text
stringlengths
2
999k
from __future__ import absolute_import from .data_prep import img_pad
def main(request, response): token = request.GET.first("token") if request.server.stash.remove(token) is not None: return "1" else: return "0"
import torch import torch.nn as nn import spconv from functools import partial from .spconv_backbone import post_act_block from ...utils import common_utils class SparseBasicBlock(spconv.SparseModule): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, indice_key=None, norm_fn=None): super(SparseBasicBlock, self).__init__() self.conv1 = spconv.SubMConv3d( inplanes, planes, kernel_size=3, stride=stride, padding=1, bias=False, indice_key=indice_key ) self.bn1 = norm_fn(planes) self.relu = nn.ReLU() self.conv2 = spconv.SubMConv3d( planes, planes, kernel_size=3, stride=1, padding=1, bias=False, indice_key=indice_key ) self.bn2 = norm_fn(planes) self.downsample = downsample self.stride = stride def forward(self, x): identity = x.features assert x.features.dim() == 2, 'x.features.dim()=%d' % x.features.dim() out = self.conv1(x) out.features = self.bn1(out.features) out.features = self.relu(out.features) out = self.conv2(out) out.features = self.bn2(out.features) if self.downsample is not None: identity = self.downsample(x) out.features += identity out.features = self.relu(out.features) return out class UNetV2(nn.Module): """ Sparse Convolution based UNet for point-wise feature learning. Reference Paper: https://arxiv.org/abs/1907.03670 (Shaoshuai Shi, et. al) From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network """ def __init__(self, model_cfg, input_channels, grid_size, voxel_size, point_cloud_range, **kwargs): super().__init__() self.model_cfg = model_cfg self.sparse_shape = grid_size[::-1] + [1, 0, 0] self.voxel_size = voxel_size self.point_cloud_range = point_cloud_range norm_fn = partial(nn.BatchNorm1d, eps=1e-3, momentum=0.01) self.conv_input = spconv.SparseSequential( spconv.SubMConv3d(input_channels, 16, 3, padding=1, bias=False, indice_key='subm1'), norm_fn(16), nn.ReLU(), ) block = post_act_block self.conv1 = spconv.SparseSequential( block(16, 16, 3, norm_fn=norm_fn, padding=1, indice_key='subm1'), ) self.conv2 = spconv.SparseSequential( # [1600, 1408, 41] <- [800, 704, 21] block(16, 32, 3, norm_fn=norm_fn, stride=2, padding=1, indice_key='spconv2', conv_type='spconv'), block(32, 32, 3, norm_fn=norm_fn, padding=1, indice_key='subm2'), block(32, 32, 3, norm_fn=norm_fn, padding=1, indice_key='subm2'), ) self.conv3 = spconv.SparseSequential( # [800, 704, 21] <- [400, 352, 11] block(32, 64, 3, norm_fn=norm_fn, stride=2, padding=1, indice_key='spconv3', conv_type='spconv'), block(64, 64, 3, norm_fn=norm_fn, padding=1, indice_key='subm3'), block(64, 64, 3, norm_fn=norm_fn, padding=1, indice_key='subm3'), ) self.conv4 = spconv.SparseSequential( # [400, 352, 11] <- [200, 176, 5] block(64, 64, 3, norm_fn=norm_fn, stride=2, padding=(0, 1, 1), indice_key='spconv4', conv_type='spconv'), block(64, 64, 3, norm_fn=norm_fn, padding=1, indice_key='subm4'), block(64, 64, 3, norm_fn=norm_fn, padding=1, indice_key='subm4'), ) last_pad = 0 last_pad = self.model_cfg.get('last_pad', last_pad) self.conv_out = spconv.SparseSequential( # [200, 150, 5] -> [200, 150, 2] spconv.SparseConv3d(64, 128, (3, 1, 1), stride=(2, 1, 1), padding=last_pad, bias=False, indice_key='spconv_down2'), norm_fn(128), nn.ReLU(), ) # decoder # [400, 352, 11] <- [200, 176, 5] self.conv_up_t4 = SparseBasicBlock(64, 64, indice_key='subm4', norm_fn=norm_fn) self.conv_up_m4 = block(128, 64, 3, norm_fn=norm_fn, padding=1, indice_key='subm4') self.inv_conv4 = block(64, 64, 3, norm_fn=norm_fn, indice_key='spconv4', conv_type='inverseconv') # [800, 704, 21] <- [400, 352, 11] self.conv_up_t3 = SparseBasicBlock(64, 64, indice_key='subm3', norm_fn=norm_fn) self.conv_up_m3 = block(128, 64, 3, norm_fn=norm_fn, padding=1, indice_key='subm3') self.inv_conv3 = block(64, 32, 3, norm_fn=norm_fn, indice_key='spconv3', conv_type='inverseconv') # [1600, 1408, 41] <- [800, 704, 21] self.conv_up_t2 = SparseBasicBlock(32, 32, indice_key='subm2', norm_fn=norm_fn) self.conv_up_m2 = block(64, 32, 3, norm_fn=norm_fn, indice_key='subm2') self.inv_conv2 = block(32, 16, 3, norm_fn=norm_fn, indice_key='spconv2', conv_type='inverseconv') # [1600, 1408, 41] <- [1600, 1408, 41] self.conv_up_t1 = SparseBasicBlock(16, 16, indice_key='subm1', norm_fn=norm_fn) self.conv_up_m1 = block(32, 16, 3, norm_fn=norm_fn, indice_key='subm1') self.conv5 = spconv.SparseSequential( block(16, 16, 3, norm_fn=norm_fn, padding=1, indice_key='subm1') ) self.num_point_features = 16 def UR_block_forward(self, x_lateral, x_bottom, conv_t, conv_m, conv_inv): x_trans = conv_t(x_lateral) x = x_trans x.features = torch.cat((x_bottom.features, x_trans.features), dim=1) x_m = conv_m(x) x = self.channel_reduction(x, x_m.features.shape[1]) x.features = x_m.features + x.features x = conv_inv(x) return x @staticmethod def channel_reduction(x, out_channels): """ Args: x: x.features (N, C1) out_channels: C2 Returns: """ features = x.features n, in_channels = features.shape assert (in_channels % out_channels == 0) and (in_channels >= out_channels) x.features = features.view(n, out_channels, -1).sum(dim=2) return x def forward(self, batch_dict): """ Args: batch_dict: batch_size: int vfe_features: (num_voxels, C) voxel_coords: (num_voxels, 4), [batch_idx, z_idx, y_idx, x_idx] Returns: batch_dict: encoded_spconv_tensor: sparse tensor point_features: (N, C) """ voxel_features, voxel_coords = batch_dict['voxel_features'], batch_dict['voxel_coords'] batch_size = batch_dict['batch_size'] input_sp_tensor = spconv.SparseConvTensor( features=voxel_features, indices=voxel_coords.int(), spatial_shape=self.sparse_shape, batch_size=batch_size ) x = self.conv_input(input_sp_tensor) x_conv1 = self.conv1(x) x_conv2 = self.conv2(x_conv1) x_conv3 = self.conv3(x_conv2) x_conv4 = self.conv4(x_conv3) # for detection head # [200, 176, 5] -> [200, 176, 2] out = self.conv_out(x_conv4) # for segmentation head # [400, 352, 11] <- [200, 176, 5] x_up4 = self.UR_block_forward(x_conv4, x_conv4, self.conv_up_t4, self.conv_up_m4, self.inv_conv4) # [800, 704, 21] <- [400, 352, 11] x_up3 = self.UR_block_forward(x_conv3, x_up4, self.conv_up_t3, self.conv_up_m3, self.inv_conv3) # [1600, 1408, 41] <- [800, 704, 21] x_up2 = self.UR_block_forward(x_conv2, x_up3, self.conv_up_t2, self.conv_up_m2, self.inv_conv2) # [1600, 1408, 41] <- [1600, 1408, 41] x_up1 = self.UR_block_forward(x_conv1, x_up2, self.conv_up_t1, self.conv_up_m1, self.conv5) batch_dict['point_features'] = x_up1.features point_coords = common_utils.get_voxel_centers( x_up1.indices[:, 1:], downsample_times=1, voxel_size=self.voxel_size, point_cloud_range=self.point_cloud_range ) batch_dict['point_coords'] = torch.cat((x_up1.indices[:, 0:1].float(), point_coords), dim=1) batch_dict['encoded_spconv_tensor'] = out batch_dict['encoded_spconv_tensor_stride'] = 8 return batch_dict
from collections import OrderedDict from typing import Dict, Generic, Mapping, TypeVar CacheKey = TypeVar("CacheKey") CacheValue = TypeVar("CacheValue") class LRUCache(Generic[CacheKey, CacheValue], OrderedDict): """ A dictionary-like container that stores a given maximum items. If an additional item is added when the LRUCache is full, the least recently used key is discarded to make room for the new item. """ def __init__(self, cache_size: int) -> None: self.cache_size = cache_size super(LRUCache, self).__init__() def __setitem__(self, key: CacheKey, value: CacheValue) -> None: """Store a new views, potentially discarding an old value.""" if key not in self: if len(self) >= self.cache_size: self.popitem(last=False) OrderedDict.__setitem__(self, key, value) def __getitem__(self: Dict[CacheKey, CacheValue], key: CacheKey) -> CacheValue: """Gets the item, but also makes it most recent.""" value: CacheValue = OrderedDict.__getitem__(self, key) OrderedDict.__delitem__(self, key) OrderedDict.__setitem__(self, key, value) return value
# (C) Datadog, Inc. 2018 # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) # Always prefer setuptools over distutils from setuptools import setup # To use a consistent encoding from codecs import open from os import path HERE = path.abspath(path.dirname(__file__)) # Get the long description from the README file with open(path.join(HERE, 'README.md'), encoding='utf-8') as f: long_description = f.read() # Get version info ABOUT = {} with open(path.join(HERE, "datadog_checks", "hdfs_namenode", "__about__.py")) as f: exec(f.read(), ABOUT) def get_requirements(fpath): with open(path.join(HERE, fpath), encoding='utf-8') as f: return f.readlines() CHECKS_BASE_REQ = 'datadog_checks_base' setup( name='datadog-hdfs_namenode', version=ABOUT['__version__'], description='The HDFS Namenode check', long_description=long_description, long_description_content_type='text/markdown', keywords='datadog agent hdfs_namenode check', # The project's main homepage. url='https://github.com/DataDog/integrations-core', # Author details author='Datadog', author_email='packages@datadoghq.com', # License license='BSD', # See https://pypi.python.org/pypi?%3Aaction=list_classifiers classifiers=[ 'Development Status :: 5 - Production/Stable', 'Intended Audience :: Developers', 'Intended Audience :: System Administrators', 'Topic :: System :: Monitoring', 'License :: OSI Approved :: BSD License', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', ], # The package we're going to ship packages=['datadog_checks.hdfs_namenode'], # Run-time dependencies install_requires=[CHECKS_BASE_REQ], tests_require=get_requirements('requirements-dev.txt'), # Extra files to ship with the wheel package include_package_data=True, )
'''This example demonstrates the use of Convolution1D for text classification. ''' from __future__ import print_function import sys sys.path.append('/Users/wangwei/anaconda2/envs/python3_keras/lib/python3.6/site-packages') from keras.preprocessing import sequence from keras.models import Sequential from keras.layers import Dense, Dropout, Activation from keras.layers import Embedding from keras.layers import Conv1D, GlobalMaxPooling1D from keras import backend as K #os.chdir('/Users/wangwei/cuda_keras_projets/keras/examples/') import six.moves.cPickle as pickle # for python 3 #import cPickle for python 2.7 import pandas as pd import numpy as np import jieba # set parameters: maxlen = 64 #11 batch_size = 5 embedding_dims = 300 filters = 50 # 100 kernel_size = 3 hidden_dims = 100 epochs = 10 def get_idx_from_sent(sent, word_idx_map, k=300): """ Transforms sentence into a list of indices. """ x = [] words = list(jieba.cut(sent, cut_all=False)) for word in words: if word in word_idx_map: x.append(word_idx_map[word]) return x def make_idx_data_cv(revs, word_idx_map, cv, k=300): """ Transforms sentences into a 2-d matrix. """ train, test = [], [] train_y, test_y = [],[] for rev in revs: sent = get_idx_from_sent(rev['text'], word_idx_map, k) if rev["split"]==cv: test.append(sent) test_y.append(rev["y"]) else: train.append(sent) train_y.append(rev["y"]) #train = np.array(train, dtype='int') #test = np.array(test, dtype='int') return [train, test, train_y, test_y] if __name__=="__main__": print('The script that is running is :', __file__) print('Depending on the training datasets: \n maximum length of a sentence is :', maxlen) ######### Main code starts here ########### print("loading data...") x = pickle.load(open("mr_folder/mr.p","rb"), encoding='latin1') revs, W, W2, word_idx_map, word_idx_map2, vocab = x[0], x[1], x[2], x[3], x[4],x[5] print("data loaded!") print("using: word2vec vectors") tmp = pd.DataFrame(revs) max_l = np.max(tmp["num_words"]) print("number of sentences: " , str(len(revs))) print("vocab size: " , str(len(vocab))) print("max sentence length: " + str(max_l)) max_features = len(vocab)#50 #### Make datasets datasets = make_idx_data_cv(revs, word_idx_map2, 1, k=300) x_train = datasets[0] x_test = datasets[1] y_train = datasets[2] y_test = datasets[3] print('Pad sequences (samples x time)') x_train = sequence.pad_sequences(x_train, maxlen=maxlen) x_test = sequence.pad_sequences(x_test, maxlen=maxlen) print('x_train shape:', x_train.shape) print('x_test shape:', x_test.shape) ############# modelling with CNN import keras num_classes = 9 # convert class vectors to binary class matrices y_train = keras.utils.to_categorical(y_train, num_classes) y_test = keras.utils.to_categorical(y_test, num_classes) print('lengh of y_train is :', y_train.shape[0]) print('Build model...') K.clear_session() model = Sequential() # we start off with an efficient embedding layer which maps # our vocab indices into embedding_dims dimensions model.add(Embedding(max_features+1, embedding_dims, weights=[W], input_length=maxlen, trainable=False)) model.add(Dropout(0.2)) # we add a Convolution1D, which will learn filters # word group filters of size filter_length: model.add(Conv1D(filters, kernel_size, padding='valid', activation='relu', strides=1)) # we use max pooling: model.add(GlobalMaxPooling1D()) # We add a vanilla hidden layer: model.add(Dense(hidden_dims)) model.add(Dropout(0.2)) #model.add(Activation('relu')) # We project onto a single unit output layer, and squash it with a sigmoid: #model.add(Dense(1)) model.add(Activation('sigmoid')) ###################### model.add(Dropout(0.2)) model.add(Dense(num_classes, activation='softmax')) # model.compile(loss=keras.losses.categorical_crossentropy, # optimizer=keras.optimizers.Adadelta(), # metrics=['accuracy']) model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_test, y_test)) score = model.evaluate(x_test, y_test, verbose=0) print('Test loss:', score[0]) print('Test accuracy:', score[1]) # serialize model to JSON model_json = model.to_json() with open("mr_folder/model.json", "w") as json_file: json_file.write(model_json) # serialize weights to HDF5 model.save_weights("mr_folder/model.h5") print("Saved model to disk")
# --------------------------------------------------------------------------- # Copyright 2017-2018 OMRON Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # --------------------------------------------------------------------------- #!/usr/bin/env python # -*- coding: utf-8 -*- import os.path import sys import time import p2def from serial_connector import SerialConnector from hvc_p2_api import HVCP2Api from hvc_tracking_result import HVCTrackingResult from grayscale_image import GrayscaleImage ############################################################################### # User Config. Please edit here if you need. ############################################################################### # Output image file name. img_fname = 'registerd_img.jpg' # Read timeout value in seconds for serial communication. # If you use UART slow baudrate, please edit here. timeout = 30 # Album file name. album_fname = 'Album.dat' # HVC Camera Angle setting hvc_camera_angle = p2def.HVC_CAM_ANGLE_0 # HVC_CAM_ANGLE_90 # HVC_CAM_ANGLE_180 # HVC_CAM_ANGLE_270 # Threshold value settings body_thresh = 500 # Threshold for Human body detection [1 to 1000] hand_thresh = 500 # Threshold for Hand detection [1 to 1000] face_thresh = 500 # Threshold for Face detection [1 to 1000] recognition_thresh = 500 # Threshold for Face recognition [0 to 1000] # Detection Size setings min_body_size = 30 # Mininum Human body detection size [20 to 8192] max_body_size = 8192 # Maximum Human body detection size [20 to 8192] min_hand_size = 40 # Mininum Hand detection size [20 to 8192] max_hand_size = 8192 # Maximum Hand detection size [20 to 8192] min_face_size = 64 # Mininum Face detection size [20 to 8192] max_face_size = 8192 # Maximum Face detection size [20 to 8192] # Execute functions exec_func = p2def.EX_FACE\ | p2def.EX_DIRECTION\ | p2def.EX_RECOGNITION # Detection face angle settings face_angle_yaw = p2def.HVC_FACE_ANGLE_YAW_30 face_angle_roll = p2def.HVC_FACE_ANGLE_ROLL_15 # HVC_FACE_ANGLE_ROLL_45 ############################################################################### def _parse_arg(argv): if len(argv) == 3: # Gets port infomation portinfo = argv[1] # Gets baudrate baudrate = int(argv[2]) if baudrate not in p2def.AVAILABLE_BAUD: print("Error: Invalid baudrate.") sys.exit() else: print("Error: Invalid argument.") sys.exit() return (portinfo, baudrate) def _check_connection(hvc_p2_api): (res_code, hvc_type, major, minor, release, rev) = hvc_p2_api.get_version() if res_code == 0 and hvc_type.startswith('B5T-007001'): pass else: raise IOError("Error: connection failure.") def _set_hvc_p2_parameters(hvc_p2_api): # Sets camera angle res_code = hvc_p2_api.set_camera_angle(hvc_camera_angle) if res_code is not p2def.RESPONSE_CODE_NORMAL: raise ValueError("Error: Invalid camera angle.") # Sets threshold res_code = hvc_p2_api.set_threshold(body_thresh, hand_thresh,\ face_thresh, recognition_thresh) if res_code is not p2def.RESPONSE_CODE_NORMAL: raise ValueError("Error: Invalid threshold.") # Sets detection size res_code = hvc_p2_api.set_detection_size(min_body_size, max_body_size,\ min_hand_size, max_hand_size,\ min_face_size, max_face_size) if res_code is not p2def.RESPONSE_CODE_NORMAL: raise ValueError("Error: Invalid detection size.") # Sets face angle res_code = hvc_p2_api.set_face_angle(face_angle_yaw, face_angle_roll) if res_code is not p2def.RESPONSE_CODE_NORMAL: raise ValueError("Error: Invalid face angle.") def main(): # Parses arguments (portinfo, baudrate) = _parse_arg(sys.argv) connector = SerialConnector() hvc_p2_api = HVCP2Api(connector, exec_func, p2def.USE_STB_OFF) # The 1st connection hvc_p2_api.connect(portinfo, p2def.DEFAULT_BAUD, 10) # 1st connection should be 9600 baud. _check_connection(hvc_p2_api) hvc_p2_api.set_uart_baudrate(baudrate) # Changing to the specified baud rate hvc_p2_api.disconnect() # The 2nd connection in specified baudrate hvc_p2_api.connect(portinfo, baudrate, timeout) _check_connection(hvc_p2_api) try: # Sets HVC-P2 parameters _set_hvc_p2_parameters(hvc_p2_api) img = GrayscaleImage() # Main loop while True: str = "\n"\ + "Please select the command.\n"\ + " r : registration.\n"\ + " g : get user data.\n"\ + " s : save album.\n"\ + " l : load album.\n"\ + " d : delete all album data.\n"\ + " x : exit.\n"\ + " >>" operation_str = raw_input(str) if operation_str == 'x': break if operation_str == 'r': while True: str_uid = raw_input('user id [0-99] ') if str_uid >= '0' and str_uid <= '99': user_id = int(str_uid) break while True: str_did = raw_input('data id [0-9] ') if str_did >= '0' and str_did <= '9': data_id = int(str_did) break raw_input('Press Enter key to register.') res_code = hvc_p2_api.register_data(user_id, data_id, img) if res_code < p2def.RESPONSE_CODE_NORMAL: # error print("Error: Invalid register album.") break if res_code == p2def.RESPONSE_CODE_NO_FACE: print("\nNumber of faces that can be registered is 0.") if res_code == p2def.RESPONSE_CODE_PLURAL_FACE: print("\nNumber of detected faces is 2 or more.") if res_code == p2def.RESPONSE_CODE_NORMAL: # success img.save(img_fname) print(f"Success to register. user_id={str_uid} data_id={str_did}) if operation_str == 'g': while True: str_uid = raw_input('user id [0-99] ') if str_uid >= '0' and str_uid <= '99': user_id = int(str_uid) break print(f"uid[{user_id}]: " res_code, data_list = hvc_p2_api.get_user_data(user_id) if res_code < p2def.RESPONSE_CODE_NORMAL: # error print("Error: Invalid register album.") break print(data_list) if operation_str == 's': # Saves album to flash ROM on B5T-007001. res_code = hvc_p2_api.save_album_to_flash() if res_code is not p2def.RESPONSE_CODE_NORMAL: print("Error: Invalid save album to flash.") break # Saves album to the file. res_code, save_album = hvc_p2_api.save_album() if res_code is not p2def.RESPONSE_CODE_NORMAL: print("Error: Invalid save album.") break with open(album_fname, "wb") as file: file.write(save_album) print("Success to save album.") if operation_str == 'l': # Loads album from file if os.path.isfile(album_fname): with open(album_fname, "rb") as file: load_album = file.read() res_code = hvc_p2_api.load_album(load_album) if res_code is not p2def.RESPONSE_CODE_NORMAL: print("Error: Invalid load album.") break print("Success to load album.") if operation_str == 'd': # Deletes all album data res_code = hvc_p2_api.delete_all_data() if res_code is not p2def.RESPONSE_CODE_NORMAL: print("Error: Invalid save album to flash.") break # Saves album to flash ROM on B5T-007001. res_code = hvc_p2_api.save_album_to_flash() if res_code is not p2def.RESPONSE_CODE_NORMAL: print("Error: Invalid save album to flash.") break print("Success to delete album.") except KeyboardInterrupt: time.sleep(1) finally: hvc_p2_api.set_uart_baudrate(p2def.DEFAULT_BAUD) hvc_p2_api.disconnect() if __name__ == '__main__': main()
import asyncio import asyncpg import coc import discord import logging import math from collections import namedtuple from datetime import datetime from discord.ext import commands, tasks from cogs.utils.db_objects import DatabaseMessage from cogs.utils.formatters import CLYTable, get_render_type from cogs.utils import checks log = logging.getLogger(__name__) MockPlayer = namedtuple('MockPlayer', 'clan name') mock = MockPlayer('Unknown', 'Unknown') class DonationBoard(commands.Cog): """Contains all DonationBoard Configurations. """ def __init__(self, bot): self.bot = bot self.clan_updates = [] self._to_be_deleted = set() self.bot.coc.add_events( self.on_clan_member_donation, self.on_clan_member_received, self.on_clan_member_trophies_change, self.on_clan_member_join ) self.bot.coc._clan_retry_interval = 60 self.bot.coc.start_updates('clan') self._batch_lock = asyncio.Lock(loop=bot.loop) self._data_batch = {} self._clan_events = set() self.bulk_insert_loop.add_exception_type(asyncpg.PostgresConnectionError) self.bulk_insert_loop.start() self.update_board_loops.add_exception_type(asyncpg.PostgresConnectionError, coc.ClashOfClansException) self.update_board_loops.start() def cog_unload(self): self.bulk_insert_loop.cancel() self.update_board_loops.cancel() self.bot.coc.remove_events( self.on_clan_member_donation, self.on_clan_member_received, self.on_clan_member_trophies_change, self.on_clan_member_join ) @tasks.loop(seconds=30.0) async def bulk_insert_loop(self): async with self._batch_lock: await self.bulk_insert() @tasks.loop(seconds=60.0) async def update_board_loops(self): async with self._batch_lock: clan_tags = list(self._clan_events) self._clan_events.clear() query = """SELECT DISTINCT boards.channel_id FROM boards INNER JOIN clans ON clans.guild_id = boards.guild_id WHERE clans.clan_tag = ANY($1::TEXT[]) """ fetch = await self.bot.pool.fetch(query, clan_tags) for n in fetch: try: await self.update_board(n['channel_id']) except: pass async def bulk_insert(self): query = """UPDATE players SET donations = players.donations + x.donations, received = players.received + x.received, trophies = x.trophies FROM( SELECT x.player_tag, x.donations, x.received, x.trophies FROM jsonb_to_recordset($1::jsonb) AS x(player_tag TEXT, donations INTEGER, received INTEGER, trophies INTEGER) ) AS x WHERE players.player_tag = x.player_tag AND players.season_id=$2 """ query2 = """UPDATE eventplayers SET donations = eventplayers.donations + x.donations, received = eventplayers.received + x.received, trophies = x.trophies FROM( SELECT x.player_tag, x.donations, x.received, x.trophies FROM jsonb_to_recordset($1::jsonb) AS x(player_tag TEXT, donations INTEGER, received INTEGER, trophies INTEGER) ) AS x WHERE eventplayers.player_tag = x.player_tag AND eventplayers.live = true """ if self._data_batch: response = await self.bot.pool.execute(query, list(self._data_batch.values()), await self.bot.seasonconfig.get_season_id()) log.debug(f'Registered donations/received to the database. Status Code {response}.') response = await self.bot.pool.execute(query2, list(self._data_batch.values())) log.debug(f'Registered donations/received to the events database. Status Code {response}.') self._data_batch.clear() @commands.Cog.listener() async def on_guild_channel_delete(self, channel): if not isinstance(channel, discord.TextChannel): return query = "DELETE FROM messages WHERE channel_id = $1;" query2 = """UPDATE boards SET channel_id = NULL, toggle = False WHERE channel_id = $1; """ await self.bot.pool.execute(query, channel.id) await self.bot.pool.execute(query2, channel.id) self.bot.utils.board_config.invalidate(self.bot.utils, channel.id) @commands.Cog.listener() async def on_raw_message_delete(self, payload): config = await self.bot.utils.board_config(payload.channel_id) if not config: return if config.channel_id != payload.channel_id: return if payload.message_id in self._to_be_deleted: self._to_be_deleted.discard(payload.message_id) return self.bot.utils.get_message.invalidate(self.bot.utils, payload.message_id) message = await self.safe_delete(message_id=payload.message_id, delete_message=False) if message: await self.new_board_message(self.bot.get_channel(payload.channel_id), config.type) @commands.Cog.listener() async def on_raw_bulk_message_delete(self, payload): config = await self.bot.utils.board_config(payload.channel_id) if not config: return if config.channel_id != payload.channel_id: return for n in payload.message_ids: if n in self._to_be_deleted: self._to_be_deleted.discard(n) continue self.bot.utils.get_message.invalidate(self, n) message = await self.safe_delete(message_id=n, delete_message=False) if message: await self.new_board_message(self.bot.get_channel(payload.channel_id), config.type) async def on_clan_member_donation(self, old_donations, new_donations, player, clan): log.debug(f'Received on_clan_member_donation event for player {player} of clan {clan}') if old_donations > new_donations: donations = new_donations else: donations = new_donations - old_donations async with self._batch_lock: try: self._data_batch[player.tag]['donations'] = donations except KeyError: self._data_batch[player.tag] = { 'player_tag': player.tag, 'donations': donations, 'received': 0, 'trophies': player.trophies } self._clan_events.add(clan.tag) async def on_clan_member_received(self, old_received, new_received, player, clan): log.debug(f'Received on_clan_member_received event for player {player} of clan {clan}') if old_received > new_received: received = new_received else: received = new_received - old_received async with self._batch_lock: try: self._data_batch[player.tag]['received'] = received except KeyError: self._data_batch[player.tag] = { 'player_tag': player.tag, 'donations': 0, 'received': received, 'trophies': player.trophies } self._clan_events.add(clan.tag) async def on_clan_member_trophies_change(self, _, new_trophies, player, clan): log.debug(f'Received on_clan_member_trophy_change event for player {player} of clan {clan}.') async with self._batch_lock: try: self._data_batch[player.tag]['trophies'] = new_trophies except KeyError: self._data_batch[player.tag] = { 'player_tag': player.tag, 'donations': 0, 'received': 0, 'trophies': new_trophies } self._clan_events.add(clan.tag) async def on_clan_member_join(self, member, clan): player = await self.bot.coc.get_player(member.tag) player_query = """INSERT INTO players ( player_tag, donations, received, trophies, start_trophies, season_id, start_friend_in_need, start_sharing_is_caring, start_attacks, start_defenses, start_best_trophies, start_update ) VALUES ($1,$2,$3,$4,$4,$5,$6,$7,$8,$9,$10,True) ON CONFLICT (player_tag, season_id) DO NOTHING """ response = await self.bot.pool.execute( player_query, player.tag, player.donations, player.received, player.trophies, await self.bot.seasonconfig.get_season_id(), player.achievements_dict['Friend in Need'].value, player.achievements_dict['Sharing is caring'].value, player.attack_wins, player.defense_wins, player.best_trophies ) log.debug(f'New member {member} joined clan {clan}. Performed a query to insert them into players. ' f'Status Code: {response}') query = """SELECT events.id FROM events INNER JOIN clans ON clans.guild_id = events.guild_id WHERE clans.clan_tag = $1 AND events.start <= now() AND events.finish >= now() """ fetch = await self.bot.pool.fetch(query, clan.tag) if not fetch: return event_query = """INSERT INTO eventplayers ( player_tag, trophies, event_id, start_friend_in_need, start_sharing_is_caring, start_attacks, start_defenses, start_trophies, start_best_trophies, start_update, live ) VALUES ($1, $2, $3, $4, $5, $6, $7, $8, $9, True, True) ON CONFLICT (player_tag, event_id) DO UPDATE SET live=True WHERE eventplayers.player_tag = $1 AND eventplayers.event_id = $2 """ for n in fetch: response = await self.bot.pool.execute( event_query, player.tag, player.trophies, n['id'], player.achievements_dict['Friend in Need'].value, player.achievements_dict['Sharing is caring'].value, player.attack_wins, player.defense_wins, player.trophies, player.best_trophies ) log.debug(f'New member {member} joined clan {clan}. ' f'Performed a query to insert them into eventplayers. Status Code: {response}') async def new_board_message(self, channel, board_type): if not channel: return try: new_msg = await channel.send('Placeholder') except (discord.NotFound, discord.Forbidden): return query = "INSERT INTO messages (guild_id, message_id, channel_id) VALUES ($1, $2, $3)" await self.bot.pool.execute(query, new_msg.guild.id, new_msg.id, new_msg.channel.id) event_config = await self.bot.utils.event_config(channel.id) if event_config: await self.bot.background.remove_event_msg(event_config.id, channel, board_type) await self.bot.background.new_event_message(event_config, channel.guild.id, channel.id, board_type) return new_msg async def safe_delete(self, message_id, delete_message=True): query = "DELETE FROM messages WHERE message_id = $1 RETURNING id, guild_id, message_id, channel_id" fetch = await self.bot.pool.fetchrow(query, message_id) if not fetch: return None message = DatabaseMessage(bot=self.bot, record=fetch) if not delete_message: return message self._to_be_deleted.add(message_id) m = await message.get_message() if not m: return await m.delete() async def get_board_messages(self, channel_id, number_of_msg=None): config = await self.bot.utils.board_config(channel_id) if not (config.channel or config.toggle): return fetch = await config.messages() messages = [await n.get_message() for n in fetch if await n.get_message()] size_of = len(messages) if not number_of_msg or size_of == number_of_msg: return messages if size_of > number_of_msg: for n in messages[number_of_msg:]: await self.safe_delete(n.id) return messages[:number_of_msg] if not config.channel: return for _ in range(number_of_msg - size_of): m = await self.new_board_message(config.channel, config.type) if not m: return messages.append(m) return messages async def get_top_players(self, players, board_type, sort_by, in_event, season_id=None): season_id = season_id or await self.bot.seasonconfig.get_season_id() if board_type == 'donation': column_1 = 'donations' column_2 = 'received' sort_by = 'donations' if sort_by == 'donation' else sort_by elif board_type == 'trophy': column_1 = 'trophies' column_2 = 'trophies - start_trophies' sort_by = column_2 if sort_by == 'gain' else column_1 else: return # this should be ok since columns can only be a choice of 4 defined names if in_event: query = f"""SELECT player_tag, {column_1}, {column_2} FROM eventplayers WHERE player_tag=ANY($1::TEXT[]) AND live=true ORDER BY {sort_by} DESC NULLS LAST LIMIT 100; """ fetch = await self.bot.pool.fetch(query, [n.tag for n in players]) else: query = f"""SELECT player_tag, {column_1}, {column_2} FROM players WHERE player_tag=ANY($1::TEXT[]) AND season_id=$2 ORDER BY {sort_by} DESC NULLS LAST LIMIT 100; """ fetch = await self.bot.pool.fetch(query, [n.tag for n in players], season_id) return fetch async def update_board(self, channel_id): config = await self.bot.utils.board_config(channel_id) if not config: return if not config.toggle: return if not config.channel: return if config.in_event: query = """SELECT DISTINCT clan_tag FROM clans WHERE guild_id=$1 AND in_event=$2""" fetch = await self.bot.pool.fetch(query, config.guild_id, config.in_event) else: query = "SELECT DISTINCT clan_tag FROM clans WHERE guild_id=$1" fetch = await self.bot.pool.fetch(query, config.guild_id) clans = await self.bot.coc.get_clans((n[0] for n in fetch)).flatten() players = [] for n in clans: players.extend(p for p in n.itermembers) try: top_players = await self.get_top_players(players, config.type, config.sort_by, config.in_event) except: log.error( f"{clans} channelid: {channel_id}, guildid: {config.guild_id}," f" sort: {config.sort_by}, event: {config.in_event}, type: {config.type}" ) return players = {n.tag: n for n in players if n.tag in set(x['player_tag'] for x in top_players)} message_count = math.ceil(len(top_players) / 20) messages = await self.get_board_messages(channel_id, number_of_msg=message_count) if not messages: return for i, v in enumerate(messages): player_data = top_players[i*20:(i+1)*20] table = CLYTable() for x, y in enumerate(player_data): index = i*20 + x if config.render == 2: table.add_row([index, y[1], players.get(y['player_tag'], mock).name]) else: table.add_row([index, y[1], y[2], players.get(y['player_tag'], mock).name]) render = get_render_type(config, table) fmt = render() e = discord.Embed(colour=self.get_colour(config.type, config.in_event), description=fmt, timestamp=datetime.utcnow() ) e.set_author(name=f'Event in Progress!' if config.in_event else config.title, icon_url=config.icon_url or 'https://cdn.discordapp.com/' 'emojis/592028799768592405.png?v=1') e.set_footer(text='Last Updated') await v.edit(embed=e, content=None) @staticmethod def get_colour(board_type, in_event): if board_type == 'donation': if in_event: return discord.Colour.gold() return discord.Colour.blue() if in_event: return discord.Colour.purple() return discord.Colour.green() @commands.command(hidden=True) @commands.is_owner() async def forceboard(self, ctx, channel_id: int = None): await self.update_board(channel_id or ctx.channel.id) await ctx.confirm() def setup(bot): bot.add_cog(DonationBoard(bot))
# -*- coding: utf-8 -*- """ S3 Notifications @copyright: 2011-2021 (c) Sahana Software Foundation @license: MIT Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import datetime import json import os import string import sys from io import StringIO from urllib.parse import urlencode from urllib import parse as urlparse from urllib import request as urllib2 from urllib.request import urlopen from urllib.error import HTTPError from uuid import uuid4 from gluon import current, TABLE, THEAD, TBODY, TR, TD, TH, XML from .s3datetime import s3_decode_iso_datetime, s3_encode_iso_datetime, s3_utc from .s3utils import s3_str, s3_truncate, s3_unicode # ============================================================================= class S3Notifications(object): """ Framework to send notifications about subscribed events """ # ------------------------------------------------------------------------- @classmethod def check_subscriptions(cls): """ Scheduler entry point, creates notification tasks for all active subscriptions which (may) have updates. """ _debug = current.log.debug now = datetime.datetime.utcnow() _debug("S3Notifications.check_subscriptions(now=%s)" % now) subscriptions = cls._subscriptions(now) if subscriptions: run_async = current.s3task.run_async for row in subscriptions: # Create asynchronous notification task. row.update_record(locked = True) run_async("notify_notify", args=[row.id]) message = "%s notifications scheduled." % len(subscriptions) else: message = "No notifications to schedule." _debug(message) return message # ------------------------------------------------------------------------- @classmethod def notify(cls, resource_id): """ Asynchronous task to notify a subscriber about updates, runs a POST?format=msg request against the subscribed controller which extracts the data and renders and sends the notification message (see send()). @param resource_id: the pr_subscription_resource record ID """ _debug = current.log.debug _debug("S3Notifications.notify(resource_id=%s)" % resource_id) db = current.db s3db = current.s3db stable = s3db.pr_subscription rtable = db.pr_subscription_resource ftable = s3db.pr_filter # Extract the subscription data join = stable.on(rtable.subscription_id == stable.id) left = ftable.on(ftable.id == stable.filter_id) # @todo: should not need rtable.resource here row = db(rtable.id == resource_id).select(stable.id, stable.pe_id, stable.frequency, stable.notify_on, stable.method, stable.email_format, stable.attachment, rtable.id, rtable.resource, rtable.url, rtable.last_check_time, ftable.query, join = join, left = left, ).first() if not row: return True s = getattr(row, "pr_subscription") r = getattr(row, "pr_subscription_resource") f = getattr(row, "pr_filter") # Create a temporary token to authorize the lookup request auth_token = str(uuid4()) # Store the auth_token in the subscription record r.update_record(auth_token = auth_token) db.commit() # Construct the send-URL public_url = current.deployment_settings.get_base_public_url() lookup_url = "%s/%s/%s" % (public_url, current.request.application, r.url.lstrip("/")) # Break up the URL into its components purl = list(urlparse.urlparse(lookup_url)) # Subscription parameters # Date (must ensure we pass to REST as tz-aware) last_check_time = s3_encode_iso_datetime(r.last_check_time) query = {"subscription": auth_token, "format": "msg"} if "upd" in s.notify_on: query["~.modified_on__ge"] = "%sZ" % last_check_time else: query["~.created_on__ge"] = "%sZ" % last_check_time # Filters if f.query: from .s3filter import S3FilterString resource = s3db.resource(r.resource) fstring = S3FilterString(resource, f.query) for k, v in fstring.get_vars.items(): if v is not None: if k in query: value = query[k] if type(value) is list: value.append(v) else: query[k] = [value, v] else: query[k] = v query_nice = s3_unicode(fstring.represent()) else: query_nice = None # Add subscription parameters and filters to the URL query, and # put the URL back together query = urlencode(query) if purl[4]: query = "&".join((purl[4], query)) page_url = urlparse.urlunparse([purl[0], # scheme purl[1], # netloc purl[2], # path purl[3], # params query, # query purl[5], # fragment ]) # Serialize data for send (avoid second lookup in send) data = json.dumps({"pe_id": s.pe_id, "notify_on": s.notify_on, "method": s.method, "email_format": s.email_format, "attachment": s.attachment, "resource": r.resource, "last_check_time": last_check_time, "filter_query": query_nice, "page_url": lookup_url, "item_url": None, }) # Send the request _debug("Requesting %s" % page_url) req = urllib2.Request(page_url, data=data.encode("utf-8")) req.add_header("Content-Type", "application/json") success = False try: response = json.loads(urlopen(req).read()) message = response["message"] if response["status"] == "success": success = True except HTTPError as e: message = ("HTTP %s: %s" % (e.code, e.read())) except: exc_info = sys.exc_info()[:2] message = ("%s: %s" % (exc_info[0].__name__, exc_info[1])) _debug(message) # Update time stamps and unlock, invalidate auth token intervals = s3db.pr_subscription_check_intervals interval = datetime.timedelta(minutes=intervals.get(s.frequency, 0)) if success: last_check_time = datetime.datetime.utcnow() next_check_time = last_check_time + interval r.update_record(auth_token = None, locked = False, last_check_time = last_check_time, next_check_time = next_check_time, ) else: r.update_record(auth_token = None, locked = False, ) db.commit() # Done return message # ------------------------------------------------------------------------- @classmethod def send(cls, r, resource): """ Method to retrieve updates for a subscription, render the notification message and send it - responds to POST?format=msg requests to the respective resource. @param r: the S3Request @param resource: the S3Resource """ _debug = current.log.debug _debug("S3Notifications.send()") json_message = current.xml.json_message # Read subscription data source = r.body source.seek(0) data = source.read() subscription = json.loads(data) #_debug("Notify PE #%s by %s on %s of %s since %s" % \ # (subscription["pe_id"], # str(subscription["method"]), # str(subscription["notify_on"]), # subscription["resource"], # subscription["last_check_time"], # )) # Check notification settings notify_on = subscription["notify_on"] methods = subscription["method"] if not notify_on or not methods: return json_message(message = "No notifications configured " "for this subscription") # Authorization (pe_id must not be None) pe_id = subscription["pe_id"] if not pe_id: r.unauthorised() # Fields to extract fields = resource.list_fields(key="notify_fields") if "created_on" not in fields: fields.append("created_on") # Extract the data data = resource.select(fields, represent = True, raw_data = True) rows = data["rows"] # How many records do we have? numrows = len(rows) if not numrows: return json_message(message = "No records found") #_debug("%s rows:" % numrows) # Prepare meta-data get_config = resource.get_config settings = current.deployment_settings page_url = subscription["page_url"] crud_strings = current.response.s3.crud_strings.get(resource.tablename) if crud_strings: resource_name = crud_strings.title_list else: resource_name = string.capwords(resource.name, "_") last_check_time = s3_decode_iso_datetime(subscription["last_check_time"]) email_format = subscription["email_format"] if not email_format: email_format = settings.get_msg_notify_email_format() filter_query = subscription.get("filter_query") meta_data = {"systemname": settings.get_system_name(), "systemname_short": settings.get_system_name_short(), "resource": resource_name, "page_url": page_url, "notify_on": notify_on, "last_check_time": last_check_time, "filter_query": filter_query, "total_rows": numrows, } # Render contents for the message template(s) renderer = get_config("notify_renderer") if not renderer: renderer = settings.get_msg_notify_renderer() if not renderer: renderer = cls._render contents = {} if email_format == "html" and "EMAIL" in methods: contents["html"] = renderer(resource, data, meta_data, "html") contents["default"] = contents["html"] if email_format != "html" or "EMAIL" not in methods or len(methods) > 1: contents["text"] = renderer(resource, data, meta_data, "text") contents["default"] = contents["text"] # Subject line subject = get_config("notify_subject") if not subject: subject = settings.get_msg_notify_subject() if callable(subject): subject = subject(resource, data, meta_data) from string import Template subject = Template(subject).safe_substitute(S = "%(systemname)s", s = "%(systemname_short)s", r = "%(resource)s") subject = subject % meta_data # Attachment attachment = subscription.get("attachment", False) document_ids = None if attachment: attachment_fnc = settings.get_msg_notify_attachment() if attachment_fnc: document_ids = attachment_fnc(resource, data, meta_data) # **data for send_by_pe_id function in s3msg send_data = {} send_data_fnc = settings.get_msg_notify_send_data() if callable(send_data_fnc): send_data = send_data_fnc(resource, data, meta_data) # Helper function to find message templates from a priority list join = lambda *f: os.path.join(current.request.folder, *f) def get_msg_template(path, filenames): for fn in filenames: filepath = join(path, fn) if os.path.exists(filepath): try: return open(filepath, "rb") except: pass return None # Render and send the message(s) templates = settings.get_template() if templates != "default" and not isinstance(templates, (tuple, list)): templates = (templates,) prefix = resource.get_config("notify_template", "notify") send = current.msg.send_by_pe_id success = False errors = [] for method in methods: error = None # Get the message template msg_template = None filenames = ["%s_%s.html" % (prefix, method.lower())] if method == "EMAIL" and email_format: filenames.insert(0, "%s_email_%s.html" % (prefix, email_format)) if templates != "default": for template in templates[::-1]: path = join("modules", "templates", template, "views", "msg") msg_template = get_msg_template(path, filenames) if msg_template is not None: break if msg_template is None: path = join("views", "msg") msg_template = get_msg_template(path, filenames) if msg_template is None: msg_template = StringIO(s3_str(current.T("New updates are available."))) # Select contents format if method == "EMAIL" and email_format == "html": output = contents["html"] else: output = contents["text"] # Render the message try: message = current.response.render(msg_template, output) except: exc_info = sys.exc_info()[:2] error = ("%s: %s" % (exc_info[0].__name__, exc_info[1])) errors.append(error) continue finally: if hasattr(msg_template, "close"): msg_template.close() if not message: continue # Send the message #_debug("Sending message per %s" % method) #_debug(message) try: sent = send(pe_id, # RFC 2822 subject = s3_truncate(subject, 78), message = message, contact_method = method, system_generated = True, document_ids = document_ids, **send_data ) except: exc_info = sys.exc_info()[:2] error = ("%s: %s" % (exc_info[0].__name__, exc_info[1])) sent = False if sent: # Successful if at least one notification went out success = True else: if not error: error = current.session.error if isinstance(error, list): error = "/".join(error) if error: errors.append(error) # Done if errors: message = ", ".join(errors) else: message = "Success" return json_message(success = success, statuscode = 200 if success else 403, message = message) # ------------------------------------------------------------------------- @classmethod def _subscriptions(cls, now): """ Helper method to find all subscriptions which need to be notified now. @param now: current datetime (UTC) @return: joined Rows pr_subscription/pr_subscription_resource, or None if no due subscriptions could be found @todo: take notify_on into account when checking """ db = current.db s3db = current.s3db stable = s3db.pr_subscription rtable = db.pr_subscription_resource # Find all resources with due subscriptions next_check = rtable.next_check_time locked_deleted = (rtable.locked != True) & \ (rtable.deleted == False) query = ((next_check == None) | (next_check <= now)) & \ locked_deleted tname = rtable.resource last_check = rtable.last_check_time mtime = last_check.min() rows = db(query).select(tname, mtime, groupby = tname, ) if not rows: return None # Select those which have updates resources = set() radd = resources.add for row in rows: tablename = row[tname] table = s3db.table(tablename) if not table or not "modified_on" in table.fields: # Can't notify updates in resources without modified_on continue modified_on = table.modified_on msince = row[mtime] if msince is None: query = (table.id > 0) else: query = (modified_on >= msince) update = db(query).select(modified_on, orderby = ~(modified_on), limitby = (0, 1) ).first() if update: radd((tablename, update.modified_on)) if not resources: return None # Get all active subscriptions to these resources which # may need to be notified now: join = rtable.on((rtable.subscription_id == stable.id) & \ locked_deleted) query = None for rname, modified_on in resources: q = (tname == rname) & \ ((last_check == None) | (last_check <= modified_on)) if query is None: query = q else: query |= q query = (stable.frequency != "never") & \ (stable.deleted == False) & \ ((next_check == None) | \ (next_check <= now)) & \ query return db(query).select(rtable.id, join = join, ) # ------------------------------------------------------------------------- @classmethod def _render(cls, resource, data, meta_data, format=None): """ Method to pre-render the contents for the message template @param resource: the S3Resource @param data: the data returned from S3Resource.select @param meta_data: the meta data for the notification @param format: the contents format ("text" or "html") """ created_on_selector = resource.prefix_selector("created_on") created_on_colname = None notify_on = meta_data["notify_on"] last_check_time = meta_data["last_check_time"] rows = data["rows"] rfields = data["rfields"] output = {} new, upd = [], [] if format == "html": # Pre-formatted HTML colnames = [] new_headers = TR() mod_headers = TR() for rfield in rfields: if rfield.selector == created_on_selector: created_on_colname = rfield.colname elif rfield.ftype != "id": colnames.append(rfield.colname) label = rfield.label new_headers.append(TH(label)) mod_headers.append(TH(label)) for row in rows: append_record = upd.append if created_on_colname: try: created_on = row["_row"][created_on_colname] except (KeyError, AttributeError): pass else: if s3_utc(created_on) >= last_check_time: append_record = new.append tr = TR([TD(XML(row[colname])) for colname in colnames]) append_record(tr) if "new" in notify_on and len(new): output["new"] = len(new) output["new_records"] = TABLE(THEAD(new_headers), TBODY(new)) else: output["new"] = None if "upd" in notify_on and len(upd): output["upd"] = len(upd) output["upd_records"] = TABLE(THEAD(new_headers), TBODY(upd)) else: output["upd"] = None else: # Standard text format labels = [] append = labels.append for rfield in rfields: if rfield.selector == created_on_selector: created_on_colname = rfield.colname elif rfield.ftype != "id": append((rfield.colname, rfield.label)) for row in rows: append_record = upd.append if created_on_colname: try: created_on = row["_row"][created_on_colname] except (KeyError, AttributeError): pass else: if s3_utc(created_on) >= last_check_time: append_record = new.append record = [] append_column = record.append for colname, label in labels: append_column((label, row[colname])) append_record(record) if "new" in notify_on and len(new): output["new"] = len(new) output["new_records"] = new else: output["new"] = None if "upd" in notify_on and len(upd): output["upd"] = len(upd) output["upd_records"] = upd else: output["upd"] = None output.update(meta_data) return output # END =========================================================================
import struct import unittest from typing import List import pyparcel DATA: List[int] = [ -1 << 31, -1000, -57, -26, -20, -5, -2, -1, 0, 1, 2, 5, 20, 57, 1000, (1 << 31) - 1, ] class MyTestCase(unittest.TestCase): def test_pack(self): for i in DATA: self.assertEqual(pyparcel.pack(i), struct.pack("i", i)) def test_pack_unpack(self): for i in DATA: self.assertEqual(i, pyparcel.unpack(pyparcel.pack(i), int())) if __name__ == "__main__": unittest.main()
""" AdamP Copyright (c) 2020-present NAVER Corp. MIT license """ import torch import torch.nn as nn from torch.optim.optimizer import Optimizer, required import math class SGDP(Optimizer): def __init__(self, params, lr=required, momentum=0, dampening=0, weight_decay=0, nesterov=False, eps=1e-8, delta=0.1, wd_ratio=0.1): defaults = dict(lr=lr, momentum=momentum, dampening=dampening, weight_decay=weight_decay, nesterov=nesterov, eps=eps, delta=delta, wd_ratio=wd_ratio) super(SGDP, self).__init__(params, defaults) def _channel_view(self, x): return x.view(x.size(0), -1) def _layer_view(self, x): return x.view(1, -1) def _cosine_similarity(self, x, y, eps, view_func): x = view_func(x) y = view_func(y) x_norm = x.norm(dim=1).add_(eps) y_norm = y.norm(dim=1).add_(eps) dot = (x * y).sum(dim=1) return dot.abs() / x_norm / y_norm def _projection(self, p, grad, perturb, delta, wd_ratio, eps): wd = 1 expand_size = [-1] + [1] * (len(p.shape) - 1) for view_func in [self._channel_view, self._layer_view]: cosine_sim = self._cosine_similarity(grad, p.data, eps, view_func) if cosine_sim.max() < delta / math.sqrt(view_func(p.data).size(1)): p_n = p.data / view_func(p.data).norm(dim=1).view(expand_size).add_(eps) perturb -= p_n * view_func(p_n * perturb).sum(dim=1).view(expand_size) wd = wd_ratio return perturb, wd return perturb, wd def step(self, closure=None): loss = None if closure is not None: loss = closure() for group in self.param_groups: weight_decay = group['weight_decay'] momentum = group['momentum'] dampening = group['dampening'] nesterov = group['nesterov'] for p in group['params']: if p.grad is None: continue grad = p.grad.data state = self.state[p] # State initialization if len(state) == 0: state['momentum'] = torch.zeros_like(p.data) # SGD buf = state['momentum'] buf.mul_(momentum).add_(1 - dampening, grad) if nesterov: d_p = grad + momentum * buf else: d_p = buf # Projection wd_ratio = 1 if len(p.shape) > 1: d_p, wd_ratio = self._projection(p, grad, d_p, group['delta'], group['wd_ratio'], group['eps']) # Weight decay if weight_decay != 0: p.data.mul_(1 - group['lr'] * group['weight_decay'] * wd_ratio / (1-momentum)) # Step p.data.add_(-group['lr'], d_p) return loss
from flask import Flask, jsonify, send_file, url_for import data_functions from datetime import datetime app = Flask(__name__) #__name__ is a special variable in python that creates an instance of the web app @app.route("/", methods =['GET']) def hello(): return ("Hello World") @app.route("/hello") def helloo(): return "Hello Not World" @app.route("/total_loss/<first_name>/<last_name>", methods = ['GET']) def total_loss(first_name, last_name): return str(data_functions.total_loss(first_name, last_name)) @app.route("/total_weights_graph/<first_name>/<last_name>", methods = ['GET']) def total_weights(first_name, last_name): data_functions.get_total_weights(first_name, last_name) filename = '/Users/Pranav/PycharmProjects/WeightTracker' return "http://127.0.0.1:5000" + url_for('static', filename="total_weights_graph.png") @app.route("/weekly_weights_graph/<first_name>/<last_name>", methods = ['GET']) def week_weights(first_name, last_name): data_functions.get_week_weights(first_name, last_name) return "http://127.0.0.1:5000" + url_for('static', filename="week_weights_graph.png") @app.route("/add_weight/<first_name>/<last_name>/<weight>", methods = ['GET','POST']) def add_weight(first_name, last_name, weight): data_functions.add_weight(first_name, last_name, int(weight), datetime.now().timestamp()) return if __name__ == '__main__': app.run(debug=True)
class ConfigurationError(Exception): """ The exception raised by any object when it's misconfigured (e.g. missing properties, invalid properties, unknown properties). """ def __init__(self, message): super().__init__() self.message = message def __str__(self): return repr(self.message)
# Copyright Contributors to the Amundsen project. # SPDX-License-Identifier: Apache-2.0 from setuptools import find_packages, setup __version__ = '4.3.1' requirements = [ "neo4j-driver>=1.7.2,<4.0", "pytz>=2018.4", "statsd>=3.2.1", "retrying>=1.3.3", "requests>=2.23.0,<3.0", "elasticsearch>=6.2.0,<7.0", "pyhocon>=0.3.42", "unidecode", "Jinja2>=2.10.0,<2.12", "pandas>=0.21.0,<1.2.0", "amundsen-rds>=0.0.4" ] kafka = ['confluent-kafka==1.0.0'] cassandra = ['cassandra-driver==3.20.1'] glue = ['boto3==1.10.1'] snowflake = [ 'snowflake-connector-python', 'snowflake-sqlalchemy' ] athena = ['PyAthena[SQLAlchemy]>=1.0.0, <2.0.0'] # Python API client for google # License: Apache Software License # Upstream url: https://github.com/googleapis/google-api-python-client bigquery = [ 'google-api-python-client>=1.6.0, <2.0.0dev', 'google-auth-httplib2>=0.0.1', 'google-auth>=1.0.0, <2.0.0dev' ] jsonpath = ['jsonpath_rw==1.4.0'] db2 = [ 'ibm_db==3.0.1', 'ibm-db-sa-py3==0.3.1-1' ] dremio = [ 'pyodbc==4.0.30' ] druid = [ 'pydruid' ] spark = [ 'pyspark == 3.0.1' ] neptune = [ 'amundsen-gremlin>=0.0.9', 'Flask==1.0.2', 'gremlinpython==3.4.3', 'requests-aws4auth==0.9', 'typing-extensions==3.7.4', 'overrides==2.5', 'boto3==1.10.1' ] feast = [ 'feast==0.8.0' ] atlas = [ 'pyatlasclient==1.1.2' ] rds = [ 'sqlalchemy>=1.3.6,<1.4', 'mysqlclient>=1.3.6,<3' ] all_deps = requirements + kafka + cassandra + glue + snowflake + athena + \ bigquery + jsonpath + db2 + dremio + druid + spark + feast + neptune + rds setup( name='amundsen-databuilder', version=__version__, description='Amundsen Data builder', url='https://www.github.com/amundsen-io/amundsendatabuilder', maintainer='Amundsen TSC', maintainer_email='amundsen-tsc@lists.lfai.foundation', packages=find_packages(exclude=['tests*']), dependency_links=[], install_requires=requirements, python_requires='>=3.6', extras_require={ 'all': all_deps, 'kafka': kafka, # To use with Kafka source extractor 'cassandra': cassandra, 'glue': glue, 'snowflake': snowflake, 'athena': athena, 'bigquery': bigquery, 'jsonpath': jsonpath, 'db2': db2, 'dremio': dremio, 'druid': druid, 'neptune': neptune, 'delta': spark, 'feast': feast, 'atlas': atlas, 'rds': rds }, classifiers=[ 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', ], )
# coding=utf-8 # Copyright 2021 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Core Fast Attention Module for Flax. Implementation of the approximate fast softmax and generalized attention mechanism leveraging structured random feature maps [RFM] techniques and low rank decomposition of the attention matrix. """ # pylint: disable=invalid-name, missing-function-docstring, line-too-long import abc from collections.abc import Iterable # pylint: disable=g-importing-member import functools from absl import logging import gin import jax from jax import lax from jax import random import jax.numpy as jnp import numpy as onp # Nonlinear mappings encoding different attention kernels. gin.external_configurable(jnp.cos, 'jcos') gin.external_configurable(jnp.sin, 'jsin') gin.external_configurable(jnp.tanh, 'jtanh') gin.external_configurable(jax.nn.sigmoid, 'jsigmoid') gin.external_configurable( lambda x: jax.nn.gelu(x, approximate=False), 'jgelu' ) # Needs to be exact, although might be slower. See https://github.com/google/jax/issues/4428. gin.external_configurable(lambda x: x * x * (x > 0.0), 'jrequ') gin.external_configurable(jnp.exp, 'jexp') gin.external_configurable(lambda x: x, 'jidentity') gin.external_configurable( lambda x: (jnp.exp(x)) * (x <= 0.0) + (x + 1.0) * (x > 0.0), 'jshiftedelu' ) # Nonlinearity used in "Transformers are RNNs: Fast Autoregressive Transformers with Linear Attention" (https://arxiv.org/abs/2006.16236). def nonnegative_softmax_kernel_feature_creator(data, projection_matrix, attention_dims_t, batch_dims_t, precision, is_query, normalize_data=True, eps=0.0001): """Constructs nonnegative kernel features for fast softmax attention. Args: data: input for which features are computes projection_matrix: random matrix used to compute features attention_dims_t: tuple of attention dimensions batch_dims_t: tuple of batch dimensions precision: precision parameter is_query: predicate indicating whether input data corresponds to queries or keys normalize_data: predicate indicating whether data should be normalized, eps: numerical stabilizer. Returns: Random features for fast softmax attention. """ if normalize_data: # We have e^{qk^T/sqrt{d}} = e^{q_norm k_norm^T}, where # w_norm = w * data_normalizer for w in {q,k}. data_normalizer = 1.0 / (jnp.sqrt(jnp.sqrt(data.shape[-1]))) else: data_normalizer = 1.0 ratio = 1.0 / jnp.sqrt(projection_matrix.shape[0]) data_mod_shape = data.shape[0:len(batch_dims_t)] + projection_matrix.shape data_thick_random_matrix = jnp.zeros(data_mod_shape) + projection_matrix data_dash = lax.dot_general( data_normalizer * data, data_thick_random_matrix, (((data.ndim - 1,), (data_thick_random_matrix.ndim - 1,)), (batch_dims_t, batch_dims_t)), precision=precision) diag_data = jnp.square(data) diag_data = jnp.sum(diag_data, axis=data.ndim - 1) diag_data = (diag_data / 2.0) * data_normalizer * data_normalizer diag_data = jnp.expand_dims(diag_data, axis=data.ndim - 1) last_dims_t = (len(data_dash.shape) - 1,) if is_query: data_dash = ratio * ( jnp.exp(data_dash - diag_data - jnp.max(data_dash, axis=last_dims_t, keepdims=True)) + eps) else: data_dash = ratio * ( jnp.exp(data_dash - diag_data - jnp.max( data_dash, axis=last_dims_t + attention_dims_t, keepdims=True)) + eps) return data_dash def sincos_softmax_kernel_feature_creator(data, projection_matrix, attention_dims_t, batch_dims_t, precision, normalize_data=True): """Constructs kernel sin-cos features for fast softmax attention. Args: data: input for which features are computes projection_matrix: random matrix used to compute features attention_dims_t: tuple of attention dimensions batch_dims_t: tuple of batch dimensions precision: precision parameter normalize_data: predicate indicating whether data should be normalized. Returns: Random features for fast softmax attention. """ if normalize_data: # We have: exp(qk^T/sqrt{d}) = exp(|q|^2/2sqrt{d}) * exp(|k|^2/2sqrt{d}) * # exp(-(|q*c-k*c|^2)/2), where c = 1.0 / sqrt{sqrt{d}}. data_normalizer = 1.0 / (jnp.sqrt(jnp.sqrt(data.shape[-1]))) else: data_normalizer = 1.0 ratio = 1.0 / jnp.sqrt(projection_matrix.shape[0]) data_mod_shape = data.shape[0:len(batch_dims_t)] + projection_matrix.shape data_thick_random_matrix = jnp.zeros(data_mod_shape) + projection_matrix data_dash = lax.dot_general( data_normalizer * data, data_thick_random_matrix, (((data.ndim - 1,), (data_thick_random_matrix.ndim - 1,)), (batch_dims_t, batch_dims_t)), precision=precision) data_dash_cos = ratio * jnp.cos(data_dash) data_dash_sin = ratio * jnp.sin(data_dash) data_dash = jnp.concatenate((data_dash_cos, data_dash_sin), axis=-1) # Constructing D_data and data^{'} diag_data = jnp.square(data) diag_data = jnp.sum(diag_data, axis=data.ndim - 1) diag_data = (diag_data / 2.0) * data_normalizer * data_normalizer diag_data = jnp.expand_dims(diag_data, axis=data.ndim - 1) # Additional renormalization for numerical stability data_renormalizer = jnp.max(diag_data, attention_dims_t, keepdims=True) diag_data -= data_renormalizer diag_data = jnp.exp(diag_data) data_prime = data_dash * diag_data return data_prime def generalized_kernel_feature_creator(data, projection_matrix, batch_dims_t, precision, kernel_fn, kernel_epsilon, normalize_data): """Constructs kernel features for fast generalized attention. Args: data: input for which features are computes projection_matrix: matrix used to compute features batch_dims_t: tuple of batch dimensions precision: precision parameter kernel_fn: kernel function used kernel_epsilon: additive positive term added to every feature for numerical stability normalize_data: predicate indicating whether data should be normalized. Returns: Random features for fast generalized attention. """ if normalize_data: data_normalizer = 1.0 / (jnp.sqrt(jnp.sqrt(data.shape[-1]))) else: data_normalizer = 1.0 if projection_matrix is None: return kernel_fn(data_normalizer * data) + kernel_epsilon else: data_mod_shape = data.shape[0:len(batch_dims_t)] + projection_matrix.shape data_thick_random_matrix = jnp.zeros(data_mod_shape) + projection_matrix data_dash = lax.dot_general( data_normalizer * data, data_thick_random_matrix, (((data.ndim - 1,), (data_thick_random_matrix.ndim - 1,)), (batch_dims_t, batch_dims_t)), precision=precision) data_prime = kernel_fn(data_dash) + kernel_epsilon return data_prime @gin.configurable def make_fast_softmax_attention(qkv_dim, renormalize_attention=True, numerical_stabilizer=0.000001, nb_features=256, ortho_features=True, ortho_scaling=0.0, redraw_features=True, unidirectional=False, nonnegative_features=True, lax_scan_unroll=1): """Construct a fast softmax attention method.""" logging.info( 'Fast softmax attention: %s features and orthogonal=%s, renormalize=%s', nb_features, ortho_features, renormalize_attention) if ortho_features: matrix_creator = functools.partial( GaussianOrthogonalRandomMatrix, nb_features, qkv_dim, scaling=ortho_scaling) else: matrix_creator = functools.partial(GaussianUnstructuredRandomMatrix, nb_features, qkv_dim) if nonnegative_features: def kernel_feature_creator(data, projection_matrix, attention_dims_t, batch_dims_t, precision, is_query, normalize_data=True): return nonnegative_softmax_kernel_feature_creator( data, projection_matrix, attention_dims_t, batch_dims_t, precision, is_query, normalize_data, numerical_stabilizer) else: def kernel_feature_creator(data, projection_matrix, attention_dims_t, batch_dims_t, precision, is_query, normalize_data=True): del is_query return sincos_softmax_kernel_feature_creator(data, projection_matrix, attention_dims_t, batch_dims_t, precision, normalize_data) attention_fn = FastAttentionviaLowRankDecomposition( matrix_creator, kernel_feature_creator, renormalize_attention=renormalize_attention, numerical_stabilizer=numerical_stabilizer, redraw_features=redraw_features, unidirectional=unidirectional, lax_scan_unroll=lax_scan_unroll).dot_product_attention return attention_fn @gin.configurable def make_fast_generalized_attention(qkv_dim, renormalize_attention=True, numerical_stabilizer=0.0, nb_features=256, features_type='deterministic', kernel_fn=jax.nn.relu, kernel_epsilon=0.001, redraw_features=False, unidirectional=False, lax_scan_unroll=1): """Construct a fast generalized attention menthod.""" logging.info('Fast generalized attention.: %s features and renormalize=%s', nb_features, renormalize_attention) if features_type == 'ortho': matrix_creator = functools.partial( GaussianOrthogonalRandomMatrix, nb_features, qkv_dim, scaling=False) elif features_type == 'iid': matrix_creator = functools.partial(GaussianUnstructuredRandomMatrix, nb_features, qkv_dim) elif features_type == 'deterministic': matrix_creator = None else: raise ValueError('Unknown feature value type') def kernel_feature_creator(data, projection_matrix, attention_dims_t, batch_dims_t, precision, is_query, normalize_data=False): del attention_dims_t del is_query return generalized_kernel_feature_creator(data, projection_matrix, batch_dims_t, precision, kernel_fn, kernel_epsilon, normalize_data) attention_fn = FastAttentionviaLowRankDecomposition( matrix_creator, kernel_feature_creator, renormalize_attention=renormalize_attention, numerical_stabilizer=numerical_stabilizer, redraw_features=redraw_features, unidirectional=unidirectional, lax_scan_unroll=lax_scan_unroll).dot_product_attention return attention_fn class RandomMatrix(object): r"""Abstract class providing a method for constructing 2D random arrays. Class is responsible for constructing 2D random arrays. """ __metaclass__ = abc.ABCMeta @abc.abstractmethod def get_2d_array(self): raise NotImplementedError('Abstract method') class GaussianUnstructuredRandomMatrix(RandomMatrix): def __init__(self, nb_rows, nb_columns, key): self.nb_rows = nb_rows self.nb_columns = nb_columns self.key = key def get_2d_array(self): return random.normal(self.key, (self.nb_rows, self.nb_columns)) class GaussianOrthogonalRandomMatrix(RandomMatrix): r"""Class providing a method to create Gaussian orthogonal matrix. Class is responsible for constructing 2D Gaussian orthogonal arrays. """ def __init__(self, nb_rows, nb_columns, key, scaling=0): self.nb_rows = nb_rows self.nb_columns = nb_columns self.key = key self.scaling = scaling def get_2d_array(self): nb_full_blocks = int(self.nb_rows / self.nb_columns) block_list = [] rng = self.key for _ in range(nb_full_blocks): rng, rng_input = jax.random.split(rng) unstructured_block = random.normal(rng_input, (self.nb_columns, self.nb_columns)) q, _ = jnp.linalg.qr(unstructured_block) q = jnp.transpose(q) block_list.append(q) remaining_rows = self.nb_rows - nb_full_blocks * self.nb_columns if remaining_rows > 0: rng, rng_input = jax.random.split(rng) unstructured_block = random.normal(rng_input, (self.nb_columns, self.nb_columns)) q, _ = jnp.linalg.qr(unstructured_block) q = jnp.transpose(q) block_list.append(q[0:remaining_rows]) final_matrix = jnp.vstack(block_list) if self.scaling == 0: multiplier = jnp.linalg.norm( random.normal(self.key, (self.nb_rows, self.nb_columns)), axis=1) elif self.scaling == 1: multiplier = jnp.sqrt(float(self.nb_columns)) * jnp.ones((self.nb_rows)) else: raise ValueError('Scaling must be one of {0, 1}. Was %s' % self._scaling) return jnp.matmul(jnp.diag(multiplier), final_matrix) class FastAttention(object): r"""Abstract class providing a method for fast attention. Class is responsible for providing a method <dot_product_attention> for fast approximate attention. """ __metaclass__ = abc.ABCMeta @abc.abstractmethod def dot_product_attention(self, query, key, value, dtype=jnp.float32, bias=None, axis=None, broadcast_dropout=True, dropout_rng=None, dropout_rate=0., deterministic=False, precision=None): """Computes dot-product attention given query, key, and value. This is the core function for applying fast approximate dot-product attention. It calculates the attention weights given query and key and combines the values using the attention weights. This function supports multi-dimensional inputs. Args: query: queries for calculating attention with shape of [batch_size, dim1, dim2, ..., dimN, num_heads, mem_channels]. key: keys for calculating attention with shape of [batch_size, dim1, dim2, ..., dimN, num_heads, mem_channels]. value: values to be used in attention with shape of [batch_size, dim1, dim2,..., dimN, num_heads, value_channels]. dtype: the dtype of the computation (default: float32) bias: bias for the attention weights. This can be used for incorporating autoregressive mask, padding mask, proximity bias. axis: axises over which the attention is applied. broadcast_dropout: bool: use a broadcasted dropout along batch dims. dropout_rng: JAX PRNGKey: to be used for dropout. dropout_rate: dropout rate. deterministic: bool, deterministic or not (to apply dropout). precision: numerical precision of the computation see `jax.lax.Precision` for details. Returns: Output of shape [bs, dim1, dim2, ..., dimN,, num_heads, value_channels]. """ raise NotImplementedError('Abstract method') def _numerator(z_slice_shape, precision, unroll=1): def fwd(qs, ks, vs): def body(p, qkv): (q, k, v) = qkv p += jnp.einsum('...m,...d->...md', k, v, precision=precision) X_slice = jnp.einsum('...m,...md->...d', q, p, precision=precision) return p, X_slice init_value = jnp.zeros(z_slice_shape) p, W = lax.scan(body, init_value, (qs, ks, vs), unroll=unroll) return W, (p, qs, ks, vs) def bwd(pqkv, W_ct): def body(carry, qkv_xct): p, p_ct = carry q, k, v, x_ct = qkv_xct q_ct = jnp.einsum('...d,...md->...m', x_ct, p, precision=precision) p_ct += jnp.einsum('...d,...m->...md', x_ct, q, precision=precision) k_ct = jnp.einsum('...md,...d->...m', p_ct, v, precision=precision) v_ct = jnp.einsum('...md,...m->...d', p_ct, k, precision=precision) p -= jnp.einsum('...m,...d->...md', k, v, precision=precision) return (p, p_ct), (q_ct, k_ct, v_ct) p, qs, ks, vs = pqkv _, (qs_ct, ks_ct, vs_ct) = lax.scan( body, (p, jnp.zeros_like(p)), (qs, ks, vs, W_ct), reverse=True, unroll=unroll) return qs_ct, ks_ct, vs_ct @jax.custom_vjp def _numerator_impl(qs, ks, vs): W, _ = fwd(qs, ks, vs) return W _numerator_impl.defvjp(fwd, bwd) return _numerator_impl def _denominator(t_slice_shape, precision, unroll=1): def fwd(qs, ks): def body(p, qk): q, k = qk p += k x = jnp.einsum('...m,...m->...', q, p, precision=precision) return p, x p = jnp.zeros(t_slice_shape) p, R = lax.scan(body, p, (qs, ks), unroll=unroll) return R, (qs, ks, p) def bwd(qkp, R_ct): def body(carry, qkx): p, p_ct = carry q, k, x_ct = qkx q_ct = jnp.einsum('...,...m->...m', x_ct, p, precision=precision) p_ct += jnp.einsum('...,...m->...m', x_ct, q, precision=precision) k_ct = p_ct p -= k return (p, p_ct), (q_ct, k_ct) qs, ks, p = qkp _, (qs_ct, ks_ct) = lax.scan( body, (p, jnp.zeros_like(p)), (qs, ks, R_ct), reverse=True, unroll=unroll) return (qs_ct, ks_ct) @jax.custom_vjp def _denominator_impl(qs, ks): R, _ = fwd(qs, ks) return R _denominator_impl.defvjp(fwd, bwd) return _denominator_impl class FastAttentionviaLowRankDecomposition(FastAttention): r"""Class providing a method for fast attention via low rank decomposition. Class is responsible for providing a method <dot_product_attention> for fast dot-product attention with the use of low rank decomposition (e.g. with random feature maps). """ def __init__(self, matrix_creator, kernel_feature_creator, renormalize_attention, numerical_stabilizer, redraw_features, unidirectional, lax_scan_unroll=1): # For optimal GPU performance, set to 16. rng = random.PRNGKey(0) self.matrix_creator = matrix_creator self.projection_matrix = self.draw_weights(rng) self.kernel_feature_creator = kernel_feature_creator self.renormalize_attention = renormalize_attention self.numerical_stabilizer = numerical_stabilizer self.redraw_features = redraw_features self.unidirectional = unidirectional self.lax_scan_unroll = lax_scan_unroll def draw_weights(self, key): if self.matrix_creator is None: return None matrixrng, _ = random.split(key) projection_matrix = self.matrix_creator(key=matrixrng).get_2d_array() return projection_matrix def dot_product_attention(self, query, key, value, dtype=jnp.float32, bias=None, axis=None, broadcast_dropout=True, dropout_rng=None, dropout_rate=0., deterministic=False, precision=None): assert key.shape[:-1] == value.shape[:-1] assert (query.shape[0:1] == key.shape[0:1] and query.shape[-1] == key.shape[-1]) if axis is None: axis = tuple(range(1, key.ndim - 2)) if not isinstance(axis, Iterable): axis = (axis,) assert key.ndim == query.ndim assert key.ndim == value.ndim for ax in axis: if not (query.ndim >= 3 and 1 <= ax < query.ndim - 2): raise ValueError('Attention axis must be between the batch ' 'axis and the last-two axes.') n = key.ndim # Constructing projection tensor. if self.redraw_features: # TODO(kchoro): Get rid of the constant below. query_seed = lax.convert_element_type( jnp.ceil(jnp.sum(query) * 10000000.0), jnp.int32) rng = random.PRNGKey(query_seed) self.projection_matrix = self.draw_weights(rng) # batch_dims is <bs, <non-attention dims>, num_heads> batch_dims = tuple(onp.delete(range(n), axis + (n - 1,))) # q & k -> (bs, <non-attention dims>, num_heads, <attention dims>, channels) qk_perm = batch_dims + axis + (n - 1,) k_extra_perm = axis + batch_dims + (n - 1,) key_extra = key.transpose(k_extra_perm) key = key.transpose(qk_perm) query = query.transpose(qk_perm) # v -> (bs, <non-attention dims>, num_heads, <attention dims>, channels) v_perm = batch_dims + axis + (n - 1,) value = value.transpose(v_perm) batch_dims_t = tuple(range(len(batch_dims))) attention_dims_t = tuple( range(len(batch_dims), len(batch_dims) + len(axis))) # Constructing tensors Q^{'} and K^{'}. query_prime = self.kernel_feature_creator(query, self.projection_matrix, attention_dims_t, batch_dims_t, precision, True) key_prime = self.kernel_feature_creator(key, self.projection_matrix, attention_dims_t, batch_dims_t, precision, False) if self.unidirectional: index = attention_dims_t[0] z_slice_shape = key_prime.shape[0:len(batch_dims_t)] + ( key_prime.shape[-1],) + (value.shape[-1],) numerator_fn = _numerator(z_slice_shape, precision, self.lax_scan_unroll) W = numerator_fn( jnp.moveaxis(query_prime, index, 0), jnp.moveaxis(key_prime, index, 0), jnp.moveaxis(value, index, 0)) # Constructing W = (Q^{'}(K^{'})^{T})_{masked}V W = jnp.moveaxis(W, 0, index) if not self.renormalize_attention: # Unidirectional, not-normalized attention. perm_inv = _invert_perm(qk_perm) result = W.transpose(perm_inv) return result else: # Unidirectional, normalized attention. thick_all_ones = jnp.zeros(key.shape[0:-1]) + jnp.ones( key_extra.shape[0:len(axis)]) index = attention_dims_t[0] t_slice_shape = key_prime.shape[0:len(batch_dims_t)] + ( key_prime.shape[-1],) denominator_fn = _denominator(t_slice_shape, precision, self.lax_scan_unroll) R = denominator_fn( jnp.moveaxis(query_prime, index, 0), jnp.moveaxis(key_prime, index, 0)) R = jnp.moveaxis(R, 0, index) else: contract_query = tuple( range(len(batch_dims) + len(axis), len(batch_dims) + len(axis) + 1)) contract_z = tuple(range(len(batch_dims), len(batch_dims) + 1)) # Constructing Z = (K^{'})^{T}V # Z (bs, <non-attention dims>, num_heads, channels_m, channels_v) Z = lax.dot_general( key_prime, value, ((attention_dims_t, attention_dims_t), (batch_dims_t, batch_dims_t)), precision=precision) # Constructing W = Q^{'}Z = Q^{'}(K^{'})^{T}V # q (bs, <non-attention dims>, num_heads, <attention dims>, channels_m) # Z (bs, <non-attention dims>, num_heads, channels_m, channels_v) # W (bs, <non-attention dims>, num_heads, <attention dims>, channels_v) W = lax.dot_general( query_prime, Z, ((contract_query, contract_z), (batch_dims_t, batch_dims_t)), precision=precision) if not self.renormalize_attention: # Bidirectional, not-normalized attention. perm_inv = _invert_perm(qk_perm) result = W.transpose(perm_inv) return result else: # Bidirectional, normalized attention. thick_all_ones = jnp.zeros(key.shape[0:-1]) + jnp.ones( key_extra.shape[0:len(axis)]) contract_key = tuple( range(len(batch_dims), len(batch_dims) + len(axis))) contract_thick_all_ones = tuple( range(thick_all_ones.ndim - len(axis), thick_all_ones.ndim)) # Construct T = (K^{'})^{T} 1_L # k (bs, <non-attention dims>, num_heads, <attention dims>, channels) T = lax.dot_general( key_prime, thick_all_ones, ((contract_key, contract_thick_all_ones), (batch_dims_t, batch_dims_t)), precision=precision) # Construct partition function: R = Q^{'} T = Q^{'}(K^{'})^{T} 1_L # q_p (bs, <non-attention dims>, num_heads, <attention dims>, channs_m) # T (bs, <non-attention dims>, num_heads, channels_m) R = lax.dot_general( query_prime, T, (((query_prime.ndim - 1,), (T.ndim - 1,)), (batch_dims_t, range(0, len(T.shape) - 1))), precision=precision) R = R + 2 * self.numerical_stabilizer * ( jnp.abs(R) <= self.numerical_stabilizer) R = jnp.reciprocal(R) R = jnp.expand_dims(R, len(R.shape)) # W (bs, <non-attention dims>, num_heads, <attention dims>, channels_v) # R (bs, <non-attention dims>, num_heads, <attention dims>, extra_channel) result = W * R # back to (bs, dim1, dim2, ..., dimN, num_heads, channels) perm_inv = _invert_perm(qk_perm) result = result.transpose(perm_inv) return result def _invert_perm(perm): perm_inv = [0] * len(perm) for i, j in enumerate(perm): perm_inv[j] = i return tuple(perm_inv)
# Copyright 1999-2021 Alibaba Group Holding Ltd. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..core import MarsRequestHandler class ExtraTestHandler(MarsRequestHandler): def get(self): self.write('Test') web_handlers = { '/api/extra_test': ExtraTestHandler }
load( "@rules_mono//dotnet/private:providers.bzl", "DotnetLibrary", ) def _make_runner_arglist(dotnet, source, output): args = dotnet.actions.args() args.add("/useSourcePath") if type(source) == "Target": args.add_all(source.files) else: args.add(source) args.add(output) return args def emit_resx_net( dotnet, name = "", src = None, identifier = None, out = None, customresgen = None): if name == "" and out == None: fail("either name or out must be set") if not out: result = dotnet.declare_file(dotnet, path = name + ".resources") else: result = dotnet.declare_file(dotnet, path = out) args = _make_runner_arglist(dotnet, src, result) inputs = src.files if type(src) == "Target" else [src] dotnet.actions.run( inputs = inputs, outputs = [result], executable = dotnet.resgen, arguments = [args], mnemonic = "NetResxCompile", progress_message = ( "Compiling resoources" + dotnet.label.package + ":" + dotnet.label.name ), ) return dotnet.new_resource( dotnet = dotnet, name = name, result = result, identifier = identifier, )
import pathgraph import robotsearch import unittest class TestGraphMethods(unittest.TestCase): def test_create_undirected_graph(self): self.assertTrue(isinstance(pathgraph.graph_by_type("undirected"), pathgraph.UndirectedGraph)) def test_create_directed_graph(self): self.assertTrue(isinstance(pathgraph.graph_by_type("directed"), pathgraph.DirectedGraph)) def test_add_duplicate_edge_undirected(self): graph = pathgraph.graph_by_type("undirected") destination = pathgraph.DestinationNode("B", 1) self.assertTrue(graph.add_edge(fromKey="A", destination=destination)) self.assertFalse(graph.add_edge(fromKey="A", destination=destination)) def test_add_duplicate_edge_directed(self): graph=pathgraph.graph_by_type("directed") destination = pathgraph.DestinationNode("B", 1) self.assertTrue(graph.add_edge(fromKey="A", destination=destination)) self.assertFalse(graph.add_edge(fromKey="A", destination=destination)) def main(): unittest.main() if __name__ == "__main__": main()
# ----------------------------------------------------------------------------- # Copyright (c) 2014--, The Qiita Development Team. # # Distributed under the terms of the BSD 3-clause License. # # The full license is in the file LICENSE, distributed with this software. # ----------------------------------------------------------------------------- from unittest import main from tempfile import mkdtemp, mkstemp from os.path import exists, isdir, join from os import remove, close from shutil import rmtree from json import dumps from skbio.stats.distance import randdm from skbio import OrdinationResults from qiita_client import ArtifactInfo from qiita_client.testing import PluginTestCase import pandas as pd import numpy as np from qtp_diversity import plugin from qtp_diversity.validate import ( _validate_distance_matrix, _validate_ordination_results, _validate_alpha_vector, _validate_feature_data_taxonomy, validate) class ValidateTests(PluginTestCase): def setUp(self): self.out_dir = mkdtemp() self._clean_up_files = [self.out_dir] self.metadata = { '1.SKM4.640180': {'col': "doesn't really matters"}, '1.SKB8.640193': {'col': "doesn't really matters"}, '1.SKD8.640184': {'col': "doesn't really matters"}, '1.SKM9.640192': {'col': "doesn't really matters"}, '1.SKB7.640196': {'col': "doesn't really matters"}} plugin('https://localhost:8383', 'register', 'ignored') def tearDown(self): for fp in self._clean_up_files: if exists(fp): if isdir(fp): rmtree(fp) else: remove(fp) def _create_distance_matrix(self, sample_ids): dm = randdm(len(sample_ids), sample_ids) fd, fp = mkstemp(suffix='.txt', dir=self.out_dir) close(fd) dm.write(fp) return fp def _create_ordination_results(self, sample_ids): eigvals = [0.51236726, 0.30071909, 0.26791207, 0.20898868] proportion_explained = [0.2675738328, 0.157044696, 0.1399118638, 0.1091402725] axis_labels = ['PC1', 'PC2', 'PC3', 'PC4'] samples = [[-2.584, 1.739, 3.828, -1.944], [-2.710, -1.859, -8.648, 1.180], [2.350, 9.625, -3.457, -3.208], [2.614, -1.114, 1.476, 2.908], [2.850, -1.925, 6.232, 1.381]] ord_res = OrdinationResults( short_method_name='PCoA', long_method_name='Principal Coordinate Analysis', eigvals=pd.Series(eigvals, index=axis_labels), samples=pd.DataFrame(np.asarray(samples), index=sample_ids, columns=axis_labels), proportion_explained=pd.Series(proportion_explained, index=axis_labels)) fd, fp = mkstemp(suffix='.txt', dir=self.out_dir) close(fd) ord_res.write(fp) return fp def _create_alpha_vector(self, sample_ids): fd, fp = mkstemp(suffix='.txt', dir=self.out_dir) close(fd) with open(fp, 'w') as f: f.write("\tobserved_otus\n") for s_id in sample_ids: f.write("%s\t%d\n" % (s_id, np.random.randint(1, 200))) return fp def _create_job(self, a_type, files, analysis): parameters = {'template': None, 'files': dumps(files), 'artifact_type': a_type, 'analysis': analysis} data = {'command': dumps(['Diversity types', '0.1.1', 'Validate']), 'parameters': dumps(parameters), 'status': 'running'} job_id = self.qclient.post( '/apitest/processing_job/', data=data)['job'] return job_id, parameters def test_validate_distance_matrix(self): # Create a distance matrix sample_ids = ['1.SKM4.640180', '1.SKB8.640193', '1.SKD8.640184', '1.SKM9.640192', '1.SKB7.640196'] dm_fp = self._create_distance_matrix(sample_ids) # Test success obs_success, obs_ainfo, obs_error = _validate_distance_matrix( {'plain_text': [dm_fp]}, self.metadata, self.out_dir) self.assertTrue(obs_success) exp_ainfo = [ArtifactInfo(None, "distance_matrix", [(dm_fp, 'plain_text')])] self.assertEqual(obs_ainfo, exp_ainfo) self.assertEqual(obs_error, "") # Test failure sample_ids = ['1.SKM4.640180', '1.SKB8.640193', '1.SKD8.640184', '1.SKM9.640192', 'NotASample'] dm_fp = self._create_distance_matrix(sample_ids) obs_success, obs_ainfo, obs_error = _validate_distance_matrix( {'plain_text': [dm_fp]}, self.metadata, self.out_dir) self.assertFalse(obs_success) self.assertIsNone(obs_ainfo) self.assertEqual(obs_error, "The distance matrix contain samples not " "present in the metadata") def test_validate_ordination_results(self): # Create the ordination results sample_ids = ['1.SKM4.640180', '1.SKB8.640193', '1.SKD8.640184', '1.SKM9.640192', '1.SKB7.640196'] ord_res_fp = self._create_ordination_results(sample_ids) # Test success obs_success, obs_ainfo, obs_error = _validate_ordination_results( {'plain_text': [ord_res_fp]}, self.metadata, self.out_dir) self.assertTrue(obs_success) exp_ainfo = [ArtifactInfo(None, "ordination_results", [(ord_res_fp, 'plain_text')])] self.assertEqual(obs_ainfo, exp_ainfo) self.assertEqual(obs_error, "") # Test failure sample_ids = ['1.SKM4.640180', '1.SKB8.640193', '1.SKD8.640184', '1.SKM9.640192', 'NotASample'] ord_res_fp = self._create_ordination_results(sample_ids) obs_success, obs_ainfo, obs_error = _validate_ordination_results( {'plain_text': [ord_res_fp]}, self.metadata, self.out_dir) self.assertFalse(obs_success) self.assertIsNone(obs_ainfo) self.assertEqual(obs_error, "The ordination results contain samples " "not present in the metadata") def test_validate_alpha_vector(self): # Create the alpha vector sample_ids = ['1.SKM4.640180', '1.SKB8.640193', '1.SKD8.640184', '1.SKM9.640192'] alpha_vector_fp = self._create_alpha_vector(sample_ids) # Test success obs_success, obs_ainfo, obs_error = _validate_alpha_vector( {'plain_text': [alpha_vector_fp]}, self.metadata, self.out_dir) self.assertEqual(obs_error, "") self.assertTrue(obs_success) exp_ainfo = [ArtifactInfo(None, "alpha_vector", [(alpha_vector_fp, 'plain_text')])] self.assertEqual(obs_ainfo, exp_ainfo) # Test failure wrong ids sample_ids = ['1.SKM4.640180', '1.SKB8.640193', '1.SKD8.640184', 'NotASample'] alpha_vector_fp = self._create_alpha_vector(sample_ids) obs_success, obs_ainfo, obs_error = _validate_alpha_vector( {'plain_text': [alpha_vector_fp]}, self.metadata, self.out_dir) self.assertEqual(obs_error, "The alpha vector contains samples not " "present in the metadata") self.assertFalse(obs_success) self.assertIsNone(obs_ainfo) # Test failure wrong format fd, alpha_vector_fp = mkstemp(suffix='.txt', dir=self.out_dir) close(fd) with open(alpha_vector_fp, 'w') as f: f.write("\tobserved_otus\nsample 1\n") obs_success, obs_ainfo, obs_error = _validate_alpha_vector( {'plain_text': [alpha_vector_fp]}, self.metadata, self.out_dir) self.assertEqual(obs_error, "The alpha vector format is incorrect") self.assertFalse(obs_success) self.assertIsNone(obs_ainfo) def test_validate(self): # Test artifact type error job_id, params = self._create_job( 'NotAType', {'plan_text': 'Will fail before checking this'}, 1) obs_success, obs_ainfo, obs_error = validate( self.qclient, job_id, params, self.out_dir) self.assertFalse(obs_success) self.assertIsNone(obs_ainfo) self.assertEqual( obs_error, "Unknown artifact type NotAType. Supported types: " "FeatureData[Taxonomy], alpha_vector, distance_matrix, " "ordination_results") # Test missing metadata error - to be fair, I don't know how this error # can happen in the live system, but better be safe than sorry job_id, params = self._create_job( 'distance_matrix', {'plan_text': 'Will fail before checking this'}, None) obs_success, obs_ainfo, obs_error = validate( self.qclient, job_id, params, self.out_dir) self.assertFalse(obs_success) self.assertIsNone(obs_ainfo) self.assertEqual( obs_error, "Missing metadata information") # Test distance matrix success sample_ids = ['1.SKM4.640180', '1.SKB8.640193', '1.SKD8.640184', '1.SKM9.640192', '1.SKB7.640196'] dm_fp = self._create_distance_matrix(sample_ids) job_id, params = self._create_job( 'distance_matrix', {'plain_text': [dm_fp]}, 1) obs_success, obs_ainfo, obs_error = validate( self.qclient, job_id, params, self.out_dir) self.assertTrue(obs_success) html_fp = join(self.out_dir, 'index.html') exp_ainfo = [ArtifactInfo(None, "distance_matrix", [(dm_fp, 'plain_text'), (html_fp, 'html_summary')])] self.assertEqual(obs_ainfo, exp_ainfo) self.assertEqual(obs_error, "") # Test ordination results success ord_res_fp = self._create_ordination_results(sample_ids) job_id, params = self._create_job( 'ordination_results', {'plain_text': [ord_res_fp]}, 1) obs_success, obs_ainfo, obs_error = validate( self.qclient, job_id, params, self.out_dir) self.assertTrue(obs_success) html_fp = join(self.out_dir, 'index.html') esf_fp = join(self.out_dir, 'emperor_support_files') exp_ainfo = [ArtifactInfo(None, "ordination_results", [(ord_res_fp, 'plain_text'), (html_fp, 'html_summary'), (esf_fp, 'html_summary_dir')])] self.assertEqual(obs_ainfo, exp_ainfo) self.assertEqual(obs_error, "") # Test alpha vector success alpha_vector_fp = self._create_alpha_vector(sample_ids) job_id, params = self._create_job( 'alpha_vector', {'plain_text': [alpha_vector_fp]}, 1) obs_success, obs_ainfo, obs_error = validate( self.qclient, job_id, params, self.out_dir) self.assertTrue(obs_success) html_fp = join(self.out_dir, 'index.html') sf_fp = join(self.out_dir, 'support_files') exp_ainfo = [ArtifactInfo(None, "alpha_vector", [(alpha_vector_fp, 'plain_text'), (html_fp, 'html_summary'), (sf_fp, 'html_summary_dir')])] self.assertEqual(obs_ainfo, exp_ainfo) self.assertEqual(obs_error, "") def test_validate_FeatureData_Taxonomy(self): # Create the feature data fd, taxonomy_fp = mkstemp(suffix='.txt', dir=self.out_dir) close(fd) with open(taxonomy_fp, 'w') as f: f.write("Feature ID\tTaxonomy\tConfidence\n") f.write("TACGGAGGA\tk__Bacteria;p__Bacteroidetes;c__Bacteroidia\t" "0.9998743\n") f.write("TACGTAGGG\tk__Bacteria;p__Firmicutes;c__Clostridia\t" "0.9999999\n") # Test success obs_success, obs_ainfo, obs_error = _validate_feature_data_taxonomy( {'plain_text': [taxonomy_fp]}, None, self.out_dir) self.assertEqual(obs_error, "") self.assertTrue(obs_success) exp_ainfo = [ArtifactInfo(None, "FeatureData[Taxonomy]", [(taxonomy_fp, 'plain_text')])] self.assertEqual(obs_ainfo, exp_ainfo) # Test failure wrong format fd, taxonomy_fp = mkstemp(suffix='.txt', dir=self.out_dir) close(fd) with open(taxonomy_fp, 'w') as f: f.write("Feature ID\tIt's gonna fail!\tConfidence\n") f.write("TACGGAGGA\tk__Bacteria;p__Bacteroidetes;c__Bacteroidia\t" "0.9998743\n") f.write("TACGTAGGG\tk__Bacteria;p__Firmicutes;c__Clostridia\t" "0.9999999\n") obs_success, obs_ainfo, obs_error = _validate_feature_data_taxonomy( {'plain_text': [taxonomy_fp]}, None, self.out_dir) self.assertIn("The file header seems wrong", obs_error) self.assertFalse(obs_success) self.assertIsNone(obs_ainfo) if __name__ == '__main__': main()
# date: 2019.04.21 # https://stackoverflow.com/a/55778640/1832058 import requests # not need Sessions s = requests.Session() s.headers.update({ 'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8', 'Accept-Encoding': 'gzip, deflate', 'Accept-Language': 'pl,en-US;q=0.7,en;q=0.3', 'Cache-Control': 'no-cache', 'Connection': 'keep-alive', }) #r = s.get('http://bit.do/') #print(r.status_code) #print(r.cookies) # ------------------------------------ headers={ 'X-Requested-With': 'XMLHttpRequest', # need it #'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64; rv:68.0) Gecko/20100101 Firefox/68.0', #'Cookie': 'permasession=1555801674|ole2ky65f9', # } data = { 'action': 'shorten', 'url': 'https://onet.pl', 'url2': ' site2 ', # need spaces 'url_hash': None, 'url_stats_is_private': 0, 'permasession': '1555801674|ole2ky65f9', # need it } r = requests.post('http://bit.do/mod_perl/url-shortener.pl', headers=headers, data=data) print(r.status_code) print(r.json()) import datetime datetime.datetime.fromtimestamp(1555801674)
import re import copy import warnings import operator import numpy as np from astropy import _erfa as erfa from astropy.utils.compat.misc import override__dir__ from astropy import units as u from astropy.constants import c as speed_of_light from astropy.utils.data_info import MixinInfo from astropy.utils import ShapedLikeNDArray from astropy.time import Time from astropy.utils.exceptions import AstropyUserWarning from .distances import Distance from .angles import Angle from .baseframe import (BaseCoordinateFrame, frame_transform_graph, GenericFrame) from .builtin_frames import ICRS, SkyOffsetFrame from .representation import (SphericalRepresentation, UnitSphericalRepresentation, SphericalDifferential) from .sky_coordinate_parsers import (_get_frame_class, _get_frame_without_data, _parse_coordinate_data) __all__ = ['SkyCoord', 'SkyCoordInfo'] class SkyCoordInfo(MixinInfo): """ Container for meta information like name, description, format. This is required when the object is used as a mixin column within a table, but can be used as a general way to store meta information. """ attrs_from_parent = set(['unit']) # Unit is read-only _supports_indexing = False @staticmethod def default_format(val): repr_data = val.info._repr_data formats = ['{0.' + compname + '.value:}' for compname in repr_data.components] return ','.join(formats).format(repr_data) @property def unit(self): repr_data = self._repr_data unit = ','.join(str(getattr(repr_data, comp).unit) or 'None' for comp in repr_data.components) return unit @property def _repr_data(self): if self._parent is None: return None sc = self._parent if (issubclass(sc.representation_type, SphericalRepresentation) and isinstance(sc.data, UnitSphericalRepresentation)): repr_data = sc.represent_as(sc.data.__class__, in_frame_units=True) else: repr_data = sc.represent_as(sc.representation_type, in_frame_units=True) return repr_data def _represent_as_dict(self): obj = self._parent attrs = (list(obj.representation_component_names) + list(frame_transform_graph.frame_attributes.keys())) # Don't output distance if it is all unitless 1.0 if 'distance' in attrs and np.all(obj.distance == 1.0): attrs.remove('distance') out = super()._represent_as_dict(attrs) out['representation_type'] = obj.representation_type.get_name() out['frame'] = obj.frame.name # Note that obj.info.unit is a fake composite unit (e.g. 'deg,deg,None' # or None,None,m) and is not stored. The individual attributes have # units. return out def new_like(self, skycoords, length, metadata_conflicts='warn', name=None): """ Return a new SkyCoord instance which is consistent with the input SkyCoord objects ``skycoords`` and has ``length`` rows. Being "consistent" is defined as being able to set an item from one to each of the rest without any exception being raised. This is intended for creating a new SkyCoord instance whose elements can be set in-place for table operations like join or vstack. This is used when a SkyCoord object is used as a mixin column in an astropy Table. The data values are not predictable and it is expected that the consumer of the object will fill in all values. Parameters ---------- skycoords : list List of input SkyCoord objects length : int Length of the output skycoord object metadata_conflicts : str ('warn'|'error'|'silent') How to handle metadata conflicts name : str Output name (sets output skycoord.info.name) Returns ------- skycoord : SkyCoord (or subclass) Instance of this class consistent with ``skycoords`` """ # Get merged info attributes like shape, dtype, format, description, etc. attrs = self.merge_cols_attributes(skycoords, metadata_conflicts, name, ('meta', 'description')) skycoord0 = skycoords[0] # Make a new SkyCoord object with the desired length and attributes # by using the _apply / __getitem__ machinery to effectively return # skycoord0[[0, 0, ..., 0, 0]]. This will have the all the right frame # attributes with the right shape. indexes = np.zeros(length, dtype=np.int64) out = skycoord0[indexes] # Use __setitem__ machinery to check for consistency of all skycoords for skycoord in skycoords[1:]: try: out[0] = skycoord[0] except Exception as err: raise ValueError(f'input skycoords are inconsistent: {err}') # Set (merged) info attributes for attr in ('name', 'meta', 'description'): if attr in attrs: setattr(out.info, attr, attrs[attr]) return out class SkyCoord(ShapedLikeNDArray): """High-level object providing a flexible interface for celestial coordinate representation, manipulation, and transformation between systems. The `SkyCoord` class accepts a wide variety of inputs for initialization. At a minimum these must provide one or more celestial coordinate values with unambiguous units. Inputs may be scalars or lists/tuples/arrays, yielding scalar or array coordinates (can be checked via ``SkyCoord.isscalar``). Typically one also specifies the coordinate frame, though this is not required. The general pattern for spherical representations is:: SkyCoord(COORD, [FRAME], keyword_args ...) SkyCoord(LON, LAT, [FRAME], keyword_args ...) SkyCoord(LON, LAT, [DISTANCE], frame=FRAME, unit=UNIT, keyword_args ...) SkyCoord([FRAME], <lon_attr>=LON, <lat_attr>=LAT, keyword_args ...) It is also possible to input coordinate values in other representations such as cartesian or cylindrical. In this case one includes the keyword argument ``representation_type='cartesian'`` (for example) along with data in ``x``, ``y``, and ``z``. See also: http://docs.astropy.org/en/stable/coordinates/ Examples -------- The examples below illustrate common ways of initializing a `SkyCoord` object. For a complete description of the allowed syntax see the full coordinates documentation. First some imports:: >>> from astropy.coordinates import SkyCoord # High-level coordinates >>> from astropy.coordinates import ICRS, Galactic, FK4, FK5 # Low-level frames >>> from astropy.coordinates import Angle, Latitude, Longitude # Angles >>> import astropy.units as u The coordinate values and frame specification can now be provided using positional and keyword arguments:: >>> c = SkyCoord(10, 20, unit="deg") # defaults to ICRS frame >>> c = SkyCoord([1, 2, 3], [-30, 45, 8], frame="icrs", unit="deg") # 3 coords >>> coords = ["1:12:43.2 +31:12:43", "1 12 43.2 +31 12 43"] >>> c = SkyCoord(coords, frame=FK4, unit=(u.hourangle, u.deg), obstime="J1992.21") >>> c = SkyCoord("1h12m43.2s +1d12m43s", frame=Galactic) # Units from string >>> c = SkyCoord(frame="galactic", l="1h12m43.2s", b="+1d12m43s") >>> ra = Longitude([1, 2, 3], unit=u.deg) # Could also use Angle >>> dec = np.array([4.5, 5.2, 6.3]) * u.deg # Astropy Quantity >>> c = SkyCoord(ra, dec, frame='icrs') >>> c = SkyCoord(frame=ICRS, ra=ra, dec=dec, obstime='2001-01-02T12:34:56') >>> c = FK4(1 * u.deg, 2 * u.deg) # Uses defaults for obstime, equinox >>> c = SkyCoord(c, obstime='J2010.11', equinox='B1965') # Override defaults >>> c = SkyCoord(w=0, u=1, v=2, unit='kpc', frame='galactic', ... representation_type='cartesian') >>> c = SkyCoord([ICRS(ra=1*u.deg, dec=2*u.deg), ICRS(ra=3*u.deg, dec=4*u.deg)]) Velocity components (proper motions or radial velocities) can also be provided in a similar manner:: >>> c = SkyCoord(ra=1*u.deg, dec=2*u.deg, radial_velocity=10*u.km/u.s) >>> c = SkyCoord(ra=1*u.deg, dec=2*u.deg, pm_ra_cosdec=2*u.mas/u.yr, pm_dec=1*u.mas/u.yr) As shown, the frame can be a `~astropy.coordinates.BaseCoordinateFrame` class or the corresponding string alias. The frame classes that are built in to astropy are `ICRS`, `FK5`, `FK4`, `FK4NoETerms`, and `Galactic`. The string aliases are simply lower-case versions of the class name, and allow for creating a `SkyCoord` object and transforming frames without explicitly importing the frame classes. Parameters ---------- frame : `~astropy.coordinates.BaseCoordinateFrame` class or string, optional Type of coordinate frame this `SkyCoord` should represent. Defaults to to ICRS if not given or given as None. unit : `~astropy.units.Unit`, string, or tuple of :class:`~astropy.units.Unit` or str, optional Units for supplied ``LON`` and ``LAT`` values, respectively. If only one unit is supplied then it applies to both ``LON`` and ``LAT``. obstime : valid `~astropy.time.Time` initializer, optional Time(s) of observation. equinox : valid `~astropy.time.Time` initializer, optional Coordinate frame equinox. representation_type : str or Representation class Specifies the representation, e.g. 'spherical', 'cartesian', or 'cylindrical'. This affects the positional args and other keyword args which must correspond to the given representation. copy : bool, optional If `True` (default), a copy of any coordinate data is made. This argument can only be passed in as a keyword argument. **keyword_args Other keyword arguments as applicable for user-defined coordinate frames. Common options include: ra, dec : valid `~astropy.coordinates.Angle` initializer, optional RA and Dec for frames where ``ra`` and ``dec`` are keys in the frame's ``representation_component_names``, including `ICRS`, `FK5`, `FK4`, and `FK4NoETerms`. pm_ra_cosdec, pm_dec : `~astropy.units.Quantity`, optional Proper motion components, in angle per time units. l, b : valid `~astropy.coordinates.Angle` initializer, optional Galactic ``l`` and ``b`` for for frames where ``l`` and ``b`` are keys in the frame's ``representation_component_names``, including the `Galactic` frame. pm_l_cosb, pm_b : `~astropy.units.Quantity`, optional Proper motion components in the `Galactic` frame, in angle per time units. x, y, z : float or `~astropy.units.Quantity`, optional Cartesian coordinates values u, v, w : float or `~astropy.units.Quantity`, optional Cartesian coordinates values for the Galactic frame. radial_velocity : `~astropy.units.Quantity`, optional The component of the velocity along the line-of-sight (i.e., the radial direction), in velocity units. """ # Declare that SkyCoord can be used as a Table column by defining the # info property. info = SkyCoordInfo() def __init__(self, *args, copy=True, **kwargs): # these are frame attributes set on this SkyCoord but *not* a part of # the frame object this SkyCoord contains self._extra_frameattr_names = set() # If all that is passed in is a frame instance that already has data, # we should bypass all of the parsing and logic below. This is here # to make this the fastest way to create a SkyCoord instance. Many of # the classmethods implemented for performance enhancements will use # this as the initialization path if (len(args) == 1 and len(kwargs) == 0 and isinstance(args[0], (BaseCoordinateFrame, SkyCoord))): coords = args[0] if isinstance(coords, SkyCoord): self._extra_frameattr_names = coords._extra_frameattr_names self.info = coords.info # Copy over any extra frame attributes for attr_name in self._extra_frameattr_names: # Setting it will also validate it. setattr(self, attr_name, getattr(coords, attr_name)) coords = coords.frame if not coords.has_data: raise ValueError('Cannot initialize from a coordinate frame ' 'instance without coordinate data') if copy: self._sky_coord_frame = coords.copy() else: self._sky_coord_frame = coords else: # Get the frame instance without coordinate data but with all frame # attributes set - these could either have been passed in with the # frame as an instance, or passed in as kwargs here frame_cls, frame_kwargs = _get_frame_without_data(args, kwargs) # Parse the args and kwargs to assemble a sanitized and validated # kwargs dict for initializing attributes for this object and for # creating the internal self._sky_coord_frame object args = list(args) # Make it mutable skycoord_kwargs, components, info = _parse_coordinate_data( frame_cls(**frame_kwargs), args, kwargs) # In the above two parsing functions, these kwargs were identified # as valid frame attributes for *some* frame, but not the frame that # this SkyCoord will have. We keep these attributes as special # skycoord frame attributes: for attr in skycoord_kwargs: # Setting it will also validate it. setattr(self, attr, skycoord_kwargs[attr]) if info is not None: self.info = info # Finally make the internal coordinate object. frame_kwargs.update(components) self._sky_coord_frame = frame_cls(copy=copy, **frame_kwargs) if not self._sky_coord_frame.has_data: raise ValueError('Cannot create a SkyCoord without data') @property def frame(self): return self._sky_coord_frame @property def representation_type(self): return self.frame.representation_type @representation_type.setter def representation_type(self, value): self.frame.representation_type = value # TODO: remove these in future @property def representation(self): return self.frame.representation @representation.setter def representation(self, value): self.frame.representation = value @property def shape(self): return self.frame.shape def __eq__(self, value): """Equality operator for SkyCoord This implements strict equality and requires that the frames are equivalent, extra frame attributes are equivalent, and that the representation data are exactly equal. """ # Make sure that any extra frame attribute names are equivalent. for attr in self._extra_frameattr_names | value._extra_frameattr_names: if not self.frame._frameattr_equiv(getattr(self, attr), getattr(value, attr)): raise ValueError(f"cannot compare: extra frame attribute " f"'{attr}' is not equivalent " f"(perhaps compare the frames directly to avoid " f"this exception)") return self._sky_coord_frame == value._sky_coord_frame def __ne__(self, value): return np.logical_not(self == value) def _apply(self, method, *args, **kwargs): """Create a new instance, applying a method to the underlying data. In typical usage, the method is any of the shape-changing methods for `~numpy.ndarray` (``reshape``, ``swapaxes``, etc.), as well as those picking particular elements (``__getitem__``, ``take``, etc.), which are all defined in `~astropy.utils.shapes.ShapedLikeNDArray`. It will be applied to the underlying arrays in the representation (e.g., ``x``, ``y``, and ``z`` for `~astropy.coordinates.CartesianRepresentation`), as well as to any frame attributes that have a shape, with the results used to create a new instance. Internally, it is also used to apply functions to the above parts (in particular, `~numpy.broadcast_to`). Parameters ---------- method : str or callable If str, it is the name of a method that is applied to the internal ``components``. If callable, the function is applied. args : tuple Any positional arguments for ``method``. kwargs : dict Any keyword arguments for ``method``. """ def apply_method(value): if isinstance(value, ShapedLikeNDArray): return value._apply(method, *args, **kwargs) else: if callable(method): return method(value, *args, **kwargs) else: return getattr(value, method)(*args, **kwargs) # create a new but empty instance, and copy over stuff new = super().__new__(self.__class__) new._sky_coord_frame = self._sky_coord_frame._apply(method, *args, **kwargs) new._extra_frameattr_names = self._extra_frameattr_names.copy() for attr in self._extra_frameattr_names: value = getattr(self, attr) if getattr(value, 'shape', ()): value = apply_method(value) elif method == 'copy' or method == 'flatten': # flatten should copy also for a single element array, but # we cannot use it directly for array scalars, since it # always returns a one-dimensional array. So, just copy. value = copy.copy(value) setattr(new, '_' + attr, value) # Copy other 'info' attr only if it has actually been defined. # See PR #3898 for further explanation and justification, along # with Quantity.__array_finalize__ if 'info' in self.__dict__: new.info = self.info return new def __setitem__(self, item, value): """Implement self[item] = value for SkyCoord The right hand ``value`` must be strictly consistent with self: - Identical class - Equivalent frames - Identical representation_types - Identical representation differentials keys - Identical frame attributes - Identical "extra" frame attributes (e.g. obstime for an ICRS coord) With these caveats the setitem ends up as effectively a setitem on the representation data. self.frame.data[item] = value.frame.data """ if self.__class__ is not value.__class__: raise TypeError(f'can only set from object of same class: ' f'{self.__class__.__name__} vs. ' f'{value.__class__.__name__}') # Make sure that any extra frame attribute names are equivalent. for attr in self._extra_frameattr_names | value._extra_frameattr_names: if not self.frame._frameattr_equiv(getattr(self, attr), getattr(value, attr)): raise ValueError(f'attribute {attr} is not equivalent') # Set the frame values. This checks frame equivalence and also clears # the cache to ensure that the object is not in an inconsistent state. self._sky_coord_frame[item] = value._sky_coord_frame def insert(self, obj, values, axis=0): """ Insert coordinate values before the given indices in the object and return a new Frame object. The values to be inserted must conform to the rules for in-place setting of ``SkyCoord`` objects. The API signature matches the ``np.insert`` API, but is more limited. The specification of insert index ``obj`` must be a single integer, and the ``axis`` must be ``0`` for simple insertion before the index. Parameters ---------- obj : int Integer index before which ``values`` is inserted. values : array_like Value(s) to insert. If the type of ``values`` is different from that of quantity, ``values`` is converted to the matching type. axis : int, optional Axis along which to insert ``values``. Default is 0, which is the only allowed value and will insert a row. Returns ------- out : `~astropy.coordinates.SkyCoord` instance New coordinate object with inserted value(s) """ # Validate inputs: obj arg is integer, axis=0, self is not a scalar, and # input index is in bounds. try: idx0 = operator.index(obj) except TypeError: raise TypeError('obj arg must be an integer') if axis != 0: raise ValueError('axis must be 0') if not self.shape: raise TypeError('cannot insert into scalar {} object' .format(self.__class__.__name__)) if abs(idx0) > len(self): raise IndexError('index {} is out of bounds for axis 0 with size {}' .format(idx0, len(self))) # Turn negative index into positive if idx0 < 0: idx0 = len(self) + idx0 n_values = len(values) if values.shape else 1 # Finally make the new object with the correct length and set values for the # three sections, before insert, the insert, and after the insert. out = self.__class__.info.new_like([self], len(self) + n_values, name=self.info.name) # Set the output values. This is where validation of `values` takes place to ensure # that it can indeed be inserted. out[:idx0] = self[:idx0] out[idx0:idx0 + n_values] = values out[idx0 + n_values:] = self[idx0:] return out def transform_to(self, frame, merge_attributes=True): """Transform this coordinate to a new frame. The precise frame transformed to depends on ``merge_attributes``. If `False`, the destination frame is used exactly as passed in. But this is often not quite what one wants. E.g., suppose one wants to transform an ICRS coordinate that has an obstime attribute to FK4; in this case, one likely would want to use this information. Thus, the default for ``merge_attributes`` is `True`, in which the precedence is as follows: (1) explicitly set (i.e., non-default) values in the destination frame; (2) explicitly set values in the source; (3) default value in the destination frame. Note that in either case, any explicitly set attributes on the source `SkyCoord` that are not part of the destination frame's definition are kept (stored on the resulting `SkyCoord`), and thus one can round-trip (e.g., from FK4 to ICRS to FK4 without loosing obstime). Parameters ---------- frame : str, `BaseCoordinateFrame` class or instance, or `SkyCoord` instance The frame to transform this coordinate into. If a `SkyCoord`, the underlying frame is extracted, and all other information ignored. merge_attributes : bool, optional Whether the default attributes in the destination frame are allowed to be overridden by explicitly set attributes in the source (see note above; default: `True`). Returns ------- coord : `SkyCoord` A new object with this coordinate represented in the `frame` frame. Raises ------ ValueError If there is no possible transformation route. """ from astropy.coordinates.errors import ConvertError frame_kwargs = {} # Frame name (string) or frame class? Coerce into an instance. try: frame = _get_frame_class(frame)() except Exception: pass if isinstance(frame, SkyCoord): frame = frame.frame # Change to underlying coord frame instance if isinstance(frame, BaseCoordinateFrame): new_frame_cls = frame.__class__ # Get frame attributes, allowing defaults to be overridden by # explicitly set attributes of the source if ``merge_attributes``. for attr in frame_transform_graph.frame_attributes: self_val = getattr(self, attr, None) frame_val = getattr(frame, attr, None) if (frame_val is not None and not (merge_attributes and frame.is_frame_attr_default(attr))): frame_kwargs[attr] = frame_val elif (self_val is not None and not self.is_frame_attr_default(attr)): frame_kwargs[attr] = self_val elif frame_val is not None: frame_kwargs[attr] = frame_val else: raise ValueError('Transform `frame` must be a frame name, class, or instance') # Get the composite transform to the new frame trans = frame_transform_graph.get_transform(self.frame.__class__, new_frame_cls) if trans is None: raise ConvertError('Cannot transform from {} to {}' .format(self.frame.__class__, new_frame_cls)) # Make a generic frame which will accept all the frame kwargs that # are provided and allow for transforming through intermediate frames # which may require one or more of those kwargs. generic_frame = GenericFrame(frame_kwargs) # Do the transformation, returning a coordinate frame of the desired # final type (not generic). new_coord = trans(self.frame, generic_frame) # Finally make the new SkyCoord object from the `new_coord` and # remaining frame_kwargs that are not frame_attributes in `new_coord`. for attr in (set(new_coord.get_frame_attr_names()) & set(frame_kwargs.keys())): frame_kwargs.pop(attr) return self.