text
stringlengths
2
999k
# # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from heat.common import exception from heat.common.i18n import _ from heat.engine import constraints from heat.engine import properties from heat.engine.resources.openstack.neutron import neutron from heat.engine import support from heat.engine import translation class SecurityGroupRule(neutron.NeutronResource): """A resource for managing Neutron security group rules. Rules to use in security group resource. """ required_service_extension = 'security-group' entity = 'security_group_rule' support_status = support.SupportStatus(version='7.0.0') PROPERTIES = ( SECURITY_GROUP, DESCRIPTION, DIRECTION, ETHERTYPE, PORT_RANGE_MIN, PORT_RANGE_MAX, PROTOCOL, REMOTE_GROUP, REMOTE_IP_PREFIX ) = ( 'security_group', 'description', 'direction', 'ethertype', 'port_range_min', 'port_range_max', 'protocol', 'remote_group', 'remote_ip_prefix' ) _allowed_protocols = list(range(256)) + [ 'ah', 'dccp', 'egp', 'esp', 'gre', 'icmp', 'icmpv6', 'igmp', 'ipv6-encap', 'ipv6-frag', 'ipv6-icmp', 'ipv6-nonxt', 'ipv6-opts', 'ipv6-route', 'ospf', 'pgm', 'rsvp', 'sctp', 'tcp', 'udp', 'udplite', 'vrrp' ] properties_schema = { SECURITY_GROUP: properties.Schema( properties.Schema.STRING, _('Security group name or ID to add rule.'), required=True, constraints=[ constraints.CustomConstraint('neutron.security_group') ] ), DESCRIPTION: properties.Schema( properties.Schema.STRING, _('Description of the security group rule.') ), DIRECTION: properties.Schema( properties.Schema.STRING, _('The direction in which the security group rule is applied. ' 'For a compute instance, an ingress security group rule ' 'matches traffic that is incoming (ingress) for that ' 'instance. An egress rule is applied to traffic leaving ' 'the instance.'), default='ingress', constraints=[ constraints.AllowedValues(['ingress', 'egress']), ] ), ETHERTYPE: properties.Schema( properties.Schema.STRING, _('Ethertype of the traffic.'), default='IPv4', constraints=[ constraints.AllowedValues(['IPv4', 'IPv6']), ] ), PORT_RANGE_MIN: properties.Schema( properties.Schema.INTEGER, _('The minimum port number in the range that is matched by the ' 'security group rule. If the protocol is TCP or UDP, this ' 'value must be less than or equal to the value of the ' 'port_range_max attribute. If the protocol is ICMP, this ' 'value must be an ICMP type.'), constraints=[ constraints.Range(0, 65535) ] ), PORT_RANGE_MAX: properties.Schema( properties.Schema.INTEGER, _('The maximum port number in the range that is matched by the ' 'security group rule. The port_range_min attribute constrains ' 'the port_range_max attribute. If the protocol is ICMP, this ' 'value must be an ICMP code.'), constraints=[ constraints.Range(0, 65535) ] ), PROTOCOL: properties.Schema( properties.Schema.STRING, _('The protocol that is matched by the security group rule. ' 'Allowed values are ah, dccp, egp, esp, gre, icmp, icmpv6, ' 'igmp, ipv6-encap, ipv6-frag, ipv6-icmp, ipv6-nonxt, ipv6-opts, ' 'ipv6-route, ospf, pgm, rsvp, sctp, tcp, udp, udplite, vrrp ' 'and integer representations [0-255].'), default='tcp', constraints=[constraints.AllowedValues(_allowed_protocols)] ), REMOTE_GROUP: properties.Schema( properties.Schema.STRING, _('The remote group name or ID to be associated with this ' 'security group rule.'), constraints=[ constraints.CustomConstraint('neutron.security_group') ] ), REMOTE_IP_PREFIX: properties.Schema( properties.Schema.STRING, _('The remote IP prefix (CIDR) to be associated with this ' 'security group rule.'), constraints=[ constraints.CustomConstraint('net_cidr') ] ) } def translation_rules(self, props): client_plugin = self.client_plugin() return [ translation.TranslationRule( props, translation.TranslationRule.RESOLVE, [self.SECURITY_GROUP], client_plugin=client_plugin, finder='find_resourceid_by_name_or_id', entity=client_plugin.RES_TYPE_SECURITY_GROUP ), translation.TranslationRule( props, translation.TranslationRule.RESOLVE, [self.REMOTE_GROUP], client_plugin=client_plugin, finder='find_resourceid_by_name_or_id', entity=client_plugin.RES_TYPE_SECURITY_GROUP ), ] def validate(self): super(SecurityGroupRule, self).validate() if (self.properties[self.REMOTE_GROUP] is not None and self.properties[self.REMOTE_IP_PREFIX] is not None): raise exception.ResourcePropertyConflict( self.REMOTE_GROUP, self.REMOTE_IP_PREFIX) port_max = self.properties[self.PORT_RANGE_MAX] port_min = self.properties[self.PORT_RANGE_MIN] protocol = self.properties[self.PROTOCOL] if (port_max is not None and port_min is not None and protocol not in ('icmp', 'icmpv6', 'ipv6-icmp') and port_max < port_min): msg = _('The minimum port number must be less than or equal to ' 'the maximum port number.') raise exception.StackValidationFailed(message=msg) def handle_create(self): props = self.prepare_properties( self.properties, self.physical_resource_name()) props['security_group_id'] = props.pop(self.SECURITY_GROUP) if self.REMOTE_GROUP in props: props['remote_group_id'] = props.pop(self.REMOTE_GROUP) for key in (self.PORT_RANGE_MIN, self.PORT_RANGE_MAX): if props.get(key) is not None: props[key] = str(props[key]) rule = self.client().create_security_group_rule( {'security_group_rule': props})['security_group_rule'] self.resource_id_set(rule['id']) def handle_delete(self): if self.resource_id is None: return with self.client_plugin().ignore_not_found: self.client().delete_security_group_rule(self.resource_id) def resource_mapping(): return { 'OS::Neutron::SecurityGroupRule': SecurityGroupRule }
# -*- coding: utf-8 -*- # cython: language_level=3 # BSD 3-Clause License # # Copyright (c) 2020-2021, Faster Speeding # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. from __future__ import annotations import pathlib import tempfile import nox nox.options.sessions = ["reformat", "lint", "spell-check", "type-check", "test"] # type: ignore GENERAL_TARGETS = ["./examples", "./noxfile.py", "./tanjun", "./tests"] PYTHON_VERSIONS = ["3.9", "3.10"] # TODO: @nox.session(python=["3.6", "3.7", "3.8"])? def install_requirements(session: nox.Session, *other_requirements: str) -> None: session.install("--upgrade", "wheel") session.install("--upgrade", *other_requirements) def _try_find_option(session: nox.Session, name: str, *other_names: str, when_empty: str | None = None) -> str | None: args_iter = iter(session.posargs) names = {name, *other_names} for arg in args_iter: if arg in names: return next(args_iter, when_empty) @nox.session(name="check-versions") def check_versions(session: nox.Session) -> None: import httpx # Note: this can be linked to a specific hash by adding it between raw and {file.name} as another route segment. with httpx.Client() as client: requirements = client.get( "https://gist.githubusercontent.com/FasterSpeeding/139801789f00d15b4aa8ed2598fb524e/raw/requirements.json" ).json() # Note: this can be linked to a specific hash by adding it between raw and {file.name} as another route segment. code = client.get( "https://gist.githubusercontent.com/FasterSpeeding/139801789f00d15b4aa8ed2598fb524e/raw/check_versions.py" ).read() session.install(".") session.install(*requirements) # This is saved to a temporary file to avoid the source showing up in any of the output. # A try, finally is used to delete the file rather than relying on delete=True behaviour # as on Windows the file cannot be accessed by other processes if delete is True. file = tempfile.NamedTemporaryFile(delete=False) try: with file: file.write(code) required_version = _try_find_option(session, "--required-version", "-r") args = ["--required-version", required_version] if required_version else [] session.run("python", file.name, "-r", "tanjun", *args) finally: pathlib.Path(file.name).unlink(missing_ok=False) @nox.session(venv_backend="none") def cleanup(session: nox.Session) -> None: import shutil # Remove directories for raw_path in ["./dist", "./docs", "./.nox", "./.pytest_cache", "./hikari_tanjun.egg-info", "./coverage_html"]: path = pathlib.Path(raw_path) try: shutil.rmtree(str(path.absolute())) except Exception as exc: session.warn(f"[ FAIL ] Failed to remove '{raw_path}': {exc!s}") else: session.log(f"[ OK ] Removed '{raw_path}'") # Remove individual files for raw_path in ["./.coverage", "./coverage_html.xml"]: path = pathlib.Path(raw_path) try: path.unlink() except Exception as exc: session.warn(f"[ FAIL ] Failed to remove '{raw_path}': {exc!s}") else: session.log(f"[ OK ] Removed '{raw_path}'") @nox.session(name="generate-docs", reuse_venv=True) def generate_docs(session: nox.Session) -> None: install_requirements(session, ".[docs]") session.log("Building docs into ./docs") output_directory = _try_find_option(session, "-o", "--output") or "./docs" session.run("pdoc", "--docformat", "numpy", "-o", output_directory, "./tanjun", "-t", "./templates") session.log("Docs generated: %s", pathlib.Path("./docs/index.html").absolute()) if not _try_find_option(session, "-j", "--json", when_empty="true"): return import httpx # Note: this can be linked to a specific hash by adding it between raw and {file.name} as another route segment. code = httpx.get( "https://gist.githubusercontent.com/FasterSpeeding/19a6d3f44cdd0a1f3b2437a8c5eef07a/raw/json_index_docs.py" ).read() # This is saved to a temporary file to avoid the source showing up in any of the output. # A try, finally is used to delete the file rather than relying on delete=True behaviour # as on Windows the file cannot be accessed by other processes if delete is True. file = tempfile.NamedTemporaryFile(delete=False) try: with file: file.write(code) session.run("python", file.name, "tanjun", "-o", str(pathlib.Path(output_directory) / "search.json")) finally: pathlib.Path(file.name).unlink(missing_ok=False) @nox.session(reuse_venv=True) def lint(session: nox.Session) -> None: install_requirements(session, ".[flake8]") session.run("flake8", *GENERAL_TARGETS) @nox.session(reuse_venv=True, name="spell-check") def spell_check(session: nox.Session) -> None: install_requirements(session, ".[lint]") # include_standard_requirements=False session.run( "codespell", *GENERAL_TARGETS, ".flake8", ".gitignore", "LICENSE", "pyproject.toml", "CHANGELOG.md", "CODE_OF_CONDUCT.md", "CONTRIBUTING.md", "README.md", "./github", ) @nox.session(reuse_venv=True) def build(session: nox.Session) -> None: session.install("flit") session.log("Starting build") session.run("flit", "build") @nox.session(reuse_venv=True) def publish(session: nox.Session, test: bool = False) -> None: if not _try_find_option(session, "--skip-version-check", when_empty="true"): check_versions(session) session.install("flit") env: dict[str, str] = {} if username := _try_find_option(session, "-u", "--username"): env["FLIT_USERNAME"] = username if password := _try_find_option(session, "-p", "--password"): env["FLIT_PASSWORD"] = password if index_url := _try_find_option(session, "-i", "--index-url"): env["FLIT_INDEX_URL"] = index_url elif test: env["FLIT_INDEX_URL"] = "https://test.pypi.org/legacy/" else: env["FLIT_INDEX_URL"] = "https://upload.pypi.org/legacy/" session.log("Initiating TestPYPI upload" if test else "Initiating PYPI upload") session.run("flit", "publish", env=env) @nox.session(name="test-publish", reuse_venv=True) def test_publish(session: nox.Session) -> None: publish(session, test=True) @nox.session(reuse_venv=True) def reformat(session: nox.Session) -> None: install_requirements(session, ".[reformat]") # include_standard_requirements=False session.run("black", *GENERAL_TARGETS) session.run("isort", *GENERAL_TARGETS) @nox.session(reuse_venv=True) def test(session: nox.Session) -> None: install_requirements(session, ".[tests]") # TODO: can import-mode be specified in the config. session.run("pytest", "--import-mode", "importlib") @nox.session(name="test-coverage", reuse_venv=True) def test_coverage(session: nox.Session) -> None: install_requirements(session, ".[tests]") # TODO: can import-mode be specified in the config. # https://github.com/nedbat/coveragepy/issues/1002 session.run("pytest", "--cov=tanjun", "--cov-report", "html:coverage_html", "--cov-report", "xml:coverage.xml") @nox.session(name="type-check", reuse_venv=True) def type_check(session: nox.Session) -> None: install_requirements(session, ".[tests, type_checking]", "-r", "nox-requirements.txt") if _try_find_option(session, "--force-env", when_empty="True"): session.env["PYRIGHT_PYTHON_GLOBAL_NODE"] = "off" if version := _try_find_option(session, "--pyright-version"): session.env["PYRIGHT_PYTHON_FORCE_VERSION"] = version session.run("python", "-m", "pyright", "--version") session.run("python", "-m", "pyright") @nox.session(name="check-dependencies") def check_dependencies(session: nox.Session) -> None: import httpx # Note: this can be linked to a specific hash by adding it between raw and {file.name} as another route segment. with httpx.Client() as client: requirements = client.get( "https://gist.githubusercontent.com/FasterSpeeding/13e3d871f872fa09cf7bdc4144d62b2b/raw/requirements.json" ).json() # Note: this can be linked to a specific hash by adding it between raw and {file.name} as another route segment. code = client.get( "https://gist.githubusercontent.com/FasterSpeeding/13e3d871f872fa09cf7bdc4144d62b2b/raw/check_dependency.py" ).read() session.install(*requirements) # This is saved to a temporary file to avoid the source showing up in any of the output. # A try, finally is used to delete the file rather than relying on delete=True behaviour # as on Windows the file cannot be accessed by other processes if delete is True. file = tempfile.NamedTemporaryFile(delete=False) try: with file: file.write(code) session.run("python", file.name) finally: pathlib.Path(file.name).unlink(missing_ok=False)
import os os.environ['CUDA_VISIBLE_DEVICES'] = '-1' import pytest import jax.numpy as jnp from jaxga.mv import MultiVector from jaxga.signatures import positive_signature def _jaxga_mul(a, b): return a * b def _mv_ones(num_elements, num_bases): return MultiVector( values=jnp.ones([num_bases, num_elements], dtype=jnp.float32), indices=tuple((i,) for i in range(num_bases)), signature=positive_signature ) @pytest.mark.parametrize("num_bases", list(range(1, 10))) def test_jaxga_mul_mv_mv(num_bases, benchmark): a = _mv_ones(100, num_bases) b = _mv_ones(100, num_bases) _jaxga_mul(a, b) benchmark(_jaxga_mul, a, b) if __name__ == '__main__': pytest.main()
import sys import numpy as np rawalgo, rawimg = sys.stdin.read().strip().split('\n\n') algo = np.array([1 if c == '#' else 0 for c in rawalgo], dtype=np.int8) img = np.array([[1 if c == '#' else 0 for c in line] for line in rawimg.split('\n')], dtype=np.int8) def enhance(img, algo): img = np.pad(img, 2, 'edge') new = np.copy(img) for i in range(1, img.shape[0] - 1): for j in range(1, img.shape[1] - 1): values = img[i-1:i+2,j-1:j+2].flatten() index = (values * 2**np.arange(9)[::-1]).sum() new[i,j] = algo[index] return new[1:-1,1:-1] img = np.pad(img, 1) for _ in range(2): img = enhance(img, algo) print("Result:", img.sum())
# Copyright 2015: Hewlett-Packard Development Company, L.P. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from rally.common import logging from rally import consts from rally.plugins.openstack import scenario from rally.plugins.openstack.scenarios.nova import utils from rally.task import types from rally.task import validation """Scenarios for Nova keypairs.""" @validation.add("required_services", services=[consts.Service.NOVA]) @validation.add("required_platform", platform="openstack", users=True) @scenario.configure(context={"cleanup@openstack": ["nova"]}, name="NovaKeypair.create_and_list_keypairs", platform="openstack") class CreateAndListKeypairs(utils.NovaScenario): def run(self, **kwargs): """Create a keypair with random name and list keypairs. This scenario creates a keypair and then lists all keypairs. :param kwargs: Optional additional arguments for keypair creation """ keypair_name = self._create_keypair(**kwargs) self.assertTrue(keypair_name, "Keypair isn't created") list_keypairs = self._list_keypairs() self.assertIn(keypair_name, [i.id for i in list_keypairs]) @validation.add("required_services", services=[consts.Service.NOVA]) @validation.add("required_platform", platform="openstack", users=True) @scenario.configure(context={"cleanup@openstack": ["nova"]}, name="NovaKeypair.create_and_delete_keypair", platform="openstack") class CreateAndDeleteKeypair(utils.NovaScenario): def run(self, **kwargs): """Create a keypair with random name and delete keypair. This scenario creates a keypair and then delete that keypair. :param kwargs: Optional additional arguments for keypair creation """ keypair = self._create_keypair(**kwargs) self._delete_keypair(keypair) @types.convert(image={"type": "glance_image"}, flavor={"type": "nova_flavor"}) @validation.add("image_valid_on_flavor", flavor_param="flavor", image_param="image") @validation.add("required_services", services=[consts.Service.NOVA]) @validation.add("required_platform", platform="openstack", users=True) @scenario.configure(context={"cleanup@openstack": ["nova"]}, name="NovaKeypair.boot_and_delete_server_with_keypair", platform="openstack") class BootAndDeleteServerWithKeypair(utils.NovaScenario): @logging.log_deprecated_args( "'server_kwargs' has been renamed 'boot_server_kwargs'", "0.3.2", ["server_kwargs"], once=True) def run(self, image, flavor, boot_server_kwargs=None, server_kwargs=None, **kwargs): """Boot and delete server with keypair. Plan of this scenario: - create a keypair - boot a VM with created keypair - delete server - delete keypair :param image: ID of the image to be used for server creation :param flavor: ID of the flavor to be used for server creation :param boot_server_kwargs: Optional additional arguments for VM creation :param server_kwargs: Deprecated alias for boot_server_kwargs :param kwargs: Optional additional arguments for keypair creation """ boot_server_kwargs = boot_server_kwargs or server_kwargs or {} keypair = self._create_keypair(**kwargs) server = self._boot_server(image, flavor, key_name=keypair, **boot_server_kwargs) self._delete_server(server) self._delete_keypair(keypair) @validation.add("required_services", services=[consts.Service.NOVA]) @validation.add("required_platform", platform="openstack", users=True) @scenario.configure(context={"cleanup@openstack": ["nova"]}, name="NovaKeypair.create_and_get_keypair", platform="openstack") class CreateAndGetKeypair(utils.NovaScenario): def run(self, **kwargs): """Create a keypair and get the keypair details. :param kwargs: Optional additional arguments for keypair creation """ keypair = self._create_keypair(**kwargs) self._get_keypair(keypair)
import mysql.connector import pandas as pd mydb = mysql.connector.connect( host="135.148.9.103", user="admin", password="rod@2021", database="rod_input", ) mycursor1 = mydb.cursor() mycursor1.execute("TRUNCATE TABLE `data_input_test`") mydb.commit() print("Bien")
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import sys from teimedlib.textentities import TextEntities from teimedlib.textentities_log import * from teimedlib.ualog import Log def do_main(path_src,path_tags): path_err=path_src.replace(".txt","_words.ERR.log") log_err=Log("w").open(path_err,1).log te = TextEntities(path_src, path_tags,log_err) lst = te.get_rows_entities() path_log=path_src.replace(".txt","_words.log") print(path_log) word_entities_log(lst,path_log) if __name__ == "__main__": path_text = sys.argv[1] #path_tags=sys.argv[2] path_tags="teimcfg/teimtags.csv" do_main(path_text,path_tags)
# Necessary imports. Provides library functions to ease writing tests. from lib import prebuild, testcase, SUBMITTY_TUTORIAL_DIR import subprocess import os import glob ############################################################################ # COPY THE ASSIGNMENT FROM THE SAMPLE ASSIGNMENTS DIRECTORIES SAMPLE_ASSIGNMENT_CONFIG = SUBMITTY_TUTORIAL_DIR + "/examples/05_cpp_static_analysis/config" SAMPLE_SUBMISSIONS = SUBMITTY_TUTORIAL_DIR + "/examples/05_cpp_static_analysis/submissions/" @prebuild def initialize(test): try: os.mkdir(os.path.join(test.testcase_path, "assignment_config")) except OSError: pass try: os.mkdir(os.path.join(test.testcase_path, "data")) except OSError: pass subprocess.call(["cp", os.path.join(SAMPLE_ASSIGNMENT_CONFIG, "config.json"), os.path.join(test.testcase_path, "assignment_config")]) def cleanup(test): subprocess.call(["rm"] + ["-f"] + glob.glob(os.path.join(test.testcase_path, "data", "*cpp"))) @testcase def solution(test): cleanup(test) subprocess.call(["cp", os.path.join(SAMPLE_SUBMISSIONS, "solution.cpp"), os.path.join(test.testcase_path, "data", "solution.cpp")]) test.run_compile() test.run_run() test.run_validator() test.diff("grade.txt", "grade.txt_solution", "-b") @testcase def buggy(test): cleanup(test) subprocess.call(["cp", os.path.join(SAMPLE_SUBMISSIONS, "buggy.cpp"), os.path.join(test.testcase_path, "data", "buggy.cpp")]) test.run_compile() test.run_run() test.run_validator() test.diff("grade.txt", "grade.txt_buggy", "-b") @testcase def buggy2(test): cleanup(test) subprocess.call(["cp", os.path.join(SAMPLE_SUBMISSIONS, "buggy2.cpp"), os.path.join(test.testcase_path, "data", "buggy2.cpp")]) test.run_compile() test.run_run() test.run_validator() test.diff("grade.txt", "grade.txt_buggy2", "-b") @testcase def buggy3(test): cleanup(test) subprocess.call(["cp", os.path.join(SAMPLE_SUBMISSIONS, "buggy3.cpp"), os.path.join(test.testcase_path, "data", "buggy3.cpp")]) test.run_compile() test.run_run() test.run_validator() test.diff("grade.txt", "grade.txt_buggy3", "-b")
from typing import Any, Type, Union, List import torch import torch.nn as nn from torch import Tensor from torch.quantization import fuse_modules from torchvision.models.resnet import Bottleneck, BasicBlock, ResNet, model_urls from ..._internally_replaced_utils import load_state_dict_from_url from .utils import _replace_relu, quantize_model __all__ = ["QuantizableResNet", "resnet18", "resnet50", "resnext101_32x8d"] quant_model_urls = { "resnet18_fbgemm": "https://download.pytorch.org/models/quantized/resnet18_fbgemm_16fa66dd.pth", "resnet50_fbgemm": "https://download.pytorch.org/models/quantized/resnet50_fbgemm_bf931d71.pth", "resnext101_32x8d_fbgemm": "https://download.pytorch.org/models/quantized/resnext101_32x8_fbgemm_09835ccf.pth", } class QuantizableBasicBlock(BasicBlock): def __init__(self, *args: Any, **kwargs: Any) -> None: super(QuantizableBasicBlock, self).__init__(*args, **kwargs) self.add_relu = torch.nn.quantized.FloatFunctional() def forward(self, x: Tensor) -> Tensor: identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: identity = self.downsample(x) out = self.add_relu.add_relu(out, identity) return out def fuse_model(self) -> None: torch.quantization.fuse_modules(self, [["conv1", "bn1", "relu"], ["conv2", "bn2"]], inplace=True) if self.downsample: torch.quantization.fuse_modules(self.downsample, ["0", "1"], inplace=True) class QuantizableBottleneck(Bottleneck): def __init__(self, *args: Any, **kwargs: Any) -> None: super(QuantizableBottleneck, self).__init__(*args, **kwargs) self.skip_add_relu = nn.quantized.FloatFunctional() self.relu1 = nn.ReLU(inplace=False) self.relu2 = nn.ReLU(inplace=False) def forward(self, x: Tensor) -> Tensor: identity = x out = self.conv1(x) out = self.bn1(out) out = self.relu1(out) out = self.conv2(out) out = self.bn2(out) out = self.relu2(out) out = self.conv3(out) out = self.bn3(out) if self.downsample is not None: identity = self.downsample(x) out = self.skip_add_relu.add_relu(out, identity) return out def fuse_model(self) -> None: fuse_modules(self, [["conv1", "bn1", "relu1"], ["conv2", "bn2", "relu2"], ["conv3", "bn3"]], inplace=True) if self.downsample: torch.quantization.fuse_modules(self.downsample, ["0", "1"], inplace=True) class QuantizableResNet(ResNet): def __init__(self, *args: Any, **kwargs: Any) -> None: super(QuantizableResNet, self).__init__(*args, **kwargs) self.quant = torch.quantization.QuantStub() self.dequant = torch.quantization.DeQuantStub() def forward(self, x: Tensor) -> Tensor: x = self.quant(x) # Ensure scriptability # super(QuantizableResNet,self).forward(x) # is not scriptable x = self._forward_impl(x) x = self.dequant(x) return x def fuse_model(self) -> None: r"""Fuse conv/bn/relu modules in resnet models Fuse conv+bn+relu/ Conv+relu/conv+Bn modules to prepare for quantization. Model is modified in place. Note that this operation does not change numerics and the model after modification is in floating point """ fuse_modules(self, ["conv1", "bn1", "relu"], inplace=True) for m in self.modules(): if type(m) == QuantizableBottleneck or type(m) == QuantizableBasicBlock: m.fuse_model() def _resnet( arch: str, block: Type[Union[BasicBlock, Bottleneck]], layers: List[int], pretrained: bool, progress: bool, quantize: bool, **kwargs: Any, ) -> QuantizableResNet: model = QuantizableResNet(block, layers, **kwargs) _replace_relu(model) if quantize: # TODO use pretrained as a string to specify the backend backend = "fbgemm" quantize_model(model, backend) else: assert pretrained in [True, False] if pretrained: if quantize: model_url = quant_model_urls[arch + "_" + backend] else: model_url = model_urls[arch] state_dict = load_state_dict_from_url(model_url, progress=progress) model.load_state_dict(state_dict) return model def resnet18( pretrained: bool = False, progress: bool = True, quantize: bool = False, **kwargs: Any, ) -> QuantizableResNet: r"""ResNet-18 model from `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr quantize (bool): If True, return a quantized version of the model """ return _resnet("resnet18", QuantizableBasicBlock, [2, 2, 2, 2], pretrained, progress, quantize, **kwargs) def resnet50( pretrained: bool = False, progress: bool = True, quantize: bool = False, **kwargs: Any, ) -> QuantizableResNet: r"""ResNet-50 model from `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr quantize (bool): If True, return a quantized version of the model """ return _resnet("resnet50", QuantizableBottleneck, [3, 4, 6, 3], pretrained, progress, quantize, **kwargs) def resnext101_32x8d( pretrained: bool = False, progress: bool = True, quantize: bool = False, **kwargs: Any, ) -> QuantizableResNet: r"""ResNeXt-101 32x8d model from `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_ Args: pretrained (bool): If True, returns a model pre-trained on ImageNet progress (bool): If True, displays a progress bar of the download to stderr quantize (bool): If True, return a quantized version of the model """ kwargs["groups"] = 32 kwargs["width_per_group"] = 8 return _resnet("resnext101_32x8d", QuantizableBottleneck, [3, 4, 23, 3], pretrained, progress, quantize, **kwargs)
# -*- coding: utf-8 -*- """ Created on Mon Jul 6 18:03:09 2020 @author: Jonathan A. Yepez M. """ #Task Description """ En el archivo auto.csv se encuentran los siguientes datos de diferentes automoviles: * Cilindros * Cilindrada * Potencia * Peso * Aceleracion * Año del coche * Origen * Consumo (mpg) Las unidades de las características no se encuentran en el sistema internacional. La variable 'origen' es un código que identifica el país de orígen. TASK: Crear un modelo para que se pueda estimar el consumo de un vehículo a partir del resto de las variables """ #Import the libraries that will be used in this case import pandas as pd from pandas.plotting import scatter_matrix #for a specific stage in EDA from sklearn.linear_model import LinearRegression from sklearn.model_selection import train_test_split from sklearn.metrics import mean_squared_error import seaborn as sns #visualisation import matplotlib.pyplot as plt #visualisation #Read the data and create a dataframe df = pd.read_csv("auto.csv") print("--------------------") print(df.info()) #a quick view of the dataframe structure print("--------------------") print(df.describe()) #a more in-depth description of the information contained in the df print("--------------------") print(df.head()) #show the first 5 entries of the dataframe print("the columns for this dataframe are:") print(df.columns) #we check for missing values (NAs) #print(df.isnull().sum()) if(df.isnull().sum().sum()== 0): print("\nThere are NO missing values.\n") else: print("\nThere are",df.isnull().sum().sum(),"missing values in the dataframe!\n") #EDA => Exploratory Data Analysis df = df.drop_duplicates() #remove duplicates (if applicable) #Scatter matrix for the whole data scatter_matrix(df, figsize = (12, 12), diagonal = 'kde'); plt.figure(figsize=(10, 6)) #size configuration for plotting sns.distplot(df['mpg'], color='b', hist_kws={'alpha': 0.4}); #we first generate a distribution plot for 'mpg' #Se nota una tendencia a un consumo entre 20 y 30 mpgs dentro del dataset. df_cont = df.select_dtypes(include = ['float64']) #we select the continuous variables print("The continuous variables for this case are: \n") print(df_cont.head()) #Analysing the continuous variables -> scatter plots for i in range(len(df_cont.columns)-1): sns.pairplot(data=df_cont, x_vars=df_cont.columns[i], y_vars=['mpg'], height = 5, aspect=2) #scatter plot vars vs 'mpg' """ En este caso, notamos una relación inversamente proporcional entre el consumo (mpg) y las variables displacement, horsepower, y weight. Esto nos indica que a mayor potencia y desplazamiento (en términos del motor), el consumo de gasolina será mayor y por ende se tendrá un menor 'rendimiento' de mpg. En el caso de la variable acceleration, se nota un grafico de dispersión sin una tendencia clara. Esto puede deberse a que esta característica varía entre modelos y tipos de carro casi intependientemente del consumo de gasolina. """ df_cat = df.select_dtypes(include = ['int64']) #we select the 'categorical' variables. print("\nThe categorical variables for this case are: \n") print(df_cat.head()) for i in range(len(df_cat.columns)): sns.catplot(x=df_cat.columns[i], y="mpg", data=df, alpha=0.5) #gnerate a catplot ax = sns.boxplot(x=df_cat.columns[i], y="mpg", data=df) #add a boxplot on top of the catplot plt.setp(ax.artists, alpha=0.6, edgecolor="k") """ Tras haber presentado las gráficas para las variables categóricas, se nota que el número de cilindros muestra cierta tendencia en términos generales. A grosso modo, se puede asumir que cuando un vehículo tiene 8 cilindros, el rendimiento en mpg tiende a ser notablemente menor a uno que tenga 4 cilindros. Asi mismo, el origen del vehículo indica que, si bien es cierto no hay una variación extrema, se puede asumir que aquellos provenientes del país '3', tienen un mejor consumo de gasolina. En el caso del año de fabricación (model_year), se observa una tendencia general a la mejora de mpg conforme se avanza en el tiempo. Esto puede deberse a los avances en el área de la mecánica automotriz y la implementación de mejores diseños a nivel de componentes mecánicos como aerodinámicos. """ #Implementing the Regression Model indep_vars = df.iloc[:,:-1] #selecting 'independent variables' dep_var = df[["mpg"]] #selecting the 'dependent variable' #separating the data into train and test sets x_train, x_test, y_train, y_test = train_test_split(indep_vars,dep_var) model = LinearRegression() #constructor that initializes a LinearRegression object model.fit(x_train, y_train) #fit the model using the training set pred_train = model.predict(x_train) #prediction based on the training set pred_test = model.predict(x_test) #prediction based on the test set #Checking results using R^2 and MSE print("====================\n") print('\nR2 en entrenamiento es: ', round(model.score(x_train, y_train),4)) print('MSE en entrenamiento: ', round(mean_squared_error(y_train, pred_train),2)) print("-----------------------") print('R2 en validación es: ', round(model.score(x_test, y_test),4)) print('MSE en validación es: ', round(mean_squared_error(y_test, pred_test),2)) """ Se ha obtenido resultados aceptables en terminos de precisión. Dado que los valores de MSE y R^2 en los test y train sets son similares se puede determinar que no se presenta overfitting. Los parametros de la regresión se muestran a continuación """ print("====================\n") print("Los parametros de la regresion son: ") print(model.coef_) print("El termino independiente de la regresión es: ", model.intercept_)
from django.contrib import admin from ballots.models import Poll, Category, CategoryItem, Ballot, Vote, Answer, AnswerItem # class ItemInline(admin.TabularInline): # model = CategoryItem # # # class CategoryAdmin(admin.ModelAdmin): # inlines = [ItemInline, # ] class CategoryInline(admin.TabularInline): model = Category class PollAdmin(admin.ModelAdmin): inlines = [CategoryInline, ] class VoteInline(admin.TabularInline): model = Vote class BallotAdmin(admin.ModelAdmin): inlines = [VoteInline, ] admin.site.register(Poll, PollAdmin) admin.site.register(Category) admin.site.register(CategoryItem) admin.site.register(Ballot, BallotAdmin) admin.site.register(Vote) admin.site.register(Answer) admin.site.register(AnswerItem)
"""The tests for numeric state automation.""" from datetime import timedelta import unittest from unittest.mock import patch import homeassistant.components.automation as automation from homeassistant.core import Context, callback from homeassistant.setup import setup_component import homeassistant.util.dt as dt_util from tests.common import ( get_test_home_assistant, mock_component, fire_time_changed, assert_setup_component) from tests.components.automation import common # pylint: disable=invalid-name class TestAutomationNumericState(unittest.TestCase): """Test the event automation.""" def setUp(self): """Set up things to be run when tests are started.""" self.hass = get_test_home_assistant() mock_component(self.hass, 'group') self.calls = [] @callback def record_call(service): """Record calls.""" self.calls.append(service) self.hass.services.register('test', 'automation', record_call) def tearDown(self): # pylint: disable=invalid-name """Stop everything that was started.""" self.hass.stop() def test_if_fires_on_entity_change_below(self): """Test the firing with changed entity.""" context = Context() assert setup_component(self.hass, automation.DOMAIN, { automation.DOMAIN: { 'trigger': { 'platform': 'numeric_state', 'entity_id': 'test.entity', 'below': 10, }, 'action': { 'service': 'test.automation' } } }) # 9 is below 10 self.hass.states.set('test.entity', 9, context=context) self.hass.block_till_done() assert 1 == len(self.calls) assert self.calls[0].context is context # Set above 12 so the automation will fire again self.hass.states.set('test.entity', 12) common.turn_off(self.hass) self.hass.block_till_done() self.hass.states.set('test.entity', 9) self.hass.block_till_done() assert 1 == len(self.calls) def test_if_fires_on_entity_change_over_to_below(self): """Test the firing with changed entity.""" self.hass.states.set('test.entity', 11) self.hass.block_till_done() assert setup_component(self.hass, automation.DOMAIN, { automation.DOMAIN: { 'trigger': { 'platform': 'numeric_state', 'entity_id': 'test.entity', 'below': 10, }, 'action': { 'service': 'test.automation' } } }) # 9 is below 10 self.hass.states.set('test.entity', 9) self.hass.block_till_done() assert 1 == len(self.calls) def test_if_fires_on_entities_change_over_to_below(self): """Test the firing with changed entities.""" self.hass.states.set('test.entity_1', 11) self.hass.states.set('test.entity_2', 11) self.hass.block_till_done() assert setup_component(self.hass, automation.DOMAIN, { automation.DOMAIN: { 'trigger': { 'platform': 'numeric_state', 'entity_id': [ 'test.entity_1', 'test.entity_2', ], 'below': 10, }, 'action': { 'service': 'test.automation' } } }) # 9 is below 10 self.hass.states.set('test.entity_1', 9) self.hass.block_till_done() assert 1 == len(self.calls) self.hass.states.set('test.entity_2', 9) self.hass.block_till_done() assert 2 == len(self.calls) def test_if_not_fires_on_entity_change_below_to_below(self): """Test the firing with changed entity.""" context = Context() self.hass.states.set('test.entity', 11) self.hass.block_till_done() assert setup_component(self.hass, automation.DOMAIN, { automation.DOMAIN: { 'trigger': { 'platform': 'numeric_state', 'entity_id': 'test.entity', 'below': 10, }, 'action': { 'service': 'test.automation' } } }) # 9 is below 10 so this should fire self.hass.states.set('test.entity', 9, context=context) self.hass.block_till_done() assert 1 == len(self.calls) assert self.calls[0].context is context # already below so should not fire again self.hass.states.set('test.entity', 5) self.hass.block_till_done() assert 1 == len(self.calls) # still below so should not fire again self.hass.states.set('test.entity', 3) self.hass.block_till_done() assert 1 == len(self.calls) def test_if_not_below_fires_on_entity_change_to_equal(self): """Test the firing with changed entity.""" self.hass.states.set('test.entity', 11) self.hass.block_till_done() assert setup_component(self.hass, automation.DOMAIN, { automation.DOMAIN: { 'trigger': { 'platform': 'numeric_state', 'entity_id': 'test.entity', 'below': 10, }, 'action': { 'service': 'test.automation' } } }) # 10 is not below 10 so this should not fire again self.hass.states.set('test.entity', 10) self.hass.block_till_done() assert 0 == len(self.calls) def test_if_fires_on_initial_entity_below(self): """Test the firing when starting with a match.""" self.hass.states.set('test.entity', 9) self.hass.block_till_done() assert setup_component(self.hass, automation.DOMAIN, { automation.DOMAIN: { 'trigger': { 'platform': 'numeric_state', 'entity_id': 'test.entity', 'below': 10, }, 'action': { 'service': 'test.automation' } } }) # Fire on first update even if initial state was already below self.hass.states.set('test.entity', 8) self.hass.block_till_done() assert 1 == len(self.calls) def test_if_fires_on_initial_entity_above(self): """Test the firing when starting with a match.""" self.hass.states.set('test.entity', 11) self.hass.block_till_done() assert setup_component(self.hass, automation.DOMAIN, { automation.DOMAIN: { 'trigger': { 'platform': 'numeric_state', 'entity_id': 'test.entity', 'above': 10, }, 'action': { 'service': 'test.automation' } } }) # Fire on first update even if initial state was already above self.hass.states.set('test.entity', 12) self.hass.block_till_done() assert 1 == len(self.calls) def test_if_fires_on_entity_change_above(self): """Test the firing with changed entity.""" assert setup_component(self.hass, automation.DOMAIN, { automation.DOMAIN: { 'trigger': { 'platform': 'numeric_state', 'entity_id': 'test.entity', 'above': 10, }, 'action': { 'service': 'test.automation' } } }) # 11 is above 10 self.hass.states.set('test.entity', 11) self.hass.block_till_done() assert 1 == len(self.calls) def test_if_fires_on_entity_change_below_to_above(self): """Test the firing with changed entity.""" # set initial state self.hass.states.set('test.entity', 9) self.hass.block_till_done() assert setup_component(self.hass, automation.DOMAIN, { automation.DOMAIN: { 'trigger': { 'platform': 'numeric_state', 'entity_id': 'test.entity', 'above': 10, }, 'action': { 'service': 'test.automation' } } }) # 11 is above 10 and 9 is below self.hass.states.set('test.entity', 11) self.hass.block_till_done() assert 1 == len(self.calls) def test_if_not_fires_on_entity_change_above_to_above(self): """Test the firing with changed entity.""" # set initial state self.hass.states.set('test.entity', 9) self.hass.block_till_done() assert setup_component(self.hass, automation.DOMAIN, { automation.DOMAIN: { 'trigger': { 'platform': 'numeric_state', 'entity_id': 'test.entity', 'above': 10, }, 'action': { 'service': 'test.automation' } } }) # 12 is above 10 so this should fire self.hass.states.set('test.entity', 12) self.hass.block_till_done() assert 1 == len(self.calls) # already above, should not fire again self.hass.states.set('test.entity', 15) self.hass.block_till_done() assert 1 == len(self.calls) def test_if_not_above_fires_on_entity_change_to_equal(self): """Test the firing with changed entity.""" # set initial state self.hass.states.set('test.entity', 9) self.hass.block_till_done() assert setup_component(self.hass, automation.DOMAIN, { automation.DOMAIN: { 'trigger': { 'platform': 'numeric_state', 'entity_id': 'test.entity', 'above': 10, }, 'action': { 'service': 'test.automation' } } }) # 10 is not above 10 so this should not fire again self.hass.states.set('test.entity', 10) self.hass.block_till_done() assert 0 == len(self.calls) def test_if_fires_on_entity_change_below_range(self): """Test the firing with changed entity.""" assert setup_component(self.hass, automation.DOMAIN, { automation.DOMAIN: { 'trigger': { 'platform': 'numeric_state', 'entity_id': 'test.entity', 'below': 10, 'above': 5, }, 'action': { 'service': 'test.automation' } } }) # 9 is below 10 self.hass.states.set('test.entity', 9) self.hass.block_till_done() assert 1 == len(self.calls) def test_if_fires_on_entity_change_below_above_range(self): """Test the firing with changed entity.""" assert setup_component(self.hass, automation.DOMAIN, { automation.DOMAIN: { 'trigger': { 'platform': 'numeric_state', 'entity_id': 'test.entity', 'below': 10, 'above': 5, }, 'action': { 'service': 'test.automation' } } }) # 4 is below 5 self.hass.states.set('test.entity', 4) self.hass.block_till_done() assert 0 == len(self.calls) def test_if_fires_on_entity_change_over_to_below_range(self): """Test the firing with changed entity.""" self.hass.states.set('test.entity', 11) self.hass.block_till_done() assert setup_component(self.hass, automation.DOMAIN, { automation.DOMAIN: { 'trigger': { 'platform': 'numeric_state', 'entity_id': 'test.entity', 'below': 10, 'above': 5, }, 'action': { 'service': 'test.automation' } } }) # 9 is below 10 self.hass.states.set('test.entity', 9) self.hass.block_till_done() assert 1 == len(self.calls) def test_if_fires_on_entity_change_over_to_below_above_range(self): """Test the firing with changed entity.""" self.hass.states.set('test.entity', 11) self.hass.block_till_done() assert setup_component(self.hass, automation.DOMAIN, { automation.DOMAIN: { 'trigger': { 'platform': 'numeric_state', 'entity_id': 'test.entity', 'below': 10, 'above': 5, }, 'action': { 'service': 'test.automation' } } }) # 4 is below 5 so it should not fire self.hass.states.set('test.entity', 4) self.hass.block_till_done() assert 0 == len(self.calls) def test_if_not_fires_if_entity_not_match(self): """Test if not fired with non matching entity.""" assert setup_component(self.hass, automation.DOMAIN, { automation.DOMAIN: { 'trigger': { 'platform': 'numeric_state', 'entity_id': 'test.another_entity', 'below': 100, }, 'action': { 'service': 'test.automation' } } }) self.hass.states.set('test.entity', 11) self.hass.block_till_done() assert 0 == len(self.calls) def test_if_fires_on_entity_change_below_with_attribute(self): """Test attributes change.""" assert setup_component(self.hass, automation.DOMAIN, { automation.DOMAIN: { 'trigger': { 'platform': 'numeric_state', 'entity_id': 'test.entity', 'below': 10, }, 'action': { 'service': 'test.automation' } } }) # 9 is below 10 self.hass.states.set('test.entity', 9, {'test_attribute': 11}) self.hass.block_till_done() assert 1 == len(self.calls) def test_if_not_fires_on_entity_change_not_below_with_attribute(self): """Test attributes.""" assert setup_component(self.hass, automation.DOMAIN, { automation.DOMAIN: { 'trigger': { 'platform': 'numeric_state', 'entity_id': 'test.entity', 'below': 10, }, 'action': { 'service': 'test.automation' } } }) # 11 is not below 10 self.hass.states.set('test.entity', 11, {'test_attribute': 9}) self.hass.block_till_done() assert 0 == len(self.calls) def test_if_fires_on_attribute_change_with_attribute_below(self): """Test attributes change.""" assert setup_component(self.hass, automation.DOMAIN, { automation.DOMAIN: { 'trigger': { 'platform': 'numeric_state', 'entity_id': 'test.entity', 'value_template': '{{ state.attributes.test_attribute }}', 'below': 10, }, 'action': { 'service': 'test.automation' } } }) # 9 is below 10 self.hass.states.set('test.entity', 'entity', {'test_attribute': 9}) self.hass.block_till_done() assert 1 == len(self.calls) def test_if_not_fires_on_attribute_change_with_attribute_not_below(self): """Test attributes change.""" assert setup_component(self.hass, automation.DOMAIN, { automation.DOMAIN: { 'trigger': { 'platform': 'numeric_state', 'entity_id': 'test.entity', 'value_template': '{{ state.attributes.test_attribute }}', 'below': 10, }, 'action': { 'service': 'test.automation' } } }) # 11 is not below 10 self.hass.states.set('test.entity', 'entity', {'test_attribute': 11}) self.hass.block_till_done() assert 0 == len(self.calls) def test_if_not_fires_on_entity_change_with_attribute_below(self): """Test attributes change.""" assert setup_component(self.hass, automation.DOMAIN, { automation.DOMAIN: { 'trigger': { 'platform': 'numeric_state', 'entity_id': 'test.entity', 'value_template': '{{ state.attributes.test_attribute }}', 'below': 10, }, 'action': { 'service': 'test.automation' } } }) # 11 is not below 10, entity state value should not be tested self.hass.states.set('test.entity', '9', {'test_attribute': 11}) self.hass.block_till_done() assert 0 == len(self.calls) def test_if_not_fires_on_entity_change_with_not_attribute_below(self): """Test attributes change.""" assert setup_component(self.hass, automation.DOMAIN, { automation.DOMAIN: { 'trigger': { 'platform': 'numeric_state', 'entity_id': 'test.entity', 'value_template': '{{ state.attributes.test_attribute }}', 'below': 10, }, 'action': { 'service': 'test.automation' } } }) # 11 is not below 10, entity state value should not be tested self.hass.states.set('test.entity', 'entity') self.hass.block_till_done() assert 0 == len(self.calls) def test_fires_on_attr_change_with_attribute_below_and_multiple_attr(self): """Test attributes change.""" assert setup_component(self.hass, automation.DOMAIN, { automation.DOMAIN: { 'trigger': { 'platform': 'numeric_state', 'entity_id': 'test.entity', 'value_template': '{{ state.attributes.test_attribute }}', 'below': 10, }, 'action': { 'service': 'test.automation' } } }) # 9 is not below 10 self.hass.states.set('test.entity', 'entity', {'test_attribute': 9, 'not_test_attribute': 11}) self.hass.block_till_done() assert 1 == len(self.calls) def test_template_list(self): """Test template list.""" assert setup_component(self.hass, automation.DOMAIN, { automation.DOMAIN: { 'trigger': { 'platform': 'numeric_state', 'entity_id': 'test.entity', 'value_template': '{{ state.attributes.test_attribute[2] }}', 'below': 10, }, 'action': { 'service': 'test.automation' } } }) # 3 is below 10 self.hass.states.set('test.entity', 'entity', {'test_attribute': [11, 15, 3]}) self.hass.block_till_done() assert 1 == len(self.calls) def test_template_string(self): """Test template string.""" assert setup_component(self.hass, automation.DOMAIN, { automation.DOMAIN: { 'trigger': { 'platform': 'numeric_state', 'entity_id': 'test.entity', 'value_template': '{{ state.attributes.test_attribute | multiply(10) }}', 'below': 10, }, 'action': { 'service': 'test.automation', 'data_template': { 'some': '{{ trigger.%s }}' % '}} - {{ trigger.'.join(( 'platform', 'entity_id', 'below', 'above', 'from_state.state', 'to_state.state')) }, } } }) self.hass.states.set('test.entity', 'test state 1', {'test_attribute': '1.2'}) self.hass.block_till_done() self.hass.states.set('test.entity', 'test state 2', {'test_attribute': '0.9'}) self.hass.block_till_done() assert 1 == len(self.calls) assert 'numeric_state - test.entity - 10.0 - None - test state 1 - ' \ 'test state 2' == \ self.calls[0].data['some'] def test_not_fires_on_attr_change_with_attr_not_below_multiple_attr(self): """Test if not fired changed attributes.""" assert setup_component(self.hass, automation.DOMAIN, { automation.DOMAIN: { 'trigger': { 'platform': 'numeric_state', 'entity_id': 'test.entity', 'value_template': '{{ state.attributes.test_attribute }}', 'below': 10, }, 'action': { 'service': 'test.automation' } } }) # 11 is not below 10 self.hass.states.set('test.entity', 'entity', {'test_attribute': 11, 'not_test_attribute': 9}) self.hass.block_till_done() assert 0 == len(self.calls) def test_if_action(self): """Test if action.""" entity_id = 'domain.test_entity' assert setup_component(self.hass, automation.DOMAIN, { automation.DOMAIN: { 'trigger': { 'platform': 'event', 'event_type': 'test_event', }, 'condition': { 'condition': 'numeric_state', 'entity_id': entity_id, 'above': 8, 'below': 12, }, 'action': { 'service': 'test.automation' } } }) self.hass.states.set(entity_id, 10) self.hass.bus.fire('test_event') self.hass.block_till_done() assert 1 == len(self.calls) self.hass.states.set(entity_id, 8) self.hass.bus.fire('test_event') self.hass.block_till_done() assert 1 == len(self.calls) self.hass.states.set(entity_id, 9) self.hass.bus.fire('test_event') self.hass.block_till_done() assert 2 == len(self.calls) def test_if_fails_setup_bad_for(self): """Test for setup failure for bad for.""" with assert_setup_component(0): assert setup_component(self.hass, automation.DOMAIN, { automation.DOMAIN: { 'trigger': { 'platform': 'numeric_state', 'entity_id': 'test.entity', 'above': 8, 'below': 12, 'for': { 'invalid': 5 }, }, 'action': { 'service': 'homeassistant.turn_on', } }}) def test_if_fails_setup_for_without_above_below(self): """Test for setup failures for missing above or below.""" with assert_setup_component(0): assert setup_component(self.hass, automation.DOMAIN, { automation.DOMAIN: { 'trigger': { 'platform': 'numeric_state', 'entity_id': 'test.entity', 'for': { 'seconds': 5 }, }, 'action': { 'service': 'homeassistant.turn_on', } }}) def test_if_not_fires_on_entity_change_with_for(self): """Test for not firing on entity change with for.""" assert setup_component(self.hass, automation.DOMAIN, { automation.DOMAIN: { 'trigger': { 'platform': 'numeric_state', 'entity_id': 'test.entity', 'above': 8, 'below': 12, 'for': { 'seconds': 5 }, }, 'action': { 'service': 'test.automation' } } }) self.hass.states.set('test.entity', 9) self.hass.block_till_done() self.hass.states.set('test.entity', 15) self.hass.block_till_done() fire_time_changed(self.hass, dt_util.utcnow() + timedelta(seconds=10)) self.hass.block_till_done() assert 0 == len(self.calls) def test_if_not_fires_on_entities_change_with_for_after_stop(self): """Test for not firing on entities change with for after stop.""" assert setup_component(self.hass, automation.DOMAIN, { automation.DOMAIN: { 'trigger': { 'platform': 'numeric_state', 'entity_id': [ 'test.entity_1', 'test.entity_2', ], 'above': 8, 'below': 12, 'for': { 'seconds': 5 }, }, 'action': { 'service': 'test.automation' } } }) self.hass.states.set('test.entity_1', 9) self.hass.states.set('test.entity_2', 9) self.hass.block_till_done() fire_time_changed(self.hass, dt_util.utcnow() + timedelta(seconds=10)) self.hass.block_till_done() assert 2 == len(self.calls) self.hass.states.set('test.entity_1', 15) self.hass.states.set('test.entity_2', 15) self.hass.block_till_done() self.hass.states.set('test.entity_1', 9) self.hass.states.set('test.entity_2', 9) self.hass.block_till_done() common.turn_off(self.hass) self.hass.block_till_done() fire_time_changed(self.hass, dt_util.utcnow() + timedelta(seconds=10)) self.hass.block_till_done() assert 2 == len(self.calls) def test_if_fires_on_entity_change_with_for_attribute_change(self): """Test for firing on entity change with for and attribute change.""" assert setup_component(self.hass, automation.DOMAIN, { automation.DOMAIN: { 'trigger': { 'platform': 'numeric_state', 'entity_id': 'test.entity', 'above': 8, 'below': 12, 'for': { 'seconds': 5 }, }, 'action': { 'service': 'test.automation' } } }) utcnow = dt_util.utcnow() with patch('homeassistant.core.dt_util.utcnow') as mock_utcnow: mock_utcnow.return_value = utcnow self.hass.states.set('test.entity', 9) self.hass.block_till_done() mock_utcnow.return_value += timedelta(seconds=4) fire_time_changed(self.hass, mock_utcnow.return_value) self.hass.states.set('test.entity', 9, attributes={"mock_attr": "attr_change"}) self.hass.block_till_done() assert 0 == len(self.calls) mock_utcnow.return_value += timedelta(seconds=4) fire_time_changed(self.hass, mock_utcnow.return_value) self.hass.block_till_done() assert 1 == len(self.calls) def test_if_fires_on_entity_change_with_for(self): """Test for firing on entity change with for.""" assert setup_component(self.hass, automation.DOMAIN, { automation.DOMAIN: { 'trigger': { 'platform': 'numeric_state', 'entity_id': 'test.entity', 'above': 8, 'below': 12, 'for': { 'seconds': 5 }, }, 'action': { 'service': 'test.automation' } } }) self.hass.states.set('test.entity', 9) self.hass.block_till_done() fire_time_changed(self.hass, dt_util.utcnow() + timedelta(seconds=10)) self.hass.block_till_done() assert 1 == len(self.calls) def test_wait_template_with_trigger(self): """Test using wait template with 'trigger.entity_id'.""" assert setup_component(self.hass, automation.DOMAIN, { automation.DOMAIN: { 'trigger': { 'platform': 'numeric_state', 'entity_id': 'test.entity', 'above': 10, }, 'action': [ {'wait_template': "{{ states(trigger.entity_id) | int < 10 }}"}, {'service': 'test.automation', 'data_template': { 'some': '{{ trigger.%s }}' % '}} - {{ trigger.'.join(( 'platform', 'entity_id', 'to_state.state')) }} ], } }) self.hass.block_till_done() self.calls = [] self.hass.states.set('test.entity', '12') self.hass.block_till_done() self.hass.states.set('test.entity', '8') self.hass.block_till_done() assert 1 == len(self.calls) assert 'numeric_state - test.entity - 12' == \ self.calls[0].data['some']
# Generated by Django 3.2.10 on 2022-03-30 10:18 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import django.utils.timezone import materials.models class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0012_alter_user_first_name_max_length'), migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('distributions', '0001_initial'), ('bibliography', '0001_initial'), ] operations = [ migrations.CreateModel( name='MaterialProperty', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(db_index=True, default=django.utils.timezone.now, verbose_name='Created at')), ('lastmodified_at', models.DateTimeField(db_index=True, default=django.utils.timezone.now, verbose_name='Last modified at')), ('name', models.CharField(max_length=255)), ('description', models.TextField(blank=True, null=True)), ('unit', models.CharField(max_length=63)), ('created_by', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='materials_materialproperty_created', to=settings.AUTH_USER_MODEL, verbose_name='Created by')), ('lastmodified_by', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='materials_materialproperty_lastmodified', to=settings.AUTH_USER_MODEL, verbose_name='Last modified by')), ('owner', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to=settings.AUTH_USER_MODEL)), ('visible_to_groups', models.ManyToManyField(to='auth.Group')), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='MaterialPropertyValue', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(db_index=True, default=django.utils.timezone.now, verbose_name='Created at')), ('lastmodified_at', models.DateTimeField(db_index=True, default=django.utils.timezone.now, verbose_name='Last modified at')), ('name', models.CharField(max_length=255)), ('description', models.TextField(blank=True, null=True)), ('average', models.FloatField()), ('standard_deviation', models.FloatField()), ('created_by', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='materials_materialpropertyvalue_created', to=settings.AUTH_USER_MODEL, verbose_name='Created by')), ('lastmodified_by', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='materials_materialpropertyvalue_lastmodified', to=settings.AUTH_USER_MODEL, verbose_name='Last modified by')), ('owner', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to=settings.AUTH_USER_MODEL)), ('property', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to='materials.materialproperty')), ('visible_to_groups', models.ManyToManyField(to='auth.Group')), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='SampleSeries', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(db_index=True, default=django.utils.timezone.now, verbose_name='Created at')), ('lastmodified_at', models.DateTimeField(db_index=True, default=django.utils.timezone.now, verbose_name='Last modified at')), ('name', models.CharField(max_length=255)), ('description', models.TextField(blank=True, null=True)), ('preview', models.ImageField(default='materials/img/generic_material.jpg', upload_to='')), ('publish', models.BooleanField(default=False)), ('standard', models.BooleanField(default=True)), ('created_by', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='materials_sampleseries_created', to=settings.AUTH_USER_MODEL, verbose_name='Created by')), ('lastmodified_by', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='materials_sampleseries_lastmodified', to=settings.AUTH_USER_MODEL, verbose_name='Last modified by')), ('owner', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to=settings.AUTH_USER_MODEL)), ('temporal_distributions', models.ManyToManyField(to='distributions.TemporalDistribution')), ('visible_to_groups', models.ManyToManyField(to='auth.Group')), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='Sample', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(db_index=True, default=django.utils.timezone.now, verbose_name='Created at')), ('lastmodified_at', models.DateTimeField(db_index=True, default=django.utils.timezone.now, verbose_name='Last modified at')), ('name', models.CharField(max_length=255)), ('description', models.TextField(blank=True, null=True)), ('taken_at', models.DateTimeField(blank=True, null=True)), ('preview', models.ImageField(blank=True, null=True, upload_to='')), ('created_by', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='materials_sample_created', to=settings.AUTH_USER_MODEL, verbose_name='Created by')), ('lastmodified_by', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='materials_sample_lastmodified', to=settings.AUTH_USER_MODEL, verbose_name='Last modified by')), ('owner', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to=settings.AUTH_USER_MODEL)), ('properties', models.ManyToManyField(to='materials.MaterialPropertyValue')), ('series', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='samples', to='materials.sampleseries')), ('sources', models.ManyToManyField(to='bibliography.Source')), ('timestep', models.ForeignKey(null=True, on_delete=django.db.models.deletion.PROTECT, related_name='samples', to='distributions.timestep')), ('visible_to_groups', models.ManyToManyField(to='auth.Group')), ], options={ 'abstract': False, }, ), migrations.CreateModel( name='MaterialComponentGroup', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(db_index=True, default=django.utils.timezone.now, verbose_name='Created at')), ('lastmodified_at', models.DateTimeField(db_index=True, default=django.utils.timezone.now, verbose_name='Last modified at')), ('name', models.CharField(max_length=255)), ('description', models.TextField(blank=True, null=True)), ('created_by', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='materials_materialcomponentgroup_created', to=settings.AUTH_USER_MODEL, verbose_name='Created by')), ('lastmodified_by', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='materials_materialcomponentgroup_lastmodified', to=settings.AUTH_USER_MODEL, verbose_name='Last modified by')), ('owner', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to=settings.AUTH_USER_MODEL)), ('visible_to_groups', models.ManyToManyField(to='auth.Group')), ], options={ 'verbose_name': 'material_component_group', 'verbose_name_plural': 'groups', 'unique_together': {('name', 'owner')}, }, ), migrations.CreateModel( name='MaterialCategory', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(db_index=True, default=django.utils.timezone.now, verbose_name='Created at')), ('lastmodified_at', models.DateTimeField(db_index=True, default=django.utils.timezone.now, verbose_name='Last modified at')), ('name', models.CharField(max_length=255)), ('description', models.TextField(blank=True, null=True)), ('created_by', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='materials_materialcategory_created', to=settings.AUTH_USER_MODEL, verbose_name='Created by')), ('lastmodified_by', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='materials_materialcategory_lastmodified', to=settings.AUTH_USER_MODEL, verbose_name='Last modified by')), ('owner', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to=settings.AUTH_USER_MODEL)), ('visible_to_groups', models.ManyToManyField(to='auth.Group')), ], options={ 'verbose_name': 'Material Group', }, ), migrations.CreateModel( name='Composition', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(db_index=True, default=django.utils.timezone.now, verbose_name='Created at')), ('lastmodified_at', models.DateTimeField(db_index=True, default=django.utils.timezone.now, verbose_name='Last modified at')), ('name', models.CharField(max_length=255)), ('description', models.TextField(blank=True, null=True)), ('created_by', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='materials_composition_created', to=settings.AUTH_USER_MODEL, verbose_name='Created by')), ('group', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, related_name='compositions', to='materials.materialcomponentgroup')), ('lastmodified_by', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='materials_composition_lastmodified', to=settings.AUTH_USER_MODEL, verbose_name='Last modified by')), ('owner', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to=settings.AUTH_USER_MODEL)), ('sample', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='compositions', to='materials.sample')), ('visible_to_groups', models.ManyToManyField(to='auth.Group')), ('order', models.IntegerField(default=90)), ], options={ 'abstract': False, 'ordering': ['order'] }, ), migrations.CreateModel( name='BaseMaterial', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(db_index=True, default=django.utils.timezone.now, verbose_name='Created at')), ('lastmodified_at', models.DateTimeField(db_index=True, default=django.utils.timezone.now, verbose_name='Last modified at')), ('name', models.CharField(max_length=255)), ('description', models.TextField(blank=True, null=True)), ('type', models.CharField(default='material', max_length=127)), ('categories', models.ManyToManyField(blank=True, to='materials.MaterialCategory')), ('created_by', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='materials_basematerial_created', to=settings.AUTH_USER_MODEL, verbose_name='Created by')), ('lastmodified_by', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='materials_basematerial_lastmodified', to=settings.AUTH_USER_MODEL, verbose_name='Last modified by')), ('owner', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to=settings.AUTH_USER_MODEL)), ('visible_to_groups', models.ManyToManyField(to='auth.Group')), ], options={ 'verbose_name': 'Material', 'unique_together': {('name', 'owner')}, }, ), migrations.CreateModel( name='Material', fields=[ ], options={ 'verbose_name': 'Material', 'proxy': True, 'indexes': [], 'constraints': [], }, bases=('materials.basematerial',), ), migrations.CreateModel( name='MaterialComponent', fields=[ ], options={ 'verbose_name': 'component', 'proxy': True, 'indexes': [], 'constraints': [], }, bases=('materials.basematerial',), ), migrations.CreateModel( name='WeightShare', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(db_index=True, default=django.utils.timezone.now, verbose_name='Created at')), ('lastmodified_at', models.DateTimeField(db_index=True, default=django.utils.timezone.now, verbose_name='Last modified at')), ('name', models.CharField(max_length=255)), ('description', models.TextField(blank=True, null=True)), ('average', models.FloatField(default=0.0)), ('standard_deviation', models.FloatField(default=0.0)), ('composition', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='shares', to='materials.composition')), ('created_by', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='materials_weightshare_created', to=settings.AUTH_USER_MODEL, verbose_name='Created by')), ('lastmodified_by', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, related_name='materials_weightshare_lastmodified', to=settings.AUTH_USER_MODEL, verbose_name='Last modified by')), ('owner', models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to=settings.AUTH_USER_MODEL)), ('visible_to_groups', models.ManyToManyField(to='auth.Group')), ('component', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='shares', to='materials.materialcomponent')), ], options={ 'abstract': False, 'ordering': ['-average'] }, ), migrations.AddField( model_name='sampleseries', name='material', field=models.ForeignKey(on_delete=django.db.models.deletion.PROTECT, to='materials.material'), ), migrations.AddField( model_name='composition', name='fractions_of', field=models.ForeignKey(default=materials.models.get_default_component_pk, on_delete=django.db.models.deletion.PROTECT, to='materials.materialcomponent'), ), ]
# Generated manually on 2022-01-24 17:40 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('deployments', '0042_personnel_country_to'), ] operations = [ migrations.RunSQL( sql=[("update deployments_personnel " + "set country_to_id=d.country_id " + "from deployments_personnel a " + "join deployments_personneldeployment b on a.deployment_id = b.id " + "join api_event c on b.event_deployed_to_id = c.id " + "join api_event_countries d on c.id = d.event_id " + "join api_country e on d.country_id = e.id " + "where deployments_personnel.deployedperson_ptr_id = a.deployedperson_ptr_id " + "and e.record_type = 1")], # important – otherwise regions also can appear reverse_sql=[("update deployments_personnel set country_to_id=NULL")], ) ]
import math import numpy from PIL import Image from the_ark.selenium_helpers import SeleniumHelperExceptions, ElementNotVisibleError, ElementError from StringIO import StringIO import time import traceback DEFAULT_SCROLL_PADDING = 100 SCREENSHOT_FILE_EXTENSION = "png" DEFAULT_PIXEL_MATCH_OFFSET = 100 FIREFOX_HEAD_HEIGHT = 75 MAX_IMAGE_HEIGHT = 32768.0 class Screenshot: """ A helper class for taking screenshots using a Selenium Helper instance """ def __init__(self, selenium_helper, paginated=False, header_ids=None, footer_ids=None, scroll_padding=DEFAULT_SCROLL_PADDING, pixel_match_offset=DEFAULT_PIXEL_MATCH_OFFSET, file_extenson=SCREENSHOT_FILE_EXTENSION, resize_delay=0, content_container_selector="html"): """ Initializes the Screenshot class. These variable will be used throughout to help determine how to capture pages for this website. :param - selenium_helper: SeleniumHelper() - The Selenium Helper object whose browser you are capturing - paginated: bool - if True, all full page screenshots captured by this class will be a sequence of viewport sized images - header_ids: list - A list of css_selectors