INSTRUCTION
stringlengths 1
8.43k
| RESPONSE
stringlengths 75
104k
|
|---|---|
Aligns the times to the closest frame times ( e. g. beats ).
|
def align_times(times, frames):
"""Aligns the times to the closest frame times (e.g. beats).
Parameters
----------
times: np.ndarray
Times in seconds to be aligned.
frames: np.ndarray
Frame times in seconds.
Returns
-------
aligned_times: np.ndarray
Aligned times.
"""
dist = np.minimum.outer(times, frames)
bound_frames = np.argmax(np.maximum(0, dist), axis=1)
aligned_times = np.unique(bound_frames)
return aligned_times
|
Finds the correct estimation from all the estimations contained in a JAMS file given the specified arguments.
|
def find_estimation(jam, boundaries_id, labels_id, params):
"""Finds the correct estimation from all the estimations contained in a
JAMS file given the specified arguments.
Parameters
----------
jam : jams.JAMS
JAMS object.
boundaries_id : str
Identifier of the algorithm used to compute the boundaries.
labels_id : str
Identifier of the algorithm used to compute the labels.
params : dict
Additional search parameters. E.g. {"feature" : "pcp"}.
Returns
-------
ann : jams.Annotation
Found estimation.
`None` if it couldn't be found.
"""
# Use handy JAMS search interface
namespace = "multi_segment" if params["hier"] else "segment_open"
# TODO: This is a workaround to issue in JAMS. Should be
# resolved in JAMS 0.2.3, but for now, this works too.
ann = jam.search(namespace=namespace).\
search(**{"Sandbox.boundaries_id": boundaries_id}).\
search(**{"Sandbox.labels_id": lambda x:
(isinstance(x, six.string_types) and
re.match(labels_id, x) is not None) or x is None})
for key, val in zip(params.keys(), params.values()):
if isinstance(val, six.string_types):
ann = ann.search(**{"Sandbox.%s" % key: val})
else:
ann = ann.search(**{"Sandbox.%s" % key: lambda x: x == val})
# Check estimations found
if len(ann) > 1:
logging.warning("More than one estimation with same parameters.")
if len(ann) > 0:
ann = ann[0]
# If we couldn't find anything, let's return None
if not ann:
ann = None
return ann
|
Saves the segment estimations in a JAMS file.
|
def save_estimations(file_struct, times, labels, boundaries_id, labels_id,
**params):
"""Saves the segment estimations in a JAMS file.
Parameters
----------
file_struct : FileStruct
Object with the different file paths of the current file.
times : np.array or list
Estimated boundary times.
If `list`, estimated hierarchical boundaries.
labels : np.array(N, 2)
Estimated labels (None in case we are only storing boundary
evaluations).
boundaries_id : str
Boundary algorithm identifier.
labels_id : str
Labels algorithm identifier.
params : dict
Dictionary with additional parameters for both algorithms.
"""
# Remove features if they exist
params.pop("features", None)
# Get duration
dur = get_duration(file_struct.features_file)
# Convert to intervals and sanity check
if 'numpy' in str(type(times)):
# Flat check
inters = utils.times_to_intervals(times)
assert len(inters) == len(labels), "Number of boundary intervals " \
"(%d) and labels (%d) do not match" % (len(inters), len(labels))
# Put into lists to simplify the writing process later
inters = [inters]
labels = [labels]
else:
# Hierarchical check
inters = []
for level in range(len(times)):
est_inters = utils.times_to_intervals(times[level])
inters.append(est_inters)
assert len(inters[level]) == len(labels[level]), \
"Number of boundary intervals (%d) and labels (%d) do not " \
"match in level %d" % (len(inters[level]), len(labels[level]),
level)
# Create new estimation
namespace = "multi_segment" if params["hier"] else "segment_open"
ann = jams.Annotation(namespace=namespace)
# Find estimation in file
if os.path.isfile(file_struct.est_file):
jam = jams.load(file_struct.est_file, validate=False)
curr_ann = find_estimation(jam, boundaries_id, labels_id, params)
if curr_ann is not None:
curr_ann.data = ann.data # cleanup all data
ann = curr_ann # This will overwrite the existing estimation
else:
jam.annotations.append(ann)
else:
# Create new JAMS if it doesn't exist
jam = jams.JAMS()
jam.file_metadata.duration = dur
jam.annotations.append(ann)
# Save metadata and parameters
ann.annotation_metadata.version = msaf.__version__
ann.annotation_metadata.data_source = "MSAF"
sandbox = {}
sandbox["boundaries_id"] = boundaries_id
sandbox["labels_id"] = labels_id
sandbox["timestamp"] = \
datetime.datetime.today().strftime("%Y/%m/%d %H:%M:%S")
for key in params:
sandbox[key] = params[key]
ann.sandbox = sandbox
# Save actual data
for i, (level_inters, level_labels) in enumerate(zip(inters, labels)):
for bound_inter, label in zip(level_inters, level_labels):
dur = float(bound_inter[1]) - float(bound_inter[0])
label = chr(int(label) + 65)
if params["hier"]:
value = {"label": label, "level": i}
else:
value = label
ann.append(time=bound_inter[0], duration=dur,
value=value)
# Write results
jam.save(file_struct.est_file)
|
Gets all the possible boundary algorithms in MSAF.
|
def get_all_boundary_algorithms():
"""Gets all the possible boundary algorithms in MSAF.
Returns
-------
algo_ids : list
List of all the IDs of boundary algorithms (strings).
"""
algo_ids = []
for name in msaf.algorithms.__all__:
module = eval(msaf.algorithms.__name__ + "." + name)
if module.is_boundary_type:
algo_ids.append(module.algo_id)
return algo_ids
|
Gets all the possible label ( structural grouping ) algorithms in MSAF.
|
def get_all_label_algorithms():
"""Gets all the possible label (structural grouping) algorithms in MSAF.
Returns
-------
algo_ids : list
List of all the IDs of label algorithms (strings).
"""
algo_ids = []
for name in msaf.algorithms.__all__:
module = eval(msaf.algorithms.__name__ + "." + name)
if module.is_label_type:
algo_ids.append(module.algo_id)
return algo_ids
|
Gets the configuration dictionary from the current parameters of the algorithms to be evaluated.
|
def get_configuration(feature, annot_beats, framesync, boundaries_id,
labels_id):
"""Gets the configuration dictionary from the current parameters of the
algorithms to be evaluated."""
config = {}
config["annot_beats"] = annot_beats
config["feature"] = feature
config["framesync"] = framesync
bound_config = {}
if boundaries_id != "gt":
bound_config = \
eval(msaf.algorithms.__name__ + "." + boundaries_id).config
config.update(bound_config)
if labels_id is not None:
label_config = \
eval(msaf.algorithms.__name__ + "." + labels_id).config
# Make sure we don't have parameter name duplicates
if labels_id != boundaries_id:
overlap = set(bound_config.keys()). \
intersection(set(label_config.keys()))
assert len(overlap) == 0, \
"Parameter %s must not exist both in %s and %s algorithms" % \
(overlap, boundaries_id, labels_id)
config.update(label_config)
return config
|
Gets the files of the given dataset.
|
def get_dataset_files(in_path):
"""Gets the files of the given dataset."""
# Get audio files
audio_files = []
for ext in ds_config.audio_exts:
audio_files += glob.glob(
os.path.join(in_path, ds_config.audio_dir, "*" + ext))
# Make sure directories exist
utils.ensure_dir(os.path.join(in_path, ds_config.features_dir))
utils.ensure_dir(os.path.join(in_path, ds_config.estimations_dir))
utils.ensure_dir(os.path.join(in_path, ds_config.references_dir))
# Get the file structs
file_structs = []
for audio_file in audio_files:
file_structs.append(FileStruct(audio_file))
# Sort by audio file name
file_structs = sorted(file_structs,
key=lambda file_struct: file_struct.audio_file)
return file_structs
|
Reads hierarchical references from a jams file.
|
def read_hier_references(jams_file, annotation_id=0, exclude_levels=[]):
"""Reads hierarchical references from a jams file.
Parameters
----------
jams_file : str
Path to the jams file.
annotation_id : int > 0
Identifier of the annotator to read from.
exclude_levels: list
List of levels to exclude. Empty list to include all levels.
Returns
-------
hier_bounds : list
List of the segment boundary times in seconds for each level.
hier_labels : list
List of the segment labels for each level.
hier_levels : list
List of strings for the level identifiers.
"""
hier_bounds = []
hier_labels = []
hier_levels = []
jam = jams.load(jams_file)
namespaces = ["segment_salami_upper", "segment_salami_function",
"segment_open", "segment_tut", "segment_salami_lower"]
# Remove levels if needed
for exclude in exclude_levels:
if exclude in namespaces:
namespaces.remove(exclude)
# Build hierarchy references
for ns in namespaces:
ann = jam.search(namespace=ns)
if not ann:
continue
ref_inters, ref_labels = ann[annotation_id].to_interval_values()
hier_bounds.append(utils.intervals_to_times(ref_inters))
hier_labels.append(ref_labels)
hier_levels.append(ns)
return hier_bounds, hier_labels, hier_levels
|
Reads the duration of a given features file.
|
def get_duration(features_file):
"""Reads the duration of a given features file.
Parameters
----------
features_file: str
Path to the JSON file containing the features.
Returns
-------
dur: float
Duration of the analyzed file.
"""
with open(features_file) as f:
feats = json.load(f)
return float(feats["globals"]["dur"])
|
Writes results to file using the standard MIREX format.
|
def write_mirex(times, labels, out_file):
"""Writes results to file using the standard MIREX format.
Parameters
----------
times: np.array
Times in seconds of the boundaries.
labels: np.array
Labels associated to the segments defined by the boundaries.
out_file: str
Output file path to save the results.
"""
inters = msaf.utils.times_to_intervals(times)
assert len(inters) == len(labels)
out_str = ""
for inter, label in zip(inters, labels):
out_str += "%.3f\t%.3f\t%s\n" % (inter[0], inter[1], label)
with open(out_file, "w") as f:
f.write(out_str[:-1])
|
Gets the desired dataset file.
|
def _get_dataset_file(self, dir, ext):
"""Gets the desired dataset file."""
audio_file_ext = "." + self.audio_file.split(".")[-1]
base_file = os.path.basename(self.audio_file).replace(
audio_file_ext, ext)
return os.path.join(self.ds_path, dir, base_file)
|
Main process. Returns ------- est_idxs: np. array ( N ) Estimated indeces the segment boundaries in frame indeces. est_labels: np. array ( N - 1 ) Estimated labels for the segments.
|
def processFlat(self):
"""Main process.
Returns
-------
est_idxs : np.array(N)
Estimated indeces the segment boundaries in frame indeces.
est_labels : np.array(N-1)
Estimated labels for the segments.
"""
# Preprocess to obtain features (array(n_frames, n_features))
F = self._preprocess()
# Do something with the default parameters
# (these are defined in the in the config.py file).
assert self.config["my_param1"] == 1.0
# Identify boundaries in frame indeces with the new algorithm
my_bounds = np.array([0, F.shape[0] - 1])
# Label the segments (use -1 to have empty segments)
my_labels = np.ones(len(my_bounds) - 1) * -1
# Post process estimations
est_idxs, est_labels = self._postprocess(my_bounds, my_labels)
# We're done!
return est_idxs, est_labels
|
Load a ground - truth segmentation and align times to the nearest detected beats.
|
def align_segmentation(beat_times, song):
'''Load a ground-truth segmentation, and align times to the nearest
detected beats.
Arguments:
beat_times -- array
song -- path to the audio file
Returns:
segment_beats -- array
beat-aligned segment boundaries
segment_times -- array
true segment times
segment_labels -- array
list of segment labels
'''
try:
segment_times, segment_labels = msaf.io.read_references(song)
except:
return None, None, None
segment_times = np.asarray(segment_times)
# Map to intervals
segment_intervals = msaf.utils.times_to_intervals(segment_times)
# Map beats to intervals
beat_intervals = np.asarray(zip(beat_times[:-1], beat_times[1:]))
# Map beats to segments
beat_segment_ids = librosa.util.match_intervals(beat_intervals,
segment_intervals)
segment_beats = []
segment_times_out = []
segment_labels_out = []
# print segment_times, beat_segment_ids, len(beat_times),
# len(beat_segment_ids)
for i in range(segment_times.shape[0]):
hits = np.argwhere(beat_segment_ids == i)
if len(hits) > 0 and i < len(segment_intervals) and \
i < len(segment_labels):
segment_beats.extend(hits[0])
segment_times_out.append(segment_intervals[i, :])
segment_labels_out.append(segment_labels[i])
# Pull out the segment start times
segment_beats = list(segment_beats)
# segment_times_out = np.asarray(
# segment_times_out)[:, 0].squeeze().reshape((-1, 1))
# if segment_times_out.ndim == 0:
# segment_times_out = segment_times_out[np.newaxis]
segment_times_out = segment_times
return segment_beats, segment_times_out, segment_labels_out
|
Estimates the beats using librosa.
|
def estimate_beats(self):
"""Estimates the beats using librosa.
Returns
-------
times: np.array
Times of estimated beats in seconds.
frames: np.array
Frame indeces of estimated beats.
"""
# Compute harmonic-percussive source separation if needed
if self._audio_percussive is None:
self._audio_harmonic, self._audio_percussive = self.compute_HPSS()
# Compute beats
tempo, frames = librosa.beat.beat_track(
y=self._audio_percussive, sr=self.sr,
hop_length=self.hop_length)
# To times
times = librosa.frames_to_time(frames, sr=self.sr,
hop_length=self.hop_length)
# TODO: Is this really necessary?
if len(times) > 0 and times[0] == 0:
times = times[1:]
frames = frames[1:]
return times, frames
|
Reads the annotated beats if available.
|
def read_ann_beats(self):
"""Reads the annotated beats if available.
