INSTRUCTION
stringlengths
1
8.43k
RESPONSE
stringlengths
75
104k
freeze module if names is not None set an array of layers that match given names to be freezed: param names: an array of layer names: return:
def freeze(self, names=None): """ freeze module, if names is not None, set an array of layers that match given names to be freezed :param names: an array of layer names :return: """ callBigDlFunc(self.bigdl_type, "freeze", self.value, names) return self
unfreeze module if names is not None unfreeze layers that match given names: param names: an array of layer names: return:
def unfreeze(self, names=None): """ unfreeze module, if names is not None, unfreeze layers that match given names :param names: an array of layer names :return: """ callBigDlFunc(self.bigdl_type, "unFreeze", self.value, names) return self
Set this layer in the training mode or in predition mode if is_training = False
def training(self, is_training=True): ''' Set this layer in the training mode or in predition mode if is_training=False ''' if is_training: callJavaFunc(self.value.training) else: callJavaFunc(self.value.evaluate) return self
Clone self and quantize it at last return a new quantized model.: return: A new quantized model.
def quantize(self): ''' Clone self and quantize it, at last return a new quantized model. :return: A new quantized model. >>> fc = Linear(4, 2) creating: createLinear >>> fc.set_weights([np.ones((2, 4)), np.ones((2,))]) >>> input = np.ones((2, 4)) >>> output = fc.forward(input) >>> expected_output = np.array([[5., 5.], [5., 5.]]) >>> np.testing.assert_allclose(output, expected_output) >>> quantized_fc = fc.quantize() >>> quantized_output = quantized_fc.forward(input) >>> expected_quantized_output = np.array([[5., 5.], [5., 5.]]) >>> np.testing.assert_allclose(quantized_output, expected_quantized_output) >>> assert("quantized.Linear" in quantized_fc.__str__()) >>> conv = SpatialConvolution(1, 2, 3, 3) creating: createSpatialConvolution >>> conv.set_weights([np.ones((2, 1, 3, 3)), np.zeros((2,))]) >>> input = np.ones((2, 1, 4, 4)) >>> output = conv.forward(input) >>> expected_output = np.array([[[[9., 9.], [9., 9.]], [[9., 9.], [9., 9.]]], [[[9., 9.], [9., 9.]], [[9., 9.], [9., 9.]]]]) >>> np.testing.assert_allclose(output, expected_output) >>> quantized_conv = conv.quantize() >>> quantized_output = quantized_conv.forward(input) >>> expected_quantized_output = np.array([[[[9., 9.], [9., 9.]], [[9., 9.], [9., 9.]]], [[[9., 9.], [9., 9.]], [[9., 9.], [9., 9.]]]]) >>> np.testing.assert_allclose(quantized_output, expected_quantized_output) >>> assert("quantized.SpatialConvolution" in quantized_conv.__str__()) >>> seq = Sequential() creating: createSequential >>> seq = seq.add(conv) >>> seq = seq.add(Reshape([8, 4], False)) creating: createReshape >>> seq = seq.add(fc) >>> input = np.ones([1, 1, 6, 6]) >>> output = seq.forward(input) >>> expected_output = np.array([[37., 37.], [37., 37.], [37., 37.], [37., 37.], [37., 37.], [37., 37.], [37., 37.], [37., 37.]]) >>> np.testing.assert_allclose(output, expected_output) >>> quantized_seq = seq.quantize() >>> quantized_output = quantized_seq.forward(input) >>> expected_quantized_output = np.array([[37., 37.], [37., 37.], [37., 37.], [37., 37.], [37., 37.], [37., 37.], [37., 37.], [37., 37.]]) >>> np.testing.assert_allclose(quantized_output, expected_quantized_output) >>> assert("quantized.Linear" in quantized_seq.__str__()) >>> assert("quantized.SpatialConvolution" in quantized_seq.__str__()) ''' quantized_model = callBigDlFunc(self.bigdl_type, "quantize", self.value) return Layer.of(quantized_model)
Load a pre - trained Bigdl model.
def loadModel(modelPath, weightPath =None, bigdl_type="float"): """ Load a pre-trained Bigdl model. :param path: The path containing the pre-trained model. :return: A pre-trained model. """ jmodel = callBigDlFunc(bigdl_type, "loadBigDLModule", modelPath, weightPath) return Layer.of(jmodel)
Load a pre - trained Torch model.
def load_torch(path, bigdl_type="float"): """ Load a pre-trained Torch model. :param path: The path containing the pre-trained model. :return: A pre-trained model. """ jmodel = callBigDlFunc(bigdl_type, "loadTorch", path) return Layer.of(jmodel)
Load a pre - trained Keras model.
def load_keras(json_path=None, hdf5_path=None, by_name=False): """ Load a pre-trained Keras model. :param json_path: The json path containing the keras model definition. :param hdf5_path: The HDF5 path containing the pre-trained keras model weights with or without the model architecture. :return: A bigdl model. """ import os try: import tensorflow except ImportError: os.environ['KERAS_BACKEND'] = "theano" try: # Make theano backend compatible with Python3 from theano import ifelse except ImportError: raise Exception("No backend is found for Keras. " "Please install either tensorflow or theano.") from bigdl.keras.converter import DefinitionLoader, WeightLoader if json_path and not hdf5_path: return DefinitionLoader.from_json_path(json_path) elif json_path and hdf5_path: return WeightLoader.load_weights_from_json_hdf5(json_path, hdf5_path, by_name=by_name) elif hdf5_path and not json_path: kmodel, bmodel = DefinitionLoader.from_hdf5_path(hdf5_path) WeightLoader.load_weights_from_kmodel(bmodel, kmodel) return bmodel
Load a pre - trained Caffe model.
def load_caffe(model, defPath, modelPath, match_all=True, bigdl_type="float"): """ Load a pre-trained Caffe model. :param model: A bigdl model definition \which equivalent to the pre-trained caffe model. :param defPath: The path containing the caffe model definition. :param modelPath: The path containing the pre-trained caffe model. :return: A pre-trained model. """ jmodel = callBigDlFunc(bigdl_type, "loadCaffe", model, defPath, modelPath, match_all) return Layer.of(jmodel)
Load a pre - trained Caffe model.
def load_caffe_model(defPath, modelPath, bigdl_type="float"): """ Load a pre-trained Caffe model. :param defPath: The path containing the caffe model definition. :param modelPath: The path containing the pre-trained caffe model. :return: A pre-trained model. """ jmodel = callBigDlFunc(bigdl_type, "loadCaffeModel", defPath, modelPath) return Layer.of(jmodel)
Load a pre - trained Tensorflow model.: param path: The path containing the pre - trained model.: param inputs: The input node of this graph: param outputs: The output node of this graph: param byte_order: byte_order of the file little_endian or big_endian: param bin_file: the optional bin file produced by bigdl dump_model util function to store the weights: param generated_backward: if generate backward graph: return: A pre - trained model.
def load_tensorflow(path, inputs, outputs, byte_order = "little_endian", bin_file = None, generated_backward = True, bigdl_type = "float"): """ Load a pre-trained Tensorflow model. :param path: The path containing the pre-trained model. :param inputs: The input node of this graph :param outputs: The output node of this graph :param byte_order: byte_order of the file, `little_endian` or `big_endian` :param bin_file: the optional bin file produced by bigdl dump_model util function to store the weights :param generated_backward: if generate backward graph :return: A pre-trained model. """ jmodel = callBigDlFunc(bigdl_type, "loadTF", path, inputs, outputs, byte_order, bin_file, generated_backward) return Model.of(jmodel)
stop the input gradient of layers that match the given names their input gradient are not computed. And they will not contributed to the input gradient computation of layers that depend on them.: param stop_layers: an array of layer names: param bigdl_type:: return:
def stop_gradient(self, stop_layers, bigdl_type="float"): """ stop the input gradient of layers that match the given ```names``` their input gradient are not computed. And they will not contributed to the input gradient computation of layers that depend on them. :param stop_layers: an array of layer names :param bigdl_type: :return: """ callBigDlFunc(bigdl_type, "setStopGradient", self.value, stop_layers) return self
Return the corresponding node has the given name. If the given name doesn t match any node an exception will be thrown: param name: node name: param bigdl_type:: return:
def node(self, name, bigdl_type="float"): """ Return the corresponding node has the given name. If the given name doesn't match any node, an exception will be thrown :param name: node name :param bigdl_type: :return: """ jnode = callBigDlFunc(bigdl_type, "findGraphNode", self.value, name) return Node.of(jnode)
save current model graph to a folder which can be display in tensorboard by running tensorboard -- logdir logPath: param log_path: path to save the model graph: param bigdl_type:: return:
def save_graph_topology(self, log_path, bigdl_type="float"): """ save current model graph to a folder, which can be display in tensorboard by running tensorboard --logdir logPath :param log_path: path to save the model graph :param bigdl_type: :return: """ callBigDlFunc(bigdl_type, "saveGraphTopology", self.value, log_path) return self
NB: It s for debug only please use optimizer. optimize () in production. Takes an input object and computes the corresponding loss of the criterion compared with target
def forward(self, input, target): """ NB: It's for debug only, please use optimizer.optimize() in production. Takes an input object, and computes the corresponding loss of the criterion, compared with `target` :param input: ndarray or list of ndarray :param target: ndarray or list of ndarray :return: value of loss """ jinput, input_is_table = Layer.check_input(input) jtarget, target_is_table = Layer.check_input(target) output = callBigDlFunc(self.bigdl_type, "criterionForward", self.value, jinput, input_is_table, jtarget, target_is_table) return output
Create a python Criterion by a java criterion object
def of(cls, jcriterion, bigdl_type="float"): """ Create a python Criterion by a java criterion object :param jcriterion: A java criterion object which created by Py4j :return: a criterion. """ criterion = Criterion(bigdl_type, jcriterion) criterion.value = jcriterion criterion.bigdl_type = bigdl_type return criterion
Read the directory of images into DataFrame from the local or remote source.: param path Directory to the input data files the path can be comma separated paths as the list of inputs. Wildcards path are supported similarly to sc. binaryFiles ( path ).: param min_partitions A suggestion value of the minimal splitting number for input data.: return DataFrame with a single column image ; Each record in the column represents one image record: Row ( uri height width channels CvType bytes )
def readImages(path, sc=None, minParitions = 1, bigdl_type="float"): """ Read the directory of images into DataFrame from the local or remote source. :param path Directory to the input data files, the path can be comma separated paths as the list of inputs. Wildcards path are supported similarly to sc.binaryFiles(path). :param min_partitions A suggestion value of the minimal splitting number for input data. :return DataFrame with a single column "image"; Each record in the column represents one image record: Row (uri, height, width, channels, CvType, bytes) """ df = callBigDlFunc(bigdl_type, "dlReadImage", path, sc, minParitions) df._sc._jsc = sc._jsc return df
The file path can be stored in a local file system HDFS S3 or any Hadoop - supported file system.
