INSTRUCTION
stringlengths
1
8.43k
RESPONSE
stringlengths
75
104k
Aligns the times to the closest frame times ( e. g. beats ).
def align_times(times, frames): """Aligns the times to the closest frame times (e.g. beats). Parameters ---------- times: np.ndarray Times in seconds to be aligned. frames: np.ndarray Frame times in seconds. Returns ------- aligned_times: np.ndarray Aligned times. """ dist = np.minimum.outer(times, frames) bound_frames = np.argmax(np.maximum(0, dist), axis=1) aligned_times = np.unique(bound_frames) return aligned_times
Finds the correct estimation from all the estimations contained in a JAMS file given the specified arguments.
def find_estimation(jam, boundaries_id, labels_id, params): """Finds the correct estimation from all the estimations contained in a JAMS file given the specified arguments. Parameters ---------- jam : jams.JAMS JAMS object. boundaries_id : str Identifier of the algorithm used to compute the boundaries. labels_id : str Identifier of the algorithm used to compute the labels. params : dict Additional search parameters. E.g. {"feature" : "pcp"}. Returns ------- ann : jams.Annotation Found estimation. `None` if it couldn't be found. """ # Use handy JAMS search interface namespace = "multi_segment" if params["hier"] else "segment_open" # TODO: This is a workaround to issue in JAMS. Should be # resolved in JAMS 0.2.3, but for now, this works too. ann = jam.search(namespace=namespace).\ search(**{"Sandbox.boundaries_id": boundaries_id}).\ search(**{"Sandbox.labels_id": lambda x: (isinstance(x, six.string_types) and re.match(labels_id, x) is not None) or x is None}) for key, val in zip(params.keys(), params.values()): if isinstance(val, six.string_types): ann = ann.search(**{"Sandbox.%s" % key: val}) else: ann = ann.search(**{"Sandbox.%s" % key: lambda x: x == val}) # Check estimations found if len(ann) > 1: logging.warning("More than one estimation with same parameters.") if len(ann) > 0: ann = ann[0] # If we couldn't find anything, let's return None if not ann: ann = None return ann
Saves the segment estimations in a JAMS file.
def save_estimations(file_struct, times, labels, boundaries_id, labels_id, **params): """Saves the segment estimations in a JAMS file. Parameters ---------- file_struct : FileStruct Object with the different file paths of the current file. times : np.array or list Estimated boundary times. If `list`, estimated hierarchical boundaries. labels : np.array(N, 2) Estimated labels (None in case we are only storing boundary evaluations). boundaries_id : str Boundary algorithm identifier. labels_id : str Labels algorithm identifier. params : dict Dictionary with additional parameters for both algorithms. """ # Remove features if they exist params.pop("features", None) # Get duration dur = get_duration(file_struct.features_file) # Convert to intervals and sanity check if 'numpy' in str(type(times)): # Flat check inters = utils.times_to_intervals(times) assert len(inters) == len(labels), "Number of boundary intervals " \ "(%d) and labels (%d) do not match" % (len(inters), len(labels)) # Put into lists to simplify the writing process later inters = [inters] labels = [labels] else: # Hierarchical check inters = [] for level in range(len(times)): est_inters = utils.times_to_intervals(times[level]) inters.append(est_inters) assert len(inters[level]) == len(labels[level]), \ "Number of boundary intervals (%d) and labels (%d) do not " \ "match in level %d" % (len(inters[level]), len(labels[level]), level) # Create new estimation namespace = "multi_segment" if params["hier"] else "segment_open" ann = jams.Annotation(namespace=namespace) # Find estimation in file if os.path.isfile(file_struct.est_file): jam = jams.load(file_struct.est_file, validate=False) curr_ann = find_estimation(jam, boundaries_id, labels_id, params) if curr_ann is not None: curr_ann.data = ann.data # cleanup all data ann = curr_ann # This will overwrite the existing estimation else: jam.annotations.append(ann) else: # Create new JAMS if it doesn't exist jam = jams.JAMS() jam.file_metadata.duration = dur jam.annotations.append(ann) # Save metadata and parameters ann.annotation_metadata.version = msaf.__version__ ann.annotation_metadata.data_source = "MSAF" sandbox = {} sandbox["boundaries_id"] = boundaries_id sandbox["labels_id"] = labels_id sandbox["timestamp"] = \ datetime.datetime.today().strftime("%Y/%m/%d %H:%M:%S") for key in params: sandbox[key] = params[key] ann.sandbox = sandbox # Save actual data for i, (level_inters, level_labels) in enumerate(zip(inters, labels)): for bound_inter, label in zip(level_inters, level_labels): dur = float(bound_inter[1]) - float(bound_inter[0]) label = chr(int(label) + 65) if params["hier"]: value = {"label": label, "level": i} else: value = label ann.append(time=bound_inter[0], duration=dur, value=value) # Write results jam.save(file_struct.est_file)
Gets all the possible boundary algorithms in MSAF.
def get_all_boundary_algorithms(): """Gets all the possible boundary algorithms in MSAF. Returns ------- algo_ids : list List of all the IDs of boundary algorithms (strings). """ algo_ids = [] for name in msaf.algorithms.__all__: module = eval(msaf.algorithms.__name__ + "." + name) if module.is_boundary_type: algo_ids.append(module.algo_id) return algo_ids
Gets all the possible label ( structural grouping ) algorithms in MSAF.
def get_all_label_algorithms(): """Gets all the possible label (structural grouping) algorithms in MSAF. Returns ------- algo_ids : list List of all the IDs of label algorithms (strings). """ algo_ids = [] for name in msaf.algorithms.__all__: module = eval(msaf.algorithms.__name__ + "." + name) if module.is_label_type: algo_ids.append(module.algo_id) return algo_ids
Gets the configuration dictionary from the current parameters of the algorithms to be evaluated.
def get_configuration(feature, annot_beats, framesync, boundaries_id, labels_id): """Gets the configuration dictionary from the current parameters of the algorithms to be evaluated.""" config = {} config["annot_beats"] = annot_beats config["feature"] = feature config["framesync"] = framesync bound_config = {} if boundaries_id != "gt": bound_config = \ eval(msaf.algorithms.__name__ + "." + boundaries_id).config config.update(bound_config) if labels_id is not None: label_config = \ eval(msaf.algorithms.__name__ + "." + labels_id).config # Make sure we don't have parameter name duplicates if labels_id != boundaries_id: overlap = set(bound_config.keys()). \ intersection(set(label_config.keys())) assert len(overlap) == 0, \ "Parameter %s must not exist both in %s and %s algorithms" % \ (overlap, boundaries_id, labels_id) config.update(label_config) return config
Gets the files of the given dataset.
def get_dataset_files(in_path): """Gets the files of the given dataset.""" # Get audio files audio_files = [] for ext in ds_config.audio_exts: audio_files += glob.glob( os.path.join(in_path, ds_config.audio_dir, "*" + ext)) # Make sure directories exist utils.ensure_dir(os.path.join(in_path, ds_config.features_dir)) utils.ensure_dir(os.path.join(in_path, ds_config.estimations_dir)) utils.ensure_dir(os.path.join(in_path, ds_config.references_dir)) # Get the file structs file_structs = [] for audio_file in audio_files: file_structs.append(FileStruct(audio_file)) # Sort by audio file name file_structs = sorted(file_structs, key=lambda file_struct: file_struct.audio_file) return file_structs
Reads hierarchical references from a jams file.
def read_hier_references(jams_file, annotation_id=0, exclude_levels=[]): """Reads hierarchical references from a jams file. Parameters ---------- jams_file : str Path to the jams file. annotation_id : int > 0 Identifier of the annotator to read from. exclude_levels: list List of levels to exclude. Empty list to include all levels. Returns ------- hier_bounds : list List of the segment boundary times in seconds for each level. hier_labels : list List of the segment labels for each level. hier_levels : list List of strings for the level identifiers. """ hier_bounds = [] hier_labels = [] hier_levels = [] jam = jams.load(jams_file) namespaces = ["segment_salami_upper", "segment_salami_function", "segment_open", "segment_tut", "segment_salami_lower"] # Remove levels if needed for exclude in exclude_levels: if exclude in namespaces: namespaces.remove(exclude) # Build hierarchy references for ns in namespaces: ann = jam.search(namespace=ns) if not ann: continue ref_inters, ref_labels = ann[annotation_id].to_interval_values() hier_bounds.append(utils.intervals_to_times(ref_inters)) hier_labels.append(ref_labels) hier_levels.append(ns) return hier_bounds, hier_labels, hier_levels
Reads the duration of a given features file.
def get_duration(features_file): """Reads the duration of a given features file. Parameters ---------- features_file: str Path to the JSON file containing the features. Returns ------- dur: float Duration of the analyzed file. """ with open(features_file) as f: feats = json.load(f) return float(feats["globals"]["dur"])
Writes results to file using the standard MIREX format.
def write_mirex(times, labels, out_file): """Writes results to file using the standard MIREX format. Parameters ---------- times: np.array Times in seconds of the boundaries. labels: np.array Labels associated to the segments defined by the boundaries. out_file: str Output file path to save the results. """ inters = msaf.utils.times_to_intervals(times) assert len(inters) == len(labels) out_str = "" for inter, label in zip(inters, labels): out_str += "%.3f\t%.3f\t%s\n" % (inter[0], inter[1], label) with open(out_file, "w") as f: f.write(out_str[:-1])
Gets the desired dataset file.
def _get_dataset_file(self, dir, ext): """Gets the desired dataset file.""" audio_file_ext = "." + self.audio_file.split(".")[-1] base_file = os.path.basename(self.audio_file).replace( audio_file_ext, ext) return os.path.join(self.ds_path, dir, base_file)
Main process. Returns ------- est_idxs: np. array ( N ) Estimated indeces the segment boundaries in frame indeces. est_labels: np. array ( N - 1 ) Estimated labels for the segments.
def processFlat(self): """Main process. Returns ------- est_idxs : np.array(N) Estimated indeces the segment boundaries in frame indeces. est_labels : np.array(N-1) Estimated labels for the segments. """ # Preprocess to obtain features (array(n_frames, n_features)) F = self._preprocess() # Do something with the default parameters # (these are defined in the in the config.py file). assert self.config["my_param1"] == 1.0 # Identify boundaries in frame indeces with the new algorithm my_bounds = np.array([0, F.shape[0] - 1]) # Label the segments (use -1 to have empty segments) my_labels = np.ones(len(my_bounds) - 1) * -1 # Post process estimations est_idxs, est_labels = self._postprocess(my_bounds, my_labels) # We're done! return est_idxs, est_labels
Load a ground - truth segmentation and align times to the nearest detected beats.
def align_segmentation(beat_times, song): '''Load a ground-truth segmentation, and align times to the nearest detected beats. Arguments: beat_times -- array song -- path to the audio file Returns: segment_beats -- array beat-aligned segment boundaries segment_times -- array true segment times segment_labels -- array list of segment labels ''' try: segment_times, segment_labels = msaf.io.read_references(song) except: return None, None, None segment_times = np.asarray(segment_times) # Map to intervals segment_intervals = msaf.utils.times_to_intervals(segment_times) # Map beats to intervals beat_intervals = np.asarray(zip(beat_times[:-1], beat_times[1:])) # Map beats to segments beat_segment_ids = librosa.util.match_intervals(beat_intervals, segment_intervals) segment_beats = [] segment_times_out = [] segment_labels_out = [] # print segment_times, beat_segment_ids, len(beat_times), # len(beat_segment_ids) for i in range(segment_times.shape[0]): hits = np.argwhere(beat_segment_ids == i) if len(hits) > 0 and i < len(segment_intervals) and \ i < len(segment_labels): segment_beats.extend(hits[0]) segment_times_out.append(segment_intervals[i, :]) segment_labels_out.append(segment_labels[i]) # Pull out the segment start times segment_beats = list(segment_beats) # segment_times_out = np.asarray( # segment_times_out)[:, 0].squeeze().reshape((-1, 1)) # if segment_times_out.ndim == 0: # segment_times_out = segment_times_out[np.newaxis] segment_times_out = segment_times return segment_beats, segment_times_out, segment_labels_out
Estimates the beats using librosa.
def estimate_beats(self): """Estimates the beats using librosa. Returns ------- times: np.array Times of estimated beats in seconds. frames: np.array Frame indeces of estimated beats. """ # Compute harmonic-percussive source separation if needed if self._audio_percussive is None: self._audio_harmonic, self._audio_percussive = self.compute_HPSS() # Compute beats tempo, frames = librosa.beat.beat_track( y=self._audio_percussive, sr=self.sr, hop_length=self.hop_length) # To times times = librosa.frames_to_time(frames, sr=self.sr, hop_length=self.hop_length) # TODO: Is this really necessary? if len(times) > 0 and times[0] == 0: times = times[1:] frames = frames[1:] return times, frames
Reads the annotated beats if available.