Returns
-------
times: np.array
Times of annotated beats in seconds.
frames: np.array
Frame indeces of annotated beats.
"""
times, frames = (None, None)
# Read annotations if they exist in correct folder
if os.path.isfile(self.file_struct.ref_file):
try:
jam = jams.load(self.file_struct.ref_file)
except TypeError:
logging.warning(
"Can't read JAMS file %s. Maybe it's not "
"compatible with current JAMS version?" %
self.file_struct.ref_file)
return times, frames
beat_annot = jam.search(namespace="beat.*")
# If beat annotations exist, get times and frames
if len(beat_annot) > 0:
beats_inters, _ = beat_annot[0].to_interval_values()
times = beats_inters[:, 0]
frames = librosa.time_to_frames(times, sr=self.sr,
hop_length=self.hop_length)
return times, frames
|
Make the features beat - synchronous.
|
def compute_beat_sync_features(self, beat_frames, beat_times, pad):
"""Make the features beat-synchronous.
Parameters
----------
beat_frames: np.array
The frame indeces of the beat positions.
beat_times: np.array
The time points of the beat positions (in seconds).
pad: boolean
If `True`, `beat_frames` is padded to span the full range.
Returns
-------
beatsync_feats: np.array
The beat-synchronized features.
`None` if the beat_frames was `None`.
beatsync_times: np.array
The beat-synchronized times.
`None` if the beat_frames was `None`.
"""
if beat_frames is None:
return None, None
# Make beat synchronous
beatsync_feats = librosa.util.utils.sync(self._framesync_features.T,
beat_frames, pad=pad).T
# Assign times (and add last time if padded)
beatsync_times = np.copy(beat_times)
if beatsync_times.shape[0] != beatsync_feats.shape[0]:
beatsync_times = np.concatenate((beatsync_times,
[self._framesync_times[-1]]))
return beatsync_feats, beatsync_times
|
Reads the features from a file and stores them in the current object.
|
def read_features(self, tol=1e-3):
"""Reads the features from a file and stores them in the current
object.
Parameters
----------
tol: float
Tolerance level to detect duration of audio.
"""
try:
# Read JSON file
with open(self.file_struct.features_file) as f:
feats = json.load(f)
# Store duration
if self.dur is None:
self.dur = float(feats["globals"]["dur"])
# Check that we have the correct global parameters
assert(np.isclose(
self.dur, float(feats["globals"]["dur"]), rtol=tol))
assert(self.sr == int(feats["globals"]["sample_rate"]))
assert(self.hop_length == int(feats["globals"]["hop_length"]))
assert(os.path.basename(self.file_struct.audio_file) ==
os.path.basename(feats["globals"]["audio_file"]))
# Check for specific features params
feat_params_err = FeatureParamsError(
"Couldn't find features for %s id in file %s" %
(self.get_id(), self.file_struct.features_file))
if self.get_id() not in feats.keys():
raise feat_params_err
for param_name in self.get_param_names():
value = getattr(self, param_name)
if hasattr(value, '__call__'):
# Special case of functions
if value.__name__ != \
feats[self.get_id()]["params"][param_name]:
raise feat_params_err
else:
if str(value) != \
feats[self.get_id()]["params"][param_name]:
raise feat_params_err
# Store actual features
self._est_beats_times = np.array(feats["est_beats"])
self._est_beatsync_times = np.array(feats["est_beatsync_times"])
self._est_beats_frames = librosa.core.time_to_frames(
self._est_beats_times, sr=self.sr, hop_length=self.hop_length)
self._framesync_features = \
np.array(feats[self.get_id()]["framesync"])
self._est_beatsync_features = \
np.array(feats[self.get_id()]["est_beatsync"])
# Read annotated beats if available
if "ann_beats" in feats.keys():
self._ann_beats_times = np.array(feats["ann_beats"])
self._ann_beatsync_times = np.array(feats["ann_beatsync_times"])
self._ann_beats_frames = librosa.core.time_to_frames(
self._ann_beats_times, sr=self.sr,
hop_length=self.hop_length)
self._ann_beatsync_features = \
np.array(feats[self.get_id()]["ann_beatsync"])
except KeyError:
raise WrongFeaturesFormatError(
"The features file %s is not correctly formatted" %
self.file_struct.features_file)
except AssertionError:
raise FeaturesNotFound(
"The features for the given parameters were not found in "
"features file %s" % self.file_struct.features_file)
except IOError:
raise NoFeaturesFileError("Could not find features file %s",
self.file_struct.features_file)
|
Saves features to file.
|
def write_features(self):
"""Saves features to file."""
out_json = collections.OrderedDict()
try:
# Only save the necessary information
self.read_features()
except (WrongFeaturesFormatError, FeaturesNotFound,
NoFeaturesFileError):
# We need to create the file or overwite it
# Metadata
out_json = collections.OrderedDict({"metadata": {
"versions": {"librosa": librosa.__version__,
"msaf": msaf.__version__,
"numpy": np.__version__},
"timestamp": datetime.datetime.today().strftime(
"%Y/%m/%d %H:%M:%S")}})
# Global parameters
out_json["globals"] = {
"dur": self.dur,
"sample_rate": self.sr,
"hop_length": self.hop_length,
"audio_file": self.file_struct.audio_file
}
# Beats
out_json["est_beats"] = self._est_beats_times.tolist()
out_json["est_beatsync_times"] = self._est_beatsync_times.tolist()
if self._ann_beats_times is not None:
out_json["ann_beats"] = self._ann_beats_times.tolist()
out_json["ann_beatsync_times"] = self._ann_beatsync_times.tolist()
except FeatureParamsError:
# We have other features in the file, simply add these ones
with open(self.file_struct.features_file) as f:
out_json = json.load(f)
finally:
# Specific parameters of the current features
out_json[self.get_id()] = {}
out_json[self.get_id()]["params"] = {}
for param_name in self.get_param_names():
value = getattr(self, param_name)
# Check for special case of functions
if hasattr(value, '__call__'):
value = value.__name__
else:
value = str(value)
out_json[self.get_id()]["params"][param_name] = value
# Actual features
out_json[self.get_id()]["framesync"] = \
self._framesync_features.tolist()
out_json[self.get_id()]["est_beatsync"] = \
self._est_beatsync_features.tolist()
if self._ann_beatsync_features is not None:
out_json[self.get_id()]["ann_beatsync"] = \
self._ann_beatsync_features.tolist()
# Save it
with open(self.file_struct.features_file, "w") as f:
json.dump(out_json, f, indent=2)
|
Returns the parameter names for these features avoiding the global parameters.
|
def get_param_names(self):
"""Returns the parameter names for these features, avoiding
the global parameters."""
return [name for name in vars(self) if not name.startswith('_') and
name not in self._global_param_names]
|
Computes the framesync times based on the framesync features.
|
def _compute_framesync_times(self):
"""Computes the framesync times based on the framesync features."""
self._framesync_times = librosa.core.frames_to_time(
np.arange(self._framesync_features.shape[0]), self.sr,
self.hop_length)
|
Computes all the features ( beatsync framesync ) from the audio.
|
def _compute_all_features(self):
"""Computes all the features (beatsync, framesync) from the audio."""
# Read actual audio waveform
self._audio, _ = librosa.load(self.file_struct.audio_file,
sr=self.sr)
# Get duration of audio file
self.dur = len(self._audio) / float(self.sr)
# Compute actual features
self._framesync_features = self.compute_features()
# Compute framesync times
self._compute_framesync_times()
# Compute/Read beats
self._est_beats_times, self._est_beats_frames = self.estimate_beats()
self._ann_beats_times, self._ann_beats_frames = self.read_ann_beats()
# Beat-Synchronize
pad = True # Always append to the end of the features
self._est_beatsync_features, self._est_beatsync_times = \
self.compute_beat_sync_features(self._est_beats_frames,
self._est_beats_times, pad)
self._ann_beatsync_features, self._ann_beatsync_times = \
self.compute_beat_sync_features(self._ann_beats_frames,
self._ann_beats_times, pad)
|
This getter returns the frame times for the corresponding type of features.
|
def frame_times(self):
"""This getter returns the frame times, for the corresponding type of
features."""
frame_times = None
# Make sure we have already computed the features
self.features
if self.feat_type is FeatureTypes.framesync:
self._compute_framesync_times()
frame_times = self._framesync_times
elif self.feat_type is FeatureTypes.est_beatsync:
frame_times = self._est_beatsync_times
elif self.feat_type is FeatureTypes.ann_beatsync:
frame_times = self._ann_beatsync_times
return frame_times
|
This getter will compute the actual features if they haven t been computed yet.
|
def features(self):
"""This getter will compute the actual features if they haven't
been computed yet.
Returns
-------
features: np.array
The actual features. Each row corresponds to a feature vector.
"""
# Compute features if needed
if self._features is None:
try:
self.read_features()
except (NoFeaturesFileError, FeaturesNotFound,
WrongFeaturesFormatError, FeatureParamsError) as e:
try:
self._compute_all_features()
self.write_features()
except IOError:
if isinstance(e, FeaturesNotFound) or \
isinstance(e, FeatureParamsError):
msg = "Computation of the features is needed for " \
"current parameters but no audio file was found." \
"Please, change your parameters or add the audio" \
" file in %s"
else:
msg = "Couldn't find audio file in %s"
raise NoAudioFileError(msg % self.file_struct.audio_file)
# Choose features based on type
if self.feat_type is FeatureTypes.framesync:
self._features = self._framesync_features
elif self.feat_type is FeatureTypes.est_beatsync:
self._features = self._est_beatsync_features
elif self.feat_type is FeatureTypes.ann_beatsync:
if self._ann_beatsync_features is None:
raise FeatureTypeNotFound(
"Feature type %s is not valid because no annotated beats "
"were found" % self.feat_type)
self._features = self._ann_beatsync_features
else:
raise FeatureTypeNotFound("Feature type %s is not valid." %
self.feat_type)
return self._features
|
Selects the features from the given parameters.
|
def select_features(cls, features_id, file_struct, annot_beats, framesync):
"""Selects the features from the given parameters.
Parameters
----------
features_id: str
The identifier of the features (it must be a key inside the
`features_registry`)
file_struct: msaf.io.FileStruct
The file struct containing the files to extract the features from
annot_beats: boolean
Whether to use annotated (`True`) or estimated (`False`) beats
framesync: boolean
Whether to use framesync (`True`) or beatsync (`False`) features
Returns
-------
features: obj
The actual features object that inherits from `msaf.Features`
"""
if not annot_beats and framesync:
feat_type = FeatureTypes.framesync
elif annot_beats and not framesync:
feat_type = FeatureTypes.ann_beatsync
elif not annot_beats and not framesync:
feat_type = FeatureTypes.est_beatsync
else:
raise FeatureTypeNotFound("Type of features not valid.")
# Select features with default parameters
if features_id not in features_registry.keys():
raise FeaturesNotFound(
"The features '%s' are invalid (valid features are %s)"
% (features_id, features_registry.keys()))
return features_registry[features_id](file_struct, feat_type)
|
This method obtains the actual features.
|
def _preprocess(self, valid_features=["pcp", "tonnetz", "mfcc",
"cqt", "tempogram"]):
"""This method obtains the actual features."""
# Use specific feature
if self.feature_str not in valid_features:
raise RuntimeError("Feature %s in not valid for algorithm: %s "
"(valid features are %s)." %
(self.feature_str, __name__, valid_features))
else:
try:
F = self.features.features
except KeyError:
raise RuntimeError("Feature %s in not supported by MSAF" %
(self.feature_str))
return F
|
Post processes the estimations from the algorithm removing empty segments and making sure the lenghts of the boundaries and labels match.
|
def _postprocess(self, est_idxs, est_labels):
"""Post processes the estimations from the algorithm, removing empty
segments and making sure the lenghts of the boundaries and labels
match."""