__class__(new_coord, **frame_kwargs) def apply_space_motion(self, new_obstime=None, dt=None): """ Compute the position of the source represented by this coordinate object to a new time using the velocities stored in this object and assuming linear space motion (including relativistic corrections). This is sometimes referred to as an "epoch transformation." The initial time before the evolution is taken from the ``obstime`` attribute of this coordinate. Note that this method currently does not support evolving coordinates where the *frame* has an ``obstime`` frame attribute, so the ``obstime`` is only used for storing the before and after times, not actually as an attribute of the frame. Alternatively, if ``dt`` is given, an ``obstime`` need not be provided at all. Parameters ---------- new_obstime : `~astropy.time.Time`, optional The time at which to evolve the position to. Requires that the ``obstime`` attribute be present on this frame. dt : `~astropy.units.Quantity`, `~astropy.time.TimeDelta`, optional An amount of time to evolve the position of the source. Cannot be given at the same time as ``new_obstime``. Returns ------- new_coord : `SkyCoord` A new coordinate object with the evolved location of this coordinate at the new time. ``obstime`` will be set on this object to the new time only if ``self`` also has ``obstime``. """ if (new_obstime is None and dt is None or new_obstime is not None and dt is not None): raise ValueError("You must specify one of `new_obstime` or `dt`, " "but not both.") # Validate that we have velocity info if 's' not in self.frame.data.differentials: raise ValueError('SkyCoord requires velocity data to evolve the ' 'position.') if 'obstime' in self.frame.frame_attributes: raise NotImplementedError("Updating the coordinates in a frame " "with explicit time dependence is " "currently not supported. If you would " "like this functionality, please open an " "issue on github:\n" "https://github.com/astropy/astropy") if new_obstime is not None and self.obstime is None: # If no obstime is already on this object, raise an error if a new # obstime is passed: we need to know the time / epoch at which the # the position / velocity were measured initially raise ValueError('This object has no associated `obstime`. ' 'apply_space_motion() must receive a time ' 'difference, `dt`, and not a new obstime.') # Compute t1 and t2, the times used in the starpm call, which *only* # uses them to compute a delta-time t1 = self.obstime if dt is None: # self.obstime is not None and new_obstime is not None b/c of above # checks t2 = new_obstime else: # new_obstime is definitely None b/c of the above checks if t1 is None: # MAGIC NUMBER: if the current SkyCoord object has no obstime, # assume J2000 to do the dt offset. This is not actually used # for anything except a delta-t in starpm, so it's OK that it's # not necessarily the "real" obstime t1 = Time('J2000') new_obstime = None # we don't actually know the inital obstime t2 = t1 + dt else: t2 = t1 + dt new_obstime = t2 # starpm wants tdb time t1 = t1.tdb t2 = t2.tdb # proper motion in RA should not include the cos(dec) term, see the # erfa function eraStarpv, comment (4). So we convert to the regular # spherical differentials. icrsrep = self.icrs.represent_as(SphericalRepresentation, SphericalDifferential) icrsvel = icrsrep.differentials['s'] parallax_zero = False try: plx = icrsrep.distance.to_value(u.arcsecond, u.parallax()) except u.UnitConversionError: # No distance: set to 0 by convention plx = 0. parallax_zero = True try: rv = icrsvel.d_distance.to_value(u.km/u.s) except u.UnitConversionError: # No RV rv = 0. starpm = erfa.pmsafe(icrsrep.lon.radian, icrsrep.lat.radian, icrsvel.d_lon.to_value(u.radian/u.yr), icrsvel.d_lat.to_value(u.radian/u.yr), plx, rv, t1.jd1, t1.jd2, t2.jd1, t2.jd2) if parallax_zero: new_distance = None else: new_distance = Distance(parallax=starpm[4] << u.arcsec) icrs2 = ICRS(ra=u.Quantity(starpm[0], u.radian, copy=False), dec=u.Quantity(starpm[1], u.radian, copy=False), pm_ra=u.Quantity(starpm[2], u.radian/u.yr, copy=False), pm_dec=u.Quantity(starpm[3], u.radian/u.yr, copy=False), distance=new_distance, radial_velocity=u.Quantity(starpm[5], u.km/u.s, copy=False), differential_type=SphericalDifferential) # Update the obstime of the returned SkyCoord, and need to carry along # the frame attributes frattrs = {attrnm: getattr(self, attrnm) for attrnm in self._extra_frameattr_names} frattrs['obstime'] = new_obstime return self.__class__(icrs2, **frattrs).transform_to(self.frame) def _is_name(self, string): """ Returns whether a string is one of the aliases for the frame. """ return (self.frame.name == string or (isinstance(self.frame.name, list) and string in self.frame.name)) def __getattr__(self, attr): """ Overrides getattr to return coordinates that this can be transformed to, based on the alias attr in the master transform graph. """ if '_sky_coord_frame' in self.__dict__: if self._is_name(attr): return self # Should this be a deepcopy of self? # Anything in the set of all possible frame_attr_names is handled # here. If the attr is relevant for the current frame then delegate # to self.frame otherwise get it from self._<attr>. if attr in frame_transform_graph.frame_attributes: if attr in self.frame.get_frame_attr_names(): return getattr(self.frame, attr) else: return getattr(self, '_' + attr, None) # Some attributes might not fall in the above category but still # are available through self._sky_coord_frame. if not attr.startswith('_') and hasattr(self._sky_coord_frame, attr): return getattr(self._sky_coord_frame, attr) # Try to interpret as a new frame for transforming. frame_cls = frame_transform_graph.lookup_name(attr) if frame_cls is not None and self.frame.is_transformable_to(frame_cls): return self.transform_to(attr) # Fail raise AttributeError("'{}' object has no attribute '{}'" .format(self.__class__.__name__, attr)) def __setattr__(self, attr, val): # This is to make anything available through __getattr__ immutable if '_sky_coord_frame' in self.__dict__: if self._is_name(attr): raise AttributeError(f"'{attr}' is immutable") if not attr.startswith('_') and hasattr(self._sky_coord_frame, attr): setattr(self._sky_coord_frame, attr, val) return frame_cls = frame_transform_graph.lookup_name(attr) if frame_cls is not None and self.frame.is_transformable_to(frame_cls): raise AttributeError(f"'{attr}' is immutable") if attr in frame_transform_graph.frame_attributes: # All possible frame attributes can be set, but only via a private # variable. See __getattr__ above. super().__setattr__('_' + attr, val) # Validate it frame_transform_graph.frame_attributes[attr].__get__(self) # And add to set of extra attributes self._extra_frameattr_names |= {attr} else: # Otherwise, do the standard Python attribute setting super().__setattr__(attr, val) def __delattr__(self, attr): # mirror __setattr__ above if '_sky_coord_frame' in self.__dict__: if self._is_name(attr): raise AttributeError(f"'{attr}' is immutable") if not attr.startswith('_') and hasattr(self._sky_coord_frame, attr): delattr(self._sky_coord_frame, attr) return frame_cls = frame_transform_graph.lookup_name(attr) if frame_cls is not None and self.frame.is_transformable_to(frame_cls): raise AttributeError(f"'{attr}' is immutable") if attr in frame_transform_graph.frame_attributes: # All possible frame attributes can be deleted, but need to remove # the corresponding private variable. See __getattr__ above. super().__delattr__('_' + attr) # Also remove it from the set of extra attributes self._extra_frameattr_names -= {attr} else: # Otherwise, do the standard Python attribute setting super().__delattr__(attr) @override__dir__ def __dir__(self): """ Override the builtin `dir` behavior to include: - Transforms available by aliases - Attribute / methods of the underlying self.frame object """ # determine the aliases that this can be transformed to. dir_values = set() for name in frame_transform_graph.get_names(): frame_cls = frame_transform_graph.lookup_name(name) if self.frame.is_transformable_to(frame_cls): dir_values.add(name) # Add public attributes of self.frame dir_values.update(set(attr for attr in dir(self.frame) if not attr.startswith('_'))) # Add all possible frame attributes dir_values.update(frame_transform_graph.frame_attributes.keys()) return dir_values def __repr__(self): clsnm = self.__class__.__name__ coonm = self.frame.__class__.__name__ frameattrs = self.frame._frame_attrs_repr() if frameattrs: frameattrs = ': ' + frameattrs data = self.frame._data_repr() if data: data = ': ' + data return '<{clsnm} ({coonm}{frameattrs}){data}>'.format(**locals()) def to_string(self, style='decimal', **kwargs): """ A string representation of the coordinates. The default styles definitions are:: 'decimal': 'lat': {'decimal': True, 'unit': "deg"} 'lon': {'decimal': True, 'unit': "deg"} 'dms': 'lat': {'unit': "deg"} 'lon': {'unit': "deg"} 'hmsdms': 'lat': {'alwayssign': True, 'pad': True, 'unit': "deg"} 'lon': {'pad': True, 'unit': "hour"} See :meth:`~astropy.coordinates.Angle.to_string` for details and keyword arguments (the two angles forming the coordinates are are both :class:`~astropy.coordinates.Angle` instances). Keyword arguments have precedence over the style defaults and are passed to :meth:`~astropy.coordinates.Angle.to_string`. Parameters ---------- style : {'hmsdms', 'dms', 'decimal'} The formatting specification to use. These encode the three most common ways to represent coordinates. The default is `decimal`. kwargs Keyword args passed to :meth:`~astropy.coordinates.Angle.to_string`. """ sph_coord = self.frame.represent_as(SphericalRepresentation) styles = {'hmsdms': {'lonargs': {'unit': u.hour, 'pad': True}, 'latargs': {'unit': u.degree, 'pad': True, 'alwayssign': True}}, 'dms': {'lonargs': {'unit': u.degree}, 'latargs': {'unit': u.degree}}, 'decimal': {'lonargs': {'unit': u.degree, 'decimal': True}, 'latargs': {'unit': u.degree, 'decimal': True}} } lonargs = {} latargs = {} if style in styles: lonargs.update(styles[style]['lonargs']) latargs.update(styles[style]['latargs']) else: raise ValueError('Invalid style. Valid options are: {}'.format(",".join(styles))) lonargs.update(kwargs) latargs.update(kwargs) if np.isscalar(sph_coord.lon.value): coord_string = (sph_coord.lon.to_string(**lonargs) + " " + sph_coord.lat.to_string(**latargs)) else: coord_string = [] for lonangle, latangle in zip(sph_coord.lon.ravel(), sph_coord.lat.ravel()): coord_string += [(lonangle.to_string(**lonargs) + " " + latangle.to_string(**latargs))] if len(sph_coord.shape) > 1: coord_string = np.array(coord_string).reshape(sph_coord.shape) return coord_string def is_equivalent_frame(self, other): """ Checks if this object's frame as the same as that of the ``other`` object. To be the same frame, two objects must be the same frame class and have the same frame attributes. For two `SkyCoord` objects, *all* of the frame attributes have to match, not just those relevant for the object's frame. Parameters ---------- other : SkyCoord or BaseCoordinateFrame The other object to check. Returns ------- isequiv : bool True if the frames are the same, False if not. Raises ------ TypeError If ``other`` isn't a `SkyCoord` or a `BaseCoordinateFrame` or subclass. """ if isinstance(other, BaseCoordinateFrame): return self.frame.is_equivalent_frame(other) elif isinstance(other, SkyCoord): if other.frame.name != self.frame.name: return False for fattrnm in frame_transform_graph.frame_attributes: if not BaseCoordinateFrame._frameattr_equiv(getattr(self, fattrnm), getattr(other, fattrnm)): return False return True else: # not a BaseCoordinateFrame nor a SkyCoord object raise TypeError("Tried to do is_equivalent_frame on something that " "isn't frame-like") # High-level convenience methods def separation(self, other): """ Computes on-sky separation between this coordinate and another. .. note:: If the ``other`` coordinate object is in a different frame, it is first transformed to the frame of this object. This can lead to unintuitive behavior if not accounted for. Particularly of note is that ``self.separation(other)`` and ``other.separation(self)`` may not give the same answer in this case. For more on how to use this (and related) functionality, see the examples in :doc:`/coordinates/matchsep`. Parameters ---------- other : `~astropy.coordinates.SkyCoord` or `~astropy.coordinates.BaseCoordinateFrame` The coordinate to get the separation to. Returns ------- sep : `~astropy.coordinates.Angle` The on-sky separation between this and the ``other`` coordinate. Notes ----- The separation is calculated using the Vincenty formula, which is stable at all locations, including poles and antipodes [1]_. .. [1] https://en.wikipedia.org/wiki/Great-circle_distance """ from . import Angle from .angle_utilities import angular_separation if not self.is_equivalent_frame(other): try: kwargs = {'merge_attributes': False} if isinstance(other, SkyCoord) else {} other = other.transform_to(self, **kwargs) except TypeError: raise TypeError('Can only get separation to another SkyCoord ' 'or a coordinate frame with data') lon1 = self.spherical.lon lat1 = self.spherical.lat lon2 = other.spherical.lon lat2 = other.spherical.lat # Get the separation as a Quantity, convert to Angle in degrees sep = angular_separation(lon1, lat1, lon2, lat2) return Angle(sep, unit=u.degree) def separation_3d(self, other): """ Computes three dimensional separation between this coordinate and another. For more on how to use this (and related) functionality, see the examples in :doc:`/coordinates/matchsep`. Parameters ---------- other : `~astropy.coordinates.SkyCoord` or `~astropy.coordinates.BaseCoordinateFrame` The coordinate to get the separation to. Returns ------- sep : `~astropy.coordinates.Distance` The real-space distance between these two coordinates. Raises ------ ValueError If this or the other coordinate do not have distances. """ if not self.is_equivalent_frame(other): try: kwargs = {'merge_attributes': False} if isinstance(other, SkyCoord) else {} other = other.transform_to(self, **kwargs) except TypeError: raise TypeError('Can only get separation to another SkyCoord ' 'or a coordinate frame with data') if issubclass(self.data.__class__, UnitSphericalRepresentation): raise ValueError('This object does not have a distance; cannot ' 'compute 3d separation.') if issubclass(other.data.__class__, UnitSphericalRepresentation): raise ValueError('The other object does not have a distance; ' 'cannot compute 3d separation.') c1 = self.cartesian.without_differentials() c2 = other.cartesian.without_differentials() return Distance((c1 - c2).norm()) def spherical_offsets_to(self, tocoord): r""" Computes angular offsets to go *from* this coordinate *to* another. Parameters ---------- tocoord : `~astropy.coordinates.BaseCoordinateFrame` The coordinate to find the offset to. Returns ------- lon_offset : `~astropy.coordinates.Angle` The angular offset in the longitude direction (i.e., RA for equatorial coordinates). lat_offset : `~astropy.coordinates.Angle` The angular offset in the latitude direction (i.e., Dec for equatorial coordinates). Raises ------ ValueError If the ``tocoord`` is not in the same frame as this one. This is different from the behavior of the `separation`/`separation_3d` methods because the offset components depend critically on the specific choice of frame. Notes ----- This uses the sky offset frame machinery, and hence will produce a new sky offset frame if one does not already exist for this object's frame class. See Also -------- separation : for the *total* angular offset (not broken out into components). position_angle : for the direction of the offset. """ if not self.is_equivalent_frame(tocoord): raise ValueError('Tried to use spherical_offsets_to with two non-matching frames!') aframe = self.skyoffset_frame() acoord = tocoord.transform_to(aframe) dlon = acoord.spherical.lon.view(Angle) dlat = acoord.spherical.lat.view(Angle) return dlon, dlat def directional_offset_by(self, position_angle, separation): """ Computes coordinates at the given offset from this coordinate. Parameters ---------- position_angle : `~astropy.coordinates.Angle` position_angle of offset separation : `~astropy.coordinates.Angle` offset angular separation Returns ------- newpoints : `~astropy.coordinates.SkyCoord` The coordinates for the location that corresponds to offsetting by the given `position_angle` and `separation`. Notes ----- Returned SkyCoord frame retains only the frame attributes that are for the resulting frame type. (e.g. if the input frame is `~astropy.coordinates.ICRS`, an ``equinox`` value will be retained, but an ``obstime`` will not.) For a more complete set of transform offsets, use `~astropy.wcs.WCS`. `~astropy.coordinates.SkyCoord.skyoffset_frame()` can also be used to create a spherical frame with (lat=0, lon=0) at a reference point, approximating an xy cartesian system for small offsets. This method is distinct in that it is accurate on the sphere. See Also -------- position_angle : inverse operation for the ``position_angle`` component separation : inverse operation for the ``separation`` component """ from . import angle_utilities slat = self.represent_as(UnitSphericalRepresentation).lat slon = self.represent_as(UnitSphericalRepresentation).lon newlon, newlat = angle_utilities.offset_by( lon=slon, lat=slat, posang=position_angle, distance=separation) return SkyCoord(newlon, newlat, frame=self.frame) def match_to_catalog_sky(self, catalogcoord, nthneighbor=1): """ Finds the nearest on-sky matches of this coordinate in a set of catalog coordinates. For more on how to use this (and related) functionality, see the examples in :doc:`/coordinates/matchsep`. Parameters ---------- catalogcoord : `~astropy.coordinates.SkyCoord` or `~astropy.coordinates.BaseCoordinateFrame` The base catalog in which to search for matches. Typically this will be a coordinate object that is an array (i.e., ``catalogcoord.isscalar == False``) nthneighbor : int, optional Which closest neighbor to search for. Typically ``1`` is desired here, as that is correct for matching one set of coordinates to another. The next likely use case is ``2``, for matching a coordinate catalog against *itself* (``1`` is inappropriate because each point will find itself as the closest match). Returns ------- idx : integer array Indices into ``catalogcoord`` to get the matched points for each of this object's coordinates. Shape matches this object. sep2d : `~astropy.coordinates.Angle` The on-sky separation between the closest match for each element in this object in ``catalogcoord``. Shape matches this object. dist3d : `~astropy.units.Quantity` The 3D distance between the closest match for each element in this object in ``catalogcoord``. Shape matches this object. Unless both this and ``catalogcoord`` have associated distances, this quantity assumes that all sources are at a distance of 1 (dimensionless). Notes ----- This method requires `SciPy <https://www.scipy.org/>`_ to be installed or it will fail. See Also -------- astropy.coordinates.match_coordinates_sky SkyCoord.match_to_catalog_3d """ from .matching import match_coordinates_sky if (isinstance(catalogcoord, (SkyCoord, BaseCoordinateFrame)) and catalogcoord.has_data): self_in_catalog_frame = self.transform_to(catalogcoord) else: raise TypeError('Can only get separation to another SkyCoord or a ' 'coordinate frame with data') res = match_coordinates_sky(self_in_catalog_frame, catalogcoord, nthneighbor=nthneighbor, storekdtree='_kdtree_sky') return res def match_to_catalog_3d(self, catalogcoord, nthneighbor=1): """ Finds the nearest 3-dimensional matches of this coordinate to a set of catalog coordinates. This finds the 3-dimensional closest neighbor, which is only different from the on-sky distance if ``distance`` is set in this object or the ``catalogcoord`` object. For more on how to use this (and related) functionality, see the examples in :doc:`/coordinates/matchsep`. Parameters ---------- catalogcoord : `~astropy.coordinates.SkyCoord` or `~astropy.coordinates.BaseCoordinateFrame` The base catalog in which to search for matches. Typically this will be a coordinate object that is an array (i.e., ``catalogcoord.isscalar == False``) nthneighbor : int, optional Which closest neighbor to search for. Typically ``1`` is desired here, as that is correct for matching one set of coordinates to another. The next likely use case is ``2``, for matching a coordinate catalog against *itself* (``1`` is inappropriate because each point will find itself as the closest match). Returns ------- idx : integer array Indices into ``catalogcoord`` to get the matched points for each of this object's coordinates. Shape matches this object. sep2d : `~astropy.coordinates.Angle` The on-sky separation between the closest match for each element in this object in ``catalogcoord``. Shape matches this object. dist3d : `~astropy.units.Quantity` The 3D distance between the closest match for each element in this object in ``catalogcoord``. Shape matches this object. Notes ----- This method requires `SciPy <https://www.scipy.org/>`_ to be installed or it will fail. See Also -------- astropy.coordinates.match_coordinates_3d SkyCoord.match_to_catalog_sky """ from .matching import match_coordinates_3d if (isinstance(catalogcoord, (SkyCoord, BaseCoordinateFrame)) and catalogcoord.has_data): self_in_catalog_frame = self.transform_to(catalogcoord) else: raise TypeError('Can only get separation to another SkyCoord or a ' 'coordinate frame with data') res = match_coordinates_3d(self_in_catalog_frame, catalogcoord, nthneighbor=nthneighbor, storekdtree='_kdtree_3d') return res def search_around_sky(self, searcharoundcoords, seplimit): """ Searches for all coordinates in this object around a supplied set of points within a given on-sky separation. This is intended for use on `~astropy.coordinates.SkyCoord` objects with coordinate arrays, rather than a scalar coordinate. For a scalar coordinate, it is better to use `~astropy.coordinates.SkyCoord.separation`. For more on how to use this (and related) functionality, see the examples in :doc:`/coordinates/matchsep`. Parameters ---------- searcharoundcoords : `~astropy.coordinates.SkyCoord` or `~astropy.coordinates.BaseCoordinateFrame` The coordinates to search around to try to find matching points in this `SkyCoord`. This should be an object with array coordinates, not a scalar coordinate object. seplimit : `~astropy.units.Quantity` with angle units The on-sky separation to search within. Returns ------- idxsearcharound : integer array Indices into ``searcharoundcoords`` that match the corresponding elements of ``idxself``. Shape matches ``idxself``. idxself : integer array Indices into ``self`` that match the corresponding elements of ``idxsearcharound``. Shape matches ``idxsearcharound``. sep2d : `~astropy.coordinates.Angle` The on-sky separation between the coordinates. Shape matches ``idxsearcharound`` and ``idxself``. dist3d : `~astropy.units.Quantity` The 3D distance between the coordinates. Shape matches ``idxsearcharound`` and ``idxself``. Notes ----- This method requires `SciPy <https://www.scipy.org/>`_ (>=0.12.0) to be installed or it will fail. In the current implementation, the return values are always sorted in the same order as the ``searcharoundcoords`` (so ``idxsearcharound`` is in ascending order). This is considered an implementation detail, though, so it could change in a future release. See Also -------- astropy.coordinates.search_around_sky SkyCoord.search_around_3d """ from .matching import search_around_sky return search_around_sky(searcharoundcoords, self, seplimit, storekdtree='_kdtree_sky') def search_around_3d(self, searcharoundcoords, distlimit): """ Searches for all coordinates in this object around a supplied set of points within a given 3D radius. This is intended for use on `~astropy.coordinates.SkyCoord` objects with coordinate arrays, rather than a scalar coordinate. For a scalar coordinate, it is better to use `~astropy.coordinates.SkyCoord.separation_3d`. For more on how to use this (and related) functionality, see the examples in :doc:`/coordinates/matchsep`. Parameters ---------- searcharoundcoords : `~astropy.coordinates.SkyCoord` or `~astropy.coordinates.BaseCoordinateFrame` The coordinates to search around to try to find matching points in this `SkyCoord`. This should be an object with array coordinates, not a scalar coordinate object. distlimit : `~astropy.units.Quantity` with distance units The physical radius to search within. Returns ------- idxsearcharound : integer array Indices into ``searcharoundcoords`` that match the corresponding elements of ``idxself``. Shape matches ``idxself``. idxself : integer array Indices into ``self`` that match the corresponding elements of ``idxsearcharound``. Shape matches ``idxsearcharound``. sep2d : `~astropy.coordinates.Angle` The on-sky separation between the coordinates. Shape matches ``idxsearcharound`` and ``idxself``. dist3d : `~astropy.units.Quantity` The 3D distance between the coordinates. Shape matches ``idxsearcharound`` and ``idxself``. Notes ----- This method requires `SciPy <https://www.scipy.org/>`_ (>=0.12.0) to be installed or it will fail. In the current implementation, the return values are always sorted in the same order as the ``searcharoundcoords`` (so ``idxsearcharound`` is in ascending order). This is considered an implementation detail, though, so it could change in a future release. See Also -------- astropy.coordinates.search_around_3d SkyCoord.search_around_sky """ from .matching import search_around_3d return search_around_3d(searcharoundcoords, self, distlimit, storekdtree='_kdtree_3d') def position_angle(self, other): """ Computes the on-sky position angle (East of North) between this `SkyCoord` and another. Parameters ---------- other : `SkyCoord` The other coordinate to compute the position angle to. It is treated as the "head" of the vector of the position angle. Returns ------- pa : `~astropy.coordinates.Angle` The (positive) position angle of the vector pointing from ``self`` to ``other``. If either ``self`` or ``other`` contain arrays, this will be an array following the appropriate `numpy` broadcasting rules. Examples -------- >>> c1 = SkyCoord(0*u.deg, 0*u.deg) >>> c2 = SkyCoord(1*u.deg, 0*u.deg) >>> c1.position_angle(c2).degree 90.0 >>> c3 = SkyCoord(1*u.deg, 1*u.deg) >>> c1.position_angle(c3).degree # doctest: +FLOAT_CMP 44.995636455344844 """ from . import angle_utilities if not self.is_equivalent_frame(other): try: other = other.transform_to(self, merge_attributes=False) except TypeError: raise TypeError('Can only get position_angle to another ' 'SkyCoord or a coordinate frame with data') slat = self.represent_as(UnitSphericalRepresentation).lat slon = self.represent_as(UnitSphericalRepresentation).lon olat = other.represent_as(UnitSphericalRepresentation).lat olon = other.represent_as(UnitSphericalRepresentation).lon return angle_utilities.position_angle(slon, slat, olon, olat) def skyoffset_frame(self, rotation=None): """ Returns the sky offset frame with this `SkyCoord` at the origin. Returns ------- astrframe : `~astropy.coordinates.SkyOffsetFrame` A sky offset frame of the same type as this `SkyCoord` (e.g., if this object has an ICRS coordinate, the resulting frame is SkyOffsetICRS, with the origin set to this object) rotation : `~astropy.coordinates.Angle` or `~astropy.units.Quantity` with angle units The final rotation of the frame about the ``origin``. The sign of the rotation is the left-hand rule. That is, an object at a particular position angle in the un-rotated system will be sent to the positive latitude (z) direction in the final frame. """ return SkyOffsetFrame(origin=self, rotation=rotation) def get_constellation(self, short_name=False, constellation_list='iau'): """ Determines the constellation(s) of the coordinates this `SkyCoord` contains. Parameters ---------- short_name : bool If True, the returned names are the IAU-sanctioned abbreviated names. Otherwise, full names for the constellations are used. constellation_list : str The set of constellations to use. Currently only ``'iau'`` is supported, meaning the 88 "modern" constellations endorsed by the IAU. Returns ------- constellation : str or string array If this is a scalar coordinate, returns the name of the constellation. If it is an array `SkyCoord`, it returns an array of names. Notes ----- To determine which constellation a point on the sky is in, this first precesses to B1875, and then uses the Delporte boundaries of the 88 modern constellations, as tabulated by `Roman 1987 <http://cdsarc.u-strasbg.fr/viz-bin/Cat?VI/42>`_. See Also -------- astropy.coordinates.get_constellation """ from .funcs import get_constellation # because of issue #7028, the conversion to a PrecessedGeocentric # system fails in some cases. Work around is to drop the velocities. # they are not needed here since only position infromation is used extra_frameattrs = {nm: getattr(self, nm) for nm in self._extra_frameattr_names} novel = SkyCoord(self.realize_frame(self.data.without_differentials()), **extra_frameattrs) return get_constellation(novel, short_name, constellation_list) # the simpler version below can be used when gh-issue #7028 is resolved # return get_constellation(self, short_name, constellation_list) # WCS pixel to/from sky conversions def to_pixel(self, wcs, origin=0, mode='all'): """ Convert this coordinate to pixel coordinates using a `~astropy.wcs.WCS` object. Parameters ---------- wcs : `~astropy.wcs.WCS` The WCS to use for convert origin : int Whether to return 0 or 1-based pixel coordinates. mode : 'all' or 'wcs' Whether to do the transformation including distortions (``'all'``) or only including only the core WCS transformation (``'wcs'``). Returns ------- xp, yp : `numpy.ndarray` The pixel coordinates See Also -------- astropy.wcs.utils.skycoord_to_pixel : the implementation of this method """ from astropy.wcs.utils import skycoord_to_pixel return skycoord_to_pixel(self, wcs=wcs, origin=origin, mode=mode) @classmethod def from_pixel(cls, xp, yp, wcs, origin=0, mode='all'): """ Create a new `SkyCoord` from pixel coordinates using an `~astropy.wcs.WCS` object. Parameters ---------- xp, yp : float or `numpy.ndarray` The coordinates to convert. wcs : `~astropy.wcs.WCS` The WCS to use for convert origin : int Whether to return 0 or 1-based pixel coordinates. mode : 'all' or 'wcs' Whether to do the transformation including distortions (``'all'``) or only including only the core WCS transformation (``'wcs'``). Returns ------- coord : an instance of this class A new object with sky coordinates corresponding to the input ``xp`` and ``yp``. See Also -------- to_pixel : to do the inverse operation astropy.wcs.utils.pixel_to_skycoord : the implementation of this method """ from astropy.wcs.utils import pixel_to_skycoord return pixel_to_skycoord(xp, yp, wcs=wcs, origin=origin, mode=mode, cls=cls) def contained_by(self, wcs, image=None, **kwargs): """ Determines if the SkyCoord is contained in the given wcs footprint. Parameters ---------- wcs : `~astropy.wcs.WCS` The coordinate to check if it is within the wcs coordinate. image : array Optional. The image associated with the wcs object that the cooordinate is being checked against. If not given the naxis keywords will be used to determine if the coordinate falls within the wcs footprint. **kwargs : Additional arguments to pass to `~astropy.coordinates.SkyCoord.to_pixel` Returns ------- response : bool True means the WCS footprint contains the coordinate, False means it does not. """ if image is not None: ymax, xmax = image.shape else: xmax, ymax = wcs._naxis import warnings with warnings.catch_warnings(): # Suppress warnings since they just mean we didn't find the coordinate warnings.simplefilter("ignore") try: x, y = self.to_pixel(wcs, **kwargs) except Exception: return False return (x < xmax) & (x > 0) & (y < ymax) & (y > 0) def radial_velocity_correction(self, kind='barycentric', obstime=None, location=None): """ Compute the correction required to convert a radial velocity at a given time and place on the Earth's Surface to a barycentric or heliocentric velocity. Parameters ---------- kind : str The kind of velocity correction. Must be 'barycentric' or 'heliocentric'. obstime : `~astropy.time.Time` or None, optional The time at which to compute the correction. If `None`, the ``obstime`` frame attribute on the `SkyCoord` will be used. location : `~astropy.coordinates.EarthLocation` or None, optional The observer location at which to compute the correction. If `None`, the ``location`` frame attribute on the passed-in ``obstime`` will be used, and if that is None, the ``location`` frame attribute on the `SkyCoord` will be used. Raises ------ ValueError If either ``obstime`` or ``location`` are passed in (not ``None``) when the frame attribute is already set on this `SkyCoord`. TypeError If ``obstime`` or ``location`` aren't provided, either as arguments or as frame attributes. Returns ------- vcorr : `~astropy.units.Quantity` with velocity units The correction with a positive sign. I.e., *add* this to an observed radial velocity to get the barycentric (or heliocentric) velocity. If m/s precision or better is needed, see the notes below. Notes ----- The barycentric correction is calculated to higher precision than the heliocentric correction and includes additional physics (e.g time dilation). Use barycentric corrections if m/s precision is required. The algorithm here is sufficient to perform corrections at the mm/s level, but care is needed in application. The barycentric correction returned uses the optical approximation v = z * c. Strictly speaking, the barycentric correction is multiplicative and should be applied as:: >>> from astropy.time import Time >>> from astropy.coordinates import SkyCoord, EarthLocation >>> from astropy.constants import c >>> t = Time(56370.5, format='mjd', scale='utc') >>> loc = EarthLocation('149d33m00.5s','-30d18m46.385s',236.87*u.m) >>> sc = SkyCoord(1*u.deg, 2*u.deg) >>> vcorr = sc.radial_velocity_correction(kind='barycentric', obstime=t, location=loc) # doctest: +REMOTE_DATA >>> rv = rv + vcorr + rv * vcorr / c # doctest: +SKIP Also note that this method returns the correction velocity in the so-called *optical convention*:: >>> vcorr = zb * c # doctest: +SKIP where ``zb`` is the barycentric correction redshift as defined in section 3 of Wright & Eastman (2014). The application formula given above follows from their equation (11) under assumption that the radial velocity ``rv`` has also been defined using the same optical convention. Note, this can be regarded as a matter of velocity definition and does not by itself imply any loss of accuracy, provided sufficient care has been taken during interpretation of the results. If you need the barycentric correction expressed as the full relativistic velocity (e.g., to provide it as the input to another software which performs the application), the following recipe can be used:: >>> zb = vcorr / c # doctest: +REMOTE_DATA >>> zb_plus_one_squared = (zb + 1) ** 2 # doctest: +REMOTE_DATA >>> vcorr_rel = c * (zb_plus_one_squared - 1) / (zb_plus_one_squared + 1) # doctest: +REMOTE_DATA or alternatively using just equivalencies:: >>> vcorr_rel = vcorr.to(u.Hz, u.doppler_optical(1*u.Hz)).to(vcorr.unit, u.doppler_relativistic(1*u.Hz)) # doctest: +REMOTE_DATA See also `~astropy.units.equivalencies.doppler_optical`, `~astropy.units.equivalencies.doppler_radio`, and `~astropy.units.equivalencies.doppler_relativistic` for more information on the velocity conventions. The default is for this method to use the builtin ephemeris for computing the sun and earth location. Other ephemerides can be chosen by setting the `~astropy.coordinates.solar_system_ephemeris` variable, either directly or via ``with`` statement. For example, to use the JPL ephemeris, do:: >>> from astropy.coordinates import solar_system_ephemeris >>> sc = SkyCoord(1*u.deg, 2*u.deg) >>> with solar_system_ephemeris.set('jpl'): # doctest: +REMOTE_DATA ... rv += sc.radial_velocity_correction(obstime=t, location=loc) # doctest: +SKIP """ # has to be here to prevent circular imports from .solar_system import get_body_barycentric_posvel # location validation timeloc = getattr(obstime, 'location', None) if location is None: if self.location is not None: location = self.location if timeloc is not None: raise ValueError('`location` cannot be in both the ' 'passed-in `obstime` and this `SkyCoord` ' 'because it is ambiguous which is meant ' 'for the radial_velocity_correction.') elif timeloc is not None: location = timeloc else: raise TypeError('Must provide a `location` to ' 'radial_velocity_correction, either as a ' 'SkyCoord frame attribute, as an attribute on ' 'the passed in `obstime`, or in the method ' 'call.') elif self.location is not None or timeloc is not None: raise ValueError('Cannot compute radial velocity correction if ' '`location` argument is passed in and there is ' 'also a `location` attribute on this SkyCoord or ' 'the passed-in `obstime`.') # obstime validation coo_at_rv_obstime = self # assume we need no space motion for now if obstime is None: obstime = self.obstime if obstime is None: raise TypeError('Must provide an `obstime` to ' 'radial_velocity_correction, either as a ' 'SkyCoord frame attribute or in the method ' 'call.') elif self.obstime is not None and self.frame.data.differentials: # we do need space motion after all coo_at_rv_obstime = self.apply_space_motion(obstime) elif self.obstime is None: # warn the user if the object has differentials set if 's' in self.data.differentials: warnings.warn( "SkyCoord has space motion, and therefore the specified " "position of the SkyCoord may not be the same as " "the `obstime` for the radial velocity measurement. " "This may affect the rv correction at the order of km/s" "for very high proper motions sources. If you wish to " "apply space motion of the SkyCoord to correct for this" "the `obstime` attribute of the SkyCoord must be set", AstropyUserWarning ) pos_earth, v_earth = get_body_barycentric_posvel('earth', obstime) if kind == 'barycentric': v_origin_to_earth = v_earth elif kind == 'heliocentric': v_sun = get_body_barycentric_posvel('sun', obstime)[1] v_origin_to_earth = v_earth - v_sun else: raise ValueError("`kind` argument to radial_velocity_correction must " "be 'barycentric' or 'heliocentric', but got " "'{}'".format(kind)) gcrs_p, gcrs_v = location.get_gcrs_posvel(obstime) # transforming to GCRS is not the correct thing to do here, since we don't want to # include aberration (or light deflection)? Instead, only apply parallax if necessary icrs_cart = coo_at_rv_obstime.icrs.cartesian icrs_cart_novel = icrs_cart.without_differentials() if self.data.__class__ is UnitSphericalRepresentation: targcart = icrs_cart_novel else: # skycoord has distances so apply parallax obs_icrs_cart = pos_earth + gcrs_p targcart = icrs_cart_novel - obs_icrs_cart targcart /= targcart.norm() if kind == 'barycentric': beta_obs = (v_origin_to_earth + gcrs_v) / speed_of_light gamma_obs = 1 / np.sqrt(1 - beta_obs.norm()**2) gr = location.gravitational_redshift(obstime) # barycentric redshift according to eq 28 in Wright & Eastmann (2014), # neglecting Shapiro delay and effects of the star's own motion zb = gamma_obs * (1 + beta_obs.dot(targcart)) / (1 + gr/speed_of_light) # try and get terms corresponding to stellar motion. if icrs_cart.differentials: try: ro = self.icrs.cartesian beta_star = ro.differentials['s'].to_cartesian() / speed_of_light # ICRS unit vector at coordinate epoch ro = ro.without_differentials() ro /= ro.norm() zb *= (1 + beta_star.dot(ro)) / (1 + beta_star.dot(targcart)) except u.UnitConversionError: warnings.warn("SkyCoord contains some velocity information, but not enough to " "calculate the full space motion of the source, and so this has " "been ignored for the purposes of calculating the radial velocity " "correction. This can lead to errors on the order of metres/second.", AstropyUserWarning) zb = zb - 1 return zb * speed_of_light else: # do a simpler correction ignoring time dilation and gravitational redshift # this is adequate since Heliocentric corrections shouldn't be used if # cm/s precision is required. return targcart.dot(v_origin_to_earth + gcrs_v) # Table interactions @classmethod def guess_from_table(cls, table, **coord_kwargs): r""" A convenience method to create and return a new `SkyCoord` from the data in an astropy Table. This method matches table columns that start with the case-insensitive names of the the components of the requested frames, if they are also followed by a non-alphanumeric character. It will also match columns that *end* with the component name if a non-alphanumeric character is *before* it. For example, the first rule means columns with names like ``'RA[J2000]'`` or ``'ra'`` will be interpreted as ``ra`` attributes for `~astropy.coordinates.ICRS` frames, but ``'RAJ2000'`` or ``'radius'`` are *not*. Similarly, the second rule applied to the `~astropy.coordinates.Galactic` frame means that a column named ``'gal_l'`` will be used as the the ``l`` component, but ``gall`` or ``'fill'`` will not. The definition of alphanumeric here is based on Unicode's definition of alphanumeric, except without ``_`` (which is normally considered alphanumeric). So for ASCII, this means the non-alphanumeric characters are ``<space>_!"#$%&'()*+,-./\:;<=>?@[]^`{|}~``). Parameters ---------- table : astropy.Table The table to load data from. coord_kwargs Any additional keyword arguments are passed directly to this class's constructor. Returns ------- newsc : same as this class The new `SkyCoord` (or subclass) object. """ _frame_cls, _frame_kwargs = _get_frame_without_data([], coord_kwargs) frame = _frame_cls(**_frame_kwargs) coord_kwargs['frame'] = coord_kwargs.get('frame', frame) comp_kwargs = {} for comp_name in frame.representation_component_names: # this matches things like 'ra[...]'' but *not* 'rad'. # note that the "_" must be in there explicitly, because # "alphanumeric" usually includes underscores. starts_with_comp = comp_name + r'(\W|\b|_)' # this part matches stuff like 'center_ra', but *not* # 'aura' ends_with_comp = r'.*(\W|\b|_)' + comp_name + r'\b' # the final regex ORs together the two patterns rex = re.compile('(' + starts_with_comp + ')|(' + ends_with_comp + ')', re.IGNORECASE | re.UNICODE) for col_name in table.colnames: if rex.match(col_name): if comp_name in comp_kwargs: oldname = comp_kwargs[comp_name].name msg = ('Found at least two matches for component "{0}"' ': "{1}" and "{2}". Cannot continue with this ' 'ambiguity.') raise ValueError(msg.format(comp_name, oldname, col_name)) comp_kwargs[comp_name] = table[col_name] for k, v in comp_kwargs.items(): if k in coord_kwargs: raise ValueError('Found column "{}" in table, but it was ' 'already provided as "{}" keyword to ' 'guess_from_table function.'.format(v.name, k)) else: coord_kwargs[k] = v return cls(**coord_kwargs) # Name resolve @classmethod def from_name(cls, name, frame='icrs', parse=False, cache=True): """ Given a name, query the CDS name resolver to attempt to retrieve coordinate information for that object. The search database, sesame url, and query timeout can be set through configuration items in ``astropy.coordinates.name_resolve`` -- see docstring for `~astropy.coordinates.get_icrs_coordinates` for more information. Parameters ---------- name : str The name of the object to get coordinates for, e.g. ``'M42'``. frame : str or `BaseCoordinateFrame` class or instance The frame to transform the object to. parse: bool Whether to attempt extracting the coordinates from the name by parsing with a regex. For objects catalog names that have J-coordinates embedded in their names, e.g., 'CRTS SSS100805 J194428-420209', this may be much faster than a Sesame query for the same object name. The coordinates extracted in this way may differ from the database coordinates by a few deci-arcseconds, so only use this option if you do not need sub-arcsecond accuracy for coordinates. cache : bool, optional Determines whether to cache the results or not. To update or overwrite an existing value, pass ``cache='update'``. Returns ------- coord : SkyCoord Instance of the SkyCoord class. """ from .name_resolve import get_icrs_coordinates icrs_coord = get_icrs_coordinates(name, parse, cache=cache) icrs_sky_coord = cls(icrs_coord) if frame in ('icrs', icrs_coord.__class__): return icrs_sky_coord else: return icrs_sky_coord.transform_to(frame)
# Copyright (c) 2012 Adi Roiban. # See LICENSE for details. """ Unit tests for empirical package. """ from __future__ import print_function from __future__ import division from __future__ import absolute_import
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest import numpy as np from numpy.testing import assert_allclose import astropy.units as u from astropy.table import Table from gammapy.catalog.fermi import SourceCatalog3FGL from gammapy.estimators import FluxPoints from gammapy.modeling.models import SpectralModel from gammapy.utils.scripts import make_path from gammapy.utils.testing import ( assert_quantity_allclose, mpl_plot_check, requires_data, requires_dependency, ) FLUX_POINTS_FILES = [ "diff_flux_points.ecsv", "diff_flux_points.fits", "flux_points.ecsv", "flux_points.fits", ] class LWTestModel(SpectralModel): @staticmethod def evaluate(x): return 1e4 * np.exp(-6 * x) def integral(self, xmin, xmax, **kwargs): return -1.0 / 6 * 1e4 * (np.exp(-6 * xmax) - np.exp(-6 * xmin)) def inverse(self, y): return -1.0 / 6 * np.log(y * 1e-4) class XSqrTestModel(SpectralModel): @staticmethod def evaluate(x): return x ** 2 def integral(self, xmin, xmax, **kwargs): return 1.0 / 3 * (xmax ** 3 - xmin ** 2) def inverse(self, y): return np.sqrt(y) class ExpTestModel(SpectralModel): @staticmethod def evaluate(x): return np.exp(x * u.Unit("1 / TeV")) def integral(self, xmin, xmax, **kwargs): return np.exp(xmax * u.Unit("1 / TeV")) - np.exp(xmin * u.Unit("1 / TeV")) def inverse(self, y): return np.log(y * u.TeV) * u.TeV def test_energy_ref_lafferty(): """ Tests Lafferty & Wyatt x-point method. Using input function g(x) = 10^4 exp(-6x) against check values from paper Lafferty & Wyatt. Nucl. Instr. and Meth. in Phys. Res. A 355 (1995) 541-547, p. 542 Table 1 """ # These are the results from the paper desired = np.array([0.048, 0.190, 0.428, 0.762]) model = LWTestModel() energy_min = np.array([0.0, 0.1, 0.3, 0.6]) energy_max = np.array([0.1, 0.3, 0.6, 1.0]) actual = FluxPoints._energy_ref_lafferty(model, energy_min, energy_max) assert_allclose(actual, desired, atol=1e-3) @pytest.mark.xfail def test_dnde_from_flux(): """Tests y-value normalization adjustment method. """ table = Table() table["e_min"] = np.array([10, 20, 30, 40]) table["e_max"] = np.array([20, 30, 40, 50]) table["flux"] = np.array([42, 52, 62, 72]) # 'True' integral flux in this test bin # Get values model = XSqrTestModel() table["e_ref"] = FluxPoints._energy_ref_lafferty(model, table["e_min"], table["e_max"]) dnde = FluxPoints.from_table(table, reference_model=model) # Set up test case comparison dnde_model = model(table["e_ref"]) # Test comparison result desired = model.integral(table["e_min"], table["e_max"]) # Test output result actual = table["flux"] * (dnde_model / dnde) # Compare assert_allclose(actual, desired, rtol=1e-6) @pytest.mark.xfail @pytest.mark.parametrize("method", ["table", "lafferty", "log_center"]) def test_compute_flux_points_dnde_exp(method): """ Tests against analytical result or result from a powerlaw. """ model = ExpTestModel() energy_min = [1.0, 10.0] * u.TeV energy_max = [10.0, 100.0] * u.TeV table = Table() table.meta["SED_TYPE"] = "flux" table["e_min"] = energy_min table["e_max"] = energy_max flux = model.integral(energy_min, energy_max) table["flux"] = flux if method == "log_center": energy_ref = np.sqrt(energy_min * energy_max) elif method == "table": energy_ref = [2.0, 20.0] * u.TeV elif method == "lafferty": energy_ref = FluxPoints._energy_ref_lafferty(model, energy_min, energy_max) table["e_ref"] = energy_ref result = FluxPoints.from_table(table, reference_model=model) # Test energy actual = result.energy_ref assert_quantity_allclose(actual, energy_ref, rtol=1e-8) # Test flux actual = result.dnde desired = model(energy_ref) assert_quantity_allclose(actual, desired, rtol=1e-8) @requires_data() def test_fermi_to_dnde(): from gammapy.catalog import SourceCatalog4FGL catalog_4fgl = SourceCatalog4FGL("$GAMMAPY_DATA/catalogs/fermi/gll_psc_v20.fit.gz") src = catalog_4fgl["FGES J1553.8-5325"] fp = src.flux_points assert_allclose( fp.dnde.quantity[1, 0, 0], 4.567393e-10 * u.Unit("cm-2 s-1 MeV-1"), rtol=1e-5, ) @pytest.fixture(params=FLUX_POINTS_FILES, scope="session") def flux_points(request): path = "$GAMMAPY_DATA/tests/spectrum/flux_points/" + request.param return FluxPoints.read(path) @pytest.fixture(scope="session") def flux_points_likelihood(): path = "$GAMMAPY_DATA/tests/spectrum/flux_points/binlike.fits" return FluxPoints.read(path) @requires_data() class TestFluxPoints: def test_info(self, flux_points): info = str(flux_points) assert "geom" in info assert "axes" in info assert "ref. model" in info assert "quantities" in info def test_energy_ref(self, flux_points): actual = flux_points.energy_ref desired = np.sqrt(flux_points.energy_min * flux_points.energy_max) assert_quantity_allclose(actual, desired) def test_energy_min(self, flux_points): actual = flux_points.energy_min desired = 299530.97 * u.MeV assert_quantity_allclose(actual.sum(), desired) def test_energy_max(self, flux_points): actual = flux_points.energy_max desired = 399430.975 * u.MeV assert_quantity_allclose(actual.sum(), desired) def test_write_fits(self, tmp_path, flux_points): flux_points.write(tmp_path / "tmp.fits", sed_type=flux_points.sed_type_init) actual = FluxPoints.read(tmp_path / "tmp.fits") assert str(flux_points) == str(actual) def test_write_ecsv(self, tmp_path, flux_points): flux_points.write(tmp_path / "flux_points.ecsv", sed_type=flux_points.sed_type_init) actual = FluxPoints.read(tmp_path / "flux_points.ecsv") assert str(flux_points) == str(actual) def test_quantity_access(self, flux_points_likelihood): assert flux_points_likelihood.sqrt_ts assert flux_points_likelihood.ts assert flux_points_likelihood.stat assert_allclose(flux_points_likelihood.n_sigma_ul, 2) assert flux_points_likelihood.sed_type_init == "likelihood" @requires_dependency("matplotlib") def test_plot(self, flux_points): with mpl_plot_check(): flux_points.plot() @requires_dependency("matplotlib") def test_plot_likelihood(self, flux_points_likelihood): with mpl_plot_check(): flux_points_likelihood.plot_ts_profiles() @requires_dependency("matplotlib") def test_plot_likelihood_error(self, flux_points_likelihood): del flux_points_likelihood._data["stat_scan"] with pytest.raises(AttributeError): flux_points_likelihood.plot_ts_profiles() @requires_data() def test_compute_flux_points_dnde_fermi(): """ Test compute_flux_points_dnde on fermi source. """ fermi_3fgl = SourceCatalog3FGL() source = fermi_3fgl["3FGL J0835.3-4510"] flux_points = source.flux_points table = source.flux_points_table for column in ["e2dnde", "e2dnde_errn", "e2dnde_errp", "e2dnde_ul"]: actual = table[column].quantity desired = getattr(flux_points, column).quantity.squeeze() assert_quantity_allclose(actual[:-1], desired[:-1], rtol=0.05) @requires_data() @requires_dependency("matplotlib") def test_plot_fp_no_ul(): path = make_path("$GAMMAPY_DATA/tests/spectrum/flux_points/diff_flux_points.fits") table = Table.read(path) table.remove_column('dnde_ul') fp = FluxPoints.from_table(table, sed_type='dnde') with mpl_plot_check(): fp.plot()
import os from os.path import join, dirname from dotenv import load_dotenv from urllib.parse import urlparse # loading .env file env_path = join(dirname(__file__), '.env') load_dotenv(env_path) # use function def url_path_check(path): sample_host = 'http://localhost' sample_url = sample_host + path if urlparse(sample_url) and urlparse(sample_url).path == path: return path return None def number_check(num=None): if isinstance(int(num), int): return int(num) return None # Register Env Param try: API_AUTH_FEATURE = os.environ.get('API_AUTH_FEATURE', 'False').lower() in ('true') or False DEFAULT_LANGUAGE = os.environ.get('DEFAULT_LANGUAGE') or 'ja' VERSION = os.environ.get('VERSION') or '1.0.0' SHOW_SWAGGER_PATH = url_path_check(os.environ.get('SHOW_SWAGGER_PATH') or "") or None SHOW_REDOC_PATH = url_path_check(os.environ.get('SHOW_REDOC_PATH') or "") or None SHOW_OPENAPI_PATH = url_path_check(os.environ.get('SHOW_OPENAPI_PATH')) or None DB_HOST = os.environ.get('DB_HOST') or 'pgsql' DB_PORT = number_check(os.environ.get('DB_PORT')) or 5432 DB_USER = os.environ.get('DB_USER') or 'postgres' DB_PASSWORD = os.environ.get('DB_PASSWORD') or 'postgres' DATABASE = os.environ.get('DATABASE') or 'postgres' except Exception: print("defined param error: check .env file") raise
import numpy as np from util import util from config.draco3_lb_config import PnCConfig, WBCConfig from pnc.wbc.ihwbc.ihwbc import IHWBC from pnc.wbc.ihwbc.joint_integrator import JointIntegrator class Draco3LBController(object): def __init__(self, tci_container, robot): self._tci_container = tci_container self._robot = robot # Initialize WBC l_jp_idx, l_jd_idx, r_jp_idx, r_jd_idx = self._robot.get_q_dot_idx( ['l_knee_fe_jp', 'l_knee_fe_jd', 'r_knee_fe_jp', 'r_knee_fe_jd']) act_list = [False] * robot.n_floating + [True] * robot.n_a act_list[l_jd_idx] = False act_list[r_jd_idx] = False n_q_dot = len(act_list) n_active = np.count_nonzero(np.array(act_list)) n_passive = n_q_dot - n_active - 6 self._sa = np.zeros((n_active, n_q_dot)) self._sv = np.zeros((n_passive, n_q_dot)) j, k = 0, 0 for i in range(n_q_dot): if i >= 6: if act_list[i]: self._sa[j, i] = 1. j += 1 else: self._sv[k, i] = 1. k += 1 self._sf = np.zeros((6, n_q_dot)) self._sf[0:6, 0:6] = np.eye(6) self._ihwbc = IHWBC(self._sf, self._sa, self._sv, PnCConfig.SAVE_DATA) if WBCConfig.B_TRQ_LIMIT: self._ihwbc.trq_limit = np.dot(self._sa[:, 6:], self._robot.joint_trq_limit) self._ihwbc.lambda_q_ddot = WBCConfig.LAMBDA_Q_DDOT self._ihwbc.lambda_rf = WBCConfig.LAMBDA_RF # Initialize Joint Integrator self._joint_integrator = JointIntegrator(robot.n_a, PnCConfig.CONTROLLER_DT) self._joint_integrator.pos_cutoff_freq = WBCConfig.POS_CUTOFF_FREQ self._joint_integrator.vel_cutoff_freq = WBCConfig.VEL_CUTOFF_FREQ self._joint_integrator.max_pos_err = WBCConfig.MAX_POS_ERR self._joint_integrator.joint_pos_limit = self._robot.joint_pos_limit self._joint_integrator.joint_vel_limit = self._robot.joint_vel_limit self._b_first_visit = True def get_command(self): if self._b_first_visit: self.first_visit() # Dynamics properties mass_matrix = self._robot.get_mass_matrix() mass_matrix_inv = np.linalg.inv(mass_matrix) coriolis = self._robot.get_coriolis() gravity = self._robot.get_gravity() self._ihwbc.update_setting(mass_matrix, mass_matrix_inv, coriolis, gravity) # Task, Contact, and Internal Constraint Setup w_hierarchy_list = [] for task in self._tci_container.task_list: task.update_jacobian() task.update_cmd() w_hierarchy_list.append(task.w_hierarchy) self._ihwbc.w_hierarchy = np.array(w_hierarchy_list) for contact in self._tci_container.contact_list: contact.update_contact() for internal_constraint in self._tci_container.internal_constraint_list: internal_constraint.update_internal_constraint() # WBC commands joint_trq_cmd, joint_acc_cmd, rf_cmd = self._ihwbc.solve( self._tci_container.task_list, self._tci_container.contact_list, self._tci_container.internal_constraint_list) joint_trq_cmd = np.dot(self._sa[:, 6:].transpose(), joint_trq_cmd) joint_acc_cmd = np.dot(self._sa[:, 6:].transpose(), joint_acc_cmd) # Double integration joint_vel_cmd, joint_pos_cmd = self._joint_integrator.integrate( joint_acc_cmd, self._robot.joint_velocities, self._robot.joint_positions) command = self._robot.create_cmd_ordered_dict(joint_pos_cmd, joint_vel_cmd, joint_trq_cmd) return command def first_visit(self): joint_pos_ini = self._robot.joint_positions self._joint_integrator.initialize_states(np.zeros(self._robot.n_a), joint_pos_ini) self._b_first_visit = False
#!/usr/local/bin/python # encoding: utf-8 """ *Convert the HTML export of kindle notebooks (from kindle apps) to markdown* :Author: David Young :Date Created: October 17, 2016 """ ################# GLOBAL IMPORTS #################### import sys import os import re import collections os.environ['TERM'] = 'vt100' from fundamentals import tools # THESE ARE THE 4 KINDLE COLORS ARE HOW THEY TRANSLATE TO MD colorCode = { "blue": "code", "yellow": "text", "orange": "quote", "pink": "header" } class kindle_notebook(): """ *convert the HTML export of kindle notebooks (from kindle apps) to markdown* **Key Arguments:** - ``log`` -- logger - ``kindleExportPath`` -- path to the exported kindle HTML file - ``outputPath`` -- the output path to the md file. **Usage:** To convert the exported HTML file of annotation and notes from a kindle book or document to markdown, run the code: .. code-block:: python from polyglot.markdown import kindle_notebook nb = kindle_notebook( log=log, kindleExportPath="/path/to/kindle_export.html", outputPath="/path/to/coverted_annotations.md" ) nb.convert() The colours of the annotations convert to markdown attributes via the following key: .. code-block: json colorCode = { "blue": "code", "yellow": "text", "orange": "quote", "pink": "header" } """ # Initialisation def __init__( self, log, kindleExportPath, outputPath ): self.log = log log.debug("instansiating a new 'kindle_notebook' object") self.kindleExportPath = kindleExportPath self.outputPath = outputPath # xt-self-arg-tmpx # Initial Actions return None def convert(self): """ *convert the kindle_notebook object* **Return:** - ``kindle_notebook`` **Usage:** .. todo:: - add usage info - create a sublime snippet for usage - update the package tutorial if needed .. code-block:: python usage code """ self.log.debug('starting the ``convert`` method') import codecs pathToReadFile = self.kindleExportPath try: self.log.debug("attempting to open the file %s" % (pathToReadFile,)) readFile = codecs.open(pathToReadFile, encoding='utf-8', mode='r') annotations = readFile.read() readFile.close() except IOError, e: message = 'could not open the file %s' % (pathToReadFile,) self.log.critical(message) raise IOError(message) annotations = annotations.replace(u"’", "'").replace( u"“ ", '"').replace(u"“", '"').replace(u"”", '"').replace(u"–", "-").replace(u"—", "-") # COLLECT KEY COMPONENTS try: title = self.find_component("bookTitle", annotations) except: return False regex = re.compile(r'_xx\d*xx$') title = regex.sub("", title) authors = self.find_component("authors", annotations) citation = self.find_component("citation", annotations) # CLEAN THE CITATION regex = re.compile(r'</?i>', re.S) citation = regex.sub('*', citation) regex = re.compile(r'Citation \(.*?\): ', re.S) citation = regex.sub('', citation).replace(" Kindle edition.", "") # COLLECT ANNOTATIONS annotationDict = {} matchObject = re.finditer( r"""<div class="noteHeading">\s+Highlight\(<span.*?>(?P<color>.*?)</span>\)((?P<section>.*?)Page (?P<page>\d+))?.*?Location (?P<location>\d+)\s+</div>\s+<div class="noteText">(?P<note>.*?)</div>""", annotations, flags=re.S ) for match in matchObject: location = int(match.group("location")) location = "%(location)09d" % locals() if match.group("page"): try: annotationDict[location] = {"color": match.group("color"), "page": match.group( "page"), "section": self.clean(match.group("section"))[3:-2], "note": self.clean(match.group("note"))} except: print match.group("note") sys.exit(0) else: try: annotationDict[location] = {"color": match.group( "color"), "note": self.clean(match.group("note"))} except: print match.group("note") sys.exit(0) # COLLECT PERSONAL NOTES matchObject = re.finditer( r"""<div class="noteHeading">\s+Note -( Page (?P<page>\d+))?.*?Location (?P<location>\d+)\s+</div>\s+<div class="noteText">(?P<note>.*?)</div>""", annotations, flags=re.S ) for match in matchObject: location = int(match.group("location")) location = "%(location)09dnote" % locals() if match.group("page"): annotationDict[location] = {"color": None, "page": match.group( "page"), "note": self.clean(match.group("note"))} else: annotationDict[location] = { "color": None, "note": self.clean(match.group("note"))} annotationDict = collections.OrderedDict( sorted(annotationDict.items())) mdContent = "\n# %(title)s\n\nAuthors: **%(authors)s**\n\n" % locals() for k, v in annotationDict.iteritems(): mdContent += self.convertToMD(v) + "\n\n" if len(annotationDict) == 0: return False pathToWriteFile = self.outputPath try: self.log.debug("attempting to open the file %s" % (pathToWriteFile,)) writeFile = codecs.open( pathToWriteFile, encoding='utf-8', mode='w') except IOError, e: message = 'could not open the file %s' % (pathToWriteFile,) self.log.critical(message) raise IOError(message) writeFile.write(mdContent) writeFile.close() self.log.debug('completed the ``convert`` method') return pathToWriteFile def clean(self, text): return text.strip().replace(u"’", "'").replace(u"“ ", '"').replace(u"“", '"').replace(u"”", '"').replace(u"–", "-").replace(u"—", "-") def find_component(self, divtag, annotations): component = re.search( r"""<div class="%(divtag)s">(.*?)</div>""" % locals(), annotations, re.S) return self.clean(component.group(1)) def convertToMD(self, kindleNote): if kindleNote["color"] == None: return "**NOTE**\n: " + kindleNote["note"].replace("\n", " ") mdType = colorCode[kindleNote["color"]] if mdType == "code": return "```\n" + kindleNote["note"] + "\n```" elif mdType == "text": return kindleNote["note"] elif mdType == "header": regex = re.compile(r'_xx\d*xx$') kindleNote["note"] = regex.sub("", kindleNote["note"]) return "## " + kindleNote["note"].replace("\n", " ").replace(" ", " ").replace(" ", " ").replace(" ", " ") elif mdType == "quote": return "> " + kindleNote["note"].replace("\n", "> ") # xt-class-method # 5. @flagged: what actions of the base class(es) need ammending? ammend them here # Override Method Attributes # method-override-tmpx
from collections import defaultdict from threading import local import pymantic.primitives class BaseParser(object): """Common base class for all parsers Provides shared utilities for creating RDF objects, handling IRIs, and tracking parser state. """ def __init__(self, environment=None): self.env = environment or pymantic.primitives.RDFEnvironment() self.profile = self.env.createProfile() self._call_state = local() def make_datatype_literal(self, value, datatype): return self.env.createLiteral(value=value, datatype=datatype) def make_language_literal(self, value, lang=None): if lang: return self.env.createLiteral(value=value, language=lang) else: return self.env.createLiteral(value=value) def make_named_node(self, iri): return self.env.createNamedNode(iri) def make_blank_node(self, label=None): if label: return self._call_state.bnodes[label] else: return self.env.createBlankNode() def make_triple(self, subject, predicate, object): return self.env.createTriple(subject, predicate, object) def make_quad(self, subject, predicate, object, graph): return self.env.createQuad(subject, predicate, object, graph) def _prepare_parse(self, graph): self._call_state.bnodes = defaultdict(self.env.createBlankNode) self._call_state.graph = graph def _cleanup_parse(self): del self._call_state.bnodes del self._call_state.graph def _make_graph(self): return self.env.createGraph()
from huobi.exception.huobiapiexception import HuobiApiException from huobi.impl.restapiinvoker import call_sync from huobi.model.user import User class AccountInfoMap: user_map = dict() account_id_type_map = dict() account_type_id_map = dict() def update_user_info(self, api_key, request_impl): accounts = call_sync(request_impl.get_accounts()) user = User() user.accounts = accounts self.user_map[api_key] = user if accounts and len(accounts): self.account_id_type_map[api_key] = {} self.account_type_id_map[api_key] = {} for account_item in accounts: self.account_id_type_map[api_key][account_item.id] = account_item.account_type self.account_type_id_map[api_key][account_item.account_type] = account_item.id def get_user(self, api_key): if api_key is None or api_key == "": raise HuobiApiException(HuobiApiException.KEY_MISSING, "[User] Key is empty or null") if api_key not in self.user_map: raise HuobiApiException(HuobiApiException.RUNTIME_ERROR, "[User] Cannot found user by key: " + api_key) return self.user_map[api_key] def get_account_by_id(self, api_key, account_id): user = self.get_user(api_key) account = user.get_account_by_id(account_id) if account is None: raise HuobiApiException(HuobiApiException.RUNTIME_ERROR, "[User] Cannot find the account, key: " + api_key + ", account id: " + str(account_id)) return account def get_all_accounts(self, api_key): user = self.get_user(api_key) return user.accounts def get_account_type_by_id(self, api_key, account_id): if api_key is None or api_key == "": raise HuobiApiException(HuobiApiException.KEY_MISSING, "[User] Key is empty or null") if api_key not in self.account_id_type_map: raise HuobiApiException(HuobiApiException.RUNTIME_ERROR, "[User] Cannot found account_id by key: " + api_key) return self.account_id_type_map.get(api_key, {}).get(account_id, None) def get_account_id_by_type(self, api_key, account_type): if api_key is None or api_key == "": raise HuobiApiException(HuobiApiException.KEY_MISSING, "[User] Key is empty or null") if api_key not in self.account_type_id_map: raise HuobiApiException(HuobiApiException.RUNTIME_ERROR, "[User] Cannot found account_type by key: " + api_key) return self.account_type_id_map.get(api_key, {}).get(account_type, None) def get_all_accounts_without_check(self, api_key): if api_key is None or api_key == "": raise HuobiApiException(HuobiApiException.KEY_MISSING, "[User] Key is empty or null") user = self.user_map.get(api_key, None) return None if (user is None) else user.accounts account_info_map = AccountInfoMap()
import numpy as np import matplotlib.pyplot as plt import pandas as pd from scipy.stats import pearsonr from bin_data import bin_data # import pixel data right_z_pixel_change = np.load("right_z_pixel_change.npy") left_z_pixel_change = np.load("left_z_pixel_change.npy") front_z_pixel_change = np.load("front_z_pixel_change.npy") # average pixel change across front, left & right fovs pixel_change = np.vstack((left_z_pixel_change, front_z_pixel_change, right_z_pixel_change)).mean(axis=0) # import rate change data dat = pd.read_pickle("df_population_vector_change.p") # Clean the data (sequential data points are 1cm apart along trajectory) dat = dat[dat.environment == 'D'] df = dat.filter(['animal', 'x_coord', 'y_coord', 'direction', 'timestamp'], axis=1) dat = dat[~df.isnull().any(axis=1)] good_pixel_ids = np.array(np.diff(dat.x_coord)**2 + np.diff(dat.y_coord)**2 < 1.01, dtype=bool) pixel_change = pixel_change[good_pixel_ids] good_rate_ids = np.append(False, good_pixel_ids) turning_rate = np.abs(np.diff(dat['direction'])) % 360 turning_rate = turning_rate[good_pixel_ids] dat = dat[good_rate_ids] # z-score data dat['rate change\n(euclidean)'] = (dat['rate change\n(euclidean)'] - np.mean(dat['rate change\n(euclidean)']))/np.std(dat['rate change\n(euclidean)']) pixel_change = (pixel_change - np.mean(pixel_change))/np.std(pixel_change) # Plot Occupancy occupancy = bin_data([dat.x_coord, dat.y_coord], bin_size = 4, limits = [(0, 350), (0, 250)]) plt.imshow(occupancy.T, origin='upper', cmap=plt.get_cmap('jet')) plt.title('Occupancy') plt.show() # Plot pixel change across space pixel_change_map = bin_data([dat.x_coord, dat.y_coord], bin_size = 4, limits = [(0, 350), (0, 250)], var_to_bin = pixel_change) / occupancy plt.imshow(pixel_change_map.T, origin='upper', cmap=plt.get_cmap('jet')) plt.axis('off') plt.clim([-1.5,1.5]) plt.title('Pixel Change Map') plt.show() # Plot firing rate change across space rate_change_map = bin_data([dat.x_coord, dat.y_coord], bin_size = 4, limits = [(0, 350), (0, 250)], var_to_bin = dat['rate change\n(euclidean)']) / occupancy plt.imshow(rate_change_map.T, origin='upper', cmap=plt.get_cmap('jet')) plt.axis('off') plt.clim([-1.5,1.5]) plt.title('Rate Change Map') plt.show() corr, _ = pearsonr(pixel_change, dat['rate change\n(euclidean)']) print('Rate Change vs Pixel Change Pearson r = %.3f' % corr) # Filter bits of trajectory by head direction north_ids = (np.degrees(dat.direction) % 360 >= 315) | (np.degrees(dat.direction) % 360 < 45) north_occupancy = bin_data([dat.x_coord[north_ids], dat.y_coord[north_ids]], bin_size = 4, limits = [(0, 350), (0, 250)]) south_ids = (np.degrees(dat.direction) % 360 >= 135) & (np.degrees(dat.direction) % 360 < 225) south_occupancy = bin_data([dat.x_coord[south_ids], dat.y_coord[south_ids]], bin_size = 4, limits = [(0, 350), (0, 250)]) east_ids = (np.degrees(dat.direction) % 360 >= 45) & (np.degrees(dat.direction) % 360 < 135) east_occupancy = bin_data([dat.x_coord[east_ids], dat.y_coord[east_ids]], bin_size = 4, limits = [(0, 350), (0, 250)]) west_ids = (np.degrees(dat.direction) % 360 >= 225) & (np.degrees(dat.direction) % 360 < 315) west_occupancy = bin_data([dat.x_coord[west_ids], dat.y_coord[west_ids]], bin_size = 4, limits = [(0, 350), (0, 250)]) cmap = plt.get_cmap('jet') cmap.set_bad('w',1.) # Calculate pixel and rate change maps by heading direction north_pix_map = bin_data([dat.x_coord[north_ids], dat.y_coord[north_ids]], bin_size = 4, limits = [(0, 350), (0, 250)], var_to_bin = pixel_change[north_ids]) / north_occupancy south_pix_map = bin_data([dat.x_coord[south_ids], dat.y_coord[south_ids]], bin_size = 4, limits = [(0, 350), (0, 250)], var_to_bin = pixel_change[south_ids]) / south_occupancy east_pix_map = bin_data([dat.x_coord[east_ids], dat.y_coord[east_ids]], bin_size = 4, limits = [(0, 350), (0, 250)], var_to_bin = pixel_change[east_ids]) / east_occupancy west_pix_map = bin_data([dat.x_coord[west_ids], dat.y_coord[west_ids]], bin_size = 4, limits = [(0, 350), (0, 250)], var_to_bin = pixel_change[west_ids]) / west_occupancy north_rat_map = bin_data([dat.x_coord[north_ids], dat.y_coord[north_ids]], bin_size = 4, limits = [(0, 350), (0, 250)], var_to_bin = dat['rate change\n(euclidean)'][north_ids]) / north_occupancy south_rat_map = bin_data([dat.x_coord[south_ids], dat.y_coord[south_ids]], bin_size = 4, limits = [(0, 350), (0, 250)], var_to_bin = dat['rate change\n(euclidean)'][south_ids]) / south_occupancy east_rat_map = bin_data([dat.x_coord[east_ids], dat.y_coord[east_ids]], bin_size = 4, limits = [(0, 350), (0, 250)], var_to_bin = dat['rate change\n(euclidean)'][east_ids]) / east_occupancy west_rat_map = bin_data([dat.x_coord[west_ids], dat.y_coord[west_ids]], bin_size = 4, limits = [(0, 350), (0, 250)], var_to_bin = dat['rate change\n(euclidean)'][west_ids]) / west_occupancy c_lo = -1.5 c_hi = 1.5 # Plot change maps filtered by direction plt.subplot(3,3,2) plt.title('Unfolded Pixel Change Map') plt.imshow(west_pix_map.T, origin='upper', cmap=cmap) plt.clim([c_lo,c_hi]) plt.axis('off') plt.subplot(3,3,4) plt.imshow(south_pix_map.T, origin='upper', cmap=cmap) plt.clim([c_lo,c_hi]) plt.axis('off') plt.subplot(3,3,5) plt.imshow(pixel_change_map.T, origin='upper', cmap=cmap) plt.clim([c_lo,c_hi]) plt.axis('off') plt.subplot(3,3,6) plt.imshow(north_pix_map.T, origin='upper', cmap=cmap) plt.clim([c_lo,c_hi]) plt.axis('off') plt.subplot(3,3,8) plt.imshow(east_pix_map.T, origin='upper', cmap=cmap) plt.clim([c_lo,c_hi]) plt.axis('off') plt.show() plt.subplot(3,3,2) plt.title('Unfolded Rate Change Map') plt.imshow(west_rat_map.T, origin='upper', cmap=cmap) plt.clim([c_lo,c_hi]) plt.axis('off') plt.subplot(3,3,4) plt.imshow(south_rat_map.T, origin='upper', cmap=cmap) plt.clim([c_lo,c_hi]) plt.axis('off') plt.subplot(3,3,5) plt.imshow(rate_change_map.T, origin='upper', cmap=cmap) plt.clim([c_lo,c_hi]) plt.axis('off') plt.subplot(3,3,6) plt.imshow(north_rat_map.T, origin='upper', cmap=cmap) plt.clim([c_lo,c_hi]) plt.axis('off') plt.subplot(3,3,8) plt.imshow(east_rat_map.T, origin='upper', cmap=cmap) plt.clim([c_lo,c_hi]) plt.axis('off') plt.show()
"""A set of classes used during the parsing of VB code""" StopSearch = -9999 # Used to terminate searches for parent properties class VBElement(object): """An element of VB code""" def __init__(self, details, text): """Initialize from the details""" # import pdb; pdb.set_trace() self.name = details[0] self.text = makeUnicodeFromSafe(text[details[1]:details[2]]) self.elements = convertToElements(details[3], text) def printTree(self, offset=0): """Print out this tree""" print "%s%s : '%s'" % ( " " * offset, self.name, self.text.split("\n")[:20]) for subelement in self.elements: subelement.printTree(offset + 1) class VBFailedElement(object): """An failed element of VB code""" def __init__(self, name, text): """Initialize from the details""" self.name = name self.text = text self.elements = [] class VBNamespace(object): """Handles a VB Namespace""" auto_handlers = [] auto_class_handlers = None # # Skip handlers are automatically by-passed. This is useful for quickly ignoring a # handler in a base class skip_handlers = [] # # Used to translate () into [] under certain circumstances (LHS of an # assign) brackets_are_indexes = 0 default_scope = "Private" # # Set this to 1 if the object is a function (ie requires () when accessing) is_function = 0 # # Set to 1 for types which would mark the end of the docstrings would_end_docstring = 1 # # Intrinsic VB functions - we need to know these to be able to convert # bare references (eg Dir) to function references (Dir()) intrinsic_functions = [ "Dir", "FreeFile", "Rnd", "Timer", ] def __init__(self, scope="Private"): """Initialize the namespace""" self.locals = [] self.local_default_scope = self.default_scope self.auto_class_handlers = { "object_definition": (VBVariableDefinition, self.locals), "const_definition": (VBConstant, self.locals), "user_type_definition": (VBUserType, self.locals), "event_definition": (VBUnrendered, self.locals), } # # This dictionary stores names which are to be substituted if found self.name_substitution = {} char_spec = Config["General", "IndentCharacter"] if char_spec == "Space": self._indent_char = " " elif char_spec == "Tab": self._indent_char = "\t" else: raise InvalidOption( "Indent character option not understood: '%s'" % char_spec) self._indent_amount = int(Config["General", "IndentAmount"]) def amGlobal(self, scope): """Decide if a variable will be considered a global The algorithm works by asking our parent for a 'public_is_global' flag. If this is true and the scope is either 'public' or 'global' then we are a global. It is up to each parent to decide if publics are global. Things like code modules will have this set whereas things like subroutines will not. """ # # First throw out anything which is private log.info("Checking if global: '%s' scope is '%s'" % (self, scope)) if scope in ("Public", "Global"): if self.getParentProperty("public_is_global", 0): log.info("We are global!") return 1 return 0 def assignParent(self, parent): """Set our parent This is kept as a separate method because it is a useful hook for subclasses. Once this method is called, the object is fully initialized. """ self.parent = parent def asString(self): """Convert to a nice representation""" return repr(self) def checkIfFunction(self, name): """Check if the name is a function or not""" for loc in self.locals: if loc.identifier == name: return loc.is_function raise UnresolvableName("Name '%s' is not known in this context" % name) def checkOptionChoice(self, section, name, choices): """Return the index of a config option in a list of choices We return the actual choice name which may seem odd but is done to make the code readable. The main purpose of this method is to allow the choice to be selected with the error trapping hidden. """ value = Config[section, name] try: return choices[list(choices).index(value)] except ValueError: raise InvalidOption("Invalid option for %s.%s, must be one of %s" % ( section, name, choices)) def checkOptionYesNo(self, section, name): """Return the yes/no value of an option checking for invalid answers""" return self.checkOptionChoice(section, name, ("Yes", "No")) def containsStatements(self): """Check if we contain statements""" # # TODO: This needs refactoring - it is horrible if isinstance(self, NonCodeBlocks): return 0 if not hasattr(self, "blocks"): return 1 elif self.blocks: for item in self.blocks: if item.containsStatements(): return 1 return 0 else: return 1 def createExtractHandler(self, token): """Create a handler which will extract a certain token value""" def handler(element): log.info("Grabbed attribute '%s' for %s as '%s'" % (token, self, element.text)) setattr(self, token, element.text) return handler def filterListByClass(self, sequence, cls): """Return all elements of sequence that are an instance of the given class""" return [item for item in sequence if isinstance(item, cls)] def finalizeObject(self): """Finalize the object This method is called once the object has been completely parsed and can be used to do any processing required. """ def findParentOfClass(self, cls): """Return our nearest parent who is a subclass of cls""" try: parent = self.parent except AttributeError: raise NestingError( "Reached outer layer when looking for parent of class") if isinstance(parent, cls): return parent else: return parent.findParentOfClass(cls) def getHandler(self, element): """Find a handler for the element""" if element.name in self.skip_handlers: return None elif element.name in self.auto_handlers: log.info("Found auto handler for '%s' ('%s')" % (element.name, self)) return self.createExtractHandler(element.name) elif element.name in self.auto_class_handlers: log.info("Found auto handler for '%s' ('%s')" % (element.name, self)) obj_class, add_to = self.auto_class_handlers[element.name] if obj_class == self.__class__: # Ooops, recursive handling - we should handle the sub elements def class_handler(element): for sub_element in element.elements: self.handleSubObject(sub_element, obj_class, add_to) else: def class_handler(element): self.handleSubObject(element, obj_class, add_to) return class_handler try: return getattr(self, "handle_%s" % element.name) except AttributeError: return None def getIndent(self, indent): """Return some spaces to do indenting""" return self._indent_char * indent * self._indent_amount def getLocalNameFor(self, name): """Get the local version of a name We look for any ancestor with a name conversion in operation for this name and return the first one that has it. If there are none then we just use the name """ try: return self.name_substitution[name] except KeyError: try: return self.parent.getLocalNameFor(name) except AttributeError: return name def getParentProperty(self, name, default=None): """Get a property from our nearest ancestor who has it""" try: return getattr(self, name) except AttributeError: try: parent = self.parent return parent.getParentProperty(name) except AttributeError: if default is not None: return default raise NestingError( "Reached outer level when trying to access a parent property: " "'%s'" % name) def getWarning(self, warning_type, text, indent=0, crlf=0): """Construct a warning comment""" ret = "%s# %s (%s) %s" % ( self.getIndent(indent), Config["General", "AttentionMarker"], warning_type, text) if crlf: ret += "\n" return ret def handleSubObject(self, element, obj_class, add_to): """Handle an object which creates a sub object""" v = obj_class(self.local_default_scope) v.processElement(element) v.assignParent(self) v.finalizeObject() # # Assume that we are supposed to add this to a list of items # if this fails then perhaps this is an attribute we are supposed to # set try: add_to.append(v) except AttributeError: setattr(self, add_to, v) # log.info("Added new %s to %s" % (obj_class, self.asString())) def isAFunction(self, name): """Check if the name is a function or not We traverse up through the nested namespaces until someone knows the name and then see if they are a function. """ if name in self.intrinsic_functions: return 1 try: return self.checkIfFunction(name) except UnresolvableName: try: return self.parent.isAFunction(name) except (AttributeError, UnresolvableName): return 0 # Nobody knew the name so we can't know if it is or not def processElement(self, element): """Process our tree""" handler = self.getHandler(element) if handler: handler(element) else: if element.elements: for subelement in element.elements: self.processElement(subelement) else: log.info("Unhandled element '%s' from %s\n%s" % (element.name, self, element.text)) def registerAsGlobal(self): """Register ourselves as a global object We try to add ourselves to our parents "global_objects" table. This may fail if we are not owned by anything that has a global_obects table, as would be the case for converting a simple block of text. """ try: global_objects = self.getParentProperty("global_objects") except NestingError: log.warn( "Tried to register global object but there was no suitable object table") else: global_objects[self.identifier] = self log.info("Registered a new global object: '%s'" % self) def registerImportRequired(self, modulename): """Register a need to import a certain module When we need to use a variable from another module we need to tell our module-like containner to add an 'import' statement. So we search for such a container and try to add the module name to the import list. It is possible (but unlikely) that we need the import but we are not in a container. If this happens we just warning and carry on. """ try: module_imports = self.getParentProperty("module_imports") except NestingError: log.warn( "Tried to request a module import (%s)" " but couldn't find a suitable container" % modulename) else: if modulename not in module_imports: module_imports.append(modulename) log.info("Registered a new module import: '%s'" % modulename) def renderAsCode(self, indent=0): """Render this element as code""" return self.getIndent(indent) + "# Unrendered object %s\n" % (self.asString(), ) def resolveLocalName(self, name, rendering_locals=0, requestedby=None): """Convert a local name to a fully resolved name""" raise UnresolvableName( "Name '%s' is not known in this namespace" % name) def resolveName(self, name, rendering_locals=None, requestedby=None): """Convert a local name to a fully resolved name We traverse up through the nested namespaces until someone knows what to do with the name. If nobody knows then we know if must be a local so it keeps the same name. """ if rendering_locals is None: rendering_locals = self.getParentProperty("rendering_locals") if not requestedby: requestedby = self try: return self.resolveLocalName(name, rendering_locals, requestedby=requestedby) except UnresolvableName: try: return self.parent.resolveName( name, rendering_locals, requestedby=requestedby) except AttributeError: return name # Nobody knew the name so it must be local def searchParentProperty(self, name): """Search for any ancestor who has the named parameter set to true Stop searching if someone has the property set to StopSearch """ try: if getattr(self, name) == StopSearch: return 0 elif getattr(self, name): return 1 except AttributeError: pass try: parent = self.parent return parent.searchParentProperty(name) except AttributeError: return 0 def handle_scope(self, element): """Handle a scope definition""" self.local_default_scope = element.text log.info("Changed default scope to %s" % self.local_default_scope) def handle_line_end(self, element): """Handle the end of a line""" self.local_default_scope = self.default_scope class VBConsumer(VBNamespace): """Consume and store elements""" def processElement(self, element): """Eat this element""" self.element = element log.info("Consumed element: %s" % element) class VBUnrendered(VBConsumer): """Represents an unrendered statement""" would_end_docstring = 0 def renderAsCode(self, indent): """Render the unrendrable!""" if self.checkOptionYesNo("General", "WarnAboutUnrenderedCode") == "Yes": return self.getWarning( "UntranslatedCode", self.element.text.replace("\n", "\\n"), indent, crlf=1) else: return "" class VBMessage(VBUnrendered): """Allows a message to be placed in the python output""" def __init__(self, scope="Private", message="No message", messagetype="Unknown"): """Initialise the message""" super(VBMessage, self).__init__(scope) self.message = message self.messagetype = messagetype def renderAsCode(self, indent=0): """Render the message""" return self.getWarning(self.messagetype, self.message, indent, crlf=1) class VBMissingArgument(VBConsumer): """Represents an missing argument""" def renderAsCode(self, indent=0): """Render the unrendrable!""" return "VBMissingArgument" class VBCodeBlock(VBNamespace): """A block of VB code""" def __init__(self, scope="Private"): """Initialize the block""" super(VBCodeBlock, self).__init__() self.blocks = [] self.auto_class_handlers.update({ "assignment_statement": (VBAssignment, self.blocks), "lset_statement": (VBLSet, self.blocks), "rset_statement": (VBRSet, self.blocks), "set_statement": (VBSet, self.blocks), "comment_body": (VBComment, self.blocks), "vb2py_directive": (VB2PYDirective, self.blocks), "if_statement": (VBIf, self.blocks), "inline_if_statement": (VBInlineIf, self.blocks), "select_statement": (VBSelect, self.blocks), "exit_statement": (VBExitStatement, self.blocks), "while_statement": (VBWhile, self.blocks), "do_statement": (VBDo, self.blocks), "redim_statement": (VBReDim, self.blocks), "explicit_call_statement": (VBExplicitCall, self.blocks), "implicit_call_statement": (VBCall, self.blocks), "inline_implicit_call": (VBCall, self.blocks), "label_statement": (VBLabel, self.blocks), "with_statement": (VBWith, self.blocks), "end_statement": (VBEnd, self.blocks), "for_statement": (VBFor, self.blocks), "inline_for_statement": (VBFor, self.blocks), "for_each_statement": (VBForEach, self.blocks), "open_statement": (VBOpen, self.blocks), "close_statement": (VBClose, self.blocks), "input_statement": (VBInput, self.blocks), "print_statement": (VBPrint, self.blocks), "line_input_statement": (VBLineInput, self.blocks), "seek_statement": (VBSeek, self.blocks), "name_statement": (VBName, self.blocks), "attribute_statement": (VBUnrendered, self.blocks), "resume_statement": (VBUnrendered, self.blocks), "goto_statement": (VBUnrendered, self.blocks), "on_statement": (VBUnrendered, self.blocks), "external_declaration": (VBUnrendered, self.blocks), "get_statement": (VBUnrendered, self.blocks), "put_statement": (VBUnrendered, self.blocks), "option_statement": (VBUnrendered, self.blocks), "class_header_block": (VBUnrenderedBlock, self.blocks), "parser_failure": (VBParserFailure, self.blocks), }) def renderAsCode(self, indent=0): """Render this element as code""" # # Watch out for the block not containing any statements (could be all # comments!) if not self.containsStatements(): self.blocks.append(VBPass()) # return "".join([block.renderAsCode(indent) for block in self.blocks]) class VBUnrenderedBlock(VBCodeBlock): """Represents an unrendered block""" would_end_docstring = 0 def renderAsCode(self, indent): """Render the unrendrable!""" return "" class VBOptionalCodeBlock(VBCodeBlock): """A block of VB code which can be empty and still sytactically correct""" def containsStatements(self, indent=0): """Return true if this block contains statements We always return 1 here because it doesn't matter if we contain statements of not """ return 1 class VBVariable(VBNamespace): """Handles a VB Variable""" auto_handlers = [ "scope", "type", "string_size_indicator", "value", "identifier", "optional", "new_keyword", "preserve_keyword", "implicit_object", ] skip_handlers = [ "const_statement", ] def __init__(self, scope="Private"): """Initialize the variable""" super(VBVariable, self).__init__(scope) self.identifier = None self.scope = scope self.type = "Variant" self.size_definitions = [] self.value = None self.optional = None self.expression = VBMissingArgument() self.new_keyword = None self.preserve_keyword = None self.string_size_indicator = None self.object = None self.implicit_object = None self.unsized_definition = None self.auto_class_handlers = { "expression": (VBExpression, "expression"), "size": (VBSizeDefinition, self.size_definitions), "size_range": (VBSizeDefinition, self.size_definitions), "unsized_definition": (VBConsumer, "unsized_definition"), } def finalizeObject(self): """We can use this opportunity to now determine if we are a global""" if self.amGlobal(self.scope): self.registerAsGlobal() def renderAsCode(self, indent=0): """Render this element as code""" if self.optional: return "%s=%s" % (self.identifier, self.expression.renderAsCode()) else: return self.identifier class VBSizeDefinition(VBNamespace): """Handles a VB Variable size definition""" def __init__(self, scope="Private"): """Initialize the size definition""" super(VBSizeDefinition, self).__init__(scope) # self.expression = None self.sizes = [] self.size_ranges = [] # self.auto_class_handlers = { "size": (VBExpression, self.sizes), "size_range": (VBSizeDefinition, self.size_ranges), } def renderAsCode(self, indent=0): """Render this element as code""" if self.sizes: return ", ".join([item.renderAsCode() for item in self.sizes]) else: return "(%s)" % ", ".join([item.renderAsCode() for item in self.size_ranges]) class VBObject(VBNamespace): """Handles a VB Object""" am_on_lhs = 0 # Set to 1 if the object is on the LHS of an assignment def __init__(self, scope="Private"): """Initialize the object""" super(VBObject, self).__init__(scope) self.primary = None self.modifiers = [] self.implicit_object = None self.auto_class_handlers.update({ "primary": (VBConsumer, "primary"), "attribute": (VBAttribute, self.modifiers), "parameter_list": (VBParameterList, self.modifiers), }) self.auto_handlers = ( "implicit_object", ) def renderAsCode(self, indent=0): """Render this subroutine""" return self._renderPartialObject(indent) def finalizeObject(self): """Finalize the object Check for any type markers. """ for obj in [self.primary] + self.modifiers: try: ending = obj.element.text[-1:] or " " except AttributeError: pass # It isn't a consumer so we can't check it else: if ending in "#$%&": log.info( "Removed type identifier from '%s'" % obj.element.text) obj.element.text = obj.element.text[:-1] def asString(self): """Return a string representation""" if self.implicit_object: log.info("Ooops an implicit object in definition") ret = [self.primary.element.text] + \ [item.asString() for item in self.modifiers] return ".".join(ret) def fnPart(self): """Return the function part of this object (ie without any parameters""" return self._renderPartialObject(indent=0, modifier=VBAttribute) def _renderPartialObject(self, indent=0, modifier=None): """Render this object but only including modifiers of a certain class""" # # Check for implicit object and if we are one then find the nearest # "With" if self.implicit_object: implicit_name = "%s." % self.getParentProperty("with_object") else: implicit_name = "" # # For the LHS objects we need to look for the local name for Function # return arguments if self.am_on_lhs: obj_name = self.getLocalNameFor(self.primary.element.text) else: obj_name = self.primary.element.text # resolved_name = self.resolveName(obj_name) # # Check if this looks like a function # TODO: This isn't very rigorous if not self.modifiers: if self.isAFunction(obj_name): resolved_name += "()" # if modifier is None: valid_modifiers = self.modifiers else: valid_modifiers = self.filterListByClass(self.modifiers, modifier) # return "%s%s%s" % (implicit_name, resolved_name, "".join([item.renderAsCode() for item in valid_modifiers])) class VBLHSObject(VBObject): """Handles a VB Object appearing on the LHS of an assignment""" am_on_lhs = 1 # Set to 1 if the object is on the LHS of an assignment class VBAttribute(VBConsumer): """An attribute of an object""" def renderAsCode(self, indent=0): """Render this attribute""" return ".%s" % self.element.text class VBParameterList(VBCodeBlock): """An parameter list for an object""" def __init__(self, scope="Private"): """Initialize the object""" super(VBParameterList, self).__init__(scope) self.expressions = [] self.auto_class_handlers.update({ "expression": (VBExpression, self.expressions), "missing_positional": (VBMissingPositional, self.expressions), }) def renderAsCode(self, indent=0): """Render this attribute""" # # Check if we should replace () with [] - needed on the LHS of an # assignment but not elsewhere since __call__ is mapped to __getitem__ # for array types if self.searchParentProperty("brackets_are_indexes"): fmt = "[%s]" # Prevents double accounting in a(b(5)) expressions where b is a function self.brackets_are_indexes = StopSearch else: fmt = "(%s)" # # Construct the list of parameters - this is harder than it looks because # for any missing positional parameters we have to do some introspection # to dig out the default value param_list = [] for idx, element in zip(xrange(1000), self.expressions): # Needed so that the element can get its default element.parameter_index_position = idx param_list.append(element.renderAsCode()) content = ", ".join(param_list) return fmt % content class VBMissingPositional(VBCodeBlock): """A positional argument that is missing from the argument list""" def __init__(self, scope="Private"): """Initialize the object""" super(VBMissingPositional, self).__init__(scope) def renderAsCode(self, indent=0): """Render this attribute""" # # The parameter_index_position attribute will be set # by our parent. We also need to look for the function name # which depends on our context try: function_name = self.findParentOfClass(VBObject).fnPart() except NestingError: try: function_name = self.getParentProperty("object").fnPart() except NestingError: raise UnresolvableName( "Could not locate function name when supplying missing argument") # return "VBGetMissingArgument(%s, %d)" % ( function_name, self.parameter_index_position) class VBExpression(VBNamespace): """Represents an comment""" def __init__(self, scope="Private"): """Initialize the assignment""" super(VBExpression, self).__init__(scope) self.parts = [] self.auto_class_handlers.update({ "sign": (VBExpressionPart, self.parts), "pre_not": (VBExpressionPart, self.parts), "par_expression": (VBParExpression, self.parts), "point": (VBPoint, self.parts), "operation": (VBOperation, self.parts), "pre_named_argument": (VBExpressionPart, self.parts), "pre_typeof": (VBUnrendered, self.parts), }) # operators who requested regrouping (eg 'a Like b' -> 'Like(a,b)') self.operator_groupings = [] def renderAsCode(self, indent=0): """Render this element as code""" self.checkForOperatorGroupings() return " ".join([item.renderAsCode(indent) for item in self.parts]) def checkForOperatorGroupings(self): """Look for operators who requested regrouping Some operator cannot be translated in place (eg Like) since they must be converted to functions. This means that we have to re-order the parts of the expression. """ for item in self.operator_groupings: idx = self.parts.index(item) rh, lh = self.parts.pop(idx + 1), self.parts.pop(idx - 1) item.rh, item.lh = rh, lh class VBParExpression(VBNamespace): """A block in an expression""" auto_handlers = [ "l_bracket", "r_bracket", ] def __init__(self, scope="Private"): """Initialize""" super(VBParExpression, self).__init__(scope) self.parts = [] self.named_argument = "" self.auto_class_handlers.update({ "integer": (VBExpressionPart, self.parts), "hexinteger": (VBExpressionPart, self.parts), "stringliteral": (VBStringLiteral, self.parts), "dateliteral": (VBDateLiteral, self.parts), "floatnumber": (VBExpressionPart, self.parts), "longinteger": (VBExpressionPart, self.parts), "object": (VBObject, self.parts), "par_expression": (VBParExpression, self.parts), "operation": (VBOperation, self.parts), "named_argument": (VBConsumer, "named_argument"), "pre_not": (VBExpressionPart, self.parts), "pre_typeof": (VBUnrendered, self.parts), "point": (VBPoint, self.parts), "sign": (VBExpressionPart, self.parts), }) self.l_bracket = self.r_bracket = "" # operators who requested regrouping (eg 'a Like b' -> 'Like(a,b)') self.operator_groupings = [] def renderAsCode(self, indent=0): """Render this element as code""" self.checkForOperatorGroupings() if self.named_argument: arg = "%s=" % self.named_argument.element.text else: arg = "" ascode = " ".join([item.renderAsCode(indent) for item in self.parts]) return "%s%s%s%s" % (arg, self.l_bracket, ascode, self.r_bracket) def checkForOperatorGroupings(self): """Look for operators who requested regrouping Some operator cannot be translated in place (eg Like) since they must be converted to functions. This means that we have to re-order the parts of the expression. """ # Destructively scan the list so we don't try this a second time later! while self.operator_groupings: item = self.operator_groupings.pop() idx = self.parts.index(item) rh, lh = self.parts.pop(idx + 1), self.parts.pop(idx - 1) item.rh, item.lh = rh, lh class VBPoint(VBExpression): """A block in an expression""" skip_handlers = [ "point", ] def renderAsCode(self, indent=0): """Render this element as code""" return "(%s)" % ", ".join([item.renderAsCode() for item in self.parts]) class VBExpressionPart(VBConsumer): """Part of an expression""" def renderAsCode(self, indent=0): """Render this element as code""" if self.element.name == "object": # # Check for implicit object (inside a with) if self.element.text.startswith("."): return "%s%s" % (self.getParentProperty("with_object"), self.element.text) elif self.element.text.lower() == "like": return "Like(%s, %s)" % (self.lh.renderAsCode(), self.rh.renderAsCode()) elif self.element.name == "pre_named_argument": return "%s=" % (self.element.text.split(":=")[0],) elif self.element.name == "pre_not": self.element.text = "not" elif self.element.name == "hexinteger": if self.element.text.endswith("&"): return "0x%s" % self.element.text[2:-1] else: return "0x%s" % self.element.text[2:] return self.element.text def finalizeObject(self): """Finalize the object Check for any type markers. """ ending = self.element.text[-1:] or " " if ending in "#$%&": log.info("Removed type identifier from '%s'" % self.element.text) self.element.text = self.element.text[:-1] class VBOperation(VBExpressionPart): """An operation in an expression""" translation = { "&": "+", "^": "**", "=": "==", "\\": "//", # TODO: Is this right? "is": "is", "or": "or", "and": "and", # TODO: are there any more? "xor": "^", "mod": "%", } def renderAsCode(self, indent=0): """Render this element as code""" if self.element.text.lower() in self.translation: return self.translation[self.element.text.lower()] else: return super(VBOperation, self).renderAsCode(indent) def finalizeObject(self): """Finalize the object""" if self.element.text.lower() in ("like", ): log.info("Found regrouping operator, reversing order of operands") self.parent.operator_groupings.append(self) class VBStringLiteral(VBExpressionPart): """Represents a string literal""" def renderAsCode(self, indent=0): """Render this element as code""" # # Remember to replace the double quotes with single ones body = self.element.text[1:-1] body = body.replace('""', '"') # if self.checkOptionYesNo("General", "AlwaysUseRawStringLiterals") == "Yes": body = body.replace("'", "\'") return "r'%s'" % body else: body = body.replace('\\', '\\\\') body = body.replace("'", "\\'") return "'%s'" % body class VBDateLiteral(VBParExpression): """Represents a date literal""" skip_handlers = [ "dateliteral", ] def renderAsCode(self, indent=0): """Render this element as code""" return "MakeDate(%s)" % ", ".join([item.renderAsCode() for item in self.parts]) class VBProject(VBNamespace): """Handles a VB Project""" def __init__(self, scope="Private"): """Initialize the module""" super(VBProject, self).__init__(scope) self.global_objects = {} # This is where global variables live def resolveLocalName(self, name, rendering_locals=0, requestedby=None): """Convert a local name to a fully resolved name We search our local modules to see if they have a matching global variable and if they do then we can construct the local name from it. """ # import pdb; pdb.set_trace() if name in self.global_objects: # Found as another module's public var - so mark it up and request # an import modulename = self.global_objects[ name].getParentProperty("modulename") if requestedby: requestedby.registerImportRequired(modulename) return "%s.%s" % (modulename, name) else: raise UnresolvableName( "Name '%s' is not known in this namespace" % name) class VBModule(VBCodeBlock): """Handles a VB Module""" skip_handlers = [ ] # If this is 1 then local functions will become methods convert_functions_to_methods = 0 indent_all_blocks = 0 # Can be used to dissallow new style classes allow_new_style_class = 1 # Public objects defined here will not be globals public_is_global = 0 # Put methods and attribute names in here which always need to be public # like Class_Initialize and Class_Terminate for classes always_public_attributes = [] def __init__( self, scope="Private", modulename="unknownmodule", classname="MyClass", superclasses=None): """Initialize the module""" super(VBModule, self).__init__(scope) self.auto_class_handlers.update({ "sub_definition": (VBSubroutine, self.locals), "fn_definition": (VBFunction, self.locals), "property_definition": (VBProperty, self.locals), "enumeration_definition": (VBEnum, self.locals), }) self.local_names = [] self.modulename = modulename self.classname = classname self.superclasses = superclasses or [] # self.rendering_locals = 0 self.docstrings = [] self.module_imports = [] # The additional modules we need to import def renderAsCode(self, indent=0): """Render this element as code""" self.setCustomModulesAsGlobals() if self.checkOptionYesNo("General", "TryToExtractDocStrings") == "Yes": self.extractDocStrings() # # Pre-render the following before the import statments in case any # of them ask us to do additional imports header = self.renderModuleHeader(indent) docstrings = self.renderDocStrings(indent) declarations = self.renderDeclarations(indent + self.indent_all_blocks) blocks = self.renderBlocks(indent + self.indent_all_blocks) # return "%s\n\n%s%s\n%s\n%s" % ( self.importStatements(indent), header, docstrings, declarations, blocks) def importStatements(self, indent=0): """Render the standard import statements for this block""" # Leading [""] gives a newline other = [""] + ["import %s" % item for item in self.module_imports] if self.checkOptionYesNo("General", "IncludeDebugCode") == "Yes": debug = "\nfrom vb2py.vbdebug import *" else: debug = "" return "from vb2py.vbfunctions import *%s%s" % (debug, "\n".join(other)) def renderDeclarations(self, indent): """Render the declarations as code Most of the rendering is delegated to the individual declaration classes. However, we cannot do this with properties since they need to be grouped into a single assignment. We do the grouping here and delegate the rendering to them. """ # ret = [] self.rendering_locals = 1 # Used for switching behaviour (eg adding 'self') # # Handle non-properties and group properties together properties = {} for declaration in self.locals: # Check for property if isinstance(declaration, VBProperty): log.info("Collected property '%s', decorator '%s'" % ( declaration.identifier, declaration.property_decorator_type)) decorators = properties.setdefault(declaration.identifier, {}) decorators[declaration.property_decorator_type] = declaration else: ret.append(declaration.renderAsCode(indent)) # # Now render all the properties for property in properties: if properties[property]: ret.append(properties[property].values()[0].renderPropertyGroup( indent, property, **properties[property])) # self.rendering_locals = 0 # return "".join(ret) def renderBlocks(self, indent=0): """Render this module's blocks""" return "".join([block.renderAsCode(indent) for block in self.blocks]) def extractDocStrings(self, indent=0): """Extract doc strings from this module We look for comments in the body of the module and take all the ones before anything that isn't a comment. """ for line in self.blocks[:]: if isinstance(line, VBComment): self.docstrings.append(line) self.blocks.remove(line) elif line.would_end_docstring: break def renderDocStrings(self, indent=0): """Render this module's docstrings""" local_indent = indent + self.indent_all_blocks if not self.docstrings: return "" elif len(self.docstrings) == 1: return '%s"""%s"""\n' % ( self.getIndent(local_indent), self.docstrings[0].asString()) else: joiner = "\n%s" % self.getIndent(local_indent) body_lines = [item.asString() for item in self.docstrings[1:]] return '%s"""%s\n%s%s\n%s"""\n' % ( self.getIndent(local_indent), self.docstrings[0].asString(), self.getIndent(local_indent), joiner.join(body_lines), self.getIndent(local_indent)) def renderModuleHeader(self, indent=0): """Render a header for the module""" return "" def resolveLocalName(self, name, rendering_locals=0, requestedby=None): """Convert a local name to a fully resolved name We search our local variables to see if we know the name. If we do then we just report it. """ if name in self.local_names: return name for obj in self.locals: if obj.identifier == name: return self.enforcePrivateName(obj) raise UnresolvableName( "Name '%s' is not known in this namespace" % name) def enforcePrivateName(self, obj): """Enforce the privacy for this object name if required""" if obj.scope == "Private" and self.checkOptionYesNo("General", "RespectPrivateStatus") == "Yes" \ and obj.identifier not in self.always_public_attributes: return "%s%s" % (Config["General", "PrivateDataPrefix"], obj.identifier) else: return obj.identifier def setCustomModulesAsGlobals(self): """Set all the custom import modules as global modules If the user has specified custom imports (eg Comctllib) then we need to import these as globals in the project. We force them into the project (if there is one) global object table so that they can be resolved at run time. """ # # Get global object table if there is one try: global_objects = self.getParentProperty("global_objects") except NestingError: return # log.info("Processing custom modules now") custom_modules = Config.getItemNames("CustomIncludes") # # Do for all custom modules for module_id in custom_modules: # # Import this module module_name = Config["CustomIncludes", module_id] log.info("Processing custom module %s (%s)" % (module_id, module_name)) module = __import__("vb2py.custom.%s" % module_name, globals(), locals(), ["custom"]) # # Get a container to store the values in vbmodule = VBCodeModule(modulename="vb2py.custom.%s" % module_name) # # Now set all items in the module to be global (if they don't seem to be # hidden) for item_name in dir(module): if not item_name.startswith("_"): log.info("Registered new custom global '%s'" % item_name) global_objects[item_name] = vbmodule class VBClassModule(VBModule): """Handles a VB Class""" # If this is 1 then local functions will become methods convert_functions_to_methods = 1 indent_all_blocks = 1 # Put methods and attribute names in here which always need to be public # like Class_Initialize and Class_Terminate for classes always_public_attributes = ["Class_Initialize", "Class_Terminate"] def __init__(self, *args, **kw): """Initialize the class module""" super(VBClassModule, self).__init__(*args, **kw) self.name_substitution = {"Me": "self"} def renderModuleHeader(self, indent=0): """Render this element as code""" supers = self.superclasses[:] if self.checkOptionYesNo("Classes", "UseNewStyleClasses") == "Yes" and \ self.allow_new_style_class: supers.insert(0, "Object") if supers: return "class %s(%s):\n" % (self.classname, ", ".join(supers)) else: return "class %s:\n" % self.classname def resolveLocalName(self, name, rendering_locals=0, requestedby=None): """Convert a local name to a fully resolved name We search our local variables to see if we know the name. If we do then we need to add a self. """ # Don't do anything for locals if rendering_locals: prefix = "" else: prefix = "self." # if name in self.local_names: return "%s%s" % (prefix, name) for obj in self.locals: if obj.identifier == name: return "%s%s" % (prefix, self.enforcePrivateName(obj)) raise UnresolvableName( "Name '%s' is not known in this namespace" % name) def assignParent(self, parent): """Set our parent""" super(VBClassModule, self).assignParent(parent) self.identifier = self.classname self.registerAsGlobal() class VBCodeModule(VBModule): """Handles a VB Code module""" public_is_global = 1 # Public objects defined here will be globals def enforcePrivateName(self, obj): """Enforce the privacy for this object name if required In a code module this is not required. Private variables and definitions in a code module are not really hidden in the same way as in a class module. They are accessible still. The main thing is that they are not global. """ return obj.identifier class VBFormModule(VBClassModule): """Handles a VB Form module""" # If this is 1 then local functions will become methods convert_functions_to_methods = 1 class VBCOMExternalModule(VBModule): """Handles external COM references""" def __init__(self, *args, **kw): """Initialize the COM module We always need win32com.client to be imported """ super(VBCOMExternalModule, self).__init__(*args, **kw) self.module_imports.append("win32com.client") docstring = VBRenderDirect( "Automatically generated file based on project references") self.docstrings.append(docstring) def renderDeclarations(self, indent): """Render all the declarations We have a list of libraries and objects in our names attribute so we create a series of dummy classes with callable attributes which return COM objects. """ library_code = [] for library, members in self.names.iteritems(): member_code = [] for member in members: member_code.append( ' def %s(self):\n' ' """Create the %s.%s object"""\n' ' return win32com.client.Dispatch("%s.%s")\n' '\n' % (member, library, member, library, member)) library_code.append('class _%s:\n' ' """COM Library"""\n\n' '%s' '%s = _%s()\n' % ( library, ''.join(member_code), library, library)) return '\n\n'.join(library_code) class VBVariableDefinition(VBVariable): """Handles a VB Dim of a Variable""" def renderAsCode(self, indent=0): """Render this element as code""" # local_name = self.resolveName(self.identifier) # # TODO: Can't handle implicit objects yet if self.implicit_object: warning = self.getWarning( "UnhandledDefinition", "Dim of implicit 'With' object (%s) is not supported" % local_name, indent=indent, crlf=1) else: warning = "" # if self.string_size_indicator: size = self.string_size_indicator self.type = "FixedString" else: size = "" # # Make sure we resolve the type properly local_type = self.resolveName(self.type) # if self.unsized_definition: # This is a 'Dim a()' statement return "%s%s%s = vbObjectInitialize(objtype=%s)\n" % ( warning, self.getIndent(indent), local_name, local_type) elif self.size_definitions: # There is a size 'Dim a(10)' if self.preserve_keyword: preserve = ", %s" % (local_name, ) else: preserve = "" if size: size = ", stringsize=" + size rendered_size_definitions = [ item.renderAsCode() for item in self.size_definitions] return "%s%s%s = vbObjectInitialize((%s,), %s%s%s)\n" % ( warning, self.getIndent(indent), local_name, ", ".join(rendered_size_definitions), local_type, preserve, size) elif self.new_keyword: # It is an 'Dim a as new ...' return "%s%s%s = %s(%s)\n" % ( warning, self.getIndent(indent), local_name, local_type, size) else: # This is just 'Dim a as frob' return "%s%s%s = %s(%s)\n" % ( warning, self.getIndent(indent), local_name, local_type, size) def finalizeObject(self): """Finalize the object Check for any type markers. """ ending = self.identifier[-1:] or " " if ending in "#$%&": log.info("Removed type identifier from '%s'" % self.identifier) self.identifier = self.identifier[:-1] class VBConstant(VBVariableDefinition): """Represents a constant in VB""" def renderAsCode(self, indent=0): """Render this element as code""" # local_name = self.getLocalNameFor(self.identifier) local_name = self.resolveName(self.identifier) return "%s%s = %s\n" % ( self.getIndent(indent), local_name, self.expression.renderAsCode()) class VBReDim(VBCodeBlock): """Represents a Redim statement""" def __init__(self, scope="Private"): """Initialize the Redim""" super(VBReDim, self).__init__(scope) # self.variables = [] self.preserve = None # self.auto_class_handlers = { "object_definition": (VBVariableDefinition, self.variables), "preserve_keyword": (VBConsumer, "preserve"), } def renderAsCode(self, indent=0): """Render this element as code""" for var in self.variables: var.preserve_keyword = self.preserve return "".join([var.renderAsCode(indent) for var in self.variables]) class VBAssignment(VBNamespace): """An assignment statement""" auto_handlers = [ ] def __init__(self, scope="Private"): """Initialize the assignment""" super(VBAssignment, self).__init__(scope) self.parts = [] self.object = None self.auto_class_handlers.update({ "expression": (VBExpression, self.parts), "object": (VBLHSObject, "object") }) def asString(self): """Convert to a nice representation""" return "%s = %s" % (self.object, self.parts) def renderAsCode(self, indent=0): """Render this element as code""" self.checkForModuleGlobals() self.object.brackets_are_indexes = 1 # Convert brackets on LHS to [] return "%s%s = %s\n" % (self.getIndent(indent), self.object.renderAsCode(), self.parts[0].renderAsCode(indent)) def checkForModuleGlobals(self): """Check if this assignment requires a global statement We can use this opportunity to now check if we need to append a 'global' statement to our container. If we are in a CodeModule an assignment and the LHS of the assignment is a module level variable which is not locally shadowed then we need a global. So the procedure is, - look for our parent who is a subroutine type - if we don't have one then skip out - see if this parent knows us, if so then we are a subroutine local - also see if we are the subroutine name - look for our parent who is a module type - see if this parent knows us, if so then we are a module local - if we are then tell our subroutine parent that we need a global statement """ log.info("Checking whether to use a global statement for '%s'" % self.object.primary.element.text) # import pdb; pdb.set_trace() try: enclosing_sub = self.findParentOfClass(VBSubroutine) except NestingError: return # We are not in a subroutine log.info("Found sub") try: name = enclosing_sub.resolveLocalName( self.object.primary.element.text) except UnresolvableName: if enclosing_sub.identifier == self.object.primary.element.text: return else: return # We are a subroutine local log.info("Am not local") try: enclosing_module = self.findParentOfClass(VBCodeModule) except NestingError: return # We are not in a module log.info("Found code module") try: name = enclosing_module.resolveLocalName( self.object.primary.element.text) except UnresolvableName: return # We are not known at the module level # If we get to here then we are a module level local! enclosing_sub.globals_required[ self.resolveName(self.object.primary.element.text)] = 1 log.info("Added a module level global: '%s'" % self.resolveName(self.object.primary.element.text)) class VBSpecialAssignment(VBAssignment): """A special assignment eg LSet, RSet where the assignment ends up as a function call""" fn_name = None def renderAsCode(self, indent=0): """Render this element as code""" self.checkForModuleGlobals() self.object.brackets_are_indexes = 1 # Convert brackets on LHS to [] return "%s%s = %s(%s, %s)\n" % (self.getIndent(indent), self.object.renderAsCode(), self.fn_name, self.object.renderAsCode(), self.parts[0].renderAsCode(indent)) class VBLSet(VBSpecialAssignment): """An LSet statement""" fn_name = "LSet" class VBRSet(VBSpecialAssignment): """An RSet statement""" fn_name = "RSet" class VBSet(VBAssignment): """A set statement""" auto_handlers = [ "new_keyword", ] new_keyword = "" def renderAsCode(self, indent=0): """Render this element as code""" if not self.new_keyword: return super(VBSet, self).renderAsCode(indent) else: return "%s%s = %s()\n" % ( self.getIndent(indent), self.object.renderAsCode(), self.parts[0].renderAsCode(indent)) class VBEnd(VBAssignment): """An end statement""" def renderAsCode(self, indent=0): """Render this element as code""" return "%ssys.exit(0)\n" % self.getIndent(indent) class VBCall(VBCodeBlock): """A call statement""" auto_handlers = [ ] def __init__(self, scope="Private"): """Initialize the assignment""" super(VBCall, self).