def read_ann_beats(self): """Reads the annotated beats if available. Returns ------- times: np.array Times of annotated beats in seconds. frames: np.array Frame indeces of annotated beats. """ times, frames = (None, None) # Read annotations if they exist in correct folder if os.path.isfile(self.file_struct.ref_file): try: jam = jams.load(self.file_struct.ref_file) except TypeError: logging.warning( "Can't read JAMS file %s. Maybe it's not " "compatible with current JAMS version?" % self.file_struct.ref_file) return times, frames beat_annot = jam.search(namespace="beat.*") # If beat annotations exist, get times and frames if len(beat_annot) > 0: beats_inters, _ = beat_annot[0].to_interval_values() times = beats_inters[:, 0] frames = librosa.time_to_frames(times, sr=self.sr, hop_length=self.hop_length) return times, frames
Make the features beat - synchronous.
def compute_beat_sync_features(self, beat_frames, beat_times, pad): """Make the features beat-synchronous. Parameters ---------- beat_frames: np.array The frame indeces of the beat positions. beat_times: np.array The time points of the beat positions (in seconds). pad: boolean If `True`, `beat_frames` is padded to span the full range. Returns ------- beatsync_feats: np.array The beat-synchronized features. `None` if the beat_frames was `None`. beatsync_times: np.array The beat-synchronized times. `None` if the beat_frames was `None`. """ if beat_frames is None: return None, None # Make beat synchronous beatsync_feats = librosa.util.utils.sync(self._framesync_features.T, beat_frames, pad=pad).T # Assign times (and add last time if padded) beatsync_times = np.copy(beat_times) if beatsync_times.shape[0] != beatsync_feats.shape[0]: beatsync_times = np.concatenate((beatsync_times, [self._framesync_times[-1]])) return beatsync_feats, beatsync_times
Reads the features from a file and stores them in the current object.
def read_features(self, tol=1e-3): """Reads the features from a file and stores them in the current object. Parameters ---------- tol: float Tolerance level to detect duration of audio. """ try: # Read JSON file with open(self.file_struct.features_file) as f: feats = json.load(f) # Store duration if self.dur is None: self.dur = float(feats["globals"]["dur"]) # Check that we have the correct global parameters assert(np.isclose( self.dur, float(feats["globals"]["dur"]), rtol=tol)) assert(self.sr == int(feats["globals"]["sample_rate"])) assert(self.hop_length == int(feats["globals"]["hop_length"])) assert(os.path.basename(self.file_struct.audio_file) == os.path.basename(feats["globals"]["audio_file"])) # Check for specific features params feat_params_err = FeatureParamsError( "Couldn't find features for %s id in file %s" % (self.get_id(), self.file_struct.features_file)) if self.get_id() not in feats.keys(): raise feat_params_err for param_name in self.get_param_names(): value = getattr(self, param_name) if hasattr(value, '__call__'): # Special case of functions if value.__name__ != \ feats[self.get_id()]["params"][param_name]: raise feat_params_err else: if str(value) != \ feats[self.get_id()]["params"][param_name]: raise feat_params_err # Store actual features self._est_beats_times = np.array(feats["est_beats"]) self._est_beatsync_times = np.array(feats["est_beatsync_times"]) self._est_beats_frames = librosa.core.time_to_frames( self._est_beats_times, sr=self.sr, hop_length=self.hop_length) self._framesync_features = \ np.array(feats[self.get_id()]["framesync"]) self._est_beatsync_features = \ np.array(feats[self.get_id()]["est_beatsync"]) # Read annotated beats if available if "ann_beats" in feats.keys(): self._ann_beats_times = np.array(feats["ann_beats"]) self._ann_beatsync_times = np.array(feats["ann_beatsync_times"]) self._ann_beats_frames = librosa.core.time_to_frames( self._ann_beats_times, sr=self.sr, hop_length=self.hop_length) self._ann_beatsync_features = \ np.array(feats[self.get_id()]["ann_beatsync"]) except KeyError: raise WrongFeaturesFormatError( "The features file %s is not correctly formatted" % self.file_struct.features_file) except AssertionError: raise FeaturesNotFound( "The features for the given parameters were not found in " "features file %s" % self.file_struct.features_file) except IOError: raise NoFeaturesFileError("Could not find features file %s", self.file_struct.features_file)
Saves features to file.
def write_features(self): """Saves features to file.""" out_json = collections.OrderedDict() try: # Only save the necessary information self.read_features() except (WrongFeaturesFormatError, FeaturesNotFound, NoFeaturesFileError): # We need to create the file or overwite it # Metadata out_json = collections.OrderedDict({"metadata": { "versions": {"librosa": librosa.__version__, "msaf": msaf.__version__, "numpy": np.__version__}, "timestamp": datetime.datetime.today().strftime( "%Y/%m/%d %H:%M:%S")}}) # Global parameters out_json["globals"] = { "dur": self.dur, "sample_rate": self.sr, "hop_length": self.hop_length, "audio_file": self.file_struct.audio_file } # Beats out_json["est_beats"] = self._est_beats_times.tolist() out_json["est_beatsync_times"] = self._est_beatsync_times.tolist() if self._ann_beats_times is not None: out_json["ann_beats"] = self._ann_beats_times.tolist() out_json["ann_beatsync_times"] = self._ann_beatsync_times.tolist() except FeatureParamsError: # We have other features in the file, simply add these ones with open(self.file_struct.features_file) as f: out_json = json.load(f) finally: # Specific parameters of the current features out_json[self.get_id()] = {} out_json[self.get_id()]["params"] = {} for param_name in self.get_param_names(): value = getattr(self, param_name) # Check for special case of functions if hasattr(value, '__call__'): value = value.__name__ else: value = str(value) out_json[self.get_id()]["params"][param_name] = value # Actual features out_json[self.get_id()]["framesync"] = \ self._framesync_features.tolist() out_json[self.get_id()]["est_beatsync"] = \ self._est_beatsync_features.tolist() if self._ann_beatsync_features is not None: out_json[self.get_id()]["ann_beatsync"] = \ self._ann_beatsync_features.tolist() # Save it with open(self.file_struct.features_file, "w") as f: json.dump(out_json, f, indent=2)
Returns the parameter names for these features avoiding the global parameters.
def get_param_names(self): """Returns the parameter names for these features, avoiding the global parameters.""" return [name for name in vars(self) if not name.startswith('_') and name not in self._global_param_names]
Computes the framesync times based on the framesync features.
def _compute_framesync_times(self): """Computes the framesync times based on the framesync features.""" self._framesync_times = librosa.core.frames_to_time( np.arange(self._framesync_features.shape[0]), self.sr, self.hop_length)
Computes all the features ( beatsync framesync ) from the audio.
def _compute_all_features(self): """Computes all the features (beatsync, framesync) from the audio.""" # Read actual audio waveform self._audio, _ = librosa.load(self.file_struct.audio_file, sr=self.sr) # Get duration of audio file self.dur = len(self._audio) / float(self.sr) # Compute actual features self._framesync_features = self.compute_features() # Compute framesync times self._compute_framesync_times() # Compute/Read beats self._est_beats_times, self._est_beats_frames = self.estimate_beats() self._ann_beats_times, self._ann_beats_frames = self.read_ann_beats() # Beat-Synchronize pad = True # Always append to the end of the features self._est_beatsync_features, self._est_beatsync_times = \ self.compute_beat_sync_features(self._est_beats_frames, self._est_beats_times, pad) self._ann_beatsync_features, self._ann_beatsync_times = \ self.compute_beat_sync_features(self._ann_beats_frames, self._ann_beats_times, pad)
This getter returns the frame times for the corresponding type of features.
def frame_times(self): """This getter returns the frame times, for the corresponding type of features.""" frame_times = None # Make sure we have already computed the features self.features if self.feat_type is FeatureTypes.framesync: self._compute_framesync_times() frame_times = self._framesync_times elif self.feat_type is FeatureTypes.est_beatsync: frame_times = self._est_beatsync_times elif self.feat_type is FeatureTypes.ann_beatsync: frame_times = self._ann_beatsync_times return frame_times
This getter will compute the actual features if they haven t been computed yet.
def features(self): """This getter will compute the actual features if they haven't been computed yet. Returns ------- features: np.array The actual features. Each row corresponds to a feature vector. """ # Compute features if needed if self._features is None: try: self.read_features() except (NoFeaturesFileError, FeaturesNotFound, WrongFeaturesFormatError, FeatureParamsError) as e: try: self._compute_all_features() self.write_features() except IOError: if isinstance(e, FeaturesNotFound) or \ isinstance(e, FeatureParamsError): msg = "Computation of the features is needed for " \ "current parameters but no audio file was found." \ "Please, change your parameters or add the audio" \ " file in %s" else: msg = "Couldn't find audio file in %s" raise NoAudioFileError(msg % self.file_struct.audio_file) # Choose features based on type if self.feat_type is FeatureTypes.framesync: self._features = self._framesync_features elif self.feat_type is FeatureTypes.est_beatsync: self._features = self._est_beatsync_features elif self.feat_type is FeatureTypes.ann_beatsync: if self._ann_beatsync_features is None: raise FeatureTypeNotFound( "Feature type %s is not valid because no annotated beats " "were found" % self.feat_type) self._features = self._ann_beatsync_features else: raise FeatureTypeNotFound("Feature type %s is not valid." % self.feat_type) return self._features
Selects the features from the given parameters.
def select_features(cls, features_id, file_struct, annot_beats, framesync): """Selects the features from the given parameters. Parameters ---------- features_id: str The identifier of the features (it must be a key inside the `features_registry`) file_struct: msaf.io.FileStruct The file struct containing the files to extract the features from annot_beats: boolean Whether to use annotated (`True`) or estimated (`False`) beats framesync: boolean Whether to use framesync (`True`) or beatsync (`False`) features Returns ------- features: obj The actual features object that inherits from `msaf.Features` """ if not annot_beats and framesync: feat_type = FeatureTypes.framesync elif annot_beats and not framesync: feat_type = FeatureTypes.ann_beatsync elif not annot_beats and not framesync: feat_type = FeatureTypes.est_beatsync else: raise FeatureTypeNotFound("Type of features not valid.") # Select features with default parameters if features_id not in features_registry.keys(): raise FeaturesNotFound( "The features '%s' are invalid (valid features are %s)" % (features_id, features_registry.keys())) return features_registry[features_id](file_struct, feat_type)
This method obtains the actual features.
def _preprocess(self, valid_features=["pcp", "tonnetz", "mfcc", "cqt", "tempogram"]): """This method obtains the actual features.""" # Use specific feature if self.feature_str not in valid_features: raise RuntimeError("Feature %s in not valid for algorithm: %s " "(valid features are %s)." % (self.feature_str, __name__, valid_features)) else: try: F = self.features.features except KeyError: raise RuntimeError("Feature %s in not supported by MSAF" % (self.feature_str)) return F
Post processes the estimations from the algorithm removing empty segments and making sure the lenghts of the boundaries and labels match.
def _postprocess(self, est_idxs, est_labels): """Post processes the estimations from the algorithm, removing empty segments and making sure the lenghts of the boundaries and labels match.""" # Make sure we are using the previously input bounds, if any if self.in_bound_idxs is not None: F = self._preprocess() est_labels = U.synchronize_labels(self.in_bound_idxs, est_idxs, est_labels, F.shape[0]) est_idxs = self.in_bound_idxs # Remove empty segments if needed est_idxs, est_labels = U.remove_empty_segments(est_idxs, est_labels) assert len(est_idxs) - 1 == len(est_labels), "Number of boundaries " \ "(%d) and number of labels(%d) don't match" % (len(est_idxs), len(est_labels)) # Make sure the indeces are integers est_idxs = np.asarray(est_idxs, dtype=int) return est_idxs, est_labels
Sweeps parameters across the specified algorithm.