# Make sure we are using the previously input bounds, if any
if self.in_bound_idxs is not None:
F = self._preprocess()
est_labels = U.synchronize_labels(self.in_bound_idxs, est_idxs,
est_labels, F.shape[0])
est_idxs = self.in_bound_idxs
# Remove empty segments if needed
est_idxs, est_labels = U.remove_empty_segments(est_idxs, est_labels)
assert len(est_idxs) - 1 == len(est_labels), "Number of boundaries " \
"(%d) and number of labels(%d) don't match" % (len(est_idxs),
len(est_labels))
# Make sure the indeces are integers
est_idxs = np.asarray(est_idxs, dtype=int)
return est_idxs, est_labels
|
Sweeps parameters across the specified algorithm.
|
def process(in_path, annot_beats=False, feature="mfcc", framesync=False,
boundaries_id="gt", labels_id=None, n_jobs=4, config=None):
"""Sweeps parameters across the specified algorithm."""
results_file = "results_sweep_boundsE%s_labelsE%s.csv" % (boundaries_id,
labels_id)
if labels_id == "cnmf3" or boundaries_id == "cnmf3":
config = io.get_configuration(feature, annot_beats, framesync,
boundaries_id, labels_id)
hh = range(15, 33)
RR = range(15, 40)
ranks = range(3, 6)
RR_labels = range(11, 12)
ranks_labels = range(6, 7)
all_results = pd.DataFrame()
for rank in ranks:
for h in hh:
for R in RR:
for rank_labels in ranks_labels:
for R_labels in RR_labels:
config["h"] = h
config["R"] = R
config["rank"] = rank
config["rank_labels"] = rank_labels
config["R_labels"] = R_labels
config["features"] = None
# Run process
msaf.run.process(
in_path, n_jobs=n_jobs,
boundaries_id=boundaries_id,
labels_id=labels_id, config=config)
# Compute evaluations
results = msaf.eval.process(
in_path, boundaries_id, labels_id,
save=True, n_jobs=n_jobs, config=config)
# Save avg results
new_columns = {"config_h": h, "config_R": R,
"config_rank": rank,
"config_R_labels": R_labels,
"config_rank_labels": rank_labels}
results = results.append([new_columns],
ignore_index=True)
all_results = all_results.append(results.mean(),
ignore_index=True)
all_results.to_csv(results_file)
elif labels_id is None and boundaries_id == "sf":
config = io.get_configuration(feature, annot_beats, framesync,
boundaries_id, labels_id)
MM = range(20, 32)
mm = range(3, 4)
kk = np.arange(0.03, 0.1, 0.01)
Mpp = range(16, 32)
ott = np.arange(0.02, 0.1, 0.01)
all_results = pd.DataFrame()
for k in kk:
for ot in ott:
for m in mm:
for M in MM:
for Mp in Mpp:
config["M_gaussian"] = M
config["m_embedded"] = m
config["k_nearest"] = k
config["Mp_adaptive"] = Mp
config["offset_thres"] = ot
config["features"] = None
# Run process
msaf.run.process(
in_path, n_jobs=n_jobs,
boundaries_id=boundaries_id,
labels_id=labels_id, config=config)
# Compute evaluations
results = msaf.eval.process(
in_path, boundaries_id, labels_id,
save=True, n_jobs=n_jobs, config=config)
# Save avg results
new_columns = {"config_M": M, "config_m": m,
"config_k": k, "config_Mp": Mp,
"config_ot": ot}
results = results.append([new_columns],
ignore_index=True)
all_results = all_results.append(results.mean(),
ignore_index=True)
all_results.to_csv(results_file)
else:
logging.error("Can't sweep parameters for %s algorithm. "
"Implement me! :D")
|
Main function to sweep parameters of a certain algorithm.
|
def main():
"""Main function to sweep parameters of a certain algorithm."""
parser = argparse.ArgumentParser(
description="Runs the speficied algorithm(s) on the MSAF "
"formatted dataset.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("in_path",
action="store",
help="Input dataset")
parser.add_argument("-f",
action="store",
dest="feature",
default="pcp",
type=str,
help="Type of features",
choices=["pcp", "tonnetz", "mfcc", "cqt", "tempogram"])
parser.add_argument("-b",
action="store_true",
dest="annot_beats",
help="Use annotated beats",
default=False)
parser.add_argument("-fs",
action="store_true",
dest="framesync",
help="Use frame-synchronous features",
default=False)
parser.add_argument("-bid",
action="store",
help="Boundary algorithm identifier",
dest="boundaries_id",
default="gt",
choices=["gt"] +
io.get_all_boundary_algorithms())
parser.add_argument("-lid",
action="store",
help="Label algorithm identifier",
dest="labels_id",
default=None,
choices=io.get_all_label_algorithms())
parser.add_argument("-j",
action="store",
dest="n_jobs",
default=4,
type=int,
help="The number of threads to use")
args = parser.parse_args()
start_time = time.time()
# Run the algorithm(s)
process(args.in_path, annot_beats=args.annot_beats, feature=args.feature,
framesync=args.framesync, boundaries_id=args.boundaries_id,
labels_id=args.labels_id, n_jobs=args.n_jobs)
# Done!
logging.info("Done! Took %.2f seconds." % (time.time() - start_time))
|
Main function to parse the arguments and call the main process.
|
def main():
"""Main function to parse the arguments and call the main process."""
parser = argparse.ArgumentParser(
description="Runs the speficied algorithm(s) on the input file and "
"the results using the MIREX format.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("-bid",
action="store",
help="Boundary algorithm identifier",
dest="boundaries_id",
default=msaf.config.default_bound_id,
choices=["gt"] +
msaf.io.get_all_boundary_algorithms())
parser.add_argument("-lid",
action="store",
help="Label algorithm identifier",
dest="labels_id",
default=msaf.config.default_label_id,
choices=msaf.io.get_all_label_algorithms())
parser.add_argument("-i",
action="store",
dest="in_file",
help="Input audio file")
parser.add_argument("-o",
action="store",
dest="out_file",
help="Output file with the results",
default="out.txt")
args = parser.parse_args()
start_time = time.time()
# Setup the logger
logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s',
level=logging.INFO)
# Run MSAF
params = {
"annot_beats": False,
"feature": "cqt",
"framesync": False,
"boundaries_id": args.boundaries_id,
"labels_id": args.labels_id,
"n_jobs": 1,
"hier": False,
"sonify_bounds": False,
"plot": False
}
res = msaf.run.process(args.in_file, **params)
msaf.io.write_mirex(res[0], res[1], args.out_file)
# Done!
logging.info("Done! Took %.2f seconds." % (time.time() - start_time))
|
Print all the results.
|
def print_results(results):
"""Print all the results.
Parameters
----------
results: pd.DataFrame
Dataframe with all the results
"""
if len(results) == 0:
logging.warning("No results to print!")
return
res = results.mean()
logging.info("Results:\n%s" % res)
|
Compute the results using all the available evaluations.
|
def compute_results(ann_inter, est_inter, ann_labels, est_labels, bins,
est_file, weight=0.58):
"""Compute the results using all the available evaluations.
Parameters
----------
ann_inter : np.array
Annotated intervals in seconds.
est_inter : np.array
Estimated intervals in seconds.
ann_labels : np.array
Annotated labels.
est_labels : np.array
Estimated labels
bins : int
Number of bins for the information gain.
est_file : str
Path to the output file to store results.
weight: float
Weight the Precision and Recall values of the hit rate boundaries
differently (<1 will weight Precision higher, >1 will weight Recall
higher).
The default parameter (0.58) is the one proposed in (Nieto et al. 2014)
Return
------
results : dict
Contains the results of all the evaluations for the given file.
Keys are the following:
track_id: Name of the track
HitRate_3F: F-measure of hit rate at 3 seconds
HitRate_3P: Precision of hit rate at 3 seconds
HitRate_3R: Recall of hit rate at 3 seconds
HitRate_0.5F: F-measure of hit rate at 0.5 seconds
HitRate_0.5P: Precision of hit rate at 0.5 seconds
HitRate_0.5R: Recall of hit rate at 0.5 seconds
HitRate_w3F: F-measure of hit rate at 3 seconds weighted
HitRate_w0.5F: F-measure of hit rate at 0.5 seconds weighted
HitRate_wt3F: F-measure of hit rate at 3 seconds weighted and
trimmed
HitRate_wt0.5F: F-measure of hit rate at 0.5 seconds weighted
and trimmed
HitRate_t3F: F-measure of hit rate at 3 seconds (trimmed)
HitRate_t3P: Precision of hit rate at 3 seconds (trimmed)
HitRate_t3F: Recall of hit rate at 3 seconds (trimmed)
HitRate_t0.5F: F-measure of hit rate at 0.5 seconds (trimmed)
HitRate_t0.5P: Precision of hit rate at 0.5 seconds (trimmed)
HitRate_t0.5R: Recall of hit rate at 0.5 seconds (trimmed)
DevA2E: Median deviation of annotation to estimation
DevE2A: Median deviation of estimation to annotation
D: Information gain
PWF: F-measure of pair-wise frame clustering
PWP: Precision of pair-wise frame clustering
PWR: Recall of pair-wise frame clustering
Sf: F-measure normalized entropy score
So: Oversegmentation normalized entropy score
Su: Undersegmentation normalized entropy score
"""
res = {}
# --Boundaries-- #
# Hit Rate standard
res["HitRate_3P"], res["HitRate_3R"], res["HitRate_3F"] = \
mir_eval.segment.detection(ann_inter, est_inter, window=3, trim=False)
res["HitRate_0.5P"], res["HitRate_0.5R"], res["HitRate_0.5F"] = \
mir_eval.segment.detection(ann_inter, est_inter, window=.5, trim=False)
# Hit rate trimmed
res["HitRate_t3P"], res["HitRate_t3R"], res["HitRate_t3F"] = \
mir_eval.segment.detection(ann_inter, est_inter, window=3, trim=True)
res["HitRate_t0.5P"], res["HitRate_t0.5R"], res["HitRate_t0.5F"] = \
mir_eval.segment.detection(ann_inter, est_inter, window=.5, trim=True)
# Hit rate weighted
_, _, res["HitRate_w3F"] = mir_eval.segment.detection(
ann_inter, est_inter, window=3, trim=False, beta=weight)
_, _, res["HitRate_w0.5F"] = mir_eval.segment.detection(
ann_inter, est_inter, window=.5, trim=False, beta=weight)
# Hit rate weighted and trimmed
_, _, res["HitRate_wt3F"] = mir_eval.segment.detection(
ann_inter, est_inter, window=3, trim=True, beta=weight)
_, _, res["HitRate_wt0.5F"] = mir_eval.segment.detection(
ann_inter, est_inter, window=.5, trim=True, beta=weight)
# Information gain
res["D"] = compute_information_gain(ann_inter, est_inter, est_file,
bins=bins)
# Median Deviations
res["DevR2E"], res["DevE2R"] = mir_eval.segment.deviation(
ann_inter, est_inter, trim=False)
res["DevtR2E"], res["DevtE2R"] = mir_eval.segment.deviation(
ann_inter, est_inter, trim=True)
# --Labels-- #
if est_labels is not None and ("-1" in est_labels or "@" in est_labels):
est_labels = None
if est_labels is not None and len(est_labels) != 0:
# Align labels with intervals
ann_labels = list(ann_labels)
est_labels = list(est_labels)
ann_inter, ann_labels = mir_eval.util.adjust_intervals(ann_inter,
ann_labels)
est_inter, est_labels = mir_eval.util.adjust_intervals(
est_inter, est_labels, t_min=0.0, t_max=ann_inter.max())
# Pair-wise frame clustering
res["PWP"], res["PWR"], res["PWF"] = mir_eval.segment.pairwise(
ann_inter, ann_labels, est_inter, est_labels)
# Normalized Conditional Entropies
res["So"], res["Su"], res["Sf"] = mir_eval.segment.nce(
ann_inter, ann_labels, est_inter, est_labels)
# Names
base = os.path.basename(est_file)
res["track_id"] = base[:-5]
res["ds_name"] = base.split("_")[0]
return res
|
Computes the results by using the ground truth dataset identified by the annotator parameter.
|
def compute_gt_results(est_file, ref_file, boundaries_id, labels_id, config,
bins=251, annotator_id=0):
"""Computes the results by using the ground truth dataset identified by
the annotator parameter.
Return
------
results : dict
Dictionary of the results (see function compute_results).
"""
if config["hier"]:
ref_times, ref_labels, ref_levels = \
msaf.io.read_hier_references(
ref_file, annotation_id=annotator_id,
exclude_levels=["segment_salami_function"])
else:
jam = jams.load(ref_file, validate=False)
ann = jam.search(namespace='segment_.*')[annotator_id]
ref_inter, ref_labels = ann.to_interval_values()
# Read estimations with correct configuration
est_inter, est_labels = io.read_estimations(est_file, boundaries_id,
labels_id, **config)
# Compute the results and return
logging.info("Evaluating %s" % os.path.basename(est_file))
if config["hier"]:
# Hierarchical
assert len(est_inter) == len(est_labels), "Same number of levels " \
"are required in the boundaries and labels for the hierarchical " \
"evaluation."
est_times = []
est_labels = []
# Sort based on how many segments per level
est_inter = sorted(est_inter, key=lambda level: len(level))
for inter in est_inter:
est_times.append(msaf.utils.intervals_to_times(inter))
# Add fake labels (hierarchical eval does not use labels --yet--)
est_labels.append(np.ones(len(est_times[-1]) - 1) * -1)
# Align the times
utils.align_end_hierarchies(est_times, ref_times, thres=1)
# To intervals
est_hier = [utils.times_to_intervals(times) for times in est_times]
ref_hier = [utils.times_to_intervals(times) for times in ref_times]
# Compute evaluations
res = {}
res["t_recall10"], res["t_precision10"], res["t_measure10"] = \
mir_eval.hierarchy.tmeasure(ref_hier, est_hier, window=10)
res["t_recall15"], res["t_precision15"], res["t_measure15"] = \
mir_eval.hierarchy.tmeasure(ref_hier, est_hier, window=15)
res["track_id"] = os.path.basename(est_file)[:-5]
return res
else:
# Flat
return compute_results(ref_inter, est_inter, ref_labels, est_labels,
bins, est_file)
|
Computes the information gain of the est_file from the annotated intervals and the estimated intervals.
|
def compute_information_gain(ann_inter, est_inter, est_file, bins):
"""Computes the information gain of the est_file from the annotated
intervals and the estimated intervals."""
ann_times = utils.intervals_to_times(ann_inter)
est_times = utils.intervals_to_times(est_inter)
return mir_eval.beat.information_gain(ann_times, est_times, bins=bins)
|
Processes a single track.
|
def process_track(file_struct, boundaries_id, labels_id, config,
annotator_id=0):
"""Processes a single track.
Parameters
----------
file_struct : object (FileStruct) or str
File struct or full path of the audio file to be evaluated.
boundaries_id : str
Identifier of the boundaries algorithm.
labels_id : str
Identifier of the labels algorithm.
config : dict
Configuration of the algorithms to be evaluated.
annotator_id : int
Number identifiying the annotator.
