300:1 * i2001:db8:31b9:121::/64 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e * i2001:db8:31b9:144::/64 10.64.4.4 2219 100 0 300 33299 51178 47751 {27016} e Route Distinguisher: 400:1 * i2001:db8:a69:484::/64 10.64.4.4 2219 100 0 400 33299 51178 47751 {27016} e Processed 3 prefixes, 3 paths ''' # ============== # BGP Ops Output # ============== BgpInfo = { 'instance': {'default': {'bgp_id': 100, 'peer_policy': {'af_group': {'allowas_in': True, 'allowas_in_as_number': 10, 'as_override': True, 'default_originate': True, 'default_originate_route_map': 'allpass', 'maximum_prefix_max_prefix_no': 429, 'maximum_prefix_restart': 35, 'maximum_prefix_threshold': 75, 'next_hop_self': True, 'route_map_name_in': 'allpass', 'route_map_name_out': 'allpass', 'route_reflector_client': True, 'send_community': 'both', 'soft_reconfiguration': 'inbound ' 'always', 'soo': '100:1'}}, 'peer_session': {'SG': {'description': 'SG_group', 'disable_connected_check': True, 'ebgp_multihop_enable': True, 'ebgp_multihop_max_hop': 254, 'fall_over_bfd': True, 'holdtime': 30, 'keepalive_interval': 10, 'local_as_as_no': 200, 'local_dual_as': True, 'local_no_prepend': True, 'local_replace_as': True, 'password_text': '094F471A1A0A464058', 'remote_as': 333, 'shutdown': True, 'suppress_four_byte_as_capability': True, 'transport_connection_mode': 'active-only', 'update_source': 'loopback0'}}, 'protocol_state': 'RUNNING', 'vrf': {'default': {'neighbor': {'10.16.2.2': {'bgp_neighbor_counters': {'messages': {'received': {'notifications': 0, 'updates': 0}, 'sent': {'notifications': 0, 'updates': 0}}}, 'bgp_session_transport': {'transport': {'foreign_host': '0', 'foreign_port': '10.16.2.2', 'local_host': 'Loopback0', 'local_port': '0'}}, 'holdtime': 180, 'remote_as': 100, 'session_state': 'idle'}}, 'router_id': '10.4.1.1'}}}, 'test': {'bgp_id': 333}, 'test1': {'bgp_id': 333}, 'test2': {'bgp_id': 333}}} BgpTable = { 'instance': {'default': {'vrf': {'VRF1': {'address_family': {'vpnv4 unicast': {'bgp_table_version': 47, 'local_as': 100}, 'vpnv4 unicast RD 200:1': {'default_vrf': 'vrf1', 'prefixes': {'10.1.1.0/24': {'index': {1: {'metric': '2219', 'next_hop': '10.1.5.5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>', 'weight': '0'}, 2: {'metric': '2219', 'next_hop': '10.186.5.5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*', 'weight': '0'}}}, '10.1.2.0/24': {'index': {1: {'metric': '2219', 'next_hop': '10.1.5.5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>', 'weight': '0'}, 2: {'metric': '2219', 'next_hop': '10.186.5.5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*', 'weight': '0'}}}, '10.1.3.0/24': {'index': {1: {'metric': '2219', 'next_hop': '10.1.5.5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>', 'weight': '0'}, 2: {'metric': '2219', 'next_hop': '10.186.5.5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*', 'weight': '0'}}}, '10.1.4.0/24': {'index': {1: {'metric': '2219', 'next_hop': '10.1.5.5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>', 'weight': '0'}, 2: {'metric': '2219', 'next_hop': '10.186.5.5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*', 'weight': '0'}}}, '10.1.5.0/24': {'index': {1: {'metric': '2219', 'next_hop': '10.1.5.5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>', 'weight': '0'}, 2: {'metric': '2219', 'next_hop': '10.186.5.5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*', 'weight': '0'}}}, '10.205.1.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '400 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '10.205.2.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '400 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '10.205.3.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '400 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '10.205.4.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '400 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '10.205.5.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '400 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '10.169.1.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '10.169.2.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '10.169.3.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '10.169.4.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '10.169.5.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}}, 'route_distinguisher': '200:1'}}}, 'VRF2': {'address_family': {'vpnv4 unicast': {'bgp_table_version': 47, 'local_as': 100}, 'vpnv4 unicast RD 200:2': {'default_vrf': 'vrf2', 'prefixes': {'10.1.1.0/24': {'index': {1: {'metric': '2219', 'next_hop': '10.186.5.5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>', 'weight': '0'}}}, '10.1.2.0/24': {'index': {1: {'metric': '2219', 'next_hop': '10.186.5.5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>', 'weight': '0'}}}, '10.1.3.0/24': {'index': {1: {'metric': '2219', 'next_hop': '10.186.5.5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>', 'weight': '0'}}}, '10.1.4.0/24': {'index': {1: {'metric': '2219', 'next_hop': '10.186.5.5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>', 'weight': '0'}}}, '10.1.5.0/24': {'index': {1: {'metric': '2219', 'next_hop': '10.186.5.5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>', 'weight': '0'}}}, '10.205.1.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '400 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '10.205.2.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '400 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '10.205.3.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '400 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '10.205.4.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '400 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '10.205.5.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '400 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '10.169.1.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '10.169.2.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '10.169.3.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '10.169.4.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '10.169.5.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}}, 'route_distinguisher': '200:2'}}}, 'default': {'address_family': {'vpnv4 unicast': {'bgp_table_version': 47, 'local_as': 100}, 'vpnv4 unicast RD 200:1': {'default_vrf': 'vrf1', 'prefixes': {'10.1.1.0/24': {'index': {1: {'metric': '2219', 'next_hop': '10.1.5.5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>', 'weight': '0'}, 2: {'metric': '2219', 'next_hop': '10.186.5.5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*', 'weight': '0'}}}, '10.1.2.0/24': {'index': {1: {'metric': '2219', 'next_hop': '10.1.5.5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>', 'weight': '0'}, 2: {'metric': '2219', 'next_hop': '10.186.5.5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*', 'weight': '0'}}}, '10.1.3.0/24': {'index': {1: {'metric': '2219', 'next_hop': '10.1.5.5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>', 'weight': '0'}, 2: {'metric': '2219', 'next_hop': '10.186.5.5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*', 'weight': '0'}}}, '10.1.4.0/24': {'index': {1: {'metric': '2219', 'next_hop': '10.1.5.5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>', 'weight': '0'}, 2: {'metric': '2219', 'next_hop': '10.186.5.5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*', 'weight': '0'}}}, '10.1.5.0/24': {'index': {1: {'metric': '2219', 'next_hop': '10.1.5.5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>', 'weight': '0'}, 2: {'metric': '2219', 'next_hop': '10.186.5.5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*', 'weight': '0'}}}, '10.205.1.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '400 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '10.205.2.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '400 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '10.205.3.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '400 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '10.205.4.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '400 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '10.205.5.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '400 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '10.169.1.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '10.169.2.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '10.169.3.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '10.169.4.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '10.169.5.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}}, 'route_distinguisher': '200:1'}, 'vpnv4 unicast RD 200:2': {'default_vrf': 'vrf2', 'prefixes': {'10.1.1.0/24': {'index': {1: {'metric': '2219', 'next_hop': '10.186.5.5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>', 'weight': '0'}}}, '10.1.2.0/24': {'index': {1: {'metric': '2219', 'next_hop': '10.186.5.5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>', 'weight': '0'}}}, '10.1.3.0/24': {'index': {1: {'metric': '2219', 'next_hop': '10.186.5.5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>', 'weight': '0'}}}, '10.1.4.0/24': {'index': {1: {'metric': '2219', 'next_hop': '10.186.5.5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>', 'weight': '0'}}}, '10.1.5.0/24': {'index': {1: {'metric': '2219', 'next_hop': '10.186.5.5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>', 'weight': '0'}}}, '10.205.1.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '400 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '10.205.2.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '400 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '10.205.3.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '400 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '10.205.4.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '400 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '10.205.5.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '400 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '10.169.1.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '10.169.2.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '10.169.3.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '10.169.4.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '10.169.5.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}}, 'route_distinguisher': '200:2'}, 'vpnv4 unicast RD 300:1': {'default_vrf': 'none', 'prefixes': {'10.169.1.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}, 2: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*i', 'weight': '0'}}}, '10.169.2.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}, 2: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*i', 'weight': '0'}}}, '10.169.3.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}, 2: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*i', 'weight': '0'}}}, '10.169.4.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}, 2: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*i', 'weight': '0'}}}, '10.169.5.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}, 2: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*i', 'weight': '0'}}}}, 'route_distinguisher': '300:1'}, 'vpnv4 unicast RD 400:1': {'default_vrf': 'none', 'prefixes': {'10.205.1.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '400 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}, 2: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '400 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*i', 'weight': '0'}}}, '10.205.2.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '400 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}, 2: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '400 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*i', 'weight': '0'}}}, '10.205.3.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '400 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}, 2: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '400 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*i', 'weight': '0'}}}, '10.205.4.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '400 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}, 2: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '400 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*i', 'weight': '0'}}}, '10.205.5.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '400 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}, 2: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '400 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*i', 'weight': '0'}}}}, 'route_distinguisher': '400:1'}, 'vpnv6 unicast': {'bgp_table_version': 32, 'local_as': 100}, 'vpnv6 unicast RD 200:1': {'default_vrf': 'vrf1', 'prefixes': {'2001:db8:cdc9:144::/64': {'index': {1: {'metric': '2219', 'next_hop': '2001:db8:1:5::5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>', 'weight': '0'}}}, '2001:db8:cdc9:169::/64': {'index': {1: {'metric': '2219', 'next_hop': '2001:db8:1:5::5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>', 'weight': '0'}}}, '2001:db8:cdc9:190::/64': {'index': {1: {'metric': '2219', 'next_hop': '2001:db8:1:5::5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>', 'weight': '0'}}}, '2001:db8:cdc9:1b9::/64': {'index': {1: {'metric': '2219', 'next_hop': '2001:db8:1:5::5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>', 'weight': '0'}}}, '2001:db8:cdc9:121::/64': {'index': {1: {'metric': '2219', 'next_hop': '2001:db8:1:5::5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>', 'weight': '0'}}}, '2001:db8:31b9:144::/64': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '2001:db8:31b9:169::/64': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '2001:db8:31b9:190::/64': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '2001:db8:31b9:1b9::/64': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '2001:db8:31b9:121::/64': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}}, 'route_distinguisher': '200:1'}, 'vpnv6 unicast RD 200:2': {'default_vrf': 'vrf2', 'prefixes': {'2001:db8:cdc9:144::/64': {'index': {1: {'metric': '2219', 'next_hop': '2001:db8:20:1:5::5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>', 'weight': '0'}}}, '2001:db8:cdc9:169::/64': {'index': {1: {'metric': '2219', 'next_hop': '2001:db8:20:1:5::5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>', 'weight': '0'}}}, '2001:db8:cdc9:190::/64': {'index': {1: {'metric': '2219', 'next_hop': '2001:db8:20:1:5::5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>', 'weight': '0'}}}, '2001:db8:cdc9:1b9::/64': {'index': {1: {'metric': '2219', 'next_hop': '2001:db8:20:1:5::5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>', 'weight': '0'}}}, '2001:db8:cdc9:121::/64': {'index': {1: {'metric': '2219', 'next_hop': '2001:db8:20:1:5::5', 'origin_codes': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>', 'weight': '0'}}}, '2001:db8:31b9:144::/64': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '2001:db8:31b9:169::/64': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '2001:db8:31b9:190::/64': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '2001:db8:31b9:1b9::/64': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}, '2001:db8:31b9:121::/64': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}}}}, 'route_distinguisher': '200:2'}, 'vpnv6 unicast RD 300:1': {'default_vrf': 'none', 'prefixes': {'2001:db8:31b9:144::/64': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}, 2: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*i', 'weight': '0'}}}, '2001:db8:31b9:169::/64': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}, 2: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*i', 'weight': '0'}}}, '2001:db8:31b9:190::/64': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}, 2: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*i', 'weight': '0'}}}, '2001:db8:31b9:1b9::/64': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}, 2: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*i', 'weight': '0'}}}, '2001:db8:31b9:121::/64': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*>i', 'weight': '0'}, 2: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*i', 'weight': '0'}}}}, 'route_distinguisher': '300:1'}}}}}}} BgpRoutesPerPeer = { 'instance': {'default': {'vrf': {'VRF1': {'neighbor': {'10.1.5.5': {'address_family': {'vpnv4 unicast': {'input_queue': 0, 'msg_rcvd': 11858, 'msg_sent': 11864, 'output_queue': 0, 'route_distinguisher': '200:1', 'state_pfxrcd': '5', 'tbl_ver': 47, 'up_down': '1w1d'}}, 'remote_as': 200}}}, 'VRF2': {'neighbor': {'2001:db8:20:1:5::5': {'address_family': {'vpnv6 unicast': {'input_queue': 0, 'msg_rcvd': 11858, 'msg_sent': 11864, 'output_queue': 0, 'route_distinguisher': '300:1', 'state_pfxrcd': '5', 'tbl_ver': 47, 'up_down': '1w1d'}}, 'remote_as': 200}}}, 'default': {'neighbor': {'10.16.2.2': {'address_family': {'vpnv4 unicast': {'input_queue': 0, 'msg_rcvd': 11875, 'msg_sent': 11874, 'output_queue': 0, 'state_pfxrcd': '10', 'tbl_ver': 47, 'up_down': '1w1d'}, 'vpnv4 unicast RD 200:1': {'advertised': {'10.1.1.0/24': {'index': {1: {'froms': '10.186.5.5', 'next_hop': '10.4.1.1', 'origin_code': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}'}}}, '10.1.2.0/24': {'index': {1: {'froms': '10.186.5.5', 'next_hop': '10.4.1.1', 'origin_code': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}'}}}}}, 'vpnv4 unicast RD 300:1': {'received_routes': {'10.169.1.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*i', 'weight': '0'}}}}, 'routes': {'10.169.1.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*i', 'weight': '0'}}}}}, 'vpnv4 unicast RD 400:1': {'received_routes': {'10.9.2.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '400 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*i', 'weight': '0'}}}}, 'routes': {'10.9.2.0/24': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '400 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*i', 'weight': '0'}}}}}, 'vpnv6 unicast': {'input_queue': 0, 'msg_rcvd': 11875, 'msg_sent': 11874, 'output_queue': 0, 'state_pfxrcd': '5', 'tbl_ver': 32, 'up_down': '1w1d'}, 'vpnv6 unicast RD 200:1': {'advertised': {'2001:db8:cdc9:144::/64': {'index': {1: {'froms': '2001:db8:20:1:5::5', 'next_hop': '10.4.1.1', 'origin_code': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27016}'}}}, '2001:db8:cdc9:121::/64': {'index': {1: {'froms': '2001:db8:20:1:5::5', 'next_hop': '10.4.1.1', 'origin_code': 'e', 'path': '200 ' '33299 ' '51178 ' '47751 ' '{27017}'}}}}}, 'vpnv6 unicast RD 300:1': {'received_routes': {'2001:db8:31b9:1b9::/64': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*i', 'weight': '0'}}}, '2001:db8:31b9:121::/64': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*i', 'weight': '0'}}}}, 'routes': {'2001:db8:31b9:144::/64': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*i', 'weight': '0'}}}, '2001:db8:31b9:121::/64': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '300 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*i', 'weight': '0'}}}}}, 'vpnv6 unicast RD 400:1': {'received_routes': {'2001:db8:a69:4c9::/64': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '400 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*i', 'weight': '0'}}}, '2001:db8:a69:484::/64': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '400 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*i', 'weight': '0'}}}}, 'routes': {'2001:db8:a69:484::/64': {'index': {1: {'locprf': '100', 'metric': '2219', 'next_hop': '10.64.4.4', 'origin_codes': 'e', 'path': '400 ' '33299 ' '51178 ' '47751 ' '{27016}', 'status_codes': '*i', 'weight': '0'}}}}}}, 'remote_as': 100}}}}}}} # ============ # GET OPER RPC # ============ class etree_holder(): def __init__(self): self.data_ele = ET.fromstring(''' <data> <bgp xmlns="http://openconfig.net/yang/bgp"> <global> <config> <as>100</as> <router-id>10.4.1.1</router-id> </config> <state> <as>100</as> <router-id>10.4.1.1</router-id> <total-paths>0</total-paths> <total-prefixes>0</total-prefixes> </state> <afi-safis> <afi-safi> <afi-safi-name xmlns:idx="http://openconfig.net/yang/bgp-types">idx:l3vpn-ipv4-unicast</afi-safi-name> <config> <afi-safi-name xmlns:idx="http://openconfig.net/yang/bgp-types">idx:l3vpn-ipv4-unicast</afi-safi-name> <enabled>true</enabled> </config> <state> <afi-safi-name xmlns:idx="http://openconfig.net/yang/bgp-types">idx:l3vpn-ipv4-unicast</afi-safi-name> <enabled>true</enabled> <total-paths>0</total-paths> <total-prefixes>0</total-prefixes> </state> </afi-safi> <afi-safi> <afi-safi-name xmlns:idx="http://openconfig.net/yang/bgp-types">idx:l3vpn-ipv6-unicast</afi-safi-name> <config> <afi-safi-name xmlns:idx="http://openconfig.net/yang/bgp-types">idx:l3vpn-ipv6-unicast</afi-safi-name> <enabled>true</enabled> </config> <state> <afi-safi-name xmlns:idx="http://openconfig.net/yang/bgp-types">idx:l3vpn-ipv6-unicast</afi-safi-name> <enabled>true</enabled> <total-paths>0</total-paths> <total-prefixes>0</total-prefixes> </state> </afi-safi> </afi-safis> </global> <neighbors> <neighbor> <neighbor-address>10.16.2.2</neighbor-address> <config> <neighbor-address>10.16.2.2</neighbor-address> <peer-as>100</peer-as> </config> <state> <neighbor-address>10.16.2.2</neighbor-address> <peer-as>100</peer-as> <queues> <input>0</input> <output>0</output> </queues> <session-state>IDLE</session-state> <messages> <sent> <NOTIFICATION>0</NOTIFICATION> <UPDATE>0</UPDATE> </sent> <received> <NOTIFICATION>0</NOTIFICATION> <UPDATE>0</UPDATE> </received> </messages> </state> <transport> <config> <local-address>Loopback0</local-address> </config> <state> <local-address>Loopback0</local-address> <local-port>0</local-port> <remote-address>10.16.2.2</remote-address> <remote-port>0</remote-port> </state> </transport> <afi-safis> <afi-safi> <afi-safi-name xmlns:idx="http://openconfig.net/yang/bgp-types">idx:l3vpn-ipv4-unicast</afi-safi-name> <config> <afi-safi-name xmlns:idx="http://openconfig.net/yang/bgp-types">idx:l3vpn-ipv4-unicast</afi-safi-name> <enabled>true</enabled> </config> <state> <afi-safi-name xmlns:idx="http://openconfig.net/yang/bgp-types">idx:l3vpn-ipv4-unicast</afi-safi-name> <enabled>true</enabled> <active>false</active> <prefixes> <received>0</received> <sent>0</sent> </prefixes> </state> </afi-safi> <afi-safi> <afi-safi-name xmlns:idx="http://openconfig.net/yang/bgp-types">idx:l3vpn-ipv6-unicast</afi-safi-name> <config> <afi-safi-name xmlns:idx="http://openconfig.net/yang/bgp-types">idx:l3vpn-ipv6-unicast</afi-safi-name> <enabled>true</enabled> </config> <state> <afi-safi-name xmlns:idx="http://openconfig.net/yang/bgp-types">idx:l3vpn-ipv6-unicast</afi-safi-name> <enabled>true</enabled> <active>false</active> <prefixes> <received>0</received> <sent>0</sent> </prefixes> </state> </afi-safi> </afi-safis> <timers> <state> <negotiated-hold-time>180</negotiated-hold-time> </state> </timers> <graceful-restart> <state> <peer-restart-time>120</peer-restart-time> </state> </graceful-restart> </neighbor> </neighbors> </bgp> </data> ''') yang_output = etree_holder()
import PIL.Image, PIL.ImageDraw from roomEditor import RoomEditor, ObjectHorizontal, ObjectVertical, ObjectWarp class RenderedMap: WALL_UP = 0x01 WALL_DOWN = 0x02 WALL_LEFT = 0x04 WALL_RIGHT = 0x08 def __init__(self, floor_object, overworld=False): self.objects = {} self.overworld = overworld for y in range(8): for x in range(10): self.objects[(x, y)] = floor_object def addWalls(self, flags): for x in range(0, 10): if flags & RenderedMap.WALL_UP: self.placeObject(x, 0, 0x21) if flags & RenderedMap.WALL_DOWN: self.placeObject(x, 7, 0x22) for y in range(0, 8): if flags & RenderedMap.WALL_LEFT: self.placeObject(0, y, 0x23) if flags & RenderedMap.WALL_RIGHT: self.placeObject(9, y, 0x24) if flags & RenderedMap.WALL_LEFT and flags & RenderedMap.WALL_UP: self.placeObject(0, 0, 0x25) if flags & RenderedMap.WALL_RIGHT and flags & RenderedMap.WALL_UP: self.placeObject(9, 0, 0x26) if flags & RenderedMap.WALL_LEFT and flags & RenderedMap.WALL_DOWN: self.placeObject(0, 7, 0x27) if flags & RenderedMap.WALL_RIGHT and flags & RenderedMap.WALL_DOWN: self.placeObject(9, 7, 0x28) def placeObject(self, x, y, type_id): if self.overworld: if type_id == 0xF5: if self.getObject(x, y) in (0x28, 0x83, 0x90): self.placeObject(x, y, 0x29) else: self.placeObject(x, y, 0x25) if self.getObject(x + 1, y) in (0x27, 0x82, 0x90): self.placeObject(x + 1, y, 0x2A) else: self.placeObject(x + 1, y, 0x26) if self.getObject(x, y + 1) in (0x26, 0x2A): self.placeObject(x, y + 1, 0x2A) elif self.getObject(x, y + 1) == 0x90: self.placeObject(x, y + 1, 0x82) else: self.placeObject(x, y + 1, 0x27) if self.getObject(x + 1, y + 1) in (0x25, 0x29): self.placeObject(x + 1, y + 1, 0x29) elif self.getObject(x + 1, y + 1) == 0x90: self.placeObject(x + 1, y + 1, 0x83) else: self.placeObject(x + 1, y + 1, 0x28) elif type_id == 0xF6: # two door house self.placeObject(x + 0, y, 0x55) self.placeObject(x + 1, y, 0x5A) self.placeObject(x + 2, y, 0x5A) self.placeObject(x + 3, y, 0x5A) self.placeObject(x + 4, y, 0x56) self.placeObject(x + 0, y + 1, 0x57) self.placeObject(x + 1, y + 1, 0x59) self.placeObject(x + 2, y + 1, 0x59) self.placeObject(x + 3, y + 1, 0x59) self.placeObject(x + 4, y + 1, 0x58) self.placeObject(x + 0, y + 2, 0x5B) self.placeObject(x + 1, y + 2, 0xE2) self.placeObject(x + 2, y + 2, 0x5B) self.placeObject(x + 3, y + 2, 0xE2) self.placeObject(x + 4, y + 2, 0x5B) elif type_id == 0xF7: # large house self.placeObject(x + 0, y, 0x55) self.placeObject(x + 1, y, 0x5A) self.placeObject(x + 2, y, 0x56) self.placeObject(x + 0, y + 1, 0x57) self.placeObject(x + 1, y + 1, 0x59) self.placeObject(x + 2, y + 1, 0x58) self.placeObject(x + 0, y + 2, 0x5B) self.placeObject(x + 1, y + 2, 0xE2) self.placeObject(x + 2, y + 2, 0x5B) elif type_id == 0xF8: # catfish self.placeObject(x + 0, y, 0xB6) self.placeObject(x + 1, y, 0xB7) self.placeObject(x + 2, y, 0x66) self.placeObject(x + 0, y + 1, 0x67) self.placeObject(x + 1, y + 1, 0xE3) self.placeObject(x + 2, y + 1, 0x68) elif type_id == 0xF9: # palace door self.placeObject(x + 0, y, 0xA4) self.placeObject(x + 1, y, 0xA5) self.placeObject(x + 2, y, 0xA6) self.placeObject(x + 0, y + 1, 0xA7) self.placeObject(x + 1, y + 1, 0xE3) self.placeObject(x + 2, y + 1, 0xA8) elif type_id == 0xFA: # stone pig head self.placeObject(x + 0, y, 0xBB) self.placeObject(x + 1, y, 0xBC) self.placeObject(x + 0, y + 1, 0xBD) self.placeObject(x + 1, y + 1, 0xBE) elif type_id == 0xFB: # palmtree if x == 15: self.placeObject(x + 1, y + 1, 0xB7) self.placeObject(x + 1, y + 2, 0xCE) else: self.placeObject(x + 0, y, 0xB6) self.placeObject(x + 0, y + 1, 0xCD) self.placeObject(x + 1, y + 0, 0xB7) self.placeObject(x + 1, y + 1, 0xCE) elif type_id == 0xFC: # square "hill with hole" (seen near lvl4 entrance) self.placeObject(x + 0, y, 0x2B) self.placeObject(x + 1, y, 0x2C) self.placeObject(x + 2, y, 0x2D) self.placeObject(x + 0, y + 1, 0x37) self.placeObject(x + 1, y + 1, 0xE8) self.placeObject(x + 2, y + 1, 0x38) self.placeObject(x - 1, y + 2, 0x0A) self.placeObject(x + 0, y + 2, 0x33) self.placeObject(x + 1, y + 2, 0x2F) self.placeObject(x + 2, y + 2, 0x34) self.placeObject(x + 0, y + 3, 0x0A) self.placeObject(x + 1, y + 3, 0x0A) self.placeObject(x + 2, y + 3, 0x0A) self.placeObject(x + 3, y + 3, 0x0A) elif type_id == 0xFD: # small house self.placeObject(x + 0, y, 0x52) self.placeObject(x + 1, y, 0x52) self.placeObject(x + 2, y, 0x52) self.placeObject(x + 0, y + 1, 0x5B) self.placeObject(x + 1, y + 1, 0xE2) self.placeObject(x + 2, y + 1, 0x5B) else: self.objects[(x & 15), (y & 15)] = type_id else: if type_id == 0xEC: # key door self.placeObject(x, y, 0x2D) self.placeObject(x + 1, y, 0x2E) elif type_id == 0xED: self.placeObject(x, y, 0x2F) self.placeObject(x + 1, y, 0x30) elif type_id == 0xEE: self.placeObject(x, y, 0x31) self.placeObject(x, y + 1, 0x32) elif type_id == 0xEF: self.placeObject(x, y, 0x33) self.placeObject(x, y + 1, 0x34) elif type_id == 0xF0: # closed door self.placeObject(x, y, 0x35) self.placeObject(x + 1, y, 0x36) elif type_id == 0xF1: self.placeObject(x, y, 0x37) self.placeObject(x + 1, y, 0x38) elif type_id == 0xF2: self.placeObject(x, y, 0x39) self.placeObject(x, y + 1, 0x3A) elif type_id == 0xF3: self.placeObject(x, y, 0x3B) self.placeObject(x, y + 1, 0x3C) elif type_id == 0xF4: # open door self.placeObject(x, y, 0x43) self.placeObject(x + 1, y, 0x44) elif type_id == 0xF5: self.placeObject(x, y, 0x8C) self.placeObject(x + 1, y, 0x08) elif type_id == 0xF6: self.placeObject(x, y, 0x09) self.placeObject(x, y + 1, 0x0A) elif type_id == 0xF7: self.placeObject(x, y, 0x0B) self.placeObject(x, y + 1, 0x0C) elif type_id == 0xF8: # boss door self.placeObject(x, y, 0xA4) self.placeObject(x + 1, y, 0xA5) elif type_id == 0xF9: # stairs door self.placeObject(x, y, 0xAF) self.placeObject(x + 1, y, 0xB0) elif type_id == 0xFA: # flipwall self.placeObject(x, y, 0xB1) self.placeObject(x + 1, y, 0xB2) elif type_id == 0xFB: # one way arrow self.placeObject(x, y, 0x45) self.placeObject(x + 1, y, 0x46) elif type_id == 0xFC: # entrance self.placeObject(x + 0, y, 0xB3) self.placeObject(x + 1, y, 0xB4) self.placeObject(x + 2, y, 0xB4) self.placeObject(x + 3, y, 0xB5) self.placeObject(x + 0, y + 1, 0xB6) self.placeObject(x + 1, y + 1, 0xB7) self.placeObject(x + 2, y + 1, 0xB8) self.placeObject(x + 3, y + 1, 0xB9) self.placeObject(x + 0, y + 2, 0xBA) self.placeObject(x + 1, y + 2, 0xBB) self.placeObject(x + 2, y + 2, 0xBC) self.placeObject(x + 3, y + 2, 0xBD) elif type_id == 0xFD: # entrance self.placeObject(x, y, 0xC1) self.placeObject(x + 1, y, 0xC2) else: self.objects[(x & 15), (y & 15)] = type_id def getObject(self, x, y): return self.objects.get(((x & 15), (y & 15)), None) class MapExport: def __init__(self, rom): self.__rom = rom self.__tiles = { 0x0C: self.getTiles(0x0C), 0x0D: self.getTiles(0x0D), 0x0F: self.getTiles(0x0F), 0x12: self.getTiles(0x12), } self.__room_map_info = {} f = open("test.html", "wt") result = PIL.Image.new("L", (16 * 20 * 8, 16 * 16 * 8)) for n in range(0x100): x = n % 0x10 y = n // 0x10 result.paste(self.exportRoom(n), (x * 20 * 8, y * 16 * 8)) result.save("overworld.png") f.write("<img src='overworld.png'><br><br>") self.exportMetaTiles(f, "metatiles_main.png", 0x0F, 0, lambda n: n >= 32 and (n < 0x6C or n >= 0x70)) for n in (0x1A, 0x1C, 0x1E, 0x20, 0x22, 0x24, 0x26, 0x28, 0x2A, 0x2C, 0x2E, 0x30, 0x32, 0x34, 0x36, 0x38, 0x3A, 0x3C, 0x3E): self.exportMetaTiles(f, "metatiles_%02x.png" % (n), n, 0, lambda n: n < 32) for n in range(2, 17): self.exportMetaTiles(f, "metatiles_anim_%02x.png" % (n), 0x0F, n, lambda n: n >= 0x6C and n < 0x70) for n in (0,1,2,3,4,5,6,7, 10, 11): addr = 0x0220 + n * 8 * 8 result = PIL.Image.new("L", (8 * 20 * 8, 8 * 16 * 8)) for y in range(8): for x in range(8): room = rom.banks[0x14][addr] + 0x100 if n > 5: room += 0x100 if n == 11: room += 0x100 addr += 1 if (room & 0xFF) == 0 and (n != 11 or x != 1 or y != 3): # ignore room nr 0, except on a very specific spot in the color dungeon. continue self.__room_map_info[room] = (x, y, n) result.paste(self.exportRoom(room), (x * 20 * 8, y * 16 * 8)) result.save("dungeon_%d.png" % (n)) f.write("<img src='dungeon_%d.png'><br><br>" % (n)) result = PIL.Image.new("L", (16 * 20 * 8, 16 * 16 * 8)) for n in range(0x100): if n + 0x100 in self.__room_map_info: continue x = n % 0x10 y = n // 0x10 result.paste(self.exportRoom(n + 0x100), (x * 20 * 8, y * 16 * 8)) result.save("caves1.png") f.write("<img src='caves1.png'><br><br>") result = PIL.Image.new("L", (16 * 20 * 8, 16 * 16 * 8)) for n in range(0x0FF): if n + 0x200 in self.__room_map_info: continue x = n % 0x10 y = n // 0x10 result.paste(self.exportRoom(n + 0x200), (x * 20 * 8, y * 16 * 8)) result.save("caves2.png") f.write("<img src='caves2.png'>") f.close() def exportMetaTiles(self, f, name, main_set, animation_set, condition_func): condition = lambda n: condition_func(n) and (n < 0x80 or n >= 0xF0) metatile_info_offset = self.__rom.banks[0x1A].find(b'\x7C\x7C\x7C\x7C\x7D\x7D\x7D\x7D') metatile_info = self.__rom.banks[0x1A][metatile_info_offset:metatile_info_offset + 0x100 * 4] result = PIL.Image.new("L", (16 * 16, 16 * 16)) sub_tileset_offset = main_set * 0x10 tilemap = self.__tiles[0x0f][sub_tileset_offset:sub_tileset_offset+0x20] tilemap += self.__tiles[0x0c][0x120:0x180] tilemap += self.__tiles[0x0c][0x080:0x100] addr = (0x000, 0x000, 0x2B0, 0x2C0, 0x2D0, 0x2E0, 0x2F0, 0x2D0, 0x300, 0x310, 0x320, 0x2A0, 0x330, 0x350, 0x360, 0x340, 0x370)[animation_set] tilemap[0x6C:0x70] = self.__tiles[0x0c][addr:addr+4] for x in range(16): for y in range(16): obj = x + y * 16 if condition(metatile_info[obj*4+0]): result.paste(tilemap[metatile_info[obj*4+0]], (x*16+0, y*16+0)) if condition(metatile_info[obj*4+1]): result.paste(tilemap[metatile_info[obj*4+1]], (x*16+8, y*16+0)) if condition(metatile_info[obj*4+2]): result.paste(tilemap[metatile_info[obj*4+2]], (x*16+0, y*16+8)) if condition(metatile_info[obj*4+3]): result.paste(tilemap[metatile_info[obj*4+3]], (x*16+8, y*16+8)) result.save(name) f.write("%s<br><img src='%s'><br><br>" % (name, name)) def exportRoom(self, room_nr): re = RoomEditor(self.__rom, room_nr) if room_nr < 0x100: tile_info_offset = self.__rom.banks[0x1A].find(b'\x7C\x7C\x7C\x7C\x7D\x7D\x7D\x7D') tile_info = self.__rom.banks[0x1A][tile_info_offset:tile_info_offset + 0x100 * 4] else: tile_info_offset = self.__rom.banks[0x08].find(b'\x7F\x7F\x7F\x7F\x7E\x7E\x7E\x7E') tile_info = self.__rom.banks[0x08][tile_info_offset:tile_info_offset+0x100*4] if room_nr >= 0x100: rendered_map = RenderedMap(re.floor_object & 0x0F) else: rendered_map = RenderedMap(re.floor_object, True) def objHSize(type_id): if type_id == 0xF5: return 2 return 1 def objVSize(type_id): if type_id == 0xF5: return 2 return 1 if room_nr >= 0x100: if re.floor_object & 0xF0 == 0x00: rendered_map.addWalls(RenderedMap.WALL_LEFT | RenderedMap.WALL_RIGHT | RenderedMap.WALL_UP | RenderedMap.WALL_DOWN) if re.floor_object & 0xF0 == 0x10: rendered_map.addWalls(RenderedMap.WALL_LEFT | RenderedMap.WALL_RIGHT | RenderedMap.WALL_DOWN) if re.floor_object & 0xF0 == 0x20: rendered_map.addWalls(RenderedMap.WALL_LEFT | RenderedMap.WALL_UP | RenderedMap.WALL_DOWN) if re.floor_object & 0xF0 == 0x30: rendered_map.addWalls(RenderedMap.WALL_LEFT | RenderedMap.WALL_RIGHT | RenderedMap.WALL_UP) if re.floor_object & 0xF0 == 0x40: rendered_map.addWalls(RenderedMap.WALL_RIGHT | RenderedMap.WALL_UP | RenderedMap.WALL_DOWN) if re.floor_object & 0xF0 == 0x50: rendered_map.addWalls(RenderedMap.WALL_LEFT | RenderedMap.WALL_DOWN) if re.floor_object & 0xF0 == 0x60: rendered_map.addWalls(RenderedMap.WALL_RIGHT | RenderedMap.WALL_DOWN) if re.floor_object & 0xF0 == 0x70: rendered_map.addWalls(RenderedMap.WALL_RIGHT | RenderedMap.WALL_UP) if re.floor_object & 0xF0 == 0x80: rendered_map.addWalls(RenderedMap.WALL_LEFT | RenderedMap.WALL_UP) for obj in re.objects: if isinstance(obj, ObjectWarp): pass elif isinstance(obj, ObjectHorizontal): for n in range(0, obj.count): rendered_map.placeObject(obj.x + n * objHSize(obj.type_id), obj.y, obj.type_id) elif isinstance(obj, ObjectVertical): for n in range(0, obj.count): rendered_map.placeObject(obj.x, obj.y + n * objVSize(obj.type_id), obj.type_id) else: rendered_map.placeObject(obj.x, obj.y, obj.type_id) tiles = [0] * 20 * 16 for y in range(8): for x in range(10): obj = rendered_map.objects[(x, y)] tiles[x*2 + y*2*20] = tile_info[obj*4] tiles[x*2+1 + y*2*20] = tile_info[obj*4+1] tiles[x*2 + (y*2+1)*20] = tile_info[obj*4+2] tiles[x*2+1 + (y*2+1)*20] = tile_info[obj*4+3] if room_nr < 0x100: sub_tileset_offset = self.__rom.banks[0x20][0x2E73 + (room_nr & 0x0F) // 2 + ((room_nr >> 5) * 8)] << 4 tilemap = self.__tiles[0x0f][sub_tileset_offset:sub_tileset_offset+0x20] tilemap += self.__tiles[0x0c][0x120:0x180] tilemap += self.__tiles[0x0c][0x080:0x100] else: # TODO: The whole indoor tileset loading seems complex... tileset_nr = self.__rom.banks[0x20][0x2eB3 + room_nr - 0x100] tilemap = [None] * 0x100 tilemap[0x20:0x80] = self.__tiles[0x0D][0x000:0x060] if tileset_nr != 0xFF: tilemap[0x00:0x10] = self.__tiles[0x0D][0x100 + tileset_nr * 0x10:0x110 + tileset_nr * 0x10] tilemap[0x10:0x20] = self.__tiles[0x0D][0x210:0x220] tilemap[0xF0:0x100] = self.__tiles[0x12][0x380:0x390] if re.animation_id == 2: addr = 0x2B0 elif re.animation_id == 3: addr = 0x2C0 elif re.animation_id == 4: addr = 0x2D0 elif re.animation_id == 5: addr = 0x2E0 elif re.animation_id == 6: addr = 0x2F0 elif re.animation_id == 7: addr = 0x2D0 elif re.animation_id == 8: addr = 0x300 elif re.animation_id == 9: addr = 0x310 elif re.animation_id == 10: addr = 0x320 elif re.animation_id == 11: addr = 0x2A0 elif re.animation_id == 12: addr = 0x330 elif re.animation_id == 13: addr = 0x350 elif re.animation_id == 14: addr = 0x360 elif re.animation_id == 15: addr = 0x340 elif re.animation_id == 16: addr = 0x370 else: print(hex(room_nr), re.animation_id) addr = 0x000 tilemap[0x6C:0x70] = self.__tiles[0x0c][addr:addr+4] assert len(tilemap) == 0x100 result = PIL.Image.new('L', (8 * 20, 8 * 16)) draw = PIL.ImageDraw.Draw(result) for y in range(16): for x in range(20): tile = tilemap[tiles[x+y*20]] if tile is not None: result.paste(tile, (x * 8, y * 8)) warp_pos = [] for y in range(8): for x in range(10): if rendered_map.objects[(x, y)] in (0xE1, 0xE2, 0xE3, 0xBA, 0xD5, 0xA8, 0xBE, 0xCB): warp_pos.append((x, y)) for x, y, type_id in re.entities: draw.rectangle([(x * 16, y * 16), (x * 16 + 15, y * 16 + 15)], outline=0) draw.text((x * 16 + 3, y * 16 + 2), "%02X" % (type_id)) y = 8 for obj in re.objects: if isinstance(obj, ObjectWarp): draw.text((8, y), "W%d:%02x:%03x:%d,%d" % (obj.warp_type, obj.map_nr, obj.room, obj.target_x, obj.target_y)) y += 16 return result def getTiles(self, bank_nr): bank = self.__rom.banks[bank_nr] buffer = bytearray(b'\x00' * 16 * 16) result = [] for n in range(0, len(bank), 16): for y in range(8): a = bank[n + y * 2] b = bank[n + y * 2 + 1] for x in range(8): v = 0x3F if not a & (0x80 >> x): v |= 0x40 if not b & (0x80 >> x): v |= 0x80 buffer[x+y*8] = v result.append(PIL.Image.frombytes('L', (8, 8), bytes(buffer))) return result
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .layer_function_generator import generate_layer_fn __activations__ = [ 'sigmoid', 'logsigmoid', 'exp', 'tanh', 'tanh_shrink', 'softshrink', 'sqrt', 'abs', 'ceil', 'floor', 'cos', 'sin', 'round', 'reciprocal', 'square', 'softplus', 'softsign', 'brelu', 'leaky_relu', 'soft_relu', 'elu', 'relu6', 'pow', 'stanh', 'hard_sigmoid', 'swish', ] __all__ = [ 'mean', 'mul', 'scale', 'sigmoid_cross_entropy_with_logits', 'elementwise_add', 'elementwise_div', 'elementwise_sub', 'elementwise_mul', 'elementwise_max', 'elementwise_min', 'elementwise_pow', 'clip', 'clip_by_norm', 'logical_and', 'logical_or', 'logical_xor', 'logical_not', 'uniform_random_batch_size_like', 'gaussian_random', 'gaussian_random_batch_size_like', 'scatter', 'sum', 'slice', 'shape', 'maxout', ] + __activations__ for _OP in set(__all__): globals()[_OP] = generate_layer_fn(_OP) __all__ += ["uniform_random"] _uniform_random_ = generate_layer_fn('uniform_random') def uniform_random(shape, dtype=None, min=None, max=None, seed=None): kwargs = dict() for name in locals(): val = locals()[name] if val is not None: kwargs[name] = val return _uniform_random_(**kwargs) uniform_random.__doc__ = _uniform_random_.__doc__ + """ Examples: >>> result = fluid.layers.uniform_random(shape=[32, 784]) """ __all__ += ['hard_shrink'] _hard_shrink_ = generate_layer_fn('hard_shrink') def hard_shrink(x, threshold=None): kwargs = dict() for name in locals(): val = locals()[name] if val is not None: kwargs[name] = val return _hard_shrink_(**kwargs) hard_shrink.__doc__ = _hard_shrink_.__doc__ + """ Examples: >>> data = fluid.layers.data(name="input", shape=[784]) >>> result = fluid.layers.hard_shrink(x=data, threshold=0.3) """ __all__ += ['cumsum'] _cum_sum_ = generate_layer_fn('cumsum') def cumsum(x, axis=None, exclusive=None, reverse=None): kwargs = dict() for name in locals(): val = locals()[name] if val is not None: kwargs[name] = val return _cum_sum_(**kwargs) cumsum.__doc__ = _cum_sum_.__doc__ + """ Examples: >>> data = fluid.layers.data(name="input", shape=[32, 784]) >>> result = fluid.layers.cumsum(data, axis=0) """ __all__ += ['thresholded_relu'] _thresholded_relu_ = generate_layer_fn('thresholded_relu') def thresholded_relu(x, threshold=None): kwargs = dict() for name in locals(): val = locals()[name] if val is not None: kwargs[name] = val _thresholded_relu_(**kwargs) thresholded_relu.__doc__ = _thresholded_relu_.__doc__ + """ Examples: >>> data = fluid.layers.data(name="input", shape=[1]) >>> result = fluid.layers.thresholded_relu(data, threshold=0.4) """
#!/usr/bin/python import os import sys import time from configparser import ConfigParser from plexapi.server import PlexServer import re config_object = ConfigParser() config_object.read("/config/config.ini") server = config_object["PLEXSERVER"] options = config_object["OPTIONS"] baseurl = (server["PLEX_URL"]) token = (server["TOKEN"]) plex = PlexServer(baseurl, token) plexlibrary = (server["FILMSLIBRARY"]) films = plex.library.section(plexlibrary) ppath = (server["PLEXPATH"]) mpath = (server["MOUNTEDPATH"]) xdays = int(options["CHECK_FILES_HISTORY"]) xsize = 100000000 now = time.time() for i in films.search(): dir = os.path.dirname(re.sub(ppath, mpath, i.media[0].parts[0].file)) for root, dirs, files in os.walk(dir): for name in files: filename = os.path.join(root, name) if os.stat(filename).st_mtime > now - (xdays * 86400): if os.stat(filename).st_size > xsize: print('checking', i.title) command = "ffmpeg -v error -i \"" + filename + "\" -c:v rawvideo -map 0:1 -f null - 2>&1" output = os.popen(command).read() print(output) if output.lower().find('error') == -1: print(i.title, 'is OK!') else: print('Oh Bugger!', filename, 'is completely buggered')
import logging from blspy import PrivateKey from mint.cmds.init_funcs import check_keys from mint.util.keychain import Keychain from pathlib import Path from typing import Any, Dict, List, Optional, cast # Commands that are handled by the KeychainServer keychain_commands = [ "add_private_key", "check_keys", "delete_all_keys", "delete_key_by_fingerprint", "get_all_private_keys", "get_first_private_key", "get_key_for_fingerprint", ] log = logging.getLogger(__name__) KEYCHAIN_ERR_KEYERROR = "key error" KEYCHAIN_ERR_LOCKED = "keyring is locked" KEYCHAIN_ERR_NO_KEYS = "no keys present" KEYCHAIN_ERR_MALFORMED_REQUEST = "malformed request" class KeychainServer: """ Implements a remote keychain service for clients to perform key operations on """ def __init__(self): self._default_keychain = Keychain() self._alt_keychains = {} def get_keychain_for_request(self, request: Dict[str, Any]): """ Keychain instances can have user and service strings associated with them. The keychain backends ultimately point to the same data stores, but the user and service strings are used to partition those data stores. We attempt to maintain a mapping of user/service pairs to their corresponding Keychain. """ keychain = None user = request.get("kc_user", self._default_keychain.user) service = request.get("kc_service", self._default_keychain.service) if user == self._default_keychain.user and service == self._default_keychain.service: keychain = self._default_keychain else: key = (user or "unnamed") + (service or "") if key in self._alt_keychains: keychain = self._alt_keychains[key] else: keychain = Keychain(user=user, service=service) self._alt_keychains[key] = keychain return keychain async def handle_command(self, command, data) -> Dict[str, Any]: if command == "add_private_key": return await self.add_private_key(cast(Dict[str, Any], data)) elif command == "check_keys": return await self.check_keys(cast(Dict[str, Any], data)) elif command == "delete_all_keys": return await self.delete_all_keys(cast(Dict[str, Any], data)) elif command == "delete_key_by_fingerprint": return await self.delete_key_by_fingerprint(cast(Dict[str, Any], data)) elif command == "get_all_private_keys": return await self.get_all_private_keys(cast(Dict[str, Any], data)) elif command == "get_first_private_key": return await self.get_first_private_key(cast(Dict[str, Any], data)) elif command == "get_key_for_fingerprint": return await self.get_key_for_fingerprint(cast(Dict[str, Any], data)) return {} async def add_private_key(self, request: Dict[str, Any]) -> Dict[str, Any]: if self.get_keychain_for_request(request).is_keyring_locked(): return {"success": False, "error": KEYCHAIN_ERR_LOCKED} mnemonic = request.get("mnemonic", None) passphrase = request.get("passphrase", None) if mnemonic is None or passphrase is None: return { "success": False, "error": KEYCHAIN_ERR_MALFORMED_REQUEST, "error_details": {"message": "missing mnemonic and/or passphrase"}, } try: self.get_keychain_for_request(request).add_private_key(mnemonic, passphrase) except KeyError as e: return { "success": False, "error": KEYCHAIN_ERR_KEYERROR, "error_details": {"message": f"The word '{e.args[0]}' is incorrect.'", "word": e.args[0]}, } return {"success": True} async def check_keys(self, request: Dict[str, Any]) -> Dict[str, Any]: if self.get_keychain_for_request(request).is_keyring_locked(): return {"success": False, "error": KEYCHAIN_ERR_LOCKED} root_path = request.get("root_path", None) if root_path is None: return { "success": False, "error": KEYCHAIN_ERR_MALFORMED_REQUEST, "error_details": {"message": "missing root_path"}, } check_keys(Path(root_path)) return {"success": True} async def delete_all_keys(self, request: Dict[str, Any]) -> Dict[str, Any]: if self.get_keychain_for_request(request).is_keyring_locked(): return {"success": False, "error": KEYCHAIN_ERR_LOCKED} self.get_keychain_for_request(request).delete_all_keys() return {"success": True} async def delete_key_by_fingerprint(self, request: Dict[str, Any]) -> Dict[str, Any]: if self.get_keychain_for_request(request).is_keyring_locked(): return {"success": False, "error": KEYCHAIN_ERR_LOCKED} fingerprint = request.get("fingerprint", None) if fingerprint is None: return { "success": False, "error": KEYCHAIN_ERR_MALFORMED_REQUEST, "error_details": {"message": "missing fingerprint"}, } self.get_keychain_for_request(request).delete_key_by_fingerprint(fingerprint) return {"success": True} async def get_all_private_keys(self, request: Dict[str, Any]) -> Dict[str, Any]: all_keys: List[Dict[str, Any]] = [] if self.get_keychain_for_request(request).is_keyring_locked(): return {"success": False, "error": KEYCHAIN_ERR_LOCKED} private_keys = self.get_keychain_for_request(request).get_all_private_keys() for sk, entropy in private_keys: all_keys.append({"pk": bytes(sk.get_g1()).hex(), "entropy": entropy.hex()}) return {"success": True, "private_keys": all_keys} async def get_first_private_key(self, request: Dict[str, Any]) -> Dict[str, Any]: key: Dict[str, Any] = {} if self.get_keychain_for_request(request).is_keyring_locked(): return {"success": False, "error": KEYCHAIN_ERR_LOCKED} sk_ent = self.get_keychain_for_request(request).get_first_private_key() if sk_ent is None: return {"success": False, "error": KEYCHAIN_ERR_NO_KEYS} pk_str = bytes(sk_ent[0].get_g1()).hex() ent_str = sk_ent[1].hex() key = {"pk": pk_str, "entropy": ent_str} return {"success": True, "private_key": key} async def get_key_for_fingerprint(self, request: Dict[str, Any]) -> Dict[str, Any]: if self.get_keychain_for_request(request).is_keyring_locked(): return {"success": False, "error": KEYCHAIN_ERR_LOCKED} private_keys = self.get_keychain_for_request(request).get_all_private_keys() if len(private_keys) == 0: return {"success": False, "error": KEYCHAIN_ERR_NO_KEYS} fingerprint = request.get("fingerprint", None) private_key: Optional[PrivateKey] = None entropy: Optional[bytes] = None if fingerprint is not None: for sk, entropy in private_keys: if sk.get_g1().get_fingerprint() == fingerprint: private_key = sk break else: private_key, entropy = private_keys[0] if not private_key or not entropy: return {"success": False, "error": KEYCHAIN_ERR_NO_KEYS} else: return {"success": True, "pk": bytes(private_key.get_g1()).hex(), "entropy": entropy.hex()}
#Importing packages import shutil import os import csv #Preprocessing first dataset file = "./Pokemon/data/pokemon_types_names.csv" with open(file,'r') as f: reader = csv.reader(f) next(reader,None) #Skip the header pkm_dict1 = {rows[1]:rows[2] for rows in reader} for pkm_name, pkm_type in pkm_dict1.items(): source = './Pokemon/pokemon-generation-one/{pkm_name}/'.format(pkm_name=pkm_name) dest = './Pokemon/dataset/{pkm_type}'.format(pkm_type=pkm_type) for f in os.listdir(source): if not os.path.exists(dest): os.makedirs(dest) shutil.copy(source+f, dest) #Preprocessing second dataset file = "./Pokemon/data/pokemon_types.csv" with open(file,'r') as f: reader = csv.reader(f) next(reader,None) #Skip the header pkm_dict2 = {rows[0]:rows[1] for rows in reader} for pkm_no, pkm_type in pkm_dict2.items(): source = './Pokemon/pokemon-images-dataset/{pkm_no}.png'.format(pkm_no=pkm_no) dest = './Pokemon/dataset/{pkm_type}'.format(pkm_type=pkm_type) if not os.path.exists(dest): os.makedirs(dest) shutil.copy(source, dest)
# Copyright 2020-present Kensho Technologies, LLC. """Implementing client-side grpc interceptors""" import functools import json import backoff import grpc import prometheus_client CLIENTSIDE_METRICS_HISTO = prometheus_client.Histogram( "clientside_grpc_endpoint", "Response time histogram for grpc endpoints from the client-side", labelnames=("client_name", "server_name", "service", "endpoint"), ) CLIENTSIDE_ERROR_COUNTER = prometheus_client.Counter( "clientside_grpc_endpoint_error", "Clientside exception counts for grpc methods", labelnames=("client_name", "server_name", "service", "endpoint", "exception"), ) GRPC_RENDEZVOUS_ERROR = "_Rendezvous" def get_service_and_method_from_url(method_url): """Extract service and method names from the method url string. Returns strings that are applicable as prometheus metrics and/or labels. Args: method_url: string Returns: tuple(service_name, method_name) """ name_parts = method_url.split("/") if len(name_parts) != 3 or name_parts[0] != "" or name_parts[1] == "" or name_parts[2] == "": raise AssertionError("Invalid method name: {}".format(method_url)) return (name_parts[1].replace(".", "_"), name_parts[2].replace(".", "_")) class GRPCClientGeneralInterceptor( grpc.UnaryUnaryClientInterceptor, grpc.StreamUnaryClientInterceptor, grpc.UnaryStreamClientInterceptor, grpc.StreamStreamClientInterceptor, ): """General GRPC client interceptor that intercepts all functions.""" def __init__(self, decorator_fn): """Initialize interceptor with a factory function producing decorators.""" super(GRPCClientGeneralInterceptor, self).__init__() self._decorator_fn = decorator_fn def _intercept_call(self, continuation, client_call_details, request_or_iterator): """Interceptor implementation.""" metadata = _get_metadata_map_from_client_details(client_call_details) decorator = self._decorator_fn(client_call_details.method, metadata) if not decorator: handler = continuation else: handler = decorator(continuation) return handler(client_call_details, request_or_iterator) def intercept_unary_unary(self, continuation, client_call_details, request): """Intercept unary-unary.""" return self._intercept_call(continuation, client_call_details, request) def intercept_stream_unary(self, continuation, client_call_details, request_iterator): """Intercept stream-unary.""" return self._intercept_call(continuation, client_call_details, request_iterator) def intercept_unary_stream(self, continuation, client_call_details, request): """Intercept unary-stream.""" return self._intercept_call(continuation, client_call_details, request) def intercept_stream_stream(self, continuation, client_call_details, request_iterator): """Intercept stream-stream.""" return self._intercept_call(continuation, client_call_details, request_iterator) class GRPCClientUnaryOutputInterceptor( grpc.UnaryUnaryClientInterceptor, grpc.StreamUnaryClientInterceptor ): """GRPC interceptor that makes intercepts only unary-output grpcs.""" def __init__(self, decorator_fn): """Initialize interceptor with a factory function producing decorators.""" super(GRPCClientUnaryOutputInterceptor, self).__init__() self._decorator_fn = decorator_fn def _intercept_call(self, continuation, client_call_details, request_or_iterator): """Interceptor implementation""" metadata = _get_metadata_map_from_client_details(client_call_details) decorator = self._decorator_fn(client_call_details.method, metadata) if not decorator: handler = continuation else: handler = decorator(continuation) return handler(client_call_details, request_or_iterator) def intercept_unary_unary(self, continuation, client_call_details, request): """Intercept unary-unary.""" return self._intercept_call(continuation, client_call_details, request) def intercept_stream_unary(self, continuation, client_call_details, request_iterator): """Intercept stream-unary.""" return self._intercept_call(continuation, client_call_details, request_iterator) class GRPCClientMiddleware(object): """Base class for GRPC client-side middleware. GRPCMiddleware implementations must provide a get_decorator method: # def get_decorator(self, method_name, metadata) Which takes a string method name, and dict of rpc leading metadata and returns a decorator that can be applied to the underlying rpc method. Additionally: __init__ is guaranteed to be called before the server is started. get_interceptors(self) will be called to retrieve all GRPC interceptors necessary for the middleware. Users may extend this method to include additional interceptors. """ def __init__(self, client_label, server_label, interceptor_class): """Initialize""" super(GRPCClientMiddleware, self).__init__() self._server_label = server_label self._client_label = client_label self._interceptor_class = interceptor_class @property def server_label(self): """Get server label.""" return self._server_label @property def client_label(self): """Get client label.""" return self._client_label def get_interceptors(self): """Get a list of interceptors needed by the middleware.""" return [self._interceptor_class(self.get_decorator)] class ClientSideMetricsMiddleware(GRPCClientMiddleware): """GRPC middleware that captures prometheus metrics.""" def __init__(self, client_label, server_label): """Initialize""" super(ClientSideMetricsMiddleware, self).__init__( client_label, server_label, GRPCClientGeneralInterceptor ) class Timer(object): """Decorator that wraps a function in a prometheus histogram.""" def __init__(self, histogram): """Initializes with the histogram object.""" self._histogram = histogram def __call__(self, fn): """Wrap a method with a histogram.""" @functools.wraps(fn) def wrap(request, context): """Inner wrapper.""" with self._histogram.time(): return fn(request, context) return wrap def get_decorator(self, method_name, _): """Normalize metric name and return decorator that captures metrics.""" service_label, endpoint_label = get_service_and_method_from_url(method_name) return self.Timer( CLIENTSIDE_METRICS_HISTO.labels( client_name=self.client_label, server_name=self.server_label, service=service_label, endpoint=endpoint_label, ) ) class ClientSideExceptionCountMiddleware(GRPCClientMiddleware): """GRPC middleware that captures prometheus metrics for unary outputs.""" def __init__(self, client_label, server_label): """Initialize""" super(ClientSideExceptionCountMiddleware, self).__init__( client_label, server_label, GRPCClientUnaryOutputInterceptor ) class Counter(object): """Decorator that wraps a function in a exception counter.""" def __init__(self, counter, client_name, server_name, service, endpoint): """Initializes with the counter object.""" self._counter = counter self._client_name = client_name self._server_name = server_name self._service = service self._endpoint = endpoint def __call__(self, fn): """Wrap a method with an exception counter.""" @functools.wraps(fn) def wrap(request, context): """Inner wrapper.""" r = fn(request, context) if r.exception(): # If we get a Rendezvous error, we want some more information about the type # of error we are getting. For example, a GRPC timeout error will be labelled as # exception "_Rendezvous: <StatusCode.DEADLINE_EXCEEDED: 4>". All errors can be # found at https://grpc.github.io/grpc/python/grpc.html#grpc-status-code if type(r.exception()).__name__ == GRPC_RENDEZVOUS_ERROR: exception = GRPC_RENDEZVOUS_ERROR + ": " + repr(r.exception().code()) # No guarantees of status code for other errors--only report error type. else: exception = type(r.exception()).__name__ self._counter.labels( client_name=self._client_name, server_name=self._server_name, service=self._service, endpoint=self._endpoint, exception=exception, ).inc() return r return wrap def get_decorator(self, method_name, _): """Normalize method name and return decorator that captures exceptions""" service_label, endpoint_label = get_service_and_method_from_url(method_name) return self.Counter( CLIENTSIDE_ERROR_COUNTER, self.client_label, self.server_label, service_label, endpoint_label, ) class ClientExceptionTranslationMiddlewareUnaryOutput(GRPCClientMiddleware): """Translate client exception""" def __init__(self, client_label, server_label, code_to_exception_class_func): """Initialize""" super(ClientExceptionTranslationMiddlewareUnaryOutput, self).__init__( client_label, server_label, GRPCClientUnaryOutputInterceptor ) self._code_to_exception_class_func = code_to_exception_class_func class Translator(object): """Decorator that wraps a function in a exception translator""" def __init__(self, code_to_exception_class_func): """Initializes with the counter object""" self._code_to_exception_class_func = code_to_exception_class_func def __call__(self, fn): """Wrap a method with an exception counter""" @functools.wraps(fn) def wrap(request, context): """Execute a function, if an exception is raised, change its type if necessary""" try: result = fn(request, context) if result.code() is grpc.StatusCode.OK: return result else: raise result except grpc.RpcError as exc: raise_exception_from_grpc_exception(self._code_to_exception_class_func, exc) return wrap def get_decorator(self, method_name, _): """Return exception translator decorator""" return self.Translator(self._code_to_exception_class_func) class ClientRetryingMiddlewareUnaryOutput(GRPCClientMiddleware): """Translate client exception""" def __init__(self, client_label, server_label, exceptions_to_retry, max_retries): """Initialize""" super(ClientRetryingMiddlewareUnaryOutput, self).__init__( client_label, server_label, GRPCClientUnaryOutputInterceptor ) self._exceptions_to_retry = exceptions_to_retry self._max_retries = max_retries class Retrier(object): """Decorator that wraps a function in a exception translator""" def __init__(self, exceptions_to_retry, max_retries): """Initializes with the counter object""" self._exceptions_to_retry = exceptions_to_retry self._max_retries = max_retries def __call__(self, fn): """Wrap a method with an exception counter""" return backoff.on_exception(backoff.expo, self._exceptions_to_retry, self._max_retries)( fn ) def get_decorator(self, method_name, _): """Return exception translator decorator""" return self.Retrier(self._exceptions_to_retry, self._max_retries) def raise_exception_from_grpc_exception(code_to_exception_class_func, exc): """Raise exception from exc, translating with code_to_exception_class_func""" code = None details = "[]" # Details are expected to be jsondeserializable if exc.code() == grpc.StatusCode.DEADLINE_EXCEEDED: raise TimeoutError() elif exc.code() == grpc.StatusCode.UNIMPLEMENTED: raise NotImplementedError() elif exc.code() == grpc.StatusCode.UNAVAILABLE: raise ConnectionRefusedError() for key, value in exc.trailing_metadata(): if key == "error_code": try: code = int(value) except (TypeError, ValueError): pass elif key == "error_details": details = value if code_to_exception_class_func: exception_class = code_to_exception_class_func(code) if exception_class: exception_args = json.loads(details) raise exception_class(*exception_args) raise exc def _get_metadata_map_from_client_details(client_call_details): """Get metadata key->value map from client_call_details""" metadata = {metadatum[0]: metadatum[1] for metadatum in (client_call_details.metadata or [])} return metadata
######### # Copyright (c) 2015 GigaSpaces Technologies Ltd. All rights reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # * See the License for the specific language governing permissions and # * limitations under the License. import copy import urllib import subprocess from flask import current_app from string import ascii_letters from flask import request, make_response from flask_restful.reqparse import Argument from flask_restful.reqparse import RequestParser from contextlib import contextmanager from manager_rest import manager_exceptions, config from manager_rest.constants import REST_SERVICE_NAME from manager_rest.storage.models_states import VisibilityState try: from cloudify_premium.ha import node_status except ImportError: node_status = {'initialized': False} states_except_private = copy.deepcopy(VisibilityState.STATES) states_except_private.remove('private') VISIBILITY_EXCEPT_PRIVATE = states_except_private @contextmanager def skip_nested_marshalling(): request.__skip_marshalling = True yield delattr(request, '__skip_marshalling') def get_json_and_verify_params(params=None): params = params or [] if request.content_type != 'application/json': raise manager_exceptions.UnsupportedContentTypeError( 'Content type must be application/json') request_dict = request.json is_params_dict = isinstance(params, dict) def is_optional(param_name): return is_params_dict and params[param_name].get('optional', False) def check_type(param_name): return is_params_dict and params[param_name].get('type', None) for param in params: if param not in request_dict: if is_optional(param): continue raise manager_exceptions.BadParametersError( 'Missing {0} in json request body'.format(param)) param_type = check_type(param) if param_type and not isinstance(request_dict[param], param_type): raise manager_exceptions.BadParametersError( '{0} parameter is expected to be of type {1} but is of type ' '{2}'.format(param, param_type.__name__, type(request_dict[param]).__name__)) return request_dict def get_args_and_verify_arguments(arguments): request_parser = RequestParser() for argument in arguments: argument.location = 'args' request_parser.args.append(argument) return request_parser.parse_args() def verify_and_convert_bool(attribute_name, str_bool): if isinstance(str_bool, bool): return str_bool if str_bool.lower() == 'true': return True if str_bool.lower() == 'false': return False raise manager_exceptions.BadParametersError( '{0} must be <true/false>, got {1}'.format(attribute_name, str_bool)) def convert_to_int(value): try: return int(value) except Exception: raise manager_exceptions.BadParametersError( 'invalid parameter, should be int, got: {0}'.format(value)) def make_streaming_response(res_id, res_path, content_length, archive_type): response = make_response() response.headers['Content-Description'] = 'File Transfer' response.headers['Cache-Control'] = 'no-cache' response.headers['Content-Type'] = 'application/octet-stream' response.headers['Content-Disposition'] = \ 'attachment; filename={0}.{1}'.format(res_id, archive_type) response.headers['Content-Length'] = content_length response.headers['X-Accel-Redirect'] = res_path response.headers['X-Accel-Buffering'] = 'yes' return response def set_restart_task(delay=1): current_app.logger.info('Restarting the rest service') cmd = 'sleep {0}; sudo systemctl restart {1}' \ .format(delay, REST_SERVICE_NAME) subprocess.Popen(cmd, shell=True) def validate_inputs(input_dict): for input_name, input_value in input_dict.iteritems(): prefix = 'The `{0}` argument'.format(input_name) if not input_value: raise manager_exceptions.BadParametersError( '{0} is empty'.format(prefix) ) if len(input_value) > 256: raise manager_exceptions.BadParametersError( '{0} is too long. Maximum allowed length is 256 ' 'characters'.format(prefix) ) # urllib.quote changes all chars except alphanumeric chars and _-. quoted_value = urllib.quote(input_value, safe='') if quoted_value != input_value: raise manager_exceptions.BadParametersError( '{0} contains illegal characters. Only letters, digits and the' ' characters "-", "." and "_" are allowed'.format(prefix) ) if input_value[0] not in ascii_letters: raise manager_exceptions.BadParametersError( '{0} must begin with a letter'.format(prefix) ) def validate_and_decode_password(password): if not password: raise manager_exceptions.BadParametersError('The password is empty') if len(password) > 256: raise manager_exceptions.BadParametersError( 'The password is too long. Maximum allowed length is 256 ' 'characters' ) if len(password) < 5: raise manager_exceptions.BadParametersError( 'The password is too short. Minimum allowed length is 5 ' 'characters' ) return password def is_clustered(): return node_status.get('initialized') def verify_role(role_name, is_system_role=False): """Make sure that role name is present in the system. :param role_name: Role name to validate against database content. :param is_system_role: True if system_role, False if tenant_role :raises: BadParametersError when role is not found in the system or is not from the right type """ expected_role_type = 'system_role' if is_system_role else 'tenant_role' # Get role by name role = next( ( r for r in config.instance.authorization_roles if r['name'] == role_name ), None ) # Role not found if role is None: valid_roles = [ r['name'] for r in config.instance.authorization_roles if r['type'] in (expected_role_type, 'any') ] raise manager_exceptions.BadParametersError( 'Invalid role: `{0}`. Valid {1} roles are: {2}' .format(role_name, expected_role_type, valid_roles) ) # Role type doesn't match if role['type'] not in (expected_role_type, 'any'): raise manager_exceptions.BadParametersError( 'Role `{0}` is a {1} and cannot be assigned as a {2}' .format(role_name, role['type'], expected_role_type) ) def request_use_all_tenants(): return verify_and_convert_bool('all_tenants', request.args.get('_all_tenants', False)) def get_visibility_parameter(optional=False, is_argument=False, valid_values=VISIBILITY_EXCEPT_PRIVATE): if is_argument: args = get_args_and_verify_arguments( [Argument('visibility', type=unicode, default=None)] ) visibility = args.visibility else: request_dict = get_json_and_verify_params({ 'visibility': {'optional': optional, 'type': unicode} }) visibility = request_dict.get('visibility', None) if visibility is not None and visibility not in valid_values: raise manager_exceptions.BadParametersError( "Invalid visibility: `{0}`. Valid visibility's values are: {1}" .format(visibility, valid_values) ) return visibility
"""Ensemble plan manually split by type moode/theme.""" import json from dbispipeline.evaluators import FixedSplitEvaluator from dbispipeline.evaluators import ModelCallbackWrapper import numpy as np from sklearn.pipeline import Pipeline from mediaeval2021 import common from mediaeval2021.dataloaders.melspectrograms import MelSpectPickleLoader from mediaeval2021.models.ensemble import Ensemble from mediaeval2021.models.wrapper import TorchWrapper dataloader = MelSpectPickleLoader('data/mediaeval2020/melspect_1366.pickle') label_splits = [ np.arange(0, 14, 1), np.arange(14, 28, 1), np.arange(28, 42, 1), np.arange(42, 56, 1), ] pipeline = Pipeline([ ('model', Ensemble( base_estimator=TorchWrapper( model_name='CNN', dataloader=dataloader, batch_size=64, ), label_splits=label_splits, epochs=100, )), ]) evaluator = ModelCallbackWrapper( FixedSplitEvaluator(**common.fixed_split_params()), lambda model: common.store_prediction(model, dataloader), ) result_handlers = [ lambda results: print(json.dumps(results, indent=4)), ]
import lldb from lldbsuite.test.lldbtest import * from lldbsuite.test.decorators import * from gdbclientutils import * class TestGDBRemoteLoad(GDBRemoteTestBase): def setUp(self): super(TestGDBRemoteLoad, self).setUp() self._initial_platform = lldb.DBG.GetSelectedPlatform() def tearDown(self): lldb.DBG.SetSelectedPlatform(self._initial_platform) super(TestGDBRemoteLoad, self).tearDown() def test_module_load_address(self): """Test that setting the load address of a module uses virtual addresses""" target = self.createTarget("a.yaml") process = self.connect(target) module = target.GetModuleAtIndex(0) self.assertTrue(module.IsValid()) self.assertTrue(target.SetModuleLoadAddress(module, 0).Success()) address = target.ResolveLoadAddress(0x2001) self.assertTrue(address.IsValid()) self.assertEqual(".data", address.GetSection().GetName()) def test_ram_load(self): """Test loading an object file to a target's ram""" target = self.createTarget("a.yaml") process = self.connect(target) self.dbg.HandleCommand("target modules load -l -s0") self.assertPacketLogContains([ "M1000,4:c3c3c3c3", "M1004,2:3232" ]) @skipIfXmlSupportMissing def test_flash_load(self): """Test loading an object file to a target's flash memory""" class Responder(MockGDBServerResponder): def qSupported(self, client_supported): return "PacketSize=3fff;QStartNoAckMode+;qXfer:memory-map:read+" def qXferRead(self, obj, annex, offset, length): if obj == "memory-map": return (self.MEMORY_MAP[offset:offset + length], offset + length < len(self.MEMORY_MAP)) return None, False def other(self, packet): if packet[0:11] == "vFlashErase": return "OK" if packet[0:11] == "vFlashWrite": return "OK" if packet == "vFlashDone": return "OK" return "" MEMORY_MAP = """<?xml version="1.0"?> <memory-map> <memory type="ram" start="0x0" length="0x1000"/> <memory type="flash" start="0x1000" length="0x1000"> <property name="blocksize">0x100</property> </memory> <memory type="ram" start="0x2000" length="0x1D400"/> </memory-map> """ self.server.responder = Responder() target = self.createTarget("a.yaml") process = self.connect(target) self.dbg.HandleCommand("target modules load -l -s0") self.assertPacketLogContains([ "vFlashErase:1000,100", "vFlashWrite:1000:\xc3\xc3\xc3\xc3", "vFlashWrite:1004:\x32\x32", "vFlashDone" ])
"""createbulk This module illustrates how to connect to MySQL and load bulk data in python using the mysql-connector-python library. """ import mysql.connector from faker import Faker # Create a connection to MySQL db = mysql.connector.connect(option_files="../sql-user/my.ini") cursor = db.cursor() # Create Faker instance fake = Faker() # Define the query template and the parameters to submit with it sql = """INSERT INTO dataengineering.people (name, age, street, city, state, zip, lng, lat) VALUES (%(name)s, %(age)s, %(street)s, %(city)s, %(state)s, %(zip)s, %(lng)s, %(lat)s); """ params = [ {'name': fake.name(), 'age': fake.random_int(min=18, max=80, step=1), 'street': fake.street_address(), 'city': fake.city(), 'state': fake.state(), 'zip': fake.zipcode(), 'lng': fake.longitude(), 'lat': fake.latitude(), } for _ in range(1000) ] # Execute queries cursor.executemany(sql, params) print("Row count: {0}".format(cursor.rowcount)) db.commit() db.close()
# -*- coding: utf-8 -*- import os import pickle from autobahn.twisted.util import sleep from mdstudio.deferred.chainable import chainable from mdstudio.component.session import ComponentSession from mdstudio.runner import main from mdstudio_workflow import Workflow class LIEPredictionWorkflow(ComponentSession): """ This workflow will perform a binding affinity prediction for CYP 1A2 with applicability domain analysis using the Linear Interaction Energy (LIE) method as described in: Capoferri L, Verkade-Vreeker MCA, Buitenhuis D, Commandeur JNM, Pastor M, Vermeulen NPE, et al. (2015) "Linear Interaction Energy Based Prediction of Cytochrome P450 1A2 Binding Affinities with Reliability Estimation." PLoS ONE 10(11): e0142232. https://doi.org/10.1371/journal.pone.0142232 The workflow uses data from the pre-calibrated CYP1A2 model created using the eTOX ALLIES Linear Interaction Energy pipeline (liemodel parameter). Pre-calculated molecular dynamics trajectory LIE energy values are available for bound and unbound ligand cases (bound_trajectory, unbound_trajectory respectively) """ def authorize_request(self, uri, claims): """ Microservice specific authorization method. Will always be called when the service first tries to register with the broker. It returns True (= authorized) by default. """ return True @chainable def on_run(self): # Ligand to make prediction for ligand = 'O1[C@@H](CCC1=O)CCC' ligand_format = 'smi' liemodel = os.path.join(os.getcwd(), '1A2_model') # CYP1A2 pre-calibrated model modelpicklefile = os.path.join(liemodel, 'params.pkl') modelfile = pickle.load(open(modelpicklefile)) unbound_trajectory = os.path.join(os.getcwd(), "unbound_trajectory.ene") bound_trajectory = [os.path.join(os.getcwd(), "bound_trajectory.ene")] decompose_files = [os.path.join(os.getcwd(), "decompose_dataframe.ene")] # Build Workflow wf = Workflow(project_dir='./lie_prediction') wf.task_runner = self # STAGE 5. PYLIE FILTERING, AD ANALYSIS AND BINDING-AFFINITY PREDICTION # Collect Gromacs bound and unbound MD energy trajectories in a dataframe t18 = wf.add_task('Create mdframe', task_type='WampTask', uri='mdgroup.lie_pylie.endpoint.collect_energy_trajectories') t18.set_input(unbound_trajectory=unbound_trajectory, bound_trajectory=bound_trajectory, lie_vdw_header="Ligand-Ligenv-vdw", lie_ele_header="Ligand-Ligenv-ele") # Determine stable regions in MDFrame and filter t19 = wf.add_task('Detect stable regions', task_type='WampTask', uri='mdgroup.lie_pylie.endpoint.filter_stable_trajectory') t19.set_input(do_plot=True, minlength=45, workdir='/tmp/mdstudio/lie_pylie') wf.connect_task(t18.nid, t19.nid, 'mdframe') # Extract average LIE energy values from the trajectory t20 = wf.add_task('LIE averages', task_type='WampTask', uri='mdgroup.lie_pylie.endpoint.calculate_lie_average') wf.connect_task(t19.nid, t20.nid, filtered_mdframe='mdframe') # Calculate dG using pre-calibrated model parameters t21 = wf.add_task('Calc dG', task_type='WampTask', uri='mdgroup.lie_pylie.endpoint.liedeltag') t21.set_input(alpha_beta_gamma=modelfile['LIE']['params']) wf.connect_task(t20.nid, t21.nid, 'averaged', averaged='dataframe') # Applicability domain: 1. Tanimoto similarity with training set t22 = wf.add_task('AD1 tanimoto simmilarity', task_type='WampTask', uri='mdgroup.mdstudio_structures.endpoint.chemical_similarity') t22.set_input(test_set=[ligand], mol_format=ligand_format, reference_set=modelfile['AD']['Tanimoto']['smi'], ci_cutoff=modelfile['AD']['Tanimoto']['Furthest']) wf.connect_task(t18.nid, t22.nid) # Applicability domain: 2. residue decomposition t23 = wf.add_task('AD2 residue decomposition', task_type='WampTask', uri='mdgroup.lie_pylie.endpoint.adan_residue_decomp', inline_files=False) t23.set_input(model_pkl=modelpicklefile, decompose_files=decompose_files) wf.connect_task(t18.nid, t23.nid) # Applicability domain: 3. deltaG energy range t24 = wf.add_task('AD3 dene yrange', task_type='WampTask', uri='mdgroup.lie_pylie.endpoint.adan_dene_yrange') t24.set_input(ymin=modelfile['AD']['Yrange']['min'], ymax=modelfile['AD']['Yrange']['max']) wf.connect_task(t21.nid, t24.nid, 'liedeltag_file', liedeltag_file='dataframe') # Applicability domain: 4. deltaG energy distribution t25 = wf.add_task('AD4 dene distribution', task_type='WampTask', uri='mdgroup.lie_pylie.endpoint.adan_dene') t25.set_input(model_pkl=modelpicklefile, center=list(modelfile['AD']['Dene']['Xmean']), ci_cutoff=modelfile['AD']['Dene']['Maxdist']) wf.connect_task(t21.nid, t25.nid, 'liedeltag_file', liedeltag_file='dataframe') wf.run() while wf.is_running: yield sleep(1) if __name__ == "__main__": main(LIEPredictionWorkflow, auto_reconnect=False, daily_log=False)
#!/usr/bin/env python # -*- coding: utf-8 -*- """ .. py:currentmodule:: test_direct_metric_tensor :synopsis: Tests for the module :py:mod:`direct_metric_tensor` .. moduleauthor:: Hendrix Demers <hendrix.demers@mail.mcgill.ca> Tests for the module :py:mod:`direct_metric_tensor`. """ ############################################################################### # Copyright 2017 Hendrix Demers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ############################################################################### # Standard library modules. import unittest # Third party modules. # Local modules. # Project modules. import electrondiffraction.crystallography.direct_metric_tensor as direct_metric_tensor # Globals and constants variables. class Test_direct_metric_tensor(unittest.TestCase): """ TestCase class for the module `${moduleName}`. """ def setUp(self): """ Setup method. """ unittest.TestCase.setUp(self) def tearDown(self): """ Teardown method. """ unittest.TestCase.tearDown(self) def testSkeleton(self): """ First test to check if the testcase is working with the testing framework. """ #self.fail("Test if the testcase is working.") self.assert_(True) if __name__ == '__main__': # pragma: no cover import nose nose.runmodule()
import setuptools setuptools.setup(name="librespot", version="0.0.1", description="Open Source Spotify Client", long_description=open("README.md").read(), long_description_content_type="text/markdown", author="kokarare1212", url="https://github.com/kokarare1212/librespot-python", license="Apache-2.0", packages=setuptools.find_packages("."), install_requires=[ "defusedxml", "protobuf", "pycryptodomex", "pyogg", "requests", "websocket-client", "zeroconf" ], classifiers=[ "Development Status :: 1 - Planning", "License :: OSI Approved :: Apache Software License", "Topic :: Multimedia :: Sound/Audio" ])
# BSD 3-Clause License # Copyright (c) 2017, Federico T. # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """Sparse inverse covariance selection over time via ADMM. More information can be found in the paper linked at: https://arxiv.org/abs/1703.01958 """ from __future__ import division import warnings import numpy as np from scipy import linalg from six.moves import map, range, zip from sklearn.covariance import empirical_covariance, log_likelihood from sklearn.utils.extmath import squared_norm from sklearn.utils.validation import check_X_y from regain.covariance.graphical_lasso_ import GraphicalLasso, logl from regain.norm import l1_od_norm from regain.prox import prox_logdet, soft_thresholding from regain.update_rules import update_rho from regain.utils import convergence, error_norm_time from regain.validation import check_norm_prox def loss(S, K, n_samples=None): """Loss function for time-varying graphical lasso.""" if n_samples is None: n_samples = np.ones(S.shape[0]) return sum( -ni * logl(emp_cov, precision) for emp_cov, precision, ni in zip(S, K, n_samples)) def objective(n_samples, S, K, Z_0, Z_1, Z_2, alpha, beta, psi): """Objective function for time-varying graphical lasso.""" obj = loss(S, K, n_samples=n_samples) if isinstance(alpha, np.ndarray): obj += sum(l1_od_norm(a * z) for a, z in zip(alpha, Z_0)) else: obj += alpha * sum(map(l1_od_norm, Z_0)) if isinstance(beta, np.ndarray): obj += sum(b[0][0] * m for b, m in zip(beta, map(psi, Z_2 - Z_1))) else: obj += beta * sum(map(psi, Z_2 - Z_1)) return obj def init_precision(emp_cov, mode='empirical'): if isinstance(mode, np.ndarray): return mode.copy() if mode == 'empirical': n_times, _, n_features = emp_cov.shape covariance_ = emp_cov.copy() covariance_ *= 0.95 K = np.empty_like(emp_cov) for i, (c, e) in enumerate(zip(covariance_, emp_cov)): c.flat[::n_features + 1] = e.flat[::n_features + 1] K[i] = linalg.pinvh(c) elif mode == 'zeros': K = np.zeros_like(emp_cov) return K def time_graphical_lasso( emp_cov, alpha=0.01, rho=1, beta=1, max_iter=100, n_samples=None, verbose=False, psi='laplacian', tol=1e-4, rtol=1e-4, return_history=False, return_n_iter=True, mode='admm', compute_objective=True, stop_at=None, stop_when=1e-4, update_rho_options=None, init='empirical'): """Time-varying graphical lasso solver. Solves the following problem via ADMM: min sum_{i=1}^T -n_i log_likelihood(S_i, K_i) + alpha*||K_i||_{od,1} + beta sum_{i=2}^T Psi(K_i - K_{i-1}) where S_i = (1/n_i) X_i^T \times X_i is the empirical covariance of data matrix X (training observations by features). Parameters ---------- emp_cov : ndarray, shape (n_features, n_features) Empirical covariance of data. alpha, beta : float, optional Regularisation parameter. rho : float, optional Augmented Lagrangian parameter. max_iter : int, optional Maximum number of iterations. n_samples : ndarray Number of samples available for each time point. tol : float, optional Absolute tolerance for convergence. rtol : float, optional Relative tolerance for convergence. return_history : bool, optional Return the history of computed values. return_n_iter : bool, optional Return the number of iteration before convergence. verbose : bool, default False Print info at each iteration. update_rho_options : dict, optional Arguments for the rho update. See regain.update_rules.update_rho function for more information. compute_objective : bool, default True Choose to compute the objective value. init : {'empirical', 'zero', ndarray} Choose how to initialize the precision matrix, with the inverse empirical covariance, zero matrix or precomputed. Returns ------- K : numpy.array, 3-dimensional (T x d x d) Solution to the problem for each time t=1...T . history : list If return_history, then also a structure that contains the objective value, the primal and dual residual norms, and tolerances for the primal and dual residual norms at each iteration. """ psi, prox_psi, psi_node_penalty = check_norm_prox(psi) Z_0 = init_precision(emp_cov, mode=init) Z_1 = Z_0.copy()[:-1] # np.zeros_like(emp_cov)[:-1] Z_2 = Z_0.copy()[1:] # np.zeros_like(emp_cov)[1:] U_0 = np.zeros_like(Z_0) U_1 = np.zeros_like(Z_1) U_2 = np.zeros_like(Z_2) Z_0_old = np.zeros_like(Z_0) Z_1_old = np.zeros_like(Z_1) Z_2_old = np.zeros_like(Z_2) # divisor for consensus variables, accounting for two less matrices divisor = np.full(emp_cov.shape[0], 3, dtype=float) divisor[0] -= 1 divisor[-1] -= 1 if n_samples is None: n_samples = np.ones(emp_cov.shape[0]) checks = [ convergence( obj=objective( n_samples, emp_cov, Z_0, Z_0, Z_1, Z_2, alpha, beta, psi)) ] for iteration_ in range(max_iter): # update K A = Z_0 - U_0 A[:-1] += Z_1 - U_1 A[1:] += Z_2 - U_2 A /= divisor[:, None, None] # soft_thresholding_ = partial(soft_thresholding, lamda=alpha / rho) # K = np.array(map(soft_thresholding_, A)) A += A.transpose(0, 2, 1) A /= 2. A *= -rho * divisor[:, None, None] / n_samples[:, None, None] A += emp_cov K = np.array( [ prox_logdet(a, lamda=ni / (rho * div)) for a, div, ni in zip(A, divisor, n_samples) ]) # update Z_0 A = K + U_0 A += A.transpose(0, 2, 1) A /= 2. Z_0 = soft_thresholding(A, lamda=alpha / rho) # other Zs A_1 = K[:-1] + U_1 A_2 = K[1:] + U_2 if not psi_node_penalty: prox_e = prox_psi(A_2 - A_1, lamda=2. * beta / rho) Z_1 = .5 * (A_1 + A_2 - prox_e) Z_2 = .5 * (A_1 + A_2 + prox_e) else: Z_1, Z_2 = prox_psi( np.concatenate((A_1, A_2), axis=1), lamda=.5 * beta / rho, rho=rho, tol=tol, rtol=rtol, max_iter=max_iter) # update residuals U_0 += K - Z_0 U_1 += K[:-1] - Z_1 U_2 += K[1:] - Z_2 # diagnostics, reporting, termination checks rnorm = np.sqrt( squared_norm(K - Z_0) + squared_norm(K[:-1] - Z_1) + squared_norm(K[1:] - Z_2)) snorm = rho * np.sqrt( squared_norm(Z_0 - Z_0_old) + squared_norm(Z_1 - Z_1_old) + squared_norm(Z_2 - Z_2_old)) obj = objective( n_samples, emp_cov, Z_0, K, Z_1, Z_2, alpha, beta, psi) \ if compute_objective else np.nan # if np.isinf(obj): # Z_0 = Z_0_old # break check = convergence( obj=obj, rnorm=rnorm, snorm=snorm, e_pri=np.sqrt(K.size + 2 * Z_1.size) * tol + rtol * max( np.sqrt( squared_norm(Z_0) + squared_norm(Z_1) + squared_norm(Z_2)), np.sqrt( squared_norm(K) + squared_norm(K[:-1]) + squared_norm(K[1:]))), e_dual=np.sqrt(K.size + 2 * Z_1.size) * tol + rtol * rho * np.sqrt(squared_norm(U_0) + squared_norm(U_1) + squared_norm(U_2)), # precision=Z_0.copy() ) Z_0_old = Z_0.copy() Z_1_old = Z_1.copy() Z_2_old = Z_2.copy() if verbose: print( "obj: %.4f, rnorm: %.4f, snorm: %.4f," "eps_pri: %.4f, eps_dual: %.4f" % check[:5]) checks.append(check) if stop_at is not None: if abs(check.obj - stop_at) / abs(stop_at) < stop_when: break if check.rnorm <= check.e_pri and check.snorm <= check.e_dual: break rho_new = update_rho( rho, rnorm, snorm, iteration=iteration_, **(update_rho_options or {})) # scaled dual variables should be also rescaled U_0 *= rho / rho_new U_1 *= rho / rho_new U_2 *= rho / rho_new rho = rho_new # assert is_pos_def(Z_0) else: warnings.warn("Objective did not converge.") covariance_ = np.array([linalg.pinvh(x) for x in Z_0]) return_list = [Z_0, covariance_] if return_history: return_list.append(checks) if return_n_iter: return_list.append(iteration_ + 1) return return_list class TimeGraphicalLasso(GraphicalLasso): """Sparse inverse covariance estimation with an l1-penalized estimator. Parameters ---------- alpha : positive float, default 0.01 Regularization parameter for precision matrix. The higher alpha, the more regularization, the sparser the inverse covariance. beta : positive float, default 1 Regularization parameter to constrain precision matrices in time. The higher beta, the more regularization, and consecutive precision matrices in time are more similar. psi : {'laplacian', 'l1', 'l2', 'linf', 'node'}, default 'laplacian' Type of norm to enforce for consecutive precision matrices in time. rho : positive float, default 1 Augmented Lagrangian parameter. over_relax : positive float, deafult 1 Over-relaxation parameter (typically between 1.0 and 1.8). tol : positive float, default 1e-4 Absolute tolerance to declare convergence. rtol : positive float, default 1e-4 Relative tolerance to declare convergence. max_iter : integer, default 100 The maximum number of iterations. verbose : boolean, default False If verbose is True, the objective function, rnorm and snorm are printed at each iteration. assume_centered : boolean, default False If True, data are not centered before computation. Useful when working with data whose mean is almost, but not exactly zero. If False, data are centered before computation. time_on_axis : {'first', 'last'}, default 'first' If data have time as the last dimension, set this to 'last'. Useful to use scikit-learn functions as train_test_split. update_rho_options : dict, default None Options for the update of rho. See `update_rho` function for details. compute_objective : boolean, default True Choose if compute the objective function during iterations (only useful if `verbose=True`). init : {'empirical', 'zeros', ndarray}, default 'empirical' How to initialise the inverse covariance matrix. Default is take the empirical covariance and inverting it. Attributes ---------- covariance_ : array-like, shape (n_times, n_features, n_features) Estimated covariance matrix precision_ : array-like, shape (n_times, n_features, n_features) Estimated precision matrix. n_iter_ : int Number of iterations run. """ def __init__( self, alpha=0.01, beta=1., mode='admm', rho=1., tol=1e-4, rtol=1e-4, psi='laplacian', max_iter=100, verbose=False, assume_centered=False, return_history=False, update_rho_options=None, compute_objective=True, stop_at=None, stop_when=1e-4, suppress_warn_list=False, init='empirical'): super(TimeGraphicalLasso, self).__init__( alpha=alpha, rho=rho, tol=tol, rtol=rtol, max_iter=max_iter, verbose=verbose, assume_centered=assume_centered, mode=mode, update_rho_options=update_rho_options, compute_objective=compute_objective, init=init) self.beta = beta self.psi = psi self.return_history = return_history self.stop_at = stop_at self.stop_when = stop_when self.suppress_warn_list = suppress_warn_list def get_observed_precision(self): """Getter for the observed precision matrix. Returns ------- precision_ : array-like, The precision matrix associated to the current covariance object. """ return self.get_precision() def _fit(self, emp_cov, n_samples): """Fit the TimeGraphicalLasso model to X. Parameters ---------- emp_cov : ndarray, shape (n_time, n_features, n_features) Empirical covariance of data. """ out = time_graphical_lasso( emp_cov, alpha=self.alpha, rho=self.rho, beta=self.beta, mode=self.mode, n_samples=n_samples, tol=self.tol, rtol=self.rtol, psi=self.psi, max_iter=self.max_iter, verbose=self.verbose, return_n_iter=True, return_history=self.return_history, update_rho_options=self.update_rho_options, compute_objective=self.compute_objective, stop_at=self.stop_at, stop_when=self.stop_when, init=self.init) if self.return_history: self.precision_, self.covariance_, self.history_, self.n_iter_ = \ out else: self.precision_, self.covariance_, self.n_iter_ = out return self def fit(self, X, y): """Fit the TimeGraphicalLasso model to X. Parameters ---------- X : ndarray, shape = (n_samples * n_times, n_dimensions) Data matrix. y : ndarray, shape = (n_times,) Indicate the temporal belonging of each sample. """ # Covariance does not make sense for a single feature X, y = check_X_y( X, y, accept_sparse=False, dtype=np.float64, order="C", ensure_min_features=2, estimator=self) n_dimensions = X.shape[1] self.classes_, n_samples = np.unique(y, return_counts=True) n_times = self.classes_.size # n_samples = np.array([x.shape[0] for x in X]) if self.assume_centered: self.location_ = np.zeros((n_times, n_dimensions)) else: self.location_ = np.array( [X[y == cl].mean(0) for cl in self.classes_]) emp_cov = np.array( [ empirical_covariance( X[y == cl], assume_centered=self.assume_centered) for cl in self.classes_ ]) return self._fit(emp_cov, n_samples) def score(self, X, y): """Computes the log-likelihood of a Gaussian data set with `self.covariance_` as an estimator of its covariance matrix. Parameters ---------- X : array-like, shape = (n_samples, n_features) Test data of which we compute the likelihood, where n_samples is the number of samples and n_features is the number of features. X is assumed to be drawn from the same distribution than the data used in fit (including centering). y : array-like, shape = (n_samples,) Class of samples. Returns ------- res : float The likelihood of the data set with `self.covariance_` as an estimator of its covariance matrix. """ # Covariance does not make sense for a single feature X, y = check_X_y( X, y, accept_sparse=False, dtype=np.float64, order="C", ensure_min_features=2, estimator=self) # compute empirical covariance of the test set test_cov = np.array( [ empirical_covariance( X[y == cl] - self.location_[i], assume_centered=True) for i, cl in enumerate(self.classes_) ]) res = sum( X[y == cl].shape[0] * log_likelihood(S, K) for S, K, cl in zip( test_cov, self.get_observed_precision(), self.classes_)) return res def error_norm( self, comp_cov, norm='frobenius', scaling=True, squared=True): """Compute the Mean Squared Error between two covariance estimators. (In the sense of the Frobenius norm). Parameters ---------- comp_cov : array-like, shape = [n_features, n_features] The covariance to compare with. norm : str The type of norm used to compute the error. Available error types: - 'frobenius' (default): sqrt(tr(A^t.A)) - 'spectral': sqrt(max(eigenvalues(A^t.A)) where A is the error ``(comp_cov - self.covariance_)``. scaling : bool If True (default), the squared error norm is divided by n_features. If False, the squared error norm is not rescaled. squared : bool Whether to compute the squared error norm or the error norm. If True (default), the squared error norm is returned. If False, the error norm is returned. Returns ------- The Mean Squared Error (in the sense of the Frobenius norm) between `self` and `comp_cov` covariance estimators. """ return error_norm_time( self.covariance_, comp_cov, norm=norm, scaling=scaling, squared=squared)
# -*- coding: utf-8 -*- """ Causal graph for the random utility model in Ben-Akiva et al. (2002). References ---------- Ben-Akiva, Moshe, Joan Walker, Adriana T. Bernardino, Dinesh A. Gopinath, Taka Morikawa, and Amalia Polydoropoulou. "Integration of choice and latent variable models." Perpetual motion: Travel behaviour research opportunities and application challenges (2002): 431-470. """ import graphviz RUM_GRAPH = graphviz.Digraph("Random Utility Maximization") # Add all nodes to the graph # Use square nodes for observed variables and circular nodes for unoobserved RUM_GRAPH.node("X", "Explanatory Variables", shape="box") RUM_GRAPH.node("U", "Utility", shape="ellipse") RUM_GRAPH.node("C", "Choice", shape="box") # Create the graphical chain RUM_GRAPH.edge("X", "U") RUM_GRAPH.edge("U", "C")
import numpy as np import pandas as pd import pytest from pytest import importorskip from evalml.model_family import ModelFamily from evalml.pipelines.components import ProphetRegressor from evalml.problem_types import ProblemTypes prophet = importorskip("prophet", reason="Skipping test because prophet not installed") def test_model_family(): assert ProphetRegressor.model_family == ModelFamily.PROPHET def test_cmdstanpy_backend(): m = prophet.Prophet(stan_backend="CMDSTANPY") assert m.stan_backend.get_type() == "CMDSTANPY" def test_problem_types(): assert set(ProphetRegressor.supported_problem_types) == { ProblemTypes.TIME_SERIES_REGRESSION } def test_init_with_other_params(): clf = ProphetRegressor( daily_seasonality=True, mcmc_samples=5, interval_width=0.8, uncertainty_samples=0, ) assert clf.parameters == { "changepoint_prior_scale": 0.05, "daily_seasonality": True, "date_index": None, "holidays_prior_scale": 10, "interval_width": 0.8, "mcmc_samples": 5, "seasonality_mode": "additive", "seasonality_prior_scale": 10, "uncertainty_samples": 0, "stan_backend": "CMDSTANPY", } def test_feature_importance(ts_data): X, y = ts_data clf = ProphetRegressor(uncertainty_samples=False, changepoint_prior_scale=2.0) clf.fit(X, y) clf.feature_importance == np.zeros(1) def test_get_params(ts_data): clf = ProphetRegressor() assert clf.get_params() == { "changepoint_prior_scale": 0.05, "date_index": None, "seasonality_prior_scale": 10, "holidays_prior_scale": 10, "seasonality_mode": "additive", "stan_backend": "CMDSTANPY", } def test_fit_predict_ts_with_X_index(ts_data): X, y = ts_data assert isinstance(X.index, pd.DatetimeIndex) p_clf = prophet.Prophet(uncertainty_samples=False, changepoint_prior_scale=2.0) prophet_df = ProphetRegressor.build_prophet_df(X=X, y=y, date_column="ds") p_clf.fit(prophet_df) y_pred_p = p_clf.predict(prophet_df)["yhat"] clf = ProphetRegressor(uncertainty_samples=False, changepoint_prior_scale=2.0) clf.fit(X, y) y_pred = clf.predict(X) np.array_equal(y_pred_p.values, y_pred.values) def test_fit_predict_ts_with_y_index(ts_data): X, y = ts_data X = X.reset_index(drop=True) assert isinstance(y.index, pd.DatetimeIndex) p_clf = prophet.Prophet(uncertainty_samples=False, changepoint_prior_scale=2.0) prophet_df = ProphetRegressor.build_prophet_df(X=X, y=y, date_column="ds") p_clf.fit(prophet_df) y_pred_p = p_clf.predict(prophet_df)["yhat"] clf = ProphetRegressor(uncertainty_samples=False, changepoint_prior_scale=2.0) clf.fit(X, y) y_pred = clf.predict(X, y) np.array_equal(y_pred_p.values, y_pred.values) def test_fit_predict_ts_no_X(ts_data): y = pd.Series( range(1, 32), name="dates", index=pd.date_range("2020-10-01", "2020-10-31") ) p_clf = prophet.Prophet(uncertainty_samples=False, changepoint_prior_scale=2.0) prophet_df = ProphetRegressor.build_prophet_df( X=pd.DataFrame(), y=y, date_column="ds" ) p_clf.fit(prophet_df) y_pred_p = p_clf.predict(prophet_df)["yhat"] clf = ProphetRegressor(uncertainty_samples=False, changepoint_prior_scale=2.0) clf.fit(X=None, y=y) y_pred = clf.predict(X=None, y=y) np.array_equal(y_pred_p.values, y_pred.values) def test_fit_predict_date_col(ts_data): X = pd.DataFrame( { "features": range(100), "these_dates": pd.date_range("1/1/21", periods=100), "more_dates": pd.date_range("7/4/1987", periods=100), } ) y = pd.Series(np.random.randint(1, 5, 100), name="y") clf = ProphetRegressor( date_index="these_dates", uncertainty_samples=False, changepoint_prior_scale=2.0 ) clf.fit(X, y) y_pred = clf.predict(X) p_clf = prophet.Prophet(uncertainty_samples=False, changepoint_prior_scale=2.0) prophet_df = ProphetRegressor.build_prophet_df(X=X, y=y, date_column="these_dates") p_clf.fit(prophet_df) y_pred_p = p_clf.predict(prophet_df)["yhat"] np.array_equal(y_pred_p.values, y_pred.values) def test_fit_predict_no_date_col_or_index(ts_data): X, y = ts_data X = X.reset_index(drop=True) y = y.reset_index(drop=True) assert not isinstance(X.index, pd.DatetimeIndex) assert not isinstance(y.index, pd.DatetimeIndex) clf = ProphetRegressor() with pytest.raises( ValueError, match="Prophet estimator requires input data X to have a datetime column", ): clf.fit(X, y)
#!/usr/bin/env python # # __COPYRIGHT__ # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY # KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE # WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE # LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # __revision__ = "__FILE__ __REVISION__ __DATE__ __DEVELOPER__" """ Verify SConsignFile() when used with dbhash. """ import TestSCons _python_ = TestSCons._python_ test = TestSCons.TestSCons() try: import dbm.bsd except ImportError: test.skip_test('No dbhash in this version of Python; skipping test.\n') test.subdir('subdir') test.write('build.py', r""" import sys contents = open(sys.argv[2], 'rb').read() file = open(sys.argv[1], 'wb') file.write(contents) file.close() sys.exit(0) """) # test.write('SConstruct', """ import sys import dbhash SConsignFile('.sconsign', dbhash) B = Builder(action = r'%(_python_)s build.py $TARGETS $SOURCES') env = Environment(BUILDERS = { 'B' : B }) env.B(target = 'f1.out', source = 'f1.in') env.B(target = 'f2.out', source = 'f2.in') env.B(target = 'subdir/f3.out', source = 'subdir/f3.in') env.B(target = 'subdir/f4.out', source = 'subdir/f4.in') """ % locals()) test.write('f1.in', "f1.in\n") test.write('f2.in', "f2.in\n") test.write(['subdir', 'f3.in'], "subdir/f3.in\n") test.write(['subdir', 'f4.in'], "subdir/f4.in\n") test.run() test.must_exist(test.workpath('.sconsign')) test.must_not_exist(test.workpath('.sconsign.dblite')) test.must_not_exist(test.workpath('subdir', '.sconsign')) test.must_not_exist(test.workpath('subdir', '.sconsign.dblite')) test.must_match('f1.out', "f1.in\n") test.must_match('f2.out', "f2.in\n") test.must_match(['subdir', 'f3.out'], "subdir/f3.in\n") test.must_match(['subdir', 'f4.out'], "subdir/f4.in\n") test.up_to_date(arguments = '.') test.must_exist(test.workpath('.sconsign')) test.must_not_exist(test.workpath('.sconsign.dblite')) test.must_not_exist(test.workpath('subdir', '.sconsign')) test.must_not_exist(test.workpath('subdir', '.sconsign.dblite')) test.pass_test() # Local Variables: # tab-width:4 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=4 shiftwidth=4:
""" Distance functions ================== Distance functions measure closeness of observed and sampled data. This module implements various commonly used distance functions for ABC, featuring a few advanced concepts. For custom distance functions, either pass a plain function to ABCSMC or subclass the pyabc.Distance class. """ from .base import ( Distance, NoDistance, IdentityFakeDistance, AcceptAllDistance, SimpleFunctionDistance, to_distance) from .distance import ( PNormDistance, AdaptivePNormDistance, ZScoreDistance, PCADistance, MinMaxDistance, PercentileDistance, RangeEstimatorDistance, DistanceWithMeasureList) from .scales import ( median_absolute_deviation, mean_absolute_deviation, standard_deviation, bias, root_mean_square_deviation, median_absolute_deviation_to_observation, mean_absolute_deviation_to_observation, combined_median_absolute_deviation, combined_mean_absolute_deviation, standard_deviation_to_observation) __all__ = [ # base "Distance", "NoDistance", "IdentityFakeDistance", "AcceptAllDistance", "SimpleFunctionDistance", "to_distance", # distance "PNormDistance", "AdaptivePNormDistance", "ZScoreDistance", "PCADistance", "MinMaxDistance", "PercentileDistance", "RangeEstimatorDistance", "DistanceWithMeasureList", # scales "median_absolute_deviation", "mean_absolute_deviation", "standard_deviation", "bias", "root_mean_square_deviation", "median_absolute_deviation_to_observation", "mean_absolute_deviation_to_observation", "combined_median_absolute_deviation", "combined_mean_absolute_deviation", "standard_deviation_to_observation" ]
__author__ = 'efelix' # ---------------------------------------------------------------------------------------------------------------------- from rdkit.Chem import AllChem from beaker import app from bottle import request from beaker.core_apps.D2Coords.impl import _ctab22D, _smiles22D, _is3D from beaker.utils.io import _parseFlag # ---------------------------------------------------------------------------------------------------------------------- def ctab22DView(data, params): kwargs = dict() kwargs['loadMol'] = _parseFlag(params.get('loadMol', True)) kwargs['useRDKitChemistry'] = _parseFlag(params.get('useRDKitChemistry', False)) return _ctab22D(data, **kwargs) # ---------------------------------------------------------------------------------------------------------------------- def is3DView(data, params): kwargs = dict() kwargs['loadMol'] = _parseFlag(params.get('loadMol', True)) kwargs['useRDKitChemistry'] = _parseFlag(params.get('useRDKitChemistry', False)) return _is3D(data, **kwargs) # ---------------------------------------------------------------------------------------------------------------------- @app.route('/ctab22D', method=['OPTIONS', 'POST'], name="ctab22D") def ctab22D(): """ Generate 2D coordinates for a molecule using Schrodinger's coordgen. CTAB is either single molfile or SDF file. cURL examples: curl -X POST --data-binary @no_coords.mol ${BEAKER_ROOT_URL}ctab22D curl -X POST -F "file=@no_coords.mol" ${BEAKER_ROOT_URL}ctab22D """ data = list(request.files.values())[0].file.read() if len(request.files) else request.body.read() return ctab22DView(data, request.params) # ---------------------------------------------------------------------------------------------------------------------- def smiles22DView(data, params): kwargs = dict() kwargs['computeCoords'] = False kwargs['delimiter'] = params.get('delimiter', ' ') kwargs['smilesColumn'] = int(params.get('smilesColumn', 0)) kwargs['nameColumn'] = int(params.get('nameColumn', 1)) kwargs['sanitize'] = _parseFlag(params.get('sanitize', True)) if params.get('titleLine') is None and not data.startswith(b'SMILES Name'): kwargs['titleLine'] = False else: kwargs['titleLine'] = _parseFlag(params.get('titleLine', True)) return _smiles22D(data, **kwargs) # ---------------------------------------------------------------------------------------------------------------------- @app.route('/smiles22D', method=['OPTIONS', 'POST'], name="smiles22D") def smiles22D(): """ Generate 2D coordinates from SMILES using Schrodinger's coordgen. CTAB is either single molfile or SDF file. cURL examples: curl -X POST --data-binary @aspirin_with_header.smi ${BEAKER_ROOT_URL}smiles22D curl -X POST -F "file=@aspirin_with_header.smi" ${BEAKER_ROOT_URL}smiles22D curl -X POST --data-binary @aspirin_no_header.smi ${BEAKER_ROOT_URL}smiles22D curl -X POST -F "file=@aspirin_no_header.smi" ${BEAKER_ROOT_URL}smiles22D """ data = list(request.files.values())[0].file.read() if len(request.files) else request.body.read() return smiles22DView(data, request.params) # ---------------------------------------------------------------------------------------------------------------------- @app.route('/is3D', method=['OPTIONS', 'POST'], name="is3D") def is3D(): """ Check if molecule has any 3D coordinate. CTAB is either single molfile or SDF file. cURL examples: curl -X POST --data-binary @aspirin_with_header.smi ${BEAKER_ROOT_URL}is3D curl -X POST -F "file=@aspirin_with_header.smi" ${BEAKER_ROOT_URL}is3D curl -X POST --data-binary @aspirin_no_header.smi ${BEAKER_ROOT_URL}is3D curl -X POST -F "file=@aspirin_no_header.smi" ${BEAKER_ROOT_URL}is3D """ data = list(request.files.values())[0].file.read() if len(request.files) else request.body.read() return is3DView(data, request.params) # ----------------------------------------------------------------------------------------------------------------------
if __name__ == "__main__": import os import sys import subprocess import XMLReduction #python2 main.py name.pdf 8.5 font #need font because need to filter out text that matches in all other regards except font #but also need to except font that starts exactly the same up to the end where it is a #+somenumber #IndexError IOError #LOL bit of a cycle here need size to get text but need xml to get size #LOL wow so I have been looking at wrong size and font this whole time I was paying #attention to the abstract not the real text funny enough did a good job of extracting #the abstract so I'm impressed regardless #font match doesn't seem to be working the way I hoped so made it always true #but for some reason the paragraph following this "recipients in each discipline (7)." #is completely ignored find it in xml inspect it why is it being ignored? #answer is that it was ignored because towards the end of the block because the delta #R^2 had a 9 and 5 size font which meant entire block was lost, but maybe I should #go for a percent of the same font and size so like if within the whole block 90% is #True and only 10% false then accept the whole block of text otherwise reject play around #with the percentage not sure if 90% or maybe it should be 99% #seems like I sort of solved the problem basically I did what I said directly before this #plus I would check everytime I reached the fail branch for process_textbox whether or #not the number of fails was greater than number of passes and if it was then stopped #processing textbox ensured that all the text I wanted was included and that it was fast #only problem now is that I still have a small bit of text I don't want need to figure out #why that text still shows up is my code doing what I think it is doing? #okay so I added some debugging code basically a debug version of xml_reduce that along #side each character prints the bbox information which is sort of like a unique id #this has allowed me to figure out why the "l" on line 138 in sample2.txt was included #the reason is because it is a valid textbox that is not self closing and only contains #one valid text tag so since it is technically the "first" text tag the font and the #size do not have to match so it is included even though it shouldn't be to fix this #I think within process_textbox I will add in code that checks the total number of #text tags and if it is not greater than or equal to a certain number then it is excluded #moved onto testing new articles now testing out the Eagly article which seems to have #mostly worked except I noticed that for this article for some reason it rejected a #textbox paragrah that should have been included and shown up right before the paragraph #that starts on line 875 and the even stranger part is that through the python interpreter #I imported XMLReduction and ran xml_reduce with just that textbox the one that should #have been accepted but was rejected and this time around it was accepted meaning #it must have something to do with what happens before that paragraph although I need #to replicate it and make sure it somehow wasn't some sort of fluke try: if not sys.argv[1].endswith(".pdf"): sys.exit() pdf_file_name = sys.argv[1] xml_file_name = pdf_file_name[:(len(pdf_file_name) - 4)] + ".xml" pdfminer_args = ["./bin/pdf2txt.py", "-o", xml_file_name, pdf_file_name] #figure out how to check exit status/return code and if I should do anything special subprocess.call(pdfminer_args) #again should be checking in case the open doesn't succeed how to handle error file = open(xml_file_name, "r") #again handle error in case someone doesn't put in actual number size = float(sys.argv[2]) font = sys.argv[3] text = XMLReduction.xml_reduce(file, size, font) #text = XMLReduction.xml_reduce_debug(file, size, font) print text #os.remove(xml_file_name) #comment out while trying to fix XMLReduction except (IndexError, IOError): print "Please provide a file with the .xml filetype to be reduced and the \ size of the text to be extracted."