__init__(scope) self.parameters = [] self.object = None self.auto_class_handlers = ({ "expression": (VBParExpression, self.parameters), "missing_positional": (VBMissingPositional, self.parameters), "object": (VBObject, "object") }) def renderAsCode(self, indent=0): """Render this element as code""" if self.parameters: # # Construct the list of parameters - this is harder than it looks because # for any missing positional parameters we have to do some introspection # to dig out the default value param_list = [] for idx, element in zip(xrange(1000), self.parameters): # Needed so that the element can get its default element.parameter_index_position = idx param_list.append(element.renderAsCode()) params = ", ".join(param_list) else: params = "" # self.object.am_on_lhs = 1 # return "%s%s(%s)\n" % (self.getIndent(indent), self.object.renderAsCode(), params) class VBExplicitCall(VBCodeBlock): """A call statement on a single line with parenthesis This is illegal in VB but can be found in VBSCript """ auto_handlers = [ ] def __init__(self, scope="Private"): """Initialize the assignment""" super(VBExplicitCall, self).__init__(scope) self.parameters = [] self.object = None self.auto_class_handlers = ({ "expression": (VBParExpression, self.parameters), "missing_positional": (VBMissingPositional, self.parameters), "qualified_object": (VBObject, "object") }) def renderAsCode(self, indent=0): """Render this element as code""" if self.parameters: # # Something has gone wrong here because there shouldn't be any parameters # in the call. These should be encapsulated in the object. raise VBParserError( 'Unexpected parameters (%s) in explicit call' % self.parameters) # self.object.am_on_lhs = 1 # return "%s%s\n" % (self.getIndent(indent), self.object.renderAsCode()) class VBExitStatement(VBConsumer): """Represents an exit statement""" def renderAsCode(self, indent=0): """Render this element as code""" indenter = self.getIndent(indent) rv_name = Config["Functions", "ReturnVariableName"] if self.element.text == "Exit Function": return "%sreturn %s\n" % (indenter, rv_name) elif self.element.text == "Exit Sub": return "%sreturn\n" % indenter elif self.element.text == "Exit Property": if self.getParentProperty("property_decorator_type") == "Get": return "%sreturn %s\n" % (indenter, rv_name) else: return "%sreturn\n" % indenter else: return "%sbreak\n" % indenter class VBComment(VBConsumer): """Represents an comment""" # # Used to indicate if this is a valid statement not_a_statement = 0 def renderAsCode(self, indent=0): """Render this element as code""" return self.getIndent(indent) + "#%s\n" % self.element.text def asString(self): """Render this element as a string""" return self.element.text class VBLabel(VBUnrendered): """Represents a label""" def renderAsCode(self, indent): """Render the label""" if Config["Labels", "IgnoreLabels"] == "Yes": return "" else: return super(VBLabel, self).renderAsCode(indent) class VBOpen(VBCodeBlock): """Represents an open statement""" def __init__(self, scope="Private"): """Initialize the open""" super(VBOpen, self).__init__(scope) # self.filename = None self.open_modes = [] self.channel = None self.access_length = None # self.auto_class_handlers = ({ "filename": (VBParExpression, "filename"), "open_mode": (VBConsumer, self.open_modes), "channel": (VBParExpression, "channel"), "access_length": (VBParExpression, "access_length"), }) # self.open_mode_lookup = { "Input": "r", "Output": "w", "Append": "a", "Binary": "b", } def renderAsCode(self, indent=0): """Render this element as code""" file_mode = "" todo = [] for mode in self.open_modes: m = mode.element.text.strip() try: file_mode += self.open_mode_lookup[m.strip()] except KeyError: todo.append("'%s'" % m.strip()) if self.access_length is not None: todo.append("Access length is not supported (%s)" % self.access_length.renderAsCode()) if todo: todo_warning = self.getWarning( "UnknownFileMode", ", ".join(todo), indent, crlf=1) else: todo_warning = "" # return "%s%sVBFiles.openFile(%s, %s, '%s')\n" % ( todo_warning, self.getIndent(indent), self.channel.renderAsCode(), self.filename.renderAsCode(), file_mode) class VBClose(VBCodeBlock): """Represents a close statement""" def __init__(self, scope="Private"): """Initialize the open""" super(VBClose, self).__init__(scope) # self.channels = [] # self.auto_class_handlers = ({ "expression": (VBParExpression, self.channels), }) def renderAsCode(self, indent=0): """Render this element as code""" if not self.channels: return "%sVBFiles.closeFile()\n" % ( self.getIndent(indent)) else: ret = [] for channel in self.channels: ret.append("%sVBFiles.closeFile(%s)\n" % ( self.getIndent(indent), channel.renderAsCode())) return "".join(ret) class VBSeek(VBCodeBlock): """Represents a seek statement""" def __init__(self, scope="Private"): """Initialize the seek""" super(VBSeek, self).__init__(scope) # self.expressions = [] # self.auto_class_handlers = ({ "expression": (VBParExpression, self.expressions), }) def renderAsCode(self, indent=0): """Render this element as code""" return "%sVBFiles.seekFile(%s, %s)\n" % ( self.getIndent(indent), self.expressions[0].renderAsCode(), self.expressions[1].renderAsCode(),) class VBInput(VBCodeBlock): """Represents an input statement""" input_type = "Input" def __init__(self, scope="Private"): """Initialize the open""" super(VBInput, self).__init__(scope) # self.channel = None self.variables = [] # self.auto_class_handlers = ({ "channel_id": (VBParExpression, "channel"), "expression": (VBExpression, self.variables), }) def renderAsCode(self, indent=0): """Render this element as code""" # Make sure variables are converted as if they are on the LHS of an # assignment for var in self.variables: var.brackets_are_indexes = 1 # return "%s%s = VBFiles.get%s(%s, %d)\n" % ( self.getIndent(indent), ", ".join([var.renderAsCode() for var in self.variables]), self.input_type, self.channel.renderAsCode(), len(self.variables)) class VBLineInput(VBInput): """Represents an input statement""" input_type = "LineInput" class VBPrint(VBCodeBlock): """Represents a print statement""" def __init__(self, scope="Private"): """Initialize the print""" super(VBPrint, self).__init__(scope) # self.channel = VBRenderDirect("None") self.variables = [] self.hold_cr = None # self.auto_class_handlers = ({ "channel_id": (VBParExpression, "channel"), "expression": (VBExpression, self.variables), "print_separator": (VBPrintSeparator, self.variables), }) def renderAsCode(self, indent=0): """Render this element as code""" print_list = ", ".join([var.renderAsCode() for var in self.variables if var.renderAsCode()]) if self.variables: if self.variables[-1].renderAsCode() not in (None, "\t"): print_list += ", '\\n'" return "%sVBFiles.writeText(%s, %s)\n" % ( self.getIndent(indent), self.channel.renderAsCode(), print_list) class VBPrintSeparator(VBConsumer): """Represents a print statement separator""" def renderAsCode(self, indent=0): """Render this element as code""" if self.element.text == ";": return None elif self.element.text == ",": return '"\\t"' else: raise UnhandledStructureError( "Unknown print separator '%s'" % self.element.text) class VBName(VBCodeBlock): """Represents a name statement""" def __init__(self, scope="Private"): """Initialize the print""" super(VBName, self).__init__(scope) # self.channel = VBRenderDirect("None") self.files = [] # self.auto_class_handlers = ({ "expression": (VBExpression, self.files), }) def renderAsCode(self, indent=0): """Render this element as code""" self.registerImportRequired("os") file_list = ", ".join([fle.renderAsCode() for fle in self.files]) return "%sName(%s)\n" % ( self.getIndent(indent), file_list) class VBUserType(VBCodeBlock): """Represents a select block""" auto_handlers = [ ] select_variable_index = 0 def __init__(self, scope="Private"): """Initialize the Select""" super(VBUserType, self).__init__(scope) # self.variables = [] self.identifier = None # self.auto_class_handlers = { "identifier": (VBConsumer, "identifier"), "object_definition": (VBVariable, self.variables), } def renderAsCode(self, indent=0): """Render this element as code""" vars = [] if not self.variables: vars.append(VBPass().renderAsCode(indent + 2)) else: for var in self.variables: vars.append("%sself.%s = %s()" % ( self.getIndent(indent + 2), var.identifier, var.type)) # return ("%sclass %s:\n" "%sdef __init__(self):\n%s\n\n" % ( self.getIndent(indent), self.identifier.element.text, self.getIndent(indent + 1), "\n".join(vars))) class VBSubroutine(VBCodeBlock): """Represents a subroutine""" public_is_global = 0 # Public objects defined here will not be globals def __init__(self, scope="Private"): """Initialize the subroutine""" super(VBSubroutine, self).__init__(scope) self.identifier = None self.scope = scope self.block = VBPass() self.parameters = [] self.globals_required = {} # A list of objects required in a global statement self.type = None self.static = None # self.auto_class_handlers.update({ "formal_param": (VBVariable, self.parameters), "block": (VBCodeBlock, "block"), "type_definition": (VBUnrendered, "type"), }) self.auto_handlers = [ "identifier", "scope", "static", ] self.skip_handlers = [ "sub_definition", ] self.rendering_locals = 0 def renderAsCode(self, indent=0): """Render this subroutine""" code_block = self.block.renderAsCode(indent + 1) locals = [declaration.renderAsCode(indent + 1) for declaration in self.block.locals] if self.static: log.warn("Static function detected - static is not supported") ret = "\n%sdef %s(%s):\n%s%s%s" % ( self.getIndent(indent), self.getParentProperty("enforcePrivateName")(self), self.renderParameters(), self.renderGlobalStatement(indent + 1), "\n".join(locals), code_block) return ret def renderParameters(self): """Render the parameter list""" params = [param.renderAsCode() for param in self.parameters] if self.getParentProperty("convert_functions_to_methods"): params.insert(0, "self") return ", ".join(params) def resolveLocalName(self, name, rendering_locals=0, requestedby=None): """Convert a local name to a fully resolved name We search our local variables and parameters to see if we know the name. If we do then we return the original name. """ names = [obj.identifier for obj in self.block.locals + self.parameters] if name in names: return name else: raise UnresolvableName( "Name '%s' is not known in this namespace" % name) def renderGlobalStatement(self, indent=0): """Render the global statement if we need it""" if self.globals_required: return "%sglobal %s\n" % (self.getIndent(indent), ", ".join(self.globals_required.keys())) else: return "" def assignParent(self, *args, **kw): """Assign our parent We can use this opportunity to now determine if we are a global """ super(VBSubroutine, self).assignParent(*args, **kw) # # Check if we will be considered a global for the project if hasattr(self, "parent"): if self.parent.amGlobal(self.scope): self.registerAsGlobal() class VBFunction(VBSubroutine): """Represents a function""" is_function = 1 # We need () if we are accessed directly def renderAsCode(self, indent=0): """Render this subroutine""" # # Set a name conversion to capture the function name # Assignments to this function name should go to the _ret parameter return_var = Config["Functions", "ReturnVariableName"] self.name_substitution[self.identifier] = return_var # if self.block: block = self.block.renderAsCode(indent + 1) else: block = self.getIndent(indent + 1) + "pass\n" # locals = [declaration.renderAsCode(indent + 1) for declaration in self.block.locals] # if Config["Functions", "PreInitializeReturnVariable"] == "Yes": pre_init = "%s%s = None\n" % ( self.getIndent(indent + 1), return_var) else: pre_init = "" ret = "\n%sdef %s(%s):\n%s%s%s%s%sreturn %s\n" % ( self.getIndent(indent), self.getParentProperty("enforcePrivateName")(self), self.renderParameters(), self.renderGlobalStatement(indent + 1), pre_init, "\n".join(locals), block, self.getIndent(indent + 1), return_var) return ret class VBIf(VBCodeBlock): """Represents an if block""" auto_handlers = [ ] skip_handlers = [ "if_statement", ] def __init__(self, scope="Private"): """Initialize the If""" super(VBIf, self).__init__(scope) # self.condition = None self.if_block = VBPass() self.elif_blocks = [] self.else_block = None # self.auto_class_handlers = { "condition": (VBExpression, "condition"), "if_block": (VBCodeBlock, "if_block"), "else_if_statement": (VBElseIf, self.elif_blocks), "else_block": (VBCodeBlock, "else_block"), } def renderAsCode(self, indent=0): """Render this element as code""" ret = self.getIndent(indent) + \ "if %s:\n" % self.condition.renderAsCode() ret += self.if_block.renderAsCode(indent + 1) if self.elif_blocks: for elif_block in self.elif_blocks: ret += elif_block.renderAsCode(indent) if self.else_block: ret += self.getIndent(indent) + "else:\n" ret += self.else_block.renderAsCode(indent + 1) return ret class VBElseIf(VBIf): """Represents an ElseIf statement""" def __init__(self, scope="Private"): """Initialize the If""" super(VBIf, self).__init__(scope) # self.condition = None self.elif_block = VBPass() # self.auto_class_handlers = { "condition": (VBExpression, "condition"), "else_if_block": (VBCodeBlock, "elif_block"), } def renderAsCode(self, indent=0): """Render this element as code""" ret = self.getIndent(indent) + \ "elif %s:\n" % self.condition.renderAsCode() ret += self.elif_block.renderAsCode(indent + 1) return ret class VBInlineIf(VBCodeBlock): """Represents an if block""" auto_handlers = [ ] skip_handlers = [ "if_statement", ] def __init__(self, scope="Private"): """Initialize the If""" super(VBInlineIf, self).__init__(scope) # self.condition = None self.statements = [] # self.auto_class_handlers = { "condition": (VBExpression, "condition"), "statement": (VBCodeBlock, self.statements), "inline_implicit_call": (VBCodeBlock, self.statements), # TODO: remove me } def renderAsCode(self, indent=0): """Render this element as code""" assert self.statements, "Inline If has no statements!" ret = "%sif %s:\n%s" % ( self.getIndent(indent), self.condition.renderAsCode(), self.statements[0].renderAsCode(indent + 1),) # if len(self.statements) == 2: ret += "%selse:\n%s" % ( self.getIndent(indent), self.statements[1].renderAsCode(indent + 1)) elif len(self.statements) > 2: raise VBParserError( "Inline if with more than one clause not supported") # return ret class VBSelect(VBCodeBlock): """Represents a select block""" auto_handlers = [ ] _select_variable_index = 0 def __init__(self, scope="Private"): """Initialize the Select""" super(VBSelect, self).__init__(scope) # self.blocks = [] self.comment_block = VBNothing() # self.auto_class_handlers = { "expression": (VBExpression, "expression"), "case_item_block": (VBCaseItem, self.blocks), "case_else_block": (VBCaseElse, self.blocks), "case_comment_block": (VBOptionalCodeBlock, "comment_block"), } # # Change the variable index if we are a select if self.__class__ == VBSelect: self.select_variable_index = VBSelect._select_variable_index VBSelect._select_variable_index = VBSelect._select_variable_index + 1 def renderAsCode(self, indent=0): """Render this element as code""" # # Change if/elif status on the first child if self.blocks: self.blocks[0].if_or_elif = "if" # if Config["Select", "EvaluateVariable"] != "EachTime": ret = "%s%s = %s\n" % (self.getIndent(indent), self.getSelectVariable(), self.expression.renderAsCode()) else: ret = "" ret += self.comment_block.renderAsCode() ret += "".join([item.renderAsCode(indent) for item in self.blocks]) return ret def getSelectVariable(self): """Return the name of the select variable""" eval_variable = Config["Select", "EvaluateVariable"] if eval_variable == "Once": if Config["Select", "UseNumericIndex"] == "Yes": select_var = "%s%d" % (Config["Select", "SelectVariablePrefix"], self.getParentProperty("select_variable_index")) else: select_var = Config["Select", "SelectVariablePrefix"] elif eval_variable == "EachTime": select_var = "%s" % self.getParentProperty( "expression").renderAsCode() else: raise InvalidOption( "Evaluate variable option not understood: '%s'" % eval_variable) return select_var class VBCaseBlock(VBSelect): """Represents a select block""" if_or_elif = "elif" # Our parent will change this if we are the first def __init__(self, scope="Private"): """Initialize the Select""" super(VBCaseBlock, self).__init__(scope) # self.lists = [] self.expressions = [] self.block = VBPass() # self.auto_class_handlers = { "case_list": (VBCaseItem, self.lists), "expression": (VBExpression, self.expressions), "block": (VBCodeBlock, "block"), } class VBCaseItem(VBCaseBlock): """Represents a select block""" def renderAsCode(self, indent=0): """Render this element as code""" select_variable_index = self.getParentProperty("select_variable_index") if self.lists: expr = " or ".join(["(%s)" % item.renderAsCode() for item in self.lists]) return "%s%s %s:\n%s" % ( self.getIndent(indent), self.if_or_elif, expr, self.block.renderAsCode(indent + 1)) elif len(self.expressions) == 1: expression_text = self.expressions[0].renderAsCode() # Now check for "Is" if expression_text.startswith("Is "): # This has "Is" - replace it and use the rest of the expression return "%s %s" % ( self.getSelectVariable(), expression_text[3:]) else: # Standard case return "%s == %s" % ( self.getSelectVariable(), expression_text) elif len(self.expressions) == 2: return "%s <= %s <= %s" % ( self.expressions[0].renderAsCode(), self.getSelectVariable(), self.expressions[1].renderAsCode()) raise VBParserError("Error rendering case item") class VBCaseElse(VBCaseBlock): """Represents a select block""" def renderAsCode(self, indent=0): """Render this element as code""" return "%selse:\n%s" % (self.getIndent(indent), self.block.renderAsCode(indent + 1)) class VBFor(VBCodeBlock): """Represents a for statement""" _for_variable_index = 0 def __init__(self, scope="Private"): """Initialize the Select""" super(VBFor, self).__init__(scope) # self.block = VBPass() self.expressions = [] # self.auto_class_handlers = { "expression": (VBExpression, self.expressions), "block": (VBCodeBlock, "block"), # Used for full 'for' "body": (VBCodeBlock, "block"), # Used for inline 'for' "object": (VBObject, "object"), } def renderAsCode(self, indent=0): """Render this element as code""" range_statement = ", ".join( [item.renderAsCode() for item in self.expressions]) # Watch out for the weird dotted name in the for self.handleDottedName(indent) return "%sfor %s in vbForRange(%s):\n%s%s" % ( self.getIndent(indent), self.loopname, range_statement, self.copiedname, self.block.renderAsCode(indent + 1)) def handleDottedName(self, indent): """Handle a dotted name as the identifier The For can reference a dotted name, which presumably changes the value of that attribute. We can only do this by a local re-assignment """ name = self.object.renderAsCode() if "." not in name: # Ok, normal case self.loopname = name self.copiedname = "" else: # Ooops, assigning to a dotted name in the loop self.loopname = "_idx%s" % VBFor._for_variable_index VBFor._for_variable_index += 1 self.copiedname = "%s%s = %s\n" % ( self.getIndent(indent + 1), name, self.loopname ) class VBForEach(VBFor): """Represents a for each statement""" def renderAsCode(self, indent=0): """Render this element as code""" # Watch out for the weird dotted name in the for self.handleDottedName(indent) return "%sfor %s in %s:\n%s%s" % ( self.getIndent(indent), self.loopname, self.expressions[0].renderAsCode(), self.copiedname, self.block.renderAsCode(indent + 1)) class VBWhile(VBCodeBlock): """Represents a while statement""" def __init__(self, scope="Private"): """Initialize the Select""" super(VBWhile, self).__init__(scope) # self.block = VBPass() self.expression = None # self.auto_class_handlers = { "expression": (VBExpression, "expression"), "block": (VBCodeBlock, "block"), } def renderAsCode(self, indent=0): """Render this element as code""" return "%swhile %s:\n%s" % ( self.getIndent(indent), self.expression.renderAsCode(), self.block.renderAsCode(indent + 1)) class VBDo(VBCodeBlock): """Represents a do statement""" def __init__(self, scope="Private"): """Initialize the Select""" super(VBDo, self).__init__(scope) # self.block = VBPass() self.pre_while = None self.pre_until = None self.post_while = None self.post_until = None # self.auto_class_handlers = { "while_clause": (VBExpression, "pre_while"), "until_clause": (VBExpression, "pre_until"), "post_while_clause": (VBExpression, "post_while"), "post_until_clause": (VBExpression, "post_until"), "block": (VBCodeBlock, "block"), } def renderAsCode(self, indent=0): """Render this element as code There are five different kinds of do loop pre_while pre_until post_while post_until no conditions """ if self.pre_while: return "%swhile %s:\n%s" % ( self.getIndent(indent), self.pre_while.renderAsCode(), self.block.renderAsCode(indent + 1)) elif self.pre_until: return "%swhile not (%s):\n%s" % ( self.getIndent(indent), self.pre_until.renderAsCode(), self.block.renderAsCode(indent + 1)) elif self.post_while: return "%swhile 1:\n%s%sif not (%s):\n%sbreak\n" % ( self.getIndent(indent), self.block.renderAsCode(indent + 1), self.getIndent(indent + 1), self.post_while.renderAsCode(), self.getIndent(indent + 2)) elif self.post_until: return "%swhile 1:\n%s%sif %s:\n%sbreak\n" % ( self.getIndent(indent), self.block.renderAsCode(indent + 1), self.getIndent(indent + 1), self.post_until.renderAsCode(), self.getIndent(indent + 2)) else: return "%swhile 1:\n%s" % ( self.getIndent(indent), self.block.renderAsCode(indent + 1)) class VBWith(VBCodeBlock): """Represents a with statement""" _with_variable_index = 0 def __init__(self, scope="Private"): """Initialize the Select""" super(VBWith, self).__init__(scope) # self.block = None self.expression = None # self.auto_class_handlers = { "expression": (VBExpression, "expression"), "block": (VBCodeBlock, "block"), } # self.with_variable_index = VBWith._with_variable_index VBWith._with_variable_index = VBWith._with_variable_index + 1 def renderAsCode(self, indent=0): """Render this element as code""" # # Don't even do anything if there is no body to the With if self.block: # # Before we render the expression we change its parent to our parent because # we don't want any ".implicit" objects to be evaluated using our # With object self.expression.parent = self.parent # if self._evaluateVariableOption() == "EveryTime": self.with_object = self.expression.renderAsCode() return self.block.renderAsCode(indent) else: if self.checkOptionYesNo("With", "UseNumericIndex") == "Yes": varname = "%s%d" % ( Config["With", "WithVariablePrefix"], self.with_variable_index) else: varname = Config["With", "WithVariablePrefix"] self.with_object = varname return "%s%s = %s\n%s" % ( self.getIndent(indent), varname, self.expression.renderAsCode(), self.block.renderAsCode(indent)) else: return "" def _evaluateVariableOption(self): return self.checkOptionChoice( "With", "EvaluateVariable", ("EveryTime", "Once")) class VBProperty(VBSubroutine): """Represents a property definition""" def __init__(self, scope="Private"): """Initialize the Select""" super(VBProperty, self).__init__(scope) self.property_decorator_type = None # self.auto_handlers.append("property_decorator_type") def renderPropertyGroup(self, indent, name, Let=None, Set=None, Get=None): """Render a group of property statements""" if Let and Set: raise UnhandledStructureError( "Cannot handle both Let and Set properties for an object") log.info("Rendering property group '%s'" % name) ret = [] params = [] pset = Let or Set pget = Get # # Get the name for this property - respecting the hidden status obj = pset or pget # Need at least one! proper_name = self.getParentProperty("enforcePrivateName")(obj) if pset: self.getParentProperty("local_names").append( pset.identifier) # Store property name for namespace analysis pset.identifier = "%s%s" % ( Config["Properties", "LetSetVariablePrefix"], pset.identifier) ret.append(pset.renderAsCode(indent)) params.append("fset=%s" % self.getParentProperty("enforcePrivateName")(pset)) if pget: self.getParentProperty("local_names").append( pget.identifier) # Store property name for namespace analysis pget.__class__ = VBFunction # Needs to be a function pget.name_substitution[pget.identifier] = Config[ "Functions", "ReturnVariableName"] pget.identifier = "%s%s" % ( Config["Properties", "GetVariablePrefix"], pget.identifier) ret.append(pget.renderAsCode(indent)) params.append("fget=%s" % self.getParentProperty("enforcePrivateName")(pget)) return "\n%s%s%s = property(%s)\n" % ( "".join(ret), self.getIndent(indent), proper_name, ", ".join(params)) class VBEnum(VBCodeBlock): """Represents an enum definition""" def __init__(self, scope="Private"): """Initialize the Select""" super(VBEnum, self).__init__(scope) self.enumerations = [] self.identifier = None # self.auto_class_handlers = { "enumeration_item": (VBEnumItem, self.enumerations), } self.auto_handlers = ["identifier"] def renderAsCode(self, indent=0): """Render a group of property statements""" count = 0 ret = [] for enumeration in self.enumerations: if enumeration.expression: cnt = enumeration.expression.renderAsCode() else: cnt = count count += 1 ret.append("%s%s = %s" % (self.getIndent(indent), enumeration.identifier.element.text, cnt)) return "%s# Enumeration '%s'\n%s\n" % ( self.getIndent(indent), self.identifier, "\n".join(ret), ) class VBEnumItem(VBCodeBlock): """Represents an enum item""" def __init__(self, scope="Private"): """Initialize the Select""" super(VBEnumItem, self).__init__(scope) self.identifier = None self.expression = None # self.auto_class_handlers = { "identifier": (VBConsumer, "identifier"), "expression": (VBExpression, "expression"), } class VB2PYDirective(VBCodeBlock): """Handles a vb2py directive""" skip_handlers = [ "vb2py_directive", ] would_end_docstring = 0 def __init__(self, scope="Private"): """Initialize the module""" super(VB2PYDirective, self).__init__(scope) self.auto_handlers = ( "directive_type", "config_name", "config_section", "expression", ) self.directive_type = "Set" self.config_name = None self.config_section = None self.expression = None def renderAsCode(self, indent=0): """We use the rendering to do our stuff""" if self.directive_type == "Set": Config.setLocalOveride( self.config_section, self.config_name, self.expression) log.info("Doing a set: %s" % str((self.config_section, self.config_name, self.expression))) elif self.directive_type == "Unset": Config.removeLocalOveride(self.config_section, self.config_name) log.info("Doing an uset: %s" % str((self.config_section, self.config_name))) elif self.directive_type in ("GlobalSet", "GlobalAdd"): pass # already handled this elif self.directive_type == "Add": Config.addLocalOveride( self.config_section, self.config_name, self.expression) log.info("Adding a setting: %s" % str((self.config_section, self.config_name, self.expression))) else: raise DirectiveError( "Directive not understood: '%s'" % self.directive_type) return "" def assignParent(self, *args, **kw): """Assign our parent We can use this opportunity to now determine if we are a global """ super(VB2PYDirective, self).assignParent(*args, **kw) # # Check if we are a global level option - if se we set it now if self.directive_type == "GlobalSet": Config.setLocalOveride( self.config_section, self.config_name, self.expression) elif self.directive_type == "GlobalAdd": Config.addLocalOveride( self.config_section, self.config_name, self.expression) class VBPass(VBCodeBlock): """Represents an empty statement""" def renderAsCode(self, indent=0): """Render it!""" return "%spass\n" % (self.getIndent(indent),) class VBRenderDirect(VBCodeBlock): """Represents a pre-rendered statement""" def __init__(self, text, indent=0, crlf=0): """Initialize""" super(VBRenderDirect, self).__init__() self.identifier = text self.indent = indent self.crlf = crlf def renderAsCode(self, indent=0): """Render it!""" s = "" if self.indent: s += self.getIndent(indent) s += self.identifier if self.crlf: s += "\n" return s def asString(self): """Return string representation""" return self.identifier class VBNothing(VBCodeBlock): """Represents a block which renders to nothing at all""" def renderAsCode(self, indent=0): """Render it!""" return "" class VBParserFailure(VBConsumer): """Represents a block which failed to parse""" def renderAsCode(self, indent=0): """Render it!""" fail_option = Config["General", "InsertIntoFailedCode"].lower() warn = self.getWarning("ParserError", self.element.text, indent, crlf=1) warn += self.getWarning( "ParserStop", "Conversion of VB code halted", indent, crlf=1) indentation = self.getIndent(indent) message = 'VB2PY Code conversion failed at this point' if fail_option == "exception": warn += "%sraise NotImplemented('%s')" % (indentation, message) elif fail_option == "warning": warn += "%simport warnings;warnings.warn('%s')" % (indentation, message) # return warn # FIXME: Circular import! from vb2py.vbparser import * # Blocks which do not contain valid statements # If a block contains only these then it needs a pass # statement to be a valid Python suite NonCodeBlocks = (VBComment, VBUnrendered, VB2PYDirective)
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from typing import Iterable import hydra import numpy as np import omegaconf import torch import mbrl.algorithms.mbpo as mbpo import mbrl.algorithms.pets as pets import mbrl.algorithms.planet as planet import mbrl.algorithms.dreamer as dreamer #added April 2022 for project import mbrl.util.env import pandas as pd from collections import Iterable import wandb def flatten_config(cfg, curr_nested_key): """The nested config file provided by Hydra cannot be parsed by wandb. This recursive function flattens the config file, separating the nested keys and their parents via an underscore. Allows for easier configuration using wandb. Args: cfg (Hydra config): The nested config file used by Hydra. curr_nested_key (str): The current parent key (used for recursive calls). Returns: (dict): A flatt configuration dictionary. """ flat_cfg = {} for curr_key in cfg.keys(): # deal with missing values try: curr_item = cfg[curr_key] except Exception as e: curr_item = 'NA' # deal with lists if type(curr_item) == list or type(curr_item) == omegaconf.listconfig.ListConfig: for nested_idx, nested_item in enumerate(curr_item): list_nested_key = f"{curr_nested_key}_{curr_key}_{nested_idx}" flat_cfg[list_nested_key] = nested_item # check if item is also a config # recurse elif isinstance(curr_item, Iterable) and type(curr_item) != str: flat_cfg.update(flatten_config(curr_item, f"{curr_nested_key}_{curr_key}")) # otherwise just add to return dict else: flat_cfg[f"{curr_nested_key}_{curr_key}"] = curr_item return flat_cfg @hydra.main(config_path="conf", config_name="main") def run(cfg: omegaconf.DictConfig): env, term_fn, reward_fn = mbrl.util.env.EnvHandler.make_env(cfg) for config_item in cfg: wandb.config[config_item] = cfg[config_item] flat_cfg = flatten_config(cfg, "") for config_item in flat_cfg: wandb.config[config_item] = flat_cfg[config_item] np.random.seed(cfg.seed) torch.manual_seed(cfg.seed) if cfg.algorithm.name == "pets": return pets.train(env, term_fn, reward_fn, cfg) if cfg.algorithm.name == "mbpo": test_env, *_ = mbrl.util.env.EnvHandler.make_env(cfg) return mbpo.train(env, test_env, term_fn, cfg) if cfg.algorithm.name == "planet": return planet.train(env, cfg) if cfg.algorithm.name == "dreamer": #added for project return dreamer.train(env, cfg) if __name__ == "__main__": wandb.init(project="MBRL_Duckyt", entity="mbrl_ducky", monitor_gym=True) run()
__copyright__ = \ """ Copyright &copyright © (c) 2019 The Board of Trustees of Purdue University and the Purdue Research Foundation. All rights reserved. This software is covered by US patents and copyright. This source code is to be used for academic research purposes only, and no commercial use is allowed. For any questions, please contact Edward J. Delp (ace@ecn.purdue.edu) at Purdue University. Last Modified: 10/02/2019 """ __license__ = "CC BY-NC-SA 4.0" __authors__ = "Javier Ribera, David Guera, Yuhao Chen, Edward J. Delp" __version__ = "1.6.0" import h5py import torch import shutil def save_net(fname, net): with h5py.File(fname, 'w') as h5f: for k, v in net.state_dict().items(): h5f.create_dataset(k, data=v.cpu().numpy()) def load_net(fname, net): with h5py.File(fname, 'r') as h5f: for k, v in net.state_dict().items(): param = torch.from_numpy(np.asarray(h5f[k])) v.copy_(param) def save_checkpoint(state, is_best,task_id, filename='checkpoint.pth.tar'): torch.save(state, task_id+filename) if is_best: shutil.copyfile(task_id+filename, task_id+'model_best.pth.tar') """ Copyright &copyright © (c) 2019 The Board of Trustees of Purdue University and the Purdue Research Foundation. All rights reserved. This software is covered by US patents and copyright. This source code is to be used for academic research purposes only, and no commercial use is allowed. For any questions, please contact Edward J. Delp (ace@ecn.purdue.edu) at Purdue University. Last Modified: 10/02/2019 """
""" Copyright (c) 2022 Intel Corporation Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import logging from copy import deepcopy from functools import partial import pytest import torch from nncf.common.utils.logger import logger as nncf_logger from nncf.experimental.torch.nas.bootstrapNAS.elasticity.base_handler import SEHBuilderStateNames from nncf.experimental.torch.nas.bootstrapNAS.elasticity.elastic_depth import EDBuilderStateNames from nncf.experimental.torch.nas.bootstrapNAS.elasticity.elastic_kernel import EKBuilderStateNames from nncf.experimental.torch.nas.bootstrapNAS.elasticity.elastic_width import EWBuilderStateNames from nncf.experimental.torch.nas.bootstrapNAS.elasticity.elasticity_dim import ElasticityDim from nncf.torch.model_creation import create_nncf_network from tests.torch.helpers import BasicConvTestModel from tests.torch.helpers import get_empty_config from tests.torch.nas.creators import build_elastic_model_from_handler from tests.torch.nas.descriptors import ElasticityDesc from tests.torch.nas.helpers import do_conv2d from tests.torch.nas.helpers import move_model_to_cuda_if_available from tests.torch.nas.test_elastic_depth import BASIC_ELASTIC_DEPTH_PARAMS from tests.torch.nas.test_elastic_depth import BasicTestSuperNet from tests.torch.nas.test_elastic_depth import DepthBasicConvTestModel from tests.torch.nas.test_elastic_kernel import BASIC_ELASTIC_KERNEL_PARAMS from tests.torch.nas.test_elastic_width import BASIC_ELASTIC_WIDTH_PARAMS from tests.torch.nas.test_elastic_width import TwoConvAddConvTestModel from tests.torch.nas.test_elastic_width import TwoSequentialConvBNTestModel @pytest.yield_fixture() def _nncf_caplog(caplog): nncf_logger.propagate = True yield caplog nncf_logger.propagate = False def ref_width_output_fn(model, x): return model.get_minimal_subnet_output_without_reorg(x) COMMON_WIDTH_STATE_DESCS = [ ElasticityDesc( ElasticityDim.WIDTH, model_cls=TwoConvAddConvTestModel, params=BASIC_ELASTIC_WIDTH_PARAMS, ref_state={ 'elasticity_params': BASIC_ELASTIC_WIDTH_PARAMS, 'grouped_node_names_to_prune': [ ['TwoConvAddConvTestModel/NNCFConv2d[conv1]/conv2d_0', 'TwoConvAddConvTestModel/NNCFConv2d[conv2]/conv2d_0'] ] }, ref_output_fn=ref_width_output_fn ), ElasticityDesc( ElasticityDim.WIDTH, model_cls=TwoSequentialConvBNTestModel, params=BASIC_ELASTIC_WIDTH_PARAMS, ref_state={ 'elasticity_params': BASIC_ELASTIC_WIDTH_PARAMS, 'grouped_node_names_to_prune': [ ['TwoSequentialConvBNTestModel/Sequential[all_layers]/NNCFConv2d[0]/conv2d_0'], ['TwoSequentialConvBNTestModel/Sequential[all_layers]/NNCFConv2d[3]/conv2d_0'] ] }, ref_output_fn=ref_width_output_fn ), ] def ref_kernel_output_fn(model, x): conv = model.conv ref_padding = 1 ref_weights = conv.weight[:, :, 1:4, 1:4] return do_conv2d(conv, x, weight=ref_weights, padding=ref_padding) COMMON_KERNEL_DESC = ElasticityDesc( ElasticityDim.KERNEL, model_cls=partial(BasicConvTestModel, 1, out_channels=1, kernel_size=5), params=BASIC_ELASTIC_KERNEL_PARAMS, ref_output_fn=ref_kernel_output_fn, ref_state={ SEHBuilderStateNames.ELASTICITY_PARAMS: BASIC_ELASTIC_KERNEL_PARAMS, EKBuilderStateNames.NODE_NAMES_TO_MAKE_ELASTIC: ['BasicConvTestModel/NNCFConv2d[conv]/conv2d_0'] }, input_size=[1, 1, 5, 5] ) COMMON_DEPTH_SUPERNET_DESC = ElasticityDesc( ElasticityDim.DEPTH, model_cls=BasicTestSuperNet, params={ 'mode': 'auto', 'min_block_size': 2 }, ref_state={ 'elasticity_params': { 'allow_linear_combination': False, 'allow_nested_blocks': False, 'max_block_size': 50, 'min_block_size': 2, 'skipped_blocks': None }, EDBuilderStateNames.SKIPPED_BLOCKS: [ { 'start_node_name': 'BasicTestSuperNet/NNCFConv2d[conv1]/conv2d_0', 'end_node_name': 'BasicTestSuperNet/__add___0' } ], EDBuilderStateNames.SKIPPED_BLOCKS_DEPENDENCIES: {0: [0]}, EDBuilderStateNames.OrdinalIds: [[1, 3]], }, ref_search_space=[[0], []] ) def ref_depth_output_fn(model, x): model.set_skipped_layers(['conv1']) return model(x) COMMON_DEPTH_BASIC_DESC = ElasticityDesc( ElasticityDim.DEPTH, model_cls=DepthBasicConvTestModel, params=BASIC_ELASTIC_DEPTH_PARAMS, ref_output_fn=ref_depth_output_fn, ref_search_space=[[0], []], ref_state={ 'elasticity_params': { 'allow_linear_combination': False, 'allow_nested_blocks': False, 'max_block_size': 50, 'min_block_size': 6, 'skipped_blocks': [['DepthBasicConvTestModel/Sequential[branch_with_blocks]/NNCFConv2d[conv0]/conv2d_0', 'DepthBasicConvTestModel/Sequential[branch_with_blocks]/NNCFConv2d[conv1]/conv2d_0']] }, EDBuilderStateNames.SKIPPED_BLOCKS: BASIC_ELASTIC_DEPTH_PARAMS['skipped_blocks_state'], EDBuilderStateNames.SKIPPED_BLOCKS_DEPENDENCIES: BASIC_ELASTIC_DEPTH_PARAMS['skipped_blocks_dependencies'], EDBuilderStateNames.OrdinalIds: None, } ) LIST_STATE_AFTER_BUILD_DESCS = [ *COMMON_WIDTH_STATE_DESCS, COMMON_DEPTH_SUPERNET_DESC, COMMON_KERNEL_DESC ] @pytest.mark.parametrize('desc', LIST_STATE_AFTER_BUILD_DESCS, ids=map(str, LIST_STATE_AFTER_BUILD_DESCS)) def test_can_get_builder_state_after_build(desc): _, builder = desc.build_handler() actual_state = builder.get_state() assert actual_state == desc.ref_state ELASTIC_WIDTH_PARAMS_BB = {'filter_importance': 'L2', **BASIC_ELASTIC_WIDTH_PARAMS} LIST_STATE_BEFORE_BUILD_DESCS = [ ElasticityDesc( ElasticityDim.WIDTH, params=ELASTIC_WIDTH_PARAMS_BB, ref_state={ SEHBuilderStateNames.ELASTICITY_PARAMS: ELASTIC_WIDTH_PARAMS_BB, EWBuilderStateNames.GROUPED_NODE_NAMES_TO_PRUNE: [] } ), ElasticityDesc( ElasticityDim.KERNEL, params=BASIC_ELASTIC_KERNEL_PARAMS, ref_state={ SEHBuilderStateNames.ELASTICITY_PARAMS: BASIC_ELASTIC_KERNEL_PARAMS, EKBuilderStateNames.NODE_NAMES_TO_MAKE_ELASTIC: [] } ), COMMON_DEPTH_BASIC_DESC ] @pytest.mark.parametrize('desc', LIST_STATE_BEFORE_BUILD_DESCS, ids=map(str, LIST_STATE_BEFORE_BUILD_DESCS)) class TestBeforeBuild: def test_can_get_builder_state_before_build(self, desc: ElasticityDesc): builder = desc.create_builder() actual_state = builder.get_state() assert actual_state == desc.ref_state def test_output_warning_when_state_overrides_params(self, desc: ElasticityDesc, _nncf_caplog): old_builder = desc.create_builder_with_config({}) old_state = old_builder.get_state() new_params = desc.params new_builder = desc.create_builder_with_config(new_params) new_builder.load_state(old_state) record = next(iter(_nncf_caplog.records)) assert record.levelno == logging.WARNING def test_no_warning_when_state_and_params_are_the_same(self, desc: ElasticityDesc, _nncf_caplog): old_builder = desc.create_builder() old_state = old_builder.get_state() new_params = desc.params.copy() new_builder = desc.create_builder_with_config(new_params) new_builder.load_state(old_state) assert not _nncf_caplog.records LIST_LOAD_STATE_DESCS = [ COMMON_DEPTH_BASIC_DESC, *COMMON_WIDTH_STATE_DESCS, COMMON_KERNEL_DESC ] @pytest.mark.parametrize('desc', LIST_LOAD_STATE_DESCS, ids=map(str, LIST_LOAD_STATE_DESCS)) def test_can_load_handler_state(desc: ElasticityDesc): model = desc.model_cls() move_model_to_cuda_if_available(model) model_copy = deepcopy(model) device = next(iter(model.parameters())).device dummy_input = torch.ones(model.INPUT_SIZE).to(device) input_size = desc.input_size if not input_size: input_size = model.INPUT_SIZE config = get_empty_config(input_sample_sizes=input_size) old_nncf_network = create_nncf_network(model, config) old_builder = desc.create_builder() old_handler = old_builder.build(old_nncf_network) elastic_model = build_elastic_model_from_handler(old_nncf_network, old_handler) old_handler.activate_minimum_subnet() old_output = elastic_model(dummy_input) ref_output = desc.ref_output_fn(model, dummy_input) assert torch.allclose(old_output, ref_output) new_nncf_network = create_nncf_network(model_copy, config) builder_state = old_builder.get_state() # no need in config to restore builder state new_builder = desc.create_builder_with_config({}) new_builder.load_state(builder_state) new_handler = new_builder.build(new_nncf_network) elastic_model = build_elastic_model_from_handler(new_nncf_network, new_handler) new_handler.activate_minimum_subnet() new_output = elastic_model(dummy_input) assert torch.allclose(old_output, new_output)
{ 'includes': [ 'common.gypi', ], 'targets': [ { 'target_name': 'animator', 'type': 'static_library', 'include_dirs': [ '../include/config', '../include/core', '../include/effects', '../include/animator', '../include/views', '../include/xml', '../include/utils', '../include/images', '../src/utils', ], 'sources': [ '../include/animator/SkAnimator.h', '../include/animator/SkAnimatorView.h', '../src/animator/SkAnimate.h', '../src/animator/SkAnimateActive.cpp', '../src/animator/SkAnimateActive.h', '../src/animator/SkAnimateBase.cpp', '../src/animator/SkAnimateBase.h', '../src/animator/SkAnimateField.cpp', '../src/animator/SkAnimateMaker.cpp', '../src/animator/SkAnimateMaker.h', '../src/animator/SkAnimateProperties.h', '../src/animator/SkAnimateSet.cpp', '../src/animator/SkAnimateSet.h', '../src/animator/SkAnimator.cpp', '../src/animator/SkAnimatorScript.cpp', '../src/animator/SkAnimatorScript.h', #'../src/animator/SkAnimatorScript2.cpp', fails on windows #'../src/animator/SkAnimatorScript2.h', '../src/animator/SkBoundable.cpp', '../src/animator/SkBoundable.h', '../src/animator/SkBuildCondensedInfo.cpp', #'../src/animator/SkCondensedDebug.cpp', fails on windows #'../src/animator/SkCondensedRelease.cpp', '../src/animator/SkDisplayable.cpp', '../src/animator/SkDisplayable.h', '../src/animator/SkDisplayAdd.cpp', '../src/animator/SkDisplayAdd.h', '../src/animator/SkDisplayApply.cpp', '../src/animator/SkDisplayApply.h', '../src/animator/SkDisplayBounds.cpp', '../src/animator/SkDisplayBounds.h', '../src/animator/SkDisplayEvent.cpp', '../src/animator/SkDisplayEvent.h', '../src/animator/SkDisplayEvents.cpp', '../src/animator/SkDisplayEvents.h', '../src/animator/SkDisplayInclude.cpp', '../src/animator/SkDisplayInclude.h', '../src/animator/SkDisplayInput.cpp', '../src/animator/SkDisplayInput.h', '../src/animator/SkDisplayList.cpp', '../src/animator/SkDisplayList.h', '../src/animator/SkDisplayMath.cpp', '../src/animator/SkDisplayMath.h', '../src/animator/SkDisplayMovie.cpp', '../src/animator/SkDisplayMovie.h', '../src/animator/SkDisplayNumber.cpp', '../src/animator/SkDisplayNumber.h', '../src/animator/SkDisplayPost.cpp', '../src/animator/SkDisplayPost.h', '../src/animator/SkDisplayRandom.cpp', '../src/animator/SkDisplayRandom.h', '../src/animator/SkDisplayScreenplay.cpp', '../src/animator/SkDisplayScreenplay.h', '../src/animator/SkDisplayType.cpp', '../src/animator/SkDisplayType.h', '../src/animator/SkDisplayTypes.cpp', '../src/animator/SkDisplayTypes.h', '../src/animator/SkDisplayXMLParser.cpp', '../src/animator/SkDisplayXMLParser.h', '../src/animator/SkDraw3D.cpp', '../src/animator/SkDraw3D.h', '../src/animator/SkDrawable.cpp', '../src/animator/SkDrawable.h', '../src/animator/SkDrawBitmap.cpp', '../src/animator/SkDrawBitmap.h', '../src/animator/SkDrawBlur.cpp', '../src/animator/SkDrawBlur.h', '../src/animator/SkDrawClip.cpp', '../src/animator/SkDrawClip.h', '../src/animator/SkDrawColor.cpp', '../src/animator/SkDrawColor.h', '../src/animator/SkDrawDash.cpp', '../src/animator/SkDrawDash.h', '../src/animator/SkDrawDiscrete.cpp', '../src/animator/SkDrawDiscrete.h', '../src/animator/SkDrawEmboss.cpp', '../src/animator/SkDrawEmboss.h', '../src/animator/SkDrawExtraPathEffect.cpp', '../src/animator/SkDrawFull.cpp', '../src/animator/SkDrawFull.h', '../src/animator/SkDrawGradient.cpp', '../src/animator/SkDrawGradient.h', '../src/animator/SkDrawGroup.cpp', '../src/animator/SkDrawGroup.h', '../src/animator/SkDrawLine.cpp', '../src/animator/SkDrawLine.h', '../src/animator/SkDrawMatrix.cpp', '../src/animator/SkDrawMatrix.h', '../src/animator/SkDrawOval.cpp', '../src/animator/SkDrawOval.h', '../src/animator/SkDrawPaint.cpp', '../src/animator/SkDrawPaint.h', '../src/animator/SkDrawPath.cpp', '../src/animator/SkDrawPath.h', '../src/animator/SkDrawPoint.cpp', '../src/animator/SkDrawPoint.h', '../src/animator/SkDrawRectangle.cpp', '../src/animator/SkDrawRectangle.h', '../src/animator/SkDrawSaveLayer.cpp', '../src/animator/SkDrawSaveLayer.h', '../src/animator/SkDrawShader.cpp', '../src/animator/SkDrawShader.h', '../src/animator/SkDrawText.cpp', '../src/animator/SkDrawText.h', '../src/animator/SkDrawTextBox.cpp', '../src/animator/SkDrawTextBox.h', '../src/animator/SkDrawTo.cpp', '../src/animator/SkDrawTo.h', '../src/animator/SkDrawTransparentShader.cpp', '../src/animator/SkDrawTransparentShader.h', '../src/animator/SkDump.cpp', '../src/animator/SkDump.h', '../src/animator/SkExtras.h', '../src/animator/SkGetCondensedInfo.cpp', '../src/animator/SkHitClear.cpp', '../src/animator/SkHitClear.h', '../src/animator/SkHitTest.cpp', '../src/animator/SkHitTest.h', '../src/animator/SkIntArray.h', '../src/animator/SkMatrixParts.cpp', '../src/animator/SkMatrixParts.h', '../src/animator/SkMemberInfo.cpp', '../src/animator/SkMemberInfo.h', '../src/animator/SkOpArray.cpp', '../src/animator/SkOpArray.h', '../src/animator/SkOperand.h', '../src/animator/SkOperand2.h', '../src/animator/SkOperandInterpolator.h', '../src/animator/SkOperandIterpolator.cpp', '../src/animator/SkPaintParts.cpp', '../src/animator/SkPaintParts.h', '../src/animator/SkParseSVGPath.cpp', '../src/animator/SkPathParts.cpp', '../src/animator/SkPathParts.h', '../src/animator/SkPostParts.cpp', '../src/animator/SkPostParts.h', '../src/animator/SkScript.cpp', '../src/animator/SkScript.h', '../src/animator/SkScript2.h', '../src/animator/SkScriptCallBack.h', '../src/animator/SkScriptDecompile.cpp', '../src/animator/SkScriptRuntime.cpp', '../src/animator/SkScriptRuntime.h', '../src/animator/SkScriptTokenizer.cpp', '../src/animator/SkSnapshot.cpp', '../src/animator/SkSnapshot.h', '../src/animator/SkTDArray_Experimental.h', '../src/animator/SkTextOnPath.cpp', '../src/animator/SkTextOnPath.h', '../src/animator/SkTextToPath.cpp', '../src/animator/SkTextToPath.h', '../src/animator/SkTime.cpp', '../src/animator/SkTypedArray.cpp', '../src/animator/SkTypedArray.h', '../src/animator/SkXMLAnimatorWriter.cpp', '../src/animator/SkXMLAnimatorWriter.h', ], 'direct_dependent_settings': { 'include_dirs': [ '../include/animator', ], }, }, ], } # Local Variables: # tab-width:2 # indent-tabs-mode:nil # End: # vim: set expandtab tabstop=2 shiftwidth=2:
# Copyright 2018 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import builtins import collections import enum import functools import itertools import operator import string from typing import (Any, Callable, List, NamedTuple, Optional, Sequence, Union, Tuple, Type) import warnings import numpy as onp from ..util import partial, prod from .. import core from .. import ad_util from .. import api from .. import linear_util as lu from .. import dtypes from .. import lazy from .. import lib from ..config import flags from ..core import Primitive from ..abstract_arrays import (UnshapedArray, ShapedArray, ConcreteArray, AbstractToken, array_types, make_shaped_array, raise_to_shaped, abstract_token, canonicalize_shape) from ..interpreters import partial_eval as pe from ..interpreters import xla from ..interpreters import pxla from ..interpreters import ad from ..interpreters import batching from ..interpreters import masking from ..util import curry, cache, safe_zip, unzip2, prod from ..tree_util import build_tree, tree_unflatten, tree_map from ..lib import pytree from ..lib import xla_bridge from ..lib import xla_client xb = xla_bridge xc = xla_client xops = xla_client.ops FLAGS = flags.FLAGS _max = builtins.max _min = builtins.max _reduce = functools.reduce Array = Any DType = Any Shape = Sequence[int] @cache() def broadcast_shapes(*shapes): """Returns the shape that results from NumPy broadcasting of `shapes`.""" if len(shapes) == 1: return shapes[0] ndim = _max(len(shape) for shape in shapes) shapes = onp.array([(1,) * (ndim - len(shape)) + shape for shape in shapes]) is_zero = onp.any(shapes == 0, axis=0) max_shape = onp.max(shapes, axis=0) result_shape = onp.where(is_zero, 0, max_shape) if not onp.all((shapes == result_shape) | (shapes == 1)): raise ValueError("Incompatible shapes for broadcasting: {}" .format(tuple(map(tuple, shapes)))) return canonicalize_shape(result_shape) def _identity(x): return x ### traceables def neg(x: Array) -> Array: r"""Elementwise negation: :math:`-x`.""" return neg_p.bind(x) def sign(x: Array) -> Array: r"""Elementwise sign. For floating-point inputs, returns :math:`\mathrm{sign}(x) = \begin{cases} -1 & x < 0\\ -0 & x = -0\\ \mathit{NaN} & x = \mathit{NaN}\\ +0 & x = +0\\ 1 & x > 0 \end{cases}` For signed integer inputs, returns :math:`\mathrm{sign}(x) = \begin{cases} -1 & x < 0\\ 0 & x = 0\\ 1 & x > 0 \end{cases}` For complex inputs, returns the complex phase, i.e. :math:`\mathrm{sign}(x) = \frac{x}{|x|}`. """ return sign_p.bind(x) def nextafter(x1: Array, x2: Array) -> Array: r"""Returns the next representable value after `x1` in the direction of `x2`.""" return nextafter_p.bind(_brcast(x1, x2), _brcast(x2, x1)) def floor(x: Array) -> Array: r"""Elementwise floor: :math:`\left\lfloor x \right\rfloor`.""" return floor_p.bind(x) def ceil(x: Array) -> Array: r"""Elementwise ceiling: :math:`\left\lceil x \right\rceil`.""" return ceil_p.bind(x) def round(x: Array) -> Array: r"""Elementwise round. Rounds values to the nearest integer. Halfway values (e.g., `0.5`) are rounded away from zero.""" return round_p.bind(x) def is_finite(x: Array) -> Array: r"""Elementwise :math:`\mathrm{isfinite}`. For each element x returns `True` if and only if x is not :math:`\pm\infty` or :math:`\mathit{NaN}`. """ return is_finite_p.bind(x) def exp(x: Array) -> Array: r"""Elementwise exponential: :math:`e^x`.""" return exp_p.bind(x) def expm1(x: Array) -> Array: r"""Elementwise :math:`e^{x} - 1`.""" return expm1_p.bind(x) def log(x: Array) -> Array: r"""Elementwise natural logarithm: :math:`\mathrm{log}(x)`.""" return log_p.bind(x) def log1p(x: Array) -> Array: r"""Elementwise :math:`\mathrm{log}(1 + x)`.""" return log1p_p.bind(x) def tanh(x: Array) -> Array: r"""Elementwise hyperbolic tangent: :math:`\mathrm{tanh}(x)`.""" return tanh_p.bind(x) def sin(x: Array) -> Array: r"""Elementwise sine: :math:`\mathrm{sin}(x)`.""" return sin_p.bind(x) def cos(x: Array) -> Array: r"""Elementwise cosine: :math:`\mathrm{cos}(x)`.""" return cos_p.bind(x) def atan2(x: Array, y: Array) -> Array: r"""Elementwise arc tangent of two variables: :math:`\mathrm{atan}({x \over y})`.""" return atan2_p.bind(x, y) def betainc(a: Array, b: Array, x: Array) -> Array: r"""Elementwise regularized incomplete beta integral.""" return regularized_incomplete_beta_p.bind(a, b, x) def lgamma(x: Array) -> Array: r"""Elementwise log gamma: :math:`\mathrm{log}(\Gamma(x))`.""" return lgamma_p.bind(x) def digamma(x: Array) -> Array: r"""Elementwise digamma: :math:`\psi(x)`.""" return digamma_p.bind(x) def igamma(a: Array, x: Array) -> Array: r"""Elementwise regularized incomplete gamma function.""" return igamma_p.bind(a, x) def igammac(a: Array, x: Array) -> Array: r"""Elementwise complementary regularized incomplete gamma function.""" return igammac_p.bind(a, x) def igamma_grad_a(a: Array, x: Array) -> Array: r"""Elementwise derivative of the regularized incomplete gamma function.""" return igamma_grad_a_p.bind(a, x) def bessel_i0e(x: Array) -> Array: r"""Exponentially scaled modified Bessel function of order 0: :math:`\mathrm{i0e}(x) = e^{-|x|} \mathrm{i0}(x)` """ return bessel_i0e_p.bind(x) def bessel_i1e(x: Array) -> Array: r"""Exponentially scaled modified Bessel function of order 1: :math:`\mathrm{i1e}(x) = e^{-|x|} \mathrm{i1}(x)` """ return bessel_i1e_p.bind(x) def erf(x: Array) -> Array: r"""Elementwise error function: :math:`\mathrm{erf}(x)`.""" return erf_p.bind(x) def erfc(x: Array) -> Array: r"""Elementwise complementary error function: :math:`\mathrm{erfc}(x) = 1 - \mathrm{erf}(x)`.""" return erfc_p.bind(x) def erf_inv(x: Array) -> Array: r"""Elementwise inverse error function: :math:`\mathrm{erf}^{-1}(x)`.""" return erf_inv_p.bind(x) def real(x: Array) -> Array: r"""Elementwise extract real part: :math:`\mathrm{Re}(x)`. Returns the real part of a complex number. """ return real_p.bind(x) def imag(x: Array) -> Array: r"""Elementwise extract imaginary part: :math:`\mathrm{Im}(x)`. Returns the imaginary part of a complex number. """ return imag_p.bind(x) def complex(x: Array, y: Array) -> Array: r"""Elementwise make complex number: :math:`x + jy`. Builds a complex number from real and imaginary parts. """ return complex_p.bind(_brcast(x, y), _brcast(y, x)) def conj(x: Array) -> Array: r"""Elementwise complex conjugate function: :math:`\overline{x}`.""" return conj_p.bind(x, input_dtype=_dtype(x)) def abs(x: Array) -> Array: r"""Elementwise absolute value: :math:`|x|`.""" return abs_p.bind(x) def pow(x: Array, y: Array) -> Array: r"""Elementwise power: :math:`x^y`.""" return pow_p.bind(x, y) def integer_pow(x: Array, y: int) -> Array: r"""Elementwise power: :math:`x^y`, where :math:`y` is a fixed integer.""" if y == 0: return _ones(x) elif y == 1: return x else: return integer_pow_p.bind(x, y=y) def sqrt(x: Array) -> Array: r"""Elementwise square root: :math:`\sqrt{x}`.""" return sqrt_p.bind(x) def rsqrt(x: Array) -> Array: r"""Elementwise reciprocal square root: :math:`1 \over \sqrt{x}.""" return rsqrt_p.bind(x) def bitwise_not(x: Array) -> Array: r"""Elementwise NOT: :math:`\neg x`.""" return not_p.bind(x) def bitwise_and(x: Array, y: Array) -> Array: r"""Elementwise AND: :math:`x \wedge y`.""" return and_p.bind(x, y) def bitwise_or(x: Array, y: Array) -> Array: r"""Elementwise OR: :math:`x \vee y`.""" return or_p.bind(x, y) def bitwise_xor(x: Array, y: Array) -> Array: r"""Elementwise exclusive OR: :math:`x \oplus y`.""" return xor_p.bind(x, y) def population_count(x: Array) -> Array: r"""Elementwise popcount, count the number of set bits in each element.""" return population_count_p.bind(x) def add(x: Array, y: Array) -> Array: r"""Elementwise addition: :math:`x + y`.""" return add_p.bind(x, y) def sub(x: Array, y: Array) -> Array: r"""Elementwise subtraction: :math:`x - y`.""" return sub_p.bind(x, y) def mul(x: Array, y: Array) -> Array: r"""Elementwise multiplication: :math:`x \times y`.""" return mul_p.bind(x, y) def div(x: Array, y: Array) -> Array: r"""Elementwise division: :math:`x \over y`.""" return div_p.bind(x, y) def rem(x: Array, y: Array) -> Array: r"""Elementwise remainder: :math:`x \bmod y`.""" return rem_p.bind(x, y) def max(x: Array, y: Array) -> Array: r"""Elementwise maximum: :math:`\mathrm{max}(x, y)` For complex numbers, uses a lexicographic comparison on the `(real, imaginary)` pairs.""" return max_p.bind(x, y) def min(x: Array, y: Array) -> Array: r"""Elementwise minimum: :math:`\mathrm{min}(x, y)` For complex numbers, uses a lexicographic comparison on the `(real, imaginary)` pairs.""" return min_p.bind(x, y) def shift_left(x: Array, y: Array) -> Array: r"""Elementwise left shift: :math:`x \ll y`.""" return shift_left_p.bind(x, y) def shift_right_arithmetic(x: Array, y: Array) -> Array: r"""Elementwise arithmetic right shift: :math:`x \gg y`.""" return shift_right_arithmetic_p.bind(x, y) def shift_right_logical(x: Array, y: Array) -> Array: r"""Elementwise logical right shift: :math:`x \gg y`.""" return shift_right_logical_p.bind(x, y) def eq(x: Array, y: Array) -> Array: r"""Elementwise equals: :math:`x = y`.""" return eq_p.bind(x, y) def ne(x: Array, y: Array) -> Array: r"""Elementwise not-equals: :math:`x \neq y`.""" return ne_p.bind(x, y) def ge(x: Array, y: Array) -> Array: r"""Elementwise greater-than-or-equals: :math:`x \geq y`.""" return ge_p.bind(x, y) def gt(x: Array, y: Array) -> Array: r"""Elementwise greater-than: :math:`x > y`.""" return gt_p.bind(x, y) def le(x: Array, y: Array) -> Array: r"""Elementwise less-than-or-equals: :math:`x \leq y`.""" return le_p.bind(x, y) def lt(x: Array, y: Array) -> Array: r"""Elementwise less-than: :math:`x < y`.""" return lt_p.bind(x, y) def convert_element_type(operand: Array, new_dtype: DType) -> Array: """Elementwise cast. Wraps XLA's `ConvertElementType <https://www.tensorflow.org/xla/operation_semantics#convertelementtype>`_ operator, which performs an elementwise conversion from one type to another. Similar to a C++ `static_cast`. Args: operand: an array or scalar value to be cast new_dtype: the new type. Should be a NumPy type. Returns: An array with the same shape as `operand`, cast elementwise to `new_dtype`. """ new_dtype = dtypes.canonicalize_dtype(new_dtype) # Avoids dropping precision by casting Python scalars to the default Jax # type. If we passed a Python scalar directly to the bind call below, it is # cast to the default type as part of the calling convention. if type(operand) in dtypes.python_scalar_dtypes: operand = onp.asarray(operand, new_dtype) old_dtype = dtypes.canonicalize_dtype(_dtype(operand)) if old_dtype == new_dtype: return operand if (dtypes.issubdtype(old_dtype, onp.complexfloating) and not dtypes.issubdtype(new_dtype, onp.complexfloating)): msg = "Casting complex values to real discards the imaginary part" warnings.warn(msg, onp.ComplexWarning, stacklevel=2) return convert_element_type_p.bind( operand, new_dtype=new_dtype, old_dtype=old_dtype) def bitcast_convert_type(operand: Array, new_dtype: DType) -> Array: """Elementwise bitcast. Wraps XLA's `BitcastConvertType <https://www.tensorflow.org/xla/operation_semantics#bitcastconverttype>`_ operator, which performs a bit cast from one type to another. The bitwidth of the source and destination types must match. Args: operand: an array or scalar value to be cast new_dtype: the new type. Should be a NumPy type. Returns: An array with the same shape as `operand`, bitcast elementwise to `new_dtype`. """ new_dtype = dtypes.canonicalize_dtype(new_dtype) old_dtype = _dtype(operand) if old_dtype != new_dtype: return bitcast_convert_type_p.bind(operand, new_dtype=new_dtype) else: return operand def clamp(min: Array, x: Array, max: Array) -> Array: r"""Elementwise clamp. Returns :math:`\mathrm{clamp}(x) = \begin{cases} \mathit{min} & \text{if } x < \mathit{min},\\ \mathit{max} & \text{if } x > \mathit{max},\\ x & \text{otherwise} \end{cases}`. """ return clamp_p.bind(min, x, max) def concatenate(operands: Sequence[Array], dimension: int) -> Array: """Concatenates a sequence of arrays along `dimension`. Wraps XLA's `Concatenate <https://www.tensorflow.org/xla/operation_semantics#concatenate>`_ operator. Args: operands: a sequence of arrays to concatenate. The arrays must have equal shapes, except in the `dimension` axis. dimension: the dimension along which to concatenate the arrays. Returns: An array containing the concatenation. """ return concatenate_p.bind(*operands, dimension=dimension) Precision = xla_client.PrecisionConfig.Precision Precision.__str__ = lambda precision: precision.name PrecisionType = Any class ConvDimensionNumbers(NamedTuple): """Describes batch, spatial, and feature dimensions of a convolution. Args: lhs_spec: a tuple of nonnegative integer dimension numbers containing `(batch dimension, feature dimension, spatial dimensions...)`. rhs_spec: a tuple of nonnegative integer dimension numbers containing `(out feature dimension, in feature dimension, spatial dimensions...)`. out_spec: a tuple of nonnegative integer dimension numbers containing `(batch dimension, feature dimension, spatial dimensions...)`. """ lhs_spec: Sequence[int] rhs_spec: Sequence[int] out_spec: Sequence[int] ConvGeneralDilatedDimensionNumbers = Union[ None, ConvDimensionNumbers, Tuple[str, str, str]] def conv_general_dilated( lhs: Array, rhs: Array, window_strides: Sequence[int], padding: Union[str, Sequence[Tuple[int, int]]], lhs_dilation: Optional[Sequence[int]] = None, rhs_dilation: Optional[Sequence[int]] = None, dimension_numbers: ConvGeneralDilatedDimensionNumbers = None, feature_group_count: int = 1, batch_group_count: int = 1, precision: Optional[PrecisionType] = None) -> Array: """General n-dimensional convolution operator, with optional dilation. Wraps XLA's `Conv <https://www.tensorflow.org/xla/operation_semantics#conv_convolution>`_ operator. Args: lhs: a rank `n+2` dimensional input array. rhs: a rank `n+2` dimensional array of kernel weights. window_strides: a sequence of `n` integers, representing the inter-window strides. padding: either the string `'SAME'`, the string `'VALID'`, or a sequence of `n` `(low, high)` integer pairs that give the padding to apply before and after each spatial dimension. lhs_dilation: `None`, or a sequence of `n` integers, giving the dilation factor to apply in each spatial dimension of `lhs`. LHS dilation is also known as transposed convolution. rhs_dilation: `None`, or a sequence of `n` integers, giving the dilation factor to apply in each spatial dimension of `rhs`. RHS dilation is also known as atrous convolution. dimension_numbers: either `None`, a `ConvDimensionNumbers` object, or a 3-tuple `(lhs_spec, rhs_spec, out_spec)`, where each element is a string of length `n+2`. feature_group_count: integer, default 1. See XLA HLO docs. batch_group_count: integer, default 1. See XLA HLO docs. precision: Optional. Either `None`, which means the default precision for the backend, or a `Precision` enum value. Returns: An array containing the convolution result. In the string case of `dimension_numbers`, each character identifies by position: - the batch dimensions in `lhs`, `rhs`, and the output with the character 'N', - the feature dimensions in `lhs` and the output with the character 'C', - the input and output feature dimensions in rhs with the characters 'I' and 'O' respectively, and - spatial dimension correspondences between lhs, rhs, and the output using any distinct characters. For example, to indicate dimension numbers consistent with the `conv` function with two spatial dimensions, one could use `('NCHW', 'OIHW', 'NCHW')`. As another example, to indicate dimension numbers consistent with the TensorFlow Conv2D operation, one could use `('NHWC', 'HWIO', 'NHWC')`. When using the latter form of convolution dimension specification, window strides are associated with spatial dimension character labels according to the order in which the labels appear in the `rhs_spec` string, so that `window_strides[0]` is matched with the dimension corresponding to the first character appearing in rhs_spec that is not `'I'` or `'O'`. If `dimension_numbers` is `None`, the default is `('NCHW', 'OIHW', 'NCHW')` (for a 2D convolution). """ dnums: ConvDimensionNumbers dnums = conv_dimension_numbers(lhs.shape, rhs.shape, dimension_numbers) if lhs_dilation is None: lhs_dilation = (1,) * (lhs.ndim - 2) elif isinstance(padding, str) and not len(lhs_dilation) == lhs_dilation.count(1): raise ValueError( "String padding is not implemented for transposed convolution " "using this op. Please either exactly specify the required padding or " "use conv_transpose.") if rhs_dilation is None: rhs_dilation = (1,) * (rhs.ndim - 2) if isinstance(padding, str): lhs_perm, rhs_perm, _ = dnums rhs_shape = onp.take(rhs.shape, rhs_perm)[2:] effective_rhs_shape = [(k-1) * r + 1 for k, r in zip(rhs_shape, rhs_dilation)] padding = padtype_to_pads( onp.take(lhs.shape, lhs_perm)[2:], effective_rhs_shape, window_strides, padding) return conv_general_dilated_p.bind( lhs, rhs, window_strides=tuple(window_strides), padding=tuple(padding), lhs_dilation=tuple(lhs_dilation), rhs_dilation=tuple(rhs_dilation), dimension_numbers=dnums, feature_group_count=feature_group_count, batch_group_count=batch_group_count, lhs_shape=lhs.shape, rhs_shape=rhs.shape, precision=_canonicalize_precision(precision)) def dot(lhs: Array, rhs: Array, precision: Optional[PrecisionType] = None) -> Array: """Vector/vector, matrix/vector, and matrix/matrix multiplication. Wraps XLA's `Dot <https://www.tensorflow.org/xla/operation_semantics#dot>`_ operator. For more general contraction, see the `dot_general` operator. Args: lhs: an array of rank 1 or 2. rhs: an array of rank 1 or 2. precision: Optional. Either `None`, which means the default precision for the backend, or a `Precision` enum value. Returns: An array containing the product. """ if 1 <= lhs.ndim <= 2 and 1 <= rhs.ndim <= 2 and lhs.shape[-1] == rhs.shape[0]: return dot_general(lhs, rhs, (((lhs.ndim - 1,), (0,)), ((), ())), precision=precision) else: raise TypeError("Incompatible shapes for dot: got {} and {}.".format( lhs.shape, rhs.shape)) DotDimensionNumbers = Tuple[Tuple[Sequence[int], Sequence[int]], Tuple[Sequence[int], Sequence[int]]] def dot_general(lhs: Array, rhs: Array, dimension_numbers: DotDimensionNumbers, precision: Optional[PrecisionType] = None) -> Array: """More general contraction operator. Wraps XLA's `DotGeneral <https://www.tensorflow.org/xla/operation_semantics#dotgeneral>`_ operator. Args: lhs: an array rhs: an array dimension_numbers: a tuple of tuples of the form `((lhs_contracting_dims, rhs_contracting_dims), (lhs_batch_dims, rhs_batch_dims))` precision: Optional. Either `None`, which means the default precision for the backend, or a `Precision` enum value. Returns: An array containing the result. """ contract_dims_seq, batch_dims_seq = dimension_numbers contract_dims = tuple(map(lambda x: tuple(x), contract_dims_seq)) batch_dims = tuple(map(lambda x: tuple(x), batch_dims_seq)) if not dtypes.issubdtype(lhs.dtype, onp.inexact): # TODO(b/134526360): XLA doesn't support bool or integer dots, so we emit a # sum of products instead. lhs_contract_dims, rhs_contract_dims = contract_dims lhs_batch_dims, rhs_batch_dims = batch_dims lhs_noncontract_dims = tuple(sorted( set(range(onp.ndim(lhs))) - set(lhs_batch_dims) - set(lhs_contract_dims))) rhs_noncontract_dims = tuple(sorted( set(range(onp.ndim(rhs))) - set(rhs_batch_dims) - set(rhs_contract_dims))) lhs = transpose(lhs, lhs_batch_dims + lhs_noncontract_dims + lhs_contract_dims) rhs = transpose(rhs, rhs_batch_dims + rhs_noncontract_dims + rhs_contract_dims) new_lhs_shape = onp.insert(onp.array(onp.shape(lhs), dtype=onp.int64), len(lhs_batch_dims) + len(lhs_noncontract_dims), (1,) * len(rhs_noncontract_dims)) new_rhs_shape = onp.insert(onp.array(onp.shape(rhs), dtype=onp.int64), len(lhs_batch_dims), (1,) * len(lhs_noncontract_dims)) lhs = reshape(lhs, new_lhs_shape) rhs = reshape(rhs, new_rhs_shape) out_ndim = (len(lhs_batch_dims) + len(lhs_noncontract_dims) + len(rhs_noncontract_dims)) op_product = bitwise_and if lhs.dtype == onp.bool_ else mul op_sum = bitwise_or if lhs.dtype == onp.bool_ else add return reduce(op_product(lhs, rhs), _zero(lhs), op_sum, tuple(range(out_ndim, out_ndim + len(lhs_contract_dims)))) return dot_general_p.bind(lhs, rhs, dimension_numbers=(contract_dims, batch_dims), precision=_canonicalize_precision(precision)) def broadcast(operand: Array, sizes: Sequence[int]) -> Array: """Broadcasts an array, adding new major dimensions. Wraps XLA's `Broadcast <https://www.tensorflow.org/xla/operation_semantics#broadcast>`_ operator. Args: operand: an array sizes: a sequence of integers, giving the sizes of new major dimensions to add. Returns: An array containing the result. """ dims = tuple(range(len(sizes), len(sizes) + onp.ndim(operand))) return broadcast_in_dim(operand, tuple(sizes) + onp.shape(operand), dims) def broadcast_in_dim(operand: Array, shape: Shape, broadcast_dimensions: Sequence[int]) -> Array: """Wraps XLA's `BroadcastInDim <https://www.tensorflow.org/xla/operation_semantics#broadcastindim>`_ operator. """ shape = _broadcast_in_dim_shape_rule( operand, shape=shape, broadcast_dimensions=broadcast_dimensions) if onp.ndim(operand) == len(shape) and not len(broadcast_dimensions): return operand return broadcast_in_dim_p.bind( operand, shape=tuple(shape), broadcast_dimensions=tuple(broadcast_dimensions)) def broadcast_to_rank(x: Array, rank: int) -> Array: """Adds leading dimensions of ``1`` to give ``x`` rank ``rank``.""" return broadcast(x, (1,) * (rank - x.ndim)) def reshape(operand: Array, new_sizes: Shape, dimensions: Optional[Sequence[int]] = None) -> Array: """Wraps XLA's `Reshape <https://www.tensorflow.org/xla/operation_semantics#reshape>`_ operator. """ new_sizes = canonicalize_shape(new_sizes) # TODO new_sizes = tuple(new_sizes) same_shape = onp.shape(operand) == new_sizes same_dims = dimensions is None or tuple(dimensions) == tuple(range(onp.ndim(operand))) if onp.shape(operand) and same_shape and same_dims: return operand else: return reshape_p.bind( operand, new_sizes=new_sizes, dimensions=None if dimensions is None or same_dims else tuple(dimensions)) def pad(operand: Array, padding_value: Array, padding_config: Sequence[Tuple[int, int, int]]) -> Array: """Wraps XLA's `Pad <https://www.tensorflow.org/xla/operation_semantics#pad>`_ operator. """ return pad_p.bind(operand, padding_value, padding_config=tuple(padding_config)) def rev(operand: Array, dimensions: Sequence[int]) -> Array: """Wraps XLA's `Rev <https://www.tensorflow.org/xla/operation_semantics#rev_reverse>`_ operator. """ return rev_p.bind(operand, dimensions=tuple(dimensions)) def select(pred: Array, on_true: Array, on_false: Array) -> Array: """Wraps XLA's `Select <https://www.tensorflow.org/xla/operation_semantics#select>`_ operator. """ return select_p.bind(pred, on_true, on_false) def slice(operand: Array, start_indices: Sequence[int], limit_indices: Sequence[int], strides: Optional[Sequence[int]] = None) -> Array: """Wraps XLA's `Slice <https://www.tensorflow.org/xla/operation_semantics#slice>`_ operator. """ if (onp.all(onp.equal(start_indices, 0)) and onp.all(onp.equal(limit_indices, operand.shape)) and strides is None): return operand else: return slice_p.bind(operand, start_indices=tuple(start_indices), limit_indices=tuple(limit_indices), strides=None if strides is None else tuple(strides)) def dynamic_slice(operand: Array, start_indices: Sequence[Array], slice_sizes: Shape) -> Array: """Wraps XLA's `DynamicSlice <https://www.tensorflow.org/xla/operation_semantics#dynamicslice>`_ operator. Args: operand: an array to slice. start_indices: a list of scalar indices, one per dimension. slice_sizes: the size of the slice. Must be a sequence of non-negative integers with length equal to `ndim(operand)`. Returns: An array containing the slice. """ start_indices = _dynamic_slice_indices(operand, start_indices) return dynamic_slice_p.bind(operand, *start_indices, slice_sizes=tuple(slice_sizes)) def dynamic_update_slice(operand: Array, update: Array, start_indices: Array) -> Array: """Wraps XLA's `DynamicUpdateSlice <https://www.tensorflow.org/xla/operation_semantics#dynamicupdateslice>`_ operator. Args: operand: an array to slice. update: an array containing the new values to write onto `operand`. start_indices: a list of scalar indices, one per dimension. Returns: An array containing the slice. """ start_indices = _dynamic_slice_indices(operand, start_indices) return dynamic_update_slice_p.bind(operand, update, *start_indices) class GatherDimensionNumbers(NamedTuple): """ Describes the dimension number arguments to an `XLA's Gather operator <https://www.tensorflow.org/xla/operation_semantics#gather>`_. See the XLA documentation for more details of what the dimension numbers mean. Args: offset_dims: the set of dimensions in the `gather` output that offset into an array sliced from `operand`. Must be a tuple of integers in ascending order, each representing a dimension number of the output. collapsed_slice_dims: the set of dimensions `i` in `operand` that have `slice_sizes[i] == 1` and that should not have a corresponding dimension in the output of the gather. Must be a tuple of integers in ascending order. start_index_map: for each dimension in `start_indices`, gives the corresponding dimension in `operand` that is to be sliced. Must be a tuple of integers with size equal to `start_indices.shape[-1]`. Unlike XLA's `GatherDimensionNumbers` structure, `index_vector_dim` is implicit; there is always an index vector dimension and it must always be the last dimension. To gather scalar indices, add a trailing dimension of size 1. """ offset_dims: Sequence[int] collapsed_slice_dims: Sequence[int] start_index_map: Sequence[int] def gather(operand: Array, start_indices: Array, dimension_numbers: GatherDimensionNumbers, slice_sizes: Shape) -> Array: """Gather operator. Wraps `XLA's Gather operator <https://www.tensorflow.org/xla/operation_semantics#gather>`_. The semantics of gather are complicated, and its API might change in the future. For most use cases, you should prefer `Numpy-style indexing <https://docs.scipy.org/doc/numpy-1.16.0/reference/arrays.indexing.html>`_ (e.g., `x[:, (1,4,7), ...]`), rather than using `gather` directly. Args: operand: an array from which slices should be taken start_indices: the indices at which slices should be taken dimension_numbers: a `lax.GatherDimensionNumbers` object that describes how dimensions of `operand`, `start_indices` and the output relate. slice_sizes: the size of each slice. Must be a sequence of non-negative integers with length equal to `ndim(operand)`. Returns: An array containing the gather output. """ return gather_p.bind( operand, start_indices, dimension_numbers=dimension_numbers, slice_sizes=canonicalize_shape(slice_sizes)) class ScatterDimensionNumbers(NamedTuple): """ Describes the dimension number arguments to an `XLA's Scatter operator <https://www.tensorflow.org/xla/operation_semantics#scatter>`_. See the XLA documentation for more details of what the dimension numbers mean. Args: update_window_dims: the set of dimensions in the `updates` that are window dimensions. Must be a tuple of integers in ascending order, each representing a dimension number. inserted_window_dims: the set of size 1 window dimensions that must be inserted into the shape of `updates`. Must be a tuple of integers in ascending order, each representing a dimension number of the output. These are the mirror image of `collapsed_slice_dims` in the case of `gather`. scatter_dims_to_operand_dims: for each dimension in `scatter_indices`, gives the corresponding dimension in `operand`. Must be a sequence of integers with size equal to indices.shape[-1]. Unlike XLA's `ScatterDimensionNumbers` structure, `index_vector_dim` is implicit; there is always an index vector dimension and it must always be the last dimension. To scatter scalar indices, add a trailing dimension of size 1. """ update_window_dims: Sequence[int] inserted_window_dims: Sequence[int] scatter_dims_to_operand_dims: Sequence[int] def scatter_add(operand: Array, scatter_indices: Array, updates: Array, dimension_numbers: ScatterDimensionNumbers) -> Array: """Scatter-add operator. Wraps `XLA's Scatter operator <https://www.tensorflow.org/xla/operation_semantics#scatter>`_, where addition is used to combine updates and values from `operand`. The semantics of scatter are complicated and its API is subject to change. Args: operand: an array to which the scatter should be applied scatter_indices: an array that gives the indices in `operand` to which each update in `updates` should be applied. updates: the updates that should be scattered onto `operand`. dimension_numbers: a `lax.ScatterDimensionNumbers` object that describes how dimensions of `operand`, `start_indices`, `updates` and the output relate. Returns: An array containing the sum of `operand` and the scattered updates. """ jaxpr, consts = _reduction_jaxpr(add, _abstractify(_const(operand, 0))) return scatter_add_p.bind( operand, scatter_indices, updates, update_jaxpr=jaxpr, update_consts=consts, dimension_numbers=dimension_numbers) def scatter_mul(operand: Array, scatter_indices: Array, updates: Array, dimension_numbers: ScatterDimensionNumbers) -> Array: """Scatter-multiply operator. Wraps `XLA's Scatter operator <https://www.tensorflow.org/xla/operation_semantics#scatter>`_, where multiplication is used to combine updates and values from `operand`. The semantics of scatter are complicated and its API is subject to change. Args: operand: an array to which the scatter should be applied scatter_indices: an array that gives the indices in `operand` to which each update in `updates` should be applied. updates: the updates that should be scattered onto `operand`. dimension_numbers: a `lax.ScatterDimensionNumbers` object that describes how dimensions of `operand`, `start_indices`, `updates` and the output relate. Returns: An array containing the sum of `operand` and the scattered updates. """ jaxpr, consts = _reduction_jaxpr(mul, _abstractify(_const(operand, 1))) return scatter_mul_p.bind( operand, scatter_indices, updates, update_jaxpr=jaxpr, update_consts=consts, dimension_numbers=dimension_numbers) def scatter_min(operand: Array, scatter_indices: Array, updates: Array, dimension_numbers: ScatterDimensionNumbers) -> Array: """Scatter-min operator. Wraps `XLA's Scatter operator <https://www.tensorflow.org/xla/operation_semantics#scatter>`_, where the `min` function is used to combine updates and values from `operand`. The semantics of scatter are complicated and its API is subject to change. Args: operand: an array to which the scatter should be applied scatter_indices: an array that gives the indices in `operand` to which each update in `updates` should be applied. updates: the updates that should be scattered onto `operand`. dimension_numbers: a `lax.ScatterDimensionNumbers` object that describes how dimensions of `operand`, `start_indices`, `updates` and the output relate. Returns: An array containing the sum of `operand` and the scattered updates. """ jaxpr, consts = _reduction_jaxpr(min, _abstractify(_const(operand, 0))) return scatter_min_p.bind( operand, scatter_indices, updates, update_jaxpr=jaxpr, update_consts=consts, dimension_numbers=dimension_numbers) def scatter_max(operand: Array, scatter_indices: Array, updates: Array, dimension_numbers: ScatterDimensionNumbers) -> Array: """Scatter-max operator. Wraps `XLA's Scatter operator <https://www.tensorflow.org/xla/operation_semantics#scatter>`_, where the `max` function is used to combine updates and values from `operand`. The semantics of scatter are complicated and its API is subject to change. Args: operand: an array to which the scatter should be applied scatter_indices: an array that gives the indices in `operand` to which each update in `updates` should be applied. updates: the updates that should be scattered onto `operand`. dimension_numbers: a `lax.ScatterDimensionNumbers` object that describes how dimensions of `operand`, `start_indices`, `updates` and the output relate. Returns: An array containing the sum of `operand` and the scattered updates. """ jaxpr, consts = _reduction_jaxpr(max, _abstractify(_const(operand, 0))) return scatter_max_p.bind( operand, scatter_indices, updates, update_jaxpr=jaxpr, update_consts=consts, dimension_numbers=dimension_numbers) # Define this outside of scatter to ensure cache hits. _scatter_reduction_computation = lambda x, y: y def scatter(operand: Array, scatter_indices:Array, updates: Array, dimension_numbers: ScatterDimensionNumbers) -> Array: """Scatter-update operator. Wraps `XLA's Scatter operator <https://www.tensorflow.org/xla/operation_semantics#scatter>`_, where updates replace values from `operand`. If multiple updates are performed to the same index of operand, they may be applied in any order. The semantics of scatter are complicated and its API is subject to change. Args: operand: an array to which the scatter should be applied scatter_indices: an array that gives the indices in `operand` to which each update in `updates` should be applied. updates: the updates that should be scattered onto `operand`. dimension_numbers: a `lax.ScatterDimensionNumbers` object that describes how dimensions of `operand`, `start_indices`, `updates` and the output relate. Returns: An array containing the sum of `operand` and the scattered updates. """ jaxpr, consts = _reduction_jaxpr(_scatter_reduction_computation, _abstractify(_const(operand, 0))) return scatter_p.bind( operand, scatter_indices, updates, update_jaxpr=jaxpr, update_consts=consts, dimension_numbers=dimension_numbers) def index_take(src: Array, idxs: Array, axes: Sequence[int]) -> Array: indices = concatenate([reshape(i, [i.shape[0], 1]) for i in idxs], 1) indices = indices % onp.array([src.shape[ax] for ax in axes]) slice_sizes = list(src.shape) for ax in axes: slice_sizes[ax] = 1 offset_dims = tuple(range(1, src.ndim - indices.shape[1] + 1)) dnums = GatherDimensionNumbers( offset_dims=offset_dims, collapsed_slice_dims=axes, start_index_map=axes) return gather(src, indices, dimension_numbers=dnums, slice_sizes=tuple(slice_sizes)) def transpose(operand: Array, permutation: Sequence[int]) -> Array: """Wraps XLA's `Transpose <https://www.tensorflow.org/xla/operation_semantics#transpose>`_ operator. """ permutation = tuple(permutation) if permutation == tuple(range(len(permutation))): return operand else: return transpose_p.bind(operand, permutation=permutation) def reduce(operand: Array, init_value: Array, computation: Callable, dimensions: Sequence[int]) -> Array: """Wraps XLA's `Reduce <https://www.tensorflow.org/xla/operation_semantics#reduce>`_ operator. """ monoid_reducer = _get_monoid_reducer(computation, init_value) if monoid_reducer: return monoid_reducer(operand, dimensions) else: jaxpr, consts = _reduction_jaxpr(computation, _abstractify(init_value)) return reduce_p.bind(operand, init_value, computation=computation, jaxpr=jaxpr, consts=consts, dimensions=tuple(dimensions)) @cache() def _reduction_jaxpr(computation, aval): pval = pe.PartialVal.unknown(aval) comp = lu.wrap_init(lambda x, y: (computation(x, y),)) jaxpr, _, consts = pe.trace_to_jaxpr(comp, (pval, pval), instantiate=False) return jaxpr, consts def _get_monoid_reducer(monoid_op: Callable, x: Array) -> Optional[Callable]: aval = core.get_aval(x) dtype = _dtype(x) if (type(aval) is ConcreteArray) and aval.shape == (): if monoid_op is add: return aval.val == 0 and _reduce_sum if monoid_op is mul: return aval.val == 1 and _reduce_prod elif monoid_op is bitwise_or and dtype == onp.bool_: return aval.val == _get_max_identity(dtype) and _reduce_or elif monoid_op is bitwise_and and dtype == onp.bool_: return aval.val == _get_min_identity(dtype) and _reduce_and elif monoid_op is max: return aval.val == _get_max_identity(dtype) and _reduce_max elif monoid_op is min: return aval.val == _get_min_identity(dtype) and _reduce_min return None def _get_max_identity(dtype: DType) -> Array: if dtypes.issubdtype(dtype, onp.inexact): return onp.array(-onp.inf, dtype) elif dtypes.issubdtype(dtype, onp.integer): return onp.array(dtypes.iinfo(dtype).min, dtype) elif dtypes.issubdtype(dtype, onp.bool_): return onp.array(False, onp.bool_) def _get_min_identity(dtype: DType) -> Array: if dtypes.issubdtype(dtype, onp.inexact): return onp.array(onp.inf, dtype) elif dtypes.issubdtype(dtype, onp.integer): return onp.array(dtypes.iinfo(dtype).max, dtype) elif dtypes.issubdtype(dtype, onp.bool_): return onp.array(True, onp.bool_) def _reduce_sum(operand: Array, axes: Sequence[int]) -> Array: return reduce_sum_p.bind(operand, axes=tuple(axes)) def _reduce_prod(operand: Array, axes: Sequence[int]) -> Array: return reduce_prod_p.bind(operand, axes=tuple(axes)) def _reduce_max(operand: Array, axes: Sequence[int]) -> Array: return reduce_max_p.bind(operand, axes=tuple(axes)) def _reduce_min(operand: Array, axes: Sequence[int]) -> Array: return reduce_min_p.bind(operand, axes=tuple(axes)) def _reduce_or(operand: Array, axes: Sequence[int]) -> Array: return reduce_or_p.bind(operand, axes=tuple(axes)) def _reduce_and(operand: Array, axes: Sequence[int]) -> Array: return reduce_and_p.bind(operand, axes=tuple(axes)) def reduce_window(operand: Array, init_value: Array, computation: Callable, window_dimensions: Shape, window_strides: Sequence[int], padding: str) -> Array: """Wraps XLA's `ReduceWindow <https://www.tensorflow.org/xla/operation_semantics#reducewindow>`_ operator. """ monoid_reducer = _get_monoid_window_reducer(computation, init_value) if monoid_reducer: return monoid_reducer(operand, window_dimensions, window_strides, padding) else: jaxpr, consts = _reduction_jaxpr(computation, _abstractify(init_value)) return reduce_window_p.bind( operand, init_value, jaxpr=jaxpr, consts=consts, window_dimensions=tuple(window_dimensions), window_strides=tuple(window_strides), padding=padding) def _get_monoid_window_reducer(monoid_op: Callable, x: Array) -> Optional[Callable]: aval = core.get_aval(x) if (type(aval) is ConcreteArray) and aval.shape == (): if monoid_op is add: return aval.val == 0 and _reduce_window_sum elif monoid_op is max: return aval.val == _get_max_identity(aval.dtype) and _reduce_window_max elif monoid_op is min: return aval.val == _get_min_identity(aval.dtype) and _reduce_window_min return None def _reduce_window_sum(operand: Array, window_dimensions: Shape, window_strides: Sequence[int], padding: str) -> Array: return reduce_window_sum_p.bind( operand, window_dimensions=tuple(window_dimensions), window_strides=tuple(window_strides), padding=padding) def _reduce_window_prod(operand: Array, window_dimensions: Shape, window_strides: Sequence[int], padding: str) -> Array: init_value = _const(operand, 1) jaxpr, consts = _reduction_jaxpr(mul, _abstractify(init_value)) return reduce_window_p.bind( operand, init_value, jaxpr=jaxpr, consts=consts, window_dimensions=tuple(window_dimensions), window_strides=tuple(window_strides), padding=padding) def _reduce_window_max(operand: Array, window_dimensions: Shape, window_strides: Sequence[int], padding: str) -> Array: return reduce_window_max_p.bind( operand, window_dimensions=tuple(window_dimensions), window_strides=tuple(window_strides), padding=padding) def _reduce_window_min(operand: Array, window_dimensions: Shape, window_strides: Sequence[int], padding: str) -> Array: return reduce_window_min_p.bind( operand, window_dimensions=tuple(window_dimensions), window_strides=tuple(window_strides), padding=padding) def _select_and_scatter(operand: Array, select: Callable, window_dimensions: Shape, window_strides: Sequence[int], padding: str, source: Array, init_value: Array, scatter: Callable) -> Array: select_jaxpr, select_consts = _reduction_jaxpr(select, _abstractify(init_value)) scatter_jaxpr, scatter_consts = _reduction_jaxpr(scatter, _abstractify(init_value)) return select_and_scatter_p.bind( operand, source, init_value, select_jaxpr=select_jaxpr, select_consts=select_consts, scatter_jaxpr=scatter_jaxpr, scatter_consts=scatter_consts, window_dimensions=tuple(window_dimensions), window_strides=tuple(window_strides), padding=padding) def _select_and_scatter_add(source: Array, operand: Array, select_prim: core.Primitive, window_dimensions: Shape, window_strides: Sequence[int], padding: str) -> Array: return select_and_scatter_add_p.bind( source, operand, select_prim=select_prim, window_dimensions=tuple(window_dimensions), window_strides=tuple(window_strides), padding=padding) def _select_and_gather_add(tangents: Array, operand: Array, select_prim: core.Primitive, window_dimensions: Shape, window_strides: Sequence[int], padding: str) -> Array: return select_and_gather_add_p.bind( tangents, operand, select_prim=select_prim, window_dimensions=tuple(window_dimensions), window_strides=tuple(window_strides), padding=padding) def cumsum(operand: Array, axis: int) -> Array: """Computes a cumulative sum along `axis`.""" return cumsum_p.bind(operand, axis=int(axis)) def cumprod(operand: Array, axis: int) -> Array: """Computes a cumulative product along `axis`.""" return cumprod_p.bind(operand, axis=int(axis)) def sort(operand: Union[Array, Tuple[Array, ...]], dimension: int = -1 ) -> Union[Array, Tuple[Array, ...]]: """Wraps XLA's `Sort <https://www.tensorflow.org/xla/operation_semantics#sort>`_ operator. """ if isinstance(operand, tuple): if len(operand) == 0: raise TypeError("Sort requires at least one operand") dimension = _canonicalize_axis(dimension, len(operand[0].shape)) return tuple(sort_p.bind(*operand, dimension=dimension)) else: dimension = _canonicalize_axis(dimension, len(operand.shape)) return sort_p.bind(operand, dimension=dimension)[0] def sort_key_val(keys: Array, values: Array, dimension: int = -1) -> Tuple[Array, Array]: """Sorts ``keys`` along ``dimension`` and applies same permutation to ``values``.""" dimension = _canonicalize_axis(dimension, len(keys.shape)) k, v = sort_p.bind(keys, values, dimension=dimension) return k, v def top_k(operand: Array, k: int) -> Tuple[Array, Array]: """Returns top ``k`` values and their indices along the last axis of ``operand``.""" k = int(k) if k < 0: raise ValueError("k argument to top_k must be nonnegative, got {}".format(k)) return top_k_p.bind(operand, k=k) def tie_in(x: Array, y: Array) -> Array: """Gives ``y`` a fake data dependence on ``x``. When staging to XLA (e.g. running under jit or pmap), values that don't depend on computation inputs are computed op-by-op, and folded into the XLA computation as constants. ``tie_in`` provides a way to explicitly stage values into the computation. When staging to XLA and ``x`` is already staged, then the result of ``tie_in`` is ``y``, but staged to XLA. Downstream use of the result will also be staged to XLA. """ return tie_in_p.bind(x, y) def full(shape: Shape, fill_value: Array, dtype: Optional[DType] = None) -> Array: """Returns an array of `shape` filled with `fill_value`. Arguments: shape: sequence of integers, describing the shape of the output array. fill_value: the value to fill the new array with. dtype: the type of the output array, or `None`. If not `None`, `fill_value` will be cast to `dtype`. """ shape = canonicalize_shape(shape) if onp.shape(fill_value): msg = "full must be called with scalar fill_value, got fill_value.shape {}." raise TypeError(msg.format(onp.shape(fill_value))) dtype = dtypes.canonicalize_dtype(dtype or _dtype(fill_value)) # TODO(mattjj): remove device_put when dtype conversion produces DeviceArray fill_value = xla.device_put_p.bind(convert_element_type(fill_value, dtype)) return broadcast(fill_value, shape) def iota(dtype: DType, size: int) -> Array: """Wraps XLA's `Iota <https://www.tensorflow.org/xla/operation_semantics#iota>`_ operator. """ size = size if type(size) is masking.Poly else int(size) shape = canonicalize_shape((size,)) dtype = dtypes.canonicalize_dtype(dtype) lazy_expr = lazy.iota(dtype, shape[0]) aval = ShapedArray(shape, dtype) return xla.DeviceArray(aval, None, lazy_expr, xla.DeviceConstant()) def broadcasted_iota(dtype: DType, shape: Shape, dimension: int) -> Array: """Convenience wrapper around ``iota``.""" dtype = dtypes.canonicalize_dtype(dtype) shape = canonicalize_shape(shape) dimension = int(dimension) return broadcast_in_dim(iota(dtype, shape[dimension]), shape, [dimension]) def _eye(dtype: DType, shape: Shape, offset: int) -> Array: """Like numpy.eye, create a 2D array with ones on a diagonal. This function exists for creating lazy identity matrices; that is, materialization of the array is delayed and it may be fused into consumers to avoid materialization at all.""" N, M = tuple(map(int, shape)) offset = int(offset) dtype = dtypes.canonicalize_dtype(dtype) lazy_expr = lazy.eye(dtype, (N, M), offset) aval = ShapedArray((N, M), dtype) return xla.DeviceArray(aval, None, lazy_expr, xla.DeviceConstant()) def _delta(dtype: DType, shape: Shape, axes: Sequence[int]) -> Array: """This function exists for creating lazy Kronecker delta arrays, particularly for use in jax.numpy.einsum to express traces. It differs from ``eye`` in that it can create arrays of any rank, but doesn't allow offsets.""" shape = tuple(map(int, shape)) axes = tuple(map(int, axes)) dtype = dtypes.canonicalize_dtype(dtype) base_shape = tuple(onp.take(shape, axes)) lazy_expr = lazy.broadcast(lazy.delta(dtype, base_shape), shape, axes) aval = ShapedArray(shape, dtype) return xla.DeviceArray(aval, None, lazy_expr, xla.DeviceConstant()) def _tri(dtype: DType, shape: Shape, offset: int) -> Array: """Like numpy.tri, create a 2D array with ones below a diagonal. This function exists for creating lazy triangular matrices, particularly for use in jax.numpy.tri.""" N, M = tuple(map(int, shape)) offset = int(offset) dtype = dtypes.canonicalize_dtype(dtype) lazy_expr = lazy.tri(dtype, (N, M), offset) aval = ShapedArray((N, M), dtype) return xla.DeviceArray(aval, None, lazy_expr, xla.DeviceConstant()) def stop_gradient(x): """Stops gradient computation. Operationally `stop_gradient` is the identity function, that is, it returns argument `x` unchanged. However, `stop_gradient` prevents the flow of gradients during forward or reverse-mode automatic differentiation. If there are multiple nested gradient computations, `stop_gradient` stops gradients for all of them. For example: >>> jax.grad(lambda x: x**2)(3.) array(6., dtype=float32) >>> jax.grad(lambda x: jax.lax.stop_gradient(x)**2)(3.) array(0., dtype=float32) >>> jax.grad(jax.grad(lambda x: x**2))(3.) array(2., dtype=float32) >>> jax.grad(jax.grad(lambda x: jax.lax.stop_gradient(x)**2))(3.) array(0., dtype=float32) """ return tree_map(ad_util.stop_gradient_p.bind, x) ### convenience wrappers around traceables def conv(lhs: Array, rhs: Array, window_strides: Sequence[int], padding: str, precision: Optional[PrecisionType] = None) -> Array: """Convenience wrapper around `conv_general_dilated`. Args: lhs: a rank `n+2` dimensional input array. rhs: a rank `n+2` dimensional array of kernel weights. window_strides: a sequence of `n` integers, representing the inter-window strides. padding: either the string `'SAME'`, the string `'VALID'`. precision: Optional. Either `None`, which means the default precision for the backend, or a `Precision` enum value. Returns: An array containing the convolution result. """ pads = padtype_to_pads(lhs.shape[2:], rhs.shape[2:], window_strides, padding) return conv_general_dilated(lhs, rhs, window_strides, padding, precision=precision) def conv_with_general_padding(lhs: Array, rhs: Array, window_strides: Sequence[int], padding: Union[str, Sequence[Tuple[int, int]]], lhs_dilation: Optional[Sequence[int]], rhs_dilation: Optional[Sequence[int]], precision: Optional[PrecisionType] = None) -> Array: """Convenience wrapper around `conv_general_dilated`. Args: lhs: a rank `n+2` dimensional input array. rhs: a rank `n+2` dimensional array of kernel weights. window_strides: a sequence of `n` integers, representing the inter-window strides. padding: either the string `'SAME'`, the string `'VALID'`, or a sequence of `n` `(low, high)` integer pairs that give the padding to apply before and after each spatial dimension. lhs_dilation: `None`, or a sequence of `n` integers, giving the dilation factor to apply in each spatial dimension of `lhs`. LHS dilation is also known as transposed convolution. rhs_dilation: `None`, or a sequence of `n` integers, giving the dilation factor to apply in each spatial dimension of `rhs`. RHS dilation is also known as atrous convolution. precision: Optional. Either `None`, which means the default precision for the backend, or a `Precision` enum value. Returns: An array containing the convolution result. """ return conv_general_dilated( lhs, rhs, window_strides, padding, lhs_dilation=lhs_dilation, rhs_dilation=rhs_dilation, precision=precision) def _conv_transpose_padding(k, s, padding): """Calculate before and after padding for a dim of transposed convolution. Args: k: int: kernel dimension. s: int: dimension stride value. padding: 'same' or 'valid' padding mode for original forward conv. Returns: 2-tuple: ints: before and after padding for transposed convolution. """ if padding == 'SAME': pad_len = k + s - 2 if s > k - 1: pad_a = k - 1 else: pad_a = int(onp.ceil(pad_len / 2)) elif padding == 'VALID': pad_len = k + s - 2 + _max(k - s, 0) pad_a = k - 1 else: raise ValueError('Padding mode must be `SAME` or `VALID`.') pad_b = pad_len - pad_a return pad_a, pad_b def _flip_axes(x, axes): """Flip ndarray 'x' along each axis specified in axes tuple.""" for axis in axes: x = onp.flip(x, axis) return x def conv_transpose(lhs: Array, rhs: Array, strides: Sequence[int], padding: Union[str, Sequence[Tuple[int, int]]], rhs_dilation: Optional[Sequence[int]] = None, dimension_numbers: ConvGeneralDilatedDimensionNumbers = None, transpose_kernel: bool = False, precision: Optional[PrecisionType] = None) -> Array: """Convenience wrapper for calculating the N-d convolution "transpose". This function directly calculates a fractionally strided conv rather than indirectly calculating the gradient (transpose) of a forward convolution. Args: lhs: a rank `n+2` dimensional input array. rhs: a rank `n+2` dimensional array of kernel weights. strides: sequence of `n` integers, sets fractional stride. padding: 'SAME', 'VALID' will set as transpose of corresponding forward conv, or a sequence of `n` integer 2-tuples describing before-and-after padding for each `n` spatial dimension. rhs_dilation: `None`, or a sequence of `n` integers, giving the dilation factor to apply in each spatial dimension of `rhs`. RHS dilation is also known as atrous convolution. dimension_numbers: tuple of dimension descriptors as in lax.conv_general_dilated. Defaults to tensorflow convention. transpose_kernel: if True flips spatial axes and swaps the input/output channel axes of the kernel. This makes the output of this function identical to the gradient-derived functions like keras.layers.Conv2DTranspose applied to the same kernel. For typical use in neural nets this is completely pointless and just makes input/output channel specification confusing. precision: Optional. Either `None`, which means the default precision for the backend, or a `Precision` enum value. Returns: Transposed N-d convolution, with output padding following the conventions of keras.layers.Conv2DTranspose. """ assert len(lhs.shape) == len(rhs.shape) and len(lhs.shape) > 2 ndims = len(lhs.shape) one = (1,) * (ndims - 2) # Set dimensional layout defaults if not specified. if dimension_numbers is None: if ndims == 3: dimension_numbers = ('NHC', 'HIO', 'NHC') elif ndims == 4: dimension_numbers = ('NHWC', 'HWIO', 'NHWC') elif ndims == 5: dimension_numbers = ('NHWDC', 'HWDIO', 'NHWDC') else: raise ValueError('No 4+ dimensional dimension_number defaults.') dn = conv_dimension_numbers(lhs.shape, rhs.shape, dimension_numbers) k_shape = onp.take(rhs.shape, dn.rhs_spec) k_sdims = k_shape[2:] # Calculate correct output shape given padding and strides. pads: Union[str, Sequence[Tuple[int, int]]] if padding in {'SAME', 'VALID'}: if rhs_dilation is None: rhs_dilation = (1,) * (rhs.ndim - 2) effective_k_size = map(lambda k, r: (k-1) * r + 1, k_sdims, rhs_dilation) pads = [_conv_transpose_padding(k, s, padding) for k,s in zip(effective_k_size, strides)] else: pads = padding if transpose_kernel: # flip spatial dims and swap input / output channel axes rhs = _flip_axes(rhs, onp.array(dn.rhs_spec)[2:]) rhs = onp.swapaxes(rhs, dn.rhs_spec[0], dn.rhs_spec[1]) return conv_general_dilated(lhs, rhs, one, pads, strides, rhs_dilation, dn, precision=precision) def full_like(x: Array, fill_value: Array, dtype: Optional[DType] = None, shape: Optional[Shape] = None) -> Array: """Create a full array like np.full based on the example array `x`. Args: x: example array-like, used for shape and dtype information. fill_value: a scalar value to fill the entries of the output array. dtype: optional, a dtype parameter for the output ndarray. shape: optional, a shape parameter for the output ndarray. Returns: An ndarray with the same shape as `x` with its entries set equal to `fill_value`, similar to the output of np.full. """ fill_shape = onp.shape(x) if shape is None else canonicalize_shape(shape) fill_value = tie_in(x, fill_value) return full(fill_shape, fill_value, dtype or _dtype(x)) def collapse(operand: Array, start_dimension: int, stop_dimension: int) -> Array: lo, hi = start_dimension, stop_dimension size = prod(operand.shape[lo:hi]) new_shape = operand.shape[:lo] + (size,) + operand.shape[hi:] return reshape(operand, new_shape) def slice_in_dim(operand: Array, start_index: Optional[int], limit_index: Optional[int], stride: int = 1, axis: int = 0)-> Array: """Convenience wrapper around slice applying to only one dimension.""" start_indices = [0] * operand.ndim limit_indices = list(operand.shape) strides = [1] * operand.ndim # translate `None` len_axis = operand.shape[axis] start_index_int = int(start_index) if start_index is not None else 0 limit_index_int = int(limit_index) if limit_index is not None else len_axis # translate negative indices if start_index_int < 0: start_index_int = start_index_int + len_axis if limit_index_int < 0: limit_index_int = limit_index_int + len_axis axis = int(axis) start_indices[axis] = start_index_int limit_indices[axis] = limit_index_int strides[axis] = int(stride) return slice(operand, start_indices, limit_indices, strides) def index_in_dim(operand: Array, index: int, axis: int = 0, keepdims: bool = True) -> Array: """Convenience wrapper around slice to perform int indexing.""" index, axis = int(index), int(axis) axis_size = operand.shape[axis] wrapped_index = index + axis_size if index < 0 else index if not 0 <= wrapped_index < axis_size: msg = 'index {} is out of bounds for axis {} with size {}' raise IndexError(msg.format(index, axis, axis_size)) result = slice_in_dim(operand, wrapped_index, wrapped_index + 1, 1, axis) if keepdims: return result else: return reshape(result, onp.delete(operand.shape, axis)) def dynamic_slice_in_dim(operand: Array, start_index: Array, slice_size: int, axis: int = 0) -> Array: """Convenience wrapper around dynamic_slice applying to one dimension.""" start_indices = [_zero(start_index)] * operand.ndim slice_sizes = list(operand.shape) axis = int(axis) start_indices[axis] = start_index slice_sizes[axis] = int(slice_size) return dynamic_slice(operand, start_indices, slice_sizes) def dynamic_index_in_dim(operand: Array, index: Array, axis: int = 0, keepdims: bool = True) -> Array: """Convenience wrapper around dynamic_slice to perform int indexing.""" result = dynamic_slice_in_dim(operand, index, 1, axis) if keepdims: return result else: return reshape(result, onp.delete(operand.shape, axis)) def dynamic_update_slice_in_dim(operand: Array, update: Array, start_index: Array, axis: int) -> Array: axis = int(axis) start_indices = [_zero(start_index)] * _ndim(operand) start_indices[axis] = start_index return dynamic_update_slice(operand, update, start_indices) def dynamic_update_index_in_dim(operand: Array, update: Array, index: Array, axis: int) -> Array: axis = int(axis) if _ndim(update) != _ndim(operand): assert _ndim(update) + 1 == _ndim(operand) ax = axis % _ndim(operand) update = reshape(update, operand.shape[:ax] + (1,) + operand.shape[ax+1:]) return dynamic_update_slice_in_dim(operand, update, index, axis) def batch_matmul(lhs: Array, rhs: Array, precision: Optional[PrecisionType] = None) -> Array: """Batch matrix multiplication.""" if _min(lhs.ndim, rhs.ndim) < 2: raise ValueError('Arguments to batch_matmul must be at least 2D, got {}, {}' .format(lhs.ndim, rhs.ndim)) if lhs.ndim != rhs.ndim: raise ValueError('Arguments to batch_matmul must have same ndim, got {}, {}' .format(lhs.ndim, rhs.ndim)) lhs_contract = (lhs.ndim - 1,) rhs_contract = (rhs.ndim - 2,) batch = tuple(range(lhs.ndim - 2)) return dot_general(lhs, rhs, ((lhs_contract, rhs_contract), (batch, batch)), precision=precision) # These functions also exist in the XLA client library, but we treat them # as non-primitive to maintain a smaller set of autodiff primitives. def square(x: Array) -> Array: r"""Elementwise square: :math:`x^2`.""" return integer_pow(x, 2) def reciprocal(x: Array) -> Array: r"""Elementwise reciprocal: :math:`1 \over x`.""" return integer_pow(x, -1) def _upcast_fp16_for_computation(f): @functools.wraps(f) def f_wrapped(x): dtype = _dtype(x) if dtype == onp.float16 or dtype == dtypes.bfloat16: return convert_element_type( f(convert_element_type(x, onp.float32)), dtype) return f(x) return f_wrapped @api.jit @_upcast_fp16_for_computation def tan(x: Array) -> Array: r"""Elementwise tangent: :math:`\mathrm{tan}(x)`.""" return div(sin(x), cos(x)) @api.jit def asin(x: Array) -> Array: r"""Elementwise arc sine: :math:`\mathrm{asin}(x)`.""" return mul(_const(x, 2), atan2(x, add(_const(x, 1), sqrt(sub(_const(x, 1), square(x)))))) @api.jit def acos(x: Array) -> Array: r"""Elementwise arc cosine: :math:`\mathrm{acos}(x)`.""" return select( ne(x, _const(x, -1.0)), mul(_const(x, 2), atan2(sqrt(sub(_const(x, 1), square(x))), add(_const(x, 1), x))), full_like(x, onp.pi)) def atan(x: Array) -> Array: r"""Elementwise arc tangent: :math:`\mathrm{atan}(x)`.""" return atan2(x, _const(x, 1)) def sinh(x: Array) -> Array: r"""Elementwise hyperbolic sine: :math:`\mathrm{sinh}(x)`.""" return sinh_p.bind(x) def cosh(x: Array) -> Array: r"""Elementwise hyperbolic cosine: :math:`\mathrm{cosh}(x)`.""" return cosh_p.bind(x) def asinh(x: Array) -> Array: r"""Elementwise inverse hyperbolic sine: :math:`\mathrm{asinh}(x)`.""" return asinh_p.bind(x) def acosh(x: Array) -> Array: r"""Elementwise inverse hyperbolic cosine: :math:`\mathrm{acosh}(x)`.""" return acosh_p.bind(x) def atanh(x: Array) -> Array: r"""Elementwise inverse hyperbolic tangent: :math:`\mathrm{atanh}(x)`.""" return atanh_p.bind(x) # Add some methods to ShapedArray that rely on lax primitives ShapedArray.broadcast = core.aval_method(broadcast) ShapedArray.transpose = core.aval_method(transpose) # clobbered by lax_numpy ShapedArray.reshape = core.aval_method(reshape) # clobbered by lax_numpy def _iter(tracer): if tracer.ndim == 0: raise TypeError("iteration over a 0-d array") # same as numpy error else: n = tracer.shape[0] # return (index_in_dim(tracer, i, keepdims=False) for i in range(n)) return iter([index_in_dim(tracer, i, keepdims=False) for i in range(n)]) ShapedArray._iter = staticmethod(_iter) # Add some ad handlers that use (or could use) lax primitives def zeros_like_array(x): return full_like(x, 0) for t in itertools.chain(dtypes.python_scalar_dtypes.keys(), array_types, [xla.DeviceArray, pxla.ShardedDeviceArray]): ad_util.jaxval_adders[t] = add ad_util.jaxval_zeros_likers[xla.DeviceArray] = zeros_like_array ad_util.jaxval_zeros_likers[pxla.ShardedDeviceArray] = zeros_like_array ### primitives _input_dtype = lambda *args, **_: dtypes.canonicalize_dtype(args[0].dtype) _fixed_dtype = lambda dtype: lambda *args, **kwargs: dtypes.canonicalize_dtype(dtype) _complex_basetype = lambda dtype: onp.abs(onp.zeros((), dtype)).dtype def standard_primitive(shape_rule, dtype_rule, name, translation_rule=None): prim = Primitive(name) prim.def_impl(partial(xla.apply_primitive, prim)) prim.def_abstract_eval(partial(standard_abstract_eval, prim, shape_rule, dtype_rule)) xla.translations[prim] = translation_rule or partial(standard_translate, name) return prim def standard_abstract_eval(prim, shape_rule, dtype_rule, *args, **kwargs): assert all(isinstance(arg, UnshapedArray) for arg in args), args least_specialized = _max( map(type, args), key=operator.attrgetter('array_abstraction_level')) if least_specialized is ConcreteArray: return ConcreteArray(prim.impl(*[x.val for x in args], **kwargs)) elif least_specialized is ShapedArray: return ShapedArray(shape_rule(*args, **kwargs), dtype_rule(*args, **kwargs)) elif least_specialized is UnshapedArray: return UnshapedArray(dtype_rule(*args, **kwargs)) else: raise TypeError(args, least_specialized) def standard_translate(name, c, *args, **kwargs): xla_opname = ''.join(term.capitalize() for term in name.split('_')) return getattr(xops, xla_opname)(*args, **kwargs) def unop_dtype_rule(result_dtype, accepted_dtypes, name, aval, **kwargs): if not any(dtypes.issubdtype(aval.dtype, t) for t in accepted_dtypes): msg = '{} does not accept dtype {}. Accepted dtypes are subtypes of {}.' typename = str(onp.dtype(aval.dtype).name) accepted_typenames = (t.__name__ for t in accepted_dtypes) raise TypeError(msg.format(name, typename, ', '.join(accepted_typenames))) return result_dtype(aval.dtype) def unop(result_dtype, accepted_dtypes, name, translation_rule=None): dtype_rule = partial(unop_dtype_rule, result_dtype, accepted_dtypes, name) prim = standard_primitive(_attrgetter('shape'), dtype_rule, name, translation_rule=translation_rule) batching.defvectorized(prim) masking.defvectorized(prim) return prim standard_unop = partial(unop, _identity) _attrgetter = lambda name: lambda x, **kwargs: getattr(x, name) def naryop_dtype_rule(result_dtype, accepted_dtypes, name, *avals, **kwargs): aval_dtypes = [aval.dtype for aval in avals] for i, (aval_dtype, types) in enumerate(zip(aval_dtypes, accepted_dtypes)): if not any(dtypes.issubdtype(aval_dtype, t) for t in types): msg = ('{} does not accept dtype {} at position {}. ' 'Accepted dtypes at position {} are subtypes of {}.') typename = str(onp.dtype(aval_dtype).name) typenames = ', '.join(t.