def process(in_path, annot_beats=False, feature="mfcc", framesync=False, boundaries_id="gt", labels_id=None, n_jobs=4, config=None): """Sweeps parameters across the specified algorithm.""" results_file = "results_sweep_boundsE%s_labelsE%s.csv" % (boundaries_id, labels_id) if labels_id == "cnmf3" or boundaries_id == "cnmf3": config = io.get_configuration(feature, annot_beats, framesync, boundaries_id, labels_id) hh = range(15, 33) RR = range(15, 40) ranks = range(3, 6) RR_labels = range(11, 12) ranks_labels = range(6, 7) all_results = pd.DataFrame() for rank in ranks: for h in hh: for R in RR: for rank_labels in ranks_labels: for R_labels in RR_labels: config["h"] = h config["R"] = R config["rank"] = rank config["rank_labels"] = rank_labels config["R_labels"] = R_labels config["features"] = None # Run process msaf.run.process( in_path, n_jobs=n_jobs, boundaries_id=boundaries_id, labels_id=labels_id, config=config) # Compute evaluations results = msaf.eval.process( in_path, boundaries_id, labels_id, save=True, n_jobs=n_jobs, config=config) # Save avg results new_columns = {"config_h": h, "config_R": R, "config_rank": rank, "config_R_labels": R_labels, "config_rank_labels": rank_labels} results = results.append([new_columns], ignore_index=True) all_results = all_results.append(results.mean(), ignore_index=True) all_results.to_csv(results_file) elif labels_id is None and boundaries_id == "sf": config = io.get_configuration(feature, annot_beats, framesync, boundaries_id, labels_id) MM = range(20, 32) mm = range(3, 4) kk = np.arange(0.03, 0.1, 0.01) Mpp = range(16, 32) ott = np.arange(0.02, 0.1, 0.01) all_results = pd.DataFrame() for k in kk: for ot in ott: for m in mm: for M in MM: for Mp in Mpp: config["M_gaussian"] = M config["m_embedded"] = m config["k_nearest"] = k config["Mp_adaptive"] = Mp config["offset_thres"] = ot config["features"] = None # Run process msaf.run.process( in_path, n_jobs=n_jobs, boundaries_id=boundaries_id, labels_id=labels_id, config=config) # Compute evaluations results = msaf.eval.process( in_path, boundaries_id, labels_id, save=True, n_jobs=n_jobs, config=config) # Save avg results new_columns = {"config_M": M, "config_m": m, "config_k": k, "config_Mp": Mp, "config_ot": ot} results = results.append([new_columns], ignore_index=True) all_results = all_results.append(results.mean(), ignore_index=True) all_results.to_csv(results_file) else: logging.error("Can't sweep parameters for %s algorithm. " "Implement me! :D")
Main function to sweep parameters of a certain algorithm.
def main(): """Main function to sweep parameters of a certain algorithm.""" parser = argparse.ArgumentParser( description="Runs the speficied algorithm(s) on the MSAF " "formatted dataset.", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("in_path", action="store", help="Input dataset") parser.add_argument("-f", action="store", dest="feature", default="pcp", type=str, help="Type of features", choices=["pcp", "tonnetz", "mfcc", "cqt", "tempogram"]) parser.add_argument("-b", action="store_true", dest="annot_beats", help="Use annotated beats", default=False) parser.add_argument("-fs", action="store_true", dest="framesync", help="Use frame-synchronous features", default=False) parser.add_argument("-bid", action="store", help="Boundary algorithm identifier", dest="boundaries_id", default="gt", choices=["gt"] + io.get_all_boundary_algorithms()) parser.add_argument("-lid", action="store", help="Label algorithm identifier", dest="labels_id", default=None, choices=io.get_all_label_algorithms()) parser.add_argument("-j", action="store", dest="n_jobs", default=4, type=int, help="The number of threads to use") args = parser.parse_args() start_time = time.time() # Run the algorithm(s) process(args.in_path, annot_beats=args.annot_beats, feature=args.feature, framesync=args.framesync, boundaries_id=args.boundaries_id, labels_id=args.labels_id, n_jobs=args.n_jobs) # Done! logging.info("Done! Took %.2f seconds." % (time.time() - start_time))
Main function to parse the arguments and call the main process.
def main(): """Main function to parse the arguments and call the main process.""" parser = argparse.ArgumentParser( description="Runs the speficied algorithm(s) on the input file and " "the results using the MIREX format.", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("-bid", action="store", help="Boundary algorithm identifier", dest="boundaries_id", default=msaf.config.default_bound_id, choices=["gt"] + msaf.io.get_all_boundary_algorithms()) parser.add_argument("-lid", action="store", help="Label algorithm identifier", dest="labels_id", default=msaf.config.default_label_id, choices=msaf.io.get_all_label_algorithms()) parser.add_argument("-i", action="store", dest="in_file", help="Input audio file") parser.add_argument("-o", action="store", dest="out_file", help="Output file with the results", default="out.txt") args = parser.parse_args() start_time = time.time() # Setup the logger logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s', level=logging.INFO) # Run MSAF params = { "annot_beats": False, "feature": "cqt", "framesync": False, "boundaries_id": args.boundaries_id, "labels_id": args.labels_id, "n_jobs": 1, "hier": False, "sonify_bounds": False, "plot": False } res = msaf.run.process(args.in_file, **params) msaf.io.write_mirex(res[0], res[1], args.out_file) # Done! logging.info("Done! Took %.2f seconds." % (time.time() - start_time))
Print all the results.
def print_results(results): """Print all the results. Parameters ---------- results: pd.DataFrame Dataframe with all the results """ if len(results) == 0: logging.warning("No results to print!") return res = results.mean() logging.info("Results:\n%s" % res)
Compute the results using all the available evaluations.
def compute_results(ann_inter, est_inter, ann_labels, est_labels, bins, est_file, weight=0.58): """Compute the results using all the available evaluations. Parameters ---------- ann_inter : np.array Annotated intervals in seconds. est_inter : np.array Estimated intervals in seconds. ann_labels : np.array Annotated labels. est_labels : np.array Estimated labels bins : int Number of bins for the information gain. est_file : str Path to the output file to store results. weight: float Weight the Precision and Recall values of the hit rate boundaries differently (<1 will weight Precision higher, >1 will weight Recall higher). The default parameter (0.58) is the one proposed in (Nieto et al. 2014) Return ------ results : dict Contains the results of all the evaluations for the given file. Keys are the following: track_id: Name of the track HitRate_3F: F-measure of hit rate at 3 seconds HitRate_3P: Precision of hit rate at 3 seconds HitRate_3R: Recall of hit rate at 3 seconds HitRate_0.5F: F-measure of hit rate at 0.5 seconds HitRate_0.5P: Precision of hit rate at 0.5 seconds HitRate_0.5R: Recall of hit rate at 0.5 seconds HitRate_w3F: F-measure of hit rate at 3 seconds weighted HitRate_w0.5F: F-measure of hit rate at 0.5 seconds weighted HitRate_wt3F: F-measure of hit rate at 3 seconds weighted and trimmed HitRate_wt0.5F: F-measure of hit rate at 0.5 seconds weighted and trimmed HitRate_t3F: F-measure of hit rate at 3 seconds (trimmed) HitRate_t3P: Precision of hit rate at 3 seconds (trimmed) HitRate_t3F: Recall of hit rate at 3 seconds (trimmed) HitRate_t0.5F: F-measure of hit rate at 0.5 seconds (trimmed) HitRate_t0.5P: Precision of hit rate at 0.5 seconds (trimmed) HitRate_t0.5R: Recall of hit rate at 0.5 seconds (trimmed) DevA2E: Median deviation of annotation to estimation DevE2A: Median deviation of estimation to annotation D: Information gain PWF: F-measure of pair-wise frame clustering PWP: Precision of pair-wise frame clustering PWR: Recall of pair-wise frame clustering Sf: F-measure normalized entropy score So: Oversegmentation normalized entropy score Su: Undersegmentation normalized entropy score """ res = {} # --Boundaries-- # # Hit Rate standard res["HitRate_3P"], res["HitRate_3R"], res["HitRate_3F"] = \ mir_eval.segment.detection(ann_inter, est_inter, window=3, trim=False) res["HitRate_0.5P"], res["HitRate_0.5R"], res["HitRate_0.5F"] = \ mir_eval.segment.detection(ann_inter, est_inter, window=.5, trim=False) # Hit rate trimmed res["HitRate_t3P"], res["HitRate_t3R"], res["HitRate_t3F"] = \ mir_eval.segment.detection(ann_inter, est_inter, window=3, trim=True) res["HitRate_t0.5P"], res["HitRate_t0.5R"], res["HitRate_t0.5F"] = \ mir_eval.segment.detection(ann_inter, est_inter, window=.5, trim=True) # Hit rate weighted _, _, res["HitRate_w3F"] = mir_eval.segment.detection( ann_inter, est_inter, window=3, trim=False, beta=weight) _, _, res["HitRate_w0.5F"] = mir_eval.segment.detection( ann_inter, est_inter, window=.5, trim=False, beta=weight) # Hit rate weighted and trimmed _, _, res["HitRate_wt3F"] = mir_eval.segment.detection( ann_inter, est_inter, window=3, trim=True, beta=weight) _, _, res["HitRate_wt0.5F"] = mir_eval.segment.detection( ann_inter, est_inter, window=.5, trim=True, beta=weight) # Information gain res["D"] = compute_information_gain(ann_inter, est_inter, est_file, bins=bins) # Median Deviations res["DevR2E"], res["DevE2R"] = mir_eval.segment.deviation( ann_inter, est_inter, trim=False) res["DevtR2E"], res["DevtE2R"] = mir_eval.segment.deviation( ann_inter, est_inter, trim=True) # --Labels-- # if est_labels is not None and ("-1" in est_labels or "@" in est_labels): est_labels = None if est_labels is not None and len(est_labels) != 0: # Align labels with intervals ann_labels = list(ann_labels) est_labels = list(est_labels) ann_inter, ann_labels = mir_eval.util.adjust_intervals(ann_inter, ann_labels) est_inter, est_labels = mir_eval.util.adjust_intervals( est_inter, est_labels, t_min=0.0, t_max=ann_inter.max()) # Pair-wise frame clustering res["PWP"], res["PWR"], res["PWF"] = mir_eval.segment.pairwise( ann_inter, ann_labels, est_inter, est_labels) # Normalized Conditional Entropies res["So"], res["Su"], res["Sf"] = mir_eval.segment.nce( ann_inter, ann_labels, est_inter, est_labels) # Names base = os.path.basename(est_file) res["track_id"] = base[:-5] res["ds_name"] = base.split("_")[0] return res
Computes the results by using the ground truth dataset identified by the annotator parameter.
def compute_gt_results(est_file, ref_file, boundaries_id, labels_id, config, bins=251, annotator_id=0): """Computes the results by using the ground truth dataset identified by the annotator parameter. Return ------ results : dict Dictionary of the results (see function compute_results). """ if config["hier"]: ref_times, ref_labels, ref_levels = \ msaf.io.read_hier_references( ref_file, annotation_id=annotator_id, exclude_levels=["segment_salami_function"]) else: jam = jams.load(ref_file, validate=False) ann = jam.search(namespace='segment_.*')[annotator_id] ref_inter, ref_labels = ann.to_interval_values() # Read estimations with correct configuration est_inter, est_labels = io.read_estimations(est_file, boundaries_id, labels_id, **config) # Compute the results and return logging.info("Evaluating %s" % os.path.basename(est_file)) if config["hier"]: # Hierarchical assert len(est_inter) == len(est_labels), "Same number of levels " \ "are required in the boundaries and labels for the hierarchical " \ "evaluation." est_times = [] est_labels = [] # Sort based on how many segments per level est_inter = sorted(est_inter, key=lambda level: len(level)) for inter in est_inter: est_times.append(msaf.utils.intervals_to_times(inter)) # Add fake labels (hierarchical eval does not use labels --yet--) est_labels.append(np.ones(len(est_times[-1]) - 1) * -1) # Align the times utils.align_end_hierarchies(est_times, ref_times, thres=1) # To intervals est_hier = [utils.times_to_intervals(times) for times in est_times] ref_hier = [utils.times_to_intervals(times) for times in ref_times] # Compute evaluations res = {} res["t_recall10"], res["t_precision10"], res["t_measure10"] = \ mir_eval.hierarchy.tmeasure(ref_hier, est_hier, window=10) res["t_recall15"], res["t_precision15"], res["t_measure15"] = \ mir_eval.hierarchy.tmeasure(ref_hier, est_hier, window=15) res["track_id"] = os.path.basename(est_file)[:-5] return res else: # Flat return compute_results(ref_inter, est_inter, ref_labels, est_labels, bins, est_file)
Computes the information gain of the est_file from the annotated intervals and the estimated intervals.
def compute_information_gain(ann_inter, est_inter, est_file, bins): """Computes the information gain of the est_file from the annotated intervals and the estimated intervals.""" ann_times = utils.intervals_to_times(ann_inter) est_times = utils.intervals_to_times(est_inter) return mir_eval.beat.information_gain(ann_times, est_times, bins=bins)
Processes a single track.