import numpy as np from simtk import openmm, unit from simtk.openmm import app from openmmtools.testsystems import WaterBox from openmmtools.integrators import ExternalPerturbationLangevinIntegrator print('OpenMM version: ', openmm.version.full_version) # Using one CPU thread import os os.environ['OPENMM_CPU_THREADS'] = '1' # Long range method nonbonded_method = 'CutoffPeriodic' # Creating a waterbox wbox = WaterBox(box_edge=21.0*unit.angstrom , nonbondedMethod=getattr(app, nonbonded_method)) wbox.system.addForce(openmm.MonteCarloBarostat(1*unit.atmospheres, 300*unit.kelvin)) # Extracting the nonbonded force non_bonded_force = wbox.system.getForce(2) # The integrator to perform the equilibrium dynamics integrator = ExternalPerturbationLangevinIntegrator(temperature=300*unit.kelvin, collision_rate=50.0 / unit.picosecond, timestep=1.0 * unit.femtosecond) # Creating the context platform = openmm.Platform.getPlatformByName('CPU') context = openmm.Context(wbox.system, integrator, platform) context.setPositions(wbox.positions) # Running some equilibrium dynamics integrator.step(100) # The number of NCMC type iterations and NCMC steps per iteration. niterations = 20 ncmc_steps = 10 internal_work = np.zeros(niterations) external_work = np.zeros(niterations) # Whether to call updateParametersInContext. If True, then assertion below will fail. update_parameters = True # A model of NCMC without perturbation but using updateParametersInContext for i in range(niterations): #integrator.reset_protocol_work() #integrator.setGlobalVariableByName('first_step',0) integrator.setGlobalVariableByName('protocol_work',0) for s in range(ncmc_steps): integrator.step(1) initial_external_energy = context.getState(getEnergy=True).getPotentialEnergy() / unit.kilojoule_per_mole ###---- Not perturbing the system but updating parameters anyway----### if update_parameters: non_bonded_force.updateParametersInContext(context) final_external_energy = context.getState(getEnergy=True).getPotentialEnergy() / unit.kilojoule_per_mole integrator.step(1) internal_work[i] = integrator.getGlobalVariableByName('protocol_work') external_work[i] = final_external_energy - initial_external_energy assert np.all(np.abs(internal_work - external_work) < 1E-5)
# # Copyright (c) Microsoft Corporation. All Rights Reserved. # """ Use DOT to layout a graph for cytoscape.js TODO: add support for middle points in edges """ from __future__ import division from collections import deque, defaultdict import platform if True or platform.system() == 'Windows': from ivy_graphviz import AGraph else: from pygraphviz import AGraph from ivy_utils import topological_sort import ivy_utils as iu # import pygraphviz def cubic_bezier_point(p0, p1, p2, p3, t): """ https://en.wikipedia.org/wiki/B%C3%A9zier_curve#Cubic_B.C3.A9zier_curves """ a = (1.0 - t)**3 b = 3.0 * t * (1.0 - t)**2 c = 3.0 * t**2 * (1.0 - t) d = t**3 return { "x": a * p0["x"] + b * p1["x"] + c * p2["x"] + d * p3["x"], "y": a * p0["y"] + b * p1["y"] + c * p2["y"] + d * p3["y"], } def square_distance_to_segment(p, p1, p2): v0 = (p["x"] - p1["x"], p["y"] - p1["y"]) v1 = (p2["x"] - p1["x"], p2["y"] - p1["y"]) v0sq = v0[0] * v0[0] + v0[1] * v0[1] v1sq = v1[0] * v1[0] + v1[1] * v1[1] prod = v0[0] * v1[0] + v0[1] * v1[1] v2sq = prod * prod / v1sq if prod < 0: return v0sq elif v2sq < v1sq: return v0sq - v2sq else: v3 = (v0[0] - v1[0], v0[1] - v1[1]) return v3[0] * v3[0] + v3[1] * v3[1] def approximate_cubic_bezier(p0, p1, p2, p3, threshold=1.0, limit=1024): """ Return an series of points whose segments approximate the given bezier curve """ threshold_squared = threshold ** 2 points = { # dict mapping t values to points 0.0: p0, 1.0: p3, } to_check = deque([(0.0, 1.0)]) while len(to_check) > 0 and len(points) < limit: l, r = to_check.popleft() pl = points[l] pr = points[r] m = (l + r) / 2.0 pm = cubic_bezier_point(p0, p1, p2, p3, m) if square_distance_to_segment(pm, pl, pr) > threshold_squared: points[m] = pm to_check.append((l, m)) to_check.append((m, r)) return [points[t] for t in sorted(points.keys())] def get_approximation_points(bspline): """ Retrurn a series of points whose segments approximate the given bspline """ result = [] for i in range(0, len(bspline) - 3, 3): result.extend(approximate_cubic_bezier( bspline[i], bspline[i+1], bspline[i+2], bspline[i+3], threshold=4.0, limit=100, )[:-1]) result.append(bspline[-1]) return result def _to_position(st): global y_origin sp = st.split(',') assert len(sp) == 2, st return { "x": float(sp[0]), "y": y_origin-float(sp[1]), } def _to_edge_position(st): """ http://www.graphviz.org/doc/info/attrs.html#k:splineType """ sp = st.split() result = {} if sp[0].startswith('e,'): result["arrowend"] = _to_position(sp[0][2:]) sp = sp[1:] if sp[0].startswith('s,'): result["arrowstart"] = _to_position(sp[0][2:]) sp = sp[1:] result["bspline"] = [_to_position(x) for x in sp] result["approxpoints"] = get_approximation_points(result["bspline"]) # print "approxpoints: ", len(result["approxpoints"]) return result def _to_coord_list(st): """ create a sequence of positions from a dot-generated string """ nums = st.split(',') pairs = [','.join((nums[2*i],nums[2*i+1])) for i in range(len(nums)//2)] return map(_to_position,pairs) def dot_layout(cy_elements,edge_labels=False,subgraph_boxes=False,node_gt=None): """ Get a CyElements object and augment it (in-place) with positions, widths, heights, and spline data from a dot based layout. edge_labels is true if labels should appear on edges subgraph_boxes is true if boxes should be drawn around subgraphs Returns the object. """ elements = cy_elements.elements # g = AGraph(directed=True, strict=False) g = AGraph(directed=True, strict=False, forcelabels=True) # make transitive relations appear top to bottom elements = list(elements) nodes_by_id = dict( (e["data"]["id"], e) for e in elements if e["group"] == "nodes" ) order = [ (nodes_by_id[e["data"]["source"]], nodes_by_id[e["data"]["target"]]) for e in elements if e["group"] == "edges" and "transitive" in e["data"] and e["data"]["transitive"] ] elements = topological_sort(elements, order, lambda e: e["data"]["id"]) # get the node id's and stable sort them by cluster # the idea here is to convert the graph into a dag by sorting # the nodes, then reversing the back edges. In particular, we try to make # all the edges between two clusters go in the same direction so clustering # doesn't result in horizontal edges, which dot renders badly. sorted_nodes = [e["data"]["id"] for e in elements if e["group"] == "nodes"] sorted_nodes = sorted(enumerate(sorted_nodes),key = lambda x: (nodes_by_id[x[1]]["data"]["cluster"],x[0])) sorted_nodes = [y for idx,y in sorted_nodes] node_key = dict((id,idx) for idx,id in enumerate(sorted_nodes)) if node_gt is None: node_gt = lambda X,y:False else: node_gt = lambda x,y: node_key[x] > node_key[y] # add nodes to the graph for e in elements: if e["group"] == "nodes" and e["classes"] != 'non_existing': g.add_node(e["data"]["id"], label=e["data"]["label"].replace('\n', '\\n')) # TODO: remove this, it's specific to leader_demo weight = { 'reach': 10, 'le': 10, 'id': 1, } constraint = { 'pending': False, } # add edges to the graph for e in elements: if e["group"] == "edges": # kwargs = {'weight': weight.get(e["data"]["obj"], 0)}, kwargs = {'label':e["data"]["label"]} if edge_labels else {} if node_gt(e["data"]["source"],e["data"]["target"]): g.add_edge( e["data"]["target"], e["data"]["source"], e["data"]["id"], dir = 'back', **kwargs #constraint=constraint.get(e["data"]["obj"], True), ) else: g.add_edge( e["data"]["source"], e["data"]["target"], e["data"]["id"], **kwargs #constraint=constraint.get(e["data"]["obj"], True), ) # add clusters clusters = defaultdict(list) for e in elements: if e["group"] == "nodes" and e["data"]["cluster"] is not None and e["classes"] != 'non_existing': clusters[e["data"]["cluster"]].append(e["data"]["id"]) for i, k in enumerate(sorted(clusters.keys())): g.add_subgraph( name='cluster_{}'.format(i), nbunch=clusters[k], rank='min', ) # now get positions, heights, widths, and bsplines g.layout(prog='dot') # get the y origin. we want the top left of the graph to be a # fixed coordinate (hopefully (0,0)) so the graph doesn't jump when # its height changes. Unfortunately, pygraphviz has a bug a gives # the wrong bbox, so we compute the max y coord. # bbox = pygraphviz.graphviz.agget(g.handle,'bb') global y_origin y_origin = 0.0 for n in g.nodes(): top = float(n.attr['pos'].split(',')[1]) + float(n.attr['height'])/2 if top > y_origin: y_origin = top if subgraph_boxes: for sg in g.subgraphs(): top = float(sg.graph_attr['bb'].split(',')[3]) if top > y_origin: y_origin = top for e in elements: if e["group"] == "nodes" and e["classes"] != 'non_existing': attr = g.get_node(e["data"]["id"]).attr e["position"] = _to_position(attr['pos']) e["data"]["width"] = 72 * float(attr['width']) e["data"]["height"] = 72 * float(attr['height']) elif e["group"] == "edges": if node_gt(e["data"]["source"],e["data"]["target"]): attr = g.get_edge(e["data"]["target"], e["data"]["source"], e["data"]["id"]).attr pos = attr['pos'] pe = pos.split() ppe = pe[1:] ppe.reverse() pos = ' '.join([pe[0].replace('s','e')] + ppe) else: attr = g.get_edge(e["data"]["source"], e["data"]["target"], e["data"]["id"]).attr pos = attr['pos'] e["data"].update(_to_edge_position(pos)) if edge_labels and e["data"]["label"] != '': e["data"]["lp"] = _to_position(attr['lp']) # g.draw('g.png') if subgraph_boxes: for sg in g.subgraphs(): box = cy_elements.add_shape(sg.name,classes='subgraphs') coords = _to_coord_list(sg.graph_attr['bb']) box["data"]["coords"] = coords return cy_elements
import sys sys.path.append('..') from data_object.word_data_object import WordDataObject from service.word import Word from service.language import Language from utils.print import ppp # random word list options language = Language(Language.ENGLISH) qwerty_difficulty_rank = { 'min': 0, 'max': 10000 } frequency_rank = { 'min': 0, 'max': 10000 } length = { 'min': 0, 'max': 100 } substring = 'ba' limit = 10 word_list = Word.get_random_list( language=language, qwerty_difficulty_rank=qwerty_difficulty_rank, frequency_rank=frequency_rank, length=length, substring=substring, limit=limit ) ppp(word_list) for wordDO in word_list: ppp(wordDO.to_dict()) ppp("length: {0}".format(len(word_list)))
import base64 import os import shutil import string import tempfile import unittest from datetime import timedelta from http import cookies from django.conf import settings from django.contrib.sessions.backends.base import UpdateError from django.contrib.sessions.backends.cache import SessionStore as CacheSession from django.contrib.sessions.backends.cached_db import ( SessionStore as CacheDBSession, ) from django.contrib.sessions.backends.db import SessionStore as DatabaseSession from django.contrib.sessions.backends.file import SessionStore as FileSession from django.contrib.sessions.backends.signed_cookies import ( SessionStore as CookieSession, ) from django.contrib.sessions.exceptions import InvalidSessionKey from django.contrib.sessions.middleware import SessionMiddleware from django.contrib.sessions.models import Session from django.contrib.sessions.serializers import ( JSONSerializer, PickleSerializer, ) from django.core import management from django.core.cache import caches from django.core.cache.backends.base import InvalidCacheBackendError from django.core.exceptions import ImproperlyConfigured, SuspiciousOperation from django.http import HttpResponse from django.test import ( RequestFactory, TestCase, ignore_warnings, override_settings, ) from django.test.utils import patch_logger from django.utils import timezone from .models import SessionStore as CustomDatabaseSession class SessionTestsMixin: # This does not inherit from TestCase to avoid any tests being run with this # class, which wouldn't work, and to allow different TestCase subclasses to # be used. backend = None # subclasses must specify def setUp(self): self.session = self.backend() def tearDown(self): # NB: be careful to delete any sessions created; stale sessions fill up # the /tmp (with some backends) and eventually overwhelm it after lots # of runs (think buildbots) self.session.delete() def test_new_session(self): self.assertIs(self.session.modified, False) self.assertIs(self.session.accessed, False) def test_get_empty(self): self.assertIsNone(self.session.get('cat')) def test_store(self): self.session['cat'] = "dog" self.assertIs(self.session.modified, True) self.assertEqual(self.session.pop('cat'), 'dog') def test_pop(self): self.session['some key'] = 'exists' # Need to reset these to pretend we haven't accessed it: self.accessed = False self.modified = False self.assertEqual(self.session.pop('some key'), 'exists') self.assertIs(self.session.accessed, True) self.assertIs(self.session.modified, True) self.assertIsNone(self.session.get('some key')) def test_pop_default(self): self.assertEqual(self.session.pop('some key', 'does not exist'), 'does not exist') self.assertIs(self.session.accessed, True) self.assertIs(self.session.modified, False) def test_pop_default_named_argument(self): self.assertEqual(self.session.pop('some key', default='does not exist'), 'does not exist') self.assertIs(self.session.accessed, True) self.assertIs(self.session.modified, False) def test_pop_no_default_keyerror_raised(self): with self.assertRaises(KeyError): self.session.pop('some key') def test_setdefault(self): self.assertEqual(self.session.setdefault('foo', 'bar'), 'bar') self.assertEqual(self.session.setdefault('foo', 'baz'), 'bar') self.assertIs(self.session.accessed, True) self.assertIs(self.session.modified, True) def test_update(self): self.session.update({'update key': 1}) self.assertIs(self.session.accessed, True) self.assertIs(self.session.modified, True) self.assertEqual(self.session.get('update key', None), 1) def test_has_key(self): self.session['some key'] = 1 self.session.modified = False self.session.accessed = False self.assertIn('some key', self.session) self.assertIs(self.session.accessed, True) self.assertIs(self.session.modified, False) def test_values(self): self.assertEqual(list(self.session.values()), []) self.assertIs(self.session.accessed, True) self.session['some key'] = 1 self.session.modified = False self.session.accessed = False self.assertEqual(list(self.session.values()), [1]) self.assertIs(self.session.accessed, True) self.assertIs(self.session.modified, False) def test_keys(self): self.session['x'] = 1 self.session.modified = False self.session.accessed = False self.assertEqual(list(self.session.keys()), ['x']) self.assertIs(self.session.accessed, True) self.assertIs(self.session.modified, False) def test_items(self): self.session['x'] = 1 self.session.modified = False self.session.accessed = False self.assertEqual(list(self.session.items()), [('x', 1)]) self.assertIs(self.session.accessed, True) self.assertIs(self.session.modified, False) def test_clear(self): self.session['x'] = 1 self.session.modified = False self.session.accessed = False self.assertEqual(list(self.session.items()), [('x', 1)]) self.session.clear() self.assertEqual(list(self.session.items()), []) self.assertIs(self.session.accessed, True) self.assertIs(self.session.modified, True) def test_save(self): self.session.save() self.assertIs(self.session.exists(self.session.session_key), True) def test_delete(self): self.session.save() self.session.delete(self.session.session_key) self.assertIs(self.session.exists(self.session.session_key), False) def test_flush(self): self.session['foo'] = 'bar' self.session.save() prev_key = self.session.session_key self.session.flush() self.assertIs(self.session.exists(prev_key), False) self.assertNotEqual(self.session.session_key, prev_key) self.assertIsNone(self.session.session_key) self.assertIs(self.session.modified, True) self.assertIs(self.session.accessed, True) def test_cycle(self): self.session['a'], self.session['b'] = 'c', 'd' self.session.save() prev_key = self.session.session_key prev_data = list(self.session.items()) self.session.cycle_key() self.assertIs(self.session.exists(prev_key), False) self.assertNotEqual(self.session.session_key, prev_key) self.assertEqual(list(self.session.items()), prev_data) def test_cycle_with_no_session_cache(self): self.session['a'], self.session['b'] = 'c', 'd' self.session.save() prev_data = self.session.items() self.session = self.backend(self.session.session_key) self.assertIs(hasattr(self.session, '_session_cache'), False) self.session.cycle_key() self.assertCountEqual(self.session.items(), prev_data) def test_save_doesnt_clear_data(self): self.session['a'] = 'b' self.session.save() self.assertEqual(self.session['a'], 'b') def test_invalid_key(self): # Submitting an invalid session key (either by guessing, or if the db has # removed the key) results in a new key being generated. try: session = self.backend('1') session.save() self.assertNotEqual(session.session_key, '1') self.assertIsNone(session.get('cat')) session.delete() finally: # Some backends leave a stale cache entry for the invalid # session key; make sure that entry is manually deleted session.delete('1') def test_session_key_empty_string_invalid(self): """Falsey values (Such as an empty string) are rejected.""" self.session._session_key = '' self.assertIsNone(self.session.session_key) def test_session_key_too_short_invalid(self): """Strings shorter than 8 characters are rejected.""" self.session._session_key = '1234567' self.assertIsNone(self.session.session_key) def test_session_key_valid_string_saved(self): """Strings of length 8 and up are accepted and stored.""" self.session._session_key = '12345678' self.assertEqual(self.session.session_key, '12345678') def test_session_key_is_read_only(self): def set_session_key(session): session.session_key = session._get_new_session_key() with self.assertRaises(AttributeError): set_session_key(self.session) # Custom session expiry def test_default_expiry(self): # A normal session has a max age equal to settings self.assertEqual(self.session.get_expiry_age(), settings.SESSION_COOKIE_AGE) # So does a custom session with an idle expiration time of 0 (but it'll # expire at browser close) self.session.set_expiry(0) self.assertEqual(self.session.get_expiry_age(), settings.SESSION_COOKIE_AGE) def test_custom_expiry_seconds(self): modification = timezone.now() self.session.set_expiry(10) date = self.session.get_expiry_date(modification=modification) self.assertEqual(date, modification + timedelta(seconds=10)) age = self.session.get_expiry_age(modification=modification) self.assertEqual(age, 10) def test_custom_expiry_timedelta(self): modification = timezone.now() # Mock timezone.now, because set_expiry calls it on this code path. original_now = timezone.now try: timezone.now = lambda: modification self.session.set_expiry(timedelta(seconds=10)) finally: timezone.now = original_now date = self.session.get_expiry_date(modification=modification) self.assertEqual(date, modification + timedelta(seconds=10)) age = self.session.get_expiry_age(modification=modification) self.assertEqual(age, 10) def test_custom_expiry_datetime(self): modification = timezone.now() self.session.set_expiry(modification + timedelta(seconds=10)) date = self.session.get_expiry_date(modification=modification) self.assertEqual(date, modification + timedelta(seconds=10)) age = self.session.get_expiry_age(modification=modification) self.assertEqual(age, 10) def test_custom_expiry_reset(self): self.session.set_expiry(None) self.session.set_expiry(10) self.session.set_expiry(None) self.assertEqual(self.session.get_expiry_age(), settings.SESSION_COOKIE_AGE) def test_get_expire_at_browser_close(self): # Tests get_expire_at_browser_close with different settings and different # set_expiry calls with override_settings(SESSION_EXPIRE_AT_BROWSER_CLOSE=False): self.session.set_expiry(10) self.assertIs(self.session.get_expire_at_browser_close(), False) self.session.set_expiry(0) self.assertIs(self.session.get_expire_at_browser_close(), True) self.session.set_expiry(None) self.assertIs(self.session.get_expire_at_browser_close(), False) with override_settings(SESSION_EXPIRE_AT_BROWSER_CLOSE=True): self.session.set_expiry(10) self.assertIs(self.session.get_expire_at_browser_close(), False) self.session.set_expiry(0) self.assertIs(self.session.get_expire_at_browser_close(), True) self.session.set_expiry(None) self.assertIs(self.session.get_expire_at_browser_close(), True) def test_decode(self): # Ensure we can decode what we encode data = {'a test key': 'a test value'} encoded = self.session.encode(data) self.assertEqual(self.session.decode(encoded), data) def test_decode_failure_logged_to_security(self): bad_encode = base64.b64encode(b'flaskdj:alkdjf') with patch_logger('django.security.SuspiciousSession', 'warning') as calls: self.assertEqual({}, self.session.decode(bad_encode)) # check that the failed decode is logged self.assertEqual(len(calls), 1) self.assertIn('corrupted', calls[0]) def test_actual_expiry(self): # this doesn't work with JSONSerializer (serializing timedelta) with override_settings(SESSION_SERIALIZER='django.contrib.sessions.serializers.PickleSerializer'): self.session = self.backend() # reinitialize after overriding settings # Regression test for #19200 old_session_key = None new_session_key = None try: self.session['foo'] = 'bar' self.session.set_expiry(-timedelta(seconds=10)) self.session.save() old_session_key = self.session.session_key # With an expiry date in the past, the session expires instantly. new_session = self.backend(self.session.session_key) new_session_key = new_session.session_key self.assertNotIn('foo', new_session) finally: self.session.delete(old_session_key) self.session.delete(new_session_key) def test_session_load_does_not_create_record(self): """ Loading an unknown session key does not create a session record. Creating session records on load is a DOS vulnerability. """ session = self.backend('someunknownkey') session.load() self.assertIsNone(session.session_key) self.assertIs(session.exists(session.session_key), False) # provided unknown key was cycled, not reused self.assertNotEqual(session.session_key, 'someunknownkey') def test_session_save_does_not_resurrect_session_logged_out_in_other_context(self): """ Sessions shouldn't be resurrected by a concurrent request. """ # Create new session. s1 = self.backend() s1['test_data'] = 'value1' s1.save(must_create=True) # Logout in another context. s2 = self.backend(s1.session_key) s2.delete() # Modify session in first context. s1['test_data'] = 'value2' with self.assertRaises(UpdateError): # This should throw an exception as the session is deleted, not # resurrect the session. s1.save() self.assertEqual(s1.load(), {}) class DatabaseSessionTests(SessionTestsMixin, TestCase): backend = DatabaseSession session_engine = 'django.contrib.sessions.backends.db' @property def model(self): return self.backend.get_model_class() def test_session_str(self): "Session repr should be the session key." self.session['x'] = 1 self.session.save() session_key = self.session.session_key s = self.model.objects.get(session_key=session_key) self.assertEqual(str(s), session_key) def test_session_get_decoded(self): """ Test we can use Session.get_decoded to retrieve data stored in normal way """ self.session['x'] = 1 self.session.save() s = self.model.objects.get(session_key=self.session.session_key) self.assertEqual(s.get_decoded(), {'x': 1}) def test_sessionmanager_save(self): """ Test SessionManager.save method """ # Create a session self.session['y'] = 1 self.session.save() s = self.model.objects.get(session_key=self.session.session_key) # Change it self.model.objects.save(s.session_key, {'y': 2}, s.expire_date) # Clear cache, so that it will be retrieved from DB del self.session._session_cache self.assertEqual(self.session['y'], 2) def test_clearsessions_command(self): """ Test clearsessions command for clearing expired sessions. """ self.assertEqual(0, self.model.objects.count()) # One object in the future self.session['foo'] = 'bar' self.session.set_expiry(3600) self.session.save() # One object in the past other_session = self.backend() other_session['foo'] = 'bar' other_session.set_expiry(-3600) other_session.save() # Two sessions are in the database before clearsessions... self.assertEqual(2, self.model.objects.count()) with override_settings(SESSION_ENGINE=self.session_engine): management.call_command('clearsessions') # ... and one is deleted. self.assertEqual(1, self.model.objects.count()) @override_settings(USE_TZ=True) class DatabaseSessionWithTimeZoneTests(DatabaseSessionTests): pass class CustomDatabaseSessionTests(DatabaseSessionTests): backend = CustomDatabaseSession session_engine = 'sessions_tests.models' def test_extra_session_field(self): # Set the account ID to be picked up by a custom session storage # and saved to a custom session model database column. self.session['_auth_user_id'] = 42 self.session.save() # Make sure that the customized create_model_instance() was called. s = self.model.objects.get(session_key=self.session.session_key) self.assertEqual(s.account_id, 42) # Make the session "anonymous". self.session.pop('_auth_user_id') self.session.save() # Make sure that save() on an existing session did the right job. s = self.model.objects.get(session_key=self.session.session_key) self.assertIsNone(s.account_id) class CacheDBSessionTests(SessionTestsMixin, TestCase): backend = CacheDBSession def test_exists_searches_cache_first(self): self.session.save() with self.assertNumQueries(0): self.assertIs(self.session.exists(self.session.session_key), True) # Some backends might issue a warning @ignore_warnings(module="django.core.cache.backends.base") def test_load_overlong_key(self): self.session._session_key = (string.ascii_letters + string.digits) * 20 self.assertEqual(self.session.load(), {}) @override_settings(SESSION_CACHE_ALIAS='sessions') def test_non_default_cache(self): # 21000 - CacheDB backend should respect SESSION_CACHE_ALIAS. with self.assertRaises(InvalidCacheBackendError): self.backend() @override_settings(USE_TZ=True) class CacheDBSessionWithTimeZoneTests(CacheDBSessionTests): pass # Don't need DB flushing for these tests, so can use unittest.TestCase as base class class FileSessionTests(SessionTestsMixin, unittest.TestCase): backend = FileSession def setUp(self): # Do file session tests in an isolated directory, and kill it after we're done. self.original_session_file_path = settings.SESSION_FILE_PATH self.temp_session_store = settings.SESSION_FILE_PATH = tempfile.mkdtemp() # Reset the file session backend's internal caches if hasattr(self.backend, '_storage_path'): del self.backend._storage_path super().setUp() def tearDown(self): super().tearDown() settings.SESSION_FILE_PATH = self.original_session_file_path shutil.rmtree(self.temp_session_store) @override_settings( SESSION_FILE_PATH="/if/this/directory/exists/you/have/a/weird/computer") def test_configuration_check(self): del self.backend._storage_path # Make sure the file backend checks for a good storage dir with self.assertRaises(ImproperlyConfigured): self.backend() def test_invalid_key_backslash(self): # Ensure we don't allow directory-traversal. # This is tested directly on _key_to_file, as load() will swallow # a SuspiciousOperation in the same way as an IOError - by creating # a new session, making it unclear whether the slashes were detected. with self.assertRaises(InvalidSessionKey): self.backend()._key_to_file("a\\b\\c") def test_invalid_key_forwardslash(self): # Ensure we don't allow directory-traversal with self.assertRaises(InvalidSessionKey): self.backend()._key_to_file("a/b/c") @override_settings( SESSION_ENGINE="django.contrib.sessions.backends.file", SESSION_COOKIE_AGE=0, ) def test_clearsessions_command(self): """ Test clearsessions command for clearing expired sessions. """ storage_path = self.backend._get_storage_path() file_prefix = settings.SESSION_COOKIE_NAME def count_sessions(): return len([ session_file for session_file in os.listdir(storage_path) if session_file.startswith(file_prefix) ]) self.assertEqual(0, count_sessions()) # One object in the future self.session['foo'] = 'bar' self.session.set_expiry(3600) self.session.save() # One object in the past other_session = self.backend() other_session['foo'] = 'bar' other_session.set_expiry(-3600) other_session.save() # One object in the present without an expiry (should be deleted since # its modification time + SESSION_COOKIE_AGE will be in the past when # clearsessions runs). other_session2 = self.backend() other_session2['foo'] = 'bar' other_session2.save() # Three sessions are in the filesystem before clearsessions... self.assertEqual(3, count_sessions()) management.call_command('clearsessions') # ... and two are deleted. self.assertEqual(1, count_sessions()) class CacheSessionTests(SessionTestsMixin, unittest.TestCase): backend = CacheSession # Some backends might issue a warning @ignore_warnings(module="django.core.cache.backends.base") def test_load_overlong_key(self): self.session._session_key = (string.ascii_letters + string.digits) * 20 self.assertEqual(self.session.load(), {}) def test_default_cache(self): self.session.save() self.assertIsNotNone(caches['default'].get(self.session.cache_key)) @override_settings(CACHES={ 'default': { 'BACKEND': 'django.core.cache.backends.dummy.DummyCache', }, 'sessions': { 'BACKEND': 'django.core.cache.backends.locmem.LocMemCache', 'LOCATION': 'session', }, }, SESSION_CACHE_ALIAS='sessions') def test_non_default_cache(self): # Re-initialize the session backend to make use of overridden settings. self.session = self.backend() self.session.save() self.assertIsNone(caches['default'].get(self.session.cache_key)) self.assertIsNotNone(caches['sessions'].get(self.session.cache_key)) def test_create_and_save(self): self.session = self.backend() self.session.create() self.session.save() self.assertIsNotNone(caches['default'].get(self.session.cache_key)) class SessionMiddlewareTests(TestCase): @override_settings(SESSION_COOKIE_SECURE=True) def test_secure_session_cookie(self): request = RequestFactory().get('/') response = HttpResponse('Session test') middleware = SessionMiddleware() # Simulate a request the modifies the session middleware.process_request(request) request.session['hello'] = 'world' # Handle the response through the middleware response = middleware.process_response(request, response) self.assertIs(response.cookies[settings.SESSION_COOKIE_NAME]['secure'], True) @override_settings(SESSION_COOKIE_HTTPONLY=True) def test_httponly_session_cookie(self): request = RequestFactory().get('/') response = HttpResponse('Session test') middleware = SessionMiddleware() # Simulate a request the modifies the session middleware.process_request(request) request.session['hello'] = 'world' # Handle the response through the middleware response = middleware.process_response(request, response) self.assertIs(response.cookies[settings.SESSION_COOKIE_NAME]['httponly'], True) self.assertIn( cookies.Morsel._reserved['httponly'], str(response.cookies[settings.SESSION_COOKIE_NAME]) ) @override_settings(SESSION_COOKIE_HTTPONLY=False) def test_no_httponly_session_cookie(self): request = RequestFactory().get('/') response = HttpResponse('Session test') middleware = SessionMiddleware() # Simulate a request the modifies the session middleware.process_request(request) request.session['hello'] = 'world' # Handle the response through the middleware response = middleware.process_response(request, response) self.assertEqual(response.cookies[settings.SESSION_COOKIE_NAME]['httponly'], '') self.assertNotIn( cookies.Morsel._reserved['httponly'], str(response.cookies[settings.SESSION_COOKIE_NAME]) ) def test_session_save_on_500(self): request = RequestFactory().get('/') response = HttpResponse('Horrible error') response.status_code = 500 middleware = SessionMiddleware() # Simulate a request the modifies the session middleware.process_request(request) request.session['hello'] = 'world' # Handle the response through the middleware response = middleware.process_response(request, response) # The value wasn't saved above. self.assertNotIn('hello', request.session.load()) def test_session_update_error_redirect(self): path = '/foo/' request = RequestFactory().get(path) response = HttpResponse() middleware = SessionMiddleware() request.session = DatabaseSession() request.session.save(must_create=True) request.session.delete() msg = ( "The request's session was deleted before the request completed. " "The user may have logged out in a concurrent request, for example." ) with self.assertRaisesMessage(SuspiciousOperation, msg): # Handle the response through the middleware. It will try to save # the deleted session which will cause an UpdateError that's caught # and raised as a SuspiciousOperation. middleware.process_response(request, response) def test_session_delete_on_end(self): request = RequestFactory().get('/') response = HttpResponse('Session test') middleware = SessionMiddleware() # Before deleting, there has to be an existing cookie request.COOKIES[settings.SESSION_COOKIE_NAME] = 'abc' # Simulate a request that ends the session middleware.process_request(request) request.session.flush() # Handle the response through the middleware response = middleware.process_response(request, response) # The cookie was deleted, not recreated. # A deleted cookie header looks like: # Set-Cookie: sessionid=; expires=Thu, 01 Jan 1970 00:00:00 GMT; Max-Age=0; Path=/ self.assertEqual( 'Set-Cookie: {}=""; expires=Thu, 01 Jan 1970 00:00:00 GMT; ' 'Max-Age=0; Path=/'.format( settings.SESSION_COOKIE_NAME, ), str(response.cookies[settings.SESSION_COOKIE_NAME]) ) @override_settings(SESSION_COOKIE_DOMAIN='.example.local', SESSION_COOKIE_PATH='/example/') def test_session_delete_on_end_with_custom_domain_and_path(self): request = RequestFactory().get('/') response = HttpResponse('Session test') middleware = SessionMiddleware() # Before deleting, there has to be an existing cookie request.COOKIES[settings.SESSION_COOKIE_NAME] = 'abc' # Simulate a request that ends the session middleware.process_request(request) request.session.flush() # Handle the response through the middleware response = middleware.process_response(request, response) # The cookie was deleted, not recreated. # A deleted cookie header with a custom domain and path looks like: # Set-Cookie: sessionid=; Domain=.example.local; # expires=Thu, 01 Jan 1970 00:00:00 GMT; Max-Age=0; # Path=/example/ self.assertEqual( 'Set-Cookie: {}=""; Domain=.example.local; expires=Thu, ' '01 Jan 1970 00:00:00 GMT; Max-Age=0; Path=/example/'.format( settings.SESSION_COOKIE_NAME, ), str(response.cookies[settings.SESSION_COOKIE_NAME]) ) def test_flush_empty_without_session_cookie_doesnt_set_cookie(self): request = RequestFactory().get('/') response = HttpResponse('Session test') middleware = SessionMiddleware() # Simulate a request that ends the session middleware.process_request(request) request.session.flush() # Handle the response through the middleware response = middleware.process_response(request, response) # A cookie should not be set. self.assertEqual(response.cookies, {}) # The session is accessed so "Vary: Cookie" should be set. self.assertEqual(response['Vary'], 'Cookie') def test_empty_session_saved(self): """ If a session is emptied of data but still has a key, it should still be updated. """ request = RequestFactory().get('/') response = HttpResponse('Session test') middleware = SessionMiddleware() # Set a session key and some data. middleware.process_request(request) request.session['foo'] = 'bar' # Handle the response through the middleware. response = middleware.process_response(request, response) self.assertEqual(tuple(request.session.items()), (('foo', 'bar'),)) # A cookie should be set, along with Vary: Cookie. self.assertIn( 'Set-Cookie: sessionid=%s' % request.session.session_key, str(response.cookies) ) self.assertEqual(response['Vary'], 'Cookie') # Empty the session data. del request.session['foo'] # Handle the response through the middleware. response = HttpResponse('Session test') response = middleware.process_response(request, response) self.assertEqual(dict(request.session.values()), {}) session = Session.objects.get(session_key=request.session.session_key) self.assertEqual(session.get_decoded(), {}) # While the session is empty, it hasn't been flushed so a cookie should # still be set, along with Vary: Cookie. self.assertGreater(len(request.session.session_key), 8) self.assertIn( 'Set-Cookie: sessionid=%s' % request.session.session_key, str(response.cookies) ) self.assertEqual(response['Vary'], 'Cookie') # Don't need DB flushing for these tests, so can use unittest.TestCase as base class class CookieSessionTests(SessionTestsMixin, unittest.TestCase): backend = CookieSession def test_save(self): """ This test tested exists() in the other session backends, but that doesn't make sense for us. """ pass def test_cycle(self): """ This test tested cycle_key() which would create a new session key for the same session data. But we can't invalidate previously signed cookies (other than letting them expire naturally) so testing for this behavior is meaningless. """ pass @unittest.expectedFailure def test_actual_expiry(self): # The cookie backend doesn't handle non-default expiry dates, see #19201 super().test_actual_expiry() def test_unpickling_exception(self): # signed_cookies backend should handle unpickle exceptions gracefully # by creating a new session self.assertEqual(self.session.serializer, JSONSerializer) self.session.save() self.session.serializer = PickleSerializer self.session.load() @unittest.skip("Cookie backend doesn't have an external store to create records in.") def test_session_load_does_not_create_record(self): pass @unittest.skip("CookieSession is stored in the client and there is no way to query it.") def test_session_save_does_not_resurrect_session_logged_out_in_other_context(self): pass
# -*- python -*- # Copyright (C) 2009-2014 Free Software Foundation, Inc. # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. import sys import gdb import os import os.path pythondir = '/NOBACKUP/sqa10/sqa/build-bspv410/build-toolchain/build-2016-04-13/toolchain/nds32le-elf-mculib-v3/share/gcc-4.9.3/python' libdir = '/NOBACKUP/sqa10/sqa/build-bspv410/build-toolchain/build-2016-04-13/toolchain/nds32le-elf-mculib-v3/nds32le-elf/lib' # This file might be loaded when there is no current objfile. This # can happen if the user loads it manually. In this case we don't # update sys.path; instead we just hope the user managed to do that # beforehand. if gdb.current_objfile () is not None: # Update module path. We want to find the relative path from libdir # to pythondir, and then we want to apply that relative path to the # directory holding the objfile with which this file is associated. # This preserves relocatability of the gcc tree. # Do a simple normalization that removes duplicate separators. pythondir = os.path.normpath (pythondir) libdir = os.path.normpath (libdir) prefix = os.path.commonprefix ([libdir, pythondir]) # In some bizarre configuration we might have found a match in the # middle of a directory name. if prefix[-1] != '/': prefix = os.path.dirname (prefix) + '/' # Strip off the prefix. pythondir = pythondir[len (prefix):] libdir = libdir[len (prefix):] # Compute the ".."s needed to get from libdir to the prefix. dotdots = ('..' + os.sep) * len (libdir.split (os.sep)) objfile = gdb.current_objfile ().filename dir_ = os.path.join (os.path.dirname (objfile), dotdots, pythondir) if not dir_ in sys.path: sys.path.insert(0, dir_) # Load the pretty-printers. from libstdcxx.v6.printers import register_libstdcxx_printers register_libstdcxx_printers (gdb.current_objfile ())
import pytest from selenium import webdriver from selenium.webdriver.support.wait import WebDriverWait from selenium.webdriver.support import expected_conditions as EC import time @pytest.fixture(scope="session") def driver(request): wd=webdriver.Chrome() request.addfinalizer(wd.quit) return wd def test_admin_login(driver): driver.get("http://localhost/litecart/admin") driver.find_element_by_name("username").send_keys("admin") driver.find_element_by_name("password").send_keys("123456") driver.find_element_by_name("login").click() WebDriverWait(driver,10).until(EC.title_is("My Store")) print('Поставим sleep перед закрытием браузера на 5 секунд для отладки') time.sleep(5)
from parsimonious.grammar import Grammar from .. import html_paths def read_html_path(string): path_node = _grammar.parse(string) return read_html_path_node(path_node) def read_html_path_node(path_node): if path_node.children[0].expr_name == "ignore": return html_paths.ignore elif path_node.children[0].children: return _read_html_path_elements_node(path_node.children[0].children[0]) else: return html_paths.empty def _read_html_path_elements_node(path_node): elements = [ _read_element_node(child) for child in _repeated_children_with_separator(path_node, has_whitespace=True) ] return html_paths.path(elements) def _read_element_node(node): tag_names = _read_tag_names_node(node.children[0]) class_names = _read_class_names_node(node.children[1]) fresh = _read_fresh_node(node.children[2]) return html_paths.element(tag_names, class_names=class_names, fresh=fresh) def _read_tag_names_node(node): return [ child.text for child in _repeated_children_with_separator(node, has_whitespace=False) ] def _read_class_names_node(class_names_node): return [ _read_class_name_node(node) for node in class_names_node.children ] def _read_class_name_node(node): return node.children[1].text def _read_fresh_node(node): return len(node.children) > 0 def _repeated_children_with_separator(node, has_whitespace): yield node.children[0] if has_whitespace: sequence_node_index = 3 else: sequence_node_index = 1 sequence_node = node.children[1] for child in sequence_node.children: yield child.children[sequence_node_index] grammar_text = r""" html_path = ignore / html_path_elements? ignore = "!" html_path_elements = element (whitespace* ">" whitespace* element)* element = tag_names class_name* fresh? tag_names = identifier ("|" identifier)* class_name = "." identifier fresh = ":fresh" identifier = ~"[A-Z0-9]+"i whitespace = ~"\s"* """ _grammar = Grammar(grammar_text)
from . import git import os from .utils import errordie, mkpath, msg def _trim(lines): stripped = [line.strip() for line in lines] return [line for line in stripped if line and not line.startswith('#')] def _git_destname(repository): git_folder = repository.rsplit('/', 1)[1] if git_folder.endswith('.git'): return git_folder[:-4] else: return git_folder class Repo(object): def __init__(self, repository, prefix): self._repository = repository self._prefix = prefix @classmethod def parse(cls, line): parts = line.split(' ', 1) if len(parts) == 2: repository = parts[1] prefix = parts[0] else: errordie('Invalid repository file line: {}'.format(line)) return cls(repository, prefix) def _group_folder(self, folder): if self._prefix: return os.path.join(folder, self._prefix) else: return folder def clone(self, folder): group_folder = self._group_folder(folder) mkpath(group_folder) git_folder = _git_destname(self._repository) destination = os.path.join(group_folder, git_folder) if os.path.exists(destination): msg('IN %s SKIPPING %s' % (self._prefix, git_folder)) return msg('IN %s CLONING %s' % (self._prefix, git_folder)) git.clone_or_die(self._repository, destination) def fast_forward(self, folder): group_folder = self._group_folder(folder) git_folder = _git_destname(self._repository) destination = os.path.join(group_folder, git_folder) if not os.path.exists(destination): errordie('Can\'t fast forward missing repository: {}'.format(destination)) msg('IN %s FAST FORWARDING %s' % (self._prefix, git_folder)) git.fast_forward_or_die(destination) def as_line(self): if self._prefix: return '{} {}'.format(self._prefix, self._repository) else: return '. {}'.format(self._repository) def __eq__(self, other): if isinstance(other, Repo): return ( self._repository == other._repository and self._prefix == other._prefix ) return False def __ne__(self, other): return not self.__eq__(other) def __str__(self): return self.as_line() class ReposFile(object): def __init__(self, stored_file): self._stored_file = stored_file self._repositories = [ Repo.parse(line) for line in _trim(stored_file.readlines())] def clone(self, folder): for repo in self._repositories: repo.clone(folder) def fast_forward(self, folder): for repo in self._repositories: repo.fast_forward(folder) def add(self, repo): for existing in self._repositories: if repo == existing: errordie('Duplicate entry {}'.format(repo)) self._repositories.append(repo) def save(self): lines = [repo.as_line()+'\n' for repo in self._repositories] self._stored_file.writelines(sorted(lines)) class RepoSet(object): def __init__(self, name, folder, stored_file): self._name = name self._reposfile = ReposFile(stored_file) self._folder = folder def clone(self): msg('CLONING SET {}'.format(self._name)) self._reposfile.clone(self._folder) def fast_forward(self): msg('FAST FORWARD IN SET {}'.format(self._name)) self._reposfile.fast_forward(self._folder) def add_and_clone(self, repository, prefix): msg('IN SET {}'.format(self._name)) repo = Repo(repository=repository, prefix=prefix) self._reposfile.add(repo) self._reposfile.save() repo.clone(self._folder)
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft and contributors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class TaskIdRange(Model): """ A range of task ids that a task can depend on. All tasks with ids in the range must complete successfully before the dependent task can be scheduled. :param start: The first task id in the range. :type start: int :param end: The last task id in the range. :type end: int """ _validation = { 'start': {'required': True}, 'end': {'required': True}, } _attribute_map = { 'start': {'key': 'start', 'type': 'int'}, 'end': {'key': 'end', 'type': 'int'}, } def __init__(self, start, end): self.start = start self.end = end
''' module that retreives and pack adms input info ''' import rdflib from pyproj import Proj, transform import requests import math import sys import os import rdflib.plugins.sparql.results.jsonresults as jsresult from collections import namedtuple from admsSrc import admsSrc from admsPolygon import Polygon import cobbling class admsInputDataRetriever(object): BDN = namedtuple('BDN', ['BldNumBuildings','BldName','BldType','BldX','BldY','BldHeight', 'BldLength', 'BldWidth', 'BldAngle']) OPT = namedtuple('OPT', ['OptNumOutputs','OptPolName','OptInclude','OptShortOrLong', 'OptSamplingTime','OptSamplingTimeUnits','OptCondition','OptNumPercentiles','OptNumExceedences','OptPercentiles','OptExceedences','OptUnits','OptGroupsOrSource','OptAllSources','OptNumGroups','OptIncludedGroups','OptIncludedSource','OptCreateComprehensiveFile']) def __init__(self, topnode, bdnnode=None, range=None, pollutants =['so2'], srcLimit = 5, bdnLimit = 25, filterSrc = False): '''constructor inputs: range - user input range {'xmin', 'xmax', 'ymin', 'ymax'}, actual range is the min(user range, region envelope(e.g. jurongisland)) topnode - uri of topnode to begin search within tree struct, filtersrc - true if use all children under topnode as src, false to use topnode as src directly bdnnode - top/colleciton node of building pollutants: pollutant to test srcLimit: limit of src number, actual number might fewer bdnLimit: limit of bdn number, actual number might fewer ''' self.address = None self.pollutants = pollutants self.topnode = topnode self.bdnnode = bdnnode self.srcLimit = srcLimit self.bdnLimit = bdnLimit self.filterSrc = False self.range = self.getRange(range) print(self.range) def getRange(self, userrange): ''' Define range from topnode info and user give parameters returns (xRange, yRange) ''' if not self.filterSrc: return ((userrange['xmin'], userrange['xmax']), (userrange['ymin'],userrange['ymax'])) self.connectDB(self.topnode)#connect to db qx = self.query( """ PREFIX sys: <http://www.theworldavatar.com/OntoCAPE/OntoCAPE/upper_level/system.owl#> PREFIX owl: <http://www.w3.org/2002/07/owl#> PREFIX space_and_time_extended: <http://www.theworldavatar.com/OntoCAPE/OntoCAPE/supporting_concepts/space_and_time/space_and_time_extended.owl#> SELECT ?value WHERE { ?co space_and_time_extended:hasProjectedCoordinate_x ?upper. ?upper sys:hasValue ?v. ?v sys:numericalValue ?value . } """) qy = self.query( """ PREFIX sys: <http://www.theworldavatar.com/OntoCAPE/OntoCAPE/upper_level/system.owl#> PREFIX owl: <http://www.w3.org/2002/07/owl#> PREFIX space_and_time_extended: <http://www.theworldavatar.com/OntoCAPE/OntoCAPE/supporting_concepts/space_and_time/space_and_time_extended.owl#> SELECT ?value WHERE { ?co space_and_time_extended:hasProjectedCoordinate_y ?upper. ?upper sys:hasValue ?v. ?v sys:numericalValue ?value . } """) #extract bounds data xs = tuple(row['value'] for row in qx) ys = tuple(row['value'] for row in qy) xRange = (xs[0].toPython(),xs[1].toPython()) if xs[0]<xs[1] else (xs[1].toPython(),xs[0].toPython()) yRange = (ys[0].toPython(),ys[1].toPython()) if ys[0]<ys[1] else (ys[1].toPython(),ys[0].toPython()) #todo: provide gis speci number in future and do conversion if needed #if user specified range, compare if userrange is not None: xRange = (min(xRange[0], userrange['xmin']), max(xRange[1], userrange['xmax'])) yRange = (min(yRange[0], userrange['ymin']), max(yRange[1], userrange['ymax'])) print('xrange: {} - {}', *xRange) print('yrange: {} - {}', *yRange) return(xRange, yRange) def filterSource(self): '''filter the source from tree starting from topnode, within the range and with user set content returns: list of source uris ''' xRange, yRange = self.range self.connectDB(self.topnode)#connect to db #query for children uris from topnode #todo: future kb: type check :emission type qChildren = self.query( """ PREFIX Eco-industrialPark: <http://www.theworldavatar.com/OntoEIP/Eco-industrialPark.owl#> SELECT ?child WHERE {{ ?o Eco-industrialPark:hasIRI ?child . }} LIMIT {0} """.format(self.srcLimit) ) ###query each children to get coordinates uris = list(row["child"].strip() for row in qChildren) ###todo: add this test file, delete in future #uris.append("http://www.theworldavatar.com/TankID_1574.owl#TankID_1574") filtered = [] print(uris) for uri in uris: print("connecting: {:s}".format(uri)) self.connectDB(uri) qstr =''' PREFIX sys: <http://www.theworldavatar.com/OntoCAPE/OntoCAPE/upper_level/system.owl#> PREFIX owl: <http://www.w3.org/2002/07/owl#> PREFIX space_and_time_extended: <http://www.theworldavatar.com/OntoCAPE/OntoCAPE/supporting_concepts/space_and_time/space_and_time_extended.owl#> PREFIX material: <http://www.theworldavatar.com/OntoCAPE/OntoCAPE/material/material.owl#> SELECT DISTINCT ?x ?y ?content WHERE {{ <{0!s}> space_and_time_extended:hasGISCoordinateSystem ?o. ?o space_and_time_extended:hasProjectedCoordinate_x ?xe. ?xe sys:hasValue ?vx. ?vx sys:numericalValue ?x . <{0!s}> sys:hasContent ?contentE . ?contentE material:intrinsicCharacteristics ?chemsp. ?chemsp sys:containsDirectly ?content. OPTIONAL{{ ?o space_and_time_extended:hasProjectedCoordinate_y ?ye. ?ye sys:hasValue ?vy. ?vy sys:numericalValue ?y . }} }} '''.format(uri) #print (qstr) coordQresults = self.query(qstr) ##filter children within range for row in coordQresults: x,y,content = float(row['x'].toPython()), float(row['y'].toPython()), row['content'].toPython() #print("{},{},{}".format(x, y, content)) if x - xRange[0]>0 and x - xRange[1] < 0 and y - yRange[0] > 0 and y - yRange[1]<0 and content in self.pollutants: filtered.append(uri) print('add to filtered {}'.format(uri)) break return filtered def getSrcData(self): '''get all sourced data : returns: data object ''' filtered = None if not self.filterSrc: filtered = self.filterSource() else: filtered = self.topnode s = set()#make a set of substance to query later result = [] for uri in filtered: print("connecting: {:s}".format(uri)) self.connectDB(uri) qdata = self.query( """ PREFIX sys: <http://www.theworldavatar.com/OntoCAPE/OntoCAPE/upper_level/system.owl#> PREFIX space_and_time_extended: <http://www.theworldavatar.com/OntoCAPE/OntoCAPE/supporting_concepts/space_and_time/space_and_time_extended.owl#> PREFIX plant:<http://www.theworldavatar.com/OntoCAPE/OntoCAPE/chemical_process_system/CPS_realization/plant.owl#> PREFIX topology:<http://www.theworldavatar.com/OntoCAPE/meta_model/topology/topology.owl#> PREFIX behavior: <http://www.theworldavatar.com/OntoCAPE/OntoCAPE/chemical_process_system/CPS_behavior/behavior.owl#> PREFIX chemical_process_system:<http://www.theworldavatar.com/OntoCAPE/OntoCAPE/chemical_process_system/chemical_process_system.owl#> PREFIX phase_system:<http://www.theworldavatar.com/OntoCAPE/OntoCAPE/material/phase_system/phase_system.owl#> PREFIX material: <http://www.theworldavatar.com/OntoCAPE/OntoCAPE/material/material.owl#> SELECT ?o ?height ?diameter ?content ?x ?y ?velocity ?massflow ?temp WHERE {{ ?o plant:hasHeight ?he. ?he sys:numericalValue ?height . ?o plant:hasInsideDiameter ?de . ?de sys:numericalValue ?diameter. ?o sys:hasContent ?contentE . ?contentE material:intrinsicCharacteristics ?chemsp. ?chemsp sys:containsDirectly ?content. ?contentE material:thermodynamicBehavior ?phase. ?phase phase_system:has_temperature ?tempE. ?tempE sys:hasValue ?vte. ?vte sys:numericalValue ?temp . ?o space_and_time_extended:hasGISCoordinateSystem ?coe . ?coe space_and_time_extended:hasProjectedCoordinate_x ?xe. ?xe sys:hasValue ?xv. ?xv sys:numericalValue ?x. ?coe space_and_time_extended:hasProjectedCoordinate_y ?ye. ?ye sys:hasValue ?yv. ?yv sys:numericalValue ?y. ?stream topology:leaves ?o. ?stream chemical_process_system:refersToGeneralizedAmount ?ga. ?ga sys:hasSubsystem ?ma. ?ma sys:hasProperty ?ve. ?ve a behavior:Velocity . ?ve sys:hasValue ?vv. ?vv sys:numericalValue ?velocity. ?ma sys:hasProperty ?me. ?me a behavior:ConvectiveMassFlowrate . ?me sys:hasValue ?mv. ?mv sys:numericalValue ?massflow. }} LIMIT 1 """) for row in qdata: s.add(row['content'].toPython()) result.append(row.asdict()) print("FILTERED :") print(result) #use this if need query substance separately #query substance for substance related data cMap = {} #hard coding for now before I get a better solusion self.connectDB("http://www.theworldavatar.com/OntoCAPE/OntoCAPE/material/substance/substance.owl") template = """ PREFIX sys: <http://www.theworldavatar.com/OntoCAPE/OntoCAPE/upper_level/system.owl#> PREFIX space_and_time_extended: <http://www.theworldavatar.com/OntoCAPE/OntoCAPE/supporting_concepts/space_and_time/space_and_time_extended.owl#> PREFIX sub:<http://www.theworldavatar.com/OntoCAPE/OntoCAPE/material/substance/substance.owl#> PREFIX behavior: <http://www.theworldavatar.com/OntoCAPE/OntoCAPE/chemical_process_system/CPS_behavior/behavior.owl#> PREFIX phase_system:<http://www.theworldavatar.com/OntoCAPE/OntoCAPE/material/phase_system/phase_system.owl#> SELECT DISTINCT ?o ?hc ?d ?mw WHERE {{ <{0}> behavior:hasHeatCapacityRatio ?hce. #heatcapacity ratio ?hce sys:hasValue ?hcv . ?hcv sys:numericalValue ?hc. <{0}> phase_system:has_density ?de . #density ?de sys:hasValue ?dv . ?dv sys:numericalValue ?d. <{0}> sys:hasProperty ?mwe. #molecular weight ?mwe a sub:MolecularWeight . ?mwe sys:hasValue ?mwv . ?mwv sys:numericalValue ?mw. }} LIMIT 1 """ for sub in s: print (sub) print (template.format(sub)) sdata = self.query(template.format(sub)) for row in sdata: cMap[sub] = row break packed = [] for src in result: subData = cMap[src['content'].toPython()].asdict() newSrc = admsSrc(SrcName = src['o'].toPython(), SrcHeight = src['height'].toPython(), SrcDiameter = src['diameter'].toPython(),SrcVertVeloc = src['velocity'].toPython(), SrcPolEmissionRate = src['massflow'].toPython(), SrcPollutants = self.polIRI2Name(src['content'].toPython()),SrcTemperature = src['temp'].toPython(), SrcX1 = src['x'].toPython(), SrcY1 = src['y'].toPython(), SrcMolWeight = subData['mw'].toPython(), SrcDensity = subData['d'].toPython(), SrcSpecHeatCap = subData['hc'].toPython()) packed.append(newSrc) return packed def getBdnData(self): self.connectDB(self.bdnnode, connectType = 'endpoint') bdns = self.filterBdnEnvelope() if len(bdns) is 0: #range is smaller than any envelope, #then we have to filter indi buildings #todo: in this case, should we filter by calculated cnetroid, or a crude one with ground x,y? i'd go with x, y first。。。 bdns = self.filterBdns(bdns) if len(bdns) is 0: raise Exception('no bdn within range') print ('Found {0} bdn within range , they are '.format(len(bdns))) result = list((zip(*[self.getMetrics(bld) for bld in bdns]))) print (result) newBdn = self.BDN(len(bdns), *result) return newBdn def filterBdnEnvelope(self): ''' Get all buildings within range by comparing range with envelope return list of building url ''' xRange, yRange = self.range qb =self.query(''' PREFIX sys: <http://www.theworldavatar.com/OntoCAPE/OntoCAPE/upper_level/system.owl#> PREFIX citygml: <http://www.theworldavatar.com/CityGMLOntology.owl#> PREFIX space_and_time_extended: <http://www.theworldavatar.com/OntoCAPE/OntoCAPE/supporting_concepts/space_and_time/space_and_time_extended.owl#> PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> SELECT distinct ?bdn WHERE{{ ?cityM a citygml:CityModelType. ?cityM citygml:boundedBy ?envelope . ?envelope a citygml:EnvelopeType. # get all envelopes ?envelope citygml:upperCornerPoint ?upoint. # get bounds of envelope ?upoint space_and_time_extended:hasGISCoordinateSystem ?uco. ?uco space_and_time_extended:hasProjectedCoordinate_x ?uxe. ?uxe sys:hasValue ?uxv. ?uxv sys:numericalValue ?ux. ?uco space_and_time_extended:hasProjectedCoordinate_y ?uye. ?uye sys:hasValue ?uyv. ?uyv sys:numericalValue ?uy. ?envelope citygml:lowerCornerPoint ?lpoint. ?lpoint space_and_time_extended:hasGISCoordinateSystem ?lco. ?lco space_and_time_extended:hasProjectedCoordinate_x ?lxe. ?lxe sys:hasValue ?lxv. ?lxv sys:numericalValue ?lx. ?lco space_and_time_extended:hasProjectedCoordinate_y ?lye. ?lye sys:hasValue ?lyv. ?lyv sys:numericalValue ?ly. ?cityM citygml:cityObjectMember ?bdn . #get bdn belongs to filterd envelope Filter(xsd:double(?ly) > "{1}"^^xsd:double && xsd:double(?uy) < "{2}"^^xsd:double && xsd:double(?lx) > "{3}"^^xsd:double && xsd:double(?ux) < "{4}"^^xsd:double) #filter envelope within range }} LIMIT {0} #limit of building num '''.format(self.bdnLimit, *yRange, *xRange)) ########todo: in future delete stud data return tuple(row['bdn'] for row in qb) #todo def filterBdns(self, bdns): ''' filter individual building to see if they are within range get all uris where every x and y in its ground is within range(maybe count ?) ''' xRange, yRange = self.range qstr = ''' PREFIX sys: <http://www.theworldavatar.com/OntoCAPE/OntoCAPE/upper_level/system.owl#> PREFIX space_and_time_extended: <http://www.theworldavatar.com/OntoCAPE/OntoCAPE/supporting_concepts/space_and_time/space_and_time_extended.owl#> PREFIX citygml:<http://www.theworldavatar.com/CityGMLOntology.owl#> #PREFIX citygml:<file:/D:/citygmllearn/citygmlhandmade.owl#> PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> SELECT distinct ?bdn WHERE {{ {{ #case1:building has no parts ?bdn a citygml:BuildingType. ?bdn citygml:boundedBy ?g. #building boundBy surface ?g a citygml:GroundSurfaceType. # surface is a ground ?g citygml:lod2MultiSurface ?ms. #ground has lod2multisurface ms ?ms citygml:surfaceMember ?pol. #ms has member polygon ?pol citygml:exterior ?lring. # polygon exterior is linear ring ?lring sys:contains ?po. # linear ring consists of points ?po space_and_time_extended:hasGISCoordinateSystem ?co. #point has coordinate system cs ?co space_and_time_extended:hasProjectedCoordinate_x ?xe. #[extract cs to get x,y,z value] ?xe sys:hasValue ?xv. ?xv sys:numericalValue ?x. ?co space_and_time_extended:hasProjectedCoordinate_y ?ye. ?ye sys:hasValue ?yv. ?yv sys:numericalValue ?y. }} UNION {{ #case 2: ?bdn a citygml:BuildingType. #bdns that consists of part ?bdn citygml:consistsOfBuildingPart ?part. ?part a citygml:BuildingPartType. ?part citygml:boundedBy ?g. ?g a citygml:GroundSurfaceType. ?g citygml:lod2MultiSurface ?ms. ?ms citygml:surfaceMember ?pol. ?pol citygml:exterior ?lring. ?lring sys:contains ?po. ?po space_and_time_extended:hasGISCoordinateSystem ?co. ?co space_and_time_extended:hasProjectedCoordinate_x ?xe. ?xe sys:hasValue ?xv. ?xv sys:numericalValue ?x. ?co space_and_time_extended:hasProjectedCoordinate_y ?ye. ?ye sys:hasValue ?yv. ?yv sys:numericalValue ?y. }} filter(xsd:double(?y) > "{1}"^^xsd:double && xsd:double(?y) < "{2}"^^xsd:double && xsd:double(?x) > "{3}"^^xsd:double && xsd:double(?x) < "{4}"^^xsd:double) }} LIMIT {0} #limit of building num '''.format(self.bdnLimit, *yRange, *xRange) qre = self.query(qstr) return tuple(row['bdn'] for row in qre) def getBdnVertices(self, nodeuri): '''get all buildings data returns: data object ''' #todo: modify query to get raw data,then pass to converter qData= self.query(''' PREFIX sys: <http://www.theworldavatar.com/OntoCAPE/OntoCAPE/upper_level/system.owl#> PREFIX space_and_time_extended: <http://www.theworldavatar.com/OntoCAPE/OntoCAPE/supporting_concepts/space_and_time/space_and_time_extended.owl#> PREFIX citygml:<http://www.theworldavatar.com/CityGMLOntology.owl#> SELECT ?x ?y ?z WHERE {{ <{0}> citygml:boundedBy ?g. #building/part IRI boundBy surface ?g a citygml:GroundSurfaceType. # surface is a ground ?g citygml:lod2MultiSurface ?ms. #ground has lod2multisurface ms ?ms citygml:surfaceMember ?pol. #ms has member polygon ?pol citygml:exterior ?lring. # polygon exterior is linear ring ?lring sys:contains ?po. # linear ring consists of points ?po space_and_time_extended:hasGISCoordinateSystem ?co. #point has coordinate system cs ?co space_and_time_extended:hasProjectedCoordinate_x ?xe. #[extract cs to get x,y,z value] ?xe sys:hasValue ?xv. ?xv sys:numericalValue ?x. ?co space_and_time_extended:hasProjectedCoordinate_y ?ye. ?ye sys:hasValue ?yv. ?yv sys:numericalValue ?y. ?co space_and_time_extended:hasProjectedCoordinate_z ?ze. ?ze sys:hasValue ?zv. ?zv sys:numericalValue ?z. }} '''.format(nodeuri)) #query for roof max and ground min qHeight = self.query(""" PREFIX sys: <http://www.theworldavatar.com/OntoCAPE/OntoCAPE/upper_level/system.owl#> PREFIX space_and_time_extended: <http://www.theworldavatar.com/OntoCAPE/OntoCAPE/supporting_concepts/space_and_time/space_and_time_extended.owl#> PREFIX citygml:<http://www.theworldavatar.com/CityGMLOntology.owl#> SELECT (MIN(?z) AS ?min) (MAX(?zr) AS ?max) #select min of ground z values, max of roof z values WHERE {{ <{0}> citygml:boundedBy ?g. #building/part IRI boundBy surface ?g a citygml:GroundSurfaceType. # surface is a GROUND ?g citygml:lod2MultiSurface ?ms. #[select all coordi z value for ground surface] ?ms citygml:surfaceMember ?pol. ?pol citygml:exterior ?lring. ?lring sys:contains ?po. ?po space_and_time_extended:hasGISCoordinateSystem ?co. ?co space_and_time_extended:hasProjectedCoordinate_z ?ze. ?ze sys:hasValue ?zv. ?zv sys:numericalValue ?z. <{0}> citygml:boundedBy ?gr. #building/part IRI boundBy surface ?gr a citygml:RoofSurfaceType. # surface is a ROOF ?gr citygml:lod2MultiSurface ?msr. #[select all coordi z value for roof surface] ?msr citygml:surfaceMember ?polr. ?polr citygml:exterior ?lringr. ?lringr sys:contains ?por. ?por space_and_time_extended:hasGISCoordinateSystem ?cor. ?cor space_and_time_extended:hasProjectedCoordinate_z ?zer. ?zer sys:hasValue ?zvr. ?zvr sys:numericalValue ?zr. }} GROUP BY ?g # group by each ground IRI """.format(nodeuri)) # define coordi convert function : building kb ---> adms Bdn2ADMSCoordC = defineCoordConvert('epsg:28992','epsg:32648') #float(row['min'].toPython()), float(row['max'].toPython()) zlimit = tuple( Bdn2ADMSCoordC(float(row['min'].toPython()), float(row['max'].toPython())) for row in qHeight )[0] return ( list(Bdn2ADMSCoordC(float(row['x'].toPython()), float(row['y'].toPython())) for row in qData), zlimit) def getMetrics(self, nodeuri): base = None if self.hasBuildingPart(nodeuri): print('{0} has building part'.format(nodeuri)) #get list of building part bparts = list(row['p'] for row in self.query( ''' PREFIX citygml:<http://www.theworldavatar.com/CityGMLOntology.owl#> SELECT ?p WHERE { ?b citygml:consistsOfBuildingPart ?p. }''')) #get metrics for each part polygons = tuple( Polygon(*self.getBdnVertices(uri)) for uri in bparts) #get centroid for pols base = Polygon.combineBaseMulti(polygons) else: # no building part print('{0} NOT has building part'.format(nodeuri)) verticesNHeight = self.getBdnVertices(nodeuri) #print(verticesHeight) base = Polygon(*verticesNHeight) #todo pack return result #('BldName','BldType','BldX','BldY','BldHeight', 'BldLength', 'BldWidth', 'BldAngle') print ((nodeuri.toPython(), base.type, base.centroid[0], base.centroid[1], base.height, base.length, base.width, base.angle) ) #todo: coordinate coversion for centroid!!! return (uri2name(nodeuri.toPython()), base.type, base.centroid[0], base.centroid[1], base.height, base.length, base.width, base.angle) #calulate centro #choose shape #calculate angle #probably for the best if we construct a type of polygon instead? def hasBuildingPart(self, nodeuri): #self.connectDB(nodeuri) print('checking if building part for :{0}'.format(nodeuri)) qData = self.query(''' PREFIX citygml:<http://www.theworldavatar.com/CityGMLOntology.owl#> ASK {{ <{0}> citygml:consistsOfBuildingPart ?p }} '''.format(nodeuri)) qData, = tuple(qData) return qData def coreBdn2Src(self): '''calculate main building for each src ''' #compare src coords to each bdn for src in self.rawSrc: closed, dClosed, first = None, sys.maxsize, True print('find closed bdn for src: '+src.SrcName+" with x: "+str(src.SrcX1) +" y: "+str(src.SrcY1)) for i in range(len(self.rawBdn.BldX)): #print('bdn x: ' +str( self.rawBdn.BldX[i])) dx, dy = self.rawBdn.BldX[i] - src.SrcX1, self.rawBdn.BldY[i] - src.SrcY1 d = dx * dx + dy * dy if first: dClosed = d closed = self.rawBdn.BldName[i] first = False #print('d:{0} dclosed:{1}'.format(d, dClosed)) if d - dClosed < 0: closed = self.rawBdn.BldName[i] dClosed = d print('new smallest distance: '+str(dClosed)) if closed is not None: src.setMainBuilding(closed) else: #err handling, something is wrong if no closed building is found, just throw it raise Exception('Dear lord, no closed buildinf found for src: '+src.SrcName) def getOpt(self, PolNames, SrcNames): numPol = len(PolNames) return self.OPT(numPol,PolNames, [1]*numPol,[0]*numPol,[1]*numPol,[3]*numPol,[0]*numPol,[0]*numPol,[0]*numPol,[0]*80,[0]*80,['ug/m3']*4,1,0,1,"Grouptank001",SrcNames,0) def polIRI2Name(self, polIRI): substances = {'http://www.theworldavatar.com/OntoCAPE/OntoCAPE/material/substance/substance.owl#chlorine':'Cl2'} if polIRI in substances.keys(): print('Found: '+ substances[polIRI]) return substances[polIRI] else: print ('Not found !!!!') raise Exception('This substance is not defined!!!!') def getWeather(self): ''' get weather data, for now we trigger a python script to write the .met file directly ''' #finish writing met metLoc= r"test.met" cobbling.run(meteo_data = metLoc) #pointing to met in apl return os.path.realpath(metLoc) def get(self): '''main function, get all related info for adms returns: complete data for adms ''' #get all src data self.rawSrc = self.getSrcData() ##todo: think about this case: when nothing is found ,where should we handle it? ##then nothing should be written, and catch this exception and mute it in main function if self.rawSrc is None: raise Exception("No src in found to requiries") #get all building data self.rawBdn = self.getBdnData() #print('raw building: ') #print(self.rawBdn) rawOpt = self.getOpt(self.pollutants, [s.SrcName for s in self.rawSrc]) self.coreBdn2Src() #for debuging, in future,define this for data type, i dont think it auto rpint for objet for src in self.rawSrc: print(src) met = self.getWeather() return {'Src': self.rawSrc, 'Bdn': self.rawBdn, 'Opt': rawOpt, 'Met': met} def queryEndpoint(self, str): print('requesting @ '+self.address+" with query:") #print(str) resp = requests.get(self.address, params = {'query':str}, timeout = 1500, headers = {'user-agent': 'my-app/0.0.1'}) print(resp.json()) qres = jsresult.JSONResult(resp.json())#json decoded print(qres) return qres def queryLocalGraph(self, str): qres = self.g.query(str) return qres def Uri2Local(uri): '''replace a uri to local address inputs: uri - uri to be changed returns: string - local address ''' return uri.replace("http://www.jparksimulator.com",config.root ).replace("http://www.theworldavatar.com",config.root) def remote2local(self, func): '''decorator to change connection function to local connection by replacing given iri to local address ''' def functionWrapper(self, address): address = self.Uri2Local(address) func(self, address) return functionWrapper def connectDB(self, address, connectType = 'parse'): '''connect to db anyhow (we use rdflib graph parse now) ''' def connectDBActual( address): ''' Actual method to connect to db ''' #obsolete: use rdflib locally self.address = address if connectType is 'parse': self.g = rdflib.Graph()#comment out in future self.g.parse(address)#comment out in future self.qmethodMap = {'parse': self.queryLocalGraph, 'endpoint':self.queryEndpoint} if not sameGraph(address, self.address): print ('parsing graph: '+ address) if connectType not in self.qmethodMap: raise exception('db connection method not defined') #self.connectType = connectType self.query = self.qmethodMap[connectType] connectDBActual(address) def sameGraph(uri1, uri2): def trimloc(uri): if uri is None: return None else: return uri.split('#')[0] return trimloc(uri1) == trimloc(uri2) def defineCoordConvert(inCode, outCode): inProj = Proj(init=inCode) outProj = Proj(init=outCode) def coordConvert(x,y): return transform(inProj, outProj, x, y) return coordConvert def uri2name(uri): base = 'http://www.theworldavatar.com/' return uri.split('#')[1]
""" command line options, ini-file and conftest.py processing. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse import copy import inspect import os import shlex import sys import types import warnings import py import six from pkg_resources import parse_version from pluggy import HookimplMarker from pluggy import HookspecMarker from pluggy import PluginManager import _pytest._code import _pytest.assertion import _pytest.hookspec # the extension point definitions from .exceptions import PrintHelp from .exceptions import UsageError from .findpaths import determine_setup from .findpaths import exists from _pytest._code import ExceptionInfo from _pytest._code import filter_traceback from _pytest.compat import lru_cache from _pytest.compat import safe_str from _pytest.outcomes import Skipped hookimpl = HookimplMarker("pytest") hookspec = HookspecMarker("pytest") class ConftestImportFailure(Exception): def __init__(self, path, excinfo): Exception.__init__(self, path, excinfo) self.path = path self.excinfo = excinfo def main(args=None, plugins=None): """ return exit code, after performing an in-process test run. :arg args: list of command line arguments. :arg plugins: list of plugin objects to be auto-registered during initialization. """ from _pytest.main import EXIT_USAGEERROR try: try: config = _prepareconfig(args, plugins) except ConftestImportFailure as e: exc_info = ExceptionInfo(e.excinfo) tw = py.io.TerminalWriter(sys.stderr) tw.line( "ImportError while loading conftest '{e.path}'.".format(e=e), red=True ) exc_info.traceback = exc_info.traceback.filter(filter_traceback) exc_repr = ( exc_info.getrepr(style="short", chain=False) if exc_info.traceback else exc_info.exconly() ) formatted_tb = safe_str(exc_repr) for line in formatted_tb.splitlines(): tw.line(line.rstrip(), red=True) return 4 else: try: return config.hook.pytest_cmdline_main(config=config) finally: config._ensure_unconfigure() except UsageError as e: tw = py.io.TerminalWriter(sys.stderr) for msg in e.args: tw.line("ERROR: {}\n".format(msg), red=True) return EXIT_USAGEERROR class cmdline(object): # compatibility namespace main = staticmethod(main) def filename_arg(path, optname): """ Argparse type validator for filename arguments. :path: path of filename :optname: name of the option """ if os.path.isdir(path): raise UsageError("{} must be a filename, given: {}".format(optname, path)) return path def directory_arg(path, optname): """Argparse type validator for directory arguments. :path: path of directory :optname: name of the option """ if not os.path.isdir(path): raise UsageError("{} must be a directory, given: {}".format(optname, path)) return path default_plugins = ( "mark", "main", "terminal", "runner", "python", "fixtures", "debugging", "unittest", "capture", "skipping", "tmpdir", "monkeypatch", "recwarn", "pastebin", "helpconfig", "nose", "assertion", "junitxml", "resultlog", "doctest", "cacheprovider", "freeze_support", "setuponly", "setupplan", "stepwise", "warnings", "logging", ) builtin_plugins = set(default_plugins) builtin_plugins.add("pytester") def get_config(): # subsequent calls to main will create a fresh instance pluginmanager = PytestPluginManager() config = Config(pluginmanager) for spec in default_plugins: pluginmanager.import_plugin(spec) return config def get_plugin_manager(): """ Obtain a new instance of the :py:class:`_pytest.config.PytestPluginManager`, with default plugins already loaded. This function can be used by integration with other tools, like hooking into pytest to run tests into an IDE. """ return get_config().pluginmanager def _prepareconfig(args=None, plugins=None): warning = None if args is None: args = sys.argv[1:] elif isinstance(args, py.path.local): args = [str(args)] elif not isinstance(args, (tuple, list)): if not isinstance(args, str): raise ValueError("not a string or argument list: %r" % (args,)) args = shlex.split(args, posix=sys.platform != "win32") from _pytest import deprecated warning = deprecated.MAIN_STR_ARGS config = get_config() pluginmanager = config.pluginmanager try: if plugins: for plugin in plugins: if isinstance(plugin, six.string_types): pluginmanager.consider_pluginarg(plugin) else: pluginmanager.register(plugin) if warning: from _pytest.warnings import _issue_config_warning _issue_config_warning(warning, config=config, stacklevel=4) return pluginmanager.hook.pytest_cmdline_parse( pluginmanager=pluginmanager, args=args ) except BaseException: config._ensure_unconfigure() raise class PytestPluginManager(PluginManager): """ Overwrites :py:class:`pluggy.PluginManager <pluggy.PluginManager>` to add pytest-specific functionality: * loading plugins from the command line, ``PYTEST_PLUGINS`` env variable and ``pytest_plugins`` global variables found in plugins being loaded; * ``conftest.py`` loading during start-up; """ def __init__(self): super(PytestPluginManager, self).__init__("pytest") self._conftest_plugins = set() # state related to local conftest plugins self._dirpath2confmods = {} self._conftestpath2mod = {} self._confcutdir = None self._noconftest = False self._duplicatepaths = set() self.add_hookspecs(_pytest.hookspec) self.register(self) if os.environ.get("PYTEST_DEBUG"): err = sys.stderr encoding = getattr(err, "encoding", "utf8") try: err = py.io.dupfile(err, encoding=encoding) except Exception: pass self.trace.root.setwriter(err.write) self.enable_tracing() # Config._consider_importhook will set a real object if required. self.rewrite_hook = _pytest.assertion.DummyRewriteHook() # Used to know when we are importing conftests after the pytest_configure stage self._configured = False def addhooks(self, module_or_class): """ .. deprecated:: 2.8 Use :py:meth:`pluggy.PluginManager.add_hookspecs <PluginManager.add_hookspecs>` instead. """ warning = dict( code="I2", fslocation=_pytest._code.getfslineno(sys._getframe(1)), nodeid=None, message="use pluginmanager.add_hookspecs instead of " "deprecated addhooks() method.", ) self._warn(warning) return self.add_hookspecs(module_or_class) def parse_hookimpl_opts(self, plugin, name): # pytest hooks are always prefixed with pytest_ # so we avoid accessing possibly non-readable attributes # (see issue #1073) if not name.startswith("pytest_"): return # ignore some historic special names which can not be hooks anyway if name == "pytest_plugins" or name.startswith("pytest_funcarg__"): return method = getattr(plugin, name) opts = super(PytestPluginManager, self).parse_hookimpl_opts(plugin, name) # consider only actual functions for hooks (#3775) if not inspect.isroutine(method): return # collect unmarked hooks as long as they have the `pytest_' prefix if opts is None and name.startswith("pytest_"): opts = {} if opts is not None: for name in ("tryfirst", "trylast", "optionalhook", "hookwrapper"): opts.setdefault(name, hasattr(method, name)) return opts def parse_hookspec_opts(self, module_or_class, name): opts = super(PytestPluginManager, self).parse_hookspec_opts( module_or_class, name ) if opts is None: method = getattr(module_or_class, name) if name.startswith("pytest_"): opts = { "firstresult": hasattr(method, "firstresult"), "historic": hasattr(method, "historic"), } return opts def register(self, plugin, name=None): if name in ["pytest_catchlog", "pytest_capturelog"]: self._warn( "{} plugin has been merged into the core, " "please remove it from your requirements.".format( name.replace("_", "-") ) ) return ret = super(PytestPluginManager, self).register(plugin, name) if ret: self.hook.pytest_plugin_registered.call_historic( kwargs=dict(plugin=plugin, manager=self) ) if isinstance(plugin, types.ModuleType): self.consider_module(plugin) return ret def getplugin(self, name): # support deprecated naming because plugins (xdist e.g.) use it return self.get_plugin(name) def hasplugin(self, name): """Return True if the plugin with the given name is registered.""" return bool(self.get_plugin(name)) def pytest_configure(self, config): # XXX now that the pluginmanager exposes hookimpl(tryfirst...) # we should remove tryfirst/trylast as markers config.addinivalue_line( "markers", "tryfirst: mark a hook implementation function such that the " "plugin machinery will try to call it first/as early as possible.", ) config.addinivalue_line( "markers", "trylast: mark a hook implementation function such that the " "plugin machinery will try to call it last/as late as possible.", ) self._configured = True def _warn(self, message): kwargs = ( message if isinstance(message, dict) else {"code": "I1", "message": message, "fslocation": None, "nodeid": None} ) self.hook.pytest_logwarning.call_historic(kwargs=kwargs) # # internal API for local conftest plugin handling # def _set_initial_conftests(self, namespace): """ load initial conftest files given a preparsed "namespace". As conftest files may add their own command line options which have arguments ('--my-opt somepath') we might get some false positives. All builtin and 3rd party plugins will have been loaded, however, so common options will not confuse our logic here. """ current = py.path.local() self._confcutdir = ( current.join(namespace.confcutdir, abs=True) if namespace.confcutdir else None ) self._noconftest = namespace.noconftest self._using_pyargs = namespace.pyargs testpaths = namespace.file_or_dir foundanchor = False for path in testpaths: path = str(path) # remove node-id syntax i = path.find("::") if i != -1: path = path[:i] anchor = current.join(path, abs=1) if exists(anchor): # we found some file object self._try_load_conftest(anchor) foundanchor = True if not foundanchor: self._try_load_conftest(current) def _try_load_conftest(self, anchor): self._getconftestmodules(anchor) # let's also consider test* subdirs if anchor.check(dir=1): for x in anchor.listdir("test*"): if x.check(dir=1): self._getconftestmodules(x) @lru_cache(maxsize=128) def _getconftestmodules(self, path): if self._noconftest: return [] if path.isfile(): directory = path.dirpath() else: directory = path if six.PY2: # py2 is not using lru_cache. try: return self._dirpath2confmods[directory] except KeyError: pass # XXX these days we may rather want to use config.rootdir # and allow users to opt into looking into the rootdir parent # directories instead of requiring to specify confcutdir clist = [] for parent in directory.realpath().parts(): if self._confcutdir and self._confcutdir.relto(parent): continue conftestpath = parent.join("conftest.py") if conftestpath.isfile(): mod = self._importconftest(conftestpath) clist.append(mod) self._dirpath2confmods[directory] = clist return clist def _rget_with_confmod(self, name, path): modules = self._getconftestmodules(path) for mod in reversed(modules): try: return mod, getattr(mod, name) except AttributeError: continue raise KeyError(name) def _importconftest(self, conftestpath): try: return self._conftestpath2mod[conftestpath] except KeyError: pkgpath = conftestpath.pypkgpath() if pkgpath is None: _ensure_removed_sysmodule(conftestpath.purebasename) try: mod = conftestpath.pyimport() if ( hasattr(mod, "pytest_plugins") and self._configured and not self._using_pyargs ): from _pytest.deprecated import ( PYTEST_PLUGINS_FROM_NON_TOP_LEVEL_CONFTEST ) warnings.warn_explicit( PYTEST_PLUGINS_FROM_NON_TOP_LEVEL_CONFTEST, category=None, filename=str(conftestpath), lineno=0, ) except Exception: raise ConftestImportFailure(conftestpath, sys.exc_info()) self._conftest_plugins.add(mod) self._conftestpath2mod[conftestpath] = mod dirpath = conftestpath.dirpath() if dirpath in self._dirpath2confmods: for path, mods in self._dirpath2confmods.items(): if path and path.relto(dirpath) or path == dirpath: assert mod not in mods mods.append(mod) self.trace("loaded conftestmodule %r" % (mod)) self.consider_conftest(mod) return mod # # API for bootstrapping plugin loading # # def consider_preparse(self, args): for opt1, opt2 in zip(args, args[1:]): if opt1 == "-p": self.consider_pluginarg(opt2) def consider_pluginarg(self, arg): if arg.startswith("no:"): name = arg[3:] # PR #4304 : remove stepwise if cacheprovider is blocked if name == "cacheprovider": self.set_blocked("stepwise") self.set_blocked("pytest_stepwise") self.set_blocked(name) if not name.startswith("pytest_"): self.set_blocked("pytest_" + name) else: self.import_plugin(arg) def consider_conftest(self, conftestmodule): self.register(conftestmodule, name=conftestmodule.__file__) def consider_env(self): self._import_plugin_specs(os.environ.get("PYTEST_PLUGINS")) def consider_module(self, mod): self._import_plugin_specs(getattr(mod, "pytest_plugins", [])) def _import_plugin_specs(self, spec): plugins = _get_plugin_specs_as_list(spec) for import_spec in plugins: self.import_plugin(import_spec) def import_plugin(self, modname): # most often modname refers to builtin modules, e.g. "pytester", # "terminal" or "capture". Those plugins are registered under their # basename for historic purposes but must be imported with the # _pytest prefix. assert isinstance(modname, (six.text_type, str)), ( "module name as text required, got %r" % modname ) modname = str(modname) if self.is_blocked(modname) or self.get_plugin(modname) is not None: return if modname in builtin_plugins: importspec = "_pytest." + modname else: importspec = modname self.rewrite_hook.mark_rewrite(importspec) try: __import__(importspec) except ImportError as e: new_exc_type = ImportError new_exc_message = 'Error importing plugin "%s": %s' % ( modname, safe_str(e.args[0]), ) new_exc = new_exc_type(new_exc_message) six.reraise(new_exc_type, new_exc, sys.exc_info()[2]) except Skipped as e: self._warn("skipped plugin %r: %s" % ((modname, e.msg))) else: mod = sys.modules[importspec] self.register(mod, modname) def _get_plugin_specs_as_list(specs): """ Parses a list of "plugin specs" and returns a list of plugin names. Plugin specs can be given as a list of strings separated by "," or already as a list/tuple in which case it is returned as a list. Specs can also be `None` in which case an empty list is returned. """ if specs is not None: if isinstance(specs, str): specs = specs.split(",") if specs else [] if not isinstance(specs, (list, tuple)): raise UsageError( "Plugin specs must be a ','-separated string or a " "list/tuple of strings for plugin names. Given: %r" % specs ) return list(specs) return [] def _ensure_removed_sysmodule(modname): try: del sys.modules[modname] except KeyError: pass class Notset(object): def __repr__(self): return "<NOTSET>" notset = Notset() def _iter_rewritable_modules(package_files): for fn in package_files: is_simple_module = "/" not in fn and fn.endswith(".py") is_package = fn.count("/") == 1 and fn.endswith("__init__.py") if is_simple_module: module_name, _ = os.path.splitext(fn) yield module_name elif is_package: package_name = os.path.dirname(fn) yield package_name class Config(object): """ access to configuration values, pluginmanager and plugin hooks. """ def __init__(self, pluginmanager): #: access to command line option as attributes. #: (deprecated), use :py:func:`getoption() <_pytest.config.Config.getoption>` instead self.option = argparse.Namespace() from .argparsing import Parser, FILE_OR_DIR _a = FILE_OR_DIR self._parser = Parser( usage="%%(prog)s [options] [%s] [%s] [...]" % (_a, _a), processopt=self._processopt, ) #: a pluginmanager instance self.pluginmanager = pluginmanager self.trace = self.pluginmanager.trace.root.get("config") self.hook = self.pluginmanager.hook self._inicache = {} self._override_ini = () self._opt2dest = {} self._cleanup = [] self._warn = self.pluginmanager._warn self.pluginmanager.register(self, "pytestconfig") self._configured = False def do_setns(dic): import pytest setns(pytest, dic) self.hook.pytest_namespace.call_historic(do_setns, {}) self.hook.pytest_addoption.call_historic(kwargs=dict(parser=self._parser)) def add_cleanup(self, func): """ Add a function to be called when the config object gets out of use (usually coninciding with pytest_unconfigure).""" self._cleanup.append(func) def _do_configure(self): assert not self._configured self._configured = True self.hook.pytest_configure.call_historic(kwargs=dict(config=self)) def _ensure_unconfigure(self): if self._configured: self._configured = False self.hook.pytest_unconfigure(config=self) self.hook.pytest_configure._call_history = [] while self._cleanup: fin = self._cleanup.pop() fin() def warn(self, code, message, fslocation=None, nodeid=None): """ .. deprecated:: 3.8 Use :py:func:`warnings.warn` or :py:func:`warnings.warn_explicit` directly instead. Generate a warning for this test session. """ from _pytest.warning_types import RemovedInPytest4Warning if isinstance(fslocation, (tuple, list)) and len(fslocation) > 2: filename, lineno = fslocation[:2] else: filename = "unknown file" lineno = 0 msg = "config.warn has been deprecated, use warnings.warn instead" if nodeid: msg = "{}: {}".format(nodeid, msg) warnings.warn_explicit( RemovedInPytest4Warning(msg), category=None, filename=filename, lineno=lineno, ) self.hook.pytest_logwarning.call_historic( kwargs=dict( code=code, message=message, fslocation=fslocation, nodeid=nodeid ) ) def get_terminal_writer(self): return self.pluginmanager.get_plugin("terminalreporter")._tw def pytest_cmdline_parse(self, pluginmanager, args): # REF1 assert self == pluginmanager.config, (self, pluginmanager.config) self.parse(args) return self def notify_exception(self, excinfo, option=None): if option and option.fulltrace: style = "long" else: style = "native" excrepr = excinfo.getrepr( funcargs=True, showlocals=getattr(option, "showlocals", False), style=style ) res = self.hook.pytest_internalerror(excrepr=excrepr, excinfo=excinfo) if not any(res): for line in str(excrepr).split("\n"): sys.stderr.write("INTERNALERROR> %s\n" % line) sys.stderr.flush() def cwd_relative_nodeid(self, nodeid): # nodeid's are relative to the rootpath, compute relative to cwd if self.invocation_dir != self.rootdir: fullpath = self.rootdir.join(nodeid) nodeid = self.invocation_dir.bestrelpath(fullpath) return nodeid @classmethod def fromdictargs(cls, option_dict, args): """ constructor useable for subprocesses. """ config = get_config() config.option.__dict__.update(option_dict) config.parse(args, addopts=False) for x in config.option.plugins: config.pluginmanager.consider_pluginarg(x) return config def _processopt(self, opt): for name in opt._short_opts + opt._long_opts: self._opt2dest[name] = opt.dest if hasattr(opt, "default") and opt.dest: if not hasattr(self.option, opt.dest): setattr(self.option, opt.dest, opt.default) @hookimpl(trylast=True) def pytest_load_initial_conftests(self, early_config): self.pluginmanager._set_initial_conftests(early_config.known_args_namespace) def _initini(self, args): ns, unknown_args = self._parser.parse_known_and_unknown_args( args, namespace=copy.copy(self.option) ) r = determine_setup( ns.inifilename, ns.file_or_dir + unknown_args, rootdir_cmd_arg=ns.rootdir or None, config=self, ) self.rootdir, self.inifile, self.inicfg = r self._parser.extra_info["rootdir"] = self.rootdir self._parser.extra_info["inifile"] = self.inifile self.invocation_dir = py.path.local() self._parser.addini("addopts", "extra command line options", "args") self._parser.addini("minversion", "minimally required pytest version") self._override_ini = ns.override_ini or () def _consider_importhook(self, args): """Install the PEP 302 import hook if using assertion rewriting. Needs to parse the --assert=<mode> option from the commandline and find all the installed plugins to mark them for rewriting by the importhook. """ ns, unknown_args = self._parser.parse_known_and_unknown_args(args) mode = ns.assertmode if mode == "rewrite": try: hook = _pytest.assertion.install_importhook(self) except SystemError: mode = "plain" else: self._mark_plugins_for_rewrite(hook) _warn_about_missing_assertion(mode) def _mark_plugins_for_rewrite(self, hook): """ Given an importhook, mark for rewrite any top-level modules or packages in the distribution package for all pytest plugins. """ import pkg_resources self.pluginmanager.rewrite_hook = hook if os.environ.get("PYTEST_DISABLE_PLUGIN_AUTOLOAD"): # We don't autoload from setuptools entry points, no need to continue. return # 'RECORD' available for plugins installed normally (pip install) # 'SOURCES.txt' available for plugins installed in dev mode (pip install -e) # for installed plugins 'SOURCES.txt' returns an empty list, and vice-versa # so it shouldn't be an issue metadata_files = "RECORD", "SOURCES.txt" package_files = ( entry.split(",")[0] for entrypoint in pkg_resources.iter_entry_points("pytest11") for metadata in metadata_files for entry in entrypoint.dist._get_metadata(metadata) ) for name in _iter_rewritable_modules(package_files): hook.mark_rewrite(name) def _validate_args(self, args): """Validate known args.""" self._parser.parse_known_and_unknown_args( args, namespace=copy.copy(self.option) ) return args def _preparse(self, args, addopts=True): if addopts: env_addopts = os.environ.get("PYTEST_ADDOPTS", "") if len(env_addopts): args[:] = self._validate_args(shlex.split(env_addopts)) + args self._initini(args) if addopts: args[:] = self._validate_args(self.getini("addopts")) + args self._checkversion() self._consider_importhook(args) self.pluginmanager.consider_preparse(args) if not os.environ.get("PYTEST_DISABLE_PLUGIN_AUTOLOAD"): # Don't autoload from setuptools entry point. Only explicitly specified # plugins are going to be loaded. self.pluginmanager.load_setuptools_entrypoints("pytest11") self.pluginmanager.consider_env() self.known_args_namespace = ns = self._parser.parse_known_args( args, namespace=copy.copy(self.option) ) if self.known_args_namespace.confcutdir is None and self.inifile: confcutdir = py.path.local(self.inifile).dirname self.known_args_namespace.confcutdir = confcutdir try: self.hook.pytest_load_initial_conftests( early_config=self, args=args, parser=self._parser ) except ConftestImportFailure: e = sys.exc_info()[1] if ns.help or ns.version: # we don't want to prevent --help/--version to work # so just let is pass and print a warning at the end self._warn("could not load initial conftests (%s)\n" % e.path) else: raise def _checkversion(self): import pytest minver = self.inicfg.get("minversion", None) if minver: if parse_version(minver) > parse_version(pytest.__version__): raise pytest.UsageError( "%s:%d: requires pytest-%s, actual pytest-%s'" % ( self.inicfg.config.path, self.inicfg.lineof("minversion"), minver, pytest.__version__, ) ) def parse(self, args, addopts=True): # parse given cmdline arguments into this config object. assert not hasattr( self, "args" ), "can only parse cmdline args at most once per Config object" self._origargs = args self.hook.pytest_addhooks.call_historic( kwargs=dict(pluginmanager=self.pluginmanager) ) self._preparse(args, addopts=addopts) # XXX deprecated hook: self.hook.pytest_cmdline_preparse(config=self, args=args) self._parser.after_preparse = True try: args = self._parser.parse_setoption( args, self.option, namespace=self.option ) if not args: if self.invocation_dir == self.rootdir: args = self.getini("testpaths") if not args: args = [str(self.invocation_dir)] self.args = args except PrintHelp: pass def addinivalue_line(self, name, line): """ add a line to an ini-file option. The option must have been declared but might not yet be set in which case the line becomes the the first line in its value. """ x = self.getini(name) assert isinstance(x, list) x.append(line) # modifies the cached list inline def getini(self, name): """ return configuration value from an :ref:`ini file <inifiles>`. If the specified name hasn't been registered through a prior :py:func:`parser.addini <_pytest.config.Parser.addini>` call (usually from a plugin), a ValueError is raised. """ try: return self._inicache[name] except KeyError: self._inicache[name] = val = self._getini(name) return val def _getini(self, name): try: description, type, default = self._parser._inidict[name] except KeyError: raise ValueError("unknown configuration value: %r" % (name,)) value = self._get_override_ini_value(name) if value is None: try: value = self.inicfg[name] except KeyError: if default is not None: return default if type is None: return "" return [] if type == "pathlist": dp = py.path.local(self.inicfg.config.path).dirpath() values = [] for relpath in shlex.split(value): values.append(dp.join(relpath, abs=True)) return values elif type == "args": return shlex.split(value) elif type == "linelist": return [t for t in map(lambda x: x.strip(), value.split("\n")) if t] elif type == "bool": return bool(_strtobool(value.strip())) else: assert type is None return value def _getconftest_pathlist(self, name, path): try: mod, relroots = self.pluginmanager._rget_with_confmod(name, path) except KeyError: return None modpath = py.path.local(mod.__file__).dirpath() values = [] for relroot in relroots: if not isinstance(relroot, py.path.local): relroot = relroot.replace("/", py.path.local.sep) relroot = modpath.join(relroot, abs=True) values.append(relroot) return values def _get_override_ini_value(self, name): value = None # override_ini is a list of "ini=value" options # always use the last item if multiple values are set for same ini-name, # e.g. -o foo=bar1 -o foo=bar2 will set foo to bar2 for ini_config in self._override_ini: try: key, user_ini_value = ini_config.split("=", 1) except ValueError: raise UsageError("-o/--override-ini expects option=value style.") else: if key == name: value = user_ini_value return value def getoption(self, name, default=notset, skip=False): """ return command line option value. :arg name: name of the option. You may also specify the literal ``--OPT`` option instead of the "dest" option name. :arg default: default value if no option of that name exists. :arg skip: if True raise pytest.skip if option does not exists or has a None value. """ name = self._opt2dest.get(name, name) try: val = getattr(self.option, name) if val is None and skip: raise AttributeError(name) return val except AttributeError: if default is not notset: return default if skip: import pytest pytest.skip("no %r option found" % (name,)) raise ValueError("no option named %r" % (name,)) def getvalue(self, name, path=None): """ (deprecated, use getoption()) """ return self.getoption(name) def getvalueorskip(self, name, path=None): """ (deprecated, use getoption(skip=True)) """ return self.getoption(name, skip=True) def _assertion_supported(): try: assert False except AssertionError: return True else: return False def _warn_about_missing_assertion(mode): if not _assertion_supported(): if mode == "plain": sys.stderr.write( "WARNING: ASSERTIONS ARE NOT EXECUTED" " and FAILING TESTS WILL PASS. Are you" " using python -O?" ) else: sys.stderr.write( "WARNING: assertions not in test modules or" " plugins will be ignored" " because assert statements are not executed " "by the underlying Python interpreter " "(are you using python -O?)\n" ) def setns(obj, dic): import pytest for name, value in dic.items(): if isinstance(value, dict): mod = getattr(obj, name, None) if mod is None: modname = "pytest.%s" % name mod = types.ModuleType(modname) sys.modules[modname] = mod mod.__all__ = [] setattr(obj, name, mod) obj.__all__.append(name) setns(mod, value) else: setattr(obj, name, value) obj.__all__.append(name) # if obj != pytest: # pytest.__all__.append(name) setattr(pytest, name, value) def create_terminal_writer(config, *args, **kwargs): """Create a TerminalWriter instance configured according to the options in the config object. Every code which requires a TerminalWriter object and has access to a config object should use this function. """ tw = py.io.TerminalWriter(*args, **kwargs) if config.option.color == "yes": tw.hasmarkup = True if config.option.color == "no": tw.hasmarkup = False return tw def _strtobool(val): """Convert a string representation of truth to true (1) or false (0). True values are 'y', 'yes', 't', 'true', 'on', and '1'; false values are 'n', 'no', 'f', 'false', 'off', and '0'. Raises ValueError if 'val' is anything else. .. note:: copied from distutils.util """ val = val.lower() if val in ("y", "yes", "t", "true", "on", "1"): return 1 elif val in ("n", "no", "f", "false", "off", "0"): return 0 else: raise ValueError("invalid truth value %r" % (val,))
"""Unit test package for codeforces2html."""