for elements that "stick" to the top of the screen when scrolling. These hidden and shown while capturing the screen so that they display only at the top of the page, and do not cover any content - footer_ids: list - A list of css_selectors for elements that "stick" to the bottom of the screen when scrolling. These hidden and shown while capturing the screen so that they display only at the bottom of the page, and do not cover any content - scroll_padding: int - The height, in pixels, of the overlap between paginated captures. This is also used when scrolling elements. the element is scrolled its height minus the padding to create an overlapping of content shown on both images to not cut any text in half - file_extenson: string - If provided, this extension will be used while creating the image. This must be an extension that is usable with PIL """ # Set parameters as class variables self.sh = selenium_helper self.paginated = paginated self.headers = header_ids self.footers = footer_ids self.content_container_selector = content_container_selector self.scroll_padding = scroll_padding self.pixel_match_offset = pixel_match_offset self.file_extenson = "png" self.headless = self.sh.desired_capabilities.get("headless", False) self.head_padding = FIREFOX_HEAD_HEIGHT if self.sh.desired_capabilities ["browserName"] == "firefox" else 0 self.scale_factor = self.sh.desired_capabilities.get("scale_factor", 1) self.max_height = MAX_IMAGE_HEIGHT / self.scale_factor self.resize_delay = resize_delay def capture_page(self, viewport_only=False, padding=None): """ Entry point for a screenshot of the whole page. This will send the screenshot off to the correct methods depending on whether you need paginated screenshots, just the current viewport area, or the whole page in one large shot. :param - viewport_only: bool - Whether to capture just the viewport's visible area or not :return - StringIO: A StingIO object containing the captured image(s) """ try: if self.headless: return self._capture_headless_page(viewport_only) elif viewport_only: return self._capture_single_viewport() elif self.paginated: return self._capture_paginated_page(padding) else: return self._capture_full_page() except SeleniumHelperExceptions as selenium_error: message = "A selenium issue arose while taking the screenshot".format() error = SeleniumError(message, selenium_error) raise error except Exception as e: message = "Unhandled exception while taking the screenshot | {0}".format(e) raise ScreenshotException(message, stacktrace=traceback.format_exc()) def capture_scrolling_element(self, css_selector, viewport_only=True, scroll_padding=None): """ This method will scroll an element one height (with padding) and take a screenshot each scroll until the element has been scrolled to the bottom. You can choose to capture the whole page (helpful when the scrollable element is taller than the viewport) or just the viewport area :param - css_selector: string - The css selector for the element that you plan to scroll - viewport_only: bool - Whether to capture just the viewport's visible area or not (each screenshot after scrolling) - scroll_padding: int - Overwrites the default scroll padding for the class. This can be used when the element, or site, have greatly different scroll padding numbers :return - StringIO: list - A list containing multiple StringIO image objects """ padding = scroll_padding if scroll_padding else self.scroll_padding try: image_list = [] # Scroll the element to the top self.sh.scroll_an_element(css_selector, scroll_top=True) while True: if self.headless: image_list.append(self._capture_headless_page(viewport_only)) elif viewport_only: image_list.append(self._capture_single_viewport()) else: image_list.append(self._capture_full_page()) if self.sh.get_is_element_scroll_position_at_bottom(css_selector): # Stop capturing once you're at the bottom break else: # Scroll down for the next one! self.sh.scroll_an_element(css_selector, scroll_padding=padding) return image_list except SeleniumHelperExceptions as selenium_error: message = "A selenium issue arose while trying to capture the scrolling element" error = SeleniumError(message, selenium_error) raise error except Exception as e: message = "Unhandled exception while taking the scrolling screenshot " \ "of the element '{0}' | {1}".format(css_selector, e) raise ScreenshotException(message, stacktrace=traceback.format_exc(), details={"css_selector": css_selector}) def capture_horizontal_scrolling_element(self, css_selector, viewport_only=True, scroll_padding=None): """ This method will scroll an element horizontally one width (with padding) and take a screenshot each scroll until the element has been scrolled to the right. You can choose to capture the whole page (helpful when the scrollable element is taller than the viewport) or just the viewport area. :param - css_selector: string - The css selector for the element that you plan to scroll - viewport_only: bool - Whether to capture just the viewport's visible area or not (each screenshot after scrolling) - scroll_padding: int - Overwrites the default scroll padding for the class. This can be used when the element, or site, have greatly different scroll padding numbers :return - StringIO: list - A list containing multiple StringIO image objects """ padding = scroll_padding if scroll_padding else self.scroll_padding try: image_list = [] # Scroll the element to the top self.sh.scroll_an_element(css_selector, scroll_left=True) while True: # - Capture the image if viewport_only: image_list.append(self._capture_single_viewport()) else: image_list.append(self._capture_full_page()) if self.sh.get_is_element_scroll_position_at_most_right(css_selector): # - Stop capturing once you're at the most right break else: # - Scroll right for the next one! self.sh.scroll_an_element(css_selector, scroll_padding=padding, scroll_horizontal=True) return image_list except SeleniumHelperExceptions as selenium_error: message = "A selenium issue arose while trying to capture the scrolling element" error = SeleniumError(message, selenium_error) raise error except Exception as e: message = "Unhandled exception while taking the scrolling screenshot " \ "of the element '{0}' | {1}".format(css_selector, e) raise ScreenshotException(message, stacktrace=traceback.format_exc(), details={"css_selector": css_selector}) def _capture_single_viewport(self): """ Grabs an image of the page and then craps it to just the visible / viewport area :return - StringIO: A StingIO object containing the captured image """ cropped_image = self._get_image_data(viewport_only=True) return self._create_image_file(cropped_image) def _capture_full_page(self): """ Captures an image of the whole page. If there are sitcky elements, as specified by the footers and headers class variables the code will, the code will capture them only where appropriate ie. headers on top, footers on bottom. Otherwise the whole screen is sent back as it is currently set up. :return - StringIO: A StingIO object containing the captured image """ if self.headers and self.footers: # Capture viewport size window of the headers self.sh.scroll_window_to_position(0) self._hide_elements(self.footers) header_image = self._get_image_data(True) # - Capture the page from the bottom without headers self._show_elements(self.footers) #TODO: Update when scroll position updates to have a scroll to bottom option self.sh.scroll_window_to_position(40000) self._hide_elements(self.headers) footer_image = self._get_image_data() # Show all header elements again self._show_elements(self.headers) # Send the two images off to get merged into one image_data = self._crop_and_stitch_image(header_image, footer_image) elif self.headers: # Scroll to the top so that the headers are not covering content self.sh.scroll_window_to_position(0) time.sleep(0.5) image_data = self._get_image_data() elif self.footers: # Scroll to the bottom so that the footer items are not covering content self.sh.scroll_window_to_position(40000) time.sleep(0.5) image_data = self._get_image_data() else: image_data = self._get_image_data() return self._create_image_file(image_data) def _hide_elements(self, css_selectors): """ Hides all elements in the given list :param - css_selectors: list - A list of the elements you would like to hide """ for selector in css_selectors: try: self.sh.hide_element(selector) # Continue to the next item is this one did not exist or was already not visible except ElementNotVisibleError: pass except ElementError: pass def _show_elements(self, css_selectors): """ Shows all elements in the given list :param - css_selectors: list - A list of the elements you would like to make visible """ # Show footer items again for selector in css_selectors: try: self.sh.show_element(selector) # Continue to the next item is this one did not exist except ElementError: pass def _capture_headless_page(self, viewport_only): if self.paginated and not viewport_only: return self._capture_headless_paginated_page() # Store the current size and scroll position of the browser width, height = self.sh.get_window_size() current_scroll_position = self.sh.get_window_current_scroll_position() if not viewport_only: content_height = self.sh.get_content_height(self.content_container_selector) if content_height > self.max_height: self.sh.resize_browser(width, self.max_height + self.head_padding) time.sleep(self.resize_delay) elif height < content_height: self.sh.resize_browser(width, content_height + self.head_padding) time.sleep(self.resize_delay) self.sh.scroll_window_to_position(scroll_bottom=True) time.sleep(self.resize_delay) if content_height > self.max_height: images_list = [] number_of_loops = int(math.ceil(content_height / self.max_height)) # Loop through, starting at one for multiplication purposes for i in range(1, number_of_loops + 1): image_data = self.sh.get_screenshot_base64() image = Image.open(StringIO(image_data.decode('base64'))) images_list.append(image) self.sh.scroll_window_to_position(self.max_height * i) # Combine al of the images into one capture image = self._combine_vertical_images(images_list, content_height) else: # Gather image byte data image_data = self.sh.get_screenshot_base64() # Create an image canvas and write the byte data to it image = Image.open(StringIO(image_data.decode('base64'))) else: # Gather image byte data image_data = self.sh.get_screenshot_base64() # Create an image canvas and write the byte data to it image = Image.open(StringIO(image_data.decode('base64'))) # - Return the browser to its previous size and scroll position if not viewport_only: self.sh.resize_browser(width, height) self.sh.scroll_window_to_position(current_scroll_position) time.sleep(self.resize_delay) return self._create_image_file(image) def _combine_vertical_images(self, images_list, content_height): height_of_full_images = 0 total_height = 0 total_width = 0 # Make the last image the height of the remaining content for image in images_list[:-1]: height_of_full_images += image.size[1] remaining_height = (content_height * self.scale_factor) - height_of_full_images images_list[-1] = images_list[-1].crop((0, images_list[-1].size[1] - remaining_height, images_list[-1].size[0], images_list[-1].size[1])) for image in images_list: total_width = image.size[0] if image.size[0] > total_width else total_width total_height += image.size[1] resulting_image = Image.new('RGB', (total_width, total_height)) current_height = 0 for i, image in enumerate(images_list): resulting_image.paste(im=image, box=(0, current_height)) current_height += image.size[1] return resulting_image def _capture_paginated_page(self, padding=None): """ Captures the page viewport by viewport, leaving an overlap of pixels the height of the self.padding variable between each image """ image_list = [] scroll_padding = padding if padding else self.scroll_padding # Scroll page to the top self.sh.scroll_window_to_position(0) current_scroll_position = 0 viewport_height = self.sh.driver.execute_script("return document.documentElement.clientHeight") while True: # Capture the image image_list.append(self._capture_single_viewport()) # Scroll for the next one! self.sh.scroll_window_to_position(current_scroll_position + viewport_height - scroll_padding) time.sleep(0.25) new_scroll_position = self.sh.get_window_current_scroll_position() # Break if the scroll position did not change (because it was at the bottom) if new_scroll_position == current_scroll_position: break else: current_scroll_position = new_scroll_position return image_list def _capture_headless_paginated_page(self, padding=None): """ Captures the page viewport by viewport, leaving an overlap of pixels the height of the self.padding variable between each image """ image_list = [] scroll_padding = padding if padding else self.scroll_padding # Scroll page to the top self.sh.scroll_window_to_position(0) current_scroll_position = 0 viewport_height = self.sh.driver.execute_script("return document.documentElement.clientHeight") while True: # Capture the image image_data = self.sh.get_screenshot_base64() image_file = self._create_image_file(Image.open(StringIO(image_data.decode('base64')))) image_list.append(image_file) # Scroll for the next one! self.sh.scroll_window_to_position(current_scroll_position + viewport_height - scroll_padding) time.sleep(0.25) new_scroll_position = self.sh.get_window_current_scroll_position() # Break if the scroll position did not change (because it was at the bottom) if new_scroll_position == current_scroll_position: break else: current_scroll_position = new_scroll_position return image_list def _get_image_data(self, viewport_only=False): """ Creates an Image() canvas of the page. The image is cropped to be only the viewport area if specified. :param - viewport_only: bool - Captures only the visible /viewport area if true :return - image: Image() - The image canvas of the captured data """ # - Capture the image # Gather image byte data image_data = self.sh.get_screenshot_base64() # Create an image canvas and write the byte data to it image = Image.open(StringIO(image_data.decode('base64'))) # - Crop the image to just the visible area # Top of the viewport current_scroll_position = self.sh.get_window_current_scroll_position() # Viewport Dimensions viewport_width, viewport_height = self.sh.get_viewport_size() # Image size of data returned by Selenium image_height, image_width = image.size if viewport_only: # Calculate the visible area crop_box = (0, current_scroll_position, viewport_width, current_scroll_position + viewport_height) # Crop everything of the image but the visible area cropped_image = image.crop(crop_box) return cropped_image else: # Calculate the visible area crop_box = (0, 0, viewport_width, image_width) # Crop everything of the image but the visible area cropped_image = image.crop(crop_box) return cropped_image def _crop_and_stitch_image(self, header_image, footer_image): """ This object takes in a header and footer image. It then searched for a block of 100 mixles that matches between the two images. Once it finds this point the footer image is cropped above the "match" point. A new canvas is then created that is the total height of both images. The two images are then copied onto a new canvas to create the final image, headers on top, footers on the bottom. :param - header_image: Image() - The top of the page, usually displays all of the headers elements - footer_image: Image() - The bottom of the page, usually displays all of the footer elements :return - stitched_image: Image() - The resulting image of the crop and stitching of the header and footer images """ try: # Create Pixel Row arrays from each image header_array = numpy.asarray(header_image) footer_array = numpy.asarray(footer_image) # - Find a place in both images that match then crop and stitch them at that location crop_row = 0 header_image_height = header_image.height # Set the offset to the height of the image if the height is less than the offset if self.pixel_match_offset > header_image_height: self.pixel_match_offset = header_image_height # - Find the pixel row in the footer image that matches the bottom row in the header image # Grab the last 100 rows of header_image header_last_hundred_rows = header_array[header_image_height - self.pixel_match_offset: header_image_height] # Iterates throughout the check, will match the height of the row being checked in the image. for i, footer_row in enumerate(footer_array): # Jump out if the crop row has been set if crop_row != 0: break # Check if the current row being inspected matches the header row 100 pixels above the bottom if numpy.array_equal(footer_row, header_last_hundred_rows[0]): # It is a match! for y, row in enumerate(header_last_hundred_rows): # Check that the 100 footer rows above the matching row also match the bottom 100 of # the header image we grabbed at the start of this check if numpy.array_equal(footer_array[i + y], header_last_hundred_rows[y]): # Check whether we've found 100 matching rows or not if y == self.pixel_match_offset - 1: # Yes! All 100 matched. Set the crop row to this row crop_row = i + self.pixel_match_offset break # If no rows matched, crop at height of header image if crop_row == 0: crop_row = header_image_height # - Crop the top of the footer image off above the line that matches the header image's bottom row # Create the crop box that outlines what to remove from the footer image footer_image_width = footer_image.size[0] footer_image_height = footer_image.size[1] crop_box = (0, crop_row, footer_image_width, footer_image_height) # Perform the crop cropped_footer_image = footer_image.crop(crop_box) # Grab the new height of the footer image cropped_footer_image_height = cropped_footer_image.size[1] # Create a blank image canvas that is as tall the footer and header images combined total_height = header_image_height + cropped_footer_image_height stitched_image = Image.new("RGB", (footer_image_width, total_height)) # - Paste the header and footer images onto the canvas # Paste the header image at the top stitched_image.paste(header_image, (0, 0)) # Paste the footer image directly below the header image stitched_image.paste(cropped_footer_image, (0, header_image_height)) return stitched_image except Exception as e: message = "Error while cropping and stitching a full page screenshot | {0}".format(e) raise ScreenshotException(message, stacktrace=traceback.format_exc()) def _create_image_file(self, image): """ This method takes an Image() variable and saves it into a StringIO "file". :param - image_data: Image() - The image to be saved into the StringIO object :return - image_file: StingIO() - The stringIO object containing the saved image """ # Instantiate the file object image_file = StringIO() # Save the image canvas to the file as the given file type image.save(image_file, self.file_extenson.upper()) # Set the file marker back to the beginning image_file.seek(0) return image_file class ScreenshotException(Exception): def __init__(self, msg, stacktrace=None, details=None): self.msg = msg self.details = {} if details is None else details self.details["stracktrace"] = stacktrace super(ScreenshotException, self).__init__() def __str__(self): exception_msg = "Screenshot Exception: \n" detail_string = "Exception Details:\n" for key, value in self.details.items(): detail_string += "{0}: {1}\n".format(key, value) exception_msg += detail_string exception_msg += "Message: {0}".format(self.msg) return exception_msg class SeleniumError(ScreenshotException): def __init__(self, message, selenium_helper_exception): new_message = "{0} | {1}".format(message, selenium_helper_exception.msg) super(SeleniumError, self).__init__(msg=new_message, stacktrace=selenium_helper_exception.stacktrace, details=selenium_helper_exception.details)
from __future__ import division def get_x_distribution_series(x_values, probabilites): distr_series = {} for i, x in enumerate(x_values): prob_sum = 0 for prob in probabilites[i]: prob_sum += prob distr_series[x] = prob_sum return distr_series def get_x_distribution_function(distribution_series): """ :type distribution_series:dict """ distrib_func = {} prob = 0 for x in sorted(distribution_series.keys()): distrib_func[x] = prob prob += distribution_series[x] return distrib_func def get_conditional_distribution_series(probabilities, x_values, y_values, x_distr_series): series = {} for j, y in enumerate(y_values): series[y] = {} for i, x in enumerate(x_values): series[y][x] = probabilities[i][j] / x_distr_series[x] return series def get_y_distribution_function(x_values, y_values, conditional_distribution_series): distrib_func = {} for x in x_values: distrib_func[x] = {} prob = 0 for y in sorted(y_values): distrib_func[x][y] = prob prob += conditional_distribution_series[y][x] return distrib_func def two_dim_value_generator(x_values, y_values, x_distribution_func, y_distrib_func, uniform_generator): """ :type x_distribution_func:dict :type y_distrib_func:dict """ while True: xi = uniform_generator.next() for i in range(len(x_values) - 1): if x_distribution_func[x_values[i]] < xi <= x_distribution_func[x_values[i + 1]]: x = x_values[i] break else: x = x_values[-1] xi = uniform_generator.next() for i in range(len(y_values) - 1): if y_distrib_func[x][y_values[i]] < xi <= y_distrib_func[x][y_values[i + 1]]: y = y_values[i] break else: y = y_values[-1] yield x, y def get_expected_value_x(probabilities, x_values): exp_value_x = 0 for i, x in enumerate(x_values): for prob in probabilities[i]: exp_value_x += x * prob return exp_value_x def get_expected_value_y(probabilities, y_values): exp_value_y = 0 for j, y in enumerate(y_values): for i in range(len(probabilities)): exp_value_y += y * probabilities[i][j] return exp_value_y def get_dispersion_x(probabilities, x_values, exp_value_x): disp_x = 0 for i, x in enumerate(x_values): for prob in probabilities[i]: disp_x += prob * (x - exp_value_x) ** 2 return disp_x def get_dispersion_y(probabilities, y_values, exp_value_y): disp_y = 0 for i, y in enumerate(y_values): for j in range(len(probabilities)): disp_y += probabilities[i][j] * (y - exp_value_y) ** 2 return disp_y def get_correlation_coefficient(probabilities, x_values, y_values): exp_value_x = get_expected_value_x(probabilities, x_values) exp_value_y = get_expected_value_y(probabilities, y_values) disp_x = get_dispersion_x(probabilities, x_values, exp_value_x) disp_y = get_dispersion_y(probabilities, y_values, exp_value_y) covariance_coefficient = 0 for i, x in enumerate(x_values): for j, y in enumerate(y_values): covariance_coefficient += (x - exp_value_x) * (y - exp_value_y) * probabilities[i][j] return covariance_coefficient / (disp_x ** (1 / 2) * disp_y ** (1 / 2)) def get_bar_chart(k, a, b): """ :type values:list :type a,b:float :type k:int """ def func(values): h = (b - a) / k b_i = a values.sort() barchart = [] value_quantity = len(values) for i in range(k): a_i = b_i b_i = a_i + h v = 0 for x in values: if x > b_i: break elif a_i < x <= b_i: v += 1 barchart.append((a_i, b_i, v / value_quantity)) return barchart return func def cleared_values(values): clr_values = [] for x in values: if x not in clr_values: clr_values.append(x) clr_values.sort() return clr_values def get_conditional_distribution(x_values_inp, y_values_inp, gener_values): cond_distrib={} pair_quantity=len(gener_values) for x, y in gener_values: if x not in cond_distrib: cond_distrib[x]={} for y_in in y_values_inp: cond_distrib[x][y_in]=0 cond_distrib[x][y]+=1/pair_quantity distrib_list=[] for x in x_values_inp: distrib_list.append([]) for y in y_values_inp: distrib_list[-1].append(cond_distrib[x][y]) return distrib_list
from openprocurement.agreement.core.adapters.configurator import BaseAgreementConfigurator class CFAgreementUAConfigurator(BaseAgreementConfigurator): name = "CFA configurator" model = None # TODO:
ano = int(input('Digite o ano do seu nascimento: ')) idade = 2020-ano if idade <= 10: print('Mirim') elif idade <= 15: print('Infantil') elif idade <= 19: print('Junior') elif idade <= 20: print('Sênior') else: print('Master') print(idade)
"""Snake Game Python Tutorial youtube video: https://www.youtube.com/watch?v=CD4qAhfFuLo current time: 33:00 """ import sys import math import random import pygame from pygame.locals import * import tkinter as tk from tkinter import messagebox WHITE = (255,255,255) BLACK = (0,0,0) RED = (255,0,0) GREEN = (0,255,0) BLUE = (0,0,255) class cube(object): """ """ w = 500 #set pixel screen width rows = 20 #set number of rows def __init__(self,start,dirnx=1,dirny=0,color=RED): self.pos = start self.dirnx = 1 self.dirny = 0 self.color = color def move(self,dirnx,dirny): """ move cube, by adding new direction to previous position """ self.dirnx = dirnx self.dirny = dirny self.pos = (self.pos[0]+self.dirnx, self.pos[1]+self.dirny) def draw(self,surface,eyes=False): """ drawing: convert x,y grid position to pixel position """ dis = self.w // self.rows #distance between x and y values #variables for easy coding i = self.pos[0] # row j = self.pos[1] # column #draw just a little bit less, so we draw inside of the square. and we dont cover grid. pygame.draw.rect(surface, self.color, (i*dis+1,j*dis+1,dis-2,dis-2 )) #draw eyes if eyes: centre = dis//2 radius = 3 circleMiddle = (i*dis+centre-radius, j*dis+8 ) #eye 1 circleMiddle2 = (i*dis+dis-radius*2, j*dis+8 ) #eye 2 pygame.draw.circle(surface, BLACK, circleMiddle, radius) pygame.draw.circle(surface, BLACK, circleMiddle2, radius) def drawGrid(w,rows,surface): """ This function draws a square grid on main display """ #distance between grid lines sizeBtwn = w // rows x = 0 y = 0 #create grid by drawing lines for l in range(rows): x = x + sizeBtwn y = y + sizeBtwn #vertical lines pygame.draw.line(surface, WHITE, (x,0), (x,w)) #horizontal lines pygame.draw.line(surface, WHITE, (0,y), (w,y)) def redrawWindow(surface): global rows, width, s #background surface.fill(BLACK) #draw grid drawGrid(width, rows, surface) #update display pygame.display.update() def main(): global width, rows, s #create game display width = 500 rows = 20 win = pygame.display.set_mode((width, width)) #square display clock = pygame.time.Clock() flag = True FPScount = 0 print(FPScount) while flag: #pygame.time.delay(50) clock.tick(10) #game max speed 10 FPS s.move() redrawWindow(win) FPScount += 1 print(f'FPScount:{FPScount}') #rows = 0 #w = 0 #h = 0 #cube.rows = rows #cube.w = w main() pygame.quit() sys.exit()
#!/usr/bin/env python import logging import sys import traceback import katcp import readline import codecs import re from optparse import OptionParser from cmd2 import Cmd from katcp import DeviceClient logging.basicConfig(level=logging.INFO, stream=sys.stderr, format="%(asctime)s - %(name)s - %(filename)s:" "%(lineno)s - %(levelname)s - %(message)s") log = logging.getLogger("r2rm.basic_cli") ESCAPE_SEQUENCE_RE = re.compile(r''' ( \\U........ # 8-digit hex escapes | \\u.... # 4-digit hex escapes | \\x.. # 2-digit hex escapes | \\[0-7]{1,3} # Octal escapes | \\N\{[^}]+\} # Unicode characters by name | \\[\\'"abfnrtv] # Single-character escapes )''', re.UNICODE | re.VERBOSE) def unescape_string(s): def decode_match(match): return codecs.decode(match.group(0), 'unicode-escape') return ESCAPE_SEQUENCE_RE.sub(decode_match, s) def decode_katcp_message(s): """ @brief Render a katcp message human readable @params s A string katcp message """ return unescape_string(s).replace("\_", " ") class StreamClient(DeviceClient): def __init__(self, server_host, server_port, stream=sys.stdout): self.stream = stream super(StreamClient, self).__init__(server_host, server_port) self.commands = set() def inform_help(self, msg): """ Handls inform""" self.unhandled_inform(msg) self.commands.add(msg.arguments[0]) def to_stream(self, prefix, msg): self.stream.write("%s:\n%s\n" % (prefix, decode_katcp_message(msg.__str__()))) def unhandled_reply(self, msg): """Deal with unhandled replies""" self.to_stream("Unhandled reply", msg) def unhandled_inform(self, msg): """Deal with unhandled replies""" self.to_stream("Unhandled inform", msg) def unhandled_request(self, msg): """Deal with unhandled replies""" self.to_stream("Unhandled request", msg) class KatcpCli(Cmd): """ @brief Basic command line interface to KATCP device @detail This class provides a command line interface to to any katcp.DeviceClient subclass. Behaviour of the interface is determined by the client object passed at instantiation. """ Cmd.shortcuts.update({'?': 'katcp'}) Cmd.allow_cli_args = False def __init__(self,host,port,*args,**kwargs): """ @brief Instantiate new KatcpCli instance @params client A DeviceClient instance """ self.host = host self.port = port self.katcp_parser = katcp.MessageParser() self.start_client() Cmd.__init__(self, *args, persistent_history_file='~/.katcp_cli_history', **kwargs) def start_client(self): log.info("Client connecting to port {self.host}:{self.port}".format(**locals())) self.client = StreamClient(self.host, self.port) self.client.start() self.prompt = "(katcp CLI {self.host}:{self.port}): ".format(**locals()) def stop_client(self): self.client.stop() self.client.join() def do_katcp(self, arg, opts=None): """ @brief Send a request message to a katcp server @param arg The katcp formatted request """ request = "?" + "".join(arg) log.info("Request: %s"%request) try: msg = self.katcp_parser.parse(request) self.client.ioloop.add_callback(self.client.send_message, msg) except Exception, e: e_type, e_value, trace = sys.exc_info() reason = "\n".join(traceback.format_exception( e_type, e_value, trace, 20)) log.exception(reason) def complete_katcp(self, text, line, begidx, endidx): """ Tab completion for katcp requests. """ if not self.client.commands: # ToDo: this request should be silent and not be printed on the cli # ... self.client.ioloop.add_callback(self.client.send_message, "?help") return self.basic_complete(text, line, begidx, endidx, self.client.commands) def do_connect(self, arg, opts=None): """ @brief Connect to different KATCP server @param arg Target server address in form "host:port" """ try: host,port = arg.split(":") except Exception: print "Usage: connect <host>:<port>" return try: app = KatcpCli(host,port) app.cmdloop() except Exception as error: log.exception("Error from CLI") finally: app.stop_client() if __name__ == "__main__": usage = "usage: %prog [options]" parser = OptionParser(usage=usage) parser.add_option('-a', '--host', dest='host', type="string", default="", metavar='HOST', help='attach to server HOST (default="" - localhost)') parser.add_option('-p', '--port', dest='port', type=int, default=1235, metavar='N', help='attach to server port N (default=1235)') (opts, args) = parser.parse_args() sys.argv = sys.argv[:1] log.info("Ctrl-C to terminate.") try: app = KatcpCli(opts.host,opts.port) app.cmdloop() except Exception as error: log.exception("Error from CLI") finally: app.stop_client()
"""opentamilweb URL Configuration The `urlpatterns` list routes URLs to views. For more information please see: https://docs.djangoproject.com/en/1.10/topics/http/urls/ Examples: Function views 1. Add an import: from my_app import views 2. Add a URL to urlpatterns: url(r'^$', views.home, name='home') Class-based views 1. Add an import: from other_app.views import Home 2. Add a URL to urlpatterns: url(r'^$', Home.as_view(), name='home') Including another URLconf 1. Import the include() function: from django.conf.urls import url, include 2. Add a URL to urlpatterns: url(r'^blog/', include('blog.urls')) """ import sys from django.shortcuts import redirect from django.conf.urls import url from .views import * PYTHON26 = sys.version.find('2.6') >= 0 urlpatterns = [ url(r'^$', index,name="home"), url(r'^apidoc/$',lambda r: redirect("/static/sphinx_doc/_build/html/index.html")), url(r'^tts_demo/$',tts_demo,name="tts_demo"), url(r'^translite/$', trans,name="translite"), url(r'^tsci/$', uni,name="tsci"), url(r'^keechu/$', keechu,name="keechu"), url(r'^sandhi-check/$', sandhi_check,name="sandhi"), url(r'^spell/$', spl,name="spell"), url(r'^revers/$', rev,name="rever"), url(r'^number/$', num,name="number"), url(r'^anagram/$', anag,name="anagram"), url(r'^unigram/$', unig,name="unigram"), url(r'^vaypaadu/$',vaypaadu,name="multiplication"), url(r'^number/(?P<num>\d+)/$', numstr,name="numstr"), url(r'^tsci/(?P<tsci>.+?)/$', unicod,name="unicod"), url(r'^keechu/(?P<k1>.+?)/$', keech,name="keech"), url(r'^sandhi-checker/$', call_sandhi_check,name="sandhi_check"), url(r'^translite/(?P<tan>.+?)/$', translite,name="phonetic"), url(r'^spell/(?P<k1>.+?)/$', spell_check,name="spell_check"), url(r'^ngram/$', ngra,name="ta_ngram"), url(r'^ngram/(?P<ng>.+?)/$', test_ngram,name="ngram"), url(r'^anagram/(?P<word>.+?)/$', anagram,name="ta_anagram"), url(r'^unigram/(?P<word>.+?)/$', test_basic,name="ta_unigram"), url(r'^revers/(?P<word>.+?)/$', revers,name="ta_revers"), url(r'^xword/$',xword,name='ta_xword'), url(r'^summarizer/',summarizer,name='ta_summarizer'), url(r'^morse/(?P<direction>.+)/(?P<word>.+)/$',morse,name='ta_morse'), url(r'^morse/$', morse_code,name="morse_code"), url(r'^minnal/$',minnal,name="ta_minnal"), url(r'^minnal/(?P<word>.+?)/$',test_minnal,name="minnal"), url(r'^textrandomizer_auth/(?P<key>.+)/$',textrandomizer,name="ta_textrandomizer"), url(r'^textrandomizer/(?P<level>.+)/$',test_textrandomizer,name="textrandomizer"), url(r'^stemmer/$',tastemmer,name="stemmer"), url(r'^stemmer/json/$',lambda x: tastemmer(x,use_json=True),name="json_stemmer"), ] if not PYTHON26: urlpatterns.extend( [ url(r'^classify-word/$', classify_word,name="classify_word"), url(r'^get-classify/$', get_classify,name="classifier")] )
# Generated by Django 2.2.2 on 2019-06-24 14:07 import django.contrib.gis.db.models.fields from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('main', '0004_auto_20190624_1355'), ] operations = [ migrations.AlterField( model_name='photo', name='position', field=django.contrib.gis.db.models.fields.PointField(blank=True, null=True, srid=4326), ), ]
"""Script to train the Hamiltonian Generative Network """ import ast import argparse import copy import pprint import os import warnings import yaml import numpy as np import torch import tqdm from utilities.integrator import Integrator from utilities.training_logger import TrainingLogger from utilities import loader from utilities.loader import load_hgn, get_online_dataloaders, get_offline_dataloaders from utilities.losses import reconstruction_loss, kld_loss, geco_constraint from utilities.statistics import mean_confidence_interval def _avoid_overwriting(experiment_id): # This function throws an error if the given experiment data already exists in runs/ logdir = os.path.join('runs', experiment_id) if os.path.exists(logdir): assert len(os.listdir(logdir)) == 0,\ f'Experiment id {experiment_id} already exists in runs/. Remove it, change the name ' \ f'in the yaml file.' class HgnTrainer: def __init__(self, params, resume=False): """Instantiate and train the Hamiltonian Generative Network. Args: params (dict): Experiment parameters (see experiment_params folder). """ self.params = params self.resume = resume if not resume: # Fail if experiment_id already exist in runs/ _avoid_overwriting(params["experiment_id"]) # Set device self.device = params["device"] if "cuda" in self.device and not torch.cuda.is_available(): warnings.warn( "Warning! Set to train in GPU but cuda is not available. Device is set to CPU.") self.device = "cpu" # Get dtype, will raise a 'module 'torch' has no attribute' if there is a typo self.dtype = torch.__getattribute__(params["networks"]["dtype"]) # Load hgn from parameters to deice self.hgn = load_hgn(params=self.params, device=self.device, dtype=self.dtype) if 'load_path' in self.params: self.load_and_reset(self.params, self.device, self.dtype) # Either generate data on-the-fly or load the data from disk if "train_data" in self.params["dataset"]: print("Training with OFFLINE data...") self.train_data_loader, self.test_data_loader = get_offline_dataloaders(self.params) else: print("Training with ONLINE data...") self.train_data_loader, self.test_data_loader = get_online_dataloaders(self.params) # Initialize training logger self.training_logger = TrainingLogger( hyper_params=self.params, loss_freq=100, rollout_freq=1000, model_freq=10000 ) # Initialize tensorboard writer self.model_save_file = os.path.join( self.params["model_save_dir"], self.params["experiment_id"] ) # Define optimization modules optim_params = [ { 'params': self.hgn.encoder.parameters(), 'lr': params["optimization"]["encoder_lr"] }, { 'params': self.hgn.transformer.parameters(), 'lr': params["optimization"]["transformer_lr"] }, { 'params': self.hgn.hnn.parameters(), 'lr': params["optimization"]["hnn_lr"] }, { 'params': self.hgn.decoder.parameters(), 'lr': params["optimization"]["decoder_lr"] }, ] self.optimizer = torch.optim.Adam(optim_params) def load_and_reset(self, params, device, dtype): """Load the HGN from the path specified in params['load_path'] and reset the networks in params['reset']. Args: params (dict): Dictionary with all the necessary parameters to load the networks. device (str): 'gpu:N' or 'cpu' dtype (torch.dtype): Data type to be used in computations. """ self.hgn.load(params['load_path']) if 'reset' in params: if isinstance(params['reset'], list): for net in params['reset']: assert net in ['encoder', 'decoder', 'hamiltonian', 'transformer'] else: assert params['reset'] in ['encoder', 'decoder', 'hamiltonian', 'transformer'] if 'encoder' in params['reset']: self.hgn.encoder = loader.instantiate_encoder(params, device, dtype) if 'decoder' in params['reset']: self.hgn.decoder = loader.instantiate_decoder(params, device, dtype) if 'transformer' in params['reset']: self.hgn.transformer = loader.instantiate_transformer(params, device, dtype) if 'hamiltonian' in params['reset']: self.hgn.hnn = loader.instantiate_hamiltonian(params, device, dtype) def training_step(self, rollouts): """Perform a training step with the given rollouts batch. Args: rollouts (torch.Tensor): Tensor of shape (batch_size, seq_len, channels, height, width) corresponding to a batch of sampled rollouts. Returns: A dictionary of losses and the model's prediction of the rollout. The reconstruction loss and KL divergence are floats and prediction is the HGNResult object with data of the forward pass. """ self.optimizer.zero_grad() rollout_len = rollouts.shape[1] input_frames = self.params['optimization']['input_frames'] assert(input_frames <= rollout_len) # optimization.use_steps must be smaller (or equal) to rollout.sequence_length roll = rollouts[:, :input_frames] hgn_output = self.hgn.forward(rollout_batch=roll, n_steps=rollout_len - input_frames) target = rollouts[:, input_frames-1:] # Fit first input_frames and try to predict the last + the next (rollout_len - input_frames) prediction = hgn_output.reconstructed_rollout if self.params["networks"]["variational"]: tol = self.params["geco"]["tol"] alpha = self.params["geco"]["alpha"] lagrange_mult_param = self.params["geco"]["lagrange_multiplier_param"] C, rec_loss = geco_constraint(target, prediction, tol) # C has gradient # Compute moving average of constraint C (without gradient) if self.C_ma is None: self.C_ma = C.detach() else: self.C_ma = alpha * self.C_ma + (1 - alpha) * C.detach() C_curr = C.detach().item() # keep track for logging C = C + (self.C_ma - C.detach()) # Move C without affecting its gradient # Compute KL divergence mu = hgn_output.z_mean logvar = hgn_output.z_logvar kld = kld_loss(mu=mu, logvar=logvar) # normalize by number of frames, channels and pixels per frame kld_normalizer = prediction.flatten(1).size(1) kld = kld / kld_normalizer # Compute losses train_loss = kld + self.langrange_multiplier * C # clamping the langrange multiplier to avoid inf values self.langrange_multiplier = self.langrange_multiplier * torch.exp( lagrange_mult_param * C.detach()) self.langrange_multiplier = torch.clamp(self.langrange_multiplier, 1e-10, 1e10) losses = { 'loss/train': train_loss.item(), 'loss/kld': kld.item(), 'loss/C': C_curr, 'loss/C_ma': self.C_ma.item(), 'loss/rec': rec_loss.item(), 'other/langrange_mult': self.langrange_multiplier.item() } else: # not variational # Compute frame reconstruction error train_loss = reconstruction_loss( target=target, prediction=prediction) losses = {'loss/train': train_loss.item()} train_loss.backward() self.optimizer.step() return losses, hgn_output def fit(self): """The trainer fits an HGN. Returns: (HGN) An HGN model that has been fitted to the data """ # Initial values for geco algorithm if self.params["networks"]["variational"]: self.langrange_multiplier = self.params["geco"]["initial_lagrange_multiplier"] self.C_ma = None # TRAIN for ep in range(self.params["optimization"]["epochs"]): print("Epoch %s / %s" % (str(ep + 1), str(self.params["optimization"]["epochs"]))) pbar = tqdm.tqdm(self.train_data_loader) for batch_idx, rollout_batch in enumerate(pbar): # Move to device and change dtype rollout_batch = rollout_batch.to(self.device).type(self.dtype) # Do an optimization step losses, prediction = self.training_step(rollouts=rollout_batch) # Log progress self.training_logger.step(losses=losses, rollout_batch=rollout_batch, prediction=prediction, model=self.hgn) # Progress-bar msg msg = ", ".join([ f"{k}: {v:.2e}" for k, v in losses.items() if v is not None ]) pbar.set_description(msg) # Save model self.hgn.save(self.model_save_file) self.test() return self.hgn def compute_reconst_kld_errors(self, dataloader): """Computes reconstruction error and KL divergence. Args: dataloader (torch.utils.data.DataLoader): DataLoader to retrieve errors from. Returns: (reconst_error_mean, reconst_error_h), (kld_mean, kld_h): Tuples where the mean and 95% conficence interval is shown. """ first = True pbar = tqdm.tqdm(dataloader) for _, rollout_batch in enumerate(pbar): # Move to device and change dtype rollout_batch = rollout_batch.to(self.device).type(self.dtype) rollout_len = rollout_batch.shape[1] input_frames = self.params['optimization']['input_frames'] assert(input_frames <= rollout_len) # optimization.use_steps must be smaller (or equal) to rollout.sequence_length roll = rollout_batch[:, :input_frames] hgn_output = self.hgn.forward(rollout_batch=roll, n_steps=rollout_len - input_frames) target = rollout_batch[:, input_frames-1:] # Fit first input_frames and try to predict the last + the next (rollout_len - input_frames) prediction = hgn_output.reconstructed_rollout error = reconstruction_loss( target=target, prediction=prediction, mean_reduction=False).detach().cpu( ).numpy() if self.params["networks"]["variational"]: kld = kld_loss(mu=hgn_output.z_mean, logvar=hgn_output.z_logvar, mean_reduction=False).detach().cpu( ).numpy() # normalize by number of frames, channels and pixels per frame kld_normalizer = prediction.flatten(1).size(1) kld = kld / kld_normalizer if first: first = False set_errors = error if self.params["networks"]["variational"]: set_klds = kld else: set_errors = np.concatenate((set_errors, error)) if self.params["networks"]["variational"]: set_klds = np.concatenate((set_klds, kld)) err_mean, err_h = mean_confidence_interval(set_errors) if self.params["networks"]["variational"]: kld_mean, kld_h = mean_confidence_interval(set_klds) return (err_mean, err_h), (kld_mean, kld_h) else: return (err_mean, err_h), None def test(self): """Test after the training is finished and logs result to tensorboard. """ print("Calculating final training error...") (err_mean, err_h), kld = self.compute_reconst_kld_errors(self.train_data_loader) self.training_logger.log_error("Train reconstruction error", err_mean, err_h) if kld is not None: kld_mean, kld_h = kld self.training_logger.log_error("Train KL divergence", kld_mean, kld_h) print("Calculating final test error...") (err_mean, err_h), kld = self.compute_reconst_kld_errors(self.test_data_loader) self.training_logger.log_error("Test reconstruction error", err_mean, err_h) if kld is not None: kld_mean, kld_h = kld self.training_logger.log_error("Test KL divergence", kld_mean, kld_h) def _overwrite_config_with_cmd_arguments(config, args): if args.name is not None: config['experiment_id'] = args.name[0] if args.epochs is not None: config['optimization']['epochs'] = args.epochs[0] if args.dataset_path is not None: # Read the parameters.yaml file in the given dataset path dataset_config = _read_config(os.path.join(_args.dataset_path[0], 'parameters.yaml')) for key, value in dataset_config.items(): config[key] = value if args.env is not None: if 'train_data' in config['dataset']: raise ValueError( f'--env was given but configuration is set for offline training: ' f'train_data={config["dataset"]["train_data"]}' ) env_params = _read_config(DEFAULT_ENVIRONMENTS_PATH + args.env[0] + '.yaml') config['environment'] = env_params['environment'] if args.params is not None: for p in args.params: key, value = p.split('=') ptr = config keys = key.split('.') for i, k in enumerate(keys): if i == len(keys) - 1: ptr[k] = ast.literal_eval(value) else: ptr = ptr[k] if args.load is not None: config['load_path'] = args.load[0] if args.reset is not None: config['reset'] = args.reset def _read_config(config_file): with open(config_file, 'r') as f: config = yaml.load(f, Loader=yaml.FullLoader) return config def _merge_configs(train_config, dataset_config): config = copy.deepcopy(train_config) for key, value in dataset_config.items(): config[key] = value # If the config specifies a dataset path, we take the rollout from the configuration file # in the given dataset if 'dataset' in config and 'train_data' in config['dataset']: dataset_config = _read_config( # Read parameters.yaml in root of given dataset os.path.join(os.path.dirname(config['dataset']['train_data']), 'parameters.yaml')) config['dataset']['rollout'] = dataset_config['dataset']['rollout'] return config def _ask_confirmation(config): printer = pprint.PrettyPrinter(indent=4) print(f'The training will be run with the following configuration:') printed_config = copy.deepcopy(_config) printed_config.pop('networks') printer.pprint(printed_config) print('Proceed? (y/n):') if input() != 'y': print('Abort.') exit() if __name__ == "__main__": DEFAULT_TRAIN_CONFIG_FILE = "experiment_params/train_config_default.yaml" DEFAULT_DATASET_CONFIG_FILE = "experiment_params/dataset_online_default.yaml" DEFAULT_ENVIRONMENTS_PATH = "experiment_params/default_environments/" DEFAULT_SAVE_MODELS_DIR = "saved_models/" parser = argparse.ArgumentParser() parser.add_argument( '--train-config', action='store', nargs=1, type=str, required=True, help=f'Path to the training configuration yaml file.' ) parser.add_argument( '--dataset-config', action='store', nargs=1, type=str, required=False, help=f'Path to the dataset configuration yaml file.' ) parser.add_argument( '--name', action='store', nargs=1, required=False, help='If specified, this name will be used instead of experiment_id of the yaml file.' ) parser.add_argument( '--epochs', action='store', nargs=1, type=int, required=False, help='The number of training epochs. If not specified, optimization.epochs of the ' 'training configuration will be used.' ) parser.add_argument( '--env', action='store', nargs=1, type=str, required=False, help='The environment to use (for online training only). Possible values are ' '\'pendulum\', \'spring\', \'two_bodies\', \'three_bodies\', corresponding to ' 'environment configurations in experiment_params/default_environments/. If not ' 'specified, the environment specified in the given --dataset-config will be used.' ) parser.add_argument( '--dataset-path', action='store', nargs=1, type=str, required=False, help='Path to a stored dataset to use for training. For offline training only. In this ' 'case no dataset configuration file will be loaded.' ) parser.add_argument( '--params', action='store', nargs='+', required=False, help='Override one or more parameters in the config. The format of an argument is ' 'param_name=param_value. Nested parameters are accessible by using a dot, ' 'i.e. --param dataset.img_size=32. IMPORTANT: lists must be enclosed in double ' 'quotes, i.e. --param environment.mass:"[0.5, 0.5]".' ) parser.add_argument( '-y', '-y', action='store_true', default=False, required=False, help='Whether to skip asking for user confirmation before starting the training.' ) parser.add_argument( '--resume', action='store', required=False, nargs='?', default=None, help='NOT IMPLEMENTED YET. Resume the training from a saved model. If a path is provided, ' 'the training will be resumed from the given checkpoint. Otherwise, the last ' 'checkpoint will be taken from saved_models/<experiment_id>.' ) parser.add_argument( '--load', action='store', type=str, required=False, nargs=1, help='Path from which to load the HGN.' ) parser.add_argument( '--reset', action='store', nargs='+', required=False, help='Use only in combimation with --load, tells the trainer to reinstantiate the given ' 'networks. Values: \'encoder\', \'transformer\', \'decoder\', \'hamiltonian\'.' ) _args = parser.parse_args() # Read configurations _train_config = _read_config(_args.train_config[0]) if _args.dataset_path is None: # Will use the dataset config file (or default if not given) _dataset_config_file = DEFAULT_DATASET_CONFIG_FILE if _args.dataset_config is None else \ _args.dataset_config[0] _dataset_config = _read_config(_dataset_config_file) _config = _merge_configs(_train_config, _dataset_config) else: # Will use the dataset given in the command line arguments assert _args.dataset_config is None, 'Both --dataset-path and --dataset-config were given.' _config = _train_config # Overwrite configuration with command line arguments _overwrite_config_with_cmd_arguments(_config, _args) # Show configuration and ask user for confirmation if not _args.y: _ask_confirmation(_config) # Train HGN network trainer = HgnTrainer(_config) hgn = trainer.fit()
# Copyright (C) 2019-2020, Therapixel SA. # All rights reserved. # This file is subject to the terms and conditions described in the # LICENSE file distributed in this package. """Test the C-Find message are correctly sent and can provide useful results. """ import os from datetime import datetime, timedelta from pathlib import Path from typing import Generator import pytest from pynetdicom import debug_logger from pytest import CaptureFixture from pacsanini.config import PacsaniniConfig from pacsanini.models import QueryLevel from pacsanini.net import c_find def validate_results(sys_capture, results, query_level, query_fields): """Validate that c-find results are ok.""" assert isinstance(results, Generator) results_list = list(results) out = sys_capture.readouterr() assert query_level in out.err for result in results_list: for field in query_fields: assert hasattr(result, field) @pytest.mark.net def test_find_single_date(capsys: CaptureFixture, pacsanini_orthanc_config: str): """Test that the find method functions correctly. Check that the query level is correctly set to the patient level by looking at the output logs. """ config = PacsaniniConfig.from_yaml(pacsanini_orthanc_config) query_fields = ["SOPClassUID", "PatientBirthDate"] debug_logger() patient_level_results = c_find.patient_find( config.net.local_node.dict(), config.net.called_node.dict(), dicom_fields=query_fields, start_date=datetime(2016, 6, 22), ) validate_results( capsys, patient_level_results, "Patient Root Query/Retrieve Information Model - FIND", query_fields, ) study_level_results = c_find.study_find( config.net.local_node, config.net.called_node, dicom_fields=query_fields, start_date=datetime(2010, 12, 1), ) validate_results( capsys, study_level_results, "Study Root Query/Retrieve Information Model - FIND", query_fields, ) @pytest.mark.net def test_find_multiple_dates( capsys: CaptureFixture, pacsanini_orthanc_config: str, tmpdir: Path ): """Test that the find method functions correctly. Check that the query level is correctly set to the patient level by looking at the output logs. """ config = PacsaniniConfig.from_yaml(pacsanini_orthanc_config) query_fields = ["Modality", "PatientBirthDate"] debug_logger() patient_out_path = os.path.join(tmpdir, "patient_results.csv") c_find.patient_find2csv( config.net.local_node, config.net.called_node, patient_out_path, dicom_fields=query_fields, start_date=datetime.now() - timedelta(days=23), end_date=datetime.now(), ) assert os.path.exists(patient_out_path) out = capsys.readouterr() assert "Patient Root Query/Retrieve Information Model - FIND" in out.err study_out_path = os.path.join(tmpdir, "study_results.csv") c_find.study_find2csv( config.net.local_node, config.net.called_node, study_out_path, dicom_fields=query_fields, start_date=datetime.now() - timedelta(days=23), end_date=datetime.now(), ) assert os.path.exists(study_out_path) out = capsys.readouterr() assert "Study Root Query/Retrieve Information Model - FIND" in out.err @pytest.mark.net def test_find_invalid_parameters(pacsanini_orthanc_config: str): """Test that with invalid parameters, the find functionality responds with expected errors. """ config = PacsaniniConfig.from_yaml(pacsanini_orthanc_config) invalid_dates = c_find.find( config.net.local_node, config.net.called_node, query_level=QueryLevel.PATIENT, dicom_fields=["PatientID"], start_date=datetime.now(), end_date=datetime.now() - timedelta(days=1), ) with pytest.raises(ValueError): list(invalid_dates) called_node = config.net.called_node.dict() called_node.pop("ip", None) invalid_dest_node = c_find.find( config.net.local_node, called_node, query_level=QueryLevel.PATIENT, dicom_fields=["PatientID"], start_date=datetime.now(), ) with pytest.raises(ValueError): list(invalid_dest_node)
import yaml import os import shutil import re import toml from typing import List, Set, Tuple, Pattern, Match from urllib.parse import urlparse from pathlib import Path CHECKOUT_DIR = "checkouts" GIT_CLONE_CMD = "git clone {{}} ./{}/{{}}/{{}}".format(CHECKOUT_DIR) RE_EXTRACT_TITLE: Pattern[str] = re.compile("([#\s]*)(?P<title>.*)") RE_EXTRACT_IMAGES: Pattern[str] = re.compile("\!\[(?P<alt>.*)\]\((?P<url>.*)\)") RE_EXTRACT_LINKS: Pattern[str] = re.compile( "\[(?P<alt>[^\]]*)\]\((?P<rel>[\.\/]*)(?P<url>(?P<domain>https?:\/\/[a-zA-Z\.0-9-]+)?(?!#)\S+)\)" ) # holds the git URL and the new path for links between pulled in files internal_links: dict = {} config: dict = toml.load("config.toml") def main(): os.system("rm -rf ./{}/".format(CHECKOUT_DIR)) yaml_external = _read_yaml("external.yaml") repos_to_clone: Set[str] = set() directories_to_create: List[str] = [] content: dict for directory, content in yaml_external.items(): directories_to_create.append(directory) repo = _get_repo_url_from_pull_url(content.get("source")) repos_to_clone.add(repo) _clone_repos(repos_to_clone) # pull_directories(yaml_external) generated_files = _pull_files(yaml_external) _generate_gitignore(generated_files) def _read_yaml(file_name: str) -> dict: with open(file_name, "r", encoding="utf-8") as stream: yaml_file = yaml.safe_load(stream) return yaml_file def _get_repo_url_from_pull_url(url: str) -> str: parsed = urlparse(url) repo_owner, repo_name = _get_canonical_repo_from_url(url) return "https://{}/{}/{}".format(parsed.netloc, repo_owner, repo_name) def _get_canonical_repo_from_url(url: str) -> Tuple[str, str]: parsed = urlparse(url) repo_owner, repo_name = parsed.path[1:].split("/")[:2] return repo_owner, repo_name def _get_file_content(filename: str, remove_heading=False) -> Tuple[str, str]: with open(filename, "r") as f: raw = f.readlines() if not remove_heading: return "".join(raw) heading = None for i in range(len(raw)): if raw[i].startswith("#"): heading = RE_EXTRACT_TITLE.match(raw[i]).group("title") heading = '"' + heading.replace('"', '\\"') + '"' continue if not raw[i].startswith("#") and not raw[i].strip() == "": return "".join(raw[i:]), heading def _generate_yaml_front_matter(front_matter: dict = {}) -> List[str]: fm = ["---"] for key, value in front_matter.items(): if type(value) == dict: fm.append(yaml.dump({key: value}).strip()) else: fm.append("{}: {}".format(key, value)) fm.append("---") fm = [l + "\n" for l in fm] return fm def _clone_repos(repos: List[str]): for repo_url in repos: repo_owner, repo_name = _get_canonical_repo_from_url(repo_url) cmd = GIT_CLONE_CMD.format(repo_url, repo_owner, repo_name) os.system(cmd) # TODO: This is currently not being used # def pull_directories(yaml_external: dict): # content: dict # for target_dir, content in yaml_external.items(): # pull_dir = content.get("pullDir", None) # if not pull_dir: # continue # # abs_target_path = get_abs_dir_path(target_dir) # repo_owner, repo_name = get_canonical_repo_from_url(content.get("source")) # repo_checkout_base_path = os.path.join(CHECKOUT_DIR, repo_owner, repo_name) # repo_checkout_pull_path = os.path.join(repo_checkout_base_path, pull_dir) # for root, _, files in os.walk(repo_checkout_pull_path): # for file in files: # relative_path = os.path.join( # root[len(repo_checkout_pull_path) + 1 :], file # ) # copy_file( # base_src_path=repo_checkout_base_path, # pull_dir=pull_dir, # rel_file_path=relative_path, # target_dir=target_dir, # transform_file=content.get("transform", {}).get(file, None), # remove_heading=True, # ) def _pull_files(yaml_external: dict) -> List[str]: generated_files: List[str] = [] content: dict # collects all the URLs and new file paths for the pulled in files. # we need to do this as a prep step before processing each file # so we can redirect internally for target_dir, content in yaml_external.items(): for rel_file in content.get("pullFiles", []): full_url = "{}/blob/master/{}".format(content.get("source"), rel_file) file_name = os.path.basename(rel_file) file_path = os.path.join(target_dir, file_name) rel_path_to_target_file = ("".join(file_path.split(".")[:-1])).lower() internal_links[full_url] = "/docs/latest/{}/".format( rel_path_to_target_file ) for target_dir, content in yaml_external.items(): pull_files: List[str] = content.get("pullFiles", []) repo_owner, repo_name = _get_canonical_repo_from_url(content.get("source")) # processes and copies content from the git checkout to the desired location for rel_file in pull_files: filename = os.path.basename(rel_file) abs_path_to_source_file = os.path.abspath( os.path.join(CHECKOUT_DIR, repo_owner, repo_name) ) abs_path_to_target_file = _copy_file( abs_path_to_repo_checkout_dir=abs_path_to_source_file, rel_path_to_source_file=rel_file, target_dir=target_dir, transform_file=content.get("transform", {}).get(filename, None), remove_heading=True, repo_owner=repo_owner, repo_name=repo_name, ) generated_files.append(abs_path_to_target_file) return generated_files def _generate_gitignore(paths_to_include: List[str]): with open("content/.gitignore", "w") as gitignore: gitignore.write("# THIS FILE IS AUTO-GENERATED. DO NOT MODIFY BY HAND\n\n") for f in paths_to_include: gitignore.write(os.path.relpath(f, "content") + "\n") def _copy_file( abs_path_to_repo_checkout_dir: str, rel_path_to_source_file: str, target_dir: str, transform_file: dict = {}, remove_heading: bool = True, repo_owner: str = "", repo_name: str = "", ) -> str: file_name = os.path.basename(rel_path_to_source_file) rel_path_to_target_file = os.path.join(target_dir, file_name) abs_path_to_target_file = os.path.abspath( os.path.join("content/docs/latest", rel_path_to_target_file) ) path_to_target_file = Path(os.path.dirname(abs_path_to_target_file)) path_to_target_file.mkdir(parents=True, exist_ok=True) # we just copy files that aren't markdown abs_path_to_source_file = os.path.join( abs_path_to_repo_checkout_dir, rel_path_to_source_file ) if os.path.splitext(abs_path_to_target_file)[1] != ".md": shutil.copyfile(abs_path_to_source_file, abs_path_to_target_file) return # copy file content with open(abs_path_to_target_file, "w") as target_file: content, heading = _get_file_content(abs_path_to_source_file, remove_heading) front_matter = None if heading: front_matter = {"title": heading} if transform_file: front_matter = {**front_matter, **transform_file.get("frontMatter", {})} if front_matter: target_file.writelines(_generate_yaml_front_matter(front_matter)) final_content = _process_content( content=content, abs_path_to_source_dir=abs_path_to_repo_checkout_dir, rel_path_to_source_file=rel_path_to_source_file, repo_owner=repo_owner, repo_name=repo_name, ) target_file.write(final_content) return abs_path_to_target_file def _process_content( content: str, abs_path_to_source_dir: str, rel_path_to_source_file: str, repo_owner: str, repo_name: str, ): def repl_images(m: Match[str]): url = m.group("url") alt = m.group("alt") new_url = _copy_asset( url_path=url, abs_path_to_source_dir=abs_path_to_source_dir, rel_path_to_source_file=rel_path_to_source_file, repo_owner=repo_owner, repo_name=repo_name, ) figure = '{{{{< figure src="{}" caption="{}" width="100" >}}}}'.format( new_url, alt ) return figure def repl_links(m: Match[str]): alt = m.group("alt") rel = m.group("rel") url = m.group("url") domain = m.group("domain") rel_url = url # this is an external url if domain is not None: # that points to this site if domain == config.get("publicUrl"): new_url = url[len(config.get("publicUrl")) :] else: new_url = url # this is an internal relative url else: if rel == "/": rel_url = url elif rel == "./" or rel == "": rel_url = os.path.join(os.path.dirname(rel_path_to_source_file), url) new_url = "https://github.com/{}/{}/blob/master/{}".format( repo_owner, repo_name, rel_url ) # if this file has been already pulled in, we can use the new internal URL # instead of pointing to the original github location if new_url in internal_links: new_url = internal_links[new_url] new_link = "[{}]({})".format(alt, new_url) return new_link parsed_content = RE_EXTRACT_IMAGES.sub(repl_images, content) parsed_content = RE_EXTRACT_LINKS.sub(repl_links, parsed_content) return parsed_content def _copy_asset( url_path: str, abs_path_to_source_dir: str, rel_path_to_source_file: str, repo_owner: str, repo_name: str, ) -> str: if url_path.startswith(os.path.sep): rel_path_to_asset = url_path[1:] else: rel_path_to_source_dir = os.path.dirname(rel_path_to_source_file) rel_path_to_asset = os.path.join(rel_path_to_source_dir, url_path) path_to_source_asset = os.path.join(abs_path_to_source_dir, rel_path_to_asset) path_to_target_asset = Path( os.path.join("./static/img/checkouts", repo_owner, repo_name, rel_path_to_asset) ) path_to_target_asset.parent.mkdir(parents=True, exist_ok=True) shutil.copyfile(path_to_source_asset, path_to_target_asset.absolute()) rel_target_url_path = os.path.join( "/img/checkouts", repo_owner, repo_name, rel_path_to_asset ) return rel_target_url_path if __name__ == "__main__": main()