Returns
-------
one_res : dict
Dictionary of the results (see function compute_results).
"""
# Convert to file_struct if string is passed
if isinstance(file_struct, six.string_types):
file_struct = io.FileStruct(file_struct)
est_file = file_struct.est_file
ref_file = file_struct.ref_file
# Sanity check
assert os.path.basename(est_file)[:-4] == \
os.path.basename(ref_file)[:-4], "File names are different %s --- %s" \
% (os.path.basename(est_file)[:-4], os.path.basename(ref_file)[:-4])
if not os.path.isfile(ref_file):
raise NoReferencesError("Reference file %s does not exist. You must "
"have annotated references to run "
"evaluations." % ref_file)
one_res = compute_gt_results(est_file, ref_file, boundaries_id, labels_id,
config, annotator_id=annotator_id)
return one_res
|
Based on the config and the dataset get the file name to store the results.
|
def get_results_file_name(boundaries_id, labels_id, config,
annotator_id):
"""Based on the config and the dataset, get the file name to store the
results."""
utils.ensure_dir(msaf.config.results_dir)
file_name = os.path.join(msaf.config.results_dir, "results")
file_name += "_boundsE%s_labelsE%s" % (boundaries_id, labels_id)
file_name += "_annotatorE%d" % (annotator_id)
sorted_keys = sorted(config.keys(), key=str.lower)
for key in sorted_keys:
file_name += "_%sE%s" % (key, str(config[key]).replace("/", "_"))
# Check for max file length
if len(file_name) > 255 - len(msaf.config.results_ext):
file_name = file_name[:255 - len(msaf.config.results_ext)]
return file_name + msaf.config.results_ext
|
Main process to evaluate algorithms results.
|
def process(in_path, boundaries_id=msaf.config.default_bound_id,
labels_id=msaf.config.default_label_id, annot_beats=False,
framesync=False, feature="pcp", hier=False, save=False,
out_file=None, n_jobs=4, annotator_id=0, config=None):
"""Main process to evaluate algorithms' results.
Parameters
----------
in_path : str
Path to the dataset root folder.
boundaries_id : str
Boundaries algorithm identifier (e.g. siplca, cnmf)
labels_id : str
Labels algorithm identifier (e.g. siplca, cnmf)
ds_name : str
Name of the dataset to be evaluated (e.g. SALAMI). * stands for all.
annot_beats : boolean
Whether to use the annotated beats or not.
framesync: str
Whether to use framesync features or not (default: False -> beatsync)
feature: str
String representing the feature to be used (e.g. pcp, mfcc, tonnetz)
hier : bool
Whether to compute a hierarchical or flat segmentation.
save: boolean
Whether to save the results into the `out_file` csv file.
out_file: str
Path to the csv file to save the results (if `None` and `save = True`
it will save the results in the default file name obtained by
calling `get_results_file_name`).
n_jobs: int
Number of processes to run in parallel. Only available in collection
mode.
annotator_id : int
Number identifiying the annotator.
config: dict
Dictionary containing custom configuration parameters for the
algorithms. If None, the default parameters are used.
Return
------
results : pd.DataFrame
DataFrame containing the evaluations for each file.
"""
# Set up configuration based on algorithms parameters
if config is None:
config = io.get_configuration(feature, annot_beats, framesync,
boundaries_id, labels_id)
# Hierarchical segmentation
config["hier"] = hier
# Remove actual features
config.pop("features", None)
# Get out file in case we want to save results
if out_file is None:
out_file = get_results_file_name(boundaries_id, labels_id, config,
annotator_id)
# If out_file already exists, read and return them
if os.path.exists(out_file):
logging.warning("Results already exists, reading from file %s" %
out_file)
results = pd.read_csv(out_file)
print_results(results)
return results
# Perform actual evaluations
if os.path.isfile(in_path):
# Single File mode
evals = [process_track(in_path, boundaries_id, labels_id, config,
annotator_id=annotator_id)]
else:
# Collection mode
# Get files
file_structs = io.get_dataset_files(in_path)
# Evaluate in parallel
logging.info("Evaluating %d tracks..." % len(file_structs))
evals = Parallel(n_jobs=n_jobs)(delayed(process_track)(
file_struct, boundaries_id, labels_id, config,
annotator_id=annotator_id) for file_struct in file_structs[:])
# Aggregate evaluations in pandas format
results = pd.DataFrame()
for e in evals:
if e != []:
results = results.append(e, ignore_index=True)
logging.info("%d tracks analyzed" % len(results))
# Print results
print_results(results)
# Save all results
if save:
logging.info("Writing results in %s" % out_file)
results.to_csv(out_file)
return results
|
Parses a config string ( comma - separated key = value components ) into a dict.
|
def parse_config_string(config_string, issue_warnings=True):
"""
Parses a config string (comma-separated key=value components) into a dict.
"""
config_dict = {}
my_splitter = shlex.shlex(config_string, posix=True)
my_splitter.whitespace = ','
my_splitter.whitespace_split = True
for kv_pair in my_splitter:
kv_pair = kv_pair.strip()
if not kv_pair:
continue
kv_tuple = kv_pair.split('=', 1)
if len(kv_tuple) == 1:
if issue_warnings:
MsafConfigWarning.warn(
("Config key '%s' has no value, ignoring it" %
kv_tuple[0]), stacklevel=1)
else:
k, v = kv_tuple
# subsequent values for k will override earlier ones
config_dict[k] = v
return config_dict
|
Return the overriding config value for a key. A successful search returns a string value. An unsuccessful search raises a KeyError The ( decreasing ) priority order is: - MSAF_FLAGS - ~./ msafrc
|
def fetch_val_for_key(key, delete_key=False):
"""Return the overriding config value for a key.
A successful search returns a string value.
An unsuccessful search raises a KeyError
The (decreasing) priority order is:
- MSAF_FLAGS
- ~./msafrc
"""
# first try to find it in the FLAGS
try:
if delete_key:
return MSAF_FLAGS_DICT.pop(key)
return MSAF_FLAGS_DICT[key]
except KeyError:
pass
# next try to find it in the config file
# config file keys can be of form option, or section.option
key_tokens = key.rsplit('.', 1)
if len(key_tokens) == 2:
section, option = key_tokens
else:
section, option = 'global', key
try:
try:
return msaf_cfg.get(section, option)
except InterpolationError:
return msaf_raw_cfg.get(section, option)
except (NoOptionError, NoSectionError):
raise KeyError(key)
|
Add a new variable to msaf. config
|
def AddConfigVar(name, doc, configparam, root=config):
"""Add a new variable to msaf.config
Parameters
----------
name: str
String of the form "[section0.[section1.[etc]]]option", containing the
full name for this configuration variable.
string: str
What does this variable specify?
configparam: `ConfigParam`
An object for getting and setting this configuration parameter.
root: object
Used for recursive calls -- do not provide an argument for this
parameter.
"""
# This method also performs some of the work of initializing ConfigParam
# instances
if root is config:
# only set the name in the first call, not the recursive ones
configparam.fullname = name
sections = name.split('.')
if len(sections) > 1:
# set up a subobject
if not hasattr(root, sections[0]):
# every internal node in the config tree is an instance of its own
# unique class
class SubObj(object):
_i_am_a_config_class = True
setattr(root.__class__, sections[0], SubObj())
newroot = getattr(root, sections[0])
if (not getattr(newroot, '_i_am_a_config_class', False) or
isinstance(newroot, type)):
raise TypeError(
'Internal config nodes must be config class instances',
newroot)
return AddConfigVar('.'.join(sections[1:]), doc, configparam,
root=newroot)
else:
if hasattr(root, name):
raise AttributeError('This name is already taken',
configparam.fullname)
configparam.doc = doc
# Trigger a read of the value from config files and env vars
# This allow to filter wrong value from the user.
if not callable(configparam.default):
configparam.__get__(root, type(root), delete_key=True)
else:
# We do not want to evaluate now the default value
# when it is a callable.
try:
fetch_val_for_key(configparam.fullname)
# The user provided a value, filter it now.
configparam.__get__(root, type(root), delete_key=True)
except KeyError:
pass
setattr(root.__class__, sections[0], configparam)
_config_var_list.append(configparam)
|
Main process. Returns ------- est_idxs: np. array ( N ) Estimated indeces the segment boundaries in frame indeces. est_labels: np. array ( N - 1 ) Estimated labels for the segments.
|
def processFlat(self):
"""Main process.
Returns
-------
est_idxs : np.array(N)
Estimated indeces the segment boundaries in frame indeces.
est_labels : np.array(N-1)
Estimated labels for the segments.
"""
# Preprocess to obtain features (array(n_frames, n_features))
F = self._preprocess()
F = librosa.util.normalize(F, axis=0)
F = librosa.feature.stack_memory(F.T).T
self.config["hier"] = False
my_bounds, my_labels, _ = main.scluster_segment(F, self.config, self.in_bound_idxs)
# Post process estimations
est_idxs, est_labels = self._postprocess(my_bounds, my_labels)
assert est_idxs[0] == 0 and est_idxs[-1] == F.shape[0] - 1
# We're done!
return est_idxs, est_labels
|
Main process. for hierarchial segmentation. Returns ------- est_idxs: list List with np. arrays for each layer of segmentation containing the estimated indeces for the segment boundaries. est_labels: list List with np. arrays containing the labels for each layer of the hierarchical segmentation.
|
def processHierarchical(self):
"""Main process.for hierarchial segmentation.
Returns
-------
est_idxs : list
List with np.arrays for each layer of segmentation containing
the estimated indeces for the segment boundaries.
est_labels : list
List with np.arrays containing the labels for each layer of the
hierarchical segmentation.
"""
F = self._preprocess()
F = librosa.util.normalize(F, axis=0)
F = librosa.feature.stack_memory(F.T).T
self.config["hier"] = True
est_idxs, est_labels, F = main.scluster_segment(F, self.config, self.in_bound_idxs)
for layer in range(len(est_idxs)):
assert est_idxs[layer][0] == 0 and \
est_idxs[layer][-1] == F.shape[1] - 1
est_idxs[layer], est_labels[layer] = \
self._postprocess(est_idxs[layer], est_labels[layer])
return est_idxs, est_labels
|
Frobenius norm ( ||data - WH|| ) of a data matrix and a low rank approximation given by WH
|
def frobenius_norm(self):
""" Frobenius norm (||data - WH||) of a data matrix and a low rank
approximation given by WH
Returns:
frobenius norm: F = ||data - WH||
"""
# check if W and H exist
if hasattr(self,'H') and hasattr(self,'W') and not scipy.sparse.issparse(self.data):
err = np.sqrt( np.sum((self.data[:,:] - np.dot(self.W, self.H))**2 ))
else:
err = -123456
return err
|
Computes all features for the given file.
|
def compute_all_features(file_struct, framesync):
"""Computes all features for the given file."""
for feature_id in msaf.features_registry:
logging.info("Computing %s for file %s" % (feature_id,
file_struct.audio_file))
feats = Features.select_features(feature_id, file_struct, False, framesync)
feats.features
|
Computes the features for the selected dataset or file.
|
def process(in_path, out_file, n_jobs, framesync):
"""Computes the features for the selected dataset or file."""
if os.path.isfile(in_path):
# Single file mode
# Get (if they exitst) or compute features
file_struct = msaf.io.FileStruct(in_path)
file_struct.features_file = out_file
compute_all_features(file_struct, framesync)
else:
# Collection mode
file_structs = msaf.io.get_dataset_files(in_path)
# Call in parallel
return Parallel(n_jobs=n_jobs)(delayed(compute_all_features)(
file_struct, framesync) for file_struct in file_structs)
|
Main function to parse the arguments and call the main process.
|
def main():
"""Main function to parse the arguments and call the main process."""