# Import Built-Ins import logging import json import time import ssl import hashlib import hmac from multiprocessing import Queue from threading import Thread, Event, Timer from collections import OrderedDict # Import Third-Party import websocket # Import Homebrew # Init Logging Facilities log = logging.getLogger(__name__) class WebSocketConnection(Thread): """Websocket Connection Thread Inspired heavily by ekulyk's PythonPusherClient Connection Class https://github.com/ekulyk/PythonPusherClient/blob/master/pusherclient/connection.py It handles all low-level system messages, such a reconnects, pausing of activity and continuing of activity. """ def __init__(self, *args, url=None, timeout=None, sslopt=None, reconnect_interval=None, log_level=None, **kwargs): """Initialize a WebSocketConnection Instance. :param data_q: Queue(), connection to the Client Class :param args: args for Thread.__init__() :param url: websocket address, defaults to v2 websocket. :param timeout: timeout for connection; defaults to 10s :param reconnect_interval: interval at which to try reconnecting; defaults to 10s. :param log_level: logging level for the connection Logger. Defaults to logging.INFO. :param kwargs: kwargs for Thread.__ini__() """ # Queue used to pass data up to BTFX client self.q = Queue() # Connection Settings self.socket = None self.url = url if url else 'wss://api.bitfinex.com/ws/2' self.sslopt = sslopt if sslopt else {} # Dict to store all subscribe commands for reconnects self.channel_configs = OrderedDict() # Connection Handling Attributes self.connected = Event() self.disconnect_called = Event() self.reconnect_required = Event() self.reconnect_interval = reconnect_interval if reconnect_interval else 10 self.paused = Event() # Setup Timer attributes # Tracks API Connection & Responses self.ping_timer = None self.ping_interval = 120 # Tracks Websocket Connection self.connection_timer = None self.connection_timeout = timeout if timeout else 10 # Tracks responses from send_ping() self.pong_timer = None self.pong_received = False self.pong_timeout = 30 self.log = logging.getLogger(self.__module__) if log_level == logging.DEBUG: websocket.enableTrace(True) self.log.setLevel(level=log_level if log_level else logging.INFO) # Call init of Thread and pass remaining args and kwargs Thread.__init__(self) self.daemon = True def disconnect(self): """Disconnects from the websocket connection and joins the Thread. :return: """ self.log.debug("disconnect(): Disconnecting from API..") self.reconnect_required.clear() self.disconnect_called.set() if self.socket: self.socket.close() self.join(timeout=1) def reconnect(self): """Issues a reconnection by setting the reconnect_required event. :return: """ # Reconnect attempt at self.reconnect_interval self.log.debug("reconnect(): Initialzion reconnect sequence..") self.connected.clear() self.reconnect_required.set() if self.socket: self.socket.close() def _connect(self): """Creates a websocket connection. :return: """ self.log.debug("_connect(): Initializing Connection..") self.socket = websocket.WebSocketApp( self.url, on_open=self._on_open, on_message=self._on_message, on_error=self._on_error, on_close=self._on_close ) if 'ca_certs' not in self.sslopt.keys(): ssl_defaults = ssl.get_default_verify_paths() self.sslopt['ca_certs'] = ssl_defaults.cafile self.log.debug("_connect(): Starting Connection..") self.socket.run_forever(sslopt=self.sslopt) while self.reconnect_required.is_set(): if not self.disconnect_called.is_set(): self.log.info("Attempting to connect again in %s seconds." % self.reconnect_interval) self.state = "unavailable" time.sleep(self.reconnect_interval) # We need to set this flag since closing the socket will # set it to False self.socket.keep_running = True self.socket.run_forever(sslopt=self.sslopt) def run(self): """Main method of Thread. :return: """ self.log.debug("run(): Starting up..") self._connect() def _on_message(self, ws, message): """Handles and passes received data to the appropriate handlers. :return: """ self._stop_timers() raw, received_at = message, time.time() self.log.debug("_on_message(): Received new message %s at %s", raw, received_at) try: data = json.loads(raw) except json.JSONDecodeError: # Something wrong with this data, log and discard return # Handle data if isinstance(data, dict): # This is a system message self._system_handler(data, received_at) else: # This is a list of data if data[1] == 'hb': self._heartbeat_handler() else: self._data_handler(data, received_at) # We've received data, reset timers self._start_timers() def _on_close(self, ws, *args): self.log.info("Connection closed") self.connected.clear() self._stop_timers() def _on_open(self, ws): self.log.info("Connection opened") self.connected.set() self.send_ping() self._start_timers() if self.reconnect_required.is_set(): self.log.info("_on_open(): Connection reconnected, re-subscribing..") self._resubscribe(soft=False) def _on_error(self, ws, error): self.log.info("Connection Error - %s", error) self.reconnect_required.set() self.connected.clear() def _stop_timers(self): """Stops ping, pong and connection timers. :return: """ if self.ping_timer: self.ping_timer.cancel() if self.connection_timer: self.connection_timer.cancel() if self.pong_timer: self.pong_timer.cancel() self.log.debug("_stop_timers(): Timers stopped.") def _start_timers(self): """Resets and starts timers for API data and connection. :return: """ self.log.debug("_start_timers(): Resetting timers..") self._stop_timers() # Sends a ping at ping_interval to see if API still responding self.ping_timer = Timer(self.ping_interval, self.send_ping) self.ping_timer.start() # Automatically reconnect if we didnt receive data self.connection_timer = Timer(self.connection_timeout, self._connection_timed_out) self.connection_timer.start() def send_ping(self): """Sends a ping message to the API and starts pong timers. :return: """ self.log.debug("send_ping(): Sending ping to API..") self.socket.send(json.dumps({'event': 'ping'})) self.pong_timer = Timer(self.pong_timeout, self._check_pong) self.pong_timer.start() def _check_pong(self): """Checks if a Pong message was received. :return: """ self.pong_timer.cancel() if self.pong_received: self.log.debug("_check_pong(): Pong received in time.") self.pong_received = False else: # reconnect self.log.debug("_check_pong(): Pong not received in time." "Issuing reconnect..") self.reconnect() def send(self, api_key=None, secret=None, list_data=None, auth=False, **kwargs): """Sends the given Payload to the API via the websocket connection. :param kwargs: payload paarameters as key=value pairs :return: """ if auth: nonce = str(int(time.time() * 10000000)) auth_string = 'AUTH' + nonce auth_sig = hmac.new(secret.encode(), auth_string.encode(), hashlib.sha384).hexdigest() payload = {'event': 'auth', 'apiKey': api_key, 'authSig': auth_sig, 'authPayload': auth_string, 'authNonce': nonce} payload = json.dumps(payload) elif list_data: payload = json.dumps(list_data) else: payload = json.dumps(kwargs) self.log.debug("send(): Sending payload to API: %s", payload) try: self.socket.send(payload) except websocket.WebSocketConnectionClosedException: self.log.error("send(): Did not send out payload %s - client not connected. ", kwargs) def pass_to_client(self, event, data, *args): """Passes data up to the client via a Queue(). :param event: :param data: :param args: :return: """ self.q.put((event, data, *args)) def _connection_timed_out(self): """Issues a reconnection if the connection timed out. :return: """ self.log.debug("_connection_timed_out(): Fired! Issuing reconnect..") self.reconnect() def _pause(self): """Pauses the connection. :return: """ self.log.debug("_pause(): Setting paused() Flag!") self.paused.set() def _unpause(self): """Unpauses the connection. Send a message up to client that he should re-subscribe to all channels. :return: """ self.log.debug("_unpause(): Clearing paused() Flag!") self.paused.clear() self.log.debug("_unpause(): Re-subscribing softly..") self._resubscribe(soft=True) def _heartbeat_handler(self): """Handles heartbeat messages. :return: """ # Restart our timers since we received some data self.log.debug("_heartbeat_handler(): Received a heart beat " "from connection!") self._start_timers() def _pong_handler(self): """Handle a pong response. :return: """ # We received a Pong response to our Ping! self.log.debug("_pong_handler(): Received a Pong message!") self.pong_received = True def _system_handler(self, data, ts): """Distributes system messages to the appropriate handler. System messages include everything that arrives as a dict, or a list containing a heartbeat. :param data: :param ts: :return: """ self.log.debug("_system_handler(): Received a system message: %s", data) # Unpack the data event = data.pop('event') if event == 'pong': self.log.debug("_system_handler(): Distributing %s to _pong_handler..", data) self._pong_handler() elif event == 'info': self.log.debug("_system_handler(): Distributing %s to _info_handler..", data) self._info_handler(data) elif event == 'error': self.log.debug("_system_handler(): Distributing %s to _error_handler..", data) self._error_handler(data) elif event in ('subscribed', 'unsubscribed', 'conf', 'auth', 'unauth'): self.log.debug("_system_handler(): Distributing %s to " "_response_handler..", data) self._response_handler(event, data, ts) else: self.log.error("Unhandled event: %s, data: %s", event, data) def _response_handler(self, event, data, ts): """Handles responses to (un)subscribe and conf commands. Passes data up to client. :param data: :param ts: :return: """ self.log.debug("_response_handler(): Passing %s to client..", data) self.pass_to_client(event, data, ts) def _info_handler(self, data): """ Handle INFO messages from the API and issues relevant actions. :param data: :param ts: """ info_message = {'20051': 'Stop/Restart websocket server ' '(please try to reconnect)', '20060': 'Refreshing data from the trading engine; ' 'please pause any acivity.', '20061': 'Done refreshing data from the trading engine.' ' Re-subscription advised.'} codes = {'20051': self.reconnect, '20060': self._pause, '20061': self._unpause} if 'version' in data: self.log.info("API version: %i", data['version']) return try: self.log.info(info_message[data['code']]) codes[data['code']]() except KeyError as e: self.log.exception(e) self.log.error("Unknown Info code %s!", data['code']) raise def _error_handler(self, data): """ Handle Error messages and log them accordingly. :param data: :param ts: """ errors = {10000: 'Unknown event', 10001: 'Generic error', 10008: 'Concurrency error', 10020: 'Request parameters error', 10050: 'Configuration setup failed', 10100: 'Failed authentication', 10111: 'Error in authentication request payload', 10112: 'Error in authentication request signature', 10113: 'Error in authentication request encryption', 10114: 'Error in authentication request nonce', 10200: 'Error in un-authentication request', 10300: 'Subscription Failed (generic)', 10301: 'Already Subscribed', 10302: 'Unknown channel', 10400: 'Subscription Failed (generic)', 10401: 'Not subscribed', 11000: 'Not ready, try again later', 20000: 'User is invalid!' } try: self.log.error(errors[data['code']]) except KeyError: self.log.error("Received unknown error Code in message %s! " "Reconnecting..", data) def _data_handler(self, data, ts): """Handles data messages by passing them up to the client. :param data: :param ts: :return: """ # Pass the data up to the Client self.log.debug("_data_handler(): Passing %s to client..", data) self.pass_to_client('data', data, ts) def _resubscribe(self, soft=False): """Resubscribes to all channels found in self.channel_configs. :param soft: if True, unsubscribes first. :return: None """ q_list = [] while True: try: identifier, q = self.channel_configs.popitem(last=True if soft else False) except KeyError: break q_list.append((identifier, q.copy())) if identifier == 'auth': self.send(**q, auth=True) continue if soft: q['event'] = 'unsubscribe' self.send(**q) # Resubscribe for soft start. if soft: for identifier, q in reversed(q_list): self.channel_configs[identifier] = q self.send(**q) else: for identifier, q in q_list: self.channel_configs[identifier] = q
# -*- coding: utf-8 -*- # DISCLAIMER # This code file is forked and adapted from https://github.com/tezignlab/RippleNet-TF2/blob/master/tools/load_data.py, which is under an MIT license. """ Utilities for data loading for RippleNet. """ # import libraries import os import numpy as np from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple # import custom code from src.util.logger import setup_logging from src.util.caching import create_cache, load_cache from src.config import FILENAME_RATINGS_FINAL_TXT, FILENAME_RATINGS_FINAL_NPY, FILENAME_KG_FINAL_TXT, FILENAME_KG_FINAL_NPY, FILENAME_TRAIN_RATINGS, FILENAME_USER_HISTORY_DICT from src.config import FILENAME_TEST_RATINGS, FILENAME_TEST_RATINGS_RANDOM, FILENAME_TEST_RATINGS_NO_TFIDF, FILENAME_TEST_RATINGS_NO_WORD2VEC, FILENAME_TEST_RATINGS_NO_TRANSFORMER class LoadData: def __init__(self, args): self.args = args self.logger = setup_logging(name=__file__, log_level='info') def load_data(self) -> Tuple[np.ndarray, np.ndarray, int, int, Dict[int, List[Tuple[int, int, int]]]]: """ Loads and returns the data needed in RippleNet. Returns: - :obj:`np.ndarray`: Training set of ratings. - :obj:`np.ndarray`: Test set of ratings. - :obj:`int`: Number of entities. - :obj:`int`: Number of relations. - :obj:`Dict[int, List[Tuple[int, int, int]]]`: Ripple sets of each user. """ train_data, test_data, user_history_dict = self.load_rating() n_entity, n_relation, kg = self.load_kg() ripple_set = self.get_ripple_set(kg, user_history_dict) return train_data, test_data, n_entity, n_relation, ripple_set def get_test_file(self, test_set_type: str) -> Path: """ Retrieves the filepath of a test set given its type. Args: test_set_type (:obj:`str`): The type of test set. Returns: :obj:`Path`: The filepath of the test set. """ test_set_type2file = { 'complete': FILENAME_TEST_RATINGS, 'random': FILENAME_TEST_RATINGS_RANDOM, 'no_tfidf_ratings': FILENAME_TEST_RATINGS_NO_TFIDF, 'no_word2vec_ratings': FILENAME_TEST_RATINGS_NO_WORD2VEC, 'no_transformer_ratings': FILENAME_TEST_RATINGS_NO_TRANSFORMER } return test_set_type2file[test_set_type] def load_rating(self) -> Tuple[np.ndarray, np.ndarray, Dict[int, List[int]]]: """ It loads the training and test data, and the user history, if they exist. Otherwise, it loads the user ratings, processes them to construct the training and test sets, and user history, and caches them to disk. Returns: - :obj:`np.ndarray`: Training set of ratings. - :obj:`np.ndarray`: Test set of ratings. - :obj:`Dict[int, List[int]]`: User history dictionary. """ self.logger.info('Reading rating file.') test_file = self.get_test_file(self.args.test_set) if os.path.exists(FILENAME_TRAIN_RATINGS) and os.path.exists(test_file) and os.path.exists(FILENAME_USER_HISTORY_DICT): self.logger.info('Loading training and test data.') train_data = np.load(FILENAME_TRAIN_RATINGS) test_data = np.load(test_file) user_history_dict = load_cache(FILENAME_USER_HISTORY_DICT) self.logger.info(f'Size training data: {train_data.shape}.') self.logger.info(f'Size test data: {test_data.shape}.') else: # Read rating file if os.path.exists(FILENAME_RATINGS_FINAL_NPY): rating_np = np.load(FILENAME_RATINGS_FINAL_NPY) else: rating_np = np.loadtxt(FILENAME_RATINGS_FINAL_TXT, dtype=np.int32) np.save(FILENAME_RATINGS_FINAL_NPY, rating_np) # Split dataset self.logger.info('Splitting dataset.') test_ratio = 0.2 n_ratings = rating_np.shape[0] test_indices = np.random.choice(n_ratings, size=int(n_ratings * test_ratio), replace=False) train_indices = set(range(n_ratings)) - set(test_indices) # Traverse training data, only keeping the users with positive ratings user_history_dict = dict() for i in train_indices: user = rating_np[i][0] item = rating_np[i][1] rating = rating_np[i][2] if rating == 1: if user not in user_history_dict: user_history_dict[user] = [] user_history_dict[user].append(item) train_indices = [i for i in train_indices if rating_np[i][0] in user_history_dict] test_indices = [i for i in test_indices if rating_np[i][0] in user_history_dict] train_data = rating_np[train_indices] test_data = rating_np[test_indices] self.logger.info(f'Size training data: {train_data.shape}.') self.logger.info(f'Size test data: {test_data.shape}.') # Cache test and train data np.save(FILENAME_TRAIN_RATINGS, train_data) np.save(FILENAME_TEST_RATINGS, test_data) create_cache(user_history_dict, FILENAME_USER_HISTORY_DICT) self.logger.info('Finished.\n') return train_data, test_data, user_history_dict def load_kg(self) -> Tuple[int, int, Dict[int, List[Tuple[int, int]]]]: """ Loads the knowledge graph if already cached as :obj:`np.ndarray`, otherwise it constructs it from the text file. Returns: - :obj:`int`: Number of entities. - :obj:`int`: Number of relations. - :obj:`Dict[int, List[Tuple[int, int]]]`: The knowledge graph as a dictionary which maps each head entity to a tuple of the form (tail, relation). """ self.logger.info('Reading KG file.') # Reading KG file if os.path.exists(FILENAME_KG_FINAL_NPY): kg_np = np.load(FILENAME_KG_FINAL_NPY) else: kg_np = np.loadtxt(FILENAME_KG_FINAL_TXT, dtype=np.int32) np.save(FILENAME_KG_FINAL_NPY, kg_np) n_entity = len(set(kg_np[:, 0]) | set(kg_np[:, 2])) n_relation = len(set(kg_np[:, 1])) self.logger.info('Constructing knowledge graph.') kg = defaultdict(list) for head, relation, tail in kg_np: kg[head].append((tail, relation)) self.logger.info('Finished.\n') return n_entity, n_relation, kg def get_ripple_set(self, kg: Dict[int, List[Tuple[int, int]]], user_history_dict: Dict[int, List[int]]) -> Dict[int, List[Tuple[int, int, int]]]: """ Creates the ripple set for each user. Args: kg (:obj:`Dict[int, List[Tuple[int, int]]]`): The knowledge graph as a dictionary which maps each head entity to a tuple of the form (tail, relation). user_history_dict (:obj:`Dict[int, List[int]]`): User history dictionary. Returns: :obj:`Dict[int, List[Tuple[int, int, int]]]`: Ripple sets of each user. """ self.logger.info('Constructing ripple set.') # user -> [(hop_0_heads, hop_0_relations, hop_0_tails), (hop_1_heads, hop_1_relations, hop_1_tails), ...] ripple_set = defaultdict(list) for user in user_history_dict: for h in range(self.args.n_hop): memories_h = [] memories_r = [] memories_t = [] if h == 0: tails_of_last_hop = user_history_dict[user] else: tails_of_last_hop = ripple_set[user][-1][2] for entity in tails_of_last_hop: for tail_and_relation in kg[entity]: memories_h.append(entity) memories_r.append(tail_and_relation[1]) memories_t.append(tail_and_relation[0]) """ If the current ripple set of the given user is empty, we simply copy the ripple set of the last hop here This won't happen for h = 0, because only the items that appear in the KG have been selected. """ if len(memories_h) == 0: ripple_set[user].append(ripple_set[user][-1]) else: # Sample a fixed-size 1-hop memory for each user replace = len(memories_h) < self.args.n_memory indices = np.random.choice(len(memories_h), size=self.args.n_memory, replace=replace) memories_h = [memories_h[i] for i in indices] memories_r = [memories_r[i] for i in indices] memories_t = [memories_t[i] for i in indices] ripple_set[user].append((memories_h, memories_r, memories_t)) self.logger.info('Finished.\n') return ripple_set
import csv import glob import pandas as pd files = glob.glob("data/*.txt") names = {} for file in files: with open(file) as csvfile: reader = csv.reader(csvfile, delimiter=',') for row in reader: name = row[0] sex = row[1] number = row[2] if name not in names.keys(): names[name] = {} names[name]['freq'] = number names[name]['sex'] = sex names[name]['count'] = len(name) else: names[name]['freq'] += number df = pd.DataFrame.from_dict(names, orient='index') with open("dict/names",'w') as f: for v in df[df['count']==5].index.values: f.write(v + '\n')
from typing import Optional from functools import partial import torch from torch.nn.modules.loss import _Loss from ._functional import focal_loss_with_logits from .constants import BINARY_MODE, MULTICLASS_MODE, MULTILABEL_MODE __all__ = ["FocalLoss"] class FocalLoss(_Loss): def __init__( self, mode: str, alpha: Optional[float] = None, gamma: Optional[float] = 2., ignore_index: Optional[int] = None, reduction: Optional[str] = "mean", normalized: bool = False, reduced_threshold: Optional[float] = None, ): """Compute Focal loss Args: mode: Loss mode 'binary', 'multiclass' or 'multilabel' alpha: Prior probability of having positive value in target. gamma: Power factor for dampening weight (focal strenght). ignore_index: If not None, targets may contain values to be ignored. Target values equal to ignore_index will be ignored from loss computation. normalized: Compute normalized focal loss (https://arxiv.org/pdf/1909.07829.pdf). reduced_threshold: Switch to reduced focal loss. Note, when using this mode you should use `reduction="sum"`. Shape - **y_pred** - torch.Tensor of shape (N, C, H, W) - **y_true** - torch.Tensor of shape (N, H, W) or (N, C, H, W) Reference https://github.com/BloodAxe/pytorch-toolbelt """ assert mode in {BINARY_MODE, MULTILABEL_MODE, MULTICLASS_MODE} super().__init__() self.mode = mode self.ignore_index = ignore_index self.focal_loss_fn = partial( focal_loss_with_logits, alpha=alpha, gamma=gamma, reduced_threshold=reduced_threshold, reduction=reduction, normalized=normalized, ) def forward(self, y_pred: torch.Tensor, y_true: torch.Tensor) -> torch.Tensor: if self.mode in {BINARY_MODE, MULTILABEL_MODE}: y_true = y_true.view(-1) y_pred = y_pred.view(-1) if self.ignore_index is not None: # Filter predictions with ignore label from loss computation not_ignored = y_true != self.ignore_index y_pred = y_pred[not_ignored] y_true = y_true[not_ignored] loss = self.focal_loss_fn(y_pred, y_true) elif self.mode == MULTICLASS_MODE: num_classes = y_pred.size(1) loss = 0 # Filter anchors with -1 label from loss computation if self.ignore_index is not None: not_ignored = y_true != self.ignore_index for cls in range(num_classes): cls_y_true = (y_true == cls).long() cls_y_pred = y_pred[:, cls, ...] if self.ignore_index is not None: cls_y_true = cls_y_true[not_ignored] cls_y_pred = cls_y_pred[not_ignored] loss += self.focal_loss_fn(cls_y_pred, cls_y_true) return loss
from typing import Generic, TypeVar CQ = TypeVar('CQ', covariant=True) class CommandQueryBase(Generic[CQ]): def __init__(self) -> CQ: pass
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import requests import sys import traceback from bs4 import BeautifulSoup as Soup parser = argparse.ArgumentParser( description='Get github repo from go import path.') parser.add_argument( 'go_dependency_list_file', nargs='?', default='dep.txt', help= 'File path of a golang dependency list file, one line has a dependency name. ' +'(default: %(default)s)', ) parser.add_argument( '-o', '--output', dest='output_file', nargs='?', default='repo.txt', help= 'Output file with one line per resolved github repo. Format: org/repo. (default: %(default)s)', ) parser.add_argument( '--manual-dep-repo-mapping', dest='manual_dep_repo_mapping_file', nargs='?', default='dep_repo.manual.csv', help= 'Optional dependency to repo mapping maintained manually for dependencies we cannot ' +'automatically resolve. Format: each line has dependency import name and its github repo ' +'separated by comma. Like, "upper.io/db.v3,upper/db". Note: github/upper/db is the repo. ' +'(default: %(default)s)' ) args = parser.parse_args() protocol = 'https://' godoc_base = 'godoc.org/' github_base = 'github.com/' gopkg_base = 'gopkg.in/' def github_link_to_repo(repo): ''' Removes extra sub folder in github url. ''' if len(repo.split('/')) > 2: print('repo {} has subfolder'.format(repo), file=sys.stderr) repo = '/'.join(repo.split('/')[:2]) assert len(repo.split( '/')) == 2, 'repo name should be org/repo, but is {}'.format(repo) return repo def get_github_repo(url): ''' Tries to resolve github repo from a github url. Returns org/repo format github repo string. ''' if url.startswith(protocol): url = url[len(protocol):] if not url.startswith(github_base): raise Exception('Package url is not github: {}'.format(url)) github_repo = url[len(github_base):] github_repo = github_link_to_repo(github_repo) if github_repo[-1] == '/': github_repo = github_repo[:-1] return github_repo def fetch_github_uri_from_godoc(url): ''' Tries to resolve github repo from godoc website. Implementation: Godoc is a standard way for a lot of golang libraries to host its documentation. Godoc page usually has a link on top left with github repo url. This function crawls godoc page for the library and finds the github url there. If the link there isn't a github url, it throws an exception. ''' full_url = protocol + godoc_base + url print('fetching godoc {}'.format(full_url), file=sys.stderr) response = requests.get(full_url) assert response.ok, 'it failed with {} {}'.format(response.status_code, response.reason) soup = Soup(response.text, features="html.parser") navs = soup.select('#x-projnav') if len(navs) != 1: raise Exception( '#x-projnav should occur exactly once, but {} found for {}'.format(len(navs), url)) nav = navs[0] package_name = nav.select_one('span').contents[0] assert package_name == url, 'fetched package name should be the same' link = nav.select_one('a').attrs.get('href') return get_github_repo(link) def fetch_gopkg_uri(url): ''' Tries to resolve github repo for gopkg libraries. Implementation: gopkg library page has a button with text 'Source code', its url is usually the corresponding github repo. Throws an exception if the url found is not github. ''' response = requests.get(protocol + url) assert response.ok, 'fetching {} failed with {} {}'.format( url, response.status_code, response.reason) soup = Soup(response.text, features="html.parser") def is_source_code_link(link): return link.getText().find('Source Code') >= 0 source_code_links = list(filter(is_source_code_link, soup.select('a'))) assert len( source_code_links) == 1, 'Expect exactly one source code link found' link = source_code_links[0].attrs.get('href') return get_github_repo(link) def get_github_repo_for_dep(dep): ''' Tries to resolve github repo by three ways: 1. fetch gopkg website 2. parse from github url 3. fetch godoc website ''' print('Fetching github uri for {}'.format(dep), file=sys.stderr) repo = None if dep.startswith(gopkg_base): print('Try fetching {} from gopkg'.format(dep), file=sys.stderr) repo = fetch_gopkg_uri(dep) elif dep.startswith(github_base): print('{} is already github'.format(dep), file=sys.stderr) repo = get_github_repo(dep) else: print('Try fetching {} repo from godoc'.format(dep), file=sys.stderr) repo = fetch_github_uri_from_godoc(dep) return repo def main(): with open(args.go_dependency_list_file, 'r') as dep_file, open(args.output_file, 'w') as output_file: mappings = {} try: with open(args.manual_dep_repo_mapping_file, 'r') as dep_repo_mapping_file: for line in dep_repo_mapping_file: mapping = line.strip().split(',') assert len(mapping) == 2 [dep, repo] = mapping mappings[dep] = repo except Exception: # pylint: disable=broad-except print('ignore manual_dep_repo_mapping_file', file=sys.stderr) deps = [line.strip() for line in dep_file] repo_seen = set() dep_succeeded = [] # Dependencies that we couldn't resolve their github repos. dep_failed = [] for dep in deps: try: # Get dep's repo from manually maintained mapping first. repo = mappings.get(dep) if repo is not None: print('repo of {} is already configured to {}'.format(dep, repo), file=sys.stderr) else: # Try to resolve if not found repo = get_github_repo_for_dep(dep) if repo in repo_seen: print('repo {} is seen more than once'.format(repo), file=sys.stderr) else: repo_seen.add(repo) print(repo, file=output_file) dep_succeeded.append(dep) except Exception as e: # pylint: disable=broad-except print('[failed]', e, file=sys.stderr) traceback.print_exc(file=sys.stderr) dep_failed.append(dep) print() print(( 'Successfully resolved github repo for {} dependencies and saved to {}. ' +'Failed to resolve {} dependencies.' ).format(len(dep_succeeded), args.output_file, len(dep_failed)), file=sys.stderr) if dep_failed: print('We failed to resolve the following dependencies:', file=sys.stderr) for dep in dep_failed: print(dep, file=sys.stderr) if __name__ == '__main__': main()
from django.contrib.sites.models import Site from django.db import models class Article(models.Model): sites = models.ManyToManyField(Site) headline = models.CharField(max_length=100) publications = models.ManyToManyField("model_package.Publication", null=True, blank=True,) class Meta: app_label = 'model_package'
''' @author: Xu Yan @file: ModelNet.py @time: 2021/3/19 15:51 ''' import os import numpy as np import warnings import pickle from tqdm import tqdm from torch.utils.data import Dataset warnings.filterwarnings('ignore') def pc_normalize(pc): centroid = np.mean(pc, axis=0) pc = pc - centroid m = np.max(np.sqrt(np.sum(pc**2, axis=1))) pc = pc / m return pc def farthest_point_sample(point, npoint): """ Input: xyz: pointcloud data, [N, D] npoint: number of samples Return: centroids: sampled pointcloud index, [npoint, D] """ N, D = point.shape xyz = point[:,:3] centroids = np.zeros((npoint,)) distance = np.ones((N,)) * 1e10 farthest = np.random.randint(0, N) for i in range(npoint): centroids[i] = farthest centroid = xyz[farthest, :] dist = np.sum((xyz - centroid) ** 2, -1) mask = dist < distance distance[mask] = dist[mask] farthest = np.argmax(distance, -1) point = point[centroids.astype(np.int32)] return point class ModelNetDataLoader(Dataset): def __init__(self, root, args, split='train', process_data=False): self.root = root self.npoints = args.num_point self.process_data = process_data self.uniform = args.use_uniform_sample self.use_normals = args.use_normals self.num_category = args.num_category if self.num_category == 10: self.catfile = os.path.join(self.root, 'modelnet10_shape_names.txt') else: self.catfile = os.path.join(self.root, 'modelnet40_shape_names.txt') self.cat = [line.rstrip() for line in open(self.catfile)] self.classes = dict(zip(self.cat, range(len(self.cat)))) shape_ids = {} if self.num_category == 10: shape_ids['train'] = [line.rstrip() for line in open(os.path.join(self.root, 'modelnet10_train.txt'))] shape_ids['test'] = [line.rstrip() for line in open(os.path.join(self.root, 'modelnet10_test.txt'))] else: shape_ids['train'] = [line.rstrip() for line in open(os.path.join(self.root, 'modelnet40_train.txt'))] shape_ids['test'] = [line.rstrip() for line in open(os.path.join(self.root, 'modelnet40_test.txt'))] assert (split == 'train' or split == 'test') shape_names = ['_'.join(x.split('_')[0:-1]) for x in shape_ids[split]] self.datapath = [(shape_names[i], os.path.join(self.root, shape_names[i], shape_ids[split][i]) + '.txt') for i in range(len(shape_ids[split]))] print('The size of %s data is %d' % (split, len(self.datapath))) if self.uniform: self.save_path = os.path.join(root, 'modelnet%d_%s_%dpts_fps.dat' % (self.num_category, split, self.npoints)) else: self.save_path = os.path.join(root, 'modelnet%d_%s_%dpts.dat' % (self.num_category, split, self.npoints)) if self.process_data: if not os.path.exists(self.save_path): print('Processing data %s (only running in the first time)...' % self.save_path) self.list_of_points = [None] * len(self.datapath) self.list_of_labels = [None] * len(self.datapath) for index in tqdm(range(len(self.datapath)), total=len(self.datapath)): fn = self.datapath[index] cls = self.classes[self.datapath[index][0]] cls = np.array([cls]).astype(np.int32) point_set = np.genfromtxt(fn[1], delimiter=',').astype(np.float32) if self.uniform: point_set = farthest_point_sample(point_set, self.npoints) else: point_set = point_set[0:self.npoints, :] self.list_of_points[index] = point_set self.list_of_labels[index] = cls with open(self.save_path, 'wb') as f: pickle.dump([self.list_of_points, self.list_of_labels], f) else: print('Load processed data from %s...' % self.save_path) with open(self.save_path, 'rb') as f: self.list_of_points, self.list_of_labels = pickle.load(f) def __len__(self): return len(self.datapath) def _get_item(self, index): if self.process_data: point_set, label = self.list_of_points[index], self.list_of_labels[index] else: fn = self.datapath[index] cls = self.classes[self.datapath[index][0]] label = np.array([cls]).astype(np.int32) point_set = np.loadtxt(fn[1], delimiter=',').astype(np.float32) if self.uniform: point_set = farthest_point_sample(point_set, self.npoints) else: point_set = point_set[0:self.npoints, :] point_set[:, 0:3] = pc_normalize(point_set[:, 0:3]) if not self.use_normals: point_set = point_set[:, 0:3] return point_set, label[0] def __getitem__(self, index): return self._get_item(index) if __name__ == '__main__': import torch data = ModelNetDataLoader('/data/modelnet40_normal_resampled/', split='train') DataLoader = torch.utils.data.DataLoader(data, batch_size=12, shuffle=True) for point, label in DataLoader: print(point.shape) print(label.shape)
from __future__ import division import numpy as np import matplotlib.pyplot as plt import gufunc_sampler as gs # Mandelbrot set rows = np.linspace(-1.25, 1.25, 1250) cols = np.linspace(-2, 0.5, 1250) mandel_set = gs.mandelbrot(cols + 1.j * rows[:, np.newaxis], 50) plt.subplot(121) plt.imshow(mandel_set, interpolation='nearest', cmap='hot') # Point in polygon points = np.random.rand(1000, 2) triangle = np.random.rand(5, 2) inside = gs.point_in_polygon(triangle[:, 0], triangle[:, 1], points[:, 0], points[:, 1]) points_in = points[inside] points_out = points[~inside] plt.subplot(122, aspect='equal') triangle = np.vstack((triangle, triangle[0])) plt.plot(triangle[:, 0], triangle[:, 1], 'k-') plt.plot(points_in[:, 0], points_in[:, 1], 'bx') plt.plot(points_out[:, 0], points_out[:, 1], 'rx')
import os.path from django.conf import settings from django.core.management.base import BaseCommand from sheerlike.indexer import index LOCATION = os.environ.get('SHEER_LOCATION', os.getcwd()) ELASTICSEARCH_HOSTS = settings.SHEER_ELASTICSEARCH_SERVER ELASTICSEARCH_INDEX = settings.SHEER_ELASTICSEARCH_INDEX class Command(BaseCommand): help = "Run the classic 'sheer' indexer" def add_arguments(self, parser): parser.add_argument('--reindex', '-r', action="store_true", help="Recreate the index and reindex all content.") parser.add_argument('--processors', '-p', nargs='*', help='Content processors to index.') parser.add_argument( '--elasticsearch', '-e', default=ELASTICSEARCH_HOSTS, help=("Elasticsearch host:port pairs. Separate hosts with commas. " "Default is localhost:9200. You can also set the " "SHEER_ELASTICSEARCH_HOSTS environment variable.")) parser.add_argument( '--index', '-i', default=ELASTICSEARCH_INDEX, help=("Elasticsearch index name. Default is 'content'. You can " "also set the SHEER_ELASTICSEARCH_INDEX environment " "variable.")) def handle(self, *args, **options): index(args, options)
""""A system check for testing integration of various libraries with mozetl. This sub-module will print out relevant version info. It will also read data from `main_summary` and print basic statistics to verify that the system is correctly set-up. """ import sys import click import logging from datetime import datetime, timedelta from pyspark.sql import SparkSession from mozetl.utils import ( format_as_submission_date, format_spark_path, stop_session_safely, ) logging.basicConfig(level=logging.DEBUG) @click.command() @click.option("--local/--no-local", default=False) @click.option( "--submission-date-s3", type=str, default=format_as_submission_date(datetime.now() - timedelta(2)), ) @click.option("--input-bucket", type=str, default="telemetry-parquet") @click.option("--input-prefix", type=str, default="main_summary/v4") @click.option("--output-bucket", type=str, default="telemetry-test-bucket") @click.option("--output-prefix", type=str, default="mozetl_system_check") def main( local, submission_date_s3, input_bucket, input_prefix, output_bucket, output_prefix ): # print argument information for k, v in locals().items(): print("{}: {}".format(k, v)) print("Python version: {}".format(sys.version_info)) spark = SparkSession.builder.getOrCreate() print("Spark version: {}".format(spark.version)) # run a basic count over a sample of `main_summary` from 2 days ago if not local: ds_nodash = submission_date_s3 input_path = format_spark_path(input_bucket, input_prefix) output_path = format_spark_path(output_bucket, output_prefix) print( "Reading data for {ds_nodash} from {input_path} and writing to {output_path}".format( ds_nodash=ds_nodash, input_path=input_path, output_path=output_path ) ) path = "{}/submission_date_s3={}/sample_id={}".format(input_path, ds_nodash, 1) subset = spark.read.parquet(path) print("Saw {} documents".format(subset.count())) summary = subset.select( "memory_mb", "cpu_cores", "subsession_length" ).describe() summary.show() summary.write.parquet( output_path + "/submission_date_s3={}/".format(ds_nodash), mode="overwrite" ) stop_session_safely(spark) print("Done!")
import bw_projects def test_version(): assert bw_projects.__version__
DEBUG=on SECRET_KEY=CHANGE_ME!!!! ALLOWED_HOSTS=, DATABASE_URL=postgres://{{cookiecutter.db_user}}:{{cookiecutter.db_pwd}}@db/{{cookiecutter.db_name}} EMAIL_HOST_USER={{cookiecutter.author_email}} EMAIL_PWD=email_pwd EMAIL_ADMIN={{cookiecutter.author_email}}
import datetime # from sqlalchemy import Column, Integer, String import hashlib from server.extensions import Base, argon2, bcrypt class User(Base): __table__ = Base.metadata.tables["users"] __table_args__ = {"autoload": True} # Attribute names to help out with functions # id = Column(Integer, primary_key=True, unique=True) # ip_address = Column(String(64)) # username = Column(String(64), index=True, unique=True) # email = Column(String(120), index=True, unique=True) # password = Column(String(240)) # activation_selector = Column(String(120))#Unique # activation_code = Column(String(120)) # forgotten_password_selector = Column(String(120))#Unique # forgotten_password_code = Column(String(120)) # forgotten_password_time = Column(String(120)) # remember_selector = Column(String(120))#Unique # remember_code = Column(String(120)) # created_on = Column(String(120)) # last_login = Column(String(120)) # active = Column(String(120)) # first_name = Column(String(120)) # last_name = Column(String(120)) # company = Column(String(120)) # phone = Column(String(120)) # country = Column(String(120)) # image = Column(String(120)) # bio = Column(String(240)) # core = Column(String(240)) # external_source = Column(String(120)) # external_id = Column(String(120)) # session_hash = Column(String(120))# session hash is API key # password_hash = Column(String(120)) def set_password(self, password): self.password = argon2.generate_password_hash(password) def check_password(self, passwd): """ Check if the passwordhash is in Argon2 or Bcrypt(old) format Resets the password hash to argon2 format if stored in bcrypt Returns value for login route """ try: if bcrypt.check_password_hash(self.password, passwd): bpass = True except ValueError as error: print(error) bpass = False if argon2.check_password_hash(self.password, passwd): return True elif not argon2.check_password_hash(self.password, passwd) and not bpass: return False elif not argon2.check_password_hash(self.password, passwd) and bpass: self.set_password(passwd) return True def update_bio(self, new_bio): self.bio = new_bio def update_email(self, email): self.email = email def update_first_name(self, first_name): self.first_name = first_name def update_last_name(self, last_name): self.last_name = last_name def update_forgotten_code(self, code): self.forgotten_password_code = code def update_activation_code(self, code): self.activation_code = code def update_activation(self): self.active = "1" print("user activated successfully") def update_forgotten_time(self, time): self.forgotten_password_time = time def set_session_hash(self): timestamp = datetime.datetime.now() timestamp1 = timestamp.strftime("%Y-%m-%d %H:%M:%S") md5_digest = hashlib.md5(timestamp1.encode()).hexdigest() self.session_hash = md5_digest def update_image_address(self, path): self.image = path def __repr__(self): return "<User {}>".format(self.username) class UserGroups(Base): __table__ = Base.metadata.tables["users_groups"] __table_args__ = {"autoload": True} def set_group(self): self.group_id = 2 print('group updated') def __repr__(self): return "<User {}>".format(self.username)
# -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2021 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from django.test import TestCase from gcloud import err_code from gcloud.taskflow3.models import TaskFlowInstance from gcloud.tests.mock import * # noqa from gcloud.tests.mock_settings import * # noqa class GetNodeDetailTestCase(TestCase): def test_node_does_not_exist(self): taskflow = TaskFlowInstance() taskflow.id = 1 taskflow.has_node = MagicMock(return_value=False) detail = taskflow.get_node_detail(node_id="node_id", username="username") self.assertFalse(detail["result"]) self.assertEqual(detail["code"], err_code.REQUEST_PARAM_INVALID.code) def test_get_node_data_err(self): taskflow = TaskFlowInstance() taskflow.id = 1 taskflow.engine_ver = 2 taskflow.has_node = MagicMock(return_value=True) dispatcher = MagicMock() get_node_data_return = {"result": False} dispatcher.get_node_data = MagicMock(return_value=get_node_data_return) with patch(TASKFLOW_MODEL_NODE_CMD_DISPATCHER, MagicMock(return_value=dispatcher)): detail = taskflow.get_node_detail(node_id="node_id", username="username", project_id="project_id") self.assertEqual(detail, get_node_data_return) def test_get_node_detail_err(self): taskflow = TaskFlowInstance() taskflow.id = 1 taskflow.engine_ver = 2 taskflow.has_node = MagicMock(return_value=True) dispatcher = MagicMock() get_node_data_return = {"result": True, "data": {}} get_node_detail_return = {"result": False} dispatcher.get_node_data = MagicMock(return_value=get_node_data_return) dispatcher.get_node_detail = MagicMock(return_value=get_node_detail_return) with patch(TASKFLOW_MODEL_NODE_CMD_DISPATCHER, MagicMock(return_value=dispatcher)): detail = taskflow.get_node_detail(node_id="node_id", username="username", project_id="project_id") self.assertEqual(detail, get_node_detail_return) def test_include_data_is_false(self): taskflow = TaskFlowInstance() taskflow.id = 1 taskflow.engine_ver = 2 taskflow.has_node = MagicMock(return_value=True) dispatcher = MagicMock() get_node_data_return = {"result": True, "data": {}} get_node_detail_return = {"result": True, "data": {}} dispatcher.get_node_data = MagicMock(return_value=get_node_data_return) dispatcher.get_node_detail = MagicMock(return_value=get_node_detail_return) dispatcher_init = MagicMock(return_value=dispatcher) node_id = "node_id" username = "username" component_code = "component_code" subprocess_stack = ["1"] loop = 1 include_data = False with patch(TASKFLOW_MODEL_NODE_CMD_DISPATCHER, dispatcher_init): detail = taskflow.get_node_detail( node_id=node_id, username=username, component_code=component_code, subprocess_stack=subprocess_stack, loop=loop, include_data=include_data, ) dispatcher_init.assert_called_once_with(engine_ver=taskflow.engine_ver, node_id=node_id, taskflow_id=1) dispatcher.get_node_data.assert_not_called() dispatcher.get_node_detail.assert_called_once_with( username=username, component_code=component_code, subprocess_stack=subprocess_stack, pipeline_instance=taskflow.pipeline_instance, loop=loop, ) self.assertEqual(detail, {"code": 0, "data": {}, "message": "", "result": True}) def test_success(self): taskflow = TaskFlowInstance() taskflow.id = 1 taskflow.engine_ver = 2 taskflow.has_node = MagicMock(return_value=True) dispatcher = MagicMock() get_node_data_return = {"result": True, "data": {"data": "data"}} get_node_detail_return = {"result": True, "data": {"detail": "detail"}} dispatcher.get_node_data = MagicMock(return_value=get_node_data_return) dispatcher.get_node_detail = MagicMock(return_value=get_node_detail_return) dispatcher_init = MagicMock(return_value=dispatcher) node_id = "node_id" username = "username" component_code = "component_code" subprocess_stack = ["1"] loop = 1 include_data = True with patch(TASKFLOW_MODEL_NODE_CMD_DISPATCHER, dispatcher_init): detail = taskflow.get_node_detail( node_id=node_id, username=username, component_code=component_code, subprocess_stack=subprocess_stack, loop=loop, include_data=include_data, project_id="project_id", ) dispatcher_init.assert_called_once_with(engine_ver=taskflow.engine_ver, node_id=node_id, taskflow_id=1) dispatcher.get_node_data.assert_called_once_with( username=username, component_code=component_code, subprocess_stack=subprocess_stack, pipeline_instance=taskflow.pipeline_instance, loop=loop, project_id="project_id", ) dispatcher.get_node_detail.assert_called_once_with( username=username, component_code=component_code, subprocess_stack=subprocess_stack, pipeline_instance=taskflow.pipeline_instance, loop=loop, ) self.assertEqual( detail, {"code": 0, "data": {"data": "data", "detail": "detail"}, "message": "", "result": True} )
import vlc instance = vlc.Instance() class VLCPlayer: def __init__(self): self.player = instance.media_player_new() self.player.audio_output_set("Scaletempo") self.length = 0 def set_position(self,position) : self.player.set_position(position / self.get_length()) def get_position(self) : return self.player.get_position() def get_length(self) : self.length = self.player.get_length() / 1000 return self.length def is_playing(self) : return self.player.get_state() == vlc.State.Playing; def set_tempo(self,tempo) : self.player.set_rate(tempo); def get_tempo(self) : return self.player.get_rate() def play(self) : self.player.play() def stop(self) : self.player.stop() def pause(self) : self.player.pause() def load_song(self,filename) : media = instance.media_new(filename) self.player.set_media(media)
import torch from torch import nn from d2l import torch as d2l BATCH_SIZE, LR, NUM_EPOCHS = 256, 0.1, 10 ACTIVATE_FUNCS = [nn.ReLU(), nn.Sigmoid(), nn.Tanh()] def init_weights(m): if type(m) == nn.Linear: nn.init.normal_(m.weight, std=0.01) if __name__ == "__main__": for i in range(0, 3): net = nn.Sequential( nn.Flatten(), nn.Linear(784, 256), ACTIVATE_FUNCS[i], nn.Linear(256, 10), ) net.apply(init_weights) loss = nn.CrossEntropyLoss() trainer = torch.optim.SGD(net.parameters(), lr=LR) train_iter, test_iter = d2l.load_data_fashion_mnist(BATCH_SIZE) d2l.train_ch3(net, train_iter, test_iter, loss, NUM_EPOCHS, trainer) print("Train Accuracy", d2l.evaluate_accuracy(net, train_iter)) print("Test Accuracy", d2l.evaluate_accuracy(net, test_iter))
import asyncio import json import random import subprocess import discord import discord.ext import requests from discord.ext import commands import os from botlibrary.utils import get_variable from botlibrary import constants # Wichs Codierung # ä=ü # ö=ö # assign constant variables constants.assignVariables() VERSION = constants.VERSION bot_prefix = constants.bot_prefix client = commands.Bot(command_prefix=bot_prefix, intents=discord.Intents.all()) def tokenchecker(): riotapi = constants.lol_token base_riot_url = "https://euw1.api.riotgames.com/lol/summoner/v4/summoners/by-name/DCGALAXY?api_key=" rioturl = base_riot_url + riotapi response = requests.get(rioturl) if response.status_code == 200: pass else: print("Der Riot-API Key hat nicht funktioniert :((") print( "Bitte checke ob der Key in der config.json richtig gesetzt ist und schau auf " "https://developer.riotgames.com/api-status/ nach ob es nicht vllt an Riot selber liegt") riotnotworkingexe = input("Willst du trotzdem starten? (j/n): ") if riotnotworkingexe == "j": pass else: raise Exception("Der Riot-API Key hat nicht funktioniert.") osuapi = constants.osu_token base_osu_url = "https://osu.ppy.sh/api/get_user_best?u=Aftersh0ock&k=" osuurl = base_osu_url + osuapi osuresponse = requests.get(osuurl) if osuresponse.status_code == 200: pass else: print("Der Osu-API Key hat nicht funktioniert :((") print( "Bitte checke ob der Key in der config.json richtig gesetzt ist und schau auf https://status.ppy.sh nach ob es nicht vllt an Osu selber liegt") osunotworkingexe = input("Willst du trotzdem starten? (j/n): ") if osunotworkingexe == "j": pass else: raise Exception("Der Osu-API Key hat nicht funktioniert.") token = constants.bot_token headers = { "Authorization": "Bot " + token } response = requests.get('https://discordapp.com/api/v8/auth/login', headers=headers) if response.status_code == 200: pass else: raise Exception("Der Discord Bot Token funktioniert nicht!") ipdata = constants.ipdata_token baseipurl = "https://api.ipdata.co/8.8.8.8" ipurl = baseipurl + "?api-key=" + ipdata ipresponse = requests.get(ipurl) if ipresponse.status_code == 200: pass else: print("Der IPData-API Key hat nicht funktioniert :((") print( "Bitte checke ob der Key in der config.json richtig gesetzt ist und schau auf https://status.ipdata.co nach ob es nicht vllt an Osu selber liegt") ipdatanotworkingexe = input("Willst du trotzdem starten? (j/n): ") if ipdatanotworkingexe == "j": pass else: raise Exception("Der IPData Key hat nicht funktioniert.") tokenchecker() @client.event async def on_ready(): print("Yess der bot läuft :)".format(client)) print("Du hast derzeit Release " + str(VERSION) + " installiert") print("Du bist eingeloggt als {0.user} auf discord.py Version {1}".format(client, discord.__version__)) if os.path.exists("config/mysql.json"): print("MySQL-Logging ist AKTIVIERT") else: print("MySQL-Logging ist DEAKTIVIERT") print("Der Bot ist zurzeit auf folgenden " + str(len(client.guilds)) + " Servern:") for guild in client.guilds: print("- " + str(guild.name)) client.loop.create_task(status_task()) async def status_task(): while True: await client.change_presence(activity=discord.Game("https://git.io/antonsbot"), status=discord.Status.online) await asyncio.sleep(60) await client.change_presence( activity=discord.Game(bot_prefix + "corona auf " + str(len(client.guilds)) + " Servern")) await asyncio.sleep(60) await client.change_presence(activity=discord.Game("ein heißes Spiel mit der Stiefschwester")) await asyncio.sleep(5) await client.change_presence( activity=discord.Activity(type=discord.ActivityType.watching, name="auf deine Nachrichten")) await asyncio.sleep(60) """ ############################################################################################################################################################## Ole rewrite paradise ############################################################################################################################################################## """ def owner_only(func): async def wrapper(self, *args, **kwargs): ctx = get_variable('ctx') info = await client.application_info() if ctx.author.id == info.owner.id: return await func(self, *args, **kwargs) else: await ctx.channel.send("Error, only the bot owner can use this command!") return wrapper @client.command(name="reload") @owner_only async def reload_cog(ctx, cogName): try: await unload_cog(ctx, cogName) await load_cog(ctx, cogName) except Exception as e: await ctx.channel.send(f"Während dem versuch die Erweiterung {cogName} neu zu laden ist etwas schiefgelaufen!") @client.command(name="unload") @owner_only async def unload_cog(ctx, cogName): try: client.unload_extension(f"cogs.{cogName}") await ctx.channel.send(f"Erfolgreich erweiterung {cogName} entladen!") except Exception as e: await ctx.channel.send(f"Fehler, entweder ist die erweiterung schong entladen, oder sie wurde nicht gefunden!") @client.command(name="load") @owner_only async def load_cog(ctx, cogName): try: client.load_extension(f"cogs.{cogName}") await ctx.channel.send(f"Erfolgreich erweiterung {cogName} geladen!") except Exception as e: await ctx.channel.send(f"Fehler, entweder ist die erweiterung schon geladen, oder sie wurde nicht gefunden.") with open('config/config.json', 'r') as f: json_stuff = json.load(f) token = json_stuff["token"] # load cogs for filename in os.listdir("./cogs"): if filename.endswith(".py"): client.load_extension(f"cogs.{filename[:-3]}") # run bot client.run(token)
import pika import sys connection = pika.BlockingConnection( pika.ConnectionParameters(host='localhost')) channel = connection.channel() channel.queue_declare(queue='task_queue', durable=True) message = ' '.join(sys.argv[1:]) or "Hello World!" channel.basic_publish( exchange='', routing_key='task_queue', body=message, properties=pika.BasicProperties( delivery_mode=2, # make message persistent )) print(" [x] Sent %r" % message) connection.close()
from islelib import __version__ def test_example(example_fixture: int) -> None: assert __version__ is not False
from paz.core import Processor from paz.core import SequentialProcessor import numpy as np class ProcessorA(Processor): def __init__(self): super(ProcessorA, self).__init__() def call(self, image, boxes): boxes = boxes - 1.0 return image, boxes class ProcessorB(Processor): def __init__(self): super(ProcessorB, self).__init__() def call(self, image, boxes): boxes = boxes - 2.0 return image, boxes class ProcessorC(Processor): def __init__(self, probability=0.5): super(ProcessorC, self).__init__() def call(self, image): return image / 255.0 class TransformA(SequentialProcessor): def __init__(self): super(TransformA, self).__init__() self.add(ProcessorC()) class TransformB(SequentialProcessor): def __init__(self): super(TransformB, self).__init__() self.add(ProcessorA()) self.add(ProcessorB()) self.add(ProcessorB()) class TransformC(SequentialProcessor): def __init__(self): super(TransformB, self).__init__() self.add(ProcessorA()) def test_arg_in_sequential_processor_input(): transformA = TransformA() values = transformA(255.0) assert np.isclose(values == 1.0) def test_kwargs_in_sequential_processor_input(): transformB = TransformB() values = transformB(image=1.0, boxes=2.0) assert np.allclose([1.0, -3.0], values) def test_kwargs_invariance_in_sequential_processor_input(): transformB = TransformB() values = transformB(boxes=2.0, image=1.0) assert np.allclose([1.0, -3.0], values) def test_flipped_kwargs_in_sequential_processor_input(): transformB = TransformB() values = transformB(boxes=1.0, image=2.0) assert np.allclose([2.0, -4.0], values)
# Model architecture analyzer import os import logging import logging.handlers as handlers import json import numpy as np import tensorflow as tf physical_devices = tf.config.list_physical_devices('GPU') tf.config.experimental.set_memory_growth(physical_devices[0], enable=True) tf.keras.backend.set_floatx('float32') from tensorflow.keras import layers from tensorflow.keras.experimental import PeepholeLSTMCell from tensorflow.keras.layers import TimeDistributed from tensorflow.keras.layers import RepeatVector from tensorflow.keras import regularizers from tensorflow.keras import optimizers from tensorflow.keras import losses, models from tensorflow.keras import metrics from tensorflow.keras import callbacks as cb from tensorflow.keras import backend as kb from sklearn.metrics import mean_squared_error from tensorflow.keras.utils import plot_model, model_to_dot # open local settings with open('./settings.json') as local_json_file: local_submodule_settings = json.loads(local_json_file.read()) local_json_file.close() # log setup current_script_name = os.path.basename(__file__).split('.')[0] log_path_filename = ''.join([local_submodule_settings['log_path'], current_script_name, '.log']) logging.basicConfig(filename=log_path_filename, level=logging.DEBUG, format='%(asctime)s %(levelname)s %(name)s %(message)s') logger = logging.getLogger(__name__) logHandler = handlers.RotatingFileHandler(log_path_filename, maxBytes=10485760, backupCount=5) logger.addHandler(logHandler) class model_structure: def analize(self, local_model_name, local_settings): try: # loading model (h5 format) print('trying to open model file (assuming h5 format)') local_model = models.load_model(''.join([local_settings['models_path'], local_model_name])) # saving architecture in JSON format local_model_json = local_model.to_json() with open(''.join([local_settings['models_path'], local_model_name, '_analyzed_.json']), 'w') as json_file: json_file.write(local_model_json) json_file.close() # changing for subclassing to functional model local_model_json = json.loads(local_model_json) print(type(local_model_json)) local_batch_size = None local_time_step_days = local_model_json['config']['build_input_shape'][1] local_features = local_model_json['config']['build_input_shape'][2] input_layer = layers.Input(batch_shape=(local_batch_size, local_time_step_days, local_features)) prev_layer = input_layer for layer in local_model.layers: prev_layer = layer(prev_layer) functional_model = models.Model([input_layer], [prev_layer]) # plotting (exporting to png) the model plot_path = ''.join([local_settings['models_path'], local_model_name, '_model.png']) # model_to_dot(functional_model, show_shapes=True, show_layer_names=True, rankdir='TB', # expand_nested=True, dpi=96, subgraph=True) plot_model(functional_model, to_file=plot_path, show_shapes=True, show_layer_names=True, rankdir='TB', expand_nested=True, dpi=216) plot_model(functional_model, to_file=''.join([plot_path, '.pdf']), show_shapes=True, show_layer_names=True, rankdir='TB', expand_nested=True) except Exception as e1: print('Error reading or saving model') print(e1) return False return True
# system imports import os, json basedir = os.path.abspath(os.path.dirname(__file__)) class Config: """ Class used to hold configurations that are used in both website and admin applications """ MONGO_HOST = "localhost" MONGO_DBNAME = "panoptes" THREADS_PER_PAGE = 8 mailcfg = json.load(open('mailcfg.json')) MAIL_SERVER = mailcfg['MAIL_SERVER'] MAIL_PORT = mailcfg['MAIL_PORT'] MAIL_USE_TLS = mailcfg['MAIL_USE_TLS'] MAIL_USERNAME = mailcfg['MAIL_USERNAME'] MAIL_PASSWORD = mailcfg['MAIL_PASSWORD'] MAIL_ADDRESS = mailcfg['MAIL_ADDRESS'] PERMISSIONS = {'admin':3, 'manager':2, 'user':1} SERVICE_TYPES = ["mongo","redis"] SERVICES = [('/services/db/'+x,'services',x.title()) for x in SERVICE_TYPES] SERVICES += [('/services/setari/lista','services','Settings')] MENU = [('services.home','hardware','Hardware',''),('services.home','services','Software services',SERVICES),('services.home','hardware','App','')] @staticmethod def init_app(app): pass class DevConfig(Config): """ Class used to hold admin-specific configurations """ SECRET_KEY = 'hardtoguesstring' DEBUG = True ADMINS = json.load(open('admins.json')) CSRF_ENABLED = False CSRF_SESSION_KEY = "somethingimpossibletoguess" class AdminConfig(Config): """ Class used to hold admin-specific configurations """ SECRET_KEY = 'hardtoguesstring' DEBUG = False ADMINS = json.load(open('admins.json')) CSRF_ENABLED = True CSRF_SESSION_KEY = "somethingimpossibletoguess" config = { 'dev': DevConfig, 'admin':AdminConfig }
''' Define functions for the detuning of an atomic system ''' from LASED.state import * from LASED.constants import * def delta(e, g): """Detunings between substates. Parameters: e (State): State object g (State): State object Returns: float: Difference in angular frequency of states (Grad/s). """ return e.w - g.w def angularFreq(wavelength): """Calculates the angular frequency in Grad/s from a given wavelength. Parameters: wavelength (float): A wavelength in nm Returns: float: The angular frequency in Grad/s """ return 2*PI*C/wavelength*1e-9 def dopplerDelta(e, g, w_q, lambda_q, v_z): """ The detuning between excited and ground states. Accounts for a fixed motion of the atoms. Used between excited and ground states. Parameters: e (State): State object for excited state. g (State): State object for ground state. w_q (float): Angular frequency of exciting laser in rad/s. lambda_q (float): Wavelength of exciting laser in m. v_z (float): Velocity component of atoms in direction of laser in m/s. Returns: float: The detuning between ground and excited states including the doppler detuning due to a given atomic velocity. """ return w_q - v_z/lambda_q - e.w + g.w
import sys, copy from itertools import * from StringIO import StringIO import benchbase from benchbase import with_attributes, with_text, onlylib, serialized ############################################################ # Benchmarks ############################################################ class XSLTBenchMark(benchbase.TreeBenchMark): @onlylib('lxe') def bench_xslt_extensions_old(self, root): tree = self.etree.XML("""\ <xsl:stylesheet version="1.0" xmlns:l="test" xmlns:testns="testns" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> <l:data>TEST</l:data> <xsl:template match="/"> <l:result> <xsl:for-each select="*/*"> <xsl:copy-of select="testns:child(.)"/> </xsl:for-each> </l:result> </xsl:template> </xsl:stylesheet> """) def return_child(_, elements): return elements[0][0] extensions = {('testns', 'child') : return_child} transform = self.etree.XSLT(tree, extensions) for i in range(10): transform(root) @onlylib('lxe') def bench_xslt_document(self, root): transform = self.etree.XSLT(self.etree.XML("""\ <xsl:stylesheet version="1.0" xmlns:l="test" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"> <l:data>TEST</l:data> <xsl:template match="/"> <l:result> <xsl:for-each select="*/*"> <l:test><xsl:copy-of select="document('')//l:data/text()"/></l:test> </xsl:for-each> </l:result> </xsl:template> </xsl:stylesheet> """)) transform(root) if __name__ == '__main__': benchbase.main(XSLTBenchMark)
''' Created on 08-10-2012 @author: Jacek Przemieniecki ''' from . import errors class Database(object): def get_atom_valency(self, symbol): return valency[symbol] def get_q_r(self, symbol): grp_id = str_to_id[symbol][0] return q_r_data[grp_id] def get_parameter(self, symbol1, symbol2): if symbol1 == symbol2: return 0.0 grp1 = str_to_id[symbol1][1] - 1 # Adjust for list indexing starting at 0 grp2 = str_to_id[symbol2][1] - 1 param = params[grp1][grp2] if param is None: raise errors.ValueNotFound() else: return param def iterate_strings(self): for key in str_to_id: yield key def __init__(self): pass valency = {"C" : 4, "N" : 3, "O" : 2, "S" : 2, "Si" : 4, "Cl" : 1, "Br" : 1, "I" : 1, "F" : 1} ### Data from http://www.aim.env.uea.ac.uk/aim/info/UNIFACgroups.html params = [[0.0, 86.02, 61.13, 76.5, 986.5, 697.2, 1318.0, 1333.0, 476.4, 677.0, 232.1, 507.0, 251.5, 391.5, 255.7, 206.6, 920.7, 287.77, 597.0, 663.5, 35.93, 53.76, 24.9, 104.3, 11.44, 661.5, 543.0, 153.6, 184.4, 354.55, 3025.0, 335.8, 479.5, 298.9, 526.5, 689.0, -4.189, 125.8, 485.3, -2.859, 387.1, -450.4, 252.7, 220.3, -5.869, 390.9, 553.3, 187.0, 216.1, 92.99, None, 808.59, 408.3, 718.01, None, 153.72, ], #1 [-35.36, 0.0, 38.81, 74.15, 524.1, 787.6, 270.6, 526.1, 182.6, 448.8, 37.85, 333.5, 214.5, 240.9, 163.9, 61.11, 749.3, 280.5, 336.9, 318.9, -36.87, 58.55, -13.99, -109.7, 100.1, 357.5, None, 76.302, None, 262.9, None, None, 183.8, 31.14, 179.0, -52.87, -66.46, 359.3, -70.45, 449.4, 48.33, None, None, 86.46, None, 200.2, 268.1, -617.0, 62.56, None, None, 200.94, 219.9, -677.25, None, None, ], #2 [-11.12, 3.446, 0.0, 167.0, 636.1, 637.35, 903.8, 1329.0, 25.77, 347.3, 5.994, 287.1, 32.14, 161.7, 122.8, 90.49, 648.2, -4.449, 212.5, 537.4, -18.81, -144.4, -231.9, 3.0, 187.0, 168.0, 194.9, 52.07, -10.43, -64.69, 210.4, 113.3, 261.3, 154.26, 169.9, 383.9, -259.1, 389.3, 245.6, 22.67, 103.5, -432.3, 238.9, 30.04, -88.11, None, 333.3, None, -59.58, -39.16, None, 360.82, 171.49, 272.33, 22.06, 174.35, ], #3 [-69.7, -113.6, -146.8, 0.0, 803.2, 603.25, 5695.0, 884.9, -52.1, 586.6, 5688.0, 197.8, 213.1, 19.02, -49.29, 23.5, 664.2, 52.8, 6096.0, 872.3, -114.1, -111.0, -80.25, -141.3, -211.0, 3629.0, 4448.0, -9.451, 393.6, 48.49, 4975.0, 259.0, 210.0, -152.55, 4284.0, -119.2, -282.5, 101.4, 5629.0, -245.39, 69.26, 683.3, 355.5, 46.38, None, None, 421.9, None, -203.6, 184.9, None, 233.51, -184.68, 9.63, 795.38, -280.9, ], #4 [156.4, 457.0, 89.6, 25.82, 0.0, -137.1, 353.5, -259.7, 84.0, -203.6, 101.1, 267.8, 28.06, 83.02, 42.7, -323.0, -52.39, 170.0, 6.712, 199.0, 75.62, 65.28, -98.12, 143.1, 123.5, 256.5, 157.1, 488.9, 147.5, -120.5, -318.9, 313.5, 202.1, 727.8, -202.1, 74.27, 225.8, 44.78, -143.9, None, 190.3, -817.7, 202.7, -504.2, 72.96, -382.7, -248.3, None, 104.7, 57.65, None, 215.81, 6.39, None, None, 147.97, ], #5 [16.51, -12.52, -50.0, -44.5, 249.1, 0.0, -181.0, -101.7, 23.39, 306.4, -10.72, 179.7, -128.6, 359.3, -20.98, 53.9, 489.7, 580.5, 53.28, -202.0, -38.32, -102.5, -139.4, -44.76, -28.25, 75.14, 457.88, -31.09, 17.5, -61.76, -119.2, 212.1, 106.3, -119.1, -399.3, -5.224, 33.47, -48.25, -172.4, None, 165.7, None, None, None, -52.1, None, None, 37.63, -59.4, -46.01, None, 150.02, 98.2, None, None, None, ], #6 [300.0, 496.1, 362.3, 377.6, -229.1, 289.6, 0.0, 324.5, -195.4, -116.0, 72.87, 233.87, 540.5, 48.89, 168.0, 304.0, 459.0, 459.0, 112.6, -14.09, 325.4, 370.4, 353.7, 497.5, 133.9, 220.6, 399.5, 887.1, None, 188.0, 12.72, None, 777.1, None, -139.0, 160.8, None, None, 319.0, None, -197.5, -363.8, None, -452.2, None, 835.6, 139.6, None, 407.9, None, None, -255.63, -144.77, None, None, 580.28, ], #7 [275.8, 217.5, 25.34, 244.2, -451.6, -265.2, -601.8, 0.0, -356.1, -271.1, -449.4, -32.52, -162.9, -832.97, None, None, -305.5, -305.5, None, 408.9, None, 517.27, None, 1827.0, 6915.0, None, -413.48, 8484.0, None, None, -687.1, None, None, None, None, None, None, None, None, None, -494.2, None, None, -659.0, None, None, None, None, None, 1005.0, None, None, None, None, None, None, ], #8 [26.76, 42.92, 140.1, 365.8, 164.5, 108.7, 472.5, -133.1, 0.0, -37.36, -213.7, -190.4, -103.6, None, -174.2, -169.0, 6201.0, 7.341, 481.7, 669.4, -191.7, -130.3, -354.6, -39.2, -119.8, 137.5, 548.5, 216.1, -46.28, -163.7, 71.46, 53.59, 245.2, -246.6, -44.58, -63.5, -34.57, None, -61.7, None, -18.8, -588.9, None, None, None, None, 37.54, None, None, -162.6, None, None, -288.94, 91.01, None, 179.74, ], #9 [505.7, 56.3, 23.39, 106.0, 529.0, -340.2, 480.8, -155.6, 128.0, 0.0, -110.3, 766.0, 304.1, None, None, None, None, None, -106.4, 497.5, 751.9, 67.52, -483.7, None, None, None, None, None, None, None, None, 117.0, None, 2.21, None, -339.2, 172.4, None, -268.8, None, -275.5, None, None, None, None, None, None, None, None, None, None, None, 79.71, None, None, None, ], #10 [114.8, 132.1, 85.84, -170.0, 245.4, 249.63, 200.8, -36.72, 372.2, 185.1, 0.0, -241.8, -235.7, None, -73.5, -196.7, 475.5, -0.13, 494.6, 660.2, -34.74, 108.9, -209.7, 54.57, 442.4, -81.13, None, 183.0, None, 202.3, -101.7, 148.3, 18.88, 71.48, 52.08, -28.61, -275.2, None, 85.33, None, 560.2, None, None, None, None, None, 151.8, None, None, None, None, None, 36.34, 446.9, None, None, ], #11 [329.3, 110.4, 18.12, 428.0, 139.4, 227.8, 124.63, -234.25, 385.4, -236.5, 1167.0, 0.0, -234.0, None, None, None, None, -233.4, -47.25, -268.1, None, 31.0, -126.2, 179.7, 24.28, None, None, None, 103.9, None, None, None, 298.13, None, None, None, -11.4, None, 308.9, None, -70.24, None, None, None, None, None, None, None, None, None, None, None, -77.96, None, None, None, ], #12 [83.36, 26.51, 52.13, 65.69, 237.7, 238.4, -314.7, -178.5, 191.1, -7.838, 461.3, 457.3, 0.0, -78.36, 251.5, 5422.3, -46.39, 213.2, -18.51, 664.6, 301.1, 137.8, -154.3, 47.67, 134.8, 95.18, 155.11, 140.9, -8.538, 170.1, -20.11, -149.5, -202.3, -156.57, 128.8, None, 240.2, -273.9, 254.8, -172.51, 417.0, 1338.0, None, None, None, None, None, None, None, None, None, None, 567.0, 102.21, None, None, ], #13 [-30.48, 1.163, -44.85, 296.4, -242.8, -481.7, -330.48, -870.8, None, None, None, None, 222.1, 0.0, -107.2, -41.11, -200.7, None, 358.9, None, -82.92, None, None, -99.81, 30.05, None, None, None, -70.14, None, None, None, None, None, 874.19, None, None, None, -164.0, None, None, -664.4, 275.9, None, None, None, None, None, None, None, None, None, None, None, None, None, ], #14 [65.33, -28.7, -22.31, 223.0, -150.0, -370.3, -448.2, None, 394.6, None, 136.0, None, -56.08, 127.4, 0.0, -189.2, 138.54, 431.49, 147.1, None, None, None, None, 71.23, -18.93, None, None, None, None, None, 939.07, None, None, None, None, None, None, 570.9, -255.22, None, -38.77, 448.1, -1327.0, None, None, None, None, None, None, None, None, None, None, None, None, None, ], #15 [-83.98, -25.38, -223.9, 109.9, 28.6, -406.8, -598.8, None, 225.3, None, 2889.0, None, -194.1, 38.89, 865.9, 0.0, 287.43, None, 1255.1, None, -182.91, -73.85, -352.9, -262.0, -181.9, None, None, None, None, None, None, None, None, None, 243.1, None, None, -196.3, 22.05, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, ], #16 [1139.0, 2000.0, 247.5, 762.8, -17.4, -118.1, -341.6, -253.1, -450.3, None, -294.8, None, 285.36, -15.07, 64.3, -24.46, 0.0, 89.7, -281.6, -396.0, 287.0, -111.0, None, 882.0, 617.5, None, -139.3, None, None, None, 0.1004, None, None, None, None, None, None, None, -334.4, None, -89.42, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, ], #17 [-101.6, -47.63, 31.87, 49.8, -132.3, -378.2, -332.9, -341.6, 29.1, None, 8.87, 554.4, -156.1, None, -207.66, None, 117.4, 0.0, -169.7, -153.7, None, -351.6, -114.7, -205.3, -2.17, None, 2845.0, None, None, None, None, None, -60.78, None, None, None, 160.7, -158.8, None, None, None, None, None, None, None, None, None, None, None, -136.6, None, None, None, 98.82, None, None, ], #18 [24.82, -40.62, -22.97, -138.4, 185.4, 162.6, 242.8, None, -287.5, 224.66, -266.6, 99.37, 38.81, -157.3, -108.5, -446.86, 777.4, 134.3, 0.0, 205.27, 4.933, -152.7, -15.62, -54.86, -4.624, -0.515, None, 230.9, 0.4604, None, 177.5, None, -62.17, -203.0, None, 81.57, -55.77, None, -151.5, None, 120.3, None, None, None, None, None, 16.23, None, None, None, None, None, None, None, None, None, ], #19 [315.3, 1264.0, 62.32, 89.86, -151.0, 339.8, -66.17, -11.0, -297.8, -165.5, -256.3, 193.9, -338.5, None, None, None, 493.8, -313.5, 92.07, 0.0, 13.41, -44.7, 39.63, 183.4, -79.08, None, None, None, None, -208.9, None, 228.4, -95.0, None, -463.6, None, -11.16, None, -228.0, None, -337.0, 169.3, 127.2, None, None, -322.3, None, None, None, None, None, None, 12.55, -60.07, 88.09, None, ], #20 [91.46, 40.25, 4.68, 122.9, 562.2, 529.0, 698.2, None, 286.3, -47.51, 35.38, None, 225.4, 131.2, None, 151.38, 429.7, None, 54.32, 519.1, 0.0, 108.3, 249.2, 62.42, 153.0, 32.73, 86.2, 450.1, 59.02, 65.56, None, 2.22, 344.4, None, None, None, -168.2, None, 6.57, None, 63.67, None, None, None, None, None, None, None, None, None, None, None, -127.9, None, None, None, ], #21 [34.01, -23.5, 121.3, 140.8, 527.6, 669.9, 708.7, 1633.5, 82.86, 190.6, -132.9, 80.99, -197.7, None, None, -141.4, 140.8, 587.3, 258.6, 543.3, -84.53, 0.0, 0.0, 56.33, 223.1, 108.9, None, None, None, 149.56, None, 177.6, 315.9, None, 215.0, None, -91.8, None, -160.28, None, -96.87, None, None, None, None, None, 361.1, None, None, None, None, None, None, None, None, None, ], #22 [36.7, 51.06, 288.5, 69.9, 742.1, 649.1, 826.76, None, 552.1, 242.8, 176.5, 235.6, -20.93, None, None, -293.7, None, 18.98, 74.04, 504.2, -157.1, 0.0, 0.0, -30.1, 192.1, None, None, 116.6, None, -64.38, None, 86.4, 168.8, None, 363.7, None, 111.2, None, None, None, 255.8, None, None, -35.68, None, None, None, 565.9, None, None, None, None, 165.67, None, None, None, ], #23 [-78.45, 160.9, -4.7, 134.7, 856.3, 709.6, 1201.0, 10000.0, 372.0, None, 129.5, 351.9, 113.9, 261.1, 91.13, 316.9, 898.2, 368.5, 492.0, 631.0, 11.8, 17.97, 51.9, 0.0, -75.97, 490.9, 534.7, 132.2, None, 546.7, None, 247.8, 146.6, None, 337.7, 369.5, 187.1, 215.2, 498.6, None, 256.5, None, 233.1, None, None, None, 423.1, 63.95, None, 108.5, None, 585.19, 291.87, 532.73, None, 127.16, ], #24 [106.8, 70.32, -97.27, 402.5, 325.7, 612.8, -274.5, 622.3, 518.4, None, -171.1, 383.3, -25.15, 108.5, 102.2, 2951.0, 334.9, 20.18, 363.5, 993.4, -129.7, -8.309, -0.2266, -248.4, 0.0, 132.7, 2213.0, None, None, None, None, None, 593.4, None, 1337.37, None, None, None, 5143.14, 309.58, -145.1, None, None, -209.7, None, None, 434.1, None, None, None, None, None, None, None, None, 8.48, ], #25 [-32.69, -1.996, 10.38, -97.05, 261.6, 252.6, 417.9, None, -142.6, None, 129.3, None, -94.49, None, None, None, None, None, 0.2827, None, 113.0, -9.639, None, -34.68, 132.9, 0.0, 533.2, 320.2, None, None, 139.8, 304.3, 10.17, -27.7, None, None, 10.76, None, -223.1, None, 248.4, None, None, None, -218.9, None, None, None, None, -4.565, None, None, None, None, None, None, ], #26 [5541.0, None, 1824.0, -127.8, 561.6, 511.29, 360.7, 815.12, -101.5, None, None, None, 220.66, None, None, None, 134.9, 2475.0, None, None, 1971.0, None, None, 514.6, -123.1, -85.12, 0.0, None, None, None, None, 2990.0, -124.0, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, 1742.53, ], #27 [-52.65, 16.62, 21.5, 40.68, 609.8, 914.2, 1081.0, 1421.0, 303.7, None, 243.8, None, 112.4, None, None, None, None, None, 335.7, None, -73.09, None, -26.06, -60.71, None, 277.8, None, 0.0, None, None, None, 292.7, None, None, None, None, -47.37, None, None, None, 469.8, None, None, None, None, None, None, None, None, None, None, None, None, 684.78, None, None, ], #28 [-7.481, None, 28.41, 19.56, 461.6, 448.6, None, None, 160.6, None, None, 201.5, 63.71, 106.7, None, None, None, None, 161.0, None, -27.94, None, None, None, None, None, None, None, 0.0, None, None, None, None, None, 31.66, None, None, None, 78.92, None, None, None, None, 1004.0, None, None, None, -18.27, None, None, None, None, None, None, None, None, ], #29 [-25.31, 82.64, 157.3, 128.8, 521.6, 287.0, 23.48, None, 317.5, None, -146.3, None, -87.31, None, None, None, None, None, None, 570.6, -39.46, -116.21, 48.48, -133.16, None, None, None, None, None, 0.0, None, None, None, None, None, None, 262.9, None, None, None, 43.37, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, ], #30 [140.0, None, 221.4, 150.6, 267.6, 240.8, -137.4, 838.4, 135.4, None, 152.0, None, 9.207, None, -213.74, None, 192.3, None, 169.6, None, None, None, None, None, None, 481.3, None, None, None, None, 0.0, None, None, None, -417.2, None, None, None, 302.2, None, 347.8, None, None, -262.0, None, None, -353.5, None, None, None, None, None, None, None, None, None, ], #31 [128.0, None, 58.68, 26.41, 501.3, 431.3, None, None, 138.0, 245.9, 21.92, None, 476.6, None, None, None, None, None, None, 616.6, 179.25, -40.82, 21.76, 48.49, None, 64.28, 2448.0, -27.45, None, None, None, 0.0, 6.37, None, None, None, None, None, None, None, 68.55, None, None, None, None, None, None, None, None, None, None, None, None, 190.81, None, None, ], #32 [-31.52, 174.6, -154.2, 1112.0, 524.9, 494.7, 79.18, None, -142.6, None, 24.37, -92.26, 736.4, None, None, None, None, -42.71, 136.9, 5256.0, -262.3, -174.5, -46.8, 77.55, -185.3, 125.3, 4288.0, None, None, None, None, 37.1, 0.0, None, 32.9, None, -48.33, None, 336.25, None, -195.1, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, ], #33 [-72.88, 41.38, -101.12, 614.52, 68.95, 967.71, None, None, 443.6, -55.87, -111.45, None, 173.77, None, None, None, None, None, 329.1, None, None, None, None, None, None, 174.4, None, None, None, None, None, None, None, 0.0, None, None, 2073.0, None, -119.8, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, ], #34 [50.49, 64.07, -2.504, -143.2, -25.87, 695.0, -240.0, None, 110.4, None, 41.57, None, -93.51, -366.51, None, -257.2, None, None, None, -180.2, None, -215.0, -343.6, -58.43, -334.12, None, None, None, 85.7, None, 535.8, None, -111.2, None, 0.0, None, None, None, -97.71, None, 153.7, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, ], #35 [-165.9, 573.0, -123.6, 397.4, 389.3, 218.8, 386.6, None, 114.55, 354.0, 175.5, None, None, None, None, None, None, None, -42.31, None, None, None, None, -85.15, None, None, None, None, None, None, None, None, None, None, None, 0.0, -208.8, None, -8.804, None, 423.4, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, ], #36 [47.41, 124.2, 395.8, 419.1, 738.9, 528.0, None, None, -40.9, 183.8, 611.3, 134.5, -217.9, None, None, None, None, 281.6, 335.2, 898.2, 383.2, 301.9, -149.8, -134.2, None, 379.4, None, 167.9, None, 82.64, None, None, 322.42, 631.5, None, 837.2, 0.0, None, 255.0, None, 730.8, None, None, None, None, None, None, 2429.0, None, None, None, None, -127.06, None, None, None, ], #37 [-5.132, -131.7, -237.2, -157.3, 649.7, 645.9, None, None, None, None, None, None, 167.1, None, -198.8, 116.5, None, 159.8, None, None, None, None, None, -124.6, None, None, None, None, None, None, None, None, None, None, None, None, None, 0.0, -110.65, -117.2, None, None, None, 26.35, None, None, None, None, None, None, None, None, None, None, None, 117.59, ], #38 [-31.95, 249.0, -133.9, -240.2, 64.16, 172.2, -287.1, None, 97.04, 13.89, -82.12, -116.7, -158.2, 49.7, 10.03, -185.2, 343.7, None, 150.6, -97.77, -55.21, 397.24, None, -186.7, -374.16, 223.6, None, None, -71.0, None, -191.7, None, -176.26, 6.699, 136.6, 5.15, -137.7, 50.06, 0.0, -5.579, 72.31, None, None, None, None, None, None, None, None, None, None, None, None, None, None, 39.84, ], #39 [147.3, 62.4, 140.6, 839.83, None, None, None, None, None, None, None, None, 278.15, None, None, None, None, None, None, None, None, None, None, None, 33.95, None, None, None, None, None, None, None, None, None, None, None, None, 185.6, 55.8, 0.0, None, None, None, None, 111.8, None, None, None, None, None, None, None, None, None, None, None, ], #40 [529.0, 1397.0, 317.6, 615.8, 88.63, 171.0, 284.4, -167.3, 123.4, 577.5, -234.9, 65.37, -247.8, None, 284.5, None, -22.1, None, -61.6, 1179.0, 182.2, 305.4, -193.0, 335.7, 1107.0, -124.7, None, 885.5, None, -64.28, -264.3, 288.1, 627.7, None, -29.34, -53.91, -198.0, None, -28.65, None, 0.0, None, None, None, None, None, None, None, None, None, None, None, None, -100.53, None, None, ], #41 [-34.36, None, 787.9, 191.6, 1913.0, None, 180.2, None, 992.4, None, None, None, 448.5, 961.8, 1464.0, None, None, None, None, 2450.0, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, 0.0, -2166.0, None, None, None, None, None, None, None, None, None, None, None, None, None, ], #42 [110.2, None, 234.4, 221.8, 84.85, None, None, None, None, None, None, None, None, -125.2, 1604.0, None, None, None, None, 2496.0, None, None, None, 70.81, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, 745.3, 0.0, None, None, None, None, None, None, None, None, None, None, None, None, None, ], #43 [13.89, -16.11, -23.88, 6.214, 796.9, None, 832.2, -234.7, None, None, None, None, None, None, None, None, None, None, None, None, None, None, -196.2, None, 161.5, None, None, None, -274.1, None, 262.0, None, None, None, None, None, -66.31, None, None, None, None, None, None, 0.0, None, None, None, None, None, None, None, None, None, None, None, None, ], #44 [30.74, None, 167.9, None, 794.4, 762.7, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, 844.0, None, None, None, None, None, None, None, None, None, None, None, None, None, -32.17, None, None, None, None, 0.0, None, None, None, None, None, None, None, None, None, None, None, ], #45 [27.97, 9.755, None, None, 394.8, None, -509.3, None, None, None, None, None, None, None, None, None, None, None, None, -70.25, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, 0.0, None, None, None, None, None, None, None, None, None, None, ], #46 [-11.92, 132.4, -86.88, -19.45, 517.5, None, -205.7, None, 156.4, None, -3.444, None, None, None, None, None, None, None, 119.2, None, None, -194.7, None, 3.163, 7.082, None, None, None, None, None, 515.8, None, None, None, None, None, None, None, None, None, 101.2, None, None, None, None, None, 0.0, None, None, None, None, None, None, None, None, None, ], #47 [39.93, 543.6, None, None, None, 420.0, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, -363.1, -11.3, None, None, None, None, 6.971, None, None, None, None, None, None, None, 148.9, None, None, None, None, None, None, None, None, None, None, 0.0, None, None, None, None, None, None, None, None, ], #48 [-23.61, 161.1, 142.9, 274.1, -61.2, -89.24, -384.3, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, 0.0, None, None, None, None, None, None, None, ], #49 [-8.479, None, 23.93, 2.845, 682.5, 597.8, None, 810.5, 278.8, None, None, None, None, None, None, None, None, 221.4, None, None, None, None, None, -79.34, None, 176.3, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, ], #50 [None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, ], #51 [245.21, 384.45, 47.05, 347.13, 72.19, 265.75, 627.39, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, 75.04, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, ], #52 [21.49, -2.8, 344.42, 510.32, 244.67, 163.76, 833.21, None, 569.18, -1.25, -38.4, 69.7, -375.6, None, None, None, None, None, None, 600.78, 291.1, None, -286.26, -52.93, None, None, None, None, None, None, None, None, None, None, None, None, 177.12, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, ], #53 [272.82, 569.71, 165.18, 369.89, None, None, None, None, -62.02, None, -229.01, None, -196.59, None, None, None, None, 100.25, None, 472.04, None, None, None, 196.73, None, None, None, 434.32, None, None, None, 313.14, None, None, None, None, None, None, None, None, -244.59, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, ], #54 [None, None, 920.49, 305.77, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, 171.94, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, ], #55 [-20.31, None, -106.7, 568.47, 284.28, None, 401.2, None, 106.21, None, None, None, None, None, None, None, None, None, None, None, None, None, None, -108.37, 5.76, None, -272.01, None, None, None, None, None, None, None, None, None, None, 107.84, -33.93, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, None, ]] #56 # {symbol : (group_unique_id, main_group_id), ...} # main_group_id stands for ids as listed at: # http://www.aim.env.uea.ac.uk/aim/info/UNIFACgroups.html # in "Group" column str_to_id = { 'AC': (11, 3), 'ACBr': (119, 56), 'ACC#N': (118, 55), 'ACCH': (14, 4), 'ACCH2': (13, 4), 'ACCH3': (12, 4), 'ACCl': (54, 25), 'ACF': (71, 38), 'ACH': (10, 3), 'ACN(=O)=O': (58, 27), 'ACNH2': (37, 17), 'ACOH': (18, 8), 'Br': (65, 33), 'C#C': (67, 34), 'C(=O)N(CH2)CH2': (99, 46), 'C(=O)N(CH3)CH2': (98, 46), 'C(=O)N(CH3)CH3': (97, 46), 'C(=O)NH2': (94, 46), 'C(=O)NHCH2': (96, 46), 'C(=O)NHCH3': (95, 46), 'C(=O)OH': (43, 20), # 'C2H4O2': (101, 47), # 'C2H5O2': (100, 47), # 'C4H2S': (108, 50), # 'C4H3S': (107, 50), # 'C4H4S': (106, 50), # 'C5H3N': (40, 18), # 'C5H4N': (39, 18), # 'C5H5N': (38, 18), 'C=CCl': (70, 37), 'CCl': (47, 21), 'CCl2': (50, 22), 'CCl2F': (87, 45), 'CCl2F2': (93, 45), 'CCl3': (52, 23), 'CCl3F': (86, 45), 'CCl4': (53, 24), 'CClF2': (90, 45), 'CClF3': (92, 45), 'CF': (76, 40), 'CF2': (75, 40), 'CF3': (74, 40), 'CH': (3, 1), 'CH#C': (66, 34), 'CH(=O)O': (24, 12), 'CH(=O)OH': (44, 20), 'CH0': (4, 1), 'CH0=CH0': (9, 2), 'CH0OCH0': (116, 53), 'CH2': (2, 1), 'CH2=CH': (5, 2), 'CH2=CH0': (7, 2), 'CH2=CHC#N': (69, 36), 'CH2OH0': (26, 13), 'CH2C#N': (42, 19), 'CH2C(=O)O': (23, 11), 'CH2C=O': (20, 9), 'CH2Cl': (45, 21), 'CH2Cl2': (48, 22), 'CH2N(=O)=O': (56, 26), 'CH2NH': (33, 15), 'CH2NH0': (36, 16), 'CH2NH2': (30, 14), # 'CH2OCH': (112, 53), # these are oxides, not ethers # 'CH2OCH0': (113, 53), # 'CH2OCH2': (111, 53), 'CH2S': (103, 48), 'CH2SH': (61, 29), # 'CH2SuCH': (110, 52), # 'CH2SuCH2': (109, 52), 'CH3': (1, 1), 'CH3OH0': (25, 13), 'CH3C#N': (41, 19), 'CH3C(=O)O': (22, 11), 'CH3C=O': (19, 9), 'CH3N(=O)=O': (55, 26), 'CH3NH': (32, 15), 'CH3NH0': (35, 16), 'CH3NH2': (29, 14), 'CH3OH': (16, 6), 'CH3S': (102, 48), 'CH3SH': (60, 29), 'CH=CH': (6, 2), 'CH=CH0': (8, 2), 'CHOH0': (27, 13), 'CHCl': (46, 21), 'CHCl2': (49, 22), 'CHCl2F': (88, 45), 'CHCl3': (51, 23), 'CHClF': (89, 45), 'CHClF2': (91, 45), 'CHN(=O)=O': (57, 26), 'CHNH': (34, 15), 'CHNH2': (31, 14), # 'CHOCH': (114, 53), #these are oxides, not ethers # 'CHOCH0': (115, 53), 'CHS': (104, 48), # 'COO': (77, 41), # 'DMF': (72, 39), # 'DMSO': (68, 35), # 'DOH': (63, 31), # 'HCON(CH2)2': (73, 39), 'I': (64, 32), # 'MORPH': (105, 49), # 'NMP': (85, 44), 'O=COC=O': (117, 54), 'OH': (15, 5), 'OH2': (17, 7), 'SCS': (59, 28), 'Si': (81, 42), 'SiH': (80, 42), 'SiH2': (79, 42), 'SiH2O': (82, 43), 'SiH3': (78, 42), 'SiHO': (83, 43), 'SiO': (84, 43), # 'THF': (28, 13), # 'furfural': (62, 30) } q_r_data = { 1: (0.848, 0.9011), 2: (0.54, 0.6744), 3: (0.228, 0.4469), 4: (0.0, 0.2195), 5: (1.176, 1.3454), 6: (0.867, 1.1167), 7: (0.988, 1.1173), 8: (0.676, 0.8886), 9: (0.485, 0.6605), 10: (0.4, 0.5313), 11: (0.12, 0.3652), 12: (0.968, 1.2663), 13: (0.66, 1.0396), 14: (0.348, 0.8121), 15: (1.2, 1.0), 16: (1.432, 1.4311), 17: (1.4, 0.92), 18: (0.68, 0.8952), 19: (1.448, 1.6724), 20: (1.18, 1.4457), 21: (0.948, 0.998), 22: (1.728, 1.9031), 23: (1.42, 1.6764), 24: (1.188, 1.242), 25: (1.088, 1.145), 26: (0.78, 0.9183), 27: (0.468, 0.6908), 28: (1.1, 0.9183), 29: (1.544, 1.5959), 30: (1.236, 1.3692), 31: (0.924, 1.1417), 32: (1.244, 1.4337), 33: (0.936, 1.207), 34: (0.624, 0.9795), 35: (0.94, 1.1865), 36: (0.632, 0.9597), 37: (0.816, 1.06), 38: (2.113, 2.9993), 39: (1.833, 2.8332), 40: (1.553, 2.667), 41: (1.724, 1.8701), 42: (1.416, 1.6434), 43: (1.224, 1.3013), 44: (1.532, 1.528), 45: (1.264, 1.4654), 46: (0.952, 1.238), 47: (0.724, 1.0106), 48: (1.998, 2.2564), 49: (1.684, 2.0606), 50: (1.448, 1.8016), 51: (2.41, 2.87), 52: (2.184, 2.6401), 53: (2.91, 3.39), 54: (0.844, 1.1562), 55: (1.868, 2.0086), 56: (1.56, 1.7818), 57: (1.248, 1.5544), 58: (1.104, 1.4199), 59: (1.65, 2.057), 60: (1.676, 1.877), 61: (1.368, 1.651), 62: (2.484, 3.168), 63: (2.248, 2.4088), 64: (0.992, 1.264), 65: (0.832, 0.9492), 66: (1.088, 1.292), 67: (0.784, 1.0613), 68: (2.472, 2.8266), 69: (2.052, 2.3144), 70: (0.724, 0.791), 71: (0.524, 0.6948), 72: (2.736, 3.0856), 73: (2.12, 2.6322), 74: (1.38, 1.406), 75: (0.92, 1.0105), 76: (0.46, 0.615), 77: (1.2, 1.38), 78: (1.263, 1.6035), 79: (1.006, 1.4443), 80: (0.749, 1.2853), 81: (0.41, 1.047), 82: (1.062, 1.4838), 83: (0.764, 1.303), 84: (0.466, 1.1044), 85: (3.2, 3.981), 86: (2.644, 3.0356), 87: (1.916, 2.2287), 88: (2.116, 2.406), 89: (1.416, 1.6493), 90: (1.648, 1.8174), 91: (1.828, 1.967), 92: (2.1, 2.1721), 93: (2.376, 2.6243), 94: (1.248, 1.4515), 95: (1.796, 2.1905), 96: (1.488, 1.9637), 97: (2.428, 2.8589), 98: (2.12, 2.6322), 99: (1.812, 2.4054), 100: (1.904, 2.1226), 101: (1.592, 1.8952), 102: (1.368, 1.613), 103: (1.06, 1.3863), 104: (0.748, 1.1589), 105: (2.796, 3.474), 106: (2.14, 2.8569), 107: (1.86, 2.6908), 108: (1.58, 2.5247), 109: (2.12, 2.6869), 110: (1.808, 2.4595), 111: (1.32, 1.5926), 112: (1.008, 1.3652), 113: (0.78, 1.1378), 114: (0.696, 1.1378), 115: (0.468, 0.9103), 116: (0.24, 0.6829), 117: (1.52, 1.7732), 118: (0.996, 1.3342), 119: (0.972, 1.3629)}