from __future__ import unicode_literals import io import itertools import os import subprocess import time import re import json from .common import AudioConversionError, PostProcessor from ..compat import compat_str from ..utils import ( dfxp2srt, encodeArgument, encodeFilename, float_or_none, _get_exe_version_output, detect_exe_version, is_outdated_version, ISO639Utils, orderedSet, Popen, PostProcessingError, prepend_extension, replace_extension, shell_quote, traverse_obj, variadic, write_json_file, ) EXT_TO_OUT_FORMATS = { 'aac': 'adts', 'flac': 'flac', 'm4a': 'ipod', 'mka': 'matroska', 'mkv': 'matroska', 'mpg': 'mpeg', 'ogv': 'ogg', 'ts': 'mpegts', 'wma': 'asf', 'wmv': 'asf', 'vtt': 'webvtt', } ACODECS = { 'mp3': 'libmp3lame', 'aac': 'aac', 'flac': 'flac', 'm4a': 'aac', 'opus': 'libopus', 'vorbis': 'libvorbis', 'wav': None, 'alac': None, } class FFmpegPostProcessorError(PostProcessingError): pass class FFmpegPostProcessor(PostProcessor): def __init__(self, downloader=None): PostProcessor.__init__(self, downloader) self._determine_executables() def check_version(self): if not self.available: raise FFmpegPostProcessorError('ffmpeg not found. Please install or provide the path using --ffmpeg-location') required_version = '10-0' if self.basename == 'avconv' else '1.0' if is_outdated_version( self._versions[self.basename], required_version): warning = 'Your copy of %s is outdated, update %s to version %s or newer if you encounter any errors.' % ( self.basename, self.basename, required_version) self.report_warning(warning) @staticmethod def get_versions_and_features(downloader=None): pp = FFmpegPostProcessor(downloader) return pp._versions, pp._features @staticmethod def get_versions(downloader=None): return FFmpegPostProcessor.get_version_and_features(downloader)[0] def _determine_executables(self): programs = ['avprobe', 'avconv', 'ffmpeg', 'ffprobe'] def get_ffmpeg_version(path, prog): out = _get_exe_version_output(path, ['-bsfs']) ver = detect_exe_version(out) if out else False if ver: regexs = [ r'(?:\d+:)?([0-9.]+)-[0-9]+ubuntu[0-9.]+$', # Ubuntu, see [1] r'n([0-9.]+)$', # Arch Linux # 1. http://www.ducea.com/2006/06/17/ubuntu-package-version-naming-explanation/ ] for regex in regexs: mobj = re.match(regex, ver) if mobj: ver = mobj.group(1) self._versions[prog] = ver if prog != 'ffmpeg' or not out: return mobj = re.search(r'(?m)^\s+libavformat\s+(?:[0-9. ]+)\s+/\s+(?P<runtime>[0-9. ]+)', out) lavf_runtime_version = mobj.group('runtime').replace(' ', '') if mobj else None self._features = { 'fdk': '--enable-libfdk-aac' in out, 'setts': 'setts' in out.splitlines(), 'needs_adtstoasc': is_outdated_version(lavf_runtime_version, '57.56.100', False), } self.basename = None self.probe_basename = None self._paths = None self._versions = None self._features = {} prefer_ffmpeg = self.get_param('prefer_ffmpeg', True) location = self.get_param('ffmpeg_location') if location is None: self._paths = {p: p for p in programs} else: if not os.path.exists(location): self.report_warning( 'ffmpeg-location %s does not exist! ' 'Continuing without ffmpeg.' % (location)) self._versions = {} return elif os.path.isdir(location): dirname, basename = location, None else: basename = os.path.splitext(os.path.basename(location))[0] basename = next((p for p in programs if basename.startswith(p)), 'ffmpeg') dirname = os.path.dirname(os.path.abspath(location)) if basename in ('ffmpeg', 'ffprobe'): prefer_ffmpeg = True self._paths = dict( (p, os.path.join(dirname, p)) for p in programs) if basename: self._paths[basename] = location self._versions = {} for p in programs: get_ffmpeg_version(self._paths[p], p) if prefer_ffmpeg is False: prefs = ('avconv', 'ffmpeg') else: prefs = ('ffmpeg', 'avconv') for p in prefs: if self._versions[p]: self.basename = p break if prefer_ffmpeg is False: prefs = ('avprobe', 'ffprobe') else: prefs = ('ffprobe', 'avprobe') for p in prefs: if self._versions[p]: self.probe_basename = p break @property def available(self): return self.basename is not None @property def executable(self): return self._paths[self.basename] @property def probe_available(self): return self.probe_basename is not None @property def probe_executable(self): return self._paths[self.probe_basename] def get_audio_codec(self, path): if not self.probe_available and not self.available: raise PostProcessingError('ffprobe and ffmpeg not found. Please install or provide the path using --ffmpeg-location') try: if self.probe_available: cmd = [ encodeFilename(self.probe_executable, True), encodeArgument('-show_streams')] else: cmd = [ encodeFilename(self.executable, True), encodeArgument('-i')] cmd.append(encodeFilename(self._ffmpeg_filename_argument(path), True)) self.write_debug('%s command line: %s' % (self.basename, shell_quote(cmd))) handle = Popen(cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) stdout_data, stderr_data = handle.communicate_or_kill() expected_ret = 0 if self.probe_available else 1 if handle.wait() != expected_ret: return None except (IOError, OSError): return None output = (stdout_data if self.probe_available else stderr_data).decode('ascii', 'ignore') if self.probe_available: audio_codec = None for line in output.split('\n'): if line.startswith('codec_name='): audio_codec = line.split('=')[1].strip() elif line.strip() == 'codec_type=audio' and audio_codec is not None: return audio_codec else: # Stream #FILE_INDEX:STREAM_INDEX[STREAM_ID](LANGUAGE): CODEC_TYPE: CODEC_NAME mobj = re.search( r'Stream\s*#\d+:\d+(?:\[0x[0-9a-f]+\])?(?:\([a-z]{3}\))?:\s*Audio:\s*([0-9a-z]+)', output) if mobj: return mobj.group(1) return None def get_metadata_object(self, path, opts=[]): if self.probe_basename != 'ffprobe': if self.probe_available: self.report_warning('Only ffprobe is supported for metadata extraction') raise PostProcessingError('ffprobe not found. Please install or provide the path using --ffmpeg-location') self.check_version() cmd = [ encodeFilename(self.probe_executable, True), encodeArgument('-hide_banner'), encodeArgument('-show_format'), encodeArgument('-show_streams'), encodeArgument('-print_format'), encodeArgument('json'), ] cmd += opts cmd.append(encodeFilename(self._ffmpeg_filename_argument(path), True)) self.write_debug('ffprobe command line: %s' % shell_quote(cmd)) p = Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE) stdout, stderr = p.communicate() return json.loads(stdout.decode('utf-8', 'replace')) def get_stream_number(self, path, keys, value): streams = self.get_metadata_object(path)['streams'] num = next( (i for i, stream in enumerate(streams) if traverse_obj(stream, keys, casesense=False) == value), None) return num, len(streams) def _get_real_video_duration(self, filepath, fatal=True): try: duration = float_or_none( traverse_obj(self.get_metadata_object(filepath), ('format', 'duration'))) if not duration: raise PostProcessingError('ffprobe returned empty duration') return duration except PostProcessingError as e: if fatal: raise PostProcessingError(f'Unable to determine video duration: {e.msg}') def _duration_mismatch(self, d1, d2): if not d1 or not d2: return None # The duration is often only known to nearest second. So there can be <1sec disparity natually. # Further excuse an additional <1sec difference. return abs(d1 - d2) > 2 def run_ffmpeg_multiple_files(self, input_paths, out_path, opts, **kwargs): return self.real_run_ffmpeg( [(path, []) for path in input_paths], [(out_path, opts)], **kwargs) def real_run_ffmpeg(self, input_path_opts, output_path_opts, *, expected_retcodes=(0,)): self.check_version() oldest_mtime = min( os.stat(encodeFilename(path)).st_mtime for path, _ in input_path_opts if path) cmd = [encodeFilename(self.executable, True), encodeArgument('-y')] # avconv does not have repeat option if self.basename == 'ffmpeg': cmd += [encodeArgument('-loglevel'), encodeArgument('repeat+info')] def make_args(file, args, name, number): keys = ['_%s%d' % (name, number), '_%s' % name] if name == 'o' and number == 1: keys.append('') args += self._configuration_args(self.basename, keys) if name == 'i': args.append('-i') return ( [encodeArgument(arg) for arg in args] + [encodeFilename(self._ffmpeg_filename_argument(file), True)]) for arg_type, path_opts in (('i', input_path_opts), ('o', output_path_opts)): cmd += itertools.chain.from_iterable( make_args(path, list(opts), arg_type, i + 1) for i, (path, opts) in enumerate(path_opts) if path) self.write_debug('ffmpeg command line: %s' % shell_quote(cmd)) p = Popen(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, stdin=subprocess.PIPE) stdout, stderr = p.communicate_or_kill() if p.returncode not in variadic(expected_retcodes): stderr = stderr.decode('utf-8', 'replace').strip() self.write_debug(stderr) raise FFmpegPostProcessorError(stderr.split('\n')[-1]) for out_path, _ in output_path_opts: if out_path: self.try_utime(out_path, oldest_mtime, oldest_mtime) return stderr.decode('utf-8', 'replace') def run_ffmpeg(self, path, out_path, opts, **kwargs): return self.run_ffmpeg_multiple_files([path], out_path, opts, **kwargs) @staticmethod def _ffmpeg_filename_argument(fn): # Always use 'file:' because the filename may contain ':' (ffmpeg # interprets that as a protocol) or can start with '-' (-- is broken in # ffmpeg, see https://ffmpeg.org/trac/ffmpeg/ticket/2127 for details) # Also leave '-' intact in order not to break streaming to stdout. if fn.startswith(('http://', 'https://')): return fn return 'file:' + fn if fn != '-' else fn @staticmethod def _quote_for_ffmpeg(string): # See https://ffmpeg.org/ffmpeg-utils.html#toc-Quoting-and-escaping # A sequence of '' produces '\'''\''; # final replace removes the empty '' between \' \'. string = string.replace("'", r"'\''").replace("'''", "'") # Handle potential ' at string boundaries. string = string[1:] if string[0] == "'" else "'" + string return string[:-1] if string[-1] == "'" else string + "'" def force_keyframes(self, filename, timestamps): timestamps = orderedSet(timestamps) if timestamps[0] == 0: timestamps = timestamps[1:] keyframe_file = prepend_extension(filename, 'keyframes.temp') self.to_screen(f'Re-encoding "{filename}" with appropriate keyframes') self.run_ffmpeg(filename, keyframe_file, ['-force_key_frames', ','.join( f'{t:.6f}' for t in timestamps)]) return keyframe_file def concat_files(self, in_files, out_file, concat_opts=None): """ Use concat demuxer to concatenate multiple files having identical streams. Only inpoint, outpoint, and duration concat options are supported. See https://ffmpeg.org/ffmpeg-formats.html#concat-1 for details """ concat_file = f'{out_file}.concat' self.write_debug(f'Writing concat spec to {concat_file}') with open(concat_file, 'wt', encoding='utf-8') as f: f.writelines(self._concat_spec(in_files, concat_opts)) out_flags = ['-c', 'copy'] if out_file.rpartition('.')[-1] in ('mp4', 'mov'): # For some reason, '-c copy' is not enough to copy subtitles out_flags.extend(['-c:s', 'mov_text', '-movflags', '+faststart']) try: self.real_run_ffmpeg( [(concat_file, ['-hide_banner', '-nostdin', '-f', 'concat', '-safe', '0'])], [(out_file, out_flags)]) finally: os.remove(concat_file) @classmethod def _concat_spec(cls, in_files, concat_opts=None): if concat_opts is None: concat_opts = [{}] * len(in_files) yield 'ffconcat version 1.0\n' for file, opts in zip(in_files, concat_opts): yield f'file {cls._quote_for_ffmpeg(cls._ffmpeg_filename_argument(file))}\n' # Iterate explicitly to yield the following directives in order, ignoring the rest. for directive in 'inpoint', 'outpoint', 'duration': if directive in opts: yield f'{directive} {opts[directive]}\n' class FFmpegExtractAudioPP(FFmpegPostProcessor): COMMON_AUDIO_EXTS = ('wav', 'flac', 'm4a', 'aiff', 'mp3', 'ogg', 'mka', 'opus', 'wma') SUPPORTED_EXTS = ('best', 'aac', 'flac', 'mp3', 'm4a', 'opus', 'vorbis', 'wav', 'alac') def __init__(self, downloader=None, preferredcodec=None, preferredquality=None, nopostoverwrites=False): FFmpegPostProcessor.__init__(self, downloader) self._preferredcodec = preferredcodec or 'best' self._preferredquality = float_or_none(preferredquality) self._nopostoverwrites = nopostoverwrites def _quality_args(self, codec): if self._preferredquality is None: return [] elif self._preferredquality > 10: return ['-b:a', f'{self._preferredquality}k'] limits = { 'libmp3lame': (10, 0), 'libvorbis': (0, 10), # FFmpeg's AAC encoder does not have an upper limit for the value of -q:a. # Experimentally, with values over 4, bitrate changes were minimal or non-existent 'aac': (0.1, 4), 'libfdk_aac': (1, 5), }.get(codec) if not limits: return [] q = limits[1] + (limits[0] - limits[1]) * (self._preferredquality / 10) if codec == 'libfdk_aac': return ['-vbr', f'{int(q)}'] return ['-q:a', f'{q}'] def run_ffmpeg(self, path, out_path, codec, more_opts): if codec is None: acodec_opts = [] else: acodec_opts = ['-acodec', codec] opts = ['-vn'] + acodec_opts + more_opts try: FFmpegPostProcessor.run_ffmpeg(self, path, out_path, opts) except FFmpegPostProcessorError as err: raise AudioConversionError(err.msg) @PostProcessor._restrict_to(images=False) def run(self, information): orig_path = path = information['filepath'] orig_ext = information['ext'] if self._preferredcodec == 'best' and orig_ext in self.COMMON_AUDIO_EXTS: self.to_screen('Skipping audio extraction since the file is already in a common audio format') return [], information filecodec = self.get_audio_codec(path) if filecodec is None: raise PostProcessingError('WARNING: unable to obtain file audio codec with ffprobe') more_opts = [] if self._preferredcodec == 'best' or self._preferredcodec == filecodec or (self._preferredcodec == 'm4a' and filecodec == 'aac'): if filecodec == 'aac' and self._preferredcodec in ['m4a', 'best']: # Lossless, but in another container acodec = 'copy' extension = 'm4a' more_opts = ['-bsf:a', 'aac_adtstoasc'] elif filecodec in ['aac', 'flac', 'mp3', 'vorbis', 'opus']: # Lossless if possible acodec = 'copy' extension = filecodec if filecodec == 'aac': more_opts = ['-f', 'adts'] if filecodec == 'vorbis': extension = 'ogg' elif filecodec == 'alac': acodec = None extension = 'm4a' more_opts += ['-acodec', 'alac'] else: # MP3 otherwise. acodec = 'libmp3lame' extension = 'mp3' more_opts = self._quality_args(acodec) else: # We convert the audio (lossy if codec is lossy) acodec = ACODECS[self._preferredcodec] if acodec == 'aac' and self._features.get('fdk'): acodec = 'libfdk_aac' extension = self._preferredcodec more_opts = self._quality_args(acodec) if self._preferredcodec == 'aac': more_opts += ['-f', 'adts'] elif self._preferredcodec == 'm4a': more_opts += ['-bsf:a', 'aac_adtstoasc'] elif self._preferredcodec == 'vorbis': extension = 'ogg' elif self._preferredcodec == 'wav': extension = 'wav' more_opts += ['-f', 'wav'] elif self._preferredcodec == 'alac': extension = 'm4a' more_opts += ['-acodec', 'alac'] prefix, sep, ext = path.rpartition('.') # not os.path.splitext, since the latter does not work on unicode in all setups temp_path = new_path = prefix + sep + extension if new_path == path: orig_path = prepend_extension(path, 'orig') temp_path = prepend_extension(path, 'temp') if (self._nopostoverwrites and os.path.exists(encodeFilename(new_path)) and os.path.exists(encodeFilename(orig_path))): self.to_screen('Post-process file %s exists, skipping' % new_path) return [], information try: self.to_screen(f'Destination: {new_path}') self.run_ffmpeg(path, temp_path, acodec, more_opts) except AudioConversionError as e: raise PostProcessingError( 'audio conversion failed: ' + e.msg) except Exception: raise PostProcessingError('error running ' + self.basename) os.replace(path, orig_path) os.replace(temp_path, new_path) information['filepath'] = new_path information['ext'] = extension # Try to update the date time for extracted audio file. if information.get('filetime') is not None: self.try_utime( new_path, time.time(), information['filetime'], errnote='Cannot update utime of audio file') return [orig_path], information class FFmpegVideoConvertorPP(FFmpegPostProcessor): SUPPORTED_EXTS = ('mp4', 'mkv', 'flv', 'webm', 'mov', 'avi', 'mp3', 'mka', 'm4a', 'ogg', 'opus') FORMAT_RE = re.compile(r'{0}(?:/{0})*$'.format(r'(?:\w+>)?(?:%s)' % '|'.join(SUPPORTED_EXTS))) _ACTION = 'converting' def __init__(self, downloader=None, preferedformat=None): super(FFmpegVideoConvertorPP, self).__init__(downloader) self._preferedformats = preferedformat.lower().split('/') def _target_ext(self, source_ext): for pair in self._preferedformats: kv = pair.split('>') if len(kv) == 1 or kv[0].strip() == source_ext: return kv[-1].strip() @staticmethod def _options(target_ext): if target_ext == 'avi': return ['-c:v', 'libxvid', '-vtag', 'XVID'] return [] @PostProcessor._restrict_to(images=False) def run(self, info): filename, source_ext = info['filepath'], info['ext'].lower() target_ext = self._target_ext(source_ext) _skip_msg = ( f'could not find a mapping for {source_ext}' if not target_ext else f'already is in target format {source_ext}' if source_ext == target_ext else None) if _skip_msg: self.to_screen(f'Not {self._ACTION} media file {filename!r}; {_skip_msg}') return [], info outpath = replace_extension(filename, target_ext, source_ext) self.to_screen(f'{self._ACTION.title()} video from {source_ext} to {target_ext}; Destination: {outpath}') self.run_ffmpeg(filename, outpath, self._options(target_ext)) info['filepath'] = outpath info['format'] = info['ext'] = target_ext return [filename], info class FFmpegVideoRemuxerPP(FFmpegVideoConvertorPP): _ACTION = 'remuxing' @staticmethod def _options(target_ext): options = ['-c', 'copy', '-map', '0', '-dn'] if target_ext in ['mp4', 'm4a', 'mov']: options.extend(['-movflags', '+faststart']) return options class FFmpegEmbedSubtitlePP(FFmpegPostProcessor): def __init__(self, downloader=None, already_have_subtitle=False): super(FFmpegEmbedSubtitlePP, self).__init__(downloader) self._already_have_subtitle = already_have_subtitle @PostProcessor._restrict_to(images=False) def run(self, info): if info['ext'] not in ('mp4', 'webm', 'mkv'): self.to_screen('Subtitles can only be embedded in mp4, webm or mkv files') return [], info subtitles = info.get('requested_subtitles') if not subtitles: self.to_screen('There aren\'t any subtitles to embed') return [], info filename = info['filepath'] if info.get('duration') and not info.get('__real_download') and self._duration_mismatch( self._get_real_video_duration(filename, False), info['duration']): self.to_screen(f'Skipping {self.pp_key()} since the real and expected durations mismatch') return [], info ext = info['ext'] sub_langs, sub_names, sub_filenames = [], [], [] webm_vtt_warn = False mp4_ass_warn = False for lang, sub_info in subtitles.items(): if not os.path.exists(sub_info.get('filepath', '')): self.report_warning(f'Skipping embedding {lang} subtitle because the file is missing') continue sub_ext = sub_info['ext'] if sub_ext == 'json': self.report_warning('JSON subtitles cannot be embedded') elif ext != 'webm' or ext == 'webm' and sub_ext == 'vtt': sub_langs.append(lang) sub_names.append(sub_info.get('name')) sub_filenames.append(sub_info['filepath']) else: if not webm_vtt_warn and ext == 'webm' and sub_ext != 'vtt': webm_vtt_warn = True self.report_warning('Only WebVTT subtitles can be embedded in webm files') if not mp4_ass_warn and ext == 'mp4' and sub_ext == 'ass': mp4_ass_warn = True self.report_warning('ASS subtitles cannot be properly embedded in mp4 files; expect issues') if not sub_langs: return [], info input_files = [filename] + sub_filenames opts = [ '-c', 'copy', '-map', '0', '-dn', # Don't copy the existing subtitles, we may be running the # postprocessor a second time '-map', '-0:s', # Don't copy Apple TV chapters track, bin_data (see #19042, #19024, # https://trac.ffmpeg.org/ticket/6016) '-map', '-0:d', ] if info['ext'] == 'mp4': opts += ['-c:s', 'mov_text'] for i, (lang, name) in enumerate(zip(sub_langs, sub_names)): opts.extend(['-map', '%d:0' % (i + 1)]) lang_code = ISO639Utils.short2long(lang) or lang opts.extend(['-metadata:s:s:%d' % i, 'language=%s' % lang_code]) if name: opts.extend(['-metadata:s:s:%d' % i, 'handler_name=%s' % name, '-metadata:s:s:%d' % i, 'title=%s' % name]) temp_filename = prepend_extension(filename, 'temp') self.to_screen('Embedding subtitles in "%s"' % filename) self.run_ffmpeg_multiple_files(input_files, temp_filename, opts) os.replace(temp_filename, filename) files_to_delete = [] if self._already_have_subtitle else sub_filenames return files_to_delete, info class FFmpegMetadataPP(FFmpegPostProcessor): def __init__(self, downloader, add_metadata=True, add_chapters=True, add_infojson='if_exists'): FFmpegPostProcessor.__init__(self, downloader) self._add_metadata = add_metadata self._add_chapters = add_chapters self._add_infojson = add_infojson @staticmethod def _options(target_ext): yield from ('-map', '0', '-dn') if target_ext == 'm4a': yield from ('-vn', '-acodec', 'copy') else: yield from ('-c', 'copy') @PostProcessor._restrict_to(images=False) def run(self, info): filename, metadata_filename = info['filepath'], None files_to_delete, options = [], [] if self._add_chapters and info.get('chapters'): metadata_filename = replace_extension(filename, 'meta') options.extend(self._get_chapter_opts(info['chapters'], metadata_filename)) files_to_delete.append(metadata_filename) if self._add_metadata: options.extend(self._get_metadata_opts(info)) if self._add_infojson: if info['ext'] in ('mkv', 'mka'): infojson_filename = info.get('infojson_filename') options.extend(self._get_infojson_opts(info, infojson_filename)) if not infojson_filename: files_to_delete.append(info.get('infojson_filename')) elif self._add_infojson is True: self.to_screen('The info-json can only be attached to mkv/mka files') if not options: self.to_screen('There isn\'t any metadata to add') return [], info temp_filename = prepend_extension(filename, 'temp') self.to_screen('Adding metadata to "%s"' % filename) self.run_ffmpeg_multiple_files( (filename, metadata_filename), temp_filename, itertools.chain(self._options(info['ext']), *options)) for file in filter(None, files_to_delete): os.remove(file) # Don't obey --keep-files os.replace(temp_filename, filename) return [], info @staticmethod def _get_chapter_opts(chapters, metadata_filename): with io.open(metadata_filename, 'wt', encoding='utf-8') as f: def ffmpeg_escape(text): return re.sub(r'([\\=;#\n])', r'\\\1', text) metadata_file_content = ';FFMETADATA1\n' for chapter in chapters: metadata_file_content += '[CHAPTER]\nTIMEBASE=1/1000\n' metadata_file_content += 'START=%d\n' % (chapter['start_time'] * 1000) metadata_file_content += 'END=%d\n' % (chapter['end_time'] * 1000) chapter_title = chapter.get('title') if chapter_title: metadata_file_content += 'title=%s\n' % ffmpeg_escape(chapter_title) f.write(metadata_file_content) yield ('-map_metadata', '1') def _get_metadata_opts(self, info): metadata = {} meta_prefix = 'meta_' def add(meta_list, info_list=None): value = next(( str(info[key]) for key in [meta_prefix] + list(variadic(info_list or meta_list)) if info.get(key) is not None), None) if value not in ('', None): metadata.update({meta_f: value for meta_f in variadic(meta_list)}) # See [1-4] for some info on media metadata/metadata supported # by ffmpeg. # 1. https://kdenlive.org/en/project/adding-meta-data-to-mp4-video/ # 2. https://wiki.multimedia.cx/index.php/FFmpeg_Metadata # 3. https://kodi.wiki/view/Video_file_tagging add('title', ('track', 'title')) add('date', 'upload_date') add(('description', 'synopsis'), 'description') add(('purl', 'comment'), 'webpage_url') add('track', 'track_number') add('artist', ('artist', 'creator', 'uploader', 'uploader_id')) add('genre') add('album') add('album_artist') add('disc', 'disc_number') add('show', 'series') add('season_number') add('episode_id', ('episode', 'episode_id')) add('episode_sort', 'episode_number') if 'embed-metadata' in self.get_param('compat_opts', []): add('comment', 'description') metadata.pop('synopsis', None) for key, value in info.items(): if value is not None and key != meta_prefix and key.startswith(meta_prefix): metadata[key[len(meta_prefix):]] = value for name, value in metadata.items(): yield ('-metadata', f'{name}={value}') stream_idx = 0 for fmt in info.get('requested_formats') or []: stream_count = 2 if 'none' not in (fmt.get('vcodec'), fmt.get('acodec')) else 1 if fmt.get('language'): lang = ISO639Utils.short2long(fmt['language']) or fmt['language'] for i in range(stream_count): yield ('-metadata:s:%d' % (stream_idx + i), 'language=%s' % lang) stream_idx += stream_count def _get_infojson_opts(self, info, infofn): if not infofn or not os.path.exists(infofn): if self._add_infojson is not True: return infofn = infofn or '%s.temp' % ( self._downloader.prepare_filename(info, 'infojson') or replace_extension(self._downloader.prepare_filename(info), 'info.json', info['ext'])) if not self._downloader._ensure_dir_exists(infofn): return self.write_debug(f'Writing info-json to: {infofn}') write_json_file(self._downloader.sanitize_info(info, self.get_param('clean_infojson', True)), infofn) info['infojson_filename'] = infofn old_stream, new_stream = self.get_stream_number(info['filepath'], ('tags', 'mimetype'), 'application/json') if old_stream is not None: yield ('-map', '-0:%d' % old_stream) new_stream -= 1 yield ('-attach', infofn, '-metadata:s:%d' % new_stream, 'mimetype=application/json') class FFmpegMergerPP(FFmpegPostProcessor): @PostProcessor._restrict_to(images=False) def run(self, info): filename = info['filepath'] temp_filename = prepend_extension(filename, 'temp') args = ['-c', 'copy'] audio_streams = 0 for (i, fmt) in enumerate(info['requested_formats']): if fmt.get('acodec') != 'none': args.extend(['-map', f'{i}:a:0']) aac_fixup = fmt['protocol'].startswith('m3u8') and self.get_audio_codec(fmt['filepath']) == 'aac' if aac_fixup: args.extend([f'-bsf:a:{audio_streams}', 'aac_adtstoasc']) audio_streams += 1 if fmt.get('vcodec') != 'none': args.extend(['-map', '%u:v:0' % (i)]) self.to_screen('Merging formats into "%s"' % filename) self.run_ffmpeg_multiple_files(info['__files_to_merge'], temp_filename, args) os.rename(encodeFilename(temp_filename), encodeFilename(filename)) return info['__files_to_merge'], info def can_merge(self): # TODO: figure out merge-capable ffmpeg version if self.basename != 'avconv': return True required_version = '10-0' if is_outdated_version( self._versions[self.basename], required_version): warning = ('Your copy of %s is outdated and unable to properly mux separate video and audio files, ' 'yt-dlp will download single file media. ' 'Update %s to version %s or newer to fix this.') % ( self.basename, self.basename, required_version) self.report_warning(warning) return False return True class FFmpegFixupPostProcessor(FFmpegPostProcessor): def _fixup(self, msg, filename, options): temp_filename = prepend_extension(filename, 'temp') self.to_screen(f'{msg} of "{filename}"') self.run_ffmpeg(filename, temp_filename, options) os.replace(temp_filename, filename) class FFmpegFixupStretchedPP(FFmpegFixupPostProcessor): @PostProcessor._restrict_to(images=False, audio=False) def run(self, info): stretched_ratio = info.get('stretched_ratio') if stretched_ratio not in (None, 1): self._fixup('Fixing aspect ratio', info['filepath'], [ '-c', 'copy', '-map', '0', '-dn', '-aspect', '%f' % stretched_ratio]) return [], info class FFmpegFixupM4aPP(FFmpegFixupPostProcessor): @PostProcessor._restrict_to(images=False, video=False) def run(self, info): if info.get('container') == 'm4a_dash': self._fixup('Correcting container', info['filepath'], [ '-c', 'copy', '-map', '0', '-dn', '-f', 'mp4']) return [], info class FFmpegFixupM3u8PP(FFmpegFixupPostProcessor): def _needs_fixup(self, info): yield info['ext'] in ('mp4', 'm4a') yield info['protocol'].startswith('m3u8') try: metadata = self.get_metadata_object(info['filepath']) except PostProcessingError as e: self.report_warning(f'Unable to extract metadata: {e.msg}') yield True else: yield traverse_obj(metadata, ('format', 'format_name'), casesense=False) == 'mpegts' @PostProcessor._restrict_to(images=False) def run(self, info): if all(self._needs_fixup(info)): self._fixup('Fixing MPEG-TS in MP4 container', info['filepath'], [ '-c', 'copy', '-map', '0', '-dn', '-f', 'mp4', '-bsf:a', 'aac_adtstoasc']) return [], info class FFmpegFixupTimestampPP(FFmpegFixupPostProcessor): def __init__(self, downloader=None, trim=0.001): # "trim" should be used when the video contains unintended packets super(FFmpegFixupTimestampPP, self).__init__(downloader) assert isinstance(trim, (int, float)) self.trim = str(trim) @PostProcessor._restrict_to(images=False) def run(self, info): if not self._features.get('setts'): self.report_warning( 'A re-encode is needed to fix timestamps in older versions of ffmpeg. ' 'Please install ffmpeg 4.4 or later to fixup without re-encoding') opts = ['-vf', 'setpts=PTS-STARTPTS'] else: opts = ['-c', 'copy', '-bsf', 'setts=ts=TS-STARTPTS'] self._fixup('Fixing frame timestamp', info['filepath'], opts + ['-map', '0', '-dn', '-ss', self.trim]) return [], info class FFmpegFixupDurationPP(FFmpegFixupPostProcessor): @PostProcessor._restrict_to(images=False) def run(self, info): self._fixup('Fixing video duration', info['filepath'], ['-c', 'copy', '-map', '0', '-dn']) return [], info class FFmpegSubtitlesConvertorPP(FFmpegPostProcessor): SUPPORTED_EXTS = ('srt', 'vtt', 'ass', 'lrc') def __init__(self, downloader=None, format=None): super(FFmpegSubtitlesConvertorPP, self).__init__(downloader) self.format = format def run(self, info): subs = info.get('requested_subtitles') new_ext = self.format new_format = new_ext if new_format == 'vtt': new_format = 'webvtt' if subs is None: self.to_screen('There aren\'t any subtitles to convert') return [], info self.to_screen('Converting subtitles') sub_filenames = [] for lang, sub in subs.items(): if not os.path.exists(sub.get('filepath', '')): self.report_warning(f'Skipping embedding {lang} subtitle because the file is missing') continue ext = sub['ext'] if ext == new_ext: self.to_screen('Subtitle file for %s is already in the requested format' % new_ext) continue elif ext == 'json': self.to_screen( 'You have requested to convert json subtitles into another format, ' 'which is currently not possible') continue old_file = sub['filepath'] sub_filenames.append(old_file) new_file = replace_extension(old_file, new_ext) if ext in ('dfxp', 'ttml', 'tt'): self.report_warning( 'You have requested to convert dfxp (TTML) subtitles into another format, ' 'which results in style information loss') dfxp_file = old_file srt_file = replace_extension(old_file, 'srt') with open(dfxp_file, 'rb') as f: srt_data = dfxp2srt(f.read()) with io.open(srt_file, 'wt', encoding='utf-8') as f: f.write(srt_data) old_file = srt_file subs[lang] = { 'ext': 'srt', 'data': srt_data, 'filepath': srt_file, } if new_ext == 'srt': continue else: sub_filenames.append(srt_file) self.run_ffmpeg(old_file, new_file, ['-f', new_format]) with io.open(new_file, 'rt', encoding='utf-8') as f: subs[lang] = { 'ext': new_ext, 'data': f.read(), 'filepath': new_file, } info['__files_to_move'][new_file] = replace_extension( info['__files_to_move'][sub['filepath']], new_ext) return sub_filenames, info class FFmpegSplitChaptersPP(FFmpegPostProcessor): def __init__(self, downloader, force_keyframes=False): FFmpegPostProcessor.__init__(self, downloader) self._force_keyframes = force_keyframes def _prepare_filename(self, number, chapter, info): info = info.copy() info.update({ 'section_number': number, 'section_title': chapter.get('title'), 'section_start': chapter.get('start_time'), 'section_end': chapter.get('end_time'), }) return self._downloader.prepare_filename(info, 'chapter') def _ffmpeg_args_for_chapter(self, number, chapter, info): destination = self._prepare_filename(number, chapter, info) if not self._downloader._ensure_dir_exists(encodeFilename(destination)): return chapter['filepath'] = destination self.to_screen('Chapter %03d; Destination: %s' % (number, destination)) return ( destination, ['-ss', compat_str(chapter['start_time']), '-t', compat_str(chapter['end_time'] - chapter['start_time'])]) @PostProcessor._restrict_to(images=False) def run(self, info): chapters = info.get('chapters') or [] if not chapters: self.to_screen('Chapter information is unavailable') return [], info in_file = info['filepath'] if self._force_keyframes and len(chapters) > 1: in_file = self.force_keyframes(in_file, (c['start_time'] for c in chapters)) self.to_screen('Splitting video by chapters; %d chapters found' % len(chapters)) for idx, chapter in enumerate(chapters): destination, opts = self._ffmpeg_args_for_chapter(idx + 1, chapter, info) self.real_run_ffmpeg([(in_file, opts)], [(destination, ['-c', 'copy'])]) if in_file != info['filepath']: os.remove(in_file) return [], info class FFmpegThumbnailsConvertorPP(FFmpegPostProcessor): SUPPORTED_EXTS = ('jpg', 'png') def __init__(self, downloader=None, format=None): super(FFmpegThumbnailsConvertorPP, self).__init__(downloader) self.format = format @staticmethod def is_webp(path): with open(encodeFilename(path), 'rb') as f: b = f.read(12) return b[0:4] == b'RIFF' and b[8:] == b'WEBP' def fixup_webp(self, info, idx=-1): thumbnail_filename = info['thumbnails'][idx]['filepath'] _, thumbnail_ext = os.path.splitext(thumbnail_filename) if thumbnail_ext: thumbnail_ext = thumbnail_ext[1:].lower() if thumbnail_ext != 'webp' and self.is_webp(thumbnail_filename): self.to_screen('Correcting thumbnail "%s" extension to webp' % thumbnail_filename) webp_filename = replace_extension(thumbnail_filename, 'webp') os.replace(thumbnail_filename, webp_filename) info['thumbnails'][idx]['filepath'] = webp_filename info['__files_to_move'][webp_filename] = replace_extension( info['__files_to_move'].pop(thumbnail_filename), 'webp') @staticmethod def _options(target_ext): if target_ext == 'jpg': return ['-bsf:v', 'mjpeg2jpeg'] return [] def convert_thumbnail(self, thumbnail_filename, target_ext): thumbnail_conv_filename = replace_extension(thumbnail_filename, target_ext) self.to_screen('Converting thumbnail "%s" to %s' % (thumbnail_filename, target_ext)) self.real_run_ffmpeg( [(thumbnail_filename, ['-f', 'image2', '-pattern_type', 'none'])], [(thumbnail_conv_filename.replace('%', '%%'), self._options(target_ext))]) return thumbnail_conv_filename def run(self, info): files_to_delete = [] has_thumbnail = False for idx, thumbnail_dict in enumerate(info['thumbnails']): if 'filepath' not in thumbnail_dict: continue has_thumbnail = True self.fixup_webp(info, idx) original_thumbnail = thumbnail_dict['filepath'] _, thumbnail_ext = os.path.splitext(original_thumbnail) if thumbnail_ext: thumbnail_ext = thumbnail_ext[1:].lower() if thumbnail_ext == 'jpeg': thumbnail_ext = 'jpg' if thumbnail_ext == self.format: self.to_screen('Thumbnail "%s" is already in the requested format' % original_thumbnail) continue thumbnail_dict['filepath'] = self.convert_thumbnail(original_thumbnail, self.format) files_to_delete.append(original_thumbnail) info['__files_to_move'][thumbnail_dict['filepath']] = replace_extension( info['__files_to_move'][original_thumbnail], self.format) if not has_thumbnail: self.to_screen('There aren\'t any thumbnails to convert') return files_to_delete, info
''' Function: setup Author: Charles 微信公众号: Charles的皮卡丘 GitHub: https://github.com/CharlesPikachu 更新日期: 2020-02-20 ''' import DecryptLogin from setuptools import setup, find_packages '''readme''' with open('README.md', 'r', encoding='utf-8') as f: long_description = f.read() '''setup''' setup( name='DecryptLogin', version=DecryptLogin.__version__, description='Login some website using requests.', long_description=long_description, long_description_content_type='text/markdown', classifiers=[ 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', 'Intended Audience :: Developers', 'Operating System :: OS Independent'], author='Charles', url='https://github.com/CharlesPikachu/DecryptLogin', author_email='charlesjzc@qq.com', license='MIT', include_package_data=True, install_requires=['requests >= 2.22.0', 'pycryptodome >= 3.8.1', 'rsa >= 4.0', 'PyExecJS >= 1.5.1'], zip_safe=True, packages=find_packages() )
# Copyright (c) 2021 NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import pandas as pd import os from joblib import Parallel, delayed import glob import argparse import tqdm import subprocess def process_file(f, dst): label = '_c0' dense_columns = [f'_c{i}' for i in range(1, 14)] categorical_columns = [f'_c{i}' for i in range(14, 40)] all_columns_sorted = [f'_c{i}' for i in range(0, 40)] data = pd.read_parquet(f) data = data[all_columns_sorted] data[label] = data[label].astype(np.int32) data[dense_columns] = data[dense_columns].astype(np.float32) data[categorical_columns] = data[categorical_columns].astype(np.int32) data = data.to_records(index=False) data = data.tobytes() dst_file = dst + '/' + f.split('/')[-1] + '.bin' with open(dst_file, 'wb') as dst_fd: dst_fd.write(data) def main(): parser = argparse.ArgumentParser() parser.add_argument('--src_dir', type=str) parser.add_argument('--intermediate_dir', type=str) parser.add_argument('--dst_dir', type=str) parser.add_argument('--parallel_jobs', default=40, type=int) args = parser.parse_args() print('Processing train files...') train_src_files = glob.glob(args.src_dir + '/train/*.parquet') train_intermediate_dir = os.path.join(args.intermediate_dir, 'train') os.makedirs(train_intermediate_dir, exist_ok=True) Parallel(n_jobs=args.parallel_jobs)(delayed(process_file)(f, train_intermediate_dir) for f in tqdm.tqdm(train_src_files)) print('Train files conversion done') print('Processing test files...') test_src_files = glob.glob(args.src_dir + '/test/*.parquet') test_intermediate_dir = os.path.join(args.intermediate_dir, 'test') os.makedirs(test_intermediate_dir, exist_ok=True) Parallel(n_jobs=args.parallel_jobs)(delayed(process_file)(f, test_intermediate_dir) for f in tqdm.tqdm(test_src_files)) print('Test files conversion done') print('Processing validation files...') valid_src_files = glob.glob(args.src_dir + '/validation/*.parquet') valid_intermediate_dir = os.path.join(args.intermediate_dir, 'validation') os.makedirs(valid_intermediate_dir, exist_ok=True) Parallel(n_jobs=args.parallel_jobs)(delayed(process_file)(f, valid_intermediate_dir) for f in tqdm.tqdm(valid_src_files)) print('Validation files conversion done') os.makedirs(args.dst_dir, exist_ok=True) print('Concatenating train files') os.system(f'cat {train_intermediate_dir}/*.bin > {args.dst_dir}/train_data.bin') print('Concatenating test files') os.system(f'cat {test_intermediate_dir}/*.bin > {args.dst_dir}/test_data.bin') print('Concatenating validation files') os.system(f'cat {valid_intermediate_dir}/*.bin > {args.dst_dir}/validation_data.bin') print('Done') if __name__ == '__main__': main()
#!/usr/bin/env python ''' Input: An array of integers. Output: The single integer that occurs most often. ''' from __future__ import print_function from collections import Counter given_array = [2,2,3,7,5,7,7,7,4,7,2,7,4,5,6,7,7,8,6,7,7,8,10,12,29,30,19,10,7,7,7,7,7,7,7,7,7] def find_major(array): counted = Counter(array) return counted.most_common(1)[0][0] print(find_major(given_array))
"""Demo unanimous voting: multiparty matching without embarrassments. Unanimous voting between parties P[0],...,P[t] is implemented by securely evaluating the product of their votes (using 1s and 0s to encode "yes" and "no" votes, respectively) and revealing only whether the product equals 1 (unanimous agreement) or 0 (someone disagrees). The MPyC method mpc.all() modeled after Python's built-in function all() can be used for this purpose. The secure computation is designed to be maximally private, meaning that any t parties colluding against the remaining party should be unsuccessful: the colluding parties should not be able to find out the vote of the remaining party in case they do not agree (and no unanimous agreement will be reached anyway; if the colluding parties all vote "yes", then there remains nothing to hide). To achieve maximal privacy, we add t parties P[t+1],...,P[2t] to the secure computation. These additional parties provide no input to the secure computation and are trusted not to collude with any of the parties P[0],...,P[t]. This way we have m=2t+1 parties in total, and we can tolerate the desired maximum of t corrupt parties among P[0],...,P[t]. Moreover, the trusted parties do not receive any output, so they do not learn anything at all, as their number does not exceed t. Unanimous voting is a generalization of "matching without embarrassments", where Alice and Bob like to find out if they want to go on a second date. They might simply tell each other if they are interested, and in case they are both interested, this simple solution is satisfactory. However, if for example Alice is not interested in Bob but Bob is interested in Alice, Bob may feel embarrassed afterwards because he expressed interest in her; if he would have known beforehand that Alice was not interested anyway, he might have told Alice that he was not interested either. See also this YouTube video https://youtu.be/JnmESTrsQbg by TNO. Matching without embarrassments corresponds to unanimous voting with t=1. Alice acts as party P[0], Bob as party P[1], and P[2] is the trusted (third) party. We run a 3-party secure computation tolerating 1 corrupt party. Alice and Bob provide bits x and y as their respective private inputs; the trusted party P[2] provides no input. Of course, Alice and Bob do not collude with each other, and P[2] is assumed to collude with neither of them. Therefore, Alice and Bob do not learn anything beyond what they can deduce from their output bit x*y and their respective input bits x and y; the trusted party P[2] receives no output, hence learns nothing at all. """ import sys from mpyc.runtime import mpc m = len(mpc.parties) if m%2 == 0: print('Odd number of parties required.') sys.exit() t = m//2 voters = list(range(t+1)) # parties P[0],...,P[t] if mpc.pid in voters: vote = int(sys.argv[1]) if sys.argv[1:] else 1 # default "yes" else: vote = None # no input secbit = mpc.SecInt(1) # 1-bit integers suffice mpc.run(mpc.start()) votes = mpc.input(secbit(vote), senders=voters) result = mpc.run(mpc.output(mpc.all(votes), receivers=voters)) mpc.run(mpc.shutdown()) if result is None: # no output print('Thanks for serving as oblivious matchmaker;)') elif result: print(f'Match: unanimous agreement between {t+1} part{"ies" if t else "y"}!') else: print(f'No match: someone disagrees among {t+1} part{"ies" if t else "y"}?')
#!/usr/bin/python3 # -*- coding: utf-8 -*- """ @file:pip_util.py @des:下载|安装 对应(win或any)pip版本的安装包 # pip 命令说明 # https://pip.pypa.io/en/stable/user_guide/ # pip uninstall SomePackage 卸载包 # pip search SomePackage 卸载包 # pip uninstall SomePackage 卸载包 # pip show 显示安装包信息 # pip show -f SomePackage 查看指定包的详细信息 # pip list 列出已安装的包 # pip list -o 查看可升级的包 """ # @ERROR: No module named 'pip._internal.cli.main' # 更改成 from pip._internal import main from pip._internal.cli.main import main pip_source = { '官方源': 'https://pypi.org/simple/',# 下载win版本包 建议用官方源 '阿里云': 'http://mirrors.aliyun.com/pypi/simple/', } local_down_dir = { 'base': 'Z:\\var\\log\\mine\\',#目录根地址 'win': 'win-pages', 'any': 'any-pages', } def get_pip_link(page_name): """ 获取pip官方的包源地址 当下载不到的时候可以查看下 :param page_name: 包名称 :return: """ if page_name.find('==') > -1: page_name = page_name[:page_name.rfind('==')] return 'https://pypi.org/project/{0}/#files'.format(page_name) def freeze_requirements(): """ 导出对比 requirements 文件 未列出到包 :return: """ main(['freeze', 'requirements.txt']) def down_pip_any_pages(pages=[], source='官方源'): """ 下载对应(any版本)的pip包到 win-pages目录 :param pages: 指定需要下载到包名称 :param source: 指定下载到源地址 :return: """ for pn in pages: main(['download', '-i', pip_source[source], '--only-binary=:all:', # '--platform', 'win_amd64', '--platform', 'any', '--python-version', '37', '--implementation', 'cp', '--abi', 'none', '--abi', 'cp37m', # '-r', 'requirements.txt', pn, '-d', local_down_dir['any']]) print("[{1}] 对应 pip link :{0}".format(get_pip_link(pn), pn)) def down_pip_win_pages(pages=[], source='官方源'): """ 下载对应(win版本)的pip包到 win-pages目录 :param pages: 指定需要下载到包名称 :param source: 指定下载到源地址 :return: """ for pn in pages: main(['download', '-i', pip_source[source], '--only-binary=:all:', '--platform', 'win_amd64', # '--platform', 'any', '--python-version', '37', '--implementation', 'cp', # '--abi', 'none', # '-r', 'requirements.txt', '--abi', 'cp37m', pn, '-d', local_down_dir['win']]) print("[{1}] 对应 pip link :{0}".format(get_pip_link(pn), pn)) def install_pip_win_pages(pages=[]): for pn in pages: print("执行安装包 [{0}]".format(pn)) main(['install', '--no-index', '--find-links='+local_down_dir['base']+local_down_dir['win'], pn]) def install_pip_any_pages(pages=[]): for pn in pages: print("执行安装包 [{0}]".format(pn)) main(['install', '--no-index', '--find-links='+local_down_dir['base']+local_down_dir['any'], # '-r', 'requirements.txt', pn]) if __name__ == '__main__': down_pip_win_pages(pages=["APScheduler==3.6.3"], source='官方源') # down_pip_any_pages(pages=["pymongo==3.11.3"], source='官方源') # install_pip_any_pages(pages=[]) # install_pip_win_pages(pages=[])
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. """Centralized catalog of paths.""" import os class DatasetCatalog(object): DATA_DIR = "datasets" DATASETS = { "coco_test-dev": ( "coco/test2017", "coco/annotations/image_info_test-dev2017.json", ), "coco_2017_test": ( "coco/test2017", "coco/annotations/image_info_test2017.json", ), "coco_2017_train": ( "coco/train2017", "coco/annotations/instances_train2017.json", ), "coco_2017_val": ( "coco/val2017", "coco/annotations/instances_val2017.json", ), "coco_2014_train": ( "coco/train2014", "coco/annotations/instances_train2014.json", ), "coco_2014_val": ("coco/val2014", "coco/annotations/instances_val2014.json"), "coco_2014_minival": ( "coco/val2014", "coco/annotations/instances_minival2014.json", ), "coco_2014_valminusminival": ( "coco/val2014", "coco/annotations/instances_valminusminival2014.json", ), } @staticmethod def get(name): if "coco" in name: data_dir = DatasetCatalog.DATA_DIR attrs = DatasetCatalog.DATASETS[name] args = dict( root=os.path.join(data_dir, attrs[0]), ann_file=os.path.join(data_dir, attrs[1]), ) return dict( factory="COCODataset", args=args, ) raise RuntimeError("Dataset not available: {}".format(name)) class ModelCatalog(object): S3_C2_DETECTRON_URL = "https://s3-us-west-2.amazonaws.com/detectron" C2_IMAGENET_MODELS = { "MSRA/R-50": "ImageNetPretrained/MSRA/R-50.pkl", "MSRA/R-101": "ImageNetPretrained/MSRA/R-101.pkl", "FAIR/20171220/X-101-32x8d": "ImageNetPretrained/20171220/X-101-32x8d.pkl", } C2_DETECTRON_SUFFIX = "output/train/coco_2014_train%3Acoco_2014_valminusminival/generalized_rcnn/model_final.pkl" C2_DETECTRON_MODELS = { "35857197/e2e_faster_rcnn_R-50-C4_1x": "01_33_49.iAX0mXvW", "35857345/e2e_faster_rcnn_R-50-FPN_1x": "01_36_30.cUF7QR7I", "35857890/e2e_faster_rcnn_R-101-FPN_1x": "01_38_50.sNxI7sX7", "36761737/e2e_faster_rcnn_X-101-32x8d-FPN_1x": "06_31_39.5MIHi1fZ", "35858791/e2e_mask_rcnn_R-50-C4_1x": "01_45_57.ZgkA7hPB", "35858933/e2e_mask_rcnn_R-50-FPN_1x": "01_48_14.DzEQe4wC", "35861795/e2e_mask_rcnn_R-101-FPN_1x": "02_31_37.KqyEK4tT", "36761843/e2e_mask_rcnn_X-101-32x8d-FPN_1x": "06_35_59.RZotkLKI", } @staticmethod def get(name): if name.startswith("Caffe2Detectron/COCO"): return ModelCatalog.get_c2_detectron_12_2017_baselines(name) if name.startswith("ImageNetPretrained"): return ModelCatalog.get_c2_imagenet_pretrained(name) raise RuntimeError("model not present in the catalog {}".format(name)) @staticmethod def get_c2_imagenet_pretrained(name): prefix = ModelCatalog.S3_C2_DETECTRON_URL name = name[len("ImageNetPretrained/"):] name = ModelCatalog.C2_IMAGENET_MODELS[name] url = "/".join([prefix, name]) return url @staticmethod def get_c2_detectron_12_2017_baselines(name): # Detectron C2 models are stored following the structure # prefix/<model_id>/2012_2017_baselines/<model_name>.yaml.<signature>/suffix # we use as identifiers in the catalog Caffe2Detectron/COCO/<model_id>/<model_name> prefix = ModelCatalog.S3_C2_DETECTRON_URL suffix = ModelCatalog.C2_DETECTRON_SUFFIX # remove identification prefix name = name[len("Caffe2Detectron/COCO/"):] # split in <model_id> and <model_name> model_id, model_name = name.split("/") # parsing to make it match the url address from the Caffe2 models model_name = "{}.yaml".format(model_name) signature = ModelCatalog.C2_DETECTRON_MODELS[name] unique_name = ".".join([model_name, signature]) url = "/".join([prefix, model_id, "12_2017_baselines", unique_name, suffix]) return url
# Copyright 2022 Paul Rogers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from .util import dict_get, split_host_url, service_url from . import consts from .extensions import load_extensions class ServiceMapper: """ Maps cluster services to local URLs. This is a base class for Docker, AWS or other mappings. This implementation is a "null mapping": addresses map to themselves. """ def url_for(self, host, http_port, tls_port, prefer_tls): """ Create a URL for a service given the remote host and ports. Parameters ---------- host : str The remote host. http_port : int The remote plain-text (HTTP) port, or -1 if not available. tls_port : int The remote TLS (HTTPS) port, or -1 if not available. prefer_tls : bool If True, prefer to map the TLS port before the HTTP port. Returns ------- A triple with the protocol (AKA schema): http or https, the local host name and the local port. The combination, when converted by the caller to a URL, must be accessible to the machine on which the druid-client library is running. """ if (prefer_tls and tls_port != -1) or http_port == -1: return (consts.TLS_PROTOCOL, host, tls_port) else: return (consts.PLAIN_TEXT_PROTOCOL, host, http_port) class DockerMapper(ServiceMapper): """ Maps cluster services to local URLs for Druid running in Docker. The default configuration assumes the Druid cluster runs on localhost, with no port changes. Provide an alternative Docker host name, or a set of port mappings, to change the defaults. """ def __init__(self, docker_host="localhost", port_map=[]): """ Constructor. Parameters ---------- docker_host : str, Default = "localhost" The IP address or name of the host on which Docker is running. port_map : [], Default = [] An array of Docker-style port mappings, where each entry is a two-element array or tuple of the form (external-port, internal_port). """ self.docker_host = docker_host self.port_map = {} for pair in port_map: self.port_map[pair[1]] = pair[0] def url_for(self, host, http_port, tls_port, prefer_tls): local_http_port = dict_get(self.port_map, http_port) if prefer_tls or local_http_port is None: port = dict_get(self.port_map, tls_port) if port is not None: return (consts.TLS_PROTOCOL, self.docker_host, port) if local_http_port is not None: return (consts.PLAIN_TEXT_PROTOCOL, self.docker_host, local_http_port) return ServiceMapper.url_for(self, self.docker_host, http_port, tls_port, prefer_tls) class ClusterConfig: def __init__(self, config): self.options = config self.cluster = None self.service_mapper = dict_get(config, 'mapper', ServiceMapper()) self.tls_cert = dict_get(config, 'tls_cert') self.prefer_tls = dict_get(config, 'prefer_tls', False) self.extensions = load_extensions() # Enable this option to see the URLs as they are sent. # Handy for debugging. self.trace = False def map_endpoint(self, remote_url): """ Maps a remote endpoint URL to the local equivalent. """ scheme, host, port = split_host_url(remote_url) http_port = port if scheme == consts.PLAIN_TEXT_PROTOCOL else None tls_port = port if scheme == consts.TLS_PROTOCOL else None scheme, host, port = self.service_mapper.url_for(host, http_port, tls_port, False) return service_url(scheme, host, port) def client_for(self, client, extn): return self.extensions.client_for(client, extn) def extension_names(self): return self.extensions.names() def extension_list(self): return self.extensions.list() def register_services(self, service_map): self.extensions.register_services(service_map)
from setuptools import setup # "import" __version__ __version__ = 'unknown' for line in open('src/splines/__init__.py'): if line.startswith('__version__'): exec(line) break setup( name='splines', packages=['splines'], package_dir={'': 'src'}, version=__version__, author='Matthias Geier', author_email='Matthias.Geier@gmail.com', description='Splines in Euclidean Space and Beyond', long_description=open('README.rst').read(), install_requires=['NumPy'], python_requires='>=3.6', license='MIT', keywords='splines curves interpolation quaternions'.split(), project_urls={ 'Documentation': 'https://splines.readthedocs.io/', 'Source Code': 'https://github.com/AudioSceneDescriptionFormat/splines/', 'Bug Tracker': 'https://github.com/AudioSceneDescriptionFormat/splines/issues/', }, platforms='any', classifiers=[ 'Intended Audience :: Education', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 3', ], zip_safe=True, )
from dataclasses import dataclass from typing import List import click import desert import marshmallow import requests API_URL = "https://www.biobiochile.cl/lista/api/get-todo?limit={limit}" @dataclass class New: post_hour: str post_title: str post_content: str schema = desert.schema(New, meta={"unknown": marshmallow.EXCLUDE}, many=True) def last_news(limit: int = 10) -> List[New]: url = API_URL.format(limit=limit) try: with requests.get(url) as response: response.raise_for_status() data = response.json() data.reverse() return schema.load(data) except (requests.RequestException, marshmallow.ValidationError) as error: message = str(error) raise click.ClickException(message)
import numpy as np import xarray as xr from .. import time as tmlib import warnings from os.path import getsize from ._read_bin import bin_reader from .base import _find_userdata, _create_dataset, _abspath from ..rotate.rdi import _calc_beam_orientmat, _calc_orientmat from ..rotate.base import _set_coords from ..rotate.api import set_declination def read_rdi(fname, userdata=None, nens=None, debug=0): """Read a TRDI binary data file. Parameters ---------- filename : string Filename of TRDI file to read. userdata : True, False, or string of userdata.json filename (default ``True``) Whether to read the '<base-filename>.userdata.json' file. nens : None (default: read entire file), int, or 2-element tuple (start, stop) Number of pings to read from the file Returns ------- ds : xarray.Dataset An xarray dataset from the binary instrument data """ # Reads into a dictionary of dictionaries using netcdf naming conventions # Should be easier to debug with _RdiReader(fname, debug_level=debug) as ldr: dat = ldr.load_data(nens=nens) # Read in userdata userdata = _find_userdata(fname, userdata) for nm in userdata: dat['attrs'][nm] = userdata[nm] if 'time_gps' in dat['coords']: # GPS data not necessarily sampling at the same rate as ADCP DAQ. dat = _remove_gps_duplicates(dat) # Create xarray dataset from upper level dictionary ds = _create_dataset(dat) ds = _set_coords(ds, ref_frame=ds.coord_sys) # Create orientation matrices if 'beam2inst_orientmat' not in ds: ds['beam2inst_orientmat'] = xr.DataArray(_calc_beam_orientmat( ds.beam_angle, ds.beam_pattern == 'convex'), coords={'x': [1, 2, 3, 4], 'x*': [1, 2, 3, 4]}, dims=['x', 'x*']) if 'orientmat' not in ds: ds['orientmat'] = xr.DataArray(_calc_orientmat(ds), coords={'earth': ['E', 'N', 'U'], 'inst': ['X', 'Y', 'Z'], 'time': ds['time']}, dims=['earth', 'inst', 'time']) # Check magnetic declination if provided via software and/or userdata _set_rdi_declination(ds, fname, inplace=True) # VMDAS applies gps correction on velocity in .ENX files only if fname.rsplit('.')[-1] == 'ENX': ds.attrs['vel_gps_corrected'] = 1 else: # (not ENR or ENS) or WinRiver files ds.attrs['vel_gps_corrected'] = 0 # Convert time coords to dt64 t_coords = [t for t in ds.coords if 'time' in t] for ky in t_coords: dt = tmlib.epoch2dt64(ds[ky]) ds = ds.assign_coords({ky: dt}) # Convert time vars to dt64 t_data = [t for t in ds.data_vars if 'time' in t] for ky in t_data: dt = tmlib.epoch2dt64(ds[ky]) ds[ky].data = dt return ds def _remove_gps_duplicates(dat): """ Removes duplicate and nan timestamp values in 'time_gps' coordinate, and ads hardware (ADCP DAQ) timestamp corresponding to GPS acquisition (in addition to the GPS unit's timestamp). """ dat['data_vars']['hdwtime_gps'] = dat['coords']['time'] dat['units']['hdwtime'] = 'seconds since 1970-01-01 00:00:00' # Remove duplicate timestamp values, if applicable dat['coords']['time_gps'], idx = np.unique(dat['coords']['time_gps'], return_index=True) # Remove nan values, if applicable nan = np.zeros(dat['coords']['time'].shape, dtype=bool) if any(np.isnan(dat['coords']['time_gps'])): nan = np.isnan(dat['coords']['time_gps']) dat['coords']['time_gps'] = dat['coords']['time_gps'][~nan] for key in dat['data_vars']: if 'gps' in key: dat['data_vars'][key] = dat['data_vars'][key][idx] if sum(nan) > 0: dat['data_vars'][key] = dat['data_vars'][key][~nan] return dat def _set_rdi_declination(dat, fname, inplace): # If magnetic_var_deg is set, this means that the declination is already # included in the heading and in the velocity data. declin = dat.attrs.pop('declination', None) # userdata declination if dat.attrs['magnetic_var_deg'] != 0: # from TRDI software if set dat.attrs['declination'] = dat.attrs['magnetic_var_deg'] dat.attrs['declination_in_orientmat'] = 1 # logical if dat.attrs['magnetic_var_deg'] != 0 and declin is not None: warnings.warn( "'magnetic_var_deg' is set to {:.2f} degrees in the binary " "file '{}', AND 'declination' is set in the 'userdata.json' " "file. DOLfYN WILL USE THE VALUE of {:.2f} degrees in " "userdata.json. If you want to use the value in " "'magnetic_var_deg', delete the value from userdata.json and " "re-read the file." .format(dat.attrs['magnetic_var_deg'], fname, declin)) dat.attrs['declination'] = declin if declin is not None: set_declination(dat, declin, inplace) century = 2000 data_defs = {'number': ([], 'data_vars', 'uint32', ''), 'rtc': ([7], 'sys', 'uint16', ''), 'builtin_test_fail': ([], 'data_vars', 'bool', ''), 'c_sound': ([], 'data_vars', 'float32', 'm/s'), 'depth': ([], 'data_vars', 'float32', 'm'), 'pitch': ([], 'data_vars', 'float32', 'deg'), 'roll': ([], 'data_vars', 'float32', 'deg'), 'heading': ([], 'data_vars', 'float32', 'deg'), 'temp': ([], 'data_vars', 'float32', 'C'), 'salinity': ([], 'data_vars', 'float32', 'psu'), 'min_preping_wait': ([], 'data_vars', 'float32', 's'), 'heading_std': ([], 'data_vars', 'float32', 'deg'), 'pitch_std': ([], 'data_vars', 'float32', 'deg'), 'roll_std': ([], 'data_vars', 'float32', 'deg'), 'adc': ([8], 'sys', 'uint8', ''), 'error_status_wd': ([], 'attrs', 'float32', ''), 'pressure': ([], 'data_vars', 'float32', 'dbar'), 'pressure_std': ([], 'data_vars', 'float32', 'dbar'), 'vel': (['nc', 4], 'data_vars', 'float32', 'm/s'), 'amp': (['nc', 4], 'data_vars', 'uint8', 'counts'), 'corr': (['nc', 4], 'data_vars', 'uint8', 'counts'), 'prcnt_gd': (['nc', 4], 'data_vars', 'uint8', '%'), 'status': (['nc', 4], 'data_vars', 'float32', ''), 'dist_bt': ([4], 'data_vars', 'float32', 'm'), 'vel_bt': ([4], 'data_vars', 'float32', 'm/s'), 'corr_bt': ([4], 'data_vars', 'uint8', 'counts'), 'amp_bt': ([4], 'data_vars', 'uint8', 'counts'), 'prcnt_gd_bt': ([4], 'data_vars', 'uint8', '%'), 'time': ([], 'coords', 'float64', ''), 'etime_gps': ([], 'coords', 'float64', ''), 'elatitude_gps': ([], 'data_vars', 'float64', 'deg'), 'elongitude_gps': ([], 'data_vars', 'float64', 'deg'), 'time_gps': ([], 'coords', 'float64', ''), 'latitude_gps': ([], 'data_vars', 'float64', 'deg'), 'longitude_gps': ([], 'data_vars', 'float64', 'deg'), 'ntime': ([], 'coords', 'float64', ''), 'flags': ([], 'data_vars', 'float32', ''), } def _get(dat, nm): grp = data_defs[nm][1] if grp is None: return dat[nm] else: return dat[grp][nm] def _in_group(dat, nm): grp = data_defs[nm][1] if grp is None: return nm in dat else: return nm in dat[grp] def _pop(dat, nm): grp = data_defs[nm][1] if grp is None: dat.pop(nm) else: dat[grp].pop(nm) def _setd(dat, nm, val): grp = data_defs[nm][1] if grp is None: dat[nm] = val else: dat[grp][nm] = val def _idata(dat, nm, sz): group = data_defs[nm][1] dtype = data_defs[nm][2] units = data_defs[nm][3] arr = np.empty(sz, dtype=dtype) if dtype.startswith('float'): arr[:] = np.NaN dat[group][nm] = arr dat['units'][nm] = units return dat def _get_size(name, n=None, ncell=0): sz = list(data_defs[name][0]) # create a copy! if 'nc' in sz: sz.insert(sz.index('nc'), ncell) sz.remove('nc') if n is None: return tuple(sz) return tuple(sz + [n]) class _variable_setlist(set): def __iadd__(self, vals): if vals[0] not in self: self |= set(vals) return self class _ensemble(): n_avg = 1 k = -1 # This is the counter for filling the ensemble object def __getitem__(self, nm): return getattr(self, nm) def __init__(self, navg, n_cells): if navg is None or navg == 0: navg = 1 self.n_avg = navg for nm in data_defs: setattr(self, nm, np.zeros(_get_size(nm, n=navg, ncell=n_cells), dtype=data_defs[nm][2])) def clean_data(self,): self['vel'][self['vel'] == -32.768] = np.NaN class _RdiReader(): _n_beams = 4 # Placeholder for 5-beam adcp, not currently used. _pos = 0 progress = 0 _cfgnames = dict.fromkeys([4, 5], 'bb-adcp') _cfgnames.update(dict.fromkeys([8, 9, 16], 'wh-adcp')) _cfgnames.update(dict.fromkeys([14, 23], 'os-adcp')) _cfac = 180 / 2 ** 31 _source = 0 _fixoffset = 0 _nbyte = 0 _winrivprob = False _search_num = 30000 # Maximum distance? to search _debug7f79 = None extrabytes = 0 def __init__(self, fname, navg=1, debug_level=0): self.fname = _abspath(fname) print('\nReading file {} ...'.format(fname)) self._debug_level = debug_level self.cfg = {} self.cfg['name'] = 'wh-adcp' self.cfg['sourceprog'] = 'instrument' self.cfg['prog_ver'] = 0 self.hdr = {} self.f = bin_reader(self.fname) self.read_hdr() self.read_cfg() self.f.seek(self._pos, 0) self.n_avg = navg self.ensemble = _ensemble(self.n_avg, self.cfg['n_cells']) self._filesize = getsize(self.fname) self._npings = int(self._filesize / (self.hdr['nbyte'] + 2 + self.extrabytes)) self.vars_read = _variable_setlist(['time']) if self._debug_level > 0: print(' %d pings estimated in this file' % self._npings) def read_hdr(self,): fd = self.f cfgid = list(fd.read_ui8(2)) nread = 0 if self._debug_level > 2: print(self.f.pos) print(' cfgid0: [{:x}, {:x}]'.format(*cfgid)) while (cfgid[0] != 127 or cfgid[1] != 127) or not self.checkheader(): nextbyte = fd.read_ui8(1) pos = fd.tell() nread += 1 cfgid[1] = cfgid[0] cfgid[0] = nextbyte if not pos % 1000: print(' Still looking for valid cfgid at file ' 'position %d ...' % pos) self._pos = self.f.tell() - 2 if self._debug_level > 0: print(fd.tell()) self.read_hdrseg() def read_cfg(self,): cfgid = self.f.read_ui16(1) self.read_cfgseg() def init_data(self,): outd = {'data_vars': {}, 'coords': {}, 'attrs': {}, 'units': {}, 'sys': {}} outd['attrs']['inst_make'] = 'TRDI' outd['attrs']['inst_model'] = 'Workhorse' outd['attrs']['inst_type'] = 'ADCP' outd['attrs']['rotate_vars'] = ['vel', ] # Currently RDI doesn't use IMUs outd['attrs']['has_imu'] = 0 for nm in data_defs: outd = _idata(outd, nm, sz=_get_size(nm, self._nens, self.cfg['n_cells'])) self.outd = outd def mean(self, dat): if self.n_avg == 1: return dat[..., 0] return np.nanmean(dat, axis=-1) def load_data(self, nens=None): if nens is None: self._nens = int(self._npings / self.n_avg) self._ens_range = (0, self._nens) elif (nens.__class__ is tuple or nens.__class__ is list) and \ len(nens) == 2: nens = list(nens) if nens[1] == -1: nens[1] = self._npings self._nens = int((nens[1] - nens[0]) / self.n_avg) self._ens_range = nens self.f.seek((self.hdr['nbyte'] + 2 + self.extrabytes) * self._ens_range[0], 1) else: self._nens = nens self._ens_range = (0, nens) if self._debug_level > 0: print(' taking data from pings %d - %d' % tuple(self._ens_range)) print(' %d ensembles will be produced.' % self._nens) self.init_data() dat = self.outd dat['coords']['range'] = (self.cfg['bin1_dist_m'] + np.arange(self.cfg['n_cells']) * self.cfg['cell_size']) for nm in self.cfg: dat['attrs'][nm] = self.cfg[nm] for iens in range(self._nens): try: self.read_buffer() except: self.remove_end(iens) break self.ensemble.clean_data() # Fix the 'real-time-clock' century clock = self.ensemble.rtc[:, :] if clock[0, 0] < 100: clock[0, :] += century # Copy the ensemble to the dataset. for nm in self.vars_read: _get(dat, nm)[..., iens] = self.mean(self.ensemble[nm]) try: dats = tmlib.date2epoch( tmlib.datetime(*clock[:6, 0], microsecond=clock[6, 0] * 10000))[0] except ValueError: warnings.warn("Invalid time stamp in ping {}.".format( int(self.ensemble.number[0]))) dat['coords']['time'][iens] = np.NaN else: dat['coords']['time'][iens] = np.median(dats) self.finalize() if 'vel_bt' in dat['data_vars']: dat['attrs']['rotate_vars'].append('vel_bt') return dat def read_buffer(self,): fd = self.f self.ensemble.k = -1 # so that k+=1 gives 0 on the first loop. self.print_progress() hdr = self.hdr while self.ensemble.k < self.ensemble.n_avg - 1: self.search_buffer() startpos = fd.tell() - 2 self.read_hdrseg() byte_offset = self._nbyte + 2 for n in range(len(hdr['dat_offsets'])): id = fd.read_ui16(1) self._winrivprob = False self.print_pos() retval = self.read_dat(id) if retval == 'FAIL': break byte_offset += self._nbyte if n < (len(hdr['dat_offsets']) - 1): oset = hdr['dat_offsets'][n + 1] - byte_offset if oset != 0: if self._debug_level > 0: print(' %s: Adjust location by %d\n' % (id, oset)) fd.seek(oset, 1) byte_offset = hdr['dat_offsets'][n + 1] else: if hdr['nbyte'] - 2 != byte_offset: if not self._winrivprob: if self._debug_level > 0: print(' {:d}: Adjust location by {:d}\n' .format(id, hdr['nbyte'] - 2 - byte_offset)) self.f.seek(hdr['nbyte'] - 2 - byte_offset, 1) byte_offset = hdr['nbyte'] - 2 readbytes = fd.tell() - startpos offset = hdr['nbyte'] + 2 - byte_offset self.check_offset(offset, readbytes) self.print_pos(byte_offset=byte_offset) def search_buffer(self): """ Check to see if the next bytes indicate the beginning of a data block. If not, search for the next data block, up to _search_num times. """ id1 = list(self.f.read_ui8(2)) search_cnt = 0 fd = self.f if self._debug_level > 3: print(' -->In search_buffer...') while (search_cnt < self._search_num and ((id1[0] != 127 or id1[1] != 127) or not self.checkheader())): search_cnt += 1 nextbyte = fd.read_ui8(1) id1[1] = id1[0] id1[0] = nextbyte if search_cnt == self._search_num: raise Exception( 'Searched {} entries... Bad data encountered. -> {}' .format(search_cnt, id1)) elif search_cnt > 0: if self._debug_level > 0: print(' WARNING: Searched {} bytes to find next ' 'valid ensemble start [{:x}, {:x}]'.format(search_cnt, *id1)) def checkheader(self,): if self._debug_level > 1: print(" ###In checkheader.") fd = self.f valid = 0 # print(self.f.pos) numbytes = fd.read_i16(1) if numbytes > 0: fd.seek(numbytes - 2, 1) cfgid = fd.read_ui8(2) if len(cfgid) == 2: fd.seek(-numbytes - 2, 1) if cfgid[0] == 127 and cfgid[1] in [127, 121]: if cfgid[1] == 121 and self._debug7f79 is None: self._debug7f79 = True valid = 1 else: fd.seek(-2, 1) if self._debug_level > 1: print(" ###Leaving checkheader.") return valid def read_hdrseg(self,): fd = self.f hdr = self.hdr hdr['nbyte'] = fd.read_i16(1) if self._debug_level > 2: print(fd.tell()) fd.seek(1, 1) ndat = fd.read_i8(1) hdr['dat_offsets'] = fd.read_i16(ndat) self._nbyte = 4 + ndat * 2 def print_progress(self,): self.progress = self.f.tell() if self._debug_level > 1: print(' pos %0.0fmb/%0.0fmb\n' % (self.f.tell() / 1048576., self._filesize / 1048576.)) if (self.f.tell() - self.progress) < 1048576: return def print_pos(self, byte_offset=-1): """Print the position in the file, used for debugging. """ if self._debug_level > 3: if hasattr(self, 'ensemble'): k = self.ensemble.k else: k = 0 print(' pos: %d, pos_: %d, nbyte: %d, k: %d, byte_offset: %d' % (self.f.tell(), self._pos, self._nbyte, k, byte_offset)) def check_offset(self, offset, readbytes): fd = self.f if offset != 4 and self._fixoffset == 0: if self._debug_level >= 1: print('\n ********************************************\n') if fd.tell() == self._filesize: print(' EOF reached unexpectedly - discarding this last ensemble\n') else: print(" Adjust location by {:d} (readbytes={:d},hdr['nbyte']={:d}\n" .format(offset, readbytes, self.hdr['nbyte'])) print(""" NOTE - If this appears at the beginning of the file, it may be a dolfyn problem. Please report this message, with details here: https://github.com/lkilcher/dolfyn/issues/8 - If this appears at the end of the file it means The file is corrupted and only a partial record has been read\n """) print('\n ********************************************\n') self._fixoffset = offset - 4 fd.seek(4 + self._fixoffset, 1) def read_dat(self, id): function_map = {0: (self.read_fixed, []), # 0000 128: (self.read_var, []), # 0080 256: (self.read_vel, []), # 0100 512: (self.read_corr, []), # 0200 768: (self.read_amp, []), # 0300 1024: (self.read_prcnt_gd, []), # 0400 1280: (self.read_status, []), # 0500 1536: (self.read_bottom, []), # 0600 8192: (self.read_vmdas, []), # 2000 8226: (self.read_winriver2, []), # 2022 8448: (self.read_winriver, [38]), # 2100 8449: (self.read_winriver, [97]), # 2101 8450: (self.read_winriver, [45]), # 2102 8451: (self.read_winriver, [60]), # 2103 8452: (self.read_winriver, [38]), # 2104 # Loading of these data is currently not implemented: 1793: (self.skip_Ncol, [4]), # 0701 number of pings 1794: (self.skip_Ncol, [4]), # 0702 sum of squared vel 1795: (self.skip_Ncol, [4]), # 0703 sum of velocities 2560: (self.skip_Ncol, []), # 0A00 Beam 5 velocity # 0301 Beam 5 Number of good pings 769: (self.skip_Ncol, []), # 0302 Beam 5 Sum of squared velocities 770: (self.skip_Ncol, []), # 0303 Beam 5 Sum of velocities 771: (self.skip_Ncol, []), # 020C Ambient sound profile 524: (self.skip_Nbyte, [4]), 12288: (self.skip_Nbyte, [32]), # 3000 Fixed attitude data format for OS-ADCPs } # Call the correct function: if id in function_map: if self._debug_level >= 2: print(' Reading code {}...'.format(hex(id)), end='') retval = function_map.get(id)[0](*function_map[id][1]) if retval: return retval if self._debug_level >= 2: print(' success!') else: self.read_nocode(id) def read_fixed(self,): if hasattr(self, 'configsize'): self.f.seek(self.configsize, 1) self._nbyte = self.configsize else: self.read_cfgseg() if self._debug_level >= 1: print(self._pos) self._nbyte += 2 def read_cfgseg(self,): cfgstart = self.f.tell() cfg = self.cfg fd = self.f tmp = fd.read_ui8(5) prog_ver0 = tmp[0] cfg['prog_ver'] = tmp[0] + tmp[1] / 100. cfg['name'] = self._cfgnames.get(tmp[0], 'unrecognized firmware version') config = tmp[2:4] cfg['beam_angle'] = [15, 20, 30][(config[1] & 3)] #cfg['numbeams'] = [4, 5][int((config[1] & 16) == 16)] cfg['freq'] = ([75, 150, 300, 600, 1200, 2400, 38][(config[0] & 7)]) cfg['beam_pattern'] = (['concave', 'convex'][int((config[0] & 8) == 8)]) cfg['orientation'] = ['down', 'up'][int((config[0] & 128) == 128)] #cfg['simflag'] = ['real', 'simulated'][tmp[4]] fd.seek(1, 1) cfg['n_beams'] = fd.read_ui8(1) cfg['n_cells'] = fd.read_ui8(1) cfg['pings_per_ensemble'] = fd.read_ui16(1) cfg['cell_size'] = fd.read_ui16(1) * .01 cfg['blank'] = fd.read_ui16(1) * .01 cfg['prof_mode'] = fd.read_ui8(1) cfg['corr_threshold'] = fd.read_ui8(1) cfg['prof_codereps'] = fd.read_ui8(1) cfg['min_pgood'] = fd.read_ui8(1) cfg['evel_threshold'] = fd.read_ui16(1) cfg['sec_between_ping_groups'] = ( np.sum(np.array(fd.read_ui8(3)) * np.array([60., 1., .01]))) coord_sys = fd.read_ui8(1) cfg['coord_sys'] = (['beam', 'inst', 'ship', 'earth'][((coord_sys >> 3) & 3)]) cfg['use_pitchroll'] = ['no', 'yes'][(coord_sys & 4) == 4] cfg['use_3beam'] = ['no', 'yes'][(coord_sys & 2) == 2] cfg['bin_mapping'] = ['no', 'yes'][(coord_sys & 1) == 1] cfg['xducer_misalign_deg'] = fd.read_i16(1) * .01 cfg['magnetic_var_deg'] = fd.read_i16(1) * .01 cfg['sensors_src'] = np.binary_repr(fd.read_ui8(1), 8) cfg['sensors_avail'] = np.binary_repr(fd.read_ui8(1), 8) cfg['bin1_dist_m'] = fd.read_ui16(1) * .01 cfg['xmit_pulse'] = fd.read_ui16(1) * .01 cfg['water_ref_cells'] = list(fd.read_ui8(2)) # list for attrs cfg['fls_target_threshold'] = fd.read_ui8(1) fd.seek(1, 1) cfg['xmit_lag_m'] = fd.read_ui16(1) * .01 self._nbyte = 40 self.configsize = self.f.tell() - cfgstart def read_var(self,): """ Read variable leader """ fd = self.f self.ensemble.k += 1 ens = self.ensemble k = ens.k self.vars_read += ['number', 'rtc', 'number', 'builtin_test_fail', 'c_sound', 'depth', 'heading', 'pitch', 'roll', 'salinity', 'temp', 'min_preping_wait', 'heading_std', 'pitch_std', 'roll_std', 'adc'] ens.number[k] = fd.read_ui16(1) ens.rtc[:, k] = fd.read_ui8(7) ens.number[k] += 65535 * fd.read_ui8(1) ens.builtin_test_fail[k] = fd.read_ui16(1) ens.c_sound[k] = fd.read_ui16(1) ens.depth[k] = fd.read_ui16(1) * 0.1 ens.heading[k] = fd.read_ui16(1) * 0.01 ens.pitch[k] = fd.read_i16(1) * 0.01 ens.roll[k] = fd.read_i16(1) * 0.01 ens.salinity[k] = fd.read_i16(1) ens.temp[k] = fd.read_i16(1) * 0.01 ens.min_preping_wait[k] = (fd.read_ui8( 3) * np.array([60, 1, .01])).sum() ens.heading_std[k] = fd.read_ui8(1) ens.pitch_std[k] = fd.read_ui8(1) * 0.1 ens.roll_std[k] = fd.read_ui8(1) * 0.1 ens.adc[:, k] = fd.read_i8(8) self._nbyte = 2 + 40 def read_vel(self,): ens = self.ensemble self.vars_read += ['vel'] k = ens.k ens['vel'][:, :, k] = np.array( self.f.read_i16(4 * self.cfg['n_cells']) ).reshape((self.cfg['n_cells'], 4)) * .001 self._nbyte = 2 + 4 * self.cfg['n_cells'] * 2 def read_corr(self,): k = self.ensemble.k self.vars_read += ['corr'] self.ensemble.corr[:, :, k] = np.array( self.f.read_ui8(4 * self.cfg['n_cells']) ).reshape((self.cfg['n_cells'], 4)) self._nbyte = 2 + 4 * self.cfg['n_cells'] def read_amp(self,): k = self.ensemble.k self.vars_read += ['amp'] self.ensemble.amp[:, :, k] = np.array( self.f.read_ui8(4 * self.cfg['n_cells']) ).reshape((self.cfg['n_cells'], 4)) self._nbyte = 2 + 4 * self.cfg['n_cells'] def read_prcnt_gd(self,): self.vars_read += ['prcnt_gd'] self.ensemble.prcnt_gd[:, :, self.ensemble.k] = np.array( self.f.read_ui8(4 * self.cfg['n_cells']) ).reshape((self.cfg['n_cells'], 4)) self._nbyte = 2 + 4 * self.cfg['n_cells'] def read_status(self,): self.vars_read += ['status'] self.ensemble.status[:, :, self.ensemble.k] = np.array( self.f.read_ui8(4 * self.cfg['n_cells']) ).reshape((self.cfg['n_cells'], 4)) self._nbyte = 2 + 4 * self.cfg['n_cells'] def read_bottom(self,): self.vars_read += ['dist_bt', 'vel_bt', 'corr_bt', 'amp_bt', 'prcnt_gd_bt'] fd = self.f ens = self.ensemble k = ens.k cfg = self.cfg if self._source == 2: self.vars_read += ['latitude_gps', 'longitude_gps'] fd.seek(2, 1) long1 = fd.read_ui16(1) fd.seek(6, 1) ens.latitude_gps[k] = fd.read_i32(1) * self._cfac if ens.latitude_gps[k] == 0: ens.latitude_gps[k] = np.NaN else: fd.seek(14, 1) ens.dist_bt[:, k] = fd.read_ui16(4) * 0.01 ens.vel_bt[:, k] = fd.read_i16(4) * 0.001 ens.corr_bt[:, k] = fd.read_ui8(4) ens.amp_bt[:, k] = fd.read_ui8(4) ens.prcnt_gd_bt[:, k] = fd.read_ui8(4) if self._source == 2: fd.seek(2, 1) ens.longitude_gps[k] = ( long1 + 65536 * fd.read_ui16(1)) * self._cfac if ens.longitude_gps[k] > 180: ens.longitude_gps[k] = ens.longitude_gps[k] - 360 if ens.longitude_gps[k] == 0: ens.longitude_gps[k] = np.NaN fd.seek(16, 1) qual = fd.read_ui8(1) if qual == 0: print(' qual==%d,%f %f' % (qual, ens.latitude_gps[k], ens.longitude_gps[k])) ens.latitude_gps[k] = np.NaN ens.longitude_gps[k] = np.NaN fd.seek(71 - 45 - 16 - 17, 1) self._nbyte = 2 + 68 else: fd.seek(71 - 45, 1) self._nbyte = 2 + 68 if cfg['prog_ver'] >= 5.3: fd.seek(78 - 71, 1) ens.dist_bt[:, k] = ens.dist_bt[:, k] + fd.read_ui8(4) * 655.36 self._nbyte += 11 if cfg['name'] == 'wh-adcp': if cfg['prog_ver'] >= 16.20: fd.seek(4, 1) self._nbyte += 4 def read_vmdas(self,): """ Read something from VMDAS """ fd = self.f # The raw files produced by VMDAS contain a binary navigation data # block. self.cfg['sourceprog'] = 'VMDAS' ens = self.ensemble k = ens.k if self._source != 1 and self._debug_level >= 1: print(' \n***** Apparently a VMDAS file \n\n') self._source = 1 self.vars_read += ['time_gps', 'latitude_gps', 'longitude_gps', 'etime_gps', 'elatitude_gps', 'elongitude_gps', 'flags', 'ntime', ] utim = fd.read_ui8(4) date = tmlib.datetime(utim[2] + utim[3] * 256, utim[1], utim[0]) # This byte is in hundredths of seconds (10s of milliseconds): time = tmlib.timedelta(milliseconds=(int(fd.read_ui32(1) / 10))) fd.seek(4, 1) # "PC clock offset from UTC" - clock drift in ms? ens.time_gps[k] = tmlib.date2epoch(date + time)[0] ens.latitude_gps[k] = fd.read_i32(1) * self._cfac ens.longitude_gps[k] = fd.read_i32(1) * self._cfac ens.etime_gps[k] = tmlib.date2epoch(date + tmlib.timedelta( milliseconds=int(fd.read_ui32(1) * 10)))[0] ens.elatitude_gps[k] = fd.read_i32(1) * self._cfac ens.elongitude_gps[k] = fd.read_i32(1) * self._cfac fd.seek(12, 1) ens.flags[k] = fd.read_ui16(1) fd.seek(6, 1) utim = fd.read_ui8(4) date = tmlib.datetime(utim[0] + utim[1] * 256, utim[3], utim[2]) ens.ntime[k] = tmlib.date2epoch(date + tmlib.timedelta( milliseconds=int(fd.read_ui32(1) / 10)))[0] fd.seek(16, 1) self._nbyte = 2 + 76 def read_winriver2(self, ): startpos = self.f.tell() self._winrivprob = True self.cfg['sourceprog'] = 'WINRIVER' ens = self.ensemble k = ens.k if self._source != 3 and self._debug_level >= 1: warnings.warn(' \n***** Apparently a WINRIVER2 file\n' '***** WARNING: Raw NMEA data ' 'handler not yet fully implemented\n\n') self._source = 3 spid = self.f.read_ui16(1) if spid == 104: sz = self.f.read_ui16(1) dtime = self.f.read_f64(1) start_string = self.f.reads(6) _ = self.f.reads(1) if start_string != '$GPGGA': if self._debug_level > 1: warnings.warn(f'Invalid GPGGA string found in ensemble {k},' ' skipping...') return 'FAIL' gga_time = str(self.f.reads(9)) time = tmlib.timedelta(hours=int(gga_time[0:2]), minutes=int(gga_time[2:4]), seconds=int(gga_time[4:6]), milliseconds=int(gga_time[7:])*100) clock = self.ensemble.rtc[:, :] if clock[0, 0] < 100: clock[0, :] += century ens.time_gps[k] = tmlib.date2epoch(tmlib.datetime( *clock[:3, 0]) + time)[0] self.f.seek(1, 1) ens.latitude_gps[k] = self.f.read_f64(1) tcNS = self.f.reads(1) if tcNS == 'S': ens.latitude_gps[k] *= -1 elif tcNS != 'N': if self._debug_level > 1: warnings.warn(f'Invalid GPGGA string found in ensemble {k},' ' skipping...') return 'FAIL' ens.longitude_gps[k] = self.f.read_f64(1) tcEW = self.f.reads(1) if tcEW == 'W': ens.longitude_gps[k] *= -1 elif tcEW != 'E': if self._debug_level > 1: warnings.warn(f'Invalid GPGGA string found in ensemble {k},' ' skipping...') return 'FAIL' ucqual, n_sat = self.f.read_ui8(2) tmp = self.f.read_float(2) ens.hdop, ens.altitude = tmp if self.f.reads(1) != 'M': if self._debug_level > 1: warnings.warn(f'Invalid GPGGA string found in ensemble {k},' ' skipping...') return 'FAIL' ggeoid_sep = self.f.read_float(1) if self.f.reads(1) != 'M': if self._debug_level > 1: warnings.warn(f'Invalid GPGGA string found in ensemble {k},' ' skipping...') return 'FAIL' gage = self.f.read_float(1) gstation_id = self.f.read_ui16(1) # 4 unknown bytes (2 reserved+2 checksum?) # 78 bytes for GPGGA string (including \r\n) # 2 reserved + 2 checksum self.vars_read += ['longitude_gps', 'latitude_gps', 'time_gps'] self._nbyte = self.f.tell() - startpos + 2 if self._debug_level >= 5: print('') print(sz, ens.longitude_gps[k]) def read_winriver(self, nbt): self._winrivprob = True self.cfg['sourceprog'] = 'WINRIVER' if self._source not in [2, 3]: if self._debug_level >= 1: warnings.warn('\n ***** Apparently a WINRIVER file - ' 'Raw NMEA data handler not yet implemented\n\n') self._source = 2 startpos = self.f.tell() sz = self.f.read_ui16(1) tmp = self.f.reads(sz) self._nbyte = self.f.tell() - startpos + 2 def skip_Ncol(self, n_skip=1): self.f.seek(n_skip * self.cfg['n_cells'], 1) self._nbyte = 2 + n_skip * self.cfg['n_cells'] def skip_Nbyte(self, n_skip): self.f.seek(n_skip, 1) self._nbyte = self._nbyte = 2 + n_skip def read_nocode(self, id): # Skipping bytes from codes 0340-30FC, commented if needed # hxid = hex(id) # if hxid[2:4] == '30': # raise Exception("") # # I want to count the number of 1s in the middle 4 bits # # of the 2nd two bytes. # # 60 is a 0b00111100 mask # nflds = (bin(int(hxid[3]) & 60).count('1') + # bin(int(hxid[4]) & 60).count('1')) # # I want to count the number of 1s in the highest # # 2 bits of byte 3 # # 3 is a 0b00000011 mask: # dfac = bin(int(hxid[3], 0) & 3).count('1') # self.skip_Nbyte(12 * nflds * dfac) # else: print(' Unrecognized ID code: %0.4X\n' % id) def remove_end(self, iens): dat = self.outd print(' Encountered end of file. Cleaning up data.') for nm in self.vars_read: _setd(dat, nm, _get(dat, nm)[..., :iens]) def finalize(self, ): """Remove the attributes from the data that were never loaded. """ dat = self.outd for nm in set(data_defs.keys()) - self.vars_read: _pop(dat, nm) for nm in self.cfg: dat['attrs'][nm] = self.cfg[nm] dat['attrs']['fs'] = (dat['attrs']['sec_between_ping_groups'] * dat['attrs']['pings_per_ensemble']) ** (-1) for nm in data_defs: shp = data_defs[nm][0] if len(shp) and shp[0] == 'nc' and _in_group(dat, nm): _setd(dat, nm, np.swapaxes(_get(dat, nm), 0, 1)) def __exit__(self, type, value, traceback): self.f.close() def __enter__(self,): return self