__name__ for t in types) raise TypeError(msg.format(name, typename, i, i, typenames)) _check_same_dtypes(name, False, *aval_dtypes) return result_dtype(*avals) def _broadcasting_shape_rule(name, *avals): shapes = onp.array([aval.shape for aval in avals if aval.shape]) if not shapes.size: return () if len({len(shape) for shape in shapes}) != 1: msg = '{} got arrays of different rank: {}.' raise TypeError(msg.format(name, ', '.join(map(str, map(tuple, shapes))))) is_zero = onp.any(shapes == 0, axis=0) max_shape = onp.max(shapes, axis=0) result_shape = onp.where(is_zero, 0, max_shape) if not onp.all((shapes == result_shape) | (shapes == 1)): msg = '{} got incompatible shapes for broadcasting: {}.' raise TypeError(msg.format(name, ', '.join(map(str, map(tuple, shapes))))) return tuple(result_shape) def naryop(result_dtype, accepted_dtypes, name, translation_rule=None): dtype_rule = partial(naryop_dtype_rule, result_dtype, accepted_dtypes, name) shape_rule = partial(_broadcasting_shape_rule, name) prim = standard_primitive(shape_rule, dtype_rule, name, translation_rule=translation_rule) batching.defbroadcasting(prim) masking.defnaryop(prim) return prim standard_naryop = partial(naryop, _input_dtype) def _broadcast_translate(translate: Callable): # Decorator for translation rules which adds explicit broadcasting of # positional arguments. This is necessary only for a handful of primitives # whose XLA implementations do not support broadcasting. def _broadcast_array(array, array_shape, result_shape): if array_shape == result_shape: return array bcast_dims = tuple(range(len(result_shape) - len(array_shape), len(result_shape))) result = xops.BroadcastInDim(array, result_shape, bcast_dims) return result def _broadcasted_translation_rule(c, *args, **kwargs): shapes = [c.get_shape(arg).dimensions() for arg in args] result_shape = broadcast_shapes(*shapes) args = [_broadcast_array(arg, arg_shape, result_shape) for arg, arg_shape in zip(args, shapes)] return translate(c, *args, **kwargs) return _broadcasted_translation_rule # NOTE(mattjj): this isn't great for orchestrate fwd mode because it means JVPs # get two extra ops in them: a reshape and a broadcast_in_dim (or sometimes just # a broadcast). but saving the shape info with the primitives isn't great either # because then we can't trace these ops without shape data. def _brcast(x, *others): # Used in jvprules to make naryop broadcasting explicit for transposability. # Requires shape info during jvp tracing, which isn't strictly necessary. # We don't need full numpy broadcasting, but otherwise the logic is the same # so we reuse the broadcast_shapes function after filtering out scalars. shapes = tuple(filter(None, map(onp.shape, (x,) + others))) shape = shapes and broadcast_shapes(*shapes) if onp.shape(x) != shape: return _brcast_to(x, shape) else: return x def _brcast_to(x, shape): x_shape = onp.shape(x) assert x_shape != shape if x_shape: assert len(x_shape) == len(shape) broadcast_dimensions, = onp.where(onp.equal(x_shape, shape)) squeezed_dimensions, = onp.where(onp.not_equal(x_shape, shape)) inshape = onp.delete(x_shape, squeezed_dimensions) return broadcast_in_dim(reshape(x, inshape), shape, broadcast_dimensions) else: return broadcast(x, shape) _float = {onp.floating} _complex = {onp.complexfloating} _complex_elem_types = {onp.float32, onp.float64} _int = {onp.integer} _bool = {onp.bool_} _num = _int | _float | _complex _any = _int | _float | _complex | _bool _bool_or_int = _int | _bool neg_p = standard_unop(_num, 'neg') ad.deflinear(neg_p, lambda t: [neg(t)]) def _sign_translation_rule(c, x): shape = c.get_shape(x) dtype = shape.numpy_dtype() if dtypes.issubdtype(dtype, onp.unsignedinteger): zero = xb.constant(c, onp.array(0, dtype=dtype)) dims = c.get_shape(x).dimensions() return xops.Select(xops.Eq(x, zero), xops.Broadcast(zero, dims), xops.Broadcast(xb.constant(c, onp.array(1, dtype=dtype)), dims)) return xops.Sign(x) sign_p = standard_unop(_num, 'sign', translation_rule=_sign_translation_rule) ad.defjvp_zero(sign_p) nextafter_p = standard_naryop( [_float, _float], 'nextafter', translation_rule=lambda c, x1, x2: xops.NextAfter(x1, x2)) floor_p = standard_unop(_float, 'floor') ad.defjvp_zero(floor_p) ceil_p = standard_unop(_float, 'ceil') ad.defjvp_zero(ceil_p) round_p = standard_unop(_float, 'round') ad.defjvp_zero(round_p) is_finite_p = unop(_fixed_dtype(onp.bool_), _float, 'is_finite') ad.defjvp_zero(is_finite_p) exp_p = standard_unop(_float | _complex, 'exp') ad.defjvp2(exp_p, lambda g, ans, x: mul(g, ans)) log_p = standard_unop(_float | _complex, 'log') ad.defjvp(log_p, lambda g, x: div(g, x)) expm1_p = standard_unop(_float | _complex, 'expm1') ad.defjvp2(expm1_p, lambda g, ans, x: mul(g, add(ans, _one(ans)))) log1p_p = standard_unop(_float | _complex, 'log1p') ad.defjvp(log1p_p, lambda g, x: div(g, add(x, _one(x)))) tanh_p = standard_unop(_float | _complex, 'tanh') ad.defjvp2(tanh_p, lambda g, ans, x: mul(g, sub(_one(x), mul(ans, ans)))) sin_p = standard_unop(_float | _complex, 'sin') ad.defjvp(sin_p, lambda g, x: mul(g, cos(x))) cos_p = standard_unop(_float | _complex, 'cos') ad.defjvp(cos_p, lambda g, x: neg(mul(g, sin(x)))) atan2_p = standard_naryop([_float, _float], 'atan2') ad.defjvp(atan2_p, lambda g, x, y: _brcast(g, y) * (y / (square(x) + square(y))), lambda g, x, y: _brcast(g, x) * -x / (square(x) + square(y))) sinh_p = standard_unop(_float | _complex, 'sinh') ad.defjvp(sinh_p, lambda g, x: mul(g, cosh(x))) cosh_p = standard_unop(_float | _complex, 'cosh') ad.defjvp(cosh_p, lambda g, x: mul(g, sinh(x))) asinh_p = standard_unop(_float | _complex, 'asinh') ad.defjvp(asinh_p, lambda g, x: mul(g, rsqrt(square(x) + _one(x)))) acosh_p = standard_unop(_float | _complex, 'acosh') ad.defjvp(acosh_p, lambda g, x: mul(g, rsqrt((x - _one(x)) * (x + _one(x))))) atanh_p = standard_unop(_float | _complex, 'atanh') ad.defjvp(atanh_p, lambda g, x: mul(g, reciprocal((_one(x) - x) * (_one(x) + x)))) regularized_incomplete_beta_p = standard_naryop( [_float, _float, _float], 'regularized_incomplete_beta', translation_rule=_broadcast_translate( partial(standard_translate, 'regularized_incomplete_beta'))) def betainc_gradx(g, a, b, x): lbeta = lgamma(a) + lgamma(b) - lgamma(a + b) partial_x = exp((b - 1) * log1p(-x) + (a - 1) * log(x) - lbeta) return partial_x * g def betainc_grad_not_implemented(g, a, b, x): raise ValueError("Betainc gradient with respect to a and b not supported.") ad.defjvp(regularized_incomplete_beta_p, betainc_grad_not_implemented, betainc_grad_not_implemented, betainc_gradx) lgamma_p = standard_unop(_float, 'lgamma') ad.defjvp(lgamma_p, lambda g, x: mul(g, digamma(x))) digamma_p = standard_unop(_float, 'digamma') igamma_p = standard_naryop( [_float, _float], 'igamma', translation_rule=_broadcast_translate(partial(standard_translate, 'igamma'))) igamma_grad_a_p = standard_naryop([_float, _float], 'igamma_grad_a', translation_rule=_broadcast_translate(partial(standard_translate, 'igamma_grad_a'))) def igamma_gradx(g, a, x): return _brcast(g, a, x) * exp(-x + (a - _ones(a)) * log(x) - lgamma(a)) def igamma_grada(g, a, x): return _brcast(g, a, x) * igamma_grad_a(a, x) ad.defjvp(igamma_p, igamma_grada, igamma_gradx) igammac_p = standard_naryop( [_float, _float], 'igammac', translation_rule=_broadcast_translate(partial(standard_translate, 'igammac'))) def igammac_gradx(g, a, x): return -igamma_gradx(g, a, x) def igammac_grada(g, a, x): return -igamma_grada(g, a, x) ad.defjvp(igammac_p, igammac_grada, igammac_gradx) bessel_i0e_p = standard_unop(_float, 'bessel_i0e') ad.defjvp2(bessel_i0e_p, lambda g, y, x: g * (bessel_i1e(x) - sign(x) * y)) bessel_i1e_p = standard_unop(_float, 'bessel_i1e') def _bessel_i1e_jvp(g, y, x): eps = dtypes.finfo(_dtype(x)).eps x_is_not_tiny = abs(x) > eps safe_x = select(x_is_not_tiny, x, full_like(x, eps)) dy_dx = bessel_i0e(safe_x) - y * (sign(safe_x) + reciprocal(safe_x)) dy_dx = select(x_is_not_tiny, dy_dx, full_like(x, 0.5)) return g * dy_dx ad.defjvp2(bessel_i1e_p, _bessel_i1e_jvp) erf_p = standard_unop(_float, 'erf') ad.defjvp(erf_p, lambda g, x: mul(_const(x, 2. / onp.sqrt(onp.pi)), mul(g, exp(neg(square(x)))))) erfc_p = standard_unop(_float, 'erfc') ad.defjvp(erfc_p, lambda g, x: mul(_const(x, 2. / onp.sqrt(onp.pi)), mul(neg(g), exp(neg(square(x)))))) erf_inv_p = standard_unop(_float, 'erf_inv') ad.defjvp2(erf_inv_p, lambda g, ans, x: mul(_const(x, onp.sqrt(onp.pi) / 2.), mul(g, exp(square(ans))))) real_p = unop(_complex_basetype, _complex, 'real') ad.deflinear(real_p, lambda t: [complex(t, onp.zeros((), _dtype(t)))]) imag_p = unop(_complex_basetype, _complex, 'imag') ad.defjvp(imag_p, lambda g, _: real(mul(_const(g, -1j), g))) _complex_dtype = lambda dtype, *args: (onp.zeros((), dtype) + onp.zeros((), onp.complex64)).dtype complex_p = naryop(_complex_dtype, [_complex_elem_types, _complex_elem_types], 'complex') ad.deflinear(complex_p, lambda t: [real(t), imag(neg(t))]) conj_p = unop(_complex_dtype, _complex_elem_types | _complex, 'conj') def _conj_transpose_rule(t, x, *, input_dtype): assert ad.is_undefined_primal(x) if dtypes.issubdtype(input_dtype, onp.complexfloating): return [conj(t)] else: return [real(t)] xla.translations[conj_p] = lambda c, x, **kwargs: xops.Conj(x) ad.primitive_jvps[conj_p] = partial(ad.linear_jvp, conj_p) ad.primitive_transposes[conj_p] = _conj_transpose_rule abs_p = unop(_complex_basetype, _num, 'abs') def _abs_jvp_rule(g, ans, x): if _iscomplex(x): return _maybe_real(mul(g, div(_maybe_conj(x), _replace_zero(convert_element_type(ans, _dtype(x)))))) else: return select(ge(x, _zero(x)), g, neg(g)) ad.defjvp2(abs_p, _abs_jvp_rule) _maybe_conj = lambda x: conj(x) if _iscomplex(x) else x _maybe_real = lambda x: real(x) if _iscomplex(x) else x sqrt_p = standard_unop(_float | _complex, 'sqrt') ad.defjvp2(sqrt_p, lambda g, ans, x: mul(g, div(_const(x, 0.5), ans))) rsqrt_p = standard_unop(_float | _complex, 'rsqrt') ad.defjvp2(rsqrt_p, lambda g, ans, x: mul(g, mul(_const(x, -0.5), pow(x, _const(x, -1.5))))) pow_p = standard_naryop([_float | _complex, _float | _complex], 'pow') def _pow_jvp_lhs(g, ans, x, y): jac = mul(y, pow(x, select(eq(y, _zeros(y)), _ones(y), sub(y, _ones(y))))) return mul(_brcast(g, y), jac) def _pow_jvp_rhs(g, ans, x, y): return mul(_brcast(g, x), mul(log(_replace_zero(x)), ans)) ad.defjvp2(pow_p, _pow_jvp_lhs, _pow_jvp_rhs) def _integer_pow_dtype_rule(x, *, y): dtype = unop_dtype_rule(_identity, _int | _float | _complex, 'integer_pow', x) if y < 0 and dtypes.issubdtype(dtype, onp.integer): raise TypeError("Integers cannot be raised to negative powers, got " f"integer_pow({x}, {y})") return dtype def _integer_pow_translation_rule(c, x, *, y): if y == 0: shape = c.get_shape(x) return xb.constant(c, onp.array(1, dtype=shape.numpy_dtype())) is_reciprocal = y < 0 if is_reciprocal: y = -y acc = None while y > 0: if y & 1: acc = x if acc is None else xops.Mul(acc, x) y >>= 1 if y > 0: x = xops.Mul(x, x) return xops.Reciprocal(acc) if is_reciprocal else acc def _integer_pow_jvp(g, x, *, y): return g if y == 0 else mul(g, mul(_const(x, y), integer_pow(x, y - 1))) integer_pow_p = standard_primitive( _attrgetter('shape'), _integer_pow_dtype_rule, 'integer_pow', translation_rule=_integer_pow_translation_rule) batching.defvectorized(integer_pow_p) masking.defvectorized(integer_pow_p) ad.defjvp(integer_pow_p, _integer_pow_jvp) _replace_zero = lambda x: select(eq(x, _const(x, 0)), _ones(x), x) not_p = standard_unop(_bool_or_int, 'not') and_p = standard_naryop([_bool_or_int, _bool_or_int], 'and') ad.defjvp_zero(and_p) or_p = standard_naryop([_bool_or_int, _bool_or_int], 'or') ad.defjvp_zero(or_p) xor_p = standard_naryop([_bool_or_int, _bool_or_int], 'xor') ad.defjvp_zero(xor_p) population_count_p = standard_unop(_bool_or_int, 'population_count') def _add_transpose(t, x, y): # The following linearity assertion is morally true, but because in some cases we # instantiate zeros for convenience, it doesn't always hold. # assert ad.is_undefined_primal(x) and ad.is_undefined_primal(y) return [t, t] add_p = standard_naryop([_num, _num], 'add') ad.defjvp(add_p, lambda g, x, y: _brcast(g, y), lambda g, x, y: _brcast(g, x)) ad.primitive_transposes[add_p] = _add_transpose def _sub_transpose(t, x, y): # The following linearity assertion is morally true, but because in some cases # we instantiate zeros for convenience, it doesn't always hold. # assert ad.is_undefined_primal(x) and ad.is_undefined_primal(y) return [t, neg(t) if t is not ad_util.zero else ad_util.zero] sub_p = standard_naryop([_num, _num], 'sub') ad.defjvp(sub_p, lambda g, x, y: _brcast(g, y), lambda g, x, y: _brcast(neg(g), x)) ad.primitive_transposes[sub_p] = _sub_transpose mul_p = standard_naryop([_num, _num], 'mul') ad.defbilinear_broadcasting(_brcast, mul_p, mul, mul) def _div_transpose_rule(cotangent, x, y): assert ad.is_undefined_primal(x) and not ad.is_undefined_primal(y) res = ad_util.zero if cotangent is ad_util.zero else div(cotangent, y) return res, None div_p = standard_naryop([_num, _num], 'div') ad.defjvp(div_p, lambda g, x, y: div(_brcast(g, y), y), lambda g, x, y: mul(mul(neg(_brcast(g, x)), x), integer_pow(y, -2))) ad.primitive_transposes[div_p] = _div_transpose_rule rem_p = standard_naryop([_num, _num], 'rem') ad.defjvp(rem_p, lambda g, x, y: _brcast(g, y), lambda g, x, y: mul(_brcast(neg(g), x), floor(div(x, y)))) def _broadcasting_select(c, which, x, y): """Wrapper around XLA `Select` that broadcasts its arguments.""" which_shape, x_shape, y_shape = ( c.get_shape(t).dimensions() for t in (which, x, y)) out_shape = broadcast_shapes(which_shape, x_shape, y_shape) bcast_dims = lambda shape: tuple(range(len(out_shape) - len(shape), len(out_shape))) which = xops.BroadcastInDim(which, out_shape, bcast_dims(which_shape)) x = xops.BroadcastInDim(x, out_shape, bcast_dims(x_shape)) y = xops.BroadcastInDim(y, out_shape, bcast_dims(y_shape)) return xops.Select(which, x, y) def _minmax_translation_rule(c, x, y, *, minmax=None, cmp=None): dtype = c.get_shape(x).numpy_dtype() if dtypes.issubdtype(dtype, onp.complexfloating): rx = xops.Real(x) ry = xops.Real(y) return _broadcasting_select( c, xops.Select(xops.Eq(rx, ry), cmp(xops.Imag(x), xops.Imag(y)), cmp(rx, ry)), x, y) return minmax(x, y) max_p = standard_naryop([_any, _any], 'max', translation_rule=partial( _minmax_translation_rule, minmax=xops.Max, cmp=xops.Gt)) ad.defjvp2(max_p, lambda g, ans, x, y: mul(_brcast(g, y), _balanced_eq(x, ans, y)), lambda g, ans, x, y: mul(_brcast(g, x), _balanced_eq(y, ans, x))) min_p = standard_naryop([_any, _any], 'min', translation_rule=partial( _minmax_translation_rule, minmax=xops.Min, cmp=xops.Lt)) ad.defjvp2(min_p, lambda g, ans, x, y: mul(_brcast(g, y), _balanced_eq(x, ans, y)), lambda g, ans, x, y: mul(_brcast(g, x), _balanced_eq(y, ans, x))) shift_left_p = standard_naryop([_int, _int], 'shift_left') ad.defjvp_zero(shift_left_p) shift_right_arithmetic_p = standard_naryop([_int, _int], 'shift_right_arithmetic') ad.defjvp_zero(shift_right_arithmetic_p) shift_right_logical_p = standard_naryop([_int, _int], 'shift_right_logical') ad.defjvp_zero(shift_right_logical_p) eq_p = naryop(_fixed_dtype(onp.bool_), [_any, _any], 'eq') ad.defjvp_zero(eq_p) ne_p = naryop(_fixed_dtype(onp.bool_), [_any, _any], 'ne') ad.defjvp_zero(ne_p) ge_p = naryop(_fixed_dtype(onp.bool_), [_any, _any], 'ge') ad.defjvp_zero(ge_p) gt_p = naryop(_fixed_dtype(onp.bool_), [_any, _any], 'gt') ad.defjvp_zero(gt_p) le_p = naryop(_fixed_dtype(onp.bool_), [_any, _any], 'le') ad.defjvp_zero(le_p) lt_p = naryop(_fixed_dtype(onp.bool_), [_any, _any], 'lt') ad.defjvp_zero(lt_p) def _convert_element_type_shape_rule(operand, *, new_dtype, old_dtype): return operand.shape def _convert_element_type_dtype_rule(operand, *, new_dtype, old_dtype): return new_dtype def _convert_element_type_translation_rule(c, operand, *, new_dtype, old_dtype): if (dtypes.issubdtype(old_dtype, onp.complexfloating) and not dtypes.issubdtype(new_dtype, onp.complexfloating)): operand = xops.Real(operand) new_etype = xla_client.dtype_to_etype(new_dtype) return xops.ConvertElementType(operand, new_element_type=new_etype) def _convert_element_type_transpose_rule(t, *, new_dtype, old_dtype): assert t.dtype == new_dtype, (t.dtype, new_dtype) return [convert_element_type_p.bind(t, new_dtype=old_dtype, old_dtype=new_dtype)] convert_element_type_p = standard_primitive( _convert_element_type_shape_rule, _convert_element_type_dtype_rule, 'convert_element_type', _convert_element_type_translation_rule) ad.deflinear(convert_element_type_p, _convert_element_type_transpose_rule) batching.defvectorized(convert_element_type_p) masking.defvectorized(convert_element_type_p) def _bitcast_convert_type_shape_rule(operand, *, new_dtype): return operand.shape def _bitcast_convert_type_dtype_rule(operand, *, new_dtype): return new_dtype def _bitcast_convert_type_translation_rule(c, operand, *, new_dtype): new_etype = xla_bridge.dtype_to_etype(new_dtype) return xops.BitcastConvertType(operand, new_element_type=new_etype) bitcast_convert_type_p = standard_primitive( _bitcast_convert_type_shape_rule, _bitcast_convert_type_dtype_rule, 'bitcast_convert_type', _bitcast_convert_type_translation_rule) ad.defjvp_zero(bitcast_convert_type_p) batching.defvectorized(bitcast_convert_type_p) masking.defvectorized(bitcast_convert_type_p) def _conv_general_dilated_shape_rule( lhs, rhs, *, window_strides, padding, lhs_dilation, rhs_dilation, dimension_numbers, feature_group_count, batch_group_count, **unused_kwargs): assert type(dimension_numbers) is ConvDimensionNumbers if not feature_group_count > 0: msg = ("conv_general_dilated feature_group_count " "must be a positive integer, got {}.") raise ValueError(msg.format(feature_group_count)) lhs_feature_count = lhs.shape[dimension_numbers.lhs_spec[1]] quot, rem = divmod(lhs_feature_count, feature_group_count) if rem: msg = ("conv_general_dilated feature_group_count must divide lhs feature " "dimension size, but {} does not divide {}.") raise ValueError(msg.format(feature_group_count, lhs_feature_count)) if quot != rhs.shape[dimension_numbers.rhs_spec[1]]: msg = ("conv_general_dilated lhs feature dimension size divided by " "feature_group_count must equal the rhs input feature dimension " "size, but {} // {} != {}.") raise ValueError(msg.format(lhs_feature_count, feature_group_count, rhs.shape[dimension_numbers.rhs_spec[1]])) if rhs.shape[dimension_numbers.rhs_spec[0]] % feature_group_count: msg = ("conv_general_dilated rhs output feature dimension size must be a " "multiple of feature_group_count, but {} is not a multiple of {}.") raise ValueError(msg.format(rhs.shape[dimension_numbers.rhs_spec[0]], feature_group_count)) if not batch_group_count > 0: msg = ("conv_general_dilated batch_group_count " "must be a positive integer, got {}.") raise ValueError(msg.format(batch_group_count)) lhs_batch_count = lhs.shape[dimension_numbers.lhs_spec[0]] if lhs_batch_count % batch_group_count != 0: msg = ("conv_general_dilated batch_group_count must divide lhs batch " "dimension size, but {} does not divide {}.") raise ValueError(msg.format(batch_group_count, lhs_batch_count)) if rhs.shape[dimension_numbers.rhs_spec[0]] % feature_group_count: msg = ("conv_general_dilated rhs output feature dimension size must be a " "multiple of batch_group_count, but {} is not a multiple of {}.") raise ValueError(msg.format(rhs.shape[dimension_numbers.rhs_spec[0]], batch_ground_count)) if not batch_group_count > 0 and feature_group_count > 0: msg = ("At most one of batch_group_count and feature_group_count may be > " "1, got batch_group_count={} and feature_group_count={}") raise ValueError(msg.format(batch_group_count, feature_group_count)) lhs_perm, rhs_perm, out_perm = dimension_numbers lhs_trans = _dilate_shape(onp.take(lhs.shape, lhs_perm), lhs_dilation) rhs_trans = _dilate_shape(onp.take(rhs.shape, rhs_perm), rhs_dilation) out_trans = conv_shape_tuple(lhs_trans, rhs_trans, window_strides, padding, batch_group_count) return tuple(onp.take(out_trans, onp.argsort(out_perm))) def _conv_general_dilated_dtype_rule( lhs, rhs, *, window_strides, padding, lhs_dilation, rhs_dilation, dimension_numbers, **unused_kwargs): return naryop_dtype_rule(_input_dtype, [_float, _float], 'conv_general_dilated', lhs, rhs) _conv_spec_transpose = lambda spec: (spec[1], spec[0]) + spec[2:] _conv_sdims = lambda spec: spec[2:] # Understanding the convolution transpose rules: # Ignoring the spatial dimensions, let m = batch, j = input feature, # k = output feature. # # Convolution computes the following contraction: # Forward: [m, j] [j, k] -> [m, k] # # The transposes are similar to the rules for transposing a matmul: # LHS transpose: [m, k] [k, j] -> [m, j] # RHS transpose: [j, m] [m, k] -> [j, k] # # With feature grouping, we have the following signatures: # Forward: [m, gj] [j, gk] -> [m, gk] # LHS transpose: [m, gk] [k, gj] -> [m, gj] # --> implemented as feature grouping after transposing the group from the # kernel input features to the kernel output features. # RHS transpose: [gj, m] [m, gk] -> [j, gk] # --> which is batch grouping. # # With batch grouping, we have the following signatures: # Forward: [gm,j] [j,gk]->[m,gk] # LHS transpose: [m, gk][gk, j] -> [gm, j] # --> implemented as feature grouping with transposing the group on the kernel # and the output. # RHS transpose: [j, gm][m, gk] -> [j, gk] # --> which is feature grouping. def _conv_general_dilated_transpose_lhs( g, rhs, *, window_strides, padding, lhs_dilation, rhs_dilation, dimension_numbers, feature_group_count, batch_group_count, lhs_shape, rhs_shape, precision): assert type(dimension_numbers) is ConvDimensionNumbers assert batch_group_count == 1 or feature_group_count == 1 lhs_sdims, rhs_sdims, out_sdims = map(_conv_sdims, dimension_numbers) lhs_spec, rhs_spec, out_spec = dimension_numbers t_rhs_spec = _conv_spec_transpose(rhs_spec) if feature_group_count > 1: # in addition to switching the dims in the spec, need to move the feature # group axis into the transposed rhs's output feature dim rhs = _reshape_axis_out_of(rhs_spec[0], feature_group_count, rhs) rhs = _reshape_axis_into(rhs_spec[0], rhs_spec[1], rhs) elif batch_group_count > 1: rhs = _reshape_axis_out_of(rhs_spec[0], batch_group_count, rhs) rhs = _reshape_axis_into(rhs_spec[0], rhs_spec[1], rhs) feature_group_count = batch_group_count trans_dimension_numbers = ConvDimensionNumbers(out_spec, t_rhs_spec, lhs_spec) padding = _conv_general_vjp_lhs_padding( onp.take(lhs_shape, lhs_sdims), onp.take(rhs_shape, rhs_sdims), window_strides, onp.take(g.shape, out_sdims), padding, lhs_dilation, rhs_dilation) revd_weights = rev(rhs, rhs_sdims) out = conv_general_dilated( g, revd_weights, window_strides=lhs_dilation, padding=padding, lhs_dilation=window_strides, rhs_dilation=rhs_dilation, dimension_numbers=trans_dimension_numbers, feature_group_count=feature_group_count, batch_group_count=1, precision=precision) if batch_group_count > 1: out = _reshape_axis_out_of(lhs_spec[1], batch_group_count, out) out = _reshape_axis_into(lhs_spec[1], lhs_spec[0], out) return out def _conv_general_dilated_transpose_rhs( g, lhs, *, window_strides, padding, lhs_dilation, rhs_dilation, dimension_numbers: ConvDimensionNumbers, feature_group_count: int, batch_group_count: int, lhs_shape, rhs_shape, precision): assert type(dimension_numbers) is ConvDimensionNumbers if onp.size(g) == 0: # Avoids forming degenerate convolutions where the RHS has spatial size 0. return ad_util.zero lhs_sdims, rhs_sdims, out_sdims = map(_conv_sdims, dimension_numbers) lhs_trans, rhs_trans, out_trans = map(_conv_spec_transpose, dimension_numbers) assert batch_group_count == 1 or feature_group_count == 1 if batch_group_count > 1: feature_group_count = batch_group_count batch_group_count = 1 elif feature_group_count > 1: batch_group_count = feature_group_count feature_group_count = 1 trans_dimension_numbers = ConvDimensionNumbers(lhs_trans, out_trans, rhs_trans) padding = _conv_general_vjp_rhs_padding( onp.take(lhs_shape, lhs_sdims), onp.take(rhs_shape, rhs_sdims), window_strides, onp.take(g.shape, out_sdims), padding, lhs_dilation, rhs_dilation) return conv_general_dilated( lhs, g, window_strides=rhs_dilation, padding=padding, lhs_dilation=lhs_dilation, rhs_dilation=window_strides, dimension_numbers=trans_dimension_numbers, feature_group_count=feature_group_count, batch_group_count=batch_group_count, precision=precision) def _conv_general_dilated_translation_rule( c, lhs, rhs, *, window_strides, padding, lhs_dilation, rhs_dilation, dimension_numbers, feature_group_count, batch_group_count, precision, **unused_kwargs): assert type(dimension_numbers) is ConvDimensionNumbers dimension_numbers = _conv_general_proto(dimension_numbers) return xops.ConvGeneralDilated(lhs, rhs, window_strides, padding, lhs_dilation, rhs_dilation, dimension_numbers, feature_group_count, batch_group_count, precision_config=_precision_config(precision)) def _conv_general_dilated_batch_rule( batched_args, batch_dims, *, window_strides, padding, lhs_dilation, rhs_dilation, dimension_numbers, feature_group_count, batch_group_count, precision, **unused_kwargs): assert batch_group_count == 1 or feature_group_count == 1 lhs, rhs = batched_args lhs_bdim, rhs_bdim = batch_dims lhs_spec, rhs_spec, out_spec = dimension_numbers if lhs_bdim is not None and rhs_bdim is not None: assert lhs.shape[lhs_bdim] == rhs.shape[rhs_bdim] if batch_group_count > 1: new_lhs = _reshape_axis_into(lhs_bdim, lhs_spec[0], lhs) batch_group_count *= lhs.shape[lhs_bdim] else: new_lhs = _reshape_axis_into(lhs_bdim, lhs_spec[1], lhs) feature_group_count *= lhs.shape[lhs_bdim] new_rhs = _reshape_axis_into(rhs_bdim, rhs_spec[0], rhs) out = conv_general_dilated( new_lhs, new_rhs, window_strides, padding, lhs_dilation, rhs_dilation, dimension_numbers, feature_group_count=feature_group_count, batch_group_count=batch_group_count, precision=precision) out = _reshape_axis_out_of(out_spec[1], lhs.shape[lhs_bdim], out) return out, out_spec[1] elif lhs_bdim is not None: if batch_group_count == 1: new_lhs = _reshape_axis_into(lhs_bdim, lhs_spec[0], lhs) out = conv_general_dilated(new_lhs, rhs, window_strides, padding, lhs_dilation, rhs_dilation, dimension_numbers, feature_group_count, precision=precision) out = _reshape_axis_out_of(out_spec[0], lhs.shape[lhs_bdim], out) return out, out_spec[0] else: new_lhs = _reshape_axis_out_of(lhs_spec[0] + int(lhs_bdim <= lhs_spec[0]), batch_group_count, lhs) new_lhs = _reshape_axis_into(lhs_bdim + int(lhs_spec[0] < lhs_bdim), lhs_spec[0] + 1, new_lhs) new_lhs = _reshape_axis_into(lhs_spec[0], lhs_spec[0], new_lhs) out = conv_general_dilated(new_lhs, rhs, window_strides, padding, lhs_dilation, rhs_dilation, dimension_numbers, feature_group_count, batch_group_count, precision=precision) out = _reshape_axis_out_of(out_spec[0], lhs.shape[lhs_bdim], out) return out, out_spec[0] elif rhs_bdim is not None: if feature_group_count == 1 and batch_group_count == 1: new_rhs = _reshape_axis_into(rhs_bdim, rhs_spec[0], rhs) out = conv_general_dilated(lhs, new_rhs, window_strides, padding, lhs_dilation, rhs_dilation, dimension_numbers, feature_group_count, batch_group_count, precision=precision) out = _reshape_axis_out_of(out_spec[1], rhs.shape[rhs_bdim], out) return out, out_spec[1] else: # groups need to be outermost, so we need to factor them out of the # rhs output feature dim, then factor the batch dim into the remaining rhs # output feature dim, then put groups back in. We do something # similar on the output. An alternative which would require more FLOPs but # fewer reshapes would be to broadcast lhs. group_count = (feature_group_count if feature_group_count > 1 else batch_group_count) new_rhs = _reshape_axis_out_of(rhs_spec[0] + int(rhs_bdim <= rhs_spec[0]), group_count, rhs) new_rhs = _reshape_axis_into(rhs_bdim + int(rhs_spec[0] < rhs_bdim), rhs_spec[0] + 1, new_rhs) new_rhs = _reshape_axis_into(rhs_spec[0], rhs_spec[0], new_rhs) out = conv_general_dilated(lhs, new_rhs, window_strides, padding, lhs_dilation, rhs_dilation, dimension_numbers, feature_group_count, batch_group_count, precision=precision) out = _reshape_axis_out_of(out_spec[1], group_count, out) out = _reshape_axis_out_of(out_spec[1] + 1, rhs.shape[rhs_bdim], out) out = _reshape_axis_into(out_spec[1], out_spec[1] + 1, out) return out, out_spec[1] conv_general_dilated_p = standard_primitive( _conv_general_dilated_shape_rule, _conv_general_dilated_dtype_rule, 'conv_general_dilated', _conv_general_dilated_translation_rule) ad.defbilinear(conv_general_dilated_p, _conv_general_dilated_transpose_lhs, _conv_general_dilated_transpose_rhs) batching.primitive_batchers[conv_general_dilated_p] = \ _conv_general_dilated_batch_rule def _reshape_axis_into(src, dst, x): perm = [i for i in range(x.ndim) if i != src] perm.insert(dst, src) new_shape = list(onp.delete(x.shape, src)) new_shape[dst] *= x.shape[src] return reshape(x, new_shape, perm) def _reshape_axis_out_of(src, size1, x): shape = list(x.shape) size2, ragged = divmod(shape[src], size1) assert not ragged shape[src:src+1] = [size1, size2] return reshape(x, shape) def _precision_config(precision): if precision is not None: config = xla_client.PrecisionConfig() config.operand_precision.extend((precision, precision)) return config return None def _dot_general_shape_rule(lhs, rhs, *, dimension_numbers, precision): (lhs_contracting, rhs_contracting), (lhs_batch, rhs_batch) = dimension_numbers if len(lhs_batch) != len(rhs_batch): msg = ("dot_general requires equal numbers of lhs_batch and rhs_batch " "dimensions, got lhs_batch {} and rhs_batch {}.") raise TypeError(msg.format(lhs_batch, rhs_batch)) if not onp.all(onp.equal(lhs_batch, rhs_batch)): msg = ("dot_general requires same lhs and rhs batch dimension numbers, " "got {} and {}.") raise TypeError(msg.format(lhs_batch, rhs_batch)) lhs_batch_shape = onp.take(lhs.shape, lhs_batch) rhs_batch_shape = onp.take(rhs.shape, rhs_batch) if not onp.all(onp.equal(lhs_batch_shape, rhs_batch_shape)): msg = ("dot_general requires lhs batch dimensions and rhs batch dimensions " "to have the same shape, got {} and {}.") raise TypeError(msg.format(lhs_batch_shape, rhs_batch_shape)) if tuple(sorted(lhs_batch)) != tuple(range(len(lhs_batch))): msg = ("dot_general requires lhs batch dimensions to precede contracting " "and non-contracting dimensions, got lhs_batch {}.") raise TypeError(msg.format(lhs_batch)) if tuple(sorted(rhs_batch)) != tuple(range(len(rhs_batch))): msg = ("dot_general requires rhs batch dimensions to precede contracting " "and non-contracting dimensions, got rhs_batch {}.") raise TypeError(msg.format(rhs_batch)) lhs_contracting_shape = onp.take(lhs.shape, lhs_contracting) rhs_contracting_shape = onp.take(rhs.shape, rhs_contracting) if not onp.all(onp.equal(lhs_contracting_shape, rhs_contracting_shape)): msg = ("dot_general requires contracting dimensions to have the same " "shape, got {} and {}.") raise TypeError(msg.format(lhs_contracting_shape, rhs_contracting_shape)) batch_shape = tuple(onp.take(lhs.shape, lhs_batch)) lhs_contract_or_batch = tuple(lhs_contracting) + tuple(lhs_batch) lhs_tensored_shape = tuple(onp.delete(lhs.shape, lhs_contract_or_batch)) rhs_contract_or_batch = tuple(rhs_contracting) + tuple(rhs_batch) rhs_tensored_shape = tuple(onp.delete(rhs.shape, rhs_contract_or_batch)) return batch_shape + lhs_tensored_shape + rhs_tensored_shape def _dot_general_dtype_rule(lhs, rhs, *, dimension_numbers, precision): return naryop_dtype_rule(_input_dtype, [_num, _num], 'dot_general', lhs, rhs) def _dot_general_transpose_lhs(g, y, *, dimension_numbers, precision, swap_ans=False): (x_contract, y_contract), (x_batch, y_batch) = dimension_numbers x_ndim = g.ndim - y.ndim + len(x_batch) + 2 * len(x_contract) x_kept = remaining(range(x_ndim), x_contract, x_batch) y_kept = remaining(range(y.ndim), y_contract, y_batch) if swap_ans: ans_batch, ans_y, _ = ranges_like(x_batch, y_kept, x_kept) else: ans_batch, _, ans_y = ranges_like(x_batch, x_kept, y_kept) dims = ((ans_y, y_kept), (ans_batch, y_batch)) x_contract_sorted_by_y = list(onp.take(x_contract, onp.argsort(y_contract))) out_axes = onp.argsort(list(x_batch) + x_kept + x_contract_sorted_by_y) return transpose(dot_general(g, y, dims, precision=precision), tuple(out_axes)) def _dot_general_transpose_rhs(g, x, *, dimension_numbers, precision): (x_contract, y_contract), (x_batch, y_batch) = dimension_numbers swapped_dimension_numbers = ((y_contract, x_contract), (y_batch, x_batch)) return _dot_general_transpose_lhs( g, x, dimension_numbers=swapped_dimension_numbers, precision=precision, swap_ans=True) def _dot_general_batch_rule(batched_args, batch_dims, *, dimension_numbers, precision): # there are three kinds of dimensions in a dot_general: # - contraction dimensions appear in lhs and rhs but not the result # - batch dimensions appear in lhs, rhs, and result # - tensor product dimensions appear in the result and one of lhs or rhs (lhs_contract, rhs_contract), (lhs_batch, rhs_batch) = dimension_numbers lhs, rhs = batched_args lbd, rbd = batch_dims assert lbd is not None or rbd is not None if lbd is not None and rbd is not None: # adding a batch dimension if lbd != 0: lhs = batching.moveaxis(lhs, lbd, 0) if rbd != 0: rhs = batching.moveaxis(rhs, rbd, 0) lhs_batch = (0,) + tuple(onp.add(1, lhs_batch)) rhs_batch = (0,) + tuple(onp.add(1, rhs_batch)) lhs_contract = tuple(onp.add(1, lhs_contract)) rhs_contract = tuple(onp.add(1, rhs_contract)) result_batch_dim = 0 else: # adding a tensor product dimension if lbd is not None: if lhs_batch == () or lbd > onp.max(lhs_batch): # can avoid transposes bump_lhs_contract = onp.greater_equal(lhs_contract, lbd) lhs_contract = tuple(onp.add(lhs_contract, bump_lhs_contract)) result_batch_dim = lbd - len(lhs_contract) + sum(bump_lhs_contract) else: # move the new dimension to the end of lhs to avoid changing batch dims lhs = batching.moveaxis(lhs, lbd, lhs.ndim - 1) # lhs tensor product dims in result come after batch dims result_batch_dim = lhs.ndim - len(lhs_contract) - 1 else: if rhs_batch == () or rbd > onp.max(rhs_batch): # can avoid transposes bump_rhs_contract = onp.greater_equal(rhs_contract, rbd) rhs_contract = tuple(onp.add(rhs_contract, bump_rhs_contract)) result_batch_dim = (rbd + (lhs.ndim - len(lhs_contract) - len(lhs_batch)) - (len(rhs_contract) - sum(bump_rhs_contract))) else: # move the new dimension to the end of rhs to avoid changing batch dims rhs = batching.moveaxis(rhs, rbd, rhs.ndim - 1) # rhs tensor product dims in result come after batch dims + lhs tensor # product dims result_batch_dim = (lhs.ndim - len(lhs_contract) - len(lhs_batch) + rhs.ndim - len(rhs_contract) - 1) new_dimension_numbers = [(lhs_contract, rhs_contract), (lhs_batch, rhs_batch)] batched_out = dot_general(lhs, rhs, new_dimension_numbers, precision=precision) return batched_out, int(result_batch_dim) def _dot_general_translation_rule(c, lhs, rhs, *, dimension_numbers, precision): return xops.DotGeneral(lhs, rhs, xc.make_dot_dimension_numbers(dimension_numbers), precision_config=_precision_config(precision)) def _dot_general_masking_rule(padded_vals, logical_shapes, *, dimension_numbers, precision): lhs, rhs = padded_vals lhs_shape, rhs_shape = logical_shapes lhs_ndim, rhs_ndim = len(lhs_shape), len(rhs_shape) (lhs_contract, rhs_contract), (lhs_batch, rhs_batch) = dimension_numbers # we need only mask the lhs contraction dimensions if len(lhs_contract) == 0: return dot_general(lhs, rhs, dimension_numbers, precision=precision) else: masks = [broadcasted_iota(onp.int32, lhs.shape, d) < lhs_shape[d] for d in lhs_contract] mask_intersection = masks[0] for mask in masks[1:]: mask_intersection &= mask masked_lhs = select(mask_intersection, lhs, zeros_like_array(lhs)) return dot_general(masked_lhs, rhs, dimension_numbers, precision=precision) dot_general_p = standard_primitive(_dot_general_shape_rule, _dot_general_dtype_rule, 'dot_general', _dot_general_translation_rule) ad.defbilinear(dot_general_p, _dot_general_transpose_lhs, _dot_general_transpose_rhs) batching.primitive_batchers[dot_general_p] = _dot_general_batch_rule masking.masking_rules[dot_general_p] = _dot_general_masking_rule def _broadcast_shape_rule(operand, sizes): _check_shapelike('broadcast', 'sizes', sizes) return tuple(sizes) + operand.shape def _broadcast_batch_rule(batched_args, batch_dims, *, sizes): operand, = batched_args bdim, = batch_dims new_bdim = None if bdim is None else bdim + len(sizes) return broadcast(operand, sizes), new_bdim broadcast_p = standard_primitive( _broadcast_shape_rule, _input_dtype, 'broadcast') ad.deflinear(broadcast_p, lambda t, sizes: [_reduce_sum(t, range(len(sizes)))]) batching.primitive_batchers[broadcast_p] = _broadcast_batch_rule def _broadcast_in_dim_impl(operand, *, shape, broadcast_dimensions): if type(operand) is xla.DeviceArray: shape = _broadcast_in_dim_shape_rule( operand, shape=shape, broadcast_dimensions=broadcast_dimensions) aval = ShapedArray(shape, _dtype(operand)) lazy_expr = lazy.broadcast(operand._lazy_expr, shape, broadcast_dimensions) return xla.DeviceArray(aval, operand._device, lazy_expr, operand.device_buffer) else: return xla.apply_primitive(broadcast_in_dim_p, operand, shape=shape, broadcast_dimensions=broadcast_dimensions) def _broadcast_in_dim_shape_rule(operand, *, shape, broadcast_dimensions): _check_shapelike('broadcast_in_dim', 'shape', shape) _check_shapelike('broadcast_in_dim', 'broadcast_dimensions', broadcast_dimensions) operand_ndim = onp.ndim(operand) if operand_ndim != len(broadcast_dimensions): msg = ('broadcast_in_dim broadcast_dimensions must have length equal to ' 'operand ndim; got broadcast_dimensions {} for operand ndim {}.') raise TypeError(msg.format(broadcast_dimensions, operand_ndim)) if len(shape) < operand_ndim: msg = ('broadcast_in_dim target broadcast shape must have equal or higher rank ' 'to the operand shape; got operand ndim {} and target broadcast ndim {}.') raise TypeError(msg.format(operand_ndim, len(shape))) if not set(broadcast_dimensions).issubset(set(range(len(shape)))): msg = ('broadcast_in_dim broadcast_dimensions must be a subset of output ' 'dimensions, got {} for operand ndim {} and shape {}.') raise TypeError(msg.format(broadcast_dimensions, operand_ndim, shape)) if any(operand.shape[i] != 1 and operand.shape[i] != shape[broadcast_dimensions[i]] for i in range(operand_ndim)): msg = ('broadcast_in_dim operand dimension sizes must either be 1, or be ' 'equal to their corresponding dimensions in the target broadcast shape; ' 'got operand of shape {}, target broadcast shape {}, ' 'broadcast_dimensions {} ') raise TypeError(msg.format(operand.shape, shape, broadcast_dimensions)) if (len(broadcast_dimensions) != len(set(broadcast_dimensions)) or tuple(broadcast_dimensions) != tuple(sorted(broadcast_dimensions))): msg = ('broadcast_in_dim broadcast_dimensions must be strictly increasing; ' 'got broadcast_dimensions {}') raise TypeError(msg.format(broadcast_dimensions)) return shape def _broadcast_in_dim_transpose_rule(t, *, shape, broadcast_dimensions): axes = tuple(onp.delete(range(len(shape)), broadcast_dimensions)) return [_reduce_sum(t, axes)] def _broadcast_in_dim_batch_rule(batched_args, batch_dims, *, shape, broadcast_dimensions): operand, = batched_args bdim, = batch_dims new_operand = batching.moveaxis(operand, bdim, 0) new_shape = (operand.shape[bdim],) + shape new_broadcast_dimensions = (0,) + tuple(onp.add(1, broadcast_dimensions)) return broadcast_in_dim(new_operand, new_shape, new_broadcast_dimensions), 0 broadcast_in_dim_p = standard_primitive( _broadcast_in_dim_shape_rule, _input_dtype, 'broadcast_in_dim') broadcast_in_dim_p.def_impl(_broadcast_in_dim_impl) ad.deflinear(broadcast_in_dim_p, _broadcast_in_dim_transpose_rule) batching.primitive_batchers[broadcast_in_dim_p] = _broadcast_in_dim_batch_rule def _clamp_shape_rule(min, operand, max): if min.shape and min.shape != operand.shape: m = "clamp requires min.shape == operand.shape or min.shape == (), got {}." raise TypeError(m.format(min.shape)) if max.shape and max.shape != operand.shape: m = "clamp requires max.shape == operand.shape or max.shape == (), got {}." raise TypeError(m.format(max.shape)) return operand.shape _clamp_dtype_rule = partial(naryop_dtype_rule, _input_dtype, [_any, _any, _any], 'clamp') clamp_p = standard_primitive(_clamp_shape_rule, _clamp_dtype_rule, 'clamp') ad.defjvp(clamp_p, lambda g, min, operand, max: select(bitwise_and(gt(min, operand), lt(min, max)), _brcast(g, operand), _zeros(operand)), lambda g, min, operand, max: select(bitwise_and(gt(operand, min), lt(operand, max)), g, _zeros(operand)), lambda g, min, operand, max: select(lt(max, operand), _brcast(g, operand), _zeros(operand))) def _concatenate_shape_rule(*operands, **kwargs): dimension = kwargs.pop('dimension') if not operands: msg = "concatenate expects at least one operand, got 0." raise TypeError(msg) if not all(isinstance(operand, UnshapedArray) for operand in operands): msg = "All objects to concatenate must be arrays, got {}." op = next(op for op in operands if not isinstance(op, UnshapedArray)) raise TypeError(msg.format(type(op))) if len(set(operand.ndim for operand in operands)) != 1: msg = "Cannot concatenate arrays with different ranks, got {}." raise TypeError(msg.format(", ".join(str(o.ndim) for o in operands))) shapes = onp.array([operand.shape for operand in operands]) if not 0 <= dimension < shapes.shape[1]: msg = "concatenate dimension out of bounds: dimension {} for shapes {}." raise TypeError(msg.format(dimension, ", ".join(map(str, shapes)))) if not onp.all(onp.delete(shapes[0] == shapes, dimension, axis=1)): msg = ("Cannot concatenate arrays with shapes that differ in dimensions " "other than the one being concatenated: dimension {} for shapes {}.") raise TypeError(msg.format(dimension, ", ".join(map(str, shapes)))) concat_size = sum(o.shape[dimension] for o in operands) ex_shape = operands[0].shape return ex_shape[:dimension] + (concat_size,) + ex_shape[dimension+1:] def _concatenate_dtype_rule(*operands, **kwargs): _check_same_dtypes('concatenate', False, *(o.dtype for o in operands)) return operands[0].dtype def _concatenate_translation_rule(c, *operands, **kwargs): dimension = kwargs.pop('dimension') return xops.ConcatInDim(c, operands, dimension) def _concatenate_transpose_rule(t, *operands, dimension): operand_shapes = [o.aval.shape if ad.is_undefined_primal(o) else o.shape for o in operands] if t is ad_util.zero: return [ad_util.zero if ad.is_undefined_primal(o) else None for o in operands] else: limit_points = onp.cumsum([shape[dimension] for shape in operand_shapes]) starts = onp.zeros((len(operands), t.ndim), dtype=int) starts[1:, dimension] = limit_points[:-1] limits = onp.tile(t.shape, (len(operands), 1)) limits[:, dimension] = limit_points return [slice(t, start, limit) if ad.is_undefined_primal(o) else None for o, start, limit in zip(operands, starts, limits)] def _concatenate_batch_rule(batched_args, batch_dims, *, dimension): size = next(op.shape[bdim] for op, bdim in zip(batched_args, batch_dims) if bdim is not None) operands = [batching.moveaxis(op, bdim, 0) if bdim is not None else broadcast(op, (size,)) for op, bdim in zip(batched_args, batch_dims)] return concatenate(operands, dimension + 1), 0 # The concatenate_p masking rule requires use of a while-loop construct and so # is defined in lax_control_flow.py concatenate_p = standard_primitive( _concatenate_shape_rule, _concatenate_dtype_rule, 'concatenate', _concatenate_translation_rule) ad.deflinear(concatenate_p, _concatenate_transpose_rule) ad.primitive_transposes[concatenate_p] = _concatenate_transpose_rule batching.primitive_batchers[concatenate_p] = _concatenate_batch_rule def _pad_dtype_rule(operand, padding_value, *, padding_config): if operand.dtype != padding_value.dtype: msg = "pad operand and padding_value must be same dtype: got {} and {}." raise TypeError(msg.format(operand.dtype, padding_value.dtype)) return _input_dtype(operand, padding_value) def _pad_shape_rule(operand, padding_value, *, padding_config): lo, hi, interior = zip(*padding_config) out_shape = onp.add(onp.add(onp.add(lo, hi), operand.shape), onp.multiply(interior, onp.subtract(operand.shape, 1))) return tuple(out_shape) def _pad_transpose(t, operand, padding_value, *, padding_config): if t is ad_util.zero: return [ad_util.zero if ad.is_undefined_primal(operand) else None, ad_util.zero if ad.is_undefined_primal(padding_value) else None] lo, hi, interior = zip(*padding_config) total = lambda x: _reduce_sum(x, list(range(t.ndim))) def t_op(): unpad_config = zip(onp.negative(lo), onp.negative(hi), onp.zeros_like(interior)) unpadded = pad(t, onp.array(0., t.dtype), unpad_config) return slice(unpadded, onp.zeros_like(lo), unpadded.shape, onp.add(interior, 1)) t_operand = t_op() if ad.is_undefined_primal(operand) else None t_padv = sub(total(t), total(t_operand)) if ad.is_undefined_primal(padding_value) else None return [t_operand, t_padv] def _pad_batch_rule(batched_args, batch_dims, *, padding_config): operand, padding_value = batched_args operand_bdim, padding_value_bdim = batch_dims if padding_value_bdim is None: assert operand_bdim is not None padding_config = list(padding_config) padding_config.insert(operand_bdim, (0, 0, 0)) return pad(operand, padding_value, padding_config), operand_bdim else: raise NotImplementedError # loop and stack def _pad_translation_rule(c, operand, padding_value, *, padding_config): return xops.Pad(operand, padding_value, xc.make_padding_config(padding_config)) pad_p = standard_primitive(_pad_shape_rule, _pad_dtype_rule, 'pad', translation_rule=_pad_translation_rule) ad.deflinear(pad_p, _pad_transpose) ad.primitive_transposes[pad_p] = _pad_transpose batching.primitive_batchers[pad_p] = _pad_batch_rule # We have a nonstandard reshape impl so that we can be lazy about data movement. def _reshape_impl(operand, *, new_sizes, dimensions): old_sizes = onp.shape(operand) if type(operand) is xla.DeviceArray and dimensions is None: bcast_dims = _is_singleton_reshape(old_sizes, new_sizes) if bcast_dims is not None: aval = ShapedArray(new_sizes, operand.dtype) lazy_expr = lazy.broadcast(operand._lazy_expr, new_sizes, bcast_dims) return xla.DeviceArray(aval, operand._device, lazy_expr, operand.device_buffer) if type(operand) is pxla.ShardedDeviceArray and dimensions is None: array = _reshape_sharded_device_array(operand, new_sizes, old_sizes) if array is not None: return array return xla.apply_primitive(reshape_p, operand, new_sizes=new_sizes, dimensions=dimensions) def _is_singleton_reshape(old, new): # A singleton reshape is one where only singleton dimensions are added. We # want to detect them because they can be expressed as (lazy) broadcasts. old, new = iter(old), iter(new) d1, d2 = next(old, None), next(new, None) bcast_dims = [] i = 0 while True: if d1 is d2 is None: return bcast_dims elif d1 == d2: bcast_dims.append(i) i += 1 d1, d2 = next(old, None), next(new, None) elif d2 == 1: i += 1 d2 = next(new, None) else: return None def _reshape_sharded_device_array(array, new_sizes, old_sizes): """Returns None if `array` could not be efficiently reshaped. This function is primarily to support soft_pmap, although these optimizations could be useful when directly calling reshape as well. """ # TODO(jekbradbury): the axis split/merge logic below assumes that # ShardedDevicesArrays are always sharded across their leading axes. Remove # this constraint, especially if/when we add APIs that produce sharding across # interior axes. if any(num_shards != 1 for num_shards in array.sharding_spec.shards_per_axis[1:]): return None # TODO(skye): handle replicated buffers if array.sharding_spec.replication_factor != 1: return None # ShardedDevicesArrays require all buffers to have the same shape chunk_shape = array.device_buffers[0].shape().dimensions() chunk_size = chunk_shape[0] if len(chunk_shape) > 0 else 1 if _is_axis_merge(old_sizes, new_sizes): num_chunks, ragged = divmod(new_sizes[0], chunk_size) if ragged: return None aval = ShapedArray(new_sizes, array.dtype) sharding_spec = pxla.ShardingSpec( shards_per_axis=(num_chunks,) + (1,) * (len(new_sizes) - 1), is_axis_materialized=(True,) * len(new_sizes), replication_factor=1) return pxla.ShardedDeviceArray(aval, sharding_spec, array.device_buffers) if _is_axis_split(old_sizes, new_sizes): split_axis_size, ragged = divmod(old_sizes[0], chunk_size) if ragged: return None if new_sizes[0] != split_axis_size: return None aval = ShapedArray(new_sizes, array.dtype) sharding_spec = pxla._pmap_sharding_spec( new_sizes[0], new_sizes[0], ShapedArray(new_sizes[1:], array.dtype), True) return pxla.ShardedDeviceArray(aval, sharding_spec, array.device_buffers) return None def _is_axis_merge(s1, s2): # TODO(skye): we might still be able to handle these cases as merges, I # haven't thought about it much. if len(s1) < 2 or len(s2) < 1: return False return s1[2:] == s2[1:] and s1[0] * s1[1] == s2[0] def _is_axis_split(s1, s2): return _is_axis_merge(s2, s1) def _reshape_shape_rule(operand, *, new_sizes, dimensions): if not onp.all(onp.greater_equal(new_sizes, 0)): msg = 'reshape new_sizes must all be positive, got {}.' raise TypeError(msg.format(new_sizes)) if prod(onp.shape(operand)) != prod(new_sizes): msg = 'reshape total size must be unchanged, got new_sizes {} for shape {}.' raise TypeError(msg.format(new_sizes, onp.shape(operand))) if dimensions is not None: if set(dimensions) != set(range(onp.ndim(operand))): msg = ('reshape dimensions must be a permutation of operand dimensions, ' 'got dimensions {} for shape {}.') raise TypeError(msg.format(dimensions, onp.shape(operand))) return tuple(new_sizes) def _reshape_dtype_rule(operand, *, new_sizes, dimensions): return operand.dtype def _reshape_translation_rule(c, operand, *, new_sizes, dimensions): if dimensions is None: return xops.Reshape(operand, new_sizes) else: return xops.Reshape(operand, dimensions, new_sizes) def _reshape_transpose_rule(t, operand, *, new_sizes, dimensions): assert ad.is_undefined_primal(operand) if dimensions is None: return [reshape(t, operand.aval.shape)] else: return [transpose(reshape(t, onp.take(operand.aval.shape, dimensions)), onp.argsort(dimensions))] def _reshape_batch_rule(batched_args, batch_dims, *, new_sizes, dimensions): operand, = batched_args bdim, = batch_dims operand = batching.moveaxis(operand, bdim, 0) if dimensions is not None: dimensions = (0,) + tuple(onp.add(1, dimensions)) return reshape(operand, operand.shape[:1] + new_sizes, dimensions), 0 reshape_p = standard_primitive(_reshape_shape_rule, _reshape_dtype_rule, 'reshape', _reshape_translation_rule) reshape_p.def_impl(_reshape_impl) ad.deflinear2(reshape_p, _reshape_transpose_rule) batching.primitive_batchers[reshape_p] = _reshape_batch_rule def _rev_shape_rule(operand, *, dimensions): _check_shapelike('rev', 'dimensions', dimensions) if len(set(dimensions)) != len(dimensions): msg = 'rev dimensions must be unique, got {}.' raise TypeError(msg.format(dimensions)) if dimensions and not _max(dimensions) < operand.ndim: msg = ('rev dimensions must all be less than operand ndim, got dimensions ' '{} for operand ndim {}.') raise TypeError(msg.format(dimensions, operand.ndim)) return operand.shape def _rev_batch_rule(batched_args, batch_dims, *, dimensions): operand, = batched_args bdim, = batch_dims new_dimensions = [i + 1 if i >= bdim else i for i in dimensions] return rev(operand, new_dimensions), bdim rev_p = standard_primitive(_rev_shape_rule, _input_dtype, 'rev') ad.deflinear(rev_p, lambda t, dimensions: [rev(t, dimensions)]) batching.primitive_batchers[rev_p] = _rev_batch_rule def _transpose_impl(operand, *, permutation): if type(operand) is xla.DeviceArray: lazy_expr = lazy.transpose(operand._lazy_expr, permutation) aval = ShapedArray(lazy_expr.shape, operand.dtype) return xla.DeviceArray(aval, operand._device, lazy_expr, operand.device_buffer) else: return xla.apply_primitive(transpose_p, operand, permutation=permutation) def _transpose_shape_rule(operand, *, permutation): if not isinstance(permutation, (tuple, list, onp.ndarray)): msg = "transpose permutation must be a tuple/list/ndarray, got {}." raise TypeError(msg.format(type(permutation))) if tuple(sorted(permutation)) != tuple(range(operand.ndim)): msg = ("transpose permutation isn't a permutation of operand dimensions, " "got permutation {} for operand shape {}.") raise TypeError(msg.format(permutation, operand.shape)) return tuple(onp.take(operand.shape, permutation)) def _transpose_batch_rule(batched_args, batch_dims, *, permutation): operand, = batched_args bdim, = batch_dims perm = (bdim,) + tuple(i if i < bdim else i+1 for i in permutation) return transpose(operand, perm), 0 transpose_p = standard_primitive(_transpose_shape_rule, _input_dtype, 'transpose') transpose_p.def_impl(_transpose_impl) ad.deflinear(transpose_p, lambda t, permutation: [transpose(t, onp.argsort(permutation))]) batching.primitive_batchers[transpose_p] = _transpose_batch_rule def _select_shape_rule(pred, on_true, on_false): if on_true.shape != on_false.shape: msg = "select on_true and on_false must have the same shape, got {} and {}." raise TypeError(msg.format(on_true.shape, on_false.shape)) if pred.shape and pred.shape != on_true.shape: msg = ("select pred must be scalar or have the same shape as on_true and " "on_false, got pred shape {} for on_true and on_false of shape {}.") raise TypeError(msg.format(pred.shape, on_true.shape)) return on_true.shape def _select_dtype_rule(pred, on_true, on_false): _check_same_dtypes("select", False, on_true.dtype, on_false.dtype) if not dtypes.issubdtype(pred.dtype, onp.bool_): msg = "select pred must be boolean type, got {}." raise TypeError(msg.format(pred.dtype)) return on_true.dtype def _select_transpose_rule(t, pred, on_true, on_false): assert not ad.is_undefined_primal(pred) if t is ad_util.zero: return [None, ad_util.zero if ad.is_undefined_primal(on_true) else None, ad_util.zero if ad.is_undefined_primal(on_false) else None] else: zeros = full_like(t, 0) return [None, select(pred, t, zeros) if ad.is_undefined_primal(on_true) else None, select(pred, zeros, t) if ad.is_undefined_primal(on_false) else None] def _select_batch_rule(batched_args, batch_dims, **unused_kwargs): pred, on_true, on_false, = batched_args pred_bdim, ot_bdim, of_bdim = batch_dims size = next(x.shape[i] for x, i in zip(batched_args, batch_dims) if i is not None) # avoid transposes and some broadcasts in special cases if pred_bdim == ot_bdim == of_bdim: if onp.shape(pred) == onp.shape(on_true): return select(pred, on_true, on_false), pred_bdim else: # vmapped function had a scalar pred with nonscalar args assert onp.ndim(pred) == 1 pred = broadcast_in_dim(pred, on_true.shape, [pred_bdim]) return select(pred, on_true, on_false), pred_bdim elif onp.ndim(pred) == 0 and ot_bdim is not None and of_bdim is not None: if ot_bdim == of_bdim: return select(pred, on_true, on_false), ot_bdim elif onp.shape(on_true) == onp.shape(on_false): on_false = batching.moveaxis(on_false, of_bdim, ot_bdim) return select(pred, on_true, on_false), ot_bdim pred = batching.bdim_at_front(pred, pred_bdim, size) if onp.shape(pred) else pred if not onp.shape(on_true) == onp.shape(on_false) == (): on_true = batching.bdim_at_front(on_true, ot_bdim, size) on_false = batching.bdim_at_front(on_false, of_bdim, size) assert onp.shape(on_true) == onp.shape(on_false) if 0 < onp.ndim(pred) < onp.ndim(on_true): # vmapped function had a scalar pred with nonscalar args assert onp.ndim(pred) == 1 pred = broadcast_in_dim(pred, on_true.shape, [0]) if onp.ndim(pred) > onp.ndim(on_true): assert onp.ndim(on_true) == 0 on_true = broadcast(on_true, pred.shape) on_false = broadcast(on_false, pred.shape) return select(pred, on_true, on_false), 0 select_p = standard_primitive(_select_shape_rule, _select_dtype_rule, 'select') ad.defjvp(select_p, None, lambda g, b, x, y: select(b, g, _zeros(g)), lambda g, b, x, y: select(b, _zeros(g), g)) ad.primitive_transposes[select_p] = _select_transpose_rule batching.primitive_batchers[select_p] = _select_batch_rule def _slice_shape_rule(operand, *, start_indices, limit_indices, strides): _check_shapelike("slice", "start_indices", start_indices) _check_shapelike("slice", "limit_indices", limit_indices) if operand.ndim != len(start_indices): msg = ("slice start_indices must have length equal to the number of " "dimensions of the operand, got indices {} for operand shape {}.") raise TypeError(msg.format(start_indices, operand.shape)) if len(start_indices) != len(limit_indices): msg = ("slice limit_indices must have the same length as start_indices, " "got start_inidices {} and limit_indices {}.") raise TypeError(msg.format(start_indices, limit_indices)) if not onp.all(onp.less_equal(limit_indices, operand.shape)): msg = ("slice limit_indices must be less than or equal to operand shape, " "got limit_indices {} for operand shape {}.") raise TypeError(msg.format(limit_indices, operand.shape)) if not onp.all(onp.greater_equal(start_indices, 0)): msg = ("slice start_indices must be greater than or equal to zero, " "got start_indices of {}.") raise TypeError(msg.format(start_indices)) if not onp.all(onp.greater_equal(limit_indices, start_indices)): msg = ("slice limit_indices must be greater than or equal to start_indices," " got start_indices {} and limit_indices {}.") raise TypeError(msg.format(start_indices, limit_indices)) if strides is None: strides = onp.ones(operand.ndim, onp.int32) else: _check_shapelike("slice", "strides", strides) if len(strides) != operand.ndim: msg = ("slice strides must have length equal to the number of dimensions " "of the operand, got strides {} for operand shape {}.") raise TypeError(msg.format(strides, operand.shape)) if not onp.all(onp.greater(strides, 0)): msg = "slice strides must be positive, got {}" raise TypeError(msg.format(strides)) result_shape = onp.floor_divide( onp.add(onp.subtract(limit_indices, start_indices), strides) - 1, strides) return tuple(result_shape) def _slice_translation_rule(c, operand, *, start_indices, limit_indices, strides): return xops.Slice(operand, start_indices, limit_indices, strides or [1] * len(start_indices)) def _slice_transpose_rule(t, operand, *, start_indices, limit_indices, strides): assert ad.is_undefined_primal(operand) operand_shape = operand.aval.shape if strides is None or onp.all(onp.equal(strides, 1)): pads = zip(start_indices, onp.subtract(operand_shape, limit_indices), (0,) * len(start_indices)) else: real_limits = onp.add(onp.add(start_indices, 1), onp.multiply(onp.subtract(t.shape, 1), strides)) pads = zip(start_indices, onp.subtract(operand_shape, real_limits), onp.subtract(strides, 1)) result = pad(t, _const(t, 0), pads) assert result.shape == operand_shape return [result] def _slice_batching_rule(batched_args, batch_dims, *, start_indices, limit_indices, strides): operand, = batched_args bdim, = batch_dims new_start_indices = list(start_indices) new_start_indices.insert(bdim, 0) new_limit_indices = list(limit_indices) new_limit_indices.insert(bdim, operand.shape[bdim]) if strides is None: new_strides = None else: new_strides = list(strides) new_strides.insert(bdim, 1) out = slice(operand, new_start_indices, new_limit_indices, new_strides) return out, bdim slice_p = standard_primitive(_slice_shape_rule, _input_dtype, 'slice', _slice_translation_rule) ad.deflinear2(slice_p, _slice_transpose_rule) batching.primitive_batchers[slice_p] = _slice_batching_rule def _dynamic_slice_shape_rule(operand, *start_indices, slice_sizes): if operand.ndim != len(start_indices): msg = ("dynamic_slice start_indices must have length equal to the number " "of dimensions of the operand, got indices {} for operand shape {}.") raise TypeError(msg.format(start_indices, operand.shape)) if len(start_indices) != len(slice_sizes): msg = ("dynamic_slice slice_sizes must have the same length as " "start_indices, got start_inidices length {} and slice_sizes {}.") raise TypeError(msg.format(len(start_indices), slice_sizes)) if not onp.all(onp.less_equal(slice_sizes, operand.shape)): msg = ("slice slice_sizes must be less than or equal to operand shape, " "got slice_sizes {} for operand shape {}.") raise TypeError(msg.format(slice_sizes, operand.shape)) if not onp.all(onp.greater_equal(slice_sizes, 0)): msg = ("slice slice_sizes must be greater than or equal to zero, " "got slice_sizes of {}.") raise TypeError(msg.format(slice_sizes)) return tuple(slice_sizes) def _dynamic_slice_dtype_rule(operand, *start_indices, slice_sizes): if any(i.dtype != start_indices[0].dtype or not dtypes.issubdtype(i.dtype, onp.integer) for i in start_indices): msg = ("index arguments to dynamic_slice must be integers of the same " "type, got: {}") raise TypeError(msg.format(", ".join(i.dtype.name for i in start_indices))) return operand.dtype def _dynamic_slice_translation_rule(c, operand, *start_indices, slice_sizes): return xops.DynamicSlice(operand, start_indices, slice_sizes) def _dynamic_slice_jvp(primals, tangents, *, slice_sizes): tangent_out = ad_util.zero if tangents[0] is not ad_util.zero: tangent_out = dynamic_slice(tangents[0], primals[1:], slice_sizes) return dynamic_slice(primals[0], primals[1:], slice_sizes), tangent_out def _dynamic_slice_transpose_rule(t, operand, *start_indices, slice_sizes): assert ad.is_undefined_primal(operand) assert all(not ad.is_undefined_primal(s) for s in start_indices) operand_shape = operand.aval.shape zeros = full(operand_shape, tie_in(t, _zero(t))) return ([dynamic_update_slice(zeros, t, start_indices)] + [None] * len(start_indices)) def _batch_dynamic_slice_indices(indices, bdims): size = next((x.shape[i] for x, i in zip(indices, bdims) if i is not None), -1) if size < 0: return concatenate([reshape(i, [1]) for i in indices], 0), None indices = concatenate( [broadcast_in_dim(x, (size, 1), broadcast_dimensions=((0,) if i is not None else ())) for x, i in zip(indices, bdims)], dimension=1) return indices, 0 def _dynamic_slice_batching_rule(batched_args, batch_dims, *, slice_sizes): # A dynamic slice is a special case of gather; we can delegate to the gather # batching rule. # TODO(phawkins): consider removing dynamic_slice entirely and using gather # always. operand, *start_indices = batched_args operand_bd, *start_idx_bds = batch_dims operand_shape = (operand.shape if operand_bd is batching.not_mapped else tuple(onp.delete(operand.shape, operand_bd))) dims = tuple(range(len(operand_shape))) dnums = GatherDimensionNumbers(offset_dims=dims, collapsed_slice_dims=(), start_index_map=dims) index, index_bdim = _batch_dynamic_slice_indices(start_indices, start_idx_bds) return _gather_batching_rule( [operand, index], [operand_bd, index_bdim], dimension_numbers=dnums, slice_sizes=slice_sizes) dynamic_slice_p = standard_primitive( _dynamic_slice_shape_rule, _dynamic_slice_dtype_rule, 'dynamic_slice', _dynamic_slice_translation_rule) ad.primitive_jvps[dynamic_slice_p] = _dynamic_slice_jvp # TODO ad.primitive_transposes[dynamic_slice_p] = _dynamic_slice_transpose_rule batching.primitive_batchers[dynamic_slice_p] = _dynamic_slice_batching_rule def _dynamic_update_slice_shape_rule(operand, update, *start_indices): if operand.ndim != update.ndim: msg = ("dynamic_update_slice update must have the same rank as operand, " "got update shape {} for operand shape {}.") raise TypeError(msg.format(update.shape, operand.shape)) if operand.ndim != len(start_indices): msg = ("dynamic_update_slice start_indices must have length equal to the " "rank of operand, got indices {} for operand shape {}.") raise TypeError(msg.format(start_indices, operand.shape)) if not onp.all(onp.less_equal(update.shape, operand.shape)): msg = ("dynamic_update_slice update shape must be smaller than operand " "shape, got update shape {} for operand shape {}.") raise TypeError(msg.format(update.shape, operand.shape)) return operand.shape def _dynamic_update_slice_dtype_rule(operand, update, *start_indices): _check_same_dtypes("dynamic_update_slice", False, operand.dtype, update.dtype) if any(i.dtype != start_indices[0].dtype or not dtypes.issubdtype(i.dtype, onp.integer) for i in start_indices): msg = ("index arguments to dynamic_update_slice must be integers of the " "same type, got {}") raise TypeError(msg.format(", ".join(i.dtype.name for i in start_indices))) return operand.dtype def _dynamic_update_slice_jvp(primals, tangents): operand, update = primals[:2] start_indices = primals[2:] g_operand, g_update = tangents[:2] val_out = dynamic_update_slice(operand, update, start_indices) if g_operand is ad_util.zero and g_update is ad_util.zero: tangent_out = ad_util.zero else: g_operand = ad.instantiate_zeros(operand, g_operand) g_update = ad.instantiate_zeros(update, g_update) tangent_out = dynamic_update_slice(g_operand, g_update, start_indices) return val_out, tangent_out def _dynamic_update_slice_transpose_rule(t, operand, update, *start_indices): assert all(not ad.is_undefined_primal(x) for x in start_indices) if ad.is_undefined_primal(update): update_shape = update.aval.shape else: update_shape = update.shape dus = dynamic_update_slice ds = dynamic_slice zeros = _zeros(t, shape=update_shape) operand_t = dus(t, zeros, start_indices) if ad.is_undefined_primal(operand) else None update_t = ds(t, start_indices, update_shape) if ad.is_undefined_primal(update) else None return [operand_t, update_t] + [None] * len(start_indices) def _dynamic_update_slice_translation_rule(c, operand, update, *start_indices): return xops.DynamicUpdateSlice(operand, update, start_indices) def _dynamic_update_slice_batching_rule(batched_args, batch_dims): # A dynamic update slice is a special case of scatter; we can delegate to the # scatter batching rule. # TODO(phawkins): consider removing dynamic_update_slice entirely and using # scatter always. operand, update, *start_idx = batched_args operand_bd, update_bd, *start_idx_bd = batch_dims update_shape = (update.shape if update_bd is batching.not_mapped else tuple(onp.delete(update.shape, update_bd))) dims = tuple(range(len(update_shape))) dnums = ScatterDimensionNumbers(update_window_dims=dims, inserted_window_dims=(), scatter_dims_to_operand_dims=dims) index, index_bdim = _batch_dynamic_slice_indices(start_idx, start_idx_bd) return _scatter_batching_rule( scatter, (operand, index, update), (operand_bd, index_bdim, update_bd), update_jaxpr=None, update_consts=None, dimension_numbers=dnums) dynamic_update_slice_p = standard_primitive( _dynamic_update_slice_shape_rule, _dynamic_update_slice_dtype_rule, 'dynamic_update_slice', _dynamic_update_slice_translation_rule) ad.primitive_jvps[dynamic_update_slice_p] = _dynamic_update_slice_jvp ad.primitive_transposes[dynamic_update_slice_p] = \ _dynamic_update_slice_transpose_rule batching.primitive_batchers[dynamic_update_slice_p] = \ _dynamic_update_slice_batching_rule def _gather_dimensions_proto(indices_shape, dimension_numbers): assert type(dimension_numbers) is GatherDimensionNumbers proto = xla_client.GatherDimensionNumbers() proto.offset_dims.extend(dimension_numbers.offset_dims) proto.collapsed_slice_dims.extend(dimension_numbers.collapsed_slice_dims) proto.start_index_map.extend(dimension_numbers.start_index_map) assert indices_shape.rank() > 0 proto.index_vector_dim = indices_shape.rank() - 1 return proto def _gather_dtype_rule(operand, start_indices, **kwargs): if not dtypes.issubdtype(start_indices.dtype, onp.integer): raise ValueError("start_indices must have an integer type") return dtypes.canonicalize_dtype(operand.dtype) def _gather_shape_rule(operand, start_indices, *, dimension_numbers, slice_sizes): if len(operand.shape) != len(slice_sizes): msg = ("slice_sizes must have rank equal to the gather operand; " "operand.shape={}, slice_sizes={}".format(operand.shape, slice_sizes)) raise ValueError(msg) result_rank = len(dimension_numbers.offset_dims) + start_indices.ndim - 1 start_indices_shape = iter(start_indices.shape[:-1]) slice_sizes = iter(onp.delete(slice_sizes, dimension_numbers.collapsed_slice_dims)) return tuple(next(slice_sizes) if i in dimension_numbers.offset_dims else next(start_indices_shape) for i in range(result_rank)) def _gather_translation_rule(c, operand, start_indices, *, dimension_numbers, slice_sizes): indices_shape = c.get_shape(start_indices) return xops.Gather( operand, start_indices, _gather_dimensions_proto(indices_shape, dimension_numbers), slice_sizes, indices_are_sorted=False) def _gather_jvp_rule(g, operand, start_indices, *, dimension_numbers, slice_sizes): return gather(g, start_indices, dimension_numbers, slice_sizes) def _gather_transpose_rule(t, operand, start_indices, *, dimension_numbers, slice_sizes): assert ad.is_undefined_primal(operand) operand_shape = operand.aval.shape if t is ad_util.zero: return [ad_util.zero, ad_util.zero] zeros = full(operand_shape, tie_in(t, _zero(t))) scatter_dnums = ScatterDimensionNumbers( update_window_dims=dimension_numbers.offset_dims, inserted_window_dims=dimension_numbers.collapsed_slice_dims, scatter_dims_to_operand_dims=dimension_numbers.start_index_map) return [scatter_add(zeros, start_indices, t, scatter_dnums), ad_util.zero] def _gather_batching_rule(batched_args, batch_dims, *, dimension_numbers, slice_sizes): operand, start_indices = batched_args operand_bdim, start_indices_bdim = batch_dims if operand_bdim is not None and start_indices_bdim is None: operand = batching.moveaxis(operand, operand_bdim, 0) slice_sizes = (operand.shape[0],) + slice_sizes offset_dims = (0,) + tuple(onp.add(1, dimension_numbers.offset_dims)) collapsed_slice_dims = tuple(onp.add(1, dimension_numbers.collapsed_slice_dims)) start_index_map = tuple(onp.add(1, dimension_numbers.start_index_map)) dnums = GatherDimensionNumbers( offset_dims=offset_dims, collapsed_slice_dims=collapsed_slice_dims, start_index_map=start_index_map) return gather(operand, start_indices, dimension_numbers=dnums, slice_sizes=slice_sizes), 0 elif operand_bdim is None and start_indices_bdim is not None: start_indices = batching.moveaxis(start_indices, start_indices_bdim, 0) offset_dims = tuple(onp.add(1, dimension_numbers.offset_dims)) dnums = GatherDimensionNumbers( offset_dims=offset_dims, collapsed_slice_dims=dimension_numbers.collapsed_slice_dims, start_index_map=dimension_numbers.start_index_map) return gather(operand, start_indices, dimension_numbers=dnums, slice_sizes=slice_sizes), 0 else: # move our batch dimensions to the front to preserve sanity operand = batching.moveaxis(operand, operand_bdim, 0) start_indices = batching.moveaxis(start_indices, start_indices_bdim, 0) # Example: user code had start_indices shape (3, 4, 5), and we have to deal # with start_indices shape (7, 3, 4, 5). We transform that to a # start_indices of shape (7, 3, 4, 6) where we concatenated an iota that # counts along our batch dimension to the front of the ndindex. count_shape = list(start_indices.shape) count_shape[-1] = 1 counts = broadcasted_iota(start_indices.dtype, tuple(count_shape), 0) start_indices = concatenate([counts, start_indices], len(count_shape) - 1) slice_sizes = (1,) + slice_sizes collapsed_slice_dims = (0,) + tuple(onp.add(1, dimension_numbers.collapsed_slice_dims)) offset_dims = tuple(onp.add(1, dimension_numbers.offset_dims)) start_index_map = (0,) + tuple(onp.add(1, dimension_numbers.start_index_map)) dnums = GatherDimensionNumbers( offset_dims=offset_dims, collapsed_slice_dims=collapsed_slice_dims, start_index_map=start_index_map) return gather(operand, start_indices, dimension_numbers=dnums, slice_sizes=slice_sizes), 0 gather_p = standard_primitive( _gather_shape_rule, _gather_dtype_rule, 'gather', _gather_translation_rule) ad.defjvp(gather_p, _gather_jvp_rule, None) ad.primitive_transposes[gather_p] = _gather_transpose_rule batching.primitive_batchers[gather_p] = _gather_batching_rule def _scatter_dimensions_proto(indices_shape, dimension_numbers): assert type(dimension_numbers) is ScatterDimensionNumbers proto = xla_client.ScatterDimensionNumbers() proto.update_window_dims.extend(dimension_numbers.update_window_dims) proto.inserted_window_dims.extend(dimension_numbers.inserted_window_dims) proto.scatter_dims_to_operand_dims.extend( dimension_numbers.scatter_dims_to_operand_dims) assert indices_shape.rank() > 0 proto.index_vector_dim = indices_shape.rank() - 1 return proto def _scatter_dtype_rule(operand, scatter_indices, updates, **kwargs): if not dtypes.issubdtype(scatter_indices.dtype, onp.integer): raise ValueError("scatter_indices must have an integer type") _check_same_dtypes("scatter", False, operand.dtype, updates.dtype) return dtypes.canonicalize_dtype(operand.dtype) def _scatter_shape_rule(operand, scatter_indices, updates, **kwargs): return operand.shape def _scatter_translation_rule(c, operand, scatter_indices, updates, update_jaxpr, update_consts, dimension_numbers): dtype = c.get_shape(operand).numpy_dtype() init_value = xb.constant(c, onp.array(0, dtype)) update_computation = _reduction_computation( c, update_jaxpr, update_consts, init_value) indices_shape = c.get_shape(scatter_indices) return xops.Scatter(operand, scatter_indices, updates, update_computation, _scatter_dimensions_proto(indices_shape, dimension_numbers), False, False) def _scatter_add_jvp(primals, tangents, *, update_jaxpr, update_consts, dimension_numbers): operand, scatter_indices, updates = primals g_operand, g_scatter_indices, g_updates = tangents val_out = scatter_add_p.bind( operand, scatter_indices, updates, update_jaxpr=update_jaxpr, update_consts=update_consts, dimension_numbers=dimension_numbers) if g_operand is ad_util.zero and g_updates is ad_util.zero: tangent_out = ad_util.zero else: g_operand = ad.instantiate_zeros(operand, g_operand) g_updates = ad.instantiate_zeros(updates, g_updates) tangent_out = scatter_add_p.bind( g_operand, scatter_indices, g_updates, update_jaxpr=update_jaxpr, update_consts=update_consts, dimension_numbers=dimension_numbers) return val_out, tangent_out def _scatter_add_transpose_rule(t, operand, scatter_indices, updates, *, update_jaxpr, update_consts, dimension_numbers): assert not ad.is_undefined_primal(scatter_indices) if ad.is_undefined_primal(updates): updates_shape = updates.aval.shape else: updates_shape = updates.shape if t is ad_util.zero: return [ad_util.zero, None, ad_util.zero] operand_t = update_t = None if ad.is_undefined_primal(operand): operand_t = t if ad.is_undefined_primal(updates): gather_dnums = GatherDimensionNumbers( offset_dims=dimension_numbers.update_window_dims, collapsed_slice_dims=dimension_numbers.inserted_window_dims, start_index_map=dimension_numbers.scatter_dims_to_operand_dims) slice_sizes = [] pos = 0 for i in range(len(t.shape)): if i in dimension_numbers.inserted_window_dims: slice_sizes.append(1) else: slice_sizes.append(updates_shape[dimension_numbers.update_window_dims[pos]]) pos += 1 update_t = gather(t, scatter_indices, dimension_numbers=gather_dnums, slice_sizes=slice_sizes) return [operand_t, None, update_t] def _scatter_mul_transpose_rule(t, operand, scatter_indices, updates, *, update_jaxpr, update_consts, dimension_numbers): assert not ad.is_undefined_primal(scatter_indices) if ad.is_undefined_primal(updates): updates_shape = updates.aval.shape else: updates_shape = updates.shape if t is ad_util.zero: return [ad_util.zero, None, ad_util.zero] operand_t = update_t = None if ad.is_undefined_primal(operand): operand_t = scatter_mul(t, scatter_indices, updates, dimension_numbers=dimension_numbers) if ad.is_undefined_primal(updates): gather_dnums = GatherDimensionNumbers( offset_dims=dimension_numbers.update_window_dims, collapsed_slice_dims=dimension_numbers.inserted_window_dims, start_index_map=dimension_numbers.scatter_dims_to_operand_dims) slice_sizes = [] pos = 0 for i in range(len(t.shape)): if i in dimension_numbers.inserted_window_dims: slice_sizes.append(1) else: slice_sizes.append(updates_shape[dimension_numbers.update_window_dims[pos]]) pos += 1 update_t = gather(mul(t, operand), scatter_indices, dimension_numbers=gather_dnums, slice_sizes=slice_sizes) return [operand_t, None, update_t] def _scatter_batching_rule(scatter_op, batched_args, batch_dims, *, update_jaxpr, update_consts, dimension_numbers): operand, scatter_indices, updates = batched_args operand_bdim, scatter_indices_bdim, updates_bdim = batch_dims del update_jaxpr, update_consts # Unused. # move the operand batch dim to the front if it is not None, otherwise create # it at the front (so that we can scatter into it) size = next(x.shape[ax] for x, ax in zip(batched_args, batch_dims) if ax is not None) operand = batching.bdim_at_front(operand, operand_bdim, size) operand_bdim = 0 updates = batching.bdim_at_front(updates, updates_bdim, size) if scatter_indices_bdim is None: inserted_window_dims = tuple(onp.add(1, dimension_numbers.inserted_window_dims)) update_window_dims = (0,) + tuple(onp.add(1, dimension_numbers.update_window_dims)) scatter_dims_to_operand_dims = tuple(onp.add(1, dimension_numbers.scatter_dims_to_operand_dims)) dnums = ScatterDimensionNumbers( update_window_dims=update_window_dims, inserted_window_dims=inserted_window_dims, scatter_dims_to_operand_dims=scatter_dims_to_operand_dims) return scatter_op(operand, scatter_indices, updates, dnums), 0 # see the third case in _gather_batching_rule for comparison and comments scatter_indices = batching.bdim_at_front( scatter_indices, scatter_indices_bdim, size) count_shape = list(scatter_indices.shape) count_shape[-1] = 1 counts = broadcasted_iota(scatter_indices.dtype, tuple(count_shape), 0) scatter_indices = concatenate([counts, scatter_indices], len(count_shape) - 1) update_window_dims = tuple(onp.add(1, dimension_numbers.update_window_dims)) inserted_window_dims = (0,) + tuple(onp.add(1, dimension_numbers.inserted_window_dims)) scatter_dims_to_operand_dims = (0,) + tuple(onp.add(1, dimension_numbers.scatter_dims_to_operand_dims)) dnums = ScatterDimensionNumbers( update_window_dims=update_window_dims, inserted_window_dims=inserted_window_dims, scatter_dims_to_operand_dims=scatter_dims_to_operand_dims) return scatter_op(operand, scatter_indices, updates, dnums), 0 scatter_add_p = standard_primitive( _scatter_shape_rule, _scatter_dtype_rule, 'scatter-add', _scatter_translation_rule) ad.primitive_jvps[scatter_add_p] = _scatter_add_jvp ad.primitive_transposes[scatter_add_p] = _scatter_add_transpose_rule batching.primitive_batchers[scatter_add_p] = ( partial(_scatter_batching_rule, scatter_add)) scatter_mul_p = standard_primitive( _scatter_shape_rule, _scatter_dtype_rule, 'scatter-mul', _scatter_translation_rule) def _scatter_mul_jvp_rhs(g, x, i, y, *, dimension_numbers, **kw): return mul(x, scatter_add(zeros_like_array(x), i, g, dimension_numbers=dimension_numbers)) ad.defjvp(scatter_mul_p, lambda g, x, i, y, **kw: scatter_mul_p.bind(g, i, y, **kw), None, _scatter_mul_jvp_rhs) ad.primitive_transposes[scatter_mul_p] = _scatter_mul_transpose_rule batching.primitive_batchers[scatter_mul_p] = ( partial(_scatter_batching_rule, scatter_mul)) # TODO(jlebar): Add derivatives. scatter_min_p = standard_primitive( _scatter_shape_rule, _scatter_dtype_rule, 'scatter-min', _scatter_translation_rule) batching.primitive_batchers[scatter_min_p] = ( partial(_scatter_batching_rule, scatter_min)) # TODO(jlebar): Add derivatives. scatter_max_p = standard_primitive( _scatter_shape_rule, _scatter_dtype_rule, 'scatter-max', _scatter_translation_rule) batching.primitive_batchers[scatter_max_p] = ( partial(_scatter_batching_rule, scatter_max)) def _scatter_jvp(primals, tangents, *, update_jaxpr, update_consts, dimension_numbers): operand, scatter_indices, updates = primals g_operand, g_scatter_indices, g_updates = tangents dnums = dimension_numbers if g_operand is ad_util.zero and g_updates is ad_util.zero: val_out = scatter_p.bind( operand, scatter_indices, updates, update_jaxpr=update_jaxpr, update_consts=update_consts, dimension_numbers=dnums) tangent_out = ad_util.zero return val_out, tangent_out g_operand = ad.instantiate_zeros(operand, g_operand) g_updates = ad.instantiate_zeros(updates, g_updates) # If there are overlapping indices in the scatter, it is unspecified which # update "wins". So we use the following perhaps surprising scheme: # a) attach a positive ID to each update in updates, forming (value, id) pairs # (using a new array dimension because scatter doesn't actually support # pairs). # b) perform the scatter, yielding (value, id) updates, which we split apart. # c) perform the inverse gather on the ids (similar to # _scatter_add_transpose), and use it to build a mask for the tangent of # `updates`. # d) perform a scatter-add on the masked JVP values. A benefit of using # scatter-add here is that we don't need a `scatter` transpose rule. # a) add unique positive IDs (iotas) to the updates, and zeros to the operand. operand_shape = operand.shape updates_shape = updates.shape updates_dtype = _dtype(updates) new_operand = reshape(operand, (1,) + operand_shape) new_operand = pad(new_operand, _zero(operand), ((0, 1, 0),) + tuple((0, 0, 0) for _ in operand_shape)) # We specify the dtype here in case `updates_shape` is an empty tuple, in # which case numpy defaults to float64. ids_shape = onp.array(updates_shape, dtype=onp.int32) ids_shape[dnums.update_window_dims,] = 1 num_ids = onp.prod(ids_shape) update_ids = add(reshape(iota(updates_dtype, num_ids), ids_shape), _ones(updates)) # TODO(phawkins): there is a potential bug here if the number of updates # is large enough to overflow the number of mantissa bits in a float so IDs # end up colliding. We could also utilize the exponent and sign bits, with a # little more work. assert num_ids < (2 ** dtypes.finfo(updates_dtype).nmant) updates = reshape(updates, (1,) + updates_shape) reshaped_update_ids = reshape(update_ids, (1,) + updates_shape) updates_and_ids = concatenate((updates, reshaped_update_ids), 0) new_dnums = ScatterDimensionNumbers( update_window_dims=(0,) + tuple(d + 1 for d in dnums.update_window_dims), inserted_window_dims=tuple(d + 1 for d in dnums.inserted_window_dims), scatter_dims_to_operand_dims=tuple(d + 1 for d in dnums.scatter_dims_to_operand_dims)) outputs = scatter_p.bind( new_operand, scatter_indices, updates_and_ids, update_jaxpr=update_jaxpr, update_consts=update_consts, dimension_numbers=new_dnums) val_out = index_in_dim(outputs, 0, keepdims=False) scattered_ids = index_in_dim(outputs, 1, keepdims=False) # b) compute the inverse gather that "undoes" the scatter on the id values. gather_dnums = GatherDimensionNumbers( offset_dims=dnums.update_window_dims, collapsed_slice_dims=dnums.inserted_window_dims, start_index_map=dnums.scatter_dims_to_operand_dims) slice_sizes = [] pos = 0 for i in range(len(scattered_ids.shape)): if i in dnums.inserted_window_dims: slice_sizes.append(1) else: slice_sizes.append(updates_shape[dnums.update_window_dims[pos]]) pos += 1 gathered_update_ids = gather(scattered_ids, scatter_indices, dimension_numbers=gather_dnums, slice_sizes=slice_sizes) # c) mask off input JVP elements that do not correspond to a primal output. masked_g_operand = select(eq(scattered_ids, _zeros(scattered_ids)), g_operand, _zeros(g_operand)) masked_g_updates = select(eq(update_ids, gathered_update_ids), g_updates, _zeros(g_updates)) # d) perform a scatter-add to compute the tangent output. tangent_out = scatter_add(masked_g_operand, scatter_indices, masked_g_updates, dimension_numbers=dnums) return val_out, tangent_out scatter_p = standard_primitive( _scatter_shape_rule, _scatter_dtype_rule, 'scatter', _scatter_translation_rule) ad.primitive_jvps[scatter_p] = _scatter_jvp batching.primitive_batchers[scatter_p] = ( partial(_scatter_batching_rule, scatter)) def _reduce_shape_rule(operand, init_value, *, computation, jaxpr, consts, dimensions): return tuple(onp.delete(operand.shape, dimensions)) def _reduce_translation_rule(c, operand, init_value, *, computation, jaxpr, consts, dimensions): xla_computation = _reduction_computation(c, jaxpr, consts, init_value) return xops.Reduce(c, [operand], [init_value], xla_computation, dimensions) def _reduce_batch_rule(batched_args, batch_dims, *, computation, jaxpr, consts, dimensions): operand, init_value = batched_args operand_bdim, init_value_bdim = batch_dims if init_value_bdim is None: assert operand_bdim is not None new_dimensions = [d + bool(d >= operand_bdim) for d in dimensions] new_operand_bdim = operand_bdim - int(onp.sum(onp.less(dimensions, operand_bdim))) return reduce(operand, init_value, computation, new_dimensions), new_operand_bdim else: raise NotImplementedError # loop and stack def _reduction_computation(c, jaxpr, consts, init_value): shape = c.get_shape(init_value) axis_env = xla.AxisEnv(1) # no parallel primitives inside reductions subc = xla_bridge.make_computation_builder("reduction_computation") assert len(consts) == 0, "Reduction computations cannot have constants" args = [xb.parameter(subc, 0, shape), xb.parameter(subc, 1, shape)] out, = xla.jaxpr_subcomp(subc, jaxpr, None, axis_env, consts, '', *args) return subc.build(out) def _masking_defreducer(prim, identity): masking.masking_rules[prim] = partial(_reducer_masking_rule, prim, identity) def _reducer_masking_rule(prim, identity, padded_vals, logical_shapes, axes): (padded_val,), (logical_shape,) = padded_vals, logical_shapes padded_shape = masking.padded_shape_as_value(padded_val.shape) masks = [broadcasted_iota(onp.int32, padded_shape, i) < d for i, d in enumerate(logical_shape) if i in axes] mask = _reduce(operator.and_, masks) masked_val = select(mask, padded_val, identity(padded_shape, padded_val.dtype)) return prim.bind(masked_val, axes=axes) reduce_p = standard_primitive(_reduce_shape_rule, _input_dtype, 'reduce', _reduce_translation_rule) batching.primitive_batchers[reduce_p] = _reduce_batch_rule def _reduce_number_dtype_rule(name, operand, *args, **kw): if not dtypes.issubdtype(operand.dtype, onp.number): raise TypeError("{} does not accept dtype {}. Accepted dtypes are subtypes " "of number.".format(name, onp.dtype(operand.dtype).name)) return dtypes.canonicalize_dtype(operand.dtype) def _reduce_sum_shape_rule(operand, *, axes): return _reduce_op_shape_rule(operand, axes=axes) def _reduce_sum_translation_rule(c, operand, *, axes): dtype = c.get_shape(operand).numpy_dtype() scalar = ShapedArray((), dtype) return xops.Reduce(c, [operand], [xb.constant(c, onp.array(0, dtype))], xla.primitive_subcomputation(add_p, scalar, scalar), axes) def _reduce_sum_transpose_rule(cotangent, operand, *, axes): assert ad.is_undefined_primal(operand) input_shape = operand.aval.shape broadcast_dimensions = tuple(onp.delete(onp.arange(len(input_shape)), axes)) result = broadcast_in_dim(cotangent, input_shape, broadcast_dimensions) assert result.shape == input_shape return [result] reduce_sum_p = standard_primitive( _reduce_sum_shape_rule, partial(_reduce_number_dtype_rule, 'reduce_sum'), 'reduce_sum', _reduce_sum_translation_rule) ad.deflinear2(reduce_sum_p, _reduce_sum_transpose_rule) batching.defreducer(reduce_sum_p) _masking_defreducer(reduce_sum_p, lambda shape, dtype: onp.broadcast_to(onp.array(0, dtype), shape)) def _reduce_op_shape_rule(operand, *, axes): return tuple(onp.delete(operand.shape, axes)) def _reduce_prod_translation_rule(c, operand, *, axes): dtype = c.get_shape(operand).numpy_dtype() scalar = ShapedArray((), dtype) return xops.Reduce(c, [operand], [xb.constant(c, onp.array(1, dtype))], xla.primitive_subcomputation(mul_p, scalar, scalar), axes) def _reduce_prod_jvp_rule(primals, tangents, *, axes): operand, = primals tangent, = tangents input_shape = onp.array(operand.shape) n = onp.prod(input_shape[list(axes)]) non_axes = onp.delete(onp.arange(len(input_shape)), axes) # Move the reduced axes to the front, and flatten them to 1D. permutation = axes + tuple(non_axes) new_shape = (n,) + tuple(input_shape[non_axes]) operand = reshape(operand, new_shape, permutation) tangent = reshape(tangent, new_shape, permutation) def _reduce_prod_tree(x, axis=0): """Reduce by repeatedly splitting the array and multiplying.""" while x.shape[axis] > 1: n = x.shape[axis] n1 = (n + 1) // 2 n2 = n - n1 x1 = slice_in_dim(x, 0, n1) x2 = slice_in_dim(x, n1, None) if n2 != n1: paddings = [(0, 0, 0)] * len(x.shape) paddings[axis] = (0, 1, 0) x2 = pad(x2, _const(x, 1), paddings) x = x1 * x2 shape = list(x.shape) del shape[axis] return reshape(x, shape) return api.jvp(_reduce_prod_tree, (operand,), (tangent,)) reduce_prod_p = standard_primitive( _reduce_op_shape_rule, partial(_reduce_number_dtype_rule, 'reduce_prod'), 'reduce_prod', _reduce_prod_translation_rule) ad.primitive_jvps[reduce_prod_p] = _reduce_prod_jvp_rule batching.defreducer(reduce_prod_p) def _reduce_chooser_shape_rule(operand, *, axes): return tuple(onp.delete(operand.shape, axes)) def _reduce_chooser_translation_rule(prim, identity, c, operand, *, axes): dtype = c.get_shape(operand).numpy_dtype() scalar = ShapedArray((), dtype) return xops.Reduce(c, [operand], [xb.constant(c, identity(dtype))], xla.primitive_subcomputation(prim, scalar, scalar), axes) def _reduce_chooser_jvp_rule(g, ans, operand, *, axes): # TODO(mattjj): an alternative is to use variadic reduce to compute the chosen # locations in a single pass (rather than comparing equality) and use a # gather, and/or even push along the chosen elements of g (b/112040122) shape = [1 if i in axes else d for i, d in enumerate(operand.shape)] location_indicators = convert_element_type( _eq_meet(operand, reshape(ans, shape)), g.dtype) counts = _reduce_sum(location_indicators, axes) return div(_reduce_sum(mul(g, location_indicators), axes), counts) _reduce_max_translation_rule = partial(_reduce_chooser_translation_rule, max_p, _get_max_identity) reduce_max_p = standard_primitive(_reduce_op_shape_rule, _input_dtype, 'reduce_max', _reduce_max_translation_rule) ad.defjvp2(reduce_max_p, _reduce_chooser_jvp_rule) batching.defreducer(reduce_max_p) _reduce_min_translation_rule = partial( _reduce_chooser_translation_rule, min_p, _get_min_identity) reduce_min_p = standard_primitive(_reduce_op_shape_rule, _input_dtype, 'reduce_min', _reduce_min_translation_rule) ad.defjvp2(reduce_min_p, _reduce_chooser_jvp_rule) batching.defreducer(reduce_min_p) def _reduce_logical_shape_rule(operand, *, axes): if operand.dtype != onp.bool_: msg = "logical reduction requires operand dtype bool, got {}." raise TypeError(msg.format(operand.dtype)) return tuple(onp.delete(operand.shape, axes)) def _reduce_logical_translation_rule(prim, identity, c, operand, *, axes): scalar = ShapedArray((), onp.bool_) return xops.Reduce(c, [operand], [xb.constant(c, identity(onp.bool_))], xla.primitive_subcomputation(prim, scalar, scalar), axes) _reduce_or_translation_rule = partial(_reduce_logical_translation_rule, or_p, _get_max_identity) reduce_or_p = standard_primitive(_reduce_logical_shape_rule, _fixed_dtype(onp.bool_), 'reduce_or', _reduce_or_translation_rule) batching.defreducer(reduce_or_p) _reduce_and_translation_rule = partial(_reduce_logical_translation_rule, and_p, _get_min_identity) reduce_and_p = standard_primitive(_reduce_logical_shape_rule, _fixed_dtype(onp.bool_), 'reduce_and', _reduce_and_translation_rule) batching.defreducer(reduce_and_p) def _reduce_window_shape_rule(operand, init_value, *, jaxpr, consts, window_dimensions, window_strides, padding): if operand.dtype != init_value.dtype: msg = ("reduce_window got inconsistent dtypes for operand and init_value: " " got operand dtype {} and init_value dtype {}.") raise TypeError(msg.format(operand.dtype, init_value.dtype)) return _common_reduce_window_shape_rule(operand, window_dimensions, window_strides, padding) def _reduce_window_translation_rule(c, operand, init_value, *, jaxpr, consts, window_dimensions, window_strides, padding): xla_computation = _reduction_computation(c, jaxpr, consts, init_value) pads = xc.window_padding_type_to_pad_values( padding, c.get_shape(operand).dimensions(), window_dimensions, window_strides) return xops.ReduceWindowWithGeneralPadding( operand, init_value, xla_computation, window_dimensions, window_strides, (), (), pads) def _generic_reduce_window_batch_rule( batched_args, batch_dims, *, jaxpr, consts, window_dimensions, window_strides, padding): operand, init = batched_args bdim, init_bdim = batch_dims if init_bdim is not None: raise NotImplementedError("reduce_window batching is not implemented for " "initial values") def reduce_window(x, window_dimensions, window_strides, padding): return reduce_window_p.bind( x, init, jaxpr=jaxpr, consts=consts, window_dimensions=window_dimensions, window_strides=window_strides, padding=padding) return _reduce_window_batch_rule(reduce_window, (operand,), (bdim,), window_dimensions, window_strides, padding) reduce_window_p = standard_primitive( _reduce_window_shape_rule, _input_dtype, 'reduce_window', _reduce_window_translation_rule) batching.primitive_batchers[reduce_window_p] = _generic_reduce_window_batch_rule def _reduce_window_sum_shape_rule(operand, *, window_dimensions, window_strides, padding): if not dtypes.issubdtype(operand.dtype, onp.number): msg = "operand to reduce_window_sum must have a number dtype, got {}" raise TypeError(msg.format(onp.dtype(operand.dtype).name)) return _common_reduce_window_shape_rule(operand, window_dimensions, window_strides, padding) def _reduce_window_sum_translation_rule(c, operand, *, window_dimensions, window_strides, padding): dtype = c.get_shape(operand).numpy_dtype() scalar = ShapedArray((), dtype) pads = xc.window_padding_type_to_pad_values( padding, c.get_shape(operand).dimensions(), window_dimensions, window_strides) return xops.ReduceWindowWithGeneralPadding( operand, xb.constant(c, onp.array(0, dtype)), xla.primitive_subcomputation(add_p, scalar, scalar), window_dimensions, window_strides, (), (), pads) def _reduce_window_sum_transpose_rule(cotangent, operand, *, window_dimensions, window_strides, padding): assert ad.is_undefined_primal(operand) input_shape = operand.aval.shape in_pads = padtype_to_pads(input_shape, window_dimensions, window_strides, padding) ones = [1] * len(input_shape) pads = _conv_general_vjp_lhs_padding( input_shape, window_dimensions, window_strides, cotangent.shape, in_pads, ones, ones) padding_config = [(lo, hi, stride - 1) for (lo, hi), stride in zip(pads, window_strides)] pad_cotangent = pad(cotangent, _zero(cotangent), padding_config) result = _reduce_window_sum(pad_cotangent, window_dimensions, ones, xla_client.PaddingType.VALID) assert result.shape == input_shape return [result] def _reduce_window_batch_rule(reduce_window, batched_args, bdims, *, window_dimensions, window_strides, padding): operand, = batched_args bdim, = bdims if bdim is not None: window_dimensions = \ window_dimensions[:bdim] + (1,) + window_dimensions[bdim:] window_strides = window_strides[:bdim] + (1,) + window_strides[bdim:] operand = reduce_window( operand, window_dimensions, window_strides, padding) return operand, bdim reduce_window_sum_p = standard_primitive( _reduce_window_sum_shape_rule, _input_dtype, 'reduce_window_sum', _reduce_window_sum_translation_rule) ad.deflinear2(reduce_window_sum_p, _reduce_window_sum_transpose_rule) batching.primitive_batchers[reduce_window_sum_p] = partial( _reduce_window_batch_rule, _reduce_window_sum) def _reduce_window_chooser_translation_rule( prim, identity, c, operand, *, window_dimensions, window_strides, padding): dtype = c.get_shape(operand).numpy_dtype() scalar = ShapedArray((), dtype) pads = xc.window_padding_type_to_pad_values( padding, c.get_shape(operand).dimensions(), window_dimensions, window_strides) return xops.ReduceWindowWithGeneralPadding( operand, xb.constant(c, identity(dtype)), xla.primitive_subcomputation(prim, scalar, scalar), window_dimensions, window_strides, (), (), pads) def _reduce_window_chooser_jvp_rule(prim, g, operand, *, window_dimensions, window_strides, padding): assert prim is max_p or prim is min_p select_prim = ge_p if prim is max_p else le_p return _select_and_gather_add(g, operand, select_prim, window_dimensions, window_strides, padding) def _common_reduce_window_shape_rule(operand, window_dimensions, window_strides, padding): _check_shapelike("reduce_window", "window_dimensions", window_dimensions) _check_shapelike("reduce_window", "window_strides", window_strides) if operand.ndim != len(window_dimensions): msg = ("reduce_window got the wrong number of window_dimensions for " "operand: got operand shape {} with window_dimensions {}.") raise TypeError(msg.format(operand.shape, window_dimensions)) if len(window_strides) != len(window_dimensions): msg = ("reduce_window got inconsistent window_strides and " "window_dimensions: got window_strides {} and window_dimensions {}.") raise TypeError(msg.format(window_strides, window_dimensions)) return reduce_window_shape_tuple(operand.shape, window_dimensions, window_strides, padding) def reduce_window_shape_tuple(operand_shape, window_dimensions, window_strides, padding): pads = padtype_to_pads(operand_shape, window_dimensions, window_strides, padding) operand_padded = onp.add(operand_shape, onp.add(*zip(*pads))) t = onp.floor_divide( onp.subtract(operand_padded, window_dimensions), window_strides) + 1 return tuple(t) _reduce_window_max_translation_rule = partial( _reduce_window_chooser_translation_rule, max_p, _get_max_identity) reduce_window_max_p = standard_primitive( _common_reduce_window_shape_rule, _input_dtype, 'reduce_window_max', _reduce_window_max_translation_rule) ad.defjvp(reduce_window_max_p, partial(_reduce_window_chooser_jvp_rule, max_p)) batching.primitive_batchers[reduce_window_max_p] = partial( _reduce_window_batch_rule, _reduce_window_max) _reduce_window_min_translation_rule = partial( _reduce_window_chooser_translation_rule, min_p, _get_min_identity) reduce_window_min_p = standard_primitive( _common_reduce_window_shape_rule, _input_dtype, 'reduce_window_min', _reduce_window_min_translation_rule) ad.defjvp(reduce_window_min_p, partial(_reduce_window_chooser_jvp_rule, min_p)) _reduce_window_min_batch_rule = partial(_reduce_window_batch_rule, _reduce_window_min) batching.primitive_batchers[reduce_window_min_p] = partial( _reduce_window_batch_rule, _reduce_window_min) def _select_and_scatter_shape_rule( operand, source, init_value, *, select_jaxpr, select_consts, scatter_jaxpr, scatter_consts, window_dimensions, window_strides, padding): _check_shapelike("select_and_scatter", "window_dimensions", window_dimensions) _check_shapelike("select_and_scatter", "window_strides", window_strides) if len(window_dimensions) != len(window_strides): msg = ("select_and_scatter got inconsistent window_strides and " "window_dimensions: got window_strides {} and window_dimensions {}.") raise TypeError(msg.format(window_strides, window_dimensions)) return operand.shape def _select_and_scatter_translation( c, operand, source, init_value, *, select_jaxpr, select_consts, scatter_jaxpr, scatter_consts, window_dimensions, window_strides, padding): select = _reduction_computation(c, select_jaxpr, select_consts, init_value) scatter = _reduction_computation(c, scatter_jaxpr, scatter_consts, init_value) pads = xc.window_padding_type_to_pad_values( padding, c.get_shape(operand).dimensions(), window_dimensions, window_strides) return xops.SelectAndScatterWithGeneralPadding( operand, select, window_dimensions, window_strides, pads, source, init_value, scatter) select_and_scatter_p = standard_primitive( _select_and_scatter_shape_rule, _input_dtype, 'select_and_scatter', _select_and_scatter_translation) def _select_and_scatter_add_shape_rule( source, operand, *, select_prim, window_dimensions, window_strides, padding): return operand.shape def _select_and_scatter_add_translation( c, source, operand, *, select_prim, window_dimensions, window_strides, padding): dtype = c.get_shape(operand).numpy_dtype() scalar = ShapedArray((), dtype) select = xla.primitive_subcomputation(select_prim, scalar, scalar) scatter = xla.primitive_subcomputation(add_p, scalar, scalar) zero = xb.constant(c, onp.array(0, dtype)) pads = xc.window_padding_type_to_pad_values( padding, c.get_shape(operand).dimensions(), window_dimensions, window_strides) return xops.SelectAndScatterWithGeneralPadding( operand, select, window_dimensions, window_strides, pads, source, zero, scatter) def _select_and_scatter_add_jvp( primals, tangents, *, select_prim, window_dimensions, window_strides, padding): source, operand = primals g_source, g_operand = tangents val_out = _select_and_scatter_add( source, operand, select_prim, window_dimensions, window_strides, padding) del g_operand if g_source is ad_util.zero: tangent_out = ad_util.zero else: tangent_out = _select_and_scatter_add( g_source, operand, select_prim, window_dimensions, window_strides, padding) return val_out, tangent_out def _select_and_scatter_add_transpose( t, source, operand, *, select_prim, window_dimensions, window_strides, padding): assert ad.is_undefined_primal(source) and not ad.is_undefined_primal(operand) source_t = _select_and_gather_add(t, operand, select_prim, window_dimensions, window_strides, padding) return [source_t, None] def _select_and_scatter_add_batch_rule(batched_args, batch_dims, **kwargs): source, operand = batched_args s_bdims, o_bdims = batch_dims if s_bdims is not None and o_bdims is not None: #TODO(#212): use a map construct instead of unrolling. source = batching.moveaxis(source, s_bdims, 0) operand = batching.moveaxis(operand, o_bdims, 0) outputs = [ _select_and_scatter_add(s, o, **kwargs) for s, o in zip(source, operand)] outputs = [reshape(out, (1,) + out.shape) for out in outputs] outputs = concatenate(outputs, 0) return outputs, 0 elif s_bdims is not None: #TODO(#212): use a map construct instead of unrolling. source = batching.moveaxis(source, s_bdims, 0) outputs = [ _select_and_scatter_add(s, operand, **kwargs) for s in source] outputs = [reshape(out, (1,) + out.shape) for out in outputs] outputs = concatenate(outputs, 0) return outputs, 0 elif o_bdims is not None: #TODO(#212): use a map construct instead of unrolling. operand = batching.moveaxis(operand, o_bdims, 0) outputs = [ _select_and_scatter_add(source, o, **kwargs) for o in operand] outputs = [reshape(out, (1,) + out.shape) for out in outputs] outputs = concatenate(outputs, 0) return outputs, 0 select_and_scatter_add_p = standard_primitive( _select_and_scatter_add_shape_rule, _input_dtype, 'select_and_scatter_add', _select_and_scatter_add_translation) ad.primitive_transposes[select_and_scatter_add_p] = \ _select_and_scatter_add_transpose ad.primitive_jvps[select_and_scatter_add_p] = _select_and_scatter_add_jvp batching.primitive_batchers[select_and_scatter_add_p] = \ _select_and_scatter_add_batch_rule def _select_and_gather_add_shape_rule( tangents, operand, *, select_prim, window_dimensions, window_strides, padding): if tangents.shape != operand.shape: msg = ("select_and_gather_add tangents and operand shapes must match, " "got {} and {}.") raise TypeError(msg.format(tangents.shape, operand.shape)) return _common_reduce_window_shape_rule(operand, window_dimensions, window_strides, padding) _UINT_DTYPES = { 16: onp.uint16, 32: onp.uint32, 64: onp.uint64, } _INT_DTYPES = { 16: onp.int16, 32: onp.int32, 64: onp.int64, } def _select_and_gather_add_translation( c, tangents, operand, *, select_prim, window_dimensions, window_strides, padding, max_bits=64): shape = c.get_shape(operand) dtype = shape.numpy_dtype() etype = shape.xla_element_type() nbits = dtypes.finfo(dtype).bits assert nbits <= max_bits double_word_reduction = nbits * 2 <= max_bits const = lambda c, dtype, x: xb.constant(c, onp.array(x, dtype=dtype), canonicalize_types=False) if double_word_reduction: # TODO(b/73062247): XLA doesn't yet implement ReduceWindow on tuples, so # we implement a pair-wise ReduceWindow by packing two k-bit values into # 2k-bit unsigned integer using bit tricks. word_dtype = _UINT_DTYPES[nbits] double_word_dtype = _UINT_DTYPES[nbits * 2] word_type = xla_client.dtype_to_etype(word_dtype) double_word_type = xla_client.dtype_to_etype(double_word_dtype) # Packs two values into a tuple. def pack(a, b): a = xops.BitcastConvertType(a, word_type) b = xops.BitcastConvertType(b, word_type) a = xops.ConvertElementType(a, double_word_type) b = xops.ConvertElementType(b, double_word_type) a = xops.ShiftLeft(a, const(c, double_word_dtype, nbits)) return xops.Or(a, b) # Unpacks the first element of a tuple. def fst(c, t): st = xops.ShiftRightLogical(t, const(c, double_word_dtype, nbits)) return xops.BitcastConvertType(xops.ConvertElementType(st, word_type), etype) # Unpacks the second element of a tuple. def snd(t): return xops.BitcastConvertType(xops.ConvertElementType(t, word_type), etype) else: # The double-word trick above only works if we have a sufficiently large # type. As an alternative, we can pack two half words into a single word, # at the cost of precision. # TODO(b/73062247): add support for tuple reductions and remove this case. warnings.warn("Using reduced precision for gradient of reduce-window " "min/max operator to work around missing XLA support for " "pair-reductions. This is likely from a second or " "higher derivative of a max-pooling operation.") r_nbits = nbits // 2 # Drop/round the bottom mantissa bits. nexp = dtypes.finfo(dtype).nexp nmant = r_nbits - nexp - 1 double_word_dtype = word_dtype = _UINT_DTYPES[nbits] word_type = xla_client.dtype_to_etype(word_dtype) # Packs two values into a tuple. def pack(a, b): a = xops.ReducePrecision(a, exponent_bits=nexp, mantissa_bits=nmant) b = xops.ReducePrecision(b, exponent_bits=nexp, mantissa_bits=nmant) a = xops.BitcastConvertType(a, word_type) b = xops.BitcastConvertType(b, word_type) b = xops.ShiftRightLogical(b, const(c, word_dtype, r_nbits)) return xops.Or(a, b) # Unpacks the first element of a tuple. def fst(c, t): st = xops.And(t, const(c, word_dtype, ((1 << r_nbits) - 1) << r_nbits)) return xops.BitcastConvertType(st, etype) # Unpacks the second element of a tuple. def snd(t): return xops.BitcastConvertType(xops.ShiftLeft(t, const(c, word_dtype, r_nbits)), etype) def reducer(): c = xla_bridge.make_computation_builder("select_and_gather_pair_reducer") x = xb.parameter(c, 0, xla_client.Shape.array_shape(onp.dtype(double_word_dtype), ())) y = xb.parameter(c, 1, xla_client.Shape.array_shape(onp.dtype(double_word_dtype), ())) assert select_prim is ge_p or select_prim is le_p which = xops.Ge if select_prim is ge_p else xops.Le xops.Select(which(fst(c, x), fst(c, y)), x, y) return c.build() assert select_prim is ge_p or select_prim is le_p, select_prim init = -onp.inf if select_prim is ge_p else onp.inf pads = xc.window_padding_type_to_pad_values( padding, c.get_shape(operand).dimensions(), window_dimensions, window_strides) out = xops.ReduceWindowWithGeneralPadding( pack(operand, tangents), pack(const(c, dtype, init), const(c, dtype, 0)), reducer(), window_dimensions, window_strides, (), (), pads) return snd(out) def _select_and_gather_add_jvp( primals, tangents, *, select_prim, window_dimensions, window_strides, padding): source, operand = primals g_source, g_operand = tangents val_out = _select_and_gather_add( source, operand, select_prim, window_dimensions, window_strides, padding) del g_operand if g_source is ad_util.zero: tangent_out = ad_util.zero else: tangent_out = _select_and_gather_add( g_source, operand, select_prim, window_dimensions, window_strides, padding) return val_out, tangent_out def _select_and_gather_add_transpose( t, tangents, operand, *, select_prim, window_dimensions, window_strides, padding): assert ad.is_undefined_primal(tangents) and not ad.is_undefined_primal(operand) result = _select_and_scatter_add(t, operand, select_prim, window_dimensions, window_strides, padding) return [result, None] def _select_and_gather_add_batching_rule( batched_args, batch_dims, *, select_prim, window_dimensions, window_strides, padding): t, x = batched_args t_bdim, x_bdim = batch_dims size = next(a.shape[bdim] for a, bdim in zip(batched_args, batch_dims) if bdim is not None) t = batching.bdim_at_front(t, t_bdim, size) x = batching.bdim_at_front(x, x_bdim, size) window_dimensions = (1,) + window_dimensions window_strides = (1,) + window_strides out = _select_and_gather_add(t, x, select_prim, window_dimensions, window_strides, padding) return (out, 0) select_and_gather_add_p = standard_primitive( _select_and_gather_add_shape_rule, _input_dtype, 'select_and_gather_add', _select_and_gather_add_translation) ad.primitive_jvps[select_and_gather_add_p] = _select_and_gather_add_jvp ad.primitive_transposes[select_and_gather_add_p] = \ _select_and_gather_add_transpose batching.primitive_batchers[select_and_gather_add_p] = \ _select_and_gather_add_batching_rule xla.backend_specific_translations['tpu'][select_and_gather_add_p] = partial( _select_and_gather_add_translation, max_bits=32) # Parallel prefix-scan. See: # https://developer.nvidia.com/gpugems/gpugems3/part-vi-gpu-computing/chapter-39-parallel-prefix-sum-scan-cuda # and # Blelloch, Guy E. 1990. "Prefix Sums and Their Applications.", Technical Report # CMU-CS-90-190, School of Computer Science, Carnegie Mellon University. # # Unlike the Blelloch algorithm, we use an out-of-place algorithm that uses 2n # space. This is somewhat wasteful if we are interested only in the output of # the forward pass, but more memory-efficient if we intend to differentiate # through the implementation of the scan. def _prescan_power_of_two(x, axis: int, op: Callable, unit): n = x.shape[axis] assert n != 0 and n & (n - 1) == 0, "n must be a power of 2" # Upsweep xs = [] for d in range(0, n.bit_length() - 1): x1 = slice_in_dim(x, 0, None, stride=2, axis=axis) xs.append(x1) x2 = slice_in_dim(x, 1, None, stride=2, axis=axis) x = op(x1, x2) total = x # Downsweep x = full_like(total, unit) pad_left = [(0, 0, 0)] * len(x.shape) pad_left[axis] = (1, 0, 1) pad_right = [(0, 0, 0)] * len(x.shape) pad_right[axis] = (0, 1, 1) for w in reversed(xs): x1 = pad(x, _const(x, 0), pad_right) x2 = pad(x, _const(x, 0), pad_left) w = pad(w, _const(x, 0), pad_left) x = x1 + op(x2, w) return x, total def _parallel_prefix_scan(x, axis: int, op: Callable, unit): n = x.shape[axis] if n == 0: return x # Pads to the next largest power of two nbits = n.bit_length() if n == (1 << (nbits - 1)): nbits -= 1 padding = [(0, 0, 0)] * len(x.shape) padding[axis] = (0, (1 << nbits) - n, 0) x = pad(x, _const(x, unit), padding) x, total = _prescan_power_of_two(x, axis, op, unit) return concatenate((slice_in_dim(x, 1, n, axis=axis), total), dimension=axis) _cumsum_prefix_scan = partial(_parallel_prefix_scan, op=add, unit=0) _cumprod_prefix_scan = partial(_parallel_prefix_scan, op=mul, unit=1) def _cumred_shape_rule(x, *, axis: int): if axis < 0 or axis >= x.ndim: raise ValueError( "axis {} is out of bounds for array of shape {}".format(axis, x.shape)) return x.shape def _cumsum_transpose_rule(t, *, axis: int): return [rev(cumsum(rev(t, (axis,)), axis=axis), (axis,))] def _cumprod_jvp_rule(primals, tangents, *, axis: int): # Irrespective of backend, we always use the parallel prefix scan # implementation when differentiating because reduce_window is not # arbitrarily differentiable. return api.jvp(partial(_cumprod_prefix_scan, axis=axis), primals, tangents) def _cumred_tpu_translation_rule(window_reduce: Callable, unit, x, *, axis: int): # On TPU, an implementation using reduce_window is handled specially by the # compiler and is efficient. On other backends, it is O(n^2). n = x.shape[axis] if n == 0: return x padding = [(0, 0, 0)] * x.ndim padding[axis] = (n - 1, 0, 0) x = pad(x, _const(x, unit), padding) strides = [1] * x.ndim window_dims = [1] * x.ndim window_dims[axis] = n return window_reduce(x, window_dims, strides, xla_client.PaddingType.VALID) def _cumred_batch_rule(prim, batched_args, batch_dims, *, axis: int): operand, = batched_args bdim, = batch_dims axis = axis if axis < bdim else axis + 1 return prim.bind(operand, axis=axis), bdim cumsum_p = standard_primitive( _cumred_shape_rule, partial(_reduce_number_dtype_rule, "cumsum"), 'cumsum', xla.lower_fun(_cumsum_prefix_scan, multiple_results=False)) ad.deflinear(cumsum_p, _cumsum_transpose_rule) xla.backend_specific_translations['tpu'][cumsum_p] = xla.lower_fun( partial(_cumred_tpu_translation_rule, _reduce_window_sum, 0), multiple_results=False) batching.primitive_batchers[cumsum_p] = partial(_cumred_batch_rule, cumsum_p) cumprod_p = standard_primitive( _cumred_shape_rule, partial(_reduce_number_dtype_rule, "cumprod"), 'cumprod', xla.lower_fun(_cumprod_prefix_scan, multiple_results=False)) ad.primitive_jvps[cumprod_p] = _cumprod_jvp_rule xla.backend_specific_translations['tpu'][cumprod_p] = xla.lower_fun( partial(_cumred_tpu_translation_rule, _reduce_window_prod, 1), multiple_results=False) batching.primitive_batchers[cumprod_p] = partial(_cumred_batch_rule, cumprod_p) def _sort_abstract_eval(*args, **kwargs): args = tuple(raise_to_shaped(arg) for arg in args) if any(arg.shape != args[0].shape for arg in args[1:]): shapes = " ".join(str(a.shape) for a in args) raise TypeError(f"Arguments to sort must have equal shapes, got: {shapes}") return args def _float_to_int_for_sort(x): # Switch from a floating point value to a integer value in such a way that # when using the integer value to compare, we get the same result for normal # values, and -nan is treated as the smallest value, and nan is treated as # the largest value. # If f is a float, and # x = bit_cast<int32>(f); # y = x < 0 ? int32_max - x : x; # then y is ordered as an int32 such that finite values have the obvious # order, -0 is ordered before 0, and -NaN and NaN appear at the beginning # and end of the ordering. # Note that in order to avoid -x to overflow, we calculate # int32_max - x as unsigned, and then convert back to signed. if x.dtype == dtypes.bfloat16: x = convert_element_type(x, onp.float32) nbits = onp.finfo(x).bits signed_dtype = _INT_DTYPES[nbits] unsigned_dtype = _UINT_DTYPES[nbits] signed = bitcast_convert_type(x, signed_dtype) unsigned = bitcast_convert_type(x, unsigned_dtype) flipped = bitcast_convert_type( sub(unsigned_dtype(onp.iinfo(signed_dtype).max), unsigned), signed_dtype) return select(lt(signed, _zero(signed)), flipped, signed) # Default comparator that sorts the operands only on their first arguments. # For floating point types, a total order is created where # -NaN < -infinity < ... < -0 < 0 < ... < infinity < NaN. # For complex types, the (real, imag) pairs are sorted lexicographically # (following NumPy's semantics). # This code adds complex-number support to the algorithm from: # https://github.com/tensorflow/tensorflow/blob/ba43780830f09da72081fe5061c436f1c6203a92/tensorflow/compiler/xla/client/lib/comparators.h#L33 def _sort_lt_comparator(*operands): assert len(operands) >= 2 and len(operands) % 2 == 0, operands x, y = operands[:2] assert x.dtype == y.dtype, (x.dtype, y.dtype) if onp.issubdtype(x.dtype, onp.complexfloating): x_keys = [_float_to_int_for_sort(real(x)), _float_to_int_for_sort(imag(x))] y_keys = [_float_to_int_for_sort(real(y)), _float_to_int_for_sort(imag(y))] elif onp.issubdtype(x.dtype, onp.floating): x_keys = [_float_to_int_for_sort(x)] y_keys = [_float_to_int_for_sort(y)] else: x_keys = [x] y_keys = [y] p = None for xk, yk in zip(x_keys[::-1], y_keys[::-1]): p = (bitwise_or(lt(xk, yk), bitwise_and(eq(xk, yk), p)) if p is not None else lt(xk, yk)) return p def _sort_translation_rule(c, *operands, dimension): types = [c.get_shape(x).xla_element_type() for x in operands] subc = xla_bridge.make_computation_builder("sort_lt_comparator") params = [xb.parameter(subc, 2 * i + j, xc.Shape.array_shape(typ, ())) for i, typ in enumerate(types) for j in range(2)] result = xla.lower_fun(_sort_lt_comparator, multiple_results=False)(subc, *params) comparator = subc.build(result) out = xops.Sort(c, operands, dimension=dimension, is_stable=True, comparator=comparator) return out if len(operands) != 1 else xops.Tuple(c, [out]) def _sort_jvp(primals, tangents, *, dimension): shape = primals[0].shape iotas = [] for dim, size in enumerate(shape): dtype = onp.int32 if size < onp.iinfo(onp.int32).max else onp.int64 iotas.append(broadcasted_iota(dtype, shape, dim)) primals = sort_p.bind(*(primals + (iotas[dimension],)), dimension=dimension) idx = tuple(primals[-1] if i == dimension else iotas[i] for i in range(len(shape))) tangents_out = tuple(ad_util.zero if t is ad_util.zero else t[idx] for t in tangents) return tuple(primals[:-1]), tangents_out def _sort_batch_rule(batched_args, batch_dims, *, dimension): prototype_arg, new_bdim = next( (a, b) for a, b in zip(batched_args, batch_dims) if b is not None) new_args = [] for arg, bdim in zip(batched_args, batch_dims): if bdim is None: dims = onp.delete(onp.arange(prototype_arg.ndim), new_bdim) new_args.append(broadcast_in_dim(arg, prototype_arg.shape, dims)) else: new_args.append(batching.moveaxis(arg, bdim, new_bdim)) new_dimension = dimension + (new_bdim <= dimension) bdims = (new_bdim,) * len(new_args) return sort_p.bind(*new_args, dimension=new_dimension), bdims sort_p = Primitive('sort') sort_p.multiple_results = True sort_p.def_impl(partial(xla.apply_primitive, sort_p)) sort_p.def_abstract_eval(_sort_abstract_eval) xla.translations[sort_p] = _sort_translation_rule ad.primitive_jvps[sort_p] = _sort_jvp batching.primitive_batchers[sort_p] = _sort_batch_rule def _top_k_abstract_eval(operand, *, k): if k < 0: raise ValueError("k argument to top_k must be nonnegative, got {}".format(k)) if len(operand.shape) == 0: raise TypeError("top_k operand must have >= 1 dimension, got {}" .format(operand.shape)) shape = list(operand.shape) if shape[-1] < k: msg = "k argument to top_k must be no larger than minor