from symbol.builder import FasterRcnn as Detector from symbol.builder import add_anchor_to_arg from models.efficientnet.builder import EfficientNetB5FPN as Backbone from models.FPN.builder import FPNNeck as Neck from models.FPN.builder import FPNRpnHead as RpnHead from models.FPN.builder import FPNRoiAlign as RoiExtractor from models.FPN.builder import FPNBbox2fcHead as BboxHead from mxnext.complicate import normalizer_factory def get_config(is_train): class General: log_frequency = 10 name = __name__.rsplit("/")[-1].rsplit(".")[-1] batch_image = 8 if is_train else 1 fp16 = True loader_worker = 8 class KvstoreParam: kvstore = "nccl" batch_image = General.batch_image gpus = [0, 1, 2, 3, 4, 5, 6, 7] fp16 = General.fp16 class NormalizeParam: normalizer = normalizer_factory(type="localbn", ndev=len(KvstoreParam.gpus)) # normalizer = normalizer_factory(type="gn") class BackboneParam: fp16 = General.fp16 normalizer = NormalizeParam.normalizer class NeckParam: fp16 = General.fp16 normalizer = NormalizeParam.normalizer class RpnParam: fp16 = General.fp16 normalizer = NormalizeParam.normalizer batch_image = General.batch_image nnvm_proposal = True nnvm_rpn_target = False class anchor_generate: scale = (4,) ratio = (0.5, 1.0, 2.0) stride = (4, 8, 16, 32, 64) image_anchor = 256 max_side = 700 class anchor_assign: allowed_border = 0 pos_thr = 0.7 neg_thr = 0.3 min_pos_thr = 0.0 image_anchor = 256 pos_fraction = 0.5 class head: conv_channel = 256 mean = (0, 0, 0, 0) std = (1, 1, 1, 1) class proposal: pre_nms_top_n = 2000 if is_train else 1000 post_nms_top_n = 2000 if is_train else 1000 nms_thr = 0.7 min_bbox_side = 0 class subsample_proposal: proposal_wo_gt = False image_roi = 512 fg_fraction = 0.25 fg_thr = 0.5 bg_thr_hi = 0.5 bg_thr_lo = 0.0 class bbox_target: num_reg_class = 81 class_agnostic = False weight = (1.0, 1.0, 1.0, 1.0) mean = (0.0, 0.0, 0.0, 0.0) std = (0.1, 0.1, 0.2, 0.2) class BboxParam: fp16 = General.fp16 normalizer = NormalizeParam.normalizer num_class = 1 + 80 image_roi = 512 batch_image = General.batch_image class regress_target: class_agnostic = False mean = (0.0, 0.0, 0.0, 0.0) std = (0.1, 0.1, 0.2, 0.2) class RoiParam: fp16 = General.fp16 normalizer = NormalizeParam.normalizer out_size = 7 stride = (4, 8, 16, 32) roi_canonical_scale = 224 roi_canonical_level = 4 class DatasetParam: if is_train: image_set = ("coco_train2014", "coco_valminusminival2014") total_image = 82783 + 35504 else: image_set = ("coco_minival2014", ) total_image = 5000 backbone = Backbone(BackboneParam) neck = Neck(NeckParam) rpn_head = RpnHead(RpnParam) roi_extractor = RoiExtractor(RoiParam) bbox_head = BboxHead(BboxParam) detector = Detector() if is_train: train_sym = detector.get_train_symbol(backbone, neck, rpn_head, roi_extractor, bbox_head) rpn_test_sym = None test_sym = None else: train_sym = None rpn_test_sym = detector.get_rpn_test_symbol(backbone, neck, rpn_head) test_sym = detector.get_test_symbol(backbone, neck, rpn_head, roi_extractor, bbox_head) class ModelParam: train_symbol = train_sym test_symbol = test_sym rpn_test_symbol = rpn_test_sym from_scratch = True random = True memonger = False memonger_until = "stage3_unit21_plus" class pretrain: prefix = None epoch = 0 fixed_param = [] def process_weight(sym, arg, aux): for stride in RpnParam.anchor_generate.stride: add_anchor_to_arg( sym, arg, aux, RpnParam.anchor_generate.max_side, stride, RpnParam.anchor_generate.scale, RpnParam.anchor_generate.ratio) class OptimizeParam: class optimizer: type = "sgd" lr = 0.01 / 8 * len(KvstoreParam.gpus) * KvstoreParam.batch_image momentum = 0.9 wd = 1e-4 clip_gradient = None class schedule: mult = 6 begin_epoch = 0 end_epoch = 6 * mult if mult <= 2: lr_iter = [60000 * mult * 16 // (len(KvstoreParam.gpus) * KvstoreParam.batch_image), 80000 * mult * 16 // (len(KvstoreParam.gpus) * KvstoreParam.batch_image)] else: # follow the setting in Rethinking ImageNet Pre-training # reduce the lr in the last 60k and 20k iterations lr_iter = [(DatasetParam.total_image * 2 // 16 * end_epoch - 60000) * 16 // (len(KvstoreParam.gpus) * KvstoreParam.batch_image), (DatasetParam.total_image * 2 // 16 * end_epoch - 20000) * 16 // (len(KvstoreParam.gpus) * KvstoreParam.batch_image)] class warmup: type = "gradual" lr = 0 iter = 500 class TestParam: min_det_score = 0.05 max_det_per_image = 100 process_roidb = lambda x: x process_output = lambda x, y: x class model: prefix = "experiments/{}/checkpoint".format(General.name) epoch = OptimizeParam.schedule.end_epoch class nms: type = "nms" thr = 0.5 class coco: annotation = "data/coco/annotations/instances_minival2014.json" # data processing class NormParam: mean = tuple(i * 255 for i in (0.485, 0.456, 0.406)) # RGB order std = tuple(i * 255 for i in (0.229, 0.224, 0.225)) # data processing class ResizeParam: short = 400 long = 600 class PadParam: short = 400 long = 600 max_num_gt = 100 class AnchorTarget2DParam: def __init__(self): self.generate = self._generate() class _generate: def __init__(self): self.stride = (4, 8, 16, 32, 64) self.short = (100, 50, 25, 13, 7) self.long = (150, 75, 38, 19, 10) scales = (4) aspects = (0.5, 1.0, 2.0) class assign: allowed_border = 0 pos_thr = 0.7 neg_thr = 0.3 min_pos_thr = 0.0 class sample: image_anchor = 256 pos_fraction = 0.5 class RenameParam: mapping = dict(image="data") from core.detection_input import ReadRoiRecord, Resize2DImageBbox, \ ConvertImageFromHwcToChw, Flip2DImageBbox, Pad2DImageBbox, \ RenameRecord, Norm2DImage from models.FPN.input import PyramidAnchorTarget2D if is_train: transform = [ ReadRoiRecord(None), Norm2DImage(NormParam), Resize2DImageBbox(ResizeParam), Flip2DImageBbox(), Pad2DImageBbox(PadParam), ConvertImageFromHwcToChw(), RenameRecord(RenameParam.mapping) ] data_name = ["data"] label_name = ["gt_bbox", "im_info"] if not RpnParam.nnvm_rpn_target: transform.append(PyramidAnchorTarget2D(AnchorTarget2DParam())) label_name += ["rpn_cls_label", "rpn_reg_target", "rpn_reg_weight"] else: transform = [ ReadRoiRecord(None), Norm2DImage(NormParam), Resize2DImageBbox(ResizeParam), Pad2DImageBbox(PadParam), ConvertImageFromHwcToChw(), RenameRecord(RenameParam.mapping) ] data_name = ["data", "im_info", "im_id", "rec_id"] label_name = [] import core.detection_metric as metric rpn_acc_metric = metric.AccWithIgnore( "RpnAcc", ["rpn_cls_loss_output", "rpn_cls_label_blockgrad_output"], [] ) rpn_l1_metric = metric.L1( "RpnL1", ["rpn_reg_loss_output", "rpn_cls_label_blockgrad_output"], [] ) # for bbox, the label is generated in network so it is an output box_acc_metric = metric.AccWithIgnore( "RcnnAcc", ["bbox_cls_loss_output", "bbox_label_blockgrad_output"], [] ) box_l1_metric = metric.L1( "RcnnL1", ["bbox_reg_loss_output", "bbox_label_blockgrad_output"], [] ) metric_list = [rpn_acc_metric, rpn_l1_metric, box_acc_metric, box_l1_metric] return General, KvstoreParam, RpnParam, RoiParam, BboxParam, DatasetParam, \ ModelParam, OptimizeParam, TestParam, \ transform, data_name, label_name, metric_list
#!/usr/bin/env python3 from flask import Flask, render_template, request from werkzeug import secure_filename app = Flask(__name__) @app.route('/') def index(): return render_template('index.html') @app.route('/upload', methods=['POST']) def upload(): if request.method == 'POST': f = request.files.get('file') fname = secure_filename(f.filename) f.save(fname) if __name__ == '__main__': app.run(host='0.0.0.0', debug=False)
import copy import json from django_admin_json_editor import JSONEditorWidget from django.utils.safestring import mark_safe from django.template.loader import render_to_string class JSONEditorWidget(JSONEditorWidget): template_name = 'lanthanum/_json_editor_widget.html' def render(self, name, value, attrs=None, renderer=None): """ Fix the JSON Editor widget by doing a standard json dump for dict data This will not convert booleans to ints like the standard JSON Editor. """ if callable(self._schema): schema = self._schema(self) else: schema = copy.copy(self._schema) schema['title'] = ' ' schema['options'] = {'collapsed': int(self._collapsed)} context = { 'name': name, 'schema': json.dumps(schema), 'data': value, 'sceditor': int(self._sceditor), } return mark_safe(render_to_string(self.template_name, context))
# -*- coding: utf-8 -*- # Copyright 2014 Telefonica Investigación y Desarrollo, S.A.U # # This file is part of FI-WARE project. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # # You may obtain a copy of the License at: # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # # See the License for the specific language governing permissions and # limitations under the License. # # For those usages not covered by the Apache version 2.0 License please # contact with opensource@tid.es from lettuce import step, world from lettuce_tools.dataset_utils.dataset_utils import DatasetUtils from tools import http from tools import environment_request from tools.tier import Tier from tools.constants import NAME, DESCRIPTION, PRODUCTS, NETWORKS, PAAS,\ TIER_IMAGE dataset_utils = DatasetUtils() @step(u'the paas manager is up and properly configured') def the_paas_manager_is_up_and_properly_configured(step): pass # Nothing to do here, the set up should be done by external means @step(u'a list of tiers has been defined with data:') def a_list_of_tiers_has_been_defined_with_data(step): world.tiers = [] for row in step.hashes: data = dataset_utils.prepare_data(row) tier = Tier(data.get(NAME), world.config[PAAS][TIER_IMAGE]) tier.parse_and_add_products(data.get(PRODUCTS)) tier.parse_and_add_networks(data.get(NETWORKS)) world.tiers.append(tier) @step(u'an environment has already been created with data:') def an_environment_has_already_been_created_with_data(step): data = dataset_utils.prepare_data(step.hashes[0]) world.env_requests.add_environment(data.get(NAME), data.get(DESCRIPTION)) @step(u'an environment has already been created with the previous tiers and data:') def an_environment_has_already_been_created_with_the_previous_tiers_and_data(step): data = dataset_utils.prepare_data(step.hashes[0]) world.env_requests.add_environment(data.get(NAME), data.get(DESCRIPTION), world.tiers) @step(u'there is no environment with name "([^"]*)" already created') def there_is_no_environment_with_name_already_created(step, name): world.env_requests.delete_environment(name) # Just in case it exists @step(u'I request the details of the environment with name "([^"]*)"') def i_request_the_list_of_existing_environments(step, name): name = dataset_utils.generate_fixed_length_param(name) world.env_requests.get_environment(name) @step(u'I receive an? "([^"]*)" response with data:') def i_receive_a_response_of_type_with_data(step, response_type): status_code = http.status_codes[response_type] data = dataset_utils.prepare_data(step.hashes[0]) environment_request.check_get_environment_response(world.response, status_code, data.get(NAME), data.get(DESCRIPTION)) @step(u'I receive an? "([^"]*)" response with the previous tiers and data:') def i_receive_a_response_of_type_with_the_previous_tiers_and_data(step, response_type): status_code = http.status_codes[response_type] data = dataset_utils.prepare_data(step.hashes[0]) environment_request.check_get_environment_response(world.response, status_code, data.get(NAME), data.get(DESCRIPTION), world.tiers) @step(u'I receive an? "([^"]*)" response$') def i_receive_a_response_of_type(step, response_type): status_code = http.status_codes[response_type] environment_request.check_get_environment_response(world.response, status_code)
from setuptools import setup, find_packages setup( name="home-assistant-frontend", version="20211215.0", description="The Home Assistant frontend", url="https://github.com/home-assistant/frontend", author="The Home Assistant Authors", author_email="hello@home-assistant.io", license="Apache-2.0", packages=find_packages(include=["hass_frontend", "hass_frontend.*"]), include_package_data=True, zip_safe=False, )
# Copyright 2019 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path from typing import Optional, Union import os import shutil import tempfile from synthtool import _tracked_paths, metadata, shell from synthtool.log import logger from synthtool.sources import git GOOGLEAPIS_URL: str = git.make_repo_clone_url("googleapis/googleapis") GOOGLEAPIS_PRIVATE_URL: str = git.make_repo_clone_url("googleapis/googleapis-private") DISCOVERY_ARTIFACT_MANAGER_URL: str = git.make_repo_clone_url( "googleapis/discovery-artifact-manager" ) LOCAL_GOOGLEAPIS: Optional[str] = os.environ.get("SYNTHTOOL_GOOGLEAPIS") LOCAL_DISCOVERY_ARTIFACT_MANAGER: Optional[str] = os.environ.get( "SYNTHTOOL_DISCOVERY_ARTIFACT_MANAGER" ) class GAPICBazel: """A synthtool component that can produce libraries using bazel build. """ def __init__(self): self._ensure_dependencies_installed() self._googleapis = None self._googleapis_private = None self._discovery_artifact_manager = None def py_library(self, service: str, version: str, **kwargs) -> Path: return self._generate_code(service, version, "python", **kwargs) def go_library(self, service: str, version: str, **kwargs) -> Path: return self._generate_code(service, version, "go", **kwargs) def node_library(self, service: str, version: str, **kwargs) -> Path: return self._generate_code(service, version, "nodejs", **kwargs) def csharp_library(self, service: str, version: str, **kwargs) -> Path: return self._generate_code(service, version, "csharp", **kwargs) def php_library(self, service: str, version: str, **kwargs) -> Path: return self._generate_code(service, version, "php", **kwargs) def java_library(self, service: str, version: str, **kwargs) -> Path: return self._generate_code(service, version, "java", **kwargs) def ruby_library(self, service: str, version: str, **kwargs) -> Path: return self._generate_code(service, version, "ruby", **kwargs) def _generate_code( self, service: str, version: str, language: str, *, private: bool = False, discogapic: bool = False, proto_path: Union[str, Path] = None, output_dir: Union[str, Path] = None, bazel_target: str = None, include_protos: bool = False, proto_output_path: Union[str, Path] = None, ): # Determine which googleapis repo to use if discogapic: api_definitions_repo = self._clone_discovery_artifact_manager() api_definitions_repo_name = "discovery-artifact-manager" elif private: api_definitions_repo = self._clone_googleapis_private() api_definitions_repo_name = "googleapis_private" else: api_definitions_repo = self._clone_googleapis() api_definitions_repo_name = "googleapis" # Sanity check: We should have a googleapis repo; if we do not, # something went wrong, and we should abort. if not api_definitions_repo: raise RuntimeError( f"Unable to generate {service}, the sources repository repository" "is unavailable." ) # Calculate proto_path if necessary. if not bazel_target or include_protos: # If bazel_target is not specified explicitly, we will need # proto_path to calculate it. If include_protos is True, # we will need the proto_path to copy the protos. if not proto_path: if bazel_target: # Calculate proto_path from the full bazel target, which is # in the format "//proto_path:target_name proto_path = bazel_target.split(":")[0][2:] else: # If bazel_target is not specified, assume the protos are # simply under google/cloud, where the most of the protos # usually are. proto_path = f"google/cloud/{service}/{version}" protos = Path(proto_path) if protos.is_absolute(): protos = protos.relative_to("/") # Determine bazel target based on per-language patterns # Java: google-cloud-{{assembly_name}}-{{version}}-java # Go: gapi-cloud-{{assembly_name}}-{{version}}-go # Python: {{assembly_name}}-{{version}}-py # PHP: google-cloud-{{assembly_name}}-{{version}}-php # Node.js: {{assembly_name}}-{{version}}-nodejs # Ruby: google-cloud-{{assembly_name}}-{{version}}-ruby # C#: google-cloud-{{assembly_name}}-{{version}}-csharp if not bazel_target: # Determine where the protos we are generating actually live. # We can sometimes (but not always) determine this from the service # and version; in other cases, the user must provide it outright. parts = list(protos.parts) while len(parts) > 0 and parts[0] != "google": parts.pop(0) if len(parts) == 0: raise RuntimeError( f"Cannot determine bazel_target from proto_path {protos}." "Please set bazel_target explicitly." ) if language == "python": suffix = f"{service}-{version}-py" elif language == "nodejs": suffix = f"{service}-{version}-nodejs" elif language == "go": suffix = f"gapi-{'-'.join(parts[1:])}-go" else: suffix = f"{'-'.join(parts)}-{language}" bazel_target = f"//{os.path.sep.join(parts)}:{suffix}" # Sanity check: Do we have protos where we think we should? if not (api_definitions_repo / protos).exists(): raise FileNotFoundError( f"Unable to find directory for protos: {(api_definitions_repo / protos)}." ) if not tuple((api_definitions_repo / protos).glob("*.proto")): raise FileNotFoundError( f"Directory {(api_definitions_repo / protos)} exists, but no protos found." ) if not (api_definitions_repo / protos / "BUILD.bazel"): raise FileNotFoundError( f"File {(api_definitions_repo / protos / 'BUILD.bazel')} does not exist." ) # Ensure the desired output directory exists. # If none was provided, create a temporary directory. if not output_dir: output_dir = tempfile.mkdtemp() output_dir = Path(output_dir).resolve() # Let's build some stuff now. cwd = os.getcwd() os.chdir(str(api_definitions_repo)) bazel_run_args = [ "bazel", "--max_idle_secs=240", "build", bazel_target, ] logger.debug(f"Generating code for: {bazel_target}.") shell.run(bazel_run_args) # We've got tar file! # its location: bazel-bin/google/cloud/language/v1/language-v1-nodejs.tar.gz # bazel_target: //google/cloud/language/v1:language-v1-nodejs tar_file = ( f"bazel-bin{os.path.sep}{bazel_target[2:].replace(':', os.path.sep)}.tar.gz" ) tar_run_args = [ "tar", "-C", str(output_dir), "--strip-components=1", "-xzf", tar_file, ] shell.run(tar_run_args) # Get the *.protos files and put them in a protos dir in the output if include_protos: proto_files = protos.glob("**/*.proto") # By default, put the protos at the root in a folder named 'protos'. # Specific languages can be cased here to put them in a more language # appropriate place. if not proto_output_path: proto_output_path = output_dir / "protos" if language == "python": # place protos alongsize the *_pb2.py files proto_output_path = ( output_dir / f"google/cloud/{service}_{version}/proto" ) else: proto_output_path = Path(output_dir / proto_output_path) os.makedirs(proto_output_path, exist_ok=True) for i in proto_files: logger.debug(f"Copy: {i} to {proto_output_path / i.name}") shutil.copyfile(i, proto_output_path / i.name) logger.success(f"Placed proto files into {proto_output_path}.") os.chdir(cwd) # Sanity check: Does the output location have code in it? # If not, complain. if not tuple(output_dir.iterdir()): raise RuntimeError( f"Code generation seemed to succeed, but {output_dir} is empty." ) # Huzzah, it worked. logger.success(f"Generated code into {output_dir}.") # Record this in the synthtool metadata. metadata.add_client_destination( source=api_definitions_repo_name, api_name=service, api_version=version, language=language, generator="bazel", ) _tracked_paths.add(output_dir) return output_dir def _clone_googleapis(self): if self._googleapis: return self._googleapis if LOCAL_GOOGLEAPIS: self._googleapis = Path(LOCAL_GOOGLEAPIS).expanduser() logger.debug(f"Using local googleapis at {self._googleapis}") else: logger.debug("Cloning googleapis.") self._googleapis = git.clone(GOOGLEAPIS_URL) return self._googleapis def _clone_googleapis_private(self): if self._googleapis_private: return self._googleapis_private if LOCAL_GOOGLEAPIS: self._googleapis_private = Path(LOCAL_GOOGLEAPIS).expanduser() logger.debug( f"Using local googleapis at {self._googleapis_private} for googleapis-private" ) else: logger.debug("Cloning googleapis-private.") self._googleapis_private = git.clone(GOOGLEAPIS_PRIVATE_URL) return self._googleapis_private def _clone_discovery_artifact_manager(self): if self._discovery_artifact_manager: return self._discovery_artifact_manager if LOCAL_DISCOVERY_ARTIFACT_MANAGER: self._discovery_artifact_manager = Path( LOCAL_DISCOVERY_ARTIFACT_MANAGER ).expanduser() logger.debug( f"Using local discovery_artifact_manager at {self._discovery_artifact_manager} for googleapis-private" ) else: logger.debug("Cloning discovery-artifact-manager.") self._discovery_artifact_manager = git.clone(DISCOVERY_ARTIFACT_MANAGER_URL) return self._discovery_artifact_manager def _ensure_dependencies_installed(self): logger.debug("Ensuring dependencies.") dependencies = ["bazel", "zip", "unzip", "tar"] failed_dependencies = [] for dependency in dependencies: return_code = shell.run(["which", dependency], check=False).returncode if return_code: failed_dependencies.append(dependency) if failed_dependencies: raise EnvironmentError( f"Dependencies missing: {', '.join(failed_dependencies)}" )
#!/usr/bin/env python # -*- coding: utf-8 -*- # @brief This module has unit tests for the classes of EasyIPC. # @author Luis C. Garcia-Peraza Herrera (luiscarlos.gph@gmail.com). # @date 25 June 2020. import unittest import os import sys import numpy as np # My imports import easyipc class TestEasyIPC(unittest.TestCase): def test_pipe(self): data = [np.random.rand(1000, 1000) for i in range(100)] newpid = os.fork() if newpid == 0: client = easyipc.Pipe('hoho') client.connect() client.send_whatever({'Hello': 'from the client'}) for i in range(len(data)): client.send_array(data[i]) else: server = easyipc.Pipe('hoho') server.listen() whatever = None while whatever is None: whatever = server.recv_whatever(blocking=False) self.assertTrue(whatever['Hello'] == 'from the client') for i in range(len(data)): data_back = server.recv_array() self.assertTrue(np.sum(data[i] - data_back) == 0) if __name__ == '__main__': unittest.main()
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Public APIs for algorithm developer using weight compression API.""" import abc from typing import List, Any import dataclasses import tensorflow as tf from tensorflow_model_optimization.python.core.common.keras.compression.internal import optimize @dataclasses.dataclass class WeightRepr: args: Any = None kwargs: Any = None class WeightCompressor(metaclass=abc.ABCMeta): """Interface for weight compression algorithm that acts on a per-layer basis. This allows both options of either decompressing during inference or decompressing prior to inference (where compression occurs by applying a tool such as zip to the model file). This interface is a purely functional one. """ update_ops = [] # type: List # TODO(tfmot): Consider separate from algorithm API for custom layer supports. def get_compressible_weights( self, original_layer: tf.keras.layers.Layer) -> List[tf.Variable]: """Define compressible weights for each layer. Args: original_layer: tf.keras.layers.Layer representing a layer from the original model. Returns: List of compressible weights for the given layer. """ del original_layer return [] @abc.abstractmethod def init_training_weights( self, pretrained_weight: tf.Tensor): """Initialize training weights for the compressible weight. It calls the `add_training_weight` to add a training weight for a given `pretrained_weight`. A `pretrained_weight` can have multiple training weights. We initialize the training weights for each compressible weight by just calling this function for each. Args: pretrained_weight: tf.Tensor of a pretrained weight of a layer that will be compressed eventually. """ def add_training_weight( self, *args, **kwargs): """Add a training weight for the compressible weight. When this method is called from the `init_training_weights`, this adds training weights for the pretrained_weight that is the input of the `init_training_weights`. Args: *args: Passed through to training_model.add_weight. **kwargs: Passed through to training_model.add_weight. """ weight_repr = WeightRepr(args=args, kwargs=kwargs) if hasattr(self, 'weight_reprs'): self.weight_reprs.append(weight_repr) else: self.weight_reprs = [weight_repr] @abc.abstractmethod def project_training_weights( self, *training_weights: tf.Tensor) -> tf.Tensor: """Define a piece of the forward pass during training. It operates on a single compressible weight. The default throws an error when training occurs. Args: *training_weights: tf.Tensors representing any variables used during training, for a single compressible weight, in the order returned in `init_training_weights`. Returns: tf.Tensor to set the compressible weight to. """ def init_update_ops(self, tensor_weight_pairs): self.update_ops = [] self.tensor_weight_pairs = tensor_weight_pairs def update_training_weight( self, training_weight: tf.Tensor, value: tf.Tensor): """Add training weight assign op to the model update list. This method is for the case that training weight should update to a specific value not from the model optimizer. It will throw an error if it can't find the training weight. This method should called in project_training_weights. During the training, We collect all update_training_weight calls and make an UpdateOp for each call. Finally, we put all these update ops to model.add_update. Args: training_weight: tf.Tensor representing a training weight. value: tf.Tensor representing a value to be assigned to the training weight. Raises: ValueError if it can't find the training weight. """ for tensor, weight in self.tensor_weight_pairs: if training_weight is tensor: self.update_ops.append(weight.assign(value)) return raise ValueError('Training weight not found. Please call ' 'the update_training_weight with given training ' 'weight tensor.') def get_update_ops(self): return self.update_ops def compress_training_weights( self, *training_weights: tf.Tensor) -> List[tf.Tensor]: """Define the operations to compress a single weight’s training form. 'compress_training_weights' can refer to making the weight more amenable to compression or actually compress the weight. The default is an identity. Args: *training_weights: tf.Tensors representing all variables used during training, for a single compressible weight, in the order returned in `init_training_weights`. Returns: List of tf.Tensors to set to compressed or more compressible form. """ return list(training_weights) @abc.abstractmethod def decompress_weights( self, *compressed_weights: tf.Tensor) -> tf.Tensor: """Define the operations to decompress a single weight’s compressed form. The default is an identity. Args: *compressed_weights: tf.Tensors representing a single weight’s compressed form, coming from what’s returned in `compress`. Returns: A tf.Tensor representing the decompressed `compressed_weights`. """ def create_layer_for_training( layer: tf.keras.layers.Layer, algorithm: WeightCompressor) -> tf.keras.layers.Layer: return optimize.create_layer_for_training(layer, algorithm) def create_layer_for_inference( layer_for_training: tf.keras.layers.Layer, algorithm: WeightCompressor) -> tf.keras.layers.Layer: return optimize.create_layer_for_inference(layer_for_training, algorithm)
# Copyright 2021 Juan L. Gamella # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # 1. Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE # COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT # LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN # ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. # --------------------------------------------------------------------- # Unit tests import unittest import numpy as np import copy # Tested functions from causalicp.data import _Data class DataTests(unittest.TestCase): def setUp(self): self.p = 20 self.n_obs = [2, 3, 4] self.N = np.sum(self.n_obs) self.e = len(self.n_obs) self.target = 3 XX = [] for i, ne in enumerate(self.n_obs): X = np.tile(np.ones(self.p), (ne, 1)) X *= (i + 1) X[:, self.target] *= -1 XX.append(X) self.XX = XX def test_basic(self): data = _Data(self.XX) self.assertEqual(data.N, self.N) self.assertTrue((data.n_obs == self.n_obs).all()) self.assertEqual(data.p, self.p) self.assertEqual(data.e, self.e) self.assertEqual(data.e, len(self.XX)) def test_memory(self): # Test that the data is copied into the class XX = copy.deepcopy(self.XX) data = _Data(XX) XX[0][0, 0] = -100 data_pooled = data._pooled_data self.assertFalse(data_pooled[0, 0] == XX[0][0, 0])
# vim: tabstop=4 shiftwidth=4 softtabstop=4 # Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import logging import time from nova import vendor from twisted.internet import defer from nova import exception from nova import flags from nova import test from nova import utils from nova.compute import model from nova.compute import node FLAGS = flags.FLAGS class ModelTestCase(test.TrialTestCase): def setUp(self): super(ModelTestCase, self).setUp() self.flags(fake_libvirt=True, fake_storage=True, fake_users=True) def tearDown(self): model.Instance('i-test').destroy() model.Host('testhost').destroy() model.Daemon('testhost', 'nova-testdaemon').destroy() def create_instance(self): inst = model.Instance('i-test') inst['reservation_id'] = 'r-test' inst['launch_time'] = '10' inst['user_id'] = 'fake' inst['project_id'] = 'fake' inst['instance_type'] = 'm1.tiny' inst['node_name'] = FLAGS.node_name inst['mac_address'] = utils.generate_mac() inst['ami_launch_index'] = 0 inst.save() return inst def create_host(self): host = model.Host('testhost') host.save() return host def create_daemon(self): daemon = model.Daemon('testhost', 'nova-testdaemon') daemon.save() return daemon @defer.inlineCallbacks def test_create_instance(self): """store with create_instace, then test that a load finds it""" instance = yield self.create_instance() old = yield model.Instance(instance.identifier) self.assertFalse(old.is_new_record()) @defer.inlineCallbacks def test_delete_instance(self): """create, then destroy, then make sure loads a new record""" instance = yield self.create_instance() yield instance.destroy() newinst = yield model.Instance('i-test') self.assertTrue(newinst.is_new_record()) @defer.inlineCallbacks def test_instance_added_to_set(self): """create, then check that it is listed for the project""" instance = yield self.create_instance() found = False for x in model.InstanceDirectory().all: if x.identifier == 'i-test': found = True self.assert_(found) @defer.inlineCallbacks def test_instance_associates_project(self): """create, then check that it is listed for the project""" instance = yield self.create_instance() found = False for x in model.InstanceDirectory().by_project(instance.project): if x.identifier == 'i-test': found = True self.assert_(found) @defer.inlineCallbacks def test_host_class_finds_hosts(self): host = yield self.create_host() self.assertEqual('testhost', model.Host.lookup('testhost').identifier) @defer.inlineCallbacks def test_host_class_doesnt_find_missing_hosts(self): rv = yield model.Host.lookup('woahnelly') self.assertEqual(None, rv) @defer.inlineCallbacks def test_create_host(self): """store with create_host, then test that a load finds it""" host = yield self.create_host() old = yield model.Host(host.identifier) self.assertFalse(old.is_new_record()) @defer.inlineCallbacks def test_delete_host(self): """create, then destroy, then make sure loads a new record""" instance = yield self.create_host() yield instance.destroy() newinst = yield model.Host('testhost') self.assertTrue(newinst.is_new_record()) @defer.inlineCallbacks def test_host_added_to_set(self): """create, then check that it is included in list""" instance = yield self.create_host() found = False for x in model.Host.all(): if x.identifier == 'testhost': found = True self.assert_(found) @defer.inlineCallbacks def test_create_daemon_two_args(self): """create a daemon with two arguments""" d = yield self.create_daemon() d = model.Daemon('testhost', 'nova-testdaemon') self.assertFalse(d.is_new_record()) @defer.inlineCallbacks def test_create_daemon_single_arg(self): """Create a daemon using the combined host:bin format""" d = yield model.Daemon("testhost:nova-testdaemon") d.save() d = model.Daemon('testhost:nova-testdaemon') self.assertFalse(d.is_new_record()) @defer.inlineCallbacks def test_equality_of_daemon_single_and_double_args(self): """Create a daemon using the combined host:bin arg, find with 2""" d = yield model.Daemon("testhost:nova-testdaemon") d.save() d = model.Daemon('testhost', 'nova-testdaemon') self.assertFalse(d.is_new_record()) @defer.inlineCallbacks def test_equality_daemon_of_double_and_single_args(self): """Create a daemon using the combined host:bin arg, find with 2""" d = yield self.create_daemon() d = model.Daemon('testhost:nova-testdaemon') self.assertFalse(d.is_new_record()) @defer.inlineCallbacks def test_delete_daemon(self): """create, then destroy, then make sure loads a new record""" instance = yield self.create_daemon() yield instance.destroy() newinst = yield model.Daemon('testhost', 'nova-testdaemon') self.assertTrue(newinst.is_new_record()) @defer.inlineCallbacks def test_daemon_heartbeat(self): """Create a daemon, sleep, heartbeat, check for update""" d = yield self.create_daemon() ts = d['updated_at'] time.sleep(2) d.heartbeat() d2 = model.Daemon('testhost', 'nova-testdaemon') ts2 = d2['updated_at'] self.assert_(ts2 > ts) @defer.inlineCallbacks def test_daemon_added_to_set(self): """create, then check that it is included in list""" instance = yield self.create_daemon() found = False for x in model.Daemon.all(): if x.identifier == 'testhost:nova-testdaemon': found = True self.assert_(found) @defer.inlineCallbacks def test_daemon_associates_host(self): """create, then check that it is listed for the host""" instance = yield self.create_daemon() found = False for x in model.Daemon.by_host('testhost'): if x.identifier == 'testhost:nova-testdaemon': found = True self.assertTrue(found)
# coding: utf-8 # Copyright (c) 2016, 2022, Oracle and/or its affiliates. All rights reserved. # This software is dual-licensed to you under the Universal Permissive License (UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl or Apache License 2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose either license. from oci.util import formatted_flat_dict, NONE_SENTINEL, value_allowed_none_or_none_sentinel # noqa: F401 from oci.decorators import init_model_state_from_kwargs @init_model_state_from_kwargs class RepositorySummary(object): """ Summary of the repository. """ def __init__(self, **kwargs): """ Initializes a new RepositorySummary object with values from keyword arguments. The following keyword arguments are supported (corresponding to the getters/setters of this class): :param id: The value to assign to the id property of this RepositorySummary. :type id: str :param name: The value to assign to the name property of this RepositorySummary. :type name: str :param compartment_id: The value to assign to the compartment_id property of this RepositorySummary. :type compartment_id: str :param project_id: The value to assign to the project_id property of this RepositorySummary. :type project_id: str :param namespace: The value to assign to the namespace property of this RepositorySummary. :type namespace: str :param project_name: The value to assign to the project_name property of this RepositorySummary. :type project_name: str :param description: The value to assign to the description property of this RepositorySummary. :type description: str :param default_branch: The value to assign to the default_branch property of this RepositorySummary. :type default_branch: str :param repository_type: The value to assign to the repository_type property of this RepositorySummary. :type repository_type: str :param ssh_url: The value to assign to the ssh_url property of this RepositorySummary. :type ssh_url: str :param http_url: The value to assign to the http_url property of this RepositorySummary. :type http_url: str :param mirror_repository_config: The value to assign to the mirror_repository_config property of this RepositorySummary. :type mirror_repository_config: oci.devops.models.MirrorRepositoryConfig :param time_created: The value to assign to the time_created property of this RepositorySummary. :type time_created: datetime :param time_updated: The value to assign to the time_updated property of this RepositorySummary. :type time_updated: datetime :param lifecycle_state: The value to assign to the lifecycle_state property of this RepositorySummary. :type lifecycle_state: str :param lifecycle_details: The value to assign to the lifecycle_details property of this RepositorySummary. :type lifecycle_details: str :param freeform_tags: The value to assign to the freeform_tags property of this RepositorySummary. :type freeform_tags: dict(str, str) :param defined_tags: The value to assign to the defined_tags property of this RepositorySummary. :type defined_tags: dict(str, dict(str, object)) :param system_tags: The value to assign to the system_tags property of this RepositorySummary. :type system_tags: dict(str, dict(str, object)) """ self.swagger_types = { 'id': 'str', 'name': 'str', 'compartment_id': 'str', 'project_id': 'str', 'namespace': 'str', 'project_name': 'str', 'description': 'str', 'default_branch': 'str', 'repository_type': 'str', 'ssh_url': 'str', 'http_url': 'str', 'mirror_repository_config': 'MirrorRepositoryConfig', 'time_created': 'datetime', 'time_updated': 'datetime', 'lifecycle_state': 'str', 'lifecycle_details': 'str', 'freeform_tags': 'dict(str, str)', 'defined_tags': 'dict(str, dict(str, object))', 'system_tags': 'dict(str, dict(str, object))' } self.attribute_map = { 'id': 'id', 'name': 'name', 'compartment_id': 'compartmentId', 'project_id': 'projectId', 'namespace': 'namespace', 'project_name': 'projectName', 'description': 'description', 'default_branch': 'defaultBranch', 'repository_type': 'repositoryType', 'ssh_url': 'sshUrl', 'http_url': 'httpUrl', 'mirror_repository_config': 'mirrorRepositoryConfig', 'time_created': 'timeCreated', 'time_updated': 'timeUpdated', 'lifecycle_state': 'lifecycleState', 'lifecycle_details': 'lifecycleDetails', 'freeform_tags': 'freeformTags', 'defined_tags': 'definedTags', 'system_tags': 'systemTags' } self._id = None self._name = None self._compartment_id = None self._project_id = None self._namespace = None self._project_name = None self._description = None self._default_branch = None self._repository_type = None self._ssh_url = None self._http_url = None self._mirror_repository_config = None self._time_created = None self._time_updated = None self._lifecycle_state = None self._lifecycle_details = None self._freeform_tags = None self._defined_tags = None self._system_tags = None @property def id(self): """ **[Required]** Gets the id of this RepositorySummary. The OCID of the repository. This value is unique and immutable. :return: The id of this RepositorySummary. :rtype: str """ return self._id @id.setter def id(self, id): """ Sets the id of this RepositorySummary. The OCID of the repository. This value is unique and immutable. :param id: The id of this RepositorySummary. :type: str """ self._id = id @property def name(self): """ Gets the name of this RepositorySummary. Unique name of a repository. This value is mutable. :return: The name of this RepositorySummary. :rtype: str """ return self._name @name.setter def name(self, name): """ Sets the name of this RepositorySummary. Unique name of a repository. This value is mutable. :param name: The name of this RepositorySummary. :type: str """ self._name = name @property def compartment_id(self): """ **[Required]** Gets the compartment_id of this RepositorySummary. The OCID of the repository's compartment. :return: The compartment_id of this RepositorySummary. :rtype: str """ return self._compartment_id @compartment_id.setter def compartment_id(self, compartment_id): """ Sets the compartment_id of this RepositorySummary. The OCID of the repository's compartment. :param compartment_id: The compartment_id of this RepositorySummary. :type: str """ self._compartment_id = compartment_id @property def project_id(self): """ **[Required]** Gets the project_id of this RepositorySummary. The OCID of the DevOps project containing the repository. :return: The project_id of this RepositorySummary. :rtype: str """ return self._project_id @project_id.setter def project_id(self, project_id): """ Sets the project_id of this RepositorySummary. The OCID of the DevOps project containing the repository. :param project_id: The project_id of this RepositorySummary. :type: str """ self._project_id = project_id @property def namespace(self): """ Gets the namespace of this RepositorySummary. Tenancy unique namespace. :return: The namespace of this RepositorySummary. :rtype: str """ return self._namespace @namespace.setter def namespace(self, namespace): """ Sets the namespace of this RepositorySummary. Tenancy unique namespace. :param namespace: The namespace of this RepositorySummary. :type: str """ self._namespace = namespace @property def project_name(self): """ Gets the project_name of this RepositorySummary. Unique project name in a namespace. :return: The project_name of this RepositorySummary. :rtype: str """ return self._project_name @project_name.setter def project_name(self, project_name): """ Sets the project_name of this RepositorySummary. Unique project name in a namespace. :param project_name: The project_name of this RepositorySummary. :type: str """ self._project_name = project_name @property def description(self): """ Gets the description of this RepositorySummary. Details of the repository. Avoid entering confidential information. :return: The description of this RepositorySummary. :rtype: str """ return self._description @description.setter def description(self, description): """ Sets the description of this RepositorySummary. Details of the repository. Avoid entering confidential information. :param description: The description of this RepositorySummary. :type: str """ self._description = description @property def default_branch(self): """ Gets the default_branch of this RepositorySummary. The default branch of the repository. :return: The default_branch of this RepositorySummary. :rtype: str """ return self._default_branch @default_branch.setter def default_branch(self, default_branch): """ Sets the default_branch of this RepositorySummary. The default branch of the repository. :param default_branch: The default_branch of this RepositorySummary. :type: str """ self._default_branch = default_branch @property def repository_type(self): """ Gets the repository_type of this RepositorySummary. Type of repository. :return: The repository_type of this RepositorySummary. :rtype: str """ return self._repository_type @repository_type.setter def repository_type(self, repository_type): """ Sets the repository_type of this RepositorySummary. Type of repository. :param repository_type: The repository_type of this RepositorySummary. :type: str """ self._repository_type = repository_type @property def ssh_url(self): """ Gets the ssh_url of this RepositorySummary. SSH URL that you use to git clone, pull and push. :return: The ssh_url of this RepositorySummary. :rtype: str """ return self._ssh_url @ssh_url.setter def ssh_url(self, ssh_url): """ Sets the ssh_url of this RepositorySummary. SSH URL that you use to git clone, pull and push. :param ssh_url: The ssh_url of this RepositorySummary. :type: str """ self._ssh_url = ssh_url @property def http_url(self): """ Gets the http_url of this RepositorySummary. HTTP URL that you use to git clone, pull and push. :return: The http_url of this RepositorySummary. :rtype: str """ return self._http_url @http_url.setter def http_url(self, http_url): """ Sets the http_url of this RepositorySummary. HTTP URL that you use to git clone, pull and push. :param http_url: The http_url of this RepositorySummary. :type: str """ self._http_url = http_url @property def mirror_repository_config(self): """ Gets the mirror_repository_config of this RepositorySummary. :return: The mirror_repository_config of this RepositorySummary. :rtype: oci.devops.models.MirrorRepositoryConfig """ return self._mirror_repository_config @mirror_repository_config.setter def mirror_repository_config(self, mirror_repository_config): """ Sets the mirror_repository_config of this RepositorySummary. :param mirror_repository_config: The mirror_repository_config of this RepositorySummary. :type: oci.devops.models.MirrorRepositoryConfig """ self._mirror_repository_config = mirror_repository_config @property def time_created(self): """ Gets the time_created of this RepositorySummary. The time the repository was created. Format defined by `RFC3339`__. __ https://datatracker.ietf.org/doc/html/rfc3339 :return: The time_created of this RepositorySummary. :rtype: datetime """ return self._time_created @time_created.setter def time_created(self, time_created): """ Sets the time_created of this RepositorySummary. The time the repository was created. Format defined by `RFC3339`__. __ https://datatracker.ietf.org/doc/html/rfc3339 :param time_created: The time_created of this RepositorySummary. :type: datetime """ self._time_created = time_created @property def time_updated(self): """ Gets the time_updated of this RepositorySummary. The time the repository was updated. Format defined by `RFC3339`__. __ https://datatracker.ietf.org/doc/html/rfc3339 :return: The time_updated of this RepositorySummary. :rtype: datetime """ return self._time_updated @time_updated.setter def time_updated(self, time_updated): """ Sets the time_updated of this RepositorySummary. The time the repository was updated. Format defined by `RFC3339`__. __ https://datatracker.ietf.org/doc/html/rfc3339 :param time_updated: The time_updated of this RepositorySummary. :type: datetime """ self._time_updated = time_updated @property def lifecycle_state(self): """ Gets the lifecycle_state of this RepositorySummary. The current state of the repository. :return: The lifecycle_state of this RepositorySummary. :rtype: str """ return self._lifecycle_state @lifecycle_state.setter def lifecycle_state(self, lifecycle_state): """ Sets the lifecycle_state of this RepositorySummary. The current state of the repository. :param lifecycle_state: The lifecycle_state of this RepositorySummary. :type: str """ self._lifecycle_state = lifecycle_state @property def lifecycle_details(self): """ Gets the lifecycle_details of this RepositorySummary. A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state. :return: The lifecycle_details of this RepositorySummary. :rtype: str """ return self._lifecycle_details @lifecycle_details.setter def lifecycle_details(self, lifecycle_details): """ Sets the lifecycle_details of this RepositorySummary. A message describing the current state in more detail. For example, can be used to provide actionable information for a resource in Failed state. :param lifecycle_details: The lifecycle_details of this RepositorySummary. :type: str """ self._lifecycle_details = lifecycle_details @property def freeform_tags(self): """ Gets the freeform_tags of this RepositorySummary. Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. See `Resource Tags`__. Example: `{\"bar-key\": \"value\"}` __ https://docs.cloud.oracle.com/Content/General/Concepts/resourcetags.htm :return: The freeform_tags of this RepositorySummary. :rtype: dict(str, str) """ return self._freeform_tags @freeform_tags.setter def freeform_tags(self, freeform_tags): """ Sets the freeform_tags of this RepositorySummary. Simple key-value pair that is applied without any predefined name, type or scope. Exists for cross-compatibility only. See `Resource Tags`__. Example: `{\"bar-key\": \"value\"}` __ https://docs.cloud.oracle.com/Content/General/Concepts/resourcetags.htm :param freeform_tags: The freeform_tags of this RepositorySummary. :type: dict(str, str) """ self._freeform_tags = freeform_tags @property def defined_tags(self): """ Gets the defined_tags of this RepositorySummary. Defined tags for this resource. Each key is predefined and scoped to a namespace. See `Resource Tags`__. Example: `{\"foo-namespace\": {\"bar-key\": \"value\"}}` __ https://docs.cloud.oracle.com/Content/General/Concepts/resourcetags.htm :return: The defined_tags of this RepositorySummary. :rtype: dict(str, dict(str, object)) """ return self._defined_tags @defined_tags.setter def defined_tags(self, defined_tags): """ Sets the defined_tags of this RepositorySummary. Defined tags for this resource. Each key is predefined and scoped to a namespace. See `Resource Tags`__. Example: `{\"foo-namespace\": {\"bar-key\": \"value\"}}` __ https://docs.cloud.oracle.com/Content/General/Concepts/resourcetags.htm :param defined_tags: The defined_tags of this RepositorySummary. :type: dict(str, dict(str, object)) """ self._defined_tags = defined_tags @property def system_tags(self): """ Gets the system_tags of this RepositorySummary. Usage of system tag keys. These predefined keys are scoped to namespaces. See `Resource Tags`__. Example: `{\"orcl-cloud\": {\"free-tier-retained\": \"true\"}}` __ https://docs.cloud.oracle.com/Content/General/Concepts/resourcetags.htm :return: The system_tags of this RepositorySummary. :rtype: dict(str, dict(str, object)) """ return self._system_tags @system_tags.setter def system_tags(self, system_tags): """ Sets the system_tags of this RepositorySummary. Usage of system tag keys. These predefined keys are scoped to namespaces. See `Resource Tags`__. Example: `{\"orcl-cloud\": {\"free-tier-retained\": \"true\"}}` __ https://docs.cloud.oracle.com/Content/General/Concepts/resourcetags.htm :param system_tags: The system_tags of this RepositorySummary. :type: dict(str, dict(str, object)) """ self._system_tags = system_tags def __repr__(self): return formatted_flat_dict(self) def __eq__(self, other): if other is None: return False return self.__dict__ == other.__dict__ def __ne__(self, other): return not self == other
import json import math import operator import os import random from io import open from queue import PriorityQueue import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch import optim import functools import tatk.policy.mdrg.multiwoz.default_policy as policy SOS_token = 0 EOS_token = 1 UNK_token = 2 PAD_token = 3 # Shawn beam search decoding class BeamSearchNode(object): def __init__(self, h, prevNode, wordid, logp, leng): self.h = h self.prevNode = prevNode self.wordid = wordid self.logp = logp self.leng = leng def eval(self, repeatPenalty, tokenReward, scoreTable, alpha=1.0): reward = 0 alpha = 1.0 return self.logp / float(self.leng - 1 + 1e-6) + alpha * reward def init_lstm(cell, gain=1): init_gru(cell, gain) # positive forget gate bias (Jozefowicz et al., 2015) for _, _, ih_b, hh_b in cell.all_weights: l = len(ih_b) ih_b[l // 4:l // 2].data.fill_(1.0) hh_b[l // 4:l // 2].data.fill_(1.0) def init_gru(gru, gain=1): gru.reset_parameters() for _, hh, _, _ in gru.all_weights: for i in range(0, hh.size(0), gru.hidden_size): torch.nn.init.orthogonal_(hh[i:i+gru.hidden_size],gain=gain) def whatCellType(input_size, hidden_size, cell_type, dropout_rate): if cell_type == 'rnn': cell = nn.RNN(input_size, hidden_size, dropout=dropout_rate, batch_first=False) init_gru(cell) return cell elif cell_type == 'gru': cell = nn.GRU(input_size, hidden_size, dropout=dropout_rate, batch_first=False) init_gru(cell) return cell elif cell_type == 'lstm': cell = nn.LSTM(input_size, hidden_size, dropout=dropout_rate, batch_first=False) init_lstm(cell) return cell elif cell_type == 'bigru': cell = nn.GRU(input_size, hidden_size, bidirectional=True, dropout=dropout_rate, batch_first=False) init_gru(cell) return cell elif cell_type == 'bilstm': cell = nn.LSTM(input_size, hidden_size, bidirectional=True, dropout=dropout_rate, batch_first=False) init_lstm(cell) return cell class EncoderRNN(nn.Module): def __init__(self, input_size, embedding_size, hidden_size, cell_type, depth, dropout): super(EncoderRNN, self).__init__() self.input_size = input_size self.hidden_size = hidden_size self.embed_size = embedding_size self.n_layers = depth self.dropout = dropout self.bidirectional = False if 'bi' in cell_type: self.bidirectional = True padding_idx = 3 self.embedding = nn.Embedding(input_size, embedding_size, padding_idx=padding_idx) self.rnn = whatCellType(embedding_size, hidden_size, cell_type, dropout_rate=self.dropout) def forward(self, input_seqs, input_lens, hidden=None): """ forward procedure. **No need for inputs to be sorted** :param input_seqs: Variable of [T,B] :param hidden: :param input_lens: *numpy array* of len for each input sequence :return: """ input_lens = np.asarray(input_lens) input_seqs = input_seqs.transpose(0,1) #batch_size = input_seqs.size(1) embedded = self.embedding(input_seqs) embedded = embedded.transpose(0, 1) # [B,T,E] sort_idx = np.argsort(-input_lens) unsort_idx = torch.LongTensor(np.argsort(sort_idx)) input_lens = input_lens[sort_idx] sort_idx = torch.LongTensor(sort_idx) embedded = embedded[sort_idx].transpose(0, 1) # [T,B,E] packed = torch.nn.utils.rnn.pack_padded_sequence(embedded, input_lens) outputs, hidden = self.rnn(packed, hidden) outputs, _ = torch.nn.utils.rnn.pad_packed_sequence(outputs) if self.bidirectional: outputs = outputs[:, :, :self.hidden_size] + outputs[:, :, self.hidden_size:] outputs = outputs.transpose(0, 1)[unsort_idx].transpose(0, 1).contiguous() if isinstance(hidden, tuple): hidden = list(hidden) hidden[0] = hidden[0].transpose(0, 1)[unsort_idx].transpose(0, 1).contiguous() hidden[1] = hidden[1].transpose(0, 1)[unsort_idx].transpose(0, 1).contiguous() hidden = tuple(hidden) else: hidden = hidden.transpose(0, 1)[unsort_idx].transpose(0, 1).contiguous() return outputs, hidden class Attn(nn.Module): def __init__(self, method, hidden_size): super(Attn, self).__init__() self.method = method self.hidden_size = hidden_size self.attn = nn.Linear(self.hidden_size * 2, hidden_size) self.v = nn.Parameter(torch.rand(hidden_size)) stdv = 1. / math.sqrt(self.v.size(0)) self.v.data.normal_(mean=0, std=stdv) def forward(self, hidden, encoder_outputs): ''' :param hidden: previous hidden state of the decoder, in shape (layers*directions,B,H) :param encoder_outputs: encoder outputs from Encoder, in shape (T,B,H) :return attention energies in shape (B,T) ''' max_len = encoder_outputs.size(0) H = hidden.repeat(max_len,1,1).transpose(0,1) encoder_outputs = encoder_outputs.transpose(0,1) # [T,B,H] -> [B,T,H] attn_energies = self.score(H,encoder_outputs) # compute attention score return F.softmax(attn_energies, dim=1).unsqueeze(1) # normalize with softmax def score(self, hidden, encoder_outputs): cat = torch.cat([hidden, encoder_outputs], 2) energy = torch.tanh(self.attn(cat)) # [B*T*2H]->[B*T*H] energy = energy.transpose(2,1) # [B*H*T] v = self.v.repeat(encoder_outputs.data.shape[0],1).unsqueeze(1) #[B*1*H] energy = torch.bmm(v,energy) # [B*1*T] return energy.squeeze(1) # [B*T] class SeqAttnDecoderRNN(nn.Module): def __init__(self, embedding_size, hidden_size, output_size, cell_type, dropout_p=0.1, max_length=30): super(SeqAttnDecoderRNN, self).__init__() # Define parameters self.hidden_size = hidden_size self.embed_size = embedding_size self.output_size = output_size self.n_layers = 1 self.dropout_p = dropout_p # Define layers self.embedding = nn.Embedding(output_size, embedding_size) self.dropout = nn.Dropout(dropout_p) if 'bi' in cell_type: # we dont need bidirectionality in decoding cell_type = cell_type.strip('bi') self.rnn = whatCellType(embedding_size + hidden_size, hidden_size, cell_type, dropout_rate=self.dropout_p) self.out = nn.Linear(hidden_size, output_size) self.score = nn.Linear(self.hidden_size + self.hidden_size, self.hidden_size) self.attn_combine = nn.Linear(embedding_size + hidden_size, embedding_size) # attention self.method = 'concat' self.attn = nn.Linear(self.hidden_size * 2, hidden_size) self.v = nn.Parameter(torch.rand(hidden_size)) stdv = 1. / math.sqrt(self.v.size(0)) self.v.data.normal_(mean=0, std=stdv) def forward(self, input, hidden, encoder_outputs): if isinstance(hidden, tuple): h_t = hidden[0] else: h_t = hidden encoder_outputs = encoder_outputs.transpose(0, 1) embedded = self.embedding(input) # .view(1, 1, -1) # embedded = F.dropout(embedded, self.dropout_p) # SCORE 3 max_len = encoder_outputs.size(1) h_t = h_t.transpose(0, 1) # [1,B,D] -> [B,1,D] h_t = h_t.repeat(1, max_len, 1) # [B,1,D] -> [B,T,D] energy = self.attn(torch.cat((h_t, encoder_outputs), 2)) # [B,T,2D] -> [B,T,D] energy = torch.tanh(energy) energy = energy.transpose(2, 1) # [B,H,T] v = self.v.repeat(encoder_outputs.size(0), 1).unsqueeze(1) # [B,1,H] energy = torch.bmm(v, energy) # [B,1,T] attn_weights = F.softmax(energy, dim=2) # [B,1,T] # getting context context = torch.bmm(attn_weights, encoder_outputs) # [B,1,H] # context = torch.bmm(attn_weights.unsqueeze(0), encoder_outputs.unsqueeze(0)) #[B,1,H] # Combine embedded input word and attended context, run through RNN rnn_input = torch.cat((embedded, context), 2) rnn_input = rnn_input.transpose(0, 1) output, hidden = self.rnn(rnn_input, hidden) output = output.squeeze(0) # (1,B,V)->(B,V) output = F.log_softmax(self.out(output), dim=1) return output, hidden # , attn_weights class DecoderRNN(nn.Module): def __init__(self, embedding_size, hidden_size, output_size, cell_type, dropout=0.1): super(DecoderRNN, self).__init__() self.hidden_size = hidden_size self.cell_type = cell_type padding_idx = 3 self.embedding = nn.Embedding(num_embeddings=output_size, embedding_dim=embedding_size, padding_idx=padding_idx ) if 'bi' in cell_type: # we dont need bidirectionality in decoding cell_type = cell_type.strip('bi') self.rnn = whatCellType(embedding_size, hidden_size, cell_type, dropout_rate=dropout) self.dropout_rate = dropout self.out = nn.Linear(hidden_size, output_size) def forward(self, input, hidden, not_used): embedded = self.embedding(input).transpose(0, 1) # [B,1] -> [ 1,B, D] embedded = F.dropout(embedded, self.dropout_rate) output = embedded #output = F.relu(embedded) output, hidden = self.rnn(output, hidden) out = self.out(output.squeeze(0)) output = F.log_softmax(out, dim=1) return output, hidden class Model(nn.Module): def __init__(self, args, input_lang_index2word, output_lang_index2word, input_lang_word2index, output_lang_word2index): super(Model, self).__init__() self.args = args self.max_len = args.max_len self.output_lang_index2word = output_lang_index2word self.input_lang_index2word = input_lang_index2word self.output_lang_word2index = output_lang_word2index self.input_lang_word2index = input_lang_word2index self.hid_size_enc = args.hid_size_enc self.hid_size_dec = args.hid_size_dec self.hid_size_pol = args.hid_size_pol self.emb_size = args.emb_size self.db_size = args.db_size self.bs_size = args.bs_size self.cell_type = args.cell_type if 'bi' in self.cell_type: self.num_directions = 2 else: self.num_directions = 1 self.depth = args.depth self.use_attn = args.use_attn self.attn_type = args.attention_type self.dropout = args.dropout self.device = torch.device("cuda" if args.cuda else "cpu") self.model_dir = args.model_dir self.model_name = args.model_name self.teacher_forcing_ratio = args.teacher_ratio self.vocab_size = args.vocab_size self.epsln = 10E-5 torch.manual_seed(args.seed) self.build_model() self.getCount() try: assert self.args.beam_width > 0 self.beam_search = True except: self.beam_search = False self.global_step = 0 def cuda_(self, var): return var.cuda() if self.args.cuda else var def build_model(self): self.encoder = EncoderRNN(len(self.input_lang_index2word), self.emb_size, self.hid_size_enc, self.cell_type, self.depth, self.dropout).to(self.device) self.policy = policy.DefaultPolicy(self.hid_size_pol, self.hid_size_enc, self.db_size, self.bs_size).to(self.device) if self.use_attn: if self.attn_type == 'bahdanau': self.decoder = SeqAttnDecoderRNN(self.emb_size, self.hid_size_dec, len(self.output_lang_index2word), self.cell_type, self.dropout, self.max_len).to(self.device) else: self.decoder = DecoderRNN(self.emb_size, self.hid_size_dec, len(self.output_lang_index2word), self.cell_type, self.dropout).to(self.device) if self.args.mode == 'train': self.gen_criterion = nn.NLLLoss(ignore_index=3, size_average=True) # logsoftmax is done in decoder part self.setOptimizers() def train(self, input_tensor, input_lengths, target_tensor, target_lengths, db_tensor, bs_tensor, dial_name=None): proba, _, decoded_sent = self.forward(input_tensor, input_lengths, target_tensor, target_lengths, db_tensor, bs_tensor) proba = proba.view(-1, self.vocab_size) self.gen_loss = self.gen_criterion(proba, target_tensor.view(-1)) self.loss = self.gen_loss self.loss.backward() grad = self.clipGradients() self.optimizer.step() self.optimizer.zero_grad() #self.printGrad() return self.loss.item(), 0, grad def setOptimizers(self): self.optimizer_policy = None if self.args.optim == 'sgd': self.optimizer = optim.SGD(lr=self.args.lr_rate, params=filter(lambda x: x.requires_grad, self.parameters()), weight_decay=self.args.l2_norm) elif self.args.optim == 'adadelta': self.optimizer = optim.Adadelta(lr=self.args.lr_rate, params=filter(lambda x: x.requires_grad, self.parameters()), weight_decay=self.args.l2_norm) elif self.args.optim == 'adam': self.optimizer = optim.Adam(lr=self.args.lr_rate, params=filter(lambda x: x.requires_grad, self.parameters()), weight_decay=self.args.l2_norm) def forward(self, input_tensor, input_lengths, target_tensor, target_lengths, db_tensor, bs_tensor): """Given the user sentence, user belief state and database pointer, encode the sentence, decide what policy vector construct and feed it as the first hiddent state to the decoder.""" target_length = target_tensor.size(1) # for fixed encoding this is zero so it does not contribute batch_size, seq_len = input_tensor.size() # ENCODER encoder_outputs, encoder_hidden = self.encoder(input_tensor, input_lengths) # POLICY decoder_hidden = self.policy(encoder_hidden, db_tensor, bs_tensor) # GENERATOR # Teacher forcing: Feed the target as the next input _, target_len = target_tensor.size() decoder_input = torch.LongTensor([[SOS_token] for _ in range(batch_size)], device=self.device) proba = torch.zeros(batch_size, target_length, self.vocab_size) # [B,T,V] for t in range(target_len): decoder_output, decoder_hidden = self.decoder(decoder_input, decoder_hidden, encoder_outputs) use_teacher_forcing = True if random.random() < self.args.teacher_ratio else False if use_teacher_forcing: decoder_input = target_tensor[:, t].view(-1, 1) # [B,1] Teacher forcing else: # Without teacher forcing: use its own predictions as the next input topv, topi = decoder_output.topk(1) decoder_input = topi.squeeze().detach() # detach from history as input proba[:, t, :] = decoder_output decoded_sent = None return proba, None, decoded_sent def predict(self, input_tensor, input_lengths, target_tensor, target_lengths, db_tensor, bs_tensor): with torch.no_grad(): # ENCODER encoder_outputs, encoder_hidden = self.encoder(input_tensor, input_lengths) # POLICY decoder_hidden = self.policy(encoder_hidden, db_tensor, bs_tensor) # GENERATION decoded_words = self.decode(target_tensor, decoder_hidden, encoder_outputs) return decoded_words, 0 def decode(self, target_tensor, decoder_hidden, encoder_outputs): decoder_hiddens = decoder_hidden if self.beam_search: # wenqiang style - sequicity decoded_sentences = [] for idx in range(target_tensor.size(0)): if isinstance(decoder_hiddens, tuple): # LSTM case decoder_hidden = (decoder_hiddens[0][:,idx, :].unsqueeze(0),decoder_hiddens[1][:,idx, :].unsqueeze(0)) else: decoder_hidden = decoder_hiddens[:, idx, :].unsqueeze(0) encoder_output = encoder_outputs[:,idx, :].unsqueeze(1) # Beam start self.topk = 1 endnodes = [] # stored end nodes number_required = min((self.topk + 1), self.topk - len(endnodes)) decoder_input = torch.LongTensor([[SOS_token]], device=self.device) # starting node hidden vector, prevNode, wordid, logp, leng, node = BeamSearchNode(decoder_hidden, None, decoder_input, 0, 1) nodes = PriorityQueue() # start the queue nodes.put((-node.eval(None, None, None, None), node)) # start beam search qsize = 1 while True: # give up when decoding takes too long if qsize > 2000: break # fetch the best node score, n = nodes.get() decoder_input = n.wordid decoder_hidden = n.h if n.wordid.item() == EOS_token and n.prevNode != None: # its not empty endnodes.append((score, n)) # if reach maximum # of sentences required if len(endnodes) >= number_required: break else: continue # decode for one step using decoder decoder_output, decoder_hidden = self.decoder(decoder_input, decoder_hidden, encoder_output) log_prob, indexes = torch.topk(decoder_output, self.args.beam_width) nextnodes = [] for new_k in range(self.args.beam_width): decoded_t = indexes[0][new_k].view(1, -1) log_p = log_prob[0][new_k].item() node = BeamSearchNode(decoder_hidden, n, decoded_t, n.logp + log_p, n.leng + 1) score = -node.eval(None, None, None, None) nextnodes.append((score, node)) # put them into queue for i in range(len(nextnodes)): score, nn = nextnodes[i] nodes.put((score, nn)) # increase qsize qsize += len(nextnodes) # choose nbest paths, back trace them if len(endnodes) == 0: endnodes = [nodes.get() for n in range(self.topk)] utterances = [] for score, n in sorted(endnodes, key=operator.itemgetter(0)): utterance = [] utterance.append(n.wordid) # back trace while n.prevNode != None: n = n.prevNode utterance.append(n.wordid) utterance = utterance[::-1] utterances.append(utterance) decoded_words = utterances[0] decoded_sentence = [self.output_index2word(str(ind.item())) for ind in decoded_words] #print(decoded_sentence) decoded_sentences.append(' '.join(decoded_sentence[1:-1])) return decoded_sentences else: # GREEDY DECODING decoded_sentences = self.greedy_decode(decoder_hidden, encoder_outputs, target_tensor) return decoded_sentences def greedy_decode(self, decoder_hidden, encoder_outputs, target_tensor): decoded_sentences = [] batch_size, seq_len = target_tensor.size() decoder_input = torch.LongTensor([[SOS_token] for _ in range(batch_size)], device=self.device) decoded_words = torch.zeros((batch_size, self.max_len)) for t in range(self.max_len): decoder_output, decoder_hidden = self.decoder(decoder_input, decoder_hidden, encoder_outputs) topv, topi = decoder_output.data.topk(1) # get candidates topi = topi.view(-1) decoded_words[:, t] = topi decoder_input = topi.detach().view(-1, 1) for sentence in decoded_words: sent = [] for ind in sentence: if self.output_index2word(str(int(ind.item()))) == self.output_index2word(str(EOS_token)): break sent.append(self.output_index2word(str(int(ind.item())))) decoded_sentences.append(' '.join(sent)) return decoded_sentences def clipGradients(self): grad = torch.nn.utils.clip_grad_norm_(self.parameters(), self.args.clip) return grad def saveModel(self, iter): print('Saving parameters..') if not os.path.exists(os.path.join(os.path.dirname(__file__), self.model_dir)): os.makedirs(os.path.join(os.path.dirname(__file__), self.model_dir)) # print(self.model_dir) torch.save(self.encoder.state_dict(), os.path.join(os.path.dirname(__file__), self.model_dir + self.model_name + '-' + str(iter) + '.enc')) torch.save(self.policy.state_dict(), os.path.join(os.path.dirname(__file__), self.model_dir + self.model_name + '-' + str(iter) + '.pol')) torch.save(self.decoder.state_dict(), os.path.join(os.path.dirname(__file__), self.model_dir + self.model_name + '-' + str(iter) + '.dec')) with open(os.path.join(os.path.dirname(__file__), self.model_dir + self.model_name + '.config'), 'w') as f: f.write(json.dumps(vars(self.args), ensure_ascii=False, indent=4)) def loadModel(self, iter=0): print('Loading parameters of iter %s ' % iter) self.encoder.load_state_dict(torch.load(os.path.join(os.path.dirname(__file__), self.model_dir + self.model_name + '-' + str(iter) + '.enc'))) self.policy.load_state_dict(torch.load(os.path.join(os.path.dirname(__file__), self.model_dir + self.model_name + '-' + str(iter) + '.pol'))) self.decoder.load_state_dict(torch.load(os.path.join(os.path.dirname(__file__), self.model_dir + self.model_name + '-' + str(iter) + '.dec'))) def input_index2word(self, index): if index in self.input_lang_index2word.has_key: return self.input_lang_index2word[index] else: raise UserWarning('We are using UNK') def output_index2word(self, index): if index in self.output_lang_index2word: return self.output_lang_index2word[index] else: raise UserWarning('We are using UNK') def input_word2index(self, index): if index in self.input_lang_word2index: return self.input_lang_word2index[index] else: return 2 def output_word2index(self, index): if index in self.output_lang_word2index: return self.output_lang_word2index[index] else: return 2 def getCount(self): learnable_parameters = filter(lambda p: p.requires_grad, self.parameters()) param_cnt = sum([functools.reduce((lambda x, y: x * y), param.shape) for param in learnable_parameters]) print('Model has', param_cnt, ' parameters.') def printGrad(self): learnable_parameters = filter(lambda p: p.requires_grad, self.parameters()) for idx, param in enumerate(learnable_parameters): print(param.grad, param.shape)
from .pybitrix24 import Bitrix24 __version__ = '0.5.0'
#!/usr/bin/env python ###################################################################### ## File: create_public_pileup_plots.py ###################################################################### # NOTE: Typical way to create the pileup ROOT file from the cached txt # files (maintained by Mike Hildreth): # pileupCalc.py -i /afs/cern.ch/cms/CAF/CMSCOMM/COMM_DQM/certification/Collisions12/8TeV/DCSOnly/json_DCSONLY.txt \ # --inputLumiJSON=/afs/cern.ch/cms/CAF/CMSCOMM/COMM_DQM/certification/Collisions12/8TeV/PileUp/pileup_latest.txt \ # --calcMode true --maxPileupBin=40 pu2012DCSONLY.root import sys import os import commands import math import optparse import ConfigParser import matplotlib matplotlib.use('Agg') from matplotlib import pyplot as plt # FIX FIX FIX # This fixes a well-know bug with stepfilled logarithmic histograms in # Matplotlib. from RecoLuminosity.LumiDB.mpl_axes_hist_fix import hist if matplotlib.__version__ != '1.0.1': print >> sys.stderr, \ "ERROR The %s script contains a hard-coded bug-fix " \ "for Matplotlib 1.0.1. The Matplotlib version loaded " \ "is %s" % (__file__, matplotlib.__version__) sys.exit(1) matplotlib.axes.Axes.hist = hist # FIX FIX FIX end from ROOT import gROOT gROOT.SetBatch(True) from ROOT import PyConfig PyConfig.IgnoreCommandLineOptions = True from ROOT import TFile from RecoLuminosity.LumiDB.public_plots_tools import ColorScheme from RecoLuminosity.LumiDB.public_plots_tools import LatexifyUnits from RecoLuminosity.LumiDB.public_plots_tools import AddLogo from RecoLuminosity.LumiDB.public_plots_tools import InitMatplotlib from RecoLuminosity.LumiDB.public_plots_tools import RoundAwayFromZero from RecoLuminosity.LumiDB.public_plots_tools import SavePlot from RecoLuminosity.LumiDB.public_plots_tools import FONT_PROPS_SUPTITLE from RecoLuminosity.LumiDB.public_plots_tools import FONT_PROPS_TITLE from RecoLuminosity.LumiDB.public_plots_tools import FONT_PROPS_AX_TITLE from RecoLuminosity.LumiDB.public_plots_tools import FONT_PROPS_TICK_LABEL try: import debug_hook import pdb except ImportError: pass ###################################################################### def TweakPlot(fig, ax, add_extra_head_room=False): # Fiddle with axes ranges etc. ax.relim() ax.autoscale_view(False, True, True) for label in ax.get_xticklabels(): label.set_ha("right") label.set_rotation(30.) # Bit of magic here: increase vertical scale by one tick to make # room for the legend. if add_extra_head_room: y_ticks = ax.get_yticks() (y_min, y_max) = ax.get_ylim() is_log = (ax.get_yscale() == "log") y_max_new = y_max if is_log: tmp = y_ticks[-1] / y_ticks[-2] y_max_new = y_max * math.pow(tmp, add_extra_head_room) else: tmp = y_ticks[-1] - y_ticks[-2] y_max_new = y_max + add_extra_head_room * tmp ax.set_ylim(y_min, y_max_new) # Add a second vertical axis on the right-hand side. ax_sec = ax.twinx() ax_sec.set_ylim(ax.get_ylim()) ax_sec.set_yscale(ax.get_yscale()) for ax_tmp in fig.axes: for sub_ax in [ax_tmp.xaxis, ax_tmp.yaxis]: for label in sub_ax.get_ticklabels(): label.set_font_properties(FONT_PROPS_TICK_LABEL) if is_log: fig.subplots_adjust(top=.89, bottom=.125, left=.11, right=.925) else: fig.subplots_adjust(top=.89, bottom=.125, left=.1, right=.925) # End of TweakPlot(). ###################################################################### if __name__ == "__main__": desc_str = "This script creates the official CMS pileup plots " \ "based on the output from the pileupCalc.py script." arg_parser = optparse.OptionParser(description=desc_str) arg_parser.add_option("--ignore-cache", action="store_true", help="Ignore all cached PU results " \ "and run pileupCalc. " \ "(Rebuilds the cache as well.)") (options, args) = arg_parser.parse_args() if len(args) != 1: print >> sys.stderr, \ "ERROR Need exactly one argument: a config file name" sys.exit(1) config_file_name = args[0] ignore_cache = options.ignore_cache cfg_defaults = { "pileupcalc_flags" : "", "color_schemes" : "Joe, Greg", "verbose" : False } cfg_parser = ConfigParser.SafeConfigParser(cfg_defaults) if not os.path.exists(config_file_name): print >> sys.stderr, \ "ERROR Config file '%s' does not exist" % config_file_name sys.exit(1) cfg_parser.read(config_file_name) # Location of the cached ROOT file. cache_file_dir = cfg_parser.get("general", "cache_dir") # Which color scheme to use for drawing the plots. color_scheme_names_tmp = cfg_parser.get("general", "color_schemes") color_scheme_names = [i.strip() for i in color_scheme_names_tmp.split(",")] # Flag to turn on verbose output. verbose = cfg_parser.getboolean("general", "verbose") # Some details on how to invoke pileupCalc. pileupcalc_flags_from_cfg = cfg_parser.get("general", "pileupcalc_flags") input_json = cfg_parser.get("general", "input_json") input_lumi_json = cfg_parser.get("general", "input_lumi_json") # Some things needed for titles etc. particle_type_str = cfg_parser.get("general", "particle_type_str") year = int(cfg_parser.get("general", "year")) cms_energy_str = cfg_parser.get("general", "cms_energy_str") ########## # Tell the user what's going to happen. print "Using configuration from file '%s'" % config_file_name print "Using color schemes '%s'" % ", ".join(color_scheme_names) print "Using additional pileupCalc flags from configuration: '%s'" % \ pileupcalc_flags_from_cfg print "Using input JSON filter: %s" % input_json print "Using input lumi JSON filter: %s" % input_lumi_json ########## InitMatplotlib() ########## # First run pileupCalc. tmp_file_name = os.path.join(cache_file_dir,"pileup_calc_tmp.root") if ignore_cache: cmd = "pileupCalc.py -i %s --inputLumiJSON=%s %s %s" % \ (input_json, input_lumi_json, pileupcalc_flags_from_cfg, tmp_file_name) print "Running pileupCalc (this may take a while)" if verbose: print " pileupCalc cmd: '%s'" % cmd (status, output) = commands.getstatusoutput(cmd) if status != 0: print >> sys.stderr, \ "ERROR Problem running pileupCalc: %s" % output sys.exit(1) ########## in_file = TFile.Open(tmp_file_name, "READ") if not in_file or in_file.IsZombie(): print >> sys.stderr, \ "ERROR Could not read back pileupCalc results" sys.exit(1) pileup_hist = in_file.Get("pileup") pileup_hist.SetDirectory(0) in_file.Close() ########## # And this is where the plotting starts. print "Drawing things..." ColorScheme.InitColors() # Turn the ROOT histogram into a Matplotlib one. bin_edges = [pileup_hist.GetBinLowEdge(i) \ for i in xrange(1, pileup_hist.GetNbinsX() + 1)] vals = [pileup_hist.GetBinCenter(i) \ for i in xrange(1, pileup_hist.GetNbinsX() + 1)] weights = [pileup_hist.GetBinContent(i) \ for i in xrange(1, pileup_hist.GetNbinsX() + 1)] # NOTE: Convert units to /pb! weights = [1.e-6 * i for i in weights] # Loop over all color schemes. for color_scheme_name in color_scheme_names: print " color scheme '%s'" % color_scheme_name color_scheme = ColorScheme(color_scheme_name) color_line_pileup = color_scheme.color_line_pileup color_fill_pileup = color_scheme.color_fill_pileup logo_name = color_scheme.logo_name file_suffix = color_scheme.file_suffix fig = plt.figure() for type in ["lin", "log"]: is_log = (type == "log") log_setting = False if is_log: min_val = min(weights) exp = RoundAwayFromZero(math.log10(min_val)) log_setting = math.pow(10., exp) fig.clear() ax = fig.add_subplot(111) ax.hist(vals, bins=bin_edges, weights=weights, log=log_setting, histtype="stepfilled", edgecolor=color_line_pileup, facecolor=color_fill_pileup) # Set titles and labels. fig.suptitle(r"CMS Average Pileup, " \ "%s, %d, $\mathbf{\sqrt{s} =}$ %s" % \ (particle_type_str, year, cms_energy_str), fontproperties=FONT_PROPS_SUPTITLE) ax.set_xlabel(r"Mean number of interactions per crossing", fontproperties=FONT_PROPS_AX_TITLE) ax.set_ylabel(r"Recorded Luminosity (%s/%.2f)" % \ (LatexifyUnits("pb^{-1}"), pileup_hist.GetBinWidth(1)), fontproperties=FONT_PROPS_AX_TITLE) # Add the average pileup number to the top right. ax.text(.95, .925, r"<$\mathbf{\mu}$> = %.0f" % \ round(pileup_hist.GetMean()), transform = ax.transAxes, horizontalalignment="right", fontproperties=FONT_PROPS_AX_TITLE) # Add the logo. AddLogo(logo_name, ax) TweakPlot(fig, ax, True) log_suffix = "" if is_log: log_suffix = "_log" SavePlot(fig, "pileup_%s_%d%s%s" % \ (particle_type_str, year, log_suffix, file_suffix)) plt.close() ########## print "Done" ######################################################################
#!/usr/bin/env python # -*- coding: utf-8 -*- ################################################################### # Author: Mu yanru # Date : 2019.3 # Email : muyanru345@163.com ################################################################### from dayu_widgets3.collapse import MCollapse from dayu_widgets3.label import MLabel from dayu_widgets3.qt import * class CollapseExample(QWidget): def __init__(self, parent=None): super(CollapseExample, self).__init__(parent) self._init_ui() def _init_ui(self): label_1 = MLabel(u'史蒂夫·乔布斯(Steve Jobs),1955年2月24日生于美国加利福尼亚州旧金山,美国发明家、企业家、美国苹果公司联合创办人。') label_2 = MLabel( u'斯蒂夫·盖瑞·沃兹尼亚克(Stephen Gary Wozniak),美国电脑工程师,曾与史蒂夫·乔布斯合伙创立苹果电脑(今之苹果公司)。斯蒂夫·盖瑞·沃兹尼亚克曾就读于美国科罗拉多大学,后转学入美国著名高等学府加州大学伯克利分校(UC Berkeley)并获得电机工程及计算机(EECS)本科学位(1987年)。') label_3 = MLabel( u'乔纳森·伊夫是一位工业设计师,现任Apple公司设计师兼资深副总裁,英国爵士。他曾参与设计了iPod,iMac,iPhone,iPad等众多苹果产品。除了乔布斯,他是对苹果那些著名的产品最有影响力的人。') label_1.setWordWrap(True) label_2.setWordWrap(True) label_3.setWordWrap(True) section_list = [ { 'title': u'史蒂夫乔布斯', 'expand': True, 'widget': label_1 }, { 'title': u'斯蒂夫·盖瑞·沃兹尼亚克', 'expand': True, 'widget': label_2 } ] section_group = MCollapse() section_group.add_section_list(section_list) main_lay = QVBoxLayout() main_lay.addWidget(section_group) main_lay.addStretch() self.setLayout(main_lay) if __name__ == '__main__': import sys app = QApplication(sys.argv) test = CollapseExample() from dayu_widgets3 import dayu_theme dayu_theme.apply(test) test.show() sys.exit(app.exec_())
""" Here is probably the place to write the docs, since the test-cases show how the type behave. Later... """ from ctypes import * import sys, unittest try: WINFUNCTYPE except NameError: # fake to enable this test on Linux WINFUNCTYPE = CFUNCTYPE import _ctypes_test dll = CDLL(_ctypes_test.__file__) if sys.platform == "win32": windll = WinDLL(_ctypes_test.__file__) class POINT(Structure): _fields_ = [("x", c_int), ("y", c_int)] class RECT(Structure): _fields_ = [("left", c_int), ("top", c_int), ("right", c_int), ("bottom", c_int)] class FunctionTestCase(unittest.TestCase): def test_mro(self): # in Python 2.3, this raises TypeError: MRO conflict among bases classes, # in Python 2.2 it works. # # But in early versions of _ctypes.c, the result of tp_new # wasn't checked, and it even crashed Python. # Found by Greg Chapman. try: class X(object, Array): _length_ = 5 _type_ = "i" except TypeError: pass from _ctypes import _Pointer try: class X(object, _Pointer): pass except TypeError: pass from _ctypes import _SimpleCData try: class X(object, _SimpleCData): _type_ = "i" except TypeError: pass try: class X(object, Structure): _fields_ = [] except TypeError: pass def test_wchar_parm(self): try: c_wchar except NameError: return f = dll._testfunc_i_bhilfd f.argtypes = [c_byte, c_wchar, c_int, c_long, c_float, c_double] result = f(1, "x", 3, 4, 5.0, 6.0) self.assertEqual(result, 139) self.assertEqual(type(result), int) def test_wchar_result(self): try: c_wchar except NameError: return f = dll._testfunc_i_bhilfd f.argtypes = [c_byte, c_short, c_int, c_long, c_float, c_double] f.restype = c_wchar result = f(0, 0, 0, 0, 0, 0) self.assertEqual(result, '\x00') def test_voidresult(self): f = dll._testfunc_v f.restype = None f.argtypes = [c_int, c_int, POINTER(c_int)] result = c_int() self.assertEqual(None, f(1, 2, byref(result))) self.assertEqual(result.value, 3) def test_intresult(self): f = dll._testfunc_i_bhilfd f.argtypes = [c_byte, c_short, c_int, c_long, c_float, c_double] f.restype = c_int result = f(1, 2, 3, 4, 5.0, 6.0) self.assertEqual(result, 21) self.assertEqual(type(result), int) result = f(-1, -2, -3, -4, -5.0, -6.0) self.assertEqual(result, -21) self.assertEqual(type(result), int) # If we declare the function to return a short, # is the high part split off? f.restype = c_short result = f(1, 2, 3, 4, 5.0, 6.0) self.assertEqual(result, 21) self.assertEqual(type(result), int) result = f(1, 2, 3, 0x10004, 5.0, 6.0) self.assertEqual(result, 21) self.assertEqual(type(result), int) # You cannot assign character format codes as restype any longer self.assertRaises(TypeError, setattr, f, "restype", "i") def test_floatresult(self): f = dll._testfunc_f_bhilfd f.argtypes = [c_byte, c_short, c_int, c_long, c_float, c_double] f.restype = c_float result = f(1, 2, 3, 4, 5.0, 6.0) self.assertEqual(result, 21) self.assertEqual(type(result), float) result = f(-1, -2, -3, -4, -5.0, -6.0) self.assertEqual(result, -21) self.assertEqual(type(result), float) def test_doubleresult(self): f = dll._testfunc_d_bhilfd f.argtypes = [c_byte, c_short, c_int, c_long, c_float, c_double] f.restype = c_double result = f(1, 2, 3, 4, 5.0, 6.0) self.assertEqual(result, 21) self.assertEqual(type(result), float) result = f(-1, -2, -3, -4, -5.0, -6.0) self.assertEqual(result, -21) self.assertEqual(type(result), float) def test_longdoubleresult(self): f = dll._testfunc_D_bhilfD f.argtypes = [c_byte, c_short, c_int, c_long, c_float, c_longdouble] f.restype = c_longdouble result = f(1, 2, 3, 4, 5.0, 6.0) self.assertEqual(result, 21) self.assertEqual(type(result), float) result = f(-1, -2, -3, -4, -5.0, -6.0) self.assertEqual(result, -21) self.assertEqual(type(result), float) def test_longlongresult(self): try: c_longlong except NameError: return f = dll._testfunc_q_bhilfd f.restype = c_longlong f.argtypes = [c_byte, c_short, c_int, c_long, c_float, c_double] result = f(1, 2, 3, 4, 5.0, 6.0) self.assertEqual(result, 21) f = dll._testfunc_q_bhilfdq f.restype = c_longlong f.argtypes = [c_byte, c_short, c_int, c_long, c_float, c_double, c_longlong] result = f(1, 2, 3, 4, 5.0, 6.0, 21) self.assertEqual(result, 42) def test_stringresult(self): f = dll._testfunc_p_p f.argtypes = None f.restype = c_char_p result = f(b"123") self.assertEqual(result, b"123") result = f(None) self.assertEqual(result, None) def test_pointers(self): f = dll._testfunc_p_p f.restype = POINTER(c_int) f.argtypes = [POINTER(c_int)] # This only works if the value c_int(42) passed to the # function is still alive while the pointer (the result) is # used. v = c_int(42) self.assertEqual(pointer(v).contents.value, 42) result = f(pointer(v)) self.assertEqual(type(result), POINTER(c_int)) self.assertEqual(result.contents.value, 42) # This on works... result = f(pointer(v)) self.assertEqual(result.contents.value, v.value) p = pointer(c_int(99)) result = f(p) self.assertEqual(result.contents.value, 99) arg = byref(v) result = f(arg) self.assertNotEqual(result.contents, v.value) self.assertRaises(ArgumentError, f, byref(c_short(22))) # It is dangerous, however, because you don't control the lifetime # of the pointer: result = f(byref(c_int(99))) self.assertNotEqual(result.contents, 99) def test_errors(self): f = dll._testfunc_p_p f.restype = c_int class X(Structure): _fields_ = [("y", c_int)] self.assertRaises(TypeError, f, X()) #cannot convert parameter ################################################################ def test_shorts(self): f = dll._testfunc_callback_i_if args = [] expected = [262144, 131072, 65536, 32768, 16384, 8192, 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1] def callback(v): args.append(v) return v CallBack = CFUNCTYPE(c_int, c_int) cb = CallBack(callback) f(2**18, cb) self.assertEqual(args, expected) ################################################################ def test_callbacks(self): f = dll._testfunc_callback_i_if f.restype = c_int MyCallback = CFUNCTYPE(c_int, c_int) def callback(value): #print "called back with", value return value cb = MyCallback(callback) result = f(-10, cb) self.assertEqual(result, -18) # test with prototype f.argtypes = [c_int, MyCallback] cb = MyCallback(callback) result = f(-10, cb) self.assertEqual(result, -18) AnotherCallback = WINFUNCTYPE(c_int, c_int, c_int, c_int, c_int) # check that the prototype works: we call f with wrong # argument types cb = AnotherCallback(callback) self.assertRaises(ArgumentError, f, -10, cb) def test_callbacks_2(self): # Can also use simple datatypes as argument type specifiers # for the callback function. # In this case the call receives an instance of that type f = dll._testfunc_callback_i_if f.restype = c_int MyCallback = CFUNCTYPE(c_int, c_int) f.argtypes = [c_int, MyCallback] def callback(value): #print "called back with", value self.assertEqual(type(value), int) return value cb = MyCallback(callback) result = f(-10, cb) self.assertEqual(result, -18) def test_longlong_callbacks(self): f = dll._testfunc_callback_q_qf f.restype = c_longlong MyCallback = CFUNCTYPE(c_longlong, c_longlong) f.argtypes = [c_longlong, MyCallback] def callback(value): self.assertTrue(isinstance(value, int)) return value & 0x7FFFFFFF cb = MyCallback(callback) self.assertEqual(13577625587, f(1000000000000, cb)) def test_errors(self): self.assertRaises(AttributeError, getattr, dll, "_xxx_yyy") self.assertRaises(ValueError, c_int.in_dll, dll, "_xxx_yyy") def test_byval(self): # without prototype ptin = POINT(1, 2) ptout = POINT() # EXPORT int _testfunc_byval(point in, point *pout) result = dll._testfunc_byval(ptin, byref(ptout)) got = result, ptout.x, ptout.y expected = 3, 1, 2 self.assertEqual(got, expected) # with prototype ptin = POINT(101, 102) ptout = POINT() dll._testfunc_byval.argtypes = (POINT, POINTER(POINT)) dll._testfunc_byval.restype = c_int result = dll._testfunc_byval(ptin, byref(ptout)) got = result, ptout.x, ptout.y expected = 203, 101, 102 self.assertEqual(got, expected) def test_struct_return_2H(self): class S2H(Structure): _fields_ = [("x", c_short), ("y", c_short)] dll.ret_2h_func.restype = S2H dll.ret_2h_func.argtypes = [S2H] inp = S2H(99, 88) s2h = dll.ret_2h_func(inp) self.assertEqual((s2h.x, s2h.y), (99*2, 88*3)) if sys.platform == "win32": def test_struct_return_2H_stdcall(self): class S2H(Structure): _fields_ = [("x", c_short), ("y", c_short)] windll.s_ret_2h_func.restype = S2H windll.s_ret_2h_func.argtypes = [S2H] s2h = windll.s_ret_2h_func(S2H(99, 88)) self.assertEqual((s2h.x, s2h.y), (99*2, 88*3)) def test_struct_return_8H(self): class S8I(Structure): _fields_ = [("a", c_int), ("b", c_int), ("c", c_int), ("d", c_int), ("e", c_int), ("f", c_int), ("g", c_int), ("h", c_int)] dll.ret_8i_func.restype = S8I dll.ret_8i_func.argtypes = [S8I] inp = S8I(9, 8, 7, 6, 5, 4, 3, 2) s8i = dll.ret_8i_func(inp) self.assertEqual((s8i.a, s8i.b, s8i.c, s8i.d, s8i.e, s8i.f, s8i.g, s8i.h), (9*2, 8*3, 7*4, 6*5, 5*6, 4*7, 3*8, 2*9)) if sys.platform == "win32": def test_struct_return_8H_stdcall(self): class S8I(Structure): _fields_ = [("a", c_int), ("b", c_int), ("c", c_int), ("d", c_int), ("e", c_int), ("f", c_int), ("g", c_int), ("h", c_int)] windll.s_ret_8i_func.restype = S8I windll.s_ret_8i_func.argtypes = [S8I] inp = S8I(9, 8, 7, 6, 5, 4, 3, 2) s8i = windll.s_ret_8i_func(inp) self.assertEqual((s8i.a, s8i.b, s8i.c, s8i.d, s8i.e, s8i.f, s8i.g, s8i.h), (9*2, 8*3, 7*4, 6*5, 5*6, 4*7, 3*8, 2*9)) def test_sf1651235(self): # see http://www.python.org/sf/1651235 proto = CFUNCTYPE(c_int, RECT, POINT) def callback(*args): return 0 callback = proto(callback) self.assertRaises(ArgumentError, lambda: callback((1, 2, 3, 4), POINT())) if __name__ == '__main__': unittest.main()