import django_filters import netaddr from django.core.exceptions import ValidationError from django.db.models import Q from netaddr.core import AddrFormatError from dcim.models import Site, Device, Interface from extras.filters import CustomFieldFilterSet from tenancy.models import Tenant from utilities.filters import NameSlugSearchFilterSet, NumericInFilter, TagFilter from virtualization.models import VirtualMachine from .constants import IPADDRESS_ROLE_CHOICES, IPADDRESS_STATUS_CHOICES, PREFIX_STATUS_CHOICES, VLAN_STATUS_CHOICES from .models import Aggregate, IPAddress, Prefix, RIR, Role, Service, VLAN, VLANGroup, VRF class VRFFilter(CustomFieldFilterSet, django_filters.FilterSet): id__in = NumericInFilter( field_name='id', lookup_expr='in' ) q = django_filters.CharFilter( method='search', label='Search', ) tenant_id = django_filters.ModelMultipleChoiceFilter( queryset=Tenant.objects.all(), label='Tenant (ID)', ) tenant = django_filters.ModelMultipleChoiceFilter( field_name='tenant__slug', queryset=Tenant.objects.all(), to_field_name='slug', label='Tenant (slug)', ) tag = TagFilter() def search(self, queryset, name, value): if not value.strip(): return queryset return queryset.filter( Q(name__icontains=value) | Q(rd__icontains=value) | Q(description__icontains=value) ) class Meta: model = VRF fields = ['name', 'rd', 'enforce_unique'] class RIRFilter(NameSlugSearchFilterSet): id__in = NumericInFilter( field_name='id', lookup_expr='in' ) class Meta: model = RIR fields = ['name', 'slug', 'is_private'] class AggregateFilter(CustomFieldFilterSet, django_filters.FilterSet): id__in = NumericInFilter( field_name='id', lookup_expr='in' ) q = django_filters.CharFilter( method='search', label='Search', ) rir_id = django_filters.ModelMultipleChoiceFilter( queryset=RIR.objects.all(), label='RIR (ID)', ) rir = django_filters.ModelMultipleChoiceFilter( field_name='rir__slug', queryset=RIR.objects.all(), to_field_name='slug', label='RIR (slug)', ) tag = TagFilter() class Meta: model = Aggregate fields = ['family', 'date_added'] def search(self, queryset, name, value): if not value.strip(): return queryset qs_filter = Q(description__icontains=value) try: prefix = str(netaddr.IPNetwork(value.strip()).cidr) qs_filter |= Q(prefix__net_contains_or_equals=prefix) except (AddrFormatError, ValueError): pass return queryset.filter(qs_filter) class RoleFilter(NameSlugSearchFilterSet): q = django_filters.CharFilter( method='search', label='Search', ) class Meta: model = Role fields = ['name', 'slug'] class PrefixFilter(CustomFieldFilterSet, django_filters.FilterSet): id__in = NumericInFilter( field_name='id', lookup_expr='in' ) q = django_filters.CharFilter( method='search', label='Search', ) prefix = django_filters.CharFilter( method='filter_prefix', label='Prefix', ) within = django_filters.CharFilter( method='search_within', label='Within prefix', ) within_include = django_filters.CharFilter( method='search_within_include', label='Within and including prefix', ) contains = django_filters.CharFilter( method='search_contains', label='Prefixes which contain this prefix or IP', ) mask_length = django_filters.NumberFilter( method='filter_mask_length', label='Mask length', ) vrf_id = django_filters.ModelMultipleChoiceFilter( queryset=VRF.objects.all(), label='VRF', ) vrf = django_filters.ModelMultipleChoiceFilter( field_name='vrf__rd', queryset=VRF.objects.all(), to_field_name='rd', label='VRF (RD)', ) tenant_id = django_filters.ModelMultipleChoiceFilter( queryset=Tenant.objects.all(), label='Tenant (ID)', ) tenant = django_filters.ModelMultipleChoiceFilter( field_name='tenant__slug', queryset=Tenant.objects.all(), to_field_name='slug', label='Tenant (slug)', ) site_id = django_filters.ModelMultipleChoiceFilter( queryset=Site.objects.all(), label='Site (ID)', ) site = django_filters.ModelMultipleChoiceFilter( field_name='site__slug', queryset=Site.objects.all(), to_field_name='slug', label='Site (slug)', ) vlan_id = django_filters.ModelMultipleChoiceFilter( queryset=VLAN.objects.all(), label='VLAN (ID)', ) vlan_vid = django_filters.NumberFilter( field_name='vlan__vid', label='VLAN number (1-4095)', ) role_id = django_filters.ModelMultipleChoiceFilter( queryset=Role.objects.all(), label='Role (ID)', ) role = django_filters.ModelMultipleChoiceFilter( field_name='role__slug', queryset=Role.objects.all(), to_field_name='slug', label='Role (slug)', ) status = django_filters.MultipleChoiceFilter( choices=PREFIX_STATUS_CHOICES, null_value=None ) tag = TagFilter() class Meta: model = Prefix fields = ['family', 'is_pool'] def search(self, queryset, name, value): if not value.strip(): return queryset qs_filter = Q(description__icontains=value) try: prefix = str(netaddr.IPNetwork(value.strip()).cidr) qs_filter |= Q(prefix__net_contains_or_equals=prefix) except (AddrFormatError, ValueError): pass return queryset.filter(qs_filter) def filter_prefix(self, queryset, name, value): if not value.strip(): return queryset try: query = str(netaddr.IPNetwork(value).cidr) return queryset.filter(prefix=query) except ValidationError: return queryset.none() def search_within(self, queryset, name, value): value = value.strip() if not value: return queryset try: query = str(netaddr.IPNetwork(value).cidr) return queryset.filter(prefix__net_contained=query) except (AddrFormatError, ValueError): return queryset.none() def search_within_include(self, queryset, name, value): value = value.strip() if not value: return queryset try: query = str(netaddr.IPNetwork(value).cidr) return queryset.filter(prefix__net_contained_or_equal=query) except (AddrFormatError, ValueError): return queryset.none() def search_contains(self, queryset, name, value): value = value.strip() if not value: return queryset try: # Searching by prefix if '/' in value: return queryset.filter(prefix__net_contains_or_equals=str(netaddr.IPNetwork(value).cidr)) # Searching by IP address else: return queryset.filter(prefix__net_contains=str(netaddr.IPAddress(value))) except (AddrFormatError, ValueError): return queryset.none() def filter_mask_length(self, queryset, name, value): if not value: return queryset return queryset.filter(prefix__net_mask_length=value) class IPAddressFilter(CustomFieldFilterSet, django_filters.FilterSet): id__in = NumericInFilter( field_name='id', lookup_expr='in' ) q = django_filters.CharFilter( method='search', label='Search', ) parent = django_filters.CharFilter( method='search_by_parent', label='Parent prefix', ) address = django_filters.CharFilter( method='filter_address', label='Address', ) mask_length = django_filters.NumberFilter( method='filter_mask_length', label='Mask length', ) vrf_id = django_filters.ModelMultipleChoiceFilter( queryset=VRF.objects.all(), label='VRF', ) vrf = django_filters.ModelMultipleChoiceFilter( field_name='vrf__rd', queryset=VRF.objects.all(), to_field_name='rd', label='VRF (RD)', ) tenant_id = django_filters.ModelMultipleChoiceFilter( queryset=Tenant.objects.all(), label='Tenant (ID)', ) tenant = django_filters.ModelMultipleChoiceFilter( field_name='tenant__slug', queryset=Tenant.objects.all(), to_field_name='slug', label='Tenant (slug)', ) device = django_filters.CharFilter( method='filter_device', field_name='name', label='Device', ) device_id = django_filters.NumberFilter( method='filter_device', field_name='pk', label='Device (ID)', ) virtual_machine_id = django_filters.ModelMultipleChoiceFilter( field_name='interface__virtual_machine', queryset=VirtualMachine.objects.all(), label='Virtual machine (ID)', ) virtual_machine = django_filters.ModelMultipleChoiceFilter( field_name='interface__virtual_machine__name', queryset=VirtualMachine.objects.all(), to_field_name='name', label='Virtual machine (name)', ) interface_id = django_filters.ModelMultipleChoiceFilter( queryset=Interface.objects.all(), label='Interface (ID)', ) status = django_filters.MultipleChoiceFilter( choices=IPADDRESS_STATUS_CHOICES, null_value=None ) role = django_filters.MultipleChoiceFilter( choices=IPADDRESS_ROLE_CHOICES ) tag = TagFilter() class Meta: model = IPAddress fields = ['family'] def search(self, queryset, name, value): if not value.strip(): return queryset qs_filter = ( Q(description__icontains=value) | Q(address__istartswith=value) ) return queryset.filter(qs_filter) def search_by_parent(self, queryset, name, value): value = value.strip() if not value: return queryset try: query = str(netaddr.IPNetwork(value.strip()).cidr) return queryset.filter(address__net_host_contained=query) except (AddrFormatError, ValueError): return queryset.none() def filter_address(self, queryset, name, value): if not value.strip(): return queryset try: # Match address and subnet mask if '/' in value: return queryset.filter(address=value) return queryset.filter(address__net_host=value) except ValidationError: return queryset.none() def filter_mask_length(self, queryset, name, value): if not value: return queryset return queryset.filter(address__net_mask_length=value) def filter_device(self, queryset, name, value): try: device = Device.objects.select_related('device_type').get(**{name: value}) vc_interface_ids = [i['id'] for i in device.vc_interfaces.values('id')] return queryset.filter(interface_id__in=vc_interface_ids) except Device.DoesNotExist: return queryset.none() class VLANGroupFilter(NameSlugSearchFilterSet): site_id = django_filters.ModelMultipleChoiceFilter( queryset=Site.objects.all(), label='Site (ID)', ) site = django_filters.ModelMultipleChoiceFilter( field_name='site__slug', queryset=Site.objects.all(), to_field_name='slug', label='Site (slug)', ) class Meta: model = VLANGroup fields = ['name', 'slug'] class VLANFilter(CustomFieldFilterSet, django_filters.FilterSet): id__in = NumericInFilter( field_name='id', lookup_expr='in' ) q = django_filters.CharFilter( method='search', label='Search', ) site_id = django_filters.ModelMultipleChoiceFilter( queryset=Site.objects.all(), label='Site (ID)', ) site = django_filters.ModelMultipleChoiceFilter( field_name='site__slug', queryset=Site.objects.all(), to_field_name='slug', label='Site (slug)', ) group_id = django_filters.ModelMultipleChoiceFilter( queryset=VLANGroup.objects.all(), label='Group (ID)', ) group = django_filters.ModelMultipleChoiceFilter( field_name='group__slug', queryset=VLANGroup.objects.all(), to_field_name='slug', label='Group', ) tenant_id = django_filters.ModelMultipleChoiceFilter( queryset=Tenant.objects.all(), label='Tenant (ID)', ) tenant = django_filters.ModelMultipleChoiceFilter( field_name='tenant__slug', queryset=Tenant.objects.all(), to_field_name='slug', label='Tenant (slug)', ) role_id = django_filters.ModelMultipleChoiceFilter( queryset=Role.objects.all(), label='Role (ID)', ) role = django_filters.ModelMultipleChoiceFilter( field_name='role__slug', queryset=Role.objects.all(), to_field_name='slug', label='Role (slug)', ) status = django_filters.MultipleChoiceFilter( choices=VLAN_STATUS_CHOICES, null_value=None ) tag = TagFilter() class Meta: model = VLAN fields = ['vid', 'name'] def search(self, queryset, name, value): if not value.strip(): return queryset qs_filter = Q(name__icontains=value) | Q(description__icontains=value) try: qs_filter |= Q(vid=int(value.strip())) except ValueError: pass return queryset.filter(qs_filter) class ServiceFilter(django_filters.FilterSet): q = django_filters.CharFilter( method='search', label='Search', ) device_id = django_filters.ModelMultipleChoiceFilter( queryset=Device.objects.all(), label='Device (ID)', ) device = django_filters.ModelMultipleChoiceFilter( field_name='device__name', queryset=Device.objects.all(), to_field_name='name', label='Device (name)', ) virtual_machine_id = django_filters.ModelMultipleChoiceFilter( queryset=VirtualMachine.objects.all(), label='Virtual machine (ID)', ) virtual_machine = django_filters.ModelMultipleChoiceFilter( field_name='virtual_machine__name', queryset=VirtualMachine.objects.all(), to_field_name='name', label='Virtual machine (name)', ) tag = TagFilter() class Meta: model = Service fields = ['name', 'protocol', 'port'] def search(self, queryset, name, value): if not value.strip(): return queryset qs_filter = Q(name__icontains=value) | Q(description__icontains=value) return queryset.filter(qs_filter)
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .metrics_operations import MetricsOperations from .events_operations import EventsOperations from .query_operations import QueryOperations __all__ = [ 'MetricsOperations', 'EventsOperations', 'QueryOperations', ]
__author__ = 'frederico' from tabuleiro import tabuleiro # Type of ship | Size | Legenda # Aircraft carrier 5 ac # Battleship 4 b # Submarine 3 s # Destroyer (or Cruiser) 3 d # Patrol boat (or destroyer) 2 pb barcos = {'ac': 5, 'b': 4, 's': 3, 'd': 3, 'pb': 2} x = input('digite a quantidade de linhas: ') y = input('digite a quantidade de colunas: ') z = 'M' t = tabuleiro(x, y, z) print(t.M) print(t.M[0]) print('tabuleiro criado com sucesso. vc tem direito a 5 navios (um de cada tipo)') m = 0 a = [] b = [] while m < 5: a = input('digite a coordenadas iniciais: ') b = input('digite a coordenadas finais: ') c = input('tipo: ') # marcando a a_in = int(a[0:1]) a_fi = int(a[3:4]) # marcando b b_in = int(b[0:1]) b_fi = int(b[3:4]) t.posicao(a_in, a_fi, b_in, b_fi) m = m + 1 # tabuleiro.m(a, b, 'x') # # '\n'
import torch import random import collections import networkx as nx from rdkit.Chem import AllChem import numpy as np from loader import graph_data_obj_to_nx_simple, nx_to_graph_data_obj_simple from loader import MoleculeDataset def get_filtered_fingerprint(smiles): """ Get filtered PubChem fingerprint. The digits related to elements other than C, H, O, N, S, F, Cl, and Br are discarded. Args: smiles (str): SMILES string. Return: fp (np.ndarray): The filtered PubChem fingerprint as a vector. length (int): length of the filtered vector. """ from PyFingerprint.All_Fingerprint import get_fingerprint fp = get_fingerprint(smiles, fp_type="pubchem", output="vector") del_pos = ( [ 26, 27, 28, 29, 30, 31, 32, 41, 42, 46, 47, 48, 295, 296, 298, 303, 304, 348, 354, 369, 407, 411, 415, 456, 525, 627, ] + list(range(49, 115)) + list(range(263, 283)) + list(range(288, 293)) + list(range(310, 317)) + list(range(318, 327)) + list(range(327, 332)) + list(range(424, 427)) ) fp = np.delete(fp, del_pos) return fp def check_same_molecules(s1, s2): mol1 = AllChem.MolFromSmiles(s1) mol2 = AllChem.MolFromSmiles(s2) return AllChem.MolToInchi(mol1) == AllChem.MolToInchi(mol2) class NegativeEdge: def __init__(self): """ Randomly sample negative edges """ pass def __call__(self, data): num_nodes = data.num_nodes num_edges = data.num_edges edge_set = set( [ str(data.edge_index[0, i].cpu().item()) + "," + str(data.edge_index[1, i].cpu().item()) for i in range(data.edge_index.shape[1]) ] ) redandunt_sample = torch.randint(0, num_nodes, (2, 5 * num_edges)) sampled_ind = [] sampled_edge_set = set([]) for i in range(5 * num_edges): node1 = redandunt_sample[0, i].cpu().item() node2 = redandunt_sample[1, i].cpu().item() edge_str = str(node1) + "," + str(node2) if not any( [edge_str in edge_set, edge_str in sampled_edge_set, node1 == node2] ): sampled_edge_set.add(edge_str) sampled_ind.append(i) if len(sampled_ind) == num_edges / 2: break data.negative_edge_index = redandunt_sample[:, sampled_ind] return data class ExtractSubstructureContextPair: def __init__(self, k, l1, l2): """ Randomly selects a node from the data object, and adds attributes that contain the substructure that corresponds to k hop neighbours rooted at the node, and the context substructures that corresponds to the subgraph that is between l1 and l2 hops away from the root node. :param k: :param l1: :param l2: """ self.k = k self.l1 = l1 self.l2 = l2 # for the special case of 0, addresses the quirk with # single_source_shortest_path_length if self.k == 0: self.k = -1 if self.l1 == 0: self.l1 = -1 if self.l2 == 0: self.l2 = -1 def __call__(self, data, root_idx=None): """ :param data: pytorch geometric data object :param root_idx: If None, then randomly samples an atom idx. Otherwise sets atom idx of root (for debugging only) :return: None. Creates new attributes in original data object: data.center_substruct_idx data.x_substruct data.edge_attr_substruct data.edge_index_substruct data.x_context data.edge_attr_context data.edge_index_context data.overlap_context_substruct_idx """ num_atoms = data.x.size(0) if root_idx is None: root_idx = random.sample(range(num_atoms), 1)[0] G = graph_data_obj_to_nx_simple(data) # same ordering as input data obj # Get k-hop subgraph rooted at specified atom idx substruct_node_idxes = nx.single_source_shortest_path_length( G, root_idx, self.k ).keys() if len(substruct_node_idxes) > 0: substruct_G = G.subgraph(substruct_node_idxes) substruct_G, substruct_node_map = reset_idxes(substruct_G) # need # to reset node idx to 0 -> num_nodes - 1, otherwise data obj does not # make sense, since the node indices in data obj must start at 0 substruct_data = nx_to_graph_data_obj_simple(substruct_G) data.x_substruct = substruct_data.x data.edge_attr_substruct = substruct_data.edge_attr data.edge_index_substruct = substruct_data.edge_index data.center_substruct_idx = torch.tensor( [substruct_node_map[root_idx]] ) # need # to convert center idx from original graph node ordering to the # new substruct node ordering # Get subgraphs that is between l1 and l2 hops away from the root node l1_node_idxes = nx.single_source_shortest_path_length( G, root_idx, self.l1 ).keys() l2_node_idxes = nx.single_source_shortest_path_length( G, root_idx, self.l2 ).keys() context_node_idxes = set(l1_node_idxes).symmetric_difference(set(l2_node_idxes)) if len(context_node_idxes) > 0: context_G = G.subgraph(context_node_idxes) context_G, context_node_map = reset_idxes(context_G) # need to # reset node idx to 0 -> num_nodes - 1, otherwise data obj does not # make sense, since the node indices in data obj must start at 0 context_data = nx_to_graph_data_obj_simple(context_G) data.x_context = context_data.x data.edge_attr_context = context_data.edge_attr data.edge_index_context = context_data.edge_index # Get indices of overlapping nodes between substruct and context, # WRT context ordering context_substruct_overlap_idxes = list( set(context_node_idxes).intersection(set(substruct_node_idxes)) ) if len(context_substruct_overlap_idxes) > 0: context_substruct_overlap_idxes_reorder = [ context_node_map[old_idx] for old_idx in context_substruct_overlap_idxes ] # need to convert the overlap node idxes, which is from the # original graph node ordering to the new context node ordering data.overlap_context_substruct_idx = torch.tensor( context_substruct_overlap_idxes_reorder ) return data # ### For debugging ### # if len(substruct_node_idxes) > 0: # substruct_mol = graph_data_obj_to_mol_simple(data.x_substruct, # data.edge_index_substruct, # data.edge_attr_substruct) # print(AllChem.MolToSmiles(substruct_mol)) # if len(context_node_idxes) > 0: # context_mol = graph_data_obj_to_mol_simple(data.x_context, # data.edge_index_context, # data.edge_attr_context) # print(AllChem.MolToSmiles(context_mol)) # # print(list(context_node_idxes)) # print(list(substruct_node_idxes)) # print(context_substruct_overlap_idxes) # ### End debugging ### def __repr__(self): return "{}(k={},l1={}, l2={})".format( self.__class__.__name__, self.k, self.l1, self.l2 ) def reset_idxes(G): """ Resets node indices such that they are numbered from 0 to num_nodes - 1 :param G: :return: copy of G with relabelled node indices, mapping """ mapping = {} for new_idx, old_idx in enumerate(G.nodes()): mapping[old_idx] = new_idx new_G = nx.relabel_nodes(G, mapping, copy=True) return new_G, mapping # TODO(Bowen): more unittests class MaskAtom: def __init__(self, num_atom_features, num_edge_type, mask_rate, mask_edge=True): """ Randomly masks an atom, and optionally masks edges connecting to it. The mask atom type index is num_possible_atom_type The mask edge type index in num_possible_edge_type :param num_atom_type: :param num_edge_type: :param mask_rate: % of atoms to be masked :param mask_edge: If True, also mask the edges that connect to the masked atoms """ self.num_atom_features = num_atom_features self.num_edge_type = num_edge_type self.mask_rate = mask_rate self.mask_edge = mask_edge def __call__(self, data, masked_atom_indices=None): """ :param data: pytorch geometric data object. Assume that the edge ordering is the default pytorch geometric ordering, where the two directions of a single edge occur in pairs. Eg. data.edge_index = tensor([[0, 1, 1, 2, 2, 3], [1, 0, 2, 1, 3, 2]]) :param masked_atom_indices: If None, then randomly samples num_atoms * mask rate number of atom indices Otherwise a list of atom idx that sets the atoms to be masked (for debugging only) :return: None, Creates new attributes in original data object: data.mask_node_idx data.mask_node_label data.mask_edge_idx data.mask_edge_label """ if masked_atom_indices is None: # sample x distinct atoms to be masked, based on mask rate. But # will sample at least 1 atom num_atoms = data.x.size()[0] sample_size = int(round(num_atoms * self.mask_rate)) if sample_size == 0: sample_size = 1 masked_atom_indices = random.sample(range(num_atoms), sample_size) # create mask node label by copying atom feature of mask atom mask_node_labels_list = [] for atom_idx in masked_atom_indices: mask_node_labels_list.append(data.x[atom_idx].view(1, -1)) data.mask_node_label = torch.cat(mask_node_labels_list, dim=0) data.masked_atom_indices = torch.tensor(masked_atom_indices) # modify the original node feature of the masked node for atom_idx in masked_atom_indices: data.x[atom_idx] = torch.tensor([0] * self.num_atom_features) if self.mask_edge: # create mask edge labels by copying edge features of edges that are bonded # to mask atoms connected_edge_indices = [] for bond_idx, (u, v) in enumerate(data.edge_index.cpu().numpy().T): for atom_idx in masked_atom_indices: if ( atom_idx in set((u, v)) and bond_idx not in connected_edge_indices ): connected_edge_indices.append(bond_idx) if len(connected_edge_indices) > 0: # create mask edge labels by copying bond features of the bonds # connected to the mask atoms mask_edge_labels_list = [] for bond_idx in connected_edge_indices[::2]: # because the # edge ordering is such that two directions of a single # edge occur in pairs, so to get the unique undirected # edge indices, we take every 2nd edge index from list mask_edge_labels_list.append(data.edge_attr[bond_idx].view(1, -1)) data.mask_edge_label = torch.cat(mask_edge_labels_list, dim=0) # modify the original bond features of the bonds connected to the mask # atoms for bond_idx in connected_edge_indices: data.edge_attr[bond_idx] = torch.tensor([self.num_edge_type, 0]) data.connected_edge_indices = torch.tensor(connected_edge_indices[::2]) else: data.mask_edge_label = torch.empty((0, 2)).to(torch.int64) data.connected_edge_indices = torch.tensor(connected_edge_indices).to( torch.int64 ) # data.x = data.x[2:] return data def __repr__(self): reprs = "{}(num_atom_features={}, num_edge_type={}, mask_rate={}, mask_edge={})" return reprs.format( self.__class__.__name__, self.num_atom_features, self.num_edge_type, self.mask_rate, self.mask_edge, ) class ONEHOT_ContextPair(object): ONEHOTENCODING_CODEBOOKS = { "atom_type": list(range(119)), "degree": list(range(11)), "formal_charge": list(range(11)), "hybridization_type": list(range(7)), "aromatic": [0, 1], "chirality_type": [0, 1, 2, 3], } def __init__(self, dataset, k, l1, l2): self.dataset = dataset self.k = k self.l1 = l1 self.l2 = l2 # for the special case of 0, addresses the quirk with # single_source_shortest_path_length if self.k == 0: self.k = -1 if self.l1 == 0: self.l1 = -1 if self.l2 == 0: self.l2 = -1 self.FEATURE_NAMES = [ "atom_type", "degree", "formal_charge", "hybridization_type", "aromatic", "chirality_type", ] self.ONEHOTENCODING = [0, 1, 2, 3, 4, 5] def get_CODEBOOKS(self): if self.ONEHOTENCODING_CODEBOOKS: # print("ONEHOTENCODING_CODEBOOKS is available already, do not need to # regenerate ONEHOTENCODING_CODEBOOKS") # print(ONEHOTENCODING_CODEBOOKS) return # print(f"generating ONEHOTENCODING_CODEBOOKS......") features_all = [data.x.numpy() for data in self.dataset] features = np.vstack(features_all) node_attributes_cnt = {} for j, col in enumerate(zip(*features)): node_attributes_cnt[self.FEATURE_NAMES[j]] = collections.Counter(col) self.ONEHOTENCODING_CODEBOOKS.update( { feature_name: sorted(node_attributes_cnt[feature_name].keys()) for feature_name in self.FEATURE_NAMES } ) def get_onehot_features(self, features): feature_one_hot = [] # print(f'input features{features}') for row in features.tolist(): this_row = [] for j, feature_val_before_onehot in enumerate(row): onehot_code = self.ONEHOTENCODING_CODEBOOKS[self.FEATURE_NAMES[j]] onehot_val = [0.0] * len(onehot_code) assert feature_val_before_onehot in onehot_code onehot_val[onehot_code.index(feature_val_before_onehot)] = 1.0 this_row += onehot_val feature_one_hot.append(this_row) return torch.Tensor(feature_one_hot) def __call__(self, data, root_idx=None): self.get_CODEBOOKS() # print(f'before onehot data {data.x.numpy()}') num_atoms = data.x.size(0) if root_idx is None: root_idx = random.sample(range(num_atoms), 1)[0] G = graph_data_obj_to_nx_simple(data) # same ordering as input data obj # Get k-hop subgraph rooted at specified atom idx substruct_node_idxes = nx.single_source_shortest_path_length( G, root_idx, self.k ).keys() if len(substruct_node_idxes) > 0: substruct_G = G.subgraph(substruct_node_idxes) substruct_G, substruct_node_map = reset_idxes(substruct_G) # need # to reset node idx to 0 -> num_nodes - 1, otherwise data obj does not # make sense, since the node indices in data obj must start at 0 substruct_data = nx_to_graph_data_obj_simple(substruct_G) data.x_substruct = substruct_data.x data.edge_attr_substruct = substruct_data.edge_attr data.edge_index_substruct = substruct_data.edge_index data.center_substruct_idx = torch.tensor( [substruct_node_map[root_idx]] ) # need # to convert center idx from original graph node ordering to the # new substruct node ordering data.x_substruct = self.get_onehot_features(data.x_substruct.numpy()) # Get subgraphs that is between l1 and l2 hops away from the root node l1_node_idxes = nx.single_source_shortest_path_length( G, root_idx, self.l1 ).keys() l2_node_idxes = nx.single_source_shortest_path_length( G, root_idx, self.l2 ).keys() context_node_idxes = set(l1_node_idxes).symmetric_difference(set(l2_node_idxes)) if len(context_node_idxes) > 0: context_G = G.subgraph(context_node_idxes) context_G, context_node_map = reset_idxes(context_G) # need to # reset node idx to 0 -> num_nodes - 1, otherwise data obj does not # make sense, since the node indices in data obj must start at 0 context_data = nx_to_graph_data_obj_simple(context_G) data.x_context = context_data.x data.edge_attr_context = context_data.edge_attr data.edge_index_context = context_data.edge_index data.x_context = self.get_onehot_features(data.x_context.numpy()) # Get indices of overlapping nodes between substruct and context, # WRT context ordering context_substruct_overlap_idxes = list( set(context_node_idxes).intersection(set(substruct_node_idxes)) ) if len(context_substruct_overlap_idxes) > 0: context_substruct_overlap_idxes_reorder = [ context_node_map[old_idx] for old_idx in context_substruct_overlap_idxes ] # need to convert the overlap node idxes, which is from the # original graph node ordering to the new context node ordering data.overlap_context_substruct_idx = torch.tensor( context_substruct_overlap_idxes_reorder ) # print(f'after onehot data{onehot_features.size()}') # print() # print ( data ) return data def __repr__(self): return "{}(k={},l1={}, l2={})".format( self.__class__.__name__, self.k, self.l1, self.l2 ) # def __repr__(self): # return f'{self.__class__.__name__}' class ONEHOT_ENCODING(object): ONEHOTENCODING_CODEBOOKS = { "atom_type": list(range(119)), "degree": list(range(11)), "formal_charge": list(range(11)), "hybridization_type": list(range(7)), "aromatic": [0, 1], "chirality_type": [0, 1, 2, 3], } def __init__(self, dataset): self.dataset = dataset self.FEATURE_NAMES = [ "atom_type", "degree", "formal_charge", "hybridization_type", "aromatic", "chirality_type", ] self.ONEHOTENCODING = [0, 1, 2, 3, 4, 5] def get_CODEBOOKS(self): if self.ONEHOTENCODING_CODEBOOKS: # print("ONEHOTENCODING_CODEBOOKS is available already, do not need to # regenerate ONEHOTENCODING_CODEBOOKS") # print(ONEHOTENCODING_CODEBOOKS) return features_all = [data.x.numpy() for data in self.dataset] features = np.vstack(features_all) node_attributes_cnt = {} for j, col in enumerate(zip(*features)): node_attributes_cnt[self.FEATURE_NAMES[j]] = collections.Counter(col) ONEHOTENCODING_CODEBOOKS.update({ feature_name: sorted(node_attributes_cnt[feature_name].keys()) for feature_name in self.FEATURE_NAMES} ) #print(f"generating ONEHOTENCODING_CODEBOOKS......") def get_onehot_features(self,features): feature_one_hot = [] #print(f'input features{features}') for row in features.tolist(): this_row = [] for j, feature_val_before_onehot in enumerate(row): onehot_code = self.ONEHOTENCODING_CODEBOOKS[self.FEATURE_NAMES[j]] onehot_val = [0.0] * len(onehot_code) assert feature_val_before_onehot in onehot_code onehot_val[onehot_code.index(feature_val_before_onehot)] = 1.0 this_row += onehot_val feature_one_hot.append(this_row) return torch.Tensor(feature_one_hot) def __call__(self, data): self.get_CODEBOOKS() #print(f'before onehot data {data.x.numpy()}') onehot_features = self.get_onehot_features(data.x.numpy()) #print(f'after onehot data{onehot_features.size()}') data.x = onehot_features #print() #print ( data ) return data def __repr__(self): return f'{self.__class__.__name__}' if __name__ == "__main__": transform = NegativeEdge() dataset = MoleculeDataset("dataset/tox21", dataset="tox21") transform(dataset[0]) """ # TODO(Bowen): more unit tests # test ExtractSubstructureContextPair smiles = 'C#Cc1c(O)c(Cl)cc(/C=C/N)c1S' m = AllChem.MolFromSmiles(smiles) data = mol_to_graph_data_obj_simple(m) root_idx = 13 # 0 hops: no substructure or context. We just test the absence of x attr transform = ExtractSubstructureContextPair(0, 0, 0) transform(data, root_idx) assert not hasattr(data, 'x_substruct') assert not hasattr(data, 'x_context') # k > n_nodes, l1 = 0 and l2 > n_nodes: substructure and context same as # molecule data = mol_to_graph_data_obj_simple(m) transform = ExtractSubstructureContextPair(100000, 0, 100000) transform(data, root_idx) substruct_mol = graph_data_obj_to_mol_simple(data.x_substruct, data.edge_index_substruct, data.edge_attr_substruct) context_mol = graph_data_obj_to_mol_simple(data.x_context, data.edge_index_context, data.edge_attr_context) assert check_same_molecules(AllChem.MolToSmiles(substruct_mol), AllChem.MolToSmiles(context_mol)) transform = ExtractSubstructureContextPair(1, 1, 10000) transform(data, root_idx) # increase k from 0, and increase l1 from 1 while keeping l2 > n_nodes: the # total number of atoms should be n_atoms for i in range(len(m.GetAtoms())): data = mol_to_graph_data_obj_simple(m) print('i: {}'.format(i)) transform = ExtractSubstructureContextPair(i, i, 100000) transform(data, root_idx) if hasattr(data, 'x_substruct'): n_substruct_atoms = data.x_substruct.size()[0] else: n_substruct_atoms = 0 print('n_substruct_atoms: {}'.format(n_substruct_atoms)) if hasattr(data, 'x_context'): n_context_atoms = data.x_context.size()[0] else: n_context_atoms = 0 print('n_context_atoms: {}'.format(n_context_atoms)) assert n_substruct_atoms + n_context_atoms == len(m.GetAtoms()) # l1 < k and l2 >= k, so an overlap exists between context and substruct data = mol_to_graph_data_obj_simple(m) transform = ExtractSubstructureContextPair(2, 1, 3) transform(data, root_idx) assert hasattr(data, 'center_substruct_idx') # check correct overlap atoms between context and substruct # m = AllChem.MolFromSmiles('COC1=CC2=C(NC(=N2)[S@@](=O)CC2=NC=C(C)C(OC)=C2C)C=C1') # data = mol_to_graph_data_obj_simple(m) # root_idx = 9 # k = 1 # l1 = 1 # l2 = 2 # transform = ExtractSubstructureContextPaidata = # mol_to_graph_data_obj_simple(m)r(k, l1, l2) # transform(data, root_idx) pass # TODO(Bowen): more unit tests # test MaskAtom from loader import mol_to_graph_data_obj_simple, \ graph_data_obj_to_mol_simple smiles = 'C#Cc1c(O)c(Cl)cc(/C=C/N)c1S' m = AllChem.MolFromSmiles(smiles) original_data = mol_to_graph_data_obj_simple(m) num_atom_type = 118 num_edge_type = 5 # manually specify masked atom indices, don't mask edge masked_atom_indices = [13, 12] data = mol_to_graph_data_obj_simple(m) transform = MaskAtom(num_atom_type, num_edge_type, 0.1, mask_edge=False) transform(data, masked_atom_indices) assert data.mask_node_label.size() == torch.Size( (len(masked_atom_indices), 2)) assert not hasattr(data, 'mask_edge_label') # check that the correct rows in x have been modified to be mask atom type assert (data.x[masked_atom_indices] == torch.tensor(([num_atom_type, 0]))).all() assert (data.mask_node_label == original_data.x[masked_atom_indices]).all() # manually specify masked atom indices, mask edge masked_atom_indices = [13, 12] data = mol_to_graph_data_obj_simple(m) transform = MaskAtom(num_atom_type, num_edge_type, 0.1, mask_edge=True) transform(data, masked_atom_indices) assert data.mask_node_label.size() == torch.Size( (len(masked_atom_indices), 2)) # check that the correct rows in x have been modified to be mask atom type assert (data.x[masked_atom_indices] == torch.tensor(([num_atom_type, 0]))).all() assert (data.mask_node_label == original_data.x[masked_atom_indices]).all() # check that the correct rows in edge_attr have been modified to be mask edge # type, and the mask_edge_label are correct rdkit_bonds = [] for atom_idx in masked_atom_indices: bond_indices = list(AllChem.FindAtomEnvironmentOfRadiusN(m, radius=1, rootedAtAtom=atom_idx)) for bond_idx in bond_indices: rdkit_bonds.append( (m.GetBonds()[bond_idx].GetBeginAtomIdx(), m.GetBonds()[ bond_idx].GetEndAtomIdx())) rdkit_bonds.append( (m.GetBonds()[bond_idx].GetEndAtomIdx(), m.GetBonds()[ bond_idx].GetBeginAtomIdx())) rdkit_bonds = set(rdkit_bonds) connected_edge_indices = [] for i in range(data.edge_index.size()[1]): if tuple(data.edge_index.numpy().T[i].tolist()) in rdkit_bonds: connected_edge_indices.append(i) assert (data.edge_attr[connected_edge_indices] == torch.tensor(([num_edge_type, 0]))).all() assert (data.mask_edge_label == original_data.edge_attr[ connected_edge_indices[::2]]).all() # data.mask_edge_label contains # the unique edges (ignoring direction). The data obj has edge ordering # such that two directions of a single edge occur in pairs, so to get the # unique undirected edge indices, we take every 2nd edge index from list """
from __future__ import absolute_import import posixpath from rest_framework import serializers from rest_framework.exceptions import PermissionDenied from rest_framework.response import Response from sentry.api.base import DocSection from sentry.api.bases.organization import OrganizationReleasesBaseEndpoint from sentry.api.exceptions import ResourceDoesNotExist from sentry.api.serializers import serialize from sentry.models import Release, ReleaseFile try: from django.http import ( CompatibleStreamingHttpResponse as StreamingHttpResponse ) except ImportError: from django.http import StreamingHttpResponse class ReleaseFileSerializer(serializers.Serializer): name = serializers.CharField(max_length=200, required=True) class OrganizationReleaseFileDetailsEndpoint(OrganizationReleasesBaseEndpoint): doc_section = DocSection.RELEASES def download(self, releasefile): file = releasefile.file fp = file.getfile() response = StreamingHttpResponse( iter(lambda: fp.read(4096), b''), content_type=file.headers.get('content-type', 'application/octet-stream'), ) response['Content-Length'] = file.size response['Content-Disposition'] = 'attachment; filename="%s"' % posixpath.basename(" ".join(releasefile.name.split())) return response def get(self, request, organization, version, file_id): """ Retrieve an Organization Release's File ``````````````````````````````````````` Return details on an individual file within a release. This does not actually return the contents of the file, just the associated metadata. :pparam string organization_slug: the slug of the organization the release belongs to. :pparam string version: the version identifier of the release. :pparam string file_id: the ID of the file to retrieve. :auth: required """ try: release = Release.objects.get( organization_id=organization.id, version=version, ) except Release.DoesNotExist: raise ResourceDoesNotExist if not self.has_release_permission(request, organization, release): raise PermissionDenied try: releasefile = ReleaseFile.objects.get( release=release, id=file_id, ) except ReleaseFile.DoesNotExist: raise ResourceDoesNotExist download_requested = request.GET.get('download') is not None if download_requested and ( request.access.has_scope('project:write')): return self.download(releasefile) elif download_requested: return Response(status=403) return Response(serialize(releasefile, request.user)) def put(self, request, organization, version, file_id): """ Update an Organization Release's File ````````````````````````````````````` Update metadata of an existing file. Currently only the name of the file can be changed. :pparam string organization_slug: the slug of the organization the release belongs to. :pparam string version: the version identifier of the release. :pparam string file_id: the ID of the file to update. :param string name: the new name of the file. :param string dist: the name of the dist. :auth: required """ try: release = Release.objects.get( organization_id=organization.id, version=version, ) except Release.DoesNotExist: raise ResourceDoesNotExist if not self.has_release_permission(request, organization, release): raise PermissionDenied try: releasefile = ReleaseFile.objects.get( release=release, id=file_id, ) except ReleaseFile.DoesNotExist: raise ResourceDoesNotExist serializer = ReleaseFileSerializer(data=request.DATA) if not serializer.is_valid(): return Response(serializer.errors, status=400) result = serializer.object releasefile.update( name=result['name'], ) return Response(serialize(releasefile, request.user)) def delete(self, request, organization, version, file_id): """ Delete an Organization Release's File ````````````````````````````````````` Permanently remove a file from a release. This will also remove the physical file from storage. :pparam string organization_slug: the slug of the organization the release belongs to. :pparam string version: the version identifier of the release. :pparam string file_id: the ID of the file to delete. :auth: required """ try: release = Release.objects.get( organization_id=organization.id, version=version, ) except Release.DoesNotExist: raise ResourceDoesNotExist if not self.has_release_permission(request, organization, release): raise PermissionDenied try: releasefile = ReleaseFile.objects.get( release=release, id=file_id, ) except ReleaseFile.DoesNotExist: raise ResourceDoesNotExist file = releasefile.file # TODO(dcramer): this doesnt handle a failure from file.deletefile() to # the actual deletion of the db row releasefile.delete() file.delete() return Response(status=204)
import pytest from stone_burner.config import parse_project_config from stone_burner.config import TFAttributes from stone_burner.config import get_component_paths from .utils import SAMPLE_CONFIG def test_parse_project_config_1(): e = { 'c1': {'component_type': 'c1', 'validate': {}}, 'c2': {'component_type': 'c2', 'validate': {}}, 'c3': {'component_type': 'c3', 'validate': {'check-variables': False}}, 'mg1': {'component_type': 'my-generic-component', 'validate': {}}, 'mg2': {'component_type': 'my-generic-component', 'validate': {}}, 'mg3': {'component_type': 'my-generic-component', 'validate': {'check-variables': False}}, 'oc1': {'component_type': 'other-generic-component', 'validate': {}}, 'oc2': {'component_type': 'other-generic-component', 'validate': {}}, } r = parse_project_config(SAMPLE_CONFIG, 'p1') assert r == e def test_parse_project_config_2(): with pytest.raises(Exception): parse_project_config(SAMPLE_CONFIG, 'p2') def check_variables(*args, **kwargs): component_config = kwargs['component_config'] validate_config = component_config.get('validate', {}) check_variables = validate_config.get('check-variables', True) return ['true'] if check_variables else ['false'] def test_TFAttributes_check_variables_1(): tf_attrs = TFAttributes() r = tf_attrs.check_variables( component_config={'component_type': 'c3', 'validate': {'check-variables': True}}) assert r == ['true'] def test_TFAttributes_check_variables_2(): tf_attrs = TFAttributes() r = tf_attrs.check_variables( component_config={'component_type': 'c3', 'validate': {'check-variables': False}}) assert r == ['false'] def test_TFAttributes_check_variables_3(): tf_attrs = TFAttributes() r1 = tf_attrs.check_variables( component_config={'component_type': 'c3'}) assert r1 == ['true'] r2 = tf_attrs.check_variables( component_config={'component_type': 'c3', 'validate': {}}) assert r2 == ['true'] r3 = tf_attrs.check_variables( component_config={'component_type': 'c3', 'validate': None}) assert r3 == ['true'] def test_get_component_paths_1(): r = get_component_paths( 'p1', 'c1', {'component_type': 'gc'}, 'e1', '/tmp/states', '/tmp/projects', '/tmp/vars') e = { 'config_dir': '/tmp/projects/p1/gc', 'vars_file': '/tmp/vars/e1/p1/c1.tfvars', 'state_dir': '/tmp/states/e1/p1/c1', } assert r == e
import os,sys,inspect current_dir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parent_dir = os.path.dirname(current_dir) sys.path.insert(0, parent_dir) import sum def test_sum(): assert sum.sum(3, 4) == 7
# -*- coding: utf-8 -*- # # Copyright @ 0x6c78. # # 16-10-20 下午1:27 0x6c78@gmail.com # # Distributed under terms of the MIT License from operator import mul from itertools import combinations class Score(object): def __init__(self): """ 张峰实验室通过实验获得的每个位置错配的特异性,具体参考网页: http://crispr.mit.edu/about """ self.m = (0, 0, 0.014, 0, 0, 0.395, 0.317, 0, 0.389, 0.079, 0.445, 0.508, 0.613, 0.851, 0.732, 0.828, 0.615, 0.804, 0.685, 0.583) def _t1(self, locs): """ :param locs: 失配的位置 :return: 公式第一部分的值 """ return reduce(mul, [1-self.m[loc] for loc in locs]) @staticmethod def _t2(locs): """ :param locs: 失配的位置, 由于没有失配就没有mean pairwise distance,故locs的length至少为1 :return: 公式第二部分的值 """ if len(locs) == 1: return 1.000 else: locs = sorted(locs) length = len(locs) mpd = (locs[-1] - locs[0]) / (length - 1) # mean pairwise distance return 1 / (((19 - mpd) / 19) * 4 + 1) @staticmethod def _t3(m): """ :param m: 失配碱基的个数 :return: 公式第三部分的值 """ return 1 / (m ** 2) def get(self, locs): if len(locs) == 0: return 100.000 elif len(locs) == 1: return round(100 * self._t1(locs), 3) else: return round(100 * self._t1(locs) * self._t2(locs) * self._t3(len(locs)), 3) @classmethod def to_dict(cls): """ 将所有可能的错配结果对应的得分先计算好,放到一个字典里 加速得分的计算 :return: 一个字典,字典的键是错配的位置由下划线分割的字符串,值是得分 """ mm2score = {} pos_list = range(20) score = cls() for mm_cnt in xrange(5): for mm_pos_list in combinations(pos_list, mm_cnt): mm2score['_'.join(str(_) for _ in mm_pos_list)] = score.get(mm_pos_list) return mm2score
def cast_kwargs(kwargs): kwargs_copy = kwargs.copy() for arg, value in kwargs_copy.items(): if isinstance(value, dict): kwargs_copy[arg] = cast_kwargs(value) else: kwargs_copy[arg] = cast_string(kwargs_copy[arg]) return kwargs_copy def cast_string(s): if s == "True": return True elif s == "False": return False elif s == "None": return None elif is_int(s): return int(s) elif is_float(s): return float(s) else: return s def is_int(s): try: int(s) return True except (ValueError, TypeError): return False def is_float(s): try: float(s) return True except (ValueError, TypeError): return False
from .analysis import * from .plot import * from .generate import * from .utils import * __author__ = 'Konstantinos Kavvadias' __license__ = 'BSD-3-Clause' __version__ = "0.1.dev11"
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import TYPE_CHECKING import warnings from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.paging import ItemPaged from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import HttpRequest, HttpResponse from azure.core.polling import LROPoller, NoPolling, PollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.arm_polling import ARMPolling from .. import models as _models if TYPE_CHECKING: # pylint: disable=unused-import,ungrouped-imports from typing import Any, Callable, Dict, Generic, Iterable, Optional, TypeVar, Union T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, HttpResponse], T, Dict[str, Any]], Any]] class ClustersOperations(object): """ClustersOperations operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.hdinsight.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer): self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def _create_initial( self, resource_group_name, # type: str cluster_name, # type: str parameters, # type: "_models.ClusterCreateParametersExtended" **kwargs # type: Any ): # type: (...) -> "_models.Cluster" cls = kwargs.pop('cls', None) # type: ClsType["_models.Cluster"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-06-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'clusterName': self._serialize.url("cluster_name", cluster_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'ClusterCreateParametersExtended') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('Cluster', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized _create_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}'} # type: ignore def begin_create( self, resource_group_name, # type: str cluster_name, # type: str parameters, # type: "_models.ClusterCreateParametersExtended" **kwargs # type: Any ): # type: (...) -> LROPoller["_models.Cluster"] """Creates a new HDInsight cluster with the specified parameters. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param cluster_name: The name of the cluster. :type cluster_name: str :param parameters: The cluster create request. :type parameters: ~azure.mgmt.hdinsight.models.ClusterCreateParametersExtended :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either Cluster or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[~azure.mgmt.hdinsight.models.Cluster] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.Cluster"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._create_initial( resource_group_name=resource_group_name, cluster_name=cluster_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): deserialized = self._deserialize('Cluster', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'clusterName': self._serialize.url("cluster_name", cluster_name, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}'} # type: ignore def update( self, resource_group_name, # type: str cluster_name, # type: str parameters, # type: "_models.ClusterPatchParameters" **kwargs # type: Any ): # type: (...) -> "_models.Cluster" """Patch HDInsight cluster with the specified parameters. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param cluster_name: The name of the cluster. :type cluster_name: str :param parameters: The cluster patch request. :type parameters: ~azure.mgmt.hdinsight.models.ClusterPatchParameters :keyword callable cls: A custom type or function that will be passed the direct response :return: Cluster, or the result of cls(response) :rtype: ~azure.mgmt.hdinsight.models.Cluster :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.Cluster"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-06-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.update.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'clusterName': self._serialize.url("cluster_name", cluster_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'ClusterPatchParameters') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('Cluster', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}'} # type: ignore def _delete_initial( self, resource_group_name, # type: str cluster_name, # type: str **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-06-01" accept = "application/json" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'clusterName': self._serialize.url("cluster_name", cluster_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}'} # type: ignore def begin_delete( self, resource_group_name, # type: str cluster_name, # type: str **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Deletes the specified HDInsight cluster. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param cluster_name: The name of the cluster. :type cluster_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._delete_initial( resource_group_name=resource_group_name, cluster_name=cluster_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'clusterName': self._serialize.url("cluster_name", cluster_name, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}'} # type: ignore def get( self, resource_group_name, # type: str cluster_name, # type: str **kwargs # type: Any ): # type: (...) -> "_models.Cluster" """Gets the specified cluster. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param cluster_name: The name of the cluster. :type cluster_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: Cluster, or the result of cls(response) :rtype: ~azure.mgmt.hdinsight.models.Cluster :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.Cluster"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-06-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'clusterName': self._serialize.url("cluster_name", cluster_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('Cluster', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}'} # type: ignore def list_by_resource_group( self, resource_group_name, # type: str **kwargs # type: Any ): # type: (...) -> Iterable["_models.ClusterListResult"] """Lists the HDInsight clusters in a resource group. :param resource_group_name: The name of the resource group. :type resource_group_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ClusterListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.hdinsight.models.ClusterListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ClusterListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-06-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_by_resource_group.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('ClusterListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list_by_resource_group.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters'} # type: ignore def _resize_initial( self, resource_group_name, # type: str cluster_name, # type: str role_name, # type: Union[str, "_models.RoleName"] parameters, # type: "_models.ClusterResizeParameters" **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-06-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._resize_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'clusterName': self._serialize.url("cluster_name", cluster_name, 'str'), 'roleName': self._serialize.url("role_name", role_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'ClusterResizeParameters') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _resize_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/roles/{roleName}/resize'} # type: ignore def begin_resize( self, resource_group_name, # type: str cluster_name, # type: str role_name, # type: Union[str, "_models.RoleName"] parameters, # type: "_models.ClusterResizeParameters" **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Resizes the specified HDInsight cluster to the specified size. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param cluster_name: The name of the cluster. :type cluster_name: str :param role_name: The constant value for the roleName. :type role_name: str or ~azure.mgmt.hdinsight.models.RoleName :param parameters: The parameters for the resize operation. :type parameters: ~azure.mgmt.hdinsight.models.ClusterResizeParameters :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._resize_initial( resource_group_name=resource_group_name, cluster_name=cluster_name, role_name=role_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'clusterName': self._serialize.url("cluster_name", cluster_name, 'str'), 'roleName': self._serialize.url("role_name", role_name, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_resize.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/roles/{roleName}/resize'} # type: ignore def _update_auto_scale_configuration_initial( self, resource_group_name, # type: str cluster_name, # type: str role_name, # type: Union[str, "_models.RoleName"] parameters, # type: "_models.AutoscaleConfigurationUpdateParameter" **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-06-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._update_auto_scale_configuration_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'clusterName': self._serialize.url("cluster_name", cluster_name, 'str'), 'roleName': self._serialize.url("role_name", role_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'AutoscaleConfigurationUpdateParameter') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _update_auto_scale_configuration_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/roles/{roleName}/autoscale'} # type: ignore def begin_update_auto_scale_configuration( self, resource_group_name, # type: str cluster_name, # type: str role_name, # type: Union[str, "_models.RoleName"] parameters, # type: "_models.AutoscaleConfigurationUpdateParameter" **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Updates the Autoscale Configuration for HDInsight cluster. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param cluster_name: The name of the cluster. :type cluster_name: str :param role_name: The constant value for the roleName. :type role_name: str or ~azure.mgmt.hdinsight.models.RoleName :param parameters: The parameters for the update autoscale configuration operation. :type parameters: ~azure.mgmt.hdinsight.models.AutoscaleConfigurationUpdateParameter :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._update_auto_scale_configuration_initial( resource_group_name=resource_group_name, cluster_name=cluster_name, role_name=role_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'clusterName': self._serialize.url("cluster_name", cluster_name, 'str'), 'roleName': self._serialize.url("role_name", role_name, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_update_auto_scale_configuration.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/roles/{roleName}/autoscale'} # type: ignore def list( self, **kwargs # type: Any ): # type: (...) -> Iterable["_models.ClusterListResult"] """Lists all the HDInsight clusters under the subscription. :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ClusterListResult or the result of cls(response) :rtype: ~azure.core.paging.ItemPaged[~azure.mgmt.hdinsight.models.ClusterListResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ClusterListResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-06-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request def extract_data(pipeline_response): deserialized = self._deserialize('ClusterListResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, iter(list_of_elem) def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, response) map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) return pipeline_response return ItemPaged( get_next, extract_data ) list.metadata = {'url': '/subscriptions/{subscriptionId}/providers/Microsoft.HDInsight/clusters'} # type: ignore def _rotate_disk_encryption_key_initial( self, resource_group_name, # type: str cluster_name, # type: str parameters, # type: "_models.ClusterDiskEncryptionParameters" **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-06-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._rotate_disk_encryption_key_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'clusterName': self._serialize.url("cluster_name", cluster_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'ClusterDiskEncryptionParameters') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _rotate_disk_encryption_key_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/rotatediskencryptionkey'} # type: ignore def begin_rotate_disk_encryption_key( self, resource_group_name, # type: str cluster_name, # type: str parameters, # type: "_models.ClusterDiskEncryptionParameters" **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Rotate disk encryption key of the specified HDInsight cluster. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param cluster_name: The name of the cluster. :type cluster_name: str :param parameters: The parameters for the disk encryption operation. :type parameters: ~azure.mgmt.hdinsight.models.ClusterDiskEncryptionParameters :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._rotate_disk_encryption_key_initial( resource_group_name=resource_group_name, cluster_name=cluster_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'clusterName': self._serialize.url("cluster_name", cluster_name, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_rotate_disk_encryption_key.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/rotatediskencryptionkey'} # type: ignore def get_gateway_settings( self, resource_group_name, # type: str cluster_name, # type: str **kwargs # type: Any ): # type: (...) -> "_models.GatewaySettings" """Gets the gateway settings for the specified cluster. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param cluster_name: The name of the cluster. :type cluster_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: GatewaySettings, or the result of cls(response) :rtype: ~azure.mgmt.hdinsight.models.GatewaySettings :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.GatewaySettings"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-06-01" accept = "application/json" # Construct URL url = self.get_gateway_settings.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'clusterName': self._serialize.url("cluster_name", cluster_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.post(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('GatewaySettings', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_gateway_settings.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/getGatewaySettings'} # type: ignore def _update_gateway_settings_initial( self, resource_group_name, # type: str cluster_name, # type: str parameters, # type: "_models.UpdateGatewaySettingsParameters" **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-06-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._update_gateway_settings_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'clusterName': self._serialize.url("cluster_name", cluster_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'UpdateGatewaySettingsParameters') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _update_gateway_settings_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/updateGatewaySettings'} # type: ignore def begin_update_gateway_settings( self, resource_group_name, # type: str cluster_name, # type: str parameters, # type: "_models.UpdateGatewaySettingsParameters" **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Configures the gateway settings on the specified cluster. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param cluster_name: The name of the cluster. :type cluster_name: str :param parameters: The cluster configurations. :type parameters: ~azure.mgmt.hdinsight.models.UpdateGatewaySettingsParameters :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._update_gateway_settings_initial( resource_group_name=resource_group_name, cluster_name=cluster_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'clusterName': self._serialize.url("cluster_name", cluster_name, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_update_gateway_settings.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/updateGatewaySettings'} # type: ignore def get_azure_async_operation_status( self, resource_group_name, # type: str cluster_name, # type: str operation_id, # type: str **kwargs # type: Any ): # type: (...) -> "_models.AsyncOperationResult" """The the async operation status. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param cluster_name: The name of the cluster. :type cluster_name: str :param operation_id: The long running operation id. :type operation_id: str :keyword callable cls: A custom type or function that will be passed the direct response :return: AsyncOperationResult, or the result of cls(response) :rtype: ~azure.mgmt.hdinsight.models.AsyncOperationResult :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.AsyncOperationResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-06-01" accept = "application/json" # Construct URL url = self.get_azure_async_operation_status.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'clusterName': self._serialize.url("cluster_name", cluster_name, 'str'), 'operationId': self._serialize.url("operation_id", operation_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) deserialized = self._deserialize('AsyncOperationResult', pipeline_response) if cls: return cls(pipeline_response, deserialized, {}) return deserialized get_azure_async_operation_status.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/azureasyncoperations/{operationId}'} # type: ignore def _update_identity_certificate_initial( self, resource_group_name, # type: str cluster_name, # type: str parameters, # type: "_models.UpdateClusterIdentityCertificateParameters" **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-06-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._update_identity_certificate_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'clusterName': self._serialize.url("cluster_name", cluster_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'UpdateClusterIdentityCertificateParameters') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _update_identity_certificate_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/updateClusterIdentityCertificate'} # type: ignore def begin_update_identity_certificate( self, resource_group_name, # type: str cluster_name, # type: str parameters, # type: "_models.UpdateClusterIdentityCertificateParameters" **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Updates the cluster identity certificate. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param cluster_name: The name of the cluster. :type cluster_name: str :param parameters: The cluster configurations. :type parameters: ~azure.mgmt.hdinsight.models.UpdateClusterIdentityCertificateParameters :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._update_identity_certificate_initial( resource_group_name=resource_group_name, cluster_name=cluster_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'clusterName': self._serialize.url("cluster_name", cluster_name, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_update_identity_certificate.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/updateClusterIdentityCertificate'} # type: ignore def _execute_script_actions_initial( self, resource_group_name, # type: str cluster_name, # type: str parameters, # type: "_models.ExecuteScriptActionParameters" **kwargs # type: Any ): # type: (...) -> None cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2021-06-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._execute_script_actions_initial.metadata['url'] # type: ignore path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'clusterName': self._serialize.url("cluster_name", cluster_name, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'ExecuteScriptActionParameters') body_content_kwargs['content'] = body_content request = self._client.post(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202]: map_error(status_code=response.status_code, response=response, error_map=error_map) error = self._deserialize.failsafe_deserialize(_models.ErrorResponse, response) raise HttpResponseError(response=response, model=error, error_format=ARMErrorFormat) if cls: return cls(pipeline_response, None, {}) _execute_script_actions_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/executeScriptActions'} # type: ignore def begin_execute_script_actions( self, resource_group_name, # type: str cluster_name, # type: str parameters, # type: "_models.ExecuteScriptActionParameters" **kwargs # type: Any ): # type: (...) -> LROPoller[None] """Executes script actions on the specified HDInsight cluster. :param resource_group_name: The name of the resource group. :type resource_group_name: str :param cluster_name: The name of the cluster. :type cluster_name: str :param parameters: The parameters for executing script actions. :type parameters: ~azure.mgmt.hdinsight.models.ExecuteScriptActionParameters :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: By default, your polling method will be ARMPolling. Pass in False for this operation to not poll, or pass in your own initialized polling object for a personal polling strategy. :paramtype polling: bool or ~azure.core.polling.PollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of LROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.LROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, PollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = self._execute_script_actions_initial( resource_group_name=resource_group_name, cluster_name=cluster_name, parameters=parameters, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'clusterName': self._serialize.url("cluster_name", cluster_name, 'str'), } if polling is True: polling_method = ARMPolling(lro_delay, lro_options={'final-state-via': 'location'}, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = NoPolling() else: polling_method = polling if cont_token: return LROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return LROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_execute_script_actions.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.HDInsight/clusters/{clusterName}/executeScriptActions'} # type: ignore