def load_weights_from_json_hdf5(def_json, weights_hdf5, by_name=False): """ The file path can be stored in a local file system, HDFS, S3, or any Hadoop-supported file system. """ bmodel = DefinitionLoader.from_json_path(def_json) def_value = BCommon.text_from_path(def_json) kmodel = model_from_json(def_value) WeightLoader.load_weights_from_hdf5(bmodel, kmodel, weights_hdf5, by_name) return bmodel
Loads all layer weights from a HDF5 save file. filepath can be stored in a local file system HDFS S3 or any Hadoop - supported file system. If by_name is False ( default ) weights are loaded based on the network s execution order topology meaning layers in the execution seq should be exactly the same the architecture
def load_weights_from_hdf5(bmodel, kmodel, filepath, by_name=False): '''Loads all layer weights from a HDF5 save file. filepath can be stored in a local file system, HDFS, S3, or any Hadoop-supported file system. If `by_name` is False (default) weights are loaded based on the network's execution order topology, meaning layers in the execution seq should be exactly the same the architecture If `by_name` is True, weights are loaded into layers only if they share the same name. This is useful for fine-tuning or transfer-learning models where some of the layers have changed. ''' local_file_path = BCommon.get_local_file(filepath) kmodel.load_weights(filepath=local_file_path, by_name=by_name) WeightLoader.load_weights_from_kmodel(bmodel, kmodel)
Convert kmodel s weights to bigdl format. We are supposing the order is the same as the execution order.: param kmodel: keras model: return: list of ndarray
def get_weights_from_kmodel(kmodel): """ Convert kmodel's weights to bigdl format. We are supposing the order is the same as the execution order. :param kmodel: keras model :return: list of ndarray """ layers_with_weights = [layer for layer in kmodel.layers if layer.weights] bweights = [] for klayer in layers_with_weights: # bws would be [weights, bias] or [weights] bws = WeightsConverter.get_bigdl_weights_from_klayer(klayer) for w in bws: bweights.append(w) return bweights
The result would contain all of the layers including nested layers.: param kmodel: a keras model which can be Sequential or Model: param node_id_to_config_layer: a container to store the result
def __build_node_id_2_klayer(kmodel, node_id_to_config_layer): """ The result would contain all of the layers including nested layers. :param kmodel: a keras model which can be Sequential or Model :param node_id_to_config_layer: a container to store the result """ node_id_to_config_layer[kmodel.name] = kmodel # include itself as well def gather_result(layers): if layers: # layers maybe None here. for layer in layers: if layer.name not in node_id_to_config_layer: node_id_to_config_layer[layer.name] = layer DefinitionLoader.__build_node_id_2_klayer(layer, node_id_to_config_layer) if hasattr(kmodel, "layers"): gather_result(kmodel.layers) if hasattr(kmodel, "flattened_layers"): gather_result(kmodel.flattened_layers)
: param hdf5_path: hdf5 path which can be stored in a local file system HDFS S3 or any Hadoop - supported file system.: return: BigDL Model
def from_hdf5_path(cls, hdf5_path): """ :param hdf5_path: hdf5 path which can be stored in a local file system, HDFS, S3, or any Hadoop-supported file system. :return: BigDL Model """ from keras.models import load_model hdf5_local_path = BCommon.get_local_file(hdf5_path) kmodel = load_model(hdf5_local_path) return kmodel, DefinitionLoader.from_kmodel(kmodel)
: param json_path: definition path which can be stored in a local file system HDFS S3 or any Hadoop - supported file system.: return: BigDL Model
def from_json_path(cls, json_path): """ :param json_path: definition path which can be stored in a local file system, HDFS, S3, or any Hadoop-supported file system. :return: BigDL Model """ json_str = BCommon.text_from_path(json_path) return DefinitionLoader.from_json_str(json_str)
Load IMDB dataset Transform input data into an RDD of Sample
def load_imdb(): """ Load IMDB dataset Transform input data into an RDD of Sample """ from keras.preprocessing import sequence from keras.datasets import imdb (X_train, y_train), (X_test, y_test) = imdb.load_data(nb_words=20000) X_train = sequence.pad_sequences(X_train, maxlen=100) X_test = sequence.pad_sequences(X_test, maxlen=100) return X_train, y_train, X_test, y_test
Define a recurrent convolutional model in Keras 1. 2. 2
def build_keras_model(): """ Define a recurrent convolutional model in Keras 1.2.2 """ from keras.models import Sequential from keras.layers import Dense, Dropout, Activation from keras.layers import Embedding from keras.layers import LSTM from keras.layers import Convolution1D, MaxPooling1D keras_model = Sequential() keras_model.add(Embedding(20000, 128, input_length=100)) keras_model.add(Dropout(0.25)) keras_model.add(Convolution1D(nb_filter=64, filter_length=5, border_mode='valid', activation='relu', subsample_length=1)) keras_model.add(MaxPooling1D(pool_length=4)) keras_model.add(LSTM(70)) keras_model.add(Dense(1)) keras_model.add(Activation('sigmoid')) return keras_model
Functional merge. Only use this method if you are defining a graph model. Used to merge a list of input nodes into a single output node ( NOT layers! ) following some merge mode.
def merge(inputs, mode="sum", concat_axis=-1, name=None): """ Functional merge. Only use this method if you are defining a graph model. Used to merge a list of input nodes into a single output node (NOT layers!), following some merge mode. # Arguments inputs: A list of node instances. Must be more than one node. mode: Merge mode. String, must be one of: 'sum', 'mul', 'concat', 'ave', 'cos', 'dot', 'max'. Default is 'sum'. concat_axis: Int, axis to use when concatenating nodes. Only specify this when merge mode is 'concat'. Default is -1, meaning the last axis of the input. name: String to set the name of the merge. If not specified, its name will by default to be a generated string. """ return Merge(mode=mode, concat_axis=concat_axis, name=name)(list(inputs))
Return a list of shape tuples if there are multiple inputs. Return one shape tuple otherwise.
def get_input_shape(self): """ Return a list of shape tuples if there are multiple inputs. Return one shape tuple otherwise. """ input = callBigDlFunc(self.bigdl_type, "getInputShape", self.value) return self.__process_shape(input)
Return a list of shape tuples if there are multiple outputs. Return one shape tuple otherwise.
def get_output_shape(self): """ Return a list of shape tuples if there are multiple outputs. Return one shape tuple otherwise. """ output = callBigDlFunc(self.bigdl_type, "getOutputShape", self.value) return self.__process_shape(output)
Get mnist dataset with features and label as ndarray. Data would be downloaded automatically if it doesn t present at the specific location.
def get_mnist(data_type="train", location="/tmp/mnist"): """ Get mnist dataset with features and label as ndarray. Data would be downloaded automatically if it doesn't present at the specific location. :param data_type: "train" for training data and "test" for testing data. :param location: Location to store mnist dataset. :return: (features: ndarray, label: ndarray) """ X, Y = mnist.read_data_sets(location, data_type) return X, Y + 1
Parse or download movielens 1m data if train_dir is empty.
def read_data_sets(data_dir): """ Parse or download movielens 1m data if train_dir is empty. :param data_dir: The directory storing the movielens data :return: a 2D numpy array with user index and item index in each row """ WHOLE_DATA = 'ml-1m.zip' local_file = base.maybe_download(WHOLE_DATA, data_dir, SOURCE_URL + WHOLE_DATA) zip_ref = zipfile.ZipFile(local_file, 'r') extracted_to = os.path.join(data_dir, "ml-1m") if not os.path.exists(extracted_to): print("Extracting %s to %s" % (local_file, data_dir)) zip_ref.extractall(data_dir) zip_ref.close() rating_files = os.path.join(extracted_to,"ratings.dat") rating_list = [i.strip().split("::") for i in open(rating_files,"r").readlines()] movielens_data = np.array(rating_list).astype(int) return movielens_data
Get and return the jar path for bigdl if exists.
def get_bigdl_classpath(): """ Get and return the jar path for bigdl if exists. """ if os.getenv("BIGDL_CLASSPATH"): return os.environ["BIGDL_CLASSPATH"] jar_dir = os.path.abspath(__file__ + "/../../") jar_paths = glob.glob(os.path.join(jar_dir, "share/lib/*.jar")) if jar_paths: assert len(jar_paths) == 1, "Expecting one jar: %s" % len(jar_paths) return jar_paths[0] return ""
Check if spark version is below 2. 2
def is_spark_below_2_2(): """ Check if spark version is below 2.2 """ import pyspark if(hasattr(pyspark,"version")): full_version = pyspark.version.__version__ # We only need the general spark version (eg, 1.6, 2.2). parts = full_version.split(".") spark_version = parts[0] + "." + parts[1] if(compare_version(spark_version, "2.2")>=0): return False return True
Compare version strings.: param version1 ;: param version2 ;: return: 1 if version1 is after version2 ; - 1 if version1 is before version2 ; 0 if two versions are the same.