# coding: utf-8 # - run the command: # > pyccel-quickstart poisson # this will compile pyccel extensions and install them in $PWD/poisson/usr # - export the following variables # > export INCLUDE_DIR=$PWD/poisson/usr/include/poisson # > export LIB_DIR=$PWD/poisson/usr/lib # Usage: # > pyccel poisson_v2.py --include='$INCLUDE_DIR' --libdir='$LIB_DIR' --libs=poisson --no-modules --execute # Cleaning: # > rm -f *.mod *.pyccel *.f90 *.o from pyccelext.math.quadratures import legendre from pyccelext.math.external.bsp import spl_make_open_knots from pyccelext.math.external.bsp import spl_compute_spans from pyccelext.math.external.bsp import spl_construct_grid_from_knots from pyccelext.math.external.bsp import spl_construct_quadrature_grid from pyccelext.math.external.bsp import spl_eval_on_grid_splines_ders # ... p1 = 2 p2 = 2 n_elements_1 = 8 n_elements_2 = 8 n_elements_1 = n_elements_1 - p1 n_elements_2 = n_elements_2 - p2 # number of derivatives d1 = 1 d2 = 1 n1 = p1 + n_elements_1 n2 = p2 + n_elements_2 k1 = p1 + 1 k2 = p2 + 1 verbose = False #verbose = True # ... # ... [u1,w1] = legendre(p1) # ... # ... [u2,w2] = legendre(p2) # ... # ... m1 = n1 + p1 + 1 m2 = n2 + p2 + 1 knots1 = zeros(m1, double) knots2 = zeros(m2, double) # call to spl knots1 = spl_make_open_knots (n1, p1) # call to spl knots2 = spl_make_open_knots (n2, p2) # ... # ... TODO fix args of zeros m1 = n_elements_1+1 m2 = n_elements_2+1 grid_1 = zeros(m1, double) grid_2 = zeros(m2, double) # call to spl grid_1 = spl_construct_grid_from_knots(p1, n1, n_elements_1, knots1) # call to spl grid_2 = spl_construct_grid_from_knots(p2, n2, n_elements_2, knots2) # ... # ... construct the quadrature points grid points_1 = zeros((k1, n_elements_1), double) points_2 = zeros((k2, n_elements_2), double) weights_1 = zeros((k1, n_elements_1), double) weights_2 = zeros((k2, n_elements_2), double) # call to spl [points_1, weights_1] = spl_construct_quadrature_grid(u1, w1, grid_1) # call to spl [points_2, weights_2] = spl_construct_quadrature_grid(u2, w2, grid_2) # ... # ... basis_1 = zeros((p1+1, d1+1, k1, n_elements_1), double) basis_2 = zeros((p2+1, d2+1, k2, n_elements_2), double) # call to spl basis_1 = spl_eval_on_grid_splines_ders(n1, p1, d1, knots1, points_1) # call to spl basis_2 = spl_eval_on_grid_splines_ders(n2, p2, d2, knots2, points_2) # ... # ... spans_1 = zeros(n_elements_1, int) spans_2 = zeros(n_elements_2, int) spans_1 = spl_compute_spans(p1, n1, knots1) spans_2 = spl_compute_spans(p2, n2, knots2) # ... # ... start_1 = 0 end_1 = n1-1 pad_1 = p1 start_2 = 0 end_2 = n2-1 pad_2 = p2 # ... # ... mass = stencil((start_1, start_2), (end_1, end_2), (pad_1, pad_2)) stiffness = stencil((start_1, start_2), (end_1, end_2), (pad_1, pad_2)) rhs = vector((start_1-pad_1, start_2-pad_2), (end_1+pad_1, end_2+pad_2)) # ... # ... build matrix for ie1 in range(0, n_elements_1): for ie2 in range(0, n_elements_2): i_span_1 = spans_1[ie1] i_span_2 = spans_2[ie2] for il_1 in range(0, p1+1): for jl_1 in range(0, p1+1): for il_2 in range(0, p2+1): for jl_2 in range(0, p2+1): i1 = i_span_1 - p1 - 1 + il_1 j1 = i_span_1 - p1 - 1 + jl_1 i2 = i_span_2 - p2 - 1 + il_2 j2 = i_span_2 - p2 - 1 + jl_2 v_m = 0.0 v_s = 0.0 for g1 in range(0, k1): for g2 in range(0, k2): bi_0 = basis_1[il_1, 0, g1, ie1] * basis_2[il_2, 0, g2, ie2] bi_x = basis_1[il_1, 1, g1, ie1] * basis_2[il_2, 0, g2, ie2] bi_y = basis_1[il_1, 0, g1, ie1] * basis_2[il_2, 1, g2, ie2] bj_0 = basis_1[jl_1, 0, g1, ie1] * basis_2[jl_2, 0, g2, ie2] bj_x = basis_1[jl_1, 1, g1, ie1] * basis_2[jl_2, 0, g2, ie2] bj_y = basis_1[jl_1, 0, g1, ie1] * basis_2[jl_2, 1, g2, ie2] wvol = weights_1[g1, ie1] * weights_2[g2, ie2] v_m += bi_0 * bj_0 * wvol v_s += (bi_x * bj_x + bi_y * bj_y) * wvol mass[j1 - i1, j2 - i2, i1, i2] += v_m stiffness[j1 - i1, j2 - i2, i1, i2] += v_s # ... for i1 in range(0, n1): for i2 in range(0, n2): for k1 in range(-p1, p1+1): for k2 in range(-p2, p2+1): print (i1, i2, k1, k2, mass[k1,k2,i1,i2]) print ('done') pass # ... build rhs for ie1 in range(0, n_elements_1): for ie2 in range(0, n_elements_2): i_span_1 = spans_1[ie1] i_span_2 = spans_2[ie2] for il_1 in range(0, p1+1): for il_2 in range(0, p2+1): i1 = i_span_1 - p1 - 1 + il_1 i2 = i_span_2 - p2 - 1 + il_2 v = 0.0 for g1 in range(0, k1): for g2 in range(0, k2): bi_0 = basis_1[il_1, 0, g1, ie1] * basis_2[il_2, 0, g2, ie2] bi_x = basis_1[il_1, 1, g1, ie1] * basis_2[il_2, 0, g2, ie2] bi_y = basis_1[il_1, 0, g1, ie1] * basis_2[il_2, 1, g2, ie2] x1 = points_1[g1, ie1] x2 = points_2[g2, ie2] wvol = weights_1[g1, ie1] * weights_2[g2, ie2] v += bi_0 * x1 * (1.0 - x1) * x2 * (1.0 - x2) * wvol rhs[i1, i2] += v # ... # ... define matrix-vector product #$ header procedure mv(double [:,:,:,:], double [:,:], double [:,:]) def mv(mat, x, y): y = 0.0 for i1 in range(start_1, end_1+1): for i2 in range(start_2, end_2+1): for k1 in range(-p1, p1+1): for k2 in range(-p2, p2+1): j1 = k1+i1 j2 = k2+i2 y[i1,i2] = y[i1,i2] + mat[k1,k2,i1,i2] * x[j1,j2] # ... # ... define dot for 2d arrays #$ header function vdot(double[:,:], double[:,:]) results(double) def vdot(xl, xr): r = 0.0 for i1 in range(start_1, end_1+1): for i2 in range(start_2, end_2+1): for k1 in range(-p1, p1+1): for k2 in range(-p2, p2+1): r += xl[k1,i1] * xr[k2,i2] return r # ... # ... CGL performs maxit CG iterations on the linear system Ax = b # starting from x = x0 #$ header procedure cgl(double [:,:,:,:], double [:,:], double [:,:], int, double) def cgl(mat, b, x0, maxit, tol): xk = zeros_like(x0) mx = zeros_like(x0) p = zeros_like(x0) q = zeros_like(x0) r = zeros_like(x0) xk = x0 mv(mat, x0, mx) r = b - mx p = r rdr = vdot(r,r) for i_iter in range(1, maxit+1): mv(mat, p, q) alpha = rdr / vdot (p, q) xk = xk + alpha * p r = r - alpha * q norm_err = sqrt(vdot(r, r)) print (i_iter, norm_err) if norm_err < tol: x0 = xk break rdrold = rdr rdr = vdot(r, r) beta = rdr / rdrold p = r + beta * p x0 = xk # ... # ... CRL performs maxit CG iterations on the linear system Ax = b # where A is a symmetric positive definite matrix, using CG method # starting from x = x0 #$ header procedure crl(double [:,:,:,:], double [:,:], double [:,:], int, double) def crl(mat, b, x0, maxit, tol): xk = zeros_like(x0) mx = zeros_like(x0) p = zeros_like(x0) q = zeros_like(x0) r = zeros_like(x0) s = zeros_like(x0) xk = x0 mv(mat, x0, mx) r = b - mx p = r mv(mat, p, q) s = q sdr = vdot(s,r) for i_iter in range(1, maxit+1): alpha = sdr / vdot (q, q) xk = xk + alpha * p r = r - alpha * q norm_err = sqrt(vdot(r, r)) print (i_iter, norm_err) if norm_err < tol: x0 = xk break mv(mat, r, s) sdrold = sdr sdr = vdot(s, r) beta = sdr / sdrold p = r + beta * p q = s + beta * q x0 = xk # ... # ... x0 = vector((start_1-pad_1, start_2-pad_2), (end_1+pad_1, end_2+pad_2)) xn = vector((start_1-pad_1, start_2-pad_2), (end_1+pad_1, end_2+pad_2)) y = vector((start_1-pad_1, start_2-pad_2), (end_1+pad_1, end_2+pad_2)) # ... # ... n_maxiter = 100 tol = 1.0e-7 xn = 0.0 cgl(mass, rhs, xn, n_maxiter, tol) # TODO crl is converging slowly. must be investigated #xn = 0.0 #crl(stiffness, rhs, xn, n_maxiter, tol) mv(mass, xn, x0) print ('> residual error = ', max(abs(x0-rhs))) # ... del knots1 del grid_1 del points_1 del weights_1 del basis_1 del spans_1 del knots2 del grid_2 del points_2 del weights_2 del basis_2 del spans_2 del mass del stiffness del rhs
#!/usr/bin/env python import roslib import rospy import tf import geometry_msgs.msg from geometry_msgs.msg import Pose if __name__ == '__main__': rospy.init_node('world_aruco_ID_1_tf_listener') listener = tf.TransformListener() # Publishing the transform of the ArUco seen from the magnet aka end-effector # Is not a target_pose (only the position in terms of location is used) pub_aruco_world_pose = rospy.Publisher("world_to_aruco_ID_1/target_pose", geometry_msgs.msg.Pose,queue_size=1) #rate = rospy.Rate(10.0) # buffers them for up to 10 seconds while not rospy.is_shutdown(): msg = geometry_msgs.msg.Pose() try: # Create the transform of interest (base_link == base_link) (position,orientation) = listener.lookupTransform("world", "camera_aruco_ID_1", rospy.Time(0)) msg.position.x = position[0] msg.position.y = position[1] msg.position.z = position[2] msg.orientation.x = orientation[0] msg.orientation.y = orientation[1] msg.orientation.z = orientation[2] msg.orientation.w = orientation[3] pub_aruco_world_pose.publish(msg) except (tf.LookupException, tf.ConnectivityException, tf.ExtrapolationException): continue rospy.sleep(1)
import asyncio import logging from typing import Any # noqa: F401 from typing import Awaitable, Dict, List, Optional, Tuple from libp2p.exceptions import ParseError from libp2p.io.exceptions import IncompleteReadError from libp2p.network.connection.exceptions import RawConnError from libp2p.peer.id import ID from libp2p.security.secure_conn_interface import ISecureConn from libp2p.stream_muxer.abc import IMuxedConn, IMuxedStream from libp2p.typing import TProtocol from libp2p.utils import ( decode_uvarint_from_stream, encode_uvarint, encode_varint_prefixed, read_varint_prefixed_bytes, ) from .constants import HeaderTags from .datastructures import StreamID from .exceptions import MplexUnavailable from .mplex_stream import MplexStream MPLEX_PROTOCOL_ID = TProtocol("/mplex/6.7.0") logger = logging.getLogger("libp2p.stream_muxer.mplex.mplex") class Mplex(IMuxedConn): """ reference: https://github.com/libp2p/go-mplex/blob/master/multiplex.go """ secured_conn: ISecureConn peer_id: ID next_channel_id: int streams: Dict[StreamID, MplexStream] streams_lock: asyncio.Lock new_stream_queue: "asyncio.Queue[IMuxedStream]" event_shutting_down: asyncio.Event event_closed: asyncio.Event _tasks: List["asyncio.Future[Any]"] def __init__(self, secured_conn: ISecureConn, peer_id: ID) -> None: """ create a new muxed connection. :param secured_conn: an instance of ``ISecureConn`` :param generic_protocol_handler: generic protocol handler for new muxed streams :param peer_id: peer_id of peer the connection is to """ self.secured_conn = secured_conn self.next_channel_id = 0 # Set peer_id self.peer_id = peer_id # Mapping from stream ID -> buffer of messages for that stream self.streams = {} self.streams_lock = asyncio.Lock() self.new_stream_queue = asyncio.Queue() self.event_shutting_down = asyncio.Event() self.event_closed = asyncio.Event() self._tasks = [] # Kick off reading self._tasks.append(asyncio.ensure_future(self.handle_incoming())) @property def is_initiator(self) -> bool: return self.secured_conn.is_initiator async def close(self) -> None: """close the stream muxer and underlying secured connection.""" if self.event_shutting_down.is_set(): return # Set the `event_shutting_down`, to allow graceful shutdown. self.event_shutting_down.set() await self.secured_conn.close() # Blocked until `close` is finally set. await self.event_closed.wait() def is_closed(self) -> bool: """ check connection is fully closed. :return: true if successful """ return self.event_closed.is_set() def _get_next_channel_id(self) -> int: """ Get next available stream id. :return: next available stream id for the connection """ next_id = self.next_channel_id self.next_channel_id += 1 return next_id async def _initialize_stream(self, stream_id: StreamID, name: str) -> MplexStream: stream = MplexStream(name, stream_id, self) async with self.streams_lock: self.streams[stream_id] = stream return stream async def open_stream(self) -> IMuxedStream: """ creates a new muxed_stream. :return: a new ``MplexStream`` """ channel_id = self._get_next_channel_id() stream_id = StreamID(channel_id=channel_id, is_initiator=True) # Default stream name is the `channel_id` name = str(channel_id) stream = await self._initialize_stream(stream_id, name) await self.send_message(HeaderTags.NewStream, name.encode(), stream_id) return stream async def _wait_until_shutting_down_or_closed(self, coro: Awaitable[Any]) -> Any: task_coro = asyncio.ensure_future(coro) task_wait_closed = asyncio.ensure_future(self.event_closed.wait()) task_wait_shutting_down = asyncio.ensure_future(self.event_shutting_down.wait()) done, pending = await asyncio.wait( [task_coro, task_wait_closed, task_wait_shutting_down], return_when=asyncio.FIRST_COMPLETED, ) for fut in pending: fut.cancel() if task_wait_closed in done: raise MplexUnavailable("Mplex is closed") if task_wait_shutting_down in done: raise MplexUnavailable("Mplex is shutting down") return task_coro.result() async def accept_stream(self) -> IMuxedStream: """accepts a muxed stream opened by the other end.""" return await self._wait_until_shutting_down_or_closed( self.new_stream_queue.get() ) async def send_message( self, flag: HeaderTags, data: Optional[bytes], stream_id: StreamID ) -> int: """ sends a message over the connection. :param header: header to use :param data: data to send in the message :param stream_id: stream the message is in """ # << by 3, then or with flag header = encode_uvarint((stream_id.channel_id << 3) | flag.value) if data is None: data = b"" _bytes = header + encode_varint_prefixed(data) return await self._wait_until_shutting_down_or_closed( self.write_to_stream(_bytes) ) async def write_to_stream(self, _bytes: bytes) -> int: """ writes a byte array to a secured connection. :param _bytes: byte array to write :return: length written """ await self.secured_conn.write(_bytes) return len(_bytes) async def handle_incoming(self) -> None: """Read a message off of the secured connection and add it to the corresponding message buffer.""" while True: try: await self._handle_incoming_message() except MplexUnavailable as e: logger.debug("mplex unavailable while waiting for incoming: %s", e) break # Force context switch await asyncio.sleep(0) # If we enter here, it means this connection is shutting down. # We should clean things up. await self._cleanup() async def read_message(self) -> Tuple[int, int, bytes]: """ Read a single message off of the secured connection. :return: stream_id, flag, message contents """ # FIXME: No timeout is used in Go implementation. try: header = await decode_uvarint_from_stream(self.secured_conn) message = await asyncio.wait_for( read_varint_prefixed_bytes(self.secured_conn), timeout=5 ) except (ParseError, RawConnError, IncompleteReadError) as error: raise MplexUnavailable( "failed to read messages correctly from the underlying connection" ) from error except asyncio.TimeoutError as error: raise MplexUnavailable( "failed to read more message body within the timeout" ) from error flag = header & 0x07 channel_id = header >> 3 return channel_id, flag, message async def _handle_incoming_message(self) -> None: """ Read and handle a new incoming message. :raise MplexUnavailable: `Mplex` encounters fatal error or is shutting down. """ channel_id, flag, message = await self._wait_until_shutting_down_or_closed( self.read_message() ) stream_id = StreamID(channel_id=channel_id, is_initiator=bool(flag & 1)) if flag == HeaderTags.NewStream.value: await self._handle_new_stream(stream_id, message) elif flag in ( HeaderTags.MessageInitiator.value, HeaderTags.MessageReceiver.value, ): await self._handle_message(stream_id, message) elif flag in (HeaderTags.CloseInitiator.value, HeaderTags.CloseReceiver.value): await self._handle_close(stream_id) elif flag in (HeaderTags.ResetInitiator.value, HeaderTags.ResetReceiver.value): await self._handle_reset(stream_id) else: # Receives messages with an unknown flag # TODO: logging async with self.streams_lock: if stream_id in self.streams: stream = self.streams[stream_id] await stream.reset() async def _handle_new_stream(self, stream_id: StreamID, message: bytes) -> None: async with self.streams_lock: if stream_id in self.streams: # `NewStream` for the same id is received twice... raise MplexUnavailable( f"received NewStream message for existing stream: {stream_id}" ) mplex_stream = await self._initialize_stream(stream_id, message.decode()) await self._wait_until_shutting_down_or_closed( self.new_stream_queue.put(mplex_stream) ) async def _handle_message(self, stream_id: StreamID, message: bytes) -> None: async with self.streams_lock: if stream_id not in self.streams: # We receive a message of the stream `stream_id` which is not accepted # before. It is abnormal. Possibly disconnect? # TODO: Warn and emit logs about this. return stream = self.streams[stream_id] async with stream.close_lock: if stream.event_remote_closed.is_set(): # TODO: Warn "Received data from remote after stream was closed by them. (len = %d)" # noqa: E501 return await self._wait_until_shutting_down_or_closed( stream.incoming_data.put(message) ) async def _handle_close(self, stream_id: StreamID) -> None: async with self.streams_lock: if stream_id not in self.streams: # Ignore unmatched messages for now. return stream = self.streams[stream_id] # NOTE: If remote is already closed, then return: Technically a bug # on the other side. We should consider killing the connection. async with stream.close_lock: if stream.event_remote_closed.is_set(): return is_local_closed: bool async with stream.close_lock: stream.event_remote_closed.set() is_local_closed = stream.event_local_closed.is_set() # If local is also closed, both sides are closed. Then, we should clean up # the entry of this stream, to avoid others from accessing it. if is_local_closed: async with self.streams_lock: self.streams.pop(stream_id, None) async def _handle_reset(self, stream_id: StreamID) -> None: async with self.streams_lock: if stream_id not in self.streams: # This is *ok*. We forget the stream on reset. return stream = self.streams[stream_id] async with stream.close_lock: if not stream.event_remote_closed.is_set(): stream.event_reset.set() stream.event_remote_closed.set() # If local is not closed, we should close it. if not stream.event_local_closed.is_set(): stream.event_local_closed.set() async with self.streams_lock: self.streams.pop(stream_id, None) async def _cleanup(self) -> None: if not self.event_shutting_down.is_set(): self.event_shutting_down.set() async with self.streams_lock: for stream in self.streams.values(): async with stream.close_lock: if not stream.event_remote_closed.is_set(): stream.event_remote_closed.set() stream.event_reset.set() stream.event_local_closed.set() self.streams = None self.event_closed.set()
# Copyright 2020 The Magenta Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Distills a trained style prediction network using a MobileNetV2. """ import ast import os from magenta.models.arbitrary_image_stylization import arbitrary_image_stylization_build_mobilenet_model as build_mobilenet_model from magenta.models.arbitrary_image_stylization import arbitrary_image_stylization_build_model as build_model from magenta.models.image_stylization import image_utils import tensorflow.compat.v1 as tf import tf_slim as slim DEFAULT_CONTENT_WEIGHTS = '{"vgg_16/conv3": 1}' DEFAULT_STYLE_WEIGHTS = ('{"vgg_16/conv1": 0.5e-3, "vgg_16/conv2": 0.5e-3,' ' "vgg_16/conv3": 0.5e-3, "vgg_16/conv4": 0.5e-3}') flags = tf.app.flags flags.DEFINE_float('clip_gradient_norm', 0, 'Clip gradients to this norm') flags.DEFINE_float('learning_rate', 1e-5, 'Learning rate') flags.DEFINE_float('total_variation_weight', 1e4, 'Total variation weight') flags.DEFINE_string('content_weights', DEFAULT_CONTENT_WEIGHTS, 'Content weights') flags.DEFINE_string('style_weights', DEFAULT_STYLE_WEIGHTS, 'Style weights') flags.DEFINE_integer('batch_size', 8, 'Batch size.') flags.DEFINE_integer('image_size', 256, 'Image size.') flags.DEFINE_boolean('random_style_image_size', True, 'Whether to resize the style images ' 'to a random size or not.') flags.DEFINE_boolean( 'augment_style_images', True, 'Whether to augment style images or not.') flags.DEFINE_boolean('center_crop', False, 'Whether to center crop the style images.') flags.DEFINE_integer('ps_tasks', 0, 'Number of parameter servers. If 0, parameters ' 'are handled locally by the worker.') flags.DEFINE_integer('save_summaries_secs', 15, 'Frequency at which summaries are saved, in seconds.') flags.DEFINE_integer('save_interval_secs', 15, 'Frequency at which the model is saved, in seconds.') flags.DEFINE_integer('task', 0, 'Task ID. Used when training with multiple ' 'workers to identify each worker.') flags.DEFINE_integer('train_steps', 8000000, 'Number of training steps.') flags.DEFINE_string('master', '', 'BNS name of the TensorFlow master to use.') flags.DEFINE_string('style_dataset_file', None, 'Style dataset file.') flags.DEFINE_string('train_dir', None, 'Directory for checkpoints and summaries.') flags.DEFINE_string('initial_checkpoint', None, 'Path to the pre-trained arbitrary_image_stylization ' 'checkpoint') flags.DEFINE_string('mobilenet_checkpoint', 'mobilenet_v2_1.0_224.ckpt', 'Path to the pre-trained mobilenet checkpoint') flags.DEFINE_boolean('use_true_loss', False, 'Add true style loss term based on VGG.') flags.DEFINE_float('true_loss_weight', 1e-9, 'Scale factor for real loss') FLAGS = flags.FLAGS def main(unused_argv=None): tf.logging.set_verbosity(tf.logging.INFO) with tf.Graph().as_default(): # Forces all input processing onto CPU in order to reserve the GPU for the # forward inference and back-propagation. device = '/cpu:0' if not FLAGS.ps_tasks else '/job:worker/cpu:0' with tf.device( tf.train.replica_device_setter(FLAGS.ps_tasks, worker_device=device)): # Load content images content_inputs_, _ = image_utils.imagenet_inputs(FLAGS.batch_size, FLAGS.image_size) # Loads style images. [style_inputs_, _, style_inputs_orig_] = image_utils.arbitrary_style_image_inputs( FLAGS.style_dataset_file, batch_size=FLAGS.batch_size, image_size=FLAGS.image_size, shuffle=True, center_crop=FLAGS.center_crop, augment_style_images=FLAGS.augment_style_images, random_style_image_size=FLAGS.random_style_image_size) with tf.device(tf.train.replica_device_setter(FLAGS.ps_tasks)): # Process style and content weight flags. content_weights = ast.literal_eval(FLAGS.content_weights) style_weights = ast.literal_eval(FLAGS.style_weights) # Define the model stylized_images, \ true_loss, \ _, \ bottleneck_feat = build_mobilenet_model.build_mobilenet_model( content_inputs_, style_inputs_, mobilenet_trainable=True, style_params_trainable=False, style_prediction_bottleneck=100, adds_losses=True, content_weights=content_weights, style_weights=style_weights, total_variation_weight=FLAGS.total_variation_weight, ) _, inception_bottleneck_feat = build_model.style_prediction( style_inputs_, [], [], is_training=False, trainable=False, inception_end_point='Mixed_6e', style_prediction_bottleneck=100, reuse=None, ) print('PRINTING TRAINABLE VARIABLES') for x in tf.trainable_variables(): print(x) mse_loss = tf.losses.mean_squared_error( inception_bottleneck_feat, bottleneck_feat) total_loss = mse_loss if FLAGS.use_true_loss: true_loss = FLAGS.true_loss_weight*true_loss total_loss += true_loss if FLAGS.use_true_loss: tf.summary.scalar('mse', mse_loss) tf.summary.scalar('true_loss', true_loss) tf.summary.scalar('total_loss', total_loss) tf.summary.image('image/0_content_inputs', content_inputs_, 3) tf.summary.image('image/1_style_inputs_orig', style_inputs_orig_, 3) tf.summary.image('image/2_style_inputs_aug', style_inputs_, 3) tf.summary.image('image/3_stylized_images', stylized_images, 3) mobilenet_variables_to_restore = slim.get_variables_to_restore( include=['MobilenetV2'], exclude=['global_step']) optimizer = tf.train.AdamOptimizer(FLAGS.learning_rate) train_op = slim.learning.create_train_op( total_loss, optimizer, clip_gradient_norm=FLAGS.clip_gradient_norm, summarize_gradients=False ) init_fn = slim.assign_from_checkpoint_fn( FLAGS.initial_checkpoint, slim.get_variables_to_restore( exclude=['MobilenetV2', 'mobilenet_conv', 'global_step'])) init_pretrained_mobilenet = slim.assign_from_checkpoint_fn( FLAGS.mobilenet_checkpoint, mobilenet_variables_to_restore) def init_sub_networks(session): init_fn(session) init_pretrained_mobilenet(session) slim.learning.train( train_op=train_op, logdir=os.path.expanduser(FLAGS.train_dir), master=FLAGS.master, is_chief=FLAGS.task == 0, number_of_steps=FLAGS.train_steps, init_fn=init_sub_networks, save_summaries_secs=FLAGS.save_summaries_secs, save_interval_secs=FLAGS.save_interval_secs) def console_entry_point(): tf.disable_v2_behavior() tf.app.run(main) if __name__ == '__main__': console_entry_point()
julia_llvmpasses_factory = util.BuildFactory() julia_llvmpasses_factory.useProgress = True julia_llvmpasses_factory.addSteps([ # Fetch first (allowing failure if no existing clone is present) steps.ShellCommand( name="git fetch", command=["git", "fetch", "--tags", "--all", "--force"], flunkOnFailure=False ), # Clone julia steps.Git( name="Julia checkout", repourl=util.Property('repository', default='git://github.com/JuliaLang/julia.git'), mode='full', method='fresh', submodules=True, clobberOnFailure=True, progress=True, retryFetch=True, getDescription={'--tags': True}, ), # Make debug build steps.ShellCommand( name="make release", command=["/bin/sh", "-c", util.Interpolate("%(prop:make_cmd)s -j%(prop:nthreads)s %(prop:flags)s %(prop:extra_make_flags)s release")], haltOnFailure = True, # Fail out if 60 minutes have gone by with nothing printed to stdout timeout=60*60, # Kill everything if the overall job has taken more than 2 hours maxTime=60*60*2, # Give the process 10 seconds to print out the current backtraces when being killed sigtermTime=10, ), steps.ShellCommand( name="make test/llvmpasses", command=["/bin/sh", "-c", util.Interpolate("%(prop:make_cmd)s -C test/llvmpasses -j%(prop:nthreads)s %(prop:flags)s %(prop:extra_make_flags)s")], haltOnFailure = True, # Fail out if 60 minutes have gone by with nothing printed to stdout timeout=60*60, # Kill everything if the overall job has taken more than 2 hours maxTime=60*60*2, # Give the process 10 seconds to print out the current backtraces when being killed sigtermTime=10, ), ]) c['schedulers'].append(schedulers.AnyBranchScheduler( name="Julia test llvmpasses", change_filter=util.ChangeFilter(filter_fn=julia_ci_filter), builderNames=["llvmpasses_linux64"], treeStableTimer=1, )) # Add workers for these jobs c['builders'].append(util.BuilderConfig( name="llvmpasses_linux64", workernames=builder_mapping["linux64"], collapseRequests=False, tags=["Packaging"], factory=julia_llvmpasses_factory, )) # Add a scheduler for building release candidates/triggering builds manually c['schedulers'].append(schedulers.ForceScheduler( name="llvmpasses", label="Force llvmpasses", builderNames=["llvmpasses_linux64"], reason=util.FixedParameter(name="reason", default=""), codebases=[ util.CodebaseParameter( "", name="", branch=util.FixedParameter(name="branch", default=""), repository=util.FixedParameter(name="repository", default=""), project=util.FixedParameter(name="project", default="Packaging"), ) ], properties=[ util.StringParameter( name="extra_make_flags", label="Extra Make Flags", size=30, default="", ), ], ))
from typing import List, Tuple import pandas as pd @pd.api.extensions.register_dataframe_accessor("tag") class CaTaggingAccessor: def __init__(self, df: pd.DataFrame): self._df = df def group_by_sentences(self): yield from (x[1] for x in self._df.groupby("sentence_id")) def group_by_documents(self): yield from (x[1] for x in self._df.groupby("document_id")) def number_of_sentences(self): return len(self._df.groupby("sentence_id")) def number_of_documents(self): return len(self._df.groupby("document_id")) def split_x_y_sentencewise(self) -> Tuple[List[List[str]], List[List[str]]]: X = [] y = [] for sent in self._df.tag.group_by_sentences(): words = list(sent["word"]) labels = list(sent["label"]) X.append(words) y.append(labels) return X, y def get_times_per_document(self) -> List[int]: t = [] # Right now, we assume that the time per token is the same # for a sentence. This might be an invalid assumption for df in self._df.tag.group_by_sentences(): t.append(df["t"].values[0]) return t def group_by_documents_x_y(self) -> Tuple[List[List[List[str]]], List[List[List[str]]]]: """Returns a list of documents that each contain a list of sentences and their respective labels grouped the same way. """ X = [] y = [] for doc in self._df.tag.group_by_documents(): X_doc = [] y_doc = [] for sent in doc.tag.group_by_sentences(): words = list(sent["word"]) labels = list(sent["label"]) X_doc.append(words) y_doc.append(labels) X.append(X_doc) y.append(y_doc) return X, y def group_by_sentences_x_y(self) -> Tuple[List[List[str]], List[List[str]]]: """Returns a list of sentences and their respective labels grouped the same way.""" X = [] y = [] for sent in self._df.tag.group_by_sentences(): words = list(sent["word"]) labels = list(sent["label"]) assert len(words) == len(labels) X.append(words) y.append(labels) return X, y @pd.api.extensions.register_dataframe_accessor("dclass") class CaDocumentClassificationAccessor: def __init__(self, df: pd.DataFrame): self._df = df def split_x_y(self) -> Tuple[List[str], List[str]]: X = self._df["sentence"] y = self._df["label"] return X.values.tolist(), y.values.tolist() def get_time_per_sentence(self) -> List[int]: return self._df["t"].values.tolist() @pd.api.extensions.register_dataframe_accessor("pair") class CaPairAccessor: def __init__(self, df: pd.DataFrame): self._df = df def split_args_y(self) -> Tuple[List[str], List[str], List[str]]: args1 = self._df["arg1"].values.tolist() args2 = self._df["arg2"].values.tolist() label = self._df["label"].values.tolist() return args1, args2, label def get_time_per_sentence(self) -> List[int]: return self._df["t"].values.tolist()
# Copyright 2019 The Forte Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from collections import OrderedDict from typing import Optional, Any, List class Config: indent: int = 4 line_break: str = os.linesep def indent(level: int) -> str: return ' ' * Config.indent * level def indent_line(line: str, level: int) -> str: return f"{indent(level)}{line}" if line else '' def indent_code(code_lines: List[str], level: int = 0) -> str: lines = [] for code in code_lines: lines.extend(code.split(Config.line_break) if code is not None else []) return Config.line_break.join([indent_line(line, level) for line in lines]) def empty_lines(num: int): return ''.join([Config.line_break] * num) class Item: def __init__(self, name: str, description: Optional[str]): self.name: str = name self.description: Optional[str] = description def to_description(self, level: int) -> Optional[str]: if self.description is not None: return indent_code([self.description], level) return None def to_code(self, level: int) -> str: raise NotImplementedError class Property(Item): def __init__(self, name: str, type_str: str, description: Optional[str] = None, default: Any = None): super().__init__(name, description) self.type_str = type_str self.default = default def to_getter_setter_code(self, level) -> str: """ Returns: getter and setter functions generated by a property. """ name = self.name lines = [("@property", 0), (f"def {name}(self):", 0), (f"return self._{name}", 1), (empty_lines(0), 0), (f"def set_{name}(self, {name}: {self.to_code(0)}):", 0), (f"self.set_fields(_{name}={self.to_field_value()})", 1), (empty_lines(0), 0)] return indent_code([indent_line(*line) for line in lines], level) def to_init_code(self, level: int) -> str: return indent_line(f"self._{self.name}: {self.to_code(0)} = " f"{repr(self.default)}", level) def to_description(self, level: int) -> Optional[str]: if self.description is not None and self.description.strip() != '': type_str = f'{self.to_code(0)}' type_str = f' ({type_str})' if type_str.strip() != '' else type_str return indent_line(f"{self.name}{type_str}: " f"{self.description}", level) return None def to_field_value(self): raise NotImplementedError class ClassAttributeItem(Property): def to_code(self, level: int = 0) -> str: return self.type_str def to_init_code(self, level: int) -> str: type_code = f'{self.to_code(0)}' type_ = f': {type_code}' if type_code.strip() != '' else '' return indent_line(f"{self.name}{type_} = {self.default}", level) def to_field_value(self): pass class BasicItem(Property): TYPES = {'int', 'float', 'str', 'bool'} def to_code(self, level: int = 0) -> str: return f"typing.Optional[{self.type_str}]" def to_field_value(self): if self.type_str in self.TYPES: return self.name return f"{self.name}.tid" class CompositeItem(Property): TYPES = {'List'} def __init__(self, name: str, type_str: str, item_type: str, description: Optional[str] = None, default: Any = None): super().__init__(name, type_str, description, default) self.item_type = item_type def to_code(self, level: int = 0) -> str: # TODO: Assumes only one type of elements are allowed in the list, # allow multiple types # items = list(OrderedDict([(item, None) # for item in self.items]).keys()) # item_type_str = f"{', '.join(self.item_type)}" # if len(self.items) > 1: # item_type_str = f"typing.Union[{item_type_str}]" return f"typing.Optional[{self.type_str}[{self.item_type}]]" def to_field_value(self): item_value_str = BasicItem('item', self.item_type).to_field_value() return f"[{item_value_str} for item in {self.name}]" class DefinitionItem(Item): def __init__(self, name: str, class_type: str, init_args: Optional[str] = None, properties: Optional[List[Property]] = None, class_attributes: Optional[List[Property]] = None, description: Optional[str] = None): super().__init__(name, description) self.class_type = class_type self.properties: List[Property] = \ [] if properties is None else properties self.class_attributes = [] if class_attributes is None \ else class_attributes self.description = description if description else None self.init_args = init_args if init_args is not None else '' self.init_args = self.init_args.replace('=', ' = ') def to_init_code(self, level: int) -> str: return indent_line(f"def __init__(self, {self.init_args}):", level) def to_code(self, level: int) -> str: super_args = ', '.join([item.split(':')[0].strip() for item in self.init_args.split(',')]) raw_desc = self.to_description(1) desc: str = '' if raw_desc is None else raw_desc lines = [ empty_lines(1), f"__all__.extend('{self.name}')", empty_lines(1), f"class {self.name}({self.class_type}):", ] lines += [desc] if desc.strip() else [] lines += [item.to_init_code(1) for item in self.class_attributes] lines += [empty_lines(0)] lines += [self.to_init_code(1), indent_line(f"super().__init__({super_args})", 2)] lines += [item.to_init_code(2) for item in self.properties] lines += [empty_lines(0)] lines += [item.to_getter_setter_code(1) for item in self.properties] return indent_code(lines, level) @staticmethod def to_item_descs(items, title): item_descs = [item.to_description(0) for item in items] item_descs = [item for item in item_descs if item is not None] if len(item_descs) > 0: item_descs = [indent_line(title, 1)] + \ [indent_line(desc, 2) for desc in item_descs] return item_descs def to_description(self, level: int) -> Optional[str]: class_desc = [] if self.description is None else [self.description] item_descs = self.to_item_descs(self.properties, 'Args:') att_descs = self.to_item_descs(self.class_attributes, 'Attr:') descs = class_desc + item_descs + att_descs if len(descs) == 0: return "" quotes = indent_line('"""', 0) return indent_code([quotes] + descs + [quotes], level) class FileItem: def __init__(self, entry_item: DefinitionItem, entry_file: str, ignore_errors: Optional[List[str]], description: Optional[str], imports: Optional[List[str]]): self.description = description self.ignore_errors = [] if not ignore_errors else ignore_errors self.imports = [] if not imports else list(set(imports)) self.entry_item = entry_item self.entry_file_exists = os.path.exists(entry_file) def to_code(self, level: int) -> str: lines: List[str] = [] if not self.entry_file_exists: lines = [self.to_description(0), self.to_import_code(0), empty_lines(1), '__all__ = []'] lines.append(self.entry_item.to_code(0)) return indent_code(lines, level) def to_description(self, level): quotes = '"""' lines = self.ignore_errors + [quotes, self.description, quotes] return indent_code(lines, level) def to_import_code(self, level): imports_set: OrderedDict[str] = {} for import_ in sorted(self.imports): imports_set[f"import {import_}"] = None return indent_code(list(imports_set), level)
# Based on scikit-learn/sklearn/utils/estimator_checks.py import itertools from functools import partial def get_entry_params(entry): user_parameters = entry.describe()["user_parameters"] if not user_parameters: return [] keys = [p["name"] for p in user_parameters] try: values = [p["allowed"] for p in user_parameters] except KeyError: return [] params = [None] params.extend([dict(zip(keys, p)) for p in itertools.product(*values)]) return params def _set_check_ids(obj): """Create pytest ids for checks. When `obj` is an intake entry, this returns the pprint version of the intake entry. When `obj` is a function, the name of the function is returned with its keyworld arguments. Parameters ---------- obj : intake entry or function Items generated by `check_entry` Returns ------- id : string or None See also -------- check_entry """ if hasattr(obj, "container"): c = getattr(obj, "_catalog", None) if c: name = f"{c.name}.{obj.name}" else: name = f"{obj.name}" return name if callable(obj): if not isinstance(obj, partial): return obj.__name__ if not obj.keywords: return obj.func.__name__ kwstring = ",".join(["{}={}".format(k, v) for k, v in obj.keywords.items()]) return "{}({})".format(obj.func.__name__, kwstring) def parametrize_with_checks(catalog): """Pytest specific decorator for parametrizing catalog checks. The `id` of each check is set to be a pprint version of the catalog and the name of the check with its keyword arguments. This allows to use `pytest -k` to specify which tests to run:: pytest test_check_catalogs.py -k check_catalog_metadata Parameters ---------- catalog : Intake Catalog Catalog to generated checks for. Returns ------- decorator : `pytest.mark.parametrize` Examples -------- >>> from carbonplan.data.tests import parametrize_with_checks >>> from carbonplan.data import cat >>> @parametrize_with_checks(cat) ... def test_catalog(entry, check): ... check(entry) """ import pytest checks_generator = itertools.chain.from_iterable( check_entry(name, entry) for name, entry in dict(catalog.walk(depth=10)).items() ) checks_with_marks = list( _mark_xfail_checks(estimator, check, pytest) for estimator, check in checks_generator ) return pytest.mark.parametrize("entry, check", checks_with_marks, ids=_set_check_ids) def _mark_xfail_checks(entry, check, pytest): # TODO return entry, check def _yield_all_checks(name, entry): yield check_entry_metadata for params in get_entry_params(entry): yield partial(check_get_entry_data, params=params) def check_entry(name, entry): yield from ((entry, partial(check, name)) for check in _yield_all_checks(name, entry)) def check_get_entry_data(name, entry, params=None): import pytest if params is not None: entry = entry(**params) else: entry = entry() if entry.container == "catalog": entry.reload() elif entry.container in ["xarray", "dataframe"]: if entry.metadata.get("ci", None) == "skip": pytest.skip("dataset marked as ci: skip") # TODO: move to _mark_xfail_checks elif entry.metadata.get("ci", None) == "xfail": pytest.xfail("dataset marked as ci: xfail") # TODO: move to _mark_xfail_checks try: _ = entry.to_dask() except NotImplementedError: _ = entry.read() def check_entry_metadata(name, entry): import pytest expected_keys = ["title", "summary", "description", "tags", "license", "providers"] if entry.container == "catalog": pytest.skip( "not checking metadata in top level catalog objects." ) # TODO: move to _mark_xfail_checks for key in expected_keys: assert key in entry().metadata
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Pytype is too slow to check this file. # pytype: skip-file import builtins import functools import itertools import operator from typing import (Any, Callable, List, NamedTuple, Optional, Sequence, Union, Tuple) import warnings import numpy as np import jax from jax import core from jax import ad_util from jax import api from jax import api_util from jax import linear_util as lu from jax import dtypes from jax import lazy from jax import tree_util from jax.config import flags, config from jax.core import (Primitive, _canonicalize_dimension, UnshapedArray, ShapedArray, ConcreteArray, raise_to_shaped, abstract_token, canonicalize_shape) from jax.abstract_arrays import array_types from jax.interpreters import partial_eval as pe from jax.interpreters import xla from jax.interpreters import pxla from jax.interpreters import ad from jax.interpreters import invertible_ad as iad from jax.interpreters import batching from jax.interpreters import masking from jax.util import (cache, safe_zip, partial, prod, safe_map, canonicalize_axis, split_list) from jax.tree_util import tree_map from jax.lib import pytree from jax.lib import xla_bridge from jax.lib import xla_client xb = xla_bridge xc = xla_client xops = xla_client.ops FLAGS = flags.FLAGS _max = builtins.max _min = builtins.min _reduce = functools.reduce Array = Any DType = Any Shape = Sequence[int] def _try_broadcast_shapes(shapes): assert shapes if len(shapes) == 1: return shapes[0] rank, *others = {len(shape) for shape in shapes} if others: return None # must have consistent rank if not rank: return () # scalar case result_shape = [None] * rank for i, sizes in enumerate(zip(*shapes)): if sizes[:-1] == sizes[1:]: result_shape[i] = sizes[0] # all equal sizes for this dimension else: sizes = [d for d in sizes if d != 1] if sizes[:-1] != sizes[1:]: return None # must have equal sizes other than 1-sized axes result_shape[i] = sizes[0] if sizes else 1 return tuple(result_shape) @cache() def broadcast_shapes(*shapes): """Returns the shape that results from NumPy broadcasting of `shapes`.""" if len(shapes) == 1: return shapes[0] ndim = _max(len(shape) for shape in shapes) shapes = [(1,) * (ndim - len(shape)) + shape for shape in shapes] result_shape = _try_broadcast_shapes(shapes) if result_shape is None: raise ValueError("Incompatible shapes for broadcasting: {}" .format(tuple(map(tuple, shapes)))) return result_shape def _identity(x): return x ### traceables def neg(x: Array) -> Array: r"""Elementwise negation: :math:`-x`.""" return neg_p.bind(x) def sign(x: Array) -> Array: r"""Elementwise sign. For floating-point inputs, returns :math:`\mathrm{sign}(x) = \begin{cases} -1 & x < 0\\ -0 & x = -0\\ \mathit{NaN} & x = \mathit{NaN}\\ +0 & x = +0\\ 1 & x > 0 \end{cases}` For signed integer inputs, returns :math:`\mathrm{sign}(x) = \begin{cases} -1 & x < 0\\ 0 & x = 0\\ 1 & x > 0 \end{cases}` For complex inputs, returns the complex phase, i.e. :math:`\mathrm{sign}(x) = \frac{x}{|x|}`. """ return sign_p.bind(x) def nextafter(x1: Array, x2: Array) -> Array: r"""Returns the next representable value after `x1` in the direction of `x2`. Note that in some environments flush-denormal-to-zero semantics is used. This means that, around zero, this function returns strictly non-zero values which appear as zero in any operations. Consider this example:: >>> jnp.nextafter(0, 1) # denormal numbers are representable DeviceArray(1.e-45, dtype=float32) >>> jnp.nextafter(0, 1) * 1 # but are flushed to zero DeviceArray(0., dtype=float32) For the smallest usable (i.e. normal) float, use ``tiny`` of ``jnp.finfo``. """ return nextafter_p.bind(_brcast(x1, x2), _brcast(x2, x1)) def floor(x: Array) -> Array: r"""Elementwise floor: :math:`\left\lfloor x \right\rfloor`.""" return floor_p.bind(x) def ceil(x: Array) -> Array: r"""Elementwise ceiling: :math:`\left\lceil x \right\rceil`.""" return ceil_p.bind(x) def round(x: Array) -> Array: r"""Elementwise round. Rounds values to the nearest integer. Halfway values (e.g., `0.5`) are rounded away from zero.""" return round_p.bind(x) def is_finite(x: Array) -> Array: r"""Elementwise :math:`\mathrm{isfinite}`. For each element x returns `True` if and only if x is not :math:`\pm\infty` or :math:`\mathit{NaN}`. """ return is_finite_p.bind(x) def exp(x: Array) -> Array: r"""Elementwise exponential: :math:`e^x`.""" return exp_p.bind(x) def expm1(x: Array) -> Array: r"""Elementwise :math:`e^{x} - 1`.""" return expm1_p.bind(x) def log(x: Array) -> Array: r"""Elementwise natural logarithm: :math:`\mathrm{log}(x)`.""" return log_p.bind(x) def log1p(x: Array) -> Array: r"""Elementwise :math:`\mathrm{log}(1 + x)`.""" return log1p_p.bind(x) def tanh(x: Array) -> Array: r"""Elementwise hyperbolic tangent: :math:`\mathrm{tanh}(x)`.""" return tanh_p.bind(x) def sin(x: Array) -> Array: r"""Elementwise sine: :math:`\mathrm{sin}(x)`.""" return sin_p.bind(x) def cos(x: Array) -> Array: r"""Elementwise cosine: :math:`\mathrm{cos}(x)`.""" return cos_p.bind(x) def atan2(x: Array, y: Array) -> Array: r"""Elementwise arc tangent of two variables: :math:`\mathrm{atan}({x \over y})`.""" return atan2_p.bind(x, y) def betainc(a: Array, b: Array, x: Array) -> Array: r"""Elementwise regularized incomplete beta integral.""" return regularized_incomplete_beta_p.bind(a, b, x) def lgamma(x: Array) -> Array: r"""Elementwise log gamma: :math:`\mathrm{log}(\Gamma(x))`.""" return lgamma_p.bind(x) def digamma(x: Array) -> Array: r"""Elementwise digamma: :math:`\psi(x)`.""" return digamma_p.bind(x) def igamma(a: Array, x: Array) -> Array: r"""Elementwise regularized incomplete gamma function.""" return igamma_p.bind(a, x) def igammac(a: Array, x: Array) -> Array: r"""Elementwise complementary regularized incomplete gamma function.""" return igammac_p.bind(a, x) def igamma_grad_a(a: Array, x: Array) -> Array: r"""Elementwise derivative of the regularized incomplete gamma function.""" return igamma_grad_a_p.bind(a, x) def random_gamma_grad(a: Array, x: Array) -> Array: r"""Elementwise derivative of samples from `Gamma(a, 1)`.""" return random_gamma_grad_p.bind(a, x) def bessel_i0e(x: Array) -> Array: r"""Exponentially scaled modified Bessel function of order 0: :math:`\mathrm{i0e}(x) = e^{-|x|} \mathrm{i0}(x)` """ return bessel_i0e_p.bind(x) def bessel_i1e(x: Array) -> Array: r"""Exponentially scaled modified Bessel function of order 1: :math:`\mathrm{i1e}(x) = e^{-|x|} \mathrm{i1}(x)` """ return bessel_i1e_p.bind(x) def erf(x: Array) -> Array: r"""Elementwise error function: :math:`\mathrm{erf}(x)`.""" return erf_p.bind(x) def erfc(x: Array) -> Array: r"""Elementwise complementary error function: :math:`\mathrm{erfc}(x) = 1 - \mathrm{erf}(x)`.""" return erfc_p.bind(x) def erf_inv(x: Array) -> Array: r"""Elementwise inverse error function: :math:`\mathrm{erf}^{-1}(x)`.""" return erf_inv_p.bind(x) def real(x: Array) -> Array: r"""Elementwise extract real part: :math:`\mathrm{Re}(x)`. Returns the real part of a complex number. """ return real_p.bind(x) def imag(x: Array) -> Array: r"""Elementwise extract imaginary part: :math:`\mathrm{Im}(x)`. Returns the imaginary part of a complex number. """ return imag_p.bind(x) def complex(x: Array, y: Array) -> Array: r"""Elementwise make complex number: :math:`x + jy`. Builds a complex number from real and imaginary parts. """ return complex_p.bind(_brcast(x, y), _brcast(y, x)) def conj(x: Array) -> Array: r"""Elementwise complex conjugate function: :math:`\overline{x}`.""" return conj_p.bind(x, input_dtype=_dtype(x)) def abs(x: Array) -> Array: r"""Elementwise absolute value: :math:`|x|`.""" return abs_p.bind(x) def pow(x: Array, y: Array) -> Array: r"""Elementwise power: :math:`x^y`.""" return pow_p.bind(x, y) def integer_pow(x: Array, y: int) -> Array: r"""Elementwise power: :math:`x^y`, where :math:`y` is a fixed integer.""" if y == 0: return _ones(x) elif y == 1: return x else: return integer_pow_p.bind(x, y=y) def sqrt(x: Array) -> Array: r"""Elementwise square root: :math:`\sqrt{x}`.""" return sqrt_p.bind(x) def rsqrt(x: Array) -> Array: r"""Elementwise reciprocal square root: :math:`1 \over \sqrt{x}.""" return rsqrt_p.bind(x) def bitwise_not(x: Array) -> Array: r"""Elementwise NOT: :math:`\neg x`.""" return not_p.bind(x) def bitwise_and(x: Array, y: Array) -> Array: r"""Elementwise AND: :math:`x \wedge y`.""" return and_p.bind(x, y) def bitwise_or(x: Array, y: Array) -> Array: r"""Elementwise OR: :math:`x \vee y`.""" return or_p.bind(x, y) def bitwise_xor(x: Array, y: Array) -> Array: r"""Elementwise exclusive OR: :math:`x \oplus y`.""" return xor_p.bind(x, y) def population_count(x: Array) -> Array: r"""Elementwise popcount, count the number of set bits in each element.""" return population_count_p.bind(x) def add(x: Array, y: Array) -> Array: r"""Elementwise addition: :math:`x + y`.""" return add_p.bind(x, y) def sub(x: Array, y: Array) -> Array: r"""Elementwise subtraction: :math:`x - y`.""" return sub_p.bind(x, y) def mul(x: Array, y: Array) -> Array: r"""Elementwise multiplication: :math:`x \times y`.""" return mul_p.bind(x, y) def div(x: Array, y: Array) -> Array: r"""Elementwise division: :math:`x \over y`.""" return div_p.bind(x, y) def rem(x: Array, y: Array) -> Array: r"""Elementwise remainder: :math:`x \bmod y`.""" return rem_p.bind(x, y) def max(x: Array, y: Array) -> Array: r"""Elementwise maximum: :math:`\mathrm{max}(x, y)` For complex numbers, uses a lexicographic comparison on the `(real, imaginary)` pairs.""" return max_p.bind(x, y) def min(x: Array, y: Array) -> Array: r"""Elementwise minimum: :math:`\mathrm{min}(x, y)` For complex numbers, uses a lexicographic comparison on the `(real, imaginary)` pairs.""" return min_p.bind(x, y) def shift_left(x: Array, y: Array) -> Array: r"""Elementwise left shift: :math:`x \ll y`.""" return shift_left_p.bind(x, y) def shift_right_arithmetic(x: Array, y: Array) -> Array: r"""Elementwise arithmetic right shift: :math:`x \gg y`.""" return shift_right_arithmetic_p.bind(x, y) def shift_right_logical(x: Array, y: Array) -> Array: r"""Elementwise logical right shift: :math:`x \gg y`.""" return shift_right_logical_p.bind(x, y) def eq(x: Array, y: Array) -> Array: r"""Elementwise equals: :math:`x = y`.""" return eq_p.bind(x, y) def ne(x: Array, y: Array) -> Array: r"""Elementwise not-equals: :math:`x \neq y`.""" return ne_p.bind(x, y) def ge(x: Array, y: Array) -> Array: r"""Elementwise greater-than-or-equals: :math:`x \geq y`.""" return ge_p.bind(x, y) def gt(x: Array, y: Array) -> Array: r"""Elementwise greater-than: :math:`x > y`.""" return gt_p.bind(x, y) def le(x: Array, y: Array) -> Array: r"""Elementwise less-than-or-equals: :math:`x \leq y`.""" return le_p.bind(x, y) def lt(x: Array, y: Array) -> Array: r"""Elementwise less-than: :math:`x < y`.""" return lt_p.bind(x, y) def convert_element_type(operand: Array, new_dtype: DType) -> Array: """Elementwise cast. Wraps XLA's `ConvertElementType <https://www.tensorflow.org/xla/operation_semantics#convertelementtype>`_ operator, which performs an elementwise conversion from one type to another. Similar to a C++ `static_cast`. Args: operand: an array or scalar value to be cast new_dtype: the new type. Should be a NumPy type. Returns: An array with the same shape as `operand`, cast elementwise to `new_dtype`. """ new_dtype = dtypes.canonicalize_dtype(new_dtype) # Avoids dropping precision by casting Python scalars to the default Jax # type. If we passed a Python scalar directly to the bind call below, it is # cast to the default type as part of the calling convention. if type(operand) in dtypes.python_scalar_dtypes: operand = np.asarray(operand, new_dtype) old_dtype = dtypes.canonicalize_dtype(_dtype(operand)) if old_dtype == new_dtype: return operand if (dtypes.issubdtype(old_dtype, np.complexfloating) and not dtypes.issubdtype(new_dtype, np.complexfloating)): msg = "Casting complex values to real discards the imaginary part" warnings.warn(msg, np.ComplexWarning, stacklevel=2) return convert_element_type_p.bind( operand, new_dtype=new_dtype, old_dtype=old_dtype) def bitcast_convert_type(operand: Array, new_dtype: DType) -> Array: """Elementwise bitcast. Wraps XLA's `BitcastConvertType <https://www.tensorflow.org/xla/operation_semantics#bitcastconverttype>`_ operator, which performs a bit cast from one type to another. The bitwidth of the source and destination types must match. Args: operand: an array or scalar value to be cast new_dtype: the new type. Should be a NumPy type. Returns: An array with the same shape as `operand`, bitcast elementwise to `new_dtype`. """ new_dtype = dtypes.canonicalize_dtype(new_dtype) old_dtype = _dtype(operand) if old_dtype != new_dtype: return bitcast_convert_type_p.bind(operand, new_dtype=new_dtype) else: return operand def clamp(min: Array, x: Array, max: Array) -> Array: r"""Elementwise clamp. Returns :math:`\mathrm{clamp}(x) = \begin{cases} \mathit{min} & \text{if } x < \mathit{min},\\ \mathit{max} & \text{if } x > \mathit{max},\\ x & \text{otherwise} \end{cases}`. """ return clamp_p.bind(min, x, max) def concatenate(operands: Sequence[Array], dimension: int) -> Array: """Concatenates a sequence of arrays along `dimension`. Wraps XLA's `Concatenate <https://www.tensorflow.org/xla/operation_semantics#concatenate>`_ operator. Args: operands: a sequence of arrays to concatenate. The arrays must have equal shapes, except in the `dimension` axis. dimension: the dimension along which to concatenate the arrays. Returns: An array containing the concatenation. """ return concatenate_p.bind(*operands, dimension=dimension) Precision = xla_client.PrecisionConfig.Precision Precision.__str__ = lambda precision: precision.name PrecisionType = Any PrecisionLike = Union[None, PrecisionType, Tuple[PrecisionType, PrecisionType]] class ConvDimensionNumbers(NamedTuple): """Describes batch, spatial, and feature dimensions of a convolution. Args: lhs_spec: a tuple of nonnegative integer dimension numbers containing `(batch dimension, feature dimension, spatial dimensions...)`. rhs_spec: a tuple of nonnegative integer dimension numbers containing `(out feature dimension, in feature dimension, spatial dimensions...)`. out_spec: a tuple of nonnegative integer dimension numbers containing `(batch dimension, feature dimension, spatial dimensions...)`. """ lhs_spec: Sequence[int] rhs_spec: Sequence[int] out_spec: Sequence[int] ConvGeneralDilatedDimensionNumbers = Union[ None, ConvDimensionNumbers, Tuple[str, str, str]] def conv_general_dilated( lhs: Array, rhs: Array, window_strides: Sequence[int], padding: Union[str, Sequence[Tuple[int, int]]], lhs_dilation: Optional[Sequence[int]] = None, rhs_dilation: Optional[Sequence[int]] = None, dimension_numbers: ConvGeneralDilatedDimensionNumbers = None, feature_group_count: int = 1, batch_group_count: int = 1, precision: PrecisionLike = None) -> Array: """General n-dimensional convolution operator, with optional dilation. Wraps XLA's `Conv <https://www.tensorflow.org/xla/operation_semantics#conv_convolution>`_ operator. Args: lhs: a rank `n+2` dimensional input array. rhs: a rank `n+2` dimensional array of kernel weights. window_strides: a sequence of `n` integers, representing the inter-window strides. padding: either the string `'SAME'`, the string `'VALID'`, or a sequence of `n` `(low, high)` integer pairs that give the padding to apply before and after each spatial dimension. lhs_dilation: `None`, or a sequence of `n` integers, giving the dilation factor to apply in each spatial dimension of `lhs`. LHS dilation is also known as transposed convolution. rhs_dilation: `None`, or a sequence of `n` integers, giving the dilation factor to apply in each spatial dimension of `rhs`. RHS dilation is also known as atrous convolution. dimension_numbers: either `None`, a `ConvDimensionNumbers` object, or a 3-tuple `(lhs_spec, rhs_spec, out_spec)`, where each element is a string of length `n+2`. feature_group_count: integer, default 1. See XLA HLO docs. batch_group_count: integer, default 1. See XLA HLO docs. precision: Optional. Either ``None``, which means the default precision for the backend, a ``lax.Precision`` enum value (``Precision.DEFAULT``, ``Precision.HIGH`` or ``Precision.HIGHEST``) or a tuple of two ``lax.Precision`` enums indicating precision of ``lhs``` and ``rhs``. Returns: An array containing the convolution result. In the string case of `dimension_numbers`, each character identifies by position: - the batch dimensions in `lhs`, `rhs`, and the output with the character 'N', - the feature dimensions in `lhs` and the output with the character 'C', - the input and output feature dimensions in rhs with the characters 'I' and 'O' respectively, and - spatial dimension correspondences between lhs, rhs, and the output using any distinct characters. For example, to indicate dimension numbers consistent with the `conv` function with two spatial dimensions, one could use `('NCHW', 'OIHW', 'NCHW')`. As another example, to indicate dimension numbers consistent with the TensorFlow Conv2D operation, one could use `('NHWC', 'HWIO', 'NHWC')`. When using the latter form of convolution dimension specification, window strides are associated with spatial dimension character labels according to the order in which the labels appear in the `rhs_spec` string, so that `window_strides[0]` is matched with the dimension corresponding to the first character appearing in rhs_spec that is not `'I'` or `'O'`. If `dimension_numbers` is `None`, the default is `('NCHW', 'OIHW', 'NCHW')` (for a 2D convolution). """ dnums = conv_dimension_numbers(lhs.shape, rhs.shape, dimension_numbers) if lhs_dilation is None: lhs_dilation = (1,) * (lhs.ndim - 2) elif isinstance(padding, str) and not len(lhs_dilation) == lhs_dilation.count(1): raise ValueError( "String padding is not implemented for transposed convolution " "using this op. Please either exactly specify the required padding or " "use conv_transpose.") if rhs_dilation is None: rhs_dilation = (1,) * (rhs.ndim - 2) if isinstance(padding, str): lhs_perm, rhs_perm, _ = dnums rhs_shape = np.take(rhs.shape, rhs_perm)[2:] effective_rhs_shape = [(k-1) * r + 1 for k, r in zip(rhs_shape, rhs_dilation)] padding = padtype_to_pads( np.take(lhs.shape, lhs_perm)[2:], effective_rhs_shape, window_strides, padding) return conv_general_dilated_p.bind( lhs, rhs, window_strides=tuple(window_strides), padding=tuple(padding), lhs_dilation=tuple(lhs_dilation), rhs_dilation=tuple(rhs_dilation), dimension_numbers=dnums, feature_group_count=feature_group_count, batch_group_count=batch_group_count, lhs_shape=lhs.shape, rhs_shape=rhs.shape, precision=_canonicalize_precision(precision)) def dot(lhs: Array, rhs: Array, precision: PrecisionLike = None) -> Array: """Vector/vector, matrix/vector, and matrix/matrix multiplication. Wraps XLA's `Dot <https://www.tensorflow.org/xla/operation_semantics#dot>`_ operator. For more general contraction, see the `dot_general` operator. Args: lhs: an array of rank 1 or 2. rhs: an array of rank 1 or 2. precision: Optional. Either ``None``, which means the default precision for the backend, a ``lax.Precision`` enum value (``Precision.DEFAULT``, ``Precision.HIGH`` or ``Precision.HIGHEST``) or a tuple of two ``lax.Precision`` enums indicating precision of ``lhs``` and ``rhs``. Returns: An array containing the product. """ if 1 <= lhs.ndim <= 2 and 1 <= rhs.ndim <= 2 and lhs.shape[-1] == rhs.shape[0]: return dot_general(lhs, rhs, (((lhs.ndim - 1,), (0,)), ((), ())), precision=precision) else: raise TypeError("Incompatible shapes for dot: got {} and {}.".format( lhs.shape, rhs.shape)) DotDimensionNumbers = Tuple[Tuple[Sequence[int], Sequence[int]], Tuple[Sequence[int], Sequence[int]]] def dot_general(lhs: Array, rhs: Array, dimension_numbers: DotDimensionNumbers, precision: PrecisionLike = None) -> Array: """More general contraction operator. Wraps XLA's `DotGeneral <https://www.tensorflow.org/xla/operation_semantics#dotgeneral>`_ operator. Args: lhs: an array rhs: an array dimension_numbers: a tuple of tuples of the form `((lhs_contracting_dims, rhs_contracting_dims), (lhs_batch_dims, rhs_batch_dims))` precision: Optional. Either ``None``, which means the default precision for the backend, a ``lax.Precision`` enum value (``Precision.DEFAULT``, ``Precision.HIGH`` or ``Precision.HIGHEST``) or a tuple of two ``lax.Precision`` enums indicating precision of ``lhs``` and ``rhs``. Returns: An array containing the result. """ contract_dims_seq, batch_dims_seq = dimension_numbers contract_dims = tuple(map(lambda x: tuple(x), contract_dims_seq)) batch_dims = tuple(map(lambda x: tuple(x), batch_dims_seq)) return dot_general_p.bind(lhs, rhs, dimension_numbers=(contract_dims, batch_dims), precision=_canonicalize_precision(precision)) def broadcast(operand: Array, sizes: Sequence[int]) -> Array: """Broadcasts an array, adding new major dimensions. Wraps XLA's `Broadcast <https://www.tensorflow.org/xla/operation_semantics#broadcast>`_ operator. Args: operand: an array sizes: a sequence of integers, giving the sizes of new major dimensions to add. Returns: An array containing the result. """ dims = tuple(range(len(sizes), len(sizes) + np.ndim(operand))) return broadcast_in_dim(operand, tuple(sizes) + np.shape(operand), dims) def broadcast_in_dim(operand: Array, shape: Shape, broadcast_dimensions: Sequence[int]) -> Array: """Wraps XLA's `BroadcastInDim <https://www.tensorflow.org/xla/operation_semantics#broadcastindim>`_ operator. """ shape = _broadcast_in_dim_shape_rule( operand, shape=shape, broadcast_dimensions=broadcast_dimensions) if (np.ndim(operand) == len(shape) and not len(broadcast_dimensions) and isinstance(operand, (xla.DeviceArray, core.Tracer))): return operand return broadcast_in_dim_p.bind( operand, shape=tuple(shape), broadcast_dimensions=tuple(broadcast_dimensions)) def broadcast_to_rank(x: Array, rank: int) -> Array: """Adds leading dimensions of ``1`` to give ``x`` rank ``rank``.""" return broadcast(x, (1,) * (rank - x.ndim)) def reshape(operand: Array, new_sizes: Shape, dimensions: Optional[Sequence[int]] = None) -> Array: """Wraps XLA's `Reshape <https://www.tensorflow.org/xla/operation_semantics#reshape>`_ operator. For inserting/removing dimensions of size 1, prefer using ``lax.squeeze`` / ``lax.expand_dims``. These preserve information about axis identity that may be useful for advanced transformation rules. """ new_sizes = canonicalize_shape(new_sizes) # TODO new_sizes = tuple(new_sizes) same_shape = np.shape(operand) == new_sizes same_dims = dimensions is None or tuple(dimensions) == tuple(range(np.ndim(operand))) if np.shape(operand) and same_shape and same_dims: return operand else: return reshape_p.bind( operand, new_sizes=new_sizes, dimensions=None if dimensions is None or same_dims else tuple(dimensions)) def pad(operand: Array, padding_value: Array, padding_config: Sequence[Tuple[int, int, int]]) -> Array: """Applies low, high, and/or interior padding to an array. Wraps XLA's `Pad <https://www.tensorflow.org/xla/operation_semantics#pad>`_ operator. Args: operand: an array to be padded. padding_value: the value to be inserted as padding. Must have the same dtype as ``operand``. padding_config: a sequence of ``(low, high, interior)`` tuples of integers, giving the amount of low, high, and interior (dilation) padding to insert in each dimension. Returns: The ``operand`` array with padding value ``padding_value`` inserted in each dimension according to the ``padding_config``. """ return pad_p.bind(operand, padding_value, padding_config=tuple(padding_config)) def rev(operand: Array, dimensions: Sequence[int]) -> Array: """Wraps XLA's `Rev <https://www.tensorflow.org/xla/operation_semantics#rev_reverse>`_ operator. """ return rev_p.bind(operand, dimensions=tuple(dimensions)) def select(pred: Array, on_true: Array, on_false: Array) -> Array: """Wraps XLA's `Select <https://www.tensorflow.org/xla/operation_semantics#select>`_ operator. """ return select_p.bind(pred, on_true, on_false) def slice(operand: Array, start_indices: Sequence[int], limit_indices: Sequence[int], strides: Optional[Sequence[int]] = None) -> Array: """Wraps XLA's `Slice <https://www.tensorflow.org/xla/operation_semantics#slice>`_ operator. """ return slice_p.bind(operand, start_indices=tuple(start_indices), limit_indices=tuple(limit_indices), strides=None if strides is None else tuple(strides)) def dynamic_slice(operand: Array, start_indices: Sequence[Array], slice_sizes: Shape) -> Array: """Wraps XLA's `DynamicSlice <https://www.tensorflow.org/xla/operation_semantics#dynamicslice>`_ operator. Args: operand: an array to slice. start_indices: a list of scalar indices, one per dimension. These values may be dynamic. slice_sizes: the size of the slice. Must be a sequence of non-negative integers with length equal to `ndim(operand)`. Inside a JIT compiled function, only static values are supported (all JAX arrays inside JIT must have statically known size). Returns: An array containing the slice. """ start_indices = _dynamic_slice_indices(operand, start_indices) return dynamic_slice_p.bind(operand, *start_indices, slice_sizes=tuple(slice_sizes)) def dynamic_update_slice(operand: Array, update: Array, start_indices: Array) -> Array: """Wraps XLA's `DynamicUpdateSlice <https://www.tensorflow.org/xla/operation_semantics#dynamicupdateslice>`_ operator. Args: operand: an array to slice. update: an array containing the new values to write onto `operand`. start_indices: a list of scalar indices, one per dimension. Returns: An array containing the slice. """ start_indices = _dynamic_slice_indices(operand, start_indices) return dynamic_update_slice_p.bind(operand, update, *start_indices) class GatherDimensionNumbers(NamedTuple): """ Describes the dimension number arguments to an `XLA's Gather operator <https://www.tensorflow.org/xla/operation_semantics#gather>`_. See the XLA documentation for more details of what the dimension numbers mean. Args: offset_dims: the set of dimensions in the `gather` output that offset into an array sliced from `operand`. Must be a tuple of integers in ascending order, each representing a dimension number of the output. collapsed_slice_dims: the set of dimensions `i` in `operand` that have `slice_sizes[i] == 1` and that should not have a corresponding dimension in the output of the gather. Must be a tuple of integers in ascending order. start_index_map: for each dimension in `start_indices`, gives the corresponding dimension in `operand` that is to be sliced. Must be a tuple of integers with size equal to `start_indices.shape[-1]`. Unlike XLA's `GatherDimensionNumbers` structure, `index_vector_dim` is implicit; there is always an index vector dimension and it must always be the last dimension. To gather scalar indices, add a trailing dimension of size 1. """ offset_dims: Sequence[int] collapsed_slice_dims: Sequence[int] start_index_map: Sequence[int] def gather(operand: Array, start_indices: Array, dimension_numbers: GatherDimensionNumbers, slice_sizes: Shape) -> Array: """Gather operator. Wraps `XLA's Gather operator <https://www.tensorflow.org/xla/operation_semantics#gather>`_. The semantics of gather are complicated, and its API might change in the future. For most use cases, you should prefer `Numpy-style indexing <https://docs.scipy.org/doc/numpy-1.16.0/reference/arrays.indexing.html>`_ (e.g., `x[:, (1,4,7), ...]`), rather than using `gather` directly. Args: operand: an array from which slices should be taken start_indices: the indices at which slices should be taken dimension_numbers: a `lax.GatherDimensionNumbers` object that describes how dimensions of `operand`, `start_indices` and the output relate. slice_sizes: the size of each slice. Must be a sequence of non-negative integers with length equal to `ndim(operand)`. Returns: An array containing the gather output. """ return gather_p.bind( operand, start_indices, dimension_numbers=dimension_numbers, slice_sizes=canonicalize_shape(slice_sizes)) class ScatterDimensionNumbers(NamedTuple): """ Describes the dimension number arguments to an `XLA's Scatter operator <https://www.tensorflow.org/xla/operation_semantics#scatter>`_. See the XLA documentation for more details of what the dimension numbers mean. Args: update_window_dims: the set of dimensions in the `updates` that are window dimensions. Must be a tuple of integers in ascending order, each representing a dimension number. inserted_window_dims: the set of size 1 window dimensions that must be inserted into the shape of `updates`. Must be a tuple of integers in ascending order, each representing a dimension number of the output. These are the mirror image of `collapsed_slice_dims` in the case of `gather`. scatter_dims_to_operand_dims: for each dimension in `scatter_indices`, gives the corresponding dimension in `operand`. Must be a sequence of integers with size equal to indices.shape[-1]. Unlike XLA's `ScatterDimensionNumbers` structure, `index_vector_dim` is implicit; there is always an index vector dimension and it must always be the last dimension. To scatter scalar indices, add a trailing dimension of size 1. """ update_window_dims: Sequence[int] inserted_window_dims: Sequence[int] scatter_dims_to_operand_dims: Sequence[int] def scatter_add(operand: Array, scatter_indices: Array, updates: Array, dimension_numbers: ScatterDimensionNumbers, *, indices_are_sorted: bool = False, unique_indices: bool = False) -> Array: """Scatter-add operator. Wraps `XLA's Scatter operator <https://www.tensorflow.org/xla/operation_semantics#scatter>`_, where addition is used to combine updates and values from `operand`. The semantics of scatter are complicated and its API is subject to change. Args: operand: an array to which the scatter should be applied scatter_indices: an array that gives the indices in `operand` to which each update in `updates` should be applied. updates: the updates that should be scattered onto `operand`. dimension_numbers: a `lax.ScatterDimensionNumbers` object that describes how dimensions of `operand`, `start_indices`, `updates` and the output relate. indices_are_sorted: whether `scatter_indices` is known to be sorted. If true, may improve performance on some backends. unique_indices: whether the indices to be updated in ``operand`` are guaranteed to not overlap with each other. If true, may improve performance on some backends. Returns: An array containing the sum of `operand` and the scattered updates. """ jaxpr, consts = _reduction_jaxpr(add, _abstractify(_const(operand, 0))) return scatter_add_p.bind( operand, scatter_indices, updates, update_jaxpr=jaxpr, update_consts=consts, dimension_numbers=dimension_numbers, indices_are_sorted=indices_are_sorted, unique_indices=unique_indices) def scatter_mul(operand: Array, scatter_indices: Array, updates: Array, dimension_numbers: ScatterDimensionNumbers, *, indices_are_sorted: bool = False, unique_indices: bool = False) -> Array: """Scatter-multiply operator. Wraps `XLA's Scatter operator <https://www.tensorflow.org/xla/operation_semantics#scatter>`_, where multiplication is used to combine updates and values from `operand`. The semantics of scatter are complicated and its API is subject to change. Args: operand: an array to which the scatter should be applied scatter_indices: an array that gives the indices in `operand` to which each update in `updates` should be applied. updates: the updates that should be scattered onto `operand`. dimension_numbers: a `lax.ScatterDimensionNumbers` object that describes how dimensions of `operand`, `start_indices`, `updates` and the output relate. indices_are_sorted: whether `scatter_indices` is known to be sorted. If true, may improve performance on some backends. unique_indices: whether the indices to be updated in ``operand`` are guaranteed to not overlap with each other. If true, may improve performance on some backends. Returns: An array containing the sum of `operand` and the scattered updates. """ jaxpr, consts = _reduction_jaxpr(mul, _abstractify(_const(operand, 1))) return scatter_mul_p.bind( operand, scatter_indices, updates, update_jaxpr=jaxpr, update_consts=consts, dimension_numbers=dimension_numbers, indices_are_sorted=indices_are_sorted, unique_indices=unique_indices) def scatter_min(operand: Array, scatter_indices: Array, updates: Array, dimension_numbers: ScatterDimensionNumbers, *, indices_are_sorted: bool = False, unique_indices: bool = False) -> Array: """Scatter-min operator. Wraps `XLA's Scatter operator <https://www.tensorflow.org/xla/operation_semantics#scatter>`_, where the `min` function is used to combine updates and values from `operand`. The semantics of scatter are complicated and its API is subject to change. Args: operand: an array to which the scatter should be applied scatter_indices: an array that gives the indices in `operand` to which each update in `updates` should be applied. updates: the updates that should be scattered onto `operand`. dimension_numbers: a `lax.ScatterDimensionNumbers` object that describes how dimensions of `operand`, `start_indices`, `updates` and the output relate. indices_are_sorted: whether `scatter_indices` is known to be sorted. If true, may improve performance on some backends. unique_indices: whether the indices to be updated in ``operand`` are guaranteed to not overlap with each other. If true, may improve performance on some backends. Returns: An array containing the sum of `operand` and the scattered updates. """ jaxpr, consts = _reduction_jaxpr(min, _abstractify(_const(operand, 0))) return scatter_min_p.bind( operand, scatter_indices, updates, update_jaxpr=jaxpr, update_consts=consts, dimension_numbers=dimension_numbers, indices_are_sorted=indices_are_sorted, unique_indices=unique_indices) def scatter_max(operand: Array, scatter_indices: Array, updates: Array, dimension_numbers: ScatterDimensionNumbers, *, indices_are_sorted: bool = False, unique_indices: bool = False) -> Array: """Scatter-max operator. Wraps `XLA's Scatter operator <https://www.tensorflow.org/xla/operation_semantics#scatter>`_, where the `max` function is used to combine updates and values from `operand`. The semantics of scatter are complicated and its API is subject to change. Args: operand: an array to which the scatter should be applied scatter_indices: an array that gives the indices in `operand` to which each update in `updates` should be applied. updates: the updates that should be scattered onto `operand`. dimension_numbers: a `lax.ScatterDimensionNumbers` object that describes how dimensions of `operand`, `start_indices`, `updates` and the output relate. indices_are_sorted: whether `scatter_indices` is known to be sorted. If true, may improve performance on some backends. unique_indices: whether the indices to be updated in ``operand`` are guaranteed to not overlap with each other. If true, may improve performance on some backends. Returns: An array containing the sum of `operand` and the scattered updates. """ jaxpr, consts = _reduction_jaxpr(max, _abstractify(_const(operand, 0))) return scatter_max_p.bind( operand, scatter_indices, updates, update_jaxpr=jaxpr, update_consts=consts, dimension_numbers=dimension_numbers, indices_are_sorted=indices_are_sorted, unique_indices=unique_indices) # Define this outside of scatter to ensure cache hits. _scatter_reduction_computation = lambda x, y: y def scatter(operand: Array, scatter_indices: Array, updates: Array, dimension_numbers: ScatterDimensionNumbers, *, indices_are_sorted: bool = False, unique_indices: bool = False) -> Array: """Scatter-update operator. Wraps `XLA's Scatter operator <https://www.tensorflow.org/xla/operation_semantics#scatter>`_, where updates replace values from `operand`. If multiple updates are performed to the same index of operand, they may be applied in any order. The semantics of scatter are complicated and its API is subject to change. Args: operand: an array to which the scatter should be applied scatter_indices: an array that gives the indices in `operand` to which each update in `updates` should be applied. updates: the updates that should be scattered onto `operand`. dimension_numbers: a `lax.ScatterDimensionNumbers` object that describes how dimensions of `operand`, `start_indices`, `updates` and the output relate. indices_are_sorted: whether `scatter_indices` is known to be sorted. If true, may improve performance on some backends. unique_indices: whether the indices to be updated in ``operand`` are guaranteed to not overlap with each other. If true, may improve performance on some backends. Returns: An array containing the sum of `operand` and the scattered updates. """ jaxpr, consts = _reduction_jaxpr(_scatter_reduction_computation, _abstractify(_const(operand, 0))) return scatter_p.bind( operand, scatter_indices, updates, update_jaxpr=jaxpr, update_consts=consts, dimension_numbers=dimension_numbers, indices_are_sorted=indices_are_sorted, unique_indices=unique_indices) def index_take(src: Array, idxs: Array, axes: Sequence[int]) -> Array: indices = concatenate([expand_dims(i, (1,)) for i in idxs], 1) indices = indices % np.array([src.shape[ax] for ax in axes]) slice_sizes = list(src.shape) for ax in axes: slice_sizes[ax] = 1 offset_dims = tuple(range(1, src.ndim - indices.shape[1] + 1)) dnums = GatherDimensionNumbers( offset_dims=offset_dims, collapsed_slice_dims=axes, start_index_map=axes) return gather(src, indices, dimension_numbers=dnums, slice_sizes=tuple(slice_sizes)) def transpose(operand: Array, permutation: Sequence[int]) -> Array: """Wraps XLA's `Transpose <https://www.tensorflow.org/xla/operation_semantics#transpose>`_ operator. """ permutation = tuple(permutation) if permutation == tuple(range(len(permutation))): return operand else: return transpose_p.bind(operand, permutation=permutation) def argmin(operand: Array, axis: int, index_dtype: DType) -> Tuple[Array, Array]: """Computes the index of the minimum element along ``axis``.""" return argmin_p.bind(operand, axes=(axis,), index_dtype=dtypes.canonicalize_dtype(index_dtype)) def argmax(operand: Array, axis: int, index_dtype: DType) -> Tuple[Array, Array]: """Computes the index of the maximum element along ``axis``.""" return argmax_p.bind(operand, axes=(axis,), index_dtype=dtypes.canonicalize_dtype(index_dtype)) def reduce(operands: Array, init_values: Array, computation: Callable, dimensions: Sequence[int]) -> Array: """Wraps XLA's `Reduce <https://www.tensorflow.org/xla/operation_semantics#reduce>`_ operator. """ flat_operands, operand_tree = tree_util.tree_flatten(operands) flat_init_values, init_value_tree = tree_util.tree_flatten(init_values) if operand_tree != init_value_tree: raise ValueError('Operands must have the same tree structure as init_values:' f' {operand_tree} vs. {init_value_tree}') if len(flat_operands) != len(flat_init_values): raise ValueError('Must have same total number of operands as init_values: ' f' {len(flat_operands)} vs. {len(flat_init_values)}') monoid_reducer = _get_monoid_reducer(computation, flat_init_values) if monoid_reducer: return monoid_reducer(*flat_operands, dimensions) else: flat_init_avals = safe_map(_abstractify, flat_init_values) jaxpr, consts, out_tree = _variadic_reduction_jaxpr( computation, tuple(flat_init_avals), init_value_tree) out = reduce_p.bind(*(flat_operands + flat_init_values), computation=computation, jaxpr=jaxpr, consts=consts, dimensions=tuple(dimensions)) return tree_util.tree_unflatten(out_tree, out) @cache() def _reduction_jaxpr(computation, aval): pval = pe.PartialVal.unknown(aval) comp = lu.wrap_init(lambda x, y: (computation(x, y),)) jaxpr, _, consts = pe.trace_to_jaxpr(comp, (pval, pval), instantiate=False) return jaxpr, consts @cache() def _variadic_reduction_jaxpr(computation, flat_avals, aval_tree): avals = tree_util.tree_unflatten(aval_tree, flat_avals) flat_in_avals, in_tree = tree_util.tree_flatten((avals, avals)) pvals = safe_map(pe.PartialVal.unknown, flat_in_avals) comp = lu.wrap_init(computation) flat_comp, out_tree = api_util.flatten_fun_nokwargs(comp, in_tree) jaxpr, _, consts = pe.trace_to_jaxpr(flat_comp, tuple(pvals), instantiate=False) return jaxpr, consts, out_tree() def _get_monoid_reducer(monoid_op: Callable, xs: Array) -> Optional[Callable]: if len(xs) != 1: return None x, = xs aval = core.get_aval(x) dtype = _dtype(x) if (type(aval) is ConcreteArray) and aval.shape == (): if monoid_op is add: return np.equal(aval.val, 0) and partial( _reduce_sum) if monoid_op is mul: return np.equal(aval.val, 1) and _reduce_prod elif monoid_op is bitwise_or and dtype == np.bool_: return np.equal(aval.val, _get_max_identity(dtype)) and _reduce_or elif monoid_op is bitwise_and and dtype == np.bool_: return np.equal(aval.val, _get_min_identity(dtype)) and _reduce_and elif monoid_op is max: return np.equal(aval.val, _get_max_identity(dtype)) and _reduce_max elif monoid_op is min: return np.equal(aval.val, _get_min_identity(dtype)) and _reduce_min return None def _get_max_identity(dtype: DType) -> Array: if dtypes.issubdtype(dtype, np.inexact): return np.array(-np.inf, dtype) elif dtypes.issubdtype(dtype, np.integer): return np.array(dtypes.iinfo(dtype).min, dtype) elif dtypes.issubdtype(dtype, np.bool_): return np.array(False, np.bool_) def _get_min_identity(dtype: DType) -> Array: if dtypes.issubdtype(dtype, np.inexact): return np.array(np.inf, dtype) elif dtypes.issubdtype(dtype, np.integer): return np.array(dtypes.iinfo(dtype).max, dtype) elif dtypes.issubdtype(dtype, np.bool_): return np.array(True, np.bool_) def _reduce_sum(operand: Array, axes: Sequence[int]) -> Array: return reduce_sum_p.bind(operand, axes=tuple(axes)) def _reduce_prod(operand: Array, axes: Sequence[int]) -> Array: return reduce_prod_p.bind(operand, axes=tuple(axes)) def _reduce_max(operand: Array, axes: Sequence[int]) -> Array: return reduce_max_p.bind(operand, axes=tuple(axes)) def _reduce_min(operand: Array, axes: Sequence[int]) -> Array: return reduce_min_p.bind(operand, axes=tuple(axes)) def _reduce_or(operand: Array, axes: Sequence[int]) -> Array: return reduce_or_p.bind(operand, axes=tuple(axes)) def _reduce_and(operand: Array, axes: Sequence[int]) -> Array: return reduce_and_p.bind(operand, axes=tuple(axes)) def reduce_window(operand: Array, init_value: Array, computation: Callable, window_dimensions: Shape, window_strides: Sequence[int], padding: Union[str, Sequence[Tuple[int, int]]], base_dilation: Optional[Sequence[int]] = None, window_dilation: Optional[Sequence[int]] = None) -> Array: """Wraps XLA's `ReduceWindowWithGeneralPadding <https://www.tensorflow.org/xla/operation_semantics#reducewindow>`_ operator. """ if isinstance(padding, str): dilated_window_dims = (window_dimensions if window_dilation is None else _dilate_shape(window_dimensions, window_dilation)) padding = tuple(padtype_to_pads(operand.shape, dilated_window_dims, window_strides, padding)) else: padding = tuple(padding) if base_dilation is None: base_dilation = (1,) * len(window_dimensions) if window_dilation is None: window_dilation = (1,) * len(window_dimensions) monoid_reducer = _get_monoid_window_reducer(computation, init_value) if monoid_reducer: return monoid_reducer(operand, window_dimensions, window_strides, padding, base_dilation, window_dilation) else: jaxpr, consts = _reduction_jaxpr(computation, _abstractify(init_value)) return reduce_window_p.bind( operand, init_value, jaxpr=jaxpr, consts=consts, window_dimensions=tuple(window_dimensions), window_strides=tuple(window_strides), padding=padding, base_dilation=tuple(base_dilation), window_dilation=tuple(window_dilation)) def _get_monoid_window_reducer(monoid_op: Callable, x: Array) -> Optional[Callable]: aval = core.get_aval(x) if (type(aval) is ConcreteArray) and aval.shape == (): if monoid_op is add: return aval.val == 0 and _reduce_window_sum elif monoid_op is max: return aval.val == _get_max_identity(aval.dtype) and _reduce_window_max elif monoid_op is min: return aval.val == _get_min_identity(aval.dtype) and _reduce_window_min return None def _reduce_window_sum(operand: Array, window_dimensions: Shape, window_strides: Sequence[int], padding: Sequence[Tuple[int, int]], base_dilation: Optional[Sequence[int]] = None, window_dilation: Optional[Sequence[int]] = None) -> Array: if base_dilation is None: base_dilation = (1,) * len(window_dimensions) if window_dilation is None: window_dilation = (1,) * len(window_dimensions) return reduce_window_sum_p.bind( operand, window_dimensions=tuple(window_dimensions), window_strides=tuple(window_strides), padding=tuple(padding), base_dilation=tuple(base_dilation), window_dilation=tuple(window_dilation)) def _reduce_window_prod(operand: Array, window_dimensions: Shape, window_strides: Sequence[int], padding: Sequence[Tuple[int, int]], base_dilation: Optional[Sequence[int]] = None, window_dilation: Optional[Sequence[int]] = None) -> Array: init_value = _const(operand, 1) jaxpr, consts = _reduction_jaxpr(mul, _abstractify(init_value)) if base_dilation is None: base_dilation = (1,) * len(window_dimensions) if window_dilation is None: window_dilation = (1,) * len(window_dimensions) return reduce_window_p.bind( operand, init_value, jaxpr=jaxpr, consts=consts, window_dimensions=tuple(window_dimensions), window_strides=tuple(window_strides), padding=tuple(padding), base_dilation=tuple(base_dilation), window_dilation=tuple(window_dilation)) def _reduce_window_max(operand: Array, window_dimensions: Shape, window_strides: Sequence[int], padding: Sequence[Tuple[int, int]], base_dilation: Optional[Sequence[int]] = None, window_dilation: Optional[Sequence[int]] = None) -> Array: if base_dilation is None: base_dilation = (1,) * len(window_dimensions) if window_dilation is None: window_dilation = (1,) * len(window_dimensions) return