from pathlib import Path from fhir.resources.valueset import ValueSet as _ValueSet from oops_fhir.utils import ValueSet from oops_fhir.r4.code_system.structure_map_group_type_mode import ( StructureMapGroupTypeMode as StructureMapGroupTypeMode_, ) __all__ = ["StructureMapGroupTypeMode"] _resource = _ValueSet.parse_file(Path(__file__).with_suffix(".json")) class StructureMapGroupTypeMode(StructureMapGroupTypeMode_): """ StructureMapGroupTypeMode If this is the default rule set to apply for the source type, or this combination of types. Status: draft - Version: 4.0.1 http://hl7.org/fhir/ValueSet/map-group-type-mode """ class Meta: resource = _resource
from django.contrib import admin from .models import SensorNode from .models import SensorData admin.site.register(SensorNode) admin.site.register(SensorData)
""" This file is part of web2py Web Framework (Copyrighted, 2007-2009). Developed by Massimo Di Pierro <mdipierro@cs.depaul.edu>. License: GPL v2 """ import datetime from storage import Storage from html import * import contrib.simplejson as simplejson import contrib.rss2 as rss2 def xml_rec(value, key): if isinstance(value, (dict, Storage)): return TAG[key](*[TAG[k](xml_rec(v, '')) for k, v in value.items()]) elif isinstance(value, list): return TAG[key](*[TAG.item(xml_rec(item, '')) for item in value]) elif value == None: return 'None' else: return str(value) def xml(value, encoding='UTF-8', key='document'): return ('<?xml version="1.0" encoding="%s"?>' % encoding) + str(xml_rec(value,key)) def json(value): return simplejson.dumps(value) def csv(value): return '' def rss(feed): if not 'entries' in feed and 'items' in feed: feed['entries'] = feed['items'] now=datetime.datetime.now() rss = rss2.RSS2(title = feed['title'], link = feed['link'], description = feed['description'], lastBuildDate = feed.get('created_on', now), items = [rss2.RSSItem(\ title=entry['title'], link=entry['link'], description=entry['description'], pubDate=entry.get('created_on', now) )\ for entry in feed['entries'] ] ) return rss2.dumps(rss)
class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def lowestCommonAncestor(self, root: 'TreeNode', p: 'TreeNode', q: 'TreeNode') -> 'TreeNode': # 介于二者之间 if p.val <= root.val <= q.val or q.val <= root.val <= p.val: return root if root.val < p.val and root.val < q.val: # 比二者都小 return self.lowestCommonAncestor(root.right, p, q) if root.val > p.val and root.val > q.val: # 比二者都大 return self.lowestCommonAncestor(root.left, p, q)
import tensorflow as tf from baselines.ppo2 import ppo2 from baselines.common.models import build_impala_cnn from baselines.common.mpi_util import setup_mpi_gpus from procgen import ProcgenEnv from baselines.common.vec_env import ( VecExtractDictObs, VecMonitor, VecFrameStack, VecNormalize ) from baselines import logger from mpi4py import MPI import argparse from .alternate_ppo2 import alt_ppo2 import os from baselines.common import set_global_seeds from baselines.common.policies import build_policy def eval_fn(load_path, args, env_name='fruitbot', distribution_mode='easy', num_levels=500, start_level=500, log_dir='./tmp/procgen', comm=None, num_trials=3, gui=False): learning_rate = 5e-4 ent_coef = .01 gamma = .999 lam = .95 nsteps = 256 nminibatches = 8 ppo_epochs = 3 clip_range = .2 use_vf_clipping = True vf_coef = 0.5 max_grad_norm = 0.5 mpi_rank_weight = 1 log_interval = 1 seed=None log_comm = comm.Split(0, 0) format_strs = ['csv', 'stdout'] if log_comm.Get_rank() == 0 else [] logger.configure(comm=log_comm, dir=log_dir, format_strs=format_strs) logger.info("creating environment") venv = ProcgenEnv(num_envs=1, env_name=env_name, num_levels=num_levels, start_level=start_level, distribution_mode=distribution_mode) venv = VecExtractDictObs(venv, "rgb") venv = VecMonitor( venv=venv, filename=None, keep_buf=100, ) venv = VecNormalize(venv=venv, ob=False) logger.info("creating tf session") setup_mpi_gpus() config = tf.ConfigProto() config.gpu_options.allow_growth = True #pylint: disable=E1101 sess = tf.Session(config=config) sess.__enter__() conv_fn = lambda x: build_impala_cnn(x, depths=[16,32,32], emb_size=256) logger.info(f"evaluating") set_global_seeds(seed) policy = build_policy(venv, conv_fn) # Get the nb of env nenvs = venv.num_envs # Get state_space and action_space ob_space = venv.observation_space ac_space = venv.action_space # Calculate the batch_size nbatch = nenvs * nsteps nbatch_train = nbatch // nminibatches # Instantiate the model object (that creates act_model and train_model) from .alternate_ppo2.model import Model model_fn = Model model = model_fn(policy=policy, ob_space=ob_space, ac_space=ac_space, nbatch_act=nenvs, nbatch_train=nbatch_train, nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef, max_grad_norm=max_grad_norm, comm=comm, mpi_rank_weight=mpi_rank_weight) if os.path.isfile(load_path): alt_ppo2.eval( network=conv_fn, nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef, max_grad_norm=max_grad_norm, gamma=gamma, lam=lam, log_interval=log_interval, nminibatches=nminibatches, noptepochs=ppo_epochs, load_path=load_path, mpi_rank_weight=mpi_rank_weight, comm=comm, clip_vf=use_vf_clipping, lr=learning_rate, cliprange=clip_range, policy=policy, nenvs=nenvs, ob_space=ob_space, ac_space=ac_space, nbatch=nbatch, nbatch_train=nbatch_train, model_fn=model_fn, model=model, num_trials=num_trials, num_levels=num_levels, start_level=start_level, gui=gui, args=args ) elif os.path.isdir(load_path): for file in os.listdir(load_path): log_comm = comm.Split(0, 0) format_strs = ['csv', 'stdout'] if log_comm.Get_rank() == 0 else [] logger.configure(comm=log_comm, dir=log_dir+'/'+file, format_strs=format_strs) alt_ppo2.eval( network=conv_fn, nsteps=nsteps, ent_coef=ent_coef, vf_coef=vf_coef, max_grad_norm=max_grad_norm, gamma=gamma, lam=lam, log_interval=log_interval, nminibatches=nminibatches, noptepochs=ppo_epochs, load_path=load_path+'/'+file, mpi_rank_weight=mpi_rank_weight, comm=comm, clip_vf=use_vf_clipping, lr=learning_rate, cliprange=clip_range, policy=policy, nenvs=nenvs, ob_space=ob_space, ac_space=ac_space, nbatch=nbatch, nbatch_train=nbatch_train, model_fn=model_fn, model=model, num_trials=num_trials, num_levels=num_levels, start_level=start_level, gui=gui, args=args ) else: print('Model path does not exist.') return def main(): parser = argparse.ArgumentParser(description='Process procgen evaluation arguments.') parser.add_argument('--load_model', type=str, required=True) parser.add_argument('--log_dir', type=str, default='./logs/eval') parser.add_argument('--env_name', type=str, default='fruitbot') parser.add_argument('--distribution_mode', type=str, default='easy', choices=["easy", "hard", "exploration", "memory", "extreme"]) parser.add_argument('--num_levels', type=int, default=500) parser.add_argument('--start_level', type=int, default=0) parser.add_argument('--num_trials', type=int, default=3) parser.add_argument('--gui', action='store_true') args = parser.parse_args() comm = MPI.COMM_WORLD eval_fn(args.load_model, log_dir=args.log_dir, env_name=args.env_name, distribution_mode=args.distribution_mode, num_levels=args.num_levels, start_level=args.start_level, num_trials=args.num_trials, comm=comm, gui=args.gui, args=args ) if __name__ == '__main__': main()
from random import randint from time import sleep lista = list() jogos = list() print('-' * 30) print('{:^30}'.format('JOGA NA MEGA SENA')) print('-' * 30) quant = int(input('Quantos jogos você quer que eu sorteie? ')) tot = 1 while tot <= quant: cont = 0 while True: num = randint(1, 60) if num not in lista: lista.append(num) cont += 1 if cont >= 6: break lista.sort() jogos.append(lista[:]) lista.clear() tot += 1 print('-=' * 3, f' SORTEANDO {quant} JOGOS ', '=-' * 3) for i, l in enumerate(jogos): print(f'Jogo {i+1}: {l}') sleep(0.5) print('-=' * 5, '< BOA SORTE! >', '=-' * 5)
""" WSGI config for ChamberOfSecret project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.1/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'ChamberOfSecret.settings') application = get_wsgi_application()
from __future__ import print_function import os from importlib import import_module, reload from pathlib import Path from _pytest.pytester import Testdir from nbformat import read from pytest import ExitCode from .helper import failing_nb, passing_nb, write_nb pytest_plugins = "pytester" NB_VERSION = 4 def test_import(): reload(import_module("nbmake.nb_result")) reload(import_module("nbmake.nb_run")) reload(import_module("nbmake.pytest_plugin")) reload(import_module("nbmake.pytest_items")) def test_when_nb_present_then_collected(testdir: Testdir): write_nb(passing_nb, Path(testdir.tmpdir) / "a.ipynb") items, hook_recorder = testdir.inline_genitems("--nbmake") assert hook_recorder.ret == ExitCode.OK assert len(items) == 1 def test_when_ignored_none_collected(testdir: Testdir): write_nb(passing_nb, Path(testdir.tmpdir) / "a.ipynb") items, hook_recorder = testdir.inline_genitems( "--nbmake", "--ignore-glob", "*.ipynb" ) assert hook_recorder.ret == ExitCode.NO_TESTS_COLLECTED assert len(items) == 0 def test_when_in_build_dir_none_collected(testdir: Testdir): build_dir = Path("_build") build_dir.mkdir() write_nb(passing_nb, build_dir / "a.ipynb") items, hook_recorder = testdir.inline_genitems("--nbmake") assert hook_recorder.ret == ExitCode.NO_TESTS_COLLECTED assert len(items) == 0 def test_when_parallel_passing_nbs_then_ok(testdir: Testdir): [write_nb(passing_nb, Path(f"{i}.ipynb")) for i in range(20)] hook_recorder = testdir.inline_run("--nbmake", "-n=auto") assert hook_recorder.ret == ExitCode.OK def test_when_passing_nbs_then_ok(testdir: Testdir): nbs = [ Path(testdir.tmpdir) / "a.ipynb", Path(testdir.tmpdir) / "b nb.ipynb", Path(testdir.tmpdir) / Path("sub dir/a.ipynb"), Path(testdir.tmpdir) / Path("sub dir/b.ipynb"), ] testdir.mkdir("sub dir") [write_nb(passing_nb, path) for path in nbs] hook_recorder = testdir.inline_run("--nbmake", "-vvv") for path in nbs: nb = read(str(path), NB_VERSION) for cell in nb.cells: if "outputs" in cell: assert cell.outputs == [] assert hook_recorder.ret == ExitCode.OK def test_when_overwrite_then_overwritten(testdir: Testdir): nbs = [ Path(testdir.tmpdir) / Path("sub dir/b.ipynb"), ] testdir.mkdir("sub dir") [write_nb(["1+1"], path) for path in nbs] hook_recorder = testdir.inline_run("--nbmake", "--overwrite") for path in nbs: nb = read(str(path), NB_VERSION) for cell in nb.cells: if "outputs" in cell: assert cell.outputs != [] assert hook_recorder.ret == ExitCode.OK def test_when_run_from_non_root_then_ok(testdir: Testdir): nbs = [ Path(testdir.tmpdir) / Path("sub dir/b.ipynb"), ] testdir.mkdir("sub dir") Path("pytest.ini").write_text("") os.chdir("sub dir") [write_nb(passing_nb, path) for path in nbs] hook_recorder = testdir.inline_run("--nbmake", "-vvv") assert hook_recorder.ret == ExitCode.OK def test_when_failing_nb_then_fail(testdir: Testdir): write_nb(failing_nb, Path(testdir.tmpdir) / "a.ipynb") hook_recorder = testdir.inline_run("--nbmake", "-v") assert hook_recorder.ret == ExitCode.TESTS_FAILED def test_when_no_html_flag_then_no_build_dir(testdir: Testdir): write_nb(failing_nb, Path(testdir.tmpdir) / "a.ipynb") hook_recorder = testdir.inline_run("--nbmake") assert hook_recorder.ret == ExitCode.TESTS_FAILED assert not Path("_build").exists() def test_when_init_then_passes(testdir: Testdir): example_dir = Path(testdir.tmpdir) / "example" example_dir.mkdir() write_nb(passing_nb, example_dir / "a.ipynb") (example_dir / "__init__.py").write_text("") hook_recorder = testdir.inline_run("--nbmake") assert hook_recorder.ret == ExitCode.OK def test_when_timeout_flag_then_uses_as_default(testdir: Testdir): example_dir = Path(testdir.tmpdir) / "example" example_dir.mkdir() write_nb(["import time; time.sleep(2)"], example_dir / "a.ipynb") hook_recorder = testdir.inline_run("--nbmake", "--nbmake-timeout=3") assert hook_recorder.ret == ExitCode.OK hook_recorder = testdir.inline_run("--nbmake", "--nbmake-timeout=1") assert hook_recorder.ret == ExitCode.TESTS_FAILED def test_when_explicit_metadata_then_ignore_timeout(testdir: Testdir): example_dir = Path(testdir.tmpdir) / "example" example_dir.mkdir() write_nb( ["import time; time.sleep(2)"], example_dir / "a.ipynb", metadata={"execution": {"timeout": 10}}, ) hook_recorder = testdir.inline_run("--nbmake", "--nbmake-timeout=1") assert hook_recorder.ret == ExitCode.OK def test_when_kernel_passed_then_override(testdir: Testdir): write_nb( passing_nb, Path(f"x.ipynb"), metadata={ "kernelspec": { "display_name": "Python 3", "language": "python", "name": "blah", } }, ) hook_recorder = testdir.inline_run("--nbmake", "--nbmake-kernel=python3") assert hook_recorder.ret == ExitCode.OK
""" This is the Orchestra Project Python API. TODO(marcua): Move this file to its own pip/github project. """ import json import logging from datetime import datetime from time import mktime from wsgiref.handlers import format_date_time import requests from django.conf import settings from httpsig.requests_auth import HTTPSignatureAuth from orchestra.utils.convert_key_to_int import convert_key_to_int logger = logging.getLogger(__name__) _httpsig_auth = HTTPSignatureAuth(key_id=settings.ORCHESTRA_PROJECT_API_KEY, secret=settings.ORCHESTRA_PROJECT_API_SECRET, algorithm='hmac-sha256') _api_root_url = '{}/orchestra/api/project/'.format(settings.ORCHESTRA_URL) class OrchestraError(Exception): pass def _make_api_request(method, endpoint, query_params='', *args, **kwargs): func = getattr(requests, method) # Adding 'date' header as per # https://github.com/zzsnzmn/py-http-signature/blob/e2e2c753db7da45fab4b215d84e8d490bd708833/http_signature/sign.py#L155 # noqa headers = {'date': format_date_time(mktime(datetime.now().timetuple())), 'X-Api-Version': '~6.5', 'X-Api-Key': settings.ORCHESTRA_PROJECT_API_KEY} headers.update(kwargs.pop('headers', {})) all_kwargs = {'auth': _httpsig_auth, 'headers': headers} all_kwargs.update(kwargs) url = '{}{}/{}'.format(_api_root_url, endpoint, query_params) response = func(url, *args, **all_kwargs) if response.status_code != 200 and response.status_code != 201: raise OrchestraError(response.text) return response def get_workflow_types(): response = _make_api_request('get', 'workflow_types') return json.loads(response.text)['workflows'] def get_project_details_url(project_id): data = {'project_id': project_id} response = _make_api_request('post', 'project_details_url', data=json.dumps(data)) url = json.loads(response.text)['project_details_url'] return url def create_orchestra_project(client, workflow_slug, workflow_version_slug, description, priority, project_data, task_class): data = { 'workflow_slug': workflow_slug, 'workflow_version_slug': workflow_version_slug, 'description': description, 'priority': priority, 'project_data': project_data, 'task_class': task_class } response = _make_api_request('post', 'create_project', data=json.dumps(data)) project_id = json.loads(response.text)['project_id'] return project_id def get_project_information(project_ids): data = { 'project_ids': project_ids } response = _make_api_request('post', 'project_information', data=json.dumps(data)) return json.loads(response.text, object_hook=convert_key_to_int) def create_todos(todos): response = _make_api_request('post', 'todo-api', headers={'Content-type': 'application/json'}, data=json.dumps(todos)) return json.loads(response.text) def build_url_params(project_id, step_slug, **filters): project_param = 'project__id={}'.format(project_id) if project_id else '' step_slug_param = '&step__slug={}'.format( step_slug) if step_slug is not None else '' additional_filters = '&q={}'.format( json.dumps(filters)) if filters else '' query_params = '?{}{}{}'.format( project_param, step_slug_param, additional_filters) return query_params def get_todos(project_id, step_slug=None, **filters): """ project_id: int step_slug: str filters: dict. Example: {'some_fk_field__slug': 'cool_slug'} See GenericTodoViewset and QueryParamsFilterBackend to get more info on filtering. """ if project_id is None and 'id__in' not in filters: raise OrchestraError('project_id is required') query_params = build_url_params(project_id, step_slug, **filters) response = _make_api_request('get', 'todo-api', query_params) return json.loads(response.text) def update_todos(updated_todos): response = _make_api_request('patch', 'todo-api', headers={'Content-type': 'application/json'}, data=json.dumps(updated_todos)) return json.loads(response.text) def delete_todos(todo_ids): response = _make_api_request('delete', 'todo-api', data=json.dumps(todo_ids)) return json.loads(response.text) def assign_worker_to_task(worker_id, task_id): data = { 'worker_id': worker_id, 'task_id': task_id, } response = _make_api_request('post', 'assign_worker_to_task', data=json.dumps(data)) return json.loads(response.text) def message_project_team(project_id, message): data = { 'project_id': project_id, 'message': message } response = _make_api_request('post', 'message_project_team', data=json.dumps(data)) return json.loads(response.text) def get_todo_templates(): response = _make_api_request('get', 'todo_templates') return json.loads(response.text) def create_todos_from_template(todolist_template_slug, project_id, step_slug, additional_data): data = { 'todolist_template_slug': todolist_template_slug, 'project_id': project_id, 'step_slug': step_slug, 'additional_data': additional_data, } response = _make_api_request('post', 'create_todos_from_template', data=json.dumps(data)) return json.loads(response.text)
# Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # SPDX-License-Identifier: Apache-2.0 import boto3 import os, logging, json from botocore.retries import bucket #from pkg_resources import Version from crhelper import CfnResource from botocore.exceptions import ClientError # declare helper and logging helper = CfnResource() logger = logging.getLogger() logger.setLevel(logging.INFO) # get env variables DrRegion = os.environ['DrRegion'] S3BucketName = os.environ['S3BucketName'] OriginalLambdaRoleName = os.environ['OriginalLambdaRoleName'] OriginalPolicyName = os.environ['OriginalPolicyName'] def lambda_handler(event, context): helper(event, context) @helper.create @helper.update def create_resources(event, context): s3 = boto3.client('s3', region_name = DrRegion) account_id = event['ResourceProperties']['AccountID'] #format bucket name dr_bucket_name = str(f'disasterrecovery-{S3BucketName}') #Create S3 bucket for DR response = create_bucket(s3, dr_bucket_name, DrRegion) logger.info(f'response from bucket creation{response}') #enable bucket versioning response = enable_bucket_versioning(s3, dr_bucket_name) logger.info(f'response to setting bucket versioning: {response}') bucket_arn = str(f'arn:aws:s3:::{dr_bucket_name}') helper.Data['bucket_arn'] = bucket_arn def create_bucket(s3, dr_bucket_name, DrRegion): try: response = s3.create_bucket( Bucket = dr_bucket_name, CreateBucketConfiguration = { 'LocationConstraint': DrRegion } ) return response except ClientError as e: logger.info(e.response) def enable_bucket_versioning(s3, dr_bucket_name): try: response = s3.put_bucket_versioning( Bucket = dr_bucket_name, VersioningConfiguration={ 'Status': 'Enabled' } ) return response except ClientError as e: logger.info(e.response) @helper.delete def delete_bucket(event,context): try: bucket_name = str(f'disasterrecovery-{S3BucketName}') s3_resource = boto3.resource('s3', region_name = DrRegion) s3 = boto3.client('s3', region_name = DrRegion) bucket = s3_resource.Bucket(bucket_name) #Delete bucket objects 1st logger.info(f'Deleting bucket objects from bucket:{bucket_name}') bucket.objects.all().delete() logger.info(f'objects deleted successfully from bucket:{bucket_name}') #Delete bucket 2nd logger.info(f'Deleting s3 bucket {bucket_name}') response = s3.delete_bucket( Bucket = bucket_name) logger.info(response) logger.info(f'deleted s3 bucket {bucket_name}') return response except ClientError as e: logger.info(e.response)
# -*- coding: utf-8 -*- """ Created on Thu Jun 3 17:03:45 2021 @author: shangfr """ import joblib import operator from functools import reduce from whoosh.index import open_dir from whoosh.qparser import QueryParser import pkg_resources INDEX_DIR = pkg_resources.resource_filename('cnsyn', 'query') ix = open_dir(INDEX_DIR) words_tree = joblib.load(INDEX_DIR+'/words_tree_mini.m') tree_model = words_tree['model'] words_id = words_tree['words'] words_emb = tree_model.get_arrays()[0] def search(word, topK=10, origin='all'): ''' Parameters ---------- word : str 查询词. topK : int, optional 查询返回同义词数量. The default is 10. origin : str, optional 词源. The default is 'all'. Returns ------- sim_words : list 同义词列表. ''' word_list = [] with ix.searcher() as searcher: query = QueryParser("words", ix.schema).parse(word) results = searcher.search(query, limit=None) if len(results) > 0: for result in results: if origin == 'all': word_list.append(result.fields()['words'].split()) elif origin == result.fields()['origin']: word_list.append(result.fields()['words'].split()) else: pass if word_list != []: sim_words = reduce(operator.add, word_list) sim_words = list(set(sim_words)) else: sim_words = word_list return sim_words[0:topK] def anns(word, topK=10): ''' Parameters ---------- word : str 查询词. topK : int, optional k nearest neighbors. The default is 10. return_distance : bool, optional if True, return distances to neighbors of each point if False, return only neighbors. The default is True. Returns ------- sim_words : list 同义词列表. ''' word_key = [x[0] for x in words_id.items() if word == x[1]] if word_key == []: sim_words = [] else: word_emb = words_emb[word_key] ind = tree_model.query( word_emb, k=topK, return_distance=False) sim_words = [words_id.get(i) for i in ind.ravel()] return sim_words if __name__ == '__main__': # 查询同义词(全部词库) word = '中山广场' search(word) search(word, topK=3) # 使用wiki词库 search(word, origin='wiki') # 使用中文同义词字典库 search(word, origin='cndict') # 基于向量查同义词 anns(word) anns(word, topK=3) word = input("Please input the word you want to search: ") step_result = "Something went wrong......" try: step_result = search(word) finally: print(step_result)
# Copyright 2018 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for the LaunchDescriptionSource class.""" from launch import LaunchDescription from launch import LaunchDescriptionSource import pytest def test_launch_description_source_constructors(): """Test the constructors for LaunchDescriptionSource class.""" LaunchDescriptionSource() LaunchDescriptionSource(LaunchDescription()) LaunchDescriptionSource(LaunchDescription(), 'location') LaunchDescriptionSource(LaunchDescription(), 'location', 'method description') def test_launch_description_source_methods(): """Test the methods of the LaunchDescriptionSource class.""" class MockLaunchContext: def perform_substitution(self, substitution): return substitution.perform(None) lds = LaunchDescriptionSource() with pytest.raises(RuntimeError): lds.get_launch_description(MockLaunchContext()) ld = LaunchDescription() lds = LaunchDescriptionSource(ld) assert lds.get_launch_description(MockLaunchContext()) == ld ld = LaunchDescription() lds = LaunchDescriptionSource(ld, 'location') assert lds.get_launch_description(MockLaunchContext()) == ld assert lds.location == 'location' ld = LaunchDescription() lds = LaunchDescriptionSource(ld, 'location', 'method description') assert lds.get_launch_description(MockLaunchContext()) == ld assert lds.location == 'location' assert lds.method == 'method description'
"""Support for aggregation-based AMG.""" from __future__ import absolute_import from warnings import warn import numpy as np from scipy.sparse import csr_matrix, isspmatrix_csr, isspmatrix_bsr,\ SparseEfficiencyWarning from pyamg.multilevel import multilevel_solver from pyamg.relaxation.smoothing import change_smoothers from pyamg.util.utils import relaxation_as_linear_operator,\ eliminate_diag_dom_nodes, blocksize,\ levelize_strength_or_aggregation, levelize_smooth_or_improve_candidates from pyamg.strength import classical_strength_of_connection,\ symmetric_strength_of_connection, evolution_strength_of_connection,\ energy_based_strength_of_connection, distance_strength_of_connection,\ algebraic_distance, affinity_distance from .aggregate import standard_aggregation, naive_aggregation,\ lloyd_aggregation from .tentative import fit_candidates from .smooth import jacobi_prolongation_smoother,\ richardson_prolongation_smoother, energy_prolongation_smoother __all__ = ['smoothed_aggregation_solver'] def smoothed_aggregation_solver(A, B=None, BH=None, symmetry='hermitian', strength='symmetric', aggregate='standard', smooth=('jacobi', {'omega': 4.0/3.0}), presmoother=('block_gauss_seidel', {'sweep': 'symmetric'}), postsmoother=('block_gauss_seidel', {'sweep': 'symmetric'}), improve_candidates=[('block_gauss_seidel', {'sweep': 'symmetric', 'iterations': 4}), None], max_levels=10, max_coarse=10, diagonal_dominance=False, keep=False, **kwargs): """Create a multilevel solver using classical-style Smoothed Aggregation (SA). Parameters ---------- A : csr_matrix, bsr_matrix Sparse NxN matrix in CSR or BSR format B : None, array_like Right near-nullspace candidates stored in the columns of an NxK array. The default value B=None is equivalent to B=ones((N,1)) BH : None, array_like Left near-nullspace candidates stored in the columns of an NxK array. BH is only used if symmetry='nonsymmetric'. The default value B=None is equivalent to BH=B.copy() symmetry : string 'symmetric' refers to both real and complex symmetric 'hermitian' refers to both complex Hermitian and real Hermitian 'nonsymmetric' i.e. nonsymmetric in a hermitian sense Note, in the strictly real case, symmetric and hermitian are the same. Note, this flag does not denote definiteness of the operator. strength : string or list Method used to determine the strength of connection between unknowns of the linear system. Method-specific parameters may be passed in using a tuple, e.g. strength=('symmetric',{'theta' : 0.25 }). If strength=None, all nonzero entries of the matrix are considered strong. Choose from 'symmetric', 'classical', 'evolution', 'algebraic_distance', 'affinity', ('predefined', {'C' : csr_matrix}), None aggregate : string or list Method used to aggregate nodes. Choose from 'standard', 'lloyd', 'naive', ('predefined', {'AggOp' : csr_matrix}) smooth : list Method used to smooth the tentative prolongator. Method-specific parameters may be passed in using a tuple, e.g. smooth= ('jacobi',{'filter' : True }). Choose from 'jacobi', 'richardson', 'energy', None presmoother : tuple, string, list Defines the presmoother for the multilevel cycling. The default block Gauss-Seidel option defaults to point-wise Gauss-Seidel, if the matrix is CSR or is a BSR matrix with blocksize of 1. postsmoother : tuple, string, list Same as presmoother, except defines the postsmoother. improve_candidates : tuple, string, list The ith entry defines the method used to improve the candidates B on level i. If the list is shorter than max_levels, then the last entry will define the method for all levels lower. If tuple or string, then this single relaxation descriptor defines improve_candidates on all levels. The list elements are relaxation descriptors of the form used for presmoother and postsmoother. A value of None implies no action on B. max_levels : integer Maximum number of levels to be used in the multilevel solver. max_coarse : integer Maximum number of variables permitted on the coarse grid. diagonal_dominance : bool, tuple If True (or the first tuple entry is True), then avoid coarsening diagonally dominant rows. The second tuple entry requires a dictionary, where the key value 'theta' is used to tune the diagonal dominance threshold. keep : bool Flag to indicate keeping extra operators in the hierarchy for diagnostics. For example, if True, then strength of connection (C), tentative prolongation (T), and aggregation (AggOp) are kept. Other Parameters ---------------- cycle_type : ['V','W','F'] Structrure of multigrid cycle coarse_solver : ['splu', 'lu', 'cholesky, 'pinv', 'gauss_seidel', ... ] Solver used at the coarsest level of the MG hierarchy. Optionally, may be a tuple (fn, args), where fn is a string such as ['splu', 'lu', ...] or a callable function, and args is a dictionary of arguments to be passed to fn. Returns ------- ml : multilevel_solver Multigrid hierarchy of matrices and prolongation operators See Also -------- multilevel_solver, classical.ruge_stuben_solver, aggregation.smoothed_aggregation_solver Notes ----- - This method implements classical-style SA, not root-node style SA (see aggregation.rootnode_solver). - The additional parameters are passed through as arguments to multilevel_solver. Refer to pyamg.multilevel_solver for additional documentation. - At each level, four steps are executed in order to define the coarser level operator. 1. Matrix A is given and used to derive a strength matrix, C. 2. Based on the strength matrix, indices are grouped or aggregated. 3. The aggregates define coarse nodes and a tentative prolongation operator T is defined by injection 4. The tentative prolongation operator is smoothed by a relaxation scheme to improve the quality and extent of interpolation from the aggregates to fine nodes. - The parameters smooth, strength, aggregate, presmoother, postsmoother can be varied on a per level basis. For different methods on different levels, use a list as input so that the i-th entry defines the method at the i-th level. If there are more levels in the hierarchy than list entries, the last entry will define the method for all levels lower. Examples are: smooth=[('jacobi', {'omega':1.0}), None, 'jacobi'] presmoother=[('block_gauss_seidel', {'sweep':symmetric}), 'sor'] aggregate=['standard', 'naive'] strength=[('symmetric', {'theta':0.25}), ('symmetric', {'theta':0.08})] - Predefined strength of connection and aggregation schemes can be specified. These options are best used together, but aggregation can be predefined while strength of connection is not. For predefined strength of connection, use a list consisting of tuples of the form ('predefined', {'C' : C0}), where C0 is a csr_matrix and each degree-of-freedom in C0 represents a supernode. For instance to predefine a three-level hierarchy, use [('predefined', {'C' : C0}), ('predefined', {'C' : C1}) ]. Similarly for predefined aggregation, use a list of tuples. For instance to predefine a three-level hierarchy, use [('predefined', {'AggOp' : Agg0}), ('predefined', {'AggOp' : Agg1}) ], where the dimensions of A, Agg0 and Agg1 are compatible, i.e. Agg0.shape[1] == A.shape[0] and Agg1.shape[1] == Agg0.shape[0]. Each AggOp is a csr_matrix. Examples -------- >>> from pyamg import smoothed_aggregation_solver >>> from pyamg.gallery import poisson >>> from scipy.sparse.linalg import cg >>> import numpy as np >>> A = poisson((100,100), format='csr') # matrix >>> b = np.ones((A.shape[0])) # RHS >>> ml = smoothed_aggregation_solver(A) # AMG solver >>> M = ml.aspreconditioner(cycle='V') # preconditioner >>> x,info = cg(A, b, tol=1e-8, maxiter=30, M=M) # solve with CG References ---------- .. [1996VaMaBr] Vanek, P. and Mandel, J. and Brezina, M., "Algebraic Multigrid by Smoothed Aggregation for Second and Fourth Order Elliptic Problems", Computing, vol. 56, no. 3, pp. 179--196, 1996. http://citeseer.ist.psu.edu/vanek96algebraic.html """ if not (isspmatrix_csr(A) or isspmatrix_bsr(A)): try: A = csr_matrix(A) warn("Implicit conversion of A to CSR", SparseEfficiencyWarning) except BaseException: raise TypeError('Argument A must have type csr_matrix or bsr_matrix, or be convertible to csr_matrix') A = A.asfptype() if (symmetry != 'symmetric') and (symmetry != 'hermitian') and\ (symmetry != 'nonsymmetric'): raise ValueError('expected \'symmetric\', \'nonsymmetric\' or \'hermitian\' for the symmetry parameter ') A.symmetry = symmetry if A.shape[0] != A.shape[1]: raise ValueError('expected square matrix') # Right near nullspace candidates use constant for each variable as default if B is None: B = np.kron(np.ones((int(A.shape[0]/blocksize(A)), 1), dtype=A.dtype), np.eye(blocksize(A), dtype=A.dtype)) else: B = np.asarray(B, dtype=A.dtype) if len(B.shape) == 1: B = B.reshape(-1, 1) if B.shape[0] != A.shape[0]: raise ValueError('The near null-space modes B have incorrect dimensions for matrix A') if B.shape[1] < blocksize(A): warn('Having less target vectors, B.shape[1], than blocksize of A can degrade convergence factors.') # Left near nullspace candidates if A.symmetry == 'nonsymmetric': if BH is None: BH = B.copy() else: BH = np.asarray(BH, dtype=A.dtype) if len(BH.shape) == 1: BH = BH.reshape(-1, 1) if BH.shape[1] != B.shape[1]: raise ValueError('The number of left and right near null-space modes B and BH, must be equal') if BH.shape[0] != A.shape[0]: raise ValueError('The near null-space modes BH have incorrect dimensions for matrix A') # Levelize the user parameters, so that they become lists describing the # desired user option on each level. max_levels, max_coarse, strength =\ levelize_strength_or_aggregation(strength, max_levels, max_coarse) max_levels, max_coarse, aggregate =\ levelize_strength_or_aggregation(aggregate, max_levels, max_coarse) improve_candidates =\ levelize_smooth_or_improve_candidates(improve_candidates, max_levels) smooth = levelize_smooth_or_improve_candidates(smooth, max_levels) # Construct multilevel structure levels = [] levels.append(multilevel_solver.level()) levels[-1].A = A # matrix # Append near nullspace candidates levels[-1].B = B # right candidates if A.symmetry == 'nonsymmetric': levels[-1].BH = BH # left candidates while len(levels) < max_levels and\ int(levels[-1].A.shape[0]/blocksize(levels[-1].A)) > max_coarse: extend_hierarchy(levels, strength, aggregate, smooth, improve_candidates, diagonal_dominance, keep) ml = multilevel_solver(levels, **kwargs) change_smoothers(ml, presmoother, postsmoother) return ml def extend_hierarchy(levels, strength, aggregate, smooth, improve_candidates, diagonal_dominance=False, keep=True): """Extend the multigrid hierarchy. Service routine to implement the strength of connection, aggregation, tentative prolongation construction, and prolongation smoothing. Called by smoothed_aggregation_solver. """ def unpack_arg(v): if isinstance(v, tuple): return v[0], v[1] else: return v, {} A = levels[-1].A B = levels[-1].B if A.symmetry == "nonsymmetric": AH = A.H.asformat(A.format) BH = levels[-1].BH # Compute the strength-of-connection matrix C, where larger # C[i,j] denote stronger couplings between i and j. fn, kwargs = unpack_arg(strength[len(levels)-1]) if fn == 'symmetric': C = symmetric_strength_of_connection(A, **kwargs) elif fn == 'classical': C = classical_strength_of_connection(A, **kwargs) elif fn == 'distance': C = distance_strength_of_connection(A, **kwargs) elif (fn == 'ode') or (fn == 'evolution'): if 'B' in kwargs: C = evolution_strength_of_connection(A, **kwargs) else: C = evolution_strength_of_connection(A, B, **kwargs) elif fn == 'energy_based': C = energy_based_strength_of_connection(A, **kwargs) elif fn == 'predefined': C = kwargs['C'].tocsr() elif fn == 'algebraic_distance': C = algebraic_distance(A, **kwargs) elif fn == 'affinity': C = affinity_distance(A, **kwargs) elif fn is None: C = A.tocsr() else: raise ValueError('unrecognized strength of connection method: %s' % str(fn)) # Avoid coarsening diagonally dominant rows flag, kwargs = unpack_arg(diagonal_dominance) if flag: C = eliminate_diag_dom_nodes(A, C, **kwargs) # Compute the aggregation matrix AggOp (i.e., the nodal coarsening of A). # AggOp is a boolean matrix, where the sparsity pattern for the k-th column # denotes the fine-grid nodes agglomerated into k-th coarse-grid node. fn, kwargs = unpack_arg(aggregate[len(levels)-1]) if fn == 'standard': AggOp = standard_aggregation(C, **kwargs)[0] elif fn == 'naive': AggOp = naive_aggregation(C, **kwargs)[0] elif fn == 'lloyd': AggOp = lloyd_aggregation(C, **kwargs)[0] elif fn == 'predefined': AggOp = kwargs['AggOp'].tocsr() else: raise ValueError('unrecognized aggregation method %s' % str(fn)) # Improve near nullspace candidates by relaxing on A B = 0 fn, kwargs = unpack_arg(improve_candidates[len(levels)-1]) if fn is not None: b = np.zeros((A.shape[0], 1), dtype=A.dtype) B = relaxation_as_linear_operator((fn, kwargs), A, b) * B levels[-1].B = B if A.symmetry == "nonsymmetric": BH = relaxation_as_linear_operator((fn, kwargs), AH, b) * BH levels[-1].BH = BH # Compute the tentative prolongator, T, which is a tentative interpolation # matrix from the coarse-grid to the fine-grid. T exactly interpolates # B_fine = T B_coarse. T, B = fit_candidates(AggOp, B) if A.symmetry == "nonsymmetric": TH, BH = fit_candidates(AggOp, BH) # Smooth the tentative prolongator, so that it's accuracy is greatly # improved for algebraically smooth error. fn, kwargs = unpack_arg(smooth[len(levels)-1]) if fn == 'jacobi': P = jacobi_prolongation_smoother(A, T, C, B, **kwargs) elif fn == 'richardson': P = richardson_prolongation_smoother(A, T, **kwargs) elif fn == 'energy': P = energy_prolongation_smoother(A, T, C, B, None, (False, {}), **kwargs) elif fn is None: P = T else: raise ValueError('unrecognized prolongation smoother method %s' % str(fn)) # Compute the restriction matrix, R, which interpolates from the fine-grid # to the coarse-grid. If A is nonsymmetric, then R must be constructed # based on A.H. Otherwise R = P.H or P.T. symmetry = A.symmetry if symmetry == 'hermitian': R = P.H elif symmetry == 'symmetric': R = P.T elif symmetry == 'nonsymmetric': fn, kwargs = unpack_arg(smooth[len(levels)-1]) if fn == 'jacobi': R = jacobi_prolongation_smoother(AH, TH, C, BH, **kwargs).H elif fn == 'richardson': R = richardson_prolongation_smoother(AH, TH, **kwargs).H elif fn == 'energy': R = energy_prolongation_smoother(AH, TH, C, BH, None, (False, {}), **kwargs) R = R.H elif fn is None: R = T.H else: raise ValueError('unrecognized prolongation smoother method %s' % str(fn)) if keep: levels[-1].C = C # strength of connection matrix levels[-1].AggOp = AggOp # aggregation operator levels[-1].T = T # tentative prolongator levels[-1].P = P # smoothed prolongator levels[-1].R = R # restriction operator levels.append(multilevel_solver.level()) A = R * A * P # Galerkin operator A.symmetry = symmetry levels[-1].A = A levels[-1].B = B # right near nullspace candidates if A.symmetry == "nonsymmetric": levels[-1].BH = BH # left near nullspace candidates
#!/usr/bin/env python3 # Copyright (c) 2014-2017 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test RPCs related to blockchainstate. Test the following RPCs: - getblockchaininfo - gettxoutsetinfo - getdifficulty - getbestblockhash - getblockhash - getblockheader - getchaintxstats - getnetworkhashps - verifychain Tests correspond to code in rpc/blockchain.cpp. """ from decimal import Decimal import http.client import subprocess from test_framework.test_framework import SupernodeCoinTestFramework from test_framework.util import ( assert_equal, assert_greater_than, assert_greater_than_or_equal, assert_raises, assert_raises_rpc_error, assert_is_hex_string, assert_is_hash_string, ) class BlockchainTest(SupernodeCoinTestFramework): def set_test_params(self): self.num_nodes = 1 def run_test(self): #self._test_getblockchaininfo() self._test_gettxoutsetinfo() self._test_getblockheader() #self._test_getdifficulty() self.nodes[0].verifychain(0) def _test_getblockchaininfo(self): self.log.info("Test getblockchaininfo") keys = [ 'bestblockhash', 'blocks', 'chain', 'chainwork', 'difficulty', 'headers', 'verificationprogress', 'warnings', ] res = self.nodes[0].getblockchaininfo() # result should have these additional pruning keys if manual pruning is enabled assert_equal(sorted(res.keys()), sorted(keys)) def _test_gettxoutsetinfo(self): node = self.nodes[0] res = node.gettxoutsetinfo() assert_equal(res['total_amount'], Decimal('50000.00000000')) assert_equal(res['transactions'], 200) assert_equal(res['height'], 200) assert_equal(res['txouts'], 200) assert_equal(res['bestblock'], node.getblockhash(200)) size = res['disk_size'] assert_greater_than_or_equal(size, 6400) assert_greater_than_or_equal(64000, size) assert_equal(len(res['bestblock']), 64) assert_equal(len(res['hash_serialized_2']), 64) def _test_getblockheader(self): node = self.nodes[0] assert_raises_rpc_error(-5, "Block not found", node.getblockheader, "nonsense") besthash = node.getbestblockhash() secondbesthash = node.getblockhash(199) header = node.getblockheader(besthash) assert_equal(header['hash'], besthash) assert_equal(header['height'], 200) assert_equal(header['confirmations'], 1) assert_equal(header['previousblockhash'], secondbesthash) assert_is_hex_string(header['chainwork']) assert_is_hash_string(header['hash']) assert_is_hash_string(header['previousblockhash']) assert_is_hash_string(header['merkleroot']) assert_is_hash_string(header['bits'], length=None) assert isinstance(header['time'], int) #assert isinstance(header['mediantime'], int) assert isinstance(header['nonce'], int) assert isinstance(header['version'], int) #assert isinstance(int(header['versionHex'], 16), int) assert isinstance(header['difficulty'], Decimal) def _test_getdifficulty(self): difficulty = self.nodes[0].getdifficulty() # 1 hash in 2 should be valid, so difficulty should be 1/2**31 # binary => decimal => binary math is why we do this check assert abs(difficulty * 2**31 - 1) < 0.0001 if __name__ == '__main__': BlockchainTest().main()
import os import sys import ctypes from os import listdir, path from os.path import isfile from PyQt4.QtGui import * from PyQt4.QtCore import * # Before using arnold! # I have to load dll manually # Problem using dlls s_path = "C:/solidangle/arnold/Arnold-5.2.2.0-windows/bin" if os.access(s_path, os.F_OK): dlls = [dll for dll in listdir(s_path) if isfile(path.join(s_path, dll)) and ('.dll' in dll)] for dll in dlls: print "{0}/{1}".format(s_path, dll) ctypes.WinDLL ("{0}/{1}".format(s_path, dll)) # End of loading dlls from UI import main_dialog, bridge_function from Core import app_PyQtArnold_core modules = [main_dialog, bridge_function, app_PyQtArnold_core] [reload (xi) for xi in modules] class MyApplication(QDialog, main_dialog.Ui_main_dialog): def __init__(self, parent=None): super(MyApplication, self).__init__(parent) self.setupUi(self) def main(): if QCoreApplication.instance() is not None: app = QCoreApplication.instance() else: app = QApplication(sys.argv) app.aboutToQuit.connect(app.quit) window = MyApplication() core = app_PyQtArnold_core.CoreFunctions() bridge = bridge_function.UiActions( win_dialog=window, core_func = core) window.show() try: sys.exit(app.exec_()) except: pass main()
"""Classify changes in Ansible code.""" from __future__ import (absolute_import, division, print_function) __metaclass__ = type import collections import os import re import time from . import types as t from .target import ( walk_module_targets, walk_integration_targets, walk_units_targets, walk_compile_targets, walk_sanity_targets, load_integration_prefixes, analyze_integration_target_dependencies, ) from .util import ( display, is_subdir, ) from .import_analysis import ( get_python_module_utils_imports, get_python_module_utils_name, ) from .csharp_import_analysis import ( get_csharp_module_utils_imports, get_csharp_module_utils_name, ) from .powershell_import_analysis import ( get_powershell_module_utils_imports, get_powershell_module_utils_name, ) from .config import ( TestConfig, IntegrationConfig, ) from .metadata import ( ChangeDescription, ) from .data import ( data_context, ) FOCUSED_TARGET = '__focused__' def categorize_changes(args, paths, verbose_command=None): """ :type args: TestConfig :type paths: list[str] :type verbose_command: str :rtype: ChangeDescription """ mapper = PathMapper(args) commands = { 'sanity': set(), 'units': set(), 'integration': set(), 'windows-integration': set(), 'network-integration': set(), } focused_commands = collections.defaultdict(set) deleted_paths = set() original_paths = set() additional_paths = set() no_integration_paths = set() for path in paths: if not os.path.exists(path): deleted_paths.add(path) continue original_paths.add(path) dependent_paths = mapper.get_dependent_paths(path) if not dependent_paths: continue display.info('Expanded "%s" to %d dependent file(s):' % (path, len(dependent_paths)), verbosity=2) for dependent_path in dependent_paths: display.info(dependent_path, verbosity=2) additional_paths.add(dependent_path) additional_paths -= set(paths) # don't count changed paths as additional paths if additional_paths: display.info('Expanded %d changed file(s) into %d additional dependent file(s).' % (len(paths), len(additional_paths))) paths = sorted(set(paths) | additional_paths) display.info('Mapping %d changed file(s) to tests.' % len(paths)) none_count = 0 for path in paths: tests = mapper.classify(path) if tests is None: focused_target = False display.info('%s -> all' % path, verbosity=1) tests = all_tests(args) # not categorized, run all tests display.warning('Path not categorized: %s' % path) else: focused_target = tests.pop(FOCUSED_TARGET, False) and path in original_paths tests = dict((key, value) for key, value in tests.items() if value) if focused_target and not any('integration' in command for command in tests): no_integration_paths.add(path) # path triggers no integration tests if verbose_command: result = '%s: %s' % (verbose_command, tests.get(verbose_command) or 'none') # identify targeted integration tests (those which only target a single integration command) if 'integration' in verbose_command and tests.get(verbose_command): if not any('integration' in command for command in tests if command != verbose_command): if focused_target: result += ' (focused)' result += ' (targeted)' else: result = '%s' % tests if not tests.get(verbose_command): # minimize excessive output from potentially thousands of files which do not trigger tests none_count += 1 verbosity = 2 else: verbosity = 1 if args.verbosity >= verbosity: display.info('%s -> %s' % (path, result), verbosity=1) for command, target in tests.items(): commands[command].add(target) if focused_target: focused_commands[command].add(target) if none_count > 0 and args.verbosity < 2: display.notice('Omitted %d file(s) that triggered no tests.' % none_count) for command in commands: commands[command].discard('none') if any(target == 'all' for target in commands[command]): commands[command] = set(['all']) commands = dict((c, sorted(commands[c])) for c in commands if commands[c]) focused_commands = dict((c, sorted(focused_commands[c])) for c in focused_commands) for command in commands: if commands[command] == ['all']: commands[command] = [] # changes require testing all targets, do not filter targets changes = ChangeDescription() changes.command = verbose_command changes.changed_paths = sorted(original_paths) changes.deleted_paths = sorted(deleted_paths) changes.regular_command_targets = commands changes.focused_command_targets = focused_commands changes.no_integration_paths = sorted(no_integration_paths) return changes class PathMapper: """Map file paths to test commands and targets.""" def __init__(self, args): """ :type args: TestConfig """ self.args = args self.integration_all_target = get_integration_all_target(self.args) self.integration_targets = list(walk_integration_targets()) self.module_targets = list(walk_module_targets()) self.compile_targets = list(walk_compile_targets()) self.units_targets = list(walk_units_targets()) self.sanity_targets = list(walk_sanity_targets()) self.powershell_targets = [target for target in self.sanity_targets if os.path.splitext(target.path)[1] in ('.ps1', '.psm1')] self.csharp_targets = [target for target in self.sanity_targets if os.path.splitext(target.path)[1] == '.cs'] self.units_modules = set(target.module for target in self.units_targets if target.module) self.units_paths = set(a for target in self.units_targets for a in target.aliases) self.sanity_paths = set(target.path for target in self.sanity_targets) self.module_names_by_path = dict((target.path, target.module) for target in self.module_targets) self.integration_targets_by_name = dict((target.name, target) for target in self.integration_targets) self.integration_targets_by_alias = dict((a, target) for target in self.integration_targets for a in target.aliases) self.posix_integration_by_module = dict((m, target.name) for target in self.integration_targets if 'posix/' in target.aliases for m in target.modules) self.windows_integration_by_module = dict((m, target.name) for target in self.integration_targets if 'windows/' in target.aliases for m in target.modules) self.network_integration_by_module = dict((m, target.name) for target in self.integration_targets if 'network/' in target.aliases for m in target.modules) self.prefixes = load_integration_prefixes() self.integration_dependencies = analyze_integration_target_dependencies(self.integration_targets) self.python_module_utils_imports = {} # populated on first use to reduce overhead when not needed self.powershell_module_utils_imports = {} # populated on first use to reduce overhead when not needed self.csharp_module_utils_imports = {} # populated on first use to reduce overhead when not needed self.paths_to_dependent_targets = {} for target in self.integration_targets: for path in target.needs_file: if path not in self.paths_to_dependent_targets: self.paths_to_dependent_targets[path] = set() self.paths_to_dependent_targets[path].add(target) def get_dependent_paths(self, path): """ :type path: str :rtype: list[str] """ unprocessed_paths = set(self.get_dependent_paths_non_recursive(path)) paths = set() while unprocessed_paths: queued_paths = list(unprocessed_paths) paths |= unprocessed_paths unprocessed_paths = set() for queued_path in queued_paths: new_paths = self.get_dependent_paths_non_recursive(queued_path) for new_path in new_paths: if new_path not in paths: unprocessed_paths.add(new_path) return sorted(paths) def get_dependent_paths_non_recursive(self, path): """ :type path: str :rtype: list[str] """ paths = self.get_dependent_paths_internal(path) paths += [target.path + '/' for target in self.paths_to_dependent_targets.get(path, set())] paths = sorted(set(paths)) return paths def get_dependent_paths_internal(self, path): """ :type path: str :rtype: list[str] """ ext = os.path.splitext(os.path.split(path)[1])[1] if is_subdir(path, data_context().content.module_utils_path): if ext == '.py': return self.get_python_module_utils_usage(path) if ext == '.psm1': return self.get_powershell_module_utils_usage(path) if ext == '.cs': return self.get_csharp_module_utils_usage(path) if is_subdir(path, data_context().content.integration_targets_path): return self.get_integration_target_usage(path) return [] def get_python_module_utils_usage(self, path): """ :type path: str :rtype: list[str] """ if path == 'lib/ansible/module_utils/__init__.py': return [] if not self.python_module_utils_imports: display.info('Analyzing python module_utils imports...') before = time.time() self.python_module_utils_imports = get_python_module_utils_imports(self.compile_targets) after = time.time() display.info('Processed %d python module_utils in %d second(s).' % (len(self.python_module_utils_imports), after - before)) name = get_python_module_utils_name(path) return sorted(self.python_module_utils_imports[name]) def get_powershell_module_utils_usage(self, path): """ :type path: str :rtype: list[str] """ if not self.powershell_module_utils_imports: display.info('Analyzing powershell module_utils imports...') before = time.time() self.powershell_module_utils_imports = get_powershell_module_utils_imports(self.powershell_targets) after = time.time() display.info('Processed %d powershell module_utils in %d second(s).' % (len(self.powershell_module_utils_imports), after - before)) name = get_powershell_module_utils_name(path) return sorted(self.powershell_module_utils_imports[name]) def get_csharp_module_utils_usage(self, path): """ :type path: str :rtype: list[str] """ if not self.csharp_module_utils_imports: display.info('Analyzing C# module_utils imports...') before = time.time() self.csharp_module_utils_imports = get_csharp_module_utils_imports(self.powershell_targets, self.csharp_targets) after = time.time() display.info('Processed %d C# module_utils in %d second(s).' % (len(self.csharp_module_utils_imports), after - before)) name = get_csharp_module_utils_name(path) return sorted(self.csharp_module_utils_imports[name]) def get_integration_target_usage(self, path): """ :type path: str :rtype: list[str] """ target_name = path.split('/')[3] dependents = [os.path.join(data_context().content.integration_targets_path, target) + os.path.sep for target in sorted(self.integration_dependencies.get(target_name, set()))] return dependents def classify(self, path): """ :type path: str :rtype: dict[str, str] | None """ result = self._classify(path) # run all tests when no result given if result is None: return None # run sanity on path unless result specified otherwise if path in self.sanity_paths and 'sanity' not in result: result['sanity'] = path return result def _classify(self, path): # type: (str) -> t.Optional[t.Dict[str, str]] """Return the classification for the given path.""" if data_context().content.is_ansible: return self._classify_ansible(path) if data_context().content.collection: return self._classify_collection(path) return None def _classify_common(self, path): # type: (str) -> t.Optional[t.Dict[str, str]] """Return the classification for the given path using rules common to all layouts.""" dirname = os.path.dirname(path) filename = os.path.basename(path) name, ext = os.path.splitext(filename) minimal = {} if is_subdir(path, '.github'): return minimal if is_subdir(path, data_context().content.integration_targets_path): if not os.path.exists(path): return minimal target = self.integration_targets_by_name.get(path.split('/')[3]) if not target: display.warning('Unexpected non-target found: %s' % path) return minimal if 'hidden/' in target.aliases: return minimal # already expanded using get_dependent_paths return { 'integration': target.name if 'posix/' in target.aliases else None, 'windows-integration': target.name if 'windows/' in target.aliases else None, 'network-integration': target.name if 'network/' in target.aliases else None, FOCUSED_TARGET: True, } if is_subdir(path, data_context().content.integration_path): if dirname == data_context().content.integration_path: for command in ( 'integration', 'windows-integration', 'network-integration', ): if name == command and ext == '.cfg': return { command: self.integration_all_target, } if name == command + '.requirements' and ext == '.txt': return { command: self.integration_all_target, } return { 'integration': self.integration_all_target, 'windows-integration': self.integration_all_target, 'network-integration': self.integration_all_target, } if is_subdir(path, data_context().content.sanity_path): return { 'sanity': 'all', # test infrastructure, run all sanity checks } if is_subdir(path, data_context().content.unit_path): if path in self.units_paths: return { 'units': path, } # changes to files which are not unit tests should trigger tests from the nearest parent directory test_path = os.path.dirname(path) while test_path: if test_path + '/' in self.units_paths: return { 'units': test_path + '/', } test_path = os.path.dirname(test_path) if is_subdir(path, data_context().content.module_path): module_name = self.module_names_by_path.get(path) if module_name: return { 'units': module_name if module_name in self.units_modules else None, 'integration': self.posix_integration_by_module.get(module_name) if ext == '.py' else None, 'windows-integration': self.windows_integration_by_module.get(module_name) if ext in ['.cs', '.ps1'] else None, 'network-integration': self.network_integration_by_module.get(module_name), FOCUSED_TARGET: True, } return minimal if is_subdir(path, data_context().content.module_utils_path): if ext == '.cs': return minimal # already expanded using get_dependent_paths if ext == '.psm1': return minimal # already expanded using get_dependent_paths if ext == '.py': return minimal # already expanded using get_dependent_paths if is_subdir(path, data_context().content.plugin_paths['action']): if ext == '.py': if name.startswith('net_'): network_target = 'network/.*_%s' % name[4:] if any(re.search(r'^%s$' % network_target, alias) for alias in self.integration_targets_by_alias): return { 'network-integration': network_target, 'units': 'all', } return { 'network-integration': self.integration_all_target, 'units': 'all', } if self.prefixes.get(name) == 'network': network_platform = name elif name.endswith('_config') and self.prefixes.get(name[:-7]) == 'network': network_platform = name[:-7] elif name.endswith('_template') and self.prefixes.get(name[:-9]) == 'network': network_platform = name[:-9] else: network_platform = None if network_platform: network_target = 'network/%s/' % network_platform if network_target in self.integration_targets_by_alias: return { 'network-integration': network_target, 'units': 'all', } display.warning('Integration tests for "%s" not found.' % network_target, unique=True) return { 'units': 'all', } if is_subdir(path, data_context().content.plugin_paths['connection']): if name == '__init__': return { 'integration': self.integration_all_target, 'windows-integration': self.integration_all_target, 'network-integration': self.integration_all_target, 'units': 'test/units/plugins/connection/', } units_path = 'test/units/plugins/connection/test_%s.py' % name if units_path not in self.units_paths: units_path = None integration_name = 'connection_%s' % name if integration_name not in self.integration_targets_by_name: integration_name = None windows_integration_name = 'connection_windows_%s' % name if windows_integration_name not in self.integration_targets_by_name: windows_integration_name = None # entire integration test commands depend on these connection plugins if name in ['winrm', 'psrp']: return { 'windows-integration': self.integration_all_target, 'units': units_path, } if name == 'local': return { 'integration': self.integration_all_target, 'network-integration': self.integration_all_target, 'units': units_path, } if name == 'network_cli': return { 'network-integration': self.integration_all_target, 'units': units_path, } if name == 'paramiko_ssh': return { 'integration': integration_name, 'network-integration': self.integration_all_target, 'units': units_path, } # other connection plugins have isolated integration and unit tests return { 'integration': integration_name, 'windows-integration': windows_integration_name, 'units': units_path, } if is_subdir(path, data_context().content.plugin_paths['doc_fragments']): return { 'sanity': 'all', } if is_subdir(path, data_context().content.plugin_paths['inventory']): if name == '__init__': return all_tests(self.args) # broad impact, run all tests # These inventory plugins are enabled by default (see INVENTORY_ENABLED). # Without dedicated integration tests for these we must rely on the incidental coverage from other tests. test_all = [ 'host_list', 'script', 'yaml', 'ini', 'auto', ] if name in test_all: posix_integration_fallback = get_integration_all_target(self.args) else: posix_integration_fallback = None target = self.integration_targets_by_name.get('inventory_%s' % name) units_path = 'test/units/plugins/inventory/test_%s.py' % name if units_path not in self.units_paths: units_path = None return { 'integration': target.name if target and 'posix/' in target.aliases else posix_integration_fallback, 'windows-integration': target.name if target and 'windows/' in target.aliases else None, 'network-integration': target.name if target and 'network/' in target.aliases else None, 'units': units_path, FOCUSED_TARGET: target is not None, } if (is_subdir(path, data_context().content.plugin_paths['terminal']) or is_subdir(path, data_context().content.plugin_paths['cliconf']) or is_subdir(path, data_context().content.plugin_paths['netconf'])): if ext == '.py': if name in self.prefixes and self.prefixes[name] == 'network': network_target = 'network/%s/' % name if network_target in self.integration_targets_by_alias: return { 'network-integration': network_target, 'units': 'all', } display.warning('Integration tests for "%s" not found.' % network_target, unique=True) return { 'units': 'all', } return { 'network-integration': self.integration_all_target, 'units': 'all', } return None def _classify_collection(self, path): # type: (str) -> t.Optional[t.Dict[str, str]] """Return the classification for the given path using rules specific to collections.""" result = self._classify_common(path) if result is not None: return result return None def _classify_ansible(self, path): # type: (str) -> t.Optional[t.Dict[str, str]] """Return the classification for the given path using rules specific to Ansible.""" if path.startswith('test/units/compat/'): return { 'units': 'test/units/', } result = self._classify_common(path) if result is not None: return result dirname = os.path.dirname(path) filename = os.path.basename(path) name, ext = os.path.splitext(filename) minimal = {} if path.startswith('bin/'): return all_tests(self.args) # broad impact, run all tests if path.startswith('changelogs/'): return minimal if path.startswith('contrib/'): return { 'units': 'test/units/contrib/' } if path.startswith('docs/'): return minimal if path.startswith('examples/'): if path == 'examples/scripts/ConfigureRemotingForAnsible.ps1': return { 'windows-integration': 'connection_winrm', } return minimal if path.startswith('hacking/'): return minimal if path.startswith('lib/ansible/executor/powershell/'): units_path = 'test/units/executor/powershell/' if units_path not in self.units_paths: units_path = None return { 'windows-integration': self.integration_all_target, 'units': units_path, } if path.startswith('lib/ansible/'): return all_tests(self.args) # broad impact, run all tests if path.startswith('licenses/'): return minimal if path.startswith('packaging/'): if path.startswith('packaging/requirements/'): if name.startswith('requirements-') and ext == '.txt': component = name.split('-', 1)[1] candidates = ( 'cloud/%s/' % component, ) for candidate in candidates: if candidate in self.integration_targets_by_alias: return { 'integration': candidate, } return all_tests(self.args) # broad impact, run all tests return minimal if path.startswith('test/ansible_test/'): return minimal # these tests are not invoked from ansible-test if path.startswith('test/legacy/'): return minimal if path.startswith('test/lib/ansible_test/config/'): if name.startswith('cloud-config-'): cloud_target = 'cloud/%s/' % name.split('-')[2].split('.')[0] if cloud_target in self.integration_targets_by_alias: return { 'integration': cloud_target, } if path.startswith('test/lib/ansible_test/_data/completion/'): if path == 'test/lib/ansible_test/_data/completion/docker.txt': return all_tests(self.args, force=True) # force all tests due to risk of breaking changes in new test environment if path.startswith('test/lib/ansible_test/_internal/cloud/'): cloud_target = 'cloud/%s/' % name if cloud_target in self.integration_targets_by_alias: return { 'integration': cloud_target, } return all_tests(self.args) # test infrastructure, run all tests if path.startswith('test/lib/ansible_test/_internal/sanity/'): return { 'sanity': 'all', # test infrastructure, run all sanity checks } if path.startswith('test/lib/ansible_test/_data/sanity/'): return { 'sanity': 'all', # test infrastructure, run all sanity checks } if path.startswith('test/lib/ansible_test/_internal/units/'): return { 'units': 'all', # test infrastructure, run all unit tests } if path.startswith('test/lib/ansible_test/_data/units/'): return { 'units': 'all', # test infrastructure, run all unit tests } if path.startswith('test/lib/ansible_test/_data/pytest/'): return { 'units': 'all', # test infrastructure, run all unit tests } if path.startswith('test/lib/ansible_test/_data/requirements/'): if name in ( 'integration', 'network-integration', 'windows-integration', ): return { name: self.integration_all_target, } if name in ( 'sanity', 'units', ): return { name: 'all', } if name.startswith('integration.cloud.'): cloud_target = 'cloud/%s/' % name.split('.')[2] if cloud_target in self.integration_targets_by_alias: return { 'integration': cloud_target, } if path.startswith('test/lib/'): return all_tests(self.args) # test infrastructure, run all tests if path.startswith('test/utils/shippable/tools/'): return minimal # not used by tests if path.startswith('test/utils/shippable/'): if dirname == 'test/utils/shippable': test_map = { 'cloud.sh': 'integration:cloud/', 'freebsd.sh': 'integration:all', 'linux.sh': 'integration:all', 'network.sh': 'network-integration:all', 'osx.sh': 'integration:all', 'rhel.sh': 'integration:all', 'sanity.sh': 'sanity:all', 'units.sh': 'units:all', 'windows.sh': 'windows-integration:all', } test_match = test_map.get(filename) if test_match: test_command, test_target = test_match.split(':') return { test_command: test_target, } cloud_target = 'cloud/%s/' % name if cloud_target in self.integration_targets_by_alias: return { 'integration': cloud_target, } return all_tests(self.args) # test infrastructure, run all tests if path.startswith('test/utils/'): return minimal if '/' not in path: if path in ( '.gitattributes', '.gitignore', '.mailmap', 'COPYING', 'Makefile', ): return minimal if path in ( 'setup.py', 'shippable.yml', ): return all_tests(self.args) # broad impact, run all tests if ext in ( '.in', '.md', '.rst', '.toml', '.txt', ): return minimal return None # unknown, will result in fall-back to run all tests def all_tests(args, force=False): """ :type args: TestConfig :type force: bool :rtype: dict[str, str] """ if force: integration_all_target = 'all' else: integration_all_target = get_integration_all_target(args) return { 'sanity': 'all', 'units': 'all', 'integration': integration_all_target, 'windows-integration': integration_all_target, 'network-integration': integration_all_target, } def get_integration_all_target(args): """ :type args: TestConfig :rtype: str """ if isinstance(args, IntegrationConfig): return args.changed_all_target return 'all'