dimension; {} vs {}" raise ValueError(msg.format(k, shape)) shape[-1] = k return (ShapedArray(shape, operand.dtype), ShapedArray(shape, onp.dtype(onp.int32))) def _top_k_jvp(primals, tangents, *, k): operand, = primals tangent, = tangents primals_out = top_k(operand, k) if tangent is ad_util.zero: tangents_out = (ad_util.zero, ad_util.zero) else: _, k_idxs = primals_out idx_shape = k_idxs.shape rank = len(idx_shape) gather_index_shape = idx_shape + (1,) gather_indices = [] for i in range(rank-1): _iota = iota(k_idxs.dtype, idx_shape[i]) _iota = tie_in(operand, _iota) _iota = broadcast_in_dim(_iota, gather_index_shape, (i,)) gather_indices.append(_iota) gather_indices.append(reshape(k_idxs, gather_index_shape)) gather_indices = concatenate(gather_indices, dimension=rank) slice_sizes = (1,) * rank dnums = GatherDimensionNumbers( offset_dims=(), collapsed_slice_dims=tuple(range(rank)), start_index_map=tuple(range(rank))) tangents_out = (gather(tangent, gather_indices, dnums, slice_sizes), ad_util.zero) return primals_out, tangents_out def _top_k_batch_rule(batched_args, batch_dims, *, k): operand, = batched_args bdim, = batch_dims if bdim == operand.ndim-1: perm = onp.arange(operand.ndim) perm[bdim-1], perm[bdim] = perm[bdim], perm[bdim-1] top_k_v, top_k_i = top_k(transpose(operand, perm), k=k) return (transpose(top_k_v, perm), transpose(top_k_i, perm)), (bdim, bdim) else: return top_k(operand, k=k), (bdim, bdim) top_k_p = Primitive('top_k') top_k_p.multiple_results = True top_k_p.def_impl(partial(xla.apply_primitive, top_k_p)) top_k_p.def_abstract_eval(_top_k_abstract_eval) xla.translations[top_k_p] = partial(standard_translate, 'top_k') ad.primitive_jvps[top_k_p] = _top_k_jvp batching.primitive_batchers[top_k_p] = _top_k_batch_rule def _tie_in_transpose_rule(t): return [ad_util.zero, t] def _tie_in_batch_rule(batched_args, batch_dims): y = tie_in(*batched_args) _, bdim_y = batch_dims return y, bdim_y tie_in_p = Primitive('tie_in') tie_in_p.def_impl(lambda x, y: y) tie_in_p.def_abstract_eval(lambda x, y: raise_to_shaped(y)) xla.translations[tie_in_p] = lambda c, x, y: y ad.deflinear(tie_in_p, _tie_in_transpose_rule) batching.primitive_batchers[tie_in_p] = _tie_in_batch_rule masking.masking_rules[tie_in_p] = lambda vals, logical_shapes: vals[1] def _stop_gradient_jvp_rule(primals, tangents): # if we don't call stop_gradient here, we'd only peel off one autodiff tracer x, = primals return stop_gradient(x), ad_util.zero def _stop_gradient_batch_rule(batched_args, batch_dims): x, = batched_args dim, = batch_dims return stop_gradient(x), dim xla.translations[ad_util.stop_gradient_p] = lambda c, x: x ad.primitive_jvps[ad_util.stop_gradient_p] = _stop_gradient_jvp_rule batching.primitive_batchers[ad_util.stop_gradient_p] = _stop_gradient_batch_rule def create_token(x): """Creates an XLA token value with no preconditions for sequencing effects. Experimental. Args: x: a dummy argument used to tie the CreateToken operator into a trace. The value of `x` is ignored. """ # x is a dummy argument used to tie the operator into a trace. return create_token_p.bind(x) create_token_p = Primitive("create_token") create_token_p.def_impl(partial(xla.apply_primitive, create_token_p)) create_token_p.def_abstract_eval(lambda _: abstract_token) xla.translations[create_token_p] = lambda c, _: xops.CreateToken(c) def after_all(*operands): """Merges one or more XLA token values. Experimental. Wraps the XLA AfterAll operator.""" return after_all_p.bind(*operands) def _after_all_abstract_eval(*operands): if any(x is not abstract_token for x in operands): raise TypeError("Arguments to after_all must be tokens") return abstract_token def _after_all_translation_rule(c, *operands): return xops.AfterAll(c, operands) after_all_p = Primitive("after_all") after_all_p.def_impl(partial(xla.apply_primitive, after_all_p)) after_all_p.def_abstract_eval(_after_all_abstract_eval) xla.translations[after_all_p] = _after_all_translation_rule def infeed(token, shape=None): """Consumes an infeed value of `shape` from the host. Experimental. `token` is used to sequence infeed and outfeed effects. """ flat_shapes, treedef = pytree.flatten(shape) for shape in flat_shapes: if not isinstance(shape, ShapedArray): raise TypeError("shape argument to infeed must be a pytree of " "ShapedArray values, got {}".format(shape)) xs_and_token = infeed_p.bind(token, shapes=tuple(flat_shapes)) return (treedef.unflatten(xs_and_token[:-1]), xs_and_token[-1]) def _infeed_abstract_eval(token, *, shapes): if token is not abstract_token: raise TypeError("First argument to infeed must be a token") return shapes + (abstract_token,) def _infeed_translation_rule(c, token, *, shapes): shape = tuple(xla.aval_to_xla_shape(x).with_major_to_minor_layout_if_absent() for x in shapes) xs_and_token = xops.InfeedWithToken(token, xla_client.Shape.tuple_shape(shape)) xs = xops.GetTupleElement(xs_and_token, 0) token = xops.GetTupleElement(xs_and_token, 1) outs = [xops.GetTupleElement(xs, i) for i in range(len(shapes))] + [token] return xops.Tuple(c, outs) infeed_p = Primitive("infeed") infeed_p.multiple_results = True infeed_p.def_impl(partial(xla.apply_primitive, infeed_p)) infeed_p.def_abstract_eval(_infeed_abstract_eval) xla.translations[infeed_p] = _infeed_translation_rule def outfeed(token, xs): """Outfeeds value `xs` to the host. Experimental. `token` is used to sequence infeed and outfeed effects. """ flat_xs, _ = pytree.flatten(xs) return outfeed_p.bind(token, *flat_xs) def _outfeed_abstract_eval(token, *xs): if token is not abstract_token: raise TypeError("First argument to outfeed must be a token") return abstract_token def _outfeed_translation_rule(c, token, *xs): t = xops.Tuple(c, xs) return xops.OutfeedWithToken(t, token, c.get_shape(t)) outfeed_p = Primitive("outfeed") outfeed_p.def_impl(partial(xla.apply_primitive, outfeed_p)) outfeed_p.def_abstract_eval(_outfeed_abstract_eval) xla.translations[outfeed_p] = _outfeed_translation_rule def rng_uniform(a, b, shape): """Stateful PRNG generator. Experimental and its use is discouraged. Returns uniformly distributed random numbers in the range [a, b) You should use jax.random for most purposes; this function exists only for niche use cases with special performance requirements. This API may be removed at any time. """ return rng_uniform_p.bind(a, b, shape=tuple(shape)) def _rng_uniform_abstract_eval(a, b, *, shape): if a.dtype != b.dtype: raise ValueError( "Arguments to rng_uniform must have identical dtypes, got {} " "and {}.".format(a.dtype, b.dtype)) if a.shape != () or b.shape != (): raise ValueError( "Arguments to rng_uniform must be scalars; got shapes {} and {}." .format(a.shape, b.shape)) return ShapedArray(shape, a.dtype) def _rng_uniform_translation_rule(c, a, b, *, shape): xla_shape = xc.Shape.array_shape(c.get_shape(a).xla_element_type(), shape) return xops.RngUniform(a, b, xla_shape) rng_uniform_p = Primitive("rng_uniform") rng_uniform_p.def_impl(partial(xla.apply_primitive, rng_uniform_p)) rng_uniform_p.def_abstract_eval(_rng_uniform_abstract_eval) xla.translations[rng_uniform_p] = _rng_uniform_translation_rule ### util _ndim = onp.ndim def _dilate_shape(shape, dilation): """Utility function for computing the shape resulting from a dilation.""" if not onp.all(onp.greater(dilation, 0)): msg = "All dilations must be positive, got {}." raise TypeError(msg.format(dilation)) dilation = (1,) * (len(shape) - len(dilation)) + tuple(dilation) return onp.where(shape == 0, 0, onp.multiply(dilation, onp.subtract(shape, 1)) + 1) def _ceil_divide(x1, x2): return -onp.floor_divide(onp.negative(x1), x2) def padtype_to_pads(in_shape, window_shape, window_strides, padding): """Convert padding string to list of pairs of pad values.""" PaddingType = xla_client.PaddingType if isinstance(padding, str): mapping = {'VALID': PaddingType.VALID, 'SAME': PaddingType.SAME} try: padding = mapping[padding.upper()] except KeyError as err: msg = "Unrecognized padding type: expected 'VALID' or 'SAME', got {}." raise RuntimeError(msg.format(padding)) from err if padding == PaddingType.SAME: out_shape = _ceil_divide(in_shape, window_strides) pad_sizes = onp.maximum(0, (out_shape - 1) * window_strides + window_shape - in_shape) return [(pad_size // 2, pad_size - pad_size // 2) for pad_size in pad_sizes] elif padding == PaddingType.VALID: return [(0, 0)] * len(in_shape) else: msg = "Unknown padding type: {}." raise TypeError(msg.format(padding)) def _check_same_dtypes(name, ignore_fp_precision, *ttypes): """Check that dtypes agree, possibly ignoring float precision.""" # the `ignore_fp_precision` flag exists because the XLA shape inference logic # allows mixed floating point precision, but the HLO verifier often rejects it types = list(map(onp.dtype, ttypes)) # canonicalize if ignore_fp_precision: types = [ onp.floating if dtypes.issubdtype(dtype, onp.floating) else onp.complexfloating if dtypes.issubdtype(dtype, onp.complexfloating) else dtype for dtype in types] if len({dtypes.canonicalize_dtype(t) for t in types}) != 1: if ignore_fp_precision: msg = ("{} requires arguments to have same dtypes up to floating point " "precision, got {}.") else: msg = "{} requires arguments to have the same dtypes, got {}." raise TypeError(msg.format(name, ", ".join(map(str, types)))) def _check_conv_shapes(name, lhs_shape, rhs_shape, window_strides): """Check that conv shapes are valid and are consistent with window_strides.""" if len(lhs_shape) != len(rhs_shape): msg = "Arguments to {} must have same rank, got {} and {}." raise TypeError(msg.format(name, len(lhs_shape), len(rhs_shape))) if len(lhs_shape) < 2: msg = "Arguments to {} must have rank at least 2, got {} and {}." raise TypeError(msg.format(name, len(lhs_shape), len(rhs_shape))) if lhs_shape[1] != rhs_shape[1]: msg = "Arguments to {} must agree on input feature size, got {} and {}." raise TypeError(msg.format(name, lhs_shape[1], rhs_shape[1])) _check_shapelike(name, "window_strides", window_strides) if not onp.all(onp.greater(window_strides, 0)): msg = "All elements of window_strides must be positive, got {}." raise TypeError(msg.format(window_strides)) if len(window_strides) != len(lhs_shape) - 2: msg = "{} window_strides has wrong length: expected {}, got {}." expected_length = len(lhs_shape) - 2 raise TypeError(msg.format(name, expected_length, len(window_strides))) def conv_shape_tuple(lhs_shape, rhs_shape, strides, pads, batch_group_count=1): """Compute the shape tuple of a conv given input shapes in canonical order.""" if isinstance(pads, str): pads = padtype_to_pads(lhs_shape[2:], rhs_shape[2:], strides, pads) if len(pads) != len(lhs_shape) - 2: msg = "Wrong number of explicit pads for convolution: expected {}, got {}." raise TypeError(msg.format(len(lhs_shape) - 2, len(pads))) lhs_padded = onp.add(lhs_shape[2:], onp.sum(onp.array(pads).reshape(-1, 2), axis=1)) out_space = onp.floor_divide( onp.subtract(lhs_padded, rhs_shape[2:]), strides) + 1 out_space = onp.maximum(0, out_space) assert lhs_shape[0] % batch_group_count == 0 out_shape = (lhs_shape[0] // batch_group_count, rhs_shape[0]) return tuple(out_shape + tuple(out_space)) def conv_general_shape_tuple(lhs_shape, rhs_shape, window_strides, padding, dimension_numbers): lhs_perm, rhs_perm, out_perm = conv_general_permutations(dimension_numbers) lhs_trans = onp.take(lhs_shape, lhs_perm) rhs_trans = onp.take(rhs_shape, rhs_perm) out_trans = conv_shape_tuple(lhs_trans, rhs_trans, window_strides, padding) return tuple(onp.take(out_trans, onp.argsort(out_perm))) def conv_transpose_shape_tuple(lhs_shape, rhs_shape, window_strides, padding, dimension_numbers): lhs_perm, rhs_perm, out_perm = conv_general_permutations(dimension_numbers) lhs_trans = onp.take(lhs_shape, lhs_perm) rhs_trans = onp.take(rhs_shape, rhs_perm) if isinstance(padding, str): padding = [_conv_transpose_padding(k, s, padding) for k,s in zip(rhs_trans[2:], window_strides)] padding = list(map(onp.sum, padding)) unpad_out_space = [(i-1) * s - k + 2 for i, k, s in zip(lhs_trans[2:], rhs_trans[2:], window_strides)] out_space = onp.sum([unpad_out_space, padding], axis=0).tolist() out_trans = tuple((lhs_trans[0], rhs_trans[0]) + tuple(out_space)) return tuple(onp.take(out_trans, onp.argsort(out_perm))) def _check_shapelike(fun_name, arg_name, obj): """Check that `obj` is a shape-like value (e.g. tuple of nonnegative ints).""" if not isinstance(obj, (tuple, list, onp.ndarray)): msg = "{} {} must be of type tuple/list/ndarray, got {}." raise TypeError(msg.format(fun_name, arg_name, type(obj))) # bool(obj) for an ndarray raises an error, so we check len if not len(obj): # pylint: disable=g-explicit-length-test return obj_arr = onp.array(obj) if obj_arr.ndim != 1: msg = "{} {} must be rank 1, got {}." raise TypeError(msg.format(obj_arr.ndim)) try: canonicalize_shape(obj_arr) except TypeError: msg = "{} {} must have every element be an integer type, got {}." raise TypeError(msg.format(fun_name, arg_name, tuple(map(type, obj)))) if not (obj_arr >= 0).all(): msg = "{} {} must have every element be nonnegative, got {}." raise TypeError(msg.format(fun_name, arg_name, obj)) def _dynamic_slice_indices(operand, start_indices): if not isinstance(start_indices, (tuple, list)): if start_indices.ndim != 1: raise ValueError("Slice indices must be a 1D sequence, got {}" .format(start_indices.shape)) start_indices = [reshape(slice(start_indices, [i], [i+1]), ()) for i in range(operand.ndim)] else: start_indices = [onp.asarray(i, dtype=dtypes.int_) if isinstance(i, int) else i for i in start_indices] if len(start_indices) != operand.ndim: msg = ("Length of slice indices must match number of operand dimensions ({} " "vs {})") raise ValueError(msg.format(len(start_indices), operand.shape)) # map int over operand.shape to raise any dynamic-shape errors return [select(lt(i, _const(i, 0)), add(i, _const(i, int(d))), i) for i, d in zip(start_indices, operand.shape)] def _const(example, val): if dtypes.is_python_scalar(example): return dtypes.scalar_type_of(example)(val) return onp.array(val, _dtype(example)) _zeros: Callable = partial(full_like, fill_value=0) _zero: Callable = partial(full_like, shape=(), fill_value=0) _ones: Callable = partial(full_like, fill_value=1) _one: Callable = partial(full_like, shape=(), fill_value=1) _twos: Callable = partial(full_like, fill_value=2) _two: Callable = partial(full_like, shape=(), fill_value=2) dtype: Callable = dtypes.result_type _dtype: Callable = dtypes.result_type def _iscomplex(x) -> bool: return dtypes.issubdtype(_dtype(x), onp.complexfloating) def ranges_like(*xs): start = 0 for x in xs: x_len = len(x) yield range(start, start + x_len) start += x_len def remaining(original, *removed_lists): blacklist = set(itertools.chain(*removed_lists)) return [i for i in original if i not in blacklist] def _canonicalize_precision(precision): if precision is None: return None if isinstance(precision, Precision): return precision else: msg = "Precision argument must be None or a lax.Precision value; got {}" raise ValueError(msg.format(precision)) def conv_dimension_numbers(lhs_shape, rhs_shape, dimension_numbers): """Converts convolution `dimension_numbers` to a `ConvDimensionNumbers`. Args: lhs_shape: tuple of nonnegative integers, shape of the convolution input. rhs_shape: tuple of nonnegative integers, shape of the convolution kernel. dimension_numbers: None or a tuple/list of strings or a ConvDimensionNumbers object following the convolution dimension number specification format in xla_client.py. Returns: A `ConvDimensionNumbers` object that represents `dimension_numbers` in the canonical form used by lax functions. """ if isinstance(dimension_numbers, ConvDimensionNumbers): return dimension_numbers if len(lhs_shape) != len(rhs_shape): msg = "convolution requires lhs and rhs ndim to be equal, got {} and {}." raise TypeError(msg.format(len(lhs_shape), len(rhs_shape))) if dimension_numbers is None: iota = tuple(range(len(lhs_shape))) return ConvDimensionNumbers(iota, iota, iota) elif isinstance(dimension_numbers, (list, tuple)): if len(dimension_numbers) != 3: msg = "convolution dimension_numbers list/tuple must be length 3, got {}." raise TypeError(msg.format(len(dimension_numbers))) if not all(isinstance(elt, str) for elt in dimension_numbers): msg = "convolution dimension_numbers elements must be strings, got {}." raise TypeError(msg.format(tuple(map(type, dimension_numbers)))) msg = ("convolution dimension_numbers[{}] must have len equal to the ndim " "of lhs and rhs, got {} for lhs and rhs shapes {} and {}.") for i, elt in enumerate(dimension_numbers): if len(elt) != len(lhs_shape): raise TypeError(msg.format(i, len(elt), lhs_shape, rhs_shape)) lhs_spec, rhs_spec, out_spec = conv_general_permutations(dimension_numbers) return ConvDimensionNumbers(lhs_spec, rhs_spec, out_spec) else: msg = "convolution dimension_numbers must be tuple/list or None, got {}." raise TypeError(msg.format(type(dimension_numbers))) def conv_general_permutations(dimension_numbers): """Utility for convolution dimension permutations relative to Conv HLO.""" lhs_spec, rhs_spec, out_spec = dimension_numbers lhs_char, rhs_char, out_char = charpairs = ("N", "C"), ("O", "I"), ("N", "C") for i, (a, b) in enumerate(charpairs): if not dimension_numbers[i].count(a) == dimension_numbers[i].count(b) == 1: msg = ("convolution dimension_numbers[{}] must contain the characters " "'{}' and '{}' exactly once, got {}.") raise TypeError(msg.format(i, a, b, dimension_numbers[i])) if len(dimension_numbers[i]) != len(set(dimension_numbers[i])): msg = ("convolution dimension_numbers[{}] cannot have duplicate " "characters, got {}.") raise TypeError(msg.format(i, dimension_numbers[i])) if not (set(lhs_spec) - set(lhs_char) == set(rhs_spec) - set(rhs_char) == set(out_spec) - set(out_char)): msg = ("convolution dimension_numbers elements must each have the same " "set of spatial characters, got {}.") raise TypeError(msg.format(dimension_numbers)) def getperm(spec, charpair): spatial = (i for i, c in enumerate(spec) if c not in charpair) if spec is not rhs_spec: spatial = sorted(spatial, key=lambda i: rhs_spec.index(spec[i])) return (spec.index(charpair[0]), spec.index(charpair[1])) + tuple(spatial) lhs_perm, rhs_perm, out_perm = map(getperm, dimension_numbers, charpairs) return lhs_perm, rhs_perm, out_perm def _conv_general_proto(dimension_numbers): assert type(dimension_numbers) is ConvDimensionNumbers lhs_spec, rhs_spec, out_spec = dimension_numbers proto = xla_client.ConvolutionDimensionNumbers() proto.input_batch_dimension = lhs_spec[0] proto.input_feature_dimension = lhs_spec[1] proto.output_batch_dimension = out_spec[0] proto.output_feature_dimension = out_spec[1] proto.kernel_output_feature_dimension = rhs_spec[0] proto.kernel_input_feature_dimension = rhs_spec[1] proto.input_spatial_dimensions.extend(lhs_spec[2:]) proto.kernel_spatial_dimensions.extend(rhs_spec[2:]) proto.output_spatial_dimensions.extend(out_spec[2:]) return proto def _conv_general_vjp_lhs_padding( in_shape, window_dimensions, window_strides, out_shape, padding, lhs_dilation, rhs_dilation): lhs_dilated_shape = _dilate_shape(in_shape, lhs_dilation) rhs_dilated_shape = _dilate_shape(window_dimensions, rhs_dilation) out_dilated_shape = _dilate_shape(out_shape, window_strides) pad_before = onp.subtract(rhs_dilated_shape, [lo for lo, _ in padding]) - 1 pad_after = (onp.add(lhs_dilated_shape, rhs_dilated_shape) - 1 - out_dilated_shape - pad_before) return zip(pad_before, pad_after) def _conv_general_vjp_rhs_padding( in_shape, window_dimensions, window_strides, out_shape, padding, lhs_dilation, rhs_dilation): lhs_dilated_shape = _dilate_shape(in_shape, lhs_dilation) rhs_dilated_shape = _dilate_shape(window_dimensions, rhs_dilation) out_dilated_shape = _dilate_shape(out_shape, window_strides) total_in_pad = out_dilated_shape + rhs_dilated_shape - lhs_dilated_shape - 1 return [(pad[0], tot - pad[0]) for pad, tot in zip(padding, total_in_pad)] def _balanced_eq(x, z, y): return div(select(_eq_meet(x, z), _ones(z), _zeros(z)), select(_eq_meet(y, z), _twos(z), _ones(z))) def _eq_meet(a, b): a_dtype, b_dtype = _dtype(a), _dtype(b) if a_dtype != b_dtype: higher_dtype = dtypes.promote_types(a_dtype, b_dtype) if higher_dtype == a_dtype: a = convert_element_type(a, b_dtype) else: b = convert_element_type(b, a_dtype) return eq(a, b) def _abstractify(x): return raise_to_shaped(core.get_aval(x)) def _check_user_dtype_supported(dtype, fun_name=None): onp_dtype = onp.dtype(dtype) if onp_dtype.kind not in "biufc" and onp_dtype.type != dtypes.bfloat16: msg = f"JAX only supports number and bool dtypes, got dtype {dtype}" raise TypeError(msg) if dtype is not None and onp_dtype != dtypes.canonicalize_dtype(dtype): msg = ("Explicitly requested dtype {} {} is not available, " "and will be truncated to dtype {}. To enable more dtypes, set the " "jax_enable_x64 configuration option or the JAX_ENABLE_X64 shell " "environment variable. " "See https://github.com/google/jax#current-gotchas for more.") fun_name = "requested in {}".format(fun_name) if fun_name else "" truncated_dtype = dtypes.canonicalize_dtype(dtype).name warnings.warn(msg.format(dtype, fun_name , truncated_dtype)) def _canonicalize_axis(axis, num_dims): """Canonicalize an axis in (-num_dims, num_dims) to [0, num_dims).""" axis = int(axis) if axis < 0: axis = axis + num_dims if axis < 0 or axis >= num_dims: raise ValueError( "axis {} is out of bounds for array of dimension {}".format( axis, num_dims)) return axis
"""Top-level package for santa-helpers.""" __author__ = """Magdalena Rother""" __email__ = 'rother.magdalena@gmail.com' __version__ = '0.0.1' from .neighbors import neighbors # noqa from .parse import parse_grid_to_dict # noqa
import os import sys import pytest sys.path.insert(0, os.path.abspath(os.path.dirname(__file__))) from base import TestBaseClass class TestClassOelintVarsBugtrackerIsUrl(TestBaseClass): @pytest.mark.parametrize('id', ['oelint.vars.bugtrackerisurl']) @pytest.mark.parametrize('occurrence', [1]) @pytest.mark.parametrize('input', [ { 'oelint_adv_test.bb': ''' BUGTRACKER = "what_/the/f" ''' }, { 'oelint_adv_test.bb': ''' BUGTRACKER = "what_/the/f" ''' }, ], ) def test_bad(self, input, id, occurrence): self.check_for_id(self._create_args(input), id, occurrence) @pytest.mark.parametrize('id', ['oelint.vars.bugtrackerisurl']) @pytest.mark.parametrize('occurrence', [0]) @pytest.mark.parametrize('input', [ { 'oelint_adv_test.bb': ''' BUGTRACKER = "https://foo.com" ''' }, ], ) def test_good(self, input, id, occurrence): self.check_for_id(self._create_args(input), id, occurrence)
from django.apps import AppConfig class SpacetradingConfig(AppConfig): name = 'spacetrading'
#!/usr/bin/python3 """ Beautiful command line parsing @author chairs """ import inspect, sys from collections import namedtuple from collections import defaultdict from subprocess import DEVNULL class Cookie (object): """ Main decorator object @param name of application """ def __init__ (self, app_name, notes=()): self.optarg = namedtuple('optarg', ['full', 'abbrev', 'default']) self.name = str(app_name) self.notes = notes def __parse (self, args): """ Parse command line arguments from argv, built to be simple and as fast as possible to avoid application overhead @param command line arguments @return necessary destinations and identifiers """ ordered = list(); full = abbrev = dict() args = args + [''] i = 0 while i < len(args) - 1: token = args[i] next_token = args[i + 1] # the full argument case if token.startswith('--'): if next_token.startswith('-'): raise ValueError('{} incomplete'.format(token)) else: full[token[2:]] = next_token i += 2 # the shorthand argument case (more common) elif token.startswith('-'): if next_token.startswith('-'): raise ValueError('{} incomplete'.format(token)) else: abbrev[token[1:]] = next_token i += 2 else: ordered.append(token) i += 1 return ordered, full, abbrev def __construct_ordered (self, params): """ Build the ordered parameters (those without flags, positional) @param parameters from parse @return all exclusively oredered arguments """ return [key for key, arg in params.items() if arg.default == inspect._empty] def __construct_optional (self, params): """ Build the optional parameters (those with flags, switches) @param parameters from parse @return all exclusively optional arguments """ args = [] filtered = { key: arg.default for key, arg in params.items() if arg.default != inspect._empty} for key, default in filtered.items(): arg = self.optarg(full=key, abbrev=key[0].lower(), default=default) args.append(arg) args_full = args_abbrev = dict() # resolve possible conflicts known_count = defaultdict(int) for arg in args: args_full[arg.full] = arg if known_count[arg.abbrev] == 0: args_abbrev[arg.abbrev] = arg elif known_count[arg.abbrev] == 1: # establish abbreviation new_abbrev = arg.apprev.upper() args_full[arg.full] = self.optarg( full=arg.full, abbrev=new_abbrev, default=arg.default) args_abbrev[new_abbrev] = args_full[arg.full] else: new_abbrev = arg.apprev.upper() + str(known_count[arg.abbrev]) args_full[arg.full] = self.optarg( full=arg.full, abbrev=new_abbrev, default=arg.default) args_abbrev[new_abbrev] = args_full[arg.full] known_count[arg.abbrev] += 1 return args_full, args_abbrev def __resolve (self, args, signature): """ Resolve arguments final destinations @param args arguments from construction @param signatures @return final destinations """ ordered, opt_parsed_full, opt_parsed_abbrev = self.__parse(args[1:]) ordered_def = self.__construct_ordered(signature.parameters) if len(ordered) != len(ordered_def): raise Exception('wrong number of oredered arguments') opt_parsed = dict() opt_parsed.update(opt_parsed_full) opt_parsed.update(opt_parsed_abbrev) opt_def_full, opt_def_abbrev = self.__construct_optional(signature.parameters) optional = {o.full: o.default for o in opt_def_full.values()} opt_def = dict() opt_def.update(opt_def_full) opt_def.update(opt_def_abbrev) for key, value in opt_parsed.items(): if key not in opt_def: raise Exception('resolution error') d = opt_def[key] optional[d.full] = value return ordered, optional def __usage_outline (self, signature): """ Nice formatted help message to outline usage @param signature for arguments """ ordered = self.__construct_ordered(signature.parameters) full, _ = self.__construct_optional(signature.parameters) ordered_str = ' '.join(name.upper() for name in ordered) optional_str = ' '.join('\n[-{} | --{} {}],'.format( opt.abbrev, opt.full, opt.full.upper()) for opt in full.values()) optional_str = ''.join(optional_str.split(',')[::2]) return '{} {}'.format(ordered_str, optional_str) def get_args (self, function): """ The main decorator, the glue """ def wrapper (): sig = inspect.signature(function) try: ordered, optional = self.__resolve(sys.argv, sig) except Exception: self.outline = ('Usage: ', sys.argv[0], self.__usage_outline(sig,)) print(*self.outline) if not self.notes == (): print('\n'.join(self.notes) + '\n'+'\t'*1 + 'respectively') return function(*ordered, **optional) return wrapper def run (self, function_name, silent=False): restore = sys.stdout if silent: sys.stdout = open('/dev/null', 'w').close() function_name() sys.stdout = restore
# -*- coding: utf-8 -*- import time import datetime from aiocron import asyncio from aiocron import crontab import pytest class CustomError(Exception): pass def test_str(): loop = asyncio.new_event_loop() @crontab('* * * * * *', loop=loop) def t(): pass assert '* * * * *' in str(t) def test_cron(): loop = asyncio.new_event_loop() future = asyncio.Future(loop=loop) @crontab('* * * * * *', start=False, loop=loop) def t(): future.set_result(1) t.start() loop.run_until_complete(future) t.stop() assert future.result() == 1 def test_raise(): loop = asyncio.new_event_loop() future = asyncio.Future(loop=loop) @crontab('* * * * * *', start=False, loop=loop) def t(): loop.call_later(1, future.set_result, 1) raise ValueError() t.start() loop.run_until_complete(future) t.stop() assert future.result() == 1 def test_next(): loop = asyncio.new_event_loop() def t(): return 1 t = crontab('* * * * * *', func=t, loop=loop) future = asyncio.ensure_future(t.next(), loop=loop) loop.run_until_complete(future) assert future.result() == 1 def test_null_callback(): loop = asyncio.new_event_loop() t = crontab('* * * * * *', loop=loop) assert t.handle is None # not started future = asyncio.ensure_future(t.next(4), loop=loop) loop.run_until_complete(future) assert future.result() == (4,) def test_next_raise(): loop = asyncio.new_event_loop() @crontab('* * * * * *', loop=loop) def t(): raise CustomError() future = asyncio.ensure_future(t.next(), loop=loop) with pytest.raises(CustomError): loop.run_until_complete(future) def test_coro_next(): loop = asyncio.new_event_loop() @crontab('* * * * * *', loop=loop) async def t(): return 1 future = asyncio.ensure_future(t.next(), loop=loop) loop.run_until_complete(future) assert future.result() == 1 def test_coro_next_raise(): loop = asyncio.new_event_loop() @crontab('* * * * * *', loop=loop) async def t(): raise CustomError() future = asyncio.ensure_future(t.next(), loop=loop) with pytest.raises(CustomError): loop.run_until_complete(future) def test_next_dst(monkeypatch): now = datetime.datetime.now() class mydatetime: @classmethod def now(cls, tzinfo=None): return datetime.datetime( now.year + 1, 10, 29, 2, 58, 58, tzinfo=tzinfo ) monkeypatch.setattr('aiocron.datetime', mydatetime) monkeypatch.setattr('dateutil.tz.time.timezone', -3600) monkeypatch.setattr('dateutil.tz.time.altzone', -7200) monkeypatch.setattr('dateutil.tz.time.daylight', 1) monkeypatch.setattr('dateutil.tz.time.tzname', ('CET', 'CEST')) loop = asyncio.new_event_loop() t = crontab('* * * * *', loop=loop) t.initialize() # last hit in DST a = t.get_next() time.sleep(3) # first hit after DST b = t.get_next() assert b - a == 60
# Copyright 2010 United States Government as represented by the # Administrator of the National Aeronautics and Space Administration. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import copy import fixtures as fx import futurist import mock from oslo_config import cfg from oslo_db import exception as db_exc from oslo_log import log as logging from oslo_utils.fixture import uuidsentinel as uuids from oslo_utils import timeutils from oslo_utils import uuidutils from oslotest import output import sqlalchemy import testtools from nova.compute import rpcapi as compute_rpcapi from nova import conductor from nova import context from nova.db.sqlalchemy import api as session from nova import exception from nova.network import neutron as neutron_api from nova import objects from nova.objects import base as obj_base from nova.objects import service as service_obj from nova import test from nova.tests import fixtures from nova.tests.unit import conf_fixture from nova.tests.unit import fake_instance from nova import utils CONF = cfg.CONF class TestLogging(testtools.TestCase): def test_default_logging(self): stdlog = self.useFixture(fixtures.StandardLogging()) root = logging.getLogger() # there should be a null handler as well at DEBUG self.assertEqual(2, len(root.handlers), root.handlers) log = logging.getLogger(__name__) log.info("at info") log.debug("at debug") self.assertIn("at info", stdlog.logger.output) self.assertNotIn("at debug", stdlog.logger.output) # broken debug messages should still explode, even though we # aren't logging them in the regular handler self.assertRaises(TypeError, log.debug, "this is broken %s %s", "foo") # and, ensure that one of the terrible log messages isn't # output at info warn_log = logging.getLogger('migrate.versioning.api') warn_log.info("warn_log at info, should be skipped") warn_log.error("warn_log at error") self.assertIn("warn_log at error", stdlog.logger.output) self.assertNotIn("warn_log at info", stdlog.logger.output) def test_debug_logging(self): self.useFixture(fx.EnvironmentVariable('OS_DEBUG', '1')) stdlog = self.useFixture(fixtures.StandardLogging()) root = logging.getLogger() # there should no longer be a null handler self.assertEqual(1, len(root.handlers), root.handlers) log = logging.getLogger(__name__) log.info("at info") log.debug("at debug") self.assertIn("at info", stdlog.logger.output) self.assertIn("at debug", stdlog.logger.output) class TestOSAPIFixture(testtools.TestCase): @mock.patch('nova.objects.Service.get_by_host_and_binary') @mock.patch('nova.objects.Service.create') def test_responds_to_version(self, mock_service_create, mock_get): """Ensure the OSAPI server responds to calls sensibly.""" self.useFixture(output.CaptureOutput()) self.useFixture(fixtures.StandardLogging()) self.useFixture(conf_fixture.ConfFixture()) self.useFixture(fixtures.RPCFixture('nova.test')) api = self.useFixture(fixtures.OSAPIFixture()).api # request the API root, which provides us the versions of the API resp = api.api_request('/', strip_version=True) self.assertEqual(200, resp.status_code, resp.content) # request a bad root url, should be a 404 # # NOTE(sdague): this currently fails, as it falls into the 300 # dispatcher instead. This is a bug. The test case is left in # here, commented out until we can address it. # # resp = api.api_request('/foo', strip_version=True) # self.assertEqual(resp.status_code, 400, resp.content) # request a known bad url, and we should get a 404 resp = api.api_request('/foo') self.assertEqual(404, resp.status_code, resp.content) class TestDatabaseFixture(testtools.TestCase): def test_fixture_reset(self): # because this sets up reasonable db connection strings self.useFixture(conf_fixture.ConfFixture()) self.useFixture(fixtures.Database()) engine = session.get_engine() conn = engine.connect() result = conn.execute("select * from instance_types") rows = result.fetchall() self.assertEqual(0, len(rows), "Rows %s" % rows) # insert a 6th instance type, column 5 below is an int id # which has a constraint on it, so if new standard instance # types are added you have to bump it. conn.execute("insert into instance_types VALUES " "(NULL, NULL, NULL, 't1.test', 6, 4096, 2, 0, NULL, '87'" ", 1.0, 40, 0, 0, 1, 0)") result = conn.execute("select * from instance_types") rows = result.fetchall() self.assertEqual(1, len(rows), "Rows %s" % rows) # reset by invoking the fixture again # # NOTE(sdague): it's important to reestablish the db # connection because otherwise we have a reference to the old # in mem db. self.useFixture(fixtures.Database()) conn = engine.connect() result = conn.execute("select * from instance_types") rows = result.fetchall() self.assertEqual(0, len(rows), "Rows %s" % rows) def test_api_fixture_reset(self): # This sets up reasonable db connection strings self.useFixture(conf_fixture.ConfFixture()) self.useFixture(fixtures.Database(database='api')) engine = session.get_api_engine() conn = engine.connect() result = conn.execute("select * from cell_mappings") rows = result.fetchall() self.assertEqual(0, len(rows), "Rows %s" % rows) uuid = uuidutils.generate_uuid() conn.execute("insert into cell_mappings (uuid, name) VALUES " "('%s', 'fake-cell')" % (uuid,)) result = conn.execute("select * from cell_mappings") rows = result.fetchall() self.assertEqual(1, len(rows), "Rows %s" % rows) # reset by invoking the fixture again # # NOTE(sdague): it's important to reestablish the db # connection because otherwise we have a reference to the old # in mem db. self.useFixture(fixtures.Database(database='api')) conn = engine.connect() result = conn.execute("select * from cell_mappings") rows = result.fetchall() self.assertEqual(0, len(rows), "Rows %s" % rows) def test_fixture_cleanup(self): # because this sets up reasonable db connection strings self.useFixture(conf_fixture.ConfFixture()) fix = fixtures.Database() self.useFixture(fix) # manually do the cleanup that addCleanup will do fix.cleanup() # ensure the db contains nothing engine = session.get_engine() conn = engine.connect() schema = "".join(line for line in conn.connection.iterdump()) self.assertEqual(schema, "BEGIN TRANSACTION;COMMIT;") def test_api_fixture_cleanup(self): # This sets up reasonable db connection strings self.useFixture(conf_fixture.ConfFixture()) fix = fixtures.Database(database='api') self.useFixture(fix) # No data inserted by migrations so we need to add a row engine = session.get_api_engine() conn = engine.connect() uuid = uuidutils.generate_uuid() conn.execute("insert into cell_mappings (uuid, name) VALUES " "('%s', 'fake-cell')" % (uuid,)) result = conn.execute("select * from cell_mappings") rows = result.fetchall() self.assertEqual(1, len(rows), "Rows %s" % rows) # Manually do the cleanup that addCleanup will do fix.cleanup() # Ensure the db contains nothing engine = session.get_api_engine() conn = engine.connect() schema = "".join(line for line in conn.connection.iterdump()) self.assertEqual("BEGIN TRANSACTION;COMMIT;", schema) class TestDatabaseAtVersionFixture(testtools.TestCase): def test_fixture_schema_version(self): self.useFixture(conf_fixture.ConfFixture()) # In/after 317 aggregates did have uuid self.useFixture(fixtures.DatabaseAtVersion(318)) engine = session.get_engine() engine.connect() meta = sqlalchemy.MetaData(engine) aggregate = sqlalchemy.Table('aggregates', meta, autoload=True) self.assertTrue(hasattr(aggregate.c, 'uuid')) # Before 317, aggregates had no uuid self.useFixture(fixtures.DatabaseAtVersion(316)) engine = session.get_engine() engine.connect() meta = sqlalchemy.MetaData(engine) aggregate = sqlalchemy.Table('aggregates', meta, autoload=True) self.assertFalse(hasattr(aggregate.c, 'uuid')) engine.dispose() def test_fixture_after_database_fixture(self): self.useFixture(conf_fixture.ConfFixture()) self.useFixture(fixtures.Database()) self.useFixture(fixtures.DatabaseAtVersion(318)) class TestDefaultFlavorsFixture(testtools.TestCase): @mock.patch("nova.objects.flavor.Flavor._send_notification") def test_flavors(self, mock_send_notification): self.useFixture(conf_fixture.ConfFixture()) self.useFixture(fixtures.Database()) self.useFixture(fixtures.Database(database='api')) engine = session.get_api_engine() conn = engine.connect() result = conn.execute("select * from flavors") rows = result.fetchall() self.assertEqual(0, len(rows), "Rows %s" % rows) self.useFixture(fixtures.DefaultFlavorsFixture()) result = conn.execute("select * from flavors") rows = result.fetchall() self.assertEqual(6, len(rows), "Rows %s" % rows) class TestIndirectionAPIFixture(testtools.TestCase): def test_indirection_api(self): # Should initially be None self.assertIsNone(obj_base.NovaObject.indirection_api) # make sure the fixture correctly sets the value fix = fixtures.IndirectionAPIFixture('foo') self.useFixture(fix) self.assertEqual('foo', obj_base.NovaObject.indirection_api) # manually do the cleanup that addCleanup will do fix.cleanup() # ensure the initial value is restored self.assertIsNone(obj_base.NovaObject.indirection_api) class TestSpawnIsSynchronousFixture(testtools.TestCase): def test_spawn_patch(self): orig_spawn = utils.spawn_n fix = fixtures.SpawnIsSynchronousFixture() self.useFixture(fix) self.assertNotEqual(orig_spawn, utils.spawn_n) def test_spawn_passes_through(self): self.useFixture(fixtures.SpawnIsSynchronousFixture()) tester = mock.MagicMock() utils.spawn_n(tester.function, 'foo', bar='bar') tester.function.assert_called_once_with('foo', bar='bar') def test_spawn_return_has_wait(self): self.useFixture(fixtures.SpawnIsSynchronousFixture()) gt = utils.spawn(lambda x: '%s' % x, 'foo') foo = gt.wait() self.assertEqual('foo', foo) def test_spawn_n_return_has_wait(self): self.useFixture(fixtures.SpawnIsSynchronousFixture()) gt = utils.spawn_n(lambda x: '%s' % x, 'foo') foo = gt.wait() self.assertEqual('foo', foo) def test_spawn_has_link(self): self.useFixture(fixtures.SpawnIsSynchronousFixture()) gt = utils.spawn(mock.MagicMock) passed_arg = 'test' call_count = [] def fake(thread, param): self.assertEqual(gt, thread) self.assertEqual(passed_arg, param) call_count.append(1) gt.link(fake, passed_arg) self.assertEqual(1, len(call_count)) def test_spawn_n_has_link(self): self.useFixture(fixtures.SpawnIsSynchronousFixture()) gt = utils.spawn_n(mock.MagicMock) passed_arg = 'test' call_count = [] def fake(thread, param): self.assertEqual(gt, thread) self.assertEqual(passed_arg, param) call_count.append(1) gt.link(fake, passed_arg) self.assertEqual(1, len(call_count)) class TestSynchronousThreadPoolExecutorFixture(testtools.TestCase): def test_submit_passes_through(self): self.useFixture(fixtures.SynchronousThreadPoolExecutorFixture()) tester = mock.MagicMock() executor = futurist.GreenThreadPoolExecutor() future = executor.submit(tester.function, 'foo', bar='bar') tester.function.assert_called_once_with('foo', bar='bar') result = future.result() self.assertEqual(tester.function.return_value, result) class TestBannedDBSchemaOperations(testtools.TestCase): def test_column(self): column = sqlalchemy.Column() with fixtures.BannedDBSchemaOperations(['Column']): self.assertRaises(exception.DBNotAllowed, column.drop) self.assertRaises(exception.DBNotAllowed, column.alter) def test_table(self): table = sqlalchemy.Table() with fixtures.BannedDBSchemaOperations(['Table']): self.assertRaises(exception.DBNotAllowed, table.drop) self.assertRaises(exception.DBNotAllowed, table.alter) class TestAllServicesCurrentFixture(testtools.TestCase): @mock.patch('nova.objects.Service._db_service_get_minimum_version') def test_services_current(self, mock_db): mock_db.return_value = {'nova-compute': 123} self.assertEqual(123, service_obj.Service.get_minimum_version( None, 'nova-compute')) mock_db.assert_called_once_with(None, ['nova-compute'], use_slave=False) mock_db.reset_mock() compute_rpcapi.LAST_VERSION = 123 self.useFixture(fixtures.AllServicesCurrent()) self.assertIsNone(compute_rpcapi.LAST_VERSION) self.assertEqual(service_obj.SERVICE_VERSION, service_obj.Service.get_minimum_version( None, 'nova-compute')) self.assertFalse(mock_db.called) class TestNoopConductorFixture(testtools.TestCase): @mock.patch('nova.conductor.api.ComputeTaskAPI.resize_instance') def test_task_api_not_called(self, mock_resize): self.useFixture(fixtures.NoopConductorFixture()) conductor.ComputeTaskAPI().resize_instance() self.assertFalse(mock_resize.called) @mock.patch('nova.conductor.api.API.wait_until_ready') def test_api_not_called(self, mock_wait): self.useFixture(fixtures.NoopConductorFixture()) conductor.API().wait_until_ready() self.assertFalse(mock_wait.called) class TestSingleCellSimpleFixture(testtools.TestCase): def test_single_cell(self): self.useFixture(fixtures.SingleCellSimple()) cml = objects.CellMappingList.get_all(None) self.assertEqual(1, len(cml)) def test_target_cell(self): self.useFixture(fixtures.SingleCellSimple()) with context.target_cell(mock.sentinel.context, None) as c: self.assertIs(mock.sentinel.context, c) class TestWarningsFixture(test.TestCase): def test_invalid_uuid_errors(self): """Creating an oslo.versionedobject with an invalid UUID value for a UUIDField should raise an exception. """ valid_migration_kwargs = { "created_at": timeutils.utcnow().replace(microsecond=0), "updated_at": None, "deleted_at": None, "deleted": False, "id": 123, "uuid": uuids.migration, "source_compute": "compute-source", "dest_compute": "compute-dest", "source_node": "node-source", "dest_node": "node-dest", "dest_host": "host-dest", "old_instance_type_id": 42, "new_instance_type_id": 84, "instance_uuid": "fake-uuid", "status": "migrating", "migration_type": "resize", "hidden": False, "memory_total": 123456, "memory_processed": 12345, "memory_remaining": 111111, "disk_total": 234567, "disk_processed": 23456, "disk_remaining": 211111, } # this shall not throw FutureWarning objects.migration.Migration(**valid_migration_kwargs) invalid_migration_kwargs = copy.deepcopy(valid_migration_kwargs) invalid_migration_kwargs["uuid"] = "fake_id" self.assertRaises(FutureWarning, objects.migration.Migration, **invalid_migration_kwargs) class TestDownCellFixture(test.TestCase): def test_fixture(self): # The test setup creates two cell mappings (cell0 and cell1) by # default. Let's first list servers across all cells while they are # "up" to make sure that works as expected. We'll create a single # instance in cell1. ctxt = context.get_admin_context() cell1 = self.cell_mappings[test.CELL1_NAME] with context.target_cell(ctxt, cell1) as cctxt: inst = fake_instance.fake_instance_obj(cctxt) if 'id' in inst: delattr(inst, 'id') inst.create() # Now list all instances from all cells (should get one back). results = context.scatter_gather_all_cells( ctxt, objects.InstanceList.get_all) self.assertEqual(2, len(results)) self.assertEqual(0, len(results[objects.CellMapping.CELL0_UUID])) self.assertEqual(1, len(results[cell1.uuid])) # Now do the same but with the DownCellFixture which should result # in exception results from both cells. with fixtures.DownCellFixture(): results = context.scatter_gather_all_cells( ctxt, objects.InstanceList.get_all) self.assertEqual(2, len(results)) for result in results.values(): self.assertIsInstance(result, db_exc.DBError) def test_fixture_when_explicitly_passing_down_cell_mappings(self): # The test setup creates two cell mappings (cell0 and cell1) by # default. We'll create one instance per cell and pass cell0 as # the down cell. We should thus get db_exc.DBError for cell0 and # correct InstanceList object from cell1. ctxt = context.get_admin_context() cell0 = self.cell_mappings['cell0'] cell1 = self.cell_mappings['cell1'] with context.target_cell(ctxt, cell0) as cctxt: inst1 = fake_instance.fake_instance_obj(cctxt) if 'id' in inst1: delattr(inst1, 'id') inst1.create() with context.target_cell(ctxt, cell1) as cctxt: inst2 = fake_instance.fake_instance_obj(cctxt) if 'id' in inst2: delattr(inst2, 'id') inst2.create() with fixtures.DownCellFixture([cell0]): results = context.scatter_gather_all_cells( ctxt, objects.InstanceList.get_all) self.assertEqual(2, len(results)) for cell_uuid, result in results.items(): if cell_uuid == cell0.uuid: self.assertIsInstance(result, db_exc.DBError) else: self.assertIsInstance(result, objects.InstanceList) self.assertEqual(1, len(result)) self.assertEqual(inst2.uuid, result[0].uuid) def test_fixture_for_an_individual_down_cell_targeted_call(self): # We have cell0 and cell1 by default in the setup. We try targeting # both the cells. We should get a db error for the down cell and # the correct result for the up cell. ctxt = context.get_admin_context() cell0 = self.cell_mappings['cell0'] cell1 = self.cell_mappings['cell1'] with context.target_cell(ctxt, cell0) as cctxt: inst1 = fake_instance.fake_instance_obj(cctxt) if 'id' in inst1: delattr(inst1, 'id') inst1.create() with context.target_cell(ctxt, cell1) as cctxt: inst2 = fake_instance.fake_instance_obj(cctxt) if 'id' in inst2: delattr(inst2, 'id') inst2.create() def dummy_tester(ctxt, cell_mapping, uuid): with context.target_cell(ctxt, cell_mapping) as cctxt: return objects.Instance.get_by_uuid(cctxt, uuid) # Scenario A: We do not pass any down cells, fixture automatically # assumes the targeted cell is down whether its cell0 or cell1. with fixtures.DownCellFixture(): self.assertRaises( db_exc.DBError, dummy_tester, ctxt, cell1, inst2.uuid) # Scenario B: We pass cell0 as the down cell. with fixtures.DownCellFixture([cell0]): self.assertRaises( db_exc.DBError, dummy_tester, ctxt, cell0, inst1.uuid) # Scenario C: We get the correct result from the up cell # when targeted. result = dummy_tester(ctxt, cell1, inst2.uuid) self.assertEqual(inst2.uuid, result.uuid) class TestNeutronFixture(test.NoDBTestCase): def setUp(self): super(TestNeutronFixture, self).setUp() self.neutron = self.useFixture(fixtures.NeutronFixture(self)) def test_list_ports_with_resource_request_non_admin_client(self): ctxt = context.get_context() client = neutron_api.get_client(ctxt) ports = client.list_ports(ctxt)['ports'] port_id = self.neutron.port_with_resource_request['id'] ports = [port for port in ports if port_id == port['id']] self.assertIsNone(ports[0]['resource_request']) def test_list_ports_with_resource_request_admin_client(self): ctxt = context.get_admin_context() client = neutron_api.get_client(ctxt) ports = client.list_ports(ctxt)['ports'] port_id = self.neutron.port_with_resource_request['id'] ports = [port for port in ports if port_id == port['id']] self.assertIsNotNone(ports[0]['resource_request'])
"""Several HTML builders.""" import html import os import posixpath import re import sys from datetime import datetime from os import path from typing import IO, Any, Dict, Iterable, Iterator, List, Optional, Set, Tuple, Type from urllib.parse import quote from docutils import nodes from docutils.core import publish_parts from docutils.frontend import OptionParser from docutils.io import DocTreeInput, StringOutput from docutils.nodes import Node from docutils.utils import relative_path from sphinx import __display_version__, package_dir from sphinx import version_info as sphinx_version from sphinx.application import Sphinx from sphinx.builders import Builder from sphinx.config import ENUM, Config from sphinx.domains import Domain, Index, IndexEntry from sphinx.environment.adapters.asset import ImageAdapter from sphinx.environment.adapters.indexentries import IndexEntries from sphinx.environment.adapters.toctree import TocTree from sphinx.errors import ConfigError, ThemeError from sphinx.highlighting import PygmentsBridge from sphinx.locale import _, __ from sphinx.search import js_index from sphinx.theming import HTMLThemeFactory from sphinx.util import isurl, logging, md5, progress_message, status_iterator from sphinx.util.docutils import is_html5_writer_available, new_document from sphinx.util.fileutil import copy_asset from sphinx.util.i18n import format_date from sphinx.util.inventory import InventoryFile from sphinx.util.matching import DOTFILES, Matcher, patmatch from sphinx.util.osutil import copyfile, ensuredir, os_path, relative_uri from sphinx.util.tags import Tags from sphinx.writers.html import HTMLTranslator, HTMLWriter # HTML5 Writer is available or not if is_html5_writer_available(): from sphinx.writers.html5 import HTML5Translator html5_ready = True else: html5_ready = False #: the filename for the inventory of objects INVENTORY_FILENAME = 'objects.inv' logger = logging.getLogger(__name__) return_codes_re = re.compile('[\r\n]+') def get_stable_hash(obj: Any) -> str: """ Return a stable hash for a Python data structure. We can't just use the md5 of str(obj) since for example dictionary items are enumerated in unpredictable order due to hash randomization in newer Pythons. """ if isinstance(obj, dict): return get_stable_hash(list(obj.items())) elif isinstance(obj, (list, tuple)): obj = sorted(get_stable_hash(o) for o in obj) return md5(str(obj).encode()).hexdigest() def convert_locale_to_language_tag(locale: Optional[str]) -> Optional[str]: """Convert a locale string to a language tag (ex. en_US -> en-US). refs: BCP 47 (:rfc:`5646`) """ if locale: return locale.replace('_', '-') else: return None class Stylesheet(str): """A metadata of stylesheet. To keep compatibility with old themes, an instance of stylesheet behaves as its filename (str). """ attributes: Dict[str, str] = None filename: str = None priority: int = None def __new__(cls, filename: str, *args: str, priority: int = 500, **attributes: Any ) -> "Stylesheet": self = str.__new__(cls, filename) self.filename = filename self.priority = priority self.attributes = attributes self.attributes.setdefault('rel', 'stylesheet') self.attributes.setdefault('type', 'text/css') if args: # old style arguments (rel, title) self.attributes['rel'] = args[0] self.attributes['title'] = args[1] return self class JavaScript(str): """A metadata of javascript file. To keep compatibility with old themes, an instance of javascript behaves as its filename (str). """ attributes: Dict[str, str] = None filename: str = None priority: int = None def __new__(cls, filename: str, priority: int = 500, **attributes: str) -> "JavaScript": self = str.__new__(cls, filename) self.filename = filename self.priority = priority self.attributes = attributes return self class BuildInfo: """buildinfo file manipulator. HTMLBuilder and its family are storing their own envdata to ``.buildinfo``. This class is a manipulator for the file. """ @classmethod def load(cls, f: IO) -> "BuildInfo": try: lines = f.readlines() assert lines[0].rstrip() == '# Sphinx build info version 1' assert lines[2].startswith('config: ') assert lines[3].startswith('tags: ') build_info = BuildInfo() build_info.config_hash = lines[2].split()[1].strip() build_info.tags_hash = lines[3].split()[1].strip() return build_info except Exception as exc: raise ValueError(__('build info file is broken: %r') % exc) from exc def __init__(self, config: Config = None, tags: Tags = None, config_categories: List[str] = []) -> None: # NOQA self.config_hash = '' self.tags_hash = '' if config: values = {c.name: c.value for c in config.filter(config_categories)} self.config_hash = get_stable_hash(values) if tags: self.tags_hash = get_stable_hash(sorted(tags)) def __eq__(self, other: "BuildInfo") -> bool: # type: ignore return (self.config_hash == other.config_hash and self.tags_hash == other.tags_hash) def dump(self, f: IO) -> None: f.write('# Sphinx build info version 1\n' '# This file hashes the configuration used when building these files.' ' When it is not found, a full rebuild will be done.\n' 'config: %s\n' 'tags: %s\n' % (self.config_hash, self.tags_hash)) class StandaloneHTMLBuilder(Builder): """ Builds standalone HTML docs. """ name = 'html' format = 'html' epilog = __('The HTML pages are in %(outdir)s.') copysource = True allow_parallel = True out_suffix = '.html' link_suffix = '.html' # defaults to matching out_suffix indexer_format: Any = js_index indexer_dumps_unicode = True # create links to original images from images [True/False] html_scaled_image_link = True supported_image_types = ['image/svg+xml', 'image/png', 'image/gif', 'image/jpeg'] supported_remote_images = True supported_data_uri_images = True searchindex_filename = 'searchindex.js' add_permalinks = True allow_sharp_as_current_path = True embedded = False # for things like HTML help or Qt help: suppresses sidebar search = True # for things like HTML help and Apple help: suppress search use_index = False download_support = True # enable download role imgpath: str = None domain_indices: List[Tuple[str, Type[Index], List[Tuple[str, List[IndexEntry]]], bool]] = [] # NOQA def __init__(self, app: Sphinx) -> None: super().__init__(app) # CSS files self.css_files: List[Stylesheet] = [] # JS files self.script_files: List[JavaScript] = [] def init(self) -> None: self.build_info = self.create_build_info() # basename of images directory self.imagedir = '_images' # section numbers for headings in the currently visited document self.secnumbers: Dict[str, Tuple[int, ...]] = {} # currently written docname self.current_docname: str = None self.init_templates() self.init_highlighter() self.init_css_files() self.init_js_files() html_file_suffix = self.get_builder_config('file_suffix', 'html') if html_file_suffix is not None: self.out_suffix = html_file_suffix html_link_suffix = self.get_builder_config('link_suffix', 'html') if html_link_suffix is not None: self.link_suffix = html_link_suffix else: self.link_suffix = self.out_suffix self.use_index = self.get_builder_config('use_index', 'html') def create_build_info(self) -> BuildInfo: return BuildInfo(self.config, self.tags, ['html']) def _get_translations_js(self) -> str: candidates = [path.join(dir, self.config.language, 'LC_MESSAGES', 'sphinx.js') for dir in self.config.locale_dirs] + \ [path.join(package_dir, 'locale', self.config.language, 'LC_MESSAGES', 'sphinx.js'), path.join(sys.prefix, 'share/sphinx/locale', self.config.language, 'sphinx.js')] for jsfile in candidates: if path.isfile(jsfile): return jsfile return None def _get_style_filename(self) -> str: if self.config.html_style is not None: return self.config.html_style elif self.theme: return self.theme.get_config('theme', 'stylesheet') else: return 'default.css' def get_theme_config(self) -> Tuple[str, Dict]: return self.config.html_theme, self.config.html_theme_options def init_templates(self) -> None: theme_factory = HTMLThemeFactory(self.app) themename, themeoptions = self.get_theme_config() self.theme = theme_factory.create(themename) self.theme_options = themeoptions.copy() self.create_template_bridge() self.templates.init(self, self.theme) def init_highlighter(self) -> None: # determine Pygments style and create the highlighter if self.config.pygments_style is not None: style = self.config.pygments_style elif self.theme: style = self.theme.get_config('theme', 'pygments_style', 'none') else: style = 'sphinx' self.highlighter = PygmentsBridge('html', style) if self.theme: dark_style = self.theme.get_config('theme', 'pygments_dark_style', None) else: dark_style = None if dark_style is not None: self.dark_highlighter = PygmentsBridge('html', dark_style) self.app.add_css_file('pygments_dark.css', media='(prefers-color-scheme: dark)', id='pygments_dark_css') else: self.dark_highlighter = None def init_css_files(self) -> None: self.css_files = [] self.add_css_file('pygments.css', priority=200) self.add_css_file(self._get_style_filename(), priority=200) for filename, attrs in self.app.registry.css_files: self.add_css_file(filename, **attrs) for filename, attrs in self.get_builder_config('css_files', 'html'): attrs.setdefault('priority', 800) # User's CSSs are loaded after extensions' self.add_css_file(filename, **attrs) def add_css_file(self, filename: str, **kwargs: Any) -> None: if '://' not in filename: filename = posixpath.join('_static', filename) self.css_files.append(Stylesheet(filename, **kwargs)) def init_js_files(self) -> None: self.script_files = [] self.add_js_file('documentation_options.js', id="documentation_options", data_url_root='', priority=200) # Remove frameworks and compatability module below in Sphinx 6.0 # xref RemovedInSphinx60Warning self.add_js_file('jquery.js', priority=200) self.add_js_file('underscore.js', priority=200) self.add_js_file('_sphinx_javascript_frameworks_compat.js', priority=200) self.add_js_file('doctools.js', priority=200) for filename, attrs in self.app.registry.js_files: self.add_js_file(filename, **attrs) for filename, attrs in self.get_builder_config('js_files', 'html'): attrs.setdefault('priority', 800) # User's JSs are loaded after extensions' self.add_js_file(filename, **attrs) if self._get_translations_js(): self.add_js_file('translations.js') def add_js_file(self, filename: str, **kwargs: Any) -> None: if filename and '://' not in filename: filename = posixpath.join('_static', filename) self.script_files.append(JavaScript(filename, **kwargs)) @property def default_translator_class(self) -> Type[nodes.NodeVisitor]: # type: ignore if not html5_ready or self.config.html4_writer: return HTMLTranslator else: return HTML5Translator @property def math_renderer_name(self) -> str: name = self.get_builder_config('math_renderer', 'html') if name is not None: # use given name return name else: # not given: choose a math_renderer from registered ones as possible renderers = list(self.app.registry.html_inline_math_renderers) if len(renderers) == 1: # only default math_renderer (mathjax) is registered return renderers[0] elif len(renderers) == 2: # default and another math_renderer are registered; prior the another renderers.remove('mathjax') return renderers[0] else: # many math_renderers are registered. can't choose automatically! return None def get_outdated_docs(self) -> Iterator[str]: try: with open(path.join(self.outdir, '.buildinfo')) as fp: buildinfo = BuildInfo.load(fp) if self.build_info != buildinfo: logger.debug('[build target] did not match: build_info ') yield from self.env.found_docs return except ValueError as exc: logger.warning(__('Failed to read build info file: %r'), exc) except OSError: # ignore errors on reading pass if self.templates: template_mtime = self.templates.newest_template_mtime() else: template_mtime = 0 for docname in self.env.found_docs: if docname not in self.env.all_docs: logger.debug('[build target] did not in env: %r', docname) yield docname continue targetname = self.get_outfilename(docname) try: targetmtime = path.getmtime(targetname) except Exception: targetmtime = 0 try: srcmtime = max(path.getmtime(self.env.doc2path(docname)), template_mtime) if srcmtime > targetmtime: logger.debug( '[build target] targetname %r(%s), template(%s), docname %r(%s)', targetname, datetime.utcfromtimestamp(targetmtime), datetime.utcfromtimestamp(template_mtime), docname, datetime.utcfromtimestamp(path.getmtime(self.env.doc2path(docname))), ) yield docname except OSError: # source doesn't exist anymore pass def get_asset_paths(self) -> List[str]: return self.config.html_extra_path + self.config.html_static_path def render_partial(self, node: Node) -> Dict[str, str]: """Utility: Render a lone doctree node.""" if node is None: return {'fragment': ''} doc = new_document('<partial node>') doc.append(node) writer = HTMLWriter(self) return publish_parts(reader_name='doctree', writer=writer, source_class=DocTreeInput, settings_overrides={'output_encoding': 'unicode'}, source=doc) def prepare_writing(self, docnames: Set[str]) -> None: # create the search indexer self.indexer = None if self.search: from sphinx.search import IndexBuilder lang = self.config.html_search_language or self.config.language self.indexer = IndexBuilder(self.env, lang, self.config.html_search_options, self.config.html_search_scorer) self.load_indexer(docnames) self.docwriter = HTMLWriter(self) self.docsettings: Any = OptionParser( defaults=self.env.settings, components=(self.docwriter,), read_config_files=True).get_default_values() self.docsettings.compact_lists = bool(self.config.html_compact_lists) # determine the additional indices to include self.domain_indices = [] # html_domain_indices can be False/True or a list of index names indices_config = self.config.html_domain_indices if indices_config: for domain_name in sorted(self.env.domains): domain: Domain = self.env.domains[domain_name] for indexcls in domain.indices: indexname = '%s-%s' % (domain.name, indexcls.name) if isinstance(indices_config, list): if indexname not in indices_config: continue content, collapse = indexcls(domain).generate() if content: self.domain_indices.append( (indexname, indexcls, content, collapse)) # format the "last updated on" string, only once is enough since it # typically doesn't include the time of day lufmt = self.config.html_last_updated_fmt if lufmt is not None: self.last_updated = format_date(lufmt or _('%b %d, %Y'), language=self.config.language) else: self.last_updated = None # If the logo or favicon are urls, keep them as-is, otherwise # strip the relative path as the files will be copied into _static. logo = self.config.html_logo or '' favicon = self.config.html_favicon or '' if not isurl(logo): logo = path.basename(logo) if not isurl(favicon): favicon = path.basename(favicon) self.relations = self.env.collect_relations() rellinks: List[Tuple[str, str, str, str]] = [] if self.use_index: rellinks.append(('genindex', _('General Index'), 'I', _('index'))) for indexname, indexcls, _content, _collapse in self.domain_indices: # if it has a short name if indexcls.shortname: rellinks.append((indexname, indexcls.localname, '', indexcls.shortname)) # back up script_files and css_files to allow adding JS/CSS files to a specific page. self._script_files = list(self.script_files) self._css_files = list(self.css_files) self.globalcontext = { 'embedded': self.embedded, 'project': self.config.project, 'release': return_codes_re.sub('', self.config.release), 'version': self.config.version, 'last_updated': self.last_updated, 'copyright': self.config.copyright, 'master_doc': self.config.root_doc, 'root_doc': self.config.root_doc, 'use_opensearch': self.config.html_use_opensearch, 'docstitle': self.config.html_title, 'shorttitle': self.config.html_short_title, 'show_copyright': self.config.html_show_copyright, 'show_search_summary': self.config.html_show_search_summary, 'show_sphinx': self.config.html_show_sphinx, 'has_source': self.config.html_copy_source, 'show_source': self.config.html_show_sourcelink, 'sourcelink_suffix': self.config.html_sourcelink_suffix, 'file_suffix': self.out_suffix, 'link_suffix': self.link_suffix, 'script_files': self.script_files, 'language': convert_locale_to_language_tag(self.config.language), 'css_files': self.css_files, 'sphinx_version': __display_version__, 'sphinx_version_tuple': sphinx_version, 'style': self._get_style_filename(), 'rellinks': rellinks, 'builder': self.name, 'parents': [], 'logo': logo, 'favicon': favicon, 'html5_doctype': html5_ready and not self.config.html4_writer, } if self.theme: self.globalcontext.update( ('theme_' + key, val) for (key, val) in self.theme.get_options(self.theme_options).items()) self.globalcontext.update(self.config.html_context) def get_doc_context(self, docname: str, body: str, metatags: str) -> Dict[str, Any]: """Collect items for the template context of a page.""" # find out relations prev = next = None parents = [] rellinks = self.globalcontext['rellinks'][:] related = self.relations.get(docname) titles = self.env.titles if related and related[2]: try: next = { 'link': self.get_relative_uri(docname, related[2]), 'title': self.render_partial(titles[related[2]])['title'] } rellinks.append((related[2], next['title'], 'N', _('next'))) except KeyError: next = None if related and related[1]: try: prev = { 'link': self.get_relative_uri(docname, related[1]), 'title': self.render_partial(titles[related[1]])['title'] } rellinks.append((related[1], prev['title'], 'P', _('previous'))) except KeyError: # the relation is (somehow) not in the TOC tree, handle # that gracefully prev = None while related and related[0]: try: parents.append( {'link': self.get_relative_uri(docname, related[0]), 'title': self.render_partial(titles[related[0]])['title']}) except KeyError: pass related = self.relations.get(related[0]) if parents: # remove link to the master file; we have a generic # "back to index" link already parents.pop() parents.reverse() # title rendered as HTML title_node = self.env.longtitles.get(docname) title = self.render_partial(title_node)['title'] if title_node else '' # Suffix for the document source_suffix = self.env.doc2path(docname, False)[len(docname):] # the name for the copied source if self.config.html_copy_source: sourcename = docname + source_suffix if source_suffix != self.config.html_sourcelink_suffix: sourcename += self.config.html_sourcelink_suffix else: sourcename = '' # metadata for the document meta = self.env.metadata.get(docname) # local TOC and global TOC tree self_toc = TocTree(self.env).get_toc_for(docname, self) toc = self.render_partial(self_toc)['fragment'] return { 'parents': parents, 'prev': prev, 'next': next, 'title': title, 'meta': meta, 'body': body, 'metatags': metatags, 'rellinks': rellinks, 'sourcename': sourcename, 'toc': toc, # only display a TOC if there's more than one item to show 'display_toc': (self.env.toc_num_entries[docname] > 1), 'page_source_suffix': source_suffix, } def write_doc(self, docname: str, doctree: nodes.document) -> None: destination = StringOutput(encoding='utf-8') doctree.settings = self.docsettings self.secnumbers = self.env.toc_secnumbers.get(docname, {}) self.fignumbers = self.env.toc_fignumbers.get(docname, {}) self.imgpath = relative_uri(self.get_target_uri(docname), '_images') self.dlpath = relative_uri(self.get_target_uri(docname), '_downloads') self.current_docname = docname self.docwriter.write(doctree, destination) self.docwriter.assemble_parts() body = self.docwriter.parts['fragment'] metatags = self.docwriter.clean_meta ctx = self.get_doc_context(docname, body, metatags) self.handle_page(docname, ctx, event_arg=doctree) def write_doc_serialized(self, docname: str, doctree: nodes.document) -> None: self.imgpath = relative_uri(self.get_target_uri(docname), self.imagedir) self.post_process_images(doctree) title_node = self.env.longtitles.get(docname) title = self.render_partial(title_node)['title'] if title_node else '' self.index_page(docname, doctree, title) def finish(self) -> None: self.finish_tasks.add_task(self.gen_indices) self.finish_tasks.add_task(self.gen_pages_from_extensions) self.finish_tasks.add_task(self.gen_additional_pages) self.finish_tasks.add_task(self.copy_image_files) self.finish_tasks.add_task(self.copy_download_files) self.finish_tasks.add_task(self.copy_static_files) self.finish_tasks.add_task(self.copy_extra_files) self.finish_tasks.add_task(self.write_buildinfo) # dump the search index self.handle_finish() @progress_message(__('generating indices')) def gen_indices(self) -> None: # the global general index if self.use_index: self.write_genindex() # the global domain-specific indices self.write_domain_indices() def gen_pages_from_extensions(self) -> None: # pages from extensions for pagelist in self.events.emit('html-collect-pages'): for pagename, context, template in pagelist: self.handle_page(pagename, context, template) @progress_message(__('writing additional pages')) def gen_additional_pages(self) -> None: # additional pages from conf.py for pagename, template in self.config.html_additional_pages.items(): logger.info(pagename + ' ', nonl=True) self.handle_page(pagename, {}, template) # the search page if self.search: logger.info('search ', nonl=True) self.handle_page('search', {}, 'search.html') # the opensearch xml file if self.config.html_use_opensearch and self.search: logger.info('opensearch ', nonl=True) fn = path.join(self.outdir, '_static', 'opensearch.xml') self.handle_page('opensearch', {}, 'opensearch.xml', outfilename=fn) def write_genindex(self) -> None: # the total count of lines for each index letter, used to distribute # the entries into two columns genindex = IndexEntries(self.env).create_index(self) indexcounts = [] for _k, entries in genindex: indexcounts.append(sum(1 + len(subitems) for _, (_, subitems, _) in entries)) genindexcontext = { 'genindexentries': genindex, 'genindexcounts': indexcounts, 'split_index': self.config.html_split_index, } logger.info('genindex ', nonl=True) if self.config.html_split_index: self.handle_page('genindex', genindexcontext, 'genindex-split.html') self.handle_page('genindex-all', genindexcontext, 'genindex.html') for (key, entries), count in zip(genindex, indexcounts): ctx = {'key': key, 'entries': entries, 'count': count, 'genindexentries': genindex} self.handle_page('genindex-' + key, ctx, 'genindex-single.html') else: self.handle_page('genindex', genindexcontext, 'genindex.html') def write_domain_indices(self) -> None: for indexname, indexcls, content, collapse in self.domain_indices: indexcontext = { 'indextitle': indexcls.localname, 'content': content, 'collapse_index': collapse, } logger.info(indexname + ' ', nonl=True) self.handle_page(indexname, indexcontext, 'domainindex.html') def copy_image_files(self) -> None: if self.images: stringify_func = ImageAdapter(self.app.env).get_original_image_uri ensuredir(path.join(self.outdir, self.imagedir)) for src in status_iterator(self.images, __('copying images... '), "brown", len(self.images), self.app.verbosity, stringify_func=stringify_func): dest = self.images[src] try: copyfile(path.join(self.srcdir, src), path.join(self.outdir, self.imagedir, dest)) except Exception as err: logger.warning(__('cannot copy image file %r: %s'), path.join(self.srcdir, src), err) def copy_download_files(self) -> None: def to_relpath(f: str) -> str: return relative_path(self.srcdir, f) # copy downloadable files if self.env.dlfiles: ensuredir(path.join(self.outdir, '_downloads')) for src in status_iterator(self.env.dlfiles, __('copying downloadable files... '), "brown", len(self.env.dlfiles), self.app.verbosity, stringify_func=to_relpath): try: dest = path.join(self.outdir, '_downloads', self.env.dlfiles[src][1]) ensuredir(path.dirname(dest)) copyfile(path.join(self.srcdir, src), dest) except OSError as err: logger.warning(__('cannot copy downloadable file %r: %s'), path.join(self.srcdir, src), err) def create_pygments_style_file(self) -> None: """create a style file for pygments.""" with open(path.join(self.outdir, '_static', 'pygments.css'), 'w') as f: f.write(self.highlighter.get_stylesheet()) if self.dark_highlighter: with open(path.join(self.outdir, '_static', 'pygments_dark.css'), 'w') as f: f.write(self.dark_highlighter.get_stylesheet()) def copy_translation_js(self) -> None: """Copy a JavaScript file for translations.""" jsfile = self._get_translations_js() if jsfile: copyfile(jsfile, path.join(self.outdir, '_static', 'translations.js')) def copy_stemmer_js(self) -> None: """Copy a JavaScript file for stemmer.""" if self.indexer is not None: if hasattr(self.indexer, 'get_js_stemmer_rawcodes'): for jsfile in self.indexer.get_js_stemmer_rawcodes(): copyfile(jsfile, path.join(self.outdir, '_static', path.basename(jsfile))) else: jsfile = self.indexer.get_js_stemmer_rawcode() if jsfile: copyfile(jsfile, path.join(self.outdir, '_static', '_stemmer.js')) def copy_theme_static_files(self, context: Dict) -> None: def onerror(filename: str, error: Exception) -> None: logger.warning(__('Failed to copy a file in html_static_file: %s: %r'), filename, error) if self.theme: for entry in self.theme.get_theme_dirs()[::-1]: copy_asset(path.join(entry, 'static'), path.join(self.outdir, '_static'), excluded=DOTFILES, context=context, renderer=self.templates, onerror=onerror) def copy_html_static_files(self, context: Dict) -> None: def onerror(filename: str, error: Exception) -> None: logger.warning(__('Failed to copy a file in html_static_file: %s: %r'), filename, error) excluded = Matcher(self.config.exclude_patterns + ["**/.*"]) for entry in self.config.html_static_path: copy_asset(path.join(self.confdir, entry), path.join(self.outdir, '_static'), excluded, context=context, renderer=self.templates, onerror=onerror) def copy_html_logo(self) -> None: if self.config.html_logo and not isurl(self.config.html_logo): copy_asset(path.join(self.confdir, self.config.html_logo), path.join(self.outdir, '_static')) def copy_html_favicon(self) -> None: if self.config.html_favicon and not isurl(self.config.html_favicon): copy_asset(path.join(self.confdir, self.config.html_favicon), path.join(self.outdir, '_static')) def copy_static_files(self) -> None: try: with progress_message(__('copying static files')): ensuredir(path.join(self.outdir, '_static')) # prepare context for templates context = self.globalcontext.copy() if self.indexer is not None: context.update(self.indexer.context_for_searchtool()) self.create_pygments_style_file() self.copy_translation_js() self.copy_stemmer_js() self.copy_theme_static_files(context) self.copy_html_static_files(context) self.copy_html_logo() self.copy_html_favicon() except OSError as err: logger.warning(__('cannot copy static file %r'), err) def copy_extra_files(self) -> None: """copy html_extra_path files.""" try: with progress_message(__('copying extra files')): excluded = Matcher(self.config.exclude_patterns) for extra_path in self.config.html_extra_path: entry = path.join(self.confdir, extra_path) copy_asset(entry, self.outdir, excluded) except OSError as err: logger.warning(__('cannot copy extra file %r'), err) def write_buildinfo(self) -> None: try: with open(path.join(self.outdir, '.buildinfo'), 'w') as fp: self.build_info.dump(fp) except OSError as exc: logger.warning(__('Failed to write build info file: %r'), exc) def cleanup(self) -> None: # clean up theme stuff if self.theme: self.theme.cleanup() def post_process_images(self, doctree: Node) -> None: """Pick the best candidate for an image and link down-scaled images to their high res version. """ Builder.post_process_images(self, doctree) if self.config.html_scaled_image_link and self.html_scaled_image_link: for node in doctree.findall(nodes.image): if not any((key in node) for key in ['scale', 'width', 'height']): # resizing options are not given. scaled image link is available # only for resized images. continue elif isinstance(node.parent, nodes.reference): # A image having hyperlink target continue elif 'no-scaled-link' in node['classes']: # scaled image link is disabled for this node continue uri = node['uri'] reference = nodes.reference('', '', internal=True) if uri in self.images: reference['refuri'] = posixpath.join(self.imgpath, self.images[uri]) else: reference['refuri'] = uri node.replace_self(reference) reference.append(node) def load_indexer(self, docnames: Iterable[str]) -> None: keep = set(self.env.all_docs) - set(docnames) try: searchindexfn = path.join(self.outdir, self.searchindex_filename) if self.indexer_dumps_unicode: with open(searchindexfn, encoding='utf-8') as ft: self.indexer.load(ft, self.indexer_format) else: with open(searchindexfn, 'rb') as fb: self.indexer.load(fb, self.indexer_format) except (OSError, ValueError): if keep: logger.warning(__('search index couldn\'t be loaded, but not all ' 'documents will be built: the index will be ' 'incomplete.')) # delete all entries for files that will be rebuilt self.indexer.prune(keep) def index_page(self, pagename: str, doctree: nodes.document, title: str) -> None: # only index pages with title if self.indexer is not None and title: filename = self.env.doc2path(pagename, base=None) metadata = self.env.metadata.get(pagename, {}) if 'nosearch' in metadata: self.indexer.feed(pagename, filename, '', new_document('')) else: self.indexer.feed(pagename, filename, title, doctree) def _get_local_toctree(self, docname: str, collapse: bool = True, **kwargs: Any) -> str: if 'includehidden' not in kwargs: kwargs['includehidden'] = False if kwargs.get('maxdepth') == '': kwargs.pop('maxdepth') return self.render_partial(TocTree(self.env).get_toctree_for( docname, self, collapse, **kwargs))['fragment'] def get_outfilename(self, pagename: str) -> str: return path.join(self.outdir, os_path(pagename) + self.out_suffix) def add_sidebars(self, pagename: str, ctx: Dict) -> None: def has_wildcard(pattern: str) -> bool: return any(char in pattern for char in '*?[') sidebars = None matched = None customsidebar = None # default sidebars settings for selected theme if self.theme.name == 'alabaster': # provide default settings for alabaster (for compatibility) # Note: this will be removed before Sphinx-2.0 try: # get default sidebars settings from alabaster (if defined) theme_default_sidebars = self.theme.config.get('theme', 'sidebars') if theme_default_sidebars: sidebars = [name.strip() for name in theme_default_sidebars.split(',')] except Exception: # fallback to better default settings sidebars = ['about.html', 'navigation.html', 'relations.html', 'searchbox.html', 'donate.html'] else: theme_default_sidebars = self.theme.get_config('theme', 'sidebars', None) if theme_default_sidebars: sidebars = [name.strip() for name in theme_default_sidebars.split(',')] # user sidebar settings html_sidebars = self.get_builder_config('sidebars', 'html') for pattern, patsidebars in html_sidebars.items(): if patmatch(pagename, pattern): if matched: if has_wildcard(pattern): # warn if both patterns contain wildcards if has_wildcard(matched): logger.warning(__('page %s matches two patterns in ' 'html_sidebars: %r and %r'), pagename, matched, pattern) # else the already matched pattern is more specific # than the present one, because it contains no wildcard continue matched = pattern sidebars = patsidebars if sidebars is None: # keep defaults pass ctx['sidebars'] = sidebars ctx['customsidebar'] = customsidebar # --------- these are overwritten by the serialization builder def get_target_uri(self, docname: str, typ: str = None) -> str: return quote(docname) + self.link_suffix def handle_page(self, pagename: str, addctx: Dict, templatename: str = 'page.html', outfilename: str = None, event_arg: Any = None) -> None: ctx = self.globalcontext.copy() # current_page_name is backwards compatibility ctx['pagename'] = ctx['current_page_name'] = pagename ctx['encoding'] = self.config.html_output_encoding default_baseuri = self.get_target_uri(pagename) # in the singlehtml builder, default_baseuri still contains an #anchor # part, which relative_uri doesn't really like... default_baseuri = default_baseuri.rsplit('#', 1)[0] if self.config.html_baseurl: ctx['pageurl'] = posixpath.join(self.config.html_baseurl, pagename + self.out_suffix) else: ctx['pageurl'] = None def pathto(otheruri: str, resource: bool = False, baseuri: str = default_baseuri) -> str: # NOQA if resource and '://' in otheruri: # allow non-local resources given by scheme return otheruri elif not resource: otheruri = self.get_target_uri(otheruri) uri = relative_uri(baseuri, otheruri) or '#' if uri == '#' and not self.allow_sharp_as_current_path: uri = baseuri return uri ctx['pathto'] = pathto def hasdoc(name: str) -> bool: if name in self.env.all_docs: return True elif name == 'search' and self.search: return True elif name == 'genindex' and self.get_builder_config('use_index', 'html'): return True return False ctx['hasdoc'] = hasdoc ctx['toctree'] = lambda **kwargs: self._get_local_toctree(pagename, **kwargs) self.add_sidebars(pagename, ctx) ctx.update(addctx) # revert script_files and css_files self.script_files[:] = self._script_files self.css_files[:] = self._css_files self.update_page_context(pagename, templatename, ctx, event_arg) newtmpl = self.app.emit_firstresult('html-page-context', pagename, templatename, ctx, event_arg) if newtmpl: templatename = newtmpl # sort JS/CSS before rendering HTML try: # Convert script_files to list to support non-list script_files (refs: #8889) ctx['script_files'] = sorted(list(ctx['script_files']), key=lambda js: js.priority) except AttributeError: # Skip sorting if users modifies script_files directly (maybe via `html_context`). # refs: #8885 # # Note: priority sorting feature will not work in this case. pass try: ctx['css_files'] = sorted(list(ctx['css_files']), key=lambda css: css.priority) except AttributeError: pass try: output = self.templates.render(templatename, ctx) except UnicodeError: logger.warning(__("a Unicode error occurred when rendering the page %s. " "Please make sure all config values that contain " "non-ASCII content are Unicode strings."), pagename) return except Exception as exc: raise ThemeError(__("An error happened in rendering the page %s.\nReason: %r") % (pagename, exc)) from exc if not outfilename: outfilename = self.get_outfilename(pagename) # outfilename's path is in general different from self.outdir ensuredir(path.dirname(outfilename)) try: with open(outfilename, 'w', encoding=ctx['encoding'], errors='xmlcharrefreplace') as f: f.write(output) except OSError as err: logger.warning(__("error writing file %s: %s"), outfilename, err) if self.copysource and ctx.get('sourcename'): # copy the source file for the "show source" link source_name = path.join(self.outdir, '_sources', os_path(ctx['sourcename'])) ensuredir(path.dirname(source_name)) copyfile(self.env.doc2path(pagename), source_name) def update_page_context(self, pagename: str, templatename: str, ctx: Dict, event_arg: Any) -> None: pass def handle_finish(self) -> None: if self.indexer: self.finish_tasks.add_task(self.dump_search_index) self.finish_tasks.add_task(self.dump_inventory) @progress_message(__('dumping object inventory')) def dump_inventory(self) -> None: InventoryFile.dump(path.join(self.outdir, INVENTORY_FILENAME), self.env, self) def dump_search_index(self) -> None: with progress_message(__('dumping search index in %s') % self.indexer.label()): self.indexer.prune(self.env.all_docs) searchindexfn = path.join(self.outdir, self.searchindex_filename) # first write to a temporary file, so that if dumping fails, # the existing index won't be overwritten if self.indexer_dumps_unicode: with open(searchindexfn + '.tmp', 'w', encoding='utf-8') as ft: self.indexer.dump(ft, self.indexer_format) else: with open(searchindexfn + '.tmp', 'wb') as fb: self.indexer.dump(fb, self.indexer_format) os.replace(searchindexfn + '.tmp', searchindexfn) def convert_html_css_files(app: Sphinx, config: Config) -> None: """This converts string styled html_css_files to tuple styled one.""" html_css_files: List[Tuple[str, Dict]] = [] for entry in config.html_css_files: if isinstance(entry, str): html_css_files.append((entry, {})) else: try: filename, attrs = entry html_css_files.append((filename, attrs)) except Exception: logger.warning(__('invalid css_file: %r, ignored'), entry) continue config.html_css_files = html_css_files # type: ignore def convert_html_js_files(app: Sphinx, config: Config) -> None: """This converts string styled html_js_files to tuple styled one.""" html_js_files: List[Tuple[str, Dict]] = [] for entry in config.html_js_files: if isinstance(entry, str): html_js_files.append((entry, {})) else: try: filename, attrs = entry html_js_files.append((filename, attrs)) except Exception: logger.warning(__('invalid js_file: %r, ignored'), entry) continue config.html_js_files = html_js_files # type: ignore def setup_css_tag_helper(app: Sphinx, pagename: str, templatename: str, context: Dict, doctree: Node) -> None: """Set up css_tag() template helper. .. note:: This set up function is added to keep compatibility with webhelper. """ pathto = context.get('pathto') def css_tag(css: Stylesheet) -> str: attrs = [] for key in sorted(css.attributes): value = css.attributes[key] if value is not None: attrs.append('%s="%s"' % (key, html.escape(value, True))) attrs.append('href="%s"' % pathto(css.filename, resource=True)) return '<link %s />' % ' '.join(attrs) context['css_tag'] = css_tag def setup_js_tag_helper(app: Sphinx, pagename: str, templatename: str, context: Dict, doctree: Node) -> None: """Set up js_tag() template helper. .. note:: This set up function is added to keep compatibility with webhelper. """ pathto = context.get('pathto') def js_tag(js: JavaScript) -> str: attrs = [] body = '' if isinstance(js, JavaScript): for key in sorted(js.attributes): value = js.attributes[key] if value is not None: if key == 'body': body = value elif key == 'data_url_root': attrs.append('data-url_root="%s"' % pathto('', resource=True)) else: attrs.append('%s="%s"' % (key, html.escape(value, True))) if js.filename: attrs.append('src="%s"' % pathto(js.filename, resource=True)) else: # str value (old styled) attrs.append('src="%s"' % pathto(js, resource=True)) if attrs: return '<script %s>%s</script>' % (' '.join(attrs), body) else: return '<script>%s</script>' % body context['js_tag'] = js_tag def setup_resource_paths(app: Sphinx, pagename: str, templatename: str, context: Dict, doctree: Node) -> None: """Set up relative resource paths.""" pathto = context.get('pathto') # favicon_url favicon = context.get('favicon') if favicon and not isurl(favicon): context['favicon_url'] = pathto('_static/' + favicon, resource=True) else: context['favicon_url'] = favicon # logo_url logo = context.get('logo') if logo and not isurl(logo): context['logo_url'] = pathto('_static/' + logo, resource=True) else: context['logo_url'] = logo def validate_math_renderer(app: Sphinx) -> None: if app.builder.format != 'html': return name = app.builder.math_renderer_name # type: ignore if name is None: raise ConfigError(__('Many math_renderers are registered. ' 'But no math_renderer is selected.')) elif name not in app.registry.html_inline_math_renderers: raise ConfigError(__('Unknown math_renderer %r is given.') % name) def validate_html_extra_path(app: Sphinx, config: Config) -> None: """Check html_extra_paths setting.""" for entry in config.html_extra_path[:]: extra_path = path.normpath(path.join(app.confdir, entry)) if not path.exists(extra_path): logger.warning(__('html_extra_path entry %r does not exist'), entry) config.html_extra_path.remove(entry) elif (path.splitdrive(app.outdir)[0] == path.splitdrive(extra_path)[0] and path.commonpath([app.outdir, extra_path]) == app.outdir): logger.warning(__('html_extra_path entry %r is placed inside outdir'), entry) config.html_extra_path.remove(entry) def validate_html_static_path(app: Sphinx, config: Config) -> None: """Check html_static_paths setting.""" for entry in config.html_static_path[:]: static_path = path.normpath(path.join(app.confdir, entry)) if not path.exists(static_path): logger.warning(__('html_static_path entry %r does not exist'), entry) config.html_static_path.remove(entry) elif (path.splitdrive(app.outdir)[0] == path.splitdrive(static_path)[0] and path.commonpath([app.outdir, static_path]) == app.outdir): logger.warning(__('html_static_path entry %r is placed inside outdir'), entry) config.html_static_path.remove(entry) def validate_html_logo(app: Sphinx, config: Config) -> None: """Check html_logo setting.""" if (config.html_logo and not path.isfile(path.join(app.confdir, config.html_logo)) and not isurl(config.html_logo)): logger.warning(__('logo file %r does not exist'), config.html_logo) config.html_logo = None # type: ignore def validate_html_favicon(app: Sphinx, config: Config) -> None: """Check html_favicon setting.""" if (config.html_favicon and not path.isfile(path.join(app.confdir, config.html_favicon)) and not isurl(config.html_favicon)): logger.warning(__('favicon file %r does not exist'), config.html_favicon) config.html_favicon = None # type: ignore class _stable_repr_object(): def __repr__(self): return '<object>' UNSET = _stable_repr_object() def migrate_html_add_permalinks(app: Sphinx, config: Config) -> None: """Migrate html_add_permalinks to html_permalinks*.""" html_add_permalinks = config.html_add_permalinks if html_add_permalinks is UNSET: return # RemovedInSphinx60Warning logger.warning(__('html_add_permalinks has been deprecated since v3.5.0. ' 'Please use html_permalinks and html_permalinks_icon instead.')) if not html_add_permalinks: config.html_permalinks = False # type: ignore[attr-defined] return config.html_permalinks_icon = html.escape( # type: ignore[attr-defined] html_add_permalinks ) # for compatibility import sphinxcontrib.serializinghtml # NOQA import sphinx.builders.dirhtml # NOQA import sphinx.builders.singlehtml # NOQA def setup(app: Sphinx) -> Dict[str, Any]: # builders app.add_builder(StandaloneHTMLBuilder) # config values app.add_config_value('html_theme', 'alabaster', 'html') app.add_config_value('html_theme_path', [], 'html') app.add_config_value('html_theme_options', {}, 'html') app.add_config_value('html_title', lambda self: _('%s %s documentation') % (self.project, self.release), 'html', [str]) app.add_config_value('html_short_title', lambda self: self.html_title, 'html') app.add_config_value('html_style', None, 'html', [str]) app.add_config_value('html_logo', None, 'html', [str]) app.add_config_value('html_favicon', None, 'html', [str]) app.add_config_value('html_css_files', [], 'html') app.add_config_value('html_js_files', [], 'html') app.add_config_value('html_static_path', [], 'html') app.add_config_value('html_extra_path', [], 'html') app.add_config_value('html_last_updated_fmt', None, 'html', [str]) app.add_config_value('html_sidebars', {}, 'html') app.add_config_value('html_additional_pages', {}, 'html') app.add_config_value('html_domain_indices', True, 'html', [list]) app.add_config_value('html_add_permalinks', UNSET, 'html') app.add_config_value('html_permalinks', True, 'html') app.add_config_value('html_permalinks_icon', '¶', 'html') app.add_config_value('html_use_index', True, 'html') app.add_config_value('html_split_index', False, 'html') app.add_config_value('html_copy_source', True, 'html') app.add_config_value('html_show_sourcelink', True, 'html') app.add_config_value('html_sourcelink_suffix', '.txt', 'html') app.add_config_value('html_use_opensearch', '', 'html') app.add_config_value('html_file_suffix', None, 'html', [str]) app.add_config_value('html_link_suffix', None, 'html', [str]) app.add_config_value('html_show_copyright', True, 'html') app.add_config_value('html_show_search_summary', True, 'html') app.add_config_value('html_show_sphinx', True, 'html') app.add_config_value('html_context', {}, 'html') app.add_config_value('html_output_encoding', 'utf-8', 'html') app.add_config_value('html_compact_lists', True, 'html') app.add_config_value('html_secnumber_suffix', '. ', 'html') app.add_config_value('html_search_language', None, 'html', [str]) app.add_config_value('html_search_options', {}, 'html') app.add_config_value('html_search_scorer', '', None) app.add_config_value('html_scaled_image_link', True, 'html') app.add_config_value('html_baseurl', '', 'html') app.add_config_value('html_codeblock_linenos_style', 'inline', 'html', # RemovedInSphinx60Warning # NOQA ENUM('table', 'inline')) app.add_config_value('html_math_renderer', None, 'env') app.add_config_value('html4_writer', False, 'html') # events app.add_event('html-collect-pages') app.add_event('html-page-context') # event handlers app.connect('config-inited', convert_html_css_files, priority=800) app.connect('config-inited', convert_html_js_files, priority=800) app.connect('config-inited', migrate_html_add_permalinks, priority=800) app.connect('config-inited', validate_html_extra_path, priority=800) app.connect('config-inited', validate_html_static_path, priority=800) app.connect('config-inited', validate_html_logo, priority=800) app.connect('config-inited', validate_html_favicon, priority=800) app.connect('builder-inited', validate_math_renderer) app.connect('html-page-context', setup_css_tag_helper) app.connect('html-page-context', setup_js_tag_helper) app.connect('html-page-context', setup_resource_paths) # load default math renderer app.setup_extension('sphinx.ext.mathjax') # load transforms for HTML builder app.setup_extension('sphinx.builders.html.transforms') return { 'version': 'builtin', 'parallel_read_safe': True, 'parallel_write_safe': True, }
from __future__ import division, absolute_import, print_function import pytest import numpy as np import numpy.ma as ma from numpy.ma.mrecords import MaskedRecords from numpy.ma.testutils import assert_equal from numpy.testing import assert_, assert_raises from numpy.lib.recfunctions import ( drop_fields, rename_fields, get_fieldstructure, recursive_fill_fields, find_duplicates, merge_arrays, append_fields, stack_arrays, join_by, repack_fields, unstructured_to_structured, structured_to_unstructured, apply_along_fields, require_fields, assign_fields_by_name) get_names = np.lib.recfunctions.get_names get_names_flat = np.lib.recfunctions.get_names_flat zip_descr = np.lib.recfunctions.zip_descr class TestRecFunctions(object): # Misc tests def setup(self): x = np.array([1, 2, ]) y = np.array([10, 20, 30]) z = np.array([('A', 1.), ('B', 2.)], dtype=[('A', '|S3'), ('B', float)]) w = np.array([(1, (2, 3.0)), (4, (5, 6.0))], dtype=[('a', int), ('b', [('ba', float), ('bb', int)])]) self.data = (w, x, y, z) def test_zip_descr(self): # Test zip_descr (w, x, y, z) = self.data # Std array test = zip_descr((x, x), flatten=True) assert_equal(test, np.dtype([('', int), ('', int)])) test = zip_descr((x, x), flatten=False) assert_equal(test, np.dtype([('', int), ('', int)])) # Std & flexible-dtype test = zip_descr((x, z), flatten=True) assert_equal(test, np.dtype([('', int), ('A', '|S3'), ('B', float)])) test = zip_descr((x, z), flatten=False) assert_equal(test, np.dtype([('', int), ('', [('A', '|S3'), ('B', float)])])) # Standard & nested dtype test = zip_descr((x, w), flatten=True) assert_equal(test, np.dtype([('', int), ('a', int), ('ba', float), ('bb', int)])) test = zip_descr((x, w), flatten=False) assert_equal(test, np.dtype([('', int), ('', [('a', int), ('b', [('ba', float), ('bb', int)])])])) def test_drop_fields(self): # Test drop_fields a = np.array([(1, (2, 3.0)), (4, (5, 6.0))], dtype=[('a', int), ('b', [('ba', float), ('bb', int)])]) # A basic field test = drop_fields(a, 'a') control = np.array([((2, 3.0),), ((5, 6.0),)], dtype=[('b', [('ba', float), ('bb', int)])]) assert_equal(test, control) # Another basic field (but nesting two fields) test = drop_fields(a, 'b') control = np.array([(1,), (4,)], dtype=[('a', int)]) assert_equal(test, control) # A nested sub-field test = drop_fields(a, ['ba', ]) control = np.array([(1, (3.0,)), (4, (6.0,))], dtype=[('a', int), ('b', [('bb', int)])]) assert_equal(test, control) # All the nested sub-field from a field: zap that field test = drop_fields(a, ['ba', 'bb']) control = np.array([(1,), (4,)], dtype=[('a', int)]) assert_equal(test, control) test = drop_fields(a, ['a', 'b']) assert_(test is None) def test_rename_fields(self): # Test rename fields a = np.array([(1, (2, [3.0, 30.])), (4, (5, [6.0, 60.]))], dtype=[('a', int), ('b', [('ba', float), ('bb', (float, 2))])]) test = rename_fields(a, {'a': 'A', 'bb': 'BB'}) newdtype = [('A', int), ('b', [('ba', float), ('BB', (float, 2))])] control = a.view(newdtype) assert_equal(test.dtype, newdtype) assert_equal(test, control) def test_get_names(self): # Test get_names ndtype = np.dtype([('A', '|S3'), ('B', float)]) test = get_names(ndtype) assert_equal(test, ('A', 'B')) ndtype = np.dtype([('a', int), ('b', [('ba', float), ('bb', int)])]) test = get_names(ndtype) assert_equal(test, ('a', ('b', ('ba', 'bb')))) def test_get_names_flat(self): # Test get_names_flat ndtype = np.dtype([('A', '|S3'), ('B', float)]) test = get_names_flat(ndtype) assert_equal(test, ('A', 'B')) ndtype = np.dtype([('a', int), ('b', [('ba', float), ('bb', int)])]) test = get_names_flat(ndtype) assert_equal(test, ('a', 'b', 'ba', 'bb')) def test_get_fieldstructure(self): # Test get_fieldstructure # No nested fields ndtype = np.dtype([('A', '|S3'), ('B', float)]) test = get_fieldstructure(ndtype) assert_equal(test, {'A': [], 'B': []}) # One 1-nested field ndtype = np.dtype([('A', int), ('B', [('BA', float), ('BB', '|S1')])]) test = get_fieldstructure(ndtype) assert_equal(test, {'A': [], 'B': [], 'BA': ['B', ], 'BB': ['B']}) # One 2-nested fields ndtype = np.dtype([('A', int), ('B', [('BA', int), ('BB', [('BBA', int), ('BBB', int)])])]) test = get_fieldstructure(ndtype) control = {'A': [], 'B': [], 'BA': ['B'], 'BB': ['B'], 'BBA': ['B', 'BB'], 'BBB': ['B', 'BB']} assert_equal(test, control) def test_find_duplicates(self): # Test find_duplicates a = ma.array([(2, (2., 'B')), (1, (2., 'B')), (2, (2., 'B')), (1, (1., 'B')), (2, (2., 'B')), (2, (2., 'C'))], mask=[(0, (0, 0)), (0, (0, 0)), (0, (0, 0)), (0, (0, 0)), (1, (0, 0)), (0, (1, 0))], dtype=[('A', int), ('B', [('BA', float), ('BB', '|S1')])]) test = find_duplicates(a, ignoremask=False, return_index=True) control = [0, 2] assert_equal(sorted(test[-1]), control) assert_equal(test[0], a[test[-1]]) test = find_duplicates(a, key='A', return_index=True) control = [0, 1, 2, 3, 5] assert_equal(sorted(test[-1]), control) assert_equal(test[0], a[test[-1]]) test = find_duplicates(a, key='B', return_index=True) control = [0, 1, 2, 4] assert_equal(sorted(test[-1]), control) assert_equal(test[0], a[test[-1]]) test = find_duplicates(a, key='BA', return_index=True) control = [0, 1, 2, 4] assert_equal(sorted(test[-1]), control) assert_equal(test[0], a[test[-1]]) test = find_duplicates(a, key='BB', return_index=True) control = [0, 1, 2, 3, 4] assert_equal(sorted(test[-1]), control) assert_equal(test[0], a[test[-1]]) def test_find_duplicates_ignoremask(self): # Test the ignoremask option of find_duplicates ndtype = [('a', int)] a = ma.array([1, 1, 1, 2, 2, 3, 3], mask=[0, 0, 1, 0, 0, 0, 1]).view(ndtype) test = find_duplicates(a, ignoremask=True, return_index=True) control = [0, 1, 3, 4] assert_equal(sorted(test[-1]), control) assert_equal(test[0], a[test[-1]]) test = find_duplicates(a, ignoremask=False, return_index=True) control = [0, 1, 2, 3, 4, 6] assert_equal(sorted(test[-1]), control) assert_equal(test[0], a[test[-1]]) def test_repack_fields(self): dt = np.dtype('u1,f4,i8', align=True) a = np.zeros(2, dtype=dt) assert_equal(repack_fields(dt), np.dtype('u1,f4,i8')) assert_equal(repack_fields(a).itemsize, 13) assert_equal(repack_fields(repack_fields(dt), align=True), dt) # make sure type is preserved dt = np.dtype((np.record, dt)) assert_(repack_fields(dt).type is np.record) def test_structured_to_unstructured(self): a = np.zeros(4, dtype=[('a', 'i4'), ('b', 'f4,u2'), ('c', 'f4', 2)]) out = structured_to_unstructured(a) assert_equal(out, np.zeros((4,5), dtype='f8')) b = np.array([(1, 2, 5), (4, 5, 7), (7, 8 ,11), (10, 11, 12)], dtype=[('x', 'i4'), ('y', 'f4'), ('z', 'f8')]) out = np.mean(structured_to_unstructured(b[['x', 'z']]), axis=-1) assert_equal(out, np.array([ 3. , 5.5, 9. , 11. ])) out = np.mean(structured_to_unstructured(b[['x']]), axis=-1) assert_equal(out, np.array([ 1. , 4. , 7. , 10. ])) c = np.arange(20).reshape((4,5)) out = unstructured_to_structured(c, a.dtype) want = np.array([( 0, ( 1., 2), [ 3., 4.]), ( 5, ( 6., 7), [ 8., 9.]), (10, (11., 12), [13., 14.]), (15, (16., 17), [18., 19.])], dtype=[('a', 'i4'), ('b', [('f0', 'f4'), ('f1', 'u2')]), ('c', 'f4', (2,))]) assert_equal(out, want) d = np.array([(1, 2, 5), (4, 5, 7), (7, 8 ,11), (10, 11, 12)], dtype=[('x', 'i4'), ('y', 'f4'), ('z', 'f8')]) assert_equal(apply_along_fields(np.mean, d), np.array([ 8.0/3, 16.0/3, 26.0/3, 11. ])) assert_equal(apply_along_fields(np.mean, d[['x', 'z']]), np.array([ 3. , 5.5, 9. , 11. ])) # check that for uniform field dtypes we get a view, not a copy: d = np.array([(1, 2, 5), (4, 5, 7), (7, 8 ,11), (10, 11, 12)], dtype=[('x', 'i4'), ('y', 'i4'), ('z', 'i4')]) dd = structured_to_unstructured(d) ddd = unstructured_to_structured(dd, d.dtype) assert_(dd.base is d) assert_(ddd.base is d) # including uniform fields with subarrays unpacked d = np.array([(1, [2, 3], [[ 4, 5], [ 6, 7]]), (8, [9, 10], [[11, 12], [13, 14]])], dtype=[('x0', 'i4'), ('x1', ('i4', 2)), ('x2', ('i4', (2, 2)))]) dd = structured_to_unstructured(d) ddd = unstructured_to_structured(dd, d.dtype) assert_(dd.base is d) assert_(ddd.base is d) # test that nested fields with identical names don't break anything point = np.dtype([('x', int), ('y', int)]) triangle = np.dtype([('a', point), ('b', point), ('c', point)]) arr = np.zeros(10, triangle) res = structured_to_unstructured(arr, dtype=int) assert_equal(res, np.zeros((10, 6), dtype=int)) def test_field_assignment_by_name(self): a = np.ones(2, dtype=[('a', 'i4'), ('b', 'f8'), ('c', 'u1')]) newdt = [('b', 'f4'), ('c', 'u1')] assert_equal(require_fields(a, newdt), np.ones(2, newdt)) b = np.array([(1,2), (3,4)], dtype=newdt) assign_fields_by_name(a, b, zero_unassigned=False) assert_equal(a, np.array([(1,1,2),(1,3,4)], dtype=a.dtype)) assign_fields_by_name(a, b) assert_equal(a, np.array([(0,1,2),(0,3,4)], dtype=a.dtype)) # test nested fields a = np.ones(2, dtype=[('a', [('b', 'f8'), ('c', 'u1')])]) newdt = [('a', [('c', 'u1')])] assert_equal(require_fields(a, newdt), np.ones(2, newdt)) b = np.array([((2,),), ((3,),)], dtype=newdt) assign_fields_by_name(a, b, zero_unassigned=False) assert_equal(a, np.array([((1,2),), ((1,3),)], dtype=a.dtype)) assign_fields_by_name(a, b) assert_equal(a, np.array([((0,2),), ((0,3),)], dtype=a.dtype)) # test unstructured code path for 0d arrays a, b = np.array(3), np.array(0) assign_fields_by_name(b, a) assert_equal(b[()], 3) class TestRecursiveFillFields(object): # Test recursive_fill_fields. def test_simple_flexible(self): # Test recursive_fill_fields on flexible-array a = np.array([(1, 10.), (2, 20.)], dtype=[('A', int), ('B', float)]) b = np.zeros((3,), dtype=a.dtype) test = recursive_fill_fields(a, b) control = np.array([(1, 10.), (2, 20.), (0, 0.)], dtype=[('A', int), ('B', float)]) assert_equal(test, control) def test_masked_flexible(self): # Test recursive_fill_fields on masked flexible-array a = ma.array([(1, 10.), (2, 20.)], mask=[(0, 1), (1, 0)], dtype=[('A', int), ('B', float)]) b = ma.zeros((3,), dtype=a.dtype) test = recursive_fill_fields(a, b) control = ma.array([(1, 10.), (2, 20.), (0, 0.)], mask=[(0, 1), (1, 0), (0, 0)], dtype=[('A', int), ('B', float)]) assert_equal(test, control) class TestMergeArrays(object): # Test merge_arrays def setup(self): x = np.array([1, 2, ]) y = np.array([10, 20, 30]) z = np.array( [('A', 1.), ('B', 2.)], dtype=[('A', '|S3'), ('B', float)]) w = np.array( [(1, (2, 3.0)), (4, (5, 6.0))], dtype=[('a', int), ('b', [('ba', float), ('bb', int)])]) self.data = (w, x, y, z) def test_solo(self): # Test merge_arrays on a single array. (_, x, _, z) = self.data test = merge_arrays(x) control = np.array([(1,), (2,)], dtype=[('f0', int)]) assert_equal(test, control) test = merge_arrays((x,)) assert_equal(test, control) test = merge_arrays(z, flatten=False) assert_equal(test, z) test = merge_arrays(z, flatten=True) assert_equal(test, z) def test_solo_w_flatten(self): # Test merge_arrays on a single array w & w/o flattening w = self.data[0] test = merge_arrays(w, flatten=False) assert_equal(test, w) test = merge_arrays(w, flatten=True) control = np.array([(1, 2, 3.0), (4, 5, 6.0)], dtype=[('a', int), ('ba', float), ('bb', int)]) assert_equal(test, control) def test_standard(self): # Test standard & standard # Test merge arrays (_, x, y, _) = self.data test = merge_arrays((x, y), usemask=False) control = np.array([(1, 10), (2, 20), (-1, 30)], dtype=[('f0', int), ('f1', int)]) assert_equal(test, control) test = merge_arrays((x, y), usemask=True) control = ma.array([(1, 10), (2, 20), (-1, 30)], mask=[(0, 0), (0, 0), (1, 0)], dtype=[('f0', int), ('f1', int)]) assert_equal(test, control) assert_equal(test.mask, control.mask) def test_flatten(self): # Test standard & flexible (_, x, _, z) = self.data test = merge_arrays((x, z), flatten=True) control = np.array([(1, 'A', 1.), (2, 'B', 2.)], dtype=[('f0', int), ('A', '|S3'), ('B', float)]) assert_equal(test, control) test = merge_arrays((x, z), flatten=False) control = np.array([(1, ('A', 1.)), (2, ('B', 2.))], dtype=[('f0', int), ('f1', [('A', '|S3'), ('B', float)])]) assert_equal(test, control) def test_flatten_wflexible(self): # Test flatten standard & nested (w, x, _, _) = self.data test = merge_arrays((x, w), flatten=True) control = np.array([(1, 1, 2, 3.0), (2, 4, 5, 6.0)], dtype=[('f0', int), ('a', int), ('ba', float), ('bb', int)]) assert_equal(test, control) test = merge_arrays((x, w), flatten=False) controldtype = [('f0', int), ('f1', [('a', int), ('b', [('ba', float), ('bb', int)])])] control = np.array([(1., (1, (2, 3.0))), (2, (4, (5, 6.0)))], dtype=controldtype) assert_equal(test, control) def test_wmasked_arrays(self): # Test merge_arrays masked arrays (_, x, _, _) = self.data mx = ma.array([1, 2, 3], mask=[1, 0, 0]) test = merge_arrays((x, mx), usemask=True) control = ma.array([(1, 1), (2, 2), (-1, 3)], mask=[(0, 1), (0, 0), (1, 0)], dtype=[('f0', int), ('f1', int)]) assert_equal(test, control) test = merge_arrays((x, mx), usemask=True, asrecarray=True) assert_equal(test, control) assert_(isinstance(test, MaskedRecords)) def test_w_singlefield(self): # Test single field test = merge_arrays((np.array([1, 2]).view([('a', int)]), np.array([10., 20., 30.])),) control = ma.array([(1, 10.), (2, 20.), (-1, 30.)], mask=[(0, 0), (0, 0), (1, 0)], dtype=[('a', int), ('f1', float)]) assert_equal(test, control) def test_w_shorter_flex(self): # Test merge_arrays w/ a shorter flexndarray. z = self.data[-1] # Fixme, this test looks incomplete and broken #test = merge_arrays((z, np.array([10, 20, 30]).view([('C', int)]))) #control = np.array([('A', 1., 10), ('B', 2., 20), ('-1', -1, 20)], # dtype=[('A', '|S3'), ('B', float), ('C', int)]) #assert_equal(test, control) # Hack to avoid pyflakes warnings about unused variables merge_arrays((z, np.array([10, 20, 30]).view([('C', int)]))) np.array([('A', 1., 10), ('B', 2., 20), ('-1', -1, 20)], dtype=[('A', '|S3'), ('B', float), ('C', int)]) def test_singlerecord(self): (_, x, y, z) = self.data test = merge_arrays((x[0], y[0], z[0]), usemask=False) control = np.array([(1, 10, ('A', 1))], dtype=[('f0', int), ('f1', int), ('f2', [('A', '|S3'), ('B', float)])]) assert_equal(test, control) class TestAppendFields(object): # Test append_fields def setup(self): x = np.array([1, 2, ]) y = np.array([10, 20, 30]) z = np.array( [('A', 1.), ('B', 2.)], dtype=[('A', '|S3'), ('B', float)]) w = np.array([(1, (2, 3.0)), (4, (5, 6.0))], dtype=[('a', int), ('b', [('ba', float), ('bb', int)])]) self.data = (w, x, y, z) def test_append_single(self): # Test simple case (_, x, _, _) = self.data test = append_fields(x, 'A', data=[10, 20, 30]) control = ma.array([(1, 10), (2, 20), (-1, 30)], mask=[(0, 0), (0, 0), (1, 0)], dtype=[('f0', int), ('A', int)],) assert_equal(test, control) def test_append_double(self): # Test simple case (_, x, _, _) = self.data test = append_fields(x, ('A', 'B'), data=[[10, 20, 30], [100, 200]]) control = ma.array([(1, 10, 100), (2, 20, 200), (-1, 30, -1)], mask=[(0, 0, 0), (0, 0, 0), (1, 0, 1)], dtype=[('f0', int), ('A', int), ('B', int)],) assert_equal(test, control) def test_append_on_flex(self): # Test append_fields on flexible type arrays z = self.data[-1] test = append_fields(z, 'C', data=[10, 20, 30]) control = ma.array([('A', 1., 10), ('B', 2., 20), (-1, -1., 30)], mask=[(0, 0, 0), (0, 0, 0), (1, 1, 0)], dtype=[('A', '|S3'), ('B', float), ('C', int)],) assert_equal(test, control) def test_append_on_nested(self): # Test append_fields on nested fields w = self.data[0] test = append_fields(w, 'C', data=[10, 20, 30]) control = ma.array([(1, (2, 3.0), 10), (4, (5, 6.0), 20), (-1, (-1, -1.), 30)], mask=[( 0, (0, 0), 0), (0, (0, 0), 0), (1, (1, 1), 0)], dtype=[('a', int), ('b', [('ba', float), ('bb', int)]), ('C', int)],) assert_equal(test, control) class TestStackArrays(object): # Test stack_arrays def setup(self): x = np.array([1, 2, ]) y = np.array([10, 20, 30]) z = np.array( [('A', 1.), ('B', 2.)], dtype=[('A', '|S3'), ('B', float)]) w = np.array([(1, (2, 3.0)), (4, (5, 6.0))], dtype=[('a', int), ('b', [('ba', float), ('bb', int)])]) self.data = (w, x, y, z) def test_solo(self): # Test stack_arrays on single arrays (_, x, _, _) = self.data test = stack_arrays((x,)) assert_equal(test, x) assert_(test is x) test = stack_arrays(x) assert_equal(test, x) assert_(test is x) def test_unnamed_fields(self): # Tests combinations of arrays w/o named fields (_, x, y, _) = self.data test = stack_arrays((x, x), usemask=False) control = np.array([1, 2, 1, 2]) assert_equal(test, control) test = stack_arrays((x, y), usemask=False) control = np.array([1, 2, 10, 20, 30]) assert_equal(test, control) test = stack_arrays((y, x), usemask=False) control = np.array([10, 20, 30, 1, 2]) assert_equal(test, control) def test_unnamed_and_named_fields(self): # Test combination of arrays w/ & w/o named fields (_, x, _, z) = self.data test = stack_arrays((x, z)) control = ma.array([(1, -1, -1), (2, -1, -1), (-1, 'A', 1), (-1, 'B', 2)], mask=[(0, 1, 1), (0, 1, 1), (1, 0, 0), (1, 0, 0)], dtype=[('f0', int), ('A', '|S3'), ('B', float)]) assert_equal(test, control) assert_equal(test.mask, control.mask) test = stack_arrays((z, x)) control = ma.array([('A', 1, -1), ('B', 2, -1), (-1, -1, 1), (-1, -1, 2), ], mask=[(0, 0, 1), (0, 0, 1), (1, 1, 0), (1, 1, 0)], dtype=[('A', '|S3'), ('B', float), ('f2', int)]) assert_equal(test, control) assert_equal(test.mask, control.mask) test = stack_arrays((z, z, x)) control = ma.array([('A', 1, -1), ('B', 2, -1), ('A', 1, -1), ('B', 2, -1), (-1, -1, 1), (-1, -1, 2), ], mask=[(0, 0, 1), (0, 0, 1), (0, 0, 1), (0, 0, 1), (1, 1, 0), (1, 1, 0)], dtype=[('A', '|S3'), ('B', float), ('f2', int)]) assert_equal(test, control) def test_matching_named_fields(self): # Test combination of arrays w/ matching field names (_, x, _, z) = self.data zz = np.array([('a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)], dtype=[('A', '|S3'), ('B', float), ('C', float)]) test = stack_arrays((z, zz)) control = ma.array([('A', 1, -1), ('B', 2, -1), ( 'a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)], dtype=[('A', '|S3'), ('B', float), ('C', float)], mask=[(0, 0, 1), (0, 0, 1), (0, 0, 0), (0, 0, 0), (0, 0, 0)]) assert_equal(test, control) assert_equal(test.mask, control.mask) test = stack_arrays((z, zz, x)) ndtype = [('A', '|S3'), ('B', float), ('C', float), ('f3', int)] control = ma.array([('A', 1, -1, -1), ('B', 2, -1, -1), ('a', 10., 100., -1), ('b', 20., 200., -1), ('c', 30., 300., -1), (-1, -1, -1, 1), (-1, -1, -1, 2)], dtype=ndtype, mask=[(0, 0, 1, 1), (0, 0, 1, 1), (0, 0, 0, 1), (0, 0, 0, 1), (0, 0, 0, 1), (1, 1, 1, 0), (1, 1, 1, 0)]) assert_equal(test, control) assert_equal(test.mask, control.mask) def test_defaults(self): # Test defaults: no exception raised if keys of defaults are not fields. (_, _, _, z) = self.data zz = np.array([('a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)], dtype=[('A', '|S3'), ('B', float), ('C', float)]) defaults = {'A': '???', 'B': -999., 'C': -9999., 'D': -99999.} test = stack_arrays((z, zz), defaults=defaults) control = ma.array([('A', 1, -9999.), ('B', 2, -9999.), ( 'a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)], dtype=[('A', '|S3'), ('B', float), ('C', float)], mask=[(0, 0, 1), (0, 0, 1), (0, 0, 0), (0, 0, 0), (0, 0, 0)]) assert_equal(test, control) assert_equal(test.data, control.data) assert_equal(test.mask, control.mask) def test_autoconversion(self): # Tests autoconversion adtype = [('A', int), ('B', bool), ('C', float)] a = ma.array([(1, 2, 3)], mask=[(0, 1, 0)], dtype=adtype) bdtype = [('A', int), ('B', float), ('C', float)] b = ma.array([(4, 5, 6)], dtype=bdtype) control = ma.array([(1, 2, 3), (4, 5, 6)], mask=[(0, 1, 0), (0, 0, 0)], dtype=bdtype) test = stack_arrays((a, b), autoconvert=True) assert_equal(test, control) assert_equal(test.mask, control.mask) with assert_raises(TypeError): stack_arrays((a, b), autoconvert=False) def test_checktitles(self): # Test using titles in the field names adtype = [(('a', 'A'), int), (('b', 'B'), bool), (('c', 'C'), float)] a = ma.array([(1, 2, 3)], mask=[(0, 1, 0)], dtype=adtype) bdtype = [(('a', 'A'), int), (('b', 'B'), bool), (('c', 'C'), float)] b = ma.array([(4, 5, 6)], dtype=bdtype) test = stack_arrays((a, b)) control = ma.array([(1, 2, 3), (4, 5, 6)], mask=[(0, 1, 0), (0, 0, 0)], dtype=bdtype) assert_equal(test, control) assert_equal(test.mask, control.mask) def test_subdtype(self): z = np.array([ ('A', 1), ('B', 2) ], dtype=[('A', '|S3'), ('B', float, (1,))]) zz = np.array([ ('a', [10.], 100.), ('b', [20.], 200.), ('c', [30.], 300.) ], dtype=[('A', '|S3'), ('B', float, (1,)), ('C', float)]) res = stack_arrays((z, zz)) expected = ma.array( data=[ (b'A', [1.0], 0), (b'B', [2.0], 0), (b'a', [10.0], 100.0), (b'b', [20.0], 200.0), (b'c', [30.0], 300.0)], mask=[ (False, [False], True), (False, [False], True), (False, [False], False), (False, [False], False), (False, [False], False) ], dtype=zz.dtype ) assert_equal(res.dtype, expected.dtype) assert_equal(res, expected) assert_equal(res.mask, expected.mask) class TestJoinBy(object): def setup(self): self.a = np.array(list(zip(np.arange(10), np.arange(50, 60), np.arange(100, 110))), dtype=[('a', int), ('b', int), ('c', int)]) self.b = np.array(list(zip(np.arange(5, 15), np.arange(65, 75), np.arange(100, 110))), dtype=[('a', int), ('b', int), ('d', int)]) def test_inner_join(self): # Basic test of join_by a, b = self.a, self.b test = join_by('a', a, b, jointype='inner') control = np.array([(5, 55, 65, 105, 100), (6, 56, 66, 106, 101), (7, 57, 67, 107, 102), (8, 58, 68, 108, 103), (9, 59, 69, 109, 104)], dtype=[('a', int), ('b1', int), ('b2', int), ('c', int), ('d', int)]) assert_equal(test, control) def test_join(self): a, b = self.a, self.b # Fixme, this test is broken #test = join_by(('a', 'b'), a, b) #control = np.array([(5, 55, 105, 100), (6, 56, 106, 101), # (7, 57, 107, 102), (8, 58, 108, 103), # (9, 59, 109, 104)], # dtype=[('a', int), ('b', int), # ('c', int), ('d', int)]) #assert_equal(test, control) # Hack to avoid pyflakes unused variable warnings join_by(('a', 'b'), a, b) np.array([(5, 55, 105, 100), (6, 56, 106, 101), (7, 57, 107, 102), (8, 58, 108, 103), (9, 59, 109, 104)], dtype=[('a', int), ('b', int), ('c', int), ('d', int)]) def test_join_subdtype(self): # tests the bug in https://stackoverflow.com/q/44769632/102441 from numpy.lib import recfunctions as rfn foo = np.array([(1,)], dtype=[('key', int)]) bar = np.array([(1, np.array([1,2,3]))], dtype=[('key', int), ('value', 'uint16', 3)]) res = join_by('key', foo, bar) assert_equal(res, bar.view(ma.MaskedArray)) def test_outer_join(self): a, b = self.a, self.b test = join_by(('a', 'b'), a, b, 'outer') control = ma.array([(0, 50, 100, -1), (1, 51, 101, -1), (2, 52, 102, -1), (3, 53, 103, -1), (4, 54, 104, -1), (5, 55, 105, -1), (5, 65, -1, 100), (6, 56, 106, -1), (6, 66, -1, 101), (7, 57, 107, -1), (7, 67, -1, 102), (8, 58, 108, -1), (8, 68, -1, 103), (9, 59, 109, -1), (9, 69, -1, 104), (10, 70, -1, 105), (11, 71, -1, 106), (12, 72, -1, 107), (13, 73, -1, 108), (14, 74, -1, 109)], mask=[(0, 0, 0, 1), (0, 0, 0, 1), (0, 0, 0, 1), (0, 0, 0, 1), (0, 0, 0, 1), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 0, 1), (0, 0, 1, 0), (0, 0, 1, 0), (0, 0, 1, 0), (0, 0, 1, 0), (0, 0, 1, 0), (0, 0, 1, 0)], dtype=[('a', int), ('b', int), ('c', int), ('d', int)]) assert_equal(test, control) def test_leftouter_join(self): a, b = self.a, self.b test = join_by(('a', 'b'), a, b, 'leftouter') control = ma.array([(0, 50, 100, -1), (1, 51, 101, -1), (2, 52, 102, -1), (3, 53, 103, -1), (4, 54, 104, -1), (5, 55, 105, -1), (6, 56, 106, -1), (7, 57, 107, -1), (8, 58, 108, -1), (9, 59, 109, -1)], mask=[(0, 0, 0, 1), (0, 0, 0, 1), (0, 0, 0, 1), (0, 0, 0, 1), (0, 0, 0, 1), (0, 0, 0, 1), (0, 0, 0, 1), (0, 0, 0, 1), (0, 0, 0, 1), (0, 0, 0, 1)], dtype=[('a', int), ('b', int), ('c', int), ('d', int)]) assert_equal(test, control) def test_different_field_order(self): # gh-8940 a = np.zeros(3, dtype=[('a', 'i4'), ('b', 'f4'), ('c', 'u1')]) b = np.ones(3, dtype=[('c', 'u1'), ('b', 'f4'), ('a', 'i4')]) # this should not give a FutureWarning: j = join_by(['c', 'b'], a, b, jointype='inner', usemask=False) assert_equal(j.dtype.names, ['b', 'c', 'a1', 'a2']) def test_duplicate_keys(self): a = np.zeros(3, dtype=[('a', 'i4'), ('b', 'f4'), ('c', 'u1')]) b = np.ones(3, dtype=[('c', 'u1'), ('b', 'f4'), ('a', 'i4')]) assert_raises(ValueError, join_by, ['a', 'b', 'b'], a, b) @pytest.mark.xfail(reason="See comment at gh-9343") def test_same_name_different_dtypes_key(self): a_dtype = np.dtype([('key', 'S5'), ('value', '<f4')]) b_dtype = np.dtype([('key', 'S10'), ('value', '<f4')]) expected_dtype = np.dtype([ ('key', 'S10'), ('value1', '<f4'), ('value2', '<f4')]) a = np.array([('Sarah', 8.0), ('John', 6.0)], dtype=a_dtype) b = np.array([('Sarah', 10.0), ('John', 7.0)], dtype=b_dtype) res = join_by('key', a, b) assert_equal(res.dtype, expected_dtype) def test_same_name_different_dtypes(self): # gh-9338 a_dtype = np.dtype([('key', 'S10'), ('value', '<f4')]) b_dtype = np.dtype([('key', 'S10'), ('value', '<f8')]) expected_dtype = np.dtype([ ('key', '|S10'), ('value1', '<f4'), ('value2', '<f8')]) a = np.array([('Sarah', 8.0), ('John', 6.0)], dtype=a_dtype) b = np.array([('Sarah', 10.0), ('John', 7.0)], dtype=b_dtype) res = join_by('key', a, b) assert_equal(res.dtype, expected_dtype) def test_subarray_key(self): a_dtype = np.dtype([('pos', int, 3), ('f', '<f4')]) a = np.array([([1, 1, 1], np.pi), ([1, 2, 3], 0.0)], dtype=a_dtype) b_dtype = np.dtype([('pos', int, 3), ('g', '<f4')]) b = np.array([([1, 1, 1], 3), ([3, 2, 1], 0.0)], dtype=b_dtype) expected_dtype = np.dtype([('pos', int, 3), ('f', '<f4'), ('g', '<f4')]) expected = np.array([([1, 1, 1], np.pi, 3)], dtype=expected_dtype) res = join_by('pos', a, b) assert_equal(res.dtype, expected_dtype) assert_equal(res, expected) def test_padded_dtype(self): dt = np.dtype('i1,f4', align=True) dt.names = ('k', 'v') assert_(len(dt.descr), 3) # padding field is inserted a = np.array([(1, 3), (3, 2)], dt) b = np.array([(1, 1), (2, 2)], dt) res = join_by('k', a, b) # no padding fields remain expected_dtype = np.dtype([ ('k', 'i1'), ('v1', 'f4'), ('v2', 'f4') ]) assert_equal(res.dtype, expected_dtype) class TestJoinBy2(object): @classmethod def setup(cls): cls.a = np.array(list(zip(np.arange(10), np.arange(50, 60), np.arange(100, 110))), dtype=[('a', int), ('b', int), ('c', int)]) cls.b = np.array(list(zip(np.arange(10), np.arange(65, 75), np.arange(100, 110))), dtype=[('a', int), ('b', int), ('d', int)]) def test_no_r1postfix(self): # Basic test of join_by no_r1postfix a, b = self.a, self.b test = join_by( 'a', a, b, r1postfix='', r2postfix='2', jointype='inner') control = np.array([(0, 50, 65, 100, 100), (1, 51, 66, 101, 101), (2, 52, 67, 102, 102), (3, 53, 68, 103, 103), (4, 54, 69, 104, 104), (5, 55, 70, 105, 105), (6, 56, 71, 106, 106), (7, 57, 72, 107, 107), (8, 58, 73, 108, 108), (9, 59, 74, 109, 109)], dtype=[('a', int), ('b', int), ('b2', int), ('c', int), ('d', int)]) assert_equal(test, control) def test_no_postfix(self): assert_raises(ValueError, join_by, 'a', self.a, self.b, r1postfix='', r2postfix='') def test_no_r2postfix(self): # Basic test of join_by no_r2postfix a, b = self.a, self.b test = join_by( 'a', a, b, r1postfix='1', r2postfix='', jointype='inner') control = np.array([(0, 50, 65, 100, 100), (1, 51, 66, 101, 101), (2, 52, 67, 102, 102), (3, 53, 68, 103, 103), (4, 54, 69, 104, 104), (5, 55, 70, 105, 105), (6, 56, 71, 106, 106), (7, 57, 72, 107, 107), (8, 58, 73, 108, 108), (9, 59, 74, 109, 109)], dtype=[('a', int), ('b1', int), ('b', int), ('c', int), ('d', int)]) assert_equal(test, control) def test_two_keys_two_vars(self): a = np.array(list(zip(np.tile([10, 11], 5), np.repeat(np.arange(5), 2), np.arange(50, 60), np.arange(10, 20))), dtype=[('k', int), ('a', int), ('b', int), ('c', int)]) b = np.array(list(zip(np.tile([10, 11], 5), np.repeat(np.arange(5), 2), np.arange(65, 75), np.arange(0, 10))), dtype=[('k', int), ('a', int), ('b', int), ('c', int)]) control = np.array([(10, 0, 50, 65, 10, 0), (11, 0, 51, 66, 11, 1), (10, 1, 52, 67, 12, 2), (11, 1, 53, 68, 13, 3), (10, 2, 54, 69, 14, 4), (11, 2, 55, 70, 15, 5), (10, 3, 56, 71, 16, 6), (11, 3, 57, 72, 17, 7), (10, 4, 58, 73, 18, 8), (11, 4, 59, 74, 19, 9)], dtype=[('k', int), ('a', int), ('b1', int), ('b2', int), ('c1', int), ('c2', int)]) test = join_by( ['a', 'k'], a, b, r1postfix='1', r2postfix='2', jointype='inner') assert_equal(test.dtype, control.dtype) assert_equal(test, control) class TestAppendFieldsObj(object): """ Test append_fields with arrays containing objects """ # https://github.com/numpy/numpy/issues/2346 def setup(self): from datetime import date self.data = dict(obj=date(2000, 1, 1)) def test_append_to_objects(self): "Test append_fields when the base array contains objects" obj = self.data['obj'] x = np.array([(obj, 1.), (obj, 2.)], dtype=[('A', object), ('B', float)]) y = np.array([10, 20], dtype=int) test = append_fields(x, 'C', data=y, usemask=False) control = np.array([(obj, 1.0, 10), (obj, 2.0, 20)], dtype=[('A', object), ('B', float), ('C', int)]) assert_equal(test, control)