reduce_window_max_p.bind( operand, window_dimensions=tuple(window_dimensions), window_strides=tuple(window_strides), padding=tuple(padding), base_dilation=tuple(base_dilation), window_dilation=tuple(window_dilation)) def _reduce_window_min(operand: Array, window_dimensions: Shape, window_strides: Sequence[int], padding: Sequence[Tuple[int, int]], base_dilation: Optional[Sequence[int]] = None, window_dilation: Optional[Sequence[int]] = None) -> Array: if base_dilation is None: base_dilation = (1,) * len(window_dimensions) if window_dilation is None: window_dilation = (1,) * len(window_dimensions) return reduce_window_min_p.bind( operand, window_dimensions=tuple(window_dimensions), window_strides=tuple(window_strides), padding=tuple(padding), base_dilation=tuple(base_dilation), window_dilation=tuple(window_dilation)) def _select_and_scatter(operand: Array, select: Callable, window_dimensions: Shape, window_strides: Sequence[int], padding: Sequence[Tuple[int, int]], source: Array, init_value: Array, scatter: Callable, base_dilation: Sequence[int], window_dilation: Sequence[int]) -> Array: select_jaxpr, select_consts = _reduction_jaxpr(select, _abstractify(init_value)) scatter_jaxpr, scatter_consts = _reduction_jaxpr(scatter, _abstractify(init_value)) return select_and_scatter_p.bind( operand, source, init_value, select_jaxpr=select_jaxpr, select_consts=select_consts, scatter_jaxpr=scatter_jaxpr, scatter_consts=scatter_consts, window_dimensions=tuple(window_dimensions), window_strides=tuple(window_strides), padding=tuple(padding), base_dilation=tuple(base_dilation), window_dilation=tuple(window_dilation)) def _select_and_scatter_add(source: Array, operand: Array, select_prim: core.Primitive, window_dimensions: Shape, window_strides: Sequence[int], padding: Sequence[Tuple[int, int]]) -> Array: return select_and_scatter_add_p.bind( source, operand, select_prim=select_prim, window_dimensions=tuple(window_dimensions), window_strides=tuple(window_strides), padding=tuple(padding)) def _select_and_gather_add(tangents: Array, operand: Array, select_prim: core.Primitive, window_dimensions: Shape, window_strides: Sequence[int], padding: Sequence[Tuple[int, int]], base_dilation: Sequence[int], window_dilation: Sequence[int]) -> Array: """Extracts the tangent corresponding to the minimum or maximum element in each window of the `operand` array. Wraps XLA's `ReduceWindow <https://www.tensorflow.org/xla/operation_semantics#reducewindow>`_ operator, which applies a reduction function to all elements in each window of the input multi-dimensional array. In this case, the input multi-dimensional array is built by packing each element in the `operand` array with its corresponding element in the `tangents` array. Args: tangents: an array operand: an array with the same shape as `tangents` select_prim: a reduction function (restricted to `ge_p` and `le_p`) window_dimensions: an array of integers for window dimension values window_strides: an array of integers for window stride values base_dilation: an array of integers for base dilation values window_dilation: an array of integers for window dilation values Returns: An array containing the elements in `tangents` corresponding to the output of the reduction of `operand` fin each window. """ return select_and_gather_add_p.bind( tangents, operand, select_prim=select_prim, window_dimensions=tuple(window_dimensions), window_strides=tuple(window_strides), padding=tuple(padding), base_dilation=tuple(base_dilation), window_dilation=tuple(window_dilation)) def sort(operand: Union[Array, Sequence[Array]], dimension: int = -1, is_stable: bool = True, num_keys: int = 1) -> Union[Array, Tuple[Array, ...]]: """Wraps XLA's `Sort <https://www.tensorflow.org/xla/operation_semantics#sort>`_ operator. Args: operand : Array or sequence of arrays dimension : integer dimension along which to sort. Default: -1. is_stable : boolean specifying whether to use a stable sort. Default: True. num_keys : number of operands to treat as sort keys. Default: 1. For num_keys > 1, the sort order will be determined lexicographically using the first `num_keys` arrays, with the first key being primary. The remaining operands will be returned with the same permutation. Returns: operand : sorted version of the input or inputs. """ if isinstance(operand, Sequence): if len(operand) == 0: raise TypeError("Sort requires at least one operand") if not (1 <= num_keys <= len(operand)): raise ValueError(f"num_keys={num_keys} must be between 1 and len(operand)={len(operand)}") dimension = canonicalize_axis(dimension, len(operand[0].shape)) return tuple(sort_p.bind(*operand, dimension=dimension, is_stable=is_stable, num_keys=num_keys)) else: if num_keys != 1: raise ValueError(f"num_keys={num_keys} must equal 1 for a single operand.") dimension = canonicalize_axis(dimension, len(operand.shape)) return sort_p.bind(operand, dimension=dimension, is_stable=is_stable, num_keys=1)[0] def sort_key_val(keys: Array, values: Array, dimension: int = -1, is_stable: bool = True) -> Tuple[Array, Array]: """Sorts ``keys`` along ``dimension`` and applies same permutation to ``values``.""" dimension = canonicalize_axis(dimension, len(keys.shape)) k, v = sort_p.bind(keys, values, dimension=dimension, is_stable=is_stable, num_keys=1) return k, v def top_k(operand: Array, k: int) -> Tuple[Array, Array]: """Returns top ``k`` values and their indices along the last axis of ``operand``.""" k = int(k) if k < 0: raise ValueError("k argument to top_k must be nonnegative, got {}".format(k)) return top_k_p.bind(operand, k=k) def tie_in(x: Array, y: Array) -> Array: """Deprecated. Ignores ``x`` and returns ``y``.""" return y def full(shape: Shape, fill_value: Array, dtype: Optional[DType] = None) -> Array: """Returns an array of `shape` filled with `fill_value`. Arguments: shape: sequence of integers, describing the shape of the output array. fill_value: the value to fill the new array with. dtype: the type of the output array, or `None`. If not `None`, `fill_value` will be cast to `dtype`. """ shape = canonicalize_shape(shape) if np.shape(fill_value): msg = "full must be called with scalar fill_value, got fill_value.shape {}." raise TypeError(msg.format(np.shape(fill_value))) dtype = dtypes.canonicalize_dtype(dtype or _dtype(fill_value)) fill_value = convert_element_type(fill_value, dtype) return broadcast(fill_value, shape) def _device_put_raw(x): if isinstance(x, xla.DeviceArray): return x else: aval = raise_to_shaped(core.get_aval(x)) return xla.array_result_handler(None, aval)(*xla.device_put(x)) def iota(dtype: DType, size: int) -> Array: """Wraps XLA's `Iota <https://www.tensorflow.org/xla/operation_semantics#iota>`_ operator. """ if config.omnistaging_enabled: dtype = dtypes.canonicalize_dtype(dtype) size = core.concrete_or_error(int, size, "size argument of lax.iota") return iota_p.bind(dtype=dtype, shape=(size,), dimension=0) else: size = size if type(size) is masking.Poly else int(size) shape = canonicalize_shape((size,)) dtype = dtypes.canonicalize_dtype(dtype) lazy_expr = lazy.iota(dtype, shape[0]) aval = ShapedArray(shape, dtype) return xla.make_device_array(aval, None, lazy_expr, xla.DeviceConstant()) def broadcasted_iota(dtype: DType, shape: Shape, dimension: int) -> Array: """Convenience wrapper around ``iota``.""" dtype = dtypes.canonicalize_dtype(dtype) shape = canonicalize_shape(shape) dimension = core.concrete_or_error( int, dimension, "dimension argument of lax.broadcasted_iota") return iota_p.bind(dtype=dtype, shape=shape, dimension=dimension) def _eye(dtype: DType, shape: Shape, offset: int) -> Array: """Like numpy.eye, create a 2D array with ones on a diagonal.""" N, M = tuple(map(int, shape)) offset = int(offset) dtype = dtypes.canonicalize_dtype(dtype) if config.omnistaging_enabled: bool_eye = eq(add(broadcasted_iota(np.int32, (N, M), 0), np.int32(offset)), broadcasted_iota(np.int32, (N, M), 1)) return convert_element_type_p.bind(bool_eye, new_dtype=dtype, old_dtype=np.bool_) else: lazy_expr = lazy.eye(dtype, (N, M), offset) aval = ShapedArray((N, M), dtype) return xla.make_device_array(aval, None, lazy_expr, xla.DeviceConstant()) def _delta(dtype: DType, shape: Shape, axes: Sequence[int]) -> Array: """This utility function exists for creating Kronecker delta arrays.""" shape = tuple(map(int, shape)) axes = tuple(map(int, axes)) dtype = dtypes.canonicalize_dtype(dtype) base_shape = tuple(np.take(shape, axes)) if config.omnistaging_enabled: iotas = [broadcasted_iota(np.uint32, base_shape, i) for i in range(len(base_shape))] eyes = [eq(i1, i2) for i1, i2 in zip(iotas[:-1], iotas[1:])] result = convert_element_type_p.bind(_reduce(operator.and_, eyes), new_dtype=dtype, old_dtype=np.bool_) return broadcast_in_dim(result, shape, axes) else: lazy_expr = lazy.broadcast(lazy.delta(dtype, base_shape), shape, axes) aval = ShapedArray(shape, dtype) return xla.make_device_array(aval, None, lazy_expr, xla.DeviceConstant()) def _tri(dtype: DType, shape: Shape, offset: int) -> Array: """Like numpy.tri, create a 2D array with ones below a diagonal.""" N, M = tuple(map(int, shape)) offset = int(offset) dtype = dtypes.canonicalize_dtype(dtype) if config.omnistaging_enabled: bool_tri = ge(add(broadcasted_iota(np.int32, (N, M), 0), np.int32(offset)), broadcasted_iota(np.int32, (N, M), 1)) return convert_element_type_p.bind(bool_tri, old_dtype=np.int32, new_dtype=dtype) else: lazy_expr = lazy.tri(dtype, (N, M), offset) aval = ShapedArray((N, M), dtype) return xla.make_device_array(aval, None, lazy_expr, xla.DeviceConstant()) def stop_gradient(x): """Stops gradient computation. Operationally ``stop_gradient`` is the identity function, that is, it returns argument `x` unchanged. However, ``stop_gradient`` prevents the flow of gradients during forward or reverse-mode automatic differentiation. If there are multiple nested gradient computations, ``stop_gradient`` stops gradients for all of them. For example: >>> jax.grad(lambda x: x**2)(3.) array(6., dtype=float32) >>> jax.grad(lambda x: jax.lax.stop_gradient(x)**2)(3.) array(0., dtype=float32) >>> jax.grad(jax.grad(lambda x: x**2))(3.) array(2., dtype=float32) >>> jax.grad(jax.grad(lambda x: jax.lax.stop_gradient(x)**2))(3.) array(0., dtype=float32) """ def stop(x): if (dtypes.issubdtype(_dtype(x), np.floating) or dtypes.issubdtype(_dtype(x), np.complexfloating)): return ad_util.stop_gradient_p.bind(x) else: return x # only bind primitive on inexact dtypes, to avoid some staging return tree_map(stop, x) ### convenience wrappers around traceables def conv(lhs: Array, rhs: Array, window_strides: Sequence[int], padding: str, precision: PrecisionLike = None) -> Array: """Convenience wrapper around `conv_general_dilated`. Args: lhs: a rank `n+2` dimensional input array. rhs: a rank `n+2` dimensional array of kernel weights. window_strides: a sequence of `n` integers, representing the inter-window strides. padding: either the string `'SAME'`, the string `'VALID'`. precision: Optional. Either ``None``, which means the default precision for the backend, a ``lax.Precision`` enum value (``Precision.DEFAULT``, ``Precision.HIGH`` or ``Precision.HIGHEST``) or a tuple of two ``lax.Precision`` enums indicating precision of ``lhs``` and ``rhs``. Returns: An array containing the convolution result. """ return conv_general_dilated(lhs, rhs, window_strides, padding, precision=precision) def conv_with_general_padding(lhs: Array, rhs: Array, window_strides: Sequence[int], padding: Union[str, Sequence[Tuple[int, int]]], lhs_dilation: Optional[Sequence[int]], rhs_dilation: Optional[Sequence[int]], precision: PrecisionLike = None) -> Array: """Convenience wrapper around `conv_general_dilated`. Args: lhs: a rank `n+2` dimensional input array. rhs: a rank `n+2` dimensional array of kernel weights. window_strides: a sequence of `n` integers, representing the inter-window strides. padding: either the string `'SAME'`, the string `'VALID'`, or a sequence of `n` `(low, high)` integer pairs that give the padding to apply before and after each spatial dimension. lhs_dilation: `None`, or a sequence of `n` integers, giving the dilation factor to apply in each spatial dimension of `lhs`. LHS dilation is also known as transposed convolution. rhs_dilation: `None`, or a sequence of `n` integers, giving the dilation factor to apply in each spatial dimension of `rhs`. RHS dilation is also known as atrous convolution. precision: Optional. Either ``None``, which means the default precision for the backend, a ``lax.Precision`` enum value (``Precision.DEFAULT``, ``Precision.HIGH`` or ``Precision.HIGHEST``) or a tuple of two ``lax.Precision`` enums indicating precision of ``lhs``` and ``rhs``. Returns: An array containing the convolution result. """ return conv_general_dilated( lhs, rhs, window_strides, padding, lhs_dilation=lhs_dilation, rhs_dilation=rhs_dilation, precision=precision) def _conv_transpose_padding(k, s, padding): """Calculate before and after padding for a dim of transposed convolution. Args: k: int: kernel dimension. s: int: dimension stride value. padding: 'same' or 'valid' padding mode for original forward conv. Returns: 2-tuple: ints: before and after padding for transposed convolution. """ if padding == 'SAME': pad_len = k + s - 2 if s > k - 1: pad_a = k - 1 else: pad_a = int(np.ceil(pad_len / 2)) elif padding == 'VALID': pad_len = k + s - 2 + _max(k - s, 0) pad_a = k - 1 else: raise ValueError('Padding mode must be `SAME` or `VALID`.') pad_b = pad_len - pad_a return pad_a, pad_b def _flip_axes(x, axes): """Flip ndarray 'x' along each axis specified in axes tuple.""" for axis in axes: x = np.flip(x, axis) return x def conv_transpose(lhs: Array, rhs: Array, strides: Sequence[int], padding: Union[str, Sequence[Tuple[int, int]]], rhs_dilation: Optional[Sequence[int]] = None, dimension_numbers: ConvGeneralDilatedDimensionNumbers = None, transpose_kernel: bool = False, precision: PrecisionLike = None) -> Array: """Convenience wrapper for calculating the N-d convolution "transpose". This function directly calculates a fractionally strided conv rather than indirectly calculating the gradient (transpose) of a forward convolution. Args: lhs: a rank `n+2` dimensional input array. rhs: a rank `n+2` dimensional array of kernel weights. strides: sequence of `n` integers, sets fractional stride. padding: 'SAME', 'VALID' will set as transpose of corresponding forward conv, or a sequence of `n` integer 2-tuples describing before-and-after padding for each `n` spatial dimension. rhs_dilation: `None`, or a sequence of `n` integers, giving the dilation factor to apply in each spatial dimension of `rhs`. RHS dilation is also known as atrous convolution. dimension_numbers: tuple of dimension descriptors as in lax.conv_general_dilated. Defaults to tensorflow convention. transpose_kernel: if True flips spatial axes and swaps the input/output channel axes of the kernel. This makes the output of this function identical to the gradient-derived functions like keras.layers.Conv2DTranspose applied to the same kernel. For typical use in neural nets this is completely pointless and just makes input/output channel specification confusing. precision: Optional. Either ``None``, which means the default precision for the backend, a ``lax.Precision`` enum value (``Precision.DEFAULT``, ``Precision.HIGH`` or ``Precision.HIGHEST``) or a tuple of two ``lax.Precision`` enums indicating precision of ``lhs``` and ``rhs``. Returns: Transposed N-d convolution, with output padding following the conventions of keras.layers.Conv2DTranspose. """ assert len(lhs.shape) == len(rhs.shape) and len(lhs.shape) >= 2 ndims = len(lhs.shape) one = (1,) * (ndims - 2) # Set dimensional layout defaults if not specified. if dimension_numbers is None: if ndims == 2: dimension_numbers = ('NC', 'IO', 'NC') elif ndims == 3: dimension_numbers = ('NHC', 'HIO', 'NHC') elif ndims == 4: dimension_numbers = ('NHWC', 'HWIO', 'NHWC') elif ndims == 5: dimension_numbers = ('NHWDC', 'HWDIO', 'NHWDC') else: raise ValueError('No 4+ dimensional dimension_number defaults.') dn = conv_dimension_numbers(lhs.shape, rhs.shape, dimension_numbers) k_shape = np.take(rhs.shape, dn.rhs_spec) k_sdims = k_shape[2:] # Calculate correct output shape given padding and strides. pads: Union[str, Sequence[Tuple[int, int]]] if padding in {'SAME', 'VALID'}: if rhs_dilation is None: rhs_dilation = (1,) * (rhs.ndim - 2) effective_k_size = map(lambda k, r: (k-1) * r + 1, k_sdims, rhs_dilation) pads = [_conv_transpose_padding(k, s, padding) for k,s in zip(effective_k_size, strides)] else: pads = padding if transpose_kernel: # flip spatial dims and swap input / output channel axes rhs = _flip_axes(rhs, np.array(dn.rhs_spec)[2:]) rhs = np.swapaxes(rhs, dn.rhs_spec[0], dn.rhs_spec[1]) return conv_general_dilated(lhs, rhs, one, pads, strides, rhs_dilation, dn, precision=precision) def full_like(x: Array, fill_value: Array, dtype: Optional[DType] = None, shape: Optional[Shape] = None) -> Array: """Create a full array like np.full based on the example array `x`. Args: x: example array-like, used for shape and dtype information. fill_value: a scalar value to fill the entries of the output array. dtype: optional, a dtype parameter for the output ndarray. shape: optional, a shape parameter for the output ndarray. Returns: An ndarray with the same shape as `x` with its entries set equal to `fill_value`, similar to the output of np.full. """ fill_shape = np.shape(x) if shape is None else canonicalize_shape(shape) if not config.omnistaging_enabled: fill_value = tie_in(x, fill_value) return full(fill_shape, fill_value, dtype or _dtype(x)) def collapse(operand: Array, start_dimension: int, stop_dimension: int) -> Array: """Collapses dimensions of an array into a single dimension. For example, if ``operand`` is an array with shape ``[2, 3, 4]``, ``collapse(operand, 0, 2).shape == [6, 4]``. The elements of the collapsed dimension are laid out major-to-minor, i.e., with the lowest-numbered dimension as the slowest varying dimension. Args: operand: an input array. start_dimension: the start of the dimensions to collapse (inclusive). stop_dimension: the end of the dimensions to collapse (exclusive). Returns: An array where dimensions ``[start_dimension, stop_dimension)`` have been collapsed (raveled) into a single dimension. """ lo, hi = start_dimension, stop_dimension size = prod(operand.shape[lo:hi]) new_shape = operand.shape[:lo] + (size,) + operand.shape[hi:] return reshape(operand, new_shape) def slice_in_dim(operand: Array, start_index: Optional[int], limit_index: Optional[int], stride: int = 1, axis: int = 0)-> Array: """Convenience wrapper around slice applying to only one dimension.""" start_indices = [0] * operand.ndim limit_indices = list(operand.shape) strides = [1] * operand.ndim # translate `None` len_axis = operand.shape[axis] start_index_int = _canonicalize_dimension(start_index) if start_index is not None else 0 limit_index_int = _canonicalize_dimension(limit_index) if limit_index is not None else len_axis # translate negative indices if start_index_int < 0: start_index_int = start_index_int + len_axis if limit_index_int < 0: limit_index_int = limit_index_int + len_axis axis = int(axis) start_indices[axis] = start_index_int limit_indices[axis] = limit_index_int strides[axis] = int(stride) return slice(operand, start_indices, limit_indices, strides) def index_in_dim(operand: Array, index: int, axis: int = 0, keepdims: bool = True) -> Array: """Convenience wrapper around slice to perform int indexing.""" index, axis = int(index), int(axis) axis_size = operand.shape[axis] wrapped_index = index + axis_size if index < 0 else index if not 0 <= wrapped_index < axis_size: msg = 'index {} is out of bounds for axis {} with size {}' raise IndexError(msg.format(index, axis, axis_size)) result = slice_in_dim(operand, wrapped_index, wrapped_index + 1, 1, axis) if keepdims: return result else: return squeeze(result, (axis,)) def dynamic_slice_in_dim(operand: Array, start_index: Array, slice_size: int, axis: int = 0) -> Array: """Convenience wrapper around dynamic_slice applying to one dimension.""" start_indices = [_zero(start_index)] * operand.ndim slice_sizes = list(operand.shape) axis = int(axis) start_indices[axis] = start_index slice_sizes[axis] = int(slice_size) return dynamic_slice(operand, start_indices, slice_sizes) def dynamic_index_in_dim(operand: Array, index: Array, axis: int = 0, keepdims: bool = True) -> Array: """Convenience wrapper around dynamic_slice to perform int indexing.""" result = dynamic_slice_in_dim(operand, index, 1, axis) if keepdims: return result else: return squeeze(result, (axis,)) def dynamic_update_slice_in_dim(operand: Array, update: Array, start_index: Array, axis: int) -> Array: """Convenience wrapper around :func:`dynamic_update_slice` to update a slice in a single ``axis``. """ axis = int(axis) start_indices = [_zero(start_index)] * _ndim(operand) start_indices[axis] = start_index return dynamic_update_slice(operand, update, start_indices) def dynamic_update_index_in_dim(operand: Array, update: Array, index: Array, axis: int) -> Array: """Convenience wrapper around :func:`dynamic_update_slice` to update a slice of size 1 in a single ``axis``. """ axis = int(axis) if _ndim(update) != _ndim(operand): assert _ndim(update) + 1 == _ndim(operand) update = expand_dims(update, (axis,)) return dynamic_update_slice_in_dim(operand, update, index, axis) def batch_matmul(lhs: Array, rhs: Array, precision: PrecisionLike = None) -> Array: """Batch matrix multiplication.""" if _min(lhs.ndim, rhs.ndim) < 2: raise ValueError('Arguments to batch_matmul must be at least 2D, got {}, {}' .format(lhs.ndim, rhs.ndim)) if lhs.ndim != rhs.ndim: raise ValueError('Arguments to batch_matmul must have same ndim, got {}, {}' .format(lhs.ndim, rhs.ndim)) lhs_contract = (lhs.ndim - 1,) rhs_contract = (rhs.ndim - 2,) batch = tuple(range(lhs.ndim - 2)) return dot_general(lhs, rhs, ((lhs_contract, rhs_contract), (batch, batch)), precision=precision) # These functions also exist in the XLA client library, but we treat them # as non-primitive to maintain a smaller set of autodiff primitives. def square(x: Array) -> Array: r"""Elementwise square: :math:`x^2`.""" return integer_pow(x, 2) def reciprocal(x: Array) -> Array: r"""Elementwise reciprocal: :math:`1 \over x`.""" return integer_pow(x, -1) def _upcast_fp16_for_computation(f): @functools.wraps(f) def f_wrapped(x): dtype = _dtype(x) if dtype == np.float16 or dtype == dtypes.bfloat16: return convert_element_type( f(convert_element_type(x, np.float32)), dtype) return f(x) return f_wrapped @api.jit @_upcast_fp16_for_computation def tan(x: Array) -> Array: r"""Elementwise tangent: :math:`\mathrm{tan}(x)`.""" return div(sin(x), cos(x)) @api.jit def asin(x: Array) -> Array: r"""Elementwise arc sine: :math:`\mathrm{asin}(x)`.""" if dtypes.issubdtype(_dtype(x), np.complexfloating): return mul(_const(x, -1j), asinh(mul(_const(x, 1j), x))) else: return mul(_const(x, 2), atan2(x, add(_const(x, 1), sqrt(sub(_const(x, 1), square(x)))))) @api.jit def acos(x: Array) -> Array: r"""Elementwise arc cosine: :math:`\mathrm{acos}(x)`.""" if dtypes.issubdtype(_dtype(x), np.complexfloating): result = mul(_const(x, 1j), acosh(x)) # By convention, numpy chooses the branch with positive real part. rpart = real(result) return select( gt(rpart, _const(rpart, 0)), result, neg(result) ) else: return select( ne(x, _const(x, -1.0)), mul(_const(x, 2), atan2(sqrt(sub(_const(x, 1), square(x))), add(_const(x, 1), x))), full_like(x, np.pi)) def atan(x: Array) -> Array: r"""Elementwise arc tangent: :math:`\mathrm{atan}(x)`.""" if dtypes.issubdtype(_dtype(x), np.complexfloating): return mul(_const(x, -1j), atanh(mul(_const(x, 1j), x))) else: return atan2(x, _const(x, 1)) def sinh(x: Array) -> Array: r"""Elementwise hyperbolic sine: :math:`\mathrm{sinh}(x)`.""" return sinh_p.bind(x) def cosh(x: Array) -> Array: r"""Elementwise hyperbolic cosine: :math:`\mathrm{cosh}(x)`.""" return cosh_p.bind(x) def asinh(x: Array) -> Array: r"""Elementwise inverse hyperbolic sine: :math:`\mathrm{asinh}(x)`.""" return asinh_p.bind(x) def acosh(x: Array) -> Array: r"""Elementwise inverse hyperbolic cosine: :math:`\mathrm{acosh}(x)`.""" return acosh_p.bind(x) def atanh(x: Array) -> Array: r"""Elementwise inverse hyperbolic tangent: :math:`\mathrm{atanh}(x)`.""" return atanh_p.bind(x) # Add some methods to ShapedArray that rely on lax primitives ShapedArray.broadcast = core.aval_method(broadcast) ShapedArray.transpose = core.aval_method(transpose) # clobbered by lax_numpy ShapedArray.reshape = core.aval_method(reshape) # clobbered by lax_numpy def _iter(tracer): if tracer.ndim == 0: raise TypeError("iteration over a 0-d array") # same as numpy error else: n = int(tracer.shape[0]) # return (index_in_dim(tracer, i, keepdims=False) for i in range(n)) return iter([index_in_dim(tracer, i, keepdims=False) for i in range(n)]) ShapedArray._iter = staticmethod(_iter) # Add some ad handlers that use (or could use) lax primitives def zeros_like_array(x): return full_like(x, 0) for t in itertools.chain(dtypes.python_scalar_dtypes.keys(), array_types, [xla.DeviceArray, pxla.ShardedDeviceArray]): ad_util.jaxval_adders[t] = add ad_util.jaxval_zeros_likers[xla.DeviceArray] = zeros_like_array ad_util.jaxval_zeros_likers[pxla.ShardedDeviceArray] = zeros_like_array ### primitives _input_dtype = lambda *args, **_: dtypes.canonicalize_dtype(args[0].dtype) _fixed_dtype = lambda dtype: lambda *args, **kwargs: dtypes.canonicalize_dtype(dtype) _complex_basetype = lambda dtype: np.abs(np.zeros((), dtype)).dtype def standard_primitive(shape_rule, dtype_rule, name, translation_rule=None, multiple_results=False): prim = Primitive(name) prim.multiple_results = multiple_results prim.def_impl(partial(xla.apply_primitive, prim)) prim.def_abstract_eval(partial(standard_abstract_eval, prim, shape_rule, dtype_rule)) xla.translations[prim] = translation_rule or partial(standard_translate, name) return prim def standard_abstract_eval(prim, shape_rule, dtype_rule, *args, **kwargs): assert all(isinstance(arg, UnshapedArray) for arg in args), args least_specialized = _max( map(type, args), key=operator.attrgetter('array_abstraction_level')) if least_specialized is ConcreteArray: out_vals = prim.impl(*[x.val for x in args], **kwargs) if not prim.multiple_results: out_vals = [out_vals] out_avals = safe_map(ConcreteArray, out_vals) elif least_specialized is ShapedArray: shapes, dtypes = shape_rule(*args, **kwargs), dtype_rule(*args, **kwargs) if not prim.multiple_results: shapes, dtypes = [shapes], [dtypes] out_avals = safe_map(ShapedArray, shapes, dtypes) elif least_specialized is UnshapedArray: dtypes = dtype_rule(*args, **kwargs) if not prim.multiple_results: dtypes = [dtypes] out_avals = safe_map(UnshapedArray, dtypes) else: raise TypeError(args, least_specialized) if not prim.multiple_results: return out_avals[0] return out_avals def standard_translate(name, c, *args, **kwargs): xla_opname = ''.join(term.capitalize() for term in name.split('_')) return getattr(xops, xla_opname)(*args, **kwargs) def unop_dtype_rule(result_dtype, accepted_dtypes, name, aval, **kwargs): if not any(dtypes.issubdtype(aval.dtype, t) for t in accepted_dtypes): msg = '{} does not accept dtype {}. Accepted dtypes are subtypes of {}.' typename = str(np.dtype(aval.dtype).name) accepted_typenames = (t.__name__ for t in accepted_dtypes) raise TypeError(msg.format(name, typename, ', '.join(accepted_typenames))) return result_dtype(aval.dtype) def unop(result_dtype, accepted_dtypes, name, translation_rule=None): dtype_rule = partial(unop_dtype_rule, result_dtype, accepted_dtypes, name) prim = standard_primitive(_attrgetter('shape'), dtype_rule, name, translation_rule=translation_rule) batching.defvectorized(prim) masking.defvectorized(prim) return prim standard_unop = partial(unop, _identity) _attrgetter = lambda name: lambda x, **kwargs: getattr(x, name) def naryop_dtype_rule(result_dtype, accepted_dtypes, name, *avals, **kwargs): aval_dtypes = [aval.dtype for aval in avals] for i, (aval_dtype, types) in enumerate(zip(aval_dtypes, accepted_dtypes)): if not any(dtypes.issubdtype(aval_dtype, t) for t in types): if aval_dtype is dtypes.float0: raise TypeError( f"Called {name} with a float0 at position {i}. " "float0s do not support any operations by design, because they " "are not compatible with non-trivial vector spaces. No implicit dtype " "conversion is done. You can use np.zeros_like(arr, dtype=np.float) " "to cast a float0 array to a regular zeros array. \n" "If you didn't expect to get a float0 you might have accidentally " "taken a gradient with respect to an integer argument.") else: msg = ('{} does not accept dtype {} at position {}. ' 'Accepted dtypes at position {} are subtypes of {}.') typename = str(np.dtype(aval_dtype).name) typenames = ', '.join(t.__name__ for t in types) raise TypeError(msg.format(name, typename, i, i, typenames)) _check_same_dtypes(name, False, *aval_dtypes) return result_dtype(*avals) def _broadcasting_shape_rule(name, *avals): shapes = [aval.shape for aval in avals if aval.shape] if not shapes: return () if len({len(shape) for shape in shapes}) != 1: msg = '{} got arrays of different rank: {}.' raise TypeError(msg.format(name, ', '.join(map(str, map(tuple, shapes))))) result_shape = _try_broadcast_shapes(shapes) if result_shape is None: msg = '{} got incompatible shapes for broadcasting: {}.' raise TypeError(msg.format(name, ', '.join(map(str, map(tuple, shapes))))) return result_shape def naryop(result_dtype, accepted_dtypes, name, translation_rule=None): dtype_rule = partial(naryop_dtype_rule, result_dtype, accepted_dtypes, name) shape_rule = partial(_broadcasting_shape_rule, name) prim = standard_primitive(shape_rule, dtype_rule, name, translation_rule=translation_rule) batching.defbroadcasting(prim) masking.defnaryop(prim) return prim standard_naryop = partial(naryop, _input_dtype) def _broadcast_translate(translate: Callable): # Decorator for translation rules which adds explicit broadcasting of # positional arguments. This is necessary only for a handful of primitives # whose XLA implementations do not support broadcasting. def _broadcast_array(array, array_shape, result_shape): if array_shape == result_shape: return array bcast_dims = tuple(range(len(result_shape) - len(array_shape), len(result_shape))) result = xops.BroadcastInDim(array, result_shape, bcast_dims) return result def _broadcasted_translation_rule(c, *args, **kwargs): shapes = [c.get_shape(arg).dimensions() for arg in args] result_shape = broadcast_shapes(*shapes) args = [_broadcast_array(arg, arg_shape, result_shape) for arg, arg_shape in zip(args, shapes)] return translate(c, *args, **kwargs) return _broadcasted_translation_rule # NOTE(mattjj): this isn't great for orchestrate fwd mode because it means JVPs # get two extra ops in them: a reshape and a broadcast_in_dim (or sometimes just # a broadcast). but saving the shape info with the primitives isn't great either # because then we can't trace these ops without shape data. def _brcast(x, *others): # Used in jvprules to make naryop broadcasting explicit for transposability. # Requires shape info during jvp tracing, which isn't strictly necessary. # We don't need full numpy broadcasting, but otherwise the logic is the same # so we reuse the broadcast_shapes function after filtering out scalars. shapes = tuple(filter(None, map(np.shape, (x,) + others))) shape = shapes and broadcast_shapes(*shapes) if np.shape(x) != shape: return _brcast_to(x, shape) else: return x def _brcast_to(x, shape): x_shape = np.shape(x) assert x_shape != shape if x_shape: assert len(x_shape) == len(shape) broadcast_dimensions, = np.where(np.equal(x_shape, shape)) squeezed_dimensions, = np.where(np.not_equal(x_shape, shape)) squeezed = squeeze(x, squeezed_dimensions) return broadcast_in_dim(squeezed, shape, broadcast_dimensions) else: return broadcast(x, shape) _float = {np.floating} _complex = {np.complexfloating} _complex_elem_types = {np.float32, np.float64} _int = {np.integer} _bool = {np.bool_} _num = _int | _float | _complex _any = _int | _float | _complex | _bool _bool_or_int = _int | _bool neg_p = standard_unop(_num, 'neg') ad.deflinear(neg_p, lambda t: [neg(t)]) def _sign_translation_rule(c, x): shape = c.get_shape(x) dtype = shape.numpy_dtype() if dtypes.issubdtype(dtype, np.unsignedinteger): zero = xb.constant(c, np.array(0, dtype=dtype)) dims = c.get_shape(x).dimensions() return xops.Select(xops.Eq(x, zero), xops.Broadcast(zero, dims), xops.Broadcast(xb.constant(c, np.array(1, dtype=dtype)), dims)) return xops.Sign(x) sign_p = standard_unop(_num, 'sign', translation_rule=_sign_translation_rule) ad.defjvp_zero(sign_p) nextafter_p = standard_naryop( [_float, _float], 'nextafter', translation_rule=lambda c, x1, x2: xops.NextAfter(x1, x2)) floor_p = standard_unop(_float, 'floor') ad.defjvp_zero(floor_p) ceil_p = standard_unop(_float, 'ceil') ad.defjvp_zero(ceil_p) round_p = standard_unop(_float, 'round') ad.defjvp_zero(round_p) is_finite_p = unop(_fixed_dtype(np.bool_), _float, 'is_finite') ad.defjvp_zero(is_finite_p) exp_p = standard_unop(_float | _complex, 'exp') ad.defjvp2(exp_p, lambda g, ans, x: mul(g, ans)) iad.definverse(exp_p, lambda r, x: log(r)) # For exp_p it is more efficient to use the reconstructed output for the vjp # rule instead of computing it again from the input. iad.primitive_ivjps[exp_p] = lambda x, y, ct: [[log(y[0])], [ct[0] * y[0]]] log_p = standard_unop(_float | _complex, 'log') ad.defjvp(log_p, lambda g, x: div(g, x)) iad.definverse(log_p, lambda r, x: exp(r)) expm1_p = standard_unop(_float | _complex, 'expm1') ad.defjvp2(expm1_p, lambda g, ans, x: mul(g, add(ans, _one(ans)))) log1p_p = standard_unop(_float | _complex, 'log1p') ad.defjvp(log1p_p, lambda g, x: div(g, add(x, _one(x)))) tanh_p = standard_unop(_float | _complex, 'tanh') ad.defjvp2(tanh_p, lambda g, ans, x: mul(g, sub(_one(x), mul(ans, ans)))) sin_p = standard_unop(_float | _complex, 'sin') ad.defjvp(sin_p, lambda g, x: mul(g, cos(x))) cos_p = standard_unop(_float | _complex, 'cos') ad.defjvp(cos_p, lambda g, x: neg(mul(g, sin(x)))) atan2_p = standard_naryop([_float, _float], 'atan2') ad.defjvp(atan2_p, lambda g, x, y: _brcast(g, y) * (y / (square(x) + square(y))), lambda g, x, y: _brcast(g, x) * -x / (square(x) + square(y))) sinh_p = standard_unop(_float | _complex, 'sinh') ad.defjvp(sinh_p, lambda g, x: mul(g, cosh(x))) cosh_p = standard_unop(_float | _complex, 'cosh') ad.defjvp(cosh_p, lambda g, x: mul(g, sinh(x))) asinh_p = standard_unop(_float | _complex, 'asinh') ad.defjvp(asinh_p, lambda g, x: mul(g, rsqrt(square(x) + _one(x)))) acosh_p = standard_unop(_float | _complex, 'acosh') ad.defjvp(acosh_p, lambda g, x: mul(g, rsqrt((x - _one(x)) * (x + _one(x))))) atanh_p = standard_unop(_float | _complex, 'atanh') ad.defjvp(atanh_p, lambda g, x: mul(g, reciprocal((_one(x) - x) * (_one(x) + x)))) regularized_incomplete_beta_p = standard_naryop( [_float, _float, _float], 'regularized_incomplete_beta', translation_rule=_broadcast_translate( partial(standard_translate, 'regularized_incomplete_beta'))) def betainc_gradx(g, a, b, x): lbeta = lgamma(a) + lgamma(b) - lgamma(a + b) partial_x = exp((b - 1) * log1p(-x) + (a - 1) * log(x) - lbeta) return partial_x * g def betainc_grad_not_implemented(g, a, b, x): raise ValueError("Betainc gradient with respect to a and b not supported.") ad.defjvp(regularized_incomplete_beta_p, betainc_grad_not_implemented, betainc_grad_not_implemented, betainc_gradx) lgamma_p = standard_unop(_float, 'lgamma') ad.defjvp(lgamma_p, lambda g, x: mul(g, digamma(x))) digamma_p = standard_unop(_float, 'digamma') igamma_p = standard_naryop( [_float, _float], 'igamma', translation_rule=_broadcast_translate(partial(standard_translate, 'igamma'))) igamma_grad_a_p = standard_naryop([_float, _float], 'igamma_grad_a', translation_rule=_broadcast_translate(partial(standard_translate, 'igamma_grad_a'))) def igamma_gradx(g, a, x): return _brcast(g, a, x) * exp(-x + (a - _ones(a)) * log(x) - lgamma(a)) def igamma_grada(g, a, x): return _brcast(g, a, x) * igamma_grad_a(a, x) ad.defjvp(igamma_p, igamma_grada, igamma_gradx) igammac_p = standard_naryop( [_float, _float], 'igammac', translation_rule=_broadcast_translate(partial(standard_translate, 'igammac'))) def igammac_gradx(g, a, x): return -igamma_gradx(g, a, x) def igammac_grada(g, a, x): return -igamma_grada(g, a, x) ad.defjvp(igammac_p, igammac_grada, igammac_gradx) random_gamma_grad_p = standard_naryop([_float, _float], 'random_gamma_grad', translation_rule=_broadcast_translate(partial(standard_translate, 'random_gamma_grad'))) bessel_i0e_p = standard_unop(_float, 'bessel_i0e') ad.defjvp2(bessel_i0e_p, lambda g, y, x: g * (bessel_i1e(x) - sign(x) * y)) bessel_i1e_p = standard_unop(_float, 'bessel_i1e') def _bessel_i1e_jvp(g, y, x): eps = dtypes.finfo(_dtype(x)).eps x_is_not_tiny = abs(x) > eps safe_x = select(x_is_not_tiny, x, full_like(x, eps)) dy_dx = bessel_i0e(safe_x) - y * (sign(safe_x) + reciprocal(safe_x)) dy_dx = select(x_is_not_tiny, dy_dx, full_like(x, 0.5)) return g * dy_dx ad.defjvp2(bessel_i1e_p, _bessel_i1e_jvp) erf_p = standard_unop(_float, 'erf') ad.defjvp(erf_p, lambda g, x: mul(_const(x, 2. / np.sqrt(np.pi)), mul(g, exp(neg(square(x)))))) erfc_p = standard_unop(_float, 'erfc') ad.defjvp(erfc_p, lambda g, x: mul(_const(x, 2. / np.sqrt(np.pi)), mul(neg(g), exp(neg(square(x)))))) erf_inv_p = standard_unop(_float, 'erf_inv') ad.defjvp2(erf_inv_p, lambda g, ans, x: mul(_const(x, np.sqrt(np.pi) / 2.), mul(g, exp(square(ans))))) real_p = unop(_complex_basetype, _complex, 'real') ad.deflinear(real_p, lambda t: [complex(t, np.zeros((), _dtype(t)))]) imag_p = unop(_complex_basetype, _complex, 'imag') ad.defjvp(imag_p, lambda g, _: real(mul(_const(g, -1j), g))) _complex_dtype = lambda dtype, *args: (np.zeros((), dtype) + np.zeros((), np.complex64)).dtype complex_p = naryop(_complex_dtype, [_complex_elem_types, _complex_elem_types], 'complex') ad.deflinear(complex_p, lambda t: [real(t), imag(neg(t))]) conj_p = unop(_complex_dtype, _complex_elem_types | _complex, 'conj') def _conj_transpose_rule(t, x, *, input_dtype): assert ad.is_undefined_primal(x) if dtypes.issubdtype(input_dtype, np.complexfloating): return [conj(t)] else: return [real(t)] xla.translations[conj_p] = lambda c, x, **kwargs: xops.Conj(x) ad.primitive_jvps[conj_p] = partial(ad.linear_jvp, conj_p) ad.primitive_transposes[conj_p] = _conj_transpose_rule abs_p = unop(_complex_basetype, _num, 'abs') def _abs_jvp_rule(g, ans, x): if _iscomplex(x): return _maybe_real(mul(g, div(_maybe_conj(x), _replace_zero(convert_element_type(ans, _dtype(x)))))) else: return select(ge(x, _zero(x)), g, neg(g)) ad.defjvp2(abs_p, _abs_jvp_rule) _maybe_conj = lambda x: conj(x) if _iscomplex(x) else x _maybe_real = lambda x: real(x) if _iscomplex(x) else x sqrt_p = standard_unop(_float | _complex, 'sqrt') ad.defjvp2(sqrt_p, lambda g, ans, x: mul(g, div(_const(x, 0.5), ans))) rsqrt_p = standard_unop(_float | _complex, 'rsqrt') ad.defjvp2(rsqrt_p, lambda g, ans, x: mul(g, mul(_const(x, -0.5), pow(x, _const(x, -1.5))))) pow_p = standard_naryop([_float | _complex, _float | _complex], 'pow') def _pow_jvp_lhs(g, ans, x, y): jac = mul(y, pow(x, select(eq(y, _zeros(y)), _ones(y), sub(y, _ones(y))))) return mul(_brcast(g, y), jac) def _pow_jvp_rhs(g, ans, x, y): return mul(_brcast(g, x), mul(log(_replace_zero(x)), ans)) ad.defjvp2(pow_p, _pow_jvp_lhs, _pow_jvp_rhs) def _integer_pow_dtype_rule(x, *, y): dtype = unop_dtype_rule(_identity, _int | _float | _complex, 'integer_pow', x) if y < 0 and dtypes.issubdtype(dtype, np.integer): raise TypeError("Integers cannot be raised to negative powers, got " f"integer_pow({x}, {y})") return dtype def _integer_pow_translation_rule(c, x, *, y): if y == 0: shape = c.get_shape(x) return xb.constant(c, np.array(1, dtype=shape.numpy_dtype())) is_reciprocal = y < 0 if is_reciprocal: y = -y acc = None while y > 0: if y & 1: acc = x if acc is None else xops.Mul(acc, x) y >>= 1 if y > 0: x = xops.Mul(x, x) return xops.Reciprocal(acc) if is_reciprocal else acc def _integer_pow_jvp(g, x, *, y): return g if y == 0 else mul(g, mul(_const(x, y), integer_pow(x, y - 1))) integer_pow_p = standard_primitive( _attrgetter('shape'), _integer_pow_dtype_rule, 'integer_pow', translation_rule=_integer_pow_translation_rule) batching.defvectorized(integer_pow_p) masking.defvectorized(integer_pow_p) ad.defjvp(integer_pow_p, _integer_pow_jvp) _replace_zero = lambda x: select(eq(x, _const(x, 0)), _ones(x), x) not_p = standard_unop(_bool_or_int, 'not') ad.defjvp_zero(not_p) and_p = standard_naryop([_bool_or_int, _bool_or_int], 'and') ad.defjvp_zero(and_p) or_p = standard_naryop([_bool_or_int, _bool_or_int], 'or') ad.defjvp_zero(or_p) xor_p = standard_naryop([_bool_or_int, _bool_or_int], 'xor') ad.defjvp_zero(xor_p) population_count_p = standard_unop(_int, 'population_count') def _add_transpose(t, x, y): # The following linearity assertion is morally true, but because in some cases we # instantiate zeros for convenience, it doesn't always hold. # assert ad.is_undefined_primal(x) and ad.is_undefined_primal(y) return [t, t] add_p = standard_naryop([_num, _num], 'add') ad.defjvp(add_p, lambda g, x, y: _brcast(g, y), lambda g, x, y: _brcast(g, x)) ad.primitive_transposes[add_p] = _add_transpose def _add_inverse(r, x, y): xr = r - y yr = r - x return xr, yr iad.definverse(add_p, _add_inverse) def _sub_transpose(t, x, y): # The following linearity assertion is morally true, but because in some cases # we instantiate zeros for convenience, it doesn't always hold. # assert ad.is_undefined_primal(x) and ad.is_undefined_primal(y) return [t, neg(t) if type(t) is not ad_util.Zero else ad_util.Zero] sub_p = standard_naryop([_num, _num], 'sub') ad.defjvp(sub_p, lambda g, x, y: _brcast(g, y), lambda g, x, y: _brcast(neg(g), x)) ad.primitive_transposes[sub_p] = _sub_transpose mul_p = standard_naryop([_num, _num], 'mul') ad.defbilinear_broadcasting(_brcast, mul_p, mul, mul) def _mul_inverse(r, x, y): xr = r / y yr = r / x return xr, yr iad.definverse(mul_p, _mul_inverse) def _div_transpose_rule(cotangent, x, y): assert ad.is_undefined_primal(x) and not ad.is_undefined_primal(y) res = ad_util.Zero if type(cotangent) is ad_util.Zero else div(cotangent, y) return res, None div_p = standard_naryop([_num, _num], 'div') ad.defjvp(div_p, lambda g, x, y: div(_brcast(g, y), y), lambda g, x, y: mul(mul(neg(_brcast(g, x)), x), integer_pow(y, -2))) ad.primitive_transposes[div_p] = _div_transpose_rule rem_p = standard_naryop([_num, _num], 'rem') ad.defjvp(rem_p, lambda g, x, y: _brcast(g, y), lambda g, x, y: mul(_brcast(neg(g), x), floor(div(x, y)))) def _broadcasting_select(c, which, x, y): """Wrapper around XLA `Select` that broadcasts its arguments.""" which_shape, x_shape, y_shape = ( c.get_shape(t).dimensions() for t in (which, x, y)) out_shape = broadcast_shapes(which_shape, x_shape, y_shape) bcast_dims = lambda shape: tuple(range(len(out_shape) - len(shape), len(out_shape))) which = xops.BroadcastInDim(which, out_shape, bcast_dims(which_shape)) x = xops.BroadcastInDim(x, out_shape, bcast_dims(x_shape)) y = xops.BroadcastInDim(y, out_shape, bcast_dims(y_shape)) return xops.Select(which, x, y) def _minmax_translation_rule(c, x, y, *, minmax=None, cmp=None): dtype = c.get_shape(x).numpy_dtype() if dtypes.issubdtype(dtype, np.complexfloating): rx = xops.Real(x) ry = xops.Real(y) return _broadcasting_select( c, xops.Select(xops.Eq(rx, ry), cmp(xops.Imag(x), xops.Imag(y)), cmp(rx, ry)), x, y) return minmax(x, y) max_p: core.Primitive = standard_naryop( [_any, _any], 'max', translation_rule=partial( _minmax_translation_rule, minmax=xops.Max, cmp=xops.Gt)) ad.defjvp2(max_p, lambda g, ans, x, y: mul(_brcast(g, y), _balanced_eq(x, ans, y)), lambda g, ans, x, y: mul(_brcast(g, x), _balanced_eq(y, ans, x))) min_p: core.Primitive = standard_naryop( [_any, _any], 'min', translation_rule=partial( _minmax_translation_rule, minmax=xops.Min, cmp=xops.Lt)) ad.defjvp2(min_p, lambda g, ans, x, y: mul(_brcast(g, y), _balanced_eq(x, ans, y)), lambda g, ans, x, y: mul(_brcast(g, x), _balanced_eq(y, ans, x))) shift_left_p = standard_naryop([_int, _int], 'shift_left') ad.defjvp_zero(shift_left_p) shift_right_arithmetic_p = standard_naryop([_int, _int], 'shift_right_arithmetic') ad.defjvp_zero(shift_right_arithmetic_p) shift_right_logical_p = standard_naryop([_int, _int], 'shift_right_logical') ad.defjvp_zero(shift_right_logical_p) eq_p = naryop(_fixed_dtype(np.bool_), [_any, _any], 'eq') ad.defjvp_zero(eq_p) ne_p = naryop(_fixed_dtype(np.bool_), [_any, _any], 'ne') ad.defjvp_zero(ne_p) ge_p = naryop(_fixed_dtype(np.bool_), [_any, _any], 'ge') ad.defjvp_zero(ge_p) gt_p = naryop(_fixed_dtype(np.bool_), [_any, _any], 'gt') ad.defjvp_zero(gt_p) le_p = naryop(_fixed_dtype(np.bool_), [_any, _any], 'le') ad.defjvp_zero(le_p) lt_p = naryop(_fixed_dtype(np.bool_), [_any, _any], 'lt') ad.defjvp_zero(lt_p) def _convert_element_type_shape_rule(operand, *, new_dtype, old_dtype): return operand.shape def _convert_element_type_dtype_rule(operand, *, new_dtype, old_dtype): return new_dtype def _convert_element_type_translation_rule(c, operand, *, new_dtype, old_dtype): if (dtypes.issubdtype(old_dtype, np.complexfloating) and not dtypes.issubdtype(new_dtype, np.complexfloating)): operand = xops.Real(operand) new_etype = xla_client.dtype_to_etype(new_dtype) return xops.ConvertElementType(operand, new_element_type=new_etype) def _convert_element_type_transpose_rule(ct, operand, *, new_dtype, old_dtype): if type(ct) is ad_util.Zero: return [ad_util.Zero(operand.aval)] elif core.primal_dtype_to_tangent_dtype(old_dtype) is dtypes.float0: return [ad_util.Zero(ShapedArray(operand.aval.shape, dtype=dtypes.float0))] else: return [convert_element_type_p.bind(ct, new_dtype=old_dtype, old_dtype=new_dtype)] def _convert_element_type_jvp_rule(tangent, operand , *, new_dtype, old_dtype): if core.primal_dtype_to_tangent_dtype(new_dtype) is dtypes.float0: return ad_util.Zero(ShapedArray(tangent.shape, dtype=dtypes.float0)) else: return convert_element_type_p.bind(tangent, new_dtype=new_dtype, old_dtype=old_dtype) convert_element_type_p = standard_primitive( _convert_element_type_shape_rule, _convert_element_type_dtype_rule, 'convert_element_type', _convert_element_type_translation_rule) ad.defjvp(convert_element_type_p, _convert_element_type_jvp_rule) ad.primitive_transposes[convert_element_type_p] = _convert_element_type_transpose_rule batching.defvectorized(convert_element_type_p) masking.defvectorized(convert_element_type_p) def _bitcast_convert_type_shape_rule(operand, *, new_dtype): return operand.shape def _bitcast_convert_type_dtype_rule(operand, *, new_dtype): return new_dtype def _bitcast_convert_type_translation_rule(c, operand, *, new_dtype): new_etype = xla_bridge.dtype_to_etype(new_dtype) return xops.BitcastConvertType(operand, new_element_type=new_etype) bitcast_convert_type_p = standard_primitive( _bitcast_convert_type_shape_rule, _bitcast_convert_type_dtype_rule, 'bitcast_convert_type', _bitcast_convert_type_translation_rule) ad.defjvp_zero(bitcast_convert_type_p) batching.defvectorized(bitcast_convert_type_p) masking.defvectorized(bitcast_convert_type_p) def _conv_general_dilated_shape_rule( lhs: ShapedArray, rhs: ShapedArray, *, window_strides, padding, lhs_dilation, rhs_dilation, dimension_numbers, feature_group_count, batch_group_count, **unused_kwargs) -> Tuple[int, ...]: assert type(dimension_numbers) is ConvDimensionNumbers if len(lhs.shape) != len(rhs.shape): msg = ("conv_general_dilated lhs and rhs must have the same number of " "dimensions, but got {} and {}.") raise ValueError(msg.format(lhs.shape, rhs.shape)) if not feature_group_count > 0: msg = ("conv_general_dilated feature_group_count " "must be a positive integer, got {}.") raise ValueError(msg.format(feature_group_count)) lhs_feature_count = lhs.shape[dimension_numbers.lhs_spec[1]] quot, rem = divmod(lhs_feature_count, feature_group_count) if rem: msg = ("conv_general_dilated feature_group_count must divide lhs feature " "dimension size, but {} does not divide {}.") raise ValueError(msg.format(feature_group_count, lhs_feature_count)) if quot != rhs.shape[dimension_numbers.rhs_spec[1]]: msg = ("conv_general_dilated lhs feature dimension size divided by " "feature_group_count must equal the rhs input feature dimension " "size, but {} // {} != {}.") raise ValueError(msg.format(lhs_feature_count, feature_group_count, rhs.shape[dimension_numbers.rhs_spec[1]])) if rhs.shape[dimension_numbers.rhs_spec[0]] % feature_group_count: msg = ("conv_general_dilated rhs output feature dimension size must be a " "multiple of feature_group_count, but {} is not a multiple of {}.") raise ValueError(msg.format(rhs.shape[dimension_numbers.rhs_spec[0]], feature_group_count)) if not batch_group_count > 0: msg = ("conv_general_dilated batch_group_count " "must be a positive integer, got {}.") raise ValueError(msg.format(batch_group_count)) lhs_batch_count = lhs.shape[dimension_numbers.lhs_spec[0]] if lhs_batch_count % batch_group_count != 0: msg = ("conv_general_dilated batch_group_count must divide lhs batch " "dimension size, but {} does not divide {}.") raise ValueError(msg.format(batch_group_count, lhs_batch_count)) if rhs.shape[dimension_numbers.rhs_spec[0]] % batch_group_count: msg = ("conv_general_dilated rhs output feature dimension size must be a " "multiple of batch_group_count, but {} is not a multiple of {}.") raise ValueError(msg.format(rhs.shape[dimension_numbers.rhs_spec[0]], batch_group_count)) if batch_group_count > 1 and feature_group_count > 1: msg = ("At most one of batch_group_count and feature_group_count may be > " "1, got batch_group_count={} and feature_group_count={}") raise ValueError(msg.format(batch_group_count, feature_group_count)) lhs_perm, rhs_perm, out_perm = dimension_numbers lhs_trans = _dilate_shape(np.take(lhs.shape, lhs_perm), lhs_dilation) rhs_trans = _dilate_shape(np.take(rhs.shape, rhs_perm), rhs_dilation) out_trans = conv_shape_tuple(lhs_trans, rhs_trans, window_strides, padding, batch_group_count) return tuple(np.take(out_trans, np.argsort(out_perm))) def _conv_general_dilated_dtype_rule( lhs, rhs, *, window_strides, padding, lhs_dilation, rhs_dilation, dimension_numbers, **unused_kwargs): return naryop_dtype_rule(_input_dtype, [_float | _complex, _float | _complex], 'conv_general_dilated', lhs, rhs) _conv_spec_transpose = lambda spec: (spec[1], spec[0]) + spec[2:] _conv_sdims = lambda spec: spec[2:] # Understanding the convolution transpose rules: # Ignoring the spatial dimensions, let m = batch, j = input feature, # k = output feature. # # Convolution computes the following contraction: # Forward: [m, j] [j, k] -> [m, k] # # The transposes are similar to the rules for transposing a matmul: # LHS transpose: [m, k] [k, j] -> [m, j] # RHS transpose: [j, m] [m, k] -> [j, k] # # With feature grouping, we have the following signatures: # Forward: [m, gj] [j, gk] -> [m, gk] # LHS transpose: [m, gk] [k, gj] -> [m, gj] # --> implemented as feature grouping after transposing the group from the # kernel input features to the kernel output features. # RHS transpose: [gj, m] [m, gk] -> [j, gk] # --> which is batch grouping. # # With batch grouping, we have the following signatures: # Forward: [gm,j] [j,gk]->[m,gk] # LHS transpose: [m, gk][gk, j] -> [gm, j] # --> implemented as feature grouping with transposing the group on the kernel # and the output. # RHS transpose: [j, gm][m, gk] -> [j, gk] # --> which is feature grouping. def _conv_general_dilated_transpose_lhs( g, rhs, *, window_strides, padding, lhs_dilation, rhs_dilation, dimension_numbers, feature_group_count, batch_group_count, lhs_shape, rhs_shape, precision): assert type(dimension_numbers) is ConvDimensionNumbers assert batch_group_count == 1 or feature_group_count == 1 lhs_sdims, rhs_sdims, out_sdims = map(_conv_sdims, dimension_numbers) lhs_spec, rhs_spec, out_spec = dimension_numbers t_rhs_spec = _conv_spec_transpose(rhs_spec) if feature_group_count > 1: # in addition to switching the dims in the spec, need to move the feature # group axis into the transposed rhs's output feature dim rhs = _reshape_axis_out_of(rhs_spec[0], feature_group_count, rhs) rhs = _reshape_axis_into(rhs_spec[0], rhs_spec[1], rhs) elif batch_group_count > 1: rhs = _reshape_axis_out_of(rhs_spec[0], batch_group_count, rhs) rhs = _reshape_axis_into(rhs_spec[0], rhs_spec[1], rhs) feature_group_count = batch_group_count trans_dimension_numbers = ConvDimensionNumbers(out_spec, t_rhs_spec, lhs_spec) padding = _conv_general_vjp_lhs_padding( np.take(lhs_shape, lhs_sdims), np.take(rhs_shape, rhs_sdims), window_strides, np.take(g.shape, out_sdims), padding, lhs_dilation, rhs_dilation) revd_weights = rev(rhs, rhs_sdims) out = conv_general_dilated( g, revd_weights, window_strides=lhs_dilation, padding=padding, lhs_dilation=window_strides, rhs_dilation=rhs_dilation, dimension_numbers=trans_dimension_numbers, feature_group_count=feature_group_count, batch_group_count=1, precision=precision) if batch_group_count > 1: out = _reshape_axis_out_of(lhs_spec[1], batch_group_count, out) out = _reshape_axis_into(lhs_spec[1], lhs_spec[0], out) return out def _conv_general_dilated_transpose_rhs( g, lhs, *, window_strides, padding, lhs_dilation, rhs_dilation, dimension_numbers: ConvDimensionNumbers, feature_group_count: int, batch_group_count: int, lhs_shape, rhs_shape, precision): assert type(dimension_numbers) is ConvDimensionNumbers if np.size(g) == 0: # Avoids forming degenerate convolutions where the RHS has spatial size 0. return ad_util.Zero lhs_sdims, rhs_sdims, out_sdims = map(_conv_sdims, dimension_numbers) lhs_trans, rhs_trans, out_trans = map(_conv_spec_transpose, dimension_numbers) assert batch_group_count == 1 or feature_group_count == 1 if batch_group_count > 1: feature_group_count = batch_group_count batch_group_count = 1 elif feature_group_count > 1: batch_group_count = feature_group_count feature_group_count = 1 trans_dimension_numbers = ConvDimensionNumbers(lhs_trans, out_trans, rhs_trans) padding = _conv_general_vjp_rhs_padding( np.take(lhs_shape, lhs_sdims), np.take(rhs_shape, rhs_sdims), window_strides, np.take(g.shape, out_sdims), padding, lhs_dilation, rhs_dilation) return conv_general_dilated( lhs, g, window_strides=rhs_dilation, padding=padding, lhs_dilation=lhs_dilation, rhs_dilation=window_strides, dimension_numbers=trans_dimension_numbers, feature_group_count=feature_group_count, batch_group_count=batch_group_count, precision=precision) def _conv_general_dilated_translation_rule( c, lhs, rhs, *, window_strides, padding, lhs_dilation, rhs_dilation, dimension_numbers, feature_group_count, batch_group_count, precision, expand_complex_convolutions, **unused_kwargs): assert type(dimension_numbers) is ConvDimensionNumbers dimension_numbers = _conv_general_proto(dimension_numbers) precision_config = _precision_config(precision) dtype = c.get_shape(lhs).numpy_dtype() conv = lambda x, y: xops.ConvGeneralDilated( x, y, window_strides, padding, lhs_dilation, rhs_dilation, dimension_numbers, feature_group_count, batch_group_count, precision_config=precision_config) if expand_complex_convolutions and np.issubdtype(dtype, np.complexfloating): # We use a trick for complex multiplication due to Gauss which uses three # multiplications and five additions; instead of the naive method of four # multiplications and two additions. # https://en.wikipedia.org/wiki/Multiplication_algorithm#Complex_multiplication_algorithm # # This performance win comes with a trade-off in accuracy; especially in # cases when the real and imaginary differ hugely in magnitude. The relative # error bound (e.g. 1p-24 in case of float32) would be relative to the # maximum of real and imaginary parts of the result instead of being # satisfied by the real and imaginary parts independently of each other. lhs_real, lhs_imag = xops.Real(lhs), xops.Imag(lhs) rhs_real, rhs_imag = xops.Real(rhs), xops.Imag(rhs) k1 = conv(xops.Add(lhs_real, lhs_imag), rhs_real) k2 = conv(lhs_real, xops.Sub(rhs_imag, rhs_real)) k3 = conv(lhs_imag, xops.Add(rhs_real, rhs_imag)) return xops.Complex(xops.Sub(k1, k3), xops.Add(k1, k2)) return conv(lhs, rhs) def _conv_general_dilated_batch_rule( batched_args, batch_dims, *, window_strides, padding, lhs_dilation, rhs_dilation, dimension_numbers, feature_group_count, batch_group_count, precision, **unused_kwargs): assert batch_group_count == 1 or feature_group_count == 1 lhs, rhs = batched_args lhs_bdim, rhs_bdim = batch_dims lhs_spec, rhs_spec, out_spec = dimension_numbers if lhs_bdim is not None and rhs_bdim is not None: assert lhs.shape[lhs_bdim] == rhs.shape[rhs_bdim] if batch_group_count > 1: new_lhs = _reshape_axis_into(lhs_bdim, lhs_spec[0], lhs) batch_group_count *= lhs.shape[lhs_bdim] else: new_lhs = _reshape_axis_into(lhs_bdim, lhs_spec[1], lhs) feature_group_count *= lhs.shape[lhs_bdim] new_rhs = _reshape_axis_into(rhs_bdim, rhs_spec[0], rhs) out = conv_general_dilated( new_lhs, new_rhs, window_strides, padding, lhs_dilation, rhs_dilation, dimension_numbers, feature_group_count=feature_group_count, batch_group_count=batch_group_count, precision=precision) out = _reshape_axis_out_of(out_spec[1], lhs.shape[lhs_bdim], out) return out, out_spec[1] elif lhs_bdim is not None: if batch_group_count == 1: new_lhs = _reshape_axis_into(lhs_bdim, lhs_spec[0], lhs) out = conv_general_dilated(new_lhs, rhs, window_strides, padding, lhs_dilation, rhs_dilation, dimension_numbers, feature_group_count, precision=precision) out = _reshape_axis_out_of(out_spec[0], lhs.shape[lhs_bdim], out) return out, out_spec[0] else: new_lhs = _reshape_axis_out_of(lhs_spec[0] + int(lhs_bdim <= lhs_spec[0]), batch_group_count, lhs) new_lhs = _reshape_axis_into(lhs_bdim + int(lhs_spec[0] < lhs_bdim), lhs_spec[0] + 1, new_lhs) new_lhs = _reshape_axis_into(lhs_spec[0], lhs_spec[0], new_lhs) out = conv_general_dilated(new_lhs, rhs, window_strides, padding, lhs_dilation, rhs_dilation, dimension_numbers, feature_group_count, batch_group_count, precision=precision) out = _reshape_axis_out_of(out_spec[0], lhs.shape[lhs_bdim], out) return out, out_spec[0] elif rhs_bdim is not None: if feature_group_count == 1 and batch_group_count == 1: new_rhs = _reshape_axis_into(rhs_bdim, rhs_spec[0], rhs) out = conv_general_dilated(lhs, new_rhs, window_strides, padding, lhs_dilation, rhs_dilation, dimension_numbers, feature_group_count, batch_group_count, precision=precision) out = _reshape_axis_out_of(out_spec[1], rhs.shape[rhs_bdim], out) return out, out_spec[1] else: # groups need to be outermost, so we need to factor them out of the # rhs output feature dim, then factor the batch dim into the remaining rhs # output feature dim, then put groups back in. We do something # similar on the output. An alternative which would require more FLOPs but # fewer reshapes would be to broadcast lhs. group_count = (feature_group_count if feature_group_count > 1 else batch_group_count) new_rhs = _reshape_axis_out_of(rhs_spec[0] + int(rhs_bdim <= rhs_spec[0]), group_count, rhs) new_rhs = _reshape_axis_into(rhs_bdim + int(rhs_spec[0] < rhs_bdim), rhs_spec[0] + 1, new_rhs) new_rhs = _reshape_axis_into(rhs_spec[0], rhs_spec[0], new_rhs) out = conv_general_dilated(lhs, new_rhs, window_strides, padding, lhs_dilation, rhs_dilation, dimension_numbers, feature_group_count, batch_group_count, precision=precision) out = _reshape_axis_out_of(out_spec[1], group_count, out) out = _reshape_axis_out_of(out_spec[1] + 1, rhs.shape[rhs_bdim], out) out = _reshape_axis_into(out_spec[1], out_spec[1] + 1, out) return out, out_spec[1] def _masked(padded_value, logical_shape, dimensions, value=0): """ Sets all padding to the given value (default is 0) in the given dimensions. All values outside the logical shape are considered padding. """ if len(dimensions) == 0: return padded_value masks = [broadcasted_iota(np.int32, padded_value.shape, d) < logical_shape[d] for d in dimensions] mask_intersection = masks[0] for mask in masks[1:]: mask_intersection &= mask return select(mask_intersection, padded_value, full_like(padded_value, value)) def _conv_general_dilated_masking_rule( padded_vals, logical_shapes, window_strides, padding, lhs_dilation, rhs_dilation, dimension_numbers, feature_group_count, batch_group_count, lhs_shape, rhs_shape, precision): lhs, rhs = padded_vals logical_lhs_shape, logical_rhs_shape = logical_shapes o, i, *window_dimensions = dimension_numbers.rhs_spec assert (np.all(np.take(rhs.shape, window_dimensions) == np.take(logical_rhs_shape, window_dimensions))), \ "Conv filter masking not yet implemented." n, c, *padded_dimensions = dimension_numbers.lhs_spec return conv_general_dilated( _masked(lhs, logical_lhs_shape, padded_dimensions), _masked(rhs, logical_rhs_shape, (i,)), window_strides=window_strides, padding=padding, lhs_dilation=lhs_dilation, rhs_dilation=rhs_dilation, dimension_numbers=dimension_numbers, feature_group_count=feature_group_count, batch_group_count=batch_group_count, precision=precision) conv_general_dilated_p = standard_primitive( _conv_general_dilated_shape_rule, _conv_general_dilated_dtype_rule, 'conv_general_dilated', partial(_conv_general_dilated_translation_rule, expand_complex_convolutions=False)) # TODO(b/161124619, b/161126248): XLA does not support complex convolution on # CPU or GPU; on these backends, lower complex convolutions away. xla.backend_specific_translations['cpu'][conv_general_dilated_p] = partial( _conv_general_dilated_translation_rule, expand_complex_convolutions=True) xla.backend_specific_translations['gpu'][conv_general_dilated_p] = partial( _conv_general_dilated_translation_rule, expand_complex_convolutions=True) ad.defbilinear(conv_general_dilated_p, _conv_general_dilated_transpose_lhs, _conv_general_dilated_transpose_rhs) batching.primitive_batchers[conv_general_dilated_p] = \ _conv_general_dilated_batch_rule masking.masking_rules[conv_general_dilated_p] = \ _conv_general_dilated_masking_rule def _reshape_axis_into(src, dst, x): perm = [i for i in range(x.ndim) if i != src] perm.insert(dst, src) new_shape = list(np.delete(x.shape, src)) new_shape[dst] *= x.shape[src] return reshape(x, new_shape, perm) def _reshape_axis_out_of(src, size1, x): shape = list(x.shape) size2, ragged = divmod(shape[src], size1) assert not ragged shape[src:src+1] = [size1, size2] return reshape(x, shape) def _precision_config(precision): if precision is not None: config = xla_client.PrecisionConfig() if isinstance(precision, tuple): config.operand_precision.extend(precision) else: config.operand_precision.extend((precision, precision)) return config return None def _dot_general_shape_rule(lhs, rhs, *, dimension_numbers, precision): (lhs_contracting, rhs_contracting), (lhs_batch, rhs_batch) = dimension_numbers if not all(np.all(np.greater_equal(d, 0)) and np.all(np.less(d, lhs.ndim)) for d in (lhs_contracting, lhs_batch)): msg = ("dot_general requires lhs dimension numbers to be nonnegative and " "less than the number of axes of the lhs value, got " f"lhs_batch of {lhs_batch} and lhs_contracting of {lhs_contracting} " f"for lhs of rank {lhs.ndim}") raise TypeError(msg) if not all(np.all(np.greater_equal(d, 0)) and np.all(np.less(d, rhs.ndim)) for d in (rhs_contracting, rhs_batch)): msg = ("dot_general requires rhs dimension numbers to be nonnegative and " "less than the number of axes of the rhs value, got " f"rhs_batch of {rhs_batch} and rhs_contracting of {rhs_contracting} " f"for rhs of rank {rhs.ndim}") raise TypeError(msg) if len(lhs_batch) != len(rhs_batch): msg = ("dot_general requires equal numbers of lhs_batch and rhs_batch " "dimensions, got lhs_batch {} and rhs_batch {}.") raise TypeError(msg.format(lhs_batch, rhs_batch)) lhs_contracting_set, lhs_batch_set = set(lhs_contracting), set(lhs_batch) rhs_contracting_set, rhs_batch_set = set(rhs_contracting), set(rhs_batch) if len(lhs_batch_set) != len(lhs_batch): msg = ("dot_general requires lhs batch dimensions to be distinct, got " f"lhs_batch {lhs_batch}.") raise TypeError(msg) if len(rhs_batch_set) != len(rhs_batch): msg = ("dot_general requires rhs batch dimensions to be distinct, got " f"rhs_batch {rhs_batch}.") raise TypeError(msg) if len(lhs_contracting_set) != len(lhs_contracting): msg = ("dot_general requires lhs contracting dimensions to be distinct, " f"got lhs_contracting {lhs_contracting}.") raise TypeError(msg) if len(rhs_contracting_set) != len(rhs_contracting): msg = ("dot_general requires rhs contracting dimensions to be distinct, " f"got rhs_contracting {rhs_contracting}.") raise TypeError(msg) if lhs_contracting_set & lhs_batch_set: msg = ("dot_general requires lhs batch dimensions to be disjoint from " "contracting dimensions, got lhs_batch {} and lhs_contracting {}.") raise TypeError(msg.format(lhs_batch, lhs_contracting)) if rhs_contracting_set & rhs_batch_set: msg = ("dot_general requires rhs batch dimensions to be disjoint from " "contracting dimensions, got rhs_batch {} and rhs_contracting {}.") raise TypeError(msg.format(rhs_batch, rhs_contracting)) lhs_batch_shape = np.take(lhs.shape, lhs_batch) rhs_batch_shape = np.take(rhs.shape, rhs_batch) if not np.all(np.equal(lhs_batch_shape, rhs_batch_shape)): msg = ("dot_general requires lhs batch dimensions and rhs batch dimensions " "to have the same shape, got {} and {}.") raise TypeError(msg.format(lhs_batch_shape, rhs_batch_shape)) lhs_contracting_shape = np.take(lhs.shape, lhs_contracting) rhs_contracting_shape = np.take(rhs.shape, rhs_contracting) if not np.all(np.equal(lhs_contracting_shape, rhs_contracting_shape)): msg = ("dot_general requires contracting dimensions to have the same " "shape, got {} and {}.") raise TypeError(msg.format(lhs_contracting_shape, rhs_contracting_shape)) batch_shape = tuple(lhs_batch_shape) lhs_contract_or_batch = tuple(sorted(tuple(lhs_contracting) + tuple(lhs_batch))) lhs_tensored_shape = tuple(np.delete(lhs.shape, lhs_contract_or_batch)) rhs_contract_or_batch = tuple(sorted(tuple(rhs_contracting) + tuple(rhs_batch))) rhs_tensored_shape = tuple(np.delete(rhs.shape, rhs_contract_or_batch)) return batch_shape + lhs_tensored_shape + rhs_tensored_shape def _dot_general_dtype_rule(lhs, rhs, *, dimension_numbers, precision): return naryop_dtype_rule(_input_dtype, [_any, _any], 'dot_general', lhs, rhs) def _dot_general_transpose_lhs(g, y, *, dimension_numbers, precision, swap_ans=False): (x_contract, y_contract), (x_batch, y_batch) = dimension_numbers x_ndim = g.ndim - y.ndim + len(x_batch) + 2 * len(x_contract) x_kept = remaining(range(x_ndim), x_contract, x_batch) y_kept = remaining(range(y.ndim), y_contract, y_batch) if swap_ans: ans_batch, ans_y, _ = ranges_like(x_batch, y_kept, x_kept) else: ans_batch, _, ans_y = ranges_like(x_batch, x_kept, y_kept) dims = ((ans_y, y_kept), (ans_batch, y_batch)) x_contract_sorted_by_y = list(np.take(x_contract, np.argsort(y_contract))) out_axes = np.argsort(list(x_batch) + x_kept + x_contract_sorted_by_y) return transpose(dot_general(g, y, dims, precision=precision), tuple(out_axes)) def _dot_general_transpose_rhs(g, x, *, dimension_numbers, precision): (x_contract, y_contract), (x_batch, y_batch) = dimension_numbers swapped_dimension_numbers = ((y_contract, x_contract), (y_batch, x_batch)) return _dot_general_transpose_lhs( g, x, dimension_numbers=swapped_dimension_numbers, precision=precision, swap_ans=True) def _dot_general_batch_rule(batched_args, batch_dims, *, dimension_numbers, precision): # there are three kinds of dimensions in a dot_general: # - contraction dimensions appear in lhs and rhs but not the result # - batch dimensions appear in lhs, rhs, and result # - tensor product dimensions appear in the result and one of lhs or rhs (lhs_contract, rhs_contract), (lhs_batch, rhs_batch) = dimension_numbers lhs, rhs = batched_args lbd, rbd = batch_dims assert lbd is not None or rbd is not None def bump_dims(dims, b): return tuple(np.add(dims, np.greater_equal(dims, b))) if lbd is not None and rbd is not None: # adding a batch dimension lhs_batch = (lbd,) + bump_dims(lhs_batch, lbd) rhs_batch = (rbd,) + bump_dims(rhs_batch, rbd) lhs_contract = bump_dims(lhs_contract, lbd) rhs_contract = bump_dims(rhs_contract, rbd) result_batch_dim = 0 else: # adding a tensor product dimension if lbd is not None: other = tuple(d for d in range(lhs.ndim) if d not in lhs_batch and d not in lhs_contract) result_batch_dim = (len(lhs_batch) + sum(np.less(other, lbd))) lhs_batch = bump_dims(lhs_batch, lbd) lhs_contract = bump_dims(lhs_contract, lbd) else: other = tuple(d for d in range(rhs.ndim) if d not in rhs_batch and d not in rhs_contract) result_batch_dim = (lhs.ndim - len(lhs_contract) + sum(np.less(other, rbd))) rhs_batch = bump_dims(rhs_batch, rbd) rhs_contract = bump_dims(rhs_contract, rbd) new_dimension_numbers = ((lhs_contract, rhs_contract), (lhs_batch, rhs_batch)) batched_out = dot_general(lhs, rhs, new_dimension_numbers, precision=precision) return batched_out, int(result_batch_dim) def _dot_using_sum_of_products(lhs, rhs, *, dimension_numbers): contract_dims, batch_dims = dimension_numbers lhs_contract_dims, rhs_contract_dims = contract_dims lhs_batch_dims, rhs_batch_dims = batch_dims lhs_noncontract_dims = tuple(sorted( set(range(np.ndim(lhs))) - set(lhs_batch_dims) - set(lhs_contract_dims))) rhs_noncontract_dims = tuple(sorted( set(range(np.ndim(rhs))) - set(rhs_batch_dims) - set(rhs_contract_dims))) lhs = transpose(lhs, lhs_batch_dims + lhs_noncontract_dims + lhs_contract_dims) rhs = transpose(rhs, rhs_batch_dims + rhs_noncontract_dims + rhs_contract_dims) lhs_start_expand = len(lhs_batch_dims) + len(lhs_noncontract_dims) lhs_end_expand = lhs_start_expand + len(rhs_noncontract_dims) lhs = expand_dims(lhs, tuple(range(lhs_start_expand, lhs_end_expand))) rhs_start_expand = len(lhs_batch_dims) rhs_end_expand = rhs_start_expand + len(lhs_noncontract_dims) rhs = expand_dims(rhs, tuple(range(rhs_start_expand, rhs_end_expand))) out_ndim = (len(lhs_batch_dims) + len(lhs_noncontract_dims) + len(rhs_noncontract_dims)) op_product = bitwise_and if lhs.dtype == np.bool_ else mul op_sum = bitwise_or if lhs.dtype == np.bool_ else add return reduce(op_product(lhs, rhs), _zero(lhs), op_sum, tuple(range(out_ndim, out_ndim + len(lhs_contract_dims)))) def _dot_general_translation_rule(c, lhs, rhs, *, dimension_numbers, precision): dtype = c.get_shape(lhs).numpy_dtype() if dtypes.issubdtype(dtype, np.inexact): return xops.DotGeneral(lhs, rhs, xc.make_dot_dimension_numbers(dimension_numbers), precision_config=_precision_config(precision)) else: # TODO(b/134526360): XLA doesn't support bool or integer dots, so we emit a # sum of products instead. translation = xla.lower_fun(_dot_using_sum_of_products, multiple_results=False) return translation(c, lhs, rhs, dimension_numbers=dimension_numbers) def _dot_general_masking_rule(padded_vals, logical_shapes, *, dimension_numbers, precision): lhs, rhs = padded_vals # Only need to mask off contraction dims of one side - we mask the lhs here # but this is arbitrary. Could check the sizes of lhs and rhs and mask # whichever is smallest. lhs_shape, _ = logical_shapes (lhs_contract, _), _ = dimension_numbers return dot_general(_masked(lhs, lhs_shape, lhs_contract), rhs, dimension_numbers, precision=precision) dot_general_p = standard_primitive(_dot_general_shape_rule, _dot_general_dtype_rule, 'dot_general', _dot_general_translation_rule) ad.defbilinear(dot_general_p, _dot_general_transpose_lhs, _dot_general_transpose_rhs) batching.primitive_batchers[dot_general_p] = _dot_general_batch_rule masking.masking_rules[dot_general_p] = _dot_general_masking_rule def _broadcast_shape_rule(operand, sizes): _check_shapelike('broadcast', 'sizes', sizes) return tuple(sizes) + operand.shape def _broadcast_batch_rule(batched_args, batch_dims, *, sizes): operand, = batched_args bdim, = batch_dims new_bdim = None if bdim is None else bdim + len(sizes) return broadcast(operand, sizes), new_bdim broadcast_p = standard_primitive( _broadcast_shape_rule, _input_dtype, 'broadcast') ad.deflinear(broadcast_p, lambda t, sizes: [_reduce_sum(t, range(len(sizes)))]) batching.primitive_batchers[broadcast_p] = _broadcast_batch_rule def _broadcast_in_dim_impl(operand, *, shape, broadcast_dimensions): if type(operand) is np.ndarray: operand = _device_put_raw(operand) if xla.type_is_device_array(operand) and np.all( np.equal(operand.shape, np.take(shape, broadcast_dimensions))): shape = _broadcast_in_dim_shape_rule( operand, shape=shape, broadcast_dimensions=broadcast_dimensions) aval = ShapedArray(shape, _dtype(operand)) if operand._lazy_expr is None: lazy_expr = lazy.broadcast(lazy.array(operand), shape, broadcast_dimensions) else: lazy_expr = lazy.broadcast(operand._lazy_expr, shape, broadcast_dimensions) return xla.make_device_array(aval, operand._device, lazy_expr, operand.device_buffer) else: return xla.apply_primitive(broadcast_in_dim_p, operand, shape=shape, broadcast_dimensions=broadcast_dimensions) def _broadcast_in_dim_shape_rule(operand, *, shape, broadcast_dimensions): _check_shapelike('broadcast_in_dim', 'shape', shape) _check_shapelike('broadcast_in_dim', 'broadcast_dimensions', broadcast_dimensions) operand_ndim = np.ndim(operand) if operand_ndim != len(broadcast_dimensions): msg = ('broadcast_in_dim broadcast_dimensions must have length equal to ' 'operand ndim; got broadcast_dimensions {} for operand ndim {}.') raise TypeError(msg.format(broadcast_dimensions, operand_ndim)) if len(shape) < operand_ndim: msg = ('broadcast_in_dim target broadcast shape must have equal or higher rank ' 'to the operand shape; got operand ndim {} and target broadcast ndim {}.') raise TypeError(msg.format(operand_ndim, len(shape))) if not set(broadcast_dimensions).issubset(set(range(len(shape)))): msg = ('broadcast_in_dim broadcast_dimensions must be a subset of output ' 'dimensions, got {} for operand ndim {} and shape {}.') raise TypeError(msg.format(broadcast_dimensions, operand_ndim, shape)) if any(operand.shape[i] != shape[broadcast_dimensions[i]] and operand.shape[i] != 1 for i in range(operand_ndim)): msg = ( "broadcast_in_dim operand dimension sizes must either be 1, or be " "equal to their corresponding dimensions in the target broadcast " "shape; got operand of shape {}, target broadcast shape {}, " "broadcast_dimensions {} ") raise TypeError(msg.format(operand.shape, shape, broadcast_dimensions)) if (len(broadcast_dimensions) != len(set(broadcast_dimensions)) or tuple(broadcast_dimensions) != tuple(sorted(broadcast_dimensions))): msg = ("broadcast_in_dim broadcast_dimensions must be strictly increasing; " "got broadcast_dimensions {}") raise TypeError(msg.format(broadcast_dimensions)) return shape def _broadcast_in_dim_transpose_rule(t, *, shape, broadcast_dimensions): axes = tuple(np.delete(range(len(shape)), broadcast_dimensions)) return [_reduce_sum(t, axes)] def _broadcast_in_dim_batch_rule(batched_args, batch_dims, *, shape, broadcast_dimensions): operand, = batched_args bdim, = batch_dims new_operand = batching.moveaxis(operand, bdim, 0) new_shape = (operand.shape[bdim],) + shape new_broadcast_dimensions = (0,) + tuple(np.add(1, broadcast_dimensions)) return broadcast_in_dim(new_operand, new_shape, new_broadcast_dimensions), 0 broadcast_in_dim_p = standard_primitive( _broadcast_in_dim_shape_rule, _input_dtype, 'broadcast_in_dim') broadcast_in_dim_p.def_impl(_broadcast_in_dim_impl) ad.deflinear(broadcast_in_dim_p, _broadcast_in_dim_transpose_rule) batching.primitive_batchers[broadcast_in_dim_p] = _broadcast_in_dim_batch_rule def _clamp_shape_rule(min, operand, max): if min.shape and min.shape != operand.shape: m = "clamp requires min.shape == operand.shape or min.shape == (), got {}." raise TypeError(m.format(min.shape)) if max.shape and max.shape != operand.shape: m = "clamp requires max.shape == operand.shape or max.shape == (), got {}." raise TypeError(m.format(max.shape)) return operand.shape _clamp_dtype_rule = partial(naryop_dtype_rule, _input_dtype, [_any, _any, _any], 'clamp') clamp_p = standard_primitive(_clamp_shape_rule, _clamp_dtype_rule, 'clamp') ad.defjvp(clamp_p, lambda g, min, operand, max: select(bitwise_and(gt(min, operand), lt(min, max)), _brcast(g, operand), _zeros(operand)), lambda g, min, operand, max: select(bitwise_and(gt(operand, min), lt(operand, max)), g, _zeros(operand)), lambda g, min, operand, max: select(lt(max, operand), _brcast(g, operand), _zeros(operand))) batching.defbroadcasting(clamp_p) def _concatenate_shape_rule(*operands, **kwargs): dimension = kwargs.pop('dimension') if not operands: msg = "concatenate expects at least one operand, got 0." raise TypeError(msg) if not all(isinstance(operand, UnshapedArray) for operand in operands): msg = "All objects to concatenate must be arrays, got {}." op = next(op for op in operands if not isinstance(op, UnshapedArray)) raise TypeError(msg.format(type(op))) if len({operand.ndim for operand in operands}) != 1: msg = "Cannot concatenate arrays with different ranks, got {}." raise TypeError(msg.format(", ".join(str(o.ndim) for o in operands))) if not 0 <= dimension < operands[0].ndim: msg = "concatenate dimension out of bounds: dimension {} for shapes {}." raise TypeError(msg.format(dimension, ", ".join([str(o.shape) for o in operands]))) shapes = [operand.shape[:dimension] + operand.shape[dimension+1:] for operand in operands] if not shapes[:-1] == shapes[1:]: msg = ("Cannot concatenate arrays with shapes that differ in dimensions " "other than the one being concatenated: concatenating along " "dimension {} for shapes {}.") shapes = [operand.shape for operand in operands] raise TypeError(msg.format(dimension, ", ".join(map(str, shapes)))) concat_size = sum(o.shape[dimension] for o in operands) ex_shape = operands[0].shape return ex_shape[:dimension] + (concat_size,) + ex_shape[dimension+1:] def _concatenate_dtype_rule(*operands, **kwargs): _check_same_dtypes('concatenate', False, *(o.dtype for o in operands)) return operands[0].dtype def _concatenate_translation_rule(c, *operands, **kwargs): dimension = kwargs.pop('dimension') return xops.ConcatInDim(c, operands, dimension) def _concatenate_transpose_rule(t, *operands, dimension): operand_shapes = [o.aval.shape if ad.is_undefined_primal(o) else o.shape for o in operands] if type(t) is ad_util.Zero: return ad_util.Zero else: limit_points = np.cumsum([shape[dimension] for shape in operand_shapes]) starts = np.zeros((len(operands), t.ndim), dtype=int) starts[1:, dimension] = limit_points[:-1] limits = np.tile(t.shape, (len(operands), 1)) limits[:, dimension] = limit_points return [slice(t, start, limit) if ad.is_undefined_primal(o) else None for o, start, limit in zip(operands, starts, limits)] def _concatenate_batch_rule(batched_args, batch_dims, *, dimension): size = next(op.shape[bdim] for op, bdim in zip(batched_args, batch_dims) if bdim is not None) operands = [batching.moveaxis(op, bdim, 0) if bdim is not None else broadcast(op, (size,)) for op, bdim in zip(batched_args, batch_dims)] return concatenate(operands, dimension + 1), 0 # The concatenate_p masking rule requires use of a while-loop construct and so # is defined in lax_control_flow.py concatenate_p = standard_primitive( _concatenate_shape_rule, _concatenate_dtype_rule, 'concatenate', _concatenate_translation_rule) ad.deflinear(concatenate_p, _concatenate_transpose_rule) ad.primitive_transposes[concatenate_p] = _concatenate_transpose_rule batching.primitive_batchers[concatenate_p] = _concatenate_batch_rule def _pad_dtype_rule(operand, padding_value, *, padding_config): if operand.dtype != padding_value.dtype: msg = "pad operand and padding_value must be same dtype: got {} and {}." raise TypeError(msg.format(operand.dtype, padding_value.dtype)) return _input_dtype(operand, padding_value) def _pad_shape_rule(operand, padding_value, *, padding_config): del padding_value if not len(padding_config) == np.ndim(operand): raise ValueError("length of padding_config must equal the number of axes " f"of operand, got padding_config {padding_config} " f"for operand shape {np.shape(operand)}") if not all(i >= 0 for _, _, i in padding_config): raise ValueError("interior padding in padding_config must be nonnegative, " f"got padding_config {padding_config}") return tuple(l + h + d + (_max(0, d - 1) * i if i > 0 else 0) for (l, h, i), d in zip(padding_config, np.shape(operand))) def _pad_transpose(t, operand, padding_value, *, padding_config): if type(t) is ad_util.Zero: return ad_util.Zero lo, hi, interior = zip(*padding_config) total = lambda x: _reduce_sum(x, list(range(t.ndim))) def t_op(): unpad_config = safe_zip(np.negative(lo), np.negative(hi), np.zeros_like(interior)) unpadded = pad(t, np.array(0., t.dtype), unpad_config) return slice(unpadded, np.zeros_like(lo), unpadded.shape, np.add(interior, 1)) t_operand = t_op() if ad.is_undefined_primal(operand) else None t_padv = sub(total(t), total(t_operand)) if ad.is_undefined_primal(padding_value) else None return [t_operand, t_padv] def _pad_batch_rule(batched_args, batch_dims, *, padding_config): operand, padding_value = batched_args operand_bdim, padding_value_bdim = batch_dims if padding_value_bdim is None: assert operand_bdim is not None padding_config = list(padding_config) padding_config.insert(operand_bdim, (0, 0, 0)) return pad(operand, padding_value, padding_config), operand_bdim else: raise NotImplementedError # loop and stack def _pad_translation_rule(c, operand, padding_value, *, padding_config): return xops.Pad(operand, padding_value, xc.make_padding_config(padding_config)) def _pad_masking_rule(padded_vals, logical_shapes, padding_config): operand, padding_value = padded_vals shape, _ = logical_shapes out = pad(operand, padding_value, padding_config) out_shape = [lo + shape[i] * (interior + 1) for i, (lo, hi, interior) in enumerate(padding_config)] padded_dims = [i for i, config in enumerate(padding_config) if config != (0, 0, 0)] return _masked(out, out_shape, padded_dims, padding_value) pad_p = standard_primitive(_pad_shape_rule, _pad_dtype_rule, 'pad', translation_rule=_pad_translation_rule) ad.deflinear(pad_p, _pad_transpose) ad.primitive_transposes[pad_p] = _pad_transpose batching.primitive_batchers[pad_p] = _pad_batch_rule masking.masking_rules[pad_p] = _pad_masking_rule # The squeeze primitive exists for the benefit of masking and other # transformations that need to keep track of axis identity. # For example, consider reshaping a 2D array with shape (1, N) into a 1D array # with shape (N,). This results in the following JAXpr: # reshape[ dimension=None new_sizes=(N,) ] # For N > 1, we can match up the output array axis with the second axis of the # input. But for N = 1, it is not clear how axes match up: all we know from the # JAXpr is that we are reshaping from (1, 1) to (1,). # In constrast, squeeze[ dimensions=(0,) ] is unambiguous. def squeeze(array: Array, dimensions: Tuple[int, ...]) -> Array: """Squeeze any number of size 1 dimensions from an array.""" ndim = np.ndim(array) dimensions = tuple(sorted(canonicalize_axis(i, ndim) for i in dimensions)) if not dimensions: return array return squeeze_p.bind(array, dimensions=dimensions) def _squeeze_dtype_rule(operand, *, dimensions): return operand.dtype def _squeeze_shape_rule(operand, *, dimensions): return _compute_squeeze_shape(np.shape(operand), dimensions) def _compute_squeeze_shape(shape, dimensions): dims_set = set(dimensions) if len(dims_set) != len(dimensions): raise ValueError(f"dimensions are not unique: {dimensions}") if not all(0 <= d < len(shape) for d in dims_set): raise ValueError(f"dimensions outside range [0, ndim): {dimensions}") if any(shape[d] != 1 for d in dimensions): raise ValueError( "cannot select an axis to squeeze out which has size not equal to " f"one, got shape={shape} and dimensions={dimensions}") return tuple(s for i, s in enumerate(shape) if i not in dims_set) def _squeeze_translation_rule(c, arg, *, dimensions): new_shape = _compute_squeeze_shape(c.get_shape(arg).dimensions(), dimensions) return xops.Reshape(arg, new_shape) def _squeeze_transpose_rule(t, operand, *, dimensions): assert ad.is_undefined_primal(operand) return [expand_dims(t, dimensions)] def _squeeze_batch_rule(batched_args, batch_dims, *, dimensions): operand, = batched_args bdim, = batch_dims operand = batching.moveaxis(operand, bdim, 0) dimensions = tuple(np.add(1, dimensions)) return squeeze(operand, dimensions=dimensions), 0 squeeze_p = standard_primitive(_squeeze_shape_rule, _squeeze_dtype_rule, 'squeeze', _squeeze_translation_rule) ad.deflinear2(squeeze_p, _squeeze_transpose_rule) batching.primitive_batchers[squeeze_p] = _squeeze_batch_rule def expand_dims(array: Array, dimensions: Tuple[int, ...]) -> Array: """Insert any number of size 1 dimensions into an array.""" ndim_out = np.ndim(array) + len(dimensions) dims_set = frozenset(canonicalize_axis(i, ndim_out) for i in dimensions) result_shape = list(np.shape(array)) for i in sorted(dims_set): result_shape.insert(i, 1) broadcast_dims = [i for i in range(ndim_out) if i not in dims_set] return broadcast_in_dim(array, result_shape, broadcast_dims) # We have a nonstandard reshape impl so that we can be lazy about data movement. def _reshape_impl(operand, *, new_sizes, dimensions): old_sizes = np.shape(operand) if xla.type_is_device_array(operand) and dimensions is None: bcast_dims = _is_singleton_reshape(old_sizes, new_sizes) if bcast_dims is not None: aval = ShapedArray(new_sizes, operand.dtype) if operand._lazy_expr is None: lazy_expr = lazy.broadcast(lazy.array(operand), new_sizes, bcast_dims) else: lazy_expr = lazy.broadcast(operand._lazy_expr, new_sizes, bcast_dims) return xla.make_device_array(aval, operand._device, lazy_expr, operand.device_buffer) return xla.apply_primitive(reshape_p, operand, new_sizes=new_sizes, dimensions=dimensions) def _is_singleton_reshape(old, new): # A singleton reshape is one where only singleton dimensions are added. We # want to detect them because they can be expressed as (lazy) broadcasts. old, new = iter(old), iter(new) d1, d2 = next(old, None), next(new, None) bcast_dims = [] i = 0 while True: if d1 is d2 is None: return bcast_dims elif d1 == d2: bcast_dims.append(i) i += 1 d1, d2 = next(old, None), next(new, None) elif d2 == 1: i += 1 d2 = next(new, None) else: return None def _reshape_shape_rule(operand, *, new_sizes, dimensions): if not np.all(np.greater_equal(new_sizes, 0)): msg = 'reshape new_sizes must all be positive, got {}.' raise TypeError(msg.format(new_sizes)) if prod(np.shape(operand)) != prod(new_sizes): msg = 'reshape total size must be unchanged, got new_sizes {} for shape {}.' raise TypeError(msg.format(new_sizes, np.shape(operand))) if dimensions is not None: if set(dimensions) != set(range(np.ndim(operand))): msg = ('reshape dimensions must be a permutation of operand dimensions, ' 'got dimensions {} for shape {}.') raise TypeError(msg.format(dimensions, np.shape(operand))) return tuple(new_sizes) def _reshape_dtype_rule(operand, *, new_sizes, dimensions): return operand.dtype def _reshape_translation_rule(c, operand, *, new_sizes, dimensions): if dimensions is None: return xops.Reshape(operand, new_sizes) else: return xops.Reshape(operand, dimensions, new_sizes) def _reshape_transpose_rule(t, operand, *, new_sizes, dimensions): assert ad.is_undefined_primal(operand) if dimensions is None: return [reshape(t, operand.aval.shape)] else: return [transpose(reshape(t, np.take(operand.aval.shape, dimensions)), np.argsort(dimensions))] def _reshape_batch_rule(batched_args, batch_dims, *, new_sizes, dimensions): operand, = batched_args bdim, = batch_dims operand = batching.moveaxis(operand, bdim, 0) if dimensions is not None: dimensions = (0,) + tuple(np.add(1, dimensions)) return reshape(operand, operand.shape[:1] + new_sizes, dimensions), 0 def _reshape_masking_rule(padded_args, logical_shapes, polymorphic_shapes, new_sizes, dimensions): operand, = padded_args old_shape, = polymorphic_shapes def is_poly(size): return type(size) is masking.Poly and not size.is_constant def merge_const_sizes(shape): """Merges all nonpolymorphic sizes into the previous polymorphic size.""" poly_dims = [i for i, size in enumerate(shape) if is_poly(size)] return [prod(shape[start:stop]) for start, stop in zip([0] + poly_dims, poly_dims + [len(shape)])] if merge_const_sizes(old_shape) != merge_const_sizes(new_sizes): raise NotImplementedError( "Reshape on padded dimensions causing fragmentation is not supported.") return reshape(operand, new_sizes=masking.padded_shape_as_value(new_sizes), dimensions=dimensions) reshape_p = standard_primitive(_reshape_shape_rule, _reshape_dtype_rule, 'reshape', _reshape_translation_rule) reshape_p.def_impl(_reshape_impl) ad.deflinear2(reshape_p, _reshape_transpose_rule) batching.primitive_batchers[reshape_p] = _reshape_batch_rule masking.masking_rules[reshape_p] = _reshape_masking_rule def _rev_shape_rule(operand, *, dimensions): _check_shapelike('rev', 'dimensions', dimensions) if len(set(dimensions)) != len(dimensions): msg = 'rev dimensions must be unique, got {}.' raise TypeError(msg.format(dimensions)) if dimensions and not _max(dimensions) < operand.ndim: msg = ('rev dimensions must all be less than operand ndim, got dimensions ' '{} for operand ndim {}.') raise TypeError(msg.format(dimensions, operand.ndim)) return operand.shape def _rev_batch_rule(batched_args, batch_dims, *, dimensions): operand, = batched_args bdim, = batch_dims new_dimensions = [i + 1 if i >= bdim else i for i in dimensions] return rev(operand, new_dimensions), bdim rev_p = standard_primitive(_rev_shape_rule, _input_dtype, 'rev') ad.deflinear(rev_p, lambda t, dimensions: [rev(t, dimensions)]) batching.primitive_batchers[rev_p] = _rev_batch_rule def _transpose_impl(operand, *, permutation): if xla.type_is_device_array(operand): if operand._lazy_expr is None: lazy_expr = lazy.transpose(lazy.array(operand), permutation) else: lazy_expr = lazy.transpose(operand._lazy_expr, permutation) aval = ShapedArray(lazy_expr.shape, operand.dtype) return xla.make_device_array(aval, operand._device, lazy_expr, operand.device_buffer) else: return xla.apply_primitive(transpose_p, operand, permutation=permutation) def _transpose_shape_rule(operand, *, permutation): if not isinstance(permutation, (tuple, list, np.ndarray)): msg = "transpose permutation must be a tuple/list/ndarray, got {}." raise TypeError(msg.format(type(permutation))) if tuple(sorted(permutation)) != tuple(range(operand.ndim)): msg = ("transpose permutation isn't a permutation of operand dimensions, " "got permutation {} for operand shape {}.") raise TypeError(msg.format(permutation, operand.shape)) return tuple(np.take(operand.shape, permutation)) def _transpose_batch_rule(batched_args, batch_dims, *, permutation): operand, = batched_args bdim, = batch_dims perm = (bdim,) + tuple(i if i < bdim else i+1 for i in permutation) return transpose(operand, perm), 0 def _transpose_masking_rule(padded_vals, logical_shapes, permutation): return transpose(*padded_vals, permutation=permutation) transpose_p = standard_primitive(_transpose_shape_rule, _input_dtype, 'transpose') transpose_p.def_impl(_transpose_impl) ad.deflinear(transpose_p, lambda t, permutation: [transpose(t, np.argsort(permutation))]) batching.primitive_batchers[transpose_p] = _transpose_batch_rule masking.masking_rules[transpose_p] = _transpose_masking_rule def _select_shape_rule(pred, on_true, on_false): if on_true.shape != on_false.shape: msg = "select on_true and on_false must have the same shape, got {} and {}." raise TypeError(msg.format(on_true.shape, on_false.shape)) if pred.shape and pred.shape != on_true.shape: msg = ("select pred must be scalar or have the same shape as on_true and " "on_false, got pred shape {} for on_true and on_false of shape {}.") raise TypeError(msg.format(pred.shape, on_true.shape)) return on_true.shape def _select_dtype_rule(pred, on_true, on_false): _check_same_dtypes("select", False, on_true.dtype, on_false.dtype) if not dtypes.issubdtype(pred.dtype, np.bool_): msg = "select pred must be boolean type, got {}." raise TypeError(msg.format(pred.dtype)) return on_true.dtype def _select_transpose_rule(t, pred, on_true, on_false): assert not ad.is_undefined_primal(pred) if type(t) is ad_util.Zero: return ad_util.Zero else: zeros = full_like(t, 0) return [None, select(pred, t, zeros) if ad.is_undefined_primal(on_true) else None, select(pred, zeros, t) if ad.is_undefined_primal(on_false) else None] def _select_batch_rule(batched_args, batch_dims, **unused_kwargs): pred, on_true, on_false, = batched_args pred_bdim, ot_bdim, of_bdim = batch_dims size = next(x.shape[i] for x, i in zip(batched_args, batch_dims) if i is not None) # avoid transposes and some broadcasts in special cases if pred_bdim == ot_bdim == of_bdim: if np.shape(pred) == np.shape(on_true): return select(pred, on_true, on_false), pred_bdim else: # vmapped function had a scalar pred with nonscalar args assert np.ndim(pred) == 1 pred = broadcast_in_dim(pred, on_true.shape, [pred_bdim]) return select(pred, on_true, on_false), pred_bdim elif np.ndim(pred) == 0 and ot_bdim is not None and of_bdim is not None: if ot_bdim == of_bdim: return select(pred, on_true, on_false), ot_bdim elif np.shape(on_true) == np.shape(on_false): on_false = batching.moveaxis(on_false, of_bdim, ot_bdim) return select(pred, on_true, on_false), ot_bdim pred = batching.bdim_at_front(pred, pred_bdim, size) if np.shape(pred) else pred if not np.shape(on_true) == np.shape(on_false) == (): on_true = batching.bdim_at_front(on_true, ot_bdim, size) on_false = batching.bdim_at_front(on_false, of_bdim, size) assert np.shape(on_true) == np.shape(on_false) if 0 < np.ndim(pred) < np.ndim(on_true): # vmapped function had a scalar pred with nonscalar args assert np.ndim(pred) == 1 pred = broadcast_in_dim(pred, on_true.shape, [0]) if np.ndim(pred) > np.ndim(on_true): assert np.ndim(on_true) == 0 on_true = broadcast(on_true, pred.shape) on_false = broadcast(on_false, pred.shape) return select(pred, on_true, on_false), 0 def _select_masking_rule(padded_vals, logical_shapes): pred_shape, true_shape, false_shape = [ masking.padded_shape_as_value(val.shape) for val in padded_vals] assert np.array_equal(pred_shape, true_shape) assert np.array_equal(pred_shape, false_shape) return select(*padded_vals) def _select_jvp(primals, tangents): pred, on_true, on_false = primals _, on_true_dot, on_false_dot = tangents out = select(pred, on_true, on_false) if type(on_true_dot) is ad_util.Zero: out_dot = select(pred, _zeros(on_false_dot), on_false_dot) elif type(on_false_dot) is ad_util.Zero: out_dot = select(pred, on_true_dot, _zeros(on_true_dot)) else: out_dot = select(pred, on_true_dot, on_false_dot) return out, out_dot select_p = standard_primitive(_select_shape_rule, _select_dtype_rule, 'select') ad.primitive_jvps[select_p] = _select_jvp ad.primitive_transposes[select_p] = _select_transpose_rule batching.primitive_batchers[select_p] = _select_batch_rule masking.masking_rules[select_p] = _select_masking_rule def _slice_shape_rule(operand, *, start_indices, limit_indices, strides): _check_shapelike("slice", "start_indices", start_indices) _check_shapelike("slice", "limit_indices", limit_indices) if operand.ndim != len(start_indices): msg = ("slice start_indices must have length equal to the number of " "dimensions of the operand, got indices {} for operand shape {}.") raise TypeError(msg.format(start_indices, operand.shape)) if len(start_indices) != len(limit_indices): msg = ("slice limit_indices must have the same length as start_indices, " "got start_inidices {} and limit_indices {}.") raise TypeError(msg.format(start_indices, limit_indices)) if (not masking.is_polymorphic(limit_indices) and not masking.is_polymorphic(operand.shape) and not np.all(np.less_equal(limit_indices, operand.shape))): msg = ("slice limit_indices must be less than or equal to operand shape, " "got limit_indices {} for operand shape {}.") raise TypeError(msg.format(limit_indices, operand.shape)) if not np.all(np.greater_equal(start_indices, 0)): msg = ("slice start_indices must be greater than or equal to zero, " "got start_indices of {}.") raise TypeError(msg.format(start_indices)) if (not masking.is_polymorphic(limit_indices) and not np.all(np.greater_equal(limit_indices, start_indices))): msg = ("slice limit_indices must be greater than or equal to start_indices," " got start_indices {} and limit_indices {}.") raise TypeError(msg.format(start_indices, limit_indices)) if strides is None: strides = np.ones(operand.ndim, np.int32) else: _check_shapelike("slice", "strides", strides) if len(strides) != operand.ndim: msg = ("slice strides must have length equal to the number of dimensions " "of the operand, got strides {} for operand shape {}.") raise TypeError(msg.format(strides, operand.shape)) if not np.all(np.greater(strides, 0)): msg = "slice strides must be positive, got {}" raise TypeError(msg.format(strides)) diff = np.subtract(limit_indices, start_indices) # Not np.divmod since Poly.