def process_track(file_struct, boundaries_id, labels_id, config, annotator_id=0): """Processes a single track. Parameters ---------- file_struct : object (FileStruct) or str File struct or full path of the audio file to be evaluated. boundaries_id : str Identifier of the boundaries algorithm. labels_id : str Identifier of the labels algorithm. config : dict Configuration of the algorithms to be evaluated. annotator_id : int Number identifiying the annotator. Returns ------- one_res : dict Dictionary of the results (see function compute_results). """ # Convert to file_struct if string is passed if isinstance(file_struct, six.string_types): file_struct = io.FileStruct(file_struct) est_file = file_struct.est_file ref_file = file_struct.ref_file # Sanity check assert os.path.basename(est_file)[:-4] == \ os.path.basename(ref_file)[:-4], "File names are different %s --- %s" \ % (os.path.basename(est_file)[:-4], os.path.basename(ref_file)[:-4]) if not os.path.isfile(ref_file): raise NoReferencesError("Reference file %s does not exist. You must " "have annotated references to run " "evaluations." % ref_file) one_res = compute_gt_results(est_file, ref_file, boundaries_id, labels_id, config, annotator_id=annotator_id) return one_res
Based on the config and the dataset get the file name to store the results.
def get_results_file_name(boundaries_id, labels_id, config, annotator_id): """Based on the config and the dataset, get the file name to store the results.""" utils.ensure_dir(msaf.config.results_dir) file_name = os.path.join(msaf.config.results_dir, "results") file_name += "_boundsE%s_labelsE%s" % (boundaries_id, labels_id) file_name += "_annotatorE%d" % (annotator_id) sorted_keys = sorted(config.keys(), key=str.lower) for key in sorted_keys: file_name += "_%sE%s" % (key, str(config[key]).replace("/", "_")) # Check for max file length if len(file_name) > 255 - len(msaf.config.results_ext): file_name = file_name[:255 - len(msaf.config.results_ext)] return file_name + msaf.config.results_ext
Main process to evaluate algorithms results.
def process(in_path, boundaries_id=msaf.config.default_bound_id, labels_id=msaf.config.default_label_id, annot_beats=False, framesync=False, feature="pcp", hier=False, save=False, out_file=None, n_jobs=4, annotator_id=0, config=None): """Main process to evaluate algorithms' results. Parameters ---------- in_path : str Path to the dataset root folder. boundaries_id : str Boundaries algorithm identifier (e.g. siplca, cnmf) labels_id : str Labels algorithm identifier (e.g. siplca, cnmf) ds_name : str Name of the dataset to be evaluated (e.g. SALAMI). * stands for all. annot_beats : boolean Whether to use the annotated beats or not. framesync: str Whether to use framesync features or not (default: False -> beatsync) feature: str String representing the feature to be used (e.g. pcp, mfcc, tonnetz) hier : bool Whether to compute a hierarchical or flat segmentation. save: boolean Whether to save the results into the `out_file` csv file. out_file: str Path to the csv file to save the results (if `None` and `save = True` it will save the results in the default file name obtained by calling `get_results_file_name`). n_jobs: int Number of processes to run in parallel. Only available in collection mode. annotator_id : int Number identifiying the annotator. config: dict Dictionary containing custom configuration parameters for the algorithms. If None, the default parameters are used. Return ------ results : pd.DataFrame DataFrame containing the evaluations for each file. """ # Set up configuration based on algorithms parameters if config is None: config = io.get_configuration(feature, annot_beats, framesync, boundaries_id, labels_id) # Hierarchical segmentation config["hier"] = hier # Remove actual features config.pop("features", None) # Get out file in case we want to save results if out_file is None: out_file = get_results_file_name(boundaries_id, labels_id, config, annotator_id) # If out_file already exists, read and return them if os.path.exists(out_file): logging.warning("Results already exists, reading from file %s" % out_file) results = pd.read_csv(out_file) print_results(results) return results # Perform actual evaluations if os.path.isfile(in_path): # Single File mode evals = [process_track(in_path, boundaries_id, labels_id, config, annotator_id=annotator_id)] else: # Collection mode # Get files file_structs = io.get_dataset_files(in_path) # Evaluate in parallel logging.info("Evaluating %d tracks..." % len(file_structs)) evals = Parallel(n_jobs=n_jobs)(delayed(process_track)( file_struct, boundaries_id, labels_id, config, annotator_id=annotator_id) for file_struct in file_structs[:]) # Aggregate evaluations in pandas format results = pd.DataFrame() for e in evals: if e != []: results = results.append(e, ignore_index=True) logging.info("%d tracks analyzed" % len(results)) # Print results print_results(results) # Save all results if save: logging.info("Writing results in %s" % out_file) results.to_csv(out_file) return results
Parses a config string ( comma - separated key = value components ) into a dict.
def parse_config_string(config_string, issue_warnings=True): """ Parses a config string (comma-separated key=value components) into a dict. """ config_dict = {} my_splitter = shlex.shlex(config_string, posix=True) my_splitter.whitespace = ',' my_splitter.whitespace_split = True for kv_pair in my_splitter: kv_pair = kv_pair.strip() if not kv_pair: continue kv_tuple = kv_pair.split('=', 1) if len(kv_tuple) == 1: if issue_warnings: MsafConfigWarning.warn( ("Config key '%s' has no value, ignoring it" % kv_tuple[0]), stacklevel=1) else: k, v = kv_tuple # subsequent values for k will override earlier ones config_dict[k] = v return config_dict
Return the overriding config value for a key. A successful search returns a string value. An unsuccessful search raises a KeyError The ( decreasing ) priority order is: - MSAF_FLAGS - ~./ msafrc
def fetch_val_for_key(key, delete_key=False): """Return the overriding config value for a key. A successful search returns a string value. An unsuccessful search raises a KeyError The (decreasing) priority order is: - MSAF_FLAGS - ~./msafrc """ # first try to find it in the FLAGS try: if delete_key: return MSAF_FLAGS_DICT.pop(key) return MSAF_FLAGS_DICT[key] except KeyError: pass # next try to find it in the config file # config file keys can be of form option, or section.option key_tokens = key.rsplit('.', 1) if len(key_tokens) == 2: section, option = key_tokens else: section, option = 'global', key try: try: return msaf_cfg.get(section, option) except InterpolationError: return msaf_raw_cfg.get(section, option) except (NoOptionError, NoSectionError): raise KeyError(key)
Add a new variable to msaf. config
def AddConfigVar(name, doc, configparam, root=config): """Add a new variable to msaf.config Parameters ---------- name: str String of the form "[section0.[section1.[etc]]]option", containing the full name for this configuration variable. string: str What does this variable specify? configparam: `ConfigParam` An object for getting and setting this configuration parameter. root: object Used for recursive calls -- do not provide an argument for this parameter. """ # This method also performs some of the work of initializing ConfigParam # instances if root is config: # only set the name in the first call, not the recursive ones configparam.fullname = name sections = name.split('.') if len(sections) > 1: # set up a subobject if not hasattr(root, sections[0]): # every internal node in the config tree is an instance of its own # unique class class SubObj(object): _i_am_a_config_class = True setattr(root.__class__, sections[0], SubObj()) newroot = getattr(root, sections[0]) if (not getattr(newroot, '_i_am_a_config_class', False) or isinstance(newroot, type)): raise TypeError( 'Internal config nodes must be config class instances', newroot) return AddConfigVar('.'.join(sections[1:]), doc, configparam, root=newroot) else: if hasattr(root, name): raise AttributeError('This name is already taken', configparam.fullname) configparam.doc = doc # Trigger a read of the value from config files and env vars # This allow to filter wrong value from the user. if not callable(configparam.default): configparam.__get__(root, type(root), delete_key=True) else: # We do not want to evaluate now the default value # when it is a callable. try: fetch_val_for_key(configparam.fullname) # The user provided a value, filter it now. configparam.__get__(root, type(root), delete_key=True) except KeyError: pass setattr(root.__class__, sections[0], configparam) _config_var_list.append(configparam)
Main process. Returns ------- est_idxs: np. array ( N ) Estimated indeces the segment boundaries in frame indeces. est_labels: np. array ( N - 1 ) Estimated labels for the segments.
def processFlat(self): """Main process. Returns ------- est_idxs : np.array(N) Estimated indeces the segment boundaries in frame indeces. est_labels : np.array(N-1) Estimated labels for the segments. """ # Preprocess to obtain features (array(n_frames, n_features)) F = self._preprocess() F = librosa.util.normalize(F, axis=0) F = librosa.feature.stack_memory(F.T).T self.config["hier"] = False my_bounds, my_labels, _ = main.scluster_segment(F, self.config, self.in_bound_idxs) # Post process estimations est_idxs, est_labels = self._postprocess(my_bounds, my_labels) assert est_idxs[0] == 0 and est_idxs[-1] == F.shape[0] - 1 # We're done! return est_idxs, est_labels
Main process. for hierarchial segmentation. Returns ------- est_idxs: list List with np. arrays for each layer of segmentation containing the estimated indeces for the segment boundaries. est_labels: list List with np. arrays containing the labels for each layer of the hierarchical segmentation.
def processHierarchical(self): """Main process.for hierarchial segmentation. Returns ------- est_idxs : list List with np.arrays for each layer of segmentation containing the estimated indeces for the segment boundaries. est_labels : list List with np.arrays containing the labels for each layer of the hierarchical segmentation. """ F = self._preprocess() F = librosa.util.normalize(F, axis=0) F = librosa.feature.stack_memory(F.T).T self.config["hier"] = True est_idxs, est_labels, F = main.scluster_segment(F, self.config, self.in_bound_idxs) for layer in range(len(est_idxs)): assert est_idxs[layer][0] == 0 and \ est_idxs[layer][-1] == F.shape[1] - 1 est_idxs[layer], est_labels[layer] = \ self._postprocess(est_idxs[layer], est_labels[layer]) return est_idxs, est_labels
Frobenius norm ( ||data - WH|| ) of a data matrix and a low rank approximation given by WH
def frobenius_norm(self): """ Frobenius norm (||data - WH||) of a data matrix and a low rank approximation given by WH Returns: frobenius norm: F = ||data - WH|| """ # check if W and H exist if hasattr(self,'H') and hasattr(self,'W') and not scipy.sparse.issparse(self.data): err = np.sqrt( np.sum((self.data[:,:] - np.dot(self.W, self.H))**2 )) else: err = -123456 return err
Computes all features for the given file.
def compute_all_features(file_struct, framesync): """Computes all features for the given file.""" for feature_id in msaf.features_registry: logging.info("Computing %s for file %s" % (feature_id, file_struct.audio_file)) feats = Features.select_features(feature_id, file_struct, False, framesync) feats.features
Computes the features for the selected dataset or file.
def process(in_path, out_file, n_jobs, framesync): """Computes the features for the selected dataset or file.""" if os.path.isfile(in_path): # Single file mode # Get (if they exitst) or compute features file_struct = msaf.io.FileStruct(in_path) file_struct.features_file = out_file compute_all_features(file_struct, framesync) else: # Collection mode file_structs = msaf.io.get_dataset_files(in_path) # Call in parallel return Parallel(n_jobs=n_jobs)(delayed(compute_all_features)( file_struct, framesync) for file_struct in file_structs)
Main function to parse the arguments and call the main process.