def compare_version(version1, version2): """ Compare version strings. :param version1; :param version2; :return: 1 if version1 is after version2; -1 if version1 is before version2; 0 if two versions are the same. """ v1Arr = version1.split(".") v2Arr = version2.split(".") len1 = len(v1Arr) len2 = len(v2Arr) lenMax = max(len1, len2) for x in range(lenMax): v1Token = 0 if x < len1: v1Token = int(v1Arr[x]) v2Token = 0 if x < len2: v2Token = int(v2Arr[x]) if v1Token < v2Token: return -1 if v1Token > v2Token: return 1 return 0
Convert tensorflow model to bigdl model: param input_ops: operation list used for input should be placeholders: param output_ops: operations list used for output: return: bigdl model
def convert(input_ops, output_ops, byte_order, bigdl_type): """ Convert tensorflow model to bigdl model :param input_ops: operation list used for input, should be placeholders :param output_ops: operations list used for output :return: bigdl model """ input_names = map(lambda x: x.name.split(":")[0], input_ops) output_names = map(lambda x: x.name.split(":")[0], output_ops) temp = tempfile.mkdtemp() dump_model(path=temp) model_path = temp + '/model.pb' bin_path = temp + '/model.bin' model = Model.load_tensorflow(model_path, input_names, output_names, byte_order, bin_path, bigdl_type) try: shutil.rmtree(temp) except OSError as e: if e.errno != errno.ENOENT: raise return model
Export variable tensors from the checkpoint files.
def export_checkpoint(checkpoint_path): """ Export variable tensors from the checkpoint files. :param checkpoint_path: tensorflow checkpoint path :return: dictionary of tensor. The key is the variable name and the value is the numpy """ reader = tf.train.NewCheckpointReader(checkpoint_path) # Get tensor name list tensor_names = filter(lambda n: n!='global_step', reader.get_variable_to_shape_map().keys()) # Prepare key-value dictionary tensors = {} for tn in tensor_names: tensors[tn] = reader.get_tensor(tn) return tensors
Save a variable dictionary to a Java object file so it can be read by BigDL
def save_variable_bigdl(tensors, target_path, bigdl_type="float"): """ Save a variable dictionary to a Java object file, so it can be read by BigDL :param tensors: tensor dictionary :param target_path: where is the Java object file store :param bigdl_type: model variable numeric type :return: nothing """ import numpy as np jtensors = {} for tn in tensors.keys(): if not isinstance(tensors[tn], np.ndarray): value = np.array(tensors[tn]) else: value = tensors[tn] jtensors[tn] = JTensor.from_ndarray(value) callBigDlFunc(bigdl_type, "saveTensorDictionary", jtensors, target_path)
Dump a tensorflow model to files. The graph will be dumped to path/ model. pb and the checkpoint will be dumped to path/ model. bin: param path: dump folder path: param sess: if user pass in session we assume that the variable of the graph in the session has been inited: param graph: tensorflow graph. Default use the default graph of the session: param bigdl_type: model variable numeric type: return: nothing
def dump_model(path, graph=None, sess=None, ckpt_file=None, bigdl_type="float"): """ Dump a tensorflow model to files. The graph will be dumped to path/model.pb, and the checkpoint will be dumped to path/model.bin :param path: dump folder path :param sess: if user pass in session, we assume that the variable of the graph in the session has been inited :param graph: tensorflow graph. Default use the default graph of the session :param bigdl_type: model variable numeric type :return: nothing """ if not os.path.isdir(path): raise ValueError("Folder " + path + " does not exist") temp = None if ckpt_file is None: if sess is None: sess = tf.Session() init = tf.global_variables_initializer() sess.run(init) temp = tempfile.mkdtemp() ckpt_file = temp # dump checkpoint to temp files saver = tf.train.Saver() saver.save(sess, ckpt_file) # generate bin files tensors = export_checkpoint(ckpt_file) save_variable_bigdl(tensors, path + "/model.bin", bigdl_type) # dump grap to pb file graph = sess.graph if graph is None else graph with gfile.GFile(path + "/model.pb", "wb") as f: f.write(graph.as_graph_def().SerializeToString()) if temp is not None: try: shutil.rmtree(temp) except OSError as e: if e.errno != errno.ENOENT: raise
Get the variable values from the checkpoint file and merge them to the GraphDef file Args: input_graph: the GraphDef file doesn t contain variable values checkpoint: the checkpoint file output_node_names: A list of string the output names output_graph: String of the location and the name of the output graph
def merge_checkpoint(input_graph, checkpoint, output_node_names, output_graph, sess): """ Get the variable values from the checkpoint file, and merge them to the GraphDef file Args: input_graph: the GraphDef file, doesn't contain variable values checkpoint: the checkpoint file output_node_names: A list of string, the output names output_graph: String of the location and the name of the output graph """ restore_op_name = "save/restore_all" filename_tensor_name = "save/Const:0" input_graph_def = graph_pb2.GraphDef() with gfile.FastGFile(input_graph, "r") as f: text_format.Merge(f.read().decode("utf-8"), input_graph_def) for node in input_graph_def.node: node.device = "" importer.import_graph_def(input_graph_def, name="") sess.run([restore_op_name], {filename_tensor_name: checkpoint}) output_graph_def = graph_util.convert_variables_to_constants( sess, input_graph_def, output_node_names, variable_names_blacklist="" ) with gfile.GFile(output_graph, "wb") as f: f.write(output_graph_def.SerializeToString())
Processes batch of utterances and returns corresponding responses batch.
def _call(self, utterances_batch: list, utterances_ids: Optional[list]=None) -> list: """ Processes batch of utterances and returns corresponding responses batch. Each call of Agent passes incoming utterances batch through skills filter, agent skills, skills processor. Batch of dialog IDs can be provided, in other case utterances indexes in incoming batch are used as dialog IDs. Args: utterances_batch: Batch of incoming utterances. utterances_ids: Batch of dialog IDs corresponding to incoming utterances. Returns: responses: A batch of responses corresponding to the utterance batch received by agent. """ batch_size = len(utterances_batch) ids = utterances_ids or list(range(batch_size)) batch_history = [self.history[utt_id] for utt_id in ids] responses = [] filtered = self.skills_filter(utterances_batch, batch_history) for skill_i, (filtered_utterances, skill) in enumerate(zip(filtered, self.wrapped_skills)): skill_i_utt_indexes = [utt_index for utt_index, utt_filter in enumerate(filtered_utterances) if utt_filter] if skill_i_utt_indexes: skill_i_utt_batch = [utterances_batch[i] for i in skill_i_utt_indexes] skill_i_utt_ids = [ids[i] for i in skill_i_utt_indexes] res = [(None, 0.)] * batch_size predicted, confidence = skill(skill_i_utt_batch, skill_i_utt_ids) for i, predicted, confidence in zip(skill_i_utt_indexes, predicted, confidence): res[i] = (predicted, confidence) responses.append(res) responses = self.skills_processor(utterances_batch, batch_history, *responses) return responses
Expand and tile tensor along given axis
def expand_tile(units, axis): """ Expand and tile tensor along given axis Args: units: tf tensor with dimensions [batch_size, time_steps, n_input_features] axis: axis along which expand and tile. Must be 1 or 2 """ assert axis in (1, 2) n_time_steps = K.int_shape(units)[1] repetitions = [1, 1, 1, 1] repetitions[axis] = n_time_steps if axis == 1: expanded = Reshape(target_shape=( (1,) + K.int_shape(units)[1:] ))(units) else: expanded = Reshape(target_shape=(K.int_shape(units)[1:2] + (1,) + K.int_shape(units)[2:]))(units) return K.tile(expanded, repetitions)
Compute additive self attention for time series of vectors ( with batch dimension ) the formula: score ( h_i h_j ) = <v tanh ( W_1 h_i + W_2 h_j ) > v is a learnable vector of n_hidden dimensionality W_1 and W_2 are learnable [ n_hidden n_input_features ] matrices
def additive_self_attention(units, n_hidden=None, n_output_features=None, activation=None): """ Compute additive self attention for time series of vectors (with batch dimension) the formula: score(h_i, h_j) = <v, tanh(W_1 h_i + W_2 h_j)> v is a learnable vector of n_hidden dimensionality, W_1 and W_2 are learnable [n_hidden, n_input_features] matrices Args: units: tf tensor with dimensionality [batch_size, time_steps, n_input_features] n_hidden: number of2784131 units in hidden representation of similarity measure n_output_features: number of features in output dense layer activation: activation at the output Returns: output: self attended tensor with dimensionality [batch_size, time_steps, n_output_features] """ n_input_features = K.int_shape(units)[2] if n_hidden is None: n_hidden = n_input_features if n_output_features is None: n_output_features = n_input_features exp1 = Lambda(lambda x: expand_tile(x, axis=1))(units) exp2 = Lambda(lambda x: expand_tile(x, axis=2))(units) units_pairs = Concatenate(axis=3)([exp1, exp2]) query = Dense(n_hidden, activation="tanh")(units_pairs) attention = Dense(1, activation=lambda x: softmax(x, axis=2))(query) attended_units = Lambda(lambda x: K.sum(attention * x, axis=2))(exp1) output = Dense(n_output_features, activation=activation)(attended_units) return output
Compute multiplicative self attention for time series of vectors ( with batch dimension ) the formula: score ( h_i h_j ) = <W_1 h_i W_2 h_j > W_1 and W_2 are learnable matrices with dimensionality [ n_hidden n_input_features ]