parser = argparse.ArgumentParser(
description="Extracts a set of features from a given dataset "
"or audio file and saves them into the 'features' folder of "
"the dataset or the specified single file.",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("in_path",
action="store",
help="Input dataset dir or audio file")
parser.add_argument("-j",
action="store",
dest="n_jobs",
type=int,
help="Number of jobs (only for collection mode)",
default=4)
parser.add_argument("-o",
action="store",
dest="out_file",
type=str,
help="Output file (only for single file mode)",
default="out.json")
parser.add_argument("-d",
action="store",
dest="ds_name",
default="*",
help="The prefix of the dataset to use "
"(e.g. Isophonics, SALAMI)")
parser.add_argument("-fs",
action="store_true",
dest="framesync",
help="Use frame-synchronous features",
default=False)
args = parser.parse_args()
start_time = time.time()
# Setup the logger
logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s',
level=logging.INFO)
# Run the main process
process(args.in_path, out_file=args.out_file, n_jobs=args.n_jobs, framesync=args.framesync)
# Done!
logging.info("Done! Took %.2f seconds." % (time.time() - start_time))
|
Feature - extraction for audio segmentation Arguments: file_struct -- msaf. io. FileStruct paths to the input files in the Segmentation dataset
|
def features(file_struct, annot_beats=False, framesync=False):
'''Feature-extraction for audio segmentation
Arguments:
file_struct -- msaf.io.FileStruct
paths to the input files in the Segmentation dataset
Returns:
- X -- ndarray
beat-synchronous feature matrix:
MFCC (mean-aggregated)
Chroma (median-aggregated)
Latent timbre repetition
Latent chroma repetition
Time index
Beat index
- dur -- float
duration of the track in seconds
'''
def compress_data(X, k):
Xtemp = X.dot(X.T)
if len(Xtemp) == 0:
return None
e_vals, e_vecs = np.linalg.eig(Xtemp)
e_vals = np.maximum(0.0, np.real(e_vals))
e_vecs = np.real(e_vecs)
idx = np.argsort(e_vals)[::-1]
e_vals = e_vals[idx]
e_vecs = e_vecs[:, idx]
# Truncate to k dimensions
if k < len(e_vals):
e_vals = e_vals[:k]
e_vecs = e_vecs[:, :k]
# Normalize by the leading singular value of X
Z = np.sqrt(e_vals.max())
if Z > 0:
e_vecs = e_vecs / Z
return e_vecs.T.dot(X)
# Latent factor repetition features
def repetition(X, metric='euclidean'):
R = librosa.segment.recurrence_matrix(
X, k=2 * int(np.ceil(np.sqrt(X.shape[1]))),
width=REP_WIDTH, metric=metric, sym=False).astype(np.float32)
P = scipy.signal.medfilt2d(librosa.segment.recurrence_to_lag(R),
[1, REP_FILTER])
# Discard empty rows.
# This should give an equivalent SVD, but resolves some numerical
# instabilities.
P = P[P.any(axis=1)]
return compress_data(P, N_REP)
#########
# '\tloading annotations and features of ', audio_path
pcp_obj = Features.select_features("pcp", file_struct, annot_beats,
framesync)
mfcc_obj = Features.select_features("mfcc", file_struct, annot_beats,
framesync)
chroma = pcp_obj.features
mfcc = mfcc_obj.features
beats = pcp_obj.frame_times
dur = pcp_obj.dur
# Sampling Rate
sr = msaf.config.sample_rate
##########
# print '\treading beats'
B = beats[:chroma.shape[0]]
# beat_frames = librosa.time_to_frames(B, sr=sr,
#hop_length=msaf.config.hop_size)
#print beat_frames, len(beat_frames), uidx
#########
M = mfcc.T
#plt.imshow(M, interpolation="nearest", aspect="auto"); plt.show()
#########
# Get the beat-sync chroma
C = chroma.T
C += C.min() + 0.1
C = C / C.max(axis=0)
C = 80 * np.log10(C) # Normalize from -80 to 0
#plt.imshow(C, interpolation="nearest", aspect="auto"); plt.show()
# Time-stamp features
N = np.arange(float(chroma.shape[0]))
#########
#print '\tgenerating structure features'
# TODO: This might fail if audio file (or number of beats) is too small
R_timbre = repetition(librosa.feature.stack_memory(M))
R_chroma = repetition(librosa.feature.stack_memory(C))
if R_timbre is None or R_chroma is None:
return None, dur
R_timbre += R_timbre.min()
R_timbre /= R_timbre.max()
R_chroma += R_chroma.min()
R_chroma /= R_chroma.max()
#plt.imshow(R_chroma, interpolation="nearest", aspect="auto"); plt.show()
# Stack it all up
#print M.shape, C.shape, R_timbre.shape, R_chroma.shape, len(B), len(N)
X = np.vstack([M, C, R_timbre, R_chroma, B, B / dur, N,
N / float(chroma.shape[0])])
#plt.imshow(X, interpolation="nearest", aspect="auto"); plt.show()
return X, dur
|
Return the average log - likelihood of data under a standard normal
|
def gaussian_cost(X):
'''Return the average log-likelihood of data under a standard normal
'''
d, n = X.shape
if n < 2:
return 0
sigma = np.var(X, axis=1, ddof=1)
cost = -0.5 * d * n * np.log(2. * np.pi) - 0.5 * (n - 1.) * np.sum(sigma)
return cost
|
Main process for flat segmentation. Returns ------- est_idxs: np. array ( N ) Estimated times for the segment boundaries in frame indeces. est_labels: np. array ( N - 1 ) Estimated labels for the segments.
|
def processFlat(self):
"""Main process for flat segmentation.
Returns
-------
est_idxs : np.array(N)
Estimated times for the segment boundaries in frame indeces.
est_labels : np.array(N-1)
Estimated labels for the segments.
"""
# Preprocess to obtain features and duration
F, dur = features(self.file_struct, self.annot_beats, self.framesync)
try:
# Load and apply transform
W = load_transform(self.config["transform"])
F = W.dot(F)
# Get Segments
kmin, kmax = get_num_segs(dur)
est_idxs = get_segments(F, kmin=kmin, kmax=kmax)
except:
# The audio file is too short, only beginning and end
logging.warning("Audio file too short! "
"Only start and end boundaries.")
est_idxs = [0, F.shape[1] - 1]
# Make sure that the first and last boundaries are included
assert est_idxs[0] == 0 and est_idxs[-1] == F.shape[1] - 1
# Empty labels
est_labels = np.ones(len(est_idxs) - 1) * -1
# Post process estimations
est_idxs, est_labels = self._postprocess(est_idxs, est_labels)
return est_idxs, est_labels
|
Main process for hierarchical segmentation. Returns ------- est_idxs: list List containing estimated times for each layer in the hierarchy as np. arrays est_labels: list List containing estimated labels for each layer in the hierarchy as np. arrays
|
def processHierarchical(self):
"""Main process for hierarchical segmentation.
Returns
-------
est_idxs : list
List containing estimated times for each layer in the hierarchy
as np.arrays
est_labels : list
List containing estimated labels for each layer in the hierarchy
as np.arrays
"""
# Preprocess to obtain features, times, and input boundary indeces
F, dur = features(self.file_struct, self.annot_beats, self.framesync)
try:
# Load and apply transform
W = load_transform(self.config["transform"])
F = W.dot(F)
# Get Segments
kmin, kmax = get_num_segs(dur)
# Run algorithm layer by layer
est_idxs = []
est_labels = []
for k in range(kmin, kmax):
S, cost = get_k_segments(F, k)
est_idxs.append(S)
est_labels.append(np.ones(len(S) - 1) * -1)
# Make sure that the first and last boundaries are included
assert est_idxs[-1][0] == 0 and \
est_idxs[-1][-1] == F.shape[1] - 1, "Layer %d does not " \
"start or end in the right frame(s)." % k
# Post process layer
est_idxs[-1], est_labels[-1] = \
self._postprocess(est_idxs[-1], est_labels[-1])
except:
# The audio file is too short, only beginning and end
logging.warning("Audio file too short! "
"Only start and end boundaries.")
est_idxs = [np.array([0, F.shape[1] - 1])]
est_labels = [np.ones(1) * -1]
return est_idxs, est_labels
|
Log - normalizes features such that each vector is between min_db to 0.
|
def lognormalize(F, floor=0.1, min_db=-80):
"""Log-normalizes features such that each vector is between min_db to 0."""
assert min_db < 0
F = min_max_normalize(F, floor=floor)
F = np.abs(min_db) * np.log10(F) # Normalize from min_db to 0
return F
|
Normalizes features such that each vector is between floor to 1.
|
def min_max_normalize(F, floor=0.001):
"""Normalizes features such that each vector is between floor to 1."""
F += -F.min() + floor
F = F / F.max(axis=0)
return F
|
Normalizes the given matrix of features.
|
def normalize(X, norm_type, floor=0.0, min_db=-80):
"""Normalizes the given matrix of features.
Parameters
----------
X: np.array
Each row represents a feature vector.
norm_type: {"min_max", "log", np.inf, -np.inf, 0, float > 0, None}
- `"min_max"`: Min/max scaling is performed
- `"log"`: Logarithmic scaling is performed
- `np.inf`: Maximum absolute value
- `-np.inf`: Mininum absolute value
- `0`: Number of non-zeros
- float: Corresponding l_p norm.
- None : No normalization is performed
Returns
-------
norm_X: np.array
Normalized `X` according the the input parameters.
"""
if isinstance(norm_type, six.string_types):
if norm_type == "min_max":
return min_max_normalize(X, floor=floor)
if norm_type == "log":
return lognormalize(X, floor=floor, min_db=min_db)
return librosa.util.normalize(X, norm=norm_type, axis=1)
|
Gets the time frames and puts them in a numpy array.
|
def get_time_frames(dur, anal):
"""Gets the time frames and puts them in a numpy array."""
n_frames = get_num_frames(dur, anal)
return np.linspace(0, dur, num=n_frames)
|
Removes empty segments if needed.
|
def remove_empty_segments(times, labels):
"""Removes empty segments if needed."""
assert len(times) - 1 == len(labels)
inters = times_to_intervals(times)
new_inters = []
new_labels = []
for inter, label in zip(inters, labels):
if inter[0] < inter[1]:
new_inters.append(inter)
new_labels.append(label)
return intervals_to_times(np.asarray(new_inters)), new_labels
|
Sonifies the estimated times into the output file.
|
def sonify_clicks(audio, clicks, out_file, fs, offset=0):
"""Sonifies the estimated times into the output file.
Parameters
----------
audio: np.array
Audio samples of the input track.
clicks: np.array
Click positions in seconds.
out_file: str
Path to the output file.
fs: int
Sample rate.
offset: float
Offset of the clicks with respect to the audio.
"""
# Generate clicks (this should be done by mir_eval, but its
# latest release is not compatible with latest numpy)
times = clicks + offset
# 1 kHz tone, 100ms
click = np.sin(2 * np.pi * np.arange(fs * .1) * 1000 / (1. * fs))
# Exponential decay
click *= np.exp(-np.arange(fs * .1) / (fs * .01))
length = int(times.max() * fs + click.shape[0] + 1)
audio_clicks = mir_eval.sonify.clicks(times, fs, length=length)
# Create array to store the audio plus the clicks
out_audio = np.zeros(max(len(audio), len(audio_clicks)))
# Assign the audio and the clicks
out_audio[:len(audio)] = audio
out_audio[:len(audio_clicks)] += audio_clicks
# Write to file
scipy.io.wavfile.write(out_file, fs, out_audio)
|
Synchronizes the labels from the old_bound_idxs to the new_bound_idxs.
|
def synchronize_labels(new_bound_idxs, old_bound_idxs, old_labels, N):
"""Synchronizes the labels from the old_bound_idxs to the new_bound_idxs.
Parameters
----------
new_bound_idxs: np.array
New indeces to synchronize with.
old_bound_idxs: np.array
Old indeces, same shape as labels + 1.
old_labels: np.array
Labels associated to the old_bound_idxs.
N: int
Total number of frames.
Returns
-------
new_labels: np.array
New labels, synchronized to the new boundary indeces.
"""
assert len(old_bound_idxs) - 1 == len(old_labels)
# Construct unfolded labels array
unfold_labels = np.zeros(N)
for i, (bound_idx, label) in enumerate(
zip(old_bound_idxs[:-1], old_labels)):
unfold_labels[bound_idx:old_bound_idxs[i + 1]] = label
# Constuct new labels
new_labels = np.zeros(len(new_bound_idxs) - 1)
for i, bound_idx in enumerate(new_bound_idxs[:-1]):
new_labels[i] = np.median(
unfold_labels[bound_idx:new_bound_idxs[i + 1]])
return new_labels
|
Processes a level of segmentation and converts it into times.
|
def process_segmentation_level(est_idxs, est_labels, N, frame_times, dur):
"""Processes a level of segmentation, and converts it into times.
Parameters
----------
est_idxs: np.array
Estimated boundaries in frame indeces.
est_labels: np.array
Estimated labels.
N: int
Number of frames in the whole track.
frame_times: np.array
Time stamp for each frame.
dur: float
Duration of the audio track.
Returns
-------
est_times: np.array
Estimated segment boundaries in seconds.
est_labels: np.array
Estimated labels for each segment.
"""
assert est_idxs[0] == 0 and est_idxs[-1] == N - 1
assert len(est_idxs) - 1 == len(est_labels)
# Add silences, if needed
est_times = np.concatenate(([0], frame_times[est_idxs], [dur]))
silence_label = np.max(est_labels) + 1
est_labels = np.concatenate(([silence_label], est_labels, [silence_label]))
# Remove empty segments if needed
est_times, est_labels = remove_empty_segments(est_times, est_labels)
# Make sure that the first and last times are 0 and duration, respectively
assert np.allclose([est_times[0]], [0]) and \
np.allclose([est_times[-1]], [dur])
return est_times, est_labels
|
Align the end of the hierarchies such that they end at the same exact second as long they have the same duration within a certain threshold.
|
def align_end_hierarchies(hier1, hier2, thres=0.5):
"""Align the end of the hierarchies such that they end at the same exact
second as long they have the same duration within a certain threshold.
Parameters
----------
hier1: list
List containing hierarchical segment boundaries.
hier2: list
List containing hierarchical segment boundaries.
thres: float > 0
Threshold to decide whether two values are the same.