def main(): """Main function to parse the arguments and call the main process.""" parser = argparse.ArgumentParser( description="Extracts a set of features from a given dataset " "or audio file and saves them into the 'features' folder of " "the dataset or the specified single file.", formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument("in_path", action="store", help="Input dataset dir or audio file") parser.add_argument("-j", action="store", dest="n_jobs", type=int, help="Number of jobs (only for collection mode)", default=4) parser.add_argument("-o", action="store", dest="out_file", type=str, help="Output file (only for single file mode)", default="out.json") parser.add_argument("-d", action="store", dest="ds_name", default="*", help="The prefix of the dataset to use " "(e.g. Isophonics, SALAMI)") parser.add_argument("-fs", action="store_true", dest="framesync", help="Use frame-synchronous features", default=False) args = parser.parse_args() start_time = time.time() # Setup the logger logging.basicConfig(format='%(asctime)s: %(levelname)s: %(message)s', level=logging.INFO) # Run the main process process(args.in_path, out_file=args.out_file, n_jobs=args.n_jobs, framesync=args.framesync) # Done! logging.info("Done! Took %.2f seconds." % (time.time() - start_time))
Feature - extraction for audio segmentation Arguments: file_struct -- msaf. io. FileStruct paths to the input files in the Segmentation dataset
def features(file_struct, annot_beats=False, framesync=False): '''Feature-extraction for audio segmentation Arguments: file_struct -- msaf.io.FileStruct paths to the input files in the Segmentation dataset Returns: - X -- ndarray beat-synchronous feature matrix: MFCC (mean-aggregated) Chroma (median-aggregated) Latent timbre repetition Latent chroma repetition Time index Beat index - dur -- float duration of the track in seconds ''' def compress_data(X, k): Xtemp = X.dot(X.T) if len(Xtemp) == 0: return None e_vals, e_vecs = np.linalg.eig(Xtemp) e_vals = np.maximum(0.0, np.real(e_vals)) e_vecs = np.real(e_vecs) idx = np.argsort(e_vals)[::-1] e_vals = e_vals[idx] e_vecs = e_vecs[:, idx] # Truncate to k dimensions if k < len(e_vals): e_vals = e_vals[:k] e_vecs = e_vecs[:, :k] # Normalize by the leading singular value of X Z = np.sqrt(e_vals.max()) if Z > 0: e_vecs = e_vecs / Z return e_vecs.T.dot(X) # Latent factor repetition features def repetition(X, metric='euclidean'): R = librosa.segment.recurrence_matrix( X, k=2 * int(np.ceil(np.sqrt(X.shape[1]))), width=REP_WIDTH, metric=metric, sym=False).astype(np.float32) P = scipy.signal.medfilt2d(librosa.segment.recurrence_to_lag(R), [1, REP_FILTER]) # Discard empty rows. # This should give an equivalent SVD, but resolves some numerical # instabilities. P = P[P.any(axis=1)] return compress_data(P, N_REP) ######### # '\tloading annotations and features of ', audio_path pcp_obj = Features.select_features("pcp", file_struct, annot_beats, framesync) mfcc_obj = Features.select_features("mfcc", file_struct, annot_beats, framesync) chroma = pcp_obj.features mfcc = mfcc_obj.features beats = pcp_obj.frame_times dur = pcp_obj.dur # Sampling Rate sr = msaf.config.sample_rate ########## # print '\treading beats' B = beats[:chroma.shape[0]] # beat_frames = librosa.time_to_frames(B, sr=sr, #hop_length=msaf.config.hop_size) #print beat_frames, len(beat_frames), uidx ######### M = mfcc.T #plt.imshow(M, interpolation="nearest", aspect="auto"); plt.show() ######### # Get the beat-sync chroma C = chroma.T C += C.min() + 0.1 C = C / C.max(axis=0) C = 80 * np.log10(C) # Normalize from -80 to 0 #plt.imshow(C, interpolation="nearest", aspect="auto"); plt.show() # Time-stamp features N = np.arange(float(chroma.shape[0])) ######### #print '\tgenerating structure features' # TODO: This might fail if audio file (or number of beats) is too small R_timbre = repetition(librosa.feature.stack_memory(M)) R_chroma = repetition(librosa.feature.stack_memory(C)) if R_timbre is None or R_chroma is None: return None, dur R_timbre += R_timbre.min() R_timbre /= R_timbre.max() R_chroma += R_chroma.min() R_chroma /= R_chroma.max() #plt.imshow(R_chroma, interpolation="nearest", aspect="auto"); plt.show() # Stack it all up #print M.shape, C.shape, R_timbre.shape, R_chroma.shape, len(B), len(N) X = np.vstack([M, C, R_timbre, R_chroma, B, B / dur, N, N / float(chroma.shape[0])]) #plt.imshow(X, interpolation="nearest", aspect="auto"); plt.show() return X, dur
Return the average log - likelihood of data under a standard normal
def gaussian_cost(X): '''Return the average log-likelihood of data under a standard normal ''' d, n = X.shape if n < 2: return 0 sigma = np.var(X, axis=1, ddof=1) cost = -0.5 * d * n * np.log(2. * np.pi) - 0.5 * (n - 1.) * np.sum(sigma) return cost
Main process for flat segmentation. Returns ------- est_idxs: np. array ( N ) Estimated times for the segment boundaries in frame indeces. est_labels: np. array ( N - 1 ) Estimated labels for the segments.
def processFlat(self): """Main process for flat segmentation. Returns ------- est_idxs : np.array(N) Estimated times for the segment boundaries in frame indeces. est_labels : np.array(N-1) Estimated labels for the segments. """ # Preprocess to obtain features and duration F, dur = features(self.file_struct, self.annot_beats, self.framesync) try: # Load and apply transform W = load_transform(self.config["transform"]) F = W.dot(F) # Get Segments kmin, kmax = get_num_segs(dur) est_idxs = get_segments(F, kmin=kmin, kmax=kmax) except: # The audio file is too short, only beginning and end logging.warning("Audio file too short! " "Only start and end boundaries.") est_idxs = [0, F.shape[1] - 1] # Make sure that the first and last boundaries are included assert est_idxs[0] == 0 and est_idxs[-1] == F.shape[1] - 1 # Empty labels est_labels = np.ones(len(est_idxs) - 1) * -1 # Post process estimations est_idxs, est_labels = self._postprocess(est_idxs, est_labels) return est_idxs, est_labels
Main process for hierarchical segmentation. Returns ------- est_idxs: list List containing estimated times for each layer in the hierarchy as np. arrays est_labels: list List containing estimated labels for each layer in the hierarchy as np. arrays
def processHierarchical(self): """Main process for hierarchical segmentation. Returns ------- est_idxs : list List containing estimated times for each layer in the hierarchy as np.arrays est_labels : list List containing estimated labels for each layer in the hierarchy as np.arrays """ # Preprocess to obtain features, times, and input boundary indeces F, dur = features(self.file_struct, self.annot_beats, self.framesync) try: # Load and apply transform W = load_transform(self.config["transform"]) F = W.dot(F) # Get Segments kmin, kmax = get_num_segs(dur) # Run algorithm layer by layer est_idxs = [] est_labels = [] for k in range(kmin, kmax): S, cost = get_k_segments(F, k) est_idxs.append(S) est_labels.append(np.ones(len(S) - 1) * -1) # Make sure that the first and last boundaries are included assert est_idxs[-1][0] == 0 and \ est_idxs[-1][-1] == F.shape[1] - 1, "Layer %d does not " \ "start or end in the right frame(s)." % k # Post process layer est_idxs[-1], est_labels[-1] = \ self._postprocess(est_idxs[-1], est_labels[-1]) except: # The audio file is too short, only beginning and end logging.warning("Audio file too short! " "Only start and end boundaries.") est_idxs = [np.array([0, F.shape[1] - 1])] est_labels = [np.ones(1) * -1] return est_idxs, est_labels
Log - normalizes features such that each vector is between min_db to 0.
def lognormalize(F, floor=0.1, min_db=-80): """Log-normalizes features such that each vector is between min_db to 0.""" assert min_db < 0 F = min_max_normalize(F, floor=floor) F = np.abs(min_db) * np.log10(F) # Normalize from min_db to 0 return F
Normalizes features such that each vector is between floor to 1.
def min_max_normalize(F, floor=0.001): """Normalizes features such that each vector is between floor to 1.""" F += -F.min() + floor F = F / F.max(axis=0) return F
Normalizes the given matrix of features.
def normalize(X, norm_type, floor=0.0, min_db=-80): """Normalizes the given matrix of features. Parameters ---------- X: np.array Each row represents a feature vector. norm_type: {"min_max", "log", np.inf, -np.inf, 0, float > 0, None} - `"min_max"`: Min/max scaling is performed - `"log"`: Logarithmic scaling is performed - `np.inf`: Maximum absolute value - `-np.inf`: Mininum absolute value - `0`: Number of non-zeros - float: Corresponding l_p norm. - None : No normalization is performed Returns ------- norm_X: np.array Normalized `X` according the the input parameters. """ if isinstance(norm_type, six.string_types): if norm_type == "min_max": return min_max_normalize(X, floor=floor) if norm_type == "log": return lognormalize(X, floor=floor, min_db=min_db) return librosa.util.normalize(X, norm=norm_type, axis=1)
Gets the time frames and puts them in a numpy array.
def get_time_frames(dur, anal): """Gets the time frames and puts them in a numpy array.""" n_frames = get_num_frames(dur, anal) return np.linspace(0, dur, num=n_frames)
Removes empty segments if needed.
def remove_empty_segments(times, labels): """Removes empty segments if needed.""" assert len(times) - 1 == len(labels) inters = times_to_intervals(times) new_inters = [] new_labels = [] for inter, label in zip(inters, labels): if inter[0] < inter[1]: new_inters.append(inter) new_labels.append(label) return intervals_to_times(np.asarray(new_inters)), new_labels
Sonifies the estimated times into the output file.
def sonify_clicks(audio, clicks, out_file, fs, offset=0): """Sonifies the estimated times into the output file. Parameters ---------- audio: np.array Audio samples of the input track. clicks: np.array Click positions in seconds. out_file: str Path to the output file. fs: int Sample rate. offset: float Offset of the clicks with respect to the audio. """ # Generate clicks (this should be done by mir_eval, but its # latest release is not compatible with latest numpy) times = clicks + offset # 1 kHz tone, 100ms click = np.sin(2 * np.pi * np.arange(fs * .1) * 1000 / (1. * fs)) # Exponential decay click *= np.exp(-np.arange(fs * .1) / (fs * .01)) length = int(times.max() * fs + click.shape[0] + 1) audio_clicks = mir_eval.sonify.clicks(times, fs, length=length) # Create array to store the audio plus the clicks out_audio = np.zeros(max(len(audio), len(audio_clicks))) # Assign the audio and the clicks out_audio[:len(audio)] = audio out_audio[:len(audio_clicks)] += audio_clicks # Write to file scipy.io.wavfile.write(out_file, fs, out_audio)
Synchronizes the labels from the old_bound_idxs to the new_bound_idxs.
def synchronize_labels(new_bound_idxs, old_bound_idxs, old_labels, N): """Synchronizes the labels from the old_bound_idxs to the new_bound_idxs. Parameters ---------- new_bound_idxs: np.array New indeces to synchronize with. old_bound_idxs: np.array Old indeces, same shape as labels + 1. old_labels: np.array Labels associated to the old_bound_idxs. N: int Total number of frames. Returns ------- new_labels: np.array New labels, synchronized to the new boundary indeces. """ assert len(old_bound_idxs) - 1 == len(old_labels) # Construct unfolded labels array unfold_labels = np.zeros(N) for i, (bound_idx, label) in enumerate( zip(old_bound_idxs[:-1], old_labels)): unfold_labels[bound_idx:old_bound_idxs[i + 1]] = label # Constuct new labels new_labels = np.zeros(len(new_bound_idxs) - 1) for i, bound_idx in enumerate(new_bound_idxs[:-1]): new_labels[i] = np.median( unfold_labels[bound_idx:new_bound_idxs[i + 1]]) return new_labels
Processes a level of segmentation and converts it into times.
def process_segmentation_level(est_idxs, est_labels, N, frame_times, dur): """Processes a level of segmentation, and converts it into times. Parameters ---------- est_idxs: np.array Estimated boundaries in frame indeces. est_labels: np.array Estimated labels. N: int Number of frames in the whole track. frame_times: np.array Time stamp for each frame. dur: float Duration of the audio track. Returns ------- est_times: np.array Estimated segment boundaries in seconds. est_labels: np.array Estimated labels for each segment. """ assert est_idxs[0] == 0 and est_idxs[-1] == N - 1 assert len(est_idxs) - 1 == len(est_labels) # Add silences, if needed est_times = np.concatenate(([0], frame_times[est_idxs], [dur])) silence_label = np.max(est_labels) + 1 est_labels = np.concatenate(([silence_label], est_labels, [silence_label])) # Remove empty segments if needed est_times, est_labels = remove_empty_segments(est_times, est_labels) # Make sure that the first and last times are 0 and duration, respectively assert np.allclose([est_times[0]], [0]) and \ np.allclose([est_times[-1]], [dur]) return est_times, est_labels
Align the end of the hierarchies such that they end at the same exact second as long they have the same duration within a certain threshold.