# -*- coding:utf-8 -*- import re import os import time import json import sys import subprocess import requests import hashlib from bs4 import BeautifulSoup """ info: author:CriseLYJ github:https://github.com/CriseLYJ/ update_time:2019-3-6 """ class Lagou_login(object): def __init__(self): self.session = requests.session() self.CaptchaImagePath = os.path.split(os.path.realpath(__file__))[0] + os.sep + 'captcha.jpg' self.HEADERS = {'Referer': 'https://passport.lagou.com/login/login.html', 'User-Agent': 'Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/53.0.2785.104 Safari/537.36' ' Core/1.53.4882.400 QQBrowser/9.7.13059.400', 'X-Requested-With': 'XMLHttpRequest'} #密码加密 def encryptPwd(self, passwd): # 对密码进行了md5双重加密 passwd = hashlib.md5(passwd.encode('utf-8')).hexdigest() # veennike 这个值是在js文件找到的一个写死的值 passwd = 'veenike'+passwd+'veenike' passwd = hashlib.md5(passwd.encode('utf-8')).hexdigest() return passwd #获取请求token def getTokenCode(self): login_page = 'https://passport.lagou.com/login/login.html' data = self.session.get(login_page, headers= self.HEADERS) soup = BeautifulSoup(data.content, "lxml", from_encoding='utf-8') ''' 要从登录页面提取token,code, 在头信息里面添加 <!-- 页面样式 --><!-- 动态token,防御伪造请求,重复提交 --> <script type="text/javascript"> window.X_Anti_Forge_Token = 'dde4db4a-888e-47ca-8277-0c6da6a8fc19'; window.X_Anti_Forge_Code = '61142241'; </script> ''' anti_token = {'X-Anit-Forge-Token': 'None', 'X-Anit-Forge-Code': '0'} anti = soup.findAll('script')[1].getText().splitlines() anti = [str(x) for x in anti] anti_token['X-Anit-Forge-Token'] = re.findall(r'= \'(.+?)\'', anti[1])[0] anti_token['X-Anit-Forge-Code'] = re.findall(r'= \'(.+?)\'', anti[2])[0] return anti_token # 人工读取验证码并返回 def getCaptcha(self): captchaImgUrl = 'https://passport.lagou.com/vcode/create?from=register&refresh=%s' % time.time() # 写入验证码图片 f = open(self.CaptchaImagePath, 'wb') f.write(self.session.get(captchaImgUrl, headers=self.HEADERS).content) f.close() # 打开验证码图片 if sys.platform.find('darwin') >= 0: subprocess.call(['open', self.CaptchaImagePath]) elif sys.platform.find('linux') >= 0: subprocess.call(['xdg-open', self.CaptchaImagePath]) else: os.startfile(self.CaptchaImagePath) # 输入返回验证码 captcha = input("请输入当前地址(% s)的验证码: " % self.CaptchaImagePath) print('你输入的验证码是:% s' % captcha) return captcha # 登陆操作 def login(self, user, passwd, captchaData=None, token_code=None): postData = {'isValidate': 'true', 'password': passwd, # 如需验证码,则添加上验证码 'request_form_verifyCode': (captchaData if captchaData!=None else ''), 'submit': '', 'username': user } login_url = 'https://passport.lagou.com/login/login.json' #头信息添加tokena login_headers = self.HEADERS.copy() token_code = self.getTokenCode() if token_code is None else token_code login_headers.update(token_code) # data = {"content":{"rows":[]},"message":"该帐号不存在或密码错误,请重新输入","state":400} response = self.session.post(login_url, data=postData, headers=login_headers) data = json.loads(response.content.decode('utf-8')) if data['state'] == 1: return response.content elif data['state'] == 10010: print(data['message']) captchaData = self.getCaptcha() token_code = {'X-Anit-Forge-Code' : data['submitCode'], 'X-Anit-Forge-Token' : data['submitToken']} return self.login(user, passwd, captchaData, token_code) else: print(data['message']) return False if __name__ == "__main__": username = input("请输入你的手机号或者邮箱\n >>>:") passwd = input("请输入你的密码\n >>>:") lg = Lagou_login() passwd = lg.encryptPwd(passwd) data = lg.login(username, passwd) if data: print(data) print('登录成功') else: print('登录不成功')
#! /usr/bin/python3 # Define the class DVD class DVD: def __init__(self, title, studio, director, released): self.__title = title self.__studio = studio self.__director = director self.__released = released def get_title(self): return self.__title def get_studio(self): return self.__studio def get_director(self): return self.__director def get_released(self): return self.__released def __str__(self): return self.__title + ", " + self.__studio + ", " + self.__director + ", " + self.__released # Test Code dvd = DVD("Forbidden Planet", "Metro-Goldwyn-Mayer", "Fred M. Wilcox", "1956") print(dvd.get_title()) print(dvd.get_studio()) print(dvd.get_director()) print(dvd.get_released()) print(dvd)
from scrapy.exceptions import DropItem class PricePipeline(object): vat_factor = 1.15 def process_item(self, item, spider): if item.get('price'): if item.get('price_excludes_vat'): item['price'] = item['price'] * self.vat_factor return item else: raise DropItem("Missing price in %s" % item)
# coding: utf-8 import pprint import re import six class UpdateHealthMonitorOption: """ Attributes: openapi_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ sensitive_list = [] openapi_types = { 'admin_state_up': 'bool', 'delay': 'int', 'domain_name': 'str', 'expected_codes': 'str', 'http_method': 'str', 'max_retries': 'int', 'max_retries_down': 'int', 'monitor_port': 'int', 'name': 'str', 'timeout': 'int', 'url_path': 'str', 'type': 'str' } attribute_map = { 'admin_state_up': 'admin_state_up', 'delay': 'delay', 'domain_name': 'domain_name', 'expected_codes': 'expected_codes', 'http_method': 'http_method', 'max_retries': 'max_retries', 'max_retries_down': 'max_retries_down', 'monitor_port': 'monitor_port', 'name': 'name', 'timeout': 'timeout', 'url_path': 'url_path', 'type': 'type' } def __init__(self, admin_state_up=None, delay=None, domain_name=None, expected_codes=None, http_method=None, max_retries=None, max_retries_down=None, monitor_port=None, name=None, timeout=None, url_path=None, type=None): """UpdateHealthMonitorOption - a model defined in huaweicloud sdk""" self._admin_state_up = None self._delay = None self._domain_name = None self._expected_codes = None self._http_method = None self._max_retries = None self._max_retries_down = None self._monitor_port = None self._name = None self._timeout = None self._url_path = None self._type = None self.discriminator = None if admin_state_up is not None: self.admin_state_up = admin_state_up if delay is not None: self.delay = delay if domain_name is not None: self.domain_name = domain_name if expected_codes is not None: self.expected_codes = expected_codes if http_method is not None: self.http_method = http_method if max_retries is not None: self.max_retries = max_retries if max_retries_down is not None: self.max_retries_down = max_retries_down if monitor_port is not None: self.monitor_port = monitor_port if name is not None: self.name = name if timeout is not None: self.timeout = timeout if url_path is not None: self.url_path = url_path if type is not None: self.type = type @property def admin_state_up(self): """Gets the admin_state_up of this UpdateHealthMonitorOption. 功能说明:管理状态true/false。使用说明:默认为true,true表示开启健康检查,false表示关闭健康检查。 :return: The admin_state_up of this UpdateHealthMonitorOption. :rtype: bool """ return self._admin_state_up @admin_state_up.setter def admin_state_up(self, admin_state_up): """Sets the admin_state_up of this UpdateHealthMonitorOption. 功能说明:管理状态true/false。使用说明:默认为true,true表示开启健康检查,false表示关闭健康检查。 :param admin_state_up: The admin_state_up of this UpdateHealthMonitorOption. :type: bool """ self._admin_state_up = admin_state_up @property def delay(self): """Gets the delay of this UpdateHealthMonitorOption. 健康检查间隔。 :return: The delay of this UpdateHealthMonitorOption. :rtype: int """ return self._delay @delay.setter def delay(self, delay): """Sets the delay of this UpdateHealthMonitorOption. 健康检查间隔。 :param delay: The delay of this UpdateHealthMonitorOption. :type: int """ self._delay = delay @property def domain_name(self): """Gets the domain_name of this UpdateHealthMonitorOption. 功能说明:健康检查测试member健康状态时,发送的http请求的域名。仅当type为HTTP时生效。使用说明:默认为空,表示使用负载均衡器的vip作为http请求的目的地址。以数字或字母开头,只能包含数字、字母、’-’、’.’。 :return: The domain_name of this UpdateHealthMonitorOption. :rtype: str """ return self._domain_name @domain_name.setter def domain_name(self, domain_name): """Sets the domain_name of this UpdateHealthMonitorOption. 功能说明:健康检查测试member健康状态时,发送的http请求的域名。仅当type为HTTP时生效。使用说明:默认为空,表示使用负载均衡器的vip作为http请求的目的地址。以数字或字母开头,只能包含数字、字母、’-’、’.’。 :param domain_name: The domain_name of this UpdateHealthMonitorOption. :type: str """ self._domain_name = domain_name @property def expected_codes(self): """Gets the expected_codes of this UpdateHealthMonitorOption. 期望HTTP响应状态码,指定下列值:单值,例如200;列表,例如200,202;区间,例如200-204。仅当type为HTTP时生效。该字段为预留字段,暂未启用。 :return: The expected_codes of this UpdateHealthMonitorOption. :rtype: str """ return self._expected_codes @expected_codes.setter def expected_codes(self, expected_codes): """Sets the expected_codes of this UpdateHealthMonitorOption. 期望HTTP响应状态码,指定下列值:单值,例如200;列表,例如200,202;区间,例如200-204。仅当type为HTTP时生效。该字段为预留字段,暂未启用。 :param expected_codes: The expected_codes of this UpdateHealthMonitorOption. :type: str """ self._expected_codes = expected_codes @property def http_method(self): """Gets the http_method of this UpdateHealthMonitorOption. HTTP方法,可以为GET、HEAD、POST、PUT、DELETE、TRACE、OPTIONS、CONNECT、PATCH。仅当type为HTTP时生效。该字段为预留字段,暂未启用。 :return: The http_method of this UpdateHealthMonitorOption. :rtype: str """ return self._http_method @http_method.setter def http_method(self, http_method): """Sets the http_method of this UpdateHealthMonitorOption. HTTP方法,可以为GET、HEAD、POST、PUT、DELETE、TRACE、OPTIONS、CONNECT、PATCH。仅当type为HTTP时生效。该字段为预留字段,暂未启用。 :param http_method: The http_method of this UpdateHealthMonitorOption. :type: str """ self._http_method = http_method @property def max_retries(self): """Gets the max_retries of this UpdateHealthMonitorOption. 最大重试次数 :return: The max_retries of this UpdateHealthMonitorOption. :rtype: int """ return self._max_retries @max_retries.setter def max_retries(self, max_retries): """Sets the max_retries of this UpdateHealthMonitorOption. 最大重试次数 :param max_retries: The max_retries of this UpdateHealthMonitorOption. :type: int """ self._max_retries = max_retries @property def max_retries_down(self): """Gets the max_retries_down of this UpdateHealthMonitorOption. 健康检查连续成功多少次后,将后端服务器的健康检查状态由ONLIEN判定为OFFLINE :return: The max_retries_down of this UpdateHealthMonitorOption. :rtype: int """ return self._max_retries_down @max_retries_down.setter def max_retries_down(self, max_retries_down): """Sets the max_retries_down of this UpdateHealthMonitorOption. 健康检查连续成功多少次后,将后端服务器的健康检查状态由ONLIEN判定为OFFLINE :param max_retries_down: The max_retries_down of this UpdateHealthMonitorOption. :type: int """ self._max_retries_down = max_retries_down @property def monitor_port(self): """Gets the monitor_port of this UpdateHealthMonitorOption. 健康检查端口号。默认为空,表示使用后端云服务器组的端口。 :return: The monitor_port of this UpdateHealthMonitorOption. :rtype: int """ return self._monitor_port @monitor_port.setter def monitor_port(self, monitor_port): """Sets the monitor_port of this UpdateHealthMonitorOption. 健康检查端口号。默认为空,表示使用后端云服务器组的端口。 :param monitor_port: The monitor_port of this UpdateHealthMonitorOption. :type: int """ self._monitor_port = monitor_port @property def name(self): """Gets the name of this UpdateHealthMonitorOption. 健康检查名称。 :return: The name of this UpdateHealthMonitorOption. :rtype: str """ return self._name @name.setter def name(self, name): """Sets the name of this UpdateHealthMonitorOption. 健康检查名称。 :param name: The name of this UpdateHealthMonitorOption. :type: str """ self._name = name @property def timeout(self): """Gets the timeout of this UpdateHealthMonitorOption. 健康检查的超时时间。建议该值小于delay的值。 :return: The timeout of this UpdateHealthMonitorOption. :rtype: int """ return self._timeout @timeout.setter def timeout(self, timeout): """Sets the timeout of this UpdateHealthMonitorOption. 健康检查的超时时间。建议该值小于delay的值。 :param timeout: The timeout of this UpdateHealthMonitorOption. :type: int """ self._timeout = timeout @property def url_path(self): """Gets the url_path of this UpdateHealthMonitorOption. 功能说明:健康检查测试member健康时发送的http请求路径。默认为“/”。使用说明:以“/”开头。仅当type为HTTP时生效。 :return: The url_path of this UpdateHealthMonitorOption. :rtype: str """ return self._url_path @url_path.setter def url_path(self, url_path): """Sets the url_path of this UpdateHealthMonitorOption. 功能说明:健康检查测试member健康时发送的http请求路径。默认为“/”。使用说明:以“/”开头。仅当type为HTTP时生效。 :param url_path: The url_path of this UpdateHealthMonitorOption. :type: str """ self._url_path = url_path @property def type(self): """Gets the type of this UpdateHealthMonitorOption. 描述:健康检查类型。 取值:TCP,UDP_CONNECT,HTTP,HTTPS,PING 约束: 1、若pool的protocol为QUIC,则type只能是UDP :return: The type of this UpdateHealthMonitorOption. :rtype: str """ return self._type @type.setter def type(self, type): """Sets the type of this UpdateHealthMonitorOption. 描述:健康检查类型。 取值:TCP,UDP_CONNECT,HTTP,HTTPS,PING 约束: 1、若pool的protocol为QUIC,则type只能是UDP :param type: The type of this UpdateHealthMonitorOption. :type: str """ self._type = type def to_dict(self): """Returns the model properties as a dict""" result = {} for attr, _ in six.iteritems(self.openapi_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: if attr in self.sensitive_list: result[attr] = "****" else: result[attr] = value return result def to_str(self): """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): """Returns true if both objects are equal""" if not isinstance(other, UpdateHealthMonitorOption): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """Returns true if both objects are not equal""" return not self == other
"""empty message Revision ID: d4c798575877 Revises: 1daa601d3ae5 Create Date: 2018-05-09 10:28:22.931442 """ from alembic import op import sqlalchemy as sa # revision identifiers, used by Alembic. revision = 'd4c798575877' down_revision = '1daa601d3ae5' branch_labels = None depends_on = None def upgrade(): op.create_table('favorites', sa.Column('updated_at', sa.DateTime(timezone=True), nullable=False), sa.Column('created_at', sa.DateTime(timezone=True), nullable=False), sa.Column('id', sa.Integer(), nullable=False), sa.Column('object_type', sa.Unicode(length=255), nullable=False), sa.Column('object_id', sa.Integer(), nullable=False), sa.Column('user_id', sa.Integer(), nullable=False), sa.ForeignKeyConstraint(['user_id'], ['users.id'], ), sa.PrimaryKeyConstraint('id') ) def downgrade(): op.drop_table('favorites')
from django.apps import AppConfig class ShortnsweetConfig(AppConfig): name = 'shortnsweet'
# -*- coding: utf-8 -*- import sys, os from chainer import cuda, optimizers, gradient_check, Variable sys.path.append(os.path.split(os.getcwd())[0]) from ddqn import * from config import config # Override config config.ale_actions = [4, 3, 1, 0] config.ale_screen_size = [210, 160] config.ale_scaled_screen_size = [84, 84] config.rl_replay_memory_size = 10 ** 5 config.rl_replay_start_size = 10 ** 4 config.q_conv_hidden_channels = [32, 64, 64] config.q_conv_strides = [4, 2, 1] config.q_conv_filter_sizes = [8, 4, 3] config.q_fc_hidden_units = [256, 128] config.apply_batchnorm = True config.use_gpu = False config.q_conv_output_projection_type = "global_average_pooling" def backprop_check(): xp = cuda.cupy if config.use_gpu else np duel = DDQN() state = xp.random.uniform(-1.0, 1.0, (2, config.rl_agent_history_length * config.ale_screen_channels, config.ale_scaled_screen_size[1], config.ale_scaled_screen_size[0])).astype(xp.float32) reward = [1, 0] action = [3, 4] episode_ends = [0, 0] next_state = xp.random.uniform(-1.0, 1.0, (2, config.rl_agent_history_length * config.ale_screen_channels, config.ale_scaled_screen_size[1], config.ale_scaled_screen_size[0])).astype(xp.float32) optimizer_conv = optimizers.Adam(alpha=config.rl_learning_rate, beta1=config.rl_gradient_momentum) optimizer_conv.setup(duel.conv) optimizer_fc = optimizers.Adam(alpha=config.rl_learning_rate, beta1=config.rl_gradient_momentum) optimizer_fc.setup(duel.fc) for i in xrange(10000): optimizer_conv.zero_grads() optimizer_fc.zero_grads() loss, _ = duel.forward_one_step(state, action, reward, next_state, episode_ends) loss.backward() optimizer_conv.update() optimizer_fc.update() print loss.data, print duel.conv.layer_2.W.data[0, 0, 0, 0], print duel.fc.layer_2.W.data[0, 0], backprop_check()
""" Collectors have two main functions: synthesizing (or collecting) samples and compute metric matrix (which will be passed to selectors and losses). All methods are listed below: +-----------------------+-------------------------------------------------------------------------------+ | method | description | +=======================+===============================================================================+ | BaseCollector | Base class. | +-----------------------+-------------------------------------------------------------------------------+ | DefaultCollector | Do nothing. | +-----------------------+-------------------------------------------------------------------------------+ | ProxyCollector | Maintain a set of proxies | +-----------------------+-------------------------------------------------------------------------------+ | MoCoCollector | paper: **Momentum Contrast for Unsupervised Visual Representation Learning** | +-----------------------+-------------------------------------------------------------------------------+ | SimSiamCollector | paper: **Exploring Simple Siamese Representation Learning** | +-----------------------+-------------------------------------------------------------------------------+ | HDMLCollector | paper: **Hardness-Aware Deep Metric Learning** | +-----------------------+-------------------------------------------------------------------------------+ | DAMLCollector | paper: **Deep Adversarial Metric Learning** | +-----------------------+-------------------------------------------------------------------------------+ | DVMLCollector | paper: **Deep Variational Metric Learning** | +-----------------------+-------------------------------------------------------------------------------+ Notes: ``embedders`` have significent difference with ``collectors``. ``embedders`` also take charge of generating embeddings which will be used to compute metrics. Todo: ``epoch-based collector`` """ from .iteration_collectors import ( DefaultCollector, ProxyCollector, MoCoCollector, SimSiamCollector, HDMLCollector, DAMLCollector, DVMLCollector ) from .epoch_collectors import ( GlobalProxyCollector, _DefaultGlobalCollector ) from .base_collector import BaseCollector
# coding: utf-8 ######################################################################### # 网站: <a href="http://www.crazyit.org">疯狂Java联盟</a> # # author yeeku.H.lee kongyeeku@163.com # # # # version 1.0 # # # # Copyright (C), 2001-2018, yeeku.H.Lee # # # # This program is protected by copyright laws. # # # # Program Name: # # # # <br>Date: # ######################################################################### # 指定使用二进制方式读取文件内容 f = open("read_test3.py", 'rb', True) # 直接读取全部文件,并调用bytes的decode将字节内容恢复成字符串 print(f.read().decode('utf-8')) f.close()
import FWCore.ParameterSet.Config as cms nEvtLumi = 4 nEvtRun = 2*nEvtLumi nRuns = 64 nStreams = 4 nEvt = nRuns*nEvtRun process = cms.Process("TESTGLOBALMODULES") import FWCore.Framework.test.cmsExceptionsFatalOption_cff process.options = cms.untracked.PSet( numberOfStreams = cms.untracked.uint32(nStreams), numberOfThreads = cms.untracked.uint32(nStreams), numberOfConcurrentLuminosityBlocks = cms.untracked.uint32(1) ) process.maxEvents = cms.untracked.PSet( input = cms.untracked.int32(nEvt) ) process.source = cms.Source("EmptySource", timeBetweenEvents = cms.untracked.uint64(1000), firstTime = cms.untracked.uint64(1000000), numberEventsInRun = cms.untracked.uint32(nEvtRun), numberEventsInLuminosityBlock = cms.untracked.uint32(nEvtLumi) ) process.StreamIntProd = cms.EDProducer("edmtest::global::StreamIntProducer", transitions = cms.int32(int(nEvt+nStreams*(2*(nEvt/nEvtRun)+2*(nEvt/nEvtLumi)+2))) ,cachevalue = cms.int32(1) ) process.RunIntProd = cms.EDProducer("edmtest::global::RunIntProducer", transitions = cms.int32(int(2*(nEvt/nEvtRun))) ,cachevalue = cms.int32(nEvtRun) ) process.LumiIntProd = cms.EDProducer("edmtest::global::LumiIntProducer", transitions = cms.int32(int(2*(nEvt/nEvtLumi))) ,cachevalue = cms.int32(nEvtLumi) ) process.RunSumIntProd = cms.EDProducer("edmtest::global::RunSummaryIntProducer", transitions = cms.int32(int(nStreams*(nEvt/nEvtRun)+2*(nEvt/nEvtRun))) ,cachevalue = cms.int32(nEvtRun) ) process.LumiSumIntProd = cms.EDProducer("edmtest::global::LumiSummaryIntProducer", transitions = cms.int32(int(nStreams*(nEvt/nEvtLumi)+2*(nEvt/nEvtLumi))) ,cachevalue = cms.int32(nEvtLumi) ) process.ProcessBlockIntProd = cms.EDProducer("edmtest::global::ProcessBlockIntProducer", transitions = cms.int32(int(nEvt + 2)), consumesBeginProcessBlock = cms.InputTag("TestBeginProcessBlockProd" ,"begin"), consumesEndProcessBlock = cms.InputTag("TestEndProcessBlockProd", "end") ) process.TestBeginProcessBlockProd = cms.EDProducer("edmtest::global::TestBeginProcessBlockProducer", transitions = cms.int32(int(nEvt + 1)), consumesBeginProcessBlock = cms.InputTag("") ) process.TestBeginProcessBlockProdRead = cms.EDProducer("edmtest::global::TestBeginProcessBlockProducer", transitions = cms.int32(int(nEvt + 1)), consumesBeginProcessBlock = cms.InputTag("TestBeginProcessBlockProd" ,"begin") ) process.TestEndProcessBlockProd = cms.EDProducer("edmtest::global::TestEndProcessBlockProducer", transitions = cms.int32(int(nEvt + 1)), consumesEndProcessBlock = cms.InputTag("") ) process.TestEndProcessBlockProdRead = cms.EDProducer("edmtest::global::TestEndProcessBlockProducer", transitions = cms.int32(int(nEvt + 1)), consumesEndProcessBlock = cms.InputTag("TestEndProcessBlockProd", "end") ) process.TestBeginRunProd = cms.EDProducer("edmtest::global::TestBeginRunProducer", transitions = cms.int32(int(nEvt/nEvtRun)) ) process.TestEndRunProd = cms.EDProducer("edmtest::global::TestEndRunProducer", transitions = cms.int32(int(nEvt/nEvtRun)) ) process.TestBeginLumiBlockProd = cms.EDProducer("edmtest::global::TestBeginLumiBlockProducer", transitions = cms.int32(int(nEvt/nEvtLumi)) ) process.TestEndLumiBlockProd = cms.EDProducer("edmtest::global::TestEndLumiBlockProducer", transitions = cms.int32(int(nEvt/nEvtLumi)) ) process.StreamIntAn = cms.EDAnalyzer("edmtest::global::StreamIntAnalyzer", transitions = cms.int32(int(nEvt+nStreams*(2*(nEvt/nEvtRun)+2*(nEvt/nEvtLumi)+2))) ,cachevalue = cms.int32(1) ) process.RunIntAn= cms.EDAnalyzer("edmtest::global::RunIntAnalyzer", transitions = cms.int32(int(nEvt+2*(nEvt/nEvtRun))) ,cachevalue = cms.int32(nEvtRun) ) process.LumiIntAn = cms.EDAnalyzer("edmtest::global::LumiIntAnalyzer", transitions = cms.int32(int(nEvt+2*(nEvt/nEvtLumi))) ,cachevalue = cms.int32(nEvtLumi) # needed to avoid deleting TestAccumulator1 ,moduleLabel = cms.InputTag("TestAccumulator1") ) process.RunSumIntAn = cms.EDAnalyzer("edmtest::global::RunSummaryIntAnalyzer", transitions = cms.int32(int(nEvt+nStreams*((nEvt/nEvtRun)+1)+2*(nEvt/nEvtRun))) ,cachevalue = cms.int32(nEvtRun) ) process.LumiSumIntAn = cms.EDAnalyzer("edmtest::global::LumiSummaryIntAnalyzer", transitions = cms.int32(int(nEvt+nStreams*((nEvt/nEvtLumi)+1)+2*(nEvt/nEvtLumi))) ,cachevalue = cms.int32(nEvtLumi) ) process.ProcessBlockIntAn = cms.EDAnalyzer("edmtest::global::ProcessBlockIntAnalyzer", transitions = cms.int32(652), consumesBeginProcessBlock = cms.InputTag("TestBeginProcessBlockProd" ,"begin"), consumesEndProcessBlock = cms.InputTag("TestEndProcessBlockProd", "end") ) process.StreamIntFil = cms.EDFilter("edmtest::global::StreamIntFilter", transitions = cms.int32(int(nEvt+nStreams*(2*(nEvt/nEvtRun)+2*(nEvt/nEvtLumi)+2))) ,cachevalue = cms.int32(1) ) process.RunIntFil = cms.EDFilter("edmtest::global::RunIntFilter", transitions = cms.int32(int(nEvt+2*(nEvt/nEvtRun))) ,cachevalue = cms.int32(nEvtRun) ) process.LumiIntFil = cms.EDFilter("edmtest::global::LumiIntFilter", transitions = cms.int32(int(nEvt+2*(nEvt/nEvtLumi))) ,cachevalue = cms.int32(nEvtLumi) ) process.RunSumIntFil = cms.EDFilter("edmtest::global::RunSummaryIntFilter", transitions = cms.int32(int(nEvt+nStreams*((nEvt/nEvtRun)+1)+2*(nEvt/nEvtRun))) ,cachevalue = cms.int32(nEvtRun) ) process.LumiSumIntFil = cms.EDFilter("edmtest::global::LumiSummaryIntFilter", transitions = cms.int32(int(nEvt+nStreams*((nEvt/nEvtLumi)+1)+2*(nEvt/nEvtLumi))) ,cachevalue = cms.int32(nEvtLumi) ) process.ProcessBlockIntFil = cms.EDFilter("edmtest::global::ProcessBlockIntFilter", transitions = cms.int32(int(nEvt + 2)), consumesBeginProcessBlock = cms.InputTag("TestBeginProcessBlockFil" ,"begin"), consumesEndProcessBlock = cms.InputTag("TestEndProcessBlockFil", "end") ) process.TestBeginProcessBlockFil = cms.EDFilter("edmtest::global::TestBeginProcessBlockFilter", transitions = cms.int32(int(nEvt + 1)), consumesBeginProcessBlock = cms.InputTag("") ) process.TestBeginProcessBlockFilRead = cms.EDFilter("edmtest::global::TestBeginProcessBlockFilter", transitions = cms.int32(int(nEvt + 1)), consumesBeginProcessBlock = cms.InputTag("TestBeginProcessBlockFil" ,"begin") ) process.TestEndProcessBlockFil = cms.EDFilter("edmtest::global::TestEndProcessBlockFilter", transitions = cms.int32(int(nEvt + 1)), consumesEndProcessBlock = cms.InputTag("") ) process.TestEndProcessBlockFilRead = cms.EDFilter("edmtest::global::TestEndProcessBlockFilter", transitions = cms.int32(int(nEvt + 1)), consumesEndProcessBlock = cms.InputTag("TestEndProcessBlockFil", "end") ) process.TestBeginRunFil = cms.EDFilter("edmtest::global::TestBeginRunFilter", transitions = cms.int32(int(nEvt/nEvtRun)) ) process.TestEndRunFil = cms.EDFilter("edmtest::global::TestEndRunFilter", transitions = cms.int32(int(nEvt/nEvtRun)) ) process.TestBeginLumiBlockFil = cms.EDFilter("edmtest::global::TestBeginLumiBlockFilter", transitions = cms.int32(int(nEvt/nEvtLumi)) ) process.TestEndLumiBlockFil = cms.EDFilter("edmtest::global::TestEndLumiBlockFilter", transitions = cms.int32(int(nEvt/nEvtLumi)) ) process.TestAccumulator1 = cms.EDProducer("edmtest::global::TestAccumulator", expectedCount = cms.uint32(512) ) process.TestAccumulator2 = cms.EDProducer("edmtest::global::TestAccumulator", expectedCount = cms.uint32(35) ) process.testFilterModule = cms.EDFilter("TestFilterModule", acceptValue = cms.untracked.int32(5), onlyOne = cms.untracked.bool(False) ) process.task = cms.Task(process.TestAccumulator1) process.p = cms.Path(process.StreamIntProd + process.RunIntProd + process.LumiIntProd + process.RunSumIntProd + process.LumiSumIntProd + process.ProcessBlockIntProd + process.TestBeginProcessBlockProdRead + process.TestBeginProcessBlockProd + process.TestEndProcessBlockProdRead + process.TestEndProcessBlockProd + process.TestBeginRunProd + process.TestEndRunProd + process.TestBeginLumiBlockProd + process.TestEndLumiBlockProd + process.StreamIntAn + process.RunIntAn + process.LumiIntAn + process.RunSumIntAn + process.LumiSumIntAn + process.ProcessBlockIntAn + process.StreamIntFil + process.RunIntFil + process.LumiIntFil + process.RunSumIntFil + process.LumiSumIntFil + process.ProcessBlockIntFil + process.TestBeginProcessBlockFilRead + process.TestBeginProcessBlockFil + process.TestEndProcessBlockFilRead + process.TestEndProcessBlockFil + process.TestBeginRunFil + process.TestEndRunFil + process.TestBeginLumiBlockFil + process.TestEndLumiBlockFil + process.testFilterModule + process.TestAccumulator2, process.task)
#!/usr/bin/env python3 import cv2 import time import os from server.startracker.catalog import Catalog from server.startracker.image import ImageUtils assets_dir = "/home/igarcia/Nextcloud/University/TFG/reports/assets" catalogs_path = "./server/startracker/catalogs/out" catalog = Catalog(f"{catalogs_path}/hip_2000.csv", f"{catalogs_path}/guide_stars_2000_5.csv", f"{catalogs_path}/guide_stars_2000_5_labels.csv") images_path = "./server/startracker/test_images/ballon" total = 0 found = 0 not_enough = 0 for filename in os.listdir(images_path): print(f"processing image: {filename}") image = cv2.imread(f"{images_path}/{filename}") gray_img = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Noise reduction blurred = cv2.GaussianBlur(gray_img, (3, 3), 0) threshold = ImageUtils.get_threshold(blurred, 170) thresh_image = cv2.threshold(blurred, threshold, 255, cv2.THRESH_BINARY)[1] stars = ImageUtils.get_image_stars(thresh_image, gray_img) if len(stars) >= 4: pattern = catalog.find_stars_pattern(stars[0:4], err=0.010) if len(pattern) > 0: found += 1 else: print(f"Not enough stars for: {filename}") not_enough += 1 total += 1 print(f"Analyzed a total of {total} stars") print(f"Found solution for {found}") print(f"Not enough stars {not_enough}")
#!/usr/bin/env python # # Electrum - lightweight STRAKS client # Copyright (C) 2013 ecdsa@github # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation files # (the "Software"), to deal in the Software without restriction, # including without limitation the rights to use, copy, modify, merge, # publish, distribute, sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is furnished to do so, # subject to the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. from electrum_stak.i18n import _ from electrum_stak.mnemonic import Mnemonic import electrum_stak.old_mnemonic from .util import * from .qrtextedit import ShowQRTextEdit, ScanQRTextEdit from .completion_text_edit import CompletionTextEdit def seed_warning_msg(seed): return ''.join([ "<p>", _("Please save these {0} words on paper (order is important). "), _("This seed will allow you to recover your wallet in case " "of computer failure."), "</p>", "<b>" + _("WARNING") + ":</b>", "<ul>", "<li>" + _("Never disclose your seed.") + "</li>", "<li>" + _("Never type it on a website.") + "</li>", "<li>" + _("Do not store it electronically.") + "</li>", "</ul>" ]).format(len(seed.split())) class SeedLayout(QVBoxLayout): #options is_bip39 = False is_ext = False def seed_options(self): dialog = QDialog() vbox = QVBoxLayout(dialog) if 'ext' in self.options: cb_ext = QCheckBox(_('Extend this seed with custom words')) cb_ext.setChecked(self.is_ext) vbox.addWidget(cb_ext) if 'bip39' in self.options: def f(b): self.is_seed = (lambda x: bool(x)) if b else self.saved_is_seed self.is_bip39 = b self.on_edit() if b: msg = ' '.join([ '<b>' + _('Warning') + ':</b> ', _('BIP39 seeds can be imported in Electrum, so that users can access funds locked in other wallets.'), _('However, we do not generate BIP39 seeds, because they do not meet our safety standard.'), _('BIP39 seeds do not include a version number, which compromises compatibility with future software.'), _('We do not guarantee that BIP39 imports will always be supported in Electrum.'), ]) else: msg = '' self.seed_warning.setText(msg) cb_bip39 = QCheckBox(_('BIP39 seed')) cb_bip39.toggled.connect(f) cb_bip39.setChecked(self.is_bip39) vbox.addWidget(cb_bip39) vbox.addLayout(Buttons(OkButton(dialog))) if not dialog.exec_(): return None self.is_ext = cb_ext.isChecked() if 'ext' in self.options else False self.is_bip39 = cb_bip39.isChecked() if 'bip39' in self.options else False def __init__(self, seed=None, title=None, icon=True, msg=None, options=None, is_seed=None, passphrase=None, parent=None): QVBoxLayout.__init__(self) self.parent = parent self.options = options if title: self.addWidget(WWLabel(title)) self.seed_e = CompletionTextEdit() if seed: self.seed_e.setText(seed) else: self.seed_e.setTabChangesFocus(True) self.is_seed = is_seed self.saved_is_seed = self.is_seed self.seed_e.textChanged.connect(self.on_edit) self.initialize_completer() self.seed_e.setMaximumHeight(75) hbox = QHBoxLayout() if icon: logo = QLabel() logo.setPixmap(QPixmap(":icons/seed.png").scaledToWidth(64)) logo.setMaximumWidth(60) hbox.addWidget(logo) hbox.addWidget(self.seed_e) self.addLayout(hbox) hbox = QHBoxLayout() hbox.addStretch(1) self.seed_type_label = QLabel('') hbox.addWidget(self.seed_type_label) if options: opt_button = EnterButton(_('Options'), self.seed_options) hbox.addWidget(opt_button) self.addLayout(hbox) if passphrase: hbox = QHBoxLayout() passphrase_e = QLineEdit() passphrase_e.setText(passphrase) passphrase_e.setReadOnly(True) hbox.addWidget(QLabel(_("Your seed extension is") + ':')) hbox.addWidget(passphrase_e) self.addLayout(hbox) self.addStretch(1) self.seed_warning = WWLabel('') if msg: self.seed_warning.setText(seed_warning_msg(seed)) self.addWidget(self.seed_warning) def initialize_completer(self): english_list = Mnemonic('en').wordlist old_list = electrum_stak.old_mnemonic.words self.wordlist = english_list + list(set(old_list) - set(english_list)) #concat both lists self.wordlist.sort() self.completer = QCompleter(self.wordlist) self.seed_e.set_completer(self.completer) def get_seed(self): text = self.seed_e.text() return ' '.join(text.split()) def on_edit(self): from electrum_stak.bitcoin import seed_type s = self.get_seed() b = self.is_seed(s) if not self.is_bip39: t = seed_type(s) label = _('Seed Type') + ': ' + t if t else '' else: from electrum_stak.keystore import bip39_is_checksum_valid is_checksum, is_wordlist = bip39_is_checksum_valid(s) status = ('checksum: ' + ('ok' if is_checksum else 'failed')) if is_wordlist else 'unknown wordlist' label = 'BIP39' + ' (%s)'%status self.seed_type_label.setText(label) self.parent.next_button.setEnabled(b) # to account for bip39 seeds for word in self.get_seed().split(" ")[:-1]: if word not in self.wordlist: self.seed_e.disable_suggestions() return self.seed_e.enable_suggestions() class KeysLayout(QVBoxLayout): def __init__(self, parent=None, title=None, is_valid=None, allow_multi=False): QVBoxLayout.__init__(self) self.parent = parent self.is_valid = is_valid self.text_e = ScanQRTextEdit(allow_multi=allow_multi) self.text_e.textChanged.connect(self.on_edit) self.addWidget(WWLabel(title)) self.addWidget(self.text_e) def get_text(self): return self.text_e.text() def on_edit(self): b = self.is_valid(self.get_text()) self.parent.next_button.setEnabled(b) class SeedDialog(WindowModalDialog): def __init__(self, parent, seed, passphrase): WindowModalDialog.__init__(self, parent, ('Electrum-STAK - ' + _('Seed'))) self.setMinimumWidth(400) vbox = QVBoxLayout(self) title = _("Your wallet generation seed is:") slayout = SeedLayout(title=title, seed=seed, msg=True, passphrase=passphrase) vbox.addLayout(slayout) vbox.addLayout(Buttons(CloseButton(self)))
""" Módulo para recuperação de dados climáticos do PCBr. A documentação do Projeto pode ser encontrada no Portal http://pclima.inpe.br/ As escolhas para o download de dados são definidas através de um JSON que pode ser gerado utilizando do Portal API. http://pclima.inpe.br/analise/API versão do Python em que foi testada: 3.6 exemplo de uso da API Token: consultar a documentação para a geração do Token import api as api Client = api.Client() data = Client.getData( { "formato": "CSV", "conjunto": "PR0002", "modelo": "MO0003", "experimento": "EX0003", "periodo": "PE0000", "cenario": "CE0001", "variavel": "VR0001", "frequenciaURL": "Mensal", "frequencia": "FR0003", "produto": "PDT0001", "localizacao": "Ponto", "localizacao_pontos": "-23.56/-46.62", "varCDO": "tasmax" } ) Client.save(data,"file.csv") """ import os import json from pclima.factory import RequestFactory class Client(object): """ Classe utilizada para criar um Cliente de acesso a API. Attributes ---------- token : str Definido no arquivo ~/.pclimaAPIrc format : str Definido quando deseja um download """ def __init__(self, token=os.environ.get("API_TOKEN"),): """ Parameters ---------- token : str Chave de acesso aos serviços da API """ self.token = token self.format = None dotrc = os.environ.get("PCLIMAAPI_RC", os.path.expanduser("~/.pclimaAPIrc")) if token is None: if os.path.exists(dotrc): config = read_config(dotrc) if token is None: token = config.get("token") if token is None: print("Missing/incomplete configuration file: %s" % (dotrc)) raise SystemExit self.token = token def getData(self,apiJSON): """ Method ------- O Método envia o JSON e retorna os dados desejados. Parameters ---------- apiJSON : json JSON com as opções escolhidas Returns ------- retorno depende do formato escolhido: Formato Retorno: NetCDF XArray CSV DataFrame JSON DataFrame CSVPontos DataFrame CSVPontosTransposta DataFrame """ j = json.loads(json.dumps(apiJSON)) print(j) self.format = j["formato"] factory = RequestFactory() product = factory.get_order(j["formato"],self.token,j) print(product) return (product.download()) def save(self,content,file): """ Method ------- O Método decebe a recuperacao do dado e o nome do arquivo se saída. Parameters ---------- content : formato desejado Dados recuperados file : nome do arquivo de saída Nome do arquivo de saída Ex.: "saida.csv" """ factory = RequestFactory() factory.save(self.format,content,file) def read_config(path): config = {} with open(path) as f: for l in f.readlines(): if ":" in l: k, v = l.strip().split(":", 1) if k in ("token"): config[k] = v.strip() return config
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.FileItem import FileItem from alipay.aop.api.constant.ParamConstants import * class AnttechBlockchainQueryconditionQueryRequest(object): def __init__(self, biz_model=None): self._biz_model = biz_model self._version = "1.0" self._terminal_type = None self._terminal_info = None self._prod_code = None self._notify_url = None self._return_url = None self._udf_params = None self._need_encrypt = False @property def biz_model(self): return self._biz_model @biz_model.setter def biz_model(self, value): self._biz_model = value @property def version(self): return self._version @version.setter def version(self, value): self._version = value @property def terminal_type(self): return self._terminal_type @terminal_type.setter def terminal_type(self, value): self._terminal_type = value @property def terminal_info(self): return self._terminal_info @terminal_info.setter def terminal_info(self, value): self._terminal_info = value @property def prod_code(self): return self._prod_code @prod_code.setter def prod_code(self, value): self._prod_code = value @property def notify_url(self): return self._notify_url @notify_url.setter def notify_url(self, value): self._notify_url = value @property def return_url(self): return self._return_url @return_url.setter def return_url(self, value): self._return_url = value @property def udf_params(self): return self._udf_params @udf_params.setter def udf_params(self, value): if not isinstance(value, dict): return self._udf_params = value @property def need_encrypt(self): return self._need_encrypt @need_encrypt.setter def need_encrypt(self, value): self._need_encrypt = value def add_other_text_param(self, key, value): if not self.udf_params: self.udf_params = dict() self.udf_params[key] = value def get_params(self): params = dict() params[P_METHOD] = 'anttech.blockchain.querycondition.query' params[P_VERSION] = self.version if self.biz_model: params[P_BIZ_CONTENT] = json.dumps(obj=self.biz_model.to_alipay_dict(), ensure_ascii=False, sort_keys=True, separators=(',', ':')) if self.terminal_type: params['terminal_type'] = self.terminal_type if self.terminal_info: params['terminal_info'] = self.terminal_info if self.prod_code: params['prod_code'] = self.prod_code if self.notify_url: params['notify_url'] = self.notify_url if self.return_url: params['return_url'] = self.return_url if self.udf_params: params.update(self.udf_params) return params def get_multipart_params(self): multipart_params = dict() return multipart_params
""" Article object definitions """ from collections import OrderedDict from elifearticle import utils class BaseObject: "base object for shared functions" def __str__(self): """ Return `str` representation of the simple object properties, if there is a list or dict just return an empty representation for easier viewing and test case scenario writing """ _dict = {} for key in self.__dict__: if isinstance(self.__dict__.get(key), list): _dict[key] = [] elif isinstance(self.__dict__.get(key), dict): _dict[key] = {} else: _dict[key] = str(self.__dict__.get(key)) return str(_dict) class Article(BaseObject): """ We include some boiler plate in the init, namely article_type """ contributors = [] def __init__(self, doi=None, title=None): self.article_type = "research-article" self.display_channel = None self.doi = doi self.id = None self.contributors = [] self.editors = [] self.title = title self.abstract = "" self.abstract_json = None self.abstract_xml = None self.digest = None self.research_organisms = [] self.manuscript = None self.dates = {} self.license = None self.article_categories = [] self.conflict_default = None self.ethics = [] self.author_keywords = [] self.funding_awards = [] self.ref_list = [] self.component_list = [] # For PubMed function a hook to specify if article was ever through PoA pipeline self.was_ever_poa = None self.is_poa = None self.volume = None self.elocation_id = None self.pii = None self.related_articles = [] self.version = None self.datasets = [] self.data_availability = None self.funding_awards = [] self.funding_note = None self.journal_issn = None self.journal_title = None self.self_uri_list = [] self.version = None self.publisher_name = None self.issue = None self.review_articles = [] self.clinical_trials = [] self.preprint = None self.related_objects = [] def add_contributor(self, contributor): self.contributors.append(contributor) def add_research_organism(self, research_organism): self.research_organisms.append(research_organism) def add_date(self, date): self.dates[date.date_type] = date def get_date(self, date_type): "get date by date type" try: return self.dates[date_type] except (KeyError, TypeError): return None def get_display_channel(self): "display-channel string partly relates to the article_type" return self.display_channel def add_article_category(self, article_category): self.article_categories.append(article_category) def has_contributor_conflict(self): # Return True if any contributors have a conflict for contributor in self.contributors: if contributor.conflict: return True return False def add_ethic(self, ethic): self.ethics.append(ethic) def add_author_keyword(self, author_keyword): self.author_keywords.append(author_keyword) def add_dataset(self, dataset): self.datasets.append(dataset) def get_datasets(self, dataset_type=None): if dataset_type: return [d for d in self.datasets if d.dataset_type == dataset_type] return self.datasets def add_funding_award(self, funding_award): self.funding_awards.append(funding_award) def add_self_uri(self, uri): self.self_uri_list.append(uri) def get_self_uri(self, content_type): "return the first self uri with the content_type" try: return [ self_uri for self_uri in self.self_uri_list if self_uri.content_type == content_type ][0] except IndexError: return None def pretty(self): "sort values and format output for viewing and comparing in test scenarios" pretty_obj = OrderedDict() for key, value in sorted(self.__dict__.items()): if value is None: pretty_obj[key] = None elif isinstance(value, str): pretty_obj[key] = self.__dict__.get(key) elif isinstance(value, list): pretty_obj[key] = [] elif isinstance(value, dict): pretty_obj[key] = {} else: pretty_obj[key] = str(value) return pretty_obj class ArticleDate(BaseObject): """ A struct_time date and a date_type """ date_type = None date = None pub_type = None publication_format = None day = None month = None year = None def __init__(self, date_type, date): self.date_type = date_type # Date as a time.struct_time self.date = date class Contributor(BaseObject): """ Currently we are not sure that we can get an auth_id for all contributors, so this attribute remains an optional attribute. """ corresp = False equal_contrib = False contrib_type = None auth_id = None orcid = None surname = None given_name = None suffix = None collab = None conflict = [] group_author_key = None def __init__(self, contrib_type, surname, given_name, collab=None): self.contrib_type = contrib_type self.surname = surname self.given_name = given_name self.affiliations = [] self.conflict = [] self.collab = collab def set_affiliation(self, affiliation): self.affiliations.append(affiliation) def set_conflict(self, conflict): self.conflict.append(conflict) class Affiliation(BaseObject): phone = None fax = None email = None department = None institution = None city = None country = None text = None def __init__(self): pass class Dataset(BaseObject): """ Article component representing a dataset """ def __init__(self): self.dataset_type = None self.authors = [] # source_id is the uri in PoA generation # todo: refactor PoA use the uri attribute then delete the source_id attribute here self.source_id = None self.year = None self.title = None self.license_info = None self.accession_id = None self.assigning_authority = None self.doi = None self.uri = None self.comment = None def add_author(self, author): self.authors.append(author) class FundingAward(BaseObject): """ An award group as part of a funding group """ def __init__(self): self.award_group_id = None self.award_ids = [] self.institution_name = None self.institution_id = None self.principal_award_recipients = [] def add_award_id(self, award_id): self.award_ids.append(award_id) def add_principal_award_recipient(self, contributor): "Accepts an instance of Contributor" self.principal_award_recipients.append(contributor) def get_funder_identifier(self): "Funder identifier is the unique id found in the institution_id DOI" try: return self.institution_id.split("/")[-1] except AttributeError: return None def get_funder_name(self): "Alias for institution_name parsed from the XML" return self.institution_name class License(BaseObject): """ License with some preset values by license_id """ license_id = None license_type = None copyright = False copyright_statement = None href = None name = None paragraph1 = None paragraph2 = None def __init__(self, license_id=None): self.license_id = license_id class Citation(BaseObject): """ A ref or citation in the article to support crossref VOR deposits initially """ def __init__(self): self.publication_type = None self.id = None self.authors = [] # For journals self.article_title = None self.source = None self.volume = None self.issue = None self.fpage = None self.lpage = None self.elocation_id = None self.doi = None self.uri = None self.pmid = None self.isbn = None self.year = None self.year_iso_8601_date = None self.year_numeric = None self.date_in_citation = None self.publisher_loc = None self.publisher_name = None self.edition = None self.version = None self.comment = None self.data_title = None self.conf_name = None # For patents self.patent = None self.country = None # For books self.volume_title = None self.chapter_title = None # For data self.accession = None def add_author(self, author): "Author is a dict of values" self.authors.append(author) def get_journal_title(self): "Alias for source" return self.source class Component(BaseObject): """ An article component with a component DOI, primarily for crossref VOR deposits """ def __init__(self): self.id = None self.type = None self.asset = None self.title = None self.subtitle = None self.mime_type = None self.doi = None self.doi_resource = None self.permissions = None class RelatedArticle(BaseObject): """ Related article tag data as an object """ def __init__(self): self.xlink_href = None self.related_article_type = None self.ext_link_type = None class Uri(BaseObject): "A URI, initially created for holding self-uri data" def __init__(self): self.xlink_href = None self.content_type = None class RelatedObject(BaseObject): def __init__(self): self.id = None self.xlink_href = None self.link_type = None class ClinicalTrial(BaseObject): def __init__(self): self.id = None self.content_type = None self.document_id = None self.document_id_type = None self.source_id = None self.source_id_type = None self.source_type = None self.text = None self.xlink_href = None self.registry_doi = None def get_registry_doi(self, registry_name_to_doi_map=None): """return the DOI for the registry""" if self.registry_doi: return self.registry_doi if ( self.source_id_type and self.source_id and self.source_id_type == "crossref-doi" ): return self.source_id if ( registry_name_to_doi_map and self.source_id_type and self.source_id and self.source_id_type == "registry-name" ): # look for the DOI value in the name to DOI map if self.source_id in registry_name_to_doi_map: return registry_name_to_doi_map[self.source_id] return None class Preprint(BaseObject): def __init__(self, uri=None, doi=None): self.uri = uri self.doi = doi class ContentBlock: def __init__(self, block_type=None, content=None, attr=None): self.block_type = block_type self.content = content self.content_blocks = [] self.attr = {} if attr: self.attr = attr def attr_names(self): """list of tag attribute names""" return utils.attr_names(self.attr) def attr_string(self): """tag attributes formatted as a string""" return utils.attr_string(self.attr)
# tests.test_testing import io from unittest import TestCase from unittest import mock from bdemeta.testing import trim, run_one, RunResult, run_tests, MockRunner def gen_value(length): result = '' for i in range(length): result += chr(ord('A') + (i % 26)) return result class TestMockRunner(TestCase): def test_no_cases(self): runner = MockRunner('') assert(RunResult.NO_SUCH_CASE == runner('foo')) assert(['foo'] == runner.commands) def test_one_success(self): runner = MockRunner('s') assert(RunResult.SUCCESS == runner('foo')) assert(RunResult.NO_SUCH_CASE == runner('bar')) assert(['foo', 'bar'] == runner.commands) def test_one_failure(self): runner = MockRunner('f') assert(RunResult.FAILURE == runner('foo')) assert(RunResult.NO_SUCH_CASE == runner('bar')) assert(['foo', 'bar'] == runner.commands) def test_one_success_one_failure(self): runner = MockRunner('sf') assert(RunResult.SUCCESS == runner('foo')) assert(RunResult.FAILURE == runner('bar')) assert(RunResult.NO_SUCH_CASE == runner('bam')) assert(['foo', 'bar', 'bam'] == runner.commands) class TestTrim(TestCase): def test_short_string_unmodified(self): max_length = 20 trail = '...' for length in range(max_length - len(trail)): value = gen_value(length) trimmed = trim(value, max_length) assert(len(trimmed) < max_length) assert(value == value) def test_string_clipped(self): value = gen_value(20) trail = '...' for max_length in range(len(value) + len(trail) + 20): trimmed = trim(value, max_length) assert(len(trimmed) <= max_length) if len(value) <= max_length: assert(value == trimmed) elif max_length >= len(trail): assert(trimmed.endswith(trail)) class TestRunOne(TestCase): def test_driver_with_no_cases(self): runner = MockRunner('') test, errors = run_one((runner, 'foo', 'foo')) assert('foo' == test) assert(1 == len(runner.commands)) assert(['foo', '1'] == runner.commands[0]) assert(not errors) def test_driver_with_four_successes(self): runner = MockRunner('ssss') test, errors = run_one((runner, 'foo', 'foo')) assert('foo' == test) assert(5 == len(runner.commands)) assert(['foo', '1'] == runner.commands[0]) assert(['foo', '2'] == runner.commands[1]) assert(['foo', '3'] == runner.commands[2]) assert(['foo', '4'] == runner.commands[3]) assert(['foo', '5'] == runner.commands[4]) assert(not errors) def test_driver_with_one_failure(self): runner = MockRunner('f') test, errors = run_one((runner, 'foo', 'foo')) assert('foo' == test) assert(2 == len(runner.commands)) assert(['foo', '1'] == runner.commands[0]) assert(['foo', '2'] == runner.commands[1]) assert(1 == len(errors)) assert(1 in errors) def test_driver_with_mixed_successes_failures(self): runner = MockRunner('sfsf') test, errors = run_one((runner, 'foo', 'foo')) assert('foo' == test) assert(5 == len(runner.commands)) assert(['foo', '1'] == runner.commands[0]) assert(['foo', '2'] == runner.commands[1]) assert(['foo', '3'] == runner.commands[2]) assert(['foo', '4'] == runner.commands[3]) assert(['foo', '5'] == runner.commands[4]) assert(2 == len(errors)) assert(2 in errors) assert(4 in errors) class TestRun(TestCase): def test_single_success(self): stdout = io.StringIO() stderr = io.StringIO() runner = MockRunner('s') rc = run_tests(stdout, stderr, runner, lambda: 80, [["foo", "foo"]]) assert(0 == rc) assert('foo' in stderr.getvalue()) def test_single_failure(self): stdout = io.StringIO() stderr = io.StringIO() runner = MockRunner('f') rc = run_tests(stdout, stderr, runner, lambda: 80, [["foo", "foo"]]) assert(1 == rc) assert('foo' in stderr.getvalue()) failures = stdout.getvalue().split('\n')[:-1] assert(1 == len(failures)) assert('FAIL TEST foo CASE 1' in failures) def test_two_drivers_four_successes_each(self): stdout = io.StringIO() stderr = io.StringIO() runner = MockRunner('ssss') rc = run_tests(stdout, stderr, runner, lambda: 80, [["foo", "foo"], ["bar", "bar"]]) assert(0 == rc) assert('foo' in stderr.getvalue()) assert('bar' in stderr.getvalue()) def test_two_drivers_mixed_successes(self): stdout = io.StringIO() stderr = io.StringIO() runner = MockRunner('sfsf') rc = run_tests(stdout, stderr, runner, lambda: 80, [["foo", "foo"], ["bar", "bar"]]) assert(1 == rc) assert('foo' in stderr.getvalue()) assert('bar' in stderr.getvalue()) failures = stdout.getvalue().split('\n')[:-1] assert(4 == len(failures)) assert('FAIL TEST foo CASE 2' in failures) assert('FAIL TEST foo CASE 4' in failures) assert('FAIL TEST bar CASE 2' in failures) assert('FAIL TEST bar CASE 4' in failures) def test_tty_has_no_newlines(self): stdout = io.StringIO() stderr = mock.Mock(wraps=io.StringIO()) stderr.isatty.return_value = True runner = MockRunner('s') rc = run_tests(stdout, stderr, runner, lambda: 80, [["foo", "foo"]]) assert(0 == rc) assert('\n' not in stderr.getvalue()[:-1])
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations import tinymce.models class Migration(migrations.Migration): dependencies = [ ] operations = [ migrations.CreateModel( name='Goods', fields=[ ('id', models.AutoField(primary_key=True, serialize=False, verbose_name='ID', auto_created=True)), ('create_time', models.DateTimeField(auto_now_add=True, verbose_name='创建时间')), ('update_time', models.DateTimeField(auto_now=True, verbose_name='更新时间')), ('is_delete', models.BooleanField(default=False, verbose_name='是否删除')), ('name', models.CharField(max_length=20, verbose_name='商品SPU名称')), ('detail', tinymce.models.HTMLField(verbose_name='商品详情', blank=True)), ], options={ 'verbose_name_plural': '商品SPU', 'verbose_name': '商品SPU', 'db_table': 'df_goods', }, ), migrations.CreateModel( name='GoodsImage', fields=[ ('id', models.AutoField(primary_key=True, serialize=False, verbose_name='ID', auto_created=True)), ('create_time', models.DateTimeField(auto_now_add=True, verbose_name='创建时间')), ('update_time', models.DateTimeField(auto_now=True, verbose_name='更新时间')), ('is_delete', models.BooleanField(default=False, verbose_name='是否删除')), ('image', models.ImageField(upload_to='goods', verbose_name='图片路径')), ], options={ 'verbose_name_plural': '商品图片', 'verbose_name': '商品图片', 'db_table': 'df_goods_image', }, ), migrations.CreateModel( name='GoodsSKU', fields=[ ('id', models.AutoField(primary_key=True, serialize=False, verbose_name='ID', auto_created=True)), ('create_time', models.DateTimeField(auto_now_add=True, verbose_name='创建时间')), ('update_time', models.DateTimeField(auto_now=True, verbose_name='更新时间')), ('is_delete', models.BooleanField(default=False, verbose_name='是否删除')), ('name', models.CharField(max_length=20, verbose_name='商品名称')), ('desc', models.CharField(max_length=256, verbose_name='商品简介')), ('price', models.DecimalField(verbose_name='商品价格', decimal_places=2, max_digits=10)), ('unite', models.CharField(max_length=20, verbose_name='商品单位')), ('image', models.ImageField(upload_to='goods', verbose_name='商品图片')), ('stock', models.IntegerField(default=1, verbose_name='商品库存')), ('sales', models.IntegerField(default=0, verbose_name='商品销量')), ('status', models.SmallIntegerField(default=1, choices=[(0, '下架'), (1, '上架')], verbose_name='商品状态')), ('goods', models.ForeignKey(to='goods.Goods', verbose_name='商品SPU')), ], options={ 'verbose_name_plural': '商品', 'verbose_name': '商品', 'db_table': 'df_goods_sku', }, ), migrations.CreateModel( name='GoodsType', fields=[ ('id', models.AutoField(primary_key=True, serialize=False, verbose_name='ID', auto_created=True)), ('create_time', models.DateTimeField(auto_now_add=True, verbose_name='创建时间')), ('update_time', models.DateTimeField(auto_now=True, verbose_name='更新时间')), ('is_delete', models.BooleanField(default=False, verbose_name='是否删除')), ('name', models.CharField(max_length=20, verbose_name='种类名称')), ('logo', models.CharField(max_length=20, verbose_name='标识')), ('image', models.ImageField(upload_to='type', verbose_name='商品类型图片')), ], options={ 'verbose_name_plural': '商品种类', 'verbose_name': '商品种类', 'db_table': 'df_goods_type', }, ), migrations.CreateModel( name='IndexGoodsBanner', fields=[ ('id', models.AutoField(primary_key=True, serialize=False, verbose_name='ID', auto_created=True)), ('create_time', models.DateTimeField(auto_now_add=True, verbose_name='创建时间')), ('update_time', models.DateTimeField(auto_now=True, verbose_name='更新时间')), ('is_delete', models.BooleanField(default=False, verbose_name='是否删除')), ('image', models.ImageField(upload_to='banner', verbose_name='图片')), ('index', models.SmallIntegerField(default=0, verbose_name='展示顺序')), ('sku', models.ForeignKey(to='goods.GoodsSKU', verbose_name='商品')), ], options={ 'verbose_name_plural': '首页轮播商品', 'verbose_name': '首页轮播商品', 'db_table': 'df_index_banner', }, ), migrations.CreateModel( name='IndexPromotionBanner', fields=[ ('id', models.AutoField(primary_key=True, serialize=False, verbose_name='ID', auto_created=True)), ('create_time', models.DateTimeField(auto_now_add=True, verbose_name='创建时间')), ('update_time', models.DateTimeField(auto_now=True, verbose_name='更新时间')), ('is_delete', models.BooleanField(default=False, verbose_name='是否删除')), ('name', models.CharField(max_length=20, verbose_name='活动名称')), ('url', models.CharField(max_length=256, verbose_name='活动链接')), ('image', models.ImageField(upload_to='banner', verbose_name='活动图片')), ('index', models.SmallIntegerField(default=0, verbose_name='展示顺序')), ], options={ 'verbose_name_plural': '主页促销活动', 'verbose_name': '主页促销活动', 'db_table': 'df_index_promotion', }, ), migrations.CreateModel( name='IndexTypeGoodsBanner', fields=[ ('id', models.AutoField(primary_key=True, serialize=False, verbose_name='ID', auto_created=True)), ('create_time', models.DateTimeField(auto_now_add=True, verbose_name='创建时间')), ('update_time', models.DateTimeField(auto_now=True, verbose_name='更新时间')), ('is_delete', models.BooleanField(default=False, verbose_name='是否删除')), ('display_type', models.SmallIntegerField(default=1, choices=[(0, '标题'), (1, '图片')], verbose_name='展示类型')), ('index', models.SmallIntegerField(default=0, verbose_name='展示顺序')), ('sku', models.ForeignKey(to='goods.GoodsSKU', verbose_name='商品SKU')), ('type', models.ForeignKey(to='goods.GoodsType', verbose_name='商品类型')), ], options={ 'verbose_name_plural': '主页分类展示商品', 'verbose_name': '主页分类展示商品', 'db_table': 'df_index_type_goods', }, ), migrations.AddField( model_name='goodssku', name='type', field=models.ForeignKey(to='goods.GoodsType', verbose_name='商品种类'), ), migrations.AddField( model_name='goodsimage', name='sku', field=models.ForeignKey(to='goods.GoodsSKU', verbose_name='商品'), ), ]