def multiplicative_self_attention(units, n_hidden=None, n_output_features=None, activation=None): """ Compute multiplicative self attention for time series of vectors (with batch dimension) the formula: score(h_i, h_j) = <W_1 h_i, W_2 h_j>, W_1 and W_2 are learnable matrices with dimensionality [n_hidden, n_input_features] Args: units: tf tensor with dimensionality [batch_size, time_steps, n_input_features] n_hidden: number of units in hidden representation of similarity measure n_output_features: number of features in output dense layer activation: activation at the output Returns: output: self attended tensor with dimensionality [batch_size, time_steps, n_output_features] """ n_input_features = K.int_shape(units)[2] if n_hidden is None: n_hidden = n_input_features if n_output_features is None: n_output_features = n_input_features exp1 = Lambda(lambda x: expand_tile(x, axis=1))(units) exp2 = Lambda(lambda x: expand_tile(x, axis=2))(units) queries = Dense(n_hidden)(exp1) keys = Dense(n_hidden)(exp2) scores = Lambda(lambda x: K.sum(queries * x, axis=3, keepdims=True))(keys) attention = Lambda(lambda x: softmax(x, axis=2))(scores) mult = Multiply()([attention, exp1]) attended_units = Lambda(lambda x: K.sum(x, axis=2))(mult) output = Dense(n_output_features, activation=activation)(attended_units) return output
Collecting possible continuations of length < = n for every node
def precompute_future_symbols(trie, n, allow_spaces=False): """ Collecting possible continuations of length <= n for every node """ if n == 0: return if trie.is_terminated and trie.precompute_symbols: # символы уже предпосчитаны return for index, final in enumerate(trie.final): trie.data[index] = [set() for i in range(n)] for index, (node_data, final) in enumerate(zip(trie.data, trie.final)): node_data[0] = set(trie._get_letters(index)) if allow_spaces and final: node_data[0].add(" ") for d in range(1, n): for index, (node_data, final) in enumerate(zip(trie.data, trie.final)): children = set(trie._get_children(index)) for child in children: node_data[d] |= trie.data[child][d - 1] # в случае, если разрешён возврат по пробелу в стартовое состояние if allow_spaces and final: node_data[d] |= trie.data[trie.root][d - 1] trie.terminated = True
Сохраняет дерево для дальнейшего использования
def save(self, outfile): """ Сохраняет дерево для дальнейшего использования """ with open(outfile, "w", encoding="utf8") as fout: attr_values = [getattr(self, attr) for attr in Trie.ATTRS] attr_values.append(any(x is not None for x in self.data)) fout.write("{}\n{}\t{}\n".format( " ".join("T" if x else "F" for x in attr_values), self.nodes_number, self.root)) fout.write(" ".join(str(a) for a in self.alphabet) + "\n") for index, label in enumerate(self.final): letters = self._get_letters(index, return_indexes=True) children = self._get_children(index) fout.write("{}\t{}\n".format( "T" if label else "F", " ".join("{}:{}".format(*elem) for elem in zip(letters, children)))) if self.precompute_symbols is not None: for elem in self.data: fout.write(":".join(",".join( map(str, symbols)) for symbols in elem) + "\n") return
Включает кэширование запросов к descend
def make_cashed(self): """ Включает кэширование запросов к descend """ self._descendance_cash = [dict() for _ in self.graph] self.descend = self._descend_cashed
Добавление строки s в префиксный бор
def add(self, s): """ Добавление строки s в префиксный бор """ if self.is_terminated: raise TypeError("Impossible to add string to fitted trie") if s == "": self._set_final(self.root) return curr = self.root for i, a in enumerate(s): code = self.alphabet_codes[a] next = self.graph[curr][code] if next == Trie.NO_NODE: curr = self._add_descendant(curr, s[i:]) break else: curr = next self._set_final(curr) return self
Возвращает итератор по словам содержащимся в боре
def words(self): """ Возвращает итератор по словам, содержащимся в боре """ branch, word, indexes = [self.root], [], [0] letters_with_children = [self._get_children_and_letters(self.root)] while len(branch) > 0: if self.is_final(branch[-1]): yield "".join(word) while indexes[-1] == len(letters_with_children[-1]): indexes.pop() letters_with_children.pop() branch.pop() if len(indexes) == 0: raise StopIteration() word.pop() next_letter, next_child = letters_with_children[-1][indexes[-1]] indexes[-1] += 1 indexes.append(0) word.append(next_letter) branch.append(next_child) letters_with_children.append(self._get_children_and_letters(branch[-1]))
Находит все разбиения s = s_1... s_m на словарные слова s_1... s_m для m < = max_count
def find_partitions(self, s, max_count=1): """ Находит все разбиения s = s_1 ... s_m на словарные слова s_1, ..., s_m для m <= max_count """ curr_agenda = [(self.root, [], 0)] for i, a in enumerate(s): next_agenda = [] for curr, borders, cost in curr_agenda: if cost >= max_count: continue child = self.graph[curr][self.alphabet_codes[a]] # child = self.graph[curr][a] if child == Trie.NO_NODE: continue next_agenda.append((child, borders, cost)) if self.is_final(child): next_agenda.append((self.root, borders + [i+1], cost+1)) curr_agenda = next_agenda answer = [] for curr, borders, cost in curr_agenda: if curr == self.root: borders = [0] + borders answer.append([s[left:borders[i+1]] for i, left in enumerate(borders[:-1])]) return answer
Добавление ребёнка к вершине parent по символу с кодом code
def _add_empty_child(self, parent, code, final=False): """ Добавление ребёнка к вершине parent по символу с кодом code """ self.graph[parent][code] = self.nodes_number self.graph.append(self._make_default_node()) self.data.append(None) self.final.append(final) self.nodes_number += 1 return (self.nodes_number - 1)
Спуск из вершины curr по строке s
def _descend_simple(self, curr, s): """ Спуск из вершины curr по строке s """ for a in s: curr = self.graph[curr][self.alphabet_codes[a]] if curr == Trie.NO_NODE: break return curr
Спуск из вершины curr по строке s с кэшированием
def _descend_cashed(self, curr, s): """ Спуск из вершины curr по строке s с кэшированием """ if s == "": return curr curr_cash = self._descendance_cash[curr] answer = curr_cash.get(s, None) if answer is not None: return answer # для оптимизации дублируем код res = curr for a in s: res = self.graph[res][self.alphabet_codes[a]] # res = self.graph[res][a] if res == Trie.NO_NODE: break curr_cash[s] = res return res
Извлекает все метки выходных рёбер вершины с номером index
def _get_letters(self, index, return_indexes=False): """ Извлекает все метки выходных рёбер вершины с номером index """ if self.dict_storage: answer = list(self.graph[index].keys()) else: answer = [i for i, elem in enumerate(self.graph[index]) if elem != Trie.NO_NODE] if not return_indexes: answer = [(self.alphabet[i] if i >= 0 else " ") for i in answer] return answer
Извлекает всех потомков вершины с номером index
def _get_children(self, index): """ Извлекает всех потомков вершины с номером index """ if self.dict_storage: return list(self.graph[index].values()) else: return [elem for elem in self.graph[index] if elem != Trie.NO_NODE]
Обратная топологическая сортировка
def generate_postorder(self, trie): """ Обратная топологическая сортировка """ order, stack = [], [] stack.append(trie.root) colors = ['white'] * len(trie) while len(stack) > 0: index = stack[-1] color = colors[index] if color == 'white': # вершина ещё не обрабатывалась colors[index] = 'grey' for child in trie._get_children(index): # проверяем, посещали ли мы ребёнка раньше if child != Trie.NO_NODE and colors[child] == 'white': stack.append(child) else: if color == 'grey': colors[index] = 'black' order.append(index) stack = stack[:-1] return order
Change save and load paths for obtained population save config. json with model config run population via current python executor ( with which evolve. py already run ) and on given devices ( - 1 means CPU other integeres - visible for evolve. py GPUs ) Args: population: list of dictionaries - configs of current population evolution: ParamsEvolution gpus: list of given devices ( list of integers )
def run_population(population, evolution, gpus): """ Change save and load paths for obtained population, save config.json with model config, run population via current python executor (with which evolve.py already run) and on given devices (-1 means CPU, other integeres - visible for evolve.py GPUs) Args: population: list of dictionaries - configs of current population evolution: ParamsEvolution gpus: list of given devices (list of integers) Returns: None """ population_size = len(population) for k in range(population_size // len(gpus) + 1): procs = [] for j in range(len(gpus)): i = k * len(gpus) + j if i < population_size: save_path = expand_path( evolution.get_value_from_config(parse_config(population[i]), evolution.path_to_models_save_path)) save_path.mkdir(parents=True, exist_ok=True) f_name = save_path / "config.json" save_json(population[i], f_name) with save_path.joinpath('out.txt').open('w', encoding='utf8') as outlog,\ save_path.joinpath('err.txt').open('w', encoding='utf8') as errlog: env = dict(os.environ) if len(gpus) > 1 or gpus[0] != -1: env['CUDA_VISIBLE_DEVICES'] = str(gpus[j]) procs.append(Popen("{} -m deeppavlov train {}".format(sys.executable, str(f_name)), shell=True, stdout=outlog, stderr=errlog, env=env)) for j, proc in enumerate(procs): i = k * len(gpus) + j log.info(f'Waiting on {i}th proc') if proc.wait() != 0: save_path = expand_path( evolution.get_value_from_config(parse_config(population[i]), evolution.path_to_models_save_path)) with save_path.joinpath('err.txt').open(encoding='utf8') as errlog: log.warning(f'Population {i} returned an error code {proc.returncode} and an error log:\n' + errlog.read()) return None
Computes attention vector for each item in inputs: attention vector is a weighted sum of memory items. Dot product between input and memory vector is used as similarity measure.