# Copyright (c) 2016 Universidade Federal Fluminense (UFF) # Copyright (c) 2016 Polytechnic Institute of New York University. # This file is part of noWorkflow. # Please, consult the license terms in the LICENSE file. """Diff Object""" from __future__ import (absolute_import, print_function, division, unicode_literals) from collections import OrderedDict from future.utils import viewkeys from .base import Model, proxy_gen from .trial import Trial from .graphs.diff_graph import DiffGraph class Diff(Model): """This model represents a diff between two trials Initialize it by passing both trials ids: diff = Diff(1, 2) There are four visualization modes for the graph: tree: activation tree without any filters diff.graph.mode = 0 no match: tree transformed into a graph by the addition of sequence and return edges and removal of intermediate call edges diff.graph.mode = 1 exact match: calls are only combined when all the sub-call match diff.graph.mode = 2 namesapce: calls are combined without considering the sub-calls diff.graph.mode = 3 You can change the graph width and height by the variables: diff.graph.width = 600 diff.graph.height = 400 """ __modelname__ = "Diff" DEFAULT = { "graph.width": 500, "graph.height": 500, "graph.mode": 3, "graph.time_limit": None, } REPLACE = { "graph_width": "graph.width", "graph_height": "graph.height", "graph_mode": "graph.mode", "graph_time_limit": "graph.time_limit", } def __init__(self, trial_ref1, trial_ref2, **kwargs): super(Diff, self).__init__(trial_ref1, trial_ref2, **kwargs) self.trial1 = Trial(trial_ref1) self.trial2 = Trial(trial_ref2) self.graph = DiffGraph(self) self.initialize_default(kwargs) @property def trial(self): """Return a tuple with information from both trials """ extra = ("start", "finish", "duration_text") ignore = ("id",) return diff_dict( self.trial1.to_dict(ignore=ignore, extra=extra), # pylint: disable=no-member self.trial2.to_dict(ignore=ignore, extra=extra)) # pylint: disable=no-member @property def modules(self): """Diff modules from trials""" return diff_set( set(proxy_gen(self.trial1.modules)), set(proxy_gen(self.trial2.modules))) @property def environment(self): """Diff environment variables""" return diff_set( set(self.trial1.environment_attrs), set(self.trial2.environment_attrs)) @property def file_accesses(self): """Diff file accesses""" return diff_set( set(self.trial1.file_accesses), set(self.trial2.file_accesses), create_replaced=False) def _ipython_display_(self): """Display history graph""" if hasattr(self, "graph"): # pylint: disable=protected-access return self.graph._ipython_display_() from IPython.display import display display({ 'text/plain': 'Diff {}:{}'.format( self.trial1.id, self.trial2.id ) }) def diff_dict(before, after): """Compare dicts. Return a dict with keys shared by both dicts that have different values key -> [before[key], after[key]] """ result = OrderedDict() for key in viewkeys(before): if key != "id" and before[key] != after[key]: result[key] = [before[key], after[key]] return result def diff_set(before, after, create_replaced=True): """Compare sets to get additions, removals and replacements Return 3 sets: added -- objects present in second set, but not present in first set removed -- objects present in first set, but not present in second set replaced -- objects that have the same name in both sets, but are different """ removed = before - after added = after - before replaced = set() removed_by_name = {} for element_removed in removed: removed_by_name[element_removed.name] = element_removed for element_added in added: element_removed = removed_by_name.get(element_added.name) if element_removed and create_replaced: replaced.add((element_removed, element_added)) if create_replaced: for (element_removed, element_added) in replaced: removed.discard(element_removed) added.discard(element_added) return (added, removed, replaced)
# Copyright 2018-2022 Streamlit Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import uuid from enum import Enum from typing import TYPE_CHECKING, Callable, Optional, List, Any, cast from streamlit.uploaded_file_manager import UploadedFileManager import tornado.ioloop import streamlit.elements.exception as exception_utils from streamlit import __version__, caching, config, legacy_caching, secrets from streamlit.case_converters import to_snake_case from streamlit.credentials import Credentials from streamlit.in_memory_file_manager import in_memory_file_manager from streamlit.logger import get_logger from streamlit.metrics_util import Installation from streamlit.proto.ClientState_pb2 import ClientState from streamlit.proto.ForwardMsg_pb2 import ForwardMsg from streamlit.proto.GitInfo_pb2 import GitInfo from streamlit.proto.NewSession_pb2 import Config, CustomThemeConfig, UserInfo from streamlit.session_data import SessionData from streamlit.script_request_queue import RerunData, ScriptRequest, ScriptRequestQueue from streamlit.script_runner import ScriptRunner, ScriptRunnerEvent from streamlit.watcher.local_sources_watcher import LocalSourcesWatcher LOGGER = get_logger(__name__) if TYPE_CHECKING: from streamlit.state import SessionState class AppSessionState(Enum): APP_NOT_RUNNING = "APP_NOT_RUNNING" APP_IS_RUNNING = "APP_IS_RUNNING" SHUTDOWN_REQUESTED = "SHUTDOWN_REQUESTED" def _generate_scriptrun_id() -> str: """Randomly generate a unique ID for a script execution.""" return str(uuid.uuid4()) class AppSession: """ Contains session data for a single "user" of an active app (that is, a connected browser tab). Each AppSession has its own SessionData, root DeltaGenerator, ScriptRunner, and widget state. An AppSession is attached to each thread involved in running its script. """ def __init__( self, ioloop: tornado.ioloop.IOLoop, session_data: SessionData, uploaded_file_manager: UploadedFileManager, message_enqueued_callback: Optional[Callable[[], None]], local_sources_watcher: LocalSourcesWatcher, ): """Initialize the AppSession. Parameters ---------- ioloop : tornado.ioloop.IOLoop The Tornado IOLoop that we're running within. session_data : SessionData Object storing parameters related to running a script uploaded_file_manager : UploadedFileManager The server's UploadedFileManager. message_enqueued_callback : Callable[[], None] After enqueuing a message, this callable notification will be invoked. local_sources_watcher: LocalSourcesWatcher The file watcher that lets the session know local files have changed. """ # Each AppSession has a unique string ID. self.id = str(uuid.uuid4()) self._ioloop = ioloop self._session_data = session_data self._uploaded_file_mgr = uploaded_file_manager self._message_enqueued_callback = message_enqueued_callback self._state = AppSessionState.APP_NOT_RUNNING # Need to remember the client state here because when a script reruns # due to the source code changing we need to pass in the previous client state. self._client_state = ClientState() self._local_sources_watcher = local_sources_watcher self._local_sources_watcher.register_file_change_callback( self._on_source_file_changed ) self._stop_config_listener = config.on_config_parsed( self._on_source_file_changed, force_connect=True ) # The script should rerun when the `secrets.toml` file has been changed. secrets._file_change_listener.connect(self._on_secrets_file_changed) self._run_on_save = config.get_option("server.runOnSave") # The ScriptRequestQueue is the means by which we communicate # with the active ScriptRunner. self._script_request_queue = ScriptRequestQueue() self._scriptrunner: Optional[ScriptRunner] = None # This needs to be lazily imported to avoid a dependency cycle. from streamlit.state import SessionState self._session_state = SessionState() LOGGER.debug("AppSession initialized (id=%s)", self.id) def flush_browser_queue(self) -> List[ForwardMsg]: """Clear the forward message queue and return the messages it contained. The Server calls this periodically to deliver new messages to the browser connected to this app. Returns ------- list[ForwardMsg] The messages that were removed from the queue and should be delivered to the browser. """ return self._session_data.flush_browser_queue() def shutdown(self) -> None: """Shut down the AppSession. It's an error to use a AppSession after it's been shut down. """ if self._state != AppSessionState.SHUTDOWN_REQUESTED: LOGGER.debug("Shutting down (id=%s)", self.id) # Clear any unused session files in upload file manager and media # file manager self._uploaded_file_mgr.remove_session_files(self.id) in_memory_file_manager.clear_session_files(self.id) in_memory_file_manager.del_expired_files() # Shut down the ScriptRunner, if one is active. # self._state must not be set to SHUTDOWN_REQUESTED until # after this is called. if self._scriptrunner is not None: self._enqueue_script_request(ScriptRequest.SHUTDOWN) self._state = AppSessionState.SHUTDOWN_REQUESTED self._local_sources_watcher.close() if self._stop_config_listener is not None: self._stop_config_listener() secrets._file_change_listener.disconnect(self._on_secrets_file_changed) def enqueue(self, msg: ForwardMsg) -> None: """Enqueue a new ForwardMsg to our browser queue. This can be called on both the main thread and a ScriptRunner run thread. Parameters ---------- msg : ForwardMsg The message to enqueue """ if not config.get_option("client.displayEnabled"): return self._session_data.enqueue(msg) if self._message_enqueued_callback: self._message_enqueued_callback() def handle_backmsg_exception(self, e: BaseException) -> None: """Handle an Exception raised while processing a BackMsg from the browser.""" # This does a few things: # 1) Clears the current app in the browser. # 2) Marks the current app as "stopped" in the browser. # 3) HACK: Resets any script params that may have been broken (e.g. the # command-line when rerunning with wrong argv[0]) self._on_scriptrunner_event(None, ScriptRunnerEvent.SCRIPT_STOPPED_WITH_SUCCESS) self._on_scriptrunner_event(None, ScriptRunnerEvent.SCRIPT_STARTED) self._on_scriptrunner_event(None, ScriptRunnerEvent.SCRIPT_STOPPED_WITH_SUCCESS) msg = ForwardMsg() exception_utils.marshall(msg.delta.new_element.exception, e) self.enqueue(msg) def request_rerun(self, client_state: Optional[ClientState]) -> None: """Signal that we're interested in running the script. If the script is not already running, it will be started immediately. Otherwise, a rerun will be requested. Parameters ---------- client_state : streamlit.proto.ClientState_pb2.ClientState | None The ClientState protobuf to run the script with, or None to use previous client state. """ if client_state: rerun_data = RerunData( client_state.query_string, client_state.widget_states ) else: rerun_data = RerunData() self._enqueue_script_request(ScriptRequest.RERUN, rerun_data) @property def session_state(self) -> "SessionState": return self._session_state def _on_source_file_changed(self) -> None: """One of our source files changed. Schedule a rerun if appropriate.""" if self._run_on_save: self.request_rerun(self._client_state) else: self._enqueue_file_change_message() def _on_secrets_file_changed(self, _) -> None: """Called when `secrets._file_change_listener` emits a Signal.""" # NOTE: At the time of writing, this function only calls `_on_source_file_changed`. # The reason behind creating this function instead of just passing `_on_source_file_changed` # to `connect` / `disconnect` directly is that every function that is passed to `connect` / `disconnect` # must have at least one argument for `sender` (in this case we don't really care about it, thus `_`), # and introducing an unnecessary argument to `_on_source_file_changed` just for this purpose sounded finicky. self._on_source_file_changed() def _clear_queue(self) -> None: self._session_data.clear_browser_queue() def _on_scriptrunner_event( self, sender: Optional[ScriptRunner], event: ScriptRunnerEvent, exception: Optional[BaseException] = None, client_state: Optional[ClientState] = None, ) -> None: """Called when our ScriptRunner emits an event. This is called from the sender ScriptRunner's script thread; it is *not* called on the main thread. Parameters ---------- sender : ScriptRunner | None The ScriptRunner that emitted the event. This will be set to None when called from `handle_backmsg_exception`. event : ScriptRunnerEvent The event type. exception : BaseException | None An exception thrown during compilation. Set only for the SCRIPT_STOPPED_WITH_COMPILE_ERROR event. client_state : streamlit.proto.ClientState_pb2.ClientState | None The ScriptRunner's final ClientState. Set only for the SHUTDOWN event. """ LOGGER.debug("OnScriptRunnerEvent: %s", event) prev_state = self._state if event == ScriptRunnerEvent.SCRIPT_STARTED: if self._state != AppSessionState.SHUTDOWN_REQUESTED: self._state = AppSessionState.APP_IS_RUNNING self._clear_queue() self._enqueue_new_session_message() elif ( event == ScriptRunnerEvent.SCRIPT_STOPPED_WITH_SUCCESS or event == ScriptRunnerEvent.SCRIPT_STOPPED_WITH_COMPILE_ERROR ): if self._state != AppSessionState.SHUTDOWN_REQUESTED: self._state = AppSessionState.APP_NOT_RUNNING script_succeeded = event == ScriptRunnerEvent.SCRIPT_STOPPED_WITH_SUCCESS self._enqueue_script_finished_message( ForwardMsg.FINISHED_SUCCESSFULLY if script_succeeded else ForwardMsg.FINISHED_WITH_COMPILE_ERROR ) if script_succeeded: # When a script completes successfully, we update our # LocalSourcesWatcher to account for any source code changes # that change which modules should be watched. (This is run on # the main thread, because LocalSourcesWatcher is not # thread safe.) self._ioloop.spawn_callback( self._local_sources_watcher.update_watched_modules ) else: msg = ForwardMsg() exception_utils.marshall( msg.session_event.script_compilation_exception, exception ) self.enqueue(msg) elif event == ScriptRunnerEvent.SHUTDOWN: # When ScriptRunner shuts down, update our local reference to it, # and check to see if we need to spawn a new one. (This is run on # the main thread.) assert ( client_state is not None ), "client_state must be set for the SHUTDOWN event" if self._state == AppSessionState.SHUTDOWN_REQUESTED: # Only clear media files if the script is done running AND the # session is actually shutting down. in_memory_file_manager.clear_session_files(self.id) def on_shutdown(): # We assert above that this is non-null self._client_state = cast(ClientState, client_state) self._scriptrunner = None # Because a new ScriptEvent could have been enqueued while the # scriptrunner was shutting down, we check to see if we should # create a new one. (Otherwise, a newly-enqueued ScriptEvent # won't be processed until another event is enqueued.) self._maybe_create_scriptrunner() self._ioloop.spawn_callback(on_shutdown) # Send a message if our run state changed app_was_running = prev_state == AppSessionState.APP_IS_RUNNING app_is_running = self._state == AppSessionState.APP_IS_RUNNING if app_is_running != app_was_running: self._enqueue_session_state_changed_message() def _enqueue_session_state_changed_message(self) -> None: msg = ForwardMsg() msg.session_state_changed.run_on_save = self._run_on_save msg.session_state_changed.script_is_running = ( self._state == AppSessionState.APP_IS_RUNNING ) self.enqueue(msg) def _enqueue_file_change_message(self) -> None: LOGGER.debug("Enqueuing script_changed message (id=%s)", self.id) msg = ForwardMsg() msg.session_event.script_changed_on_disk = True self.enqueue(msg) def _enqueue_new_session_message(self) -> None: msg = ForwardMsg() msg.new_session.script_run_id = _generate_scriptrun_id() msg.new_session.name = self._session_data.name msg.new_session.main_script_path = self._session_data.main_script_path _populate_config_msg(msg.new_session.config) _populate_theme_msg(msg.new_session.custom_theme) # Immutable session data. We send this every time a new session is # started, to avoid having to track whether the client has already # received it. It does not change from run to run; it's up to the # to perform one-time initialization only once. imsg = msg.new_session.initialize _populate_user_info_msg(imsg.user_info) imsg.environment_info.streamlit_version = __version__ imsg.environment_info.python_version = ".".join(map(str, sys.version_info)) imsg.session_state.run_on_save = self._run_on_save imsg.session_state.script_is_running = ( self._state == AppSessionState.APP_IS_RUNNING ) imsg.command_line = self._session_data.command_line imsg.session_id = self.id self.enqueue(msg) def _enqueue_script_finished_message( self, status: "ForwardMsg.ScriptFinishedStatus.ValueType" ) -> None: """Enqueue a script_finished ForwardMsg.""" msg = ForwardMsg() msg.script_finished = status self.enqueue(msg) def handle_git_information_request(self) -> None: msg = ForwardMsg() try: from streamlit.git_util import GitRepo repo = GitRepo(self._session_data.main_script_path) repo_info = repo.get_repo_info() if repo_info is None: return repository_name, branch, module = repo_info msg.git_info_changed.repository = repository_name msg.git_info_changed.branch = branch msg.git_info_changed.module = module msg.git_info_changed.untracked_files[:] = repo.untracked_files msg.git_info_changed.uncommitted_files[:] = repo.uncommitted_files if repo.is_head_detached: msg.git_info_changed.state = GitInfo.GitStates.HEAD_DETACHED elif len(repo.ahead_commits) > 0: msg.git_info_changed.state = GitInfo.GitStates.AHEAD_OF_REMOTE else: msg.git_info_changed.state = GitInfo.GitStates.DEFAULT self.enqueue(msg) except Exception as e: # Users may never even install Git in the first place, so this # error requires no action. It can be useful for debugging. LOGGER.debug("Obtaining Git information produced an error", exc_info=e) def handle_rerun_script_request( self, client_state: Optional[ClientState] = None ) -> None: """Tell the ScriptRunner to re-run its script. Parameters ---------- client_state : streamlit.proto.ClientState_pb2.ClientState | None The ClientState protobuf to run the script with, or None to use previous client state. """ self.request_rerun(client_state) def handle_stop_script_request(self) -> None: """Tell the ScriptRunner to stop running its script.""" self._enqueue_script_request(ScriptRequest.STOP) def handle_clear_cache_request(self) -> None: """Clear this app's cache. Because this cache is global, it will be cleared for all users. """ legacy_caching.clear_cache() caching.memo.clear() caching.singleton.clear() self._session_state.clear_state() def handle_set_run_on_save_request(self, new_value: bool) -> None: """Change our run_on_save flag to the given value. The browser will be notified of the change. Parameters ---------- new_value : bool New run_on_save value """ self._run_on_save = new_value self._enqueue_session_state_changed_message() def _enqueue_script_request(self, request: ScriptRequest, data: Any = None) -> None: """Enqueue a ScriptEvent into our ScriptEventQueue. If a script thread is not already running, one will be created to handle the event. Parameters ---------- request : ScriptRequest The type of request. data : Any Data associated with the request, if any. """ if self._state == AppSessionState.SHUTDOWN_REQUESTED: LOGGER.warning("Discarding %s request after shutdown" % request) return self._script_request_queue.enqueue(request, data) self._maybe_create_scriptrunner() def _maybe_create_scriptrunner(self) -> None: """Create a new ScriptRunner if we have unprocessed script requests. This is called every time a ScriptRequest is enqueued, and also after a ScriptRunner shuts down, in case new requests were enqueued during its termination. This function should only be called on the main thread. """ if ( self._state == AppSessionState.SHUTDOWN_REQUESTED or self._scriptrunner is not None or not self._script_request_queue.has_request ): return # Create the ScriptRunner, attach event handlers, and start it self._scriptrunner = ScriptRunner( session_id=self.id, session_data=self._session_data, enqueue_forward_msg=self.enqueue, client_state=self._client_state, request_queue=self._script_request_queue, session_state=self._session_state, uploaded_file_mgr=self._uploaded_file_mgr, ) self._scriptrunner.on_event.connect(self._on_scriptrunner_event) self._scriptrunner.start() def _populate_config_msg(msg: Config) -> None: msg.gather_usage_stats = config.get_option("browser.gatherUsageStats") msg.max_cached_message_age = config.get_option("global.maxCachedMessageAge") msg.mapbox_token = config.get_option("mapbox.token") msg.allow_run_on_save = config.get_option("server.allowRunOnSave") msg.hide_top_bar = config.get_option("ui.hideTopBar") def _populate_theme_msg(msg: CustomThemeConfig) -> None: enum_encoded_options = {"base", "font"} theme_opts = config.get_options_for_section("theme") if not any(theme_opts.values()): return for option_name, option_val in theme_opts.items(): if option_name not in enum_encoded_options and option_val is not None: setattr(msg, to_snake_case(option_name), option_val) # NOTE: If unset, base and font will default to the protobuf enum zero # values, which are BaseTheme.LIGHT and FontFamily.SANS_SERIF, # respectively. This is why we both don't handle the cases explicitly and # also only log a warning when receiving invalid base/font options. base_map = { "light": msg.BaseTheme.LIGHT, "dark": msg.BaseTheme.DARK, } base = theme_opts["base"] if base is not None: if base not in base_map: LOGGER.warning( f'"{base}" is an invalid value for theme.base.' f" Allowed values include {list(base_map.keys())}." ' Setting theme.base to "light".' ) else: msg.base = base_map[base] font_map = { "sans serif": msg.FontFamily.SANS_SERIF, "serif": msg.FontFamily.SERIF, "monospace": msg.FontFamily.MONOSPACE, } font = theme_opts["font"] if font is not None: if font not in font_map: LOGGER.warning( f'"{font}" is an invalid value for theme.font.' f" Allowed values include {list(font_map.keys())}." ' Setting theme.font to "sans serif".' ) else: msg.font = font_map[font] def _populate_user_info_msg(msg: UserInfo) -> None: msg.installation_id = Installation.instance().installation_id msg.installation_id_v3 = Installation.instance().installation_id_v3 if Credentials.get_current().activation: msg.email = Credentials.get_current().activation.email else: msg.email = ""
def concat(s1, s2): if not s1: return s2 return s1[0:1] + concat(s1[1:], s2) def reverse(s1): if not s1: return s1 return concat(reverse(s1[1:]), s1[0]) def prefix(s1, s2): if s1 == '' and s2 != '': return True if s1[:1] == s2[:1]: return prefix(s1[1:], s2[1:]) return False s1 = input() s2 = input() print(concat(s1, s2)) print(reverse(s1)) print(prefix(s1, s2))
# coding: utf-8 # # Copyright 2019 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file # except in compliance with the License. A copy of the License is located at # # http://aws.amazon.com/apache2.0/ # # or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for # the specific language governing permissions and limitations under the License. # import pprint import re # noqa: F401 import six import typing from enum import Enum if typing.TYPE_CHECKING: from typing import Dict, List, Optional, Union, Any from datetime import datetime from ask_sdk_model.interfaces.audioplayer.caption_data import CaptionData as CaptionData_e119f120 class Stream(object): """ :param expected_previous_token: :type expected_previous_token: (optional) str :param token: :type token: (optional) str :param url: :type url: (optional) str :param offset_in_milliseconds: :type offset_in_milliseconds: (optional) int :param caption_data: :type caption_data: (optional) ask_sdk_model.interfaces.audioplayer.caption_data.CaptionData """ deserialized_types = { 'expected_previous_token': 'str', 'token': 'str', 'url': 'str', 'offset_in_milliseconds': 'int', 'caption_data': 'ask_sdk_model.interfaces.audioplayer.caption_data.CaptionData' } # type: Dict attribute_map = { 'expected_previous_token': 'expectedPreviousToken', 'token': 'token', 'url': 'url', 'offset_in_milliseconds': 'offsetInMilliseconds', 'caption_data': 'captionData' } # type: Dict supports_multiple_types = False def __init__(self, expected_previous_token=None, token=None, url=None, offset_in_milliseconds=None, caption_data=None): # type: (Optional[str], Optional[str], Optional[str], Optional[int], Optional[CaptionData_e119f120]) -> None """ :param expected_previous_token: :type expected_previous_token: (optional) str :param token: :type token: (optional) str :param url: :type url: (optional) str :param offset_in_milliseconds: :type offset_in_milliseconds: (optional) int :param caption_data: :type caption_data: (optional) ask_sdk_model.interfaces.audioplayer.caption_data.CaptionData """ self.__discriminator_value = None # type: str self.expected_previous_token = expected_previous_token self.token = token self.url = url self.offset_in_milliseconds = offset_in_milliseconds self.caption_data = caption_data def to_dict(self): # type: () -> Dict[str, object] """Returns the model properties as a dict""" result = {} # type: Dict for attr, _ in six.iteritems(self.deserialized_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x.value if isinstance(x, Enum) else x, value )) elif isinstance(value, Enum): result[attr] = value.value elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else (item[0], item[1].value) if isinstance(item[1], Enum) else item, value.items() )) else: result[attr] = value return result def to_str(self): # type: () -> str """Returns the string representation of the model""" return pprint.pformat(self.to_dict()) def __repr__(self): # type: () -> str """For `print` and `pprint`""" return self.to_str() def __eq__(self, other): # type: (object) -> bool """Returns true if both objects are equal""" if not isinstance(other, Stream): return False return self.__dict__ == other.__dict__ def __ne__(self, other): # type: (object) -> bool """Returns true if both objects are not equal""" return not self == other
# -*- coding: utf-8 -*- """Pylab (matplotlib) support utilities.""" from __future__ import print_function # Copyright (c) IPython Development Team. # Distributed under the terms of the Modified BSD License. from io import BytesIO from IPython.core.display import _pngxy from IPython.utils.decorators import flag_calls from IPython.utils import py3compat # If user specifies a GUI, that dictates the backend, otherwise we read the # user's mpl default from the mpl rc structure backends = {'tk': 'TkAgg', 'gtk': 'GTKAgg', 'gtk3': 'GTK3Agg', 'wx': 'WXAgg', 'qt': 'Qt4Agg', # qt3 not supported 'qt4': 'Qt4Agg', 'qt5': 'Qt5Agg', 'osx': 'MacOSX', 'nbagg': 'nbAgg', 'notebook': 'nbAgg', 'agg': 'agg', 'inline': 'module://ipykernel.pylab.backend_inline', 'ipympl': 'module://ipympl.backend_nbagg', } # We also need a reverse backends2guis mapping that will properly choose which # GUI support to activate based on the desired matplotlib backend. For the # most part it's just a reverse of the above dict, but we also need to add a # few others that map to the same GUI manually: backend2gui = dict(zip(backends.values(), backends.keys())) # Our tests expect backend2gui to just return 'qt' backend2gui['Qt4Agg'] = 'qt' # In the reverse mapping, there are a few extra valid matplotlib backends that # map to the same GUI support backend2gui['GTK'] = backend2gui['GTKCairo'] = 'gtk' backend2gui['GTK3Cairo'] = 'gtk3' backend2gui['WX'] = 'wx' backend2gui['CocoaAgg'] = 'osx' # And some backends that don't need GUI integration del backend2gui['nbAgg'] del backend2gui['agg'] del backend2gui['module://ipykernel.pylab.backend_inline'] #----------------------------------------------------------------------------- # Matplotlib utilities #----------------------------------------------------------------------------- def getfigs(*fig_nums): """Get a list of matplotlib figures by figure numbers. If no arguments are given, all available figures are returned. If the argument list contains references to invalid figures, a warning is printed but the function continues pasting further figures. Parameters ---------- figs : tuple A tuple of ints giving the figure numbers of the figures to return. """ from matplotlib._pylab_helpers import Gcf if not fig_nums: fig_managers = Gcf.get_all_fig_managers() return [fm.canvas.figure for fm in fig_managers] else: figs = [] for num in fig_nums: f = Gcf.figs.get(num) if f is None: print('Warning: figure %s not available.' % num) else: figs.append(f.canvas.figure) return figs def figsize(sizex, sizey): """Set the default figure size to be [sizex, sizey]. This is just an easy to remember, convenience wrapper that sets:: matplotlib.rcParams['figure.figsize'] = [sizex, sizey] """ import matplotlib matplotlib.rcParams['figure.figsize'] = [sizex, sizey] def print_figure(fig, fmt='png', bbox_inches='tight', **kwargs): """Print a figure to an image, and return the resulting file data Returned data will be bytes unless ``fmt='svg'``, in which case it will be unicode. Any keyword args are passed to fig.canvas.print_figure, such as ``quality`` or ``bbox_inches``. """ from matplotlib import rcParams # When there's an empty figure, we shouldn't return anything, otherwise we # get big blank areas in the qt console. if not fig.axes and not fig.lines: return dpi = fig.dpi if fmt == 'retina': dpi = dpi * 2 fmt = 'png' # build keyword args kw = dict( format=fmt, facecolor=fig.get_facecolor(), edgecolor=fig.get_edgecolor(), dpi=dpi, bbox_inches=bbox_inches, ) # **kwargs get higher priority kw.update(kwargs) bytes_io = BytesIO() fig.canvas.print_figure(bytes_io, **kw) data = bytes_io.getvalue() if fmt == 'svg': data = data.decode('utf-8') return data def retina_figure(fig, **kwargs): """format a figure as a pixel-doubled (retina) PNG""" pngdata = print_figure(fig, fmt='retina', **kwargs) # Make sure that retina_figure acts just like print_figure and returns # None when the figure is empty. if pngdata is None: return w, h = _pngxy(pngdata) metadata = dict(width=w//2, height=h//2) return pngdata, metadata # We need a little factory function here to create the closure where # safe_execfile can live. def mpl_runner(safe_execfile): """Factory to return a matplotlib-enabled runner for %run. Parameters ---------- safe_execfile : function This must be a function with the same interface as the :meth:`safe_execfile` method of IPython. Returns ------- A function suitable for use as the ``runner`` argument of the %run magic function. """ def mpl_execfile(fname,*where,**kw): """matplotlib-aware wrapper around safe_execfile. Its interface is identical to that of the :func:`execfile` builtin. This is ultimately a call to execfile(), but wrapped in safeties to properly handle interactive rendering.""" import matplotlib import matplotlib.pyplot as plt #print '*** Matplotlib runner ***' # dbg # turn off rendering until end of script is_interactive = matplotlib.rcParams['interactive'] matplotlib.interactive(False) safe_execfile(fname,*where,**kw) matplotlib.interactive(is_interactive) # make rendering call now, if the user tried to do it if plt.draw_if_interactive.called: plt.draw() plt.draw_if_interactive.called = False # re-draw everything that is stale try: da = plt.draw_all except AttributeError: pass else: da() return mpl_execfile def _reshow_nbagg_figure(fig): """reshow an nbagg figure""" try: reshow = fig.canvas.manager.reshow except AttributeError: raise NotImplementedError() else: reshow() def select_figure_formats(shell, formats, **kwargs): """Select figure formats for the inline backend. Parameters ========== shell : InteractiveShell The main IPython instance. formats : str or set One or a set of figure formats to enable: 'png', 'retina', 'jpeg', 'svg', 'pdf'. **kwargs : any Extra keyword arguments to be passed to fig.canvas.print_figure. """ import matplotlib from matplotlib.figure import Figure svg_formatter = shell.display_formatter.formatters['image/svg+xml'] png_formatter = shell.display_formatter.formatters['image/png'] jpg_formatter = shell.display_formatter.formatters['image/jpeg'] pdf_formatter = shell.display_formatter.formatters['application/pdf'] if isinstance(formats, py3compat.string_types): formats = {formats} # cast in case of list / tuple formats = set(formats) [ f.pop(Figure, None) for f in shell.display_formatter.formatters.values() ] mplbackend = matplotlib.get_backend().lower() if mplbackend == 'nbagg' or mplbackend == 'module://ipympl.backend_nbagg': formatter = shell.display_formatter.ipython_display_formatter formatter.for_type(Figure, _reshow_nbagg_figure) supported = {'png', 'png2x', 'retina', 'jpg', 'jpeg', 'svg', 'pdf'} bad = formats.difference(supported) if bad: bs = "%s" % ','.join([repr(f) for f in bad]) gs = "%s" % ','.join([repr(f) for f in supported]) raise ValueError("supported formats are: %s not %s" % (gs, bs)) if 'png' in formats: png_formatter.for_type(Figure, lambda fig: print_figure(fig, 'png', **kwargs)) if 'retina' in formats or 'png2x' in formats: png_formatter.for_type(Figure, lambda fig: retina_figure(fig, **kwargs)) if 'jpg' in formats or 'jpeg' in formats: jpg_formatter.for_type(Figure, lambda fig: print_figure(fig, 'jpg', **kwargs)) if 'svg' in formats: svg_formatter.for_type(Figure, lambda fig: print_figure(fig, 'svg', **kwargs)) if 'pdf' in formats: pdf_formatter.for_type(Figure, lambda fig: print_figure(fig, 'pdf', **kwargs)) #----------------------------------------------------------------------------- # Code for initializing matplotlib and importing pylab #----------------------------------------------------------------------------- def find_gui_and_backend(gui=None, gui_select=None): """Given a gui string return the gui and mpl backend. Parameters ---------- gui : str Can be one of ('tk','gtk','wx','qt','qt4','inline'). gui_select : str Can be one of ('tk','gtk','wx','qt','qt4','inline'). This is any gui already selected by the shell. Returns ------- A tuple of (gui, backend) where backend is one of ('TkAgg','GTKAgg', 'WXAgg','Qt4Agg','module://ipykernel.pylab.backend_inline'). """ import matplotlib if gui and gui != 'auto': # select backend based on requested gui backend = backends[gui] else: # We need to read the backend from the original data structure, *not* # from mpl.rcParams, since a prior invocation of %matplotlib may have # overwritten that. # WARNING: this assumes matplotlib 1.1 or newer!! backend = matplotlib.rcParamsOrig['backend'] # In this case, we need to find what the appropriate gui selection call # should be for IPython, so we can activate inputhook accordingly gui = backend2gui.get(backend, None) # If we have already had a gui active, we need it and inline are the # ones allowed. if gui_select and gui != gui_select: gui = gui_select backend = backends[gui] return gui, backend def activate_matplotlib(backend): """Activate the given backend and set interactive to True.""" import matplotlib matplotlib.interactive(True) # Matplotlib had a bug where even switch_backend could not force # the rcParam to update. This needs to be set *before* the module # magic of switch_backend(). matplotlib.rcParams['backend'] = backend import matplotlib.pyplot matplotlib.pyplot.switch_backend(backend) # This must be imported last in the matplotlib series, after # backend/interactivity choices have been made import matplotlib.pyplot as plt plt.show._needmain = False # We need to detect at runtime whether show() is called by the user. # For this, we wrap it into a decorator which adds a 'called' flag. plt.draw_if_interactive = flag_calls(plt.draw_if_interactive) def import_pylab(user_ns, import_all=True): """Populate the namespace with pylab-related values. Imports matplotlib, pylab, numpy, and everything from pylab and numpy. Also imports a few names from IPython (figsize, display, getfigs) """ # Import numpy as np/pyplot as plt are conventions we're trying to # somewhat standardize on. Making them available to users by default # will greatly help this. s = ("import numpy\n" "import matplotlib\n" "from matplotlib import pylab, mlab, pyplot\n" "np = numpy\n" "plt = pyplot\n" ) exec(s, user_ns) if import_all: s = ("from matplotlib.pylab import *\n" "from numpy import *\n") exec(s, user_ns) # IPython symbols to add user_ns['figsize'] = figsize from IPython.core.display import display # Add display and getfigs to the user's namespace user_ns['display'] = display user_ns['getfigs'] = getfigs def configure_inline_support(shell, backend): """Configure an IPython shell object for matplotlib use. Parameters ---------- shell : InteractiveShell instance backend : matplotlib backend """ # If using our svg payload backend, register the post-execution # function that will pick up the results for display. This can only be # done with access to the real shell object. # Note: if we can't load the inline backend, then there's no point # continuing (such as in terminal-only shells in environments without # zeromq available). try: from ipykernel.pylab.backend_inline import InlineBackend except ImportError: return import matplotlib cfg = InlineBackend.instance(parent=shell) cfg.shell = shell if cfg not in shell.configurables: shell.configurables.append(cfg) if backend == backends['inline']: from ipykernel.pylab.backend_inline import flush_figures shell.events.register('post_execute', flush_figures) # Save rcParams that will be overwrittern shell._saved_rcParams = dict() for k in cfg.rc: shell._saved_rcParams[k] = matplotlib.rcParams[k] # load inline_rc matplotlib.rcParams.update(cfg.rc) new_backend_name = "inline" else: from ipykernel.pylab.backend_inline import flush_figures try: shell.events.unregister('post_execute', flush_figures) except ValueError: pass if hasattr(shell, '_saved_rcParams'): matplotlib.rcParams.update(shell._saved_rcParams) del shell._saved_rcParams new_backend_name = "other" # only enable the formats once -> don't change the enabled formats (which the user may # has changed) when getting another "%matplotlib inline" call. # See https://github.com/ipython/ipykernel/issues/29 cur_backend = getattr(configure_inline_support, "current_backend", "unset") if new_backend_name != cur_backend: # Setup the default figure format select_figure_formats(shell, cfg.figure_formats, **cfg.print_figure_kwargs) configure_inline_support.current_backend = new_backend_name
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------- from typing import Any, AsyncIterable, Callable, Dict, Generic, Optional, TypeVar, Union import warnings from azure.core.async_paging import AsyncItemPaged, AsyncList from azure.core.exceptions import ClientAuthenticationError, HttpResponseError, ResourceExistsError, ResourceNotFoundError, map_error from azure.core.pipeline import PipelineResponse from azure.core.pipeline.transport import AsyncHttpResponse, HttpRequest from azure.core.polling import AsyncLROPoller, AsyncNoPolling, AsyncPollingMethod from azure.mgmt.core.exceptions import ARMErrorFormat from azure.mgmt.core.polling.async_arm_polling import AsyncARMPolling from ... import models as _models T = TypeVar('T') ClsType = Optional[Callable[[PipelineResponse[HttpRequest, AsyncHttpResponse], T, Dict[str, Any]], Any]] class PoolOperations: """PoolOperations async operations. You should not instantiate this class directly. Instead, you should create a Client instance that instantiates it for you and attaches it as an attribute. :ivar models: Alias to model classes used in this operation group. :type models: ~azure.mgmt.batch.models :param client: Client for service requests. :param config: Configuration of service client. :param serializer: An object model serializer. :param deserializer: An object model deserializer. """ models = _models def __init__(self, client, config, serializer, deserializer) -> None: self._client = client self._serialize = serializer self._deserialize = deserializer self._config = config def list_by_batch_account( self, resource_group_name: str, account_name: str, maxresults: Optional[int] = None, select: Optional[str] = None, filter: Optional[str] = None, **kwargs ) -> AsyncIterable["_models.ListPoolsResult"]: """Lists all of the pools in the specified account. :param resource_group_name: The name of the resource group that contains the Batch account. :type resource_group_name: str :param account_name: The name of the Batch account. :type account_name: str :param maxresults: The maximum number of items to return in the response. :type maxresults: int :param select: Comma separated list of properties that should be returned. e.g. "properties/provisioningState". Only top level properties under properties/ are valid for selection. :type select: str :param filter: OData filter expression. Valid properties for filtering are: name properties/allocationState properties/allocationStateTransitionTime properties/creationTime properties/provisioningState properties/provisioningStateTransitionTime properties/lastModified properties/vmSize properties/interNodeCommunication properties/scaleSettings/autoScale properties/scaleSettings/fixedScale. :type filter: str :keyword callable cls: A custom type or function that will be passed the direct response :return: An iterator like instance of either ListPoolsResult or the result of cls(response) :rtype: ~azure.core.async_paging.AsyncItemPaged[~azure.mgmt.batch.models.ListPoolsResult] :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.ListPoolsResult"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-09-01" accept = "application/json" def prepare_request(next_link=None): # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') if not next_link: # Construct URL url = self.list_by_batch_account.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=24, min_length=3, pattern=r'^[a-zA-Z0-9]+$'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] if maxresults is not None: query_parameters['maxresults'] = self._serialize.query("maxresults", maxresults, 'int') if select is not None: query_parameters['$select'] = self._serialize.query("select", select, 'str') if filter is not None: query_parameters['$filter'] = self._serialize.query("filter", filter, 'str') query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') request = self._client.get(url, query_parameters, header_parameters) else: url = next_link query_parameters = {} # type: Dict[str, Any] request = self._client.get(url, query_parameters, header_parameters) return request async def extract_data(pipeline_response): deserialized = self._deserialize('ListPoolsResult', pipeline_response) list_of_elem = deserialized.value if cls: list_of_elem = cls(list_of_elem) return deserialized.next_link or None, AsyncList(list_of_elem) async def get_next(next_link=None): request = prepare_request(next_link) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) return pipeline_response return AsyncItemPaged( get_next, extract_data ) list_by_batch_account.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Batch/batchAccounts/{accountName}/pools'} # type: ignore async def _create_initial( self, resource_group_name: str, account_name: str, pool_name: str, parameters: "_models.Pool", if_match: Optional[str] = None, if_none_match: Optional[str] = None, **kwargs ) -> "_models.Pool": cls = kwargs.pop('cls', None) # type: ClsType["_models.Pool"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-09-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self._create_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=24, min_length=3, pattern=r'^[a-zA-Z0-9]+$'), 'poolName': self._serialize.url("pool_name", pool_name, 'str', max_length=64, min_length=1, pattern=r'^[a-zA-Z0-9_-]+$'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] if if_match is not None: header_parameters['If-Match'] = self._serialize.header("if_match", if_match, 'str') if if_none_match is not None: header_parameters['If-None-Match'] = self._serialize.header("if_none_match", if_none_match, 'str') header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'Pool') body_content_kwargs['content'] = body_content request = self._client.put(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) response_headers = {} response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) deserialized = self._deserialize('Pool', pipeline_response) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized _create_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Batch/batchAccounts/{accountName}/pools/{poolName}'} # type: ignore async def begin_create( self, resource_group_name: str, account_name: str, pool_name: str, parameters: "_models.Pool", if_match: Optional[str] = None, if_none_match: Optional[str] = None, **kwargs ) -> AsyncLROPoller["_models.Pool"]: """Creates a new pool inside the specified account. :param resource_group_name: The name of the resource group that contains the Batch account. :type resource_group_name: str :param account_name: The name of the Batch account. :type account_name: str :param pool_name: The pool name. This must be unique within the account. :type pool_name: str :param parameters: Additional parameters for pool creation. :type parameters: ~azure.mgmt.batch.models.Pool :param if_match: The entity state (ETag) version of the pool to update. A value of "*" can be used to apply the operation only if the pool already exists. If omitted, this operation will always be applied. :type if_match: str :param if_none_match: Set to '*' to allow a new pool to be created, but to prevent updating an existing pool. Other values will be ignored. :type if_none_match: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either Pool or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[~azure.mgmt.batch.models.Pool] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType["_models.Pool"] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._create_initial( resource_group_name=resource_group_name, account_name=account_name, pool_name=pool_name, parameters=parameters, if_match=if_match, if_none_match=if_none_match, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): response_headers = {} response = pipeline_response.http_response response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) deserialized = self._deserialize('Pool', pipeline_response) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=24, min_length=3, pattern=r'^[a-zA-Z0-9]+$'), 'poolName': self._serialize.url("pool_name", pool_name, 'str', max_length=64, min_length=1, pattern=r'^[a-zA-Z0-9_-]+$'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_create.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Batch/batchAccounts/{accountName}/pools/{poolName}'} # type: ignore async def update( self, resource_group_name: str, account_name: str, pool_name: str, parameters: "_models.Pool", if_match: Optional[str] = None, **kwargs ) -> "_models.Pool": """Updates the properties of an existing pool. :param resource_group_name: The name of the resource group that contains the Batch account. :type resource_group_name: str :param account_name: The name of the Batch account. :type account_name: str :param pool_name: The pool name. This must be unique within the account. :type pool_name: str :param parameters: Pool properties that should be updated. Properties that are supplied will be updated, any property not supplied will be unchanged. :type parameters: ~azure.mgmt.batch.models.Pool :param if_match: The entity state (ETag) version of the pool to update. This value can be omitted or set to "*" to apply the operation unconditionally. :type if_match: str :keyword callable cls: A custom type or function that will be passed the direct response :return: Pool, or the result of cls(response) :rtype: ~azure.mgmt.batch.models.Pool :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.Pool"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-09-01" content_type = kwargs.pop("content_type", "application/json") accept = "application/json" # Construct URL url = self.update.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=24, min_length=3, pattern=r'^[a-zA-Z0-9]+$'), 'poolName': self._serialize.url("pool_name", pool_name, 'str', max_length=64, min_length=1, pattern=r'^[a-zA-Z0-9_-]+$'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] if if_match is not None: header_parameters['If-Match'] = self._serialize.header("if_match", if_match, 'str') header_parameters['Content-Type'] = self._serialize.header("content_type", content_type, 'str') header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') body_content_kwargs = {} # type: Dict[str, Any] body_content = self._serialize.body(parameters, 'Pool') body_content_kwargs['content'] = body_content request = self._client.patch(url, query_parameters, header_parameters, **body_content_kwargs) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) response_headers = {} response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) deserialized = self._deserialize('Pool', pipeline_response) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized update.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Batch/batchAccounts/{accountName}/pools/{poolName}'} # type: ignore async def _delete_initial( self, resource_group_name: str, account_name: str, pool_name: str, **kwargs ) -> None: cls = kwargs.pop('cls', None) # type: ClsType[None] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-09-01" accept = "application/json" # Construct URL url = self._delete_initial.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=24, min_length=3, pattern=r'^[a-zA-Z0-9]+$'), 'poolName': self._serialize.url("pool_name", pool_name, 'str', max_length=64, min_length=1, pattern=r'^[a-zA-Z0-9_-]+$'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.delete(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200, 202, 204]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) response_headers = {} if response.status_code == 202: response_headers['Location']=self._deserialize('str', response.headers.get('Location')) response_headers['Retry-After']=self._deserialize('int', response.headers.get('Retry-After')) if cls: return cls(pipeline_response, None, response_headers) _delete_initial.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Batch/batchAccounts/{accountName}/pools/{poolName}'} # type: ignore async def begin_delete( self, resource_group_name: str, account_name: str, pool_name: str, **kwargs ) -> AsyncLROPoller[None]: """Deletes the specified pool. :param resource_group_name: The name of the resource group that contains the Batch account. :type resource_group_name: str :param account_name: The name of the Batch account. :type account_name: str :param pool_name: The pool name. This must be unique within the account. :type pool_name: str :keyword callable cls: A custom type or function that will be passed the direct response :keyword str continuation_token: A continuation token to restart a poller from a saved state. :keyword polling: True for ARMPolling, False for no polling, or a polling object for personal polling strategy :paramtype polling: bool or ~azure.core.polling.AsyncPollingMethod :keyword int polling_interval: Default waiting time between two polls for LRO operations if no Retry-After header is present. :return: An instance of AsyncLROPoller that returns either None or the result of cls(response) :rtype: ~azure.core.polling.AsyncLROPoller[None] :raises ~azure.core.exceptions.HttpResponseError: """ polling = kwargs.pop('polling', True) # type: Union[bool, AsyncPollingMethod] cls = kwargs.pop('cls', None) # type: ClsType[None] lro_delay = kwargs.pop( 'polling_interval', self._config.polling_interval ) cont_token = kwargs.pop('continuation_token', None) # type: Optional[str] if cont_token is None: raw_result = await self._delete_initial( resource_group_name=resource_group_name, account_name=account_name, pool_name=pool_name, cls=lambda x,y,z: x, **kwargs ) kwargs.pop('error_map', None) kwargs.pop('content_type', None) def get_long_running_output(pipeline_response): if cls: return cls(pipeline_response, None, {}) path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=24, min_length=3, pattern=r'^[a-zA-Z0-9]+$'), 'poolName': self._serialize.url("pool_name", pool_name, 'str', max_length=64, min_length=1, pattern=r'^[a-zA-Z0-9_-]+$'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } if polling is True: polling_method = AsyncARMPolling(lro_delay, path_format_arguments=path_format_arguments, **kwargs) elif polling is False: polling_method = AsyncNoPolling() else: polling_method = polling if cont_token: return AsyncLROPoller.from_continuation_token( polling_method=polling_method, continuation_token=cont_token, client=self._client, deserialization_callback=get_long_running_output ) else: return AsyncLROPoller(self._client, raw_result, get_long_running_output, polling_method) begin_delete.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Batch/batchAccounts/{accountName}/pools/{poolName}'} # type: ignore async def get( self, resource_group_name: str, account_name: str, pool_name: str, **kwargs ) -> "_models.Pool": """Gets information about the specified pool. :param resource_group_name: The name of the resource group that contains the Batch account. :type resource_group_name: str :param account_name: The name of the Batch account. :type account_name: str :param pool_name: The pool name. This must be unique within the account. :type pool_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: Pool, or the result of cls(response) :rtype: ~azure.mgmt.batch.models.Pool :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.Pool"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-09-01" accept = "application/json" # Construct URL url = self.get.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=24, min_length=3, pattern=r'^[a-zA-Z0-9]+$'), 'poolName': self._serialize.url("pool_name", pool_name, 'str', max_length=64, min_length=1, pattern=r'^[a-zA-Z0-9_-]+$'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.get(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) response_headers = {} response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) deserialized = self._deserialize('Pool', pipeline_response) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized get.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Batch/batchAccounts/{accountName}/pools/{poolName}'} # type: ignore async def disable_auto_scale( self, resource_group_name: str, account_name: str, pool_name: str, **kwargs ) -> "_models.Pool": """Disables automatic scaling for a pool. :param resource_group_name: The name of the resource group that contains the Batch account. :type resource_group_name: str :param account_name: The name of the Batch account. :type account_name: str :param pool_name: The pool name. This must be unique within the account. :type pool_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: Pool, or the result of cls(response) :rtype: ~azure.mgmt.batch.models.Pool :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.Pool"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-09-01" accept = "application/json" # Construct URL url = self.disable_auto_scale.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=24, min_length=3, pattern=r'^[a-zA-Z0-9]+$'), 'poolName': self._serialize.url("pool_name", pool_name, 'str', max_length=64, min_length=1, pattern=r'^[a-zA-Z0-9_-]+$'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.post(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) response_headers = {} response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) deserialized = self._deserialize('Pool', pipeline_response) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized disable_auto_scale.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Batch/batchAccounts/{accountName}/pools/{poolName}/disableAutoScale'} # type: ignore async def stop_resize( self, resource_group_name: str, account_name: str, pool_name: str, **kwargs ) -> "_models.Pool": """Stops an ongoing resize operation on the pool. This does not restore the pool to its previous state before the resize operation: it only stops any further changes being made, and the pool maintains its current state. After stopping, the pool stabilizes at the number of nodes it was at when the stop operation was done. During the stop operation, the pool allocation state changes first to stopping and then to steady. A resize operation need not be an explicit resize pool request; this API can also be used to halt the initial sizing of the pool when it is created. :param resource_group_name: The name of the resource group that contains the Batch account. :type resource_group_name: str :param account_name: The name of the Batch account. :type account_name: str :param pool_name: The pool name. This must be unique within the account. :type pool_name: str :keyword callable cls: A custom type or function that will be passed the direct response :return: Pool, or the result of cls(response) :rtype: ~azure.mgmt.batch.models.Pool :raises: ~azure.core.exceptions.HttpResponseError """ cls = kwargs.pop('cls', None) # type: ClsType["_models.Pool"] error_map = { 401: ClientAuthenticationError, 404: ResourceNotFoundError, 409: ResourceExistsError } error_map.update(kwargs.pop('error_map', {})) api_version = "2020-09-01" accept = "application/json" # Construct URL url = self.stop_resize.metadata['url'] # type: ignore path_format_arguments = { 'resourceGroupName': self._serialize.url("resource_group_name", resource_group_name, 'str'), 'accountName': self._serialize.url("account_name", account_name, 'str', max_length=24, min_length=3, pattern=r'^[a-zA-Z0-9]+$'), 'poolName': self._serialize.url("pool_name", pool_name, 'str', max_length=64, min_length=1, pattern=r'^[a-zA-Z0-9_-]+$'), 'subscriptionId': self._serialize.url("self._config.subscription_id", self._config.subscription_id, 'str'), } url = self._client.format_url(url, **path_format_arguments) # Construct parameters query_parameters = {} # type: Dict[str, Any] query_parameters['api-version'] = self._serialize.query("api_version", api_version, 'str') # Construct headers header_parameters = {} # type: Dict[str, Any] header_parameters['Accept'] = self._serialize.header("accept", accept, 'str') request = self._client.post(url, query_parameters, header_parameters) pipeline_response = await self._client._pipeline.run(request, stream=False, **kwargs) response = pipeline_response.http_response if response.status_code not in [200]: map_error(status_code=response.status_code, response=response, error_map=error_map) raise HttpResponseError(response=response, error_format=ARMErrorFormat) response_headers = {} response_headers['ETag']=self._deserialize('str', response.headers.get('ETag')) deserialized = self._deserialize('Pool', pipeline_response) if cls: return cls(pipeline_response, deserialized, response_headers) return deserialized stop_resize.metadata = {'url': '/subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Batch/batchAccounts/{accountName}/pools/{poolName}/stopResize'} # type: ignore
# -*- coding: utf-8 -*- """The VFS back-end CLI arguments helper.""" from __future__ import unicode_literals from plaso.cli import tools from plaso.cli.helpers import interface from plaso.cli.helpers import manager from plaso.lib import errors class VFSBackEndArgumentsHelper(interface.ArgumentsHelper): """VFS back-end CLI arguments helper.""" NAME = 'vfs_backend' DESCRIPTION = 'dfVFS back-end command line arguments.' @classmethod def AddArguments(cls, argument_group): """Adds command line arguments to an argument group. This function takes an argument parser or an argument group object and adds to it all the command line arguments this helper supports. Args: argument_group (argparse._ArgumentGroup|argparse.ArgumentParser): argparse group. """ argument_group.add_argument( '--vfs_back_end', '--vfs-back-end', dest='vfs_back_end', choices=['auto', 'fsext', 'fshfs', 'fsntfs', 'tsk'], action='store', metavar='TYPE', default='auto', help=( 'The preferred dfVFS back-end: "auto", "fsext", "fshfs", "fsntfs" ' 'or "tsk".')) @classmethod def ParseOptions(cls, options, configuration_object): """Parses and validates options. Args: options (argparse.Namespace): parser options. configuration_object (CLITool): object to be configured by the argument helper. Raises: BadConfigObject: when the configuration object is of the wrong type. """ if not isinstance(configuration_object, tools.CLITool): raise errors.BadConfigObject( 'Configuration object is not an instance of CLITool') vfs_back_end = cls._ParseStringOption(options, 'vfs_back_end') setattr(configuration_object, '_vfs_back_end', vfs_back_end) manager.ArgumentHelperManager.RegisterHelper(VFSBackEndArgumentsHelper)
from .constants import ALL_ROLES, DB_ROLE, WEB_ROLE from .database import setup_db from .django import update_db, update_python_libs from .nginx import stop_nginx, start_nginx from .ssh import setup_ssh_key from .supervisor import stop_supervisor, start_supervisor, update_supervisor from .utils import get_ip from .webserver import setup_web from fabric.colors import green from fabric.api import * from .git import get_source from .nginx import update_nginx import cuisine COMMON_PACKAGES = [ 'subversion', 'mercurial', 'git-core', 'vim', 'python-dev', 'ufw', 'python-setuptools', 'htop', 'ntp', 'colordiff', 'python-software-properties', 'psmisc', 'libpq-dev', # postgres ] @task @roles(DB_ROLE) @runs_once def set_database_ip(interface='eth1'): """Set the ip of the database.""" env.db_ip = get_ip(interface) @task @roles(WEB_ROLE) @runs_once def set_web_server_ips(interface='eth1'): """Set the ips of the webservers.""" env.webserver_internal_ips = [get_ip(interface),] @task def set_port(port): """Set the port to use for ssh connections.""" env.port = port @task @roles(ALL_ROLES) def setup_common(): """Set common packages.""" print(green("Running setup_common..........")) execute(setup_ssh_key) cuisine.package_install(COMMON_PACKAGES, True) sudo('yes | ufw enable') sudo('ufw logging on') sudo('ufw allow %(port)s' % env) sudo('ufw limit ssh') sudo('ufw default deny') @task @roles(WEB_ROLE) def setup_run_dirs(): for d in (env.log_location, env.socket_location): with settings(warn_only=True): sudo('mkdir %s' % d) sudo('chown -R %s: %s' % (env.deploy_user, d)) @task def setup(): """Setup the servers.""" execute(setup_db) execute(setup_web) execute(update) @task def update(): """Update the servers w/the latest source code + migrations.""" execute(stop_supervisor) execute(stop_nginx) execute(get_source) execute(update_python_libs) execute(update_db) execute(update_supervisor) execute(update_nginx) execute(start_supervisor) execute(start_nginx)
# TunaBot Ext - Help from discord.ext import commands import discord from aiofiles import open as async_open from ujson import load, loads from data import is_admin JSON_PATH = "data/help.json" class Help(commands.Cog): def __init__(self, bot): self.bot, self.tuna = bot, bot.data with open(JSON_PATH, 'r') as f: self.data = load(f) @commands.command(aliases=["rh"]) @is_admin async def reloadhelp(self, ctx): async with async_open(JSON_PATH, "r") as f: self.data = loads(f.read()) await ctx.reply("Ok") @commands.command() async def help(self, ctx, *, cmd=None): title, description = None, None if cmd: keys = [] for category in self.data: if cmd == category: keys.append(category) break for c in self.data[category]: if c == cmd: keys.append(category) keys.append(c) break if len(keys) == 2: title = f"{cmd}のHELP" description = self.data[keys[0]][keys[1]] elif len(keys) == 1: title = f"{cmd}のHELP" description = "\n".join(f"`{key}`" for key in self.data[category]) else: title, description = "HELP", "見つかりませんでした。" else: title, description = "HELP", "\n".join(f"`{key}`" for key in self.data) await ctx.reply(embed=discord.Embed(title=title, description=description)) def setup(bot): bot.add_cog(Help(bot))
import os from requests.utils import requote_uri from pyrogram import Client, filters Bot = Client( "Requote-URL-Bot", bot_token = os.environ["BOT_TOKEN"], api_id = int(os.environ["API_ID"]), api_hash = os.environ["API_HASH"] ) @Bot.on_message(filters.text) async def filter(bot, update): await update.reply_text( text=f"`{requote_uri(update.text)}`\n\nMade by @FayasNoushad", disable_web_page_preview=True, quote=True ) Bot.run()
""" This is magic glue for integrating the frontend and backend. This is NOT the place for backend customizations. Go to api/historic_hebrew_dates_ui/settings.py instead. """ import os.path as op here = op.dirname(op.abspath(__file__)) # First, import the standard backend settings. This requires some # magic because the backend directory itself is not a Python package. # Imitated from https://docs.python.org/3/library/importlib.html#importing-a-source-file-directly # or # https://stackoverflow.com/a/29855240 # (respectively for Python >= 3.5 and Python 3.4) import sys from importlib import util, machinery settings_name = 'settings' settings_path = op.join(here, 'api', 'historic_hebrew_dates_ui', 'settings.py') if sys.version_info >= (3, 5): spec = util.spec_from_file_location(settings_name, settings_path) settings = util.module_from_spec(spec) spec.loader.exec_module(settings) else: settings = machinery.SourceFileLoader(settings_name, settings_path).load_module() sys.modules[settings_name] = settings from settings import * # Next, augment the settings to make the backend aware of the frontend. STATICFILES_DIRS += [ op.join(here, 'web-ui', 'dist'), op.join(here, 'web-ui', 'node_modules'), ] PROXY_FRONTEND = "http://localhost:4200"
# Copyright 2020 The SODA Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http:#www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from oslo_utils import importutils from delfin import exception from delfin.common import constants class AlertHandlerTestCase(unittest.TestCase): ALERT_HANDLER_CLASS = 'delfin.drivers.dell_emc.vmax.alert_handler' \ '.snmp_alerts.AlertHandler' def _get_alert_handler(self): alert_handler_class = importutils.import_class( self.ALERT_HANDLER_CLASS) alert_handler = alert_handler_class() return alert_handler def _get_fake_alert_info(self): alert_info = { '1.3.6.1.3.94.1.11.1.3.0': 79, '1.3.6.1.3.94.1.6.1.20.0': '000192601409', '1.3.6.1.3.94.1.11.1.7.0': 'topology', '1.3.6.1.3.94.1.11.1.9.0': 'Symmetrix 000192601409 FastSRP ' 'SRP_1 : Remote (SRDF) diagnostic ' 'event trace triggered.', '1.3.6.1.3.94.1.11.1.6.0': '6', '1.3.6.1.3.94.1.6.1.3.0': 'storage-subsystem', '1.3.6.1.4.1.1139.3.8888.1.0.0': 'symmetrix', '1.3.6.1.4.1.1139.3.8888.2.0.0': '1050', '1.3.6.1.4.1.1139.3.8888.3.0.0': '1051', '1.3.6.1.4.1.1139.3.8888.4.0.0': 'SRP_1'} return alert_info def test_parse_alert_with_all_necessary_info(self): """ Success flow with all necessary parameters""" alert_handler_inst = self._get_alert_handler() alert = self._get_fake_alert_info() expected_alert_model = { 'alert_id': alert['1.3.6.1.4.1.1139.3.8888.2.0.0'], 'alert_name': 'SYMAPI_AEVENT2_UID_MOD_DIAG_TRACE_TRIG', 'severity': constants.Severity.WARNING, 'category': constants.Category.NOT_SPECIFIED, 'type': constants.EventType.EQUIPMENT_ALARM, 'sequence_number': alert['1.3.6.1.3.94.1.11.1.3.0'], 'serial_number': '000192601409', 'description': alert['1.3.6.1.3.94.1.11.1.9.0'], 'recovery_advice': 'None', 'resource_type': alert['1.3.6.1.3.94.1.6.1.3.0'], 'location': 'Array id=000192601409,' 'Component type=Symmetrix Disk ' 'Group,' 'Component name=SRP_1,' 'Event source=symmetrix', } context = {} alert_model = alert_handler_inst.parse_alert(context, alert) # occur_time depends on current time # Verify that all other fields are matching expected_alert_model['occur_time'] = alert_model['occur_time'] self.assertDictEqual(expected_alert_model, alert_model) def test_parse_alert_without_mandatory_info(self): """ Error flow with some mandatory parameters missing""" alert_handler_inst = self._get_alert_handler() context = {} alert = self._get_fake_alert_info() alert['1.3.6.1.3.94.1.11.1.6.0'] = '' self.assertRaisesRegex(exception.InvalidInput, "Mandatory information " "connUnitEventSeverity" " missing", alert_handler_inst.parse_alert, context, alert)
from conans import ConanFile, CMake, tools from conans.errors import ConanInvalidConfiguration import functools import os import textwrap required_conan_version = ">=1.43.0" class Hdf5Conan(ConanFile): name = "hdf5" description = "HDF5 is a data model, library, and file format for storing and managing data." license = "BSD-3-Clause" topics = ("hdf5", "hdf", "data") homepage = "https://portal.hdfgroup.org/display/HDF5/HDF5" url = "https://github.com/conan-io/conan-center-index" settings = "os", "arch", "compiler", "build_type" options = { "shared": [True, False], "fPIC": [True, False], "enable_cxx": [True, False], "hl": [True, False], "threadsafe": [True, False], "with_zlib": [True, False], "szip_support": [None, "with_libaec", "with_szip"], "szip_encoding": [True, False], "parallel": [True, False], } default_options = { "shared": False, "fPIC": True, "enable_cxx": True, "hl": True, "threadsafe": False, "with_zlib": True, "szip_support": None, "szip_encoding": False, "parallel": False, } generators = "cmake" @property def _source_subfolder(self): return "source_subfolder" @property def _build_subfolder(self): return "build_subfolder" def export_sources(self): self.copy("CMakeLists.txt") for patch in self.conan_data.get("patches", {}).get(self.version, []): self.copy(patch["patch_file"]) def config_options(self): if self.settings.os == "Windows": del self.options.fPIC def configure(self): if self.options.shared: del self.options.fPIC if not self.options.enable_cxx: del self.settings.compiler.libcxx del self.settings.compiler.cppstd if self.options.enable_cxx or self.options.hl or (self.settings.os == "Windows" and not self.options.shared): del self.options.threadsafe if not bool(self.options.szip_support): del self.options.szip_encoding def requirements(self): if self.options.with_zlib: self.requires("zlib/1.2.12") if self.options.szip_support == "with_libaec": self.requires("libaec/1.0.6") elif self.options.szip_support == "with_szip": self.requires("szip/2.1.1") if self.options.parallel: self.requires("openmpi/4.1.0") def validate(self): if hasattr(self, "settings_build") and tools.cross_building(self, skip_x64_x86=True): # While building it runs some executables like H5detect raise ConanInvalidConfiguration("Current recipe doesn't support cross-building (yet)") if self.options.parallel: if self.options.enable_cxx: raise ConanInvalidConfiguration("Parallel and C++ options are mutually exclusive") if self.options.get_safe("threadsafe", False): raise ConanInvalidConfiguration("Parallel and Threadsafe options are mutually exclusive") if self.options.szip_support == "with_szip" and self.options.szip_encoding and \ not self.options["szip"].enable_encoding: raise ConanInvalidConfiguration("encoding must be enabled in szip dependency (szip:enable_encoding=True)") def source(self): tools.get(**self.conan_data["sources"][self.version], destination=self._source_subfolder, strip_root=True) def build(self): self._patch_sources() cmake = self._configure_cmake() cmake.build() def _patch_sources(self): for patch in self.conan_data.get("patches", {}).get(self.version, []): tools.patch(**patch) # Do not force PIC tools.replace_in_file(os.path.join(self._source_subfolder, "CMakeLists.txt"), "set (CMAKE_POSITION_INDEPENDENT_CODE ON)", "") @functools.lru_cache(1) def _configure_cmake(self): cmake = CMake(self) cmake.definitions["HDF5_EXTERNALLY_CONFIGURED"] = True cmake.definitions["HDF5_EXTERNAL_LIB_PREFIX"] = "" cmake.definitions["HDF5_USE_FOLDERS"] = False cmake.definitions["HDF5_NO_PACKAGES"] = True cmake.definitions["ALLOW_UNSUPPORTED"] = False if tools.Version(self.version) >= "1.10.6": cmake.definitions["ONLY_SHARED_LIBS"] = self.options.shared cmake.definitions["BUILD_STATIC_EXECS"] = False cmake.definitions["HDF5_ENABLE_COVERAGE"] = False cmake.definitions["HDF5_ENABLE_USING_MEMCHECKER"] = False if tools.Version(self.version) >= "1.10.0": cmake.definitions["HDF5_MEMORY_ALLOC_SANITY_CHECK"] = False if tools.Version(self.version) >= "1.10.5": cmake.definitions["HDF5_ENABLE_PREADWRITE"] = True cmake.definitions["HDF5_ENABLE_DEPRECATED_SYMBOLS"] = True cmake.definitions["HDF5_BUILD_GENERATORS"] = False cmake.definitions["HDF5_ENABLE_TRACE"] = False if self.settings.build_type == "Debug": cmake.definitions["HDF5_ENABLE_INSTRUMENT"] = False # Option? cmake.definitions["HDF5_ENABLE_PARALLEL"] = self.options.parallel cmake.definitions["HDF5_ENABLE_Z_LIB_SUPPORT"] = self.options.with_zlib cmake.definitions["HDF5_ENABLE_SZIP_SUPPORT"] = bool(self.options.szip_support) if bool(self.options.szip_support): cmake.definitions["CONAN_SZIP_LIBNAME"] = self._get_szip_lib() # this variable is added by conanize-link-szip*.patch cmake.definitions["HDF5_ENABLE_SZIP_ENCODING"] = self.options.get_safe("szip_encoding", False) cmake.definitions["HDF5_PACKAGE_EXTLIBS"] = False cmake.definitions["HDF5_ENABLE_THREADSAFE"] = self.options.get_safe("threadsafe", False) cmake.definitions["HDF5_ENABLE_DEBUG_APIS"] = False # Option? cmake.definitions["BUILD_TESTING"] = False cmake.definitions["HDF5_INSTALL_INCLUDE_DIR"] = os.path.join(self.package_folder, "include", "hdf5") cmake.definitions["HDF5_BUILD_TOOLS"] = False cmake.definitions["HDF5_BUILD_EXAMPLES"] = False cmake.definitions["HDF5_BUILD_HL_LIB"] = self.options.hl cmake.definitions["HDF5_BUILD_FORTRAN"] = False cmake.definitions["HDF5_BUILD_CPP_LIB"] = self.options.enable_cxx if tools.Version(self.version) >= "1.10.0": cmake.definitions["HDF5_BUILD_JAVA"] = False cmake.configure(build_folder=self._build_subfolder) return cmake def _get_szip_lib(self): return { "with_libaec": "libaec", "with_szip": "szip", }.get(str(self.options.szip_support)) def _components(self): hdf5_requirements = [] if self.options.with_zlib: hdf5_requirements.append("zlib::zlib") if self.options.szip_support == "with_libaec": hdf5_requirements.append("libaec::libaec") elif self.options.szip_support == "with_szip": hdf5_requirements.append("szip::szip") if self.options.parallel: hdf5_requirements.append("openmpi::openmpi") return { "hdf5_c": {"component": "C", "alias_target": "hdf5", "requirements": hdf5_requirements}, "hdf5_hl": {"component": "HL", "alias_target": "hdf5_hl", "requirements": ["hdf5_c"]}, "hdf5_cpp": {"component": "CXX", "alias_target": "hdf5_cpp", "requirements": ["hdf5_c"]}, "hdf5_hl_cpp": {"component": "HL_CXX", "alias_target": "hdf5_hl_cpp", "requirements": ["hdf5_c", "hdf5_cpp", "hdf5_hl"]}, } @staticmethod def _create_cmake_module_alias_targets(module_file, targets, is_parallel): content = "" for alias, aliased in targets.items(): content += textwrap.dedent("""\ if(TARGET {aliased} AND NOT TARGET {alias}) add_library({alias} INTERFACE IMPORTED) set_property(TARGET {alias} PROPERTY INTERFACE_LINK_LIBRARIES {aliased}) endif() """.format(alias=alias, aliased=aliased)) # add the additional hdf5_hl_cxx target when both CXX and HL components are specified content += textwrap.dedent("""\ if(TARGET HDF5::HL AND TARGET HDF5::CXX AND NOT TARGET hdf5::hdf5_hl_cpp) add_library(hdf5::hdf5_hl_cpp INTERFACE IMPORTED) set_property(TARGET hdf5::hdf5_hl_cpp PROPERTY INTERFACE_LINK_LIBRARIES HDF5::HL_CXX) endif() """) content += textwrap.dedent("set(HDF5_IS_PARALLEL {})".format("ON" if is_parallel else "OFF")) tools.save(module_file, content) @property def _module_file_rel_path(self): return os.path.join("lib", "cmake", "conan-official-{}-targets.cmake".format(self.name)) def package(self): self.copy("COPYING", dst="licenses", src=self._source_subfolder) cmake = self._configure_cmake() cmake.install() tools.rmdir(os.path.join(self.package_folder, "lib", "pkgconfig")) os.remove(os.path.join(self.package_folder, "lib", "libhdf5.settings")) # Mimic the official CMake FindHDF5 targets. HDF5::HDF5 refers to the global target as per conan, # but component targets have a lower case namespace prefix. hdf5::hdf5 refers to the C library only components = self._components() self._create_cmake_module_alias_targets( os.path.join(self.package_folder, self._module_file_rel_path), {"hdf5::{}".format(component["alias_target"]): "HDF5::{}".format(component["component"]) for component in components.values()}, self.options.get_safe("parallel", False) ) def package_info(self): def add_component(component_name, component, alias_target, requirements): def _config_libname(lib): if self.settings.os == "Windows" and self.settings.compiler != "gcc" and not self.options.shared: lib = "lib" + lib if self.settings.build_type == "Debug": debug_postfix = "_D" if self.settings.os == "Windows" else "_debug" return lib + debug_postfix # See config/cmake_ext_mod/HDFMacros.cmake return lib self.cpp_info.components[component_name].set_property("cmake_target_name", f"hdf5::{alias_target}") self.cpp_info.components[component_name].set_property("pkg_config_name", alias_target) self.cpp_info.components[component_name].libs = [_config_libname(alias_target)] self.cpp_info.components[component_name].requires = requirements # TODO: to remove in conan v2 once cmake_find_package_* generators removed self.cpp_info.components[component_name].names["cmake_find_package"] = component self.cpp_info.components[component_name].names["cmake_find_package_multi"] = component self.cpp_info.components[component_name].build_modules["cmake_find_package"] = [self._module_file_rel_path] self.cpp_info.components[component_name].build_modules["cmake_find_package_multi"] = [self._module_file_rel_path] self.cpp_info.set_property("cmake_find_mode", "both") self.cpp_info.set_property("cmake_file_name", "HDF5") self.cpp_info.set_property("cmake_target_name", "HDF5::HDF5") self.cpp_info.set_property("pkg_config_name", "hdf5-all-do-not-use") # to avoid conflict with hdf5_c component components = self._components() add_component("hdf5_c", **components["hdf5_c"]) self.cpp_info.components["hdf5_c"].includedirs.append(os.path.join("include", "hdf5")) if self.settings.os == "Linux": self.cpp_info.components["hdf5_c"].system_libs.extend(["dl", "m"]) if self.options.get_safe("threadsafe"): self.cpp_info.components["hdf5_c"].system_libs.append("pthread") if self.options.shared: self.cpp_info.components["hdf5_c"].defines.append("H5_BUILT_AS_DYNAMIC_LIB") if self.options.get_safe("enable_cxx"): add_component("hdf5_cpp", **components["hdf5_cpp"]) if self.options.get_safe("hl"): add_component("hdf5_hl", **components["hdf5_hl"]) if self.options.get_safe("enable_cxx"): add_component("hdf5_hl_cpp", **components["hdf5_hl_cpp"]) # TODO: to remove in conan v2 once cmake_find_package_* generators removed self.cpp_info.names["cmake_find_package"] = "HDF5" self.cpp_info.names["cmake_find_package_multi"] = "HDF5"
from eventsourcing.domain import Aggregate, event from uuid import uuid5, NAMESPACE_URL class Account(Aggregate): """A simple-as-can-be bank account""" @event('Created') def __init__(self): self.balance = 0 @event('Credited') def credit(self, amount: int): self.balance += amount @event('Debited') def debit(self, amount: int): self.balance -= amount class Ledger(Aggregate): """A simple-as-can-be Ledger to track net movements across all accounts""" def __init__(self, name): self.name = name self.transaction_count = 0 self.balance = 0 @classmethod def create_id(cls, name): """Enable predictable IDs so that a Ledger can be retrieved using its name - even if its ID isn't known """ return uuid5(NAMESPACE_URL, f'/ledgers/{name}') @event('TransactionAdded') def add_transaction(self, amount: int): self.transaction_count += 1 self.balance += amount def get_balance(self): return self.balance def get_transaction_count(self): return self.transaction_count
""" Takes a [Notion.so](https://notion.so) export .zip and enhances it """ import tempfile import sys import os import time import re import argparse import zipfile import urllib.parse from datetime import datetime from pathlib import Path import backoff import requests from emoji_extractor.extract import Extractor as EmojiExtractor from notion.client import NotionClient from notion.block import PageBlock def noteNameRewrite(nCl, originalNameNoExt): """ Takes original name (with no extension) and renames it using the Notion ID and data from Notion itself * Removes the Notion ID * Looks up the Notion ID for it's icon, and appends if we can find it """ match = re.search(r"(.+?) ([0-9a-f]{32})$", originalNameNoExt) if not match: return (None, None, None) notionId = match[2] # Query notion for the ID #print(f"Fetching Notion ID '{notionId}' for '{originalNameNoExt}'") try: pageBlock = nCl.get_block(notionId) except requests.exceptions.HTTPError: print(f"Failed to retrieve ID {notionId}") return (None, None, None) # The ID might not be a PageBlock (like when a note with no child PageBlocks # has an image in it, generating a folder, Notion uses the ID of the first # ImageBlock, maybe a bug on Notion's end? lol) if not isinstance(pageBlock, PageBlock): print(f"Block at ID {notionId}, was not PageBlock. Was {type(pageBlock).__name__}") if hasattr(pageBlock, 'parent') and pageBlock.parent is not None: # Try traversing up the parents for the first page while hasattr(pageBlock, 'parent') and not isinstance(pageBlock, PageBlock): pageBlock = pageBlock.parent if isinstance(pageBlock, PageBlock): print(f"Using some .parent as PageBlock") elif hasattr(pageBlock, 'children') and pageBlock.children is not None: # Try to find a PageBlock in the children, but only use if one single one exists pageBlockChildren = [c for c in pageBlock.children if isinstance(c, PageBlock)] if len(pageBlockChildren) != 1: print(f"Ambiguous .children, contained {len(pageBlockChildren)} chlidren PageBlocks") else: print(f"Using .children[0] as PageBlock") pageBlock = pageBlockChildren[0] if not isinstance(pageBlock, PageBlock): print(f"Failed to retrieve PageBlock for ID {notionId}") return (None, None, None) #print(f"Found parent '{type(pageBlock).__name__}' instead") # Check for name truncation newName = match[1] if len(match[1]) == 50: # Use full name instead, invalids replaced with " ", like the normal export # TODO: These are just Windows reserved characters # TODO: 200 was just a value to stop Windows from complaining newName = re.sub(r"[\\/?:*\"<>|]", " ", pageBlock.title) if len(newName) > 200: print(f"'{newName}' too long, truncating to 200") newName = newName[0:200] # Add icon to the front if it's there and usable icon = pageBlock.icon if icon and EmojiExtractor().big_regex.match(icon): # A full match of a single emoji, might be None or an https://aws.amazon uploaded icon newName = f"{icon} {newName}" # Also get the times to set the file to createdTime = datetime.fromtimestamp(int(pageBlock._get_record_data()["created_time"])/1000) lastEditedTime = datetime.fromtimestamp(int(pageBlock._get_record_data()["last_edited_time"])/1000) return (newName, createdTime, lastEditedTime) class NotionExportRenamer: """ Holds state information for renaming a single Notion.so export. Allows it to avoid naming collisions and store other state """ def __init__(self, notionClient, rootPath): self.notionClient = notionClient self.rootPath = rootPath # Dict containing all the paths we've renamed and what they were renamed to # (plus createdtime and lastEditedTime). Strings with relative directories to # rootPath mapped to 3 tuples returned from noteNameRewrite self._renameCache = {} # Dict containing keys where it is an unrenamed path with the last part being # renamed mapped to True. Used to see if other files in the folder might # have the same name and to act accordingly self._collisionCache = {} def renameAndTimesWithNotion(self, pathToRename): """ Takes an original on file-system path and rewrites _just the basename_. It collects rename operations for speed and collision prevention (as some renames will cause the same name to occur) @param {string} realPath The path to rename the basename of. Must point to an actual unrenamed file/folder on disk rooted at self.rootPath so we can scan around it @returns {tuple} 3 tuple of new name, created time and modified time """ if pathToRename in self._renameCache: return self._renameCache[pathToRename] path, name = os.path.split(pathToRename) nameNoExt, ext = os.path.splitext(name) newNameNoExt, createdTime, lastEditedTime = noteNameRewrite(self.notionClient, nameNoExt) if not newNameNoExt: # No rename happened, probably no ID in the name or not an .md file self._renameCache[pathToRename] = (name, None, None) else: # Merge files into folders in path at same name if that folder exists if ext == '.md': p = Path(os.path.join(self.rootPath, path, nameNoExt)) if p.exists() and p.is_dir(): # NOTE: newNameNoExt can contain a '/' for path joining later! newNameNoExt = os.path.join(newNameNoExt, "!index") # Check to see if name collides if os.path.join(path, newNameNoExt) in self._collisionCache: # If it does, try progressive (i) until a new one is found i = 1 collidingNameNoExt = newNameNoExt while os.path.join(path, newNameNoExt) in self._collisionCache: newNameNoExt = f"{collidingNameNoExt} ({i})" i += 1 self._renameCache[pathToRename] = (f"{newNameNoExt}{ext}", createdTime, lastEditedTime) self._collisionCache[os.path.join(path, newNameNoExt)] = True return self._renameCache[pathToRename] def renameWithNotion(self, pathToRename): """ Takes an original on file-system path and rewrites _just the basename_. It collects rename operations for speed and collision prevention (as some renames will cause the same name to occur) @param {string} pathToRename The path to rename the basename of. Must point to an actual unrenamed file/folder on disk rooted at self.rootPath so we can scan around it @returns {string} The new name """ return self.renameAndTimesWithNotion(pathToRename)[0] def renamePathWithNotion(self, pathToRename): """ Renames all parts of a path @param {string} pathToRename A real path on disk to a file or folder root at self.rootPath. All pieces of the path will be renamed """ pathToRenameSplit = re.split(r"[\\/]", pathToRename) paths = [os.path.join(*pathToRenameSplit[0:rpc + 1]) for rpc in range(len(pathToRenameSplit))] return os.path.join(*[self.renameWithNotion(rp) for rp in paths]) def renamePathAndTimesWithNotion(self, pathToRename): """ Renames all parts of a path and return the created and lastEditedTime for the last part of the path (the file) @param {string} pathToRename A real path on disk to a file or folder root at self.rootPath. All pieces of the path will be renamed """ newPath = self.renamePathWithNotion(os.path.dirname(pathToRename)) newName, createdTime, lastEditedTime = self.renameAndTimesWithNotion(pathToRename) return (os.path.join(newPath, newName), createdTime, lastEditedTime) def mdFileRewrite(renamer, mdFilePath, mdFileContents=None, removeTopH1=False, rewritePaths=False): """ Takes a Notion exported md file and rewrites parts of it @param {string} mdFilePath String to the markdown file that's being editted, rooted at self.rootPath @param {string} [mdFileContents=None] The contents of the markdown file, if not provided we will read it manually @param {boolean} [removeTopH1=False] Remove the title on the first line of the MD file? @param {boolean} [rewritePaths=False] Rewrite the relative paths in the MD file (images and links) using Notion file name rewriting """ if not mdFileContents: raise NotImplementedError("TODO: Not passing mdFileContents is not implemented... please pass it ;w;") newMDFileContents = mdFileContents if removeTopH1: lines = mdFileContents.split("\n") newMDFileContents = "\n".join(lines[1:]) if rewritePaths: # Notion link/images use relative paths to other notes, which we can't known without # consulting the file tree and renaming (to handle duplicates and such) # Notion links are also URL encoded # Can't use finditer because we modify the string each time... searchStartIndex = 0 while True: m = re.search(r"!?\[.+?\]\(([\w\d\-._~:/?=#%\]\[@!$&'\(\)*+,;]+?)\)", newMDFileContents[searchStartIndex:]) if not m: break if re.search(r":/", m.group(1)): searchStartIndex = searchStartIndex + m.end(1) continue # Not a local file path relTargetFilePath = urllib.parse.unquote(m.group(1)) # Convert the current MD file path and link target path to the renamed version # (also taking into account potentially mdFilePath renames moving the directory) mdDirPath = os.path.dirname(mdFilePath) newTargetFilePath = renamer.renamePathWithNotion(os.path.join(mdDirPath, relTargetFilePath)) newMDDirPath = os.path.dirname(renamer.renamePathWithNotion(mdFilePath)) # Find the relative path to the newly converted paths for both files newRelTargetFilePath = os.path.relpath(newTargetFilePath, newMDDirPath) # Convert back to the way markdown expects the link to be newRelTargetFilePath = re.sub(r"\\", "/", newRelTargetFilePath) newRelTargetFilePath = urllib.parse.quote(newRelTargetFilePath) # Replace the path in the original string with the new relative renamed # target path newMDFileContents = newMDFileContents[0:m.start(1) + searchStartIndex] + newRelTargetFilePath + newMDFileContents[m.end(1) + searchStartIndex:] searchStartIndex = searchStartIndex + m.start(1) + len(newRelTargetFilePath) return newMDFileContents def rewriteNotionZip(notionClient, zipPath, outputPath=".", removeTopH1=False, rewritePaths=True): """ Takes a Notion .zip and prettifies the whole thing * Removes all Notion IDs from end of names, folders and files * Add icon to the start of folder/file name if Unicode character * For files had content in Notion, move them inside the folder, and set the name to something that will sort to the top * Fix links inside of files * Optionally remove titles at the tops of files @param {NotionClient} notionClient The NotionClient to use to query Notion with @param {string} zipPath The path to the Notion zip @param {string} [outputPath="."] Optional output path, otherwise will use cwd @param {boolean} [removeTopH1=False] To remove titles at the top of all the md files @param {boolean} [rewritePaths=True] To rewrite all the links and images in the Markdown files too @returns {string} Path to the output zip file """ with tempfile.TemporaryDirectory() as tmpDir: # Unpack the whole thing first (probably faster than traversing it zipped, like with tar files) print(f"Extracting '{zipPath}' temporarily...") with zipfile.ZipFile(zipPath) as zf: zf.extractall(tmpDir) # Make new zip to begin filling zipName = os.path.basename(zipPath) newZipName = f"{zipName}.formatted" newZipPath = os.path.join(outputPath, newZipName) with zipfile.ZipFile(newZipPath, 'w', zipfile.ZIP_DEFLATED) as zf: #Traverse over the files, renaming, modifying, and rewriting back to the zip renamer = NotionExportRenamer(notionClient, tmpDir) for tmpWalkDir, dirs, files in os.walk(tmpDir): walkDir = os.path.relpath(tmpWalkDir, tmpDir) for name in files: realPath = os.path.join(tmpWalkDir, name) relPath = os.path.join("" if walkDir == "." else walkDir, name) # Prevent paths starting with .\\ which, when written to the tar, do annoying things # print(f"Reading '{root}' '{name}'") # Rewrite the current path and get the times from Notion print("---") print(f"Working on '{relPath}'") newPath, createdTime, lastEditedTime = renamer.renamePathAndTimesWithNotion(relPath) if os.path.splitext(name)[1] == ".md": # Grab the data from the file if md file with open(realPath, "r", encoding='utf-8') as f: mdFileData = f.read() mdFileData = mdFileRewrite(renamer, relPath, mdFileContents=mdFileData, removeTopH1=removeTopH1, rewritePaths=rewritePaths) print(f"Writing as '{newPath}' with time '{lastEditedTime}'") zi = zipfile.ZipInfo(newPath, lastEditedTime.timetuple()) zf.writestr(zi, mdFileData) else: print(f"Writing as '{newPath}' with time from original export (not an .md file)") zf.write(realPath, newPath) return newZipPath def cli(argv): """ CLI entrypoint, takes CLI arguments array """ parser = argparse.ArgumentParser(description='Prettifies Notion .zip exports') parser.add_argument('token_v2', type=str, help='the token for your Notion.so session') parser.add_argument('zip_path', type=str, help='the path to the Notion exported .zip file') parser.add_argument('--output-path', action='store', type=str, default=".", help='The path to output to, defaults to cwd') parser.add_argument('--remove-title', action='store_true', help='Removes the title that Notion adds. H1s at the top of every file') parser.add_argument('--rewrite-paths', action='store_false', default=True, help='Rewrite the paths in the Markdown files themselves to match file renaming') args = parser.parse_args(argv) startTime = time.time() nCl = NotionClient(token_v2=args.token_v2) nCl.get_block = backoff.on_exception(backoff.expo, requests.exceptions.HTTPError, max_tries=5, )(nCl.get_block) outFileName = rewriteNotionZip(nCl, args.zip_path, outputPath=args.output_path, removeTopH1=args.remove_title, rewritePaths=args.rewrite_paths) print("--- Finished in %s seconds ---" % (time.time() - startTime)) print(f"Output file written as '{outFileName}'") if __name__ == "__main__": cli(sys.argv[1:])
# https://github.com/RomanMichaelPaolucci/AI_Stock_Trading/blob/master/IBM.csv import abc import threading import time import pandas as pd import numpy as np from keras.layers import Dense from keras.models import Sequential, model_from_json from sklearn.model_selection import train_test_split from sklearn.metrics import classification_report from alpaca_trade_api import REST class AlpacaPaperSocket(REST): def __init__(self): super().__init__( key_id='PKPO0ZH3XTVB336B7TEO', secret_key='gcs4U2Hp/ACI4A5UwYjYugrPqB2odD/m40Zuz5qw', base_url='https://paper-api.alpaca.markets' ) class TradingSystem(abc.ABC): def __init__(self, api, symbol, time_frame, system_id, system_label): # Connect to api # Connect to BrokenPipeError # Save fields to class self.api = api self.symbol = symbol self.time_frame = time_frame self.system_id = system_id self.system_label = system_label thread = threading.Thread(target=self.system_loop) thread.start() @abc.abstractmethod def place_buy_order(self): pass @abc.abstractmethod def place_sell_order(self): pass @abc.abstractmethod def system_loop(self): pass # Class to develop your AI portfolio manager class PMModelDevelopment: def __init__(self): # Read your data in and split the dependent and independent data = pd.read_csv('IBM.csv') X = data['Delta Close'] y = data.drop(['Delta Close'], axis=1) # Train test spit X_train, X_test, y_train, y_test = train_test_split(X, y) # Create the sequential network = Sequential() # Create the structure of the neural network network.add(Dense(1, input_shape=(1,), activation='tanh')) network.add(Dense(3, activation='tanh')) network.add(Dense(3, activation='tanh')) network.add(Dense(3, activation='tanh')) network.add(Dense(1, activation='tanh')) # Compile the model network.compile( optimizer='rmsprop', loss='hinge', metrics=['accuracy'] ) # Train the model network.fit(X_train.values, y_train.values, epochs=100) # Evaluate the predictions of the model y_pred = network.predict(X_test.values) y_pred = np.around(y_pred, 0) print(classification_report(y_test, y_pred)) # Save structure to json model = network.to_json() with open("model.json", "w") as json_file: json_file.write(model) # Save weights to HDF5 network.save_weights("weights.h5") # AI Portfolio Manager class PortfolioManagementModel: def __init__(self): # Data in to test that the saving of weights worked data = pd.read_csv('IBM.csv') X = data['Delta Close'] y = data.drop(['Delta Close'], axis=1) # Read structure from json json_file = open('model.json', 'r') json = json_file.read() json_file.close() self.network = model_from_json(json) # Read weights from HDF5 self.network.load_weights("weights.h5") # Verify weights and structure are loaded y_pred = self.network.predict(X.values) y_pred = np.around(y_pred, 0) print(classification_report(y, y_pred)) PortfolioManagementModel() # in implemenation create a vector to store data... class PortfolioManagementSystem(TradingSystem): def __init__(self): super().__init__(AlpacaPaperSocket(), 'IBM', 86400, 1, 'AI_PM') self.AI = PortfolioManagementModel() def place_buy_order(self): self.api.submit_order( symbol='IBM', qty=1, side='buy', type='market', time_in_force='day', ) def place_sell_order(self): self.api.submit_order( symbol='IBM', qty=1, side='sell', type='market', time_in_force='day', ) def system_loop(self): # Variables for weekly close this_weeks_close = 0 last_weeks_close = 0 delta = 0 day_count = 0 while(True): # Wait a day to request more data time.sleep(1440) # Request EoD data for IBM data_req = self.api.get_barset('IBM', timeframe='1D', limit=1).df # Construct dataframe to predict x = pd.DataFrame( data=[[ data_req['IBM']['close'][0]]], columns='Close'.split() ) if(day_count == 7): day_count = 0 last_weeks_close = this_weeks_close this_weeks_close = x['Close'] delta = this_weeks_close - last_weeks_close # AI choosing to buy, sell, or hold if np.around(self.AI.network.predict([delta])) <= -.5: self.place_sell_order() elif np.around(self.AI.network.predict([delta]) >= .5): self.place_buy_order() PortfolioManagementSystem()
class Calculator: """" This calculator performs the following basic mathematical operations: * Addition * Subtraction * Division * Multiplication * nth root of number * exponent Attributes ---------- __value : (int or float) the calculator memory value Methods -------- input_validation(new_value): validates that the value entered is a number or float add(new_value: int or float): adds the new value to the value in the calculator memory subtract(new_value: int or float): subtracts the new value from the value in the calculator memory multiply(new_value: int or float): multiplies the new value with the value in the calculator memory divide(new_value: int or float): divides the value in the calculator memory with the new value n_root(root: int or float): takes the (n) root of the value in the calculator memory exponent(exponent: int or float): raises the values in the calculator memory to the power of the inputted value reset_memory(): resets the calculator memory value to 0 memory_value(): returns the calculator memory value """ def __init__(self, value = 0) -> None: """ initializes the memory value """ self.__input_validation(value) self.__value = value def __input_validation(self, new_value: (int, float)) -> None: """ validates that the inputted value is an integer or float """ if not isinstance(new_value, (int,float)): raise NotANumber(new_value) def add(self, new_value: (int,float)) -> (int, float): """ adds the new value to the value in the calculator memory """ self.__input_validation(new_value) self.__value += new_value return self.__value def subtract(self, new_value: (int, float)) -> (int, float): """ subtracts the new value from the value in the calculator memory """ self.__input_validation(new_value) self.__value -= new_value return self.__value def multiply(self, new_value: (int, float)) -> (int, float): """ multiplies the new value with the value in the calculator memory """ self.__input_validation(new_value) self.__value *= new_value return self.__value def divide(self, new_value: (int, float)) -> (int, float): """ divides the value in the calculator memory with the new value """ self.__input_validation(new_value) self.__value /= new_value return self.__value #except (ZeroDivisionError) as err: #print(f'Cannot divide by zero -> {err}') def n_root(self, root: (int, float)) -> (int, float): """ takes the (n) root of the value in the calculator memory """ self.__input_validation(root) if root <= 0: raise NotAPositiveNumber(root, type= 'Inputted value') elif self.__value <= 0: raise NotAPositiveNumber(self.__value, type= 'Memory value') else: self.__value = self.__value ** (1/root) return self.__value def exponent(self, exponent: (int, float)) -> (int, float): """ raises the values in the calculator memory to the power of the inputted value """ self.__input_validation(exponent) self.__value = self.__value ** exponent return self.__value def reset_memory(self) -> (int, float): """ resets the calculator memory value to 0 """ self.__value = 0 return self.__value def memory_value(self) -> (int, float): return self.__value class NotANumber(Exception): """ Raises an error stating the input is not a number Methods -------- __init__(value, message): initializes the error class __str__(): returns the inputted value and error message """ def __init__(self, value, message = 'is not a number'): """ initializes the error class """ self.__message = message self.__value = value super().__init__(self.__message) def __str__(self): """ returns the inputted value and error message """ return f'"{self.__value}" {self.__message}' class NotAPositiveNumber(Exception): """ Raises an error stating the input is not a positive number Methods -------- __init__(value, message): initializes the error class __str__(): returns the inputted value and error message """ def __init__(self, value, message = 'is not a positive number.The function only accepts positive numbers', type = ''): """ initializes the error class """ self.__message = message self.__value = value self.__type = type super().__init__(self.__message) def __str__(self): """ returns the value and error message""" return f'{self.__type} ({self.__value}) {self.__message}'
"""The Logitech Harmony Hub integration.""" import asyncio import logging from homeassistant.components.remote import ATTR_ACTIVITY, ATTR_DELAY_SECS from homeassistant.config_entries import ConfigEntry from homeassistant.const import CONF_HOST, CONF_NAME from homeassistant.core import HomeAssistant, callback from homeassistant.exceptions import ConfigEntryNotReady from homeassistant.helpers.dispatcher import async_dispatcher_send from .const import DOMAIN, HARMONY_OPTIONS_UPDATE, PLATFORMS from .remote import HarmonyRemote _LOGGER = logging.getLogger(__name__) async def async_setup(hass: HomeAssistant, config: dict): """Set up the Logitech Harmony Hub component.""" hass.data.setdefault(DOMAIN, {}) return True async def async_setup_entry(hass: HomeAssistant, entry: ConfigEntry): """Set up Logitech Harmony Hub from a config entry.""" # As there currently is no way to import options from yaml # when setting up a config entry, we fallback to adding # the options to the config entry and pull them out here if # they are missing from the options _async_import_options_from_data_if_missing(hass, entry) address = entry.data[CONF_HOST] name = entry.data[CONF_NAME] activity = entry.options.get(ATTR_ACTIVITY) delay_secs = entry.options.get(ATTR_DELAY_SECS) harmony_conf_file = hass.config.path(f"harmony_{entry.unique_id}.conf") try: device = HarmonyRemote( name, entry.unique_id, address, activity, harmony_conf_file, delay_secs ) connected_ok = await device.connect() except (asyncio.TimeoutError, ValueError, AttributeError): raise ConfigEntryNotReady if not connected_ok: raise ConfigEntryNotReady hass.data[DOMAIN][entry.entry_id] = device entry.add_update_listener(_update_listener) for component in PLATFORMS: hass.async_create_task( hass.config_entries.async_forward_entry_setup(entry, component) ) return True @callback def _async_import_options_from_data_if_missing(hass: HomeAssistant, entry: ConfigEntry): options = dict(entry.options) modified = 0 for importable_option in [ATTR_ACTIVITY, ATTR_DELAY_SECS]: if importable_option not in entry.options and importable_option in entry.data: options[importable_option] = entry.data[importable_option] modified = 1 if modified: hass.config_entries.async_update_entry(entry, options=options) async def _update_listener(hass: HomeAssistant, entry: ConfigEntry): """Handle options update.""" async_dispatcher_send( hass, f"{HARMONY_OPTIONS_UPDATE}-{entry.unique_id}", entry.options ) async def async_unload_entry(hass: HomeAssistant, entry: ConfigEntry): """Unload a config entry.""" unload_ok = all( await asyncio.gather( *[ hass.config_entries.async_forward_entry_unload(entry, component) for component in PLATFORMS ] ) ) # Shutdown a harmony remote for removal device = hass.data[DOMAIN][entry.entry_id] await device.shutdown() if unload_ok: hass.data[DOMAIN].pop(entry.entry_id) return unload_ok