def align_end_hierarchies(hier1, hier2, thres=0.5): """Align the end of the hierarchies such that they end at the same exact second as long they have the same duration within a certain threshold. Parameters ---------- hier1: list List containing hierarchical segment boundaries. hier2: list List containing hierarchical segment boundaries. thres: float > 0 Threshold to decide whether two values are the same. """ # Make sure we have correctly formatted hierarchies dur_h1 = hier1[0][-1] for hier in hier1: assert hier[-1] == dur_h1, "hier1 is not correctly " \ "formatted {} {}".format(hier[-1], dur_h1) dur_h2 = hier2[0][-1] for hier in hier2: assert hier[-1] == dur_h2, "hier2 is not correctly formatted" # If durations are different, do nothing if abs(dur_h1 - dur_h2) > thres: return # Align h1 with h2 for hier in hier1: hier[-1] = dur_h2
compute distances of a specific data point to all other samples
def _distance(self, idx): """ compute distances of a specific data point to all other samples""" if scipy.sparse.issparse(self.data): step = self.data.shape[1] else: step = 50000 d = np.zeros((self.data.shape[1])) if idx == -1: # set vec to origin if idx=-1 vec = np.zeros((self.data.shape[0], 1)) if scipy.sparse.issparse(self.data): vec = scipy.sparse.csc_matrix(vec) else: vec = self.data[:, idx:idx+1] self._logger.info('compute distance to node ' + str(idx)) # slice data into smaller chunks for idx_start in range(0, self.data.shape[1], step): if idx_start + step > self.data.shape[1]: idx_end = self.data.shape[1] else: idx_end = idx_start + step d[idx_start:idx_end] = self._distfunc( self.data[:,idx_start:idx_end], vec) self._logger.info('completed:' + str(idx_end/(self.data.shape[1]/100.0)) + "%") return d
compute new W
def update_w(self): """ compute new W """ EPS = 10**-8 self.init_sivm() # initialize some of the recursively updated distance measures .... d_square = np.zeros((self.data.shape[1])) d_sum = np.zeros((self.data.shape[1])) d_i_times_d_j = np.zeros((self.data.shape[1])) distiter = np.zeros((self.data.shape[1])) a = np.log(self._maxd) a_inc = a.copy() for l in range(1, self._num_bases): d = self._distance(self.select[l-1]) # take the log of d (sually more stable that d) d = np.log(d + EPS) d_i_times_d_j += d * d_sum d_sum += d d_square += d**2 distiter = d_i_times_d_j + a*d_sum - (l/2.0) * d_square # detect the next best data point self.select.append(np.argmax(distiter)) self._logger.info('cur_nodes: ' + str(self.select)) # sort indices, otherwise h5py won't work self.W = self.data[:, np.sort(self.select)] # "unsort" it again to keep the correct order self.W = self.W[:, np.argsort(np.argsort(self.select))]
Estimates K running X - means algorithm ( Pelleg & Moore 2000 ).
def estimate_K_xmeans(self, th=0.2, maxK = 10): """Estimates K running X-means algorithm (Pelleg & Moore, 2000).""" # Run initial K-means means, labels = self.run_kmeans(self.X, self.init_K) # Run X-means algorithm stop = False curr_K = self.init_K while not stop: stop = True final_means = [] for k in range(curr_K): # Find the data that corresponds to the k-th cluster D = self.get_clustered_data(self.X, labels, k) if len(D) == 0 or D.shape[0] == 1: continue # Whiten and find whitened mean stdD = np.std(D, axis=0) #D = vq.whiten(D) D /= float(stdD) # Same as line above mean = D.mean(axis=0) # Cluster this subspace by half (K=2) half_means, half_labels = self.run_kmeans(D, K=2) # Compute BICs bic1 = self.compute_bic(D, [mean], K=1, labels=np.zeros(D.shape[0]), R=D.shape[0]) bic2 = self.compute_bic(D, half_means, K=2, labels=half_labels, R=D.shape[0]) # Split or not max_bic = np.max([np.abs(bic1), np.abs(bic2)]) norm_bic1 = bic1 / float(max_bic) norm_bic2 = bic2 / float(max_bic) diff_bic = np.abs(norm_bic1 - norm_bic2) # Split! #print "diff_bic", diff_bic if diff_bic > th: final_means.append(half_means[0] * stdD) final_means.append(half_means[1] * stdD) curr_K += 1 stop = False # Don't split else: final_means.append(mean * stdD) final_means = np.asarray(final_means) #print "Estimated K: ", curr_K if self.plot: plt.scatter(self.X[:, 0], self.X[:, 1]) plt.scatter(final_means[:, 0], final_means[:, 1], color="y") plt.show() if curr_K >= maxK or self.X.shape[-1] != final_means.shape[-1]: stop = True else: labels, dist = vq.vq(self.X, final_means) return curr_K
Estimates the K using K - means and BIC by sweeping various K and choosing the optimal BIC.
def estimate_K_knee(self, th=.015, maxK=12): """Estimates the K using K-means and BIC, by sweeping various K and choosing the optimal BIC.""" # Sweep K-means if self.X.shape[0] < maxK: maxK = self.X.shape[0] if maxK < 2: maxK = 2 K = np.arange(1, maxK) bics = [] for k in K: means, labels = self.run_kmeans(self.X, k) bic = self.compute_bic(self.X, means, labels, K=k, R=self.X.shape[0]) bics.append(bic) diff_bics = np.diff(bics) finalK = K[-1] if len(bics) == 1: finalK = 2 else: # Normalize bics = np.asarray(bics) bics -= bics.min() #bics /= bics.max() diff_bics -= diff_bics.min() #diff_bics /= diff_bics.max() #print bics, diff_bics # Find optimum K for i in range(len(K[:-1])): #if bics[i] > diff_bics[i]: if diff_bics[i] < th and K[i] != 1: finalK = K[i] break #print "Estimated K: ", finalK if self.plot: plt.subplot(2, 1, 1) plt.plot(K, bics, label="BIC") plt.plot(K[:-1], diff_bics, label="BIC diff") plt.legend(loc=2) plt.subplot(2, 1, 2) plt.scatter(self.X[:, 0], self.X[:, 1]) plt.show() return finalK
Returns the data with a specific label_index using the previously learned labels.
def get_clustered_data(self, X, labels, label_index): """Returns the data with a specific label_index, using the previously learned labels.""" D = X[np.argwhere(labels == label_index)] return D.reshape((D.shape[0], D.shape[-1]))
Runs k - means and returns the labels assigned to the data.
def run_kmeans(self, X, K): """Runs k-means and returns the labels assigned to the data.""" wX = vq.whiten(X) means, dist = vq.kmeans(wX, K, iter=100) labels, dist = vq.vq(wX, means) return means, labels
Computes the Bayesian Information Criterion.
def compute_bic(self, D, means, labels, K, R): """Computes the Bayesian Information Criterion.""" D = vq.whiten(D) Rn = D.shape[0] M = D.shape[1] if R == K: return 1 # Maximum likelihood estimate (MLE) mle_var = 0 for k in range(len(means)): X = D[np.argwhere(labels == k)] X = X.reshape((X.shape[0], X.shape[-1])) for x in X: mle_var += distance.euclidean(x, means[k]) #print x, means[k], mle_var mle_var /= float(R - K) # Log-likelihood of the data l_D = - Rn/2. * np.log(2*np.pi) - (Rn * M)/2. * np.log(mle_var) - \ (Rn - K) / 2. + Rn * np.log(Rn) - Rn * np.log(R) # Params of BIC p = (K-1) + M * K + mle_var #print "BIC:", l_D, p, R, K # Return the bic return l_D - p / 2. * np.log(R)
Generates N * K 2D data points with K means and N data points for each mean.
def generate_2d_data(self, N=100, K=5): """Generates N*K 2D data points with K means and N data points for each mean.""" # Seed the random np.random.seed(seed=int(time.time())) # Amount of spread of the centroids spread = 30 # Generate random data X = np.empty((0, 2)) for i in range(K): mean = np.array([np.random.random()*spread, np.random.random()*spread]) x = np.random.normal(0.0, scale=1.0, size=(N, 2)) + mean X = np.append(X, x, axis=0) return X
Do factorization s. t. data = dot ( dot ( data beta ) H ) under the convexity constraint beta > = 0 sum ( beta ) = 1 H > = 0 sum ( H ) = 1
def factorize(self): """Do factorization s.t. data = dot(dot(data,beta),H), under the convexity constraint beta >=0, sum(beta)=1, H >=0, sum(H)=1 """ # compute new coefficients for reconstructing data points self.update_w() # for CHNMF it is sometimes useful to only compute # the basis vectors if self._compute_h: self.update_h() self.W = self.mdl.W self.H = self.mdl.H self.ferr = np.zeros(1) self.ferr[0] = self.mdl.frobenius_norm() self._print_cur_status(' Fro:' + str(self.ferr[0]))
Y = resample_mx ( X incolpos outcolpos ) X is taken as a set of columns each starting at time colpos and continuing until the start of the next column. Y is a similar matrix with time boundaries defined by outcolpos. Each column of Y is a duration - weighted average of the overlapping columns of X. 2010 - 04 - 14 Dan Ellis dpwe
def resample_mx(X, incolpos, outcolpos): """ Y = resample_mx(X, incolpos, outcolpos) X is taken as a set of columns, each starting at 'time' colpos, and continuing until the start of the next column. Y is a similar matrix, with time boundaries defined by outcolpos. Each column of Y is a duration-weighted average of the overlapping columns of X. 2010-04-14 Dan Ellis dpwe@ee.columbia.edu based on samplemx/beatavg -> python: TBM, 2011-11-05, TESTED """ noutcols = len(outcolpos) Y = np.zeros((X.shape[0], noutcols)) # assign 'end times' to final columns if outcolpos.max() > incolpos.max(): incolpos = np.concatenate([incolpos,[outcolpos.max()]]) X = np.concatenate([X, X[:,-1].reshape(X.shape[0],1)], axis=1) outcolpos = np.concatenate([outcolpos, [outcolpos[-1]]]) # durations (default weights) of input columns) incoldurs = np.concatenate([np.diff(incolpos), [1]]) for c in range(noutcols): firstincol = np.where(incolpos <= outcolpos[c])[0][-1] firstincolnext = np.where(incolpos < outcolpos[c+1])[0][-1] lastincol = max(firstincol,firstincolnext) # default weights wts = copy.deepcopy(incoldurs[firstincol:lastincol+1]) # now fix up by partial overlap at ends if len(wts) > 1: wts[0] = wts[0] - (outcolpos[c] - incolpos[firstincol]) wts[-1] = wts[-1] - (incolpos[lastincol+1] - outcolpos[c+1]) wts = wts * 1. / float(sum(wts)) Y[:,c] = np.dot(X[:,firstincol:lastincol+1], wts) # done return Y
Magnitude of a complex matrix.
def magnitude(X): """Magnitude of a complex matrix.""" r = np.real(X) i = np.imag(X) return np.sqrt(r * r + i * i);
Extracts the boundaries from a json file and puts them into an np array.
def json_to_bounds(segments_json): """Extracts the boundaries from a json file and puts them into an np array.""" f = open(segments_json) segments = json.load(f)["segments"] bounds = [] for segment in segments: bounds.append(segment["start"]) bounds.append(bounds[-1] + segments[-1]["duration"]) # Add last boundary f.close() return np.asarray(bounds)
Extracts the boundaries from a bounds json file and puts them into an np array.
def json_bounds_to_bounds(bounds_json): """Extracts the boundaries from a bounds json file and puts them into an np array.""" f = open(bounds_json) segments = json.load(f)["bounds"] bounds = [] for segment in segments: bounds.append(segment["start"]) f.close() return np.asarray(bounds)
Extracts the labels from a json file and puts them into an np array.
def json_to_labels(segments_json): """Extracts the labels from a json file and puts them into an np array.""" f = open(segments_json) segments = json.load(f)["segments"] labels = [] str_labels = [] for segment in segments: if not segment["label"] in str_labels: str_labels.append(segment["label"]) labels.append(len(str_labels)-1) else: label_idx = np.where(np.asarray(str_labels) == segment["label"])[0][0] labels.append(label_idx) f.close() return np.asarray(labels)
Extracts the beats from the beats_json_file and puts them into an np array.
def json_to_beats(beats_json_file): """Extracts the beats from the beats_json_file and puts them into an np array.""" f = open(beats_json_file, "r") beats_json = json.load(f) beats = [] for beat in beats_json["beats"]: beats.append(beat["start"]) f.close() return np.asarray(beats)
Computes the 2D - Fourier Magnitude Coefficients.