#!/usr/bin/env python from __future__ import division, absolute_import, print_function import numpy as np from scipy.stats import t """ Defines common error measures. Definition ---------- def bias(y_obs,y_mod): bias def mae(y_obs,y_mod): mean absolute error def mse(y_obs,y_mod): mean squared error def rmse(y_obs,y_mod): root mean squared error def nse(y_obs,y_mod): Nash-Sutcliffe-Efficiency def kge(y_obs,y_mod): Kling-Gupta-Efficiency def pear2(y_obs,y_mod): Squared Pearson correlation coefficient def confint(y_obs, p=0.95): Confidence interval of samples Input ----- y_obs np.array(N) or np.ma.array(N) y_mod np.array(N) or np.ma.array(N) Output ------ measure float: error measure of respective error function (see definitions for details) Restrictions ------------ Deals with masked and unmasked arrays. When nan is found in an unmasked array, it will be masked. All measures are applied only on values where both, y_obs and y_mod, have valid entries (not masked and not nan) Examples -------- -> see respective function License ------- This file is part of the JAMS Python package, distributed under the MIT License. The JAMS Python package originates from the former UFZ Python library, Department of Computational Hydrosystems, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany. Copyright (c) 2014-2017 Arndt Piayda, Stephan Thober, Matthias Cuntz - mc (at) macu (dot) de Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. History ------- Written, AP, Jul 2014 Modified MC, Dec 2014 - use simple formulas that work with normal and masked arrays but do not deal with NaN Modified AP, Sep 2015 - add confidence interval Modified ST, Nov 2015 - added KGE Modified ST, Jan 2017 - added components for KGE """ def bias(y_obs,y_mod): """ calculates bias = mean(y_obs) - mean(y_mod) Examples -------- >>> # Create some data >>> y_obs = np.array([12.7867, 13.465, 14.1433, 15.3733, 16.6033]) >>> y_mod = np.array([12.8087, 13.151, 14.3741, 16.2302, 17.9433]) >>> # calculate bias >>> print(np.round(bias(y_obs, y_mod),2)) -0.43 """ # # check # if (y_obs.ndim!=1) or (y_mod.ndim!=1): # raise ValueError('bias: input must be 1D') # elif y_obs.size!=y_mod.size: # raise ValueError('bias: input must be of same size') # # calc # else: # # check if masked or not # try: # temp = y_obs.mask # temp = y_mod.mask # except AttributeError: # y_obs=np.ma.array(y_obs, mask=np.isnan(y_obs)) # y_mod=np.ma.array(y_mod, mask=np.isnan(y_mod)) # y_modr = np.ma.array(y_mod, mask=y_mod.mask | y_obs.mask) # y_obsr = np.ma.array(y_obs, mask=y_mod.mask | y_obs.mask) # return np.ma.mean(y_obsr) - np.ma.mean(y_modr) return y_obs.mean() - y_mod.mean() def mae(y_obs,y_mod): """ calculates mean absolute error = mean(abs(y_obs - y_mod)) Examples -------- >>> # Create some data >>> y_obs = np.array([12.7867, 13.465, 14.1433, 15.3733, 16.6033]) >>> y_mod = np.array([12.8087, 13.151, 14.3741, 16.2302, 17.9433]) >>> # calculate mean absolute error >>> print(np.round(mae(y_obs, y_mod),2)) 0.55 """ # check if (y_obs.ndim!=1) or (y_mod.ndim!=1): raise ValueError('mae: input must be 1D') elif y_obs.size!=y_mod.size: raise ValueError('mae: input must be of same size') # calc else: # check if masked or not try: temp = y_obs.mask temp = y_mod.mask except AttributeError: y_obs=np.ma.array(y_obs, mask=np.isnan(y_obs)) y_mod=np.ma.array(y_mod, mask=np.isnan(y_mod)) y_modr = np.ma.array(y_mod, mask=y_mod.mask | y_obs.mask) y_obsr = np.ma.array(y_obs, mask=y_mod.mask | y_obs.mask) return np.ma.mean(np.ma.abs(y_obsr-y_modr)) def mse(y_obs,y_mod): """ calculates mean squared error = mean((y_obs - y_mod)**2) Examples -------- >>> # Create some data >>> y_obs = np.array([12.7867, 13.465, 14.1433, 15.3733, 16.6033]) >>> y_mod = np.array([12.8087, 13.151, 14.3741, 16.2302, 17.9433]) >>> # calculate mean squared error >>> print(np.round(mse(y_obs, y_mod),2)) 0.54 """ # # check # if (y_obs.ndim!=1) or (y_mod.ndim!=1): # raise ValueError('mse: input must be 1D') # elif y_obs.size!=y_mod.size: # raise ValueError('mse: input must be of same size') # # calc # else: # # check if masked or not # try: # temp = y_obs.mask # temp = y_mod.mask # except AttributeError: # y_obs=np.ma.array(y_obs, mask=np.isnan(y_obs)) # y_mod=np.ma.array(y_mod, mask=np.isnan(y_mod)) # y_modr = np.ma.array(y_mod, mask=y_mod.mask | y_obs.mask) # y_obsr = np.ma.array(y_obs, mask=y_mod.mask | y_obs.mask) # return np.ma.mean((y_obsr-y_modr)**2) return ((y_obs-y_mod)**2).mean() def rmse(y_obs,y_mod): """ calculates root mean squared error = sqrt(mean((y_obs - y_mod)**2)) Examples -------- >>> # Create some data >>> y_obs = np.array([12.7867, 13.465, 14.1433, 15.3733, 16.6033]) >>> y_mod = np.array([12.8087, 13.151, 14.3741, 16.2302, 17.9433]) >>> # calculate root mean squared error >>> print(np.round(rmse(y_obs, y_mod),2)) 0.73 """ # # check # if (y_obs.ndim!=1) or (y_mod.ndim!=1): # raise ValueError('rmse: input must be 1D') # elif y_obs.size!=y_mod.size: # raise ValueError('rmse: input must be of same size') # # calc # else: # # check if masked or not # try: # temp = y_obs.mask # temp = y_mod.mask # except AttributeError: # y_obs=np.ma.array(y_obs, mask=np.isnan(y_obs)) # y_mod=np.ma.array(y_mod, mask=np.isnan(y_mod)) # y_modr = np.ma.array(y_mod, mask=y_mod.mask | y_obs.mask) # y_obsr = np.ma.array(y_obs, mask=y_mod.mask | y_obs.mask) # return np.ma.sqrt(np.ma.mean((y_obsr-y_modr)**2)) return ((y_obs-y_mod)**2).mean()**0.5 def nse(y_obs,y_mod): """ calculates Nash-Sutcliffe-Efficiency = 1 - (sum((y_obs - y_mod)**2) / sum((y_obs - mean(y_obs))**2)) Examples -------- >>> # Create some data >>> y_obs = np.array([12.7867, 13.465, 14.1433, 15.3733, 16.6033]) >>> y_mod = np.array([12.8087, 13.151, 14.3741, 16.2302, 17.9433]) >>> # calculate Nash-Sutcliffe-Efficiency >>> print(np.round(nse(y_obs, y_mod),2)) 0.71 """ # # check # if (y_obs.ndim!=1) or (y_mod.ndim!=1): # raise ValueError('r2: input must be 1D') # elif y_obs.size!=y_mod.size: # raise ValueError('r2: input must be of same size') # # calc # else: # # check if masked or not # try: # temp = y_obs.mask # temp = y_mod.mask # except AttributeError: # y_obs=np.ma.array(y_obs, mask=np.isnan(y_obs)) # y_mod=np.ma.array(y_mod, mask=np.isnan(y_mod)) # y_modr = np.ma.array(y_mod, mask=y_mod.mask | y_obs.mask) # y_obsr = np.ma.array(y_obs, mask=y_mod.mask | y_obs.mask) # a = np.ma.sum((y_obsr - y_modr)**2) # b = np.ma.sum((y_obsr - np.ma.mean(y_obsr))**2) # return 1. - (a / b) return 1. - ((y_obs-y_mod)**2).sum()/((y_obs-y_obs.mean())**2).sum() def kge(y_obs,y_mod,components=False): """ calculates Kling-Gupta-Efficiency = 1 - sqrt((1-r)**2 + (1-a)**2 + (1-b)**2), where r is the Pearson correlation of y_obs and y_mod, a is mean(y_mod) / mean(y_obs), and b is std(y_mod) / std(y_obs) if components is True, then r, a, and b are (in this order) additionally returned to the KGE Examples -------- >>> # Create some data >>> y_obs = np.array([12.7867, 13.465, 14.1433, 15.3733, 16.6033]) >>> y_mod = np.array([12.8087, 13.151, 14.3741, 16.2302, 17.9433]) >>> # calculate Kling-Gupta-Efficiency >>> print(np.round(kge(y_obs, y_mod),2)) 0.58 """ # # check # if (y_obs.ndim!=1) or (y_mod.ndim!=1): # raise ValueError('r2: input must be 1D') # elif y_obs.size!=y_mod.size: # raise ValueError('r2: input must be of same size') # # calc # else: # # check if masked or not # try: # temp = y_obs.mask # temp = y_mod.mask # except AttributeError: # y_obs=np.ma.array(y_obs, mask=np.isnan(y_obs)) # y_mod=np.ma.array(y_mod, mask=np.isnan(y_mod)) # y_modr = np.ma.array(y_mod, mask=y_mod.mask | y_obs.mask) # y_obsr = np.ma.array(y_obs, mask=y_mod.mask | y_obs.mask) # r = np.ma.corrcoef(y_obsr, y_modr)[0, 1] # a = np.ma.mean(y_modr) / np.ma.mean(y_obsr) # b = np.ma.std(y_modr) / np.ma.std(y_obsr) # return 1. - np.sqrt((1 - r)**2 + (1 - a)**2 + (1 - b)**2) r = np.corrcoef(y_obs, y_mod)[0, 1] alpha = np.std(y_mod) / np.std(y_obs) beta = np.mean(y_mod) / np.mean(y_obs) if components: return 1. - np.sqrt((1 - r)**2 + (1 - beta)**2 + (1 - alpha)**2), r, alpha, beta else: return 1. - np.sqrt((1 - r)**2 + (1 - beta)**2 + (1 - alpha)**2) def pear2(y_obs,y_mod): """ calculates squared Pearson correlation coeffcient Examples -------- >>> # Create some data >>> y_obs = np.array([12.7867, 13.465, 14.1433, 15.3733, 16.6033]) >>> y_mod = np.array([12.8087, 13.151, 14.3741, 16.2302, 17.9433]) >>> # calculate Squared Pearson correlation coefficient >>> print(np.round(pear2(y_obs, y_mod),2)) 0.99 """ # # check # if (y_obs.ndim!=1) or (y_mod.ndim!=1): # raise ValueError('pear2: input must be 1D') # elif y_obs.size!=y_mod.size: # raise ValueError('pear2: input must be of same size') # # calc # else: # # check if masked or not # try: # temp = y_obs.mask # temp = y_mod.mask # except AttributeError: # y_obs=np.ma.array(y_obs, mask=np.isnan(y_obs)) # y_mod=np.ma.array(y_mod, mask=np.isnan(y_mod)) # y_modr = np.ma.array(y_mod, mask=y_mod.mask | y_obs.mask) # y_obsr = np.ma.array(y_obs, mask=y_mod.mask | y_obs.mask) # return np.corrcoef(y_obsr.compressed(), y_modr.compressed())[0,1]**2 return ((y_obs-y_obs.mean())*(y_mod-y_mod.mean())).mean()/y_obs.std()/y_mod.std() def confint(y_obs, p=0.95): """ calculates confidence interval of the mean of the sample applying a student-t-distribution to a given probability p (default p=0.95) Examples -------- >>> # Create some data >>> y_obs = np.array([12.7867, 13.465, 14.1433, 15.3733, 16.6033]) >>> # calculate confident interval >>> print(np.round(confint(y_obs))) [13. 16.] """ s = y_obs.size return np.array(t.interval(p, s-1., loc=y_obs.mean(), scale=y_obs.std()/np.sqrt(s))) if __name__ == '__main__': import doctest doctest.testmod()
# -*- coding: utf-8 -*- """Finitely Presented Groups and its algorithms. """ from __future__ import print_function, division from sympy.core.basic import Basic from sympy.core import Symbol, Mod from sympy.printing.defaults import DefaultPrinting from sympy.utilities import public from sympy.utilities.iterables import flatten from sympy.combinatorics.free_groups import (FreeGroup, FreeGroupElement, free_group, zero_mul_simp) from sympy.combinatorics.rewritingsystem import RewritingSystem from sympy.combinatorics.coset_table import (CosetTable, coset_enumeration_r, coset_enumeration_c) from sympy.combinatorics import PermutationGroup from itertools import product @public def fp_group(fr_grp, relators=[]): _fp_group = FpGroup(fr_grp, relators) return (_fp_group,) + tuple(_fp_group._generators) @public def xfp_group(fr_grp, relators=[]): _fp_group = FpGroup(fr_grp, relators) return (_fp_group, _fp_group._generators) @public def vfp_group(fr_grpm, relators): _fp_group = FpGroup(symbols, relators) pollute([sym.name for sym in _fp_group.symbols], _fp_group.generators) return _fp_group def _parse_relators(rels): """Parse the passed relators.""" return rels ############################################################################### # FINITELY PRESENTED GROUPS # ############################################################################### class FpGroup(DefaultPrinting): """ The FpGroup would take a FreeGroup and a list/tuple of relators, the relators would be specified in such a way that each of them be equal to the identity of the provided free group. """ is_group = True is_FpGroup = True is_PermutationGroup = False def __init__(self, fr_grp, relators): relators = _parse_relators(relators) self.free_group = fr_grp self.relators = relators self.generators = self._generators() self.dtype = type("FpGroupElement", (FpGroupElement,), {"group": self}) # CosetTable instance on identity subgroup self._coset_table = None # returns whether coset table on identity subgroup # has been standardized self._is_standardized = False self._order = None self._center = None self._rewriting_system = RewritingSystem(self) self._perm_isomorphism = None return def _generators(self): return self.free_group.generators def make_confluent(self): ''' Try to make the group's rewriting system confluent ''' self._rewriting_system.make_confluent() return def reduce(self, word): ''' Return the reduced form of `word` in `self` according to the group's rewriting system. If it's confluent, the reduced form is the unique normal form of the word in the group. ''' return self._rewriting_system.reduce(word) def equals(self, word1, word2): ''' Compare `word1` and `word2` for equality in the group using the group's rewriting system. If the system is confluent, the returned answer is necessarily correct. (If it isn't, `False` could be returned in some cases where in fact `word1 == word2`) ''' if self.reduce(word1*word2**-1) == self.identity: return True elif self._rewriting_system.is_confluent: return False return None @property def identity(self): return self.free_group.identity def __contains__(self, g): return g in self.free_group def subgroup(self, gens, C=None, homomorphism=False): ''' Return the subgroup generated by `gens` using the Reidemeister-Schreier algorithm homomorphism -- When set to True, return a dictionary containing the images of the presentation generators in the original group. Examples ======== >>> from sympy.combinatorics.fp_groups import (FpGroup, FpSubgroup) >>> from sympy.combinatorics.free_groups import free_group >>> F, x, y = free_group("x, y") >>> f = FpGroup(F, [x**3, y**5, (x*y)**2]) >>> H = [x*y, x**-1*y**-1*x*y*x] >>> K, T = f.subgroup(H, homomorphism=True) >>> T(K.generators) [x*y, x**-1*y**2*x**-1] ''' if not all([isinstance(g, FreeGroupElement) for g in gens]): raise ValueError("Generators must be `FreeGroupElement`s") if not all([g.group == self.free_group for g in gens]): raise ValueError("Given generators are not members of the group") if homomorphism: g, rels, _gens = reidemeister_presentation(self, gens, C=C, homomorphism=True) else: g, rels = reidemeister_presentation(self, gens, C=C) if g: g = FpGroup(g[0].group, rels) else: g = FpGroup(free_group('')[0], []) if homomorphism: from sympy.combinatorics.homomorphisms import homomorphism return g, homomorphism(g, self, g.generators, _gens, check=False) return g def coset_enumeration(self, H, strategy="relator_based", max_cosets=None, draft=None, incomplete=False): """ Return an instance of ``coset table``, when Todd-Coxeter algorithm is run over the ``self`` with ``H`` as subgroup, using ``strategy`` argument as strategy. The returned coset table is compressed but not standardized. An instance of `CosetTable` for `fp_grp` can be passed as the keyword argument `draft` in which case the coset enumeration will start with that instance and attempt to complete it. When `incomplete` is `True` and the function is unable to complete for some reason, the partially complete table will be returned. """ if not max_cosets: max_cosets = CosetTable.coset_table_max_limit if strategy == 'relator_based': C = coset_enumeration_r(self, H, max_cosets=max_cosets, draft=draft, incomplete=incomplete) else: C = coset_enumeration_c(self, H, max_cosets=max_cosets, draft=draft, incomplete=incomplete) if C.is_complete(): C.compress() return C def standardize_coset_table(self): """ Standardized the coset table ``self`` and makes the internal variable ``_is_standardized`` equal to ``True``. """ self._coset_table.standardize() self._is_standardized = True def coset_table(self, H, strategy="relator_based", max_cosets=None, draft=None, incomplete=False): """ Return the mathematical coset table of ``self`` in ``H``. """ if not H: if self._coset_table != None: if not self._is_standardized: self.standardize_coset_table() else: C = self.coset_enumeration([], strategy, max_cosets=max_cosets, draft=draft, incomplete=incomplete) self._coset_table = C self.standardize_coset_table() return self._coset_table.table else: C = self.coset_enumeration(H, strategy, max_cosets=max_cosets, draft=draft, incomplete=incomplete) C.standardize() return C.table def order(self, strategy="relator_based"): """ Returns the order of the finitely presented group ``self``. It uses the coset enumeration with identity group as subgroup, i.e ``H=[]``. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> from sympy.combinatorics.fp_groups import FpGroup >>> F, x, y = free_group("x, y") >>> f = FpGroup(F, [x, y**2]) >>> f.order(strategy="coset_table_based") 2 """ from sympy import S, gcd if self._order != None: return self._order if self._coset_table != None: self._order = len(self._coset_table.table) elif len(self.relators) == 0: self._order = self.free_group.order() elif len(self.generators) == 1: self._order = abs(gcd([r.array_form[0][1] for r in self.relators])) elif self._is_infinite(): self._order = S.Infinity else: gens, C = self._finite_index_subgroup() if C: ind = len(C.table) self._order = ind*self.subgroup(gens, C=C).order() else: self._order = self.index([]) return self._order def _is_infinite(self): ''' Test if the group is infinite. Return `True` if the test succeeds and `None` otherwise ''' used_gens = set() for r in self.relators: used_gens.update(r.contains_generators()) if any([g not in used_gens for g in self.generators]): return True # Abelianisation test: check is the abelianisation is infinite abelian_rels = [] from sympy.polys.solvers import RawMatrix as Matrix from sympy.polys.domains import ZZ from sympy.matrices.normalforms import invariant_factors for rel in self.relators: abelian_rels.append([rel.exponent_sum(g) for g in self.generators]) m = Matrix(abelian_rels) setattr(m, "ring", ZZ) if 0 in invariant_factors(m): return True else: return None def _finite_index_subgroup(self, s=[]): ''' Find the elements of `self` that generate a finite index subgroup and, if found, return the list of elements and the coset table of `self` by the subgroup, otherwise return `(None, None)` ''' gen = self.most_frequent_generator() rels = list(self.generators) rels.extend(self.relators) if not s: if len(self.generators) == 2: s = [gen] + [g for g in self.generators if g != gen] else: rand = self.free_group.identity i = 0 while ((rand in rels or rand**-1 in rels or rand.is_identity) and i<10): rand = self.random() i += 1 s = [gen, rand] + [g for g in self.generators if g != gen] mid = (len(s)+1)//2 half1 = s[:mid] half2 = s[mid:] draft1 = None draft2 = None m = 200 C = None while not C and (m/2 < CosetTable.coset_table_max_limit): m = min(m, CosetTable.coset_table_max_limit) draft1 = self.coset_enumeration(half1, max_cosets=m, draft=draft1, incomplete=True) if draft1.is_complete(): C = draft1 half = half1 else: draft2 = self.coset_enumeration(half2, max_cosets=m, draft=draft2, incomplete=True) if draft2.is_complete(): C = draft2 half = half2 if not C: m *= 2 if not C: return None, None C.compress() return half, C def most_frequent_generator(self): gens = self.generators rels = self.relators freqs = [sum([r.generator_count(g) for r in rels]) for g in gens] return gens[freqs.index(max(freqs))] def random(self): import random r = self.free_group.identity for i in range(random.randint(2,3)): r = r*random.choice(self.generators)**random.choice([1,-1]) return r def index(self, H, strategy="relator_based"): """ Return the index of subgroup ``H`` in group ``self``. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> from sympy.combinatorics.fp_groups import FpGroup >>> F, x, y = free_group("x, y") >>> f = FpGroup(F, [x**5, y**4, y*x*y**3*x**3]) >>> f.index([x]) 4 """ # TODO: use |G:H| = |G|/|H| (currently H can't be made into a group) # when we know |G| and |H| if H == []: return self.order() else: C = self.coset_enumeration(H, strategy) return len(C.table) def __str__(self): if self.free_group.rank > 30: str_form = "<fp group with %s generators>" % self.free_group.rank else: str_form = "<fp group on the generators %s>" % str(self.generators) return str_form __repr__ = __str__ #============================================================================== # PERMUTATION GROUP METHODS #============================================================================== def _to_perm_group(self): ''' Return an isomorphic permutation group and the isomorphism. The implementation is dependent on coset enumeration so will only terminate for finite groups. ''' from sympy.combinatorics import Permutation, PermutationGroup from sympy.combinatorics.homomorphisms import homomorphism from sympy import S if self.order() == S.Infinity: raise NotImplementedError("Permutation presentation of infinite " "groups is not implemented") if self._perm_isomorphism: T = self._perm_isomorphism P = T.image() else: C = self.coset_table([]) gens = self.generators images = [[C[i][2*gens.index(g)] for i in range(len(C))] for g in gens] images = [Permutation(i) for i in images] P = PermutationGroup(images) T = homomorphism(self, P, gens, images, check=False) self._perm_isomorphism = T return P, T def _perm_group_list(self, method_name, *args): ''' Given the name of a `PermutationGroup` method (returning a subgroup or a list of subgroups) and (optionally) additional arguments it takes, return a list or a list of lists containing the generators of this (or these) subgroups in terms of the generators of `self`. ''' P, T = self._to_perm_group() perm_result = getattr(P, method_name)(*args) single = False if isinstance(perm_result, PermutationGroup): perm_result, single = [perm_result], True result = [] for group in perm_result: gens = group.generators result.append(T.invert(gens)) return result[0] if single else result def derived_series(self): ''' Return the list of lists containing the generators of the subgroups in the derived series of `self`. ''' return self._perm_group_list('derived_series') def lower_central_series(self): ''' Return the list of lists containing the generators of the subgroups in the lower central series of `self`. ''' return self._perm_group_list('lower_central_series') def center(self): ''' Return the list of generators of the center of `self`. ''' return self._perm_group_list('center') def derived_subgroup(self): ''' Return the list of generators of the derived subgroup of `self`. ''' return self._perm_group_list('derived_subgroup') def centralizer(self, other): ''' Return the list of generators of the centralizer of `other` (a list of elements of `self`) in `self`. ''' T = self._to_perm_group()[1] other = T(other) return self._perm_group_list('centralizer', other) def normal_closure(self, other): ''' Return the list of generators of the normal closure of `other` (a list of elements of `self`) in `self`. ''' T = self._to_perm_group()[1] other = T(other) return self._perm_group_list('normal_closure', other) def _perm_property(self, attr): ''' Given an attribute of a `PermutationGroup`, return its value for a permutation group isomorphic to `self`. ''' P = self._to_perm_group()[0] return getattr(P, attr) @property def is_abelian(self): ''' Check if `self` is abelian. ''' return self._perm_property("is_abelian") @property def is_nilpotent(self): ''' Check if `self` is nilpotent. ''' return self._perm_property("is_nilpotent") @property def is_solvable(self): ''' Check if `self` is solvable. ''' return self._perm_property("is_solvable") @property def elements(self): ''' List the elements of `self`. ''' P, T = self._to_perm_group() return T.invert(P._elements) class FpSubgroup(DefaultPrinting): ''' The class implementing a subgroup of an FpGroup or a FreeGroup (only finite index subgroups are supported at this point). This is to be used if one wishes to check if an element of the original group belongs to the subgroup ''' def __init__(self, G, gens, normal=False): super(FpSubgroup,self).__init__() self.parent = G self.generators = list(set([g for g in gens if g != G.identity])) self._min_words = None #for use in __contains__ self.C = None self.normal = normal def __contains__(self, g): if isinstance(self.parent, FreeGroup): if self._min_words is None: # make _min_words - a list of subwords such that # g is in the subgroup if and only if it can be # partitioned into these subwords. Infinite families of # subwords are presented by tuples, e.g. (r, w) # stands for the family of subwords r*w**n*r**-1 def _process(w): # this is to be used before adding new words # into _min_words; if the word w is not cyclically # reduced, it will generate an infinite family of # subwords so should be written as a tuple; # if it is, w**-1 should be added to the list # as well p, r = w.cyclic_reduction(removed=True) if not r.is_identity: return [(r, p)] else: return [w, w**-1] # make the initial list gens = [] for w in self.generators: if self.normal: w = w.cyclic_reduction() gens.extend(_process(w)) for w1 in gens: for w2 in gens: # if w1 and w2 are equal or are inverses, continue if w1 == w2 or (not isinstance(w1, tuple) and w1**-1 == w2): continue # if the start of one word is the inverse of the # end of the other, their multiple should be added # to _min_words because of cancellation if isinstance(w1, tuple): # start, end s1, s2 = w1[0][0], w1[0][0]**-1 else: s1, s2 = w1[0], w1[len(w1)-1] if isinstance(w2, tuple): # start, end r1, r2 = w2[0][0], w2[0][0]**-1 else: r1, r2 = w2[0], w2[len(w1)-1] # p1 and p2 are w1 and w2 or, in case when # w1 or w2 is an infinite family, a representative p1, p2 = w1, w2 if isinstance(w1, tuple): p1 = w1[0]*w1[1]*w1[0]**-1 if isinstance(w2, tuple): p2 = w2[0]*w2[1]*w2[0]**-1 # add the product of the words to the list is necessary if r1**-1 == s2 and not (p1*p2).is_identity: new = _process(p1*p2) if not new in gens: gens.extend(new) if r2**-1 == s1 and not (p2*p1).is_identity: new = _process(p2*p1) if not new in gens: gens.extend(new) self._min_words = gens min_words = self._min_words def _is_subword(w): # check if w is a word in _min_words or one of # the infinite families in it w, r = w.cyclic_reduction(removed=True) if r.is_identity or self.normal: return w in min_words else: t = [s[1] for s in min_words if isinstance(s, tuple) and s[0] == r] return [s for s in t if w.power_of(s)] != [] # store the solution of words for which the result of # _word_break (below) is known known = {} def _word_break(w): # check if w can be written as a product of words # in min_words if len(w) == 0: return True i = 0 while i < len(w): i += 1 prefix = w.subword(0, i) if not _is_subword(prefix): continue rest = w.subword(i, len(w)) if rest not in known: known[rest] = _word_break(rest) if known[rest]: return True return False if self.normal: g = g.cyclic_reduction() return _word_break(g) else: if self.C is None: C = self.parent.coset_enumeration(self.generators) self.C = C i = 0 C = self.C for j in range(len(g)): i = C.table[i][C.A_dict[g[j]]] return i == 0 def order(self): if not self.generators: return 1 if isinstance(self.parent, FreeGroup): return S.Infinity if self.C is None: C = self.parent.coset_enumeration(self.generators) self.C = C # This is valid because `len(self.C.table)` (the index of the subgroup) # will always be finite - otherwise coset enumeration doesn't terminate return self.parent.order()/len(self.C.table) def to_FpGroup(self): if isinstance(self.parent, FreeGroup): gen_syms = [('x_%d'%i) for i in range(len(self.generators))] return free_group(', '.join(gen_syms))[0] return self.parent.subgroup(C=self.C) def __str__(self): if len(self.generators) > 30: str_form = "<fp subgroup with %s generators>" % len(self.generators) else: str_form = "<fp subgroup on the generators %s>" % str(self.generators) return str_form __repr__ = __str__ ############################################################################### # LOW INDEX SUBGROUPS # ############################################################################### def low_index_subgroups(G, N, Y=[]): """ Implements the Low Index Subgroups algorithm, i.e find all subgroups of ``G`` upto a given index ``N``. This implements the method described in [Sim94]. This procedure involves a backtrack search over incomplete Coset Tables, rather than over forced coincidences. G: An FpGroup < X|R > N: positive integer, representing the maximum index value for subgroups Y: (an optional argument) specifying a list of subgroup generators, such that each of the resulting subgroup contains the subgroup generated by Y. References ========== [1] Holt, D., Eick, B., O'Brien, E. "Handbook of Computational Group Theory" Section 5.4 [2] Marston Conder and Peter Dobcsanyi "Applications and Adaptions of the Low Index Subgroups Procedure" Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> from sympy.combinatorics.fp_groups import FpGroup, low_index_subgroups >>> F, x, y = free_group("x, y") >>> f = FpGroup(F, [x**2, y**3, (x*y)**4]) >>> L = low_index_subgroups(f, 4) >>> for coset_table in L: ... print(coset_table.table) [[0, 0, 0, 0]] [[0, 0, 1, 2], [1, 1, 2, 0], [3, 3, 0, 1], [2, 2, 3, 3]] [[0, 0, 1, 2], [2, 2, 2, 0], [1, 1, 0, 1]] [[1, 1, 0, 0], [0, 0, 1, 1]] """ C = CosetTable(G, []) R = G.relators # length chosen for the length of the short relators len_short_rel = 5 # elements of R2 only checked at the last step for complete # coset tables R2 = set([rel for rel in R if len(rel) > len_short_rel]) # elements of R1 are used in inner parts of the process to prune # branches of the search tree, R1 = set([rel.identity_cyclic_reduction() for rel in set(R) - R2]) R1_c_list = C.conjugates(R1) S = [] descendant_subgroups(S, C, R1_c_list, C.A[0], R2, N, Y) return S def descendant_subgroups(S, C, R1_c_list, x, R2, N, Y): A_dict = C.A_dict A_dict_inv = C.A_dict_inv if C.is_complete(): # if C is complete then it only needs to test # whether the relators in R2 are satisfied for w, alpha in product(R2, C.omega): if not C.scan_check(alpha, w): return # relators in R2 are satisfied, append the table to list S.append(C) else: # find the first undefined entry in Coset Table for alpha, x in product(range(len(C.table)), C.A): if C.table[alpha][A_dict[x]] is None: # this is "x" in pseudo-code (using "y" makes it clear) undefined_coset, undefined_gen = alpha, x break # for filling up the undefine entry we try all possible values # of β ∈ Ω or β = n where β^(undefined_gen^-1) is undefined reach = C.omega + [C.n] for beta in reach: if beta < N: if beta == C.n or C.table[beta][A_dict_inv[undefined_gen]] is None: try_descendant(S, C, R1_c_list, R2, N, undefined_coset, \ undefined_gen, beta, Y) def try_descendant(S, C, R1_c_list, R2, N, alpha, x, beta, Y): r""" Solves the problem of trying out each individual possibility for `\alpha^x. """ D = C.copy() A_dict = D.A_dict if beta == D.n and beta < N: D.table.append([None]*len(D.A)) D.p.append(beta) D.table[alpha][D.A_dict[x]] = beta D.table[beta][D.A_dict_inv[x]] = alpha D.deduction_stack.append((alpha, x)) if not D.process_deductions_check(R1_c_list[D.A_dict[x]], \ R1_c_list[D.A_dict_inv[x]]): return for w in Y: if not D.scan_check(0, w): return if first_in_class(D, Y): descendant_subgroups(S, D, R1_c_list, x, R2, N, Y) def first_in_class(C, Y=[]): """ Checks whether the subgroup ``H=G1`` corresponding to the Coset Table could possibly be the canonical representative of its conjugacy class. Parameters ========== C: CosetTable Returns ======= bool: True/False If this returns False, then no descendant of C can have that property, and so we can abandon C. If it returns True, then we need to process further the node of the search tree corresponding to C, and so we call ``descendant_subgroups`` recursively on C. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> from sympy.combinatorics.fp_groups import FpGroup, CosetTable, first_in_class >>> F, x, y = free_group("x, y") >>> f = FpGroup(F, [x**2, y**3, (x*y)**4]) >>> C = CosetTable(f, []) >>> C.table = [[0, 0, None, None]] >>> first_in_class(C) True >>> C.table = [[1, 1, 1, None], [0, 0, None, 1]]; C.p = [0, 1] >>> first_in_class(C) True >>> C.table = [[1, 1, 2, 1], [0, 0, 0, None], [None, None, None, 0]] >>> C.p = [0, 1, 2] >>> first_in_class(C) False >>> C.table = [[1, 1, 1, 2], [0, 0, 2, 0], [2, None, 0, 1]] >>> first_in_class(C) False # TODO:: Sims points out in [Sim94] that performance can be improved by # remembering some of the information computed by ``first_in_class``. If # the ``continue α`` statement is executed at line 14, then the same thing # will happen for that value of α in any descendant of the table C, and so # the values the values of α for which this occurs could profitably be # stored and passed through to the descendants of C. Of course this would # make the code more complicated. # The code below is taken directly from the function on page 208 of [Sim94] # ν[α] """ n = C.n # lamda is the largest numbered point in Ω_c_α which is currently defined lamda = -1 # for α ∈ Ω_c, ν[α] is the point in Ω_c_α corresponding to α nu = [None]*n # for α ∈ Ω_c_α, μ[α] is the point in Ω_c corresponding to α mu = [None]*n # mutually ν and μ are the mutually-inverse equivalence maps between # Ω_c_α and Ω_c next_alpha = False # For each 0≠α ∈ [0 .. nc-1], we start by constructing the equivalent # standardized coset table C_α corresponding to H_α for alpha in range(1, n): # reset ν to "None" after previous value of α for beta in range(lamda+1): nu[mu[beta]] = None # we only want to reject our current table in favour of a preceding # table in the ordering in which 1 is replaced by α, if the subgroup # G_α corresponding to this preceding table definitely contains the # given subgroup for w in Y: # TODO: this should support input of a list of general words # not just the words which are in "A" (i.e gen and gen^-1) if C.table[alpha][C.A_dict[w]] != alpha: # continue with α next_alpha = True break if next_alpha: next_alpha = False continue # try α as the new point 0 in Ω_C_α mu[0] = alpha nu[alpha] = 0 # compare corresponding entries in C and C_α lamda = 0 for beta in range(n): for x in C.A: gamma = C.table[beta][C.A_dict[x]] delta = C.table[mu[beta]][C.A_dict[x]] # if either of the entries is undefined, # we move with next α if gamma is None or delta is None: # continue with α next_alpha = True break if nu[delta] is None: # delta becomes the next point in Ω_C_α lamda += 1 nu[delta] = lamda mu[lamda] = delta if nu[delta] < gamma: return False if nu[delta] > gamma: # continue with α next_alpha = True break if next_alpha: next_alpha = False break return True #======================================================================== # Simplifying Presentation #======================================================================== def simplify_presentation(*args, **kwargs): ''' For an instance of `FpGroup`, return a simplified isomorphic copy of the group (e.g. remove redundant generators or relators). Alternatively, a list of generators and relators can be passed in which case the simplified lists will be returned. By default, the generators of the group are unchanged. If you would like to remove redundant generators, set the keyword argument `change_gens = True`. ''' change_gens = kwargs.get("change_gens", False) if len(args) == 1: if not isinstance(args[0], FpGroup): raise TypeError("The argument must be an instance of FpGroup") G = args[0] gens, rels = simplify_presentation(G.generators, G.relators, change_gens=change_gens) if gens: return FpGroup(gens[0].group, rels) return FpGroup([]) elif len(args) == 2: gens, rels = args[0][:], args[1][:] identity = gens[0].group.identity else: if len(args) == 0: m = "Not enough arguments" else: m = "Too many arguments" raise RuntimeError(m) prev_gens = [] prev_rels = [] while not set(prev_rels) == set(rels): prev_rels = rels while change_gens and not set(prev_gens) == set(gens): prev_gens = gens gens, rels = elimination_technique_1(gens, rels, identity) rels = _simplify_relators(rels, identity) if change_gens: syms = [g.array_form[0][0] for g in gens] F = free_group(syms)[0] identity = F.identity gens = F.generators subs = dict(zip(syms, gens)) for j, r in enumerate(rels): a = r.array_form rel = identity for sym, p in a: rel = rel*subs[sym]**p rels[j] = rel return gens, rels def _simplify_relators(rels, identity): """Relies upon ``_simplification_technique_1`` for its functioning. """ rels = rels[:] rels = list(set(_simplification_technique_1(rels))) rels.sort() rels = [r.identity_cyclic_reduction() for r in rels] try: rels.remove(identity) except ValueError: pass return rels # Pg 350, section 2.5.1 from [2] def elimination_technique_1(gens, rels, identity): rels = rels[:] # the shorter relators are examined first so that generators selected for # elimination will have shorter strings as equivalent rels.sort() gens = gens[:] redundant_gens = {} redundant_rels = [] used_gens = set() # examine each relator in relator list for any generator occurring exactly # once for rel in rels: # don't look for a redundant generator in a relator which # depends on previously found ones contained_gens = rel.contains_generators() if any([g in contained_gens for g in redundant_gens]): continue contained_gens = list(contained_gens) contained_gens.sort(reverse = True) for gen in contained_gens: if rel.generator_count(gen) == 1 and gen not in used_gens: k = rel.exponent_sum(gen) gen_index = rel.index(gen**k) bk = rel.subword(gen_index + 1, len(rel)) fw = rel.subword(0, gen_index) chi = bk*fw redundant_gens[gen] = chi**(-1*k) used_gens.update(chi.contains_generators()) redundant_rels.append(rel) break rels = [r for r in rels if r not in redundant_rels] # eliminate the redundant generators from remaining relators rels = [r.eliminate_words(redundant_gens, _all = True).identity_cyclic_reduction() for r in rels] rels = list(set(rels)) try: rels.remove(identity) except ValueError: pass gens = [g for g in gens if g not in redundant_gens] return gens, rels def _simplification_technique_1(rels): """ All relators are checked to see if they are of the form `gen^n`. If any such relators are found then all other relators are processed for strings in the `gen` known order. Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> from sympy.combinatorics.fp_groups import _simplification_technique_1 >>> F, x, y = free_group("x, y") >>> w1 = [x**2*y**4, x**3] >>> _simplification_technique_1(w1) [x**-1*y**4, x**3] >>> w2 = [x**2*y**-4*x**5, x**3, x**2*y**8, y**5] >>> _simplification_technique_1(w2) [x**-1*y*x**-1, x**3, x**-1*y**-2, y**5] >>> w3 = [x**6*y**4, x**4] >>> _simplification_technique_1(w3) [x**2*y**4, x**4] """ from sympy import gcd rels = rels[:] # dictionary with "gen: n" where gen^n is one of the relators exps = {} for i in range(len(rels)): rel = rels[i] if rel.number_syllables() == 1: g = rel[0] exp = abs(rel.array_form[0][1]) if rel.array_form[0][1] < 0: rels[i] = rels[i]**-1 g = g**-1 if g in exps: exp = gcd(exp, exps[g].array_form[0][1]) exps[g] = g**exp one_syllables_words = exps.values() # decrease some of the exponents in relators, making use of the single # syllable relators for i in range(len(rels)): rel = rels[i] if rel in one_syllables_words: continue rel = rel.eliminate_words(one_syllables_words, _all = True) # if rels[i] contains g**n where abs(n) is greater than half of the power p # of g in exps, g**n can be replaced by g**(n-p) (or g**(p-n) if n<0) for g in rel.contains_generators(): if g in exps: exp = exps[g].array_form[0][1] max_exp = (exp + 1)//2 rel = rel.eliminate_word(g**(max_exp), g**(max_exp-exp), _all = True) rel = rel.eliminate_word(g**(-max_exp), g**(-(max_exp-exp)), _all = True) rels[i] = rel rels = [r.identity_cyclic_reduction() for r in rels] return rels ############################################################################### # SUBGROUP PRESENTATIONS # ############################################################################### # Pg 175 [1] def define_schreier_generators(C, homomorphism=False): ''' Arguments: C -- Coset table. homomorphism -- When set to True, return a dictionary containing the images of the presentation generators in the original group. ''' y = [] gamma = 1 f = C.fp_group X = f.generators if homomorphism: # `_gens` stores the elements of the parent group to # to which the schreier generators correspond to. _gens = {} # compute the schreier Traversal tau = {} tau[0] = f.identity C.P = [[None]*len(C.A) for i in range(C.n)] for alpha, x in product(C.omega, C.A): beta = C.table[alpha][C.A_dict[x]] if beta == gamma: C.P[alpha][C.A_dict[x]] = "<identity>" C.P[beta][C.A_dict_inv[x]] = "<identity>" gamma += 1 if homomorphism: tau[beta] = tau[alpha]*x elif x in X and C.P[alpha][C.A_dict[x]] is None: y_alpha_x = '%s_%s' % (x, alpha) y.append(y_alpha_x) C.P[alpha][C.A_dict[x]] = y_alpha_x if homomorphism: _gens[y_alpha_x] = tau[alpha]*x*tau[beta]**-1 grp_gens = list(free_group(', '.join(y))) C._schreier_free_group = grp_gens.pop(0) C._schreier_generators = grp_gens if homomorphism: C._schreier_gen_elem = _gens # replace all elements of P by, free group elements for i, j in product(range(len(C.P)), range(len(C.A))): # if equals "<identity>", replace by identity element if C.P[i][j] == "<identity>": C.P[i][j] = C._schreier_free_group.identity elif isinstance(C.P[i][j], str): r = C._schreier_generators[y.index(C.P[i][j])] C.P[i][j] = r beta = C.table[i][j] C.P[beta][j + 1] = r**-1 def reidemeister_relators(C): R = C.fp_group.relators rels = [rewrite(C, coset, word) for word in R for coset in range(C.n)] identity = C._schreier_free_group.identity order_1_gens = set([i for i in rels if len(i) == 1]) # remove all the order 1 generators from relators rels = list(filter(lambda rel: rel not in order_1_gens, rels)) # replace order 1 generators by identity element in reidemeister relators for i in range(len(rels)): w = rels[i] w = w.eliminate_words(order_1_gens, _all=True) rels[i] = w C._schreier_generators = [i for i in C._schreier_generators if not (i in order_1_gens or i**-1 in order_1_gens)] # Tietze transformation 1 i.e TT_1 # remove cyclic conjugate elements from relators i = 0 while i < len(rels): w = rels[i] j = i + 1 while j < len(rels): if w.is_cyclic_conjugate(rels[j]): del rels[j] else: j += 1 i += 1 C._reidemeister_relators = rels def rewrite(C, alpha, w): """ Parameters ---------- C: CosetTable α: A live coset w: A word in `A*` Returns ------- ρ(τ(α), w) Examples ======== >>> from sympy.combinatorics.fp_groups import FpGroup, CosetTable, define_schreier_generators, rewrite >>> from sympy.combinatorics.free_groups import free_group >>> F, x, y = free_group("x ,y") >>> f = FpGroup(F, [x**2, y**3, (x*y)**6]) >>> C = CosetTable(f, []) >>> C.table = [[1, 1, 2, 3], [0, 0, 4, 5], [4, 4, 3, 0], [5, 5, 0, 2], [2, 2, 5, 1], [3, 3, 1, 4]] >>> C.p = [0, 1, 2, 3, 4, 5] >>> define_schreier_generators(C) >>> rewrite(C, 0, (x*y)**6) x_4*y_2*x_3*x_1*x_2*y_4*x_5 """ v = C._schreier_free_group.identity for i in range(len(w)): x_i = w[i] v = v*C.P[alpha][C.A_dict[x_i]] alpha = C.table[alpha][C.A_dict[x_i]] return v # Pg 350, section 2.5.2 from [2] def elimination_technique_2(C): """ This technique eliminates one generator at a time. Heuristically this seems superior in that we may select for elimination the generator with shortest equivalent string at each stage. >>> from sympy.combinatorics.free_groups import free_group >>> from sympy.combinatorics.fp_groups import FpGroup, coset_enumeration_r, \ reidemeister_relators, define_schreier_generators, elimination_technique_2 >>> F, x, y = free_group("x, y") >>> f = FpGroup(F, [x**3, y**5, (x*y)**2]); H = [x*y, x**-1*y**-1*x*y*x] >>> C = coset_enumeration_r(f, H) >>> C.compress(); C.standardize() >>> define_schreier_generators(C) >>> reidemeister_relators(C) >>> elimination_technique_2(C) ([y_1, y_2], [y_2**-3, y_2*y_1*y_2*y_1*y_2*y_1, y_1**2]) """ rels = C._reidemeister_relators rels.sort(reverse=True) gens = C._schreier_generators for i in range(len(gens) - 1, -1, -1): rel = rels[i] for j in range(len(gens) - 1, -1, -1): gen = gens[j] if rel.generator_count(gen) == 1: k = rel.exponent_sum(gen) gen_index = rel.index(gen**k) bk = rel.subword(gen_index + 1, len(rel)) fw = rel.subword(0, gen_index) rep_by = (bk*fw)**(-1*k) del rels[i]; del gens[j] for l in range(len(rels)): rels[l] = rels[l].eliminate_word(gen, rep_by) break C._reidemeister_relators = rels C._schreier_generators = gens return C._schreier_generators, C._reidemeister_relators def reidemeister_presentation(fp_grp, H, C=None, homomorphism=False): """ fp_group: A finitely presented group, an instance of FpGroup H: A subgroup whose presentation is to be found, given as a list of words in generators of `fp_grp` homomorphism: When set to True, return a homomorphism from the subgroup to the parent group Examples ======== >>> from sympy.combinatorics.free_groups import free_group >>> from sympy.combinatorics.fp_groups import FpGroup, reidemeister_presentation >>> F, x, y = free_group("x, y") Example 5.6 Pg. 177 from [1] >>> f = FpGroup(F, [x**3, y**5, (x*y)**2]) >>> H = [x*y, x**-1*y**-1*x*y*x] >>> reidemeister_presentation(f, H) ((y_1, y_2), (y_1**2, y_2**3, y_2*y_1*y_2*y_1*y_2*y_1)) Example 5.8 Pg. 183 from [1] >>> f = FpGroup(F, [x**3, y**3, (x*y)**3]) >>> H = [x*y, x*y**-1] >>> reidemeister_presentation(f, H) ((x_0, y_0), (x_0**3, y_0**3, x_0*y_0*x_0*y_0*x_0*y_0)) Exercises Q2. Pg 187 from [1] >>> f = FpGroup(F, [x**2*y**2, y**-1*x*y*x**-3]) >>> H = [x] >>> reidemeister_presentation(f, H) ((x_0,), (x_0**4,)) Example 5.9 Pg. 183 from [1] >>> f = FpGroup(F, [x**3*y**-3, (x*y)**3, (x*y**-1)**2]) >>> H = [x] >>> reidemeister_presentation(f, H) ((x_0,), (x_0**6,)) """ if not C: C = coset_enumeration_r(fp_grp, H) C.compress(); C.standardize() define_schreier_generators(C, homomorphism=homomorphism) reidemeister_relators(C) gens, rels = C._schreier_generators, C._reidemeister_relators gens, rels = simplify_presentation(gens, rels, change_gens=True) C.schreier_generators = tuple(gens) C.reidemeister_relators = tuple(rels) if homomorphism: _gens = [] for gen in gens: _gens.append(C._schreier_gen_elem[str(gen)]) return C.schreier_generators, C.reidemeister_relators, _gens return C.schreier_generators, C.reidemeister_relators FpGroupElement = FreeGroupElement
"""Example serializing custom types""" from datetime import datetime from event_two import event import json # Serializar def default(obj): """Encode datetime to string in YYYY-MM-DDTHH:MM:SS format (RFC3339)""" if isinstance(obj, datetime): return obj.isoformat() return obj def pairs_hook(pairs): """Convert the "time" key to datetime""" # Aquí se almacena el objeto gaurdado en json obj = {} for key, value in pairs: if key == 'time': # Construyo un datetime value = datetime.fromisoformat(value) # Python >= 3.7 # Lo meto en el diccionario de python obj[key] = value return obj if __name__ =='__main__': # Al pasarle el argumento default y la función default. # Estamos serialziando data = json.dumps(event, default=default) print(data) # ---------------------------------------------------------------- #Deserializar data_dict = json.loads(data, object_pairs_hook=pairs_hook) print(data_dict) print(type(data_dict))
from utils import stringifySong from datetime import datetime import logging logger = logging.getLogger(__name__) class Migrater(object): """Migrater""" def __init__(self, migrateFrom, migrateTo, mock=False): # Store clients self.source = migrateFrom self.target = migrateTo self.isMocked = mock logger.info(f"MOCK MIGRATION? {mock}") def migratePlaylists(self, interactive=True): # Wrapper to gather input from the user def should(text): value = input(text) return value.strip().lower() == 'y' # Core to migrate each playlist def migratePlaylist(playlist): # Create a new playlist in the target server with a unique name if not self.isMocked: targetPlaylist = self.target.createPlaylist(f"{playlist['name']} at {int(datetime.now().timestamp())}") logger.info(f"Target playlist: '{targetPlaylist['name']}'") # Add each song in this playlist to the new targetPlaylist playlist = self.source.getPlaylist(playlist["id"]) for song in playlist['entry']: try: matchSong = self.target.findClosestMatchToSong(song) if matchSong: logger.info(f"Migrating {stringifySong(song)} as {stringifySong(matchSong)}") if not self.isMocked: self.target.addSongToPlaylist(targetPlaylist['id'], matchSong['id']) else: logger.warning(f"No match to {stringifySong(song)}") except Exception as e: logger.exception(f"Unable to migrate song {stringifySong(song)}") # Perform playlsts migration try: # Get all playlists playlists = self.source.getPlaylists() for playlist in playlists: # Ask if this playlist should be migrated only if running on interactive mode if not interactive or should(f"Migrate '{playlist['name']}' with {playlist['songCount']} songs Y/[N]? "): logger.info(f"Migrating playlist '{playlist['name']} ({playlist['songCount']})'") try: migratePlaylist(playlist) except Exception as e: logger.exception(f"Unable to migrate playlist '{playlist['name']} ({playlist['songCount']})'") except Exception as e: logger.exception("Unable to migrate playlists") def migrateStarred(self): # TODO: support albums and artists too try: songs = self.source.getStarredSongs() # Migrate each song logger.info(f"{len(songs)} starred songs to migrate") for song in songs: try: matchSong = self.target.findClosestMatchToSong(song) if matchSong: logger.info(f"Migrating {stringifySong(song)} as {stringifySong(matchSong)}") if not self.isMocked: self.target.starSong(matchSong['id']) else: logger.warning(f"No match to {stringifySong(song)}") except Exception as e: logger.exception(f"Unable to star song {stringifySong(song)}") except Exception as e: logger.exception("Unable to migrate starred songs")
""" The MIT License (MIT) Copyright (c) 2015-present Rapptz Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from __future__ import annotations import logging import asyncio import json import re from urllib.parse import quote as urlquote from typing import Any, Dict, List, Literal, Optional, TYPE_CHECKING, Tuple, Union, TypeVar, Type, overload from contextvars import ContextVar import weakref import aiohttp from .. import utils from ..errors import HTTPException, Forbidden, NotFound, DiscordServerError from ..message import Message from ..enums import try_enum, WebhookType from ..user import BaseUser, User from ..flags import MessageFlags from ..asset import Asset from ..http import Route, handle_message_parameters, MultipartParameters, HTTPClient from ..mixins import Hashable from ..channel import PartialMessageable from ..file import File __all__ = ( 'Webhook', 'WebhookMessage', 'PartialWebhookChannel', 'PartialWebhookGuild', ) _log = logging.getLogger(__name__) if TYPE_CHECKING: from typing_extensions import Self from types import TracebackType from ..embeds import Embed from ..mentions import AllowedMentions from ..message import Attachment from ..state import ConnectionState from ..http import Response from ..guild import Guild from ..channel import TextChannel from ..abc import Snowflake from ..ui.view import View import datetime from ..types.webhook import ( Webhook as WebhookPayload, SourceGuild as SourceGuildPayload, ) from ..types.message import ( Message as MessagePayload, ) from ..types.user import ( User as UserPayload, PartialUser as PartialUserPayload, ) from ..types.channel import ( PartialChannel as PartialChannelPayload, ) BE = TypeVar('BE', bound=BaseException) _State = Union[ConnectionState, '_WebhookState'] MISSING: Any = utils.MISSING class AsyncDeferredLock: def __init__(self, lock: asyncio.Lock): self.lock = lock self.delta: Optional[float] = None async def __aenter__(self) -> Self: await self.lock.acquire() return self def delay_by(self, delta: float) -> None: self.delta = delta async def __aexit__( self, exc_type: Optional[Type[BE]], exc: Optional[BE], traceback: Optional[TracebackType], ) -> None: if self.delta: await asyncio.sleep(self.delta) self.lock.release() class AsyncWebhookAdapter: def __init__(self): self._locks: weakref.WeakValueDictionary[Any, asyncio.Lock] = weakref.WeakValueDictionary() async def request( self, route: Route, session: aiohttp.ClientSession, *, payload: Optional[Dict[str, Any]] = None, multipart: Optional[List[Dict[str, Any]]] = None, files: Optional[List[File]] = None, reason: Optional[str] = None, auth_token: Optional[str] = None, params: Optional[Dict[str, Any]] = None, ) -> Any: headers: Dict[str, str] = {} files = files or [] to_send: Optional[Union[str, aiohttp.FormData]] = None bucket = (route.webhook_id, route.webhook_token) try: lock = self._locks[bucket] except KeyError: self._locks[bucket] = lock = asyncio.Lock() if payload is not None: headers['Content-Type'] = 'application/json' to_send = utils._to_json(payload) if auth_token is not None: headers['Authorization'] = f'Bot {auth_token}' if reason is not None: headers['X-Audit-Log-Reason'] = urlquote(reason, safe='/ ') response: Optional[aiohttp.ClientResponse] = None data: Optional[Union[Dict[str, Any], str]] = None method = route.method url = route.url webhook_id = route.webhook_id async with AsyncDeferredLock(lock) as lock: for attempt in range(5): for file in files: file.reset(seek=attempt) if multipart: form_data = aiohttp.FormData(quote_fields=False) for p in multipart: form_data.add_field(**p) to_send = form_data try: async with session.request(method, url, data=to_send, headers=headers, params=params) as response: _log.debug( 'Webhook ID %s with %s %s has returned status code %s', webhook_id, method, url, response.status, ) data = (await response.text(encoding='utf-8')) or None if data and response.headers['Content-Type'] == 'application/json': data = json.loads(data) remaining = response.headers.get('X-Ratelimit-Remaining') if remaining == '0' and response.status != 429: delta = utils._parse_ratelimit_header(response) _log.debug( 'Webhook ID %s has been pre-emptively rate limited, waiting %.2f seconds', webhook_id, delta ) lock.delay_by(delta) if 300 > response.status >= 200: return data if response.status == 429: if not response.headers.get('Via'): raise HTTPException(response, data) retry_after: float = data['retry_after'] # type: ignore _log.warning('Webhook ID %s is rate limited. Retrying in %.2f seconds', webhook_id, retry_after) await asyncio.sleep(retry_after) continue if response.status >= 500: await asyncio.sleep(1 + attempt * 2) continue if response.status == 403: raise Forbidden(response, data) elif response.status == 404: raise NotFound(response, data) else: raise HTTPException(response, data) except OSError as e: if attempt < 4 and e.errno in (54, 10054): await asyncio.sleep(1 + attempt * 2) continue raise if response: if response.status >= 500: raise DiscordServerError(response, data) raise HTTPException(response, data) raise RuntimeError('Unreachable code in HTTP handling.') def delete_webhook( self, webhook_id: int, *, token: Optional[str] = None, session: aiohttp.ClientSession, reason: Optional[str] = None, ) -> Response[None]: route = Route('DELETE', '/webhooks/{webhook_id}', webhook_id=webhook_id) return self.request(route, session, reason=reason, auth_token=token) def delete_webhook_with_token( self, webhook_id: int, token: str, *, session: aiohttp.ClientSession, reason: Optional[str] = None, ) -> Response[None]: route = Route('DELETE', '/webhooks/{webhook_id}/{webhook_token}', webhook_id=webhook_id, webhook_token=token) return self.request(route, session, reason=reason) def edit_webhook( self, webhook_id: int, token: str, payload: Dict[str, Any], *, session: aiohttp.ClientSession, reason: Optional[str] = None, ) -> Response[WebhookPayload]: route = Route('PATCH', '/webhooks/{webhook_id}', webhook_id=webhook_id) return self.request(route, session, reason=reason, payload=payload, auth_token=token) def edit_webhook_with_token( self, webhook_id: int, token: str, payload: Dict[str, Any], *, session: aiohttp.ClientSession, reason: Optional[str] = None, ) -> Response[WebhookPayload]: route = Route('PATCH', '/webhooks/{webhook_id}/{webhook_token}', webhook_id=webhook_id, webhook_token=token) return self.request(route, session, reason=reason, payload=payload) def execute_webhook( self, webhook_id: int, token: str, *, session: aiohttp.ClientSession, payload: Optional[Dict[str, Any]] = None, multipart: Optional[List[Dict[str, Any]]] = None, files: Optional[List[File]] = None, thread_id: Optional[int] = None, wait: bool = False, ) -> Response[Optional[MessagePayload]]: params = {'wait': int(wait)} if thread_id: params['thread_id'] = thread_id route = Route('POST', '/webhooks/{webhook_id}/{webhook_token}', webhook_id=webhook_id, webhook_token=token) return self.request(route, session, payload=payload, multipart=multipart, files=files, params=params) def get_webhook_message( self, webhook_id: int, token: str, message_id: int, *, session: aiohttp.ClientSession, ) -> Response[MessagePayload]: route = Route( 'GET', '/webhooks/{webhook_id}/{webhook_token}/messages/{message_id}', webhook_id=webhook_id, webhook_token=token, message_id=message_id, ) return self.request(route, session) def edit_webhook_message( self, webhook_id: int, token: str, message_id: int, *, session: aiohttp.ClientSession, payload: Optional[Dict[str, Any]] = None, multipart: Optional[List[Dict[str, Any]]] = None, files: Optional[List[File]] = None, ) -> Response[Message]: route = Route( 'PATCH', '/webhooks/{webhook_id}/{webhook_token}/messages/{message_id}', webhook_id=webhook_id, webhook_token=token, message_id=message_id, ) return self.request(route, session, payload=payload, multipart=multipart, files=files) def delete_webhook_message( self, webhook_id: int, token: str, message_id: int, *, session: aiohttp.ClientSession, ) -> Response[None]: route = Route( 'DELETE', '/webhooks/{webhook_id}/{webhook_token}/messages/{message_id}', webhook_id=webhook_id, webhook_token=token, message_id=message_id, ) return self.request(route, session) def fetch_webhook( self, webhook_id: int, token: str, *, session: aiohttp.ClientSession, ) -> Response[WebhookPayload]: route = Route('GET', '/webhooks/{webhook_id}', webhook_id=webhook_id) return self.request(route, session=session, auth_token=token) def fetch_webhook_with_token( self, webhook_id: int, token: str, *, session: aiohttp.ClientSession, ) -> Response[WebhookPayload]: route = Route('GET', '/webhooks/{webhook_id}/{webhook_token}', webhook_id=webhook_id, webhook_token=token) return self.request(route, session=session) def create_interaction_response( self, interaction_id: int, token: str, *, session: aiohttp.ClientSession, params: MultipartParameters, ) -> Response[None]: route = Route( 'POST', '/interactions/{webhook_id}/{webhook_token}/callback', webhook_id=interaction_id, webhook_token=token, ) if params.files: return self.request(route, session=session, files=params.files, multipart=params.multipart) else: return self.request(route, session=session, payload=params.payload) def get_original_interaction_response( self, application_id: int, token: str, *, session: aiohttp.ClientSession, ) -> Response[MessagePayload]: r = Route( 'GET', '/webhooks/{webhook_id}/{webhook_token}/messages/@original', webhook_id=application_id, webhook_token=token, ) return self.request(r, session=session) def edit_original_interaction_response( self, application_id: int, token: str, *, session: aiohttp.ClientSession, payload: Optional[Dict[str, Any]] = None, multipart: Optional[List[Dict[str, Any]]] = None, files: Optional[List[File]] = None, ) -> Response[MessagePayload]: r = Route( 'PATCH', '/webhooks/{webhook_id}/{webhook_token}/messages/@original', webhook_id=application_id, webhook_token=token, ) return self.request(r, session, payload=payload, multipart=multipart, files=files) def delete_original_interaction_response( self, application_id: int, token: str, *, session: aiohttp.ClientSession, ) -> Response[None]: r = Route( 'DELETE', '/webhooks/{webhook_id}/{webhook_token}/messages/@original', webhook_id=application_id, webhook_token=token, ) return self.request(r, session=session) def interaction_response_params(type: int, data: Optional[Dict[str, Any]] = None) -> MultipartParameters: payload: Dict[str, Any] = { 'type': type, } if data is not None: payload['data'] = data return MultipartParameters(payload=payload, multipart=None, files=None) # This is a subset of handle_message_parameters def interaction_message_response_params( *, type: int, content: Optional[str] = MISSING, tts: bool = False, flags: MessageFlags = MISSING, file: File = MISSING, files: List[File] = MISSING, embed: Optional[Embed] = MISSING, embeds: List[Embed] = MISSING, attachments: List[Union[Attachment, File]] = MISSING, view: Optional[View] = MISSING, allowed_mentions: Optional[AllowedMentions] = MISSING, previous_allowed_mentions: Optional[AllowedMentions] = None, ) -> MultipartParameters: if files is not MISSING and file is not MISSING: raise TypeError('Cannot mix file and files keyword arguments.') if embeds is not MISSING and embed is not MISSING: raise TypeError('Cannot mix embed and embeds keyword arguments.') if file is not MISSING: files = [file] if attachments is not MISSING and files is not MISSING: raise TypeError('Cannot mix attachments and files keyword arguments.') data: Optional[Dict[str, Any]] = { 'tts': tts, } if embeds is not MISSING: if len(embeds) > 10: raise ValueError('embeds has a maximum of 10 elements.') data['embeds'] = [e.to_dict() for e in embeds] if embed is not MISSING: if embed is None: data['embeds'] = [] else: data['embeds'] = [embed.to_dict()] if content is not MISSING: if content is not None: data['content'] = str(content) else: data['content'] = None if view is not MISSING: if view is not None: data['components'] = view.to_components() else: data['components'] = [] if flags is not MISSING: data['flags'] = flags.value if allowed_mentions: if previous_allowed_mentions is not None: data['allowed_mentions'] = previous_allowed_mentions.merge(allowed_mentions).to_dict() else: data['allowed_mentions'] = allowed_mentions.to_dict() elif previous_allowed_mentions is not None: data['allowed_mentions'] = previous_allowed_mentions.to_dict() if attachments is MISSING: attachments = files # type: ignore else: files = [a for a in attachments if isinstance(a, File)] if attachments is not MISSING: file_index = 0 attachments_payload = [] for attachment in attachments: if isinstance(attachment, File): attachments_payload.append(attachment.to_dict(file_index)) file_index += 1 else: attachments_payload.append(attachment.to_dict()) data['attachments'] = attachments_payload multipart = [] if files: data = {'type': type, 'data': data} multipart.append({'name': 'payload_json', 'value': utils._to_json(data)}) data = None for index, file in enumerate(files): multipart.append( { 'name': f'files[{index}]', 'value': file.fp, 'filename': file.filename, 'content_type': 'application/octet-stream', } ) else: data = {'type': type, 'data': data} return MultipartParameters(payload=data, multipart=multipart, files=files) async_context: ContextVar[AsyncWebhookAdapter] = ContextVar('async_webhook_context', default=AsyncWebhookAdapter()) class PartialWebhookChannel(Hashable): """Represents a partial channel for webhooks. These are typically given for channel follower webhooks. .. versionadded:: 2.0 Attributes ----------- id: :class:`int` The partial channel's ID. name: :class:`str` The partial channel's name. """ __slots__ = ('id', 'name') def __init__(self, *, data: PartialChannelPayload) -> None: self.id: int = int(data['id']) self.name: str = data['name'] def __repr__(self) -> str: return f'<PartialWebhookChannel name={self.name!r} id={self.id}>' class PartialWebhookGuild(Hashable): """Represents a partial guild for webhooks. These are typically given for channel follower webhooks. .. versionadded:: 2.0 Attributes ----------- id: :class:`int` The partial guild's ID. name: :class:`str` The partial guild's name. """ __slots__ = ('id', 'name', '_icon', '_state') def __init__(self, *, data: SourceGuildPayload, state: _State) -> None: self._state: _State = state self.id: int = int(data['id']) self.name: str = data['name'] self._icon: str = data['icon'] def __repr__(self) -> str: return f'<PartialWebhookGuild name={self.name!r} id={self.id}>' @property def icon(self) -> Optional[Asset]: """Optional[:class:`Asset`]: Returns the guild's icon asset, if available.""" if self._icon is None: return None return Asset._from_guild_icon(self._state, self.id, self._icon) class _FriendlyHttpAttributeErrorHelper: __slots__ = () def __getattr__(self, attr: str) -> Any: raise AttributeError('PartialWebhookState does not support http methods.') class _WebhookState: __slots__ = ('_parent', '_webhook') def __init__(self, webhook: Any, parent: Optional[_State]): self._webhook: Any = webhook self._parent: Optional[ConnectionState] if isinstance(parent, _WebhookState): self._parent = None else: self._parent = parent def _get_guild(self, guild_id: Optional[int]) -> Optional[Guild]: if self._parent is not None: return self._parent._get_guild(guild_id) return None def store_user(self, data: Union[UserPayload, PartialUserPayload]) -> BaseUser: if self._parent is not None: return self._parent.store_user(data) # state parameter is artificial return BaseUser(state=self, data=data) # type: ignore def create_user(self, data: Union[UserPayload, PartialUserPayload]) -> BaseUser: # state parameter is artificial return BaseUser(state=self, data=data) # type: ignore @property def http(self) -> Union[HTTPClient, _FriendlyHttpAttributeErrorHelper]: if self._parent is not None: return self._parent.http # Some data classes assign state.http and that should be kosher # however, using it should result in a late-binding error. return _FriendlyHttpAttributeErrorHelper() def __getattr__(self, attr: str) -> Any: if self._parent is not None: return getattr(self._parent, attr) raise AttributeError(f'PartialWebhookState does not support {attr!r}.') class WebhookMessage(Message): """Represents a message sent from your webhook. This allows you to edit or delete a message sent by your webhook. This inherits from :class:`discord.Message` with changes to :meth:`edit` and :meth:`delete` to work. .. versionadded:: 1.6 """ _state: _WebhookState async def edit( self, content: Optional[str] = MISSING, embeds: List[Embed] = MISSING, embed: Optional[Embed] = MISSING, attachments: List[Union[Attachment, File]] = MISSING, view: Optional[View] = MISSING, allowed_mentions: Optional[AllowedMentions] = None, ) -> WebhookMessage: """|coro| Edits the message. .. versionadded:: 1.6 .. versionchanged:: 2.0 The edit is no longer in-place, instead the newly edited message is returned. .. versionchanged:: 2.0 This function will now raise :exc:`ValueError` instead of ``InvalidArgument``. Parameters ------------ content: Optional[:class:`str`] The content to edit the message with or ``None`` to clear it. embeds: List[:class:`Embed`] A list of embeds to edit the message with. embed: Optional[:class:`Embed`] The embed to edit the message with. ``None`` suppresses the embeds. This should not be mixed with the ``embeds`` parameter. attachments: List[Union[:class:`Attachment`, :class:`File`]] A list of attachments to keep in the message as well as new files to upload. If ``[]`` is passed then all attachments are removed. .. note:: New files will always appear after current attachments. .. versionadded:: 2.0 allowed_mentions: :class:`AllowedMentions` Controls the mentions being processed in this message. See :meth:`.abc.Messageable.send` for more information. view: Optional[:class:`~discord.ui.View`] The updated view to update this message with. If ``None`` is passed then the view is removed. .. versionadded:: 2.0 Raises ------- HTTPException Editing the message failed. Forbidden Edited a message that is not yours. TypeError You specified both ``embed`` and ``embeds`` ValueError The length of ``embeds`` was invalid or there was no token associated with this webhook. Returns -------- :class:`WebhookMessage` The newly edited message. """ return await self._state._webhook.edit_message( self.id, content=content, embeds=embeds, embed=embed, attachments=attachments, view=view, allowed_mentions=allowed_mentions, ) async def add_files(self, *files: File) -> WebhookMessage: r"""|coro| Adds new files to the end of the message attachments. .. versionadded:: 2.0 Parameters ----------- \*files: :class:`File` New files to add to the message. Raises ------- HTTPException Editing the message failed. Forbidden Tried to edit a message that isn't yours. Returns -------- :class:`WebhookMessage` The newly edited message. """ return await self.edit(attachments=[*self.attachments, *files]) async def remove_attachments(self, *attachments: Attachment) -> WebhookMessage: r"""|coro| Removes attachments from the message. .. versionadded:: 2.0 Parameters ----------- \*attachments: :class:`Attachment` Attachments to remove from the message. Raises ------- HTTPException Editing the message failed. Forbidden Tried to edit a message that isn't yours. Returns -------- :class:`WebhookMessage` The newly edited message. """ return await self.edit(attachments=[a for a in self.attachments if a not in attachments]) async def delete(self, *, delay: Optional[float] = None) -> None: """|coro| Deletes the message. Parameters ----------- delay: Optional[:class:`float`] If provided, the number of seconds to wait before deleting the message. The waiting is done in the background and deletion failures are ignored. Raises ------ Forbidden You do not have proper permissions to delete the message. NotFound The message was deleted already. HTTPException Deleting the message failed. """ if delay is not None: async def inner_call(delay: float = delay): await asyncio.sleep(delay) try: await self._state._webhook.delete_message(self.id) except HTTPException: pass asyncio.create_task(inner_call()) else: await self._state._webhook.delete_message(self.id) class BaseWebhook(Hashable): __slots__: Tuple[str, ...] = ( 'id', 'type', 'guild_id', 'channel_id', 'token', 'auth_token', 'user', 'name', '_avatar', 'source_channel', 'source_guild', '_state', ) def __init__( self, data: WebhookPayload, token: Optional[str] = None, state: Optional[_State] = None, ) -> None: self.auth_token: Optional[str] = token self._state: _State = state or _WebhookState(self, parent=state) self._update(data) def _update(self, data: WebhookPayload) -> None: self.id: int = int(data['id']) self.type: WebhookType = try_enum(WebhookType, int(data['type'])) self.channel_id: Optional[int] = utils._get_as_snowflake(data, 'channel_id') self.guild_id: Optional[int] = utils._get_as_snowflake(data, 'guild_id') self.name: Optional[str] = data.get('name') self._avatar: Optional[str] = data.get('avatar') self.token: Optional[str] = data.get('token') user = data.get('user') self.user: Optional[Union[BaseUser, User]] = None if user is not None: # state parameter may be _WebhookState self.user = User(state=self._state, data=user) # type: ignore source_channel = data.get('source_channel') if source_channel: source_channel = PartialWebhookChannel(data=source_channel) self.source_channel: Optional[PartialWebhookChannel] = source_channel source_guild = data.get('source_guild') if source_guild: source_guild = PartialWebhookGuild(data=source_guild, state=self._state) self.source_guild: Optional[PartialWebhookGuild] = source_guild def is_partial(self) -> bool: """:class:`bool`: Whether the webhook is a "partial" webhook. .. versionadded:: 2.0""" return self.channel_id is None def is_authenticated(self) -> bool: """:class:`bool`: Whether the webhook is authenticated with a bot token. .. versionadded:: 2.0 """ return self.auth_token is not None @property def guild(self) -> Optional[Guild]: """Optional[:class:`Guild`]: The guild this webhook belongs to. If this is a partial webhook, then this will always return ``None``. """ return self._state and self._state._get_guild(self.guild_id) @property def channel(self) -> Optional[TextChannel]: """Optional[:class:`TextChannel`]: The text channel this webhook belongs to. If this is a partial webhook, then this will always return ``None``. """ guild = self.guild return guild and guild.get_channel(self.channel_id) # type: ignore @property def created_at(self) -> datetime.datetime: """:class:`datetime.datetime`: Returns the webhook's creation time in UTC.""" return utils.snowflake_time(self.id) @property def avatar(self) -> Optional[Asset]: """Optional[:class:`Asset`]: Returns an :class:`Asset` for the avatar the webhook has. If the webhook does not have a traditional avatar, ``None`` is returned. If you want the avatar that a webhook has displayed, consider :attr:`display_avatar`. """ if self._avatar is not None: return Asset._from_avatar(self._state, self.id, self._avatar) return None @property def default_avatar(self) -> Asset: """ :class:`Asset`: Returns the default avatar. This is always the blurple avatar. .. versionadded:: 2.0 """ # Default is always blurple apparently return Asset._from_default_avatar(self._state, 0) @property def display_avatar(self) -> Asset: """:class:`Asset`: Returns the webhook's display avatar. This is either webhook's default avatar or uploaded avatar. .. versionadded:: 2.0 """ return self.avatar or self.default_avatar class Webhook(BaseWebhook): """Represents an asynchronous Discord webhook. Webhooks are a form to send messages to channels in Discord without a bot user or authentication. There are two main ways to use Webhooks. The first is through the ones received by the library such as :meth:`.Guild.webhooks` and :meth:`.TextChannel.webhooks`. The ones received by the library will automatically be bound using the library's internal HTTP session. The second form involves creating a webhook object manually using the :meth:`~.Webhook.from_url` or :meth:`~.Webhook.partial` classmethods. For example, creating a webhook from a URL and using :doc:`aiohttp <aio:index>`: .. code-block:: python3 from discord import Webhook import aiohttp async def foo(): async with aiohttp.ClientSession() as session: webhook = Webhook.from_url('url-here', session=session) await webhook.send('Hello World', username='Foo') For a synchronous counterpart, see :class:`SyncWebhook`. .. container:: operations .. describe:: x == y Checks if two webhooks are equal. .. describe:: x != y Checks if two webhooks are not equal. .. describe:: hash(x) Returns the webhooks's hash. .. versionchanged:: 1.4 Webhooks are now comparable and hashable. Attributes ------------ id: :class:`int` The webhook's ID type: :class:`WebhookType` The type of the webhook. .. versionadded:: 1.3 token: Optional[:class:`str`] The authentication token of the webhook. If this is ``None`` then the webhook cannot be used to make requests. guild_id: Optional[:class:`int`] The guild ID this webhook is for. channel_id: Optional[:class:`int`] The channel ID this webhook is for. user: Optional[:class:`abc.User`] The user this webhook was created by. If the webhook was received without authentication then this will be ``None``. name: Optional[:class:`str`] The default name of the webhook. source_guild: Optional[:class:`PartialWebhookGuild`] The guild of the channel that this webhook is following. Only given if :attr:`type` is :attr:`WebhookType.channel_follower`. .. versionadded:: 2.0 source_channel: Optional[:class:`PartialWebhookChannel`] The channel that this webhook is following. Only given if :attr:`type` is :attr:`WebhookType.channel_follower`. .. versionadded:: 2.0 """ __slots__: Tuple[str, ...] = ('session',) def __init__( self, data: WebhookPayload, session: aiohttp.ClientSession, token: Optional[str] = None, state: Optional[_State] = None, ) -> None: super().