"""
# Make sure we have correctly formatted hierarchies
dur_h1 = hier1[0][-1]
for hier in hier1:
assert hier[-1] == dur_h1, "hier1 is not correctly " \
"formatted {} {}".format(hier[-1], dur_h1)
dur_h2 = hier2[0][-1]
for hier in hier2:
assert hier[-1] == dur_h2, "hier2 is not correctly formatted"
# If durations are different, do nothing
if abs(dur_h1 - dur_h2) > thres:
return
# Align h1 with h2
for hier in hier1:
hier[-1] = dur_h2
|
compute distances of a specific data point to all other samples
|
def _distance(self, idx):
""" compute distances of a specific data point to all other samples"""
if scipy.sparse.issparse(self.data):
step = self.data.shape[1]
else:
step = 50000
d = np.zeros((self.data.shape[1]))
if idx == -1:
# set vec to origin if idx=-1
vec = np.zeros((self.data.shape[0], 1))
if scipy.sparse.issparse(self.data):
vec = scipy.sparse.csc_matrix(vec)
else:
vec = self.data[:, idx:idx+1]
self._logger.info('compute distance to node ' + str(idx))
# slice data into smaller chunks
for idx_start in range(0, self.data.shape[1], step):
if idx_start + step > self.data.shape[1]:
idx_end = self.data.shape[1]
else:
idx_end = idx_start + step
d[idx_start:idx_end] = self._distfunc(
self.data[:,idx_start:idx_end], vec)
self._logger.info('completed:' +
str(idx_end/(self.data.shape[1]/100.0)) + "%")
return d
|
compute new W
|
def update_w(self):
""" compute new W """
EPS = 10**-8
self.init_sivm()
# initialize some of the recursively updated distance measures ....
d_square = np.zeros((self.data.shape[1]))
d_sum = np.zeros((self.data.shape[1]))
d_i_times_d_j = np.zeros((self.data.shape[1]))
distiter = np.zeros((self.data.shape[1]))
a = np.log(self._maxd)
a_inc = a.copy()
for l in range(1, self._num_bases):
d = self._distance(self.select[l-1])
# take the log of d (sually more stable that d)
d = np.log(d + EPS)
d_i_times_d_j += d * d_sum
d_sum += d
d_square += d**2
distiter = d_i_times_d_j + a*d_sum - (l/2.0) * d_square
# detect the next best data point
self.select.append(np.argmax(distiter))
self._logger.info('cur_nodes: ' + str(self.select))
# sort indices, otherwise h5py won't work
self.W = self.data[:, np.sort(self.select)]
# "unsort" it again to keep the correct order
self.W = self.W[:, np.argsort(np.argsort(self.select))]
|
Estimates K running X - means algorithm ( Pelleg & Moore 2000 ).
|
def estimate_K_xmeans(self, th=0.2, maxK = 10):
"""Estimates K running X-means algorithm (Pelleg & Moore, 2000)."""
# Run initial K-means
means, labels = self.run_kmeans(self.X, self.init_K)
# Run X-means algorithm
stop = False
curr_K = self.init_K
while not stop:
stop = True
final_means = []
for k in range(curr_K):
# Find the data that corresponds to the k-th cluster
D = self.get_clustered_data(self.X, labels, k)
if len(D) == 0 or D.shape[0] == 1:
continue
# Whiten and find whitened mean
stdD = np.std(D, axis=0)
#D = vq.whiten(D)
D /= float(stdD) # Same as line above
mean = D.mean(axis=0)
# Cluster this subspace by half (K=2)
half_means, half_labels = self.run_kmeans(D, K=2)
# Compute BICs
bic1 = self.compute_bic(D, [mean], K=1,
labels=np.zeros(D.shape[0]),
R=D.shape[0])
bic2 = self.compute_bic(D, half_means, K=2,
labels=half_labels, R=D.shape[0])
# Split or not
max_bic = np.max([np.abs(bic1), np.abs(bic2)])
norm_bic1 = bic1 / float(max_bic)
norm_bic2 = bic2 / float(max_bic)
diff_bic = np.abs(norm_bic1 - norm_bic2)
# Split!
#print "diff_bic", diff_bic
if diff_bic > th:
final_means.append(half_means[0] * stdD)
final_means.append(half_means[1] * stdD)
curr_K += 1
stop = False
# Don't split
else:
final_means.append(mean * stdD)
final_means = np.asarray(final_means)
#print "Estimated K: ", curr_K
if self.plot:
plt.scatter(self.X[:, 0], self.X[:, 1])
plt.scatter(final_means[:, 0], final_means[:, 1], color="y")
plt.show()
if curr_K >= maxK or self.X.shape[-1] != final_means.shape[-1]:
stop = True
else:
labels, dist = vq.vq(self.X, final_means)
return curr_K
|
Estimates the K using K - means and BIC by sweeping various K and choosing the optimal BIC.
|
def estimate_K_knee(self, th=.015, maxK=12):
"""Estimates the K using K-means and BIC, by sweeping various K and
choosing the optimal BIC."""
# Sweep K-means
if self.X.shape[0] < maxK:
maxK = self.X.shape[0]
if maxK < 2:
maxK = 2
K = np.arange(1, maxK)
bics = []
for k in K:
means, labels = self.run_kmeans(self.X, k)
bic = self.compute_bic(self.X, means, labels, K=k,
R=self.X.shape[0])
bics.append(bic)
diff_bics = np.diff(bics)
finalK = K[-1]
if len(bics) == 1:
finalK = 2
else:
# Normalize
bics = np.asarray(bics)
bics -= bics.min()
#bics /= bics.max()
diff_bics -= diff_bics.min()
#diff_bics /= diff_bics.max()
#print bics, diff_bics
# Find optimum K
for i in range(len(K[:-1])):
#if bics[i] > diff_bics[i]:
if diff_bics[i] < th and K[i] != 1:
finalK = K[i]
break
#print "Estimated K: ", finalK
if self.plot:
plt.subplot(2, 1, 1)
plt.plot(K, bics, label="BIC")
plt.plot(K[:-1], diff_bics, label="BIC diff")
plt.legend(loc=2)
plt.subplot(2, 1, 2)
plt.scatter(self.X[:, 0], self.X[:, 1])
plt.show()
return finalK
|
Returns the data with a specific label_index using the previously learned labels.
|
def get_clustered_data(self, X, labels, label_index):
"""Returns the data with a specific label_index, using the previously
learned labels."""
D = X[np.argwhere(labels == label_index)]
return D.reshape((D.shape[0], D.shape[-1]))
|
Runs k - means and returns the labels assigned to the data.
|
def run_kmeans(self, X, K):
"""Runs k-means and returns the labels assigned to the data."""
wX = vq.whiten(X)
means, dist = vq.kmeans(wX, K, iter=100)
labels, dist = vq.vq(wX, means)
return means, labels
|
Computes the Bayesian Information Criterion.
|
def compute_bic(self, D, means, labels, K, R):
"""Computes the Bayesian Information Criterion."""
D = vq.whiten(D)
Rn = D.shape[0]
M = D.shape[1]
if R == K:
return 1
# Maximum likelihood estimate (MLE)
mle_var = 0
for k in range(len(means)):
X = D[np.argwhere(labels == k)]
X = X.reshape((X.shape[0], X.shape[-1]))
for x in X:
mle_var += distance.euclidean(x, means[k])
#print x, means[k], mle_var
mle_var /= float(R - K)
# Log-likelihood of the data
l_D = - Rn/2. * np.log(2*np.pi) - (Rn * M)/2. * np.log(mle_var) - \
(Rn - K) / 2. + Rn * np.log(Rn) - Rn * np.log(R)
# Params of BIC
p = (K-1) + M * K + mle_var
#print "BIC:", l_D, p, R, K
# Return the bic
return l_D - p / 2. * np.log(R)
|
Generates N * K 2D data points with K means and N data points for each mean.
|
def generate_2d_data(self, N=100, K=5):
"""Generates N*K 2D data points with K means and N data points
for each mean."""
# Seed the random
np.random.seed(seed=int(time.time()))
# Amount of spread of the centroids
spread = 30
# Generate random data
X = np.empty((0, 2))
for i in range(K):
mean = np.array([np.random.random()*spread,
np.random.random()*spread])
x = np.random.normal(0.0, scale=1.0, size=(N, 2)) + mean
X = np.append(X, x, axis=0)
return X
|
Do factorization s. t. data = dot ( dot ( data beta ) H ) under the convexity constraint beta > = 0 sum ( beta ) = 1 H > = 0 sum ( H ) = 1
|
def factorize(self):
"""Do factorization s.t. data = dot(dot(data,beta),H), under the convexity constraint
beta >=0, sum(beta)=1, H >=0, sum(H)=1
"""
# compute new coefficients for reconstructing data points
self.update_w()
# for CHNMF it is sometimes useful to only compute
# the basis vectors
if self._compute_h:
self.update_h()
self.W = self.mdl.W
self.H = self.mdl.H
self.ferr = np.zeros(1)
self.ferr[0] = self.mdl.frobenius_norm()
self._print_cur_status(' Fro:' + str(self.ferr[0]))
|
Y = resample_mx ( X incolpos outcolpos ) X is taken as a set of columns each starting at time colpos and continuing until the start of the next column. Y is a similar matrix with time boundaries defined by outcolpos. Each column of Y is a duration - weighted average of the overlapping columns of X. 2010 - 04 - 14 Dan Ellis dpwe
|
def resample_mx(X, incolpos, outcolpos):
"""
Y = resample_mx(X, incolpos, outcolpos)
X is taken as a set of columns, each starting at 'time'
colpos, and continuing until the start of the next column.
Y is a similar matrix, with time boundaries defined by
outcolpos. Each column of Y is a duration-weighted average of
the overlapping columns of X.
2010-04-14 Dan Ellis dpwe@ee.columbia.edu based on samplemx/beatavg
-> python: TBM, 2011-11-05, TESTED
"""
noutcols = len(outcolpos)
Y = np.zeros((X.shape[0], noutcols))
# assign 'end times' to final columns
if outcolpos.max() > incolpos.max():
incolpos = np.concatenate([incolpos,[outcolpos.max()]])
X = np.concatenate([X, X[:,-1].reshape(X.shape[0],1)], axis=1)
outcolpos = np.concatenate([outcolpos, [outcolpos[-1]]])
# durations (default weights) of input columns)
incoldurs = np.concatenate([np.diff(incolpos), [1]])
for c in range(noutcols):
firstincol = np.where(incolpos <= outcolpos[c])[0][-1]
firstincolnext = np.where(incolpos < outcolpos[c+1])[0][-1]
lastincol = max(firstincol,firstincolnext)
# default weights
wts = copy.deepcopy(incoldurs[firstincol:lastincol+1])
# now fix up by partial overlap at ends
if len(wts) > 1:
wts[0] = wts[0] - (outcolpos[c] - incolpos[firstincol])
wts[-1] = wts[-1] - (incolpos[lastincol+1] - outcolpos[c+1])
wts = wts * 1. / float(sum(wts))
Y[:,c] = np.dot(X[:,firstincol:lastincol+1], wts)
# done
return Y
|
Magnitude of a complex matrix.
|
def magnitude(X):
"""Magnitude of a complex matrix."""
r = np.real(X)
i = np.imag(X)
return np.sqrt(r * r + i * i);
|
Extracts the boundaries from a json file and puts them into an np array.
|
def json_to_bounds(segments_json):
"""Extracts the boundaries from a json file and puts them into
an np array."""
f = open(segments_json)
segments = json.load(f)["segments"]
bounds = []
for segment in segments:
bounds.append(segment["start"])
bounds.append(bounds[-1] + segments[-1]["duration"]) # Add last boundary
f.close()
return np.asarray(bounds)
|
Extracts the boundaries from a bounds json file and puts them into an np array.
|
def json_bounds_to_bounds(bounds_json):
"""Extracts the boundaries from a bounds json file and puts them into
an np array."""
f = open(bounds_json)
segments = json.load(f)["bounds"]
bounds = []
for segment in segments:
bounds.append(segment["start"])
f.close()
return np.asarray(bounds)
|
Extracts the labels from a json file and puts them into an np array.
|
def json_to_labels(segments_json):
"""Extracts the labels from a json file and puts them into
an np array."""
f = open(segments_json)
segments = json.load(f)["segments"]
labels = []
str_labels = []
for segment in segments:
if not segment["label"] in str_labels:
str_labels.append(segment["label"])
labels.append(len(str_labels)-1)
else:
label_idx = np.where(np.asarray(str_labels) == segment["label"])[0][0]
labels.append(label_idx)
f.close()
return np.asarray(labels)
|
Extracts the beats from the beats_json_file and puts them into an np array.
|
def json_to_beats(beats_json_file):
"""Extracts the beats from the beats_json_file and puts them into
an np array."""
f = open(beats_json_file, "r")
beats_json = json.load(f)
beats = []
for beat in beats_json["beats"]:
beats.append(beat["start"])
f.close()
return np.asarray(beats)
|
Computes the 2D - Fourier Magnitude Coefficients.
|
def compute_ffmc2d(X):
"""Computes the 2D-Fourier Magnitude Coefficients."""
# 2d-fft
fft2 = scipy.fftpack.fft2(X)
# Magnitude
fft2m = magnitude(fft2)
# FFTshift and flatten
fftshift = scipy.fftpack.fftshift(fft2m).flatten()
#cmap = plt.cm.get_cmap('hot')
#plt.imshow(np.log1p(scipy.fftpack.fftshift(fft2m)).T, interpolation="nearest",
# aspect="auto", cmap=cmap)
#plt.show()
# Take out redundant components
return fftshift[:fftshift.shape[0] // 2 + 1]
|
Frobenius norm ( ||data - USV|| ) for a data matrix and a low rank approximation given by SVH using rank k for U and V Returns: frobenius norm: F = ||data - USV||
|
def frobenius_norm(self):
""" Frobenius norm (||data - USV||) for a data matrix and a low rank
approximation given by SVH using rank k for U and V
Returns:
frobenius norm: F = ||data - USV||
"""
if scipy.sparse.issparse(self.data):
err = self.data - self.U*self.S*self.V
err = err.multiply(err)
err = np.sqrt(err.sum())
else:
err = self.data[:,:] - np.dot(np.dot(self.U, self.S), self.V)
err = np.sqrt(np.sum(err**2))
return err
|
Factorize s. t. WH = data
|
def factorize(self, niter=10, compute_w=True, compute_h=True,
compute_err=True, show_progress=False):
""" Factorize s.t. WH = data
Parameters
----------
niter : int
number of iterations.
show_progress : bool
print some extra information to stdout.
compute_h : bool
iteratively update values for H.
compute_w : bool
iteratively update values for W.
compute_err : bool
compute Frobenius norm |data-WH| after each update and store
it to .ferr[k].