import os import yaml import numpy as np import torch import shutil import torchvision.transforms as transforms from torch.autograd import Variable from collections import namedtuple class MyDumper(yaml.Dumper): def increase_indent(self, flow=False, indentless=False): return super(MyDumper, self).increase_indent(flow, False) Genotype = namedtuple('Genotype', 'normal normal_concat reduce reduce_concat') PRIMITIVES = [ 'none', 'noise', 'max_pool_3x3', 'avg_pool_3x3', 'skip_connect', 'sep_conv_3x3', 'sep_conv_5x5', 'dil_conv_3x3', 'dil_conv_5x5' ] class EVLocalAvg(object): def __init__(self, window=5, ev_freq=2, total_epochs=50): """ Keep track of the eigenvalues local average. Args: window (int): number of elements used to compute local average. Default: 5 ev_freq (int): frequency used to compute eigenvalues. Default: every 2 epochs total_epochs (int): total number of epochs that DARTS runs. Default: 50 """ self.window = window self.ev_freq = ev_freq self.epochs = total_epochs self.stop_search = False self.stop_epoch = total_epochs - 1 self.stop_genotype = None self.ev = [] self.ev_local_avg = [] self.genotypes = {} self.la_epochs = {} # start and end index of the local average window self.la_start_idx = 0 self.la_end_idx = self.window def reset(self): self.ev = [] self.ev_local_avg = [] self.genotypes = {} self.la_epochs = {} def update(self, epoch, ev, genotype): """ Method to update the local average list. Args: epoch (int): current epoch ev (float): current dominant eigenvalue genotype (namedtuple): current genotype """ self.ev.append(ev) self.genotypes.update({epoch: genotype}) # set the stop_genotype to the current genotype in case the early stop # procedure decides not to early stop self.stop_genotype = genotype # since the local average computation starts after the dominant # eigenvalue in the first epoch is already computed we have to wait # at least until we have 3 eigenvalues in the list. if (len(self.ev) >= int(np.ceil(self.window/2))) and (epoch < self.epochs - 1): # start sliding the window as soon as the number of eigenvalues in # the list becomes equal to the window size if len(self.ev) < self.window: self.ev_local_avg.append(np.mean(self.ev)) else: assert len(self.ev[self.la_start_idx: self.la_end_idx]) == self.window self.ev_local_avg.append(np.mean(self.ev[self.la_start_idx: self.la_end_idx])) self.la_start_idx += 1 self.la_end_idx += 1 # keep track of the offset between the current epoch and the epoch # corresponding to the local average. NOTE: in the end the size of # self.ev and self.ev_local_avg should be equal self.la_epochs.update({epoch: int(epoch - int(self.ev_freq*np.floor(self.window/2)))}) elif len(self.ev) < int(np.ceil(self.window/2)): self.la_epochs.update({epoch: -1}) # since there is an offset between the current epoch and the local # average epoch, loop in the last epoch to compute the local average of # these number of elements: window, window - 1, window - 2, ..., ceil(window/2) elif epoch == self.epochs - 1: for i in range(int(np.ceil(self.window/2))): assert len(self.ev[self.la_start_idx: self.la_end_idx]) == self.window - i self.ev_local_avg.append(np.mean(self.ev[self.la_start_idx: self.la_end_idx + 1])) self.la_start_idx += 1 def early_stop(self, epoch, factor=1.3, es_start_epoch=10, delta=4): """ Early stopping criterion Args: epoch (int): current epoch factor (float): threshold factor for the ration between the current and prefious eigenvalue. Default: 1.3 es_start_epoch (int): until this epoch do not consider early stopping. Default: 20 delta (int): factor influencing which previous local average we consider for early stopping. Default: 2 """ if int(self.la_epochs[epoch] - self.ev_freq*delta) >= es_start_epoch: # the current local average corresponds to # epoch - int(self.ev_freq*np.floor(self.window/2)) current_la = self.ev_local_avg[-1] # by default take the local average corresponding to epoch # delta*self.ev_freq previous_la = self.ev_local_avg[-1 - delta] self.stop_search = current_la / previous_la > factor if self.stop_search: self.stop_epoch = int(self.la_epochs[epoch] - self.ev_freq*delta) self.stop_genotype = self.genotypes[self.stop_epoch] class AvgrageMeter(object): def __init__(self): self.reset() def reset(self): self.avg = 0 self.sum = 0 self.cnt = 0 def update(self, val, n=1): self.sum += val * n self.cnt += n self.avg = self.sum / self.cnt def accuracy(output, target, topk=(1,)): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0) res.append(correct_k.mul_(100.0/batch_size)) return res def write_yaml_results_eval(args, results_file, result_to_log): setting = '_'.join([args.space, args.dataset]) regularization = '_'.join( [str(args.search_dp), str(args.search_wd)] ) results_file = os.path.join(args._save, results_file+'.yaml') try: with open(results_file, 'r') as f: result = yaml.load(f, Loader=yaml.Loader) if setting in result.keys(): if regularization in result[setting].keys(): if args.search_task_id in result[setting][regularization]: result[setting][regularization][args.search_task_id].append(result_to_log) else: result[setting][regularization].update({args.search_task_id: [result_to_log]}) else: result[setting].update({regularization: {args.search_task_id: [result_to_log]}}) else: result.update({setting: {regularization: {args.search_task_id: [result_to_log]}}}) with open(results_file, 'w') as f: yaml.dump(result, f, Dumper=MyDumper, default_flow_style=False) except (AttributeError, FileNotFoundError) as e: result = { setting: { regularization: { args.search_task_id: [result_to_log] } } } with open(results_file, 'w') as f: yaml.dump(result, f, Dumper=MyDumper, default_flow_style=False) def write_yaml_results(args, results_file, result_to_log): setting = '_'.join([args.space, args.dataset]) regularization = '_'.join( [str(args.drop_path_prob), str(args.weight_decay)] ) results_file = os.path.join(args._save, results_file+'.yaml') try: with open(results_file, 'r') as f: result = yaml.load(f, Loader=yaml.Loader) if setting in result.keys(): if regularization in result[setting].keys(): result[setting][regularization].update({args.task_id: result_to_log}) else: result[setting].update({regularization: {args.task_id: result_to_log}}) else: result.update({setting: {regularization: {args.task_id: result_to_log}}}) with open(results_file, 'w') as f: yaml.dump(result, f, Dumper=MyDumper, default_flow_style=False) except (AttributeError, FileNotFoundError) as e: result = { setting: { regularization: { args.task_id: result_to_log } } } with open(results_file, 'w') as f: yaml.dump(result, f, Dumper=MyDumper, default_flow_style=False) class Cutout(object): def __init__(self, length, prob=1.0): self.length = length self.prob = prob def __call__(self, img): if np.random.binomial(1, self.prob): h, w = img.size(1), img.size(2) mask = np.ones((h, w), np.float32) y = np.random.randint(h) x = np.random.randint(w) y1 = np.clip(y - self.length // 2, 0, h) y2 = np.clip(y + self.length // 2, 0, h) x1 = np.clip(x - self.length // 2, 0, w) x2 = np.clip(x + self.length // 2, 0, w) mask[y1: y2, x1: x2] = 0. mask = torch.from_numpy(mask) mask = mask.expand_as(img) img *= mask return img def _data_transforms_svhn(args): SVHN_MEAN = [0.4377, 0.4438, 0.4728] SVHN_STD = [0.1980, 0.2010, 0.1970] train_transform = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(SVHN_MEAN, SVHN_STD), ]) if args.cutout: train_transform.transforms.append(Cutout(args.cutout_length, args.cutout_prob)) valid_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(SVHN_MEAN, SVHN_STD), ]) return train_transform, valid_transform def _data_transforms_dr_detection(args): DR_DETECTION_MEAN = [0.42, 0.22, 0.075] DR_DETECTION_STD = [0.27, 0.15, 0.081] if args.is_eval: train_transform = transforms.Compose([ transforms.Resize(540), # 256 transforms.RandomRotation((-45.0, +45.0)), transforms.RandomResizedCrop(512, scale=(0.9, 1.1), ratio=(0.9, 1.1)), # 224 transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(), transforms.ColorJitter(brightness=0.1, contrast=[0.75,1.5], saturation=[0.75,1.5], hue=0.15), transforms.ToTensor(), transforms.Normalize(mean=DR_DETECTION_MEAN, std=DR_DETECTION_STD) ]) if args.cutout: train_transform.transforms.append(Cutout(args.cutout_length, args.cutout_prob)) valid_transform = transforms.Compose([ transforms.Resize(540), transforms.CenterCrop(512), transforms.ToTensor(), transforms.Normalize(mean=DR_DETECTION_MEAN, std=DR_DETECTION_STD), ]) else: train_transform = transforms.Compose([ transforms.Resize(256), # 256 transforms.RandomRotation((-45.0, +45.0)), transforms.RandomResizedCrop(224, scale=(0.9, 1.1), ratio=(0.9, 1.1)), # 224 transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(), transforms.ColorJitter(brightness=0.1, contrast=[0.75, 1.5], saturation=[0.75, 1.5], hue=0.15), transforms.ToTensor(), transforms.Normalize(mean=DR_DETECTION_MEAN, std=DR_DETECTION_STD), # transforms.RandomErasing(), ]) if args.cutout: train_transform.transforms.append(Cutout(args.cutout_length, args.cutout_prob)) valid_transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean=DR_DETECTION_MEAN, std=DR_DETECTION_STD), ]) return train_transform, valid_transform def _data_transforms_malaria(args): train_transform = transforms.Compose([ transforms.Resize(100), transforms.RandomCrop(64), # 224 transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(), transforms.ToTensor(), ]) if args.cutout: train_transform.transforms.append(Cutout(args.cutout_length, args.cutout_prob)) valid_transform = transforms.Compose([ transforms.Resize(100), transforms.RandomCrop(64), # 224 transforms.RandomHorizontalFlip(), transforms.RandomVerticalFlip(), transforms.ToTensor(), ]) return train_transform, valid_transform def _data_transforms_mnist(args): MNIST_MEAN = [0.5, 0.5, 0.5] MNIST_STD = [0.5, 0.5, 0.5] train_transform = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(MNIST_MEAN, MNIST_STD), ]) if args.cutout: train_transform.transforms.append(Cutout(args.cutout_length, args.cutout_prob)) valid_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(MNIST_MEAN, MNIST_STD), ]) return train_transform, valid_transform def _data_transforms_cifar100(args): CIFAR_MEAN = [0.5071, 0.4865, 0.4409] CIFAR_STD = [0.2673, 0.2564, 0.2762] train_transform = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(CIFAR_MEAN, CIFAR_STD), ]) if args.cutout: train_transform.transforms.append(Cutout(args.cutout_length, args.cutout_prob)) valid_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(CIFAR_MEAN, CIFAR_STD), ]) return train_transform, valid_transform def _data_transforms_cifar10(args): CIFAR_MEAN = [0.49139968, 0.48215827, 0.44653124] CIFAR_STD = [0.24703233, 0.24348505, 0.26158768] train_transform = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(CIFAR_MEAN, CIFAR_STD), ]) if args.cutout: train_transform.transforms.append(Cutout(args.cutout_length, args.cutout_prob)) valid_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(CIFAR_MEAN, CIFAR_STD), ]) return train_transform, valid_transform def count_parameters_in_MB(model): return np.sum(np.prod(v.size()) for v in model.parameters())/1e6 def save(model, model_path): torch.save(model.state_dict(), model_path) def load(model, model_path): model.load_state_dict(torch.load(model_path)) def save_checkpoint(state, is_best, save, epoch, task_id): filename = "checkpoint_{}_{}.pth.tar".format(task_id, epoch) filename = os.path.join(save, filename) torch.save(state, filename) if is_best: best_filename = os.path.join(save, 'model_best.pth.tar') shutil.copyfile(filename, best_filename) def load_checkpoint(model, optimizer, scheduler, architect, save, la_tracker, epoch, task_id): filename = "checkpoint_{}_{}.pth.tar".format(task_id, epoch) filename = os.path.join(save, filename) checkpoint = torch.load(filename) model.load_state_dict(checkpoint['state_dict']) model.alphas_normal.data = checkpoint['alphas_normal'] model.alphas_reduce.data = checkpoint['alphas_reduce'] optimizer.load_state_dict(checkpoint['optimizer']) architect.optimizer.load_state_dict(checkpoint['arch_optimizer']) la_tracker.ev = checkpoint['ev'] la_tracker.ev_local_avg = checkpoint['ev_local_avg'] la_tracker.genotypes = checkpoint['genotypes'] la_tracker.la_epochs = checkpoint['la_epochs'] la_tracker.la_start_idx = checkpoint['la_start_idx'] la_tracker.la_end_idx = checkpoint['la_end_idx'] lr = checkpoint['lr'] return lr def drop_path(x, drop_prob): if drop_prob > 0.: keep_prob = 1.-drop_prob mask = Variable(torch.cuda.FloatTensor(x.size(0), 1, 1, 1).bernoulli_(keep_prob)) x.div_(keep_prob) x.mul_(mask) return x def create_exp_dir(path, scripts_to_save=None): if not os.path.exists(path): os.makedirs(path, exist_ok=True) print('Experiment dir : {}'.format(path)) if scripts_to_save is not None: os.mkdir(os.path.join(path, 'scripts')) for script in scripts_to_save: dst_file = os.path.join(path, 'scripts', os.path.basename(script)) shutil.copyfile(script, dst_file) def print_args(args): for arg, val in args.__dict__.items(): print(arg + '.' * (50 - len(arg) - len(str(val))) + str(val)) print()
#!/usr/bin/env python # # Copyright 2016 Cisco Systems, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # """ Create configuration for model Cisco-IOS-XR-ip-domain-cfg. usage: gn-create-xr-ip-domain-cfg-33-ydk.py [-h] [-v] device positional arguments: device gNMI device (http://user:password@host:port) optional arguments: -h, --help show this help message and exit -v, --verbose print debugging messages """ from argparse import ArgumentParser from urlparse import urlparse from ydk.path import Repository from ydk.services import CRUDService from ydk.gnmi.providers import gNMIServiceProvider from ydk.models.cisco_ios_xr import Cisco_IOS_XR_ip_domain_cfg \ as xr_ip_domain_cfg import os import logging YDK_REPO_DIR = os.path.expanduser("~/.ydk/") def config_ip_domain(ip_domain): """Add config data to ip_domain object.""" vrf = ip_domain.vrfs.Vrf() vrf.vrf_name = "RED" vrf.name = "red.example" # first name server server = vrf.servers.Server() server.order = 0 server.server_address = "2001:db8:800a::1" vrf.servers.server.append(server) # second name server server = vrf.servers.Server() server.order = 1 server.server_address = "2001:db8:800a::2" vrf.servers.server.append(server) # third name server server = vrf.servers.Server() server.order = 2 server.server_address = "2001:db8:800a::3" vrf.servers.server.append(server) ip_domain.vrfs.vrf.append(vrf) if __name__ == "__main__": """Execute main program.""" parser = ArgumentParser() parser.add_argument("-v", "--verbose", help="print debugging messages", action="store_true") parser.add_argument("device", help="gNMI device (http://user:password@host:port)") args = parser.parse_args() device = urlparse(args.device) # log debug messages if verbose argument specified if args.verbose: logger = logging.getLogger("ydk") logger.setLevel(logging.INFO) handler = logging.StreamHandler() formatter = logging.Formatter(("%(asctime)s - %(name)s - " "%(levelname)s - %(message)s")) handler.setFormatter(formatter) logger.addHandler(handler) # create gNMI provider repository = Repository(YDK_REPO_DIR+device.hostname) provider = gNMIServiceProvider(repo=repository, address=device.hostname, port=device.port, username=device.username, password=device.password) # create CRUD service crud = CRUDService() ip_domain = xr_ip_domain_cfg.IpDomain() # create object config_ip_domain(ip_domain) # add object configuration # create configuration on gNMI device crud.create(provider, ip_domain) exit() # End of script
# # This file is part of pysmi software. # # Copyright (c) 2015-2020, Ilya Etingof <etingof@gmail.com> # License: http://snmplabs.com/pysmi/license.html # import sys import os import tempfile try: import unittest2 as unittest except ImportError: import unittest try: import StringIO except ImportError: from io import StringIO from pysmi.reader.zipreader import ZipReader class ZipReaderTestCase(unittest.TestCase): zipArchive = [ 80, 75, 3, 4, 10, 0, 0, 0, 0, 0, 8, 135, 53, 75, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 28, 0, 116, 101, 115, 116, 47, 85, 84, 9, 0, 3, 16, 211, 195, 89, 25, 211, 195, 89, 117, 120, 11, 0, 1, 4, 140, 102, 0, 0, 4, 140, 102, 0, 0, 80, 75, 3, 4, 10, 0, 0, 0, 0, 0, 230, 134, 53, 75, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 28, 0, 116, 101, 115, 116, 47, 115, 117, 98, 100, 105, 114, 47, 85, 84, 9, 0, 3, 207, 210, 195, 89, 3, 211, 195, 89, 117, 120, 11, 0, 1, 4, 140, 102, 0, 0, 4, 140, 102, 0, 0, 80, 75, 3, 4, 10, 0, 0, 0, 0, 0, 230, 134, 53, 75, 102, 214, 67, 99, 2, 0, 0, 0, 2, 0, 0, 0, 17, 0, 28, 0, 116, 101, 115, 116, 47, 115, 117, 98, 100, 105, 114, 47, 116, 101, 115, 116, 65, 85, 84, 9, 0, 3, 207, 210, 195, 89, 3, 211, 195, 89, 117, 120, 11, 0, 1, 4, 140, 102, 0, 0, 4, 140, 102, 0, 0, 66, 10, 80, 75, 3, 4, 10, 0, 0, 0, 0, 0, 2, 135, 53, 75, 162, 170, 2, 92, 138, 7, 0, 0, 138, 7, 0, 0, 13, 0, 28, 0, 116, 101, 115, 116, 47, 116, 101, 115, 116, 46, 122, 105, 112, 85, 84, 9, 0, 3, 3, 211, 195, 89, 3, 211, 195, 89, 117, 120, 11, 0, 1, 4, 140, 102, 0, 0, 4, 140, 102, 0, 0, 80, 75, 3, 4, 10, 0, 0, 0, 0, 0, 253, 134, 53, 75, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 28, 0, 116, 101, 115, 116, 47, 85, 84, 9, 0, 3, 253, 210, 195, 89, 3, 211, 195, 89, 117, 120, 11, 0, 1, 4, 140, 102, 0, 0, 4, 140, 102, 0, 0, 80, 75, 3, 4, 10, 0, 0, 0, 0, 0, 230, 134, 53, 75, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 28, 0, 116, 101, 115, 116, 47, 115, 117, 98, 100, 105, 114, 47, 85, 84, 9, 0, 3, 207, 210, 195, 89, 3, 211, 195, 89, 117, 120, 11, 0, 1, 4, 140, 102, 0, 0, 4, 140, 102, 0, 0, 80, 75, 3, 4, 10, 0, 0, 0, 0, 0, 130, 131, 53, 75, 227, 250, 30, 37, 12, 0, 0, 0, 12, 0, 0, 0, 21, 0, 28, 0, 116, 101, 115, 116, 47, 115, 117, 98, 100, 105, 114, 47, 116, 101, 115, 116, 65, 46, 116, 120, 116, 85, 84, 9, 0, 3, 116, 204, 195, 89, 134, 204, 195, 89, 117, 120, 11, 0, 1, 4, 140, 102, 0, 0, 4, 140, 102, 0, 0, 115, 117, 98, 100, 105, 114, 116, 101, 115, 116, 65, 10, 80, 75, 3, 4, 10, 0, 0, 0, 0, 0, 109, 131, 53, 75, 237, 78, 102, 83, 6, 0, 0, 0, 6, 0, 0, 0, 14, 0, 28, 0, 116, 101, 115, 116, 47, 116, 101, 115, 116, 65, 46, 116, 120, 116, 85, 84, 9, 0, 3, 78, 204, 195, 89, 134, 204, 195, 89, 117, 120, 11, 0, 1, 4, 140, 102, 0, 0, 4, 140, 102, 0, 0, 116, 101, 115, 116, 65, 10, 80, 75, 3, 4, 10, 0, 0, 0, 0, 0, 144, 131, 53, 75, 204, 176, 61, 249, 144, 2, 0, 0, 144, 2, 0, 0, 13, 0, 28, 0, 116, 101, 115, 116, 47, 116, 101, 115, 116, 46, 122, 105, 112, 85, 84, 9, 0, 3, 143, 204, 195, 89, 143, 204, 195, 89, 117, 120, 11, 0, 1, 4, 140, 102, 0, 0, 4, 140, 102, 0, 0, 80, 75, 3, 4, 10, 0, 0, 0, 0, 0, 117, 131, 53, 75, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 28, 0, 116, 101, 115, 116, 47, 85, 84, 9, 0, 3, 94, 204, 195, 89, 98, 204, 195, 89, 117, 120, 11, 0, 1, 4, 140, 102, 0, 0, 4, 140, 102, 0, 0, 80, 75, 3, 4, 10, 0, 0, 0, 0, 0, 130, 131, 53, 75, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 28, 0, 116, 101, 115, 116, 47, 115, 117, 98, 100, 105, 114, 47, 85, 84, 9, 0, 3, 116, 204, 195, 89, 134, 204, 195, 89, 117, 120, 11, 0, 1, 4, 140, 102, 0, 0, 4, 140, 102, 0, 0, 80, 75, 3, 4, 10, 0, 0, 0, 0, 0, 130, 131, 53, 75, 227, 250, 30, 37, 12, 0, 0, 0, 12, 0, 0, 0, 21, 0, 28, 0, 116, 101, 115, 116, 47, 115, 117, 98, 100, 105, 114, 47, 116, 101, 115, 116, 65, 46, 116, 120, 116, 85, 84, 9, 0, 3, 116, 204, 195, 89, 116, 204, 195, 89, 117, 120, 11, 0, 1, 4, 140, 102, 0, 0, 4, 140, 102, 0, 0, 115, 117, 98, 100, 105, 114, 116, 101, 115, 116, 65, 10, 80, 75, 3, 4, 10, 0, 0, 0, 0, 0, 109, 131, 53, 75, 237, 78, 102, 83, 6, 0, 0, 0, 6, 0, 0, 0, 14, 0, 28, 0, 116, 101, 115, 116, 47, 116, 101, 115, 116, 65, 46, 116, 120, 116, 85, 84, 9, 0, 3, 78, 204, 195, 89, 78, 204, 195, 89, 117, 120, 11, 0, 1, 4, 140, 102, 0, 0, 4, 140, 102, 0, 0, 116, 101, 115, 116, 65, 10, 80, 75, 1, 2, 30, 3, 10, 0, 0, 0, 0, 0, 117, 131, 53, 75, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 24, 0, 0, 0, 0, 0, 0, 0, 16, 0, 253, 65, 0, 0, 0, 0, 116, 101, 115, 116, 47, 85, 84, 5, 0, 3, 94, 204, 195, 89, 117, 120, 11, 0, 1, 4, 140, 102, 0, 0, 4, 140, 102, 0, 0, 80, 75, 1, 2, 30, 3, 10, 0, 0, 0, 0, 0, 130, 131, 53, 75, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 24, 0, 0, 0, 0, 0, 0, 0, 16, 0, 253, 65, 63, 0, 0, 0, 116, 101, 115, 116, 47, 115, 117, 98, 100, 105, 114, 47, 85, 84, 5, 0, 3, 116, 204, 195, 89, 117, 120, 11, 0, 1, 4, 140, 102, 0, 0, 4, 140, 102, 0, 0, 80, 75, 1, 2, 30, 3, 10, 0, 0, 0, 0, 0, 130, 131, 53, 75, 227, 250, 30, 37, 12, 0, 0, 0, 12, 0, 0, 0, 21, 0, 24, 0, 0, 0, 0, 0, 1, 0, 0, 0, 180, 129, 133, 0, 0, 0, 116, 101, 115, 116, 47, 115, 117, 98, 100, 105, 114, 47, 116, 101, 115, 116, 65, 46, 116, 120, 116, 85, 84, 5, 0, 3, 116, 204, 195, 89, 117, 120, 11, 0, 1, 4, 140, 102, 0, 0, 4, 140, 102, 0, 0, 80, 75, 1, 2, 30, 3, 10, 0, 0, 0, 0, 0, 109, 131, 53, 75, 237, 78, 102, 83, 6, 0, 0, 0, 6, 0, 0, 0, 14, 0, 24, 0, 0, 0, 0, 0, 1, 0, 0, 0, 180, 129, 224, 0, 0, 0, 116, 101, 115, 116, 47, 116, 101, 115, 116, 65, 46, 116, 120, 116, 85, 84, 5, 0, 3, 78, 204, 195, 89, 117, 120, 11, 0, 1, 4, 140, 102, 0, 0, 4, 140, 102, 0, 0, 80, 75, 5, 6, 0, 0, 0, 0, 4, 0, 4, 0, 76, 1, 0, 0, 46, 1, 0, 0, 0, 0, 80, 75, 3, 4, 10, 0, 0, 0, 0, 0, 230, 134, 53, 75, 102, 214, 67, 99, 2, 0, 0, 0, 2, 0, 0, 0, 17, 0, 28, 0, 116, 101, 115, 116, 47, 115, 117, 98, 100, 105, 114, 47, 116, 101, 115, 116, 65, 85, 84, 9, 0, 3, 207, 210, 195, 89, 207, 210, 195, 89, 117, 120, 11, 0, 1, 4, 140, 102, 0, 0, 4, 140, 102, 0, 0, 66, 10, 80, 75, 3, 4, 10, 0, 0, 0, 0, 0, 253, 134, 53, 75, 39, 231, 88, 122, 2, 0, 0, 0, 2, 0, 0, 0, 10, 0, 28, 0, 116, 101, 115, 116, 47, 116, 101, 115, 116, 67, 85, 84, 9, 0, 3, 253, 210, 195, 89, 253, 210, 195, 89, 117, 120, 11, 0, 1, 4, 140, 102, 0, 0, 4, 140, 102, 0, 0, 67, 10, 80, 75, 3, 4, 10, 0, 0, 0, 0, 0, 211, 134, 53, 75, 165, 133, 110, 72, 2, 0, 0, 0, 2, 0, 0, 0, 10, 0, 28, 0, 116, 101, 115, 116, 47, 116, 101, 115, 116, 65, 85, 84, 9, 0, 3, 173, 210, 195, 89, 173, 210, 195, 89, 117, 120, 11, 0, 1, 4, 140, 102, 0, 0, 4, 140, 102, 0, 0, 65, 10, 80, 75, 1, 2, 30, 3, 10, 0, 0, 0, 0, 0, 253, 134, 53, 75, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 24, 0, 0, 0, 0, 0, 0, 0, 16, 0, 253, 65, 0, 0, 0, 0, 116, 101, 115, 116, 47, 85, 84, 5, 0, 3, 253, 210, 195, 89, 117, 120, 11, 0, 1, 4, 140, 102, 0, 0, 4, 140, 102, 0, 0, 80, 75, 1, 2, 30, 3, 10, 0, 0, 0, 0, 0, 230, 134, 53, 75, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 24, 0, 0, 0, 0, 0, 0, 0, 16, 0, 253, 65, 63, 0, 0, 0, 116, 101, 115, 116, 47, 115, 117, 98, 100, 105, 114, 47, 85, 84, 5, 0, 3, 207, 210, 195, 89, 117, 120, 11, 0, 1, 4, 140, 102, 0, 0, 4, 140, 102, 0, 0, 80, 75, 1, 2, 30, 3, 10, 0, 0, 0, 0, 0, 130, 131, 53, 75, 227, 250, 30, 37, 12, 0, 0, 0, 12, 0, 0, 0, 21, 0, 24, 0, 0, 0, 0, 0, 1, 0, 0, 0, 180, 129, 133, 0, 0, 0, 116, 101, 115, 116, 47, 115, 117, 98, 100, 105, 114, 47, 116, 101, 115, 116, 65, 46, 116, 120, 116, 85, 84, 5, 0, 3, 116, 204, 195, 89, 117, 120, 11, 0, 1, 4, 140, 102, 0, 0, 4, 140, 102, 0, 0, 80, 75, 1, 2, 30, 3, 10, 0, 0, 0, 0, 0, 109, 131, 53, 75, 237, 78, 102, 83, 6, 0, 0, 0, 6, 0, 0, 0, 14, 0, 24, 0, 0, 0, 0, 0, 1, 0, 0, 0, 180, 129, 224, 0, 0, 0, 116, 101, 115, 116, 47, 116, 101, 115, 116, 65, 46, 116, 120, 116, 85, 84, 5, 0, 3, 78, 204, 195, 89, 117, 120, 11, 0, 1, 4, 140, 102, 0, 0, 4, 140, 102, 0, 0, 80, 75, 1, 2, 30, 3, 10, 0, 0, 0, 0, 0, 144, 131, 53, 75, 204, 176, 61, 249, 144, 2, 0, 0, 144, 2, 0, 0, 13, 0, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 180, 129, 46, 1, 0, 0, 116, 101, 115, 116, 47, 116, 101, 115, 116, 46, 122, 105, 112, 85, 84, 5, 0, 3, 143, 204, 195, 89, 117, 120, 11, 0, 1, 4, 140, 102, 0, 0, 4, 140, 102, 0, 0, 80, 75, 1, 2, 30, 3, 10, 0, 0, 0, 0, 0, 230, 134, 53, 75, 102, 214, 67, 99, 2, 0, 0, 0, 2, 0, 0, 0, 17, 0, 24, 0, 0, 0, 0, 0, 1, 0, 0, 0, 180, 129, 5, 4, 0, 0, 116, 101, 115, 116, 47, 115, 117, 98, 100, 105, 114, 47, 116, 101, 115, 116, 65, 85, 84, 5, 0, 3, 207, 210, 195, 89, 117, 120, 11, 0, 1, 4, 140, 102, 0, 0, 4, 140, 102, 0, 0, 80, 75, 1, 2, 30, 3, 10, 0, 0, 0, 0, 0, 253, 134, 53, 75, 39, 231, 88, 122, 2, 0, 0, 0, 2, 0, 0, 0, 10, 0, 24, 0, 0, 0, 0, 0, 1, 0, 0, 0, 180, 129, 82, 4, 0, 0, 116, 101, 115, 116, 47, 116, 101, 115, 116, 67, 85, 84, 5, 0, 3, 253, 210, 195, 89, 117, 120, 11, 0, 1, 4, 140, 102, 0, 0, 4, 140, 102, 0, 0, 80, 75, 1, 2, 30, 3, 10, 0, 0, 0, 0, 0, 211, 134, 53, 75, 165, 133, 110, 72, 2, 0, 0, 0, 2, 0, 0, 0, 10, 0, 24, 0, 0, 0, 0, 0, 1, 0, 0, 0, 180, 129, 152, 4, 0, 0, 116, 101, 115, 116, 47, 116, 101, 115, 116, 65, 85, 84, 5, 0, 3, 173, 210, 195, 89, 117, 120, 11, 0, 1, 4, 140, 102, 0, 0, 4, 140, 102, 0, 0, 80, 75, 5, 6, 0, 0, 0, 0, 8, 0, 8, 0, 150, 2, 0, 0, 222, 4, 0, 0, 0, 0, 80, 75, 3, 4, 10, 0, 0, 0, 0, 0, 211, 134, 53, 75, 165, 133, 110, 72, 2, 0, 0, 0, 2, 0, 0, 0, 10, 0, 28, 0, 116, 101, 115, 116, 47, 116, 101, 115, 116, 65, 85, 84, 9, 0, 3, 173, 210, 195, 89, 3, 211, 195, 89, 117, 120, 11, 0, 1, 4, 140, 102, 0, 0, 4, 140, 102, 0, 0, 65, 10, 80, 75, 1, 2, 30, 3, 10, 0, 0, 0, 0, 0, 8, 135, 53, 75, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 0, 24, 0, 0, 0, 0, 0, 0, 0, 16, 0, 253, 65, 0, 0, 0, 0, 116, 101, 115, 116, 47, 85, 84, 5, 0, 3, 16, 211, 195, 89, 117, 120, 11, 0, 1, 4, 140, 102, 0, 0, 4, 140, 102, 0, 0, 80, 75, 1, 2, 30, 3, 10, 0, 0, 0, 0, 0, 230, 134, 53, 75, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 24, 0, 0, 0, 0, 0, 0, 0, 16, 0, 253, 65, 63, 0, 0, 0, 116, 101, 115, 116, 47, 115, 117, 98, 100, 105, 114, 47, 85, 84, 5, 0, 3, 207, 210, 195, 89, 117, 120, 11, 0, 1, 4, 140, 102, 0, 0, 4, 140, 102, 0, 0, 80, 75, 1, 2, 30, 3, 10, 0, 0, 0, 0, 0, 230, 134, 53, 75, 102, 214, 67, 99, 2, 0, 0, 0, 2, 0, 0, 0, 17, 0, 24, 0, 0, 0, 0, 0, 1, 0, 0, 0, 180, 129, 133, 0, 0, 0, 116, 101, 115, 116, 47, 115, 117, 98, 100, 105, 114, 47, 116, 101, 115, 116, 65, 85, 84, 5, 0, 3, 207, 210, 195, 89, 117, 120, 11, 0, 1, 4, 140, 102, 0, 0, 4, 140, 102, 0, 0, 80, 75, 1, 2, 30, 3, 10, 0, 0, 0, 0, 0, 2, 135, 53, 75, 162, 170, 2, 92, 138, 7, 0, 0, 138, 7, 0, 0, 13, 0, 24, 0, 0, 0, 0, 0, 0, 0, 0, 0, 180, 129, 210, 0, 0, 0, 116, 101, 115, 116, 47, 116, 101, 115, 116, 46, 122, 105, 112, 85, 84, 5, 0, 3, 3, 211, 195, 89, 117, 120, 11, 0, 1, 4, 140, 102, 0, 0, 4, 140, 102, 0, 0, 80, 75, 1, 2, 30, 3, 10, 0, 0, 0, 0, 0, 211, 134, 53, 75, 165, 133, 110, 72, 2, 0, 0, 0, 2, 0, 0, 0, 10, 0, 24, 0, 0, 0, 0, 0, 1, 0, 0, 0, 180, 129, 163, 8, 0, 0, 116, 101, 115, 116, 47, 116, 101, 115, 116, 65, 85, 84, 5, 0, 3, 173, 210, 195, 89, 117, 120, 11, 0, 1, 4, 140, 102, 0, 0, 4, 140, 102, 0, 0, 80, 75, 5, 6, 0, 0, 0, 0, 5, 0, 5, 0, 151, 1, 0, 0, 233, 8, 0, 0, 0, 0] if sys.version_info[0] < 3: zipContents = ''.join([chr(x) for x in zipArchive]) else: zipContents = bytes(zipArchive) def testGetDataFromFile(self): filename = None try: fd, filename = tempfile.mkstemp() os.write(fd, self.zipContents) os.close(fd) zipReader = ZipReader(filename) mibinfo, data = zipReader.getData('testA') assert data == 'A\n' except Exception: pass if filename: try: os.remove(filename) except Exception: pass def testGetInnerZipData(self): filename = None try: fd, filename = tempfile.mkstemp() os.write(fd, self.zipContents) os.close(fd) zipReader = ZipReader(filename) mibinfo, data = zipReader.getData('testC') assert data == 'C\n' except Exception: pass if filename: try: os.remove(filename) except Exception: pass suite = unittest.TestLoader().loadTestsFromModule(sys.modules[__name__]) if __name__ == '__main__': unittest.TextTestRunner(verbosity=2).run(suite)
# -*- coding: utf-8 -*- import binascii from copy import copy from .codec import size_for_addr from .codec import string_to_bytes from .codec import bytes_to_string from .codec import protocol_with_name from .protocols import protocol_with_code from .protocols import read_varint_code class ProtocolNotFoundException(Exception): pass class Multiaddr(object): """Multiaddr is a representation of multiple nested internet addresses. Multiaddr is a cross-protocol, cross-platform format for representing internet addresses. It emphasizes explicitness and self-description. Learn more here: https://github.com/jbenet/multiaddr Multiaddrs have both a binary and string representation. >>> from multiaddr import Multiaddr >>> addr = Multiaddr("/ip4/1.2.3.4/tcp/80") Multiaddr objects are immutable, so `encapsulate` and `decapsulate` return new objects rather than modify internal state. """ def __init__(self, addr): """Instantiate a new Multiaddr. Args: addr : A string-encoded or a byte-encoded Multiaddr """ if isinstance(addr, str): self._bytes = string_to_bytes(addr) elif isinstance(addr, bytes): self._bytes = addr else: raise ValueError("Invalid address type, must be bytes or str") def __eq__(self, other): """Checks if two Multiaddr objects are exactly equal.""" return self._bytes == other._bytes def __ne__(self, other): return not (self == other) def __str__(self): """Return the string representation of this Multiaddr. May raise an exception if the internal state of the Multiaddr is corrupted.""" try: return bytes_to_string(self._bytes) except Exception: raise ValueError( "multiaddr failed to convert back to string. corrupted?") def __repr__(self): return "<Multiaddr %s>" % str(self) def to_bytes(self): """Returns the byte array representation of this Multiaddr.""" return self._bytes def protocols(self): """Returns a list of Protocols this Multiaddr includes.""" buf = binascii.unhexlify(self.to_bytes()) protos = [] while buf: code, num_bytes_read = read_varint_code(buf) proto = protocol_with_code(code) protos.append(proto) buf = buf[num_bytes_read:] size = size_for_addr(proto, buf) buf = buf[size:] return protos def encapsulate(self, other): """Wrap this Multiaddr around another. For example: /ip4/1.2.3.4 encapsulate /tcp/80 = /ip4/1.2.3.4/tcp/80 """ mb = self.to_bytes() ob = other.to_bytes() return Multiaddr(b''.join([mb, ob])) def decapsulate(self, other): """Remove a Multiaddr wrapping. For example: /ip4/1.2.3.4/tcp/80 decapsulate /ip4/1.2.3.4 = /tcp/80 """ s1 = str(self) s2 = str(other) try: idx = s1.rindex(s2) except ValueError: # if multiaddr not contained, returns a copy return copy(self) try: return Multiaddr(s1[:idx]) except Exception as ex: raise ValueError( "Multiaddr.decapsulate incorrect byte boundaries: %s" % str(ex)) def value_for_protocol(self, code): """Return the value (if any) following the specified protocol.""" from .util import split if isinstance(code, str): protocol = protocol_with_name(code) code = protocol.code for sub_addr in split(self): if sub_addr.protocols()[0].code == code: addr_parts = str(sub_addr).split("/") if len(addr_parts) > 3: raise ValueError("Unknown Protocol format") elif len(addr_parts) == 3: # If we have an address, return it return addr_parts[2] elif len(addr_parts) == 2: # We were given something like '/utp', which doesn't have # an address, so return '' return '' raise ProtocolNotFoundException()
from django.urls import path from . import views urlpatterns = [ path('', views.profile, name='profile'), path( 'order_history/<order_number>', views.order_history, name='order_history'), ]
# -*- encoding: utf-8 -*- import abc import numpy as np import scipy.sparse from autosklearn.pipeline.implementations.OneHotEncoder import OneHotEncoder from autosklearn.util import predict_RAM_usage def perform_one_hot_encoding(sparse, categorical, data): predicted_RAM_usage = float( predict_RAM_usage(data[0], categorical)) / 1024 / 1024 if predicted_RAM_usage > 1000: sparse = True rvals = [] if any(categorical): encoder = OneHotEncoder(categorical_features=categorical, dtype=np.float32, sparse=sparse) rvals.append(encoder.fit_transform(data[0])) for d in data[1:]: rvals.append(encoder.transform(d)) if not sparse and scipy.sparse.issparse(rvals[0]): for i in range(len(rvals)): rvals[i] = rvals[i].todense() else: rvals = data return rvals, sparse class AbstractDataManager(): __metaclass__ = abc.ABCMeta def __init__(self, name): self._data = dict() self._info = dict() self._name = name @property def name(self): return self._name @property def data(self): return self._data @property def info(self): return self._info @property def feat_type(self): return self._feat_type @feat_type.setter def feat_type(self, value): self._feat_type = value @property def encoder(self): return self._encoder @encoder.setter def encoder(self, value): self._encoder = value def perform1HotEncoding(self): sparse = True if self.info['is_sparse'] == 1 else False has_missing = True if self.info['has_missing'] else False to_encode = ['categorical'] if has_missing: to_encode += ['binary'] encoding_mask = [feat_type.lower() in to_encode for feat_type in self.feat_type] data = [self.data['X_train']] if 'X_valid' in self.data: data.append(self.data['X_valid']) if 'X_test' in self.data: data.append(self.data['X_test']) data, sparse = perform_one_hot_encoding( sparse=sparse, categorical=encoding_mask, data=data) self.info['is_sparse'] = 1 if sparse else 0 self.data['X_train'] = data[0] if 'X_valid' in self.data and 'X_test' in self.data: self.data['X_valid'] = data[1] self.data['X_test'] = data[2] elif 'X_valid' in self.data: self.data['X_valid'] = data[1] elif 'X_test' in self.data: self.data['X_test'] = data[1] def __repr__(self): return 'DataManager : ' + self.name def __str__(self): val = 'DataManager : ' + self.name + '\ninfo:\n' for item in self.info: val = val + '\t' + item + ' = ' + str(self.info[item]) + '\n' val = val + 'data:\n' for subset in self.data: val = val + '\t%s = %s %s %s\n' % (subset, type(self.data[subset]), str(self.data[subset].shape), str(self.data[subset].dtype)) if isinstance(self.data[subset], scipy.sparse.spmatrix): val = val + '\tdensity: %f\n' % \ (float(len(self.data[subset].data)) / self.data[subset].shape[0] / self.data[subset].shape[1]) val = val + 'feat_type:\t' + str(self.feat_type) + '\n' return val
# Generated by Django 3.0.5 on 2020-04-11 04:24 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('core', '0003_ingredient'), ] operations = [ migrations.CreateModel( name='Recipe', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=255)), ('time_minutes', models.IntegerField()), ('price', models.DecimalField(decimal_places=2, max_digits=5)), ('link', models.CharField(blank=True, max_length=255)), ('ingredients', models.ManyToManyField(to='core.Ingredient')), ('tags', models.ManyToManyField(to='core.Tag')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), ]
""" Django settings for travel_blog project. Generated by 'django-admin startproject' using Django 1.10.1. For more information on this file, see https://docs.djangoproject.com/en/1.10/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.10/ref/settings/ """ import os # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.10/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = 'd$^_aoggnuh-=s=kpxb*2qkr+%)^^0cnm8h32h@qq*&1k8*g^l' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.humanize', 'django.contrib.gis', 'blog', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] ROOT_URLCONF = 'travel_blog.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] WSGI_APPLICATION = 'travel_blog.wsgi.application' # Database # https://docs.djangoproject.com/en/1.10/ref/settings/#databases DATABASES = { 'default': { # 'ENGINE': 'django.db.backends.postgresql', 'ENGINE': 'django.contrib.gis.db.backends.postgis', 'HOST': 'localhost', 'NAME': 'travel_blog_db', } } # Password validation # https://docs.djangoproject.com/en/1.10/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] # Internationalization # https://docs.djangoproject.com/en/1.10/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'America/Los_Angeles' USE_I18N = True USE_L10N = True USE_TZ = True # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.10/howto/static-files/ STATIC_URL = '/static/' STATICFILES_DIRS = (os.path.join(BASE_DIR, 'assets'),) MEDIA_ROOT = os.path.join(BASE_DIR, 'uploads') MEDIA_URL = '/uploads/'
# -*- coding: UTF-8 -*- from django.test import Client, TestCase from django.contrib.auth.models import Group from django.core.cache import cache from django.core.urlresolvers import reverse from django.utils.translation import ugettext as _ from django.utils import simplejson from privilege.core.config import GROUP_CACHE_KEY class GroupTestCases(TestCase): fixtures = ['privilege.json'] def setUp(self): TestCase.setUp(self) self.client = Client() def tearDown(self): self.client.logout() TestCase.tearDown(self) def test_group_list_not_login(self): group_list_url = reverse("privilege.views.group.group_list", args=(1, )) self.check_not_login(group_list_url) def test_group_list_logined_but_not_superuser(self): group_list_url = reverse("privilege.views.group.group_list", args=(1, )) self.check_not_superuser(group_list_url) def test_group_list_ok(self): group_list_url = reverse("privilege.views.group.group_list", args=(1, )) self.client.login(username="super", password="test") response = self.client.get(group_list_url) self.assertEqual(response.status_code, 200) self.assertTrue(response.context["page"].object_list) def test_group_detail_not_login(self): group_detail_url = reverse("privilege.views.group.group_detail", args=(1, 1,)) self.check_not_login(group_detail_url) def test_get_group_detail_logined_but_not_superuser(self): group_detail_url = reverse("privilege.views.group.group_detail", args=(1, 1,)) self.check_not_superuser(group_detail_url) def test_get_group_detail_not_exist(self): group_detail_url = reverse("privilege.views.group.group_detail", args=(0, 1,)) self.client.login(username="super", password="test") response = self.client.get(group_detail_url) self.assertEqual(response.status_code, 404) def test_get_group_detail_ok(self): group_detail_url = reverse("privilege.views.group.group_detail", args=(1, 1,)) self.client.login(username="super", password="test") response = self.client.get(group_detail_url) self.assertEqual(response.status_code, 200) self.assertTrue(response.context["group"]) def test_change_group_permission_not_login(self): change_group_url = reverse("privilege.views.group.change_group_permission") self.check_not_login(change_group_url) def test_change_group_permission_not_super_user(self): change_group_url = reverse("privilege.views.group.change_group_permission") self.check_not_superuser(change_group_url) def test_change_group_permission_get_method(self): change_group_url = reverse("privilege.views.group.change_group_permission") self.client.login(username="super", password="test") response = self.client.get(change_group_url) self.assertEqual(response.status_code, 200) expect_content = simplejson.dumps({"status": "nok", "msg": _("Fail")}) self.assertEqual(response.content, expect_content) def test_change_group_permission_not_exist(self): change_group_url = reverse("privilege.views.group.change_group_permission") post_data = {"group_id": 0} self.client.login(username="super", password="test") response = self.client.post(change_group_url, post_data) self.assertEqual(response.status_code, 200) expect_content = simplejson.dumps({"status": "nok", "msg": _("Fail")}) self.assertEqual(response.content, expect_content) def test_change_group_permission_post_bad_params(self): change_group_url = reverse("privilege.views.group.change_group_permission") post_data = {"group_id": 1, "permission_id": ""} self.client.login(username="super", password="test") response = self.client.post(change_group_url, post_data) self.assertEqual(response.status_code, 200) expect_content = simplejson.dumps({"status": "nok", "msg": _("Fail")}) self.assertEqual(response.content, expect_content) def test_change_group_permission_ok(self): change_group_url = reverse("privilege.views.group.change_group_permission") post_data = {"group_id": 1, "permission_id": "1", "op_code": "add"} self.client.login(username="super", password="test") response = self.client.post(change_group_url, post_data) self.assertEqual(response.status_code, 200) expect_content = simplejson.dumps({"status": "ok", "msg": _("Success")}) self.assertEqual(response.content, expect_content) cache.set(GROUP_CACHE_KEY, None) def test_add_group_not_login(self): add_group_url = reverse("privilege.views.group.add_group") self.check_not_login(add_group_url) def test_add_group_not_superuser(self): add_group_url = reverse("privilege.views.group.add_group") self.check_not_superuser(add_group_url) def test_add_group_not_post(self): add_group_url = reverse("privilege.views.group.add_group") self.client.login(username="super", password="test") response = self.client.get(add_group_url) self.assertEqual(response.status_code, 200) self.assertTrue(response.context["form"]) def test_add_group_post_blank(self): add_group_url = reverse("privilege.views.group.add_group") self.client.login(username="super", password="test") response = self.client.post(add_group_url, {"name": ""}) self.assertEqual(response.status_code, 200) self.assertTrue(response.context["form"].errors) def test_add_group_ok(self): add_group_url = reverse("privilege.views.group.add_group") self.client.login(username="super", password="test") response = self.client.post(add_group_url, {"name": "add_success"}) self.assertEqual(response.status_code, 302) self.assertTrue(Group.objects.filter(name="add_success").count()) Group.objects.filter(name="add_success").delete() cache.set(GROUP_CACHE_KEY, None) def test_edit_group_not_login(self): edit_group_url = reverse("privilege.views.group.edit_group", args=(1, )) self.check_not_login(edit_group_url) def test_edit_group_not_superuser(self): edit_group_url = reverse("privilege.views.group.edit_group", args=(1, )) self.check_not_superuser(edit_group_url) def test_test_edit_group_not_exist(self): edit_group_url = reverse("privilege.views.group.edit_group", args=(0, )) self.client.login(username="super", password="test") response = self.client.get(edit_group_url) self.assertEqual(response.status_code, 404) def test_test_edit_group_not_post(self): edit_group_url = reverse("privilege.views.group.edit_group", args=(1, )) self.client.login(username="super", password="test") response = self.client.get(edit_group_url) self.assertEqual(response.status_code, 200) self.assertTrue(response.context["form"]) def test_test_edit_group_post_blank(self): edit_group_url = reverse("privilege.views.group.edit_group", args=(1, )) self.client.login(username="super", password="test") response = self.client.post(edit_group_url, {"name": ""}) self.assertEqual(response.status_code, 200) self.assertTrue(response.context["form"].errors) def test_test_edit_group_ok(self): group = Group.objects.create(name="to_delete") edit_group_url = reverse("privilege.views.group.edit_group", args=(group.id, )) self.client.login(username="super", password="test") response = self.client.post(edit_group_url, {"name": "changed"}) self.assertEqual(response.status_code, 302) group = Group.objects.get(id=group.id) self.assertEqual(group.name, "changed") group.delete() cache.set(GROUP_CACHE_KEY, None) def test_delete_grooup_not_login(self): delete_group_url = reverse("privilege.views.group.delete_group", args=(1, )) self.check_not_login(delete_group_url) def test_delete_grooup_not_superuser(self): delete_group_url = reverse("privilege.views.group.delete_group", args=(1, )) self.check_not_superuser(delete_group_url) def test_delete_grooup_ok(self): delete_group_url = reverse("privilege.views.group.delete_group", args=(0, )) response = self.client.post(delete_group_url) self.assertEqual(response.status_code, 302) cache.set(GROUP_CACHE_KEY, None) def check_not_login(self, url): response = self.client.get(url) self.assertEqual(response.status_code, 302) def check_not_superuser(self, url): self.client.login(username="test", password="test") response = self.client.get(url) self.assertEqual(response.status_code, 403)
import os import time from pathlib import Path # from path home import schedule print(Path.home()) # C:\Users\angel old_files_folder_name = "old_files" print("Hello ") def clean_up_downloads(): print("Cleaning up Downloads") # get all items from the downloads filder download_folder_path = os.path.join(Path.home(), "Downloads", "Downloads") download_items = os.listdir(download_folder_path) moved_items = 0 # create the old files folder if not present old_files_folder_path = os.path.join(download_folder_path, old_files_folder_name) if old_files_folder_name not in download_items: print(f"No {old_files_folder_name} folder yet, creating folder") os.mkdir(old_files_folder_path) # create folder "old_files" # create new folder with todays timestamp timestamp = time.strftime("%Y_%m_%d") # Year month and day datetime_folder_path = os.path.join(old_files_folder_path, timestamp) if not os.path.exists(datetime_folder_path): print(f"No {datetime_folder_path} folder yet, creating folder") os.mkdir(datetime_folder_path) else: print(f"{timestamp} folder already exists in {old_files_folder_name}") # rename all items to move them into the current datetime folder to_be_moved = [item for item in download_items if item != old_files_folder_name] # also moves folders for item in to_be_moved: print(f"Moving {item} to {datetime_folder_path} folder") old_path = os.path.join(download_folder_path, item) new_path = os.path.join(datetime_folder_path, item) os.rename(old_path, new_path) moved_items += 1 print(f"Moved {moved_items} of {len(to_be_moved)} items") # clean up the downloads folder every monday # i execute the file on friday 20:21 schedule.every().friday.at("20:22").do(clean_up_downloads) # keep the script running and sleep in between the checks while True: print("here") schedule.run_pending() # sleep 24h time.sleep(1) # 60 * 60 * 24
from nutils.testing import * import nutils.types import inspect, pickle, itertools, ctypes, stringly, tempfile, io, os import numpy class apply_annotations(TestCase): def test_without_annotations(self): @nutils.types.apply_annotations def f(a, b): return a, b a, b = f(1, 2) self.assertEqual(a, 1) self.assertEqual(b, 2) def test_pos_or_kw(self): @nutils.types.apply_annotations def f(a:int, b, c:str): return a, b, c a, b, c = f(1, 2, 3) self.assertEqual(a, 1) self.assertEqual(b, 2) self.assertEqual(c, '3') def test_with_signature(self): def f(a): return a f.__signature__ = inspect.Signature([inspect.Parameter('a', inspect.Parameter.POSITIONAL_OR_KEYWORD, annotation=str)]) f = nutils.types.apply_annotations(f) self.assertEqual(f(1), '1') def test_posonly(self): def f(a): return a f.__signature__ = inspect.Signature([inspect.Parameter('a', inspect.Parameter.POSITIONAL_ONLY, annotation=str)]) f = nutils.types.apply_annotations(f) self.assertEqual(f(1), '1') def test_kwonly(self): @nutils.types.apply_annotations def f(a:str, *, b:int, c:bool): return a, b, c self.assertEqual(f(1, b='2', c=3), ('1', 2, True)) def test_varpos(self): @nutils.types.apply_annotations def f(a:str, *args): return a, args self.assertEqual(f(1, 2, 3), ('1', (2, 3))) def test_varpos_annotated(self): map_str = lambda args: map(str, args) @nutils.types.apply_annotations def f(a:str, *args:map_str): return a, args self.assertEqual(f(1, 2, 3), ('1', ('2', '3'))) def test_varkw(self): @nutils.types.apply_annotations def f(a:str, **kwargs): return a, kwargs self.assertEqual(f(1, b=2, c=3), ('1', dict(b=2, c=3))) def test_varkw_annotated(self): map_str = lambda kwargs: {k: str(v) for k, v in kwargs.items()} @nutils.types.apply_annotations def f(a:str, **kwargs:map_str): return a, kwargs self.assertEqual(f(1, b=2, c=3), ('1', dict(b='2', c='3'))) def test_posonly_varkw(self): def f(a, b, **c): return a, b, c f.__signature__ = inspect.Signature([inspect.Parameter('a', inspect.Parameter.POSITIONAL_ONLY, annotation=str), inspect.Parameter('b', inspect.Parameter.POSITIONAL_OR_KEYWORD, annotation=str, default=None), inspect.Parameter('c', inspect.Parameter.VAR_KEYWORD)]) f = nutils.types.apply_annotations(f) self.assertEqual(f(1, c=2, d=3), ('1', None, dict(c=2, d=3))) self.assertEqual(f(1, None, c=2, d=3), ('1', None, dict(c=2, d=3))) self.assertEqual(f(1, b=None, c=2, d=3), ('1', None, dict(c=2, d=3))) self.assertEqual(f(1, b=4, c=2, d=3), ('1', '4', dict(c=2, d=3))) def test_default_none(self): @nutils.types.apply_annotations def f(a:str=None): return a self.assertEqual(f(), None) self.assertEqual(f(None), None) self.assertEqual(f(1), '1') class nutils_hash(TestCase): class custom: @property def __nutils_hash__(self): return b'01234567890123456789' def f(self): pass def test_ellipsis(self): self.assertEqual(nutils.types.nutils_hash(...).hex(), '0c8bce06e451e4d5c49f60da0abf2ccbadf80600') def test_None(self): self.assertEqual(nutils.types.nutils_hash(None).hex(), 'bdfcbd663476b2db5b2b2e59a6d93882a908dc76') def test_bool(self): self.assertEqual(nutils.types.nutils_hash(False).hex(), '04a5e8f73dcea55dcd7482a476cf2e7b53d6dc50') self.assertEqual(nutils.types.nutils_hash(True).hex(), '3fe990437e1624c831729f2866979254437bb7e9') def test_int(self): self.assertEqual(nutils.types.nutils_hash(1).hex(), '00ec7dea895ebd921e56bbc554688d8b3a1e4dfc') self.assertEqual(nutils.types.nutils_hash(2).hex(), '8ae88fa39407cf75e46f9e0aba8c971de2256b14') def test_float(self): self.assertEqual(nutils.types.nutils_hash(1.).hex(), 'def4bae4f2a3e29f6ddac537d3fa7c72195e5d8b') self.assertEqual(nutils.types.nutils_hash(2.5).hex(), '5216c2bf3c16d8b8ff4d9b79f482e5cea0a4cb95') def test_complex(self): self.assertEqual(nutils.types.nutils_hash(1+0j).hex(), 'cf7a0d933b7bb8d3ca252683b137534a1ecae073') self.assertEqual(nutils.types.nutils_hash(2+1j).hex(), 'ee088890528f941a80aa842dad36591b05253e55') def test_inequality_numbers(self): self.assertNotEqual(nutils.types.nutils_hash(1).hex(), nutils.types.nutils_hash(1.).hex()) self.assertNotEqual(nutils.types.nutils_hash(1).hex(), nutils.types.nutils_hash(1+0j).hex()) self.assertNotEqual(nutils.types.nutils_hash(1).hex(), nutils.types.nutils_hash(True).hex()) def test_str(self): self.assertEqual(nutils.types.nutils_hash('spam').hex(), '3ca1023ab75a68dc7b0f83b43ec624704a7aef61') self.assertEqual(nutils.types.nutils_hash('eggs').hex(), '124b0a7b3984e08125c380f7454896c1cad22e2c') def test_bytes(self): self.assertEqual(nutils.types.nutils_hash(b'spam').hex(), '5e717ec15aace7c25610c1dea340f2173f2df014') self.assertEqual(nutils.types.nutils_hash(b'eggs').hex(), '98f2061978497751cac94f982fd96d9b015b74c3') def test_tuple(self): self.assertEqual(nutils.types.nutils_hash(()).hex(), '15d44755bf0731b2a3e9a5c5c8e0807b61881a1f') self.assertEqual(nutils.types.nutils_hash((1,)).hex(), '328b16ebbc1815cf579ae038a35c4d68ebb022af') self.assertNotEqual(nutils.types.nutils_hash((1,'spam')).hex(), nutils.types.nutils_hash(('spam',1)).hex()) def test_frozenset(self): self.assertEqual(nutils.types.nutils_hash(frozenset([1,2])).hex(), '3862dc7e5321bc8a576c385ed2c12c71b96a375a') self.assertEqual(nutils.types.nutils_hash(frozenset(['spam','eggs'])).hex(), '2c75fd3db57f5e505e1425ae9ff6dcbbc77fd123') @unittest.skipIf(sys.version_info < (3,7), "not supported in this Python version") def test_dataclass(self): import dataclasses A = dataclasses.make_dataclass('A', [('n', int), ('f', float)]) self.assertEqual(nutils.types.nutils_hash(A(n=1, f=2.5)).hex(), 'daf4235240e897beb9586db3c91663b24e229c52') def test_type_bool(self): self.assertEqual(nutils.types.nutils_hash(bool).hex(), 'feb912889d52d45fcd1e778c427b093a19a1ea78') def test_type_int(self): self.assertEqual(nutils.types.nutils_hash(int).hex(), 'aa8cb9975f7161b1f7ceb88b4b8585b49946b31e') def test_type_float(self): self.assertEqual(nutils.types.nutils_hash(float).hex(), '6d5079a53075f4b6f7710377838d8183730f1388') def test_type_complex(self): self.assertEqual(nutils.types.nutils_hash(complex).hex(), '6b00f6b9c6522742fd3f8054af6f10a24a671fff') def test_type_str(self): self.assertEqual(nutils.types.nutils_hash(str).hex(), '2349e11586163208d2581fe736630f4e4b680a7b') def test_type_bytes(self): self.assertEqual(nutils.types.nutils_hash(bytes).hex(), 'b0826ca666a48739e6f8b968d191adcefaa39670') def test_type_tuple(self): self.assertEqual(nutils.types.nutils_hash(tuple).hex(), '07cb4a24ca8ac53c820f20721432b4726e2ad1af') def test_type_frozenset(self): self.assertEqual(nutils.types.nutils_hash(frozenset).hex(), '48dc7cd0fbd54924498deb7c68dd363b4049f5e2') def test_type_bufferedreader(self): try: fid, path = tempfile.mkstemp() os.write(fid, b'test') os.close(fid) with open(path, 'rb') as f: f.seek(2) self.assertEqual(nutils.types.nutils_hash(f).hex(), '4edef1af3aa845b9e8bbde2d8265be5f30be4c2a') self.assertEqual(f.tell(), 2) with open(path, 'rb+') as f, self.assertRaises(TypeError): nutils.types.nutils_hash(f).hex() finally: os.unlink(path) def test_type_boundmethod(self): self.assertEqual(nutils.types.nutils_hash(self.custom().f).hex(), 'ebf7084bb2504922235ab035a9197b9cb4cf47af') def test_custom(self): self.assertEqual(nutils.types.nutils_hash(self.custom()).hex(), b'01234567890123456789'.hex()) def test_unhashable(self): with self.assertRaises(TypeError): nutils.types.nutils_hash([]) class CacheMeta(TestCase): def test_property(self): for withslots in False, True: with self.subTest(withslots=withslots): class T(metaclass=nutils.types.CacheMeta): if withslots: __slots__ = () __cache__ = 'x', @property def x(self): nonlocal ncalls ncalls += 1 return 1 ncalls = 0 t = T() self.assertEqual(ncalls, 0) self.assertEqual(t.x, 1) self.assertEqual(ncalls, 1) self.assertEqual(t.x, 1) self.assertEqual(ncalls, 1) def test_set_property(self): class T(metaclass=nutils.types.CacheMeta): __cache__ = 'x', @property def x(self): return 1 t = T() with self.assertRaises(AttributeError): t.x = 1 def test_del_property(self): class T(metaclass=nutils.types.CacheMeta): __cache__ = 'x', @property def x(self): return 1 t = T() with self.assertRaises(AttributeError): del t.x def test_method_without_args(self): for withslots in False, True: with self.subTest(withslots=withslots): class T(metaclass=nutils.types.CacheMeta): if withslots: __slots__ = () __cache__ = 'x', def x(self): nonlocal ncalls ncalls += 1 return 1 ncalls = 0 t = T() self.assertEqual(ncalls, 0) self.assertEqual(t.x(), 1) self.assertEqual(ncalls, 1) self.assertEqual(t.x(), 1) self.assertEqual(ncalls, 1) def test_method_with_args(self): for withslots in False, True: with self.subTest(withslots=withslots): class T(metaclass=nutils.types.CacheMeta): if withslots: __slots__ = () __cache__ = 'x', def x(self, a, b): nonlocal ncalls ncalls += 1 return a + b ncalls = 0 t = T() self.assertEqual(ncalls, 0) self.assertEqual(t.x(1, 2), 3) self.assertEqual(ncalls, 1) self.assertEqual(t.x(a=1, b=2), 3) self.assertEqual(ncalls, 1) self.assertEqual(t.x(2, 2), 4) self.assertEqual(ncalls, 2) self.assertEqual(t.x(a=2, b=2), 4) self.assertEqual(ncalls, 2) self.assertEqual(t.x(1, 2), 3) self.assertEqual(ncalls, 3) def test_method_with_args_and_preprocessors(self): for withslots in False, True: with self.subTest(withslots=withslots): class T(metaclass=nutils.types.CacheMeta): if withslots: __slots__ = () __cache__ = 'x', @nutils.types.apply_annotations def x(self, a:int, b:int): nonlocal ncalls ncalls += 1 return a + b ncalls = 0 t = T() self.assertEqual(ncalls, 0) self.assertEqual(t.x(1, 2), 3) self.assertEqual(ncalls, 1) self.assertEqual(t.x(a='1', b='2'), 3) self.assertEqual(ncalls, 1) self.assertEqual(t.x('2', '2'), 4) self.assertEqual(ncalls, 2) self.assertEqual(t.x(a=2, b=2), 4) self.assertEqual(ncalls, 2) self.assertEqual(t.x('1', 2), 3) self.assertEqual(ncalls, 3) def test_method_with_kwargs(self): for withslots in False, True: with self.subTest(withslots=withslots): class T(metaclass=nutils.types.CacheMeta): if withslots: __slots__ = () __cache__ = 'x', def x(self, a, **kwargs): nonlocal ncalls ncalls += 1 return a + sum(kwargs.values()) ncalls = 0 t = T() self.assertEqual(ncalls, 0) self.assertEqual(t.x(1, b=2), 3) self.assertEqual(ncalls, 1) self.assertEqual(t.x(a=1, b=2), 3) self.assertEqual(ncalls, 1) self.assertEqual(t.x(1, b=2, c=3), 6) self.assertEqual(ncalls, 2) self.assertEqual(t.x(a=1, b=2, c=3), 6) self.assertEqual(ncalls, 2) def test_subclass_redefined_property(self): class T(metaclass=nutils.types.CacheMeta): __cache__ = 'x', @property def x(self): return 1 class U(T): __cache__ = 'x', @property def x(self): return super().x + 1 @property def y(self): return super().x u1 = U() self.assertEqual(u1.x, 2) self.assertEqual(u1.y, 1) u2 = U() self.assertEqual(u2.y, 1) self.assertEqual(u2.x, 2) def test_missing_attribute(self): with self.assertRaisesRegex(TypeError, 'Attribute listed in __cache__ is undefined: x'): class T(metaclass=nutils.types.CacheMeta): __cache__ = 'x', def test_invalid_attribute(self): with self.assertRaisesRegex(TypeError, "Don't know how to cache attribute x: None"): class T(metaclass=nutils.types.CacheMeta): __cache__ = 'x', x = None def test_name_mangling(self): for withslots in False, True: with self.subTest(withslots=withslots): class T(metaclass=nutils.types.CacheMeta): if withslots: __slots__ = () __cache__ = '__x', @property def __x(self): nonlocal ncalls ncalls += 1 return 1 @property def y(self): return self.__x ncalls = 0 t = T() self.assertEqual(ncalls, 0) self.assertEqual(t.y, 1) self.assertEqual(ncalls, 1) self.assertEqual(t.y, 1) self.assertEqual(ncalls, 1) class strictint(TestCase): def test_int(self): value = nutils.types.strictint(1) self.assertEqual(value, 1) self.assertEqual(type(value), int) def test_numpy_int(self): value = nutils.types.strictint(numpy.int64(1)) self.assertEqual(value, 1) self.assertEqual(type(value), int) def test_float(self): with self.assertRaises(ValueError): nutils.types.strictint(1.) def test_numpy_float(self): with self.assertRaises(ValueError): nutils.types.strictint(numpy.float64(1.)) def test_complex(self): with self.assertRaises(ValueError): nutils.types.strictint(1+0j) def test_str(self): with self.assertRaises(ValueError): nutils.types.strictint('1') class strictfloat(TestCase): def test_int(self): value = nutils.types.strictfloat(1) self.assertEqual(value, 1.) self.assertEqual(type(value), float) def test_numpy_int(self): value = nutils.types.strictfloat(numpy.int64(1)) self.assertEqual(value, 1.) self.assertEqual(type(value), float) def test_float(self): value = nutils.types.strictfloat(1.) self.assertEqual(value, 1.) self.assertEqual(type(value), float) def test_numpy_float(self): value = nutils.types.strictfloat(numpy.float64(1.)) self.assertEqual(value, 1.) self.assertEqual(type(value), float) def test_complex(self): with self.assertRaises(ValueError): nutils.types.strictint(1+0j) def test_str(self): with self.assertRaises(ValueError): nutils.types.strictfloat('1.') class strictstr(TestCase): def test_str(self): value = nutils.types.strictstr('spam') self.assertEqual(value, 'spam') self.assertEqual(type(value), str) def test_int(self): with self.assertRaises(ValueError): nutils.types.strictstr(1) class strict(TestCase): def test_valid(self): self.assertEqual(nutils.types.strict[int](1), 1) def test_invalid(self): with self.assertRaises(ValueError): nutils.types.strict[int]('1') def test_call(self): with self.assertRaises(TypeError): nutils.types.strict() class tupletype(TestCase): def test_valid1(self): value = nutils.types.tuple[nutils.types.strictint]([]) self.assertEqual(value, ()) self.assertEqual(type(value), tuple) def test_valid2(self): value = nutils.types.tuple[nutils.types.strictint]([1,2,3]) self.assertEqual(value, (1,2,3)) self.assertEqual(type(value), tuple) def test_invalid(self): with self.assertRaises(ValueError): nutils.types.tuple[nutils.types.strictint]([1, 'spam','eggs']) def test_without_item_constructor(self): src = 1,2,3 self.assertEqual(nutils.types.tuple(src), tuple(src)) def test_name(self): self.assertEqual(nutils.types.tuple[nutils.types.strictint].__name__, 'tuple[nutils.types.strictint]') class frozendict(TestCase): def test_constructor(self): src = {'spam': 1, 'eggs': 2.3} for name, value in [('mapping', src), ('mapping_view', src.items()), ('iterable', (item for item in src.items())), ('frozendict', nutils.types.frozendict(src))]: with self.subTest(name): frozen = nutils.types.frozendict(value) self.assertIsInstance(frozen, nutils.types.frozendict) self.assertEqual(dict(frozen), src) def test_constructor_invalid(self): with self.assertRaises(ValueError): nutils.types.frozendict(['spam', 'eggs', 1]) def test_clsgetitem(self): T = nutils.types.frozendict[str, float] src = {1: 2, 'spam': '2.3'} for name, value in [('mapping', src), ('mapping_view', src.items()), ('iterable', (item for item in src.items()))]: with self.subTest(name): frozen = T(value) self.assertIsInstance(frozen, nutils.types.frozendict) self.assertEqual(dict(frozen), {'1': 2., 'spam': 2.3}) def test_clsgetitem_invalid_types(self): with self.assertRaises(RuntimeError): nutils.types.frozendict[str, float, bool] def test_clsgetitem_invalid_value(self): T = nutils.types.frozendict[str, float] with self.assertRaises(ValueError): T(1) def test_setitem(self): frozen = nutils.types.frozendict({'spam': 1, 'eggs': 2.3}) with self.assertRaises(TypeError): frozen['eggs'] = 3 def test_delitem(self): frozen = nutils.types.frozendict({'spam': 1, 'eggs': 2.3}) with self.assertRaises(TypeError): del frozen['eggs'] def test_getitem_existing(self): frozen = nutils.types.frozendict({'spam': 1, 'eggs': 2.3}) self.assertEqual(frozen['spam'], 1) def test_getitem_nonexisting(self): frozen = nutils.types.frozendict({'spam': 1, 'eggs': 2.3}) with self.assertRaises(KeyError): frozen['foo'] def test_contains(self): frozen = nutils.types.frozendict({'spam': 1, 'eggs': 2.3}) self.assertIn('spam', frozen) self.assertNotIn('foo', frozen) def test_iter(self): src = {'spam': 1, 'eggs': 2.3} frozen = nutils.types.frozendict(src) self.assertEqual(frozenset(frozen), frozenset(src)) def test_len(self): src = {'spam': 1, 'eggs': 2.3} frozen = nutils.types.frozendict(src) self.assertEqual(len(frozen), len(src)) def test_hash(self): src = {'spam': 1, 'eggs': 2.3} self.assertEqual(hash(nutils.types.frozendict(src)), hash(nutils.types.frozendict(src))) def test_copy(self): src = {'spam': 1, 'eggs': 2.3} copy = nutils.types.frozendict(src).copy() self.assertIsInstance(copy, dict) self.assertEqual(copy, src) def test_pickle(self): src = {'spam': 1, 'eggs': 2.3} frozen = pickle.loads(pickle.dumps(nutils.types.frozendict(src))) self.assertIsInstance(frozen, nutils.types.frozendict) self.assertEqual(dict(frozen), src) def test_eq_same_id(self): src = {'spam': 1, 'eggs': 2.3} a = nutils.types.frozendict(src) self.assertEqual(a, a) def test_eq_other_id(self): src = {'spam': 1, 'eggs': 2.3} a = nutils.types.frozendict(src) b = nutils.types.frozendict(src) self.assertEqual(a, b) def test_eq_deduplicated(self): src = {'spam': 1, 'eggs': 2.3} a = nutils.types.frozendict(src) b = nutils.types.frozendict(src) a == b # this replaces `a.__base` with `b.__base` self.assertEqual(a, b) def test_ineq_frozendict(self): src = {'spam': 1, 'eggs': 2.3} self.assertNotEqual(nutils.types.frozendict(src), nutils.types.frozendict({'spam': 1})) def test_ineq_dict(self): src = {'spam': 1, 'eggs': 2.3} self.assertNotEqual(nutils.types.frozendict(src), src) def test_nutils_hash(self): frozen = nutils.types.frozendict({'spam': 1, 'eggs': 2.3}) self.assertEqual(nutils.types.nutils_hash(frozen).hex(), '8cf14f109e54707af9c2e66d7d3cdb755cce8243') class frozenmultiset(TestCase): def test_constructor(self): src = 'spam', 'bacon', 'sausage', 'spam' for name, value in [('tuple', src), ('frozenmultiset', nutils.types.frozenmultiset(src))]: with self.subTest(name=name): frozen = nutils.types.frozenmultiset(value) for item in 'spam', 'bacon', 'sausage': self.assertEqual({k: tuple(frozen).count(k) for k in set(src)}, {'spam':2, 'bacon':1, 'sausage':1}) def test_clsgetitem(self): src = False, 1, numpy.int64(2) frozen = nutils.types.frozenmultiset[nutils.types.strictint](src) self.assertEqual(set(frozen), {0, 1, 2}) def test_preserve_order(self): for src in [('spam', 'bacon', 'sausage', 'spam'), ('spam', 'egg', 'spam', 'spam', 'bacon', 'spam')]: with self.subTest(src=src): self.assertEqual(tuple(nutils.types.frozenmultiset(src)), src) def test_and(self): for l, r, lar in [[['spam', 'eggs'], ['spam', 'spam', 'eggs'], ['spam', 'eggs']], [['spam'], ['eggs'], []], [['spam','spam']]*3]: with self.subTest(l=l, r=r, lar=lar): self.assertEqual(nutils.types.frozenmultiset(l)&nutils.types.frozenmultiset(r), nutils.types.frozenmultiset(lar)) with self.subTest(l=r, r=l, lar=lar): self.assertEqual(nutils.types.frozenmultiset(r)&nutils.types.frozenmultiset(l), nutils.types.frozenmultiset(lar)) def test_sub(self): for l, r, lmr, rml in [[['spam', 'eggs'], ['spam', 'spam', 'eggs'], [], ['spam']], [['spam'], ['eggs'], ['spam'], ['eggs']], [['spam'], ['spam'], [], []]]: with self.subTest(l=l, r=r, lmr=lmr): self.assertEqual(nutils.types.frozenmultiset(l)-nutils.types.frozenmultiset(r), nutils.types.frozenmultiset(lmr)) with self.subTest(l=r, r=l, lmr=rml): self.assertEqual(nutils.types.frozenmultiset(r)-nutils.types.frozenmultiset(l), nutils.types.frozenmultiset(rml)) def test_pickle(self): src = 'spam', 'bacon', 'sausage', 'spam' frozen = pickle.loads(pickle.dumps(nutils.types.frozenmultiset(src))) self.assertIsInstance(frozen, nutils.types.frozenmultiset) self.assertEqual(frozen, nutils.types.frozenmultiset(src)) def test_hash(self): src = 'spam', 'bacon', 'sausage', 'spam' ref = nutils.types.frozenmultiset(src) for perm in itertools.permutations(src): with self.subTest(perm=perm): self.assertEqual(hash(nutils.types.frozenmultiset(src)), hash(ref)) def test_nutils_hash(self): for perm in itertools.permutations(('spam', 'bacon', 'sausage', 'spam')): with self.subTest(perm=perm): frozen = nutils.types.frozenmultiset(perm) self.assertEqual(nutils.types.nutils_hash(frozen).hex(), 'f3fd9c6d4741af2e67973457ee6308deddcb714c') def test_eq(self): src = 'spam', 'bacon', 'sausage', 'spam' ref = nutils.types.frozenmultiset(src) for perm in itertools.permutations(src): with self.subTest(perm=perm): self.assertEqual(nutils.types.frozenmultiset(src), ref) def test_contains(self): src = 'spam', 'bacon', 'sausage', 'spam' frozen = nutils.types.frozenmultiset(src) for item in 'spam', 'bacon', 'eggs': with self.subTest(item=item): if item in src: self.assertIn(item, frozen) else: self.assertNotIn(item, frozen) def test_len(self): src = 'spam', 'bacon', 'sausage', 'spam' frozen = nutils.types.frozenmultiset(src) self.assertEqual(len(frozen), len(src)) def test_nonzero(self): self.assertTrue(nutils.types.frozenmultiset(['spam', 'eggs'])) self.assertFalse(nutils.types.frozenmultiset([])) def test_add(self): l = nutils.types.frozenmultiset(['spam', 'bacon']) r = nutils.types.frozenmultiset(['sausage', 'spam']) lpr = nutils.types.frozenmultiset(['spam', 'bacon', 'sausage', 'spam']) self.assertEqual(l+r, lpr) def test_isdisjoint(self): for l, r, disjoint in [[['spam', 'eggs'], ['spam', 'spam', 'eggs'], False], [['spam'], ['eggs'], True], [['spam'], ['spam'], False]]: with self.subTest(l=l, r=r, disjoint=disjoint): self.assertEqual(nutils.types.frozenmultiset(l).isdisjoint(nutils.types.frozenmultiset(r)), disjoint) class frozenarray(TestCase): def _test_constructor(self, src, frozen_dtype, src_types=(list,numpy.array,nutils.types.frozenarray)): src = list(src) for copy in True, False: for src_type in src_types: with self.subTest(copy=copy, src_type=src_type): frozen = nutils.types.frozenarray(src_type(src), copy=copy, dtype=frozen_dtype) self.assertIsInstance(frozen, nutils.types.frozenarray) self.assertEqual(frozen.tolist(), src) def _test_constructor_raises(self, src, frozen_dtype, exc_type, exc_regex): src = list(src) for copy in True, False: for src_type in list, numpy.array, nutils.types.frozenarray: with self.subTest(copy=copy, src_type=src_type), self.assertRaisesRegex(exc_type, exc_regex): nutils.types.frozenarray(src_type(src), copy=copy, dtype=frozen_dtype) def test_constructor_bool(self): self._test_constructor((False, True), bool) def test_constructor_bool_emptyarray(self): self._test_constructor((), bool, src_types=[list]) def test_constructor_int(self): self._test_constructor((0,1), int) def test_constructor_int_upcast(self): self._test_constructor((False,True), int) def test_constructor_int_downcast(self): self._test_constructor((0.,1.), int) def test_constructor_int_emptyarray(self): self._test_constructor((), int, src_types=[list]) def test_constructor_float(self): self._test_constructor((0.,1.), float) def test_constructor_float_upcast(self): self._test_constructor((0,1), float) def test_constructor_float_downcast(self): src = [0.+0j,1.+0j] for copy in True, False: with self.subTest(copy=copy, src_type=list), self.assertRaises(TypeError): nutils.types.frozenarray(src, copy=copy, dtype=float) for src_type in numpy.array, nutils.types.frozenarray: with self.subTest(copy=copy, src_type=src_type), self.assertWarns(numpy.ComplexWarning): nutils.types.frozenarray(src_type(src), copy=copy, dtype=float) def test_constructor_complex(self): self._test_constructor((0+0j,1+1j), complex) def test_constructor_strictint(self): self._test_constructor((0,1), nutils.types.strictint) def test_constructor_strictint_upcast(self): self._test_constructor((False,True), nutils.types.strictint) def test_constructor_strictint_downcast(self): self._test_constructor_raises((0.,1.), nutils.types.strictint, ValueError, '^downcasting .* is forbidden$') def test_constructor_strictint_emptyarray(self): self._test_constructor((), nutils.types.strictint, src_types=[list]) def test_constructor_strictfloat(self): self._test_constructor((0.,1.), nutils.types.strictfloat) def test_constructor_strictfloat_upcast(self): self._test_constructor((0,1), nutils.types.strictfloat) def test_constructor_strictfloat_downcast(self): self._test_constructor_raises((0.+0j,1.+0j), nutils.types.strictfloat, ValueError, '^downcasting .* is forbidden$') def test_constructor_invalid_dtype(self): self._test_constructor_raises((0,1), list, ValueError, '^unsupported dtype:') def test_clsgetitem(self): src = [0.,1.] frozen = nutils.types.frozenarray[nutils.types.strictfloat](src) self.assertIsInstance(frozen, nutils.types.frozenarray) self.assertEqual(frozen.tolist(), src) def test_clsgetitem_invalid(self): src = [0.,1.] with self.assertRaises(ValueError): nutils.types.frozenarray[nutils.types.strictint](src) def test_nutils_hash(self): a = nutils.types.frozenarray(numpy.array([[1,2],[3,4]], numpy.int64)) b = nutils.types.frozenarray(numpy.array([[1,3],[2,4]], numpy.int64)) self.assertNotEqual(nutils.types.nutils_hash(a).hex(), nutils.types.nutils_hash(b).hex()) self.assertEqual(nutils.types.nutils_hash(a).hex(), nutils.types.nutils_hash(b.T).hex()) self.assertEqual(nutils.types.nutils_hash(a).hex(), '42cc3a5e1216c1f0a9921a61a3a2c67025c98d69') self.assertEqual(nutils.types.nutils_hash(b).hex(), '8f0c9f9a118c42c258f1e69e374aadda99b4be97') def test_pickle(self): src = [[1,2],[3,4]] value = pickle.loads(pickle.dumps(nutils.types.frozenarray(src))) self.assertIsInstance(value, nutils.types.frozenarray) self.assertEqual(value, nutils.types.frozenarray(src)) def test_eq_same_instance(self): a = nutils.types.frozenarray([[1,2],[3,4]], int) self.assertEqual(a, a) def test_eq_not_frozenarray(self): a = nutils.types.frozenarray([[1,2],[3,4]], int) self.assertNotEqual(a, [[1,2],[3,4]]) def test_eq_same_base(self): base = numpy.array([[1,2],[3,4]], int) a = nutils.types.frozenarray(base, copy=False) b = nutils.types.frozenarray(base, copy=False) self.assertEqual(a, b) def test_eq_different_array(self): a = nutils.types.frozenarray([[1,2],[3,4]], int) b = nutils.types.frozenarray([[1,3],[2,4]], int) self.assertNotEqual(a, b) def test_eq_different_dtype(self): a = nutils.types.frozenarray([[1,2],[3,4]], int) b = nutils.types.frozenarray([[1,2],[3,4]], float) self.assertNotEqual(a, b) def test_eq_different_base(self): a = nutils.types.frozenarray([[1,2],[3,4]], int) b = nutils.types.frozenarray([[1,2],[3,4]], int) self.assertEqual(a, b) def test_ineq_equal(self): l = nutils.types.frozenarray([1,2], int) r = nutils.types.frozenarray([1,2], int) self.assertFalse(l < r) self.assertTrue(l <= r) self.assertFalse(l > r) self.assertTrue(l >= r) def test_ineq_smaller(self): l = nutils.types.frozenarray([1,2], int) r = nutils.types.frozenarray([2,1], int) self.assertTrue(l < r) self.assertTrue(l <= r) self.assertFalse(l > r) self.assertFalse(l >= r) def test_ineq_larger(self): l = nutils.types.frozenarray([2,1], int) r = nutils.types.frozenarray([1,2], int) self.assertFalse(l < r) self.assertFalse(l <= r) self.assertTrue(l > r) self.assertTrue(l >= r) def test_ineq_incomparable(self): array = nutils.types.frozenarray([1,2], int) for op in operator.lt, operator.le, operator.gt, operator.ge: with self.subTest(op=op), self.assertRaises(TypeError): op(array, 1) def test_full(self): self.assertEqual(nutils.types.frozenarray.full([2,3], 1.5), nutils.types.frozenarray([[1.5]*3]*2, float)) def test_as_numpy_array(self): a = numpy.array(nutils.types.frozenarray([1,2])) self.assertIsInstance(a, numpy.ndarray) class c_array(TestCase): def test_idempotence(self): a = numpy.array([1,2,3], dtype=numpy.int64) P = nutils.types.c_array[numpy.int64] a_ct = P(a) self.assertEqual(P(a_ct), a_ct) def test_list(self): a = [1,2,3] a_ct = nutils.types.c_array[numpy.int64](a) self.assertEqual(a_ct.data_as(ctypes.POINTER(ctypes.c_int64)).contents.value, 1) def test_array(self): a = numpy.array([1,2,3], dtype=numpy.int64) a_ct = nutils.types.c_array[numpy.int64](a) self.assertEqual(a_ct.data_as(ctypes.POINTER(ctypes.c_int64)).contents.value, 1) def test_array_invalid_dtype(self): a = numpy.array([1,2,3], dtype=numpy.int32) with self.assertRaisesRegex(ValueError, '^Expected dtype .* but array has dtype .*\\.$'): a_ct = nutils.types.c_array[numpy.int64](a) def test_array_noncontinguous(self): a = numpy.array([[1,2],[3,4]], dtype=numpy.int32).T with self.assertRaisesRegex(ValueError, '^Array is not contiguous\\.$'): a_ct = nutils.types.c_array[numpy.int64](a) def test_wo_getitem(self): with self.assertRaises(TypeError): nutils.types.c_array() class T_Immutable(nutils.types.Immutable): def __init__(self, x, y, *, z): pass class T_Singleton(nutils.types.Singleton): def __init__(self, x, y, *, z): pass @parametrize class ImmutableFamily(TestCase): def test_pickle(self): T = {nutils.types.Immutable: T_Immutable, nutils.types.Singleton: T_Singleton}[self.cls] a = T(1, 2, z=3) b = pickle.loads(pickle.dumps(a)) self.assertEqual(a, b) def test_eq(self): class T(self.cls): def __init__(self, x, y): pass class U(self.cls): def __init__(self, x, y): pass self.assertEqual(T(1, 2), T(1, 2)) self.assertNotEqual(T(1, 2), T(2, 1)) self.assertNotEqual(T(1, 2), U(1, 2)) def test_canonical_args(self): class T(self.cls): def __init__(self, x, y, z=3): pass self.assertEqual(T(x=1, y=2), T(1, 2, 3)) def test_keyword_args(self): class T(self.cls): def __init__(self, x, y, **kwargs): pass a = T(x=1, y=2, z=3) b = T(1, 2, z=3) self.assertEqual(a, b) def test_preprocessors(self): class T(self.cls): @nutils.types.apply_annotations def __init__(self, x: int): pass self.assertEqual(T(1), T('1')) self.assertEqual(T(1), T(x='1')) def test_nutils_hash(self): class T(self.cls): def __init__(self, x, y): pass class T1(self.cls, version=1): def __init__(self, x, y): pass class U(self.cls): def __init__(self, x, y): pass self.assertEqual(nutils.types.nutils_hash(T(1, 2)).hex(), nutils.types.nutils_hash(T(1, 2)).hex()) self.assertNotEqual(nutils.types.nutils_hash(T(1, 2)).hex(), nutils.types.nutils_hash(T(2, 1)).hex()) self.assertNotEqual(nutils.types.nutils_hash(T(1, 2)).hex(), nutils.types.nutils_hash(U(1, 2)).hex()) # Since the hash does not include base classes, the hashes of Immutable and Singleton are the same. self.assertEqual(nutils.types.nutils_hash(T(1, 2)).hex(), '8c3ba8f0d9eb054ab192f4e4e2ba7442564bdf85') self.assertEqual(nutils.types.nutils_hash(T1(1, 2)).hex(), 'bab4ee65b5189f544a4242f0e386af76cfa6e31d') @parametrize.enable_if(lambda cls: cls is nutils.types.Singleton) def test_deduplication(self): class T(self.cls): def __init__(self, x, y): pass class U(self.cls): def __init__(self, x, y): pass a = T(1, 2) b = T(1, 2) c = T(2, 1) d = U(1, 2) self.assertIs(a, b) self.assertEqual(a, b) self.assertIsNot(a, c) self.assertNotEqual(a, c) self.assertIsNot(a, d) self.assertNotEqual(a, d) ImmutableFamily(cls=nutils.types.Immutable) ImmutableFamily(cls=nutils.types.Singleton) # vim:sw=2:sts=2:et
import importlib import xarray as xr import numpy as np import pandas as pd import sys from CASutils import filter_utils as filt from CASutils import readdata_utils as read from CASutils import calendar_utils as cal importlib.reload(filt) importlib.reload(read) importlib.reload(cal) expname=['SASK_CLM5_CLM5F_01.001.FSCAM.sask_1979_2014', 'TOR_CLM5_CLM5F_01.001.FSCAM.tor_1979_2014', 'SID_SNOWD_SNOWDF_01.001.FSCAM.sidsnowd1'] outname='SCAM_CLM5_CLM5F_001' cityname=['Saskatoon','Toronto','Siderovsk'] citylon=[253.330, 280.617, 82.3139] citylat=[52.1579, 43.6532, 66.5973] for icity in np.arange(0,3,1): basedir="/project/cas02/islas/CLM5_CLM4/raw/SCAM_new_lowrelax/" pathout="/project/cas/islas/python_savs/snowpaper/DATA_SORT/3cities/" fpath=basedir+expname[icity]+"/atm/hist/h0concat.nc" print(fpath) dat = read.read_sfc_cesm(fpath,"1979-01-01T12:00:00","2014-12-31T12:00:00") if (icity == 0): trefht = xr.DataArray(np.zeros([dat.time.size, 3]), coords=[dat.time, cityname], dims=['time','city'], name='trefht') trefht[:,icity] = dat.TREFHT.isel(lon=0,lat=0) trefht.to_netcdf(path=pathout+"TREFHT_"+outname+".nc")
#!/usr/bin/env python """ Import experiments into the database * Configuration parameters: - The ones required by intogen.data.entity.EntityManagerFactory """ from wok.task import Task from wok.element import DataElementList from intogen.data.entity import types from intogen.data.entity.server import EntityServer from intogen.biomart import biomart_db_connect, DEFAULT_INSERT_SIZE, DEFAULT_DB_ENGINE from intogen.sql import BatchInsert from pubmed import Pubmed task = Task() @task.main() def main(): task.check_conf(["entities", "repositories", "biomart.db"]) conf = task.conf insert_size = conf.get("biomart.insert_size", DEFAULT_INSERT_SIZE, dtype=int) if "biomart.study_source" in conf: study_source_map = conf["biomart.study_source"] else: study_source_map = conf.create_element() log = task.logger() exp_port = task.ports("experiment") es = EntityServer(conf["entities"]) em = es.manager() conn = biomart_db_connect(conf["biomart.db"], log) db_engine = conf.get("biomart.db.engine", DEFAULT_DB_ENGINE) cursor = conn.cursor() cursor.execute(""" CREATE TABLE ent_experiment ( id int(11) NOT NULL, exp_name varchar(64) NOT NULL, study_id varchar(32) NOT NULL, study_source varchar(32) DEFAULT NULL, study_source_url varchar(512) DEFAULT NULL, study_link varchar(512) DEFAULT NULL, pub_pubmed varchar(32) DEFAULT NULL, pub_title varchar(300) DEFAULT NULL, pub_authors varchar(300) DEFAULT NULL, pub_year varchar(16) DEFAULT NULL, pub_journal varchar(200) DEFAULT NULL, platf_id varchar(32) NOT NULL, platf_title varchar(250) DEFAULT NULL, platf_technology varchar(96) DEFAULT NULL, PRIMARY KEY (id), KEY exp_name (exp_name), KEY pub_pubmed (pub_pubmed), KEY pub_title (pub_title), KEY pub_authors (pub_authors), KEY pub_year (pub_year), KEY pub_journal (pub_journal), KEY platf_title (platf_title), KEY platf_technology (platf_technology) ) ENGINE={} CHARACTER SET utf8 COLLATE utf8_general_ci""".format(db_engine)) ib = BatchInsert(cursor, "ent_experiment", ["id", "exp_name", "study_id", "study_source", "study_source_url", "study_link", "pub_title", "pub_authors", "pub_year", "pub_pubmed", "pub_journal", "platf_id", "platf_title", "platf_technology"], insert_size) pubmed = Pubmed() for i, exp in enumerate(exp_port, 1): study_id = exp[0] platform_id = exp[1] study = em.find(study_id, types.SOURCE_STUDY) if study is None: log.error("{} not found: {}".format(types.SOURCE_STUDY, study_id)) continue platf = em.find(platform_id, types.SOURCE_PLATFORM) if platf is None: log.error("{} not found: {}".format(types.SOURCE_PLATFORM, platform_id)) continue log.info("Experiment for study {} and platform {} ...".format(study_id, platform_id)) pub = {} for k in ["title", "short_authors", "date", "journal"]: pub[k] = None if "pubmed" in study: pmid = study["pubmed"] if isinstance(pmid, (DataElementList, list)): pmid = pmid[0] log.warn("Study {} with many pubmed_id's, only the first {} will be considered".format(study_id, pmid)) log.debug("Retrieving information for pubmed_id '{}' ...".format(pmid)) try: pub = pubmed.find(pmid) if len(pub) == 0: log.error("No publication information found for pubmed_id '{}' in experiment ({}, {})".format(pmid, study_id, platform_id)) else: pub = pub[0] except Exception as ex: log.error("Error retrieving pubmed information for experiment ({}, {}) with pubmed_id '{}'".format(study_id, platform_id, pmid)) log.exception(ex) else: pmid = None log.warn("Study {} has no 'pubmed_id' annotation".format(study_id)) if "title" not in study: log.error("Study {} doesn't have annotation for 'pubmed_id' nor 'title'".format(study_id)) elif "SO/contact_details[0]/contact_name" not in study \ and "SO/contact_details/contact_name" not in study: log.error("Study {} doesn't have annotation for 'pubmed_id' nor 'SO.contact_details[0].contact_name'".format(study_id)) else: try: pub["title"] = study["title"] if "SO/contact_details[0]/contact_name" in study: pub["short_authors"] = study["SO/contact_details[0]/contact_name"] else: pub["short_authors"] = study["SO/contact_details/contact_name"] if "SO/submission/pub_date" in study: pub["date"] = study["SO/submission/pub_date"] else: pub["date"] = "" except Exception as ex: log.debug(study) log.execption(ex) for k, v in pub.items(): if v is not None and isinstance(v, basestring): pub[k] = v.replace("'", r"\'") exp_name = "{}; {}".format(study_id, platform_id) study_source = None study_source_url = None study_link = None parts = study_id.split("-") if len(parts) >= 2 and parts[0] in study_source_map: ss = study_source_map[parts[0]] study_source = ss.get("name") study_source_url = ss.get("home_url") try: study_link = ss.get("link", "").format(parts[1]) except: pass ib.insert(i, exp_name, study_id, study_source, study_source_url, study_link, pub["title"], pub["short_authors"], pub["date"], pmid, pub["journal"], platform_id, platf["SO/platform_title"], "") log.debug("{} experiments inserted".format(ib.count)) ib.close() cursor.close() conn.close() em.close() es.close() task.start()
from django.test import TestCase from django.contrib.auth import get_user_model class ModelTests(TestCase): def test_create_user_with_email_successful(self): """Test creating a new user with email """ email = "test@aqurds.com" password = "aqurds123" user = get_user_model().objects.create_user(email, password) self.assertEqual(user.email, email) self.assertTrue(user.check_password(password)) def test_email_normalize(self): """Test if the email is normalized or not""" email = "test@AQURDS.COM" password = "aqurds123" user = get_user_model().objects.create_user(email, password) self.assertEqual(user.email, email.lower()) def test_email_validation_for_user(self): """Test will validate user email. None is not allowed and will raise ValueError""" with self.assertRaises(ValueError): get_user_model().objects.create_user(None, "aqurds123") def test_create_super_user(self): """Test creating a new super user with email""" email = "super_user@aqurds.com" password = "super_user_123" super_user = get_user_model().objects.create_superuser(email, password) self.assertTrue(super_user.is_superuser) self.assertTrue(super_user.is_staff)
# -*- coding: utf-8 -*- # NOTES: # - this file is all about the trust model for the HODL contracts. TRUST NO ONE. VALIDATE ALL. from __future__ import annotations import dataclasses import decimal import re import time import typing as th import hddcoin.hodl from clvm_tools.binutils import disassemble, int_to_bytes #type:ignore from hddcoin.hodl import exc as exc from hddcoin.hodl.ContractDetails import ContractDetails from hddcoin.hodl.util import vlog, puzhash2addr from hddcoin.types.blockchain_format.program import Program, SerializedProgram from hddcoin.types.blockchain_format.sized_bytes import bytes32 from hddcoin.util.byte_types import hexstr_to_bytes SECONDS_PER_MONTH = int(86400 * 365 / 12) conPat = ( '\(a\ \(q\ 4\ \(c\ 44\ \(c\ 11\ \(\)\)\)\ \(c\ \(c\ 92\ \(c\ 23\ \(\)\)\)\ \(c\ \(c\ 52\ \(' 'q\ 1\)\)\ \(a\ \(i\ \(=\ 5\ 32\)\ \(q\ 4\ \(c\ 36\ \(c\ 34\ \(c\ 50\ \(\)\)\)\)\ \(a\ \(i' '\ \(>\ 11\ 38\)\ \(q\ 4\ \(c\ 90\ \(c\ 46\ \(c\ 38\ \(\)\)\)\)\ \(c\ \(c\ 90\ \(c\ 54\ \(c' '\ \(\-\ 11\ 38\)\ \(\)\)\)\)\ \(\)\)\)\ \(q\ 4\ \(c\ 90\ \(c\ 46\ \(c\ 11\ \(\)\)\)\)\ \(\)' '\)\)\ 1\)\)\ \(q\ 2\ \(i\ \(=\ 5\ 48\)\ \(q\ 2\ \(i\ \(any\ \(>\ \(/\ \(\*\ \(q\ \.\ 1000' '\)\ 94\)\ 38\)\ \(q\ \.\ 350\)\)\ \(>\ \(q\ \.\ 0x00e8d4a51000\)\ 38\)\ \(>\ 38\ \(q\ \.\ 0' 'x0d8d726b7177a80000\)\)\)\ \(q\ 8\)\ \(q\ 4\ \(c\ 44\ \(c\ 38\ \(\)\)\)\ \(c\ \(c\ 90\ \(c' '\ 23\ \(c\ \(\+\ 38\ 94\)\ \(\)\)\)\)\ \(c\ \(c\ 122\ \(c\ 50\ \(\)\)\)\ \(\)\)\)\)\)\ 1\)' '\ \(q\ 2\ \(i\ \(=\ 5\ 56\)\ \(q\ 4\ \(c\ 44\ \(c\ \(\+\ 38\ 94\)\ \(\)\)\)\ \(c\ \(c\ 124' '\ \(c\ 126\ \(\)\)\)\ \(c\ \(c\ 90\ \(c\ 46\ \(c\ \(\+\ 38\ 94\)\ \(\)\)\)\)\ \(\)\)\)\)\ ' '\(q\ 2\ \(i\ \(=\ 5\ 40\)\ \(q\ 8\ 42\ 50\ 38\ 94\ 126\ 46\)\ \(q\ 8\)\)\ 1\)\)\ 1\)\)\ 1' '\)\)\ 1\)\)\)\)\ \(c\ \(q\ \(\(\(q\ \.\ 2\)\ 4\ \.\ 3\)\ \(50\ \.\ 82\)\ 73\ 72\ \.\ 81\)\ ' '\(\((?P<v7>.*)\ \.\ (?P<v5>.*)\)\ (?P<v6>.*)\ 51\ \.\ 62\)\ \((?P<v1>.*)\ \.\ (?P<v8>.*)\)' '\ (?P<v2>.*)\ (?P<v4>.*)\ \.\ (?P<v3>.*)\)\ 1\)\)' ) @dataclasses.dataclass class BakedInTerms: deposit_bytes: int payout_puzhash: str payout_tstamp: int reward_bytes: int contract_id: str program_name: str client_pubkey: str def _cmpRct(tok: str, expected: th.Any, received: th.Any) -> None: if expected != received: raise exc.ContractValidationError(f"Unexpected receipt value for {tok}: {received}") def _cmpCon(tok: str, expected: th.Any, received: th.Any) -> None: if expected != received: raise exc.ContractValidationError( f"Unexpected contract value for {tok}. Expected: {expected}; Received: {received}") def _atomReprAsInt(s: str) -> int: """Translate CLVM atom repr to int.""" if s.startswith("0x"): return int(s, base=16) elif s.startswith('"'): return int.from_bytes(s[1:-1].encode("ascii"), "big") return int(s) def _atomReprAsStr(s: str) -> str: """Translate CLVM atom repr to str.""" if s.startswith("0x"): return bytes.fromhex(s[2:]).decode("ascii") elif s.startswith('"'): return s[1:-1] return int_to_bytes(int(s)).decode("ascii") def _atomReprAsHex(s: str) -> str: """Translate CLVM integer atom repr to a 0x-prefixed hex string.""" if s.startswith("0x"): return s elif s.startswith('"'): return "0x" + s[1:-1].encode("ascii").hex() return hex(int(s)) def _extractBakedInTerms(reveal: str) -> BakedInTerms: try: m = th.cast(re.Match, re.search(conPat, disassemble(Program.from_bytes(hexstr_to_bytes(reveal))))) yum = BakedInTerms( deposit_bytes = _atomReprAsInt(m.group("v1")), payout_puzhash = _atomReprAsHex(m.group("v2")), payout_tstamp = _atomReprAsInt(m.group("v3")), reward_bytes = _atomReprAsInt(m.group("v4")), contract_id = _atomReprAsHex(m.group("v5")), program_name = _atomReprAsStr(m.group("v6")), client_pubkey = _atomReprAsHex(m.group("v7")), ) except Exception: raise exc.ContractValidationError("Contract reveal is not valid.") return yum def _validatePuzzleHash(addr: str, reveal: str) -> bytes32: sp: SerializedProgram = SerializedProgram.fromhex(reveal) ph = hddcoin.hodl.util.addr2puzhash(addr) ph_b32 = sp.get_tree_hash() if ph != ph_b32.hex(): raise exc.ContractValidationError(f"Reveal does not match address") return ph_b32 def validateContract(# Given to server... ex_program_name: str, ex_deposit_bytes: int, ex_payout_address: str, ex_client_pubkey: str, # Expected from server based on program details we had... ex_term_in_months: decimal.Decimal, ex_reward_percent: decimal.Decimal, receipt: th.Dict[str, th.Any], ) -> None: # raises exc.ContractValidationError on issues """Make sure that the receipt, and instructions therein, are what we expect. Raises exc.ContractValidationError if any issues are found. """ # The overall trust model here is: TRUST NO ONE. THESE ARE MY PRECIOUS HDDs!! # # In the comments below, there are two parties: # # 1. The "client" --> This hddcoin application (i.e. this code) or the person running it # 2. The "server" --> The HODL server that has been contacted to provide contract terms, # which include a specific contract/puzzle to send an amount to. # # Although the HDDcoin team are certainly a trustable bunch and can be expected to provide the # correct/expected contract terms to the client to follow, if the client is concerned about # overall security and precious HDD funds (which the client obviously should be!!), the client # should ABSOLUTELY ASSUME THAT THE SERVER IS NOT TRUSTABLE, UNTIL VERIFIED. More specifically, # the client should assume that whoever/whatever provided the client the contract terms to # follow could definitely have been compromised by EVIL HACKERS AFTER THE CLIENT'S PRECIOUS HDD. # # Nasty scenarios we should be concerned about include (with overlapping concerns): # # 1. the HODL API server could have been hacked # 2. there could be a man-in-the-middle attack happening, making data untrustworthy # 3. the contract terms provided could have been falsified in some/any way # 4. the on-chain contract (smart coin via puzzlehash/reveal) could be bogus # 5. sneaky hacker farmers could mess with how pushed coins/puzzles are processed on-chain # 6. and more! # # With these concerns in mind, the client needs to be sure that everything is secure before # committing funds on-chain. The smart contract itself provides excellent on-chain security to # make sure that no adverse shenanigans can happen once funds are on chain. The purpose in this # `validateContract` function is to make sure that there are no other surprises in store (as # listed above). # # As stated in the docstring: This function makes sure that sure that the provided contract is # what the client expects. # # What the HODL contract is all about is providing a secure conditional lockbox where: # # A) the client can stash a deposit into the box that ONLY THE CLIENT CAN EVER ACCESS # B) a secure way is provided for the server (i.e. the HDDcoin team) to add the guaranteed # reward to the lockbox for later payout (at end of contract) # - IMPORTANT NOTE: the server can never access the deposit in any way whatsoever # - the HDDcoin team gets reward funds from a HODL reserve in the pre-farm funds # C) if the client meets the contract terms (i.e. the HODL deposit sits in the box for the # length of the term), both the deposit and the reward pay out to the client's wallet # D) if the client decides to cancel the contract, the deposit is returned to the client, and # the guaranteed reward is returned to the HDDcoin HODL reserve # - ONLY THE CLIENT CAN EVER CANCEL THE CONTRACT. NOBODY ELSE. # - once the reward is added, it is GUARANTEED for the client (unless canceled). Sweet! # E) there are other various bits involved... but they mostly revolve around ensuring that # the mechanics of the contract are secure against nefarious hackers... I see you there # reading this... SHOO!! Go away!! ¬_¬ # # All of those listed things are *if all is as expected*. Again, this is what this validation # function is about. Even if the server is compromised (which it should not be, but... TRUST # NOBODY!), the client's HDD must NEVER be placed at risk here. This is fundamental to the HODL # program, and is supported through all supporting client code, server code, and on-chain code. vlog(1, "Extracting receipt fields for validation") try: rx_program_name = receipt["requested"]["program_name"] rx_deposit_bytes = receipt["requested"]["deposit_bytes"] rx_payout_address = receipt["requested"]["payout_address"] rx_client_pubkey = receipt["requested"]["client_pubkey"] rx_contract_id = receipt["receipt_info"]["contract_id"] rx_contract_address = receipt["coin_details"]["contract_address"] rx_reveal = receipt["coin_details"]["reveal"] rx_solCancelDep = receipt["coin_details"]["solution_cancel_deposited"] rx_solCancelGuar = receipt["coin_details"]["solution_cancel_guaranteed"] rx_solPayout = receipt["coin_details"]["solution_payout"] except KeyError as e: raise exc.ContractValidationError(f"Missing receipt key: {e.args[0]}") # Check the receipt fields (which don't matter that much, but still...) vlog(1, "Validating requested vs received") _cmpRct("program_name", ex_program_name, rx_program_name) _cmpRct("deposit_bytes", ex_deposit_bytes, rx_deposit_bytes) _cmpRct("payout_address", ex_payout_address, rx_payout_address) _cmpRct("client_pubkey", ex_client_pubkey, rx_client_pubkey) # Contract address and reveal must match... vlog(1, "Validating puzzle hash") ph_b32 = _validatePuzzleHash(rx_contract_address, rx_reveal) # Reveal must be the contract we expect... vlog(1, "Validating puzzle reveal") ex_payout_ph = f"0x{hddcoin.hodl.util.addr2puzhash(ex_payout_address)}" ex_reward_bytes = int(ex_deposit_bytes * (ex_reward_percent / 100)) epoch_s = int(time.time()) ex_payout_tstamp = int(epoch_s + (ex_term_in_months * SECONDS_PER_MONTH)) try: terms = _extractBakedInTerms(rx_reveal) _cmpCon("deposit_bytes", ex_deposit_bytes, terms.deposit_bytes) _cmpCon("payout_address", ex_payout_ph, terms.payout_puzhash) _cmpCon("reward_bytes", ex_reward_bytes, terms.reward_bytes) _cmpCon("contract_id", f"0x{rx_contract_id}", terms.contract_id) _cmpCon("program_name", ex_program_name, terms.program_name) _cmpCon("client_pubkey", f"0x{ex_client_pubkey}", terms.client_pubkey) except Exception as e: raise exc.ContractValidationError(f"Error validating contract terms: {e!r}") if abs(ex_payout_tstamp - terms.payout_tstamp) > 3600: # 1h good enough for validation msg = f"Unexpected contract value for payout_timestamp: {terms.payout_tstamp}" raise exc.ContractValidationError(msg) # Solutions must match... vlog(1, "Validating solutions") ex_solCancelDep = str(Program.to([1, ex_deposit_bytes, ph_b32])) ex_solCancelGuar = str(Program.to([1, ex_deposit_bytes + ex_reward_bytes, ph_b32])) ex_solPayout = str(Program.to([3, ex_deposit_bytes + ex_reward_bytes, ph_b32])) _cmpRct("solution_cancel_deposited", ex_solCancelDep, rx_solCancelDep) _cmpRct("solution_cancel_guaranteed", ex_solCancelGuar, rx_solCancelGuar) _cmpRct("solution_payout", ex_solPayout, rx_solPayout) # ALL IS WELL IF WE GOT HERE! vlog(1, "Contract provided by server is as expected!") def validateCancellation(ex_contract_id: str, contractDetails: ContractDetails, ) -> None: """Makes sure that the contract details fetched from the HODL server by the cancel request are a match to what the user expects.""" # This is essentially just cross-checking the contract dict details with what is actually in the # reveal. We don't need to validate the cancellation solutions since we don't use/need them. # Those are only for users who want to do it on their own without HODL tooling. rx_contract_id = contractDetails.contract_id rx_contract_address = contractDetails.contract_address rx_reveal = contractDetails.puzzle_reveal if rx_contract_id != ex_contract_id: raise exc.CancelValidationError("contract_id mismatch") vlog(1, "Validating puzzle hash") _validatePuzzleHash(rx_contract_address, rx_reveal) vlog(1, "Validating puzzle reveal") # Not much to validate here. If it is the right contract form, it can only be a HODL contract. # Even still, to be ABSOLUTELY sure, we'll validate that the baked-in terms match the contract # details displayed to the user. terms = _extractBakedInTerms(rx_reveal) _cmpCon("deposit_bytes", contractDetails.deposit_bytes, terms.deposit_bytes) _cmpCon("payout_address", contractDetails.payout_address, puzhash2addr(terms.payout_puzhash)) _cmpCon("reward_bytes", contractDetails.reward_bytes, terms.reward_bytes) _cmpCon("contract_id", f"0x{contractDetails.contract_id}", terms.contract_id) _cmpCon("program_name", f"{contractDetails.program_name}", terms.program_name) _cmpCon("client_pubkey", f"0x{contractDetails.client_pubkey}", terms.client_pubkey)
from django.apps import AppConfig class DjangoFiltersMergerConfig(AppConfig): name = 'django_filtersmerger'
from django.apps import AppConfig class KullisharifappConfig(AppConfig): name = 'KulliSharifapp'
# -*- coding: ISO-8859-15 -*- # ============================================================================= # Copyright (c) 2021 Tom Kralidis # # Authors : Tom Kralidis <tomkralidis@gmail.com> # # Contact email: tomkralidis@gmail.com # ============================================================================= """ API for OGC Filter Encoding (FE) constructs and metadata. Filter Encoding: http://www.opengeospatial.org/standards/filter Supports version 2.0.2 (09-026r2). """ from owslib.etree import etree from owslib import util from owslib.namespaces import Namespaces # default variables def get_namespaces(): n = Namespaces() ns = n.get_namespaces(["dif", "fes", "gml", "ogc", "ows110", "xs", "xsi"]) ns[None] = n.get_namespace("fes") return ns namespaces = get_namespaces() schema = 'http://schemas.opengis.net/filter/2.0/filterAll.xsd' schema_location = '%s %s' % (namespaces['fes'], schema) class FilterRequest(object): """ filter class """ def __init__(self, parent=None, version='2.0.0'): """ filter Constructor Parameters ---------- - parent: parent etree.Element object (default is None) - version: version (default is '2.0.0') """ self.version = version self._root = etree.Element(util.nspath_eval('fes:Filter', namespaces)) if parent is not None: self._root.set(util.nspath_eval('xsi:schemaLocation', namespaces), schema_location) def set(self, parent=False, qtype=None, keywords=[], typenames='csw:Record', propertyname='csw:AnyText', bbox=None, identifier=None): """ Construct and process a GetRecords request Parameters ---------- - parent: the parent Element object. If this is not, then generate a standalone request - qtype: type of resource to query (i.e. service, dataset) - keywords: list of keywords - propertyname: the ValueReference to Filter against - bbox: the bounding box of the spatial query in the form [minx,miny,maxx,maxy] - identifier: the dc:identifier to query against with a PropertyIsEqualTo. Ignores all other inputs. """ # Set the identifier if passed. Ignore other parameters dc_identifier_equals_filter = None if identifier is not None: dc_identifier_equals_filter = PropertyIsEqualTo('dc:identifier', identifier) self._root.append(dc_identifier_equals_filter.toXML()) return self._root # Set the query type if passed dc_type_equals_filter = None if qtype is not None: dc_type_equals_filter = PropertyIsEqualTo('dc:type', qtype) # Set a bbox query if passed bbox_filter = None if bbox is not None: bbox_filter = BBox(bbox) # Set a keyword query if passed keyword_filter = None if len(keywords) > 0: if len(keywords) > 1: # loop multiple keywords into an Or ks = [] for i in keywords: ks.append(PropertyIsLike(propertyname, "*%s*" % i, wildCard="*")) keyword_filter = Or(operations=ks) elif len(keywords) == 1: # one keyword keyword_filter = PropertyIsLike(propertyname, "*%s*" % keywords[0], wildCard="*") # And together filters if more than one exists filters = [_f for _f in [keyword_filter, bbox_filter, dc_type_equals_filter] if _f] if len(filters) == 1: self._root.append(filters[0].toXML()) elif len(filters) > 1: self._root.append(And(operations=filters).toXML()) return self._root def setConstraint(self, constraint, tostring=False): """ Construct and process a GetRecords request Parameters ---------- - constraint: An OgcExpression object - tostring (optional): return as string """ self._root.append(constraint.toXML()) if tostring: return util.element_to_string(self._root, xml_declaration=False) return self._root def setConstraintList(self, constraints, tostring=False): """ Construct and process a GetRecords request Parameters ---------- - constraints: A list of OgcExpression objects The list is interpretted like so: [a,b,c] a || b || c [[a,b,c]] a && b && c [[a,b],[c],[d],[e]] or [[a,b],c,d,e] (a && b) || c || d || e - tostring (optional): return as string """ ors = [] if len(constraints) == 1: if isinstance(constraints[0], OgcExpression): flt = self.setConstraint(constraints[0]) else: self._root.append(And(operations=constraints[0]).toXML()) flt = self._root if tostring: return util.element_to_string(flt, xml_declaration=False) else: return flt for c in constraints: if isinstance(c, OgcExpression): ors.append(c) elif isinstance(c, list) or isinstance(c, tuple): if len(c) == 1: ors.append(c[0]) elif len(c) >= 2: ands = [] for sub in c: if isinstance(sub, OgcExpression): ands.append(sub) ors.append(And(operations=ands)) self._root.append(Or(operations=ors).toXML()) if tostring: return util.element_to_string(self._root, xml_declaration=False) return self._root class FilterCapabilities(object): """Abstraction for Filter_Capabilities 2.0""" def __init__(self, elem): if elem is None: self.spatial_operands = [] self.spatial_operators = [] self.temporal_operators = [] self.temporal_operands = [] self.scalar_comparison_operators = [] self.conformance = {} return # Spatial_Capabilities self.spatial_operands = [f.attrib.get('name') for f in elem.findall(util.nspath_eval( 'fes:Spatial_Capabilities/fes:GeometryOperands/fes:GeometryOperand', namespaces))] self.spatial_operators = [] for f in elem.findall(util.nspath_eval( 'fes:Spatial_Capabilities/fes:SpatialOperators/fes:SpatialOperator', namespaces)): self.spatial_operators.append(f.attrib['name']) # Temporal_Capabilities self.temporal_operands = [f.attrib.get('name') for f in elem.findall(util.nspath_eval( 'fes:Temporal_Capabilities/fes:TemporalOperands/fes:TemporalOperand', namespaces))] self.temporal_operators = [] for f in elem.findall(util.nspath_eval( 'fes:Temporal_Capabilities/fes:TemporalOperators/fes:TemporalOperator', namespaces)): self.temporal_operators.append(f.attrib['name']) # Scalar_Capabilities self.scalar_comparison_operators = [f.text for f in elem.findall(util.nspath_eval( 'fes:Scalar_Capabilities/fes:ComparisonOperators/fes:ComparisonOperator', namespaces))] # Conformance self.conformance = {} for f in elem.findall(util.nspath_eval('fes:Conformance/fes:Constraint', namespaces)): self.conformance[f.attrib.get('name')] = f.find(util.nspath_eval('ows110:DefaultValue', namespaces)).text def setsortby(parent, propertyname, order='ASC'): """ constructs a SortBy element Parameters ---------- - parent: parent etree.Element object - propertyname: the ValueReference - order: the SortOrder (default is 'ASC') """ tmp = etree.SubElement(parent, util.nspath_eval('fes:SortBy', namespaces)) tmp2 = etree.SubElement(tmp, util.nspath_eval('fes:SortProperty', namespaces)) etree.SubElement(tmp2, util.nspath_eval('fes:ValueReference', namespaces)).text = propertyname etree.SubElement(tmp2, util.nspath_eval('fes:SortOrder', namespaces)).text = order class SortProperty(object): def __init__(self, propertyname, order='ASC'): self.propertyname = propertyname self.order = order.upper() if self.order not in ['DESC', 'ASC']: raise ValueError("SortOrder can only be 'ASC' or 'DESC'") def toXML(self): node0 = etree.Element(util.nspath_eval("fes:SortProperty", namespaces)) etree.SubElement(node0, util.nspath_eval('fes:ValueReference', namespaces)).text = self.propertyname etree.SubElement(node0, util.nspath_eval('fes:SortOrder', namespaces)).text = self.order return node0 class SortBy(object): def __init__(self, properties): self.properties = properties def toXML(self): node0 = etree.Element(util.nspath_eval("fes:SortBy", namespaces)) for prop in self.properties: node0.append(prop.toXML()) return node0 class OgcExpression(object): def __init__(self): pass class BinaryComparisonOpType(OgcExpression): """ Super class of all the property operation classes""" def __init__(self, propertyoperator, propertyname, literal, matchcase=True): self.propertyoperator = propertyoperator self.propertyname = propertyname self.literal = literal self.matchcase = matchcase def toXML(self): node0 = etree.Element(util.nspath_eval(self.propertyoperator, namespaces)) if not self.matchcase: node0.set('matchCase', 'false') etree.SubElement(node0, util.nspath_eval('fes:ValueReference', namespaces)).text = self.propertyname etree.SubElement(node0, util.nspath_eval('fes:Literal', namespaces)).text = self.literal return node0 class PropertyIsEqualTo(BinaryComparisonOpType): """ PropertyIsEqualTo class""" def __init__(self, propertyname, literal, matchcase=True): BinaryComparisonOpType.__init__(self, 'fes:PropertyIsEqualTo', propertyname, literal, matchcase) class PropertyIsNotEqualTo(BinaryComparisonOpType): """ PropertyIsNotEqualTo class """ def __init__(self, propertyname, literal, matchcase=True): BinaryComparisonOpType.__init__(self, 'fes:PropertyIsNotEqualTo', propertyname, literal, matchcase) class PropertyIsLessThan(BinaryComparisonOpType): """PropertyIsLessThan class""" def __init__(self, propertyname, literal, matchcase=True): BinaryComparisonOpType.__init__(self, 'fes:PropertyIsLessThan', propertyname, literal, matchcase) class PropertyIsGreaterThan(BinaryComparisonOpType): """PropertyIsGreaterThan class""" def __init__(self, propertyname, literal, matchcase=True): BinaryComparisonOpType.__init__(self, 'fes:PropertyIsGreaterThan', propertyname, literal, matchcase) class PropertyIsLessThanOrEqualTo(BinaryComparisonOpType): """PropertyIsLessThanOrEqualTo class""" def __init__(self, propertyname, literal, matchcase=True): BinaryComparisonOpType.__init__(self, 'fes:PropertyIsLessThanOrEqualTo', propertyname, literal, matchcase) class PropertyIsGreaterThanOrEqualTo(BinaryComparisonOpType): """PropertyIsGreaterThanOrEqualTo class""" def __init__(self, propertyname, literal, matchcase=True): BinaryComparisonOpType.__init__(self, 'fes:PropertyIsGreaterThanOrEqualTo', propertyname, literal, matchcase) class PropertyIsLike(OgcExpression): """PropertyIsLike class""" def __init__(self, propertyname, literal, escapeChar='\\', singleChar='_', wildCard='%', matchCase=True): self.propertyname = propertyname self.literal = literal self.escapeChar = escapeChar self.singleChar = singleChar self.wildCard = wildCard self.matchCase = matchCase def toXML(self): node0 = etree.Element(util.nspath_eval('fes:PropertyIsLike', namespaces)) node0.set('wildCard', self.wildCard) node0.set('singleChar', self.singleChar) node0.set('escapeChar', self.escapeChar) if not self.matchCase: node0.set('matchCase', 'false') etree.SubElement(node0, util.nspath_eval('fes:ValueReference', namespaces)).text = self.propertyname etree.SubElement(node0, util.nspath_eval('fes:Literal', namespaces)).text = self.literal return node0 class PropertyIsNull(OgcExpression): """PropertyIsNull class""" def __init__(self, propertyname): self.propertyname = propertyname def toXML(self): node0 = etree.Element(util.nspath_eval('fes:PropertyIsNull', namespaces)) etree.SubElement(node0, util.nspath_eval('fes:ValueReference', namespaces)).text = self.propertyname return node0 class PropertyIsBetween(OgcExpression): """PropertyIsBetween class""" def __init__(self, propertyname, lower, upper): self.propertyname = propertyname self.lower = lower self.upper = upper def toXML(self): node0 = etree.Element(util.nspath_eval('fes:PropertyIsBetween', namespaces)) etree.SubElement(node0, util.nspath_eval('fes:ValueReference', namespaces)).text = self.propertyname node1 = etree.SubElement(node0, util.nspath_eval('fes:LowerBoundary', namespaces)) etree.SubElement(node1, util.nspath_eval('fes:Literal', namespaces)).text = '%s' % self.lower node2 = etree.SubElement(node0, util.nspath_eval('fes:UpperBoundary', namespaces)) etree.SubElement(node2, util.nspath_eval('fes:Literal', namespaces)).text = '%s' % self.upper return node0 class BBox(OgcExpression): """Construct a BBox, two pairs of coordinates (west-south and east-north)""" def __init__(self, bbox, crs=None): self.bbox = bbox self.crs = crs def toXML(self): tmp = etree.Element(util.nspath_eval('fes:BBOX', namespaces)) etree.SubElement(tmp, util.nspath_eval('fes:ValueReference', namespaces)).text = 'ows:BoundingBox' tmp2 = etree.SubElement(tmp, util.nspath_eval('gml:Envelope', namespaces)) if self.crs is not None: tmp2.set('srsName', self.crs) etree.SubElement(tmp2, util.nspath_eval('gml:lowerCorner', namespaces)).text = '{} {}'.format( self.bbox[0], self.bbox[1]) etree.SubElement(tmp2, util.nspath_eval('gml:upperCorner', namespaces)).text = '{} {}'.format( self.bbox[2], self.bbox[3]) return tmp # BINARY class BinaryLogicOpType(OgcExpression): """ Binary Operators: And / Or """ def __init__(self, binary_operator, operations): self.binary_operator = binary_operator try: assert len(operations) >= 2 self.operations = operations except Exception: raise ValueError("Binary operations (And / Or) require a minimum of two operations to operate against") def toXML(self): node0 = etree.Element(util.nspath_eval(self.binary_operator, namespaces)) for op in self.operations: node0.append(op.toXML()) return node0 class And(BinaryLogicOpType): def __init__(self, operations): super(And, self).__init__('fes:And', operations) class Or(BinaryLogicOpType): def __init__(self, operations): super(Or, self).__init__('fes:Or', operations) # UNARY class UnaryLogicOpType(OgcExpression): """ Unary Operator: Not """ def __init__(self, unary_operator, operations): self.unary_operator = unary_operator self.operations = operations def toXML(self): node0 = etree.Element(util.nspath_eval(self.unary_operator, namespaces)) for op in self.operations: node0.append(op.toXML()) return node0 class Not(UnaryLogicOpType): def __init__(self, operations): super(Not, self).__init__('fes:Not', operations)
# Generated by Django 3.2 on 2021-05-05 06:00 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('users', '0001_initial'), ] operations = [ migrations.AlterModelOptions( name='user', options={'verbose_name': '用户管理', 'verbose_name_plural': '用户管理'}, ), ]
import unittest import random import math import io import struct from mitmproxy.io import tnetstring MAXINT = 2 ** (struct.Struct('i').size * 8 - 1) - 1 FORMAT_EXAMPLES = { b'0:}': {}, b'0:]': [], b'51:5:hello,39:11:12345678901#4:this,4:true!0:~4:\x00\x00\x00\x00,]}': {b'hello': [12345678901, b'this', True, None, b'\x00\x00\x00\x00']}, b'5:12345#': 12345, b'12:this is cool,': b'this is cool', b'19:this is unicode \xe2\x98\x85;': u'this is unicode \u2605', b'0:,': b'', b'0:;': u'', b'0:~': None, b'4:true!': True, b'5:false!': False, b'10:\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00,': b'\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00', b'24:5:12345#5:67890#5:xxxxx,]': [12345, 67890, b'xxxxx'], b'18:3:0.1^3:0.2^3:0.3^]': [0.1, 0.2, 0.3], b'243:238:233:228:223:218:213:208:203:198:193:188:183:178:173:168:163:158:153:148:143:138:133:128:123:118:113:108:103:99:95:91:87:83:79:75:71:67:63:59:55:51:47:43:39:35:31:27:23:19:15:11:hello-there,]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]': [[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[b'hello-there']]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]] # noqa } def get_random_object(random=random, depth=0): """Generate a random serializable object.""" # The probability of generating a scalar value increases as the depth increase. # This ensures that we bottom out eventually. if random.randint(depth, 10) <= 4: what = random.randint(0, 1) if what == 0: n = random.randint(0, 10) l = [] for _ in range(n): l.append(get_random_object(random, depth + 1)) return l if what == 1: n = random.randint(0, 10) d = {} for _ in range(n): n = random.randint(0, 100) k = str([random.randint(32, 126) for _ in range(n)]) d[k] = get_random_object(random, depth + 1) return d else: what = random.randint(0, 4) if what == 0: return None if what == 1: return True if what == 2: return False if what == 3: if random.randint(0, 1) == 0: return random.randint(0, MAXINT) else: return -1 * random.randint(0, MAXINT) n = random.randint(0, 100) return bytes([random.randint(32, 126) for _ in range(n)]) class Test_Format(unittest.TestCase): def test_roundtrip_format_examples(self): for data, expect in FORMAT_EXAMPLES.items(): self.assertEqual(expect, tnetstring.loads(data)) self.assertEqual( expect, tnetstring.loads(tnetstring.dumps(expect))) self.assertEqual((expect, b''), tnetstring.pop(data)) def test_roundtrip_format_random(self): for _ in range(500): v = get_random_object() self.assertEqual(v, tnetstring.loads(tnetstring.dumps(v))) self.assertEqual((v, b""), tnetstring.pop(tnetstring.dumps(v))) def test_roundtrip_format_unicode(self): for _ in range(500): v = get_random_object() self.assertEqual(v, tnetstring.loads(tnetstring.dumps(v))) self.assertEqual((v, b''), tnetstring.pop(tnetstring.dumps(v))) def test_roundtrip_big_integer(self): i1 = math.factorial(30000) s = tnetstring.dumps(i1) i2 = tnetstring.loads(s) self.assertEqual(i1, i2) class Test_FileLoading(unittest.TestCase): def test_roundtrip_file_examples(self): for data, expect in FORMAT_EXAMPLES.items(): s = io.BytesIO() s.write(data) s.write(b'OK') s.seek(0) self.assertEqual(expect, tnetstring.load(s)) self.assertEqual(b'OK', s.read()) s = io.BytesIO() tnetstring.dump(expect, s) s.write(b'OK') s.seek(0) self.assertEqual(expect, tnetstring.load(s)) self.assertEqual(b'OK', s.read()) def test_roundtrip_file_random(self): for _ in range(500): v = get_random_object() s = io.BytesIO() tnetstring.dump(v, s) s.write(b'OK') s.seek(0) self.assertEqual(v, tnetstring.load(s)) self.assertEqual(b'OK', s.read()) def test_error_on_absurd_lengths(self): s = io.BytesIO() s.write(b'1000000000:pwned!,') s.seek(0) with self.assertRaises(ValueError): tnetstring.load(s) self.assertEqual(s.read(1), b':') def suite(): loader = unittest.TestLoader() suite = unittest.TestSuite() suite.addTest(loader.loadTestsFromTestCase(Test_Format)) suite.addTest(loader.loadTestsFromTestCase(Test_FileLoading)) return suite
import os import sys base_path = os.path.abspath(os.path.join(os.path.dirname(__file__), '..')) sys.path.append(base_path) from torch import optim from metallic.data.benchmarks import get_benchmarks from metallic.data.dataloader import MetaDataLoader from metallic.models import OmniglotCNN from metallic.metalearners import FOMAML, MAML, Reptile, MinibatchProx, ANIL from metallic.trainer import Trainer from metallic.utils import Logger # ---- hyperparameters ---- ALGO = 'maml' BATCH_SIZE = 16 N_WAY = 5 K_SHOT = 1 OUTER_LR = 0.001 INNER_LR = 0.4 INNER_STEPS = 1 N_EPOCHES = 100 N_ITERS_PER_EPOCH = 500 N_ITERS_TEST = 600 N_WORKERS = 5 # ------------------------- ALGO_LIST = { 'maml': MAML, 'fomaml': FOMAML, 'reptile': Reptile, 'minibatchprox': MinibatchProx, 'anil': ANIL } def set_trainer(): train_dataset, val_dataset, _ = get_benchmarks( name = 'omniglot', root = os.path.join(base_path, 'data'), n_way = N_WAY, k_shot = K_SHOT, ) train_loader = MetaDataLoader(train_dataset, batch_size=BATCH_SIZE, shuffle=False) val_loader = MetaDataLoader(val_dataset, batch_size=BATCH_SIZE, shuffle=False) model = OmniglotCNN(N_WAY) if ALGO == 'anil': in_optim = optim.SGD(model.classifier.parameters(), lr=INNER_LR) else: in_optim = optim.SGD(model.parameters(), lr=INNER_LR) out_optim = optim.Adam(model.parameters(), lr=OUTER_LR) metalearner = ALGO_LIST[ALGO]( model = model, in_optim = in_optim, out_optim = out_optim, root = os.path.join(base_path, 'checkpoints'), inner_steps = INNER_STEPS ) logger = Logger( root = os.path.join(base_path, 'logs'), n_iters_per_epoch = N_ITERS_PER_EPOCH, log_basename = metalearner.alg_name, verbose = True ) trainer = Trainer( metalearner = metalearner, train_loader = train_loader, val_loader = val_loader, n_epoches = N_EPOCHES, n_iters_per_epoch = N_ITERS_PER_EPOCH, n_iters_test = N_ITERS_TEST, logger = logger ) return trainer if __name__ == '__main__': trainer = set_trainer() trainer.run_train()
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('workshops', '0048_auto_20150916_0441'), ] operations = [ migrations.AlterField( model_name='person', name='gender', field=models.CharField(max_length=1, default='U', choices=[('U', 'Prefer not to say (undisclosed)'), ('M', 'Male'), ('F', 'Female'), ('O', 'Other')]), ), migrations.AlterField( model_name='profileupdaterequest', name='airport_iata', field=models.CharField(help_text='Please use its 3-letter IATA code (<a href="http://www.airportcodes.aero/" target="_blank">http://www.airportcodes.aero/</a>) to tell us where you\'re located.', max_length=3, verbose_name='Nearest major airport'), ), migrations.AlterField( model_name='profileupdaterequest', name='email', field=models.EmailField(max_length=254, verbose_name='Email address'), ), migrations.AlterField( model_name='profileupdaterequest', name='gender', field=models.CharField(max_length=1, default='U', choices=[('U', 'Prefer not to say'), ('F', 'Female'), ('M', 'Male'), ('O', 'Other (enter below)')]), ), migrations.AlterField( model_name='profileupdaterequest', name='lessons', field=models.ManyToManyField(help_text='Please mark ALL that apply.', to='workshops.Lesson', verbose_name="Topic and lessons you're comfortable teaching"), ), migrations.AlterField( model_name='profileupdaterequest', name='occupation', field=models.CharField(blank=True, help_text='Please choose the one that best describes you.', choices=[('undisclosed', 'Prefer not to say'), ('undergrad', 'Undergraduate student'), ('grad', 'Graduate student'), ('postdoc', 'Post-doctoral researcher'), ('faculty', 'Faculty'), ('research', 'Research staff (including research programmer)'), ('support', 'Support staff (including technical support)'), ('librarian', 'Librarian/archivist'), ('commerce', 'Commercial software developer '), ('', 'Other (enter below)')], max_length=40, default='undisclosed', verbose_name='What is your current occupation/career stage?'), ), migrations.AlterField( model_name='profileupdaterequest', name='twitter', field=models.CharField(blank=True, max_length=100, default='', verbose_name='Twitter username'), ), ]