__init__(data, token, state) self.session: aiohttp.ClientSession = session def __repr__(self) -> str: return f'<Webhook id={self.id!r}>' @property def url(self) -> str: """:class:`str` : Returns the webhook's url.""" return f'https://discord.com/api/webhooks/{self.id}/{self.token}' @classmethod def partial(cls, id: int, token: str, *, session: aiohttp.ClientSession, bot_token: Optional[str] = None) -> Self: """Creates a partial :class:`Webhook`. Parameters ----------- id: :class:`int` The ID of the webhook. token: :class:`str` The authentication token of the webhook. session: :class:`aiohttp.ClientSession` The session to use to send requests with. Note that the library does not manage the session and will not close it. .. versionadded:: 2.0 bot_token: Optional[:class:`str`] The bot authentication token for authenticated requests involving the webhook. .. versionadded:: 2.0 Returns -------- :class:`Webhook` A partial :class:`Webhook`. A partial webhook is just a webhook object with an ID and a token. """ data: WebhookPayload = { 'id': id, 'type': 1, 'token': token, } return cls(data, session, token=bot_token) @classmethod def from_url(cls, url: str, *, session: aiohttp.ClientSession, bot_token: Optional[str] = None) -> Self: """Creates a partial :class:`Webhook` from a webhook URL. .. versionchanged:: 2.0 This function will now raise :exc:`ValueError` instead of ``InvalidArgument``. Parameters ------------ url: :class:`str` The URL of the webhook. session: :class:`aiohttp.ClientSession` The session to use to send requests with. Note that the library does not manage the session and will not close it. .. versionadded:: 2.0 bot_token: Optional[:class:`str`] The bot authentication token for authenticated requests involving the webhook. .. versionadded:: 2.0 Raises ------- ValueError The URL is invalid. Returns -------- :class:`Webhook` A partial :class:`Webhook`. A partial webhook is just a webhook object with an ID and a token. """ m = re.search(r'discord(?:app)?.com/api/webhooks/(?P<id>[0-9]{17,20})/(?P<token>[A-Za-z0-9\.\-\_]{60,68})', url) if m is None: raise ValueError('Invalid webhook URL given.') data: Dict[str, Any] = m.groupdict() data['type'] = 1 return cls(data, session, token=bot_token) # type: ignore @classmethod def _as_follower(cls, data, *, channel, user) -> Self: name = f"{channel.guild} #{channel}" feed: WebhookPayload = { 'id': data['webhook_id'], 'type': 2, 'name': name, 'channel_id': channel.id, 'guild_id': channel.guild.id, 'user': {'username': user.name, 'discriminator': user.discriminator, 'id': user.id, 'avatar': user._avatar}, } state = channel._state session = channel._state.http._HTTPClient__session return cls(feed, session=session, state=state, token=state.http.token) @classmethod def from_state(cls, data: WebhookPayload, state: ConnectionState) -> Self: session = state.http._HTTPClient__session # type: ignore return cls(data, session=session, state=state, token=state.http.token) async def fetch(self, *, prefer_auth: bool = True) -> Webhook: """|coro| Fetches the current webhook. This could be used to get a full webhook from a partial webhook. .. versionadded:: 2.0 .. note:: When fetching with an unauthenticated webhook, i.e. :meth:`is_authenticated` returns ``False``, then the returned webhook does not contain any user information. Parameters ----------- prefer_auth: :class:`bool` Whether to use the bot token over the webhook token if available. Defaults to ``True``. Raises ------- HTTPException Could not fetch the webhook NotFound Could not find the webhook by this ID ValueError This webhook does not have a token associated with it. Returns -------- :class:`Webhook` The fetched webhook. """ adapter = async_context.get() if prefer_auth and self.auth_token: data = await adapter.fetch_webhook(self.id, self.auth_token, session=self.session) elif self.token: data = await adapter.fetch_webhook_with_token(self.id, self.token, session=self.session) else: raise ValueError('This webhook does not have a token associated with it') return Webhook(data, self.session, token=self.auth_token, state=self._state) async def delete(self, *, reason: Optional[str] = None, prefer_auth: bool = True) -> None: """|coro| Deletes this Webhook. Parameters ------------ reason: Optional[:class:`str`] The reason for deleting this webhook. Shows up on the audit log. .. versionadded:: 1.4 prefer_auth: :class:`bool` Whether to use the bot token over the webhook token if available. Defaults to ``True``. .. versionadded:: 2.0 Raises ------- HTTPException Deleting the webhook failed. NotFound This webhook does not exist. Forbidden You do not have permissions to delete this webhook. ValueError This webhook does not have a token associated with it. """ if self.token is None and self.auth_token is None: raise ValueError('This webhook does not have a token associated with it') adapter = async_context.get() if prefer_auth and self.auth_token: await adapter.delete_webhook(self.id, token=self.auth_token, session=self.session, reason=reason) elif self.token: await adapter.delete_webhook_with_token(self.id, self.token, session=self.session, reason=reason) async def edit( self, *, reason: Optional[str] = None, name: Optional[str] = MISSING, avatar: Optional[bytes] = MISSING, channel: Optional[Snowflake] = None, prefer_auth: bool = True, ) -> Webhook: """|coro| Edits this Webhook. .. versionchanged:: 2.0 This function will now raise :exc:`ValueError` instead of ``~InvalidArgument``. Parameters ------------ name: Optional[:class:`str`] The webhook's new default name. avatar: Optional[:class:`bytes`] A :term:`py:bytes-like object` representing the webhook's new default avatar. channel: Optional[:class:`abc.Snowflake`] The webhook's new channel. This requires an authenticated webhook. .. versionadded:: 2.0 reason: Optional[:class:`str`] The reason for editing this webhook. Shows up on the audit log. .. versionadded:: 1.4 prefer_auth: :class:`bool` Whether to use the bot token over the webhook token if available. Defaults to ``True``. .. versionadded:: 2.0 Raises ------- HTTPException Editing the webhook failed. NotFound This webhook does not exist. ValueError This webhook does not have a token associated with it or it tried editing a channel without authentication. """ if self.token is None and self.auth_token is None: raise ValueError('This webhook does not have a token associated with it') payload = {} if name is not MISSING: payload['name'] = str(name) if name is not None else None if avatar is not MISSING: payload['avatar'] = utils._bytes_to_base64_data(avatar) if avatar is not None else None adapter = async_context.get() data: Optional[WebhookPayload] = None # If a channel is given, always use the authenticated endpoint if channel is not None: if self.auth_token is None: raise ValueError('Editing channel requires authenticated webhook') payload['channel_id'] = channel.id data = await adapter.edit_webhook(self.id, self.auth_token, payload=payload, session=self.session, reason=reason) if prefer_auth and self.auth_token: data = await adapter.edit_webhook(self.id, self.auth_token, payload=payload, session=self.session, reason=reason) elif self.token: data = await adapter.edit_webhook_with_token( self.id, self.token, payload=payload, session=self.session, reason=reason ) if data is None: raise RuntimeError('Unreachable code hit: data was not assigned') return Webhook(data=data, session=self.session, token=self.auth_token, state=self._state) def _create_message(self, data): state = _WebhookState(self, parent=self._state) # state may be artificial (unlikely at this point...) channel = self.channel or PartialMessageable(state=self._state, id=int(data['channel_id'])) # type: ignore # state is artificial return WebhookMessage(data=data, state=state, channel=channel) # type: ignore @overload async def send( self, content: str = MISSING, *, username: str = MISSING, avatar_url: Any = MISSING, tts: bool = MISSING, ephemeral: bool = MISSING, file: File = MISSING, files: List[File] = MISSING, embed: Embed = MISSING, embeds: List[Embed] = MISSING, allowed_mentions: AllowedMentions = MISSING, view: View = MISSING, thread: Snowflake = MISSING, wait: Literal[True], suppress_embeds: bool = MISSING, ) -> WebhookMessage: ... @overload async def send( self, content: str = MISSING, *, username: str = MISSING, avatar_url: Any = MISSING, tts: bool = MISSING, ephemeral: bool = MISSING, file: File = MISSING, files: List[File] = MISSING, embed: Embed = MISSING, embeds: List[Embed] = MISSING, allowed_mentions: AllowedMentions = MISSING, view: View = MISSING, thread: Snowflake = MISSING, wait: Literal[False] = ..., suppress_embeds: bool = MISSING, ) -> None: ... async def send( self, content: str = MISSING, *, username: str = MISSING, avatar_url: Any = MISSING, tts: bool = False, ephemeral: bool = False, file: File = MISSING, files: List[File] = MISSING, embed: Embed = MISSING, embeds: List[Embed] = MISSING, allowed_mentions: AllowedMentions = MISSING, view: View = MISSING, thread: Snowflake = MISSING, wait: bool = False, suppress_embeds: bool = False, ) -> Optional[WebhookMessage]: """|coro| Sends a message using the webhook. The content must be a type that can convert to a string through ``str(content)``. To upload a single file, the ``file`` parameter should be used with a single :class:`File` object. If the ``embed`` parameter is provided, it must be of type :class:`Embed` and it must be a rich embed type. You cannot mix the ``embed`` parameter with the ``embeds`` parameter, which must be a :class:`list` of :class:`Embed` objects to send. .. versionchanged:: 2.0 This function will now raise :exc:`ValueError` instead of ``InvalidArgument``. Parameters ------------ content: :class:`str` The content of the message to send. wait: :class:`bool` Whether the server should wait before sending a response. This essentially means that the return type of this function changes from ``None`` to a :class:`WebhookMessage` if set to ``True``. If the type of webhook is :attr:`WebhookType.application` then this is always set to ``True``. username: :class:`str` The username to send with this message. If no username is provided then the default username for the webhook is used. avatar_url: :class:`str` The avatar URL to send with this message. If no avatar URL is provided then the default avatar for the webhook is used. If this is not a string then it is explicitly cast using ``str``. tts: :class:`bool` Indicates if the message should be sent using text-to-speech. ephemeral: :class:`bool` Indicates if the message should only be visible to the user. This is only available to :attr:`WebhookType.application` webhooks. If a view is sent with an ephemeral message and it has no timeout set then the timeout is set to 15 minutes. .. versionadded:: 2.0 file: :class:`File` The file to upload. This cannot be mixed with ``files`` parameter. files: List[:class:`File`] A list of files to send with the content. This cannot be mixed with the ``file`` parameter. embed: :class:`Embed` The rich embed for the content to send. This cannot be mixed with ``embeds`` parameter. embeds: List[:class:`Embed`] A list of embeds to send with the content. Maximum of 10. This cannot be mixed with the ``embed`` parameter. allowed_mentions: :class:`AllowedMentions` Controls the mentions being processed in this message. .. versionadded:: 1.4 view: :class:`discord.ui.View` The view to send with the message. You can only send a view if this webhook is not partial and has state attached. A webhook has state attached if the webhook is managed by the library. .. versionadded:: 2.0 thread: :class:`~discord.abc.Snowflake` The thread to send this webhook to. .. versionadded:: 2.0 suppress_embeds: :class:`bool` Whether to suppress embeds for the message. This sends the message without any embeds if set to ``True``. .. versionadded:: 2.0 Raises -------- HTTPException Sending the message failed. NotFound This webhook was not found. Forbidden The authorization token for the webhook is incorrect. TypeError You specified both ``embed`` and ``embeds`` or ``file`` and ``files``. ValueError The length of ``embeds`` was invalid, there was no token associated with this webhook or ``ephemeral`` was passed with the improper webhook type or there was no state attached with this webhook when giving it a view. Returns --------- Optional[:class:`WebhookMessage`] If ``wait`` is ``True`` then the message that was sent, otherwise ``None``. """ if self.token is None: raise ValueError('This webhook does not have a token associated with it') previous_mentions: Optional[AllowedMentions] = getattr(self._state, 'allowed_mentions', None) if content is None: content = MISSING if ephemeral or suppress_embeds: flags = MessageFlags._from_value(0) flags.ephemeral = ephemeral flags.suppress_embeds = suppress_embeds else: flags = MISSING application_webhook = self.type is WebhookType.application if ephemeral and not application_webhook: raise ValueError('ephemeral messages can only be sent from application webhooks') if application_webhook: wait = True if view is not MISSING: if isinstance(self._state, _WebhookState): raise ValueError('Webhook views require an associated state with the webhook') if not hasattr(view, '__discord_ui_view__'): raise TypeError(f'expected view parameter to be of type View not {view.__class__!r}') if ephemeral is True and view.timeout is None: view.timeout = 15 * 60.0 params = handle_message_parameters( content=content, username=username, avatar_url=avatar_url, tts=tts, file=file, files=files, embed=embed, embeds=embeds, flags=flags, view=view, allowed_mentions=allowed_mentions, previous_allowed_mentions=previous_mentions, ) adapter = async_context.get() thread_id: Optional[int] = None if thread is not MISSING: thread_id = thread.id data = await adapter.execute_webhook( self.id, self.token, session=self.session, payload=params.payload, multipart=params.multipart, files=params.files, thread_id=thread_id, wait=wait, ) msg = None if wait: msg = self._create_message(data) if view is not MISSING and not view.is_finished(): message_id = None if msg is None else msg.id self._state.store_view(view, message_id) return msg async def fetch_message(self, id: int, /) -> WebhookMessage: """|coro| Retrieves a single :class:`~discord.WebhookMessage` owned by this webhook. .. versionadded:: 2.0 Parameters ------------ id: :class:`int` The message ID to look for. Raises -------- ~discord.NotFound The specified message was not found. ~discord.Forbidden You do not have the permissions required to get a message. ~discord.HTTPException Retrieving the message failed. ValueError There was no token associated with this webhook. Returns -------- :class:`~discord.WebhookMessage` The message asked for. """ if self.token is None: raise ValueError('This webhook does not have a token associated with it') adapter = async_context.get() data = await adapter.get_webhook_message( self.id, self.token, id, session=self.session, ) return self._create_message(data) async def edit_message( self, message_id: int, *, content: Optional[str] = MISSING, embeds: List[Embed] = MISSING, embed: Optional[Embed] = MISSING, attachments: List[Union[Attachment, File]] = MISSING, view: Optional[View] = MISSING, allowed_mentions: Optional[AllowedMentions] = None, ) -> WebhookMessage: """|coro| Edits a message owned by this webhook. This is a lower level interface to :meth:`WebhookMessage.edit` in case you only have an ID. .. versionadded:: 1.6 .. versionchanged:: 2.0 The edit is no longer in-place, instead the newly edited message is returned. .. versionchanged:: 2.0 This function will now raise :exc:`ValueError` instead of ``InvalidArgument``. Parameters ------------ message_id: :class:`int` The message ID to edit. content: Optional[:class:`str`] The content to edit the message with or ``None`` to clear it. embeds: List[:class:`Embed`] A list of embeds to edit the message with. embed: Optional[:class:`Embed`] The embed to edit the message with. ``None`` suppresses the embeds. This should not be mixed with the ``embeds`` parameter. attachments: List[Union[:class:`Attachment`, :class:`File`]] A list of attachments to keep in the message as well as new files to upload. If ``[]`` is passed then all attachments are removed. .. versionadded:: 2.0 allowed_mentions: :class:`AllowedMentions` Controls the mentions being processed in this message. See :meth:`.abc.Messageable.send` for more information. view: Optional[:class:`~discord.ui.View`] The updated view to update this message with. If ``None`` is passed then the view is removed. The webhook must have state attached, similar to :meth:`send`. .. versionadded:: 2.0 Raises ------- HTTPException Editing the message failed. Forbidden Edited a message that is not yours. TypeError You specified both ``embed`` and ``embeds`` ValueError The length of ``embeds`` was invalid, there was no token associated with this webhook or the webhook had no state. Returns -------- :class:`WebhookMessage` The newly edited webhook message. """ if self.token is None: raise ValueError('This webhook does not have a token associated with it') if view is not MISSING: if isinstance(self._state, _WebhookState): raise ValueError('This webhook does not have state associated with it') self._state.prevent_view_updates_for(message_id) previous_mentions: Optional[AllowedMentions] = getattr(self._state, 'allowed_mentions', None) params = handle_message_parameters( content=content, attachments=attachments, embed=embed, embeds=embeds, view=view, allowed_mentions=allowed_mentions, previous_allowed_mentions=previous_mentions, ) adapter = async_context.get() data = await adapter.edit_webhook_message( self.id, self.token, message_id, session=self.session, payload=params.payload, multipart=params.multipart, files=params.files, ) message = self._create_message(data) if view and not view.is_finished(): self._state.store_view(view, message_id) return message async def delete_message(self, message_id: int, /) -> None: """|coro| Deletes a message owned by this webhook. This is a lower level interface to :meth:`WebhookMessage.delete` in case you only have an ID. .. versionadded:: 1.6 .. versionchanged:: 2.0 ``message_id`` parameter is now positional-only. .. versionchanged:: 2.0 This function will now raise :exc:`ValueError` instead of ``InvalidArgument``. Parameters ------------ message_id: :class:`int` The message ID to delete. Raises ------- HTTPException Deleting the message failed. Forbidden Deleted a message that is not yours. ValueError This webhook does not have a token associated with it. """ if self.token is None: raise ValueError('This webhook does not have a token associated with it') adapter = async_context.get() await adapter.delete_webhook_message( self.id, self.token, message_id, session=self.session, )
from flask_ember.util.string import dasherize class ResourceGenerator: def __init__(self, ember, resource_class): self.ember = ember self.resource_class = resource_class def generate(self, app): # TODO generation of api endpoints etc resource = self.resource_class name = resource.__qualname__ app.add_url_rule('/' + dasherize(name), name, lambda: name)
SECURITY_CONFIG_ACTIONS = [ 'DeleteAccountPublicAccessBlock', 'DeleteDeliveryChannel', 'DeleteDetector', 'DeleteFlowLogs', 'DeleteRule', 'DeleteTrail', 'DisableEbsEncryptionByDefault', 'DisableRule', 'StopConfigurationRecorder', 'StopLogging', ] def rule(event): if event['eventName'] == 'UpdateDetector': return not event['requestParameters'].get('enable', True) return event['eventName'] in SECURITY_CONFIG_ACTIONS
from GLOBAL_VARIABLES import PLAYER_NAME import copy def opponents(parent_folder_ts: str, ts_filename: str) -> list: """ Extracts the names of the players in a tournament Parameters: parent_folder_ts (str): the parent folder where the tournament summary file is located ts_filename (str): the name of the tournament summary file Returns: opp_no_duplicates (list): a list of players names """ if ts_filename is None: return [] # open ts with open(parent_folder_ts + ts_filename, 'r') as f: data = f.read() ts = eval(copy.deepcopy(data)) opponents = [] for opp in ts['tournament_finishes_and_winnings']: opponents.append(opp['player_name']) opp_no_duplicates = list(dict.fromkeys(opponents)) opp_no_duplicates.remove(PLAYER_NAME) return opp_no_duplicates
from keras import backend as K from keras.models import * from keras.layers import * import os from datetime import datetime import tensorflow as tf import numpy as np class AgedModel: def __init__(self, model=None, age=None): self.graph = tf.Graph() with self.graph.as_default(): self.session = tf.Session() with self.session.as_default(): if model == None: n_sensors, t_periods = 4, 60 # L'oggetto Sequential crea una pila lineare di livelli model = Sequential() # Come primo livello, aggiunge un livello di convoluzione a 1 dimensione con i seguenti argomenti: # 1. Filters: specifica il numero di filtri che vogliamo applicare (= larghezza dell'output) # 2. Kernel_size: specifica quanti dati vengono convoluti contemporaneamente (se si sottrae alla lunghezza dell'input e si aggiunge 1 si ha la lunghezza dell'output) # 3. activation: funzione di attivazione dei neuroni # 4. input_shape: definisce la "forma" dell'input model.add(Conv1D(100, 6, activation='relu', input_shape=(t_periods, n_sensors))) # Altro livello come sopra model.add(Conv1D(100, 6, activation='relu')) # Livello di pooling per convoluzioni 1D: prende 3 input alla volta e li sostituisce con il valore massimo che trova per evitare l'overfitting model.add(MaxPooling1D(3)) # Altro livello di convoluzione 1D model.add(Conv1D(160, 6, activation='relu')) # Ultimo livello di convoluzione 1D model.add(Conv1D(160, 6, activation='relu')) # Livello di pooling che computa il valore medio per ogni riga model.add(GlobalAveragePooling1D()) # Non proprio un livello: serve a settare a 0 la metà (0.5) dei valori in input per ridurre l'overfitting model.add(Dropout(0.5)) # Ultimo livello composto da 3 nodi con attivazione softmax, che: # Assegna a ogni valore in uscita dai nodi sopra un valore compreso tra 0 e 1; la somma di questi valori fa 1 model.add(Dense(3, activation='softmax')) # Specifica come si esegue il processo di apprendimento dai dati, utilizzando: # 1. loss: funzione che si cerca di minimizzare # 2. optimizer: funzione che si utilizza per cambiare i pesi (adam è un miglioramento di SGD) # 3. metrics: lista di metriche che vuoi tenere sott'occhio durante l'apprendimento model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) self.model = model else: self.model = load_model(model) if age != None: self.age = age else: self.age = datetime.timestamp(datetime.now()) def train(self,data): with self.graph.as_default(): with self.session.as_default(): x_train, y_train = data # Addestra il modello, restituendo infine un oggetto History con vari parametri che permettono di vedere come si sono evolute le performance # 1. numpy array o lista di numpy array (secondo la dimensionalità attesa) # 2. come sopra # 3. numero di sample da utilizzare prima di aggiornare i pesi # 4. numero di iterazioni da fare sui dati in input # 5. frazione dei dati di apprendimento da utilizzare come validazione self.model.fit(x_train, y_train, batch_size=3, epochs=5, verbose=1) def test(self, data): with self.graph.as_default(): with self.session.as_default(): x_test, y_test = data return self.model.evaluate(x_test, y_test, verbose=1) def predict(self,data): with self.graph.as_default(): with self.session.as_default(): return self.model.predict(data) def get_weights(self): with self.graph.as_default(): with self.session.as_default(): return self.model.get_weights() def set_weights(self, weights): with self.graph.as_default(): with self.session.as_default(): return self.model.set_weights(weights) def export(self): with self.graph.as_default(): with self.session.as_default(): file_name = 'my_model' + str(datetime.timestamp(datetime.now())) + '.h5' file_path = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), file_name) file = open(file_path, 'wb+') self.model.save(file_path) file.close() return open(file_path, 'rb'), file_path
import logging import os from datetime import date from typing import Optional import pandas as pd from . import lahman from .datasources import fangraphs _DATA_FILENAME = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'data', 'fangraphs_teams.csv') def team_ids(season: Optional[int] = None, league: str = 'ALL') -> pd.DataFrame: if not os.path.exists(_DATA_FILENAME): _generate_teams() fg_team_data = pd.read_csv(_DATA_FILENAME, index_col=0) if season is not None: fg_team_data = fg_team_data.query(f"yearID == {season}") if league is not None and league.upper() != "ALL": fg_team_data = fg_team_data.query(f"lgID == '{league.upper()}'") return fg_team_data _known_cities = ['Altoona', 'Anaheim', 'Arizona', 'Atlanta', 'Baltimore', 'Boston', 'Brooklyn', 'Buffalo', 'California', 'Chicago', 'Cincinnati', 'Cleveland', 'Colorado', 'Detroit', 'Elizabeth', 'Florida', 'Fort Wayne', 'Hartford', 'Houston', 'Indianapolis', 'Kansas City', 'Los Angeles', 'Milwaukee', 'Minnesota', 'Montreal', 'New York', 'Newark', 'Oakland', 'Philadelphia', 'Pittsburg', 'Pittsburgh', 'Richmond', 'San Diego', 'San Francisco', 'Seattle', 'St. Louis', 'St. Paul', 'Syracuse', 'Tampa Bay', 'Texas', 'Toronto', 'Troy', 'Washington', 'Washington', 'Wilmington'] _manual_matches = {'CPI': 'Browns/Stogies', 'ANA': 'Angels'} def _estimate_name(team_row: pd.DataFrame, column: str) -> str: if team_row['franchID'] in _manual_matches: return _manual_matches[team_row['franchID']] estimate = str(team_row[column]) for city in _known_cities + [str(team_row['city'])]: estimate = estimate.replace(f'{city} ', '') if estimate.startswith(city) else estimate return estimate def _generate_teams() -> pd.DataFrame: """ Creates a datafile with a map of Fangraphs team IDs to lahman data to be used by fangraphss_teams Should only need to be run when a team is added, removed, or moves to a new city. """ start_season = 1871 end_season = date.today().year # Only getting AB to make payload small, and you have to specify at least one column team_data = fangraphs.fg_team_batting_data(start_season, end_season, "ALL", stat_columns=['AB']) # Join the lahman data teams_franchises = lahman.teams().merge(lahman.teams_franchises(), how='left', on='franchID', suffixes=['', '.fr']) teams_franchises = teams_franchises.merge(lahman.parks(), how='left', left_on='park', right_on='park.name', suffixes=['', '.p']) # Drop lahman data down to just what we need teams_franchises = teams_franchises[ ['yearID', 'lgID', 'teamID', 'franchID', 'divID', 'name', 'park', 'teamIDBR', 'teamIDlahman45', 'teamIDretro', 'franchName', 'city', 'state'] ] # Try to guess the name Fangraphs would use teams_franchises['possibleName'] = teams_franchises.apply(lambda row: _estimate_name(row, 'name'), axis=1) teams_franchises['possibleFranchName'] = teams_franchises.apply(lambda row: _estimate_name(row, 'franchName'), axis=1) # Join up the data by team name, and look for what is still without a match outer_joined = teams_franchises.merge(team_data, how='outer', left_on=['yearID', 'possibleName'], right_on=['Season', 'Team']) unjoined_teams_franchises = outer_joined.query('Season.isnull()').drop(team_data.columns, axis=1) unjoined_team_data = outer_joined.query('yearID.isnull()').drop(teams_franchises.columns, axis=1) # Take all the unmatched data and try to join off franchise name, instead of team name inner_joined = teams_franchises.merge(team_data, how='inner', left_on=['yearID', 'possibleName'], right_on=['Season', 'Team']) franch_inner_joined = unjoined_teams_franchises.merge(unjoined_team_data, how='inner', left_on=['yearID', 'possibleFranchName'], right_on=['Season', 'Team']) # Clean up the data joined = pd.concat([inner_joined, franch_inner_joined]) outer_joined = joined.merge(team_data, how='outer', left_on=['yearID', 'teamIDfg'], right_on=['Season', 'teamIDfg'], suffixes=['', '_y']) unjoined_teams_franchises = outer_joined.query('Season_y.isnull()').drop(team_data.columns, axis=1, errors='ignore') if not unjoined_teams_franchises.empty: logging.warning('When trying to join FG data to lahman, found the following extraneous lahman data', extra=unjoined_teams_franchises) unjoined_team_data = outer_joined.query('yearID.isnull()').drop(teams_franchises.columns, axis=1, errors='ignore') if not unjoined_team_data.empty: logging.warning('When trying to join Fangraphs data to lahman, found the following extraneous Fangraphs data', extra=unjoined_team_data) joined = joined[['yearID', 'lgID', 'teamID', 'franchID', 'teamIDfg', 'teamIDBR', 'teamIDretro']] joined = joined.assign(teamIDfg=joined['teamIDfg'].apply(int)) joined = joined.assign(yearID=joined['yearID'].apply(int)) joined = joined.sort_values(['yearID', 'lgID', 'teamID', 'franchID']).drop_duplicates() joined = joined.reset_index(drop=True) joined.to_csv(_DATA_FILENAME) return joined # For backwards API compatibility fangraphs_teams = team_ids
############################## # Project: 大富翁遊戲主程式 # # Version: 0.1 # # Date: 2021/07/15 # # Author: Antallen # # Content: 使用 Player 物件 ############################## # 引用 random 類別中的 randrange() 函數 from random import randrange # 引用 Player 物件 import Player # 引用 Chance 物件 import Chance import Destiny # 引用 Stores 物件 import Stores # 引用 playMap 物件 import playMap import Messages # 常用函式、參數設定區域 ## 遊戲方格總數 areas = 24 ## 處理玩家是否有經過「開始」 def playerPo(steps): if (steps >= areas): nums = (steps % areas) return nums else: return steps ## 清除舊資料 def clearOldData(): files = open('players.csv','w',encoding='utf-8') files.truncate() titles = "id,name,money,po,status\n" files.writelines(titles) files.close() files = open('messages.txt','w',encoding='utf-8') files.truncate() titles = "遊戲即將開始...." files.writelines(titles) files.close() # 程式流程開始 # 使用 if __name__ if __name__ == "__main__": # 要求玩家要輸入遊戲人數 players_num = eval(input("請輸入玩家人數:")) # 建立玩家物件 players = [] # 按照遊戲人數,使用 Player 類別 # 逐次產生玩家名稱、玩家代號、玩家初始遊戲幣、玩家初始位置等物件內容 clearOldData() for i in range(players_num): players.append(Player.Player()) # 要求玩家輸入玩家名稱 players[i].setName(input("請輸入玩家名稱:"),i) # 設定玩家位置值 players_po = [] for i in range(players_num): players_po.append('0') # 設定玩家順序值 i = 0 myMap = playMap.playMap() # 設定訊息存放物件 news = Messages.Messages() news.inputData("請按下《ENTER》進行遊戲") myMap.printMap(players_po) input() # 開始進行遊戲 while True: ##### a.) 印出地圖 news.inputData(myMap.transferNo(str(i+1)) + "號玩家按下《ENTER》進行遊戲") myMap.printMap(players_po) input() ##### b.) 擲骰子 oldpo = players[i].getPo() newstep = randrange(1,6) news.inputData(myMap.transferNo(str(i+1)) + "號玩家擲骰子:" + myMap.transferNo(str(newstep)) + "點") myMap.printMap(players_po) # 印地圖 # 設定玩家新的位置 players[i].setPo(newstep) ##### c.) 移動到骰子點數的框格 newpo = players[i].getPo() # I. 可能經過起點 if ((int(newpo/areas) > int(oldpo/areas)) and ((newpo % areas) != 0)): news.inputData(myMap.transferNo(str(i+1)) + "號玩家越過「開始」位置《ENTER》") players[i].setMoney(2000,i) myMap.printMap(players_po) input() news.inputData(myMap.transferNo(str(i+1)) + "號玩家得2000《ENTER》") newpo = playerPo(newpo) players_po[i] = str(newpo) myMap.printMap(players_po) input() news.inputData(myMap.transferNo(str(i+1)) + "號玩家在新位置:" + myMap.transferNo(str(newpo)) + "《ENTER》") myMap.printMap(players_po) input() # II. 可能落在邊角框格 if (newpo == 0): news.inputData(myMap.transferNo(str(i+1)) + "號玩家回到「開始」位置《ENTER》") myMap.printMap(players_po) input() elif (newpo == 6): #print(" 休息一天") news.inputData(myMap.transferNo(str(i+1)) + "號玩家,無事休息一天《ENTER》") myMap.printMap(players_po) input() elif (newpo == 18): #print(" 再玩一次") news.inputData(myMap.transferNo(str(i+1)) + "號玩家,再玩一次《ENTER》") myMap.printMap(players_po) input() continue elif (newpo == 12): news.inputData(myMap.transferNo(str(i+1)) + "號玩家,休息三次《ENTER》") myMap.printMap(players_po) input() # III. 可能是在機會與命運框格 ## 機會的地圖編號是 3,15 兩個號碼 elif ((newpo == 3) or (newpo == 15)): myChance = Chance.Chance() chances = myChance.choice() players[i].setMoney(int(chances[1]),i) news.inputData(myMap.transferNo(str(i+1)) + "號玩家中機會:" + chances[0]) myMap.printMap(players_po) input() ## 命運的地圖編號是 9,21 兩個號碼 elif ((newpo == 9) or (newpo == 21)): myDestiny = Destiny.Destiny() destines = myDestiny.choice() players[i].setMoney(int(destines[1]),i) news.inputData(myMap.transferNo(str(i+1)) + "號玩家中命運:" + destines[0]) myMap.printMap(players_po) input() # IV. 可能是在地產框格 else: playerStore = Stores.Stores() store = playerStore.getStoreData(str(newpo)) ## 判斷是否有人己取得該地產所有權了 if store[2] == '-1': #print("該地產無人所有!") news.inputData("該地產無人所有!是否買進?(Y|N)") myMap.printMap(players_po) results = input() if ((results == 'Y') or (results == 'y')): store[2] = str(i+1) playerStore.setStoreData(store) players[i].setMoney(0-int(store[3]),i) news.inputData(myMap.transferNo(str(i+1)) + "號玩家買進地產:" + store[1]) myMap.printMap(players_po) input() else: news.inputData(myMap.transferNo(str(i+1)) + "號玩家放棄買進") myMap.printMap(players_po) input() else: print("該地產為:" + str(players[int(store[2])-1].getName()) + "所有") playerStore = None ##### e.) # 輪至下一位玩家 i = i + 1 if (i >= players_num): i = i - players_num ##### f.) 結束遊戲條件 ends = input("是否結束遊戲?Y:是 N:繼續") if ((ends == "Y") or (ends == "y")): break
import json # a Python object (dict): x = { "name": "John", "age": 30, "city": "New York" } # convert into JSON: y = json.dumps(x) # the result is a JSON string: print(y)
# This file is licensed under the Apache License v2.0 with LLVM Exceptions. # See https://llvm.org/LICENSE.txt for license information. # SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception """Repository rules to configure the terminfo used by LLVM. Most users should pick one of the explicit rules to configure their use of terminfo with LLVM: - `llvm_terminfo_system` will detect and link against a terminfo-implementing system library (non-hermetically). - 'llvm_terminfo_disable` will disable terminfo completely. If you would like to make your build configurable, you can use `llvm_terminfo_from_env`. By default, this will disable terminfo, but will inspect the environment variable (most easily set with a `--repo_env` flag to the Bazel invocation) `BAZEL_LLVM_TERMINFO_STRATEGY`. If it is set to `system` then it will behave the same as `llvm_terminfo_system`. Any other setting will disable terminfo the same as not setting it at all. """ def _llvm_terminfo_disable_impl(repository_ctx): repository_ctx.template( "BUILD", repository_ctx.attr._disable_build_template, executable = False, ) _terminfo_disable_attrs = { "_disable_build_template": attr.label( default = Label("//deps_impl:terminfo_disable.BUILD"), allow_single_file = True, ), } llvm_terminfo_disable = repository_rule( implementation = _llvm_terminfo_disable_impl, attrs = _terminfo_disable_attrs, ) def _find_c_compiler(repository_ctx): """Returns the path to a plausible C compiler. This routine will only reliably work on roughly POSIX-y systems as it ultimately falls back on the `cc` binary. Fortunately, the thing we are trying to use it for (detecting if a trivial source file can compile and link against a particular library) requires very little. """ cc_env = repository_ctx.os.environ.get("CC") cc = None if cc_env: if "/" in cc_env: return repository_ctx.path(cc_env) else: return repository_ctx.which(cc_env) # Look for Clang, GCC, and the POSIX / UNIX specified C compiler # binaries. for compiler in ["clang", "gcc", "c99", "c89", "cc"]: cc = repository_ctx.which(compiler) if cc: return cc return None def _try_link(repository_ctx, cc, source, linker_flags): """Returns `True` if able to link the source with the linker flag. Given a source file that contains references to library routines, this will check that when linked with the provided linker flag, those references are successfully resolved. This routine assumes a generally POSIX-y and GCC-ish compiler and environment and shouldn't be expected to work outside of that. """ cmd = [ cc, # Force discard the linked executable. "-o", "/dev/null", # Leave language detection to the compiler. source, ] # The linker flag must be valid for a compiler invocation of the link step, # so just append them to the command. cmd += linker_flags exec_result = repository_ctx.execute(cmd, timeout = 20) return exec_result.return_code == 0 def _llvm_terminfo_system_impl(repository_ctx): # LLVM doesn't need terminfo support on Windows, so just disable it. if repository_ctx.os.name.lower().find("windows") != -1: _llvm_terminfo_disable_impl(repository_ctx) return if len(repository_ctx.attr.system_linkopts) > 0: linkopts = repository_ctx.attr.system_linkopts else: required = repository_ctx.attr.system_required # Find a C compiler we can use to detect viable linkopts on this system. cc = _find_c_compiler(repository_ctx) if not cc: if required: fail("Failed to find a C compiler executable") else: _llvm_terminfo_disable_impl(repository_ctx) return # Get the source file we use to detect successful linking of terminfo. source = repository_ctx.path(repository_ctx.attr._terminfo_test_source) # Collect the candidate linkopts and wrap them into a list. Ideally, # these would be provided as lists, but Bazel doesn't currently # support that. See: https://github.com/bazelbuild/bazel/issues/12178 linkopts_candidates = [[x] for x in repository_ctx.attr.candidate_system_linkopts] # For each candidate, try to use it to link our test source file. for linkopts_candidate in linkopts_candidates: if _try_link(repository_ctx, cc, source, linkopts_candidate): linkopts = linkopts_candidate break # If we never found a viable linkopts candidate, either error or disable # terminfo for LLVM. if not linkopts: if required: fail("Failed to detect which linkopt would successfully provide the " + "necessary terminfo functionality") else: _llvm_terminfo_disable_impl(repository_ctx) return repository_ctx.template( "BUILD", repository_ctx.attr._system_build_template, substitutions = { "{TERMINFO_LINKOPTS}": str(linkopts), }, executable = False, ) def _merge_attrs(attrs_list): attrs = {} for input_attrs in attrs_list: attrs.update(input_attrs) return attrs _terminfo_system_attrs = _merge_attrs([_terminfo_disable_attrs, { "_system_build_template": attr.label( default = Label("//deps_impl:terminfo_system.BUILD"), allow_single_file = True, ), "_terminfo_test_source": attr.label( default = Label("//deps_impl:terminfo_test.c"), allow_single_file = True, ), "candidate_system_linkopts": attr.string_list( default = [ "-lterminfo", "-ltinfo", "-lcurses", "-lncurses", "-lncursesw", ], doc = "Candidate linkopts to test and see if they can link " + "successfully.", ), "system_required": attr.bool( default = False, doc = "Require that one of the candidates is detected successfully on POSIX platforms where it is needed.", ), "system_linkopts": attr.string_list( default = [], doc = "If non-empty, a specific array of linkopts to use to " + "successfully link against the terminfo library. No " + "detection is performed if this option is provided, it " + "directly forces the use of these link options. No test is " + "run to determine if they are valid or work correctly either.", ), }]) llvm_terminfo_system = repository_rule( implementation = _llvm_terminfo_system_impl, configure = True, local = True, attrs = _terminfo_system_attrs, ) def _llvm_terminfo_from_env_impl(repository_ctx): terminfo_strategy = repository_ctx.os.environ.get("BAZEL_LLVM_TERMINFO_STRATEGY") if terminfo_strategy == "system": _llvm_terminfo_system_impl(repository_ctx) else: _llvm_terminfo_disable_impl(repository_ctx) llvm_terminfo_from_env = repository_rule( implementation = _llvm_terminfo_from_env_impl, configure = True, local = True, attrs = _merge_attrs([_terminfo_disable_attrs, _terminfo_system_attrs]), environ = ["BAZEL_LLVM_TERMINFO_STRATEGY", "CC"], )
# dialogs.folder """A collection of dialogs to do things to all fonts in a given folder.""" # import from actions import actionsFolderDialog from ufo2otf import UFOsToOTFsDialog from otf2ufo import OTFsToUFOsDialog from woff2ufo import WOFFsToUFOsDialog # export __all__ = [ 'actionsFolderDialog', 'OTFsToUFOsDialog', 'UFOsToOTFsDialog', 'WOFFsToUFOsDialog', ]
import sys,os sys.path.append(os.path.dirname(os.getcwd())) from app.models import User from app import db u = User(username=sys.argv[1]) u.set_password(sys.argv[2]) db.session.add(u) db.session.commit()
# SIKULI INTERFACE FOR TAGUI FRAMEWORK ~ TEBEL.ORG # # timeout in seconds for finding a web element setAutoWaitTimeout(10) # delay in seconds between scanning for inputs scan_period = 0.5 # counter to track current tagui sikuli step tagui_count = '0' # prevent premature exit on unhandled exception setThrowException(False) # enable OCR (optical character recognition) Settings.OcrTextRead = True Settings.OcrTextSearch = True # function for tap / click step def tap_intent ( raw_intent ): params = (raw_intent + ' ')[1+(raw_intent + ' ').find(' '):].strip() print '[tagui] ACTION - click ' + params if exists(params): return click(params) else: return 0 # function for rtap / rclick step def rtap_intent ( raw_intent ): params = (raw_intent + ' ')[1+(raw_intent + ' ').find(' '):].strip() print '[tagui] ACTION - rclick ' + params if exists(params): return rightClick(params) else: return 0 # function for dtap / dclick step def dtap_intent ( raw_intent ): params = (raw_intent + ' ')[1+(raw_intent + ' ').find(' '):].strip() print '[tagui] ACTION - dclick ' + params if exists(params): return doubleClick(params) else: return 0 # function for hover / move step def hover_intent ( raw_intent ): params = (raw_intent + ' ')[1+(raw_intent + ' ').find(' '):].strip() print '[tagui] ACTION - hover ' + params if exists(params): return hover(params) else: return 0 # function for type / enter step def type_intent ( raw_intent ): params = (raw_intent + ' ')[1+(raw_intent + ' ').find(' '):].strip() param1 = params[:params.find(' as ')].strip() param2 = params[4+params.find(' as '):].strip() print '[tagui] ACTION - type ' + param1 + ' as ' + param2 if exists(param1): return type(param1,param2) else: return 0 # function for select / choose step def select_intent ( raw_intent ): params = (raw_intent + ' ')[1+(raw_intent + ' ').find(' '):].strip() param1 = params[:params.find(' as ')].strip() param2 = params[4+params.find(' as '):].strip() print '[tagui] ACTION - click ' + param1 if exists(param1): if click(param1) == 0: return 0 else: print '[tagui] ACTION - click ' + param2 if exists(param2): return click(param2) else: return 0 else: return 0 # function for reading OCR text def read_intent ( raw_intent ): return text_read(raw_intent) # function for showing OCR text def show_intent ( raw_intent ): return text_read(raw_intent) # function for saving OCR text def save_intent ( raw_intent ): return text_read(raw_intent) # function for reading text using Tesseract OCR def text_read ( raw_intent ): params = (raw_intent + ' ')[1+(raw_intent + ' ').find(' '):].strip() param1 = params[:(params + ' ').find(' ')].strip() print '[tagui] ACTION - ' + raw_intent if param1.endswith('page.png') or param1.endswith('page.bmp'): fullscreen_layer = Screen() temp_text = fullscreen_layer.text() import codecs tagui_text = codecs.open('tagui.sikuli/tagui_sikuli.txt','w',encoding='utf8') tagui_text.write(temp_text) tagui_text.close() return 1 elif exists(param1): matched_element = find(param1) temp_text = matched_element.text() import codecs tagui_text = codecs.open('tagui.sikuli/tagui_sikuli.txt','w',encoding='utf8') tagui_text.write(temp_text) tagui_text.close() return 1 else: return 0 # function for capturing screenshot def snap_intent ( raw_intent ): params = (raw_intent + ' ')[1+(raw_intent + ' ').find(' '):].strip() param1 = params[:params.find(' to ')].strip() param2 = params[4+params.find(' to '):].strip() print '[tagui] ACTION - snap ' + param1 + ' to ' + param2 if param1.endswith('page.png') or param1.endswith('page.bmp'): fullscreen_layer = Screen() temp_snap_file = fullscreen_layer.capture(fullscreen_layer.getBounds()).getFile() import shutil shutil.copy(temp_snap_file,param2) return 1 elif exists(param1): fullscreen_layer = Screen() matched_element = find(param1) temp_snap_file = fullscreen_layer.capture(matched_element).getFile() import shutil shutil.copy(temp_snap_file,param2) return 1 else: return 0 # function for sending custom commands def vision_intent ( raw_intent ): params = (raw_intent + ' ')[1+(raw_intent + ' ').find(' '):].strip() print '[tagui] ACTION - ' + params exec(params,globals()) return 1 # function to interpret input intent def get_intent ( raw_intent ): if raw_intent[:4].lower() == 'tap ' or raw_intent[:6].lower() == 'click ': return 'tap' if raw_intent[:5].lower() == 'rtap ' or raw_intent[:7].lower() == 'rclick ': return 'rtap' if raw_intent[:5].lower() == 'dtap ' or raw_intent[:7].lower() == 'dclick ': return 'dtap' if raw_intent[:6].lower() == 'hover ' or raw_intent[:5].lower() == 'move ': return 'hover' if raw_intent[:5].lower() == 'type ' or raw_intent[:6].lower() == 'enter ': return 'type' if raw_intent[:7].lower() == 'select ' or raw_intent[:7].lower() == 'choose ': return 'select' if raw_intent[:5].lower() == 'read ' or raw_intent[:6].lower() == 'fetch ': return 'read' if raw_intent[:5].lower() == 'show ' or raw_intent[:6].lower() == 'print ': return 'show' if raw_intent[:5].lower() == 'save ': return 'save' if raw_intent[:5].lower() == 'snap ': return 'snap' if raw_intent[:7].lower() == 'vision ': return 'vision' return 'error' # function to parse and act on intent def parse_intent ( script_line ): intent_type = get_intent(script_line) if intent_type == 'tap': return tap_intent(script_line) elif intent_type == 'rtap': return rtap_intent(script_line) elif intent_type == 'dtap': return dtap_intent(script_line) elif intent_type == 'hover': return hover_intent(script_line) elif intent_type == 'type': return type_intent(script_line) elif intent_type == 'select': return select_intent(script_line) elif intent_type == 'read': return read_intent(script_line) elif intent_type == 'show': return show_intent(script_line) elif intent_type == 'save': return save_intent(script_line) elif intent_type == 'snap': return snap_intent(script_line) elif intent_type == 'vision': return vision_intent(script_line) else: return 0 # write to interface out-file to signal ready for inputs tagui_output = open('tagui.sikuli/tagui_sikuli.out','w') tagui_output.write('[0] START') tagui_output.close() # initialise interface in-file before starting main loop tagui_input = open('tagui.sikuli/tagui_sikuli.in','w') tagui_input.write('') tagui_input.close() # main loop to scan inputs from automation flow print '[tagui] START - listening for inputs'; print while True: # scan input from run-time interface in-file try: tagui_input = open('tagui.sikuli/tagui_sikuli.in','r') except IOError, OSError: print '[tagui] ERROR - cannot open tagui.sikuli/tagui_sikuli.in'; print break tagui_intent = tagui_input.read().strip() tagui_input.close() # quit if finish signal received, initialise and repeat loop if blank if tagui_intent == 'finish': break elif not tagui_intent: tagui_count = '0' tagui_output = open('tagui.sikuli/tagui_sikuli.out','w') tagui_output.write('[0] START') tagui_output.close() wait(scan_period) continue # get count and repeat loop if same count as last iteration temp_count = tagui_intent[1:tagui_intent.find('] ')].strip() tagui_intent = tagui_intent[2+tagui_intent.find('] '):].strip() if tagui_count == temp_count: wait(scan_period) continue else: tagui_count = temp_count # otherwise parse and act on input intent print '[tagui] INPUT - ' + '[' + tagui_count + '] ' + tagui_intent intent_result_value = parse_intent(tagui_intent) if intent_result_value == 1: intent_result_string = 'SUCCESS' else: intent_result_string = 'ERROR' # save intent_result to interface out-file print '[tagui] OUTPUT - ' + '[' + tagui_count + '] ' + intent_result_string; print tagui_output = open('tagui.sikuli/tagui_sikuli.out','w') tagui_output.write('[' + tagui_count + '] ' + intent_result_string) tagui_output.close() wait(scan_period) # write to interface out-file to signal finish listening print '[tagui] FINISH - stopped listening' tagui_output = open('tagui.sikuli/tagui_sikuli.out','w') tagui_output.write('[0] FINISH') tagui_output.close()
from os import path from setuptools import find_packages, setup # requirements from requirements.txt root_dir = path.dirname(path.abspath(__file__)) with open(path.join(root_dir, "requirements.txt"), "r") as f: requirements = f.read().splitlines() # long description from README with open(path.join(root_dir, "README.md"), encoding="utf-8") as f: long_description = f.read() setup( name="kf-cavatica-utils", use_scm_version={ "local_scheme": "dirty-tag", "version_scheme": "post-release", }, setup_requires=["setuptools_scm"], description="Kids First Cavatica Utilities", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/kids-first/kf-cavatica-python-tools", packages=find_packages(), python_requires=">=3.6, <4", install_requires=requirements, )
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Helper functions for manipulating collections of variables during training. """ from tensorflow import logging as logging import re import tensorflow as tf from tensorflow.python.ops import variables as tf_variables slim = tf.contrib.slim # TODO(derekjchow): Consider replacing with tf.contrib.filter_variables in # tensorflow/contrib/framework/python/ops/variables.py def filter_variables(variables, filter_regex_list, invert=False): """Filters out the variables matching the filter_regex. Filter out the variables whose name matches the any of the regular expressions in filter_regex_list and returns the remaining variables. Optionally, if invert=True, the complement set is returned. Args: variables: a list of tensorflow variables. filter_regex_list: a list of string regular expressions. invert: (boolean). If True, returns the complement of the filter set; that is, all variables matching filter_regex are kept and all others discarded. Returns: a list of filtered variables. """ kept_vars = [] variables_to_ignore_patterns = list(filter(None, filter_regex_list)) for var in variables: add = True for pattern in variables_to_ignore_patterns: if re.match(pattern, var.op.name): add = False break if add != invert: kept_vars.append(var) return kept_vars def multiply_gradients_matching_regex(grads_and_vars, regex_list, multiplier): """Multiply gradients whose variable names match a regular expression. Args: grads_and_vars: A list of gradient to variable pairs (tuples). regex_list: A list of string regular expressions. multiplier: A (float) multiplier to apply to each gradient matching the regular expression. Returns: grads_and_vars: A list of gradient to variable pairs (tuples). """ variables = [pair[1] for pair in grads_and_vars] matching_vars = filter_variables(variables, regex_list, invert=True) for var in matching_vars: logging.info('Applying multiplier %f to variable [%s]', multiplier, var.op.name) grad_multipliers = {var: float(multiplier) for var in matching_vars} return slim.learning.multiply_gradients(grads_and_vars, grad_multipliers) def freeze_gradients_matching_regex(grads_and_vars, regex_list): """Freeze gradients whose variable names match a regular expression. Args: grads_and_vars: A list of gradient to variable pairs (tuples). regex_list: A list of string regular expressions. Returns: grads_and_vars: A list of gradient to variable pairs (tuples) that do not contain the variables and gradients matching the regex. """ variables = [pair[1] for pair in grads_and_vars] matching_vars = filter_variables(variables, regex_list, invert=True) kept_grads_and_vars = [pair for pair in grads_and_vars if pair[1] not in matching_vars] for var in matching_vars: logging.info('Freezing variable [%s]', var.op.name) return kept_grads_and_vars def get_variables_available_in_checkpoint(variables, checkpoint_path, include_global_step=True): """Returns the subset of variables available in the checkpoint. Inspects given checkpoint and returns the subset of variables that are available in it. TODO(rathodv): force input and output to be a dictionary. Args: variables: a list or dictionary of variables to find in checkpoint. checkpoint_path: path to the checkpoint to restore variables from. include_global_step: whether to include `global_step` variable, if it exists. Default True. Returns: A list or dictionary of variables. Raises: ValueError: if `variables` is not a list or dict. """ if isinstance(variables, list): variable_names_map = {} for variable in variables: if isinstance(variable, tf_variables.PartitionedVariable): name = variable.name else: name = variable.op.name variable_names_map[name] = variable elif isinstance(variables, dict): variable_names_map = variables else: raise ValueError('`variables` is expected to be a list or dict.') ckpt_reader = tf.train.NewCheckpointReader(checkpoint_path) ckpt_vars_to_shape_map = ckpt_reader.get_variable_to_shape_map() if not include_global_step: ckpt_vars_to_shape_map.pop(tf.GraphKeys.GLOBAL_STEP, None) vars_in_ckpt = {} for variable_name, variable in sorted(variable_names_map.items()): if variable_name in ckpt_vars_to_shape_map: if ckpt_vars_to_shape_map[variable_name] == variable.shape.as_list(): vars_in_ckpt[variable_name] = variable else: logging.warning('Variable [%s] is available in checkpoint, but has an ' 'incompatible shape with model variable. Checkpoint ' 'shape: [%s], model variable shape: [%s]. This ' 'variable will not be initialized from the checkpoint.', variable_name, ckpt_vars_to_shape_map[variable_name], variable.shape.as_list()) else: logging.warning('Variable [%s] is not available in checkpoint', variable_name) if isinstance(variables, list): return vars_in_ckpt.values() return vars_in_ckpt
class Frame: def __init__(self, surface, imgs): self.idx = 0 self.imgs = imgs self.num = len(imgs) self.surface = surface @property def img(self): return self.imgs[self.idx] @property def is_last_frame(self): return self.idx == self.num - 1 def move(self): self.idx += 1 self.idx %= self.num def draw(self, x=0, y=0): self.surface.blit(self.img, (x, y)) def tick(self, x=0, y=0): self.draw(x, y) self.move()
""" This is a little GUI to launch the playlist importer. It launches the import script in a command prompt window. """ import os import urllib2 import subprocess import sys # This requires wxPython 3.0.2.0. # For compatibility with virtualenv you can use the wheels from # https://www.lfd.uci.edu/~gohlke/pythonlibs/#wxpython # (Download the "win32" or "amd64" wheel to match your python version, as well as the "common" wheel; # pip install the common wheel first and then the architecture-specific one) # noinspection PyUnresolvedReferences,PyPackageRequirements import wx import spotify_playlist_apple_music from gui_autogen import MyFrame from win_util import get_short_path_name def set_enabled(obj, value): """ Helper to enable/disable GUI control """ if value: obj.Enable() else: obj.Disable() class MyFrameImpl(MyFrame): """ Attach code to the MyFrame GUI skeleton from the wxGlade code generator """ def __init__(self, *args, **kwargs): super(MyFrameImpl, self).__init__(*args, **kwargs) self.radio_btn_prefix.SetValue(True) self.have_loaded_playlist_ok = False self.loaded_playlist_name = None self.update_state() self.current_process = None def update_state(self): """ Update the state of controls based on other controls' entered values and whether a playlist is already loaded """ prefix_mode = self.radio_btn_prefix.GetValue() set_enabled(self.text_playlist_name, not prefix_mode) set_enabled(self.text_prefix, prefix_mode) url_ready = self.text_url.GetValue() != "" set_enabled(self.button_load, url_ready) set_enabled(self.button_import, self.have_loaded_playlist_ok) if self.have_loaded_playlist_ok: self.button_import.SetDefault() else: self.button_load.SetDefault() def load_reset(self): """ Something has been changed that invalidates the previously loaded playlist """ self.have_loaded_playlist_ok = False self.loaded_playlist_name = None def radio_btn_change(self, event): self.load_reset() self.update_state() def text_url_change(self, event): self.load_reset() self.update_state() def text_prefix_change(self, event): self.load_reset() self.update_state() def text_playlist_name_change(self, event): self.load_reset() self.update_state() def button_load_click(self, event): self.load_reset() self.update_state() url = self.text_url.GetValue() # Try to load the playlist, and show a message about the result. result = False try: it = spotify_playlist_apple_music.get_track_iterator_for_url(url) it.next() except KeyError: message = "Don't know how to load a playlist for this site. Double-check the URL." except urllib2.HTTPError: message = "Can't load the playlist at that address. Double-check the URL." else: playlist_name = self.get_playlist_name() message = u"Loaded playlist. Click Import to create '%s'" % playlist_name result = True self.show_message(message) self.have_loaded_playlist_ok = result # If the load was successful, this will enable the Import button. self.update_state() def get_playlist_name(self): imported_playlist_name = spotify_playlist_apple_music.loaded_playlist_name prefix_mode = self.radio_btn_prefix.GetValue() if prefix_mode: prefix = self.text_prefix.GetValue() if prefix is None: prefix = "" playlist_name = prefix + imported_playlist_name else: playlist_name = self.text_playlist_name.GetValue() return playlist_name def show_message(self, message): self.label_load_result.SetLabel(message) def button_import_click(self, event): if self.checkbox_separate_window.GetValue(): params = ["--pause"] command_form = "cmd /C start %s" else: params = [] command_form = "cmd /C %s" prefix_mode = self.radio_btn_prefix.GetValue() if prefix_mode: prefix_text = self.text_prefix.GetValue() if prefix_text != "": params += ["--playlist-prefix", '"%s"' % prefix_text] else: playlist_name_text = self.text_playlist_name.GetValue() params += ["--playlist-name", '"%s"' % playlist_name_text] url = self.text_url.GetValue() self.show_message("Importing '%s' to '%s'" % (url, self.get_playlist_name())) params.append(url) script_path = os.path.dirname(os.path.abspath(__file__)) python_app = os.path.join(script_path, "spotify_playlist_apple_music.py") # I'm just using this short path name business because I can't find any quoting to convince # cmd /C to accept the full path python_exe = os.path.join(os.path.dirname(sys.executable), "python.exe") python_cmd = [get_short_path_name(python_exe), "-u", get_short_path_name(python_app)] + params command = command_form % " ".join(python_cmd) print command self.current_process = subprocess.Popen(command, universal_newlines=True) self.button_import.Disable() self.monitor() def monitor(self): return_code = self.current_process.poll() if return_code is None: wx.CallLater(2000, self.monitor) else: if return_code == 0: self.show_message("Import complete") else: self.show_message("Import process exited with return code %d" % return_code) self.current_process = None self.button_import.Enable() def main(): app = wx.App() frame = MyFrameImpl(None) frame .Show() app.MainLoop() if __name__ == "__main__": main()