__rdivmod__ is ignored by NumPy, breaks poly stride return tuple(q + (r > 0) for q, r in map(divmod, diff, strides)) def _slice_translation_rule(c, operand, *, start_indices, limit_indices, strides): return xops.Slice(operand, start_indices, limit_indices, strides or [1] * len(start_indices)) def _slice_transpose_rule(t, operand, *, start_indices, limit_indices, strides): assert ad.is_undefined_primal(operand) operand_shape = operand.aval.shape if strides is None or np.all(np.equal(strides, 1)): pads = zip(start_indices, np.subtract(operand_shape, limit_indices), (0,) * len(start_indices)) else: real_limits = np.add( start_indices, np.where(np.array(t.shape) == 0, 0, np.add(1, np.multiply(np.subtract(t.shape, 1), strides)))) pads = safe_zip(start_indices, np.subtract(operand_shape, real_limits), np.subtract(strides, 1)) result = pad(t, _const(t, 0), pads) assert result.shape == operand_shape, ( f"result.shape={result.shape} operand_shape={operand_shape}") return [result] def _slice_batching_rule(batched_args, batch_dims, *, start_indices, limit_indices, strides): operand, = batched_args bdim, = batch_dims new_start_indices = list(start_indices) new_start_indices.insert(bdim, 0) new_limit_indices = list(limit_indices) new_limit_indices.insert(bdim, operand.shape[bdim]) if strides is None: new_strides = None else: new_strides = list(strides) new_strides.insert(bdim, 1) out = slice(operand, new_start_indices, new_limit_indices, new_strides) return out, bdim def _slice_masking_rule( padded_vals, logical_shapes, start_indices, limit_indices, strides): operand, = padded_vals strides = masking.padded_shape_as_value(strides) if strides else None return slice(operand, start_indices=masking.padded_shape_as_value(start_indices), limit_indices=masking.padded_shape_as_value(limit_indices), strides=strides) slice_p = standard_primitive(_slice_shape_rule, _input_dtype, 'slice', _slice_translation_rule) ad.deflinear2(slice_p, _slice_transpose_rule) batching.primitive_batchers[slice_p] = _slice_batching_rule masking.masking_rules[slice_p] = _slice_masking_rule def _dynamic_slice_shape_rule(operand, *start_indices, slice_sizes): if operand.ndim != len(start_indices): msg = ("dynamic_slice start_indices must have length equal to the number " "of dimensions of the operand, got indices {} for operand shape {}.") raise TypeError(msg.format(start_indices, operand.shape)) if len(start_indices) != len(slice_sizes): msg = ("dynamic_slice slice_sizes must have the same length as " "start_indices, got start_inidices length {} and slice_sizes {}.") raise TypeError(msg.format(len(start_indices), slice_sizes)) if not np.all(np.less_equal(slice_sizes, operand.shape)): msg = ("slice slice_sizes must be less than or equal to operand shape, " "got slice_sizes {} for operand shape {}.") raise TypeError(msg.format(slice_sizes, operand.shape)) if not np.all(np.greater_equal(slice_sizes, 0)): msg = ("slice slice_sizes must be greater than or equal to zero, " "got slice_sizes of {}.") raise TypeError(msg.format(slice_sizes)) return tuple(slice_sizes) def _dynamic_slice_dtype_rule(operand, *start_indices, slice_sizes): if any(i.dtype != start_indices[0].dtype or not dtypes.issubdtype(i.dtype, np.integer) for i in start_indices): msg = ("index arguments to dynamic_slice must be integers of the same " "type, got: {}") raise TypeError(msg.format(", ".join(i.dtype.name for i in start_indices))) return operand.dtype def _dynamic_slice_translation_rule(c, operand, *start_indices, slice_sizes): return xops.DynamicSlice(operand, start_indices, slice_sizes) def _dynamic_slice_jvp(primals, tangents, *, slice_sizes): tangent_out = tangents[0] if type(tangent_out) is not ad_util.Zero: tangent_out = dynamic_slice(tangent_out, primals[1:], slice_sizes) return dynamic_slice(primals[0], primals[1:], slice_sizes), tangent_out def _dynamic_slice_transpose_rule(t, operand, *start_indices, slice_sizes): assert ad.is_undefined_primal(operand) assert all(not ad.is_undefined_primal(s) for s in start_indices) operand_shape, operand_dtype = operand.aval.shape, operand.aval.dtype if config.omnistaging_enabled: zeros = full(operand_shape, 0, operand_dtype) else: zeros = full(operand_shape, tie_in(t, _zero(t))) if type(t) is ad_util.Zero: return [zeros] + [None] * len(start_indices) else: return ([dynamic_update_slice(zeros, t, start_indices)] + [None] * len(start_indices)) def _batch_dynamic_slice_indices(indices, bdims): if len(indices) == 0: return np.array([], 'int32'), None size = next((x.shape[i] for x, i in zip(indices, bdims) if i is not None), -1) if size < 0: return concatenate([broadcast(i, (1,)) for i in indices], 0), None indices = concatenate( [broadcast_in_dim(x, (size, 1), broadcast_dimensions=((0,) if i is not None else ())) for x, i in zip(indices, bdims)], dimension=1) return indices, 0 def _dynamic_slice_batching_rule(batched_args, batch_dims, *, slice_sizes): # A dynamic slice is a special case of gather; we can delegate to the gather # batching rule. # TODO(phawkins): consider removing dynamic_slice entirely and using gather # always. operand, *start_indices = batched_args operand_bd, *start_idx_bds = batch_dims operand_shape = (operand.shape if operand_bd is batching.not_mapped else tuple(np.delete(operand.shape, operand_bd))) dims = tuple(range(len(operand_shape))) dnums = GatherDimensionNumbers(offset_dims=dims, collapsed_slice_dims=(), start_index_map=dims) index, index_bdim = _batch_dynamic_slice_indices(start_indices, start_idx_bds) return _gather_batching_rule( [operand, index], [operand_bd, index_bdim], dimension_numbers=dnums, slice_sizes=slice_sizes) dynamic_slice_p = standard_primitive( _dynamic_slice_shape_rule, _dynamic_slice_dtype_rule, 'dynamic_slice', _dynamic_slice_translation_rule) ad.primitive_jvps[dynamic_slice_p] = _dynamic_slice_jvp # TODO ad.primitive_transposes[dynamic_slice_p] = _dynamic_slice_transpose_rule batching.primitive_batchers[dynamic_slice_p] = _dynamic_slice_batching_rule def _dynamic_update_slice_shape_rule(operand, update, *start_indices): if operand.ndim != update.ndim: msg = ("dynamic_update_slice update must have the same rank as operand, " "got update shape {} for operand shape {}.") raise TypeError(msg.format(update.shape, operand.shape)) if operand.ndim != len(start_indices): msg = ("dynamic_update_slice start_indices must have length equal to the " "rank of operand, got indices {} for operand shape {}.") raise TypeError(msg.format(start_indices, operand.shape)) if not np.all(np.less_equal(update.shape, operand.shape)): msg = ("dynamic_update_slice update shape must be smaller than operand " "shape, got update shape {} for operand shape {}.") raise TypeError(msg.format(update.shape, operand.shape)) return operand.shape def _dynamic_update_slice_dtype_rule(operand, update, *start_indices): _check_same_dtypes("dynamic_update_slice", False, operand.dtype, update.dtype) if any(i.dtype != start_indices[0].dtype or not dtypes.issubdtype(i.dtype, np.integer) for i in start_indices): msg = ("index arguments to dynamic_update_slice must be integers of the " "same type, got {}") raise TypeError(msg.format(", ".join(i.dtype.name for i in start_indices))) return operand.dtype def _dynamic_update_slice_jvp(primals, tangents): operand, update = primals[:2] start_indices = primals[2:] g_operand, g_update = tangents[:2] val_out = dynamic_update_slice(operand, update, start_indices) if type(g_operand) is ad_util.Zero and type(g_update) is ad_util.Zero: tangent_out = ad_util.Zero.from_value(val_out) else: g_operand = ad.instantiate_zeros(g_operand) g_update = ad.instantiate_zeros(g_update) tangent_out = dynamic_update_slice(g_operand, g_update, start_indices) return val_out, tangent_out def _dynamic_update_slice_transpose_rule(t, operand, update, *start_indices): assert all(not ad.is_undefined_primal(x) for x in start_indices) if ad.is_undefined_primal(update): update_shape = update.aval.shape else: update_shape = update.shape dus = dynamic_update_slice ds = dynamic_slice zeros = _zeros(t, shape=update_shape) operand_t = dus(t, zeros, start_indices) if ad.is_undefined_primal(operand) else None update_t = ds(t, start_indices, update_shape) if ad.is_undefined_primal(update) else None return [operand_t, update_t] + [None] * len(start_indices) def _dynamic_update_slice_translation_rule(c, operand, update, *start_indices): return xops.DynamicUpdateSlice(operand, update, start_indices) def _dynamic_update_slice_batching_rule(batched_args, batch_dims): # A dynamic update slice is a special case of scatter; we can delegate to the # scatter batching rule. # TODO(phawkins): consider removing dynamic_update_slice entirely and using # scatter always. operand, update, *start_idx = batched_args operand_bd, update_bd, *start_idx_bd = batch_dims update_shape = (np.shape(update) if update_bd is batching.not_mapped else tuple(np.delete(np.shape(update), update_bd))) dims = tuple(range(len(update_shape))) dnums = ScatterDimensionNumbers(update_window_dims=dims, inserted_window_dims=(), scatter_dims_to_operand_dims=dims) index, index_bdim = _batch_dynamic_slice_indices(start_idx, start_idx_bd) return _scatter_batching_rule( scatter, (operand, index, update), (operand_bd, index_bdim, update_bd), update_jaxpr=None, update_consts=None, dimension_numbers=dnums, indices_are_sorted=True, unique_indices=True) dynamic_update_slice_p = standard_primitive( _dynamic_update_slice_shape_rule, _dynamic_update_slice_dtype_rule, 'dynamic_update_slice', _dynamic_update_slice_translation_rule) ad.primitive_jvps[dynamic_update_slice_p] = _dynamic_update_slice_jvp ad.primitive_transposes[dynamic_update_slice_p] = \ _dynamic_update_slice_transpose_rule batching.primitive_batchers[dynamic_update_slice_p] = \ _dynamic_update_slice_batching_rule def _gather_dimensions_proto(indices_shape, dimension_numbers): assert type(dimension_numbers) is GatherDimensionNumbers proto = xla_client.GatherDimensionNumbers() proto.offset_dims.extend(dimension_numbers.offset_dims) proto.collapsed_slice_dims.extend(dimension_numbers.collapsed_slice_dims) proto.start_index_map.extend(dimension_numbers.start_index_map) assert indices_shape.rank() > 0 proto.index_vector_dim = indices_shape.rank() - 1 return proto def _gather_dtype_rule(operand, start_indices, **kwargs): if not dtypes.issubdtype(start_indices.dtype, np.integer): raise ValueError("start_indices must have an integer type") return dtypes.canonicalize_dtype(operand.dtype) _rank = lambda arr: len(arr.shape) def _is_sorted(dims, op_name, name): for i in range(1, len(dims)): if dims[i] < dims[i - 1]: raise TypeError(f"{name} in {op_name} op must be sorted; got {dims}") def _sorted_dims_in_range(dims, rank, op_name, name): if len(dims) == 0: return invalid_dim = None if dims[0] < 0: invalid_dim = dims[0] elif dims[-1] >= rank: invalid_dim = dims[-1] if invalid_dim: raise TypeError(f"Invalid {name} set in {op_name} op; valid range is " f"[0, {rank}); got: {invalid_dim}.") def _no_duplicate_dims(dims, op_name, name): if len(set(dims)) != len(dims): raise TypeError(f"{name} in {op_name} op must not repeat; got: {dims}.") def _gather_shape_rule(operand, start_indices, *, dimension_numbers, slice_sizes): """Validates the well-formedness of the arguments to Gather. The code implements the checks based on the detailed operation semantics of XLA's `Gather <https://www.tensorflow.org/xla/operation_semantics#gather>`_ operator and following the outline of the implementation of ShapeInference::InferGatherShape in TensorFlow. """ offset_dims = dimension_numbers.offset_dims collapsed_slice_dims = dimension_numbers.collapsed_slice_dims start_index_map = dimension_numbers.start_index_map # Note: in JAX, index_vector_dim is always computed as below, cf. the # documentation of the GatherDimensionNumbers class. index_vector_dim = _rank(start_indices) - 1 # This case should never happen in JAX, due to the implicit construction of # index_vector_dim, but is included for completeness. if _rank(start_indices) < index_vector_dim or index_vector_dim < 0: raise TypeError(f"Gather index leaf dimension must be within [0, rank(" f"start_indices) + 1). rank(start_indices) is " f"{_rank(start_indices)} and gather index leaf dimension " f"is {index_vector_dim}.") expanded_start_indices_shape = list(start_indices.shape) # This case should never happen in JAX, due to the implicit construction of # index_vector_dim, but is included for completeness. if len(expanded_start_indices_shape) == index_vector_dim: expanded_start_indices_shape.append(1) # Start ValidateGatherDimensions # In the error messages output by XLA, "offset_dims" is called "Output window # dimensions" in error messages. For consistency's sake, our error messages # stick to "offset_dims". _is_sorted(offset_dims, "gather", "offset_dims") _no_duplicate_dims(offset_dims, "gather", "offset_dims") output_offset_dim_count = len(offset_dims) output_shape_rank = len(offset_dims) + _rank(start_indices) - 1 for i in range(output_offset_dim_count): offset_dim = offset_dims[i] if offset_dim < 0 or offset_dim >= output_shape_rank: raise TypeError(f"Offset dimension {i} in gather op is out of bounds; " f"got {offset_dim}, but should have been in " f"[0, {output_shape_rank})") if len(start_index_map) != start_indices.shape[index_vector_dim]: raise TypeError(f"Gather op has {len(start_index_map)} elements in " f"start_index_map and the bound of dimension " f"index_vector_dim={index_vector_dim} of start_indices is " f"{start_indices.shape[index_vector_dim]}. These two " f"numbers must be equal.") for i in range(len(start_index_map)): operand_dim_for_start_index_i = start_index_map[i] if (operand_dim_for_start_index_i < 0 or operand_dim_for_start_index_i >= _rank(operand)): raise TypeError(f"Invalid start_index_map; domain is " f"[0, {_rank(operand)}), got: " f"{i}->{operand_dim_for_start_index_i}.") _no_duplicate_dims(start_index_map, "gather", "start_index_map") # _is_sorted and _sorted_dims_in_range are checked in the opposite order # compared to the XLA implementation. In cases when the input is not sorted # AND there are problematic collapsed_slice_dims, the error message will thus # be different. _is_sorted(collapsed_slice_dims, "gather", "collapsed_slice_dims") _sorted_dims_in_range(collapsed_slice_dims, _rank(operand), "gather", "collapsed_slice_dims") _no_duplicate_dims(collapsed_slice_dims, "gather", "collapsed_slice_dims") # End ValidateGatherDimensions if _rank(operand) != len(slice_sizes): raise TypeError(f"Gather op must have one slice size for every input " f"dimension; got: len(slice_sizes)={len(slice_sizes)}, " f"input_shape.rank={_rank(operand)}") if len(slice_sizes) != len(offset_dims) + len(collapsed_slice_dims): raise TypeError(f"All components of the offset index in a gather op must " f"either be a offset dimension or explicitly collapsed; " f"got len(slice_sizes)={len(slice_sizes)}, " f"output_slice_sizes={offset_dims}, collapsed_slice_dims=" f"{collapsed_slice_dims}.") for i in range(len(slice_sizes)): slice_size = slice_sizes[i] corresponding_input_size = operand.shape[i] if slice_size < 0 or slice_size > corresponding_input_size: raise TypeError(f"Slice size at index {i} in gather op is out of range, " f"must be within [0, {corresponding_input_size + 1}), " f"got {slice_size}.") for i in range(len(collapsed_slice_dims)): bound = slice_sizes[collapsed_slice_dims[i]] if bound > 1: raise TypeError(f"Gather op can only collapse slice dims with bound 1 " f"or 0, but bound is {bound} for index " f"{collapsed_slice_dims[i]} at position {i}.") expanded_start_indices_shape.pop(index_vector_dim) start_indices_shape = iter(expanded_start_indices_shape) slice_sizes = iter(np.delete(slice_sizes, collapsed_slice_dims)) return tuple(next(slice_sizes) if i in offset_dims else next(start_indices_shape) for i in range(output_shape_rank)) def _gather_translation_rule(c, operand, start_indices, *, dimension_numbers, slice_sizes): indices_shape = c.get_shape(start_indices) return xops.Gather( operand, start_indices, _gather_dimensions_proto(indices_shape, dimension_numbers), slice_sizes, indices_are_sorted=False) def _gather_jvp_rule(g, operand, start_indices, *, dimension_numbers, slice_sizes): return gather(g, start_indices, dimension_numbers, slice_sizes) def _gather_transpose_rule(t, operand, start_indices, *, dimension_numbers, slice_sizes): assert ad.is_undefined_primal(operand) operand_shape = operand.aval.shape if type(t) is ad_util.Zero: return ad_util.Zero if config.omnistaging_enabled: zeros = full(operand_shape, _zero(t)) else: zeros = full(operand_shape, tie_in(t, _zero(t))) scatter_dnums = ScatterDimensionNumbers( update_window_dims=dimension_numbers.offset_dims, inserted_window_dims=dimension_numbers.collapsed_slice_dims, scatter_dims_to_operand_dims=dimension_numbers.start_index_map) out = scatter_add(zeros, start_indices, t, scatter_dnums, indices_are_sorted=False, unique_indices=False) return [out, ad_util.Zero.from_value(start_indices)] def _gather_batching_rule(batched_args, batch_dims, *, dimension_numbers, slice_sizes): operand, start_indices = batched_args operand_bdim, start_indices_bdim = batch_dims if operand_bdim is not None and start_indices_bdim is None: operand = batching.moveaxis(operand, operand_bdim, 0) slice_sizes = (operand.shape[0],) + slice_sizes offset_dims = (0,) + tuple(np.add(1, dimension_numbers.offset_dims)) collapsed_slice_dims = tuple(np.add(1, dimension_numbers.collapsed_slice_dims)) start_index_map = tuple(np.add(1, dimension_numbers.start_index_map)) dnums = GatherDimensionNumbers( offset_dims=offset_dims, collapsed_slice_dims=collapsed_slice_dims, start_index_map=start_index_map) return gather(operand, start_indices, dimension_numbers=dnums, slice_sizes=slice_sizes), 0 elif operand_bdim is None and start_indices_bdim is not None: start_indices = batching.moveaxis(start_indices, start_indices_bdim, 0) offset_dims = tuple(np.add(1, dimension_numbers.offset_dims)) dnums = GatherDimensionNumbers( offset_dims=offset_dims, collapsed_slice_dims=dimension_numbers.collapsed_slice_dims, start_index_map=dimension_numbers.start_index_map) return gather(operand, start_indices, dimension_numbers=dnums, slice_sizes=slice_sizes), 0 else: # move batch dimensions to the front to simplify logic operand = batching.moveaxis(operand, operand_bdim, 0) start_indices = batching.moveaxis(start_indices, start_indices_bdim, 0) # Example: user code had start_indices shape (3, 4, 5), and we have to deal # with start_indices shape (7, 3, 4, 5). We transform that to a # start_indices of shape (7, 3, 4, 6) where we concatenated an iota that # counts along our batch dimension to the front of the ndindex. count_shape = list(start_indices.shape) count_shape[-1] = 1 counts = broadcasted_iota(start_indices.dtype, tuple(count_shape), 0) start_indices = concatenate([counts, start_indices], len(count_shape) - 1) slice_sizes = (1,) + slice_sizes collapsed_slice_dims = (0,) + tuple(np.add(1, dimension_numbers.collapsed_slice_dims)) offset_dims = tuple(np.add(1, dimension_numbers.offset_dims)) start_index_map = (0,) + tuple(np.add(1, dimension_numbers.start_index_map)) dnums = GatherDimensionNumbers( offset_dims=offset_dims, collapsed_slice_dims=collapsed_slice_dims, start_index_map=start_index_map) return gather(operand, start_indices, dimension_numbers=dnums, slice_sizes=slice_sizes), 0 gather_p = standard_primitive( _gather_shape_rule, _gather_dtype_rule, 'gather', _gather_translation_rule) ad.defjvp(gather_p, _gather_jvp_rule, None) ad.primitive_transposes[gather_p] = _gather_transpose_rule batching.primitive_batchers[gather_p] = _gather_batching_rule def _scatter_dimensions_proto(indices_shape, dimension_numbers): assert type(dimension_numbers) is ScatterDimensionNumbers proto = xla_client.ScatterDimensionNumbers() proto.update_window_dims.extend(dimension_numbers.update_window_dims) proto.inserted_window_dims.extend(dimension_numbers.inserted_window_dims) proto.scatter_dims_to_operand_dims.extend( dimension_numbers.scatter_dims_to_operand_dims) assert indices_shape.rank() > 0 proto.index_vector_dim = indices_shape.rank() - 1 return proto def _scatter_dtype_rule(operand, scatter_indices, updates, **kwargs): if not dtypes.issubdtype(scatter_indices.dtype, np.integer): raise ValueError("scatter_indices must have an integer type") _check_same_dtypes("scatter", False, operand.dtype, updates.dtype) return dtypes.canonicalize_dtype(operand.dtype) def _scatter_shape_rule(operand, scatter_indices, updates, *, update_jaxpr, update_consts, dimension_numbers, indices_are_sorted, unique_indices): """Validates the well-formedness of the ``dimension_numbers`` argument to Scatter. The code implements the checks based on the detailed operation semantics of XLA's `Scatter <https://www.tensorflow.org/xla/operation_semantics#scatter>`_ operator and following the outline of the implementation of ShapeInference::InferScatterShape in TensorFlow. """ update_window_dims = dimension_numbers.update_window_dims inserted_window_dims = dimension_numbers.inserted_window_dims scatter_dims_to_operand_dims = dimension_numbers.scatter_dims_to_operand_dims # Note: in JAX, index_vector_dim is always computed as below, cf. the # documentation of the ScatterDimensionNumbers class. index_vector_dim = _rank(scatter_indices) - 1 # This case should never happen in JAX, due to the implicit construction of # index_vector_dim, but is included for completeness. if _rank(scatter_indices) < index_vector_dim or index_vector_dim < 0: raise TypeError(f"Scatter index leaf dimension must be within [0, " f"rank(scatter_indices) + 1). rank(scatter_indices) is " f"{_rank(scatter_indices)} and scatter index leaf " f"dimension is {index_vector_dim}.") expanded_scatter_indices_shape = list(scatter_indices.shape) # This case should never happen in JAX, due to the implicit construction of # index_vector_dim, but is included for completeness. if len(expanded_scatter_indices_shape) == index_vector_dim: expanded_scatter_indices_shape.append(1) expected_updates_rank = (len(expanded_scatter_indices_shape) - 1 + len(update_window_dims)) if _rank(updates) != expected_updates_rank: raise TypeError(f"Updates tensor must be of rank {expected_updates_rank}; " f"got {_rank(updates)}.") # Validate update_window_dims _is_sorted(update_window_dims, "scatter", "update_window_dims") _no_duplicate_dims(update_window_dims, "scatter", "update_window_dims") _sorted_dims_in_range(update_window_dims, _rank(updates), "scatter", "update_window_dims") # Validate inserted_window_dims _is_sorted(inserted_window_dims, "scatter", "inserted_window_dims") _no_duplicate_dims(inserted_window_dims, "scatter", "inserted_window_dims") _sorted_dims_in_range(inserted_window_dims, _rank(operand), "scatter", "inserted_window_dims") # Validate window_size window_size = len(update_window_dims) + len(inserted_window_dims) if _rank(operand) != window_size: raise TypeError(f"Scatter op has window of size {window_size}; doesn't " f"match operand of rank {_rank(operand)}.") # Validate scatter_dims_to_operand_dims if (len(scatter_dims_to_operand_dims) != scatter_indices.shape[index_vector_dim]): raise TypeError(f"Scatter op has {len(scatter_dims_to_operand_dims)} " f"elements in scatter_dims_to_operand_dims and the bound " f"of dimension index_vector_dim={index_vector_dim} of " f"scatter_indices is " f"{scatter_indices.shape[index_vector_dim]}. These two " f"numbers must be equal") for i in range(len(scatter_dims_to_operand_dims)): dim = scatter_dims_to_operand_dims[i] if dim < 0 or dim >= _rank(operand): raise TypeError(f"Invalid scatter_dims_to_operand_dims mapping; domain " f"is [0, {_rank(operand)}), got: {i}->{dim}.") _no_duplicate_dims(scatter_dims_to_operand_dims, "scatter", "scatter_dims_to_operand_dims") max_update_slice_sizes = [operand.shape[i] for i in range(len(operand.shape)) if not i in set(inserted_window_dims)] for i in range(len(update_window_dims)): update_window_dim = update_window_dims[i] if updates.shape[update_window_dim] > max_update_slice_sizes[i]: raise TypeError(f"Bounds of the window dimensions of updates must not " f"exceed the bounds of the corresponding dimensions of " f"operand. For dimension {update_window_dim}, updates " f"bound is {updates.shape[update_window_dim]}, operand " f"bound is {max_update_slice_sizes[i]}.") update_scatter_dims = [dim for dim in range(_rank(updates)) if dim not in set(update_window_dims)] scatter_dims_seen = 0 for i in update_scatter_dims: if scatter_dims_seen == index_vector_dim: scatter_dims_seen += 1 if updates.shape[i] != expanded_scatter_indices_shape[scatter_dims_seen]: raise TypeError(f"Bounds of the scatter dimensions of updates must be " f"the same as the bounds of the corresponding dimensions " f"of scatter indices. For scatter dimension {i}, updates " f"bound is {updates.shape[i]}, scatter_indices bound is " f"{expanded_scatter_indices_shape[scatter_dims_seen]}.") scatter_dims_seen += 1 return operand.shape def _scatter_translation_rule(c, operand, scatter_indices, updates, *, update_jaxpr, update_consts, dimension_numbers, indices_are_sorted, unique_indices): dtype = c.get_shape(operand).numpy_dtype() init_value = xb.constant(c, np.array(0, dtype)) update_computation = _reduction_computation( c, update_jaxpr, update_consts, init_value) indices_shape = c.get_shape(scatter_indices) return xops.Scatter(operand, scatter_indices, updates, update_computation, _scatter_dimensions_proto(indices_shape, dimension_numbers), indices_are_sorted, unique_indices) def _scatter_add_translation_rule( c, operand, scatter_indices, updates, *, update_jaxpr, update_consts, dimension_numbers, indices_are_sorted, unique_indices, expand_complex128=False): dtype = c.get_shape(operand).numpy_dtype() scatter_dims = _scatter_dimensions_proto(c.get_shape(scatter_indices), dimension_numbers) def _make_reducer(dtype): subc = xla_bridge.make_computation_builder("scatter_add_reducer") shape = xc.Shape.array_shape(np.dtype(dtype), ()) args = [xb.parameter(subc, 0, shape), xb.parameter(subc, 1, shape)] out = xops.Add(args[0], args[1]) return subc.build(out) if expand_complex128 and dtype == np.complex128: update_computation = _make_reducer(np.float64) re = xops.Scatter(xops.Real(operand), scatter_indices, xops.Real(updates), update_computation, scatter_dims, indices_are_sorted, unique_indices) im = xops.Scatter(xops.Imag(operand), scatter_indices, xops.Imag(updates), update_computation, scatter_dims, indices_are_sorted, unique_indices) return xops.Complex(re, im) else: update_computation = _make_reducer(dtype) return xops.Scatter(operand, scatter_indices, updates, update_computation, scatter_dims, indices_are_sorted, unique_indices) def _scatter_add_jvp(primals, tangents, *, update_jaxpr, update_consts, dimension_numbers, indices_are_sorted, unique_indices): operand, scatter_indices, updates = primals g_operand, g_scatter_indices, g_updates = tangents val_out = scatter_add_p.bind( operand, scatter_indices, updates, update_jaxpr=update_jaxpr, update_consts=update_consts, dimension_numbers=dimension_numbers, indices_are_sorted=indices_are_sorted, unique_indices=unique_indices) if type(g_operand) is ad_util.Zero and type(g_updates) is ad_util.Zero: tangent_out = ad_util.Zero.from_value(val_out) else: g_operand = ad.instantiate_zeros(g_operand) g_updates = ad.instantiate_zeros(g_updates) tangent_out = scatter_add_p.bind( g_operand, scatter_indices, g_updates, update_jaxpr=update_jaxpr, update_consts=update_consts, dimension_numbers=dimension_numbers, indices_are_sorted=indices_are_sorted, unique_indices=unique_indices) return val_out, tangent_out def _scatter_add_transpose_rule(t, operand, scatter_indices, updates, *, update_jaxpr, update_consts, dimension_numbers, indices_are_sorted, unique_indices): assert not ad.is_undefined_primal(scatter_indices) if ad.is_undefined_primal(updates): updates_shape = updates.aval.shape else: updates_shape = updates.shape if type(t) is ad_util.Zero: return ad_util.Zero operand_t = update_t = None if ad.is_undefined_primal(operand): operand_t = t if ad.is_undefined_primal(updates): gather_dnums = GatherDimensionNumbers( offset_dims=dimension_numbers.update_window_dims, collapsed_slice_dims=dimension_numbers.inserted_window_dims, start_index_map=dimension_numbers.scatter_dims_to_operand_dims) slice_sizes = [] pos = 0 for i in range(len(t.shape)): if i in dimension_numbers.inserted_window_dims: slice_sizes.append(1) else: slice_sizes.append(updates_shape[dimension_numbers.update_window_dims[pos]]) pos += 1 update_t = gather(t, scatter_indices, dimension_numbers=gather_dnums, slice_sizes=slice_sizes) return [operand_t, None, update_t] def _scatter_mul_transpose_rule(t, operand, scatter_indices, updates, *, update_jaxpr, update_consts, dimension_numbers, indices_are_sorted, unique_indices): assert not ad.is_undefined_primal(scatter_indices) if ad.is_undefined_primal(updates): updates_shape = updates.aval.shape else: updates_shape = updates.shape if type(t) is ad_util.Zero: return ad_util.Zero operand_t = update_t = None if ad.is_undefined_primal(operand): operand_t = scatter_mul( t, scatter_indices, updates, dimension_numbers=dimension_numbers, indices_are_sorted=indices_are_sorted, unique_indices=unique_indices) if ad.is_undefined_primal(updates): gather_dnums = GatherDimensionNumbers( offset_dims=dimension_numbers.update_window_dims, collapsed_slice_dims=dimension_numbers.inserted_window_dims, start_index_map=dimension_numbers.scatter_dims_to_operand_dims) slice_sizes = [] pos = 0 for i in range(len(t.shape)): if i in dimension_numbers.inserted_window_dims: slice_sizes.append(1) else: slice_sizes.append(updates_shape[dimension_numbers.update_window_dims[pos]]) pos += 1 update_t = gather(mul(t, operand), scatter_indices, dimension_numbers=gather_dnums, slice_sizes=slice_sizes) return [operand_t, None, update_t] def _scatter_batching_rule(scatter_op, batched_args, batch_dims, *, update_jaxpr, update_consts, dimension_numbers, indices_are_sorted, unique_indices): operand, scatter_indices, updates = batched_args operand_bdim, scatter_indices_bdim, updates_bdim = batch_dims del update_jaxpr, update_consts # Unused. # move the operand batch dim to the front if it is not None, otherwise create # it at the front (so that we can scatter into it) size = next(x.shape[ax] for x, ax in zip(batched_args, batch_dims) if ax is not None) operand = batching.bdim_at_front(operand, operand_bdim, size) operand_bdim = 0 updates = batching.bdim_at_front(updates, updates_bdim, size) if scatter_indices_bdim is None: inserted_window_dims = tuple(np.add(1, dimension_numbers.inserted_window_dims)) update_window_dims = (0,) + tuple(np.add(1, dimension_numbers.update_window_dims)) scatter_dims_to_operand_dims = tuple(np.add(1, dimension_numbers.scatter_dims_to_operand_dims)) dnums = ScatterDimensionNumbers( update_window_dims=update_window_dims, inserted_window_dims=inserted_window_dims, scatter_dims_to_operand_dims=scatter_dims_to_operand_dims) return scatter_op( operand, scatter_indices, updates, dnums, indices_are_sorted=indices_are_sorted, unique_indices=unique_indices), 0 # see the third case in _gather_batching_rule for comparison and comments scatter_indices = batching.bdim_at_front( scatter_indices, scatter_indices_bdim, size) count_shape = list(scatter_indices.shape) count_shape[-1] = 1 counts = broadcasted_iota(scatter_indices.dtype, tuple(count_shape), 0) scatter_indices = concatenate([counts, scatter_indices], len(count_shape) - 1) update_window_dims = tuple(np.add(1, dimension_numbers.update_window_dims)) inserted_window_dims = (0,) + tuple(np.add(1, dimension_numbers.inserted_window_dims)) scatter_dims_to_operand_dims = (0,) + tuple(np.add(1, dimension_numbers.scatter_dims_to_operand_dims)) dnums = ScatterDimensionNumbers( update_window_dims=update_window_dims, inserted_window_dims=inserted_window_dims, scatter_dims_to_operand_dims=scatter_dims_to_operand_dims) return scatter_op( operand, scatter_indices, updates, dnums, indices_are_sorted=indices_are_sorted, unique_indices=unique_indices), 0 scatter_add_p = standard_primitive( _scatter_shape_rule, _scatter_dtype_rule, 'scatter-add', _scatter_add_translation_rule) ad.primitive_jvps[scatter_add_p] = _scatter_add_jvp ad.primitive_transposes[scatter_add_p] = _scatter_add_transpose_rule batching.primitive_batchers[scatter_add_p] = ( partial(_scatter_batching_rule, scatter_add)) xla.backend_specific_translations['gpu'][scatter_add_p] = partial( _scatter_add_translation_rule, expand_complex128=True) scatter_mul_p = standard_primitive( _scatter_shape_rule, _scatter_dtype_rule, 'scatter-mul', _scatter_translation_rule) def _scatter_mul_jvp_rhs(g, x, i, y, *, dimension_numbers, indices_are_sorted, unique_indices, **kw): return mul(x, scatter_add( zeros_like_array(x), i, g, dimension_numbers=dimension_numbers, indices_are_sorted=indices_are_sorted, unique_indices=unique_indices)) ad.defjvp(scatter_mul_p, lambda g, x, i, y, **kw: scatter_mul_p.bind(g, i, y, **kw), None, _scatter_mul_jvp_rhs) ad.primitive_transposes[scatter_mul_p] = _scatter_mul_transpose_rule batching.primitive_batchers[scatter_mul_p] = ( partial(_scatter_batching_rule, scatter_mul)) def _scatter_extremal_jvp(scatter_op, primals, tangents, update_jaxpr, update_consts, dimension_numbers, indices_are_sorted, unique_indices): operand, scatter_indices, updates = primals g_operand, g_scatter_indices, g_updates = tangents scatter_dnums = dimension_numbers updates_shape = updates.shape val_out = scatter_op.bind( operand, scatter_indices, updates, update_jaxpr=update_jaxpr, update_consts=update_consts, dimension_numbers=scatter_dnums, indices_are_sorted=indices_are_sorted, unique_indices=unique_indices) if type(g_operand) is ad_util.Zero and type(g_updates) is ad_util.Zero: tangent_out = ad_util.Zero.from_value(val_out) else: g_operand = ad.instantiate_zeros(g_operand) g_updates = ad.instantiate_zeros(g_updates) # gather_dnums and slice_sizes define the gather op that is the inverse of # the scatter op specified by scatter_dnums gather_dnums = GatherDimensionNumbers( offset_dims=scatter_dnums.update_window_dims, collapsed_slice_dims=scatter_dnums.inserted_window_dims, start_index_map=scatter_dnums.scatter_dims_to_operand_dims) slice_sizes = [] pos = 0 for i in range(len(operand.shape)): if i in scatter_dnums.inserted_window_dims: slice_sizes.append(1) else: slice_sizes.append(updates_shape[scatter_dnums.update_window_dims[pos]]) pos += 1 # For consistency with other max operations, if there are two or more values # in updates that are contending to replace the same index location, the # resulting tangent at that location will be the average of the associated # tangents for the values in updates. initial_vals = gather( operand, scatter_indices, gather_dnums, np.array(slice_sizes)) target_vals = gather( val_out, scatter_indices, gather_dnums, np.array(slice_sizes)) successful_updates = (updates == target_vals) retained_values = (initial_vals == target_vals) num_updates = gather( scatter_add(_zeros(operand), scatter_indices, select(successful_updates, _ones(updates), _zeros(updates)), scatter_dnums), scatter_indices, gather_dnums, np.array(slice_sizes)) num_refs = gather( scatter_add(_zeros(operand), scatter_indices, _ones(updates), scatter_dnums), scatter_indices, gather_dnums, np.array(slice_sizes)) updates_normalizer = select(retained_values, 1.0 / (num_updates + 1), 1.0 / num_updates) updates_coef = select(successful_updates, updates_normalizer, _zeros(updates)) operand_normalizer = select(retained_values, 1.0 / (num_updates + 1), _zeros(num_updates)) operand_coef = (-1.0 + operand_normalizer) / num_refs # This can be simplified once scatter has transpose implemented target_tangents = gather( g_operand, scatter_indices, gather_dnums, np.array(slice_sizes)) tangent_updates = (target_tangents * operand_coef + g_updates * updates_coef) tangent_out = scatter_add(g_operand, scatter_indices, tangent_updates, scatter_dnums, indices_are_sorted=indices_are_sorted, unique_indices=unique_indices) return val_out, tangent_out scatter_min_p = standard_primitive( _scatter_shape_rule, _scatter_dtype_rule, 'scatter-min', _scatter_translation_rule) batching.primitive_batchers[scatter_min_p] = ( partial(_scatter_batching_rule, scatter_min)) ad.primitive_jvps[scatter_min_p] = partial(_scatter_extremal_jvp, scatter_min_p) scatter_max_p = standard_primitive( _scatter_shape_rule, _scatter_dtype_rule, 'scatter-max', _scatter_translation_rule) batching.primitive_batchers[scatter_max_p] = ( partial(_scatter_batching_rule, scatter_max)) ad.primitive_jvps[scatter_max_p] = partial(_scatter_extremal_jvp, scatter_max_p) def _scatter_jvp(primals, tangents, *, update_jaxpr, update_consts, dimension_numbers, indices_are_sorted, unique_indices): operand, scatter_indices, updates = primals g_operand, g_scatter_indices, g_updates = tangents dnums = dimension_numbers if type(g_operand) is ad_util.Zero and type(g_updates) is ad_util.Zero: val_out = scatter_p.bind( operand, scatter_indices, updates, update_jaxpr=update_jaxpr, update_consts=update_consts, dimension_numbers=dnums, indices_are_sorted=indices_are_sorted, unique_indices=unique_indices) return val_out, ad_util.Zero.from_value(val_out) g_operand = ad.instantiate_zeros(g_operand) g_updates = ad.instantiate_zeros(g_updates) # If there are overlapping indices in the scatter, it is unspecified which # update "wins". So we use the following perhaps surprising scheme: # a) attach a positive ID to each update in updates, and perform the scatter # on the IDs # b) perform the inverse gather on the scattered IDs (similar to # _scatter_add_transpose). # c) use the gathered IDs to mask the primal and tangent values. # d) perform a scatter-add on the masked primal and tangent values. A benefit # of using scatter-add here is that we don't need a `scatter` transpose # rule. # a) attach a positive ID to each update in `updates`, and perform a scatter # on the IDs. ids_shape = np.array(updates.shape, dtype=np.int64) ids_shape[dnums.update_window_dims,] = 1 num_ids = np.prod(ids_shape) id_dtype = np.uint32 if (num_ids + 1) < np.iinfo(np.uint32).max else np.uint64 update_ids = add(reshape(iota(id_dtype, num_ids), ids_shape), _ones(updates, dtype=id_dtype)) scattered_ids = scatter(full(operand.shape, 0, id_dtype), scatter_indices, update_ids, dnums, indices_are_sorted=indices_are_sorted, unique_indices=unique_indices) # b) compute the inverse gather that "undoes" the scatter on the id values. gather_dnums = GatherDimensionNumbers( offset_dims=dnums.update_window_dims, collapsed_slice_dims=dnums.inserted_window_dims, start_index_map=dnums.scatter_dims_to_operand_dims) slice_sizes = [] pos = 0 for i in range(len(scattered_ids.shape)): if i in dnums.inserted_window_dims: slice_sizes.append(1) else: slice_sizes.append(updates.shape[dnums.update_window_dims[pos]]) pos += 1 gathered_update_ids = gather(scattered_ids, scatter_indices, dimension_numbers=gather_dnums, slice_sizes=slice_sizes) # c) mask off input elements that do not correspond to a primal output. masked_operand = select(eq(scattered_ids, _zeros(scattered_ids)), operand, _zeros(operand)) masked_updates = select(eq(update_ids, gathered_update_ids), updates, _zeros(updates)) masked_g_operand = select(eq(scattered_ids, _zeros(scattered_ids)), g_operand, _zeros(g_operand)) masked_g_updates = select(eq(update_ids, gathered_update_ids), g_updates, _zeros(g_updates)) # d) perform scatter-adds to compute the primal and tangent outputs. val_out = scatter_add(masked_operand, scatter_indices, masked_updates, dimension_numbers=dnums, indices_are_sorted=indices_are_sorted, unique_indices=unique_indices) tangent_out = scatter_add(masked_g_operand, scatter_indices, masked_g_updates, dimension_numbers=dnums, indices_are_sorted=indices_are_sorted, unique_indices=unique_indices) return val_out, tangent_out scatter_p = standard_primitive( _scatter_shape_rule, _scatter_dtype_rule, 'scatter', _scatter_translation_rule) ad.primitive_jvps[scatter_p] = _scatter_jvp batching.primitive_batchers[scatter_p] = ( partial(_scatter_batching_rule, scatter)) def _reduce_shape_rule(*args, computation, jaxpr, consts, dimensions): operand_args, init_value_args = split_list(args, [len(args) // 2]) if any(arg.shape != () for arg in init_value_args): init_value_shapes = [a.shape for a in init_value_args] raise ValueError(f'Found non-scalar init_value: {init_value_shapes}') return [ tuple(np.delete(op_arg.shape, dimensions)) for op_arg in operand_args ] def _reduce_dtype_rule(*args, computation, jaxpr, consts, dimensions): _, init_value_args = split_list(args, [len(args) // 2]) return [ dtypes.canonicalize_dtype(in_arg.dtype) for in_arg in init_value_args ] def _reduce_translation_rule(c, *values, computation, jaxpr, consts, dimensions): operands, init_values = split_list(values, [len(values) // 2]) if len(operands) == 1: init_value = init_values[0] xla_computation = _reduction_computation(c, jaxpr, consts, init_value) out = xops.Reduce(c, operands, init_values, xla_computation, dimensions) return xops.Tuple(c, (out,)) xla_computation = _reduction_computation(c, jaxpr, consts, init_values, singleton=False) return xops.Reduce(c, operands, init_values, xla_computation, dimensions) def _reduce_batch_rule(batched_args, batch_dims, *, computation, jaxpr, consts, dimensions): num_operands = len(batched_args) // 2 operands, init_values = split_list(batched_args, [num_operands]) operand_bdims, init_value_bdims = split_list(batch_dims, [num_operands]) if all(init_value_bdim is None for init_value_bdim in init_value_bdims): # Assume all batch dims are the same for each of the operands assert all(operand_bdim is not None for operand_bdim in operand_bdims) assert all(operand_bdim == operand_bdims[0] for operand_bdim in operand_bdims) # TODO(sharadmv): handle the case when batch dims are different across # operands or when some are unbatched operand_bdim = operand_bdims[0] new_dimensions = [d + bool(d >= operand_bdim) for d in dimensions] new_operand_bdim = operand_bdim - int(np.sum(np.less(dimensions, operand_bdim))) new_operand_bdims = [new_operand_bdim] * num_operands return reduce_p.bind(*(operands + init_values), computation=computation, dimensions=tuple(new_dimensions), consts=consts, jaxpr=jaxpr), new_operand_bdims else: raise NotImplementedError # loop and stack def _reduction_computation(c, jaxpr, consts, init_values, singleton=True): if singleton: init_values = [init_values] shapes = safe_map(c.get_shape, init_values + init_values) axis_env = xla.AxisEnv(1, (), ()) # no parallel primitives inside reductions subc = xla_bridge.make_computation_builder("reduction_computation") assert len(consts) == 0, "Reduction computations cannot have constants" args = [xb.parameter(subc, i, shape) for i, shape in enumerate(shapes)] out_nodes = xla.jaxpr_subcomp(subc, jaxpr, None, axis_env, consts, '', *args) if singleton: return subc.build(out_nodes[0]) out_nodes = xops.Tuple(subc, out_nodes) return subc.build(out_nodes) def _masking_defreducer(prim, identity): masking.masking_rules[prim] = partial(_reducer_masking_rule, prim, identity) def _reducer_masking_rule(prim, identity, padded_vals, logical_shapes, axes, input_shape=None, **reduce_kwargs): (padded_val,), (logical_shape,) = padded_vals, logical_shapes padded_shape = masking.padded_shape_as_value(padded_val.shape) masks = [broadcasted_iota(np.int32, padded_shape, i) < d for i, d in enumerate(logical_shape) if i in axes] mask = _reduce(operator.and_, masks) masked_val = select(mask, padded_val, identity(padded_shape, padded_val.dtype)) prim_bind = partial(prim.bind, **reduce_kwargs) bind = prim_bind if input_shape is None else partial(prim_bind, input_shape=padded_shape) return bind(masked_val, axes=axes) reduce_p = standard_primitive(_reduce_shape_rule, _reduce_dtype_rule, 'reduce', translation_rule=_reduce_translation_rule, multiple_results=True) batching.primitive_batchers[reduce_p] = _reduce_batch_rule def _reduce_number_dtype_rule(name, operand, *args, **kw): if not dtypes.issubdtype(operand.dtype, np.number): raise TypeError("{} does not accept dtype {}. Accepted dtypes are subtypes " "of number.".format(name, np.dtype(operand.dtype).name)) return dtypes.canonicalize_dtype(operand.dtype) def _reduce_sum_shape_rule(operand, *, axes): return _reduce_op_shape_rule(operand, axes=axes) def _reduce_sum_translation_rule(c, operand, *, axes): shape = c.get_shape(operand) dtype = shape.numpy_dtype() scalar = ShapedArray((), dtype) return xops.Reduce(c, [operand], [xb.constant(c, np.array(0, dtype))], xla.primitive_subcomputation(add_p, scalar, scalar), axes) def _reduce_sum_transpose_rule(cotangent, operand, *, axes): assert ad.is_undefined_primal(operand) input_shape = operand.aval.shape broadcast_dimensions = tuple(np.delete(np.arange(len(input_shape)), axes)) result = broadcast_in_dim(cotangent, input_shape, broadcast_dimensions) assert result.shape == input_shape return [result] reduce_sum_p = standard_primitive( _reduce_sum_shape_rule, partial(_reduce_number_dtype_rule, 'reduce_sum'), 'reduce_sum', _reduce_sum_translation_rule) ad.deflinear2(reduce_sum_p, _reduce_sum_transpose_rule) batching.defreducer(reduce_sum_p) _masking_defreducer(reduce_sum_p, lambda shape, dtype: np.broadcast_to(np.array(0, dtype), shape)) def _reduce_op_shape_rule(operand, *, axes, input_shape=None): del input_shape # Unused. if len(axes) != len(set(axes)): raise ValueError(f"duplicate value in 'axes' of reduction: {axes}") return tuple(np.delete(operand.shape, axes)) def _reduce_prod_translation_rule(c, operand, *, axes): dtype = c.get_shape(operand).numpy_dtype() scalar = ShapedArray((), dtype) return xops.Reduce(c, [operand], [xb.constant(c, np.array(1, dtype))], xla.primitive_subcomputation(mul_p, scalar, scalar), axes) def _reduce_prod_jvp_rule(primals, tangents, *, axes): operand, = primals tangent, = tangents input_shape = np.array(operand.shape) n = np.prod(input_shape[list(axes)]) non_axes = np.delete(np.arange(len(input_shape)), axes) # Move the reduced axes to the front, and flatten them to 1D. permutation = axes + tuple(non_axes) new_shape = (n,) + tuple(input_shape[non_axes]) operand = reshape(operand, new_shape, permutation) tangent = reshape(tangent, new_shape, permutation) def _reduce_prod_tree(x, axis=0): """Reduce by repeatedly splitting the array and multiplying.""" while x.shape[axis] > 1: n = x.shape[axis] n1 = (n + 1) // 2 n2 = n - n1 x1 = slice_in_dim(x, 0, n1) x2 = slice_in_dim(x, n1, None) if n2 != n1: paddings = [(0, 0, 0)] * len(x.shape) paddings[axis] = (0, 1, 0) x2 = pad(x2, _const(x, 1), paddings) x = x1 * x2 if x.shape[axis] == 0: return full(input_shape[non_axes], _one(x)) return squeeze(x, (axis,)) return api.jvp(_reduce_prod_tree, (operand,), (tangent,)) reduce_prod_p = standard_primitive( _reduce_op_shape_rule, partial(_reduce_number_dtype_rule, 'reduce_prod'), 'reduce_prod', _reduce_prod_translation_rule) ad.primitive_jvps[reduce_prod_p] = _reduce_prod_jvp_rule batching.defreducer(reduce_prod_p) _masking_defreducer(reduce_prod_p, lambda shape, dtype: np.broadcast_to(np.array(1, dtype), shape)) def _reduce_chooser_shape_rule(operand, *, axes): return tuple(np.delete(operand.shape, axes)) def _reduce_chooser_translation_rule(prim, identity, c, operand, *, axes): dtype = c.get_shape(operand).numpy_dtype() scalar = ShapedArray((), dtype) return xops.Reduce(c, [operand], [xb.constant(c, identity(dtype))], xla.primitive_subcomputation(prim, scalar, scalar), axes) def _reduce_chooser_jvp_rule(g, ans, operand, *, axes): # TODO(mattjj): an alternative is to use variadic reduce to compute the chosen # locations in a single pass (rather than comparing equality) and use a # gather, and/or even push along the chosen elements of g (b/112040122) shape = [1 if i in axes else d for i, d in enumerate(operand.shape)] location_indicators = convert_element_type( _eq_meet(operand, reshape(ans, shape)), g.dtype) counts = _reduce_sum(location_indicators, axes) return div(_reduce_sum(mul(g, location_indicators), axes), counts) _reduce_max_translation_rule = partial(_reduce_chooser_translation_rule, max_p, _get_max_identity) reduce_max_p = standard_primitive(_reduce_op_shape_rule, _input_dtype, 'reduce_max', _reduce_max_translation_rule) ad.defjvp2(reduce_max_p, _reduce_chooser_jvp_rule) batching.defreducer(reduce_max_p) _masking_defreducer(reduce_max_p, lambda shape, dtype: np.broadcast_to(np.array(-np.inf, dtype), shape)) _reduce_min_translation_rule = partial( _reduce_chooser_translation_rule, min_p, _get_min_identity) reduce_min_p = standard_primitive(_reduce_op_shape_rule, _input_dtype, 'reduce_min', _reduce_min_translation_rule) ad.defjvp2(reduce_min_p, _reduce_chooser_jvp_rule) batching.defreducer(reduce_min_p) _masking_defreducer(reduce_min_p, lambda shape, dtype: np.broadcast_to(np.array(np.inf, dtype), shape)) def _argminmax_shape_rule(operand, *, axes, index_dtype): axis, = axes return tuple(np.delete(operand.shape, axis)) def _argminmax_dtype_rule(operand, *, axes, index_dtype): if not dtypes.issubdtype(index_dtype, np.integer): raise TypeError("index_dtype must be an integer type, but got {}" .format(np.dtype(index_dtype).name)) return index_dtype def _argminmax_translation_rule(value_comparator, identity, c, operand, *, axes, index_dtype): axis, = axes shape = c.get_shape(operand) dtype = shape.numpy_dtype() subc = xb.make_computation_builder("argminmax_comparator") value_shape = xc.Shape.array_shape(shape.xla_element_type(), ()) index_shape = xc.Shape.array_shape(index_dtype, ()) x_value = xb.parameter(subc, 0, value_shape) x_index = xb.parameter(subc, 1, index_shape) y_value = xb.parameter(subc, 2, value_shape) y_index = xb.parameter(subc, 3, index_shape) which_value = value_comparator(x_value, y_value) which_index = xops.Or(which_value, xops.And(xops.Eq(x_value, y_value), xops.Lt(x_index, y_index))) xops.Tuple(subc, [xops.Select(which_value, x_value, y_value), xops.Select(which_index, x_index, y_index)]) comparator = subc.build() iota_shape = xc.Shape.array_shape(index_dtype, shape.dimensions()) iota = xc.ops.Iota(c, iota_shape, axis) out = xops.Reduce( c, [operand, iota], [xb.constant(c, identity(dtype)), xb.constant(c, np.array(0, index_dtype))], comparator, [axis]) return xops.GetTupleElement(out, 1) def _argminmax_gpu_translation_rule(op, a, *, axes, index_dtype): axis, = axes idxs = tie_in(a, broadcasted_iota(index_dtype, a.shape, axis)) maxval = np.array(dtypes.iinfo(index_dtype).max, dtype=index_dtype) maxval = broadcast(tie_in(a, maxval), a.shape) mask_idxs = select(eq(a, expand_dims(op(a, (axis,)), (axis,))), idxs, maxval) return _reduce_min(mask_idxs, (axis,)) _argmin_translation_rule = partial(_argminmax_translation_rule, xops.Lt, _get_min_identity) _argmax_translation_rule = partial(_argminmax_translation_rule, xops.Gt, _get_max_identity) argmin_p = standard_primitive(_argminmax_shape_rule, _argminmax_dtype_rule, 'argmin', _argmin_translation_rule) batching.defreducer(argmin_p) ad.defjvp_zero(argmin_p) xla.backend_specific_translations['gpu'][argmin_p] = xla.lower_fun( partial(_argminmax_gpu_translation_rule, _reduce_min), multiple_results=False) argmax_p = standard_primitive(_argminmax_shape_rule, _argminmax_dtype_rule, 'argmax', _argmax_translation_rule) batching.defreducer(argmax_p) ad.defjvp_zero(argmax_p) xla.backend_specific_translations['gpu'][argmax_p] = xla.lower_fun( partial(_argminmax_gpu_translation_rule, _reduce_max), multiple_results=False) def _reduce_logical_shape_rule(operand, *, axes): if operand.dtype != np.bool_: msg = "logical reduction requires operand dtype bool, got {}." raise TypeError(msg.format(operand.dtype)) return tuple(np.delete(operand.shape, axes)) def _reduce_logical_translation_rule(prim, identity, c, operand, *, axes): scalar = ShapedArray((), np.bool_) return xops.Reduce(c, [operand], [xb.constant(c, identity(np.bool_))], xla.primitive_subcomputation(prim, scalar, scalar), axes) _reduce_or_translation_rule = partial(_reduce_logical_translation_rule, or_p, _get_max_identity) reduce_or_p = standard_primitive(_reduce_logical_shape_rule, _fixed_dtype(np.bool_), 'reduce_or', _reduce_or_translation_rule) batching.defreducer(reduce_or_p) _reduce_and_translation_rule = partial(_reduce_logical_translation_rule, and_p, _get_min_identity) reduce_and_p = standard_primitive(_reduce_logical_shape_rule, _fixed_dtype(np.bool_), 'reduce_and', _reduce_and_translation_rule) batching.defreducer(reduce_and_p) def _reduce_window_shape_rule(operand, init_value, *, jaxpr, consts, window_dimensions, window_strides, padding, base_dilation, window_dilation): if operand.dtype != init_value.dtype: msg = ("reduce_window got inconsistent dtypes for operand and init_value: " " got operand dtype {} and init_value dtype {}.") raise TypeError(msg.format(operand.dtype, init_value.dtype)) if init_value.shape != (): msg = ("reduce_window expected init_value to be a scalar but init_value " "has shape {}.") raise TypeError(msg.format(init_value.shape)) return _common_reduce_window_shape_rule( operand, window_dimensions, window_strides, padding, base_dilation, window_dilation) def _reduce_window_translation_rule(c, operand, init_value, *, jaxpr, consts, window_dimensions, window_strides, padding, base_dilation, window_dilation): xla_computation = _reduction_computation(c, jaxpr, consts, init_value) return xops.ReduceWindowWithGeneralPadding( operand, init_value, xla_computation, window_dimensions, window_strides, base_dilation, window_dilation, padding) def _generic_reduce_window_batch_rule( batched_args, batch_dims, *, jaxpr, consts, window_dimensions, window_strides, padding, base_dilation, window_dilation): operand, init = batched_args bdim, init_bdim = batch_dims if init_bdim is not None: raise NotImplementedError("reduce_window batching is not implemented for " "initial values") def reduce_window(x, window_dimensions, window_strides, padding, base_dilation, window_dilation): return reduce_window_p.bind( x, init, jaxpr=jaxpr, consts=consts, window_dimensions=window_dimensions, window_strides=window_strides, padding=padding, base_dilation=base_dilation, window_dilation=window_dilation) return _reduce_window_batch_rule( reduce_window, (operand,), (bdim,), window_dimensions=window_dimensions, window_strides=window_strides, padding=padding, base_dilation=base_dilation, window_dilation=window_dilation) reduce_window_p = standard_primitive( _reduce_window_shape_rule, _input_dtype, 'reduce_window', _reduce_window_translation_rule) batching.primitive_batchers[reduce_window_p] = _generic_reduce_window_batch_rule def _reduce_window_sum_shape_rule(operand, *, window_dimensions, window_strides, padding, base_dilation, window_dilation): if not dtypes.issubdtype(operand.dtype, np.number): msg = "operand to reduce_window_sum must have a number dtype, got {}" raise TypeError(msg.format(np.dtype(operand.dtype).name)) return _common_reduce_window_shape_rule(operand, window_dimensions, window_strides, padding, base_dilation, window_dilation) def _reduce_window_sum_translation_rule(c, operand, *, window_dimensions, window_strides, padding, base_dilation, window_dilation): dtype = c.get_shape(operand).numpy_dtype() scalar = ShapedArray((), dtype) return xops.ReduceWindowWithGeneralPadding( operand, xb.constant(c, np.array(0, dtype)), xla.primitive_subcomputation(add_p, scalar, scalar), window_dimensions, window_strides, base_dilation, window_dilation, padding) def _reduce_window_sum_transpose_rule(cotangent, operand, *, window_dimensions, window_strides, padding, base_dilation, window_dilation): assert ad.is_undefined_primal(operand) input_shape = operand.aval.shape pads = _conv_general_vjp_lhs_padding( input_shape, window_dimensions, window_strides, cotangent.shape, padding, base_dilation, window_dilation) ones = [1] * len(input_shape) padding_config = [(lo, hi, stride - 1) for (lo, hi), stride in zip(pads, window_strides)] pad_cotangent = pad(cotangent, _zero(cotangent), padding_config) result = _reduce_window_sum(pad_cotangent, window_dimensions, base_dilation, [(0, 0)] * len(input_shape), base_dilation=ones, window_dilation=window_dilation) assert result.shape == input_shape, (result.shape, input_shape) return [result] def _reduce_window_batch_rule(reduce_window, batched_args, bdims, *, window_dimensions, window_strides, padding, base_dilation, window_dilation): operand, = batched_args bdim, = bdims if bdim is not None: window_dimensions = \ window_dimensions[:bdim] + (1,) + window_dimensions[bdim:] window_strides = window_strides[:bdim] + (1,) + window_strides[bdim:] padding = padding[:bdim] + ((0, 0),) + padding[bdim:] base_dilation = base_dilation[:bdim] + (1,) + base_dilation[bdim:] window_dilation = window_dilation[:bdim] + (1,) + window_dilation[bdim:] operand = reduce_window(operand, window_dimensions, window_strides, padding, base_dilation, window_dilation) return operand, bdim reduce_window_sum_p = standard_primitive( _reduce_window_sum_shape_rule, _input_dtype, 'reduce_window_sum', _reduce_window_sum_translation_rule) ad.deflinear2(reduce_window_sum_p, _reduce_window_sum_transpose_rule) batching.primitive_batchers[reduce_window_sum_p] = partial( _reduce_window_batch_rule, _reduce_window_sum) def _reduce_window_chooser_translation_rule( prim, identity, c, operand, *, window_dimensions, window_strides, padding, base_dilation, window_dilation): dtype = c.get_shape(operand).numpy_dtype() scalar = ShapedArray((), dtype) return xops.ReduceWindowWithGeneralPadding( operand, xb.constant(c, identity(dtype)), xla.primitive_subcomputation(prim, scalar, scalar), window_dimensions, window_strides, base_dilation, window_dilation, padding) def _reduce_window_chooser_jvp_rule(prim, g, operand, *, window_dimensions, window_strides, padding, base_dilation, window_dilation): assert prim is max_p or prim is min_p select_prim = ge_p if prim is max_p else le_p return _select_and_gather_add(g, operand, select_prim, window_dimensions, window_strides, padding, base_dilation, window_dilation) def _common_reduce_window_shape_rule(operand, window_dimensions, window_strides, padding, base_dilation, window_dilation): _check_shapelike("reduce_window", "window_dimensions", window_dimensions, non_zero_shape=True) _check_shapelike("reduce_window", "window_strides", window_strides, non_zero_shape=True) _check_shapelike("reduce_window", "base_dilation", base_dilation) _check_shapelike("reduce_window", "window_dilation", window_dilation) if operand.ndim != len(window_dimensions): msg = ("reduce_window got the wrong number of window_dimensions for " "operand: got operand shape {} with window_dimensions {}.") raise TypeError(msg.format(operand.shape, window_dimensions)) if len(window_strides) != len(window_dimensions): msg = ("reduce_window got inconsistent window_strides and " "window_dimensions: got window_strides {} and window_dimensions {}.") raise TypeError(msg.format(window_strides, window_dimensions)) if len(base_dilation) != len(window_dimensions): msg = ("reduce_window got inconsistent base_dilation and " "window_dimensions: got base_dilation {} and window_dimensions {}.") raise TypeError(msg.format(base_dilation, window_dimensions)) if len(window_dilation) != len(window_dimensions): msg = ("reduce_window got inconsistent window_dilation and " "window_dimensions: got window_dilation {} and window_dimensions " "{}.") raise TypeError(msg.format(window_dilation, window_dimensions)) return reduce_window_shape_tuple(operand.shape, window_dimensions, window_strides, padding, base_dilation, window_dilation) def reduce_window_shape_tuple(operand_shape, window_dimensions, window_strides, padding, base_dilation=None, window_dilation=None): if base_dilation is not None: operand_shape = _dilate_shape(operand_shape, base_dilation) if window_dilation is not None: window_dimensions = _dilate_shape(window_dimensions, window_dilation) operand_padded = np.add(operand_shape, np.add(*zip(*padding))) t = np.floor_divide( np.subtract(operand_padded, window_dimensions), window_strides) + 1 return tuple(t) _reduce_window_max_translation_rule = partial( _reduce_window_chooser_translation_rule, max_p, _get_max_identity) reduce_window_max_p = standard_primitive( _common_reduce_window_shape_rule, _input_dtype, 'reduce_window_max', _reduce_window_max_translation_rule) ad.defjvp(reduce_window_max_p, partial(_reduce_window_chooser_jvp_rule, max_p)) batching.primitive_batchers[reduce_window_max_p] = partial( _reduce_window_batch_rule, _reduce_window_max) _reduce_window_min_translation_rule = partial( _reduce_window_chooser_translation_rule, min_p, _get_min_identity) reduce_window_min_p = standard_primitive( _common_reduce_window_shape_rule, _input_dtype, 'reduce_window_min', _reduce_window_min_translation_rule) ad.defjvp(reduce_window_min_p, partial(_reduce_window_chooser_jvp_rule, min_p)) _reduce_window_min_batch_rule = partial(_reduce_window_batch_rule, _reduce_window_min) batching.primitive_batchers[reduce_window_min_p] = partial( _reduce_window_batch_rule, _reduce_window_min) def _select_and_scatter_shape_rule( operand, source, init_value, *, select_jaxpr, select_consts, scatter_jaxpr, scatter_consts, window_dimensions, window_strides, padding): _check_shapelike("select_and_scatter", "window_dimensions", window_dimensions) _check_shapelike("select_and_scatter", "window_strides", window_strides) if len(window_dimensions) != len(window_strides): msg = ("select_and_scatter got inconsistent window_strides and " "window_dimensions: got window_strides {} and window_dimensions {}.") raise TypeError(msg.format(window_strides, window_dimensions)) return operand.shape def _select_and_scatter_translation( c, operand, source, init_value, *, select_jaxpr, select_consts, scatter_jaxpr, scatter_consts, window_dimensions, window_strides, padding): select = _reduction_computation(c, select_jaxpr, select_consts, init_value) scatter = _reduction_computation(c, scatter_jaxpr, scatter_consts, init_value) return xops.SelectAndScatterWithGeneralPadding( operand, select, window_dimensions, window_strides, padding, source, init_value, scatter) select_and_scatter_p = standard_primitive( _select_and_scatter_shape_rule, _input_dtype, 'select_and_scatter', _select_and_scatter_translation) def _select_and_scatter_add_shape_rule( source, operand, *, select_prim, window_dimensions, window_strides, padding): return operand.shape def _select_and_scatter_add_translation( c, source, operand, *, select_prim, window_dimensions, window_strides, padding): dtype = c.get_shape(operand).numpy_dtype() scalar = ShapedArray((), dtype) select = xla.primitive_subcomputation(select_prim, scalar, scalar) scatter = xla.primitive_subcomputation(add_p, scalar, scalar) zero = xb.constant(c, np.array(0, dtype)) return xops.SelectAndScatterWithGeneralPadding( operand, select, window_dimensions, window_strides, padding, source, zero, scatter) def _select_and_scatter_add_jvp( primals, tangents, *, select_prim, window_dimensions, window_strides, padding): source, operand = primals g_source, g_operand = tangents val_out = _select_and_scatter_add( source, operand, select_prim, window_dimensions, window_strides, padding) del g_operand if type(g_source) is ad_util.Zero: tangent_out = ad_util.Zero.from_value(val_out) else: tangent_out = _select_and_scatter_add( g_source, operand, select_prim, window_dimensions, window_strides, padding) return val_out, tangent_out def _select_and_scatter_add_transpose( t, source, operand, *, select_prim, window_dimensions, window_strides, padding): assert ad.is_undefined_primal(source) and not ad.is_undefined_primal(operand) ones = (1,) * len(window_dimensions) source_t = _select_and_gather_add(t, operand, select_prim, window_dimensions, window_strides, padding, ones, ones) return [source_t, None] def _select_and_scatter_add_batch_rule( batched_args, batch_dims, *, select_prim, window_dimensions, window_strides, padding): source, operand = batched_args s_bdim, o_bdim = batch_dims size = next(a.shape[bdim] for a, bdim in zip(batched_args, batch_dims) if bdim is not None) source = batching.bdim_at_front(source, s_bdim, size) operand = batching.bdim_at_front(operand, o_bdim, size) window_dimensions = (1,) + window_dimensions window_strides = (1,) + window_strides padding = ((0, 0),) + padding out = _select_and_scatter_add(source, operand, select_prim, window_dimensions, window_strides, padding) return out, 0 select_and_scatter_add_p = standard_primitive( _select_and_scatter_add_shape_rule, _input_dtype, 'select_and_scatter_add', _select_and_scatter_add_translation) ad.primitive_transposes[select_and_scatter_add_p] = \ _select_and_scatter_add_transpose ad.primitive_jvps[select_and_scatter_add_p] = _select_and_scatter_add_jvp batching.primitive_batchers[select_and_scatter_add_p] = \ _select_and_scatter_add_batch_rule def _select_and_gather_add_shape_rule( tangents, operand, *, select_prim, window_dimensions, window_strides, padding, base_dilation, window_dilation): if tangents.shape != operand.shape: msg = ("select_and_gather_add tangents and operand shapes must match, " "got {} and {}.") raise TypeError(msg.format(tangents.shape, operand.shape)) return _common_reduce_window_shape_rule( operand, window_dimensions, window_strides, padding, base_dilation, window_dilation) _UINT_DTYPES = { 16: np.uint16, 32: np.uint32, 64: np.uint64, } _INT_DTYPES = { 16: np.int16, 32: np.int32, 64: np.int64, } def _select_and_gather_add_translation( c, tangents, operand, *, select_prim, window_dimensions, window_strides, padding, base_dilation, window_dilation, max_bits=64): shape = c.get_shape(operand) dtype = shape.numpy_dtype() etype = shape.xla_element_type() nbits = dtypes.finfo(dtype).bits assert nbits <= max_bits double_word_reduction = nbits * 2 <= max_bits const = lambda c, dtype, x: xb.constant(c, np.array(x, dtype=dtype), canonicalize_types=False) if double_word_reduction: # TODO(b/73062247): XLA doesn't yet implement ReduceWindow on tuples, so # we implement a pair-wise ReduceWindow by packing two k-bit values into # 2k-bit unsigned integer using bit tricks. word_dtype = _UINT_DTYPES[nbits] double_word_dtype = _UINT_DTYPES[nbits * 2] word_type = xla_client.dtype_to_etype(word_dtype) double_word_type = xla_client.dtype_to_etype(double_word_dtype) # Packs two values into a tuple. def pack(a, b): a = xops.BitcastConvertType(a, word_type) b = xops.BitcastConvertType(b, word_type) a = xops.ConvertElementType(a, double_word_type) b = xops.ConvertElementType(b, double_word_type) a = xops.ShiftLeft(a, const(c, double_word_dtype, nbits)) return xops.Or(a, b) # Unpacks the first element of a tuple. def fst(c, t): st = xops.ShiftRightLogical(t, const(c, double_word_dtype, nbits)) return xops.BitcastConvertType(xops.ConvertElementType(st, word_type), etype) # Unpacks the second element of a tuple. def snd(t): return xops.BitcastConvertType(xops.ConvertElementType(t, word_type), etype) else: # The double-word trick above only works if we have a sufficiently large # type. As an alternative, we can pack two half words into a single word, # at the cost of precision. # TODO(b/73062247): add support for tuple reductions and remove this case. warnings.warn("Using reduced precision for gradient of reduce-window " "min/max operator to work around missing XLA support for " "pair-reductions. This is likely from a second or " "higher derivative of a max-pooling operation.") r_nbits = nbits // 2 # Drop/round the bottom mantissa bits. nexp = dtypes.finfo(dtype).nexp nmant = r_nbits - nexp - 1 double_word_dtype = word_dtype = _UINT_DTYPES[nbits] word_type = xla_client.dtype_to_etype(word_dtype) # Packs two values into a tuple. def pack(a, b): a = xops.ReducePrecision(a, exponent_bits=nexp, mantissa_bits=nmant) b = xops.ReducePrecision(b, exponent_bits=nexp, mantissa_bits=nmant) a = xops.BitcastConvertType(a, word_type) b = xops.BitcastConvertType(b, word_type) b = xops.ShiftRightLogical(b, const(c, word_dtype, r_nbits)) return xops.Or(a, b) # Unpacks the first element of a tuple. def fst(c, t): st = xops.And(t, const(c, word_dtype, ((1 << r_nbits) - 1) << r_nbits)) return xops.BitcastConvertType(st, etype) # Unpacks the second element of a tuple. def snd(t): return xops.BitcastConvertType(xops.ShiftLeft(t, const(c, word_dtype, r_nbits)), etype) def reducer(): c = xla_bridge.make_computation_builder("select_and_gather_pair_reducer") x = xb.parameter(c, 0, xla_client.Shape.array_shape(np.dtype(double_word_dtype), ())) y = xb.parameter(c, 1, xla_client.Shape.array_shape(np.dtype(double_word_dtype), ())) assert select_prim is ge_p or select_prim is le_p which = xops.Ge if select_prim is ge_p else xops.Le xops.Select(which(fst(c, x), fst(c, y)), x, y) return c.build() assert select_prim is ge_p or select_prim is le_p, select_prim init = -np.inf if select_prim is ge_p else np.inf out = xops.ReduceWindowWithGeneralPadding( pack(operand, tangents), pack(const(c, dtype, init), const(c, dtype, 0)), reducer(), window_dimensions, window_strides, base_dilation, window_dilation, padding) return snd(out) def _select_and_gather_add_jvp( primals, tangents, *, select_prim, window_dimensions, window_strides, padding, base_dilation, window_dilation): source, operand = primals g_source, g_operand = tangents val_out = _select_and_gather_add( source, operand, select_prim, window_dimensions, window_strides, padding, base_dilation, window_dilation) del g_operand if type(g_source) is ad_util.Zero: tangent_out = ad_util.Zero.from_value(val_out) else: tangent_out = _select_and_gather_add( g_source, operand, select_prim, window_dimensions, window_strides, padding, base_dilation, window_dilation) return val_out, tangent_out def _select_and_gather_add_transpose( t, tangents, operand, *, select_prim, window_dimensions, window_strides, padding, base_dilation, window_dilation): assert select_prim in (le_p, ge_p) assert ad.is_undefined_primal(tangents) and not ad.is_undefined_primal(operand) if any(d != 1 for d in window_dilation): msg = ("VJP not implemented for select_and_gather (MaxPool) with window " "dilation, got window_dilation={}.") raise NotImplementedError(msg.format(window_dilation)) if type(t) is ad_util.Zero: return [ad_util.Zero, None] has_base_dilation = any(d != 1 for d in base_dilation) if has_base_dilation: select_identity = (_get_max_identity if select_prim is ge_p else _get_min_identity) operand = pad(operand, select_identity(operand.dtype), tuple((0, 0, d - 1) for d in base_dilation)) result = _select_and_scatter_add(t, operand, select_prim, window_dimensions, window_strides, padding) if has_base_dilation: result = slice(operand, (0,) * len(operand.shape), operand.shape, base_dilation) return [result, None] def _select_and_gather_add_batching_rule( batched_args, batch_dims, *, select_prim, window_dimensions, window_strides, padding, base_dilation, window_dilation): t, x = batched_args t_bdim, x_bdim = batch_dims size = next(a.shape[bdim] for a, bdim in zip(batched_args, batch_dims) if bdim is not None) t = batching.bdim_at_front(t, t_bdim, size) x = batching.bdim_at_front(x, x_bdim, size) window_dimensions = (1,) + window_dimensions window_strides = (1,) + window_strides padding = ((0, 0),) + padding base_dilation = (1,) + base_dilation window_dilation = (1,) + window_dilation out = _select_and_gather_add(t, x, select_prim, window_dimensions, window_strides, padding, base_dilation, window_dilation) return (out, 0) select_and_gather_add_p = standard_primitive( _select_and_gather_add_shape_rule, _input_dtype, 'select_and_gather_add', _select_and_gather_add_translation) ad.primitive_jvps[select_and_gather_add_p] = _select_and_gather_add_jvp ad.primitive_transposes[select_and_gather_add_p] = \ _select_and_gather_add_transpose batching.primitive_batchers[select_and_gather_add_p] = \ _select_and_gather_add_batching_rule xla.backend_specific_translations['tpu'][select_and_gather_add_p] = partial( _select_and_gather_add_translation, max_bits=32) def _sort_abstract_eval(*args, **kwargs): args = tuple(raise_to_shaped(arg) for arg in args) if any(arg.shape != args[0].shape for arg in args[1:]): shapes = " ".join(str(a.shape) for a in args) raise TypeError(f"Arguments to sort must have equal shapes, got: {shapes}") return args def _float_to_int_for_sort(x): # Switch from a floating point value to a integer value in such a way that # when using the integer value to compare, we get the same result for normal # values, and -nan is treated as the smallest value, and nan is treated as # the largest value. # If f is a float, and # x = bit_cast<int32>(f); # y = x < 0 ? int32_max - x : x; # then y is ordered as an int32 such that finite values have the obvious # order, -0 is ordered before 0, and -NaN and NaN appear at the beginning # and end of the ordering. # Note that in order to avoid -x to overflow, we calculate # int32_max - x as unsigned, and then convert back to signed. if x.dtype == dtypes.bfloat16: x = convert_element_type(x, np.float32) nbits = np.finfo(x).bits signed_dtype = _INT_DTYPES[nbits] unsigned_dtype = _UINT_DTYPES[nbits] signed = bitcast_convert_type(x, signed_dtype) unsigned = bitcast_convert_type(x, unsigned_dtype) flipped = bitcast_convert_type( sub(unsigned_dtype(np.iinfo(signed_dtype).max), unsigned), signed_dtype) return select(lt(signed, _zero(signed)), flipped, signed) # Default comparator that sorts the operands lexicographically on the # first `num_keys` arguments. # For floating point types, a total order is created where # -NaN < -infinity < ... < -0 < 0 < ... < infinity < NaN. # For complex types, the (real, imag) pairs are sorted lexicographically # (following NumPy's semantics). # This code adds complex-number support and lexicographic ordering to the algorithm from: # https://github.com/tensorflow/tensorflow/blob/ba43780830f09da72081fe5061c436f1c6203a92/tensorflow/compiler/xla/client/lib/comparators.h#L33 def _sort_lt_comparator(*operands, num_keys=1): assert len(operands) >= 2 and len(operands) % 2 == 0, operands assert len(operands) // 2 >= num_keys, (operands, num_keys) x_keys, y_keys = [], [] for x, y in zip(operands[:2*num_keys:2], operands[1:2*num_keys:2]): assert x.dtype == y.dtype, (x.dtype, y.dtype) if np.issubdtype(x.dtype, np.complexfloating): x_keys.extend([_float_to_int_for_sort(real(x)), _float_to_int_for_sort(imag(x))]) y_keys.extend([_float_to_int_for_sort(real(y)), _float_to_int_for_sort(imag(y))]) elif np.issubdtype(x.dtype, np.floating): x_keys.append(_float_to_int_for_sort(x)) y_keys.append(_float_to_int_for_sort(y)) else: x_keys.append(x) y_keys.append(y) p = None for xk, yk in zip(x_keys[::-1], y_keys[::-1]): p = (bitwise_or(lt(xk, yk), bitwise_and(eq(xk, yk), p)) if p is not None else lt(xk, yk)) return p def _sort_translation_rule(c, *operands, dimension, is_stable, num_keys): types = [c.get_shape(x).xla_element_type() for x in operands] subc = xla_bridge.make_computation_builder("sort_lt_comparator") params = [xb.parameter(subc, 2 * i + j, xc.Shape.array_shape(typ, ())) for i, typ in enumerate(types) for j in range(2)] result = xla.lower_fun(partial(_sort_lt_comparator, num_keys=num_keys), multiple_results=False)(subc, *params) comparator = subc.build(result) out = xops.Sort(c, operands, dimension=dimension, is_stable=is_stable, comparator=comparator) return out if len(operands) != 1 else xops.Tuple(c, [out]) def _sort_jvp(primals, tangents, *, dimension, is_stable, num_keys): shape = primals[0].shape iotas = [] for dim, size in enumerate(shape): dtype = np.int32 if size < np.iinfo(np.int32).max else np.int64 iotas.append(broadcasted_iota(dtype, shape, dim)) primals = sort_p.bind(*(primals + (iotas[dimension],)), dimension=dimension, is_stable=is_stable, num_keys=num_keys) idx = tuple(primals[-1] if i == dimension else iotas[i] for i in range(len(shape))) tangents_out = tuple(t if type(t) is ad_util.Zero else t[idx] for t in tangents) return tuple(primals[:-1]), tangents_out def _sort_batch_rule(batched_args, batch_dims, *, dimension, is_stable, num_keys): prototype_arg, new_bdim = next( (a, b) for a, b in zip(batched_args, batch_dims) if b is not None) new_args = [] for arg, bdim in zip(batched_args, batch_dims): if bdim is None: dims = np.delete(np.arange(prototype_arg.ndim), new_bdim) new_args.append(broadcast_in_dim(arg, prototype_arg.shape, dims)) else: new_args.append(batching.moveaxis(arg, bdim, new_bdim)) new_dimension = dimension + (new_bdim <= dimension) bdims = (new_bdim,) * len(new_args) return (sort_p.bind(*new_args, dimension=new_dimension, is_stable=is_stable, num_keys=num_keys), bdims) sort_p = Primitive('sort') sort_p.multiple_results = True sort_p.def_impl(partial(xla.apply_primitive, sort_p)) sort_p.def_abstract_eval(_sort_abstract_eval) xla.translations[sort_p] = _sort_translation_rule ad.primitive_jvps[sort_p] = _sort_jvp batching.primitive_batchers[sort_p] = _sort_batch_rule def _top_k_abstract_eval(operand, *, k): if k < 0: raise ValueError("k argument to top_k must be nonnegative, got {}".format(k)) if len(operand.shape) == 0: raise TypeError("top_k operand must have >= 1 dimension, got {}" .format(operand.shape)) shape = list(operand.shape) if shape[-1] < k: msg = "k argument to top_k must be no larger than minor dimension; {} vs {}" raise ValueError(msg.format(k, shape)) shape[-1] = k return (ShapedArray(shape, operand.dtype), ShapedArray(shape, np.dtype(np.int32))) def _top_k_jvp(primals, tangents, *, k): operand, = primals tangent, = tangents primals_out = top_k(operand, k) if type(tangent) is ad_util.Zero: tangent_out = ad_util.Zero.from_value(primals_out[0]) else: _, k_idxs = primals_out idx_shape = k_idxs.shape rank = len(idx_shape) gather_index_shape = idx_shape + (1,) gather_indices = [] for i in range(rank-1): _iota = iota(k_idxs.dtype, idx_shape[i]) if not config.omnistaging_enabled: _iota = tie_in(operand, _iota) _iota = broadcast_in_dim(_iota, gather_index_shape, (i,)) gather_indices.append(_iota) gather_indices.append(reshape(k_idxs, gather_index_shape)) gather_indices = concatenate(gather_indices, dimension=rank) slice_sizes = (1,) * rank dnums = GatherDimensionNumbers( offset_dims=(), collapsed_slice_dims=tuple(range(rank)), start_index_map=tuple(range(rank))) tangent_out = gather(tangent, gather_indices, dnums, slice_sizes) return primals_out, (tangent_out, ad_util.Zero.from_value(primals_out[1])) def _top_k_batch_rule(batched_args, batch_dims, *, k): operand, = batched_args bdim, = batch_dims if bdim == operand.ndim-1: perm = np.arange(operand.ndim) perm[bdim-1], perm[bdim] = perm[bdim], perm[bdim-1] top_k_v, top_k_i = top_k(transpose(operand, perm), k=k) return (transpose(top_k_v, perm), transpose(top_k_i, perm)), (bdim, bdim) else: return top_k(operand, k=k), (bdim, bdim) top_k_p = Primitive('top_k') top_k_p.multiple_results = True top_k_p.def_impl(partial(xla.apply_primitive, top_k_p)) top_k_p.def_abstract_eval(_top_k_abstract_eval) xla.translations[top_k_p] = partial(standard_translate, 'top_k') ad.primitive_jvps[top_k_p] = _top_k_jvp batching.primitive_batchers[top_k_p] = _top_k_batch_rule def _stop_gradient_jvp_rule(primals, tangents): # if we don't call stop_gradient here, we'd only peel off one autodiff tracer x, = primals return stop_gradient(x), ad_util.Zero.from_value(x) def _stop_gradient_batch_rule(batched_args, batch_dims): x, = batched_args dim, = batch_dims return stop_gradient(x), dim ad.primitive_jvps[ad_util.stop_gradient_p] = _stop_gradient_jvp_rule batching.primitive_batchers[ad_util.stop_gradient_p] = _stop_gradient_batch_rule def create_token(x): """Creates an XLA token value with no preconditions for sequencing effects. Experimental. Args: x: a dummy argument used to tie the CreateToken operator into a trace. The value of `x` is ignored. """ # x is a dummy argument used to tie the operator into a trace. return create_token_p.bind(stop_gradient(x)) create_token_p = Primitive("create_token") create_token_p.def_impl(partial(xla.apply_primitive, create_token_p)) create_token_p.def_abstract_eval(lambda _: abstract_token) xla.translations[create_token_p] = lambda c, *_: xops.CreateToken(c) def after_all(*operands): """Merges one or more XLA token values. Experimental. Wraps the XLA AfterAll operator.""" return after_all_p.bind(*operands) def _after_all_abstract_eval(*operands): if any(x is not abstract_token for x in operands): raise TypeError("Arguments to after_all must be tokens") return abstract_token def _after_all_translation_rule(c, *operands): return xops.AfterAll(c, operands) after_all_p = Primitive("after_all") after_all_p.def_impl(partial(xla.apply_primitive, after_all_p)) after_all_p.def_abstract_eval(_after_all_abstract_eval) xla.translations[after_all_p] = _after_all_translation_rule def infeed(token, shape=None, partitions=None): """Consumes an infeed value of `shape` from the host. Experimental. `token` is used to sequence infeed and outfeed effects. `partitions` may be specifed inside a `sharded_jit` function. """ flat_shapes, treedef = pytree.flatten(shape) for shape in flat_shapes: if not isinstance(shape, ShapedArray): raise TypeError("shape argument to infeed must be a pytree of " "ShapedArray values, got {}".format(shape)) if partitions is not None: # Always replicate token. # We specifically use type() to raise an error for PartitionSpecs. if type(partitions) != tuple: # pylint: disable=unidiomatic-typecheck raise ValueError(f"'partitions' argument to infeed should be a tuple, " f"got {partitions}") partitions = partitions + (None,) xs_and_token = infeed_p.bind(token, shapes=tuple(flat_shapes), partitions=partitions) return (treedef.unflatten(xs_and_token[:-1]), xs_and_token[-1]) def _infeed_abstract_eval(token, *, shapes, partitions): if token is not abstract_token: raise TypeError("First argument to infeed must be a token") return shapes + (abstract_token,) def _infeed_translation_rule(c, token, *, shapes, partitions): shape = tuple(shape.with_major_to_minor_layout_if_absent() for x in shapes for shape in xla.aval_to_xla_shapes(x)) build_infeed = partial(xops.InfeedWithToken, token, xla_client.Shape.tuple_shape(shape)) if partitions: xs_and_token = xb.with_sharding(c, partitions, build_infeed) else: # Note that infeed will default to replication if inside a sharded # computation and no sharding is specified. xs_and_token = build_infeed() xs = xops.GetTupleElement(xs_and_token, 0) token = xops.GetTupleElement(xs_and_token, 1) outs = [xops.GetTupleElement(xs, i) for i in range(len(shapes))] + [token] return xops.Tuple(c, outs) infeed_p = Primitive("infeed") infeed_p.multiple_results = True infeed_p.def_impl(partial(xla.apply_primitive, infeed_p)) infeed_p.def_abstract_eval(_infeed_abstract_eval) xla.translations[infeed_p] = _infeed_translation_rule def outfeed(token, xs): """Outfeeds value `xs` to the host. Experimental. `token` is used to sequence infeed and outfeed effects. """ flat_xs, _ = pytree.flatten(xs) return outfeed_p.bind(token, *flat_xs) def _outfeed_abstract_eval(token, *xs): if token is not abstract_token: raise TypeError("First argument to outfeed must be a token") return abstract_token def _outfeed_translation_rule(c, token, *xs): t = xops.Tuple(c, xs) return xops.OutfeedWithToken(t, token, c.get_shape(t)) outfeed_p = Primitive("outfeed") outfeed_p.def_impl(partial(xla.apply_primitive, outfeed_p)) outfeed_p.def_abstract_eval(_outfeed_abstract_eval) xla.translations[outfeed_p] = _outfeed_translation_rule def rng_uniform(a, b, shape): """Stateful PRNG generator. Experimental and its use is discouraged. Returns uniformly distributed random numbers in the range [a, b) You should use jax.random for most purposes; this function exists only for niche use cases with special performance requirements. This API may be removed at any time. """ return rng_uniform_p.bind(a, b, shape=tuple(shape)) def _rng_uniform_abstract_eval(a, b, *, shape): if a.dtype != b.dtype: raise ValueError( "Arguments to rng_uniform must have identical dtypes, got {} " "and {}.".format(a.dtype, b.dtype)) if a.shape != () or b.shape != (): raise ValueError( "Arguments to rng_uniform must be scalars; got shapes {} and {}." .format(a.shape, b.shape)) return ShapedArray(shape, a.dtype) def _rng_uniform_translation_rule(c, a, b, *, shape): xla_shape = xc.Shape.array_shape(c.get_shape(a).xla_element_type(), shape) return xops.RngUniform(a, b, xla_shape) rng_uniform_p = Primitive("rng_uniform") rng_uniform_p.def_impl(partial(xla.apply_primitive, rng_uniform_p)) rng_uniform_p.def_abstract_eval(_rng_uniform_abstract_eval) xla.translations[rng_uniform_p] = _rng_uniform_translation_rule def _iota_abstract_eval(*, dtype, shape, dimension): _check_shapelike("iota", "shape", shape) if not any(dtypes.issubdtype(dtype, t) for t in _num): msg = 'iota does not accept dtype {}. Accepted dtypes are subtypes of {}.' typename = str(np.dtype(dtype).name) accepted_typenames = (t.