def compute_ffmc2d(X): """Computes the 2D-Fourier Magnitude Coefficients.""" # 2d-fft fft2 = scipy.fftpack.fft2(X) # Magnitude fft2m = magnitude(fft2) # FFTshift and flatten fftshift = scipy.fftpack.fftshift(fft2m).flatten() #cmap = plt.cm.get_cmap('hot') #plt.imshow(np.log1p(scipy.fftpack.fftshift(fft2m)).T, interpolation="nearest", # aspect="auto", cmap=cmap) #plt.show() # Take out redundant components return fftshift[:fftshift.shape[0] // 2 + 1]
Frobenius norm ( ||data - USV|| ) for a data matrix and a low rank approximation given by SVH using rank k for U and V Returns: frobenius norm: F = ||data - USV||
def frobenius_norm(self): """ Frobenius norm (||data - USV||) for a data matrix and a low rank approximation given by SVH using rank k for U and V Returns: frobenius norm: F = ||data - USV|| """ if scipy.sparse.issparse(self.data): err = self.data - self.U*self.S*self.V err = err.multiply(err) err = np.sqrt(err.sum()) else: err = self.data[:,:] - np.dot(np.dot(self.U, self.S), self.V) err = np.sqrt(np.sum(err**2)) return err
Factorize s. t. WH = data
def factorize(self, niter=10, compute_w=True, compute_h=True, compute_err=True, show_progress=False): """ Factorize s.t. WH = data Parameters ---------- niter : int number of iterations. show_progress : bool print some extra information to stdout. compute_h : bool iteratively update values for H. compute_w : bool iteratively update values for W. compute_err : bool compute Frobenius norm |data-WH| after each update and store it to .ferr[k]. Updated Values -------------- .W : updated values for W. .H : updated values for H. .ferr : Frobenius norm |data-WH| for each iteration. """ if not hasattr(self,'W'): self.init_w() if not hasattr(self,'H'): self.init_h() def separate_positive(m): return (np.abs(m) + m)/2.0 def separate_negative(m): return (np.abs(m) - m)/2.0 if show_progress: self._logger.setLevel(logging.INFO) else: self._logger.setLevel(logging.ERROR) XtX = np.dot(self.data[:,:].T, self.data[:,:]) XtX_pos = separate_positive(XtX) XtX_neg = separate_negative(XtX) self.ferr = np.zeros(niter) # iterate over W and H for i in range(niter): # update H XtX_neg_x_W = np.dot(XtX_neg, self.G) XtX_pos_x_W = np.dot(XtX_pos, self.G) if compute_h: H_x_WT = np.dot(self.H.T, self.G.T) ha = XtX_pos_x_W + np.dot(H_x_WT, XtX_neg_x_W) hb = XtX_neg_x_W + np.dot(H_x_WT, XtX_pos_x_W) + 10**-9 self.H = (self.H.T*np.sqrt(ha/hb)).T # update W if compute_w: HT_x_H = np.dot(self.H, self.H.T) wa = np.dot(XtX_pos, self.H.T) + np.dot(XtX_neg_x_W, HT_x_H) wb = np.dot(XtX_neg, self.H.T) + np.dot(XtX_pos_x_W, HT_x_H) + 10**-9 self.G *= np.sqrt(wa/wb) self.W = np.dot(self.data[:,:], self.G) if compute_err: self.ferr[i] = self.frobenius_norm() self._logger.info('Iteration ' + str(i+1) + '/' + str(niter) + ' FN:' + str(self.ferr[i])) else: self._logger.info('Iteration ' + str(i+1) + '/' + str(niter)) if i > 1 and compute_err: if self.converged(i): self.ferr = self.ferr[:i] break
( Convex ) Non - Negative Matrix Factorization.
def cnmf(S, rank, niter=500, hull=False): """(Convex) Non-Negative Matrix Factorization. Parameters ---------- S: np.array(p, N) Features matrix. p row features and N column observations. rank: int Rank of decomposition niter: int Number of iterations to be used Returns ------- F: np.array Cluster matrix (decomposed matrix) G: np.array Activation matrix (decomposed matrix) (s.t. S ~= F * G) """ if hull: nmf_mdl = pymf.CHNMF(S, num_bases=rank) else: nmf_mdl = pymf.CNMF(S, num_bases=rank) nmf_mdl.factorize(niter=niter) F = np.asarray(nmf_mdl.W) G = np.asarray(nmf_mdl.H) return F, G
Computes the labels using the bounds.
def compute_labels(X, rank, R, bound_idxs, niter=300): """Computes the labels using the bounds.""" try: F, G = cnmf(X, rank, niter=niter, hull=False) except: return [1] label_frames = filter_activation_matrix(G.T, R) label_frames = np.asarray(label_frames, dtype=int) #labels = [label_frames[0]] labels = [] bound_inters = zip(bound_idxs[:-1], bound_idxs[1:]) for bound_inter in bound_inters: if bound_inter[1] - bound_inter[0] <= 0: labels.append(np.max(label_frames) + 1) else: labels.append(most_frequent( label_frames[bound_inter[0]: bound_inter[1]])) #print bound_inter, labels[-1] #labels.append(label_frames[-1]) return labels
Filters the activation matrix G and returns a flattened copy.
def filter_activation_matrix(G, R): """Filters the activation matrix G, and returns a flattened copy.""" #import pylab as plt #plt.imshow(G, interpolation="nearest", aspect="auto") #plt.show() idx = np.argmax(G, axis=1) max_idx = np.arange(G.shape[0]) max_idx = (max_idx, idx.flatten()) G[:, :] = 0 G[max_idx] = idx + 1 # TODO: Order matters? G = np.sum(G, axis=1) G = median_filter(G[:, np.newaxis], R) return G.flatten()
Gets the segmentation ( boundaries and labels ) from the factorization matrices.
def get_segmentation(X, rank, R, rank_labels, R_labels, niter=300, bound_idxs=None, in_labels=None): """ Gets the segmentation (boundaries and labels) from the factorization matrices. Parameters ---------- X: np.array() Features matrix (e.g. chromagram) rank: int Rank of decomposition R: int Size of the median filter for activation matrix niter: int Number of iterations for k-means bound_idxs : list Use previously found boundaries (None to detect them) in_labels : np.array() List of input labels (None to compute them) Returns ------- bounds_idx: np.array Bound indeces found labels: np.array Indeces of the labels representing the similarity between segments. """ #import pylab as plt #plt.imshow(X, interpolation="nearest", aspect="auto") #plt.show() # Find non filtered boundaries compute_bounds = True if bound_idxs is None else False while True: if bound_idxs is None: try: F, G = cnmf(X, rank, niter=niter, hull=False) except: return np.empty(0), [1] # Filter G G = filter_activation_matrix(G.T, R) if bound_idxs is None: bound_idxs = np.where(np.diff(G) != 0)[0] + 1 # Increase rank if we found too few boundaries if compute_bounds and len(np.unique(bound_idxs)) <= 2: rank += 1 bound_idxs = None else: break # Add first and last boundary bound_idxs = np.concatenate(([0], bound_idxs, [X.shape[1] - 1])) bound_idxs = np.asarray(bound_idxs, dtype=int) if in_labels is None: labels = compute_labels(X, rank_labels, R_labels, bound_idxs, niter=niter) else: labels = np.ones(len(bound_idxs) - 1) #plt.imshow(G[:, np.newaxis], interpolation="nearest", aspect="auto") #for b in bound_idxs: #plt.axvline(b, linewidth=2.0, color="k") #plt.show() return bound_idxs, labels
Main process. Returns ------- est_idxs: np. array ( N ) Estimated indeces for the segment boundaries in frames. est_labels: np. array ( N - 1 ) Estimated labels for the segments.
def processFlat(self): """Main process. Returns ------- est_idxs : np.array(N) Estimated indeces for the segment boundaries in frames. est_labels : np.array(N-1) Estimated labels for the segments. """ # C-NMF params niter = self.config["niters"] # Iterations for the MF and clustering # Preprocess to obtain features, times, and input boundary indeces F = self._preprocess() # Normalize F = U.normalize(F, norm_type=self.config["norm_feats"]) if F.shape[0] >= self.config["h"]: # Median filter F = median_filter(F, M=self.config["h"]) #plt.imshow(F.T, interpolation="nearest", aspect="auto"); plt.show() # Find the boundary indices and labels using matrix factorization est_idxs, est_labels = get_segmentation( F.T, self.config["rank"], self.config["R"], self.config["rank_labels"], self.config["R_labels"], niter=niter, bound_idxs=self.in_bound_idxs, in_labels=None) # Remove empty segments if needed est_idxs, est_labels = U.remove_empty_segments(est_idxs, est_labels) else: # The track is too short. We will only output the first and last # time stamps if self.in_bound_idxs is None: est_idxs = np.array([0, F.shape[0] - 1]) est_labels = [1] else: est_idxs = self.in_bound_idxs est_labels = [1] * (len(est_idxs) + 1) # Make sure that the first and last boundaries are included assert est_idxs[0] == 0 and est_idxs[-1] == F.shape[0] - 1 # Post process estimations est_idxs, est_labels = self._postprocess(est_idxs, est_labels) return est_idxs, est_labels
Obtains the boundaries module given a boundary algorithm identificator.
def get_boundaries_module(boundaries_id): """Obtains the boundaries module given a boundary algorithm identificator. Parameters ---------- boundaries_id: str Boundary algorithm identificator (e.g., foote, sf). Returns ------- module: object Object containing the selected boundary module. None for "ground truth". """ if boundaries_id == "gt": return None try: module = eval(algorithms.__name__ + "." + boundaries_id) except AttributeError: raise RuntimeError("Algorithm %s can not be found in msaf!" % boundaries_id) if not module.is_boundary_type: raise RuntimeError("Algorithm %s can not identify boundaries!" % boundaries_id) return module
Obtains the label module given a label algorithm identificator.
def get_labels_module(labels_id): """Obtains the label module given a label algorithm identificator. Parameters ---------- labels_id: str Label algorithm identificator (e.g., fmc2d, cnmf). Returns ------- module: object Object containing the selected label module. None for not computing the labeling part of music segmentation. """ if labels_id is None: return None try: module = eval(algorithms.__name__ + "." + labels_id) except AttributeError: raise RuntimeError("Algorithm %s can not be found in msaf!" % labels_id) if not module.is_label_type: raise RuntimeError("Algorithm %s can not label segments!" % labels_id) return module
Runs hierarchical algorithms with the specified identifiers on the audio_file. See run_algorithm for more information.
def run_hierarchical(audio_file, bounds_module, labels_module, frame_times, config, annotator_id=0): """Runs hierarchical algorithms with the specified identifiers on the audio_file. See run_algorithm for more information. """ # Sanity check if bounds_module is None: raise NoHierBoundaryError("A boundary algorithm is needed when using " "hierarchical segmentation.") # Get features to make code nicer features = config["features"].features # Compute boundaries S = bounds_module.Segmenter(audio_file, **config) est_idxs, est_labels = S.processHierarchical() # Compute labels if needed if labels_module is not None and \ bounds_module.__name__ != labels_module.__name__: # Compute labels for each level in the hierarchy flat_config = deepcopy(config) flat_config["hier"] = False for i, level_idxs in enumerate(est_idxs): S = labels_module.Segmenter(audio_file, in_bound_idxs=level_idxs, **flat_config) est_labels[i] = S.processFlat()[1] # Make sure the first and last boundaries are included for each # level in the hierarchy est_times = [] cleaned_est_labels = [] for level in range(len(est_idxs)): est_level_times, est_level_labels = \ utils.process_segmentation_level( est_idxs[level], est_labels[level], features.shape[0], frame_times, config["features"].dur) est_times.append(est_level_times) cleaned_est_labels.append(est_level_labels) est_labels = cleaned_est_labels return est_times, est_labels
Runs the flat algorithms with the specified identifiers on the audio_file. See run_algorithm for more information.
def run_flat(file_struct, bounds_module, labels_module, frame_times, config, annotator_id): """Runs the flat algorithms with the specified identifiers on the audio_file. See run_algorithm for more information. """ # Get features to make code nicer features = config["features"].features # Segment using the specified boundaries and labels # Case when boundaries and labels algorithms are the same if bounds_module is not None and labels_module is not None and \ bounds_module.__name__ == labels_module.__name__: S = bounds_module.Segmenter(file_struct, **config) est_idxs, est_labels = S.processFlat() # Different boundary and label algorithms else: # Identify segment boundaries if bounds_module is not None: S = bounds_module.Segmenter(file_struct, in_labels=[], **config) est_idxs, est_labels = S.processFlat() else: try: # Ground-truth boundaries est_times, est_labels = io.read_references( file_struct.audio_file, annotator_id=annotator_id) est_idxs = io.align_times(est_times, frame_times) if est_idxs[0] != 0: est_idxs = np.concatenate(([0], est_idxs)) except IOError: logging.warning("No references found for file: %s" % file_struct.audio_file) return [], [] # Label segments if labels_module is not None: if len(est_idxs) == 2: est_labels = np.array([0]) else: S = labels_module.Segmenter(file_struct, in_bound_idxs=est_idxs, **config) est_labels = S.processFlat()[1] # Make sure the first and last boundaries are included est_times, est_labels = utils.process_segmentation_level( est_idxs, est_labels, features.shape[0], frame_times, config["features"].dur) return est_times, est_labels
Runs the algorithms with the specified identifiers on the audio_file.