Updated Values
--------------
.W : updated values for W.
.H : updated values for H.
.ferr : Frobenius norm |data-WH| for each iteration.
"""
if not hasattr(self,'W'):
self.init_w()
if not hasattr(self,'H'):
self.init_h()
def separate_positive(m):
return (np.abs(m) + m)/2.0
def separate_negative(m):
return (np.abs(m) - m)/2.0
if show_progress:
self._logger.setLevel(logging.INFO)
else:
self._logger.setLevel(logging.ERROR)
XtX = np.dot(self.data[:,:].T, self.data[:,:])
XtX_pos = separate_positive(XtX)
XtX_neg = separate_negative(XtX)
self.ferr = np.zeros(niter)
# iterate over W and H
for i in range(niter):
# update H
XtX_neg_x_W = np.dot(XtX_neg, self.G)
XtX_pos_x_W = np.dot(XtX_pos, self.G)
if compute_h:
H_x_WT = np.dot(self.H.T, self.G.T)
ha = XtX_pos_x_W + np.dot(H_x_WT, XtX_neg_x_W)
hb = XtX_neg_x_W + np.dot(H_x_WT, XtX_pos_x_W) + 10**-9
self.H = (self.H.T*np.sqrt(ha/hb)).T
# update W
if compute_w:
HT_x_H = np.dot(self.H, self.H.T)
wa = np.dot(XtX_pos, self.H.T) + np.dot(XtX_neg_x_W, HT_x_H)
wb = np.dot(XtX_neg, self.H.T) + np.dot(XtX_pos_x_W, HT_x_H) + 10**-9
self.G *= np.sqrt(wa/wb)
self.W = np.dot(self.data[:,:], self.G)
if compute_err:
self.ferr[i] = self.frobenius_norm()
self._logger.info('Iteration ' + str(i+1) + '/' + str(niter) +
' FN:' + str(self.ferr[i]))
else:
self._logger.info('Iteration ' + str(i+1) + '/' + str(niter))
if i > 1 and compute_err:
if self.converged(i):
self.ferr = self.ferr[:i]
break
|
( Convex ) Non - Negative Matrix Factorization.
|
def cnmf(S, rank, niter=500, hull=False):
"""(Convex) Non-Negative Matrix Factorization.
Parameters
----------
S: np.array(p, N)
Features matrix. p row features and N column observations.
rank: int
Rank of decomposition
niter: int
Number of iterations to be used
Returns
-------
F: np.array
Cluster matrix (decomposed matrix)
G: np.array
Activation matrix (decomposed matrix)
(s.t. S ~= F * G)
"""
if hull:
nmf_mdl = pymf.CHNMF(S, num_bases=rank)
else:
nmf_mdl = pymf.CNMF(S, num_bases=rank)
nmf_mdl.factorize(niter=niter)
F = np.asarray(nmf_mdl.W)
G = np.asarray(nmf_mdl.H)
return F, G
|
Computes the labels using the bounds.
|
def compute_labels(X, rank, R, bound_idxs, niter=300):
"""Computes the labels using the bounds."""
try:
F, G = cnmf(X, rank, niter=niter, hull=False)
except:
return [1]
label_frames = filter_activation_matrix(G.T, R)
label_frames = np.asarray(label_frames, dtype=int)
#labels = [label_frames[0]]
labels = []
bound_inters = zip(bound_idxs[:-1], bound_idxs[1:])
for bound_inter in bound_inters:
if bound_inter[1] - bound_inter[0] <= 0:
labels.append(np.max(label_frames) + 1)
else:
labels.append(most_frequent(
label_frames[bound_inter[0]: bound_inter[1]]))
#print bound_inter, labels[-1]
#labels.append(label_frames[-1])
return labels
|
Filters the activation matrix G and returns a flattened copy.
|
def filter_activation_matrix(G, R):
"""Filters the activation matrix G, and returns a flattened copy."""
#import pylab as plt
#plt.imshow(G, interpolation="nearest", aspect="auto")
#plt.show()
idx = np.argmax(G, axis=1)
max_idx = np.arange(G.shape[0])
max_idx = (max_idx, idx.flatten())
G[:, :] = 0
G[max_idx] = idx + 1
# TODO: Order matters?
G = np.sum(G, axis=1)
G = median_filter(G[:, np.newaxis], R)
return G.flatten()
|
Gets the segmentation ( boundaries and labels ) from the factorization matrices.
|
def get_segmentation(X, rank, R, rank_labels, R_labels, niter=300,
bound_idxs=None, in_labels=None):
"""
Gets the segmentation (boundaries and labels) from the factorization
matrices.
Parameters
----------
X: np.array()
Features matrix (e.g. chromagram)
rank: int
Rank of decomposition
R: int
Size of the median filter for activation matrix
niter: int
Number of iterations for k-means
bound_idxs : list
Use previously found boundaries (None to detect them)
in_labels : np.array()
List of input labels (None to compute them)
Returns
-------
bounds_idx: np.array
Bound indeces found
labels: np.array
Indeces of the labels representing the similarity between segments.
"""
#import pylab as plt
#plt.imshow(X, interpolation="nearest", aspect="auto")
#plt.show()
# Find non filtered boundaries
compute_bounds = True if bound_idxs is None else False
while True:
if bound_idxs is None:
try:
F, G = cnmf(X, rank, niter=niter, hull=False)
except:
return np.empty(0), [1]
# Filter G
G = filter_activation_matrix(G.T, R)
if bound_idxs is None:
bound_idxs = np.where(np.diff(G) != 0)[0] + 1
# Increase rank if we found too few boundaries
if compute_bounds and len(np.unique(bound_idxs)) <= 2:
rank += 1
bound_idxs = None
else:
break
# Add first and last boundary
bound_idxs = np.concatenate(([0], bound_idxs, [X.shape[1] - 1]))
bound_idxs = np.asarray(bound_idxs, dtype=int)
if in_labels is None:
labels = compute_labels(X, rank_labels, R_labels, bound_idxs,
niter=niter)
else:
labels = np.ones(len(bound_idxs) - 1)
#plt.imshow(G[:, np.newaxis], interpolation="nearest", aspect="auto")
#for b in bound_idxs:
#plt.axvline(b, linewidth=2.0, color="k")
#plt.show()
return bound_idxs, labels
|
Main process. Returns ------- est_idxs: np. array ( N ) Estimated indeces for the segment boundaries in frames. est_labels: np. array ( N - 1 ) Estimated labels for the segments.
|
def processFlat(self):
"""Main process.
Returns
-------
est_idxs : np.array(N)
Estimated indeces for the segment boundaries in frames.
est_labels : np.array(N-1)
Estimated labels for the segments.
"""
# C-NMF params
niter = self.config["niters"] # Iterations for the MF and clustering
# Preprocess to obtain features, times, and input boundary indeces
F = self._preprocess()
# Normalize
F = U.normalize(F, norm_type=self.config["norm_feats"])
if F.shape[0] >= self.config["h"]:
# Median filter
F = median_filter(F, M=self.config["h"])
#plt.imshow(F.T, interpolation="nearest", aspect="auto"); plt.show()
# Find the boundary indices and labels using matrix factorization
est_idxs, est_labels = get_segmentation(
F.T, self.config["rank"], self.config["R"],
self.config["rank_labels"], self.config["R_labels"],
niter=niter, bound_idxs=self.in_bound_idxs, in_labels=None)
# Remove empty segments if needed
est_idxs, est_labels = U.remove_empty_segments(est_idxs, est_labels)
else:
# The track is too short. We will only output the first and last
# time stamps
if self.in_bound_idxs is None:
est_idxs = np.array([0, F.shape[0] - 1])
est_labels = [1]
else:
est_idxs = self.in_bound_idxs
est_labels = [1] * (len(est_idxs) + 1)
# Make sure that the first and last boundaries are included
assert est_idxs[0] == 0 and est_idxs[-1] == F.shape[0] - 1
# Post process estimations
est_idxs, est_labels = self._postprocess(est_idxs, est_labels)
return est_idxs, est_labels
|
Obtains the boundaries module given a boundary algorithm identificator.
|
def get_boundaries_module(boundaries_id):
"""Obtains the boundaries module given a boundary algorithm identificator.
Parameters
----------
boundaries_id: str
Boundary algorithm identificator (e.g., foote, sf).
Returns
-------
module: object
Object containing the selected boundary module.
None for "ground truth".
"""
if boundaries_id == "gt":
return None
try:
module = eval(algorithms.__name__ + "." + boundaries_id)
except AttributeError:
raise RuntimeError("Algorithm %s can not be found in msaf!" %
boundaries_id)
if not module.is_boundary_type:
raise RuntimeError("Algorithm %s can not identify boundaries!" %
boundaries_id)
return module
|
Obtains the label module given a label algorithm identificator.
|
def get_labels_module(labels_id):
"""Obtains the label module given a label algorithm identificator.
Parameters
----------
labels_id: str
Label algorithm identificator (e.g., fmc2d, cnmf).
Returns
-------
module: object
Object containing the selected label module.
None for not computing the labeling part of music segmentation.
"""
if labels_id is None:
return None
try:
module = eval(algorithms.__name__ + "." + labels_id)
except AttributeError:
raise RuntimeError("Algorithm %s can not be found in msaf!" %
labels_id)
if not module.is_label_type:
raise RuntimeError("Algorithm %s can not label segments!" %
labels_id)
return module
|
Runs hierarchical algorithms with the specified identifiers on the audio_file. See run_algorithm for more information.
|
def run_hierarchical(audio_file, bounds_module, labels_module, frame_times,
config, annotator_id=0):
"""Runs hierarchical algorithms with the specified identifiers on the
audio_file. See run_algorithm for more information.
"""
# Sanity check
if bounds_module is None:
raise NoHierBoundaryError("A boundary algorithm is needed when using "
"hierarchical segmentation.")
# Get features to make code nicer
features = config["features"].features
# Compute boundaries
S = bounds_module.Segmenter(audio_file, **config)
est_idxs, est_labels = S.processHierarchical()
# Compute labels if needed
if labels_module is not None and \
bounds_module.__name__ != labels_module.__name__:
# Compute labels for each level in the hierarchy
flat_config = deepcopy(config)
flat_config["hier"] = False
for i, level_idxs in enumerate(est_idxs):
S = labels_module.Segmenter(audio_file,
in_bound_idxs=level_idxs,
**flat_config)
est_labels[i] = S.processFlat()[1]
# Make sure the first and last boundaries are included for each
# level in the hierarchy
est_times = []
cleaned_est_labels = []
for level in range(len(est_idxs)):
est_level_times, est_level_labels = \
utils.process_segmentation_level(
est_idxs[level], est_labels[level], features.shape[0],
frame_times, config["features"].dur)
est_times.append(est_level_times)
cleaned_est_labels.append(est_level_labels)
est_labels = cleaned_est_labels
return est_times, est_labels
|
Runs the flat algorithms with the specified identifiers on the audio_file. See run_algorithm for more information.
|
def run_flat(file_struct, bounds_module, labels_module, frame_times, config,
annotator_id):
"""Runs the flat algorithms with the specified identifiers on the
audio_file. See run_algorithm for more information.
"""
# Get features to make code nicer
features = config["features"].features
# Segment using the specified boundaries and labels
# Case when boundaries and labels algorithms are the same
if bounds_module is not None and labels_module is not None and \
bounds_module.__name__ == labels_module.__name__:
S = bounds_module.Segmenter(file_struct, **config)
est_idxs, est_labels = S.processFlat()
# Different boundary and label algorithms
else:
# Identify segment boundaries
if bounds_module is not None:
S = bounds_module.Segmenter(file_struct, in_labels=[], **config)
est_idxs, est_labels = S.processFlat()
else:
try:
# Ground-truth boundaries
est_times, est_labels = io.read_references(
file_struct.audio_file, annotator_id=annotator_id)
est_idxs = io.align_times(est_times, frame_times)
if est_idxs[0] != 0:
est_idxs = np.concatenate(([0], est_idxs))
except IOError:
logging.warning("No references found for file: %s" %
file_struct.audio_file)
return [], []
# Label segments
if labels_module is not None:
if len(est_idxs) == 2:
est_labels = np.array([0])
else:
S = labels_module.Segmenter(file_struct,
in_bound_idxs=est_idxs,
**config)
est_labels = S.processFlat()[1]
# Make sure the first and last boundaries are included
est_times, est_labels = utils.process_segmentation_level(
est_idxs, est_labels, features.shape[0], frame_times,
config["features"].dur)
return est_times, est_labels
|
Runs the algorithms with the specified identifiers on the audio_file.
|
def run_algorithms(file_struct, boundaries_id, labels_id, config,
annotator_id=0):
"""Runs the algorithms with the specified identifiers on the audio_file.
Parameters
----------
file_struct: `msaf.io.FileStruct`
Object with the file paths.
boundaries_id: str
Identifier of the boundaries algorithm to use ("gt" for ground truth).
labels_id: str
Identifier of the labels algorithm to use (None for not labeling).
config: dict
Dictionary containing the custom parameters of the algorithms to use.
annotator_id: int
Annotator identificator in the ground truth.
Returns
-------
est_times: np.array or list
List of estimated times for the segment boundaries.