__name__ for t in _num) raise TypeError(msg.format(typename, ', '.join(accepted_typenames))) if not 0 <= dimension < len(shape): raise ValueError("iota dimension must be between 0 and len(shape), got " f"dimension={dimension} for shape {shape}") return ShapedArray(shape, dtype) def _iota_translation_rule(c, dtype, shape, dimension): etype = xla_client.dtype_to_etype(dtype) xla_shape = xc.Shape.array_shape(etype, shape) return xops.Iota(c, xla_shape, dimension) iota_p = Primitive('iota') iota_p.def_impl(partial(xla.apply_primitive, iota_p)) iota_p.def_abstract_eval(_iota_abstract_eval) xla.translations[iota_p] = _iota_translation_rule ### util _ndim = np.ndim def _dilate_shape(shape, dilation): """Utility function for computing the shape resulting from a dilation.""" if not np.all(np.greater(dilation, 0)): msg = "All dilations must be positive, got {}." raise TypeError(msg.format(dilation)) dilation = (1,) * (len(shape) - len(dilation)) + tuple(dilation) return np.where(shape == 0, 0, np.multiply(dilation, np.subtract(shape, 1)) + 1) def _ceil_divide(x1, x2): return -np.floor_divide(np.negative(x1), x2) def padtype_to_pads(in_shape, window_shape, window_strides, padding): """Convert padding string to list of pairs of pad values.""" PaddingType = xla_client.PaddingType if isinstance(padding, str): mapping = {'VALID': PaddingType.VALID, 'SAME': PaddingType.SAME} try: padding = mapping[padding.upper()] except KeyError as err: msg = "Unrecognized padding type: expected 'VALID' or 'SAME', got {}." raise RuntimeError(msg.format(padding)) from err if padding == PaddingType.SAME: out_shape = _ceil_divide(in_shape, window_strides) pad_sizes = np.maximum(0, (out_shape - 1) * window_strides + window_shape - in_shape) return [(pad_size // 2, pad_size - pad_size // 2) for pad_size in pad_sizes] elif padding == PaddingType.VALID: return [(0, 0)] * len(in_shape) else: msg = "Unknown padding type: {}." raise TypeError(msg.format(padding)) def _check_same_dtypes(name, ignore_fp_precision, *ttypes): """Check that dtypes agree, possibly ignoring float precision.""" # the `ignore_fp_precision` flag exists because the XLA shape inference logic # allows mixed floating point precision, but the HLO verifier often rejects it types = list(map(np.dtype, ttypes)) # canonicalize if ignore_fp_precision: types = [ np.floating if dtypes.issubdtype(dtype, np.floating) else np.complexfloating if dtypes.issubdtype(dtype, np.complexfloating) else dtype for dtype in types] if len({dtypes.canonicalize_dtype(t) for t in types}) != 1: if ignore_fp_precision: msg = ("{} requires arguments to have same dtypes up to floating point " "precision, got {}.") else: msg = "{} requires arguments to have the same dtypes, got {}." raise TypeError(msg.format(name, ", ".join(map(str, types)))) def _check_conv_shapes(name, lhs_shape, rhs_shape, window_strides): """Check that conv shapes are valid and are consistent with window_strides.""" if len(lhs_shape) != len(rhs_shape): msg = "Arguments to {} must have same rank, got {} and {}." raise TypeError(msg.format(name, len(lhs_shape), len(rhs_shape))) if len(lhs_shape) < 2: msg = "Arguments to {} must have rank at least 2, got {} and {}." raise TypeError(msg.format(name, len(lhs_shape), len(rhs_shape))) if lhs_shape[1] != rhs_shape[1]: msg = "Arguments to {} must agree on input feature size, got {} and {}." raise TypeError(msg.format(name, lhs_shape[1], rhs_shape[1])) _check_shapelike(name, "window_strides", window_strides) if not np.all(np.greater(window_strides, 0)): msg = "All elements of window_strides must be positive, got {}." raise TypeError(msg.format(window_strides)) if len(window_strides) != len(lhs_shape) - 2: msg = "{} window_strides has wrong length: expected {}, got {}." expected_length = len(lhs_shape) - 2 raise TypeError(msg.format(name, expected_length, len(window_strides))) def conv_shape_tuple(lhs_shape, rhs_shape, strides, pads, batch_group_count=1): """Compute the shape tuple of a conv given input shapes in canonical order.""" if isinstance(pads, str): pads = padtype_to_pads(lhs_shape[2:], rhs_shape[2:], strides, pads) if len(pads) != len(lhs_shape) - 2: msg = "Wrong number of explicit pads for convolution: expected {}, got {}." raise TypeError(msg.format(len(lhs_shape) - 2, len(pads))) lhs_padded = np.add(lhs_shape[2:], np.sum(np.array(pads).reshape(-1, 2), axis=1)) out_space = np.floor_divide( np.subtract(lhs_padded, rhs_shape[2:]), strides) + 1 out_space = np.maximum(0, out_space) assert lhs_shape[0] % batch_group_count == 0 out_shape = (lhs_shape[0] // batch_group_count, rhs_shape[0]) return tuple(out_shape + tuple(out_space)) def conv_general_shape_tuple(lhs_shape, rhs_shape, window_strides, padding, dimension_numbers): lhs_perm, rhs_perm, out_perm = conv_general_permutations(dimension_numbers) lhs_trans = np.take(lhs_shape, lhs_perm) rhs_trans = np.take(rhs_shape, rhs_perm) out_trans = conv_shape_tuple(lhs_trans, rhs_trans, window_strides, padding) return tuple(np.take(out_trans, np.argsort(out_perm))) def conv_transpose_shape_tuple(lhs_shape, rhs_shape, window_strides, padding, dimension_numbers): lhs_perm, rhs_perm, out_perm = conv_general_permutations(dimension_numbers) lhs_trans = np.take(lhs_shape, lhs_perm) rhs_trans = np.take(rhs_shape, rhs_perm) if isinstance(padding, str): padding = [_conv_transpose_padding(k, s, padding) for k,s in zip(rhs_trans[2:], window_strides)] padding = list(map(np.sum, padding)) unpad_out_space = [(i-1) * s - k + 2 for i, k, s in zip(lhs_trans[2:], rhs_trans[2:], window_strides)] out_space = np.sum([unpad_out_space, padding], axis=0).tolist() out_trans = tuple((lhs_trans[0], rhs_trans[0]) + tuple(out_space)) return tuple(np.take(out_trans, np.argsort(out_perm))) def _check_shapelike(fun_name, arg_name, obj, non_zero_shape=False): """Check that `obj` is a shape-like value (e.g. tuple of nonnegative ints).""" if not isinstance(obj, (tuple, list, np.ndarray)): msg = "{} {} must be of type tuple/list/ndarray, got {}." raise TypeError(msg.format(fun_name, arg_name, type(obj))) # bool(obj) for an ndarray raises an error, so we check len if not len(obj): # pylint: disable=g-explicit-length-test return obj_arr = np.array(obj) if obj_arr.ndim != 1: msg = "{} {} must be rank 1, got {}." raise TypeError(msg.format(obj_arr.ndim)) try: canonicalize_shape(obj_arr) except TypeError as err: msg = "{} {} must have every element be an integer type, got {}." raise TypeError(msg.format(fun_name, arg_name, tuple(map(type, obj)))) from err lower_bound, bound_error = ( (1, "strictly positive") if non_zero_shape else (0, "nonnegative")) if not (obj_arr >= lower_bound).all(): msg = "{} {} must have every element be {}, got {}." raise TypeError(msg.format(fun_name, arg_name, bound_error, obj)) def _dynamic_slice_indices(operand, start_indices): if len(start_indices) != operand.ndim: msg = ("Length of slice indices must match number of operand dimensions ({} " "vs {})") raise ValueError(msg.format(len(start_indices), operand.shape)) # map int over operand.shape to raise any dynamic-shape errors safe_map(int, operand.shape) if not isinstance(start_indices, (tuple, list)): if start_indices.ndim != 1: raise ValueError("Slice indices must be a 1D sequence, got {}" .format(start_indices.shape)) return select(lt(start_indices, _zeros(start_indices)), add(start_indices, _const(start_indices, operand.shape)), start_indices) else: return [np.asarray(i + d if i < 0 else i, getattr(i, 'dtype', dtypes.int_)) if isinstance(i, (int, np.integer)) else select(lt(i, _const(i, 0)), add(i, _const(i, d)), i) for i, d in zip(start_indices, operand.shape)] def _const(example, val): if dtypes.is_python_scalar(example): return dtypes.scalar_type_of(example)(val) return np.array(val, _dtype(example)) _zeros: Callable = partial(full_like, fill_value=0) _zero: Callable = partial(full_like, shape=(), fill_value=0) _ones: Callable = partial(full_like, fill_value=1) _one: Callable = partial(full_like, shape=(), fill_value=1) _twos: Callable = partial(full_like, fill_value=2) _two: Callable = partial(full_like, shape=(), fill_value=2) dtype: Callable = dtypes.result_type _dtype: Callable = dtypes.result_type def _iscomplex(x) -> bool: return dtypes.issubdtype(_dtype(x), np.complexfloating) def ranges_like(*xs): start = 0 for x in xs: x_len = len(x) yield range(start, start + x_len) start += x_len def remaining(original, *removed_lists): removed = set(itertools.chain(*removed_lists)) return [i for i in original if i not in removed] def _canonicalize_precision(precision): if precision is None: return None if isinstance(precision, Precision) or ( isinstance(precision, tuple) and len(precision) == 2 and all(isinstance(p, Precision) for p in precision) ): return precision else: raise ValueError("Precision argument must be None, a lax.Precision value " f"or a tuple of two lax.Precision values; got {precision}") def conv_dimension_numbers(lhs_shape, rhs_shape, dimension_numbers ) -> ConvDimensionNumbers: """Converts convolution `dimension_numbers` to a `ConvDimensionNumbers`. Args: lhs_shape: tuple of nonnegative integers, shape of the convolution input. rhs_shape: tuple of nonnegative integers, shape of the convolution kernel. dimension_numbers: None or a tuple/list of strings or a ConvDimensionNumbers object following the convolution dimension number specification format in xla_client.py. Returns: A `ConvDimensionNumbers` object that represents `dimension_numbers` in the canonical form used by lax functions. """ if isinstance(dimension_numbers, ConvDimensionNumbers): return dimension_numbers if len(lhs_shape) != len(rhs_shape): msg = "convolution requires lhs and rhs ndim to be equal, got {} and {}." raise TypeError(msg.format(len(lhs_shape), len(rhs_shape))) if dimension_numbers is None: iota = tuple(range(len(lhs_shape))) return ConvDimensionNumbers(iota, iota, iota) elif isinstance(dimension_numbers, (list, tuple)): if len(dimension_numbers) != 3: msg = "convolution dimension_numbers list/tuple must be length 3, got {}." raise TypeError(msg.format(len(dimension_numbers))) if not all(isinstance(elt, str) for elt in dimension_numbers): msg = "convolution dimension_numbers elements must be strings, got {}." raise TypeError(msg.format(tuple(map(type, dimension_numbers)))) msg = ("convolution dimension_numbers[{}] must have len equal to the ndim " "of lhs and rhs, got {} for lhs and rhs shapes {} and {}.") for i, elt in enumerate(dimension_numbers): if len(elt) != len(lhs_shape): raise TypeError(msg.format(i, len(elt), lhs_shape, rhs_shape)) lhs_spec, rhs_spec, out_spec = conv_general_permutations(dimension_numbers) return ConvDimensionNumbers(lhs_spec, rhs_spec, out_spec) else: msg = "convolution dimension_numbers must be tuple/list or None, got {}." raise TypeError(msg.format(type(dimension_numbers))) def conv_general_permutations(dimension_numbers): """Utility for convolution dimension permutations relative to Conv HLO.""" lhs_spec, rhs_spec, out_spec = dimension_numbers lhs_char, rhs_char, out_char = charpairs = ("N", "C"), ("O", "I"), ("N", "C") for i, (a, b) in enumerate(charpairs): if not dimension_numbers[i].count(a) == dimension_numbers[i].count(b) == 1: msg = ("convolution dimension_numbers[{}] must contain the characters " "'{}' and '{}' exactly once, got {}.") raise TypeError(msg.format(i, a, b, dimension_numbers[i])) if len(dimension_numbers[i]) != len(set(dimension_numbers[i])): msg = ("convolution dimension_numbers[{}] cannot have duplicate " "characters, got {}.") raise TypeError(msg.format(i, dimension_numbers[i])) if not (set(lhs_spec) - set(lhs_char) == set(rhs_spec) - set(rhs_char) == set(out_spec) - set(out_char)): msg = ("convolution dimension_numbers elements must each have the same " "set of spatial characters, got {}.") raise TypeError(msg.format(dimension_numbers)) def getperm(spec, charpair): spatial = (i for i, c in enumerate(spec) if c not in charpair) if spec is not rhs_spec: spatial = sorted(spatial, key=lambda i: rhs_spec.index(spec[i])) return (spec.index(charpair[0]), spec.index(charpair[1])) + tuple(spatial) lhs_perm, rhs_perm, out_perm = map(getperm, dimension_numbers, charpairs) return lhs_perm, rhs_perm, out_perm def _conv_general_proto(dimension_numbers): assert type(dimension_numbers) is ConvDimensionNumbers lhs_spec, rhs_spec, out_spec = dimension_numbers proto = xla_client.ConvolutionDimensionNumbers() proto.input_batch_dimension = lhs_spec[0] proto.input_feature_dimension = lhs_spec[1] proto.output_batch_dimension = out_spec[0] proto.output_feature_dimension = out_spec[1] proto.kernel_output_feature_dimension = rhs_spec[0] proto.kernel_input_feature_dimension = rhs_spec[1] proto.input_spatial_dimensions.extend(lhs_spec[2:]) proto.kernel_spatial_dimensions.extend(rhs_spec[2:]) proto.output_spatial_dimensions.extend(out_spec[2:]) return proto def _conv_general_vjp_lhs_padding( in_shape, window_dimensions, window_strides, out_shape, padding, lhs_dilation, rhs_dilation) -> List[Tuple[int, int]]: lhs_dilated_shape = _dilate_shape(in_shape, lhs_dilation) rhs_dilated_shape = _dilate_shape(window_dimensions, rhs_dilation) out_dilated_shape = _dilate_shape(out_shape, window_strides) pad_before = np.subtract(rhs_dilated_shape, [lo for lo, _ in padding]) - 1 pad_after = (np.add(lhs_dilated_shape, rhs_dilated_shape) - 1 - out_dilated_shape - pad_before) return safe_zip(pad_before, pad_after) def _conv_general_vjp_rhs_padding( in_shape, window_dimensions, window_strides, out_shape, padding, lhs_dilation, rhs_dilation): lhs_dilated_shape = _dilate_shape(in_shape, lhs_dilation) rhs_dilated_shape = _dilate_shape(window_dimensions, rhs_dilation) out_dilated_shape = _dilate_shape(out_shape, window_strides) total_in_pad = out_dilated_shape + rhs_dilated_shape - lhs_dilated_shape - 1 return [(pad[0], tot - pad[0]) for pad, tot in zip(padding, total_in_pad)] def _balanced_eq(x, z, y): return div(select(_eq_meet(x, z), _ones(z), _zeros(z)), select(_eq_meet(y, z), _twos(z), _ones(z))) def _eq_meet(a, b): a_dtype, b_dtype = _dtype(a), _dtype(b) if a_dtype != b_dtype: higher_dtype = dtypes.promote_types(a_dtype, b_dtype) if higher_dtype == a_dtype: a = convert_element_type(a, b_dtype) else: b = convert_element_type(b, a_dtype) return eq(a, b) def _abstractify(x): return raise_to_shaped(core.get_aval(x)) def _check_user_dtype_supported(dtype, fun_name=None): # Avoid using `dtype in [...]` becuase of numpy dtype equality overloading. if isinstance(dtype, type) and dtype in {bool, int, float, complex}: return np_dtype = np.dtype(dtype) if np_dtype.kind not in "biufc" and np_dtype.type != dtypes.bfloat16: msg = f"JAX only supports number and bool dtypes, got dtype {dtype}" msg += f" in {fun_name}" if fun_name else "" raise TypeError(msg) if dtype is not None and np_dtype != dtypes.canonicalize_dtype(dtype): msg = ("Explicitly requested dtype {} {} is not available, " "and will be truncated to dtype {}. To enable more dtypes, set the " "jax_enable_x64 configuration option or the JAX_ENABLE_X64 shell " "environment variable. " "See https://github.com/google/jax#current-gotchas for more.") fun_name = f"requested in {fun_name}" if fun_name else "" truncated_dtype = dtypes.canonicalize_dtype(dtype).name warnings.warn(msg.format(dtype, fun_name , truncated_dtype)) def _canonicalize_axis(axis, num_dims): """Canonicalize an axis in [-num_dims, num_dims) to [0, num_dims).""" axis = operator.index(axis) if not -num_dims <= axis < num_dims: raise ValueError( "axis {} is out of bounds for array of dimension {}".format( axis, num_dims)) if axis < 0: axis = axis + num_dims return axis tie_in_p = Primitive('tie_in') @config.register_omnistaging_disabler def omnistaging_disabler() -> None: global tie_in def tie_in(x: Array, y: Array) -> Array: """Returns the value of ``y`` but with a fake data dependence on ``x``. When staging to XLA (e.g. running under jit or pmap), values that don't depend on computation inputs are computed op-by-op, and folded into the XLA computation as constants. ``tie_in`` provides a way to explicitly stage values into the computation. When staging to XLA and ``x`` is already staged, then the result of ``tie_in`` is ``y``, but staged to XLA. Downstream use of the result will also be staged to XLA. For example, ``lax.sin(const)`` would be constant-folded if ``const`` is a constant array, but ``lax.sin(lax.tie_in(x, const))``, will be staged to XLA as long as ``x`` is staged to XLA. """ if config.omnistaging_enabled: return y else: return tie_in_p.bind(x, y) # If lax has already been imported, we need to monkey-patch the # lax/__init__.py import of tie_in. If not (i.e. if this is running at lax # module creation time) then we'll get an import error. try: jax.lax.tie_in = tie_in except AttributeError: pass def _tie_in_transpose_rule(t, x, y): if ad.is_undefined_primal(x): return [ad_util.Zero(x.aval), t] else: return [ad_util.Zero.from_value(x), t] def _tie_in_batch_rule(batched_args, batch_dims): y = tie_in(*batched_args) _, bdim_y = batch_dims return y, bdim_y def _tie_in_impl(x, y): core.check_valid_jaxtype(x) core.check_valid_jaxtype(y) return y def _tie_in_jvp(primals, tangents): x, y = primals x_dot, y_dot = tangents if type(y_dot) is ad_util.Zero or core.get_aval(y_dot).dtype is dtypes.float0: return y, y_dot # skip tying in in this case else: return ad.linear_jvp(tie_in_p, primals, tangents) tie_in_p.def_impl(_tie_in_impl) tie_in_p.def_abstract_eval(lambda x, y: raise_to_shaped(y)) xla.translations[tie_in_p] = lambda c, x, y: y ad.primitive_jvps[tie_in_p] = _tie_in_jvp ad.primitive_transposes[tie_in_p] = partial(ad.linear_transpose2, _tie_in_transpose_rule) batching.primitive_batchers[tie_in_p] = _tie_in_batch_rule masking.masking_rules[tie_in_p] = lambda vals, logical_shapes: vals[1]
from flask_restful import Resource, current_app from server.services.campaign_service import CampaignService from server.services.organisation_service import OrganisationService from server.models.postgis.utils import NotFound from server.models.postgis.campaign import Campaign from server.services.users.authentication_service import token_auth, tm class OrganisationsCampaignsAPI(Resource): @token_auth.login_required def post(self, organisation_id, campaign_id): """ Assigns a campaign to an organisation --- tags: - campaigns produces: - application/json parameters: - in: header name: Authorization description: Base64 encoded session token required: true type: string default: Token sessionTokenHere== - name: organisation_id in: path description: Unique organisation ID required: true type: integer default: 1 - name: campaign_id in: path description: Unique campaign ID required: true type: integer default: 1 responses: 200: description: Organisation and campaign assigned successfully 401: description: Unauthorized - Invalid credentials 403: description: Forbidden - users have submitted mapping 404: description: Project not found 500: description: Internal Server Error """ try: if OrganisationService.can_user_manage_organisation( organisation_id, tm.authenticated_user_id ): if Campaign.campaign_organisation_exists(campaign_id, organisation_id): message = "Campaign {} is already assigned to organisation {}.".format( campaign_id, organisation_id ) return {"Error": message}, 400 CampaignService.create_campaign_organisation( organisation_id, campaign_id ) message = "campaign with id {} assigned for organisation with id {}".format( campaign_id, organisation_id ) return {"Success": message}, 200 else: return {"Error": "User is not a manager of the organisation"}, 403 except Exception as e: error_msg = f"Campaign Organisation POST - unhandled error: {str(e)}" current_app.logger.critical(error_msg) return {"Error": error_msg}, 500 def get(self, organisation_id): """ Returns all campaigns related to an organisation --- tags: - campaigns produces: - application/json parameters: - in: header name: Authorization description: Base64 encoded session token required: false type: string default: Token sessionTokenHere== - name: organisation_id in: path description: Unique project ID required: true type: integer default: 1 responses: 200: description: Success 404: description: Organisation not found 500: description: Internal Server Error """ try: campaigns = CampaignService.get_organisation_campaigns_as_dto( organisation_id ) return campaigns.to_primitive(), 200 except NotFound: return {"Error": "No campaign found"}, 404 except Exception as e: error_msg = f"Organisation Campaigns GET - unhandled error: {str(e)}" current_app.logger.critical(error_msg) return {"Error": error_msg}, 500 @token_auth.login_required def delete(self, organisation_id, campaign_id): """ Unassigns an organization from an campaign --- tags: - campaigns produces: - application/json parameters: - in: header name: Authorization description: Base64 encoded session token required: true type: string default: Token sessionTokenHere== - name: organisation_id in: path description: Unique organisation ID required: true type: integer default: 1 - name: campaign_id in: path description: Unique campaign ID required: true type: integer default: 1 responses: 200: description: Organisation and campaign unassociated successfully 401: description: Unauthorized - Invalid credentials 403: description: Forbidden - users have submitted mapping 404: description: Project not found 500: description: Internal Server Error """ try: if OrganisationService.can_user_manage_organisation( organisation_id, tm.authenticated_user_id ): CampaignService.delete_organisation_campaign( organisation_id, campaign_id ) return ( {"Success": "Organisation and campaign unassociated successfully"}, 200, ) else: return {"Error": "User is not a manager of the organisation"}, 403 except NotFound: return {"Error": "Organisation Campaign Not Found"}, 404 except Exception as e: error_msg = f"Organisation Campaigns DELETE - unhandled error: {str(e)}" current_app.logger.critical(error_msg) return {"Error": error_msg}, 500
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import time from collections import OrderedDict import paddle.fluid as fluid from ppcls.optimizer import LearningRateBuilder from ppcls.optimizer import OptimizerBuilder from ppcls.modeling import architectures from ppcls.modeling.loss import CELoss from ppcls.modeling.loss import MixCELoss from ppcls.modeling.loss import JSDivLoss from ppcls.modeling.loss import GoogLeNetLoss from ppcls.utils.misc import AverageMeter from ppcls.utils import logger from paddle.fluid.incubate.fleet.collective import fleet from paddle.fluid.incubate.fleet.collective import DistributedStrategy from ema import ExponentialMovingAverage def create_feeds(image_shape, use_mix=None): """ Create feeds as model input Args: image_shape(list[int]): model input shape, such as [3, 224, 224] use_mix(bool): whether to use mix(include mixup, cutmix, fmix) Returns: feeds(dict): dict of model input variables """ feeds = OrderedDict() feeds['image'] = fluid.data( name="feed_image", shape=[None] + image_shape, dtype="float32") if use_mix: feeds['feed_y_a'] = fluid.data( name="feed_y_a", shape=[None, 1], dtype="int64") feeds['feed_y_b'] = fluid.data( name="feed_y_b", shape=[None, 1], dtype="int64") feeds['feed_lam'] = fluid.data( name="feed_lam", shape=[None, 1], dtype="float32") else: feeds['label'] = fluid.data( name="feed_label", shape=[None, 1], dtype="int64") return feeds def create_dataloader(feeds): """ Create a dataloader with model input variables Args: feeds(dict): dict of model input variables Returns: dataloader(fluid dataloader): """ trainer_num = int(os.environ.get('PADDLE_TRAINERS_NUM', 1)) capacity = 64 if trainer_num <= 1 else 8 dataloader = fluid.io.DataLoader.from_generator( feed_list=feeds, capacity=capacity, use_double_buffer=True, iterable=True) return dataloader def create_model(architecture, image, classes_num, is_train): """ Create a model Args: architecture(dict): architecture information, name(such as ResNet50) is needed image(variable): model input variable classes_num(int): num of classes Returns: out(variable): model output variable """ name = architecture["name"] params = architecture.get("params", {}) if "is_test" in params: params['is_test'] = not is_train model = architectures.__dict__[name](**params) out = model.net(input=image, class_dim=classes_num) return out def create_loss(out, feeds, architecture, classes_num=1000, epsilon=None, use_mix=False, use_distillation=False): """ Create a loss for optimization, such as: 1. CrossEnotry loss 2. CrossEnotry loss with label smoothing 3. CrossEnotry loss with mix(mixup, cutmix, fmix) 4. CrossEnotry loss with label smoothing and (mixup, cutmix, fmix) 5. GoogLeNet loss Args: out(variable): model output variable feeds(dict): dict of model input variables architecture(dict): architecture information, name(such as ResNet50) is needed classes_num(int): num of classes epsilon(float): parameter for label smoothing, 0.0 <= epsilon <= 1.0 use_mix(bool): whether to use mix(include mixup, cutmix, fmix) Returns: loss(variable): loss variable """ if architecture["name"] == "GoogLeNet": assert len(out) == 3, "GoogLeNet should have 3 outputs" loss = GoogLeNetLoss(class_dim=classes_num, epsilon=epsilon) target = feeds['label'] return loss(out[0], out[1], out[2], target) if use_distillation: assert len(out) == 2, ("distillation output length must be 2, " "but got {}".format(len(out))) loss = JSDivLoss(class_dim=classes_num, epsilon=epsilon) return loss(out[1], out[0]) if use_mix: loss = MixCELoss(class_dim=classes_num, epsilon=epsilon) feed_y_a = feeds['feed_y_a'] feed_y_b = feeds['feed_y_b'] feed_lam = feeds['feed_lam'] return loss(out, feed_y_a, feed_y_b, feed_lam) else: loss = CELoss(class_dim=classes_num, epsilon=epsilon) target = feeds['label'] return loss(out, target) def create_metric(out, feeds, architecture, topk=5, classes_num=1000, use_distillation=False): """ Create measures of model accuracy, such as top1 and top5 Args: out(variable): model output variable feeds(dict): dict of model input variables(included label) topk(int): usually top5 classes_num(int): num of classes Returns: fetchs(dict): dict of measures """ if architecture["name"] == "GoogLeNet": assert len(out) == 3, "GoogLeNet should have 3 outputs" softmax_out = out[0] else: # just need student label to get metrics if use_distillation: out = out[1] softmax_out = fluid.layers.softmax(out, use_cudnn=False) fetchs = OrderedDict() # set top1 to fetchs top1 = fluid.layers.accuracy(softmax_out, label=feeds['label'], k=1) fetchs['top1'] = (top1, AverageMeter('top1', '.4f', need_avg=True)) # set topk to fetchs k = min(topk, classes_num) topk = fluid.layers.accuracy(softmax_out, label=feeds['label'], k=k) topk_name = 'top{}'.format(k) fetchs[topk_name] = (topk, AverageMeter(topk_name, '.4f', need_avg=True)) return fetchs def create_fetchs(out, feeds, architecture, topk=5, classes_num=1000, epsilon=None, use_mix=False, use_distillation=False): """ Create fetchs as model outputs(included loss and measures), will call create_loss and create_metric(if use_mix). Args: out(variable): model output variable feeds(dict): dict of model input variables. If use mix_up, it will not include label. architecture(dict): architecture information, name(such as ResNet50) is needed topk(int): usually top5 classes_num(int): num of classes epsilon(float): parameter for label smoothing, 0.0 <= epsilon <= 1.0 use_mix(bool): whether to use mix(include mixup, cutmix, fmix) Returns: fetchs(dict): dict of model outputs(included loss and measures) """ fetchs = OrderedDict() loss = create_loss(out, feeds, architecture, classes_num, epsilon, use_mix, use_distillation) fetchs['loss'] = (loss, AverageMeter('loss', '7.4f', need_avg=True)) if not use_mix: metric = create_metric(out, feeds, architecture, topk, classes_num, use_distillation) fetchs.update(metric) return fetchs def create_optimizer(config): """ Create an optimizer using config, usually including learning rate and regularization. Args: config(dict): such as { 'LEARNING_RATE': {'function': 'Cosine', 'params': {'lr': 0.1} }, 'OPTIMIZER': {'function': 'Momentum', 'params':{'momentum': 0.9}, 'regularizer': {'function': 'L2', 'factor': 0.0001} } } Returns: an optimizer instance """ # create learning_rate instance lr_config = config['LEARNING_RATE'] lr_config['params'].update({ 'epochs': config['epochs'], 'step_each_epoch': config['total_images'] // config['TRAIN']['batch_size'], }) lr = LearningRateBuilder(**lr_config)() # create optimizer instance opt_config = config['OPTIMIZER'] opt = OptimizerBuilder(**opt_config) return opt(lr) def dist_optimizer(config, optimizer): """ Create a distributed optimizer based on a normal optimizer Args: config(dict): optimizer(): a normal optimizer Returns: optimizer: a distributed optimizer """ exec_strategy = fluid.ExecutionStrategy() exec_strategy.num_threads = 3 exec_strategy.num_iteration_per_drop_scope = 10 dist_strategy = DistributedStrategy() dist_strategy.nccl_comm_num = 1 dist_strategy.fuse_all_reduce_ops = True dist_strategy.exec_strategy = exec_strategy optimizer = fleet.distributed_optimizer(optimizer, strategy=dist_strategy) return optimizer def mixed_precision_optimizer(config, optimizer): use_fp16 = config.get('use_fp16', False) amp_scale_loss = config.get('amp_scale_loss', 1.0) use_dynamic_loss_scaling = config.get('use_dynamic_loss_scaling', False) if use_fp16: optimizer = fluid.contrib.mixed_precision.decorate( optimizer, init_loss_scaling=amp_scale_loss, use_dynamic_loss_scaling=use_dynamic_loss_scaling) return optimizer def build(config, main_prog, startup_prog, is_train=True): """ Build a program using a model and an optimizer 1. create feeds 2. create a dataloader 3. create a model 4. create fetchs 5. create an optimizer Args: config(dict): config main_prog(): main program startup_prog(): startup program is_train(bool): train or valid Returns: dataloader(): a bridge between the model and the data fetchs(dict): dict of model outputs(included loss and measures) """ with fluid.program_guard(main_prog, startup_prog): with fluid.unique_name.guard(): use_mix = config.get('use_mix') and is_train use_distillation = config.get('use_distillation') feeds = create_feeds(config.image_shape, use_mix=use_mix) dataloader = create_dataloader(feeds.values()) out = create_model(config.ARCHITECTURE, feeds['image'], config.classes_num, is_train) fetchs = create_fetchs( out, feeds, config.ARCHITECTURE, config.topk, config.classes_num, epsilon=config.get('ls_epsilon'), use_mix=use_mix, use_distillation=use_distillation) if is_train: optimizer = create_optimizer(config) lr = optimizer._global_learning_rate() fetchs['lr'] = (lr, AverageMeter('lr', 'f', need_avg=False)) optimizer = mixed_precision_optimizer(config, optimizer) optimizer = dist_optimizer(config, optimizer) optimizer.minimize(fetchs['loss'][0]) if config.get('use_ema'): global_steps = fluid.layers.learning_rate_scheduler._decay_step_counter( ) ema = ExponentialMovingAverage( config.get('ema_decay'), thres_steps=global_steps) ema.update() return dataloader, fetchs, ema return dataloader, fetchs def compile(config, program, loss_name=None): """ Compile the program Args: config(dict): config program(): the program which is wrapped by loss_name(str): loss name Returns: compiled_program(): a compiled program """ build_strategy = fluid.compiler.BuildStrategy() exec_strategy = fluid.ExecutionStrategy() exec_strategy.num_threads = 1 exec_strategy.num_iteration_per_drop_scope = 10 compiled_program = fluid.CompiledProgram(program).with_data_parallel( loss_name=loss_name, build_strategy=build_strategy, exec_strategy=exec_strategy) return compiled_program total_step = 0 def run(dataloader, exe, program, fetchs, epoch=0, mode='train', vdl_writer=None): """ Feed data to the model and fetch the measures and loss Args: dataloader(fluid dataloader): exe(): program(): fetchs(dict): dict of measures and the loss epoch(int): epoch of training or validation model(str): log only Returns: """ fetch_list = [f[0] for f in fetchs.values()] metric_list = [f[1] for f in fetchs.values()] for m in metric_list: m.reset() batch_time = AverageMeter('elapse', '.3f') tic = time.time() for idx, batch in enumerate(dataloader()): metrics = exe.run(program=program, feed=batch, fetch_list=fetch_list) batch_time.update(time.time() - tic) tic = time.time() for i, m in enumerate(metrics): metric_list[i].update(m[0], len(batch[0])) fetchs_str = ''.join([str(m.value) + ' ' for m in metric_list] + [batch_time.value]) + 's' if vdl_writer: global total_step logger.scaler('loss', metrics[0][0], total_step, vdl_writer) total_step += 1 if mode == 'eval': logger.info("{:s} step:{:<4d} {:s}s".format(mode, idx, fetchs_str)) else: epoch_str = "epoch:{:<3d}".format(epoch) step_str = "{:s} step:{:<4d}".format(mode, idx) logger.info("{:s} {:s} {:s}".format( logger.coloring(epoch_str, "HEADER") if idx == 0 else epoch_str, logger.coloring(step_str, "PURPLE"), logger.coloring(fetchs_str, 'OKGREEN'))) end_str = ''.join([str(m.mean) + ' ' for m in metric_list] + [batch_time.total]) + 's' if mode == 'eval': logger.info("END {:s} {:s}s".format(mode, end_str)) else: end_epoch_str = "END epoch:{:<3d}".format(epoch) logger.info("{:s} {:s} {:s}".format( logger.coloring(end_epoch_str, "RED"), logger.coloring(mode, "PURPLE"), logger.coloring(end_str, "OKGREEN"))) # return top1_acc in order to save the best model if mode == 'valid': return fetchs["top1"][1].avg
# -*- coding: utf-8 -*- ''' Specto Add-on Copyright (C) 2015 lambda This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. ''' import re,urlparse,time, urllib from resources.lib.libraries import client from resources.lib.libraries import client2 from resources.lib.libraries import cleantitle from resources.lib.libraries import workers from resources.lib.libraries import control from resources.lib.resolvers import cloudzilla from resources.lib.resolvers import openload from resources.lib.resolvers import uptobox from resources.lib.resolvers import zstream from resources.lib.resolvers import videomega from resources.lib import resolvers class source: def __init__(self): self.base_link = 'http://oneclickwatch.ws' self.search_link = '/search/%s' self.title = '' def get_movie(self, imdb, title, year): try: query = self.search_link % urllib.quote_plus(title +' '+year) query = urlparse.urljoin(self.base_link, query) result = client2.http_get(query) years = ['%s' % str(year), '%s' % str(int(year) + 1), '%s' % str(int(year) - 1)] result = client.parseDOM(result, 'h2', attrs={'class': 'title'}) result = [(client.parseDOM(i, 'a', ret='href')[0], client.parseDOM(i, 'a')[0]) for i in result] print('R',result) result = [i for i in result if cleantitle.movie(title.lower()) in cleantitle.movie(i[1]).lower()] print('R',result) result = [i for i in result if any(x in i[1] for x in years)] print('R',result) result2 = [i for i in result if '1080' in i[1]] print('R',result) result3 = [i for i in result if '720' in i[1].lower()] print('R',result) if len(result3) > 0: result = result3 if len(result2) > 0: result = result2 url = result[0][0] return url except: return def get_show(self, imdb, tvdb, tvshowtitle, year): try: url = tvshowtitle url = client.cleanHTMLCodes(url) url = url.encode('utf-8') return url except: return def get_episode(self, url, imdb, tvdb, title, date, season, episode): try: if url == None: return mytitile = url.lower() url = '%s S%02dE%02d' % (url, int(season), int(episode)) url = client.replaceHTMLCodes(url) url = url.encode('utf-8') url = self.search_link % urllib.quote_plus(url) query = urlparse.urljoin(self.base_link, url) result = client2.http_get(query) result = client.parseDOM(result, 'h2', attrs={'class': 'title'}) result = [(client.parseDOM(i, 'a', ret='href')[0], client.parseDOM(i, 'a')[0]) for i in result] result = [i for i in result if mytitile in i[1].lower()] result2 = [i for i in result if '1080' in i[1].lower()] result3 = [i for i in result if '720' in i[1].lower()] if len(result3) > 0: result = result3 if len(result2) > 0: result = result2 url=result[0][0] return url except: return def get_sources(self, url, hosthdDict, hostDict, locDict): try: self.sources =[] mylinks = [] result = client2.http_get(url) mytitle = re.compile('<title>(.*?)</title>', re.DOTALL).findall(result)[0] if any(word in mytitle.lower() for word in ['camrip', 'tsrip', 'hdcam', 'hdts', 'dvdcam', 'dvdts', 'cam', 'ts']): quality = 'CAM' elif '1080p' in mytitle: quality = '1080p' elif '720p' in mytitle: quality = 'HD' else: quality = 'MQ' links = client.parseDOM(result, 'a', attrs={'rel': 'nofollow'}) links = [i for i in links if i.startswith('http')] for a in links: mylinks.append([a,quality]) threads = [] for i in mylinks: threads.append(workers.Thread(self.check, i)) [i.start() for i in threads] for i in range(0, 10 * 2): is_alive = [x.is_alive() for x in threads] if all(x == False for x in is_alive): break time.sleep(1) return self.sources except: return self.sources def check(self, i): try: url = client.replaceHTMLCodes(i[0]) url = url.encode('utf-8') host = urlparse.urlparse(url).netloc host = host.replace('www.', '').replace('embed.', '') host = host.rsplit('.', 1)[0] host = host.lower() host = client.replaceHTMLCodes(host) host = host.encode('utf-8') control.log("##OneClickWatch %s - url %s" % (host, i[0])) #if host in i[2]: check = url = resolvers.request(url) if host == 'openload': check = openload.check(url) elif host == 'uptobox': check = uptobox.check(url) elif host == 'cloudzilla': check = cloudzilla.check(url) elif host == 'zstream': check = zstream.check(url) elif host == 'videomega': check = videomega.check(url) else: raise Exception() if check == None or check == False: raise Exception() self.sources.append({'source': host, 'quality': i[1], 'provider': 'Oneclickwatch', 'url': url}) except: pass def resolve(self, url): try: url = resolvers.request(url) return url except: return
# -*- coding:utf-8 -*- """Handwritten digits recognition Graphic interface module : training done with the mnist dataset""" # Third-party gui/system/plotting Libraries import numpy as np import tkinter as tk import tkinter.font as tkFont from tkinter import messagebox from tkinter import filedialog from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from matplotlib.figure import Figure from PIL import ImageTk, Image from PyQt5.QtWidgets import QApplication, QMainWindow, QLabel from PyQt5.QtGui import QPainter, QPixmap, QPen, QScreen import pickle import webbrowser import os import sys sys.path.insert(1, str(os.getcwd())) # Neural network module import network # ------------------------------------------------------------------------------tkinter GUI--------------------------------------------------------------------------------------------- class Interface(tk.Frame): """graphic interface class""" # ------------------------------------------------------------------------------__init__------------------------------------------------------------------------------------------------ def __init__(self, window, **kwargs): """Displays the main menu""" # Fonts self.big_font_button = tkFont.Font(family='Calibri', size=20, weight='bold') self.medium_large_font_button = tkFont.Font(family='Calibri', size=16, weight='bold') self.medium_font_button = tkFont.Font(family='Calibri', size=14, weight='bold') self.font_title = tkFont.Font(family='Calibri', size=36, weight='bold') self.number_button_font = tkFont.Font(family='Calibri', size=25, weight='bold') # Display main menu self.main_menu(window, **kwargs) # ------------------------------------------------------------------------------Main Menu Interface-------------------------------------------------------------------------------------- def main_menu(self, window, **kwargs): """Main menu Frame""" # Frame creation if hasattr(self, 'children'): self.destroy() tk.Frame.__init__(self, window, width=1180, height=620, bg="#fff2f2", **kwargs) self.pack() # Github Button img_github = ImageTk.PhotoImage(Image.open("hd_recognition/assets/github.jpg").resize((50,50))) btn_github = tk.Button(self, image=img_github, command=lambda: webbrowser.open("https://github.com/Seledriac/A-small-pedagogic-python-library-for-supervised-neural-networks/")) btn_github.img = img_github btn_github.grid(column=0, row=0, padx=50, pady=(0,50)) # Title title = tk.Label(self, text="Supervised neural networks\n applied to handwritten digits recognition", bg="#fff2f2", font=self.font_title) title.grid(column=1, row=0, pady=25) # Readme Button img_readme = ImageTk.PhotoImage(Image.open("hd_recognition/assets/readme.png").resize((50,50))) btn_readme = tk.Button(self, image=img_readme, command=lambda: os.startfile("README.md")) btn_readme.img = img_readme btn_readme.grid(column=2, row=0, padx=60, pady=(0,50)) # Button selection frame btns_frames = tk.LabelFrame(self, padx=50, pady=50, borderwidth=5) btns_frames.grid(row=1, column=1, columnspan=3, pady=(65,80), padx=(0,180)) # Menu Buttons create_model_button = tk.Button(btns_frames, text="Create a model", font=self.big_font_button, command=lambda: self.create_model(window, **kwargs)) create_model_button.grid(column=0, row=0, padx=10, pady=10) train_model_button = tk.Button(btns_frames, text="Train a model", font=self.big_font_button, command=lambda: self.train_model(window, **kwargs)) train_model_button.grid(column = 1, row = 0, padx=10, pady=10) evaluate_button = tk.Button(btns_frames, text="Accuracy Ladder", font=self.big_font_button, command=lambda: self.models_ladder(window, **kwargs)) evaluate_button.grid(column = 0, row = 1, padx=10, pady=10) predict_button = tk.Button(btns_frames, text="Predict", font=self.big_font_button, command=lambda: self.choose_prediction(window, **kwargs)) predict_button.grid(column = 1, row = 1, padx=10, pady=10) # ------------------------------------------------------------------------------Model Creation Interface------------------------------------------------------------------------------------ def create_model(self, window, **kwargs): """Model creation Frame""" # Frame creation self.destroy() if hasattr(self, 'hidden_layers_label'): delattr(self, 'hidden_layers_label') tk.Frame.__init__(self, window, width=1180, height=620, bg="#fff2f2", **kwargs) self.pack() # Main menu Button img_home = ImageTk.PhotoImage(Image.open("hd_recognition/assets/home.png").resize((95,50))) btn_home = tk.Button(self, image=img_home, command=lambda: self.main_menu(window, **kwargs)) btn_home.img = img_home btn_home.grid(column=0, row=0) # Title title = tk.Label(self, text="Model Creation", bg="#fff2f2", font=self.font_title) title.grid(column=1, row=0) # Model Validation frame model_creation_validation_frame = tk.LabelFrame(self, borderwidth=3) model_creation_validation_frame.grid(row=0, column=2, pady=(20,0)) model_creation_validation_label = tk.Label(model_creation_validation_frame, text="Model name", font=self.medium_font_button) model_creation_validation_label.pack() self.model_creation_validation_entry = tk.Entry(model_creation_validation_frame) self.model_creation_validation_entry.pack() model_creation_validation_button = tk.Button(model_creation_validation_frame, text="Create Model", font=self.medium_font_button, command=self.model_creation_validation) model_creation_validation_button.pack() # Model customization frame creation_custom_frame = tk.LabelFrame(self, padx=50, pady=50, borderwidth=5) creation_custom_frame.grid(row=1, column=0, columnspan=3, pady=(30,0)) # Input layer Frame input_layer_frame = tk.LabelFrame(creation_custom_frame) input_layer_frame.grid(row=0, column=0) input_layer_label = tk.Label(input_layer_frame, text="Input Layer", font=self.medium_font_button) input_layer_label.pack() self.input_layer_number = tk.Entry(input_layer_frame) self.input_layer_number.insert(0,784) self.input_layer_number.pack() # Hidden layers Frame self.hidden_layers = [] self.hidden_layers_frame = tk.LabelFrame(creation_custom_frame) self.hidden_layers_frame.grid(row=0, column=1) self.add_hidden_layer() self.add_hidden_layer() # Output layer Frame output_layer_frame = tk.LabelFrame(creation_custom_frame) output_layer_frame.grid(row=0, column=2, padx=70) output_layer_label = tk.Label(output_layer_frame, text="Output Layer", font=self.medium_font_button) output_layer_label.pack() self.output_layer_number = tk.Entry(output_layer_frame) self.output_layer_number.insert(0,10) self.output_layer_number.pack() # Hidden layer adding/deleting buttons add_hidden_layer_button = tk.Button(creation_custom_frame, text="Add a hidden layer", font=self.medium_font_button, command=self.add_hidden_layer) add_hidden_layer_button.grid(column = 0, row = 1, padx=50, pady=40) del_hidden_layer_button = tk.Button(creation_custom_frame, text="Delete the last hidden layer", font=self.medium_font_button, command=self.del_hidden_layer) del_hidden_layer_button.grid(column = 1, row = 1, padx=50, pady=40, columnspan=2) def add_hidden_layer(self): """Add a hidden layer in the model creation Frame""" if not hasattr(self, 'hidden_layers_label'): self.hidden_layers_label = tk.Label(self.hidden_layers_frame, text="Hidden Layer(s)", font=self.medium_font_button) self.hidden_layers_label.grid(row=0, column=0, columnspan=10) if len(self.hidden_layers) < 5: new_hidden_layer = tk.Scale(self.hidden_layers_frame, from_=1, to=128, length=150) new_hidden_layer.grid(row=1,column=len(self.hidden_layers), padx=(0,20)) self.hidden_layers.append(new_hidden_layer) def del_hidden_layer(self): """Delete a hidden layer in the model creation Frame""" if len(self.hidden_layers) > 1: self.hidden_layers[-1].destroy() del self.hidden_layers[-1] elif hasattr(self, 'hidden_layers_label'): self.hidden_layers[-1].destroy() del self.hidden_layers[-1] self.hidden_layers_label.destroy() delattr(self, 'hidden_layers_label') def model_creation_validation(self): """This method is executed when the model creation validation button is clicked. It creates the model, serlializes it, and shows a recap od the model in a message box to the user""" model_name = self.model_creation_validation_entry.get() try: input_number = int(self.input_layer_number.get()) output_number = int(self.output_layer_number.get()) except ValueError: messagebox.showerror("Error", "Error : enter a number of neurons for all the layers") if model_name and input_number and output_number: sizes = [input_number] msg = "Model \"{}\" successfully created.\n\nInput layer : {} neurons\n".format(str(self.model_creation_validation_entry.get()), str(input_number)) for i,layer in enumerate(self.hidden_layers): nb_neurons = int(layer.get()) sizes.append(nb_neurons) msg = msg + "Hidden layer {} : {} neurons\n".format(str(i + 1), str(nb_neurons)) sizes.append(output_number) msg = msg + "Output layer : {} neurons\n\nActivation function : sigmoid (by default)".format(str(output_number)) net = network.Network(model_name, sizes) with open("models/hd_recognition/{}.pickle".format(model_name), "wb") as fic: pickler = pickle.Pickler(fic) pickler.dump(net) messagebox.showinfo("Model Info", msg) else: messagebox.showerror("Error", "Error : missing required fields") # ------------------------------------------------------------------------------Model Training Interface------------------------------------------------------------------------------------ def train_model(self, window, **kwargs): """Model training specs Frame""" # Frame creation self.destroy() tk.Frame.__init__(self, window, width=1180, height=620, bg="#fff2f2", **kwargs) self.pack() # Chosing the model which we will train self.open_model_file() # Main menu Button img_home = ImageTk.PhotoImage(Image.open("hd_recognition/assets/home.png").resize((95,50))) btn_home = tk.Button(self, image=img_home, command=lambda: self.main_menu(window, **kwargs)) btn_home.img = img_home btn_home.grid(column=0, row=0, padx=(25,0)) # Title title = tk.Label(self, text="Model Training\n(mnist dataset)", bg="#fff2f2", font=self.font_title) title.grid(column=1, row=0, pady=80, padx=(200,0)) # Model training validation frame model_training_validation_frame = tk.LabelFrame(self, borderwidth=3) model_training_validation_frame.grid(row=0, column=2, padx=(200,0), pady=(10,0)) model_training_validation_button = tk.Button(model_training_validation_frame, text="Train", font=self.medium_large_font_button, command=lambda: self.model_training(window, **kwargs)) model_training_validation_button.pack() # Model training customization frame training_custom_frame = tk.LabelFrame(self, padx=50, pady=50, borderwidth=5) training_custom_frame.grid(row=1, column=0, columnspan=100, padx=(0,15)) # Epochs Frame epochs_frame = tk.LabelFrame(training_custom_frame) epochs_frame.grid(row=0, column=0) epochs_label = tk.Label(epochs_frame, text="Epochs", font=self.medium_font_button) epochs_label.pack() self.epochs_number = tk.Entry(epochs_frame) self.epochs_number.insert(0,3) self.epochs_number.pack() # Batch size Frame batch_size_frame = tk.LabelFrame(training_custom_frame) batch_size_frame.grid(row=0, column=2, padx=70) batch_size_label = tk.Label(batch_size_frame, text="batch size", font=self.medium_font_button) batch_size_label.pack() self.batch_size_number = tk.Entry(batch_size_frame) self.batch_size_number.insert(0,10) self.batch_size_number.pack() # Display weights checkbox display_weights_frame = tk.LabelFrame(training_custom_frame) display_weights_frame.grid(row=0, column=3) self.display_weights_value = tk.IntVar() display_weights_cb = tk.Checkbutton(display_weights_frame, text="Dynamically display the weights of the first layer", font=self.medium_font_button, variable=self.display_weights_value) display_weights_cb.pack() def model_training(self, window, **kwargs): """Model training Frame""" # Training values retrieving disp_weights = bool(self.display_weights_value.get()) try: epochs = int(self.epochs_number.get()) batch_size = int(self.batch_size_number.get()) except ValueError: messagebox.showerror("Error", "Error : please enter a numeric value for each field") if epochs and batch_size: # Frame creation self.destroy() tk.Frame.__init__(self, window, width=1180, height=620, bg="#fff2f2", **kwargs) # Main menu Button img_home = ImageTk.PhotoImage(Image.open("hd_recognition/assets/home.png").resize((95,50))) btn_home = tk.Button(self, image=img_home, command=lambda: self.main_menu(window, **kwargs)) btn_home.img = img_home btn_home.grid(column=0, row=0) # Training trigger button doIt = tk.Button(self, text="Start the Training", command=lambda: self.start_training(epochs, batch_size, disp_weights), font=self.big_font_button) doIt.grid(row=0, column=1, pady=20) # Training logs textbox textbox_frame = tk.LabelFrame(self) textbox_frame.grid(row=1, column=0, columnspan=2) self.output = tk.Text(textbox_frame, width=110, height=30, bg='black', fg='white') self.output.pack(side=tk.LEFT) # Scrollbar scrollbar = tk.Scrollbar(textbox_frame, orient="vertical", command = self.output.yview) scrollbar.pack(side=tk.RIGHT, fill="y") self.output['yscrollcommand'] = scrollbar.set self.pack() else: messagebox.showerror("Error", "Error : missing required fields") def start_training(self, epochs, batch_size, disp_weights): """This method executes the SGD training method on a given model""" # Importing the mnist dataset import mnist_loader training_data, validation_data, test_data = mnist_loader.load_data_wrapper() training_data = list(training_data) validation_data = list(validation_data) test_data = list(test_data) # Model training via SGD net = self.model_file self.output.insert(tk.END, "\n" + str(net) + "\n") self.update_idletasks() net.SGD(training_data, epochs, batch_size, test_data=test_data, display_weights=disp_weights, gui=self) # Model saving with open("models/hd_recognition/{}.pickle".format(net.id), "wb") as saving: saver = pickle.Pickler(saving) saver.dump(net) # Performance test of the network on the validation data accuracy = str(100 * net.evaluate(validation_data) / 10000) self.output.insert(tk.END, "\nTest on the validation data -> Accuracy : {0}%\n".format(accuracy)) self.update_idletasks() self.output.see("end") # Ladder update with open("models/hd_recognition/accuracy_ladder.md", "a") as ladder: adding = str(net) + " --> accuracy = " + accuracy + "\n" ladder.write(adding) with open("models/hd_recognition/accuracy_ladder.md", "r") as ladder: shove_percent = ladder.read().replace("%", "") content = [net.split("= ") for net in shove_percent.split('\n')] content.pop() content_updated = sorted([(acc,net) for net,acc in content], reverse = True) tostring = "%\n".join(["= ".join((net,acc)) for acc,net in content_updated]) + "%\n" with open("models/hd_recognition/accuracy_ladder.md", "w") as ladder: ladder.write(tostring) # ------------------------------------------------------------------------------Models Ladder Interface------------------------------------------------------------------------------------ def models_ladder(self, window, **kwargs): """Models ladder frame""" # Frame creation self.destroy() tk.Frame.__init__(self, window, width=1180, height=620, bg="#fff2f2", **kwargs) # Main menu Button img_home = ImageTk.PhotoImage(Image.open("hd_recognition/assets/home.png").resize((95,50))) btn_home = tk.Button(self, image=img_home, command=lambda: self.main_menu(window, **kwargs)) btn_home.img = img_home btn_home.grid(column=0, row=0) # Ladder label ladder_label = tk.Label(self, text="Models Accuracy Ladder", font=self.font_title, bg="#fff2f2") ladder_label.grid(row=0, column=1, padx=(0,150), pady=20) # Ladder textbox textbox_frame = tk.LabelFrame(self) textbox_frame.grid(row=1, column=0, columnspan=2) output = tk.Text(textbox_frame, width=100, height=20, font=self.medium_font_button) output.pack(side=tk.LEFT) with open("models/hd_recognition/accuracy_ladder.md", "r") as ladder: content = ladder.read() output.insert(tk.END, content) self.update_idletasks() output.see("end") # Scrollbar scrollbar = tk.Scrollbar(textbox_frame, orient="vertical", command = output.yview) scrollbar.pack(side=tk.RIGHT, fill="y") output['yscrollcommand'] = scrollbar.set self.pack() # ------------------------------------------------------------------------------Prediction Interface--------------------------------------------------------------------------------------- def choose_prediction(self, window, **kwargs): """Prediction style choice frame""" # Frame creation self.destroy() tk.Frame.__init__(self, window, width=1180, height=620, bg="#fff2f2", **kwargs) self.pack() # Opening the model which will predict self.open_model_file() # Main menu Button img_home = ImageTk.PhotoImage(Image.open("hd_recognition/assets/home.png").resize((95,50))) btn_home = tk.Button(self, image=img_home, command=lambda: self.main_menu(window, **kwargs)) btn_home.img = img_home btn_home.grid(column=0, row=0, padx=(0,125), pady=(15,100)) # Ladder label choice_label = tk.Label(self, text="Choose the prediction style", font=self.font_title, bg="#fff2f2") choice_label.grid(row=0, column=1, columnspan=10, padx=(50,250), pady=50) # Choice buttons choice_custom = tk.Button(self, text="Predict with custom test images", font=self.big_font_button, command=lambda: self.custom_prediction_frame(window, **kwargs)) choice_custom.grid(row=1, column=1, padx=(0,0), pady=(100)) choice_live = tk.Button(self, text="Live prediction", font=self.big_font_button, command=lambda: self.live_prediction_frame(window, **kwargs)) choice_live.grid(row=1, column=2, padx=(50,200), pady=(100)) def custom_prediction_frame(self, window, **kwargs): """Custom images prediction frame""" # Frame creation self.destroy() tk.Frame.__init__(self, window, width=1180, height=620, bg="#fff2f2", **kwargs) self.pack() # Main menu Button img_home = ImageTk.PhotoImage(Image.open("hd_recognition/assets/home.png").resize((95,50))) btn_home = tk.Button(self, image=img_home, command=lambda: self.main_menu(window, **kwargs)) btn_home.img = img_home btn_home.grid(column=0, row=0, pady=(10,30)) # Title label title_label = tk.Label(self, text="Custom images prediction\nChoose the number to predict", font=self.number_button_font, bg="#fff2f2") title_label.grid(row=0, column=1, columnspan=2, padx=(0,150), pady=10) # Number buttons Frame number_buttons_frame = tk.LabelFrame(self, borderwidth=3, bg='white', pady=10) number_buttons_frame.grid(row=1,column=1, columnspan=2, padx=(0,150)) # Number buttons btn_home = tk.Button(number_buttons_frame, font=self.number_button_font, text="0", command=lambda: self.number_button_click(0)) btn_home.grid(column=0, row=1, padx=15) btn_home = tk.Button(number_buttons_frame, font=self.number_button_font, text="1", command=lambda: self.number_button_click(1)) btn_home.grid(column=1, row=1, padx=15) btn_home = tk.Button(number_buttons_frame, font=self.number_button_font, text="2", command=lambda: self.number_button_click(2)) btn_home.grid(column=2, row=1, padx=15) btn_home = tk.Button(number_buttons_frame, font=self.number_button_font, text="3", command=lambda: self.number_button_click(3)) btn_home.grid(column=3, row=1, padx=15) btn_home = tk.Button(number_buttons_frame, font=self.number_button_font, text="4", command=lambda: self.number_button_click(4)) btn_home.grid(column=4, row=1, padx=15) btn_home = tk.Button(number_buttons_frame, font=self.number_button_font, text="5", command=lambda: self.number_button_click(5)) btn_home.grid(column=5, row=1, padx=15) btn_home = tk.Button(number_buttons_frame, font=self.number_button_font, text="6", command=lambda: self.number_button_click(6)) btn_home.grid(column=6, row=1, padx=15) btn_home = tk.Button(number_buttons_frame, font=self.number_button_font, text="7", command=lambda: self.number_button_click(7)) btn_home.grid(column=7, row=1, padx=15) btn_home = tk.Button(number_buttons_frame, font=self.number_button_font, text="8", command=lambda: self.number_button_click(8)) btn_home.grid(column=8, row=1, padx=15) btn_home = tk.Button(number_buttons_frame, font=self.number_button_font, text="9", command=lambda: self.number_button_click(9)) btn_home.grid(column=9, row=1, padx=15) def number_button_click(self, number): """This method is executed when a number button is clicked. It displays the model's prediction on a matplotlib figure""" # Opening the corresponding custom image img_filename_bmp = "hd_recognition/custom_test_images/test_image_"+str(number)+".bmp" test_image = Image.open(img_filename_bmp) # Predicting based on the custom image image_array = 1 - (np.array(test_image).reshape(784,1) / 255) model_activations = self.model_file.feedforward(image_array) # Custom image display img_filename_png = "hd_recognition/custom_test_images/test_image_"+str(number)+".png" custom_image = ImageTk.PhotoImage(Image.open(img_filename_png)) custom_image_label = tk.Label(self, image=custom_image, relief='ridge') custom_image_label.image=custom_image custom_image_label.grid(row=2, column=1, padx=10, pady=(5,5)) # Prediction plot frame prediction_frame = tk.LabelFrame(self) prediction_frame.grid(row=2,column=2, padx=(10,150), pady=(5,5)) # Plotting the model activations self.plot_model_activation(model_activations, prediction_frame) def live_prediction_frame(self, window, **kwargs): """Live prediction of the numbers drew by the user""" # Frame creation self.destroy() window.geometry("1500x800") tk.Frame.__init__(self, window, width=1500, height=800, bg="#fff2f2", **kwargs) self.pack() # Main menu Button img_home = ImageTk.PhotoImage(Image.open("hd_recognition/assets/home.png").resize((95,50))) btn_home = tk.Button(self, image=img_home, command=lambda: self.main_menu(window, **kwargs)) btn_home.img = img_home btn_home.grid(column=0, row=0, padx=100) # Title title = tk.Label(self, text="Live prediction\nDraw the number to predict", bg="#fff2f2", font=self.font_title) title.grid(column=1, row=0, pady=80) # Start button frame live_prediction_starting_frame = tk.LabelFrame(self, borderwidth=3) live_prediction_starting_frame.grid(row=0, column=2, padx=100) live_prediction_starting_button = tk.Button(live_prediction_starting_frame, text="Start", font=self.medium_large_font_button, command=lambda: self.start_live_prediction(window)) live_prediction_starting_button.pack() def start_live_prediction(self, window): """Live prediction Qt drawing window display""" # DrawingWindow creation App = QApplication(sys.argv) QtWindow = DrawingWindow(App, self) QtWindow.setWindowTitle("Digit drawing window") QtWindow.show() sys.exit(App.exec()) # ------------------------------------------------------------------------------Miscellaneous Methods-------------------------------------------------------------------------------------- def open_model_file(self): """Prompts the user to choose a model file""" re = True while re: try: # Model file opening prompt self.model_filename = filedialog.askopenfilename(initialdir="models/hd_recognition", title="Choose the model", filetypes=(("pickle files","*.pickle"), ("model files","*.model"), ("all files", "*.*"))) assert self.model_filename re = False except: messagebox.showerror("Error", "Error : please select a model file") with open(self.model_filename, "rb") as fic: unpickler = pickle.Unpickler(fic) self.model_file = unpickler.load() def plot_model_activation(self, model_activations, frame): """Plots the current model activations in a given frame (in a prediction context)""" fig = Figure(figsize = (4, 4)) fig.clf() fig.add_subplot(111).plot(range(10), model_activations) fig.suptitle("corresponding model activations") axes = fig.gca() axes.set_xlabel("digit") axes.set_ylabel("activation") axes.set_ylim([0, 1]) axes.set_xticks(range(10)) axes.set_yticks(np.array(range(11))/10) canvas = FigureCanvasTkAgg(fig, master=frame) canvas.draw() canvas.flush_events() canvas.get_tk_widget().grid(row=0, column=1) self.annot_max(range(10), model_activations, axes) def annot_max(x, y, ax): """Max network activation anotation for a number image""" xmax = x[np.argmax(y)] ymax = y.max() text = "digit = {}, activation = {:.3f}".format(xmax,ymax) if xmax <= 4: orientation = str((1 / abs(5 - (xmax + 1))) / 10) else: orientation = str(-(1 / abs(5 - (xmax + 1))) / 10) bbox_props = dict(boxstyle="square,pad=0.3", fc="w", ec="k", lw=1) arrowprops=dict(arrowstyle="-|>",connectionstyle="arc3,rad="+orientation) kw = dict(xycoords='data',textcoords="axes fraction", arrowprops=arrowprops, bbox=bbox_props, ha="right", va="top") # ax.annotate(text, xy=(xmax, ymax), xytext=(xmax/10 - 0.1, ymax - 0.1), **kw) ax.annotate(text, xy=(xmax, ymax), xytext=(0.8, 0.5), **kw) annot_max = staticmethod(annot_max) # ------------------------------------------------------------------------------PyQt drawing window---------------------------------------------------------------------------------------- class DrawingWindow(QMainWindow): """Drawing window for live model prediction""" def __init__(self, App, tkinter_root): """Initialization of the Drawing Window : we create a label centered in the window, in which we put a blank pixmap""" super().__init__() self.label = QLabel() self.blank() self.setCentralWidget(self.label) self.App = App self.tkinter_root = tkinter_root self.last_x, self.last_y = None, None def blank(self): """This method clears the QtWindow, setting the content of the centered label to a white pixmap""" self.label.setPixmap(QPixmap("hd_recognition/assets/white.png")) def mouseMoveEvent(self, e): """This method is executed while the click button is held""" if self.last_x is None: self.last_x = e.x() self.last_y = e.y() return painter = QPainter(self.label.pixmap()) painter.drawLine(self.last_x, self.last_y, e.x(), e.y()) painter.end() self.update() # Updating the origin for next time self.last_x = e.x() self.last_y = e.y() # Saving the screenshot and compressing it to a 28x28 image QScreen.grabWindow(self.App.primaryScreen(), self.winId()).save("hd_recognition/tmp/screenshot.png", 'png') resize_img = Image.open("hd_recognition/tmp/screenshot.png") resize_img = resize_img.resize((28,28)) resize_img.save("hd_recognition/tmp/screenshot.png", 'png') # Converting from standard png to greyscale img_array = np.array(Image.open("hd_recognition/tmp/screenshot.png")) img_array = np.array([[pixel[0] for pixel in line] for line in img_array]) image_array = 1 - (img_array.reshape(784,1) / 255) # Predicting the number model_activations = self.tkinter_root.model_file.feedforward(image_array) # Prediction plot frame prediction_frame = tk.LabelFrame(self.tkinter_root) prediction_frame.grid(row=2,column=2) # Plotting the model activations self.tkinter_root.plot_model_activation(model_activations, prediction_frame) def mouseReleaseEvent(self, e): self.last_x = None self.last_y = None # -----------------------------------------------------------------------------Tkinter Window creation------------------------------------------------------------------------------------- window = tk.Tk() window.geometry("1180x620") window.title("Neural Networks") window.configure(bg="#fff2f2") interface = Interface(window) interface.mainloop()
import json import getpass import shortuuid # type: ignore from datetime import datetime from functools import lru_cache from collections import defaultdict from typing import Any, Dict, Generator, Generic, List, Optional, Set, Tuple, Union from followthemoney.types import registry from nomenklatura.entity import CE from nomenklatura.judgement import Judgement from nomenklatura.util import PathLike, is_qid StrIdent = Union[str, "Identifier"] Pair = Tuple["Identifier", "Identifier"] class ResolverLogicError(Exception): pass class Identifier(object): PREFIX = "NK-" __slots__ = ("id", "canonical", "weight") def __init__(self, id: str): self.id = id self.weight: int = 1 if self.id.startswith(self.PREFIX): self.weight = 2 elif is_qid(id): self.weight = 3 self.canonical = self.weight > 1 def __eq__(self, other: Any) -> bool: return str(self) == str(other) def __lt__(self, other: Any) -> bool: return (self.weight, self.id) < (other.weight, other.id) def __str__(self) -> str: return self.id def __hash__(self) -> int: return hash(self.id) def __len__(self) -> int: return len(self.id) def __repr__(self) -> str: return f"<I({self.id})>" @classmethod def get(cls, id: StrIdent) -> "Identifier": if isinstance(id, str): return cls(id) return id @classmethod def pair(cls, left_id: StrIdent, right_id: StrIdent) -> Pair: left = cls.get(left_id) right = cls.get(right_id) if left == right: raise ResolverLogicError() return (max(left, right), min(left, right)) @classmethod def make(cls, value: Optional[str] = None) -> "Identifier": key = value or shortuuid.uuid() return cls.get(f"{cls.PREFIX}{key}") class Edge(object): __slots__ = ("key", "source", "target", "judgement", "score", "user", "timestamp") def __init__( self, left_id: StrIdent, right_id: StrIdent, judgement: Judgement = Judgement.NO_JUDGEMENT, score: Optional[float] = None, user: Optional[str] = None, timestamp: Optional[str] = None, ): self.key = Identifier.pair(left_id, right_id) self.target, self.source = self.key self.judgement = judgement self.score = score self.user = user self.timestamp = timestamp def other(self, cur: Identifier) -> Identifier: if cur == self.target: return self.source return self.target def to_line(self) -> str: row = [ self.target.id, self.source.id, self.judgement.value, self.score, self.user, self.timestamp, ] return json.dumps(row) + "\n" def __str__(self) -> str: return self.to_line() def __hash__(self) -> int: return hash(self.key) def __eq__(self, other: Any) -> bool: return hash(self) == hash(other) def __lt__(self, other: Any) -> bool: return bool(self.key < other.key) def __repr__(self) -> str: return f"<E({self.target.id}, {self.source.id}, {self.judgement.value})>" @classmethod def from_line(cls, line: str) -> "Edge": data = json.loads(line) return cls( data[0], data[1], judgement=Judgement(data[2]), score=data[3], user=data[4], timestamp=data[5], ) class Resolver(Generic[CE]): UNDECIDED = (Judgement.NO_JUDGEMENT, Judgement.UNSURE) def __init__(self, path: Optional[PathLike] = None) -> None: self.path = path self.edges: Dict[Pair, Edge] = {} self.nodes: Dict[Identifier, Set[Edge]] = defaultdict(set) def get_edge(self, left_id: StrIdent, right_id: StrIdent) -> Optional[Edge]: key = Identifier.pair(left_id, right_id) return self.edges.get(key) def _traverse(self, node: Identifier, seen: Set[Identifier]) -> Set[Identifier]: connected = set([node]) if node in seen: return connected seen.add(node) for edge in self.nodes.get(node, []): if edge.judgement == Judgement.POSITIVE: other = edge.other(node) rec = self._traverse(other, seen) connected.update(rec) return connected @lru_cache(maxsize=None) def connected(self, node: Identifier) -> Set[Identifier]: return self._traverse(node, set()) def get_canonical(self, entity_id: StrIdent) -> str: """Return the canonical identifier for the given entity ID.""" node = Identifier.get(entity_id) best = max(self.connected(node)) if best.canonical: return best.id return node.id def canonicals(self) -> Generator[Identifier, None, None]: """Return all the canonical cluster identifiers.""" for node in self.nodes.keys(): if not node.canonical: continue canonical = self.get_canonical(node) if canonical == node.id: yield node def get_referents( self, canonical_id: StrIdent, canonicals: bool = True ) -> Set[str]: """Get all the non-canonical entity identifiers which refer to a given canonical identifier.""" node = Identifier.get(canonical_id) referents: Set[str] = set() for connected in self.connected(node): if not canonicals and connected.canonical: continue if connected == node: continue referents.add(connected.id) return referents def get_resolved_edge( self, left_id: StrIdent, right_id: StrIdent ) -> Optional[Edge]: (left, right) = Identifier.pair(left_id, right_id) left_connected = self.connected(left) right_connected = self.connected(right) for e in left_connected: for o in right_connected: edge = self.edges.get(Identifier.pair(e, o)) if edge is None: continue return edge return None def get_judgement(self, entity_id: StrIdent, other_id: StrIdent) -> Judgement: """Get the existing decision between two entities with dedupe factored in.""" entity = Identifier.get(entity_id) other = Identifier.get(other_id) if entity == other: return Judgement.POSITIVE if is_qid(entity.id) and is_qid(other.id): return Judgement.NEGATIVE entity_connected = self.connected(entity) if other in entity_connected: return Judgement.POSITIVE other_connected = self.connected(other) for e in entity_connected: for o in other_connected: edge = self.edges.get(Identifier.pair(e, o)) if edge is None: continue if edge.judgement == Judgement.NEGATIVE: return edge.judgement return Judgement.NO_JUDGEMENT def check_candidate(self, left: StrIdent, right: StrIdent) -> bool: """Check if the two IDs could be merged, i.e. if there's no existing judgement.""" judgement = self.get_judgement(left, right) return judgement == Judgement.NO_JUDGEMENT def _get_suggested(self) -> List[Edge]: """Get all NO_JUDGEMENT edges in descending order of score.""" edges_all = self.edges.values() candidates = (e for e in edges_all if e.judgement == Judgement.NO_JUDGEMENT) cmp = lambda x: x.score or -1.0 return sorted(candidates, key=cmp, reverse=True) def get_candidates( self, limit: int = 100 ) -> Generator[Tuple[str, str, Optional[float]], None, None]: returned = 0 for edge in self._get_suggested(): if not self.check_candidate(edge.source, edge.target): continue yield edge.target.id, edge.source.id, edge.score returned += 1 if returned >= limit: break def suggest( self, left_id: StrIdent, right_id: StrIdent, score: float ) -> Identifier: """Make a NO_JUDGEMENT link between two identifiers to suggest that a user should make a decision about whether they are the same or not.""" edge = self.get_edge(left_id, right_id) if edge is not None: if edge.judgement in self.UNDECIDED: edge.score = score return edge.target return self.decide(left_id, right_id, Judgement.NO_JUDGEMENT, score=score) def decide( self, left_id: StrIdent, right_id: StrIdent, judgement: Judgement, user: Optional[str] = None, score: Optional[float] = None, ) -> Identifier: edge = self.get_edge(left_id, right_id) if edge is None: edge = Edge(left_id, right_id, judgement=judgement) # Canonicalise positive matches, i.e. make both identifiers refer to a # canonical identifier, instead of making a direct link. if judgement == Judgement.POSITIVE: connected = set(self.connected(edge.target)) connected.update(self.connected(edge.source)) target = max(connected) if not target.canonical: canonical = Identifier.make() self._remove(edge) self.decide(edge.source, canonical, judgement=judgement, user=user) self.decide(edge.target, canonical, judgement=judgement, user=user) return canonical edge.judgement = judgement edge.timestamp = datetime.utcnow().isoformat()[:16] edge.user = user or getpass.getuser() edge.score = score or edge.score self._register(edge) return edge.target def _register(self, edge: Edge) -> None: if edge.judgement != Judgement.NO_JUDGEMENT: edge.score = None self.edges[edge.key] = edge self.nodes[edge.source].add(edge) self.nodes[edge.target].add(edge) self.connected.cache_clear() def _remove(self, edge: Edge) -> None: """Remove an edge from the graph.""" self.edges.pop(edge.key, None) for node in (edge.source, edge.target): if node in self.nodes: self.nodes[node].discard(edge) def explode(self, node_id: StrIdent) -> Set[str]: """Dissolve all edges linked to the cluster to which the node belongs. This is the hard way to make sure we re-do context once we realise there's been a mistake.""" node = Identifier.get(node_id) affected: Set[str] = set() for part in self.connected(node): affected.add(str(part)) edges = self.nodes.get(part) if edges is None: continue for edge in list(edges): if edge.judgement != Judgement.NO_JUDGEMENT: self._remove(edge) self.connected.cache_clear() return affected def prune(self, keep: int = 0) -> None: """Remove suggested (i.e. NO_JUDGEMENT) edges, keep only the n with the highest score. This also checks if a transitive judgement has been established in the mean time and removes those candidates.""" kept = 0 for edge in self._get_suggested(): judgement = self.get_judgement(edge.source, edge.target) if judgement != Judgement.NO_JUDGEMENT: self._remove(edge) if kept >= keep: self._remove(edge) kept += 1 self.connected.cache_clear() def apply(self, proxy: CE) -> CE: """Replace all entity references in a given proxy with their canonical identifiers. This is essentially the harmonisation post de-dupe.""" canonical_id = self.get_canonical(proxy.id) if canonical_id != proxy.id: proxy.referents = self.get_referents(canonical_id) proxy.id = canonical_id for prop in proxy.iterprops(): if prop.type != registry.entity: continue for value in proxy.pop(prop): canonical = self.get_canonical(value) proxy.unsafe_add(prop, canonical, cleaned=True) return proxy def save(self) -> None: """Store the resolver adjacency list to a plain text JSON list.""" if self.path is None: raise RuntimeError("Resolver has no path") edges = sorted(self.edges.values()) with open(self.path, "w") as fh: for edge in edges: fh.write(edge.to_line()) @classmethod def load(cls, path: PathLike) -> "Resolver[CE]": resolver = cls(path=path) if not path.exists(): return resolver with open(path, "r") as fh: while True: line = fh.readline() if not line: break edge = Edge.from_line(line) resolver._register(edge) return resolver def __repr__(self) -> str: path = self.path.name if self.path is not None else ":memory:" return f"<Resolver({path!r}, {len(self.edges)})>"
''' OAuth2.0 client credentials flow plugin for HTTPie. ''' import sys from httpie.plugins import AuthPlugin from httpie.cli.definition import parser as httpie_args_parser from urllib.request import Request, urlopen from urllib.parse import urlencode from urllib.error import HTTPError import json from base64 import b64encode class OAuth2ClientCredentials: def __init__(self, client_id, client_secret): if not client_id: raise ValueError('client_id is required.') self.client_id = client_id if not client_secret: raise ValueError('client_secret is required.') self.client_secret = client_secret options = httpie_args_parser.args if not options.token_endpoint: raise ValueError('token_endpoint is required.') self.token_endpoint = options.token_endpoint self.token_request_type = options.token_request_type self.scope = options.scope self.print_token_response = options.print_token_response def __call__(self, request): token_response = self.__get_token() token_type = token_response.get('token_type', 'Bearer') token = token_response.get('access_token', '') request.headers['Authorization'] = '%s %s' % (token_type, token) return request def __get_token(self): req_headers = {'Content-Type': 'application/x-www-form-urlencoded'} post_params = {'grant_type': 'client_credentials'} if self.scope: post_params['scope'] = self.scope post_data = None if self.token_request_type == 'basic': credentials = u'%s:%s' % (self.client_id, self.client_secret) token = b64encode(credentials.encode('utf8')).strip().decode('latin1') req_headers['Authorzaion'] = 'Basic %s' % token post_data = urlencode(post_params).encode() else: post_params['client_id'] = self.client_id post_params['client_secret'] = self.client_secret if self.token_request_type == 'form': post_data = urlencode(post_params).encode() elif self.token_request_type == 'json': req_headers = {'Content-Type': 'application/json'} post_data = json.dumps(post_params).encode("utf-8") else: raise ValueError('token-request-type is invalid value.') # Execute token request. try: res = urlopen(Request(self.token_endpoint, method='POST', headers=req_headers, data=post_data)) res_body = json.loads(res.read()) if self.print_token_response: sys.stdout.write(f'token_response: \n========== \n{json.dumps(res_body, indent=2)}\n==========\n') return res_body except HTTPError as e: if self.print_token_response: sys.stderr.write(f'oauth2 error response:\nstatus={e.status}\n') res_body = e.read() try: res_body = json.loads(res_body) sys.stderr.write(f'token_error_response: \n========== \n{json.dumps(res_body, indent=2)}\n==========\n') except: sys.stderr.write(f'error_response: \n========== \n{res_body}\n==========\n') raise e class OAuth2ClientCredentialsPlugin(AuthPlugin): name = 'OAuth2.0 client credentilas flow.' auth_type = 'oauth2-client-credentials' description = 'Set the Bearer token obtained in the OAuth2.0 client_credentials flow to the Authorization header.' params = httpie_args_parser.add_argument_group(title='OAuth2.0 client credentilas flow options') params.add_argument( '--token-endpoint', default=None, metavar='TOKEN_ENDPOINT_URL', help='OAuth 2.0 Token endpoint URI' ) params.add_argument( '--token-request-type', default='basic', choices=('basic','form','json'), help='OAuth 2.0 Token request types.' ) params.add_argument( '--scope', default=None, metavar='OAUTH2_SCOPE', help='OAuth 2.0 Scopes' ) params.add_argument( '--print-token-response', dest='print_token_response', action='store_true', default=False, help='print oauth2 token response.' ) def get_auth(self, username=None, password=None): '''Add to authorization header Args: username str: client_id(client_id) password str: client_secret(client_sercret) Returns: requests.models.PreparedRequest: Added authorization header at the request object. ''' return OAuth2ClientCredentials(username, password)