def run_algorithms(file_struct, boundaries_id, labels_id, config, annotator_id=0): """Runs the algorithms with the specified identifiers on the audio_file. Parameters ---------- file_struct: `msaf.io.FileStruct` Object with the file paths. boundaries_id: str Identifier of the boundaries algorithm to use ("gt" for ground truth). labels_id: str Identifier of the labels algorithm to use (None for not labeling). config: dict Dictionary containing the custom parameters of the algorithms to use. annotator_id: int Annotator identificator in the ground truth. Returns ------- est_times: np.array or list List of estimated times for the segment boundaries. If `list`, it will be a list of np.arrays, sorted by segmentation layer. est_labels: np.array or list List of all the labels associated segments. If `list`, it will be a list of np.arrays, sorted by segmentation layer. """ # Check that there are enough audio frames if config["features"].features.shape[0] <= msaf.config.minimum_frames: logging.warning("Audio file too short, or too many few beats " "estimated. Returning empty estimations.") return np.asarray([0, config["features"].dur]), \ np.asarray([0], dtype=int) # Get the corresponding modules bounds_module = get_boundaries_module(boundaries_id) labels_module = get_labels_module(labels_id) # Get the correct frame times frame_times = config["features"].frame_times # Segment audio based on type of segmentation run_fun = run_hierarchical if config["hier"] else run_flat est_times, est_labels = run_fun(file_struct, bounds_module, labels_module, frame_times, config, annotator_id) return est_times, est_labels
Prepares the parameters runs the algorithms and saves results.
def process_track(file_struct, boundaries_id, labels_id, config, annotator_id=0): """Prepares the parameters, runs the algorithms, and saves results. Parameters ---------- file_struct: `msaf.io.FileStruct` FileStruct containing the paths of the input files (audio file, features file, reference file, output estimation file). boundaries_id: str Identifier of the boundaries algorithm to use ("gt" for ground truth). labels_id: str Identifier of the labels algorithm to use (None for not labeling). config: dict Dictionary containing the custom parameters of the algorithms to use. annotator_id: int Annotator identificator in the ground truth. Returns ------- est_times: np.array List of estimated times for the segment boundaries. est_labels: np.array List of all the labels associated segments. """ logging.info("Segmenting %s" % file_struct.audio_file) # Get features config["features"] = Features.select_features( config["feature"], file_struct, config["annot_beats"], config["framesync"]) # Get estimations est_times, est_labels = run_algorithms(file_struct, boundaries_id, labels_id, config, annotator_id=annotator_id) # Save logging.info("Writing results in: %s" % file_struct.est_file) io.save_estimations(file_struct, est_times, est_labels, boundaries_id, labels_id, **config) return est_times, est_labels
Main process to segment a file or a collection of files.
def process(in_path, annot_beats=False, feature="pcp", framesync=False, boundaries_id=msaf.config.default_bound_id, labels_id=msaf.config.default_label_id, hier=False, sonify_bounds=False, plot=False, n_jobs=4, annotator_id=0, config=None, out_bounds="out_bounds.wav", out_sr=22050): """Main process to segment a file or a collection of files. Parameters ---------- in_path: str Input path. If a directory, MSAF will function in collection mode. If audio file, MSAF will be in single file mode. annot_beats: bool Whether to use annotated beats or not. feature: str String representing the feature to be used (e.g. pcp, mfcc, tonnetz) framesync: str Whether to use framesync features or not (default: False -> beatsync) boundaries_id: str Identifier of the boundaries algorithm (use "gt" for groundtruth) labels_id: str Identifier of the labels algorithm (use None to not compute labels) hier : bool Whether to compute a hierarchical or flat segmentation. sonify_bounds: bool Whether to write an output audio file with the annotated boundaries or not (only available in Single File Mode). plot: bool Whether to plot the boundaries and labels against the ground truth. n_jobs: int Number of processes to run in parallel. Only available in collection mode. annotator_id: int Annotator identificator in the ground truth. config: dict Dictionary containing custom configuration parameters for the algorithms. If None, the default parameters are used. out_bounds: str Path to the output for the sonified boundaries (only in single file mode, when sonify_bounds is True. out_sr : int Sampling rate for the sonified bounds. Returns ------- results : list List containing tuples of (est_times, est_labels) of estimated boundary times and estimated labels. If labels_id is None, est_labels will be a list of -1. """ # Seed random to reproduce results np.random.seed(123) # Set up configuration based on algorithms parameters if config is None: config = io.get_configuration(feature, annot_beats, framesync, boundaries_id, labels_id) config["features"] = None # Save multi-segment (hierarchical) configuration config["hier"] = hier if not os.path.exists(in_path): raise NoAudioFileError("File or directory does not exists, %s" % in_path) if os.path.isfile(in_path): # Single file mode # Get (if they exitst) or compute features file_struct = msaf.io.FileStruct(in_path) # Use temporary file in single mode file_struct.features_file = msaf.config.features_tmp_file # Get features config["features"] = Features.select_features( feature, file_struct, annot_beats, framesync) # And run the algorithms est_times, est_labels = run_algorithms(file_struct, boundaries_id, labels_id, config, annotator_id=annotator_id) if sonify_bounds: logging.info("Sonifying boundaries in %s..." % out_bounds) audio_hq, sr = librosa.load(in_path, sr=out_sr) utils.sonify_clicks(audio_hq, est_times, out_bounds, out_sr) if plot: plotting.plot_one_track(file_struct, est_times, est_labels, boundaries_id, labels_id) # TODO: Only save if needed # Save estimations msaf.utils.ensure_dir(os.path.dirname(file_struct.est_file)) io.save_estimations(file_struct, est_times, est_labels, boundaries_id, labels_id, **config) return est_times, est_labels else: # Collection mode file_structs = io.get_dataset_files(in_path) return Parallel(n_jobs=n_jobs)(delayed(process_track)( file_struct, boundaries_id, labels_id, config, annotator_id=annotator_id) for file_struct in file_structs[:])
alternating least squares step update W under the convexity constraint
def update_w(self): """ alternating least squares step, update W under the convexity constraint """ def update_single_w(i): """ compute single W[:,i] """ # optimize beta using qp solver from cvxopt FB = base.matrix(np.float64(np.dot(-self.data.T, W_hat[:,i]))) be = solvers.qp(HB, FB, INQa, INQb, EQa, EQb) self.beta[i,:] = np.array(be['x']).reshape((1, self._num_samples)) # float64 required for cvxopt HB = base.matrix(np.float64(np.dot(self.data[:,:].T, self.data[:,:]))) EQb = base.matrix(1.0, (1, 1)) W_hat = np.dot(self.data, pinv(self.H)) INQa = base.matrix(-np.eye(self._num_samples)) INQb = base.matrix(0.0, (self._num_samples, 1)) EQa = base.matrix(1.0, (1, self._num_samples)) for i in range(self._num_bases): update_single_w(i) self.W = np.dot(self.beta, self.data.T).T
Main Entry point for translator and argument parser
def main(): ''' Main Entry point for translator and argument parser ''' args = command_line() translate = partial(translator, args.source, args.dest, version=' '.join([__version__, __build__])) return source(spool(set_task(translate, translit=args.translit)), args.text)
Initializes coroutine essentially priming it to the yield statement. Used as a decorator over functions that generate coroutines.
def coroutine(func): """ Initializes coroutine essentially priming it to the yield statement. Used as a decorator over functions that generate coroutines. .. code-block:: python # Basic coroutine producer/consumer pattern from translate import coroutine @coroutine def coroutine_foo(bar): try: while True: baz = (yield) bar.send(baz) except GeneratorExit: bar.close() :param func: Unprimed Generator :type func: Function :return: Initialized Coroutine :rtype: Function """ @wraps(func) def initialization(*args, **kwargs): start = func(*args, **kwargs) next(start) return start return initialization
Generic accumulator function.
def accumulator(init, update): """ Generic accumulator function. .. code-block:: python # Simplest Form >>> a = 'this' + ' ' >>> b = 'that' >>> c = functools.reduce(accumulator, a, b) >>> c 'this that' # The type of the initial value determines output type. >>> a = 5 >>> b = Hello >>> c = functools.reduce(accumulator, a, b) >>> c 10 :param init: Initial Value :param update: Value to accumulate :return: Combined Values """ return ( init + len(update) if isinstance(init, int) else init + update )
: param script: Translated Text: type script: Iterable
def write_stream(script, output='trans'): """ :param script: Translated Text :type script: Iterable :param output: Output Type (either 'trans' or 'translit') :type output: String """ first = operator.itemgetter(0) sentence, _ = script printer = partial(print, file=sys.stdout, end='') for line in sentence: if isinstance(first(line), str): printer(first(line)) else: printer(first(line).encode('UTF-8')) printer('\n') return sys.stdout.flush()
Task Setter Coroutine
def set_task(translator, translit=False): """ Task Setter Coroutine End point destination coroutine of a purely consumer type. Delegates Text IO to the `write_stream` function. :param translation_function: Translator :type translation_function: Function :param translit: Transliteration Switch :type translit: Boolean """ # Initialize Task Queue task = str() queue = list() # Function Partial output = ('translit' if translit else 'trans') stream = partial(write_stream, output=output) workers = ThreadPoolExecutor(max_workers=8) try: while True: task = yield queue.append(task) except GeneratorExit: list(map(stream, workers.map(translator, queue)))
Consumes text streams and spools them together for more io efficient processes.
def spool(iterable, maxlen=1250): """ Consumes text streams and spools them together for more io efficient processes. :param iterable: Sends text stream for further processing :type iterable: Coroutine :param maxlen: Maximum query string size :type maxlen: Integer """ words = int() text = str() try: while True: while words < maxlen: stream = yield text = reduce(accumulator, stream, text) words = reduce(accumulator, stream, words) iterable.send(text) words = int() text = str() except GeneratorExit: iterable.send(text) iterable.close()
Coroutine starting point. Produces text stream and forwards to consumers
def source(target, inputstream=sys.stdin): """ Coroutine starting point. Produces text stream and forwards to consumers :param target: Target coroutine consumer :type target: Coroutine :param inputstream: Input Source :type inputstream: BufferedTextIO Object """ for line in inputstream: while len(line) > 600: init, sep, line = line.partition(' ') assert len(init) <= 600 target.send(''.join([init, sep])) target.send(line) inputstream.close() return target.close()
Decorates a function returning the url of translation API. Creates and maintains HTTP connection state
def push_url(interface): ''' Decorates a function returning the url of translation API. Creates and maintains HTTP connection state Returns a dict response object from the server containing the translated text and metadata of the request body :param interface: Callable Request Interface :type interface: Function ''' @functools.wraps(interface) def connection(*args, **kwargs): """ Extends and wraps a HTTP interface. :return: Response Content :rtype: Dictionary """ session = Session() session.mount('http://', HTTPAdapter(max_retries=2)) session.mount('https://', HTTPAdapter(max_retries=2)) request = Request(**interface(*args, **kwargs)) prepare = session.prepare_request(request) response = session.send(prepare, verify=True) if response.status_code != requests.codes.ok: response.raise_for_status() cleanup = re.subn(r',(?=,)', '', response.content.decode('utf-8'))[0] return json.loads(cleanup.replace(r'\xA0', r' ').replace('[,', '[1,'), encoding='UTF-8') return connection
Returns the url encoded string that will be pushed to the translation server for parsing.
def translator(source, target, phrase, version='0.0 test', charset='utf-8'): """ Returns the url encoded string that will be pushed to the translation server for parsing. List of acceptable language codes for source and target languages can be found as a JSON file in the etc directory. Some source languages are limited in scope of the possible target languages that are available. .. code-block:: python >>> from translate import translator >>> translator('en', 'zh-TW', 'Hello World!') '你好世界!' :param source: Language code for translation source :type source: String :param target: Language code that source will be translate into :type target: String :param phrase: Text body string that will be url encoded and translated :type phrase: String :return: Request Interface :rtype: Dictionary """ url = 'https://translate.google.com/translate_a/single' agent = 'User-Agent', 'py-translate v{}'.format(version) content = 'Content-Type', 'application/json; charset={}'.format(charset) params = {'client': 'a', 'ie': charset, 'oe': charset, 'dt': 't', 'sl': source, 'tl': target, 'q': phrase} request = {'method': 'GET', 'url': url, 'params': params, 'headers': dict([agent, content])} return request
Opens up file located under the etc directory containing language codes and prints them out.
def translation_table(language, filepath='supported_translations.json'): ''' Opens up file located under the etc directory containing language codes and prints them out. :param file: Path to location of json file :type file: str :return: language codes :rtype: dict ''' fullpath = abspath(join(dirname(__file__), 'etc', filepath)) if not isfile(fullpath): raise IOError('File does not exist at {0}'.format(fullpath)) with open(fullpath, 'rt') as fp: raw_data = json.load(fp).get(language, None) assert(raw_data is not None) return dict((code['language'], code['name']) for code in raw_data)
Generates a formatted table of language codes
def print_table(language): ''' Generates a formatted table of language codes ''' table = translation_table(language) for code, name in sorted(table.items(), key=operator.itemgetter(0)): print(u'{language:<8} {name:\u3000<20}'.format( name=name, language=code )) return None