def dot_attention(inputs, memory, mask, att_size, keep_prob=1.0, scope="dot_attention"): """Computes attention vector for each item in inputs: attention vector is a weighted sum of memory items. Dot product between input and memory vector is used as similarity measure. Gate mechanism is applied to attention vectors to produce output. Args: inputs: Tensor [batch_size x input_len x feature_size] memory: Tensor [batch_size x memory_len x feature_size] mask: inputs mask att_size: hidden size of attention keep_prob: dropout keep_prob scope: Returns: attention vectors [batch_size x input_len x (feature_size + feature_size)] """ with tf.variable_scope(scope): BS, IL, IH = tf.unstack(tf.shape(inputs)) BS, ML, MH = tf.unstack(tf.shape(memory)) d_inputs = tf.nn.dropout(inputs, keep_prob=keep_prob, noise_shape=[BS, 1, IH]) d_memory = tf.nn.dropout(memory, keep_prob=keep_prob, noise_shape=[BS, 1, MH]) with tf.variable_scope("attention"): inputs_att = tf.layers.dense(d_inputs, att_size, use_bias=False, activation=tf.nn.relu) memory_att = tf.layers.dense(d_memory, att_size, use_bias=False, activation=tf.nn.relu) logits = tf.matmul(inputs_att, tf.transpose(memory_att, [0, 2, 1])) / (att_size ** 0.5) mask = tf.tile(tf.expand_dims(mask, axis=1), [1, IL, 1]) att_weights = tf.nn.softmax(softmax_mask(logits, mask)) outputs = tf.matmul(att_weights, memory) res = tf.concat([inputs, outputs], axis=2) with tf.variable_scope("gate"): dim = res.get_shape().as_list()[-1] d_res = tf.nn.dropout(res, keep_prob=keep_prob, noise_shape=[BS, 1, IH + MH]) gate = tf.layers.dense(d_res, dim, use_bias=False, activation=tf.nn.sigmoid) return res * gate
Simple attention without any conditions.
def simple_attention(memory, att_size, mask, keep_prob=1.0, scope="simple_attention"): """Simple attention without any conditions. Computes weighted sum of memory elements. """ with tf.variable_scope(scope): BS, ML, MH = tf.unstack(tf.shape(memory)) memory_do = tf.nn.dropout(memory, keep_prob=keep_prob, noise_shape=[BS, 1, MH]) logits = tf.layers.dense(tf.layers.dense(memory_do, att_size, activation=tf.nn.tanh), 1, use_bias=False) logits = softmax_mask(tf.squeeze(logits, [2]), mask) att_weights = tf.expand_dims(tf.nn.softmax(logits), axis=2) res = tf.reduce_sum(att_weights * memory, axis=1) return res
Computes weighted sum of inputs conditioned on state
def attention(inputs, state, att_size, mask, scope="attention"): """Computes weighted sum of inputs conditioned on state""" with tf.variable_scope(scope): u = tf.concat([tf.tile(tf.expand_dims(state, axis=1), [1, tf.shape(inputs)[1], 1]), inputs], axis=2) logits = tf.layers.dense(tf.layers.dense(u, att_size, activation=tf.nn.tanh), 1, use_bias=False) logits = softmax_mask(tf.squeeze(logits, [2]), mask) att_weights = tf.expand_dims(tf.nn.softmax(logits), axis=2) res = tf.reduce_sum(att_weights * inputs, axis=1) return res, logits
Computes BLEU score of translated segments against one or more references.
def compute_bleu(reference_corpus, translation_corpus, max_order=4, smooth=False): """Computes BLEU score of translated segments against one or more references. Args: reference_corpus: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. translation_corpus: list of translations to score. Each translation should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: 3-Tuple with the BLEU score, n-gram precisions, geometric mean of n-gram precisions and brevity penalty. """ matches_by_order = [0] * max_order possible_matches_by_order = [0] * max_order reference_length = 0 translation_length = 0 for (references, translation) in zip(reference_corpus, translation_corpus): reference_length += min(len(r) for r in references) translation_length += len(translation) merged_ref_ngram_counts = collections.Counter() for reference in references: merged_ref_ngram_counts |= _get_ngrams(reference, max_order) translation_ngram_counts = _get_ngrams(translation, max_order) overlap = translation_ngram_counts & merged_ref_ngram_counts for ngram in overlap: matches_by_order[len(ngram)-1] += overlap[ngram] for order in range(1, max_order+1): possible_matches = len(translation) - order + 1 if possible_matches > 0: possible_matches_by_order[order-1] += possible_matches precisions = [0] * max_order for i in range(0, max_order): if smooth: precisions[i] = ((matches_by_order[i] + 1.) / (possible_matches_by_order[i] + 1.)) else: if possible_matches_by_order[i] > 0: precisions[i] = (float(matches_by_order[i]) / possible_matches_by_order[i]) else: precisions[i] = 0.0 if min(precisions) > 0: p_log_sum = sum((1. / max_order) * math.log(p) for p in precisions) geo_mean = math.exp(p_log_sum) else: geo_mean = 0 ratio = float(translation_length) / reference_length if ratio > 1.0: bp = 1. else: bp = math.exp(1 - 1. / ratio) bleu = geo_mean * bp return (bleu, precisions, bp, ratio, translation_length, reference_length)
Returns opened file object for writing dialog logs.
def _get_log_file(self): """Returns opened file object for writing dialog logs. Returns: log_file: opened Python file object. """ log_dir: Path = Path(self.config['log_path']).expanduser().resolve() / self.agent_name log_dir.mkdir(parents=True, exist_ok=True) log_file_path = Path(log_dir, f'{self._get_timestamp_utc_str()}_{self.agent_name}.log') log_file = open(log_file_path, 'a', buffering=1, encoding='utf8') return log_file
Logs single dialog utterance to current dialog log file.
def _log(self, utterance: Any, direction: str, dialog_id: Optional[Hashable]=None): """Logs single dialog utterance to current dialog log file. Args: utterance: Dialog utterance. direction: 'in' or 'out' utterance direction. dialog_id: Dialog ID. """ if isinstance(utterance, str): pass elif isinstance(utterance, RichMessage): utterance = utterance.json() elif isinstance(utterance, (list, dict)): utterance = jsonify_data(utterance) else: utterance = str(utterance) dialog_id = str(dialog_id) if not isinstance(dialog_id, str) else dialog_id if self.log_file.tell() >= self.log_max_size * 1024: self.log_file.close() self.log_file = self._get_log_file() else: try: log_msg = {} log_msg['timestamp'] = self._get_timestamp_utc_str() log_msg['dialog_id'] = dialog_id log_msg['direction'] = direction log_msg['message'] = utterance log_str = json.dumps(log_msg, ensure_ascii=self.config['ensure_ascii']) self.log_file.write(f'{log_str}\n') except IOError: log.error('Failed to write dialog log.')
Wraps _log method for all input utterances. Args: utterance: Dialog utterance. dialog_id: Dialog ID.
def log_in(self, utterance: Any, dialog_id: Optional[Hashable] = None) -> None: """Wraps _log method for all input utterances. Args: utterance: Dialog utterance. dialog_id: Dialog ID. """ if self.enabled: self._log(utterance, 'in', dialog_id)
get summary ops for the magnitude of gradient updates
def summary_gradient_updates(grads, opt, lr): """get summary ops for the magnitude of gradient updates""" # strategy: # make a dict of variable name -> [variable, grad, adagrad slot] vars_grads = {} for v in tf.trainable_variables(): vars_grads[v.name] = [v, None, None] for g, v in grads: vars_grads[v.name][1] = g vars_grads[v.name][2] = opt.get_slot(v, 'accumulator') # now make summaries ret = [] for vname, (v, g, a) in vars_grads.items(): if g is None: continue if isinstance(g, tf.IndexedSlices): # a sparse gradient - only take norm of params that are updated updates = lr * g.values if a is not None: updates /= tf.sqrt(tf.gather(a, g.indices)) else: updates = lr * g if a is not None: updates /= tf.sqrt(a) values_norm = tf.sqrt(tf.reduce_sum(v * v)) + 1.0e-7 updates_norm = tf.sqrt(tf.reduce_sum(updates * updates)) ret.append(tf.summary.scalar('UPDATE/' + vname.replace(":", "_"), updates_norm / values_norm)) return ret
Sums values associated with any non - unique indices. Args: values: A Tensor with rank > = 1. indices: A one - dimensional integer Tensor indexing into the first dimension of values ( as in an IndexedSlices object ). Returns: A tuple of ( summed_values unique_indices ) where unique_indices is a de - duplicated version of indices and summed_values contains the sum of values slices associated with each unique index.
def _deduplicate_indexed_slices(values, indices): """Sums `values` associated with any non-unique `indices`. Args: values: A `Tensor` with rank >= 1. indices: A one-dimensional integer `Tensor`, indexing into the first dimension of `values` (as in an IndexedSlices object). Returns: A tuple of (`summed_values`, `unique_indices`) where `unique_indices` is a de-duplicated version of `indices` and `summed_values` contains the sum of `values` slices associated with each unique index. """ unique_indices, new_index_positions = tf.unique(indices) summed_values = tf.unsorted_segment_sum(values, new_index_positions, tf.shape(unique_indices)[0]) return (summed_values, unique_indices)
Dump the trained weights from a model to a HDF5 file.
def dump_weights(tf_save_dir, outfile, options): """ Dump the trained weights from a model to a HDF5 file. """ def _get_outname(tf_name): outname = re.sub(':0$', '', tf_name) outname = outname.lstrip('lm/') outname = re.sub('/rnn/', '/RNN/', outname) outname = re.sub('/multi_rnn_cell/', '/MultiRNNCell/', outname) outname = re.sub('/cell_', '/Cell', outname) outname = re.sub('/lstm_cell/', '/LSTMCell/', outname) if '/RNN/' in outname: if 'projection' in outname: outname = re.sub('projection/kernel', 'W_P_0', outname) else: outname = re.sub('/kernel', '/W_0', outname) outname = re.sub('/bias', '/B', outname) return outname ckpt_file = tf.train.latest_checkpoint(tf_save_dir) config = tf.ConfigProto(allow_soft_placement=True) with tf.Graph().as_default(): with tf.Session(config=config) as sess: with tf.variable_scope('lm'): LanguageModel(options, False) # Create graph # we use the "Saver" class to load the variables loader = tf.train.Saver() loader.restore(sess, ckpt_file) with h5py.File(outfile, 'w') as fout: for v in tf.trainable_variables(): if v.name.find('softmax') >= 0: # don't dump these continue outname = _get_outname(v.name) # print("Saving variable {0} with name {1}".format( # v.name, outname)) shape = v.get_shape().as_list() dset = fout.create_dataset(outname, shape, dtype='float32') values = sess.run([v])[0] dset[...] = values
Read data by dataset_reader from specified config.
def read_data_by_config(config: dict): """Read data by dataset_reader from specified config.""" dataset_config = config.get('dataset', None) if dataset_config: config.pop('dataset') ds_type = dataset_config['type'] if ds_type == 'classification': reader = {'class_name': 'basic_classification_reader'} iterator = {'class_name': 'basic_classification_iterator'} config['dataset_reader'] = {**dataset_config, **reader} config['dataset_iterator'] = {**dataset_config, **iterator} else: raise Exception("Unsupported dataset type: {}".format(ds_type)) try: reader_config = dict(config['dataset_reader']) except KeyError: raise ConfigError("No dataset reader is provided in the JSON config.") reader = get_model(reader_config.pop('class_name'))() data_path = reader_config.pop('data_path', '') if isinstance(data_path, list): data_path = [expand_path(x) for x in data_path] else: data_path = expand_path(data_path) return reader.read(data_path, **reader_config)
Create iterator ( from config ) for specified data.
def get_iterator_from_config(config: dict, data: dict): """Create iterator (from config) for specified data.""" iterator_config = config['dataset_iterator'] iterator: Union[DataLearningIterator, DataFittingIterator] = from_params(iterator_config, data=data) return iterator
Make training and evaluation of the model described in corresponding configuration file.
def train_evaluate_model_from_config(config: Union[str, Path, dict], iterator: Union[DataLearningIterator, DataFittingIterator] = None, *, to_train: bool = True, evaluation_targets: Optional[Iterable[str]] = None, to_validate: Optional[bool] = None, download: bool = False, start_epoch_num: Optional[int] = None, recursive: bool = False) -> Dict[str, Dict[str, float]]: """Make training and evaluation of the model described in corresponding configuration file.""" config = parse_config(config) if download: deep_download(config) if to_train and recursive: for subconfig in get_all_elems_from_json(config['chainer'], 'config_path'): log.info(f'Training "{subconfig}"') train_evaluate_model_from_config(subconfig, download=False, recursive=True) import_packages(config.get('metadata', {}).get('imports', [])) if iterator is None: try: data = read_data_by_config(config) except ConfigError as e: to_train = False log.warning(f'Skipping training. {e.message}') else: iterator = get_iterator_from_config(config, data) if 'train' not in config: log.warning('Train config is missing. Populating with default values') train_config = config.get('train') if start_epoch_num is not None: train_config['start_epoch_num'] = start_epoch_num if 'evaluation_targets' not in train_config and ('validate_best' in train_config or 'test_best' in train_config): log.warning('"validate_best" and "test_best" parameters are deprecated.' ' Please, use "evaluation_targets" list instead') train_config['evaluation_targets'] = [] if train_config.pop('validate_best', True): train_config['evaluation_targets'].append('valid') if train_config.pop('test_best', True): train_config['evaluation_targets'].append('test') trainer_class = get_model(train_config.pop('class_name', 'nn_trainer')) trainer = trainer_class(config['chainer'], **train_config) if to_train: trainer.train(iterator) res = {} if iterator is not None: if to_validate is not None: if evaluation_targets is None: log.warning('"to_validate" parameter is deprecated and will be removed in future versions.' ' Please, use "evaluation_targets" list instead') evaluation_targets = ['test'] if to_validate: evaluation_targets.append('valid') else: log.warn('Both "evaluation_targets" and "to_validate" parameters are specified.' ' "to_validate" is deprecated and will be ignored') res = trainer.evaluate(iterator, evaluation_targets, print_reports=True) trainer.get_chainer().destroy() res = {k: v['metrics'] for k, v in res.items()} return res
Exchange messages between basic pipelines and the Yandex. Dialogs service. If the pipeline returns multiple values only the first one is forwarded to Yandex.
def interact_alice(agent: Agent): """ Exchange messages between basic pipelines and the Yandex.Dialogs service. If the pipeline returns multiple values, only the first one is forwarded to Yandex. """ data = request.get_json() text = data['request'].get('command', '').strip() payload = data['request'].get('payload') session_id = data['session']['session_id'] user_id = data['session']['user_id'] message_id = data['session']['message_id'] dialog_id = DialogID(user_id, session_id) response = { 'response': { 'end_session': True, 'text': '' }, "session": { 'session_id': session_id, 'message_id': message_id, 'user_id': user_id }, 'version': '1.0' } agent_response: Union[str, RichMessage] = agent([payload or text], [dialog_id])[0] if isinstance(agent_response, RichMessage): response['response']['text'] = '\n'.join([j['content'] for j in agent_response.json() if j['type'] == 'plain_text']) else: response['response']['text'] = str(agent_response) return jsonify(response), 200
Convert labels to one - hot vectors for multi - class multi - label classification
def labels2onehot(labels: [List[str], List[List[str]], np.ndarray], classes: [list, np.ndarray]) -> np.ndarray: """ Convert labels to one-hot vectors for multi-class multi-label classification Args: labels: list of samples where each sample is a class or a list of classes which sample belongs with classes: array of classes' names Returns: 2d array with one-hot representation of given samples """ n_classes = len(classes) y = [] for sample in labels: curr = np.zeros(n_classes) if isinstance(sample, list): for intent in sample: if intent not in classes: log.warning('Unknown intent {} detected. Assigning no class'.format(intent)) else: curr[np.where(np.array(classes) == intent)[0]] = 1 else: curr[np.where(np.array(classes) == sample)[0]] = 1 y.append(curr) y = np.asarray(y) return y
Convert vectors of probabilities to labels using confident threshold ( if probability to belong with the class is bigger than confident_threshold sample belongs with the class ; if no probabilities bigger than confident threshold sample belongs with the class with the biggest probability )
def proba2labels(proba: [list, np.ndarray], confident_threshold: float, classes: [list, np.ndarray]) -> List[List]: """ Convert vectors of probabilities to labels using confident threshold (if probability to belong with the class is bigger than confident_threshold, sample belongs with the class; if no probabilities bigger than confident threshold, sample belongs with the class with the biggest probability) Args: proba: list of samples where each sample is a vector of probabilities to belong with given classes confident_threshold (float): boundary of probability to belong with a class classes: array of classes' names Returns: list of lists of labels for each sample """ y = [] for sample in proba: to_add = np.where(sample > confident_threshold)[0] if len(to_add) > 0: y.append(np.array(classes)[to_add].tolist()) else: y.append(np.array([np.array(classes)[np.argmax(sample)]]).tolist()) return y
Convert vectors of probabilities to one - hot representations using confident threshold
def proba2onehot(proba: [list, np.ndarray], confident_threshold: float, classes: [list, np.ndarray]) -> np.ndarray: """ Convert vectors of probabilities to one-hot representations using confident threshold Args: proba: samples where each sample is a vector of probabilities to belong with given classes confident_threshold: boundary of probability to belong with a class classes: array of classes' names Returns: 2d array with one-hot representation of given samples """ return labels2onehot(proba2labels(proba, confident_threshold, classes), classes)
Configure session for particular device
def _config_session(): """ Configure session for particular device Returns: tensorflow.Session """ config = tf.ConfigProto() config.gpu_options.allow_growth = True config.gpu_options.visible_device_list = '0' return tf.Session(config=config)
Process event after epoch Args: event_name: whether event is send after epoch or batch. Set of values: after_epoch after_batch data: event data ( dictionary )
def process_event(self, event_name: str, data: dict) -> None: """ Process event after epoch Args: event_name: whether event is send after epoch or batch. Set of values: ``"after_epoch", "after_batch"`` data: event data (dictionary) Returns: None """ if event_name == "after_epoch": self.epochs_done = data["epochs_done"] self.batches_seen = data["batches_seen"] self.train_examples_seen = data["train_examples_seen"] return
Checks existence of the model file loads the model if the file exists
def load(self) -> None: """Checks existence of the model file, loads the model if the file exists""" # Checks presence of the model files if self.load_path.exists(): path = str(self.load_path.resolve()) log.info('[loading model from {}]'.format(path)) self._net.load(path)
Saves model to the save_path provided in config. The directory is already created by super (). __init__ which is called in __init__ of this class
def save(self) -> None: """Saves model to the save_path, provided in config. The directory is already created by super().__init__, which is called in __init__ of this class""" path = str(self.save_path.absolute()) log.info('[saving model to {}]'.format(path)) self._net.save(path)
Trains the model on a single batch.
def train_on_batch(self, *args) -> None: """Trains the model on a single batch. Args: *args: the list of network inputs. Last element of `args` is the batch of targets, all previous elements are training data batches """ *data, labels = args self._net.train_on_batch(data, labels)
Extract values of momentum variables from optimizer
def get_momentum_variable(self): """ Extract values of momentum variables from optimizer Returns: optimizer's `rho` or `beta_1` """ optimizer = self.get_optimizer() if hasattr(optimizer, 'rho'): return optimizer.rho elif hasattr(optimizer, 'beta_1'): return optimizer.beta_1 return None
Update graph variables setting giving learning_rate and momentum
def _update_graph_variables(self, learning_rate: float = None, momentum: float = None): """ Update graph variables setting giving `learning_rate` and `momentum` Args: learning_rate: learning rate value to be set in graph (set if not None) momentum: momentum value to be set in graph (set if not None) Returns: None """ if learning_rate is not None: K.set_value(self.get_learning_rate_variable(), learning_rate) # log.info(f"Learning rate = {learning_rate}") if momentum is not None: K.set_value(self.get_momentum_variable(), momentum)
Process event after epoch Args: event_name: whether event is send after epoch or batch. Set of values: after_epoch after_batch data: event data ( dictionary )
def process_event(self, event_name: str, data: dict): """ Process event after epoch Args: event_name: whether event is send after epoch or batch. Set of values: ``"after_epoch", "after_batch"`` data: event data (dictionary) Returns: None """ if (isinstance(self.opt.get("learning_rate", None), float) and isinstance(self.opt.get("learning_rate_decay", None), float)): pass else: if event_name == 'after_train_log': if (self.get_learning_rate_variable() is not None) and ('learning_rate' not in data): data['learning_rate'] = float(K.get_value(self.get_learning_rate_variable())) # data['learning_rate'] = self._lr if (self.get_momentum_variable() is not None) and ('momentum' not in data): data['momentum'] = float(K.get_value(self.get_momentum_variable())) # data['momentum'] = self._mom else: super().process_event(event_name, data)
Calculates F1 ( binary ) measure.
def round_f1(y_true, y_predicted): """ Calculates F1 (binary) measure. Args: y_true: list of true values y_predicted: list of predicted values Returns: F1 score """ try: predictions = [np.round(x) for x in y_predicted] except TypeError: predictions = y_predicted return f1_score(y_true, predictions)
Calculates F1 macro measure.
def round_f1_macro(y_true, y_predicted): """ Calculates F1 macro measure. Args: y_true: list of true values y_predicted: list of predicted values Returns: F1 score """ try: predictions = [np.round(x) for x in y_predicted] except TypeError: predictions = y_predicted return f1_score(np.array(y_true), np.array(predictions), average="macro")
Converts word to a tuple of symbols optionally converts it to lowercase and adds capitalization label.
def process_word(word: str, to_lower: bool = False, append_case: Optional[str] = None) -> Tuple[str]: """Converts word to a tuple of symbols, optionally converts it to lowercase and adds capitalization label. Args: word: input word to_lower: whether to lowercase append_case: whether to add case mark ('<FIRST_UPPER>' for first capital and '<ALL_UPPER>' for all caps) Returns: a preprocessed word """ if all(x.isupper() for x in word) and len(word) > 1: uppercase = "<ALL_UPPER>" elif word[0].isupper(): uppercase = "<FIRST_UPPER>" else: uppercase = None if to_lower: word = word.lower() if word.isdigit(): answer = ["<DIGIT>"] elif word.startswith("http://") or word.startswith("www."): answer = ["<HTTP>"] else: answer = list(word) if to_lower and uppercase is not None: if append_case == "first": answer = [uppercase] + answer elif append_case == "last": answer = answer + [uppercase] return tuple(answer)
Number of convolutional layers stacked on top of each other
def stacked_cnn(units: tf.Tensor, n_hidden_list: List, filter_width=3, use_batch_norm=False, use_dilation=False, training_ph=None, add_l2_losses=False): """ Number of convolutional layers stacked on top of each other Args: units: a tensorflow tensor with dimensionality [None, n_tokens, n_features] n_hidden_list: list with number of hidden units at the ouput of each layer filter_width: width of the kernel in tokens use_batch_norm: whether to use batch normalization between layers use_dilation: use power of 2 dilation scheme [1, 2, 4, 8 .. ] for layers 1, 2, 3, 4 ... training_ph: boolean placeholder determining whether is training phase now or not. It is used only for batch normalization to determine whether to use current batch average (std) or memory stored average (std) add_l2_losses: whether to add l2 losses on network kernels to tf.GraphKeys.REGULARIZATION_LOSSES or not Returns: units: tensor at the output of the last convolutional layer """ l2_reg = tf.nn.l2_loss if add_l2_losses else None for n_layer, n_hidden in enumerate(n_hidden_list): if use_dilation: dilation_rate = 2 ** n_layer else: dilation_rate = 1 units = tf.layers.conv1d(units, n_hidden, filter_width, padding='same', dilation_rate=dilation_rate, kernel_initializer=INITIALIZER(), kernel_regularizer=l2_reg) if use_batch_norm: assert training_ph is not None units = tf.layers.batch_normalization(units, training=training_ph) units = tf.nn.relu(units) return units
Densely connected convolutional layers. Based on the paper: [ Gao 17 ] https:// arxiv. org/ abs/ 1608. 06993
def dense_convolutional_network(units: tf.Tensor, n_hidden_list: List, filter_width=3, use_dilation=False, use_batch_norm=False, training_ph=None): """ Densely connected convolutional layers. Based on the paper: [Gao 17] https://arxiv.org/abs/1608.06993 Args: units: a tensorflow tensor with dimensionality [None, n_tokens, n_features] n_hidden_list: list with number of hidden units at the ouput of each layer filter_width: width of the kernel in tokens use_batch_norm: whether to use batch normalization between layers use_dilation: use power of 2 dilation scheme [1, 2, 4, 8 .. ] for layers 1, 2, 3, 4 ... training_ph: boolean placeholder determining whether is training phase now or not. It is used only for batch normalization to determine whether to use current batch average (std) or memory stored average (std) Returns: units: tensor at the output of the last convolutional layer with dimensionality [None, n_tokens, n_hidden_list[-1]] """ units_list = [units] for n_layer, n_filters in enumerate(n_hidden_list): total_units = tf.concat(units_list, axis=-1) if use_dilation: dilation_rate = 2 ** n_layer else: dilation_rate = 1 units = tf.layers.conv1d(total_units, n_filters, filter_width, dilation_rate=dilation_rate, padding='same', kernel_initializer=INITIALIZER()) if use_batch_norm: units = tf.layers.batch_normalization(units, training=training_ph) units = tf.nn.relu(units) units_list.append(units) return units
Bi directional recurrent neural network. GRU or LSTM
def bi_rnn(units: tf.Tensor, n_hidden: List, cell_type='gru', seq_lengths=None, trainable_initial_states=False, use_peepholes=False, name='Bi-'): """ Bi directional recurrent neural network. GRU or LSTM Args: units: a tensorflow tensor with dimensionality [None, n_tokens, n_features] n_hidden: list with number of hidden units at the ouput of each layer seq_lengths: length of sequences for different length sequences in batch can be None for maximum length as a length for every sample in the batch cell_type: 'lstm' or 'gru' trainable_initial_states: whether to create a special trainable variable to initialize the hidden states of the network or use just zeros use_peepholes: whether to use peephole connections (only 'lstm' case affected) name: what variable_scope to use for the network parameters Returns: units: tensor at the output of the last recurrent layer with dimensionality [None, n_tokens, n_hidden_list[-1]] last_units: tensor of last hidden states for GRU and tuple of last hidden stated and last cell states for LSTM dimensionality of cell states and hidden states are similar and equal to [B x 2 * H], where B - batch size and H is number of hidden units """ with tf.variable_scope(name + '_' + cell_type.upper()): if cell_type == 'gru': forward_cell = tf.nn.rnn_cell.GRUCell(n_hidden, kernel_initializer=INITIALIZER()) backward_cell = tf.nn.rnn_cell.GRUCell(n_hidden, kernel_initializer=INITIALIZER()) if trainable_initial_states: initial_state_fw = tf.tile(tf.get_variable('init_fw_h', [1, n_hidden]), (tf.shape(units)[0], 1)) initial_state_bw = tf.tile(tf.get_variable('init_bw_h', [1, n_hidden]), (tf.shape(units)[0], 1)) else: initial_state_fw = initial_state_bw = None elif cell_type == 'lstm': forward_cell = tf.nn.rnn_cell.LSTMCell(n_hidden, use_peepholes=use_peepholes, initializer=INITIALIZER()) backward_cell = tf.nn.rnn_cell.LSTMCell(n_hidden, use_peepholes=use_peepholes, initializer=INITIALIZER()) if trainable_initial_states: initial_state_fw = tf.nn.rnn_cell.LSTMStateTuple( tf.tile(tf.get_variable('init_fw_c', [1, n_hidden]), (tf.shape(units)[0], 1)), tf.tile(tf.get_variable('init_fw_h', [1, n_hidden]), (tf.shape(units)[0], 1))) initial_state_bw = tf.nn.rnn_cell.LSTMStateTuple( tf.tile(tf.get_variable('init_bw_c', [1, n_hidden]), (tf.shape(units)[0], 1)), tf.tile(tf.get_variable('init_bw_h', [1, n_hidden]), (tf.shape(units)[0], 1))) else: initial_state_fw = initial_state_bw = None else: raise RuntimeError('cell_type must be either "gru" or "lstm"s') (rnn_output_fw, rnn_output_bw), (fw, bw) = \ tf.nn.bidirectional_dynamic_rnn(forward_cell, backward_cell, units, dtype=tf.float32, sequence_length=seq_lengths, initial_state_fw=initial_state_fw, initial_state_bw=initial_state_bw) kernels = [var for var in forward_cell.trainable_variables + backward_cell.trainable_variables if 'kernel' in var.name] for kernel in kernels: tf.add_to_collection(tf.GraphKeys.REGULARIZATION_LOSSES, tf.nn.l2_loss(kernel)) return (rnn_output_fw, rnn_output_bw), (fw, bw)
Stackted recurrent neural networks GRU or LSTM
def stacked_bi_rnn(units: tf.Tensor, n_hidden_list: List, cell_type='gru', seq_lengths=None, use_peepholes=False, name='RNN_layer'): """ Stackted recurrent neural networks GRU or LSTM Args: units: a tensorflow tensor with dimensionality [None, n_tokens, n_features] n_hidden_list: list with number of hidden units at the ouput of each layer seq_lengths: length of sequences for different length sequences in batch can be None for maximum length as a length for every sample in the batch cell_type: 'lstm' or 'gru' use_peepholes: whether to use peephole connections (only 'lstm' case affected) name: what variable_scope to use for the network parameters Returns: units: tensor at the output of the last recurrent layer with dimensionality [None, n_tokens, n_hidden_list[-1]] last_units: tensor of last hidden states for GRU and tuple of last hidden stated and last cell states for LSTM dimensionality of cell states and hidden states are similar and equal to [B x 2 * H], where B - batch size and H is number of hidden units """ for n, n_hidden in enumerate(n_hidden_list): with tf.variable_scope(name + '_' + str(n)): if cell_type == 'gru': forward_cell = tf.nn.rnn_cell.GRUCell(n_hidden) backward_cell = tf.nn.rnn_cell.GRUCell(n_hidden) elif cell_type == 'lstm': forward_cell = tf.nn.rnn_cell.LSTMCell(n_hidden, use_peepholes=use_peepholes) backward_cell = tf.nn.rnn_cell.LSTMCell(n_hidden, use_peepholes=use_peepholes) else: raise RuntimeError('cell_type must be either gru or lstm') (rnn_output_fw, rnn_output_bw), (fw, bw) = \ tf.nn.bidirectional_dynamic_rnn(forward_cell, backward_cell, units, dtype=tf.float32, sequence_length=seq_lengths) units = tf.concat([rnn_output_fw, rnn_output_bw], axis=2) if cell_type == 'gru': last_units = tf.concat([fw, bw], axis=1) else: (c_fw, h_fw), (c_bw, h_bw) = fw, bw c = tf.concat([c_fw, c_bw], axis=1) h = tf.concat([h_fw, h_bw], axis=1) last_units = (h, c) return units, last_units
Network architecture inspired by One Hundred layer Tiramisu. https:// arxiv. org/ abs/ 1611. 09326. U - Net like.
def u_shape(units: tf.Tensor, n_hidden_list: List, filter_width=7, use_batch_norm=False, training_ph=None): """ Network architecture inspired by One Hundred layer Tiramisu. https://arxiv.org/abs/1611.09326. U-Net like. Args: units: a tensorflow tensor with dimensionality [None, n_tokens, n_features] n_hidden_list: list with number of hidden units at the ouput of each layer filter_width: width of the kernel in tokens use_batch_norm: whether to use batch normalization between layers training_ph: boolean placeholder determining whether is training phase now or not. It is used only for batch normalization to determine whether to use current batch average (std) or memory stored average (std) Returns: units: tensor at the output of the last convolutional layer with dimensionality [None, n_tokens, n_hidden_list[-1]] """ # Bread Crumbs units_for_skip_conn = [] conv_net_params = {'filter_width': filter_width, 'use_batch_norm': use_batch_norm, 'training_ph': training_ph} # Go down the rabbit hole for n_hidden in n_hidden_list: units = stacked_cnn(units, [n_hidden], **conv_net_params) units_for_skip_conn.append(units) units = tf.layers.max_pooling1d(units, pool_size=2, strides=2, padding='same') units = stacked_cnn(units, [n_hidden], **conv_net_params) # Up to the sun light for down_step, n_hidden in enumerate(n_hidden_list[::-1]): units = tf.expand_dims(units, axis=2) units = tf.layers.conv2d_transpose(units, n_hidden, filter_width, strides=(2, 1), padding='same') units = tf.squeeze(units, axis=2) # Skip connection skip_units = units_for_skip_conn[-(down_step + 1)] if skip_units.get_shape().as_list()[-1] != n_hidden: skip_units = tf.layers.dense(skip_units, n_hidden) units = skip_units + units units = stacked_cnn(units, [n_hidden], **conv_net_params) return units
Highway convolutional network. Skip connection with gating mechanism.
def stacked_highway_cnn(units: tf.Tensor, n_hidden_list: List, filter_width=3, use_batch_norm=False, use_dilation=False, training_ph=None): """ Highway convolutional network. Skip connection with gating mechanism. Args: units: a tensorflow tensor with dimensionality [None, n_tokens, n_features] n_hidden_list: list with number of hidden units at the output of each layer filter_width: width of the kernel in tokens use_batch_norm: whether to use batch normalization between layers use_dilation: use power of 2 dilation scheme [1, 2, 4, 8 .. ] for layers 1, 2, 3, 4 ... training_ph: boolean placeholder determining whether is training phase now or not. It is used only for batch normalization to determine whether to use current batch average (std) or memory stored average (std) Returns: units: tensor at the output of the last convolutional layer with dimensionality [None, n_tokens, n_hidden_list[-1]] """ for n_layer, n_hidden in enumerate(n_hidden_list): input_units = units # Projection if needed if input_units.get_shape().as_list()[-1] != n_hidden: input_units = tf.layers.dense(input_units, n_hidden) if use_dilation: dilation_rate = 2 ** n_layer else: dilation_rate = 1 units = tf.layers.conv1d(units, n_hidden, filter_width, padding='same', dilation_rate=dilation_rate, kernel_initializer=INITIALIZER()) if use_batch_norm: units = tf.layers.batch_normalization(units, training=training_ph) sigmoid_gate = tf.layers.dense(input_units, 1, activation=tf.sigmoid, kernel_initializer=INITIALIZER()) input_units = sigmoid_gate * input_units + (1 - sigmoid_gate) * units input_units = tf.nn.relu(input_units) units = input_units return units
Token embedding layer. Create matrix of for token embeddings. Can be initialized with given matrix ( for example pre - trained with word2ve algorithm
def embedding_layer(token_indices=None, token_embedding_matrix=None, n_tokens=None, token_embedding_dim=None, name: str = None, trainable=True): """ Token embedding layer. Create matrix of for token embeddings. Can be initialized with given matrix (for example pre-trained with word2ve algorithm Args: token_indices: token indices tensor of type tf.int32 token_embedding_matrix: matrix of embeddings with dimensionality [n_tokens, embeddings_dimension] n_tokens: total number of unique tokens token_embedding_dim: dimensionality of embeddings, typical 100..300 name: embedding matrix name (variable name) trainable: whether to set the matrix trainable or not Returns: embedded_tokens: tf tensor of size [B, T, E], where B - batch size T - number of tokens, E - token_embedding_dim """ if token_embedding_matrix is not None: tok_mat = token_embedding_matrix if trainable: Warning('Matrix of embeddings is passed to the embedding_layer, ' 'possibly there is a pre-trained embedding matrix. ' 'Embeddings paramenters are set to Trainable!') else: tok_mat = np.random.randn(n_tokens, token_embedding_dim).astype(np.float32) / np.sqrt(token_embedding_dim) tok_emb_mat = tf.Variable(tok_mat, name=name, trainable=trainable) embedded_tokens = tf.nn.embedding_lookup(tok_emb_mat, token_indices) return embedded_tokens
Characters to vector. Every sequence of characters ( token ) is embedded to vector space with dimensionality char_embedding_dim Convolution plus max_pooling is used to obtain vector representations of words.
def character_embedding_network(char_placeholder: tf.Tensor, n_characters: int = None, emb_mat: np.array = None, char_embedding_dim: int = None, filter_widths=(3, 4, 5, 7), highway_on_top=False): """ Characters to vector. Every sequence of characters (token) is embedded to vector space with dimensionality char_embedding_dim Convolution plus max_pooling is used to obtain vector representations of words. Args: char_placeholder: placeholder of int32 type with dimensionality [B, T, C] B - batch size (can be None) T - Number of tokens (can be None) C - number of characters (can be None) n_characters: total number of unique characters emb_mat: if n_characters is not provided the emb_mat should be provided it is a numpy array with dimensions [V, E], where V - vocabulary size and E - embeddings dimension char_embedding_dim: dimensionality of characters embeddings filter_widths: array of width of kernel in convolutional embedding network used in parallel Returns: embeddings: tf.Tensor with dimensionality [B, T, F], where F is dimensionality of embeddings """ if emb_mat is None: emb_mat = np.random.randn(n_characters, char_embedding_dim).astype(np.float32) / np.sqrt(char_embedding_dim) else: char_embedding_dim = emb_mat.shape[1] char_emb_var = tf.Variable(emb_mat, trainable=True) with tf.variable_scope('Char_Emb_Network'): # Character embedding layer c_emb = tf.nn.embedding_lookup(char_emb_var, char_placeholder) # Character embedding network conv_results_list = [] for filter_width in filter_widths: conv_results_list.append(tf.layers.conv2d(c_emb, char_embedding_dim, (1, filter_width), padding='same', kernel_initializer=INITIALIZER)) units = tf.concat(conv_results_list, axis=3) units = tf.reduce_max(units, axis=2) if highway_on_top: sigmoid_gate = tf.layers.dense(units, 1, activation=tf.sigmoid, kernel_initializer=INITIALIZER, kernel_regularizer=tf.nn.l2_loss) deeper_units = tf.layers.dense(units, tf.shape(units)[-1], kernel_initializer=INITIALIZER, kernel_regularizer=tf.nn.l2_loss) units = sigmoid_gate * units + (1 - sigmoid_gate) * deeper_units units = tf.nn.relu(units) return units
Expand and tile tensor along given axis Args: units: tf tensor with dimensions [ batch_size time_steps n_input_features ] axis: axis along which expand and tile. Must be 1 or 2
def expand_tile(units, axis): """Expand and tile tensor along given axis Args: units: tf tensor with dimensions [batch_size, time_steps, n_input_features] axis: axis along which expand and tile. Must be 1 or 2 """ assert axis in (1, 2) n_time_steps = tf.shape(units)[1] repetitions = [1, 1, 1, 1] repetitions[axis] = n_time_steps return tf.tile(tf.expand_dims(units, axis), repetitions)
Computes additive self attention for time series of vectors ( with batch dimension ) the formula: score ( h_i h_j ) = <v tanh ( W_1 h_i + W_2 h_j ) > v is a learnable vector of n_hidden dimensionality W_1 and W_2 are learnable [ n_hidden n_input_features ] matrices
def additive_self_attention(units, n_hidden=None, n_output_features=None, activation=None): """ Computes additive self attention for time series of vectors (with batch dimension) the formula: score(h_i, h_j) = <v, tanh(W_1 h_i + W_2 h_j)> v is a learnable vector of n_hidden dimensionality, W_1 and W_2 are learnable [n_hidden, n_input_features] matrices Args: units: tf tensor with dimensionality [batch_size