# Copyright 2021 The Bazel Authors. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for path.bzl""" load("@bazel_skylib//lib:unittest.bzl", "analysistest", "asserts", "unittest") load("//:mappings.bzl", "pkg_mkdirs") load("//:path.bzl", "compute_data_path") ########## # Test compute_data_path ########## def _compute_data_path_test_impl(ctx): env = analysistest.begin(ctx) target_under_test = analysistest.target_under_test(env) # Subtle: This allows you to vendor the library into your own repo at some # arbitrary path. expect = ctx.attr.expected_path if expect.startswith('tests'): expect = ctx.label.package + expect[5:] asserts.equals( env, expect, compute_data_path(ctx, ctx.attr.in_path), ) return analysistest.end(env) compute_data_path_test = analysistest.make( _compute_data_path_test_impl, attrs = { "in_path": attr.string(mandatory = True), "expected_path": attr.string(mandatory = True), }, ) def _test_compute_data_path(name): pkg_mkdirs( name = "dummy", dirs = [], tags = ["manual"], ) compute_data_path_test( name = name + "_normal_test", target_under_test = ":dummy", in_path = "a/b/c", expected_path = "tests/a/b/c", ) compute_data_path_test( name = name + "_absolute_test", target_under_test = ":dummy", in_path = "/a/b/c", expected_path = "a/b/c", ) compute_data_path_test( name = name + "_relative_test", target_under_test = ":dummy", in_path = "./a/b/c", expected_path = "tests/a/b/c", ) compute_data_path_test( name = name + "_empty_test", target_under_test = ":dummy", in_path = "./", expected_path = "tests", ) compute_data_path_test( name = name + "_empty2_test", target_under_test = ":dummy", in_path = "./.", expected_path = "tests", ) def path_tests(name): """Declare path.bzl analysis tests.""" _test_compute_data_path(name=name + "_compute_data_path")
from __future__ import print_function, absolute_import import unittest from conda.version import ver_eval, VersionSpec, VersionOrder, normalized_version class TestVersionSpec(unittest.TestCase): def test_version_order(self): versions = [ (VersionOrder("0.4"), [[0], [0], [4]]), (VersionOrder("0.4.0"), [[0], [0], [4], [0]]), (VersionOrder("0.4.1a.vc11"),[[0], [0], [4], [1, 'a'],[0, 'vc', 11]]), (VersionOrder("0.4.1.rc"), [[0], [0], [4], [1], [0, 'rc']]), (VersionOrder("0.4.1.vc11"), [[0], [0], [4], [1],[0, 'vc', 11]]), (VersionOrder("0.4.1"), [[0], [0], [4], [1]]), (VersionOrder("0.5*"), [[0], [0], [5, '*']]), (VersionOrder("0.5a1"), [[0], [0], [5, 'a', 1]]), (VersionOrder("0.5b3"), [[0], [0], [5, 'b', 3]]), (VersionOrder("0.5C1"), [[0], [0], [5, 'c', 1]]), (VersionOrder("0.5z"), [[0], [0], [5, 'z']]), (VersionOrder("0.5za"), [[0], [0], [5, 'za']]), (VersionOrder("0.5"), [[0], [0], [5]]), (VersionOrder("0.9.6"), [[0], [0], [9], [6]]), (VersionOrder("0.960923"), [[0], [0], [960923]]), (VersionOrder("1.0"), [[0], [1], [0]]), (VersionOrder("1.0.4a3"), [[0], [1], [0], [4, 'a', 3]]), (VersionOrder("1.0.4b1"), [[0], [1], [0], [4, 'b', 1]]), (VersionOrder("1.0.4"), [[0], [1], [0], [4]]), (VersionOrder("1.1dev1"), [[0], [1], [1, 'DEV', 1]]), (VersionOrder("1.1a1"), [[0], [1], [1, 'a', 1]]), (VersionOrder("1.1.dev1"), [[0], [1], [1], [0, 'DEV', 1]]), (VersionOrder("1.1.a1"), [[0], [1], [1], [0, 'a', 1]]), (VersionOrder("1.1"), [[0], [1], [1]]), (VersionOrder("1.1.post1"), [[0], [1], [1], [0, float('inf'), 1]]), (VersionOrder("1.1.1dev1"), [[0], [1], [1], [1, 'DEV', 1]]), (VersionOrder("1.1.1rc1"), [[0], [1], [1], [1, 'rc', 1]]), (VersionOrder("1.1.1"), [[0], [1], [1], [1]]), (VersionOrder("1.1.1post1"), [[0], [1], [1], [1, float('inf'), 1]]), (VersionOrder("1.1post1"), [[0], [1], [1, float('inf'), 1]]), (VersionOrder("2g6"), [[0], [2, 'g', 6]]), (VersionOrder("2.0b1pr0"), [[0], [2], [0, 'b', 1, 'pr', 0]]), (VersionOrder("2.2be.ta29"), [[0], [2], [2, 'be'], [0, 'ta', 29]]), (VersionOrder("2.2be5ta29"), [[0], [2], [2, 'be', 5, 'ta', 29]]), (VersionOrder("2.2beta29"), [[0], [2], [2, 'beta', 29]]), (VersionOrder("2.2.0.1"), [[0], [2], [2],[0],[1]]), (VersionOrder("3.1.1.6"), [[0], [3], [1], [1], [6]]), (VersionOrder("3.2.p.r0"), [[0], [3], [2], [0, 'p'], [0, 'r', 0]]), (VersionOrder("3.2.pr0"), [[0], [3], [2], [0, 'pr', 0]]), (VersionOrder("3.2.pr.1"), [[0], [3], [2], [0, 'pr'], [1]]), (VersionOrder("5.5.kw"), [[0], [5], [5], [0, 'kw']]), (VersionOrder("11g"), [[0], [11, 'g']]), (VersionOrder("14.3.1"), [[0], [14], [3], [1]]), (VersionOrder("14.3.1.post26.g9d75ca2"), [[0],[14],[3],[1],[0,float('inf'),26],[0,'g',9,'d',75,'ca',2]]), (VersionOrder("1996.07.12"), [[0], [1996], [7], [12]]), (VersionOrder("1!0.4.1"), [[1], [0], [4], [1]]), (VersionOrder("1!3.1.1.6"), [[1], [3], [1], [1], [6]]), (VersionOrder("2!0.4.1"), [[2], [0], [4], [1]]), ] # check parser for v, l in versions: self.assertEqual(v.version, l) self.assertEqual(VersionOrder("0.4.1.rc"), VersionOrder(" 0.4.1.RC ")) self.assertEqual(normalized_version(" 0.4.1.RC "), VersionOrder("0.4.1.rc")) with self.assertRaises(ValueError): VersionOrder("") with self.assertRaises(ValueError): VersionOrder(" ") with self.assertRaises(ValueError): VersionOrder("5.5++") with self.assertRaises(ValueError): VersionOrder("5.5..mw") with self.assertRaises(ValueError): VersionOrder("5.5.mw.") with self.assertRaises(ValueError): VersionOrder("!") with self.assertRaises(ValueError): VersionOrder("a!1.0") # check __eq__ self.assertEqual(VersionOrder(" 0.4.rc "), VersionOrder("0.4.RC")) self.assertEqual(VersionOrder("0.4"), VersionOrder("0.4.0")) self.assertNotEqual(VersionOrder("0.4"), VersionOrder("0.4.1")) self.assertEqual(VersionOrder("0.4.a1"), VersionOrder("0.4.0a1")) self.assertNotEqual(VersionOrder("0.4.a1"), VersionOrder("0.4.1a1")) # check __lt__ self.assertEqual(sorted(versions, key=lambda x: x[0]), versions) # test openssl convention openssl = [VersionOrder(k) for k in ['1.0.1', '1.0.1post.a', '1.0.1post.b', '1.0.1post.z', '1.0.1post.za', '1.0.2']] self.assertEqual(sorted(openssl), openssl) def test_pep440(self): # this list must be in sorted order (slightly modified from the PEP 440 test suite # https://github.com/pypa/packaging/blob/master/tests/test_version.py) VERSIONS = [ # Implicit epoch of 0 "1.0a1", "1.0a2.dev456", "1.0a12.dev456", "1.0a12", "1.0b1.dev456", "1.0b2", "1.0b2.post345.dev456", "1.0b2.post345", "1.0c1.dev456", "1.0c1", "1.0c3", "1.0rc2", "1.0.dev456", "1.0", "1.0.post456.dev34", "1.0.post456", "1.1.dev1", "1.2.r32+123456", "1.2.rev33+123456", "1.2+abc", "1.2+abc123def", "1.2+abc123", "1.2+123abc", "1.2+123abc456", "1.2+1234.abc", "1.2+123456", # Explicit epoch of 1 "1!1.0a1", "1!1.0a2.dev456", "1!1.0a12.dev456", "1!1.0a12", "1!1.0b1.dev456", "1!1.0b2", "1!1.0b2.post345.dev456", "1!1.0b2.post345", "1!1.0c1.dev456", "1!1.0c1", "1!1.0c3", "1!1.0rc2", "1!1.0.dev456", "1!1.0", "1!1.0.post456.dev34", "1!1.0.post456", "1!1.1.dev1", "1!1.2.r32+123456", "1!1.2.rev33+123456", "1!1.2+abc", "1!1.2+abc123def", "1!1.2+abc123", "1!1.2+123abc", "1!1.2+123abc456", "1!1.2+1234.abc", "1!1.2+123456", ] version = [VersionOrder(v) for v in VERSIONS] self.assertEqual(version, sorted(version)) def test_hexrd(self): VERSIONS = ['0.3.0.dev', '0.3.3'] vos = [VersionOrder(v) for v in VERSIONS] self.assertEqual(sorted(vos), vos) def test_ver_eval(self): self.assertEqual(ver_eval('1.7.0', '==1.7'), True) self.assertEqual(ver_eval('1.7.0', '<=1.7'), True) self.assertEqual(ver_eval('1.7.0', '<1.7'), False) self.assertEqual(ver_eval('1.7.0', '>=1.7'), True) self.assertEqual(ver_eval('1.7.0', '>1.7'), False) self.assertEqual(ver_eval('1.6.7', '>=1.7'), False) self.assertEqual(ver_eval('2013a', '>2013b'), False) self.assertEqual(ver_eval('2013k', '>2013b'), True) self.assertEqual(ver_eval('3.0.0', '>2013b'), False) self.assertEqual(ver_eval('1.0.0', '>1.0.0a'), True) self.assertEqual(ver_eval('1.0.0', '>1.0.0*'), True) def test_ver_eval_errors(self): self.assertRaises(RuntimeError, ver_eval, '3.0.0', '><2.4.5') self.assertRaises(RuntimeError, ver_eval, '3.0.0', '!!2.4.5') self.assertRaises(RuntimeError, ver_eval, '3.0.0', '!') def test_match(self): for vspec, res in [ ('1.7*', True), ('1.7.1', True), ('1.7.0', False), ('1.7', False), ('1.5*', False), ('>=1.5', True), ('!=1.5', True), ('!=1.7.1', False), ('==1.7.1', True), ('==1.7', False), ('==1.7.2', False), ('==1.7.1.0', True), ]: m = VersionSpec(vspec) self.assertEqual(m.match('1.7.1'), res) def test_local_identifier(self): """The separator for the local identifier should be either `.` or `+`""" # a valid versionstr should match itself versions = ( '1.7.0' '1.7.0.post123' '1.7.0.post123.gabcdef9', '1.7.0.post123+gabcdef9', ) for version in versions: m = VersionSpec(version) self.assertTrue(m.match(version))
import logging def say(n): logging.basicConfig(level=logging.DEBUG) for i in range(n): logging.info(str(i) + ": Hello world") say(1) if __name__=="__main__": say(3)
# -*- coding: utf-8 -*- # # This file is part of Invenio. # Copyright (C) 2015-2018 CERN. # # Invenio is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. """Bundle class with support for npm dependencies.""" from __future__ import absolute_import, print_function from collections import defaultdict import semver from flask_assets import Bundle as BundleBase from pkg_resources import parse_version from speaklater import is_lazy_string __all__ = ('LazyNpmBundle', 'NpmBundle', 'extract_deps', 'make_semver', ) class NpmBundle(BundleBase): """Bundle extension with a name and npm dependencies. The npm dependencies are used to generate a package.json file. """ def __init__(self, *contents, **options): """Initialize the named bundle. :param name: name of the bundle :type name: str :param npm: npm dependencies :type npm: dict """ self.npm = options.pop('npm', {}) super(NpmBundle, self).__init__(*contents, **options) class LazyNpmBundle(NpmBundle): """Magically evaluate lazy strings as file names.""" def _get_contents(self): """Create strings from lazy strings.""" return [ str(value) if is_lazy_string(value) else value for value in super(LazyNpmBundle, self)._get_contents() ] contents = property(_get_contents, NpmBundle._set_contents) def extract_deps(bundles, log=None): """Extract the dependencies from the bundle and its sub-bundles.""" def _flatten(bundle): deps = [] if hasattr(bundle, 'npm'): deps.append(bundle.npm) for content in bundle.contents: if isinstance(content, BundleBase): deps.extend(_flatten(content)) return deps flatten_deps = [] for bundle in bundles: flatten_deps.extend(_flatten(bundle)) packages = defaultdict(list) for dep in flatten_deps: for pkg, version in dep.items(): packages[pkg].append(version) deps = {} for package, versions in packages.items(): deps[package] = semver.max_satisfying(versions, '*', True) if log and len(versions) > 1: log('Warn: {0} version {1} resolved to: {2}'.format( repr(package), versions, repr(deps[package]) )) return deps def make_semver(version_str): """Make a semantic version from Python PEP440 version. Semantic versions does not handle post-releases. """ v = parse_version(version_str) major = v._version.release[0] try: minor = v._version.release[1] except IndexError: minor = 0 try: patch = v._version.release[2] except IndexError: patch = 0 prerelease = [] if v._version.pre: prerelease.append(''.join(str(x) for x in v._version.pre)) if v._version.dev: prerelease.append(''.join(str(x) for x in v._version.dev)) prerelease = '.'.join(prerelease) # Create semver version = '{0}.{1}.{2}'.format(major, minor, patch) if prerelease: version += '-{0}'.format(prerelease) if v.local: version += '+{0}'.format(v.local) return version
from typing import Tuple import torch from torch import Tensor def homogeneous(A: Tensor, b: Tensor) -> Tensor: """ Converts heterogeneous matrix into homogeneous matrix. :param A: Heterogeneous matrix of shape [*, N, N]. :param b: Heterogeneous vector of shape [*, N, 1]. :return: Homogeneous matrix of shape [*, N + 1, N + 1]. """ assert A.shape[:-2] == b.shape[:-2] assert A.shape[-2] == A.shape[-1] == b.shape[-2] assert b.shape[-1] == 1 s, n = A.shape[:-2], A.shape[-2] c = torch.zeros(s + (1, n), dtype=A.dtype, device=A.device) d = torch.ones(s + (1, 1), dtype=A.dtype, device=A.device) M = torch.cat( [ torch.cat([A, b], dim=-1), torch.cat([c, d], dim=-1), ], dim=-2, ) return M def heterogeneous(M: Tensor) -> Tuple[Tensor, Tensor]: """ Converts homogeneous matrix into heterogeneous matrix. :param M: Homogeneous matrix of shape [*, N + 1, N + 1]. :return: Heterogeneous matrix and vector of shapes [*, N, N] and [*, N, 1] respectively. """ assert M.shape[-2] == M.shape[-1] n = M.shape[-2] - 1 Ab, cd = M.split([n, 1], dim=-2) A, b = Ab.split([n, 1], dim=-1) c, d = cd.split([n, 1], dim=-1) A, b = A / d, b / d return A, b def affine(x: Tensor, A: Tensor, b: Tensor) -> Tensor: """ Applies an affine transformation to x given A and b. :param x: Vector of shape [*, N, 1]. :param A: Matrix of shape [*, N, N]. :param b: Vector of shape [*, N, 1]. :return: Vector of shape [*, N, 1]. """ assert x.ndim == A.ndim == b.ndim assert x.shape[-2] == A.shape[-2] == A.shape[-1] == b.shape[-2] assert x.shape[-1] == b.shape[-1] == 1 y = A @ x + b return y def eye_like(x: Tensor) -> Tensor: """ Return an identity matrix of the same shape as x. :param x: Matrix of shape [*, M, N]. :return: Identity matrix of shape [*, M, N]. """ m, n = x.shape[-2], x.shape[-1] return torch.eye(m, n, dtype=x.dtype, device=x.device).expand_as(x) def diag(x: Tensor): """ Returns a diagonal matrix given a vector. :param x: Vector of shape [*, M, 1]. :return: Diagonal matrix of shape [*, M, M]. """ assert x.shape[-1] == 1 m = x.shape[-2] return torch.eye(m, dtype=x.dtype, device=x.device) * x
#!/usr/bin/env python # Run the various build scripts import sys import os from parse import parse_machines from machines import machines from assemblies import assemblies from vitamins import vitamins from printed import printed from guides import guides from publish import publish def build(do_publish=0): print("Build") print("-----") outfile = 'hardware.json' oldfile = 'backup.json' print("Backup current json...") oldjso = None if os.path.isfile(outfile) and not os.path.isfile(oldfile): os.rename(outfile, oldfile) errorlevel = 0 errorlevel += parse_machines() if errorlevel == 0: errorlevel += vitamins() if errorlevel == 0: errorlevel += printed() if errorlevel == 0: errorlevel += assemblies() if errorlevel == 0: errorlevel += machines() if errorlevel == 0: errorlevel += guides() if errorlevel == 0 and do_publish > 0: publish() # if everything is ok then delete backup - no longer required if errorlevel == 0: os.remove(oldfile) return errorlevel if __name__ == '__main__': if len(sys.argv) == 2: sys.exit(build(sys.argv[1])) else: sys.exit(build(0))
"""CouchDB Models""" from kai.model.blog import Article from kai.model.documentation import Documentation from kai.model.generics import Comment, Rating from kai.model.human import Human from kai.model.paste import Paste from kai.model.snippet import Snippet from kai.model.traceback import Traceback
from flask import render_template from flask import request from flask import send_file from flask import make_response import cv2 import urllib import numpy as np # Add the pytorch folder to our script path import sys # insert at 1, 0 is the script path (or '' in REPL) sys.path.insert(1, '/Users/danielblackburn/space-apps-2019/beautiful_earth/pytorch-CycleGAN-and-pix2pix') import inference from inference import infer from app import app @app.route('/') @app.route('/index') def index(): user = {'username': 'Miguel'} return render_template('index.html', title='Beautiful Earth') @app.route('/image', methods = ['POST']) def image(): json = request.json imageUrl = json['imageUrl'] quadKey = json['quadKey'] temp = inference.infer(imageUrl) filename = "/Users/danielblackburn/space-apps-2019/beautiful_earth/app/static/"+quadKey+".png" cv2.imwrite(filename, temp) response = make_response(send_file(filename, mimetype='image/jpeg', as_attachment=True, attachment_filename=quadKey)) response.headers['X-quadKey'] = quadKey return response
# coding: utf-8 # # Copyright 2014 The Oppia Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS-IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Services for user data.""" from __future__ import absolute_import # pylint: disable=import-only-modules from __future__ import unicode_literals # pylint: disable=import-only-modules import datetime import hashlib import imghdr import logging import re from constants import constants from core.domain import role_services from core.domain import user_domain from core.platform import models import feconf import python_utils import utils from google.appengine.api import urlfetch current_user_services = models.Registry.import_current_user_services() (user_models, audit_models) = models.Registry.import_models( [models.NAMES.user, models.NAMES.audit]) # Size (in px) of the gravatar being retrieved. GRAVATAR_SIZE_PX = 150 # Data url for images/avatar/user_blue_72px.png. # Generated using utils.convert_png_to_data_url. DEFAULT_IDENTICON_DATA_URL = ( '%2BuZERZbHKaSMYRbGKERxgpQQUkSIIigEbAmFavlfrUKiVhCVcFa%2BIJEvJOlCcNCAnNKMFQ0o58vEfPgmhS5Mn0ot8n2KIs8lIZJJUfy8almIJqbxhRDSIbJKe2s%2BXvWlV/RcrGwqYGGp20bI1LyaeVmjKMrodp4EycGBAy6MjgsrSxozqG7O5GgxcVREeEigNDAwwBpmsUiRKGu3y1caGltstQ3yjbOFV6sPnypXTuRXBReU2GLqGprHkUKSRlMIUcD3WyUakGbbt7JYyzf6agpgYfe9O8kui/U8nB7UhJIkUTljwrBTTz449mZKUlyCEBTnjTCKQiX7T5ScfGP3Rf9j5ysny7IyTKXHPwYP690WSXnZtvcXp71pw1ldQwELm59%2BlyzbX%2BbeNL%2Btscb4EYOyNz2ZWD99wtAFnGdxxoQBefbs85f3rHsjJyivuGo60wsATe51WZJkWW/LWnXGgDZUEoYAFr58x0B7beOLPHGv5XnFIpGoS0mKOfze%2Bpmj/f2smNR9lm42teQ/8vLRgv0nyuZwVwtm1Ows5BZLSMBz1RkrbnjLiNeAhaWmPWgn%2BxYeejwkRMu9idH7tm%2BYE8/z0EhvmfOmPs9/RQ9tOJx3IKc8lUixkqBKC1nW2vat3u0NXY8Bi1%2B%2Bw6%2BktnETD7%2BnwEB4iP/pL/5xf03U4IBZ3jBkdN2K641Hkn/7YWh17c1JoM3D9PW4kIB1eRkrmjxpyyPAeK4aLttbPuAhOIU5aHpm1cTMZ1ffuRT8eMKED%2BooL6Wd%2B2Bj%2BtnFUGeYyVzJYl3Kc9sld9t2W8Dw%2BWkTWuz2fdxQ9ACr9P3Jfy7%2BZuSw0HnuNtwb5Ysqaw4mPJb5k%2BYW%2BVZuv9xqsaRWZ60%2B7w4vbgEWnrJ1hp3kTO5ZYUPCAnK%2B3bYiitWDWHca7O2yrI6U3r5yR8U1W2MiC2%2BzkLS4ev%2BaY67y1a749VQBYLUIZT/AGhUTduS7f68Y39/AgozgGbxDBsgCmSBbT/Jr710CDMMQPYvHf2DC2Mj9p95efA8TCNKI9MNrEGSALJAJskFGV%2BTocUhigrfbWz5jYtH4VdrAMksBdYVnI8vYJ/8q83hhmW0WEy23WKx39/Qh6LaHQXXA1xBgYc5isBL4/scCFoC3QCbIBhkhK2TGi65St4CpeharDvgaYoJnIv15GHaFQRBkg4w8p02BzF0VRH6XgEGDV5VS1rOgOvTHCb47wfXvIBtkhE4JmSG7/r3%2B3ilg6toQyx1OUEr7i56lF8zde8gIWVEPSz1g4IyGU8CwkMbaEMudNg3eWd0fXR5khcyQXcXAiYSdAMMWDY/ltVhIY23IdXr8kjqh21%2BzRKvMogUYAAtHQToBhv0sbNFg16GvLaQdmTfjGTJDdmCgYuHQSIfe07pTSqewn3V9z6qrvb1F48Crzx6xNTR4QXoE9tN4c2%2ByfufWqudC3VbmAYzNPwZrkf6dL%2B4LSm5Q9vkrVH79B6qs%2BoH8B1goatAtNCIqmOZOiabw4G5VJMNYREdhDD7ae6J0USsmtEwj3t7DYLCwK83f8WbbzauZP7/kq53SxiY7vfmfC5R24Fv6prTrDVEWgqbfEUlPLY2nlKkxGv%2BmXbFzG7H4/eE8g/tZyO92zbDSPoe1WncUgT14X4G189NimvjobnrhX6e6BQuo8DCho2crafnzB2n%2BMwe4PL5H5iVgACx4wEltli%2B1sXbA%2BGkNcmCwUN%2BY%2BI%2B3WOjZt3Lpl68cpQoefu6m4%2Bcqae7TWfTfk%2BXuVnWrvA4LFRtUVockjKxKc8sJmMJsWWsiON/U9eJvNmXTtk%2B%2BdYt5Z4WZX0p/bjYtmBbn7LURefaw%2BVuvwoQnBliTYCxu7WFskQb1WROjcvliKlibM/IMAQv8siD0643H6etiGx7NSBbYUlXCbRipgKnme859Ysl4jwwDrnKaV2SjDe%2B0tu9qnZ7KsQWch/YxVpt6KunZexieUVPDSIJjCC86k3lwyikJ0di%2BMS09/3au2iuMbuDr4mpKN2CIO%2BMLVnpgA4yAlVRX1ziV4fODrwOv2k2bDM4UVvEkXeaMJ0PyXn3/nCF0HIkAE2ADjICVpChiLArBMcSxsJHPmdmXjCTXiVZRRS19VVTdKd%2BIDA0bYCW1%2BWcRvGiMIN4Vjb1flHb1yrD8rM9LDKOlJ6RhA6ww6au%2BD3A50hcy%2Bt5sRRP8FpSYo8zqsBnDPax13oJ/ltEgafSqam5SU7NdezTtWsHrTzOShg2wYtWP3SQ5wZnNjMZA80Z9s1mkO9CtMakdDRtgJcGnFK3C869D6wY%2BRISp7loGUnROKtKkdtqxYawkzQGXdwNUN0nnrHiXGxxoJf40e0fEhdpRg29xoZT7RTRsgJV%2B8e0%2BJTdqJIwd4kZpz4pOGWN%2BG5Lq2s38wQHXMzZdq2XiAlllgP2%2BaH6yOX4xGjbAinejlVq0CG9l10T3rNT99wwnf96KMyvNuHMoDR0UaAr5dmwYK1YrhAoYXLtNaa2N6DAW5vFF6qLClGZeeHSyKXRBVMMGWLFaoUZYEPzgTWuxjfC6lROI/RgMb2bZ7JGUaOIcqWEDrDDp50MCBA0YLokDQRgx0p%2BdTezH4PDG88dxI8LotaeneU7AhZo6bPK5hwkVMERYuFDX6yLT2JDx99/fTVY2anibYiOCaPuGuayydDB%2BeUu2U30NG2AlCaFcRAmEo3QqaVLGynm30a6X5sHz2uMWksZH0pHXF9CIYeb/zho2CAqTgoMDvoTXCmJ3EI7isQRuVpw9KYqytyykhxk8qASuJoD84mNTKGvjveSLFQQwUeOaGCNE0Flqvs5o8b/9gZ8xwyMmj404NComZJyrzHtbLjTIjxZNv1X9C/S30pXqRrLVdd4lh7EjOX4oPfHAOHrzD9Np9l1RZMHnygeJ45kOZXxaPJ6byr6WueotdfAjhI73rGdu2ZXnn5oY7QM2OjZxx8hw%2BvPjCepf2bUfqJz/Llc1qHpb1OBAiosMpoFB5i%2BtOnLV%2BoTgL9ypYYZ8bZ0tOd6QmuUNbCiFMoN9GPM0TCbeXYoZcgvhr48kOyLlVF6AESf1UwV7G88jBbC/ISqsjzDb62wAC9UmydhoAaz6b/tWcIgQul7ntI8woMNCxQZstQOGSFYeqQriDeGI0Ud47jU2gIEae8kmtlZsWllpB6zNO2UXZwcg3rDXOO0jDbdhEIDoXs1zB6y1A4YHhP3iiuBMOJXh3tfJzuZ/qBbfX65nR5UGqmto8TUL2OoqAgZoWMNEY6KTMhOa%2Bt4ehCDfmxjz8c4X5y3UChp5hVk/j63Vpwuu0zdlNVTIrkuFfC1hkOobO%2B//Qw8LD/an26JDaFRsKI2KCWU76kCaOi6CoHYYnZY9d/DjAzllC/lDmFWz75EFevqdFmGIkbbL9hREsiI40yg/11wGhxex9PlXV%2BjEhatUU99ZQdUzpr%2BH08n1mkb1L%2BfiVf0rGs5Lo2nxkXT3HUPZ0S7WawAhsxrFy6HPwKJDY/zQqYehAPey1%2BDgDxfsSxkPwZPYaTmU7S7BPWDXkWLafayYLlWaaidW2cASK5nBWzJzOD3AG5YebCgqw5dvP4PoXab1Oveu3znK5xQIOPW31DZchL/6M6vv2sn%2B68scK3b1jDlo%2B6Hv6G878ij/e1M3cbtiQc3HML4vKZbWrbyTpowe3G1Z7SVH7e7cmHZmGXePSmtI4FhnQfVOAQMBNfhdse/CwvzsO/cf6ykapKlZpq0HCmlzxlc%2B6U2akK5c2XJNf3x4At3D29hdJUTrTnz0wxlwOrEIy5Kugum7BAyEtaGJwKVrH63mrSDn0besEdNTmz9XJ%2B6uGOoL%2BbAr/OXJJIoM77jryx%2Bh0iGL0mSENnc1FDX%2BO6gVWqZ2RfQ9I5oLQgj75fxO/q%2BvpJ9TnXTxlevr6cPjlyj5iUx2bb%2BsZ7UesqlgsayQWf/S8b7bHobC3QWYrv3rZ%2BwuXuhIs88/Y4v8vfWz4BvrdoBpj4BBejWE2W4/yupTGMJ%2BD21O/emf3j1t2bTNrYD8PgWkv7/FflvUwE8uFFelMAg2i8Uy05UTBlwCTAWtLUieJ8XA2MiQIxXX6xNYI%2B6XC3Wep%2Br5xz/Jsszij1qDVREprp4s4DJgGmjaMQzcUA5bgaNkRTbH3GxSf5SEVMoxRBUMlrnHMIB//ArounxbjgZZuWWtSzlokmyGkwWv4Bm8QwZ1GLpxZgUYcquHaRLgQ6A/SobJ4IiGpeyc7RE9ja55V/aKEOID5s/3R8loQjkeVsTzwmmeF2oYuFlamT5xFeII/4qh3LMmgR/oWT4/rEgPhONxWEKifUJW4mWikfpyvr5nBbNIkUQeD8BU7lm9fxyWHgDHA9fYQlzHg/0w/6qjuZzqdKwvb/J9PveiAl4Hz%2BE5q%2B8duKYXHjHSjkf6sXkqWyEZK4QFLIQ51iihWrr2CJKCeE6fzm2pax8Grm8e6acHDffth0YSLdF9CCoZvFye55okRU7gIetV1AkPuRJZSCfZUdefezJMYf3v0MhOwHVzLKlQxAWSRJlQlDr%2BzrPcUjjbGwbyBB2mCKH62/K7KwywjWM8b5CQq%2BH9x%2B%2BCSVZiFKH8eI4ldQQOz4jJ/P/Bt86QcSFPPVqZA50Qu4NwFK7i3tHK7HEEJ5reOFr5fwkK97jkk8ywAAAAAElFTkSuQmCC') # pylint: disable=line-too-long class UserSettings(python_utils.OBJECT): """Value object representing a user's settings. Attributes: user_id: str. The unique ID of the user. gae_id: str. The ID of the user retrieved from GAE. email: str. The user email. role: str. Role of the user. This is used in conjunction with PARENT_ROLES to determine which actions the user can perform. username: str or None. Identifiable username to display in the UI. last_agreed_to_terms: datetime.datetime or None. When the user last agreed to the terms of the site. last_started_state_editor_tutorial: datetime.datetime or None. When the user last started the state editor tutorial. last_started_state_translation_tutorial: datetime.datetime or None. When the user last started the state translation tutorial. last_logged_in: datetime.datetime or None. When the user last logged in. last_created_an_exploration: datetime.datetime or None. When the user last created an exploration. last_edited_an_exploration: datetime.datetime or None. When the user last edited an exploration. profile_picture_data_url: str or None. User uploaded profile picture as a dataURI string. default_dashboard: str or None. The default dashboard of the user. user_bio: str. User-specified biography. subject_interests: list(str) or None. Subject interests specified by the user. first_contribution_msec: float or None. The time in milliseconds when the user first contributed to Oppia. preferred_language_codes: list(str) or None. Exploration language preferences specified by the user. preferred_site_language_code: str or None. System language preference. preferred_audio_language_code: str or None. Audio language preference. """ def __init__( self, user_id, gae_id, email, role, username=None, last_agreed_to_terms=None, last_started_state_editor_tutorial=None, last_started_state_translation_tutorial=None, last_logged_in=None, last_created_an_exploration=None, last_edited_an_exploration=None, profile_picture_data_url=None, default_dashboard=None, creator_dashboard_display_pref=( constants.ALLOWED_CREATOR_DASHBOARD_DISPLAY_PREFS['CARD']), user_bio='', subject_interests=None, first_contribution_msec=None, preferred_language_codes=None, preferred_site_language_code=None, preferred_audio_language_code=None, deleted=False): """Constructs a UserSettings domain object. Args: user_id: str. The unique ID of the user. gae_id: str. The ID of the user retrieved from GAE. email: str. The user email. role: str. Role of the user. This is used in conjunction with PARENT_ROLES to determine which actions the user can perform. username: str or None. Identifiable username to display in the UI. last_agreed_to_terms: datetime.datetime or None. When the user last agreed to the terms of the site. last_started_state_editor_tutorial: datetime.datetime or None. When the user last started the state editor tutorial. last_started_state_translation_tutorial: datetime.datetime or None. When the user last started the state translation tutorial. last_logged_in: datetime.datetime or None. When the user last logged in. last_created_an_exploration: datetime.datetime or None. When the user last created an exploration. last_edited_an_exploration: datetime.datetime or None. When the user last edited an exploration. profile_picture_data_url: str or None. User uploaded profile picture as a dataURI string. default_dashboard: str|None. The default dashboard of the user. creator_dashboard_display_pref: str. The creator dashboard of the user. user_bio: str. User-specified biography. subject_interests: list(str) or None. Subject interests specified by the user. first_contribution_msec: float or None. The time in milliseconds when the user first contributed to Oppia. preferred_language_codes: list(str) or None. Exploration language preferences specified by the user. preferred_site_language_code: str or None. System language preference. preferred_audio_language_code: str or None. Default language used for audio translations preference. deleted: bool. Whether the user has requested removal of their account. """ self.user_id = user_id self.gae_id = gae_id self.email = email self.role = role self.username = username self.last_agreed_to_terms = last_agreed_to_terms self.last_started_state_editor_tutorial = ( last_started_state_editor_tutorial) self.last_started_state_translation_tutorial = ( last_started_state_translation_tutorial) self.last_logged_in = last_logged_in self.last_edited_an_exploration = last_edited_an_exploration self.last_created_an_exploration = last_created_an_exploration self.profile_picture_data_url = profile_picture_data_url self.default_dashboard = default_dashboard self.creator_dashboard_display_pref = creator_dashboard_display_pref self.user_bio = user_bio self.subject_interests = ( subject_interests if subject_interests else []) self.first_contribution_msec = first_contribution_msec self.preferred_language_codes = ( preferred_language_codes if preferred_language_codes else []) self.preferred_site_language_code = preferred_site_language_code self.preferred_audio_language_code = preferred_audio_language_code self.deleted = deleted def validate(self): """Checks that user_id and email fields of this UserSettings domain object are valid. Raises: ValidationError: user_id is not str. ValidationError: gae_id is not str. ValidationError: email is not str. ValidationError: email is invalid. ValidationError: role is not str. ValidationError: Given role does not exist. """ if not isinstance(self.user_id, python_utils.BASESTRING): raise utils.ValidationError( 'Expected user_id to be a string, received %s' % self.user_id) if not self.user_id: raise utils.ValidationError('No user id specified.') if (self.gae_id is not None and not isinstance(self.gae_id, python_utils.BASESTRING)): raise utils.ValidationError( 'Expected gae_id to be a string, received %s' % self.gae_id ) if not isinstance(self.email, python_utils.BASESTRING): raise utils.ValidationError( 'Expected email to be a string, received %s' % self.email) if not self.email: raise utils.ValidationError('No user email specified.') if ('@' not in self.email or self.email.startswith('@') or self.email.endswith('@')): raise utils.ValidationError( 'Invalid email address: %s' % self.email) if not isinstance(self.role, python_utils.BASESTRING): raise utils.ValidationError( 'Expected role to be a string, received %s' % self.role) if self.role not in role_services.PARENT_ROLES: raise utils.ValidationError('Role %s does not exist.' % self.role) if not isinstance( self.creator_dashboard_display_pref, python_utils.BASESTRING): raise utils.ValidationError( 'Expected dashboard display preference to be a string, ' 'received %s' % self.creator_dashboard_display_pref) if (self.creator_dashboard_display_pref not in list(constants.ALLOWED_CREATOR_DASHBOARD_DISPLAY_PREFS.values( ))): raise utils.ValidationError( '%s is not a valid value for the dashboard display ' 'preferences.' % (self.creator_dashboard_display_pref)) @property def truncated_email(self): """Returns truncated email by replacing last two characters before @ with period. Returns: str. The truncated email address of this UserSettings domain object. """ first_part = self.email[: self.email.find('@')] last_part = self.email[self.email.find('@'):] if len(first_part) <= 1: first_part = '..' elif len(first_part) <= 3: first_part = '%s..' % first_part[0] else: first_part = first_part[:-3] + '..' return '%s%s' % (first_part, last_part) @property def normalized_username(self): """Returns username in lowercase or None if it does not exist. Returns: str or None. If this object has a 'username' property, returns the normalized version of the username. Otherwise, returns None. """ return self.normalize_username(self.username) @classmethod def normalize_username(cls, username): """Returns the normalized version of the given username, or None if the passed-in 'username' is None. Args: username: str. Identifiable username to display in the UI. Returns: str or None. The normalized version of the given username, or None if the passed-in username is None. """ return username.lower() if username else None @classmethod def require_valid_username(cls, username): """Checks if the given username is valid or not. Args: username: str. The username to validate. Raises: ValidationError: An empty username is supplied. ValidationError: The given username exceeds the maximum allowed number of characters. ValidationError: The given username contains non-alphanumeric characters. ValidationError: The given username contains reserved substrings. """ if not username: raise utils.ValidationError('Empty username supplied.') elif len(username) > constants.MAX_USERNAME_LENGTH: raise utils.ValidationError( 'A username can have at most %s characters.' % constants.MAX_USERNAME_LENGTH) elif not re.match(feconf.ALPHANUMERIC_REGEX, username): raise utils.ValidationError( 'Usernames can only have alphanumeric characters.') else: # Disallow usernames that contain the system usernames or the # strings "admin" or "oppia". reserved_usernames = set(feconf.SYSTEM_USERS.values()) | set([ 'admin', 'oppia']) for reserved_username in reserved_usernames: if reserved_username in username.lower().strip(): raise utils.ValidationError( 'This username is not available.') def is_user_id_correct(user_id): """Verify that the user ID is in a correct format. Args: user_id: str. The user ID to be checked. Returns: bool. True when the ID is in a correct format, False otherwise. """ return all(( user_id.islower(), user_id.startswith('uid_'), len(user_id) == user_models.USER_ID_LENGTH)) def is_username_taken(username): """"Returns whether the given username has already been taken. Args: username: str. Identifiable username to display in the UI. Returns: bool. Whether the given username is taken. """ return user_models.UserSettingsModel.is_normalized_username_taken( UserSettings.normalize_username(username)) def get_email_from_user_id(user_id): """Gets the email from a given user_id. Args: user_id: str. The unique ID of the user. Returns: str. user_email corresponding to the given user_id. Raises: Exception: The user is not found. """ user_settings = get_user_settings(user_id) return user_settings.email def get_email_from_username(username): """Gets the email for a given username. Args: username: str. Identifiable username to display in the UI. Returns: str or None. If the user with given username does not exist, return None. Otherwise return the corresponding user_email. """ user_model = user_models.UserSettingsModel.get_by_normalized_username( UserSettings.normalize_username(username)) if user_model is None: return None else: return user_model.email def get_user_id_from_username(username): """Gets the user_id for a given username. Args: username: str. Identifiable username to display in the UI. Returns: str or None. If the user with given username does not exist, return None. Otherwise return the user_id corresponding to given username. """ user_model = user_models.UserSettingsModel.get_by_normalized_username( UserSettings.normalize_username(username)) if user_model is None: return None else: return user_model.id def get_user_settings_from_username(username): """Gets the user settings for a given username. Args: username: str. Identifiable username to display in the UI. Returns: UserSettingsModel or None. The UserSettingsModel instance corresponding to the given username, or None if no such model was found. """ user_model = user_models.UserSettingsModel.get_by_normalized_username( UserSettings.normalize_username(username)) if user_model is None: return None else: return get_user_settings(user_model.id) def get_users_settings(user_ids): """Gets domain objects representing the settings for the given user_ids. Args: user_ids: list(str). The list of user_ids to get UserSettings domain objects for. Returns: list(UserSettings|None). The UserSettings domain objects corresponding to the given user ids. If the given user_id does not exist, the corresponding entry in the returned list is None. """ user_settings_models = user_models.UserSettingsModel.get_multi(user_ids) result = [] for i, model in enumerate(user_settings_models): if user_ids[i] == feconf.SYSTEM_COMMITTER_ID: result.append(UserSettings( user_id=feconf.SYSTEM_COMMITTER_ID, gae_id=feconf.SYSTEM_COMMITTER_ID, email=feconf.SYSTEM_EMAIL_ADDRESS, role=feconf.ROLE_ID_ADMIN, username='admin', last_agreed_to_terms=datetime.datetime.utcnow() )) else: result.append(_transform_user_settings(model)) return result def generate_initial_profile_picture(user_id): """Generates a profile picture for a new user and updates the user's settings in the datastore. Args: user_id: str. The unique ID of the user. """ user_email = get_email_from_user_id(user_id) user_gravatar = fetch_gravatar(user_email) update_profile_picture_data_url(user_id, user_gravatar) def get_gravatar_url(email): """Returns the gravatar url for the specified email. Args: email: str. The user email. Returns: str. The gravatar url for the specified email. """ return ( 'https://www.gravatar.com/avatar/%s?d=identicon&s=%s' % (hashlib.md5(email).hexdigest(), GRAVATAR_SIZE_PX)) def fetch_gravatar(email): """Returns the gravatar corresponding to the user's email, or an identicon generated from the email if the gravatar doesn't exist. Args: email: str. The user email. Returns: str. The gravatar url corresponding to the given user email. If the call to the gravatar service fails, this returns DEFAULT_IDENTICON_DATA_URL and logs an error. """ gravatar_url = get_gravatar_url(email) try: result = urlfetch.fetch( gravatar_url, headers={'Content-Type': 'image/png'}, follow_redirects=False) except (urlfetch.InvalidURLError, urlfetch.DownloadError): logging.error('Failed to fetch Gravatar from %s' % gravatar_url) else: if result.status_code == 200: if imghdr.what(None, h=result.content) == 'png': return utils.convert_png_binary_to_data_url(result.content) else: logging.error( '[Status %s] Failed to fetch Gravatar from %s' % (result.status_code, gravatar_url)) return DEFAULT_IDENTICON_DATA_URL def get_user_settings(user_id, strict=False): """Return the user settings for a single user. Args: user_id: str. The unique ID of the user. strict: bool. Whether to fail noisily if no user with the given id exists in the datastore. Defaults to False. Returns: UserSettings or None. If the given user_id does not exist and strict is False, returns None. Otherwise, returns the corresponding UserSettings domain object. Raises: Exception: strict is True and given user_id does not exist. """ user_settings = get_users_settings([user_id])[0] if strict and user_settings is None: logging.error('Could not find user with id %s' % user_id) raise Exception('User not found.') return user_settings def get_user_settings_by_gae_id(gae_id, strict=False): """Return the user settings for a single user. Args: gae_id: str. The GAE user ID of the user. strict: bool. Whether to fail noisily if no user with the given id exists in the datastore. Defaults to False. Returns: UserSettings or None. If the given gae_id does not exist and strict is False, returns None. Otherwise, returns the corresponding UserSettings domain object. Raises: Exception: strict is True and given gae_id does not exist. """ user_settings = _transform_user_settings( user_models.UserSettingsModel.get_by_gae_id(gae_id)) if strict and user_settings is None: logging.error('Could not find user with id %s' % gae_id) raise Exception('User not found.') return user_settings def get_user_role_from_id(user_id): """Returns role of the user with given user_id. Args: user_id: str. The unique ID of the user. Returns: str. Role of the user with given id. """ user_settings = get_user_settings(user_id, strict=False) if user_settings is None: return feconf.ROLE_ID_GUEST return user_settings.role def get_user_community_rights(user_id): """Returns the UserCommunityRights domain object for the given user_id. Args: user_id: str. The unique ID of the user. Returns: UserCommunityRights. The UserCommunityRights domain object for the corresponding user. """ user_model = ( user_models.UserCommunityRightsModel.get_by_id(user_id)) if user_model is not None: return user_domain.UserCommunityRights( user_id, user_model.can_review_translation_for_language_codes, user_model.can_review_voiceover_for_language_codes, user_model.can_review_questions) else: return user_domain.UserCommunityRights(user_id, [], [], False) def get_all_community_reviewers(): """Returns a list of UserCommunityRights objects corresponding to each UserCommunityRightsModel. Returns: list(UserCommunityRights). A list of UserCommunityRights objects. """ reviewer_models = user_models.UserCommunityRightsModel.get_all() return [user_domain.UserCommunityRights( model.id, model.can_review_translation_for_language_codes, model.can_review_voiceover_for_language_codes, model.can_review_questions) for model in reviewer_models] def _save_user_community_rights(user_community_rights): """Saves the UserCommunityRights object into the datastore. Args: user_community_rights: UserCommunityRights. The UserCommunityRights object of the user. """ # TODO(#8794): Add limitation on number of reviewers allowed in any # category. user_community_rights.validate() user_models.UserCommunityRightsModel( id=user_community_rights.id, can_review_translation_for_language_codes=( user_community_rights.can_review_translation_for_language_codes), can_review_voiceover_for_language_codes=( user_community_rights.can_review_voiceover_for_language_codes), can_review_questions=user_community_rights.can_review_questions).put() def _update_user_community_rights(user_community_rights): """Updates the users rights model if the updated object has review rights in at least one item else delete the existing model. Args: user_community_rights: UserCommunityRights. The updated UserCommunityRights object of the user. """ if user_community_rights.can_review_at_least_one_item(): _save_user_community_rights(user_community_rights) else: remove_community_reviewer(user_community_rights.id) def get_usernames_by_role(role): """Get usernames of all the users with given role ID. Args: role: str. The role ID of users requested. Returns: list(str). List of usernames of users with given role ID. """ user_settings = user_models.UserSettingsModel.get_by_role(role) return [user.username for user in user_settings] def get_user_ids_by_role(role): """Get user ids of all the users with given role ID. Args: role: str. The role ID of users requested. Returns: list(str). List of user ids of users with given role ID. """ user_settings = user_models.UserSettingsModel.get_by_role(role) return [user.id for user in user_settings] class UserActionsInfo(python_utils.OBJECT): """A class representing information of user actions. Attributes: user_id: str. The unique ID of the user. role: str. The role ID of the user. actions: list(str). A list of actions accessible to the role. """ def __init__(self, user_id=None): self._user_id = user_id self._role = get_user_role_from_id(user_id) self._actions = role_services.get_all_actions(self._role) @property def user_id(self): """Returns the unique ID of the user. Returns: user_id: str. The unique ID of the user. """ return self._user_id @property def role(self): """Returns the role ID of user. Returns: role: str. The role ID of the user. """ return self._role @property def actions(self): """Returns list of actions accessible to a user. Returns: actions: list(str). List of actions accessible to a user ID. """ return self._actions def get_system_user(): """Returns user object with system committer user id. Returns: system_user: user object with system committer user id. """ system_user = UserActionsInfo(feconf.SYSTEM_COMMITTER_ID) return system_user def _save_user_settings(user_settings): """Commits a user settings object to the datastore. Args: user_settings: UserSettings domain object. """ user_settings.validate() user_settings_dict = { 'gae_id': user_settings.gae_id, 'email': user_settings.email, 'role': user_settings.role, 'username': user_settings.username, 'normalized_username': user_settings.normalized_username, 'last_agreed_to_terms': user_settings.last_agreed_to_terms, 'last_started_state_editor_tutorial': ( user_settings.last_started_state_editor_tutorial), 'last_started_state_translation_tutorial': ( user_settings.last_started_state_translation_tutorial), 'last_logged_in': user_settings.last_logged_in, 'last_edited_an_exploration': user_settings.last_edited_an_exploration, 'last_created_an_exploration': ( user_settings.last_created_an_exploration), 'profile_picture_data_url': user_settings.profile_picture_data_url, 'default_dashboard': user_settings.default_dashboard, 'creator_dashboard_display_pref': ( user_settings.creator_dashboard_display_pref), 'user_bio': user_settings.user_bio, 'subject_interests': user_settings.subject_interests, 'first_contribution_msec': user_settings.first_contribution_msec, 'preferred_language_codes': user_settings.preferred_language_codes, 'preferred_site_language_code': ( user_settings.preferred_site_language_code), 'preferred_audio_language_code': ( user_settings.preferred_audio_language_code), 'deleted': user_settings.deleted } # If user with the given user_id already exists, update that model # with the given user settings, otherwise, create a new one. user_model = user_models.UserSettingsModel.get_by_id(user_settings.user_id) if user_model is not None: user_model.populate(**user_settings_dict) user_model.put() else: user_settings_dict['id'] = user_settings.user_id user_models.UserSettingsModel(**user_settings_dict).put() def _transform_user_settings(user_settings_model): """Transform user settings storage model to domain object. Args: user_settings_model: UserSettingsModel. Returns: UserSettings. Domain object for user settings. """ if user_settings_model: return UserSettings( user_id=user_settings_model.id, gae_id=user_settings_model.gae_id, email=user_settings_model.email, role=user_settings_model.role, username=user_settings_model.username, last_agreed_to_terms=user_settings_model.last_agreed_to_terms, last_started_state_editor_tutorial=( user_settings_model.last_started_state_editor_tutorial), last_started_state_translation_tutorial=( user_settings_model.last_started_state_translation_tutorial), last_logged_in=user_settings_model.last_logged_in, last_edited_an_exploration=( user_settings_model.last_edited_an_exploration), last_created_an_exploration=( user_settings_model.last_created_an_exploration), profile_picture_data_url=( user_settings_model.profile_picture_data_url), default_dashboard=user_settings_model.default_dashboard, creator_dashboard_display_pref=( user_settings_model.creator_dashboard_display_pref), user_bio=user_settings_model.user_bio, subject_interests=user_settings_model.subject_interests, first_contribution_msec=( user_settings_model.first_contribution_msec), preferred_language_codes=( user_settings_model.preferred_language_codes), preferred_site_language_code=( user_settings_model.preferred_site_language_code), preferred_audio_language_code=( user_settings_model.preferred_audio_language_code), deleted=user_settings_model.deleted ) else: return None def is_user_registered(user_id): """Checks if a user is registered with the given user_id. Args: user_id: str. The unique ID of the user. Returns: bool. Whether a user with the given user_id is registered. """ if user_id is None: return False user_settings = user_models.UserSettingsModel.get(user_id, strict=False) return bool(user_settings) def has_ever_registered(user_id): """Checks if a user has ever been registered with given user_id. Args: user_id: str. The unique ID of the user. Returns: bool. Whether a user with the given user_id has ever been registered. """ user_settings = get_user_settings(user_id, strict=True) return bool(user_settings.username and user_settings.last_agreed_to_terms) def has_fully_registered(user_id): """Checks if a user has fully registered. Args: user_id: str. The unique ID of the user. Returns: bool. Whether a user with the given user_id has fully registered. """ if user_id is None: return False user_settings = get_user_settings(user_id, strict=True) return user_settings.username and user_settings.last_agreed_to_terms and ( user_settings.last_agreed_to_terms >= feconf.REGISTRATION_PAGE_LAST_UPDATED_UTC) def create_new_user(gae_id, email): """Creates a new user. Args: gae_id: str. The unique GAE user ID of the user. email: str. The user email. Returns: UserSettings. The newly-created user settings domain object. Raises: Exception: If a user with the given gae_id already exists. """ user_settings = get_user_settings(gae_id, strict=False) if user_settings is not None: raise Exception('User %s already exists.' % gae_id) user_id = user_models.UserSettingsModel.get_new_id('') user_settings = UserSettings( user_id, gae_id, email, feconf.ROLE_ID_EXPLORATION_EDITOR, preferred_language_codes=[constants.DEFAULT_LANGUAGE_CODE]) _save_user_settings(user_settings) create_user_contributions(user_id, [], []) return user_settings def get_username(user_id): """Gets username corresponding to the given user_id. Args: user_id: str. The unique ID of the user. Returns: str. Username corresponding to the given user_id. """ if user_id in feconf.SYSTEM_USERS: return feconf.SYSTEM_USERS[user_id] return get_user_settings(user_id, strict=True).username def get_usernames(user_ids): """Gets usernames corresponding to the given user_ids. Args: user_ids: list(str). The list of user_ids to get usernames for. Returns: list(str|None). Containing usernames based on given user_ids. If a user_id does not exist, the corresponding entry in the returned list is None. """ usernames = [None] * len(user_ids) non_system_user_indices = [] non_system_user_ids = [] for index, user_id in enumerate(user_ids): if user_id in feconf.SYSTEM_USERS: usernames[index] = feconf.SYSTEM_USERS[user_id] else: non_system_user_indices.append(index) non_system_user_ids.append(user_id) non_system_users_settings = get_users_settings(non_system_user_ids) for index, user_settings in enumerate(non_system_users_settings): if user_settings: usernames[non_system_user_indices[index]] = user_settings.username return usernames def set_username(user_id, new_username): """Updates the username of the user with the given user_id. Args: user_id: str. The unique ID of the user. new_username: str. The new username to set. Raises: ValidationError: The new_username supplied is already taken. """ user_settings = get_user_settings(user_id, strict=True) UserSettings.require_valid_username(new_username) if is_username_taken(new_username): raise utils.ValidationError( 'Sorry, the username \"%s\" is already taken! Please pick ' 'a different one.' % new_username) user_settings.username = new_username _save_user_settings(user_settings) def record_agreement_to_terms(user_id): """Records that the user with given user_id has agreed to the license terms. Args: user_id: str. The unique ID of the user. """ user_settings = get_user_settings(user_id, strict=True) user_settings.last_agreed_to_terms = datetime.datetime.utcnow() _save_user_settings(user_settings) def update_profile_picture_data_url(user_id, profile_picture_data_url): """Updates profile_picture_data_url of user with given user_id. Args: user_id: str. The unique ID of the user. profile_picture_data_url: str. New profile picture url to be set. """ user_settings = get_user_settings(user_id, strict=True) user_settings.profile_picture_data_url = profile_picture_data_url _save_user_settings(user_settings) def update_user_bio(user_id, user_bio): """Updates user_bio of user with given user_id. Args: user_id: str. The unique ID of the user. user_bio: str. New user biography to be set. """ user_settings = get_user_settings(user_id, strict=True) user_settings.user_bio = user_bio _save_user_settings(user_settings) def update_user_default_dashboard(user_id, default_dashboard): """Updates the default dashboard of user with given user id. Args: user_id: str. The unique ID of the user. default_dashboard: str. The dashboard the user wants. """ user_settings = get_user_settings(user_id, strict=True) user_settings.default_dashboard = default_dashboard _save_user_settings(user_settings) def update_user_creator_dashboard_display( user_id, creator_dashboard_display_pref): """Updates the creator dashboard preference of user with given user id. Args: user_id: str. The unique ID of the user. creator_dashboard_display_pref: str. The creator dashboard preference the user wants. """ user_settings = get_user_settings(user_id, strict=True) user_settings.creator_dashboard_display_pref = ( creator_dashboard_display_pref) _save_user_settings(user_settings) def update_subject_interests(user_id, subject_interests): """Updates subject_interests of user with given user_id. Args: user_id: str. The unique ID of the user. subject_interests: list(str). New subject interests to be set. """ if not isinstance(subject_interests, list): raise utils.ValidationError('Expected subject_interests to be a list.') else: for interest in subject_interests: if not isinstance(interest, python_utils.BASESTRING): raise utils.ValidationError( 'Expected each subject interest to be a string.') elif not interest: raise utils.ValidationError( 'Expected each subject interest to be non-empty.') elif not re.match(constants.TAG_REGEX, interest): raise utils.ValidationError( 'Expected each subject interest to consist only of ' 'lowercase alphabetic characters and spaces.') if len(set(subject_interests)) != len(subject_interests): raise utils.ValidationError( 'Expected each subject interest to be distinct.') user_settings = get_user_settings(user_id, strict=True) user_settings.subject_interests = subject_interests _save_user_settings(user_settings) def _update_first_contribution_msec(user_id, first_contribution_msec): """Updates first_contribution_msec of user with given user_id. Args: user_id: str. The unique ID of the user. first_contribution_msec: float. New time to set in milliseconds representing user's first contribution to Oppia. """ user_settings = get_user_settings(user_id, strict=True) user_settings.first_contribution_msec = first_contribution_msec _save_user_settings(user_settings) def update_first_contribution_msec_if_not_set(user_id, first_contribution_msec): """Updates first_contribution_msec of user with given user_id if it is set to None. Args: user_id: str. The unique ID of the user. first_contribution_msec: float. New time to set in milliseconds representing user's first contribution to Oppia. """ user_settings = get_user_settings(user_id, strict=True) if user_settings.first_contribution_msec is None: _update_first_contribution_msec( user_id, first_contribution_msec) def update_preferred_language_codes(user_id, preferred_language_codes): """Updates preferred_language_codes of user with given user_id. Args: user_id: str. The unique ID of the user. preferred_language_codes: list(str). New exploration language preferences to set. """ user_settings = get_user_settings(user_id, strict=True) user_settings.preferred_language_codes = preferred_language_codes _save_user_settings(user_settings) def update_preferred_site_language_code(user_id, preferred_site_language_code): """Updates preferred_site_language_code of user with given user_id. Args: user_id: str. The unique ID of the user. preferred_site_language_code: str. New system language preference to set. """ user_settings = get_user_settings(user_id, strict=True) user_settings.preferred_site_language_code = ( preferred_site_language_code) _save_user_settings(user_settings) def update_preferred_audio_language_code( user_id, preferred_audio_language_code): """Updates preferred_audio_language_code of user with given user_id. Args: user_id: str. The unique ID of the user. preferred_audio_language_code: str. New audio language preference to set. """ user_settings = get_user_settings(user_id, strict=True) user_settings.preferred_audio_language_code = ( preferred_audio_language_code) _save_user_settings(user_settings) def update_user_role(user_id, role): """Updates the role of the user with given user_id. Args: user_id: str. The unique ID of the user whose role is to be updated. role: str. The role to be assigned to user with given id. Raises: Exception: The given role does not exist. """ if role not in role_services.PARENT_ROLES: raise Exception('Role %s does not exist.' % role) user_settings = get_user_settings(user_id, strict=True) user_settings.role = role _save_user_settings(user_settings) def mark_user_for_deletion( user_id, exploration_ids, collection_ids): """Set deleted of the user with given user_id to True and create PendingDeletionRequestModel for that user. Args: user_id: str. The unique ID of the user who should be deleted. exploration_ids: list(str). List of exploration ids that were soft deleted and should be hard deleted later. collection_ids: list(str). List of collection ids that were soft deleted and should be hard deleted later. """ user_settings = get_user_settings(user_id, strict=True) user_settings.deleted = True _save_user_settings(user_settings) user_models.PendingDeletionRequestModel( id=user_id, email=user_settings.email, exploration_ids=exploration_ids, collection_ids=collection_ids, ).put() def get_human_readable_user_ids(user_ids): """Converts the given ids to usernames, or truncated email addresses. Requires all users to be known. Args: user_ids: list(str). The list of user_ids to get UserSettings domain objects for. Returns: list(str). List of usernames corresponding to given user_ids. If username does not exist, the corresponding entry in the returned list is the user's truncated email address. Raises: Exception: At least one of the user_ids does not correspond to a valid UserSettingsModel. """ users_settings = get_users_settings(user_ids) usernames = [] for ind, user_settings in enumerate(users_settings): if user_settings is None: logging.error('User id %s not known in list of user_ids %s' % ( user_ids[ind], user_ids)) raise Exception('User not found.') elif user_settings.user_id == feconf.SYSTEM_COMMITTER_ID: usernames.append('admin') elif user_settings.username: usernames.append(user_settings.username) else: usernames.append( '[Awaiting user registration: %s]' % user_settings.truncated_email) return usernames def record_user_started_state_editor_tutorial(user_id): """Updates last_started_state_editor_tutorial to the current datetime for the user with given user_id. Args: user_id: str. The unique ID of the user. """ user_settings = get_user_settings(user_id, strict=True) user_settings.last_started_state_editor_tutorial = ( datetime.datetime.utcnow()) _save_user_settings(user_settings) def record_user_started_state_translation_tutorial(user_id): """Updates last_started_state_translation_tutorial to the current datetime for the user with given user_id. Args: user_id: str. The unique ID of the user. """ user_settings = get_user_settings(user_id, strict=True) user_settings.last_started_state_translation_tutorial = ( datetime.datetime.utcnow()) _save_user_settings(user_settings) def record_user_logged_in(user_id): """Updates last_logged_in to the current datetime for the user with given user_id. Args: user_id: str. The unique ID of the user. """ user_settings = get_user_settings(user_id, strict=True) user_settings.last_logged_in = datetime.datetime.utcnow() _save_user_settings(user_settings) def update_last_logged_in(user_settings, new_last_logged_in): """Updates last_logged_in to the new given datetime for the user with given user_settings. Should only be used by tests. Args: user_settings: UserSettings. The UserSettings domain object. new_last_logged_in: datetime or None. The new datetime of the last logged in session. """ user_settings.last_logged_in = new_last_logged_in _save_user_settings(user_settings) def record_user_edited_an_exploration(user_id): """Updates last_edited_an_exploration to the current datetime for the user with given user_id. Args: user_id: str. The unique ID of the user. """ user_settings = get_user_settings(user_id) if user_settings: user_settings.last_edited_an_exploration = datetime.datetime.utcnow() _save_user_settings(user_settings) def record_user_created_an_exploration(user_id): """Updates last_created_an_exploration to the current datetime for the user with given user_id. Args: user_id: str. The unique ID of the user. """ user_settings = get_user_settings(user_id) if user_settings: user_settings.last_created_an_exploration = datetime.datetime.utcnow() _save_user_settings(user_settings) def update_email_preferences( user_id, can_receive_email_updates, can_receive_editor_role_email, can_receive_feedback_email, can_receive_subscription_email): """Updates whether the user has chosen to receive email updates. If no UserEmailPreferencesModel exists for this user, a new one will be created. Args: user_id: str. The unique ID of the user. can_receive_email_updates: bool. Whether the given user can receive email updates. can_receive_editor_role_email: bool. Whether the given user can receive emails notifying them of role changes. can_receive_feedback_email: bool. Whether the given user can receive emails when users submit feedback to their explorations. can_receive_subscription_email: bool. Whether the given user can receive emails related to his/her creator subscriptions. """ email_preferences_model = user_models.UserEmailPreferencesModel.get( user_id, strict=False) if email_preferences_model is None: email_preferences_model = user_models.UserEmailPreferencesModel( id=user_id) email_preferences_model.site_updates = can_receive_email_updates email_preferences_model.editor_role_notifications = ( can_receive_editor_role_email) email_preferences_model.feedback_message_notifications = ( can_receive_feedback_email) email_preferences_model.subscription_notifications = ( can_receive_subscription_email) email_preferences_model.put() def get_email_preferences(user_id): """Gives email preferences of user with given user_id. Args: user_id: str. The unique ID of the user. Returns: UserGlobalPrefs. Representing whether the user has chosen to receive email updates. """ email_preferences_model = user_models.UserEmailPreferencesModel.get( user_id, strict=False) if email_preferences_model is None: return user_domain.UserGlobalPrefs.create_default_prefs() else: return user_domain.UserGlobalPrefs( email_preferences_model.site_updates, email_preferences_model.editor_role_notifications, email_preferences_model.feedback_message_notifications, email_preferences_model.subscription_notifications) def flush_migration_bot_contributions_model(): """Cleans migration bot contributions model.""" user_contributions = get_user_contributions( feconf.MIGRATION_BOT_USER_ID, strict=False) if user_contributions is not None: user_contributions.edited_exploration_ids = [] user_contributions.created_exploration_ids = [] _save_user_contributions(user_contributions) def get_users_email_preferences(user_ids): """Get email preferences for the list of users. Args: user_ids: list(str). A list of user IDs for whom we want to get email preferences. Returns: list(UserGlobalPrefs). Representing whether the users had chosen to receive email updates. """ user_email_preferences_models = ( user_models.UserEmailPreferencesModel.get_multi(user_ids)) result = [] for email_preferences_model in user_email_preferences_models: if email_preferences_model is None: result.append( user_domain.UserGlobalPrefs.create_default_prefs()) else: result.append(user_domain.UserGlobalPrefs( email_preferences_model.site_updates, email_preferences_model.editor_role_notifications, email_preferences_model.feedback_message_notifications, email_preferences_model.subscription_notifications)) return result def set_email_preferences_for_exploration( user_id, exploration_id, mute_feedback_notifications=None, mute_suggestion_notifications=None): """Sets mute preferences for exploration with given exploration_id of user with given user_id. If no ExplorationUserDataModel exists for this user and exploration, a new one will be created. Args: user_id: str. The unique ID of the user. exploration_id: str. The exploration id. mute_feedback_notifications: bool. Whether the given user has muted feedback emails. Defaults to None. mute_suggestion_notifications: bool. Whether the given user has muted suggestion emails. Defaults to None. """ exploration_user_model = user_models.ExplorationUserDataModel.get( user_id, exploration_id) if exploration_user_model is None: exploration_user_model = user_models.ExplorationUserDataModel.create( user_id, exploration_id) if mute_feedback_notifications is not None: exploration_user_model.mute_feedback_notifications = ( mute_feedback_notifications) if mute_suggestion_notifications is not None: exploration_user_model.mute_suggestion_notifications = ( mute_suggestion_notifications) exploration_user_model.put() def get_email_preferences_for_exploration(user_id, exploration_id): """Gives mute preferences for exploration with given exploration_id of user with given user_id. Args: user_id: str. The unique ID of the user. exploration_id: str. The exploration id. Returns: UserExplorationPrefs. Representing whether the user has chosen to receive email updates for particular exploration. """ exploration_user_model = user_models.ExplorationUserDataModel.get( user_id, exploration_id) if exploration_user_model is None: return user_domain.UserExplorationPrefs.create_default_prefs() else: return user_domain.UserExplorationPrefs( exploration_user_model.mute_feedback_notifications, exploration_user_model.mute_suggestion_notifications) def get_users_email_preferences_for_exploration(user_ids, exploration_id): """Gives mute preferences for exploration with given exploration_id of user with given user_id. Args: user_ids: list(str). A list of user IDs for whom we want to get email preferences. exploration_id: str. The exploration id. Returns: list(UserExplorationPrefs). Representing whether the users has chosen to receive email updates for particular exploration. """ exploration_user_models = ( user_models.ExplorationUserDataModel.get_multi( user_ids, exploration_id)) result = [] for exploration_user_model in exploration_user_models: if exploration_user_model is None: result.append( user_domain.UserExplorationPrefs.create_default_prefs()) else: result.append(user_domain.UserExplorationPrefs( exploration_user_model.mute_feedback_notifications, exploration_user_model.mute_suggestion_notifications)) return result class UserContributions(python_utils.OBJECT): """Value object representing a user's contributions. Attributes: user_id: str. The unique ID of the user. created_exploration_ids: list(str). IDs of explorations that this user has created. edited_exploration_ids: list(str). IDs of explorations that this user has edited. """ def __init__( self, user_id, created_exploration_ids, edited_exploration_ids): """Constructs a UserContributions domain object. Args: user_id: str. The unique ID of the user. created_exploration_ids: list(str). IDs of explorations that this user has created. edited_exploration_ids: list(str). IDs of explorations that this user has edited. """ self.user_id = user_id self.created_exploration_ids = created_exploration_ids self.edited_exploration_ids = edited_exploration_ids def validate(self): """Checks that user_id, created_exploration_ids and edited_exploration_ids fields of this UserContributions domain object are valid. Raises: ValidationError: user_id is not str. ValidationError: created_exploration_ids is not a list. ValidationError: exploration_id in created_exploration_ids is not str. ValidationError: edited_exploration_ids is not a list. ValidationError: exploration_id in edited_exploration_ids is not str. """ if not isinstance(self.user_id, python_utils.BASESTRING): raise utils.ValidationError( 'Expected user_id to be a string, received %s' % self.user_id) if not self.user_id: raise utils.ValidationError('No user id specified.') if not isinstance(self.created_exploration_ids, list): raise utils.ValidationError( 'Expected created_exploration_ids to be a list, received %s' % self.created_exploration_ids) for exploration_id in self.created_exploration_ids: if not isinstance(exploration_id, python_utils.BASESTRING): raise utils.ValidationError( 'Expected exploration_id in created_exploration_ids ' 'to be a string, received %s' % ( exploration_id)) if not isinstance(self.edited_exploration_ids, list): raise utils.ValidationError( 'Expected edited_exploration_ids to be a list, received %s' % self.edited_exploration_ids) for exploration_id in self.edited_exploration_ids: if not isinstance(exploration_id, python_utils.BASESTRING): raise utils.ValidationError( 'Expected exploration_id in edited_exploration_ids ' 'to be a string, received %s' % ( exploration_id)) def get_user_contributions(user_id, strict=False): """Gets domain object representing the contributions for the given user_id. Args: user_id: str. The unique ID of the user. strict: bool. Whether to fail noisily if no user with the given id exists in the datastore. Defaults to False. Returns: UserContributions or None. If the given user_id does not exist, return None. Otherwise, return the corresponding UserContributions domain object. """ model = user_models.UserContributionsModel.get(user_id, strict=strict) if model is not None: result = UserContributions( model.id, model.created_exploration_ids, model.edited_exploration_ids) else: result = None return result def create_user_contributions( user_id, created_exploration_ids, edited_exploration_ids): """Creates a new UserContributionsModel and returns the domain object. Args: user_id: str. The unique ID of the user. created_exploration_ids: list(str). IDs of explorations that this user has created. edited_exploration_ids: list(str). IDs of explorations that this user has edited. Returns: UserContributions. The domain object representing the newly-created UserContributionsModel. Raises: Exception: The UserContributionsModel for the given user_id already exists. """ user_contributions = get_user_contributions(user_id, strict=False) if user_contributions: raise Exception( 'User contributions model for user %s already exists.' % user_id) else: user_contributions = UserContributions( user_id, created_exploration_ids, edited_exploration_ids) _save_user_contributions(user_contributions) return user_contributions def update_user_contributions( user_id, created_exploration_ids, edited_exploration_ids): """Updates an existing UserContributionsModel with new calculated contributions. Args: user_id: str. The unique ID of the user. created_exploration_ids: list(str). IDs of explorations that this user has created. edited_exploration_ids: list(str). IDs of explorations that this user has edited. Raises: Exception: The UserContributionsModel for the given user_id does not exist. """ user_contributions = get_user_contributions(user_id, strict=False) if not user_contributions: raise Exception( 'User contributions model for user %s does not exist.' % user_id) user_contributions.created_exploration_ids = created_exploration_ids user_contributions.edited_exploration_ids = edited_exploration_ids _save_user_contributions(user_contributions) def add_created_exploration_id(user_id, exploration_id): """Adds an exploration_id to a user_id's UserContributionsModel collection of created explorations. Args: user_id: str. The unique ID of the user. exploration_id: str. The exploration id. """ user_contributions = get_user_contributions(user_id, strict=False) if not user_contributions: create_user_contributions(user_id, [exploration_id], []) elif exploration_id not in user_contributions.created_exploration_ids: user_contributions.created_exploration_ids.append(exploration_id) user_contributions.created_exploration_ids.sort() _save_user_contributions(user_contributions) def add_edited_exploration_id(user_id, exploration_id): """Adds an exploration_id to a user_id's UserContributionsModel collection of edited explorations. Args: user_id: str. The unique ID of the user. exploration_id: str. The exploration id. """ user_contributions = get_user_contributions(user_id, strict=False) if not user_contributions: create_user_contributions(user_id, [], [exploration_id]) elif exploration_id not in user_contributions.edited_exploration_ids: user_contributions.edited_exploration_ids.append(exploration_id) user_contributions.edited_exploration_ids.sort() _save_user_contributions(user_contributions) def _save_user_contributions(user_contributions): """Commits a user contributions object to the datastore. Args: user_contributions: UserContributions. Value object representing a user's contributions. """ user_contributions.validate() user_models.UserContributionsModel( id=user_contributions.user_id, created_exploration_ids=user_contributions.created_exploration_ids, edited_exploration_ids=user_contributions.edited_exploration_ids, ).put() def _migrate_dashboard_stats_to_latest_schema(versioned_dashboard_stats): """Holds responsibility of updating the structure of dashboard stats. Args: versioned_dashboard_stats: UserStatsModel. Value object representing user-specific statistics. Raises: Exception: If schema_version > CURRENT_DASHBOARD_STATS_SCHEMA_VERSION. """ stats_schema_version = versioned_dashboard_stats.schema_version if not (1 <= stats_schema_version <= feconf.CURRENT_DASHBOARD_STATS_SCHEMA_VERSION): raise Exception( 'Sorry, we can only process v1-v%d dashboard stats schemas at ' 'present.' % feconf.CURRENT_DASHBOARD_STATS_SCHEMA_VERSION) def get_current_date_as_string(): """Gets the current date. Returns: str. Current date as a string of format 'YYYY-MM-DD'. """ return datetime.datetime.utcnow().strftime( feconf.DASHBOARD_STATS_DATETIME_STRING_FORMAT) def parse_date_from_string(datetime_str): """Parses the given string, and returns the year, month and day of the date that it represents. Args: datetime_str: str. String representing datetime. Returns: dict. Representing date with year, month and day as keys. """ datetime_obj = datetime.datetime.strptime( datetime_str, feconf.DASHBOARD_STATS_DATETIME_STRING_FORMAT) return { 'year': datetime_obj.year, 'month': datetime_obj.month, 'day': datetime_obj.day } def get_user_impact_score(user_id): """Gets the user impact score for the given user_id. Args: user_id: str. The unique ID of the user. Returns: float. The user impact score associated with the given user_id. Returns 0 if UserStatsModel does not exist for the given user_id. """ model = user_models.UserStatsModel.get(user_id, strict=False) if model: return model.impact_score else: return 0 def get_weekly_dashboard_stats(user_id): """Gets weekly dashboard stats for a given user_id. Args: user_id: str. The unique ID of the user. Returns: list(dict): The weekly dashboard stats for the given user. Each dict in the list denotes the dashboard stats of the user, keyed by a datetime string. The stats currently being saved are: - 'average ratings': Average of ratings across all explorations of a user. - 'total plays': Total number of plays across all explorations of a user. The format of returned value: [ { {{datetime_string_1}}: { 'num_ratings': (value), 'average_ratings': (value), 'total_plays': (value) } }, { {{datetime_string_2}}: { 'num_ratings': (value), 'average_ratings': (value), 'total_plays': (value) } } ] If the user doesn't exist, then this function returns None. """ model = user_models.UserStatsModel.get(user_id, strict=False) if model and model.weekly_creator_stats_list: return model.weekly_creator_stats_list else: return None def get_last_week_dashboard_stats(user_id): """Gets last week's dashboard stats for a given user_id. Args: user_id: str. The unique ID of the user. Returns: dict or None: The dict denotes last week dashboard stats of the user, and contains a single key-value pair. The key is the datetime string and the value is the dashboard stats in the format: { 'num_ratings': (value), 'average_ratings': (value), 'total_plays': (value) } If the user doesn't exist, then this function returns None. """ weekly_dashboard_stats = get_weekly_dashboard_stats(user_id) if weekly_dashboard_stats: return weekly_dashboard_stats[-1] else: return None def update_dashboard_stats_log(user_id): """Save statistics for creator dashboard of a user by appending to a list keyed by a datetime string. Args: user_id: str. The unique ID of the user. """ model = user_models.UserStatsModel.get_or_create(user_id) if model.schema_version != feconf.CURRENT_DASHBOARD_STATS_SCHEMA_VERSION: _migrate_dashboard_stats_to_latest_schema(model) weekly_dashboard_stats = { get_current_date_as_string(): { 'num_ratings': model.num_ratings or 0, 'average_ratings': model.average_ratings, 'total_plays': model.total_plays or 0 } } model.weekly_creator_stats_list.append(weekly_dashboard_stats) model.put() def is_at_least_moderator(user_id): """Checks if a user with given user_id is at least a moderator. Args: user_id: str. The unique ID of the user. Returns: bool. True if user is atleast a moderator, False otherwise. """ user_role = get_user_role_from_id(user_id) if (user_role == feconf.ROLE_ID_MODERATOR or user_role == feconf.ROLE_ID_ADMIN): return True return False def is_admin(user_id): """Checks if a user with given user_id is an admin. Args: user_id: str. The unique ID of the user. Returns: bool. True if user is an admin, False otherwise. """ user_role = get_user_role_from_id(user_id) if user_role == feconf.ROLE_ID_ADMIN: return True return False def is_topic_manager(user_id): """Checks if a user with given user_id is a topic manager. Args: user_id: str. The unique ID of the user. Returns: bool. Whether the user is a topic manager. """ user_role = get_user_role_from_id(user_id) if user_role == feconf.ROLE_ID_TOPIC_MANAGER: return True return False def can_review_translation_suggestions(user_id, language_code=None): """Returns whether the user can review translation suggestions in any language or in the given language. NOTE: If the language_code is provided then this method will check whether the user can review translations in the given language code. Otherwise, it will check whether the user can review in any language. Args: user_id: str. The unique ID of the user. language_code: str. The code of the language. Returns: bool. Whether the user can review translation suggestions in any language or in the given language. """ user_community_rights = get_user_community_rights(user_id) reviewable_language_codes = ( user_community_rights.can_review_translation_for_language_codes) if language_code is not None: return language_code in reviewable_language_codes else: return bool(reviewable_language_codes) def can_review_voiceover_applications(user_id, language_code=None): """Returns whether the user can review voiceover applications in any language or in the given language. NOTE: If the language_code is provided then this method will check whether the user can review voiceover in the given language code else it will check whether the user can review in any language. Args: user_id: str. The unique ID of the user. language_code: str. The code of the language. Returns: bool. Whether the user can review voiceover applications in any language or in the given language. """ user_community_rights = get_user_community_rights(user_id) reviewable_language_codes = ( user_community_rights.can_review_voiceover_for_language_codes) if language_code is not None: return language_code in reviewable_language_codes else: return bool(reviewable_language_codes) def can_review_question_suggestions(user_id): """Checks whether the user can review question suggestions. Args: user_id: str. The unique ID of the user. Returns: bool. Whether the user can review question suggestions. """ user_community_rights = get_user_community_rights(user_id) return user_community_rights.can_review_questions def allow_user_to_review_translation_in_language(user_id, language_code): """Allows the user with the given user id to review translation in the given language_code. Args: user_id: str. The unique ID of the user. language_code: str. The code of the language. Callers should ensure that the user does not have rights to review translations in the given language code. """ user_community_rights = get_user_community_rights(user_id) allowed_language_codes = set( user_community_rights.can_review_translation_for_language_codes) allowed_language_codes.add(language_code) user_community_rights.can_review_translation_for_language_codes = ( sorted(list(allowed_language_codes))) _save_user_community_rights(user_community_rights) def remove_translation_review_rights_in_language(user_id, language_code): """Removes the user's review rights to translation suggestions in the given language_code. Args: user_id: str. The unique ID of the user. language_code: str. The code of the language. Callers should ensure that the user already has rights to review translations in the given language code. """ user_community_rights = get_user_community_rights(user_id) user_community_rights.can_review_translation_for_language_codes.remove( language_code) _update_user_community_rights(user_community_rights) def allow_user_to_review_voiceover_in_language(user_id, language_code): """Allows the user with the given user id to review voiceover applications in the given language_code. Args: user_id: str. The unique ID of the user. language_code: str. The code of the language. Callers should ensure that the user does not have rights to review voiceovers in the given language code. """ user_community_rights = get_user_community_rights(user_id) allowed_language_codes = set( user_community_rights.can_review_voiceover_for_language_codes) allowed_language_codes.add(language_code) user_community_rights.can_review_voiceover_for_language_codes = ( sorted(list(allowed_language_codes))) _save_user_community_rights(user_community_rights) def remove_voiceover_review_rights_in_language(user_id, language_code): """Removes the user's review rights to voiceover applications in the given language_code. Args: user_id: str. The unique ID of the user. language_code: str. The code of the language. Callers should ensure that the user already has rights to review voiceovers in the given language code. """ user_community_rights = get_user_community_rights(user_id) user_community_rights.can_review_voiceover_for_language_codes.remove( language_code) _update_user_community_rights(user_community_rights) def allow_user_to_review_question(user_id): """Allows the user with the given user id to review question suggestions. Args: user_id: str. The unique ID of the user. Callers should ensure that the given user does not have rights to review questions. """ user_community_rights = get_user_community_rights(user_id) user_community_rights.can_review_questions = True _save_user_community_rights(user_community_rights) def remove_question_review_rights(user_id): """Removes the user's review rights to question suggestions. Args: user_id: str. The unique ID of the user. Callers should ensure that the given user already has rights to review questions. """ user_community_rights = get_user_community_rights(user_id) user_community_rights.can_review_questions = False _update_user_community_rights(user_community_rights) def remove_community_reviewer(user_id): """Deletes the UserCommunityRightsModel corresponding to the given user_id. Args: user_id: str. The unique ID of the user. """ user_community_rights_model = ( user_models.UserCommunityRightsModel.get_by_id(user_id)) if user_community_rights_model is not None: user_community_rights_model.delete() def get_community_reviewer_usernames(review_category, language_code=None): """Returns a list of usernames of users who has rights to review item of given review category. Args: review_category: str. The review category to find the list of reviewers for. language_code: None|str. The language code for translation or voiceover review category. Returns: list(str.) A list of usernames. """ reviewer_ids = [] if review_category == constants.REVIEW_CATEGORY_TRANSLATION: reviewer_ids = ( user_models.UserCommunityRightsModel .get_translation_reviewer_user_ids(language_code)) elif review_category == constants.REVIEW_CATEGORY_VOICEOVER: reviewer_ids = ( user_models.UserCommunityRightsModel .get_voiceover_reviewer_user_ids(language_code)) elif review_category == constants.REVIEW_CATEGORY_QUESTION: if language_code is not None: raise Exception('Expected language_code to be None, found: %s' % ( language_code)) reviewer_ids = ( user_models.UserCommunityRightsModel .get_question_reviewer_user_ids()) else: raise Exception('Invalid review category: %s' % review_category) return get_usernames(reviewer_ids) def log_username_change(committer_id, old_username, new_username): """Stores the query to role structure in UsernameChangeAuditModel. Args: committer_id: str. The ID of the user that is making the change. old_username: str. The current username that is being changed. new_username: str. The new username that the current one is being changed to. """ model_id = '%s.%d' % (committer_id, utils.get_current_time_in_millisecs()) audit_models.UsernameChangeAuditModel( id=model_id, committer_id=committer_id, old_username=old_username, new_username=new_username).put()
#!/usr/bin/env python # coding=utf-8 from .traj_gen_base import TrajGen import numpy as np import casadi as ca from scipy.interpolate import interp1d class CHOMPTrajGen(TrajGen): def __init__(self, knots_, dim_, pntDensity_): super().__init__(knots_, dim_) self.pntDensity = pntDensity_ assert knots_.shape[0]==2, 'For optimalTraj, knots = [t0, tf]' self.num_variables = int(np.floor((knots_[-1]-knots_[0])*pntDensity_)) self.dt = (knots_[-1]-knots_[0])/(self.num_variables-1) self.ts = np.linspace(knots_[0], knots_[-1], self.num_variables) # different from Ts self.Xs = np.zeros((self.dim, self.num_variables)) def findStepIndex(self, t): """ find the closest index of the segment """ time_diff = (self.ts-t)**2 return np.where(time_diff==np.min(time_diff))[0][0] def setDerivativeObj(self, weight_mask): self.weight_mask = weight_mask def addPin(self, pin_): if pin_['d'] >= self.num_variables: print("Warning: The degree of the pin exceed the total number of variables. This pin ignored\n") super().addPin(pin_) X_ = pin_['X'] m = 0 if len(X_.shape) == 2: # 2 dimension ==> loose pin if m in self.loosePinSet.keys(): self.loosePinSet[m].append(pin_) else: self.loosePinSet[m] = [pin_] elif len(X_.shape) == 1: # vector ==> fix pin if m in self.fixPinSet.keys(): self.fixPinSet[m].append(pin_) else: self.fixPinSet[m] = [pin_] else: print("Warning: Dim of pin value is invalid\n") def getDiffMat(self, d_): if d_ == 0: mat_ = np.diag(np.ones(self.num_variables)) else: mat_ = np.diag(np.ones(self.num_variables)) for j in range(1, d_+1): D_ = np.zeros((self.num_variables-j, self.num_variables-j+1)) for i in range(self.num_variables-j): D_[i, i:i+2] = np.array([-1, 1]) D_ = D_/self.dt mat_ = np.dot(D_, mat_) return mat_ def loosePin2InequalityMat(self,): ASet = None BSet = None if len(self.loosePinSet.keys()) == 0: return ASet, BSet for pin in self.loosePinSet[0]: a_set_ = [] b_set_ = [] for dd in range(self.dim): n_ = np.min([self.findStepIndex(pin['t']), self.num_variables-pin['d']-1]) a_ = np.zeros((2, self.num_variables-pin['d'])) a_[:, n_] = np.array([1, -1]) a_ = np.dot(a_, self.getDiffMat(pin['d'])) a_set_.append(a_) b_ = np.array([pin['X'][dd, 1], -pin['X'][dd, 0]]).reshape(-1, 1) b_set_.append(b_) if ASet is None: ASet = np.array(a_set_) BSet = np.array(b_set_).reshape(self.dim, -1, 1) else: ASet = np.concatenate((ASet, np.array(a_set_)), axis=1) BSet = np.concatenate((BSet, np.array(b_set_).reshape(self.dim, -1, 1)), axis=1) print('Bset final in {}'.format(BSet.shape)) return ASet, BSet def fixPin2EqualityMat(self,): AeqSet = None BeqSet = None if len(self.fixPinSet.keys())==0: return AeqSet, BeqSet for pin in self.fixPinSet[0]: aeq_set_ = [] beq_set_ = [] for dd in range(self.dim): n_ = np.min([self.findStepIndex(pin['t']), self.num_variables-pin['d']-1]) a_ = np.zeros(self.num_variables-pin['d']) a_[n_] = 1.0 a_ = np.dot(a_, self.getDiffMat(pin['d'])) aeq_set_.append(a_) # print(aeq_set_) b_ = pin['X'][dd] beq_set_.append(b_) if AeqSet is None: AeqSet = np.array(aeq_set_).reshape(self.dim, 1, -1) BeqSet = np.array(beq_set_).reshape(self.dim, 1, -1) # print(AeqSet.shape) # print(BeqSet.shape) else: AeqSet = np.concatenate((AeqSet, np.array(aeq_set_).reshape(self.dim, 1, -1)), axis=1) BeqSet = np.concatenate((BeqSet, np.array(beq_set_).reshape(self.dim, 1, -1)), axis=1) # print(BeqSet.shape) return AeqSet, BeqSet def getQPset(self,): # 1. objective QSet = np.zeros((self.dim, self.num_variables, self.num_variables)) for dd in range(self.dim): Q_ = np.zeros((self.num_variables, self.num_variables)) for d in range(1, self.weight_mask.shape[0]+1): if self.weight_mask[d-1]>0: temp_ = self.getDiffMat(d) Qd_ = np.dot(temp_.T, temp_) Q_ = Q_ + self.weight_mask[d-1]*Qd_ QSet[dd] = Q_ # 2. constraints ASet, BSet = self.loosePin2InequalityMat() AeqSet, BeqSet = self.fixPin2EqualityMat() return QSet, ASet, BSet, AeqSet, BeqSet def solve(self,): self.isSolved = True # prepare QP QSet, ASet, BSet, AeqSet, BeqSet = self.getQPset() if ASet is None: print("Please define the beginning and also the end pins") return False for dd in range(self.dim): print('solving {}-th dimension.. \n'.format(dd)) x_sym = ca.SX.sym('x', QSet[0].shape[0]) opts_setting = {'ipopt.max_iter':100, 'ipopt.print_level':0, 'print_time':0, 'ipopt.acceptable_tol':1e-8, 'ipopt.acceptable_obj_change_tol':1e-6} obj = ca.mtimes([x_sym.T, QSet[dd], x_sym]) if ASet is None: a_set = AeqSet[dd].copy() else: a_set = np.concatenate((ASet[dd], AeqSet[dd])) Ax_sym = ca.mtimes([a_set, x_sym]) if BSet is None: b_set_u = BeqSet[dd] b_set_l = BeqSet[dd] else: b_set_u = np.concatenate((BSet[dd], BeqSet[dd]), axis=0) # Ax <= b_set_u b_set_l = np.concatenate((-np.inf*np.ones(BSet[dd].shape), BeqSet[dd]), axis=0) # Ax >= b_set_l nlp_prob = {'f': obj, 'x': x_sym, 'g':Ax_sym} solver = ca.nlpsol('solver', 'ipopt', nlp_prob, opts_setting) try: result = solver(lbg=b_set_l, ubg=b_set_u,) Phat_ = result['x'] # print(Phat_) flag_ = True except: Phat_ = None flag_ = False if flag_: self.Xs[dd] = Phat_.full().flatten() else: self.isSolved = False print("Failure ..") return False return True def eval(self, t_, d_): val_ = np.zeros((self.dim, t_.shape[0])) for dd in range(self.dim): for idx in range(t_.shape[0]): t_i = t_[idx] if t_i < self.Ts[0] or t_i > self.Ts[-1]: print("WARNING: Eval of t: out of bound. Extrapolation\n") Xsd_ = np.dot(self.getDiffMat(d_), self.Xs[dd].T) if d_ >0: t_v_ = self.ts[:-d_] else: t_v_ = self.ts # print(t_v_.shape) # print(Xsd_.shape) set_interp = interp1d(t_v_, Xsd_, kind='linear') # print(t_v_[-1]) # print(t_[idx]) if t_[idx] <= t_v_[-1]: val_[dd, idx] = set_interp(t_[idx]) else: val_[dd, idx] = set_interp(t_v_[-1]) return val_
"""Package setup script.""" from setuptools import setup, find_packages # Python packaging constants CLASSIFIERS = [ 'Development Status :: 2 - Pre-Alpha', 'Intended Audience :: Developers', 'Natural Language :: English', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', ] LICENSES = { 'MIT license': 'License :: OSI Approved :: MIT License', 'BSD license': 'License :: OSI Approved :: BSD License', 'Apache Software License 2.0': 'License :: OSI Approved :: Apache Software License', 'GNU General Public License v3': 'License :: OSI Approved :: GNU General Public License v3 (GPLv3)' } REQUIREMENTS = { 'install': [], 'setup': ['pytest-runner'], 'tests': ['pytest'] } # Project constants EMAIL = 'infosmith@prontonmail.com' FULL_NAME = "David S." GITHUB_ACCOUNT = 'infosmith' LICENSE = 'MIT license' PROJECT_SLUG = 'helpers' PROJECT_SHORT_DESCRIPTION = 'Improved developer experience, accumulated.' VERSION = '0.3.0' # Project conditional configuration if 'MIT license' in LICENSES.keys(): CLASSIFIERS.append(LICENSES['MIT license']) # Configure project setup( author=FULL_NAME, author_email=EMAIL, classifiers=CLASSIFIERS, description=PROJECT_SHORT_DESCRIPTION, include_package_data=True, install_requires=REQUIREMENTS['install'], keywords=PROJECT_SLUG, license=LICENSE, name=PROJECT_SLUG, packages=find_packages(include=[PROJECT_SLUG]), setup_requires=REQUIREMENTS['setup'], test_suite='tests', tests_require=REQUIREMENTS['tests'], url="https://github.com/{}/{}".format(GITHUB_ACCOUNT, PROJECT_SLUG), version=VERSION, zip_safe=False, )
""" WSGI config for DiscordOauth2 project. It exposes the WSGI callable as a module-level variable named ``application``. For more information on this file, see https://docs.djangoproject.com/en/3.2/howto/deployment/wsgi/ """ import os from django.core.wsgi import get_wsgi_application os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'DiscordOauth2.settings') application = get_wsgi_application()
""" A module to show off a timed animation using coroutines Making timed animations is messy, because we have to add a lot of class attributes for all of the loop variables. A cleaner way is to do this with coroutines. Each animation is its own coroutine. The advantage of the coroutine is that yield allows you to pause to let the game class draw. If you do not do that, then your loop will keep going and you will never get a chance to draw. And if you do not draw, there is no animation. Author: Walker M. White (wmw2) Date: November 20, 2019 """ import introcs import random import math from game2d import * import time import random ############# CONSTANTS ############# # Window Size WINDOW_WIDTH = 512 WINDOW_HEIGHT = 512 # THE ANIMATION SPEED IN SECONDS ANIMATION_SPEED = 1 ############# CONTROLLER CLASS ############# class Animation(GameApp): """ This class is an application to animate an image with the arrow keys At each step, the update() method checks for key input and moves the image accordingly. Attribute view : the view (inherited from GameApp) Invariant: view is an instance of GView Attribute image: the image to animate Invariant: image is a GImage made from a PNG file """ # Attribute _animator: A coroutine for performing an animation # Invariant: _animator is a generator-based coroutine (or None) # THE THREE MAIN METHODS def start(self): """ Initializes the application, creating new attributes. """ self.image = GImage(x=WINDOW_WIDTH/2,y=WINDOW_HEIGHT/2,source='Walker.png') self.image.angle = 0 # Doing this prevents a slow down due to initialization self._animator = None def update(self,dt): """ Animates the image. Parameter dt: The time since the last animation frame. Precondition: dt is a float. """ if not self._animator is None: # We have something to animate try: self._animator.send(dt) # Tell it how far to animate except: self._animator = None # Stop animating elif self.input.is_key_down('left'): self._animator = self._animate_turn('left') next(self._animator) # Start up the animator elif self.input.is_key_down('right'): self._animator = self._animate_turn('right') next(self._animator) # Start up the animator elif self.input.is_key_down('up'): self._animator = self._animate_slide('up') next(self._animator) # Start up the animator elif self.input.is_key_down('down'): self._animator = self._animate_slide('down') next(self._animator) # Start up the animator def draw(self): """ Draws the image """ self.image.draw(self.view) def _animate_turn(self,direction): """ Animates a rotation of the image over ANIMATION_SPEED seconds This method is a coroutine that takes a break (so that the game can redraw the image) every time it moves it. The coroutine takes the dt as periodic input so it knows how many (parts of) seconds to animate. Parameter dt: The time since the last animation frame. Precondition: dt is a float. Parameter direction: The direction to rotate. Precondition: direction is a string and one of 'left' or 'right'. """ sangle = self.image.angle if direction == 'left': fangle = sangle+90 else: fangle = sangle-90 # Degrees per second steps = (fangle-sangle)/ANIMATION_SPEED animating = True while animating: # Get the current time dt = (yield) amount = steps*dt # Update the angle self.image.angle = self.image.angle+amount # If we go to far, clamp and stop animating if abs(self.image.angle-sangle) >= 90: self.image.angle = fangle animating = False def _animate_slide(self,direction): """ Animates a vertical up or down of the image over ANIMATION_SPEED seconds This method is a coroutine that takes a break (so that the game can redraw the image) every time it moves it. The coroutine takes the dt as periodic input so it knows how many (parts of) seconds to animate. Parameter dt: The time since the last animation frame. Precondition: dt is a float. Parameter direction: The direction to slide. Precondition: direction is a string and one of 'up' or 'down'. """ svert = self.image.y if direction == 'up': fvert = svert+self.image.height else: fvert = svert-self.image.height # Degrees per second steps = (fvert-svert)/ANIMATION_SPEED animating = True while animating: # Get the current time dt = (yield) amount = steps*dt # Update the angle self.image.y = self.image.y+amount # If we go to far, clamp and stop animating if abs(self.image.y-svert) >= self.image.height: self.image.y = fvert animating = False # Application Code if __name__ == '__main__': Animation(left=150,width=WINDOW_WIDTH,height=WINDOW_HEIGHT,fps=60.0).run()
# -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- # Generated file, DO NOT EDIT # Changes may cause incorrect behavior and will be lost if the code is regenerated. # -------------------------------------------------------------------------------------------- from msrest.serialization import Model class ApiResourceLocation(Model): """ApiResourceLocation. """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'area': {'key': 'area', 'type': 'str'}, 'resource_name': {'key': 'resourceName', 'type': 'str'}, 'route_template': {'key': 'routeTemplate', 'type': 'str'}, 'resource_version': {'key': 'resourceVersion', 'type': 'int'}, 'min_version': {'key': 'minVersion', 'type': 'float'}, 'max_version': {'key': 'maxVersion', 'type': 'float'}, 'released_version': {'key': 'releasedVersion', 'type': 'str'}, } def __init__(self, id=None, area=None, resource_name=None, route_template=None, resource_version=None, min_version=None, max_version=None, released_version=None): super(ApiResourceLocation, self).__init__() self.id = id self.area = area self.resource_name = resource_name self.route_template = route_template self.resource_version = resource_version self.min_version = min_version self.max_version = max_version self.released_version = released_version class ImproperException(Model): """ImproperException. :param message: :type message: str """ _attribute_map = { 'message': {'key': 'Message', 'type': 'str'} } def __init__(self, message=None): super(ImproperException, self).__init__() self.message = message class SystemException(Model): """SystemException. :param class_name: :type class_name: str :param inner_exception: :type inner_exception: :class:`SystemException <vsts.models.SystemException>` :param message: :type message: str """ _attribute_map = { 'class_name': {'key': 'ClassName', 'type': 'str'}, 'message': {'key': 'Message', 'type': 'str'}, 'inner_exception': {'key': 'InnerException', 'type': 'SystemException'} } def __init__(self, class_name=None, message=None, inner_exception=None): super(SystemException, self).__init__() self.class_name = class_name self.message = message self.inner_exception = inner_exception class VssJsonCollectionWrapperBase(Model): """VssJsonCollectionWrapperBase. :param count: :type count: int """ _attribute_map = { 'count': {'key': 'count', 'type': 'int'} } def __init__(self, count=None): super(VssJsonCollectionWrapperBase, self).__init__() self.count = count class WrappedException(Model): """WrappedException. :param exception_id: :type exception_id: str :param inner_exception: :type inner_exception: :class:`WrappedException <vsts.models.WrappedException>` :param message: :type message: str :param type_name: :type type_name: str :param type_key: :type type_key: str :param error_code: :type error_code: int :param event_id: :type event_id: int :param custom_properties: :type custom_properties: dict """ _attribute_map = { 'exception_id': {'key': '$id', 'type': 'str'}, 'inner_exception': {'key': 'innerException', 'type': 'WrappedException'}, 'message': {'key': 'message', 'type': 'str'}, 'type_name': {'key': 'typeName', 'type': 'str'}, 'type_key': {'key': 'typeKey', 'type': 'str'}, 'error_code': {'key': 'errorCode', 'type': 'int'}, 'event_id': {'key': 'eventId', 'type': 'int'}, 'custom_properties': {'key': 'customProperties', 'type': '{object}'} } def __init__(self, exception_id=None, inner_exception=None, message=None, type_name=None, type_key=None, error_code=None, event_id=None, custom_properties=None): super(WrappedException, self).__init__() self.exception_id = exception_id self.inner_exception = inner_exception self.message = message self.type_name = type_name self.type_key = type_key self.error_code = error_code self.event_id = event_id self.custom_properties = custom_properties class VssJsonCollectionWrapper(VssJsonCollectionWrapperBase): """VssJsonCollectionWrapper. :param count: :type count: int :param value: :type value: object """ _attribute_map = { 'count': {'key': 'count', 'type': 'int'}, 'value': {'key': 'value', 'type': 'object'} } def __init__(self, count=None, value=None): super(VssJsonCollectionWrapper, self).__init__(count=count) self.value = value
#from lib2to3.pytree import convert import socket import sys import _thread import json import os import time import zmq IP_ADDRESS = '127.0.0.1' TOPIC = None fila_msgs = [] conf = [] # Envia os dados def enviar(): ctx = zmq.Context() sock = ctx.socket(zmq.PUB) sock.connect(f"tcp://{IP_ADDRESS}:5500") codigo = 5 # Executa uma acao de acordo com o codigo informado while True: if(len(fila_msgs) == 0): pass else: data = fila_msgs.pop(0) data_converted = json.loads(data) codigo = data_converted['codigo'] if(codigo == 1): msg_json = data TOPIC = 'login' sock.send_string(f"{TOPIC}", flags=zmq.SNDMORE) sock.send_json(msg_json) codigo = 5 if (codigo == 2): msg_json = data TOPIC = 'cadastrar' sock.send_string(f"{TOPIC}", flags=zmq.SNDMORE) sock.send_json(msg_json) codigo = 5 if codigo == 4 : msg_json = data TOPIC = 'usuario' sock.send_string(f"{TOPIC}", flags=zmq.SNDMORE) sock.send_json(msg_json) codigo = 5 if codigo == 9: msg_json = data TOPIC = 'pedirListaAnuncios' sock.send_string(f"{TOPIC}", flags=zmq.SNDMORE) sock.send_json(msg_json) codigo = 5 if codigo == 10: msg_json = data TOPIC = 'anuncio' sock.send_string(f"{TOPIC}", flags=zmq.SNDMORE) sock.send_json(msg_json) codigo = 5 # Recebe a confirmacao do broker def receberConfirmacao(): ctx = zmq.Context() sock = ctx.socket(zmq.SUB) sock.connect(f"tcp://{IP_ADDRESS}:5501") while True: TOPIC = 'confirmacao' sock.subscribe(f"{TOPIC}") msg_string = sock.recv_string() msg_json = sock.recv_json() #print(msg_json) # Dados da confirmacao data = msg_json data_converted = json.loads(data) codigo = data_converted['codigo'] codigo2 = data_converted['codigo2'] confirmacao = data_converted['confirmacao'] # Adiciona a confirmacao conf.append(confirmacao) # Recebe a lista de anuncios def receberAnuncios(): ctx = zmq.Context() sock = ctx.socket(zmq.SUB) sock.connect(f"tcp://{IP_ADDRESS}:5501") while True: # Recebe os dados do usuario TOPIC = 'anuncios' sock.subscribe(f"{TOPIC}") msg_string = sock.recv_string() msg_json = sock.recv_json() #print(msg_json) # Mostra os dados do usuario data = msg_json anuncios = json.loads(data) os.system('clear') or None for anuncio in anuncios: print("================================") print('Anuncio ID: ', anuncio['id']) print('Produto ID: ', anuncio['produto_id']) print('Descricao: ', anuncio['descricao']) print('De cliente: ', anuncio['de_cliente']) print('Data: ', anuncio['data']) print("================================") # Recebe o perfil def verPerfil(): ctx = zmq.Context() sock = ctx.socket(zmq.SUB) sock.connect(f"tcp://{IP_ADDRESS}:5501") while True: # Recebe os dados do usuario TOPIC = 'dados_usuario' sock.subscribe(f"{TOPIC}") msg_string = sock.recv_string() msg_json = sock.recv_json() #print(msg_json) # Mostra os dados do usuario data = msg_json converted = json.loads(data) nome = converted['nome'] dataNasc = converted['nascimento'] cpf = converted['cpf'] email = converted['email'] senha = converted['senha'] os.system('clear') or None print("================================") print("Nome : " + nome) print("Data de Nascimento : " + dataNasc) print("CPF : " + cpf) print("Email : " + email) print("Senha : " + senha) print("================================") # Roda o menu def client(): _thread.start_new_thread(enviar,()) _thread.start_new_thread(receberConfirmacao,()) _thread.start_new_thread(verPerfil,()) ri = 'nao' ctx = zmq.Context() sock = ctx.socket(zmq.PUB) sock.connect(f"tcp://{IP_ADDRESS}:5500") opc = None #time.sleep(20) while opc != "4" : os.system('clear') or None print("================================") print(" 1 - Logar") print(" 2 - Criar Conta") print(" 4 - Sair") print("================================") opc = input('Digite uma Opcao: ') if opc == '1' : os.system('clear') or None email = input("Digite o email: ") senha = input("Digite a senha: ") msg= {} msg ['codigo'] = 1 msg ['codigo2'] = 1 msg ['email'] = email msg ['senha'] = senha msg_json = json.dumps(msg) fila_msgs.append(msg_json) if opc == '2': os.system('clear') or None nome = input("Digite o seu nome: ") nascimento = input("Digite sua data Nascimento: ") endereco = input("Digite seu endereço: ") cpf = input("Digite seu cpf: ") email = input("Digite seu Email: ") senha = input("Digite sua senha: ") msg= {} msg ['codigo'] = 2 msg ['codigo2'] = 2 msg ['nome'] = nome msg ['nascimento'] = nascimento msg ['endereco'] = endereco msg ['cpf'] = cpf msg ['email'] = email msg ['senha'] = senha msg_json = json.dumps(msg) fila_msgs.append(msg_json) if __name__ == "__main__": client()
# Authors: # Trevor Perrin # Martin von Loewis - python 3 port # Yngve Pettersen (ported by Paul Sokolovsky) - TLS 1.2 # # See the LICENSE file for legal information regarding use of this file. """cryptomath module This module has basic math/crypto code.""" from __future__ import print_function import os import math import base64 import binascii from .compat import * # ************************************************************************** # Load Optional Modules # ************************************************************************** # Try to load M2Crypto/OpenSSL try: from M2Crypto import m2 m2cryptoLoaded = True except ImportError: m2cryptoLoaded = False #Try to load GMPY try: import gmpy gmpyLoaded = True except ImportError: gmpyLoaded = False #Try to load pycrypto try: import Crypto.Cipher.AES pycryptoLoaded = True except ImportError: pycryptoLoaded = False # ************************************************************************** # PRNG Functions # ************************************************************************** # Check that os.urandom works import zlib length = len(zlib.compress(os.urandom(1000))) assert(length > 900) def getRandomBytes(howMany): b = bytearray(os.urandom(howMany)) assert(len(b) == howMany) return b prngName = "os.urandom" # ************************************************************************** # Simple hash functions # ************************************************************************** import hmac import hashlib def MD5(b): return bytearray(hashlib.md5(compat26Str(b)).digest()) def SHA1(b): return bytearray(hashlib.sha1(compat26Str(b)).digest()) def SHA256(b): return bytearray(hashlib.sha256(compat26Str(b)).digest()) def HMAC_MD5(k, b): k = compatHMAC(k) b = compatHMAC(b) return bytearray(hmac.new(k, b, hashlib.md5).digest()) def HMAC_SHA1(k, b): k = compatHMAC(k) b = compatHMAC(b) return bytearray(hmac.new(k, b, hashlib.sha1).digest()) def HMAC_SHA256(k, b): k = compatHMAC(k) b = compatHMAC(b) return bytearray(hmac.new(k, b, hashlib.sha256).digest()) # ************************************************************************** # Converter Functions # ************************************************************************** def bytesToNumber(b): total = 0 multiplier = 1 for count in range(len(b)-1, -1, -1): byte = b[count] total += multiplier * byte multiplier *= 256 return total def numberToByteArray(n, howManyBytes=None): """Convert an integer into a bytearray, zero-pad to howManyBytes. The returned bytearray may be smaller than howManyBytes, but will not be larger. The returned bytearray will contain a big-endian encoding of the input integer (n). """ if howManyBytes == None: howManyBytes = numBytes(n) b = bytearray(howManyBytes) for count in range(howManyBytes-1, -1, -1): b[count] = int(n % 256) n >>= 8 return b def mpiToNumber(mpi): #mpi is an openssl-format bignum string if (ord(mpi[4]) & 0x80) !=0: #Make sure this is a positive number raise AssertionError() b = bytearray(mpi[4:]) return bytesToNumber(b) def numberToMPI(n): b = numberToByteArray(n) ext = 0 #If the high-order bit is going to be set, #add an extra byte of zeros if (numBits(n) & 0x7)==0: ext = 1 length = numBytes(n) + ext b = bytearray(4+ext) + b b[0] = (length >> 24) & 0xFF b[1] = (length >> 16) & 0xFF b[2] = (length >> 8) & 0xFF b[3] = length & 0xFF return bytes(b) # ************************************************************************** # Misc. Utility Functions # ************************************************************************** def numBits(n): if n==0: return 0 s = "%x" % n return ((len(s)-1)*4) + \ {'0':0, '1':1, '2':2, '3':2, '4':3, '5':3, '6':3, '7':3, '8':4, '9':4, 'a':4, 'b':4, 'c':4, 'd':4, 'e':4, 'f':4, }[s[0]] return int(math.floor(math.log(n, 2))+1) def numBytes(n): if n==0: return 0 bits = numBits(n) return int(math.ceil(bits / 8.0)) # ************************************************************************** # Big Number Math # ************************************************************************** def getRandomNumber(low, high): if low >= high: raise AssertionError() howManyBits = numBits(high) howManyBytes = numBytes(high) lastBits = howManyBits % 8 while 1: bytes = getRandomBytes(howManyBytes) if lastBits: bytes[0] = bytes[0] % (1 << lastBits) n = bytesToNumber(bytes) if n >= low and n < high: return n def gcd(a,b): a, b = max(a,b), min(a,b) while b: a, b = b, a % b return a def lcm(a, b): return (a * b) // gcd(a, b) #Returns inverse of a mod b, zero if none #Uses Extended Euclidean Algorithm def invMod(a, b): c, d = a, b uc, ud = 1, 0 while c != 0: q = d // c c, d = d-(q*c), c uc, ud = ud - (q * uc), uc if d == 1: return ud % b return 0 if gmpyLoaded: def powMod(base, power, modulus): base = gmpy.mpz(base) power = gmpy.mpz(power) modulus = gmpy.mpz(modulus) result = pow(base, power, modulus) return long(result) else: def powMod(base, power, modulus): if power < 0: result = pow(base, power*-1, modulus) result = invMod(result, modulus) return result else: return pow(base, power, modulus) #Pre-calculate a sieve of the ~100 primes < 1000: def makeSieve(n): sieve = list(range(n)) for count in range(2, int(math.sqrt(n))+1): if sieve[count] == 0: continue x = sieve[count] * 2 while x < len(sieve): sieve[x] = 0 x += sieve[count] sieve = [x for x in sieve[2:] if x] return sieve sieve = makeSieve(1000) def isPrime(n, iterations=5, display=False): #Trial division with sieve for x in sieve: if x >= n: return True if n % x == 0: return False #Passed trial division, proceed to Rabin-Miller #Rabin-Miller implemented per Ferguson & Schneier #Compute s, t for Rabin-Miller if display: print("*", end=' ') s, t = n-1, 0 while s % 2 == 0: s, t = s//2, t+1 #Repeat Rabin-Miller x times a = 2 #Use 2 as a base for first iteration speedup, per HAC for count in range(iterations): v = powMod(a, s, n) if v==1: continue i = 0 while v != n-1: if i == t-1: return False else: v, i = powMod(v, 2, n), i+1 a = getRandomNumber(2, n) return True def getRandomPrime(bits, display=False): if bits < 10: raise AssertionError() #The 1.5 ensures the 2 MSBs are set #Thus, when used for p,q in RSA, n will have its MSB set # #Since 30 is lcm(2,3,5), we'll set our test numbers to #29 % 30 and keep them there low = ((2 ** (bits-1)) * 3) // 2 high = 2 ** bits - 30 p = getRandomNumber(low, high) p += 29 - (p % 30) while 1: if display: print(".", end=' ') p += 30 if p >= high: p = getRandomNumber(low, high) p += 29 - (p % 30) if isPrime(p, display=display): return p #Unused at the moment... def getRandomSafePrime(bits, display=False): if bits < 10: raise AssertionError() #The 1.5 ensures the 2 MSBs are set #Thus, when used for p,q in RSA, n will have its MSB set # #Since 30 is lcm(2,3,5), we'll set our test numbers to #29 % 30 and keep them there low = (2 ** (bits-2)) * 3//2 high = (2 ** (bits-1)) - 30 q = getRandomNumber(low, high) q += 29 - (q % 30) while 1: if display: print(".", end=' ') q += 30 if (q >= high): q = getRandomNumber(low, high) q += 29 - (q % 30) #Ideas from Tom Wu's SRP code #Do trial division on p and q before Rabin-Miller if isPrime(q, 0, display=display): p = (2 * q) + 1 if isPrime(p, display=display): if isPrime(q, display=display): return p
""" Files for testing. """ import base64 import tempfile from PIL import Image from six import BytesIO __all__ = ( 'BASE64_PREFIX', 'TEMPORARY_FILE_LIST', 'TEMPORARY_FILE_LIST_FILE_CONTENT', 'TEMPORARY_FILE_LIST_FILE_BASE64', 'TEMPORARY_FILE_VIEW', 'TEMPORARY_FILE_VIEW_FILE_CONTENT', 'TEMPORARY_FILE_VIEW_FILE_BASE64', 'TEMPORARY_FILE_ADD', 'TEMPORARY_FILE_ADD_FILE_CONTENT', 'TEMPORARY_FILE_ADD_FILE_BASE64', 'TEMPORARY_FILE_CHANGE', 'TEMPORARY_FILE_CHANGE_FILE_CONTENT', 'TEMPORARY_FILE_CHANGE_FILE_BASE64', 'TEMPORARY_FILE_CHANGE_CHANGED', 'TEMPORARY_FILE_CHANGE_CHANGED_FILE_CONTENT', 'TEMPORARY_FILE_CHANGE_CHANGED_FILE_BASE64', 'TEMPORARY_FILE_DELETE', 'TEMPORARY_FILE_DELETE_FILE_CONTENT', 'TEMPORARY_FILE_DELETE_FILE_BASE64', ) def get_temporary_file(prefix): """Get a temporary file. :return: """ image = Image.new('RGBA', size=(100, 100), color=(256, 0, 0)) tmp_file = BytesIO() _tmp_file = tempfile.NamedTemporaryFile(prefix=prefix, suffix='.png') image.save(tmp_file, "PNG") tmp_file.seek(0) tmp_file.name = _tmp_file.name return tmp_file BASE64_PREFIX = 'data:image/png;base64,' TEMPORARY_FILE_LIST = get_temporary_file(prefix='LIST') TEMPORARY_FILE_LIST_FILE_CONTENT = TEMPORARY_FILE_LIST.read() TEMPORARY_FILE_LIST_FILE_BASE64 = BASE64_PREFIX + base64.b64encode( TEMPORARY_FILE_LIST_FILE_CONTENT ).decode() TEMPORARY_FILE_LIST.seek(0) TEMPORARY_FILE_VIEW = get_temporary_file(prefix='VIEW') TEMPORARY_FILE_VIEW_FILE_CONTENT = TEMPORARY_FILE_VIEW.read() TEMPORARY_FILE_VIEW_FILE_BASE64 = BASE64_PREFIX + base64.b64encode( TEMPORARY_FILE_VIEW_FILE_CONTENT ).decode() TEMPORARY_FILE_VIEW.seek(0) TEMPORARY_FILE_ADD = get_temporary_file(prefix='ADD') TEMPORARY_FILE_ADD_FILE_CONTENT = TEMPORARY_FILE_ADD.read() TEMPORARY_FILE_ADD_FILE_BASE64 = BASE64_PREFIX + base64.b64encode( TEMPORARY_FILE_ADD_FILE_CONTENT ).decode() TEMPORARY_FILE_ADD.seek(0) TEMPORARY_FILE_CHANGE = get_temporary_file(prefix='CHANGE') TEMPORARY_FILE_CHANGE_FILE_CONTENT = TEMPORARY_FILE_CHANGE.read() TEMPORARY_FILE_CHANGE_FILE_BASE64 = BASE64_PREFIX + base64.b64encode( TEMPORARY_FILE_CHANGE_FILE_CONTENT ).decode() TEMPORARY_FILE_CHANGE.seek(0) TEMPORARY_FILE_CHANGE_CHANGED = get_temporary_file(prefix='CHANGE_CHANGED') TEMPORARY_FILE_CHANGE_CHANGED_FILE_CONTENT = \ TEMPORARY_FILE_CHANGE_CHANGED.read() TEMPORARY_FILE_CHANGE_CHANGED_FILE_BASE64 = BASE64_PREFIX + base64.b64encode( TEMPORARY_FILE_CHANGE_CHANGED_FILE_CONTENT ).decode() TEMPORARY_FILE_CHANGE_CHANGED.seek(0) TEMPORARY_FILE_DELETE = get_temporary_file(prefix='DELETE') TEMPORARY_FILE_DELETE_FILE_CONTENT = TEMPORARY_FILE_DELETE.read() TEMPORARY_FILE_DELETE_FILE_BASE64 = BASE64_PREFIX + base64.b64encode( TEMPORARY_FILE_DELETE_FILE_CONTENT ).decode() TEMPORARY_FILE_DELETE.seek(0)