If `list`, it will be a list of np.arrays, sorted by segmentation
layer.
est_labels: np.array or list
List of all the labels associated segments.
If `list`, it will be a list of np.arrays, sorted by segmentation
layer.
"""
# Check that there are enough audio frames
if config["features"].features.shape[0] <= msaf.config.minimum_frames:
logging.warning("Audio file too short, or too many few beats "
"estimated. Returning empty estimations.")
return np.asarray([0, config["features"].dur]), \
np.asarray([0], dtype=int)
# Get the corresponding modules
bounds_module = get_boundaries_module(boundaries_id)
labels_module = get_labels_module(labels_id)
# Get the correct frame times
frame_times = config["features"].frame_times
# Segment audio based on type of segmentation
run_fun = run_hierarchical if config["hier"] else run_flat
est_times, est_labels = run_fun(file_struct, bounds_module, labels_module,
frame_times, config, annotator_id)
return est_times, est_labels
|
Prepares the parameters runs the algorithms and saves results.
|
def process_track(file_struct, boundaries_id, labels_id, config,
annotator_id=0):
"""Prepares the parameters, runs the algorithms, and saves results.
Parameters
----------
file_struct: `msaf.io.FileStruct`
FileStruct containing the paths of the input files (audio file,
features file, reference file, output estimation file).
boundaries_id: str
Identifier of the boundaries algorithm to use ("gt" for ground truth).
labels_id: str
Identifier of the labels algorithm to use (None for not labeling).
config: dict
Dictionary containing the custom parameters of the algorithms to use.
annotator_id: int
Annotator identificator in the ground truth.
Returns
-------
est_times: np.array
List of estimated times for the segment boundaries.
est_labels: np.array
List of all the labels associated segments.
"""
logging.info("Segmenting %s" % file_struct.audio_file)
# Get features
config["features"] = Features.select_features(
config["feature"], file_struct, config["annot_beats"],
config["framesync"])
# Get estimations
est_times, est_labels = run_algorithms(file_struct,
boundaries_id, labels_id, config,
annotator_id=annotator_id)
# Save
logging.info("Writing results in: %s" % file_struct.est_file)
io.save_estimations(file_struct, est_times, est_labels,
boundaries_id, labels_id, **config)
return est_times, est_labels
|
Main process to segment a file or a collection of files.
|
def process(in_path, annot_beats=False, feature="pcp", framesync=False,
boundaries_id=msaf.config.default_bound_id,
labels_id=msaf.config.default_label_id, hier=False,
sonify_bounds=False, plot=False, n_jobs=4, annotator_id=0,
config=None, out_bounds="out_bounds.wav", out_sr=22050):
"""Main process to segment a file or a collection of files.
Parameters
----------
in_path: str
Input path. If a directory, MSAF will function in collection mode.
If audio file, MSAF will be in single file mode.
annot_beats: bool
Whether to use annotated beats or not.
feature: str
String representing the feature to be used (e.g. pcp, mfcc, tonnetz)
framesync: str
Whether to use framesync features or not (default: False -> beatsync)
boundaries_id: str
Identifier of the boundaries algorithm (use "gt" for groundtruth)
labels_id: str
Identifier of the labels algorithm (use None to not compute labels)
hier : bool
Whether to compute a hierarchical or flat segmentation.
sonify_bounds: bool
Whether to write an output audio file with the annotated boundaries
or not (only available in Single File Mode).
plot: bool
Whether to plot the boundaries and labels against the ground truth.
n_jobs: int
Number of processes to run in parallel. Only available in collection
mode.
annotator_id: int
Annotator identificator in the ground truth.
config: dict
Dictionary containing custom configuration parameters for the
algorithms. If None, the default parameters are used.
out_bounds: str
Path to the output for the sonified boundaries (only in single file
mode, when sonify_bounds is True.
out_sr : int
Sampling rate for the sonified bounds.
Returns
-------
results : list
List containing tuples of (est_times, est_labels) of estimated
boundary times and estimated labels.
If labels_id is None, est_labels will be a list of -1.
"""
# Seed random to reproduce results
np.random.seed(123)
# Set up configuration based on algorithms parameters
if config is None:
config = io.get_configuration(feature, annot_beats, framesync,
boundaries_id, labels_id)
config["features"] = None
# Save multi-segment (hierarchical) configuration
config["hier"] = hier
if not os.path.exists(in_path):
raise NoAudioFileError("File or directory does not exists, %s" %
in_path)
if os.path.isfile(in_path):
# Single file mode
# Get (if they exitst) or compute features
file_struct = msaf.io.FileStruct(in_path)
# Use temporary file in single mode
file_struct.features_file = msaf.config.features_tmp_file
# Get features
config["features"] = Features.select_features(
feature, file_struct, annot_beats, framesync)
# And run the algorithms
est_times, est_labels = run_algorithms(file_struct, boundaries_id,
labels_id, config,
annotator_id=annotator_id)
if sonify_bounds:
logging.info("Sonifying boundaries in %s..." % out_bounds)
audio_hq, sr = librosa.load(in_path, sr=out_sr)
utils.sonify_clicks(audio_hq, est_times, out_bounds, out_sr)
if plot:
plotting.plot_one_track(file_struct, est_times, est_labels,
boundaries_id, labels_id)
# TODO: Only save if needed
# Save estimations
msaf.utils.ensure_dir(os.path.dirname(file_struct.est_file))
io.save_estimations(file_struct, est_times, est_labels,
boundaries_id, labels_id, **config)
return est_times, est_labels
else:
# Collection mode
file_structs = io.get_dataset_files(in_path)
return Parallel(n_jobs=n_jobs)(delayed(process_track)(
file_struct, boundaries_id, labels_id, config,
annotator_id=annotator_id) for file_struct in file_structs[:])
|
alternating least squares step update W under the convexity constraint
|
def update_w(self):
""" alternating least squares step, update W under the convexity
constraint """
def update_single_w(i):
""" compute single W[:,i] """
# optimize beta using qp solver from cvxopt
FB = base.matrix(np.float64(np.dot(-self.data.T, W_hat[:,i])))
be = solvers.qp(HB, FB, INQa, INQb, EQa, EQb)
self.beta[i,:] = np.array(be['x']).reshape((1, self._num_samples))
# float64 required for cvxopt
HB = base.matrix(np.float64(np.dot(self.data[:,:].T, self.data[:,:])))
EQb = base.matrix(1.0, (1, 1))
W_hat = np.dot(self.data, pinv(self.H))
INQa = base.matrix(-np.eye(self._num_samples))
INQb = base.matrix(0.0, (self._num_samples, 1))
EQa = base.matrix(1.0, (1, self._num_samples))
for i in range(self._num_bases):
update_single_w(i)
self.W = np.dot(self.beta, self.data.T).T
|
Main Entry point for translator and argument parser
|
def main():
'''
Main Entry point for translator and argument parser
'''
args = command_line()
translate = partial(translator, args.source, args.dest,
version=' '.join([__version__, __build__]))
return source(spool(set_task(translate, translit=args.translit)), args.text)
|
Initializes coroutine essentially priming it to the yield statement. Used as a decorator over functions that generate coroutines.
|
def coroutine(func):
"""
Initializes coroutine essentially priming it to the yield statement.
Used as a decorator over functions that generate coroutines.
.. code-block:: python
# Basic coroutine producer/consumer pattern
from translate import coroutine
@coroutine
def coroutine_foo(bar):
try:
while True:
baz = (yield)
bar.send(baz)
except GeneratorExit:
bar.close()
:param func: Unprimed Generator
:type func: Function
:return: Initialized Coroutine
:rtype: Function
"""
@wraps(func)
def initialization(*args, **kwargs):
start = func(*args, **kwargs)
next(start)
return start
return initialization
|
Generic accumulator function.
|
def accumulator(init, update):
"""
Generic accumulator function.
.. code-block:: python
# Simplest Form
>>> a = 'this' + ' '
>>> b = 'that'
>>> c = functools.reduce(accumulator, a, b)
>>> c
'this that'
# The type of the initial value determines output type.
>>> a = 5
>>> b = Hello
>>> c = functools.reduce(accumulator, a, b)
>>> c
10
:param init: Initial Value
:param update: Value to accumulate
:return: Combined Values
"""
return (
init + len(update)
if isinstance(init, int) else
init + update
)
|
: param script: Translated Text: type script: Iterable
|
def write_stream(script, output='trans'):
"""
:param script: Translated Text
:type script: Iterable
:param output: Output Type (either 'trans' or 'translit')
:type output: String
"""
first = operator.itemgetter(0)
sentence, _ = script
printer = partial(print, file=sys.stdout, end='')
for line in sentence:
if isinstance(first(line), str):
printer(first(line))
else:
printer(first(line).encode('UTF-8'))
printer('\n')
return sys.stdout.flush()
|
Task Setter Coroutine
|
def set_task(translator, translit=False):
"""
Task Setter Coroutine
End point destination coroutine of a purely consumer type.
Delegates Text IO to the `write_stream` function.
:param translation_function: Translator
:type translation_function: Function
:param translit: Transliteration Switch
:type translit: Boolean
"""
# Initialize Task Queue
task = str()
queue = list()
# Function Partial
output = ('translit' if translit else 'trans')
stream = partial(write_stream, output=output)
workers = ThreadPoolExecutor(max_workers=8)
try:
while True:
task = yield
queue.append(task)
except GeneratorExit:
list(map(stream, workers.map(translator, queue)))
|
Consumes text streams and spools them together for more io efficient processes.
|
def spool(iterable, maxlen=1250):
"""
Consumes text streams and spools them together for more io
efficient processes.
:param iterable: Sends text stream for further processing
:type iterable: Coroutine
:param maxlen: Maximum query string size
:type maxlen: Integer
"""
words = int()
text = str()
try:
while True:
while words < maxlen:
stream = yield
text = reduce(accumulator, stream, text)
words = reduce(accumulator, stream, words)
iterable.send(text)
words = int()
text = str()
except GeneratorExit:
iterable.send(text)
iterable.close()
|
Coroutine starting point. Produces text stream and forwards to consumers
|
def source(target, inputstream=sys.stdin):
"""
Coroutine starting point. Produces text stream and forwards to consumers
:param target: Target coroutine consumer
:type target: Coroutine
:param inputstream: Input Source
:type inputstream: BufferedTextIO Object
"""
for line in inputstream:
while len(line) > 600:
init, sep, line = line.partition(' ')
assert len(init) <= 600
target.send(''.join([init, sep]))
target.send(line)
inputstream.close()
return target.close()
|
Decorates a function returning the url of translation API. Creates and maintains HTTP connection state
|
def push_url(interface):
'''
Decorates a function returning the url of translation API.
Creates and maintains HTTP connection state
Returns a dict response object from the server containing the translated
text and metadata of the request body
:param interface: Callable Request Interface
:type interface: Function
'''
@functools.wraps(interface)
def connection(*args, **kwargs):
"""
Extends and wraps a HTTP interface.
:return: Response Content
:rtype: Dictionary
"""
session = Session()
session.mount('http://', HTTPAdapter(max_retries=2))
session.mount('https://', HTTPAdapter(max_retries=2))
request = Request(**interface(*args, **kwargs))
prepare = session.prepare_request(request)
response = session.send(prepare, verify=True)
if response.status_code != requests.codes.ok:
response.raise_for_status()
cleanup = re.subn(r',(?=,)', '', response.content.decode('utf-8'))[0]
return json.loads(cleanup.replace(r'\xA0', r' ').replace('[,', '[1,'), encoding='UTF-8')
return connection
|
Returns the url encoded string that will be pushed to the translation server for parsing.
|
def translator(source, target, phrase, version='0.0 test', charset='utf-8'):
"""
Returns the url encoded string that will be pushed to the translation
server for parsing.
List of acceptable language codes for source and target languages
can be found as a JSON file in the etc directory.
Some source languages are limited in scope of the possible target languages
that are available.
.. code-block:: python
>>> from translate import translator
>>> translator('en', 'zh-TW', 'Hello World!')
'你好世界!'
:param source: Language code for translation source
:type source: String
:param target: Language code that source will be translate into
:type target: String
:param phrase: Text body string that will be url encoded and translated
:type phrase: String
:return: Request Interface
:rtype: Dictionary
"""
url = 'https://translate.google.com/translate_a/single'
agent = 'User-Agent', 'py-translate v{}'.format(version)
content = 'Content-Type', 'application/json; charset={}'.format(charset)
params = {'client': 'a', 'ie': charset, 'oe': charset,
'dt': 't', 'sl': source, 'tl': target, 'q': phrase}
request = {'method': 'GET',
'url': url,
'params': params,
'headers': dict([agent, content])}
return request
|
Opens up file located under the etc directory containing language codes and prints them out.
|
def translation_table(language, filepath='supported_translations.json'):
'''
Opens up file located under the etc directory containing language
codes and prints them out.
:param file: Path to location of json file
:type file: str
:return: language codes
:rtype: dict
'''
fullpath = abspath(join(dirname(__file__), 'etc', filepath))
if not isfile(fullpath):
raise IOError('File does not exist at {0}'.format(fullpath))
with open(fullpath, 'rt') as fp:
raw_data = json.load(fp).get(language, None)
assert(raw_data is not None)
return dict((code['language'], code['name']) for code in raw_data)
|
Generates a formatted table of language codes
|
def print_table(language):
'''
Generates a formatted table of language codes
'''
table = translation_table(language)
for code, name in sorted(table.items(), key=operator.itemgetter(0)):
print(u'{language:<8} {name:\u3000<20}'.format(
name=name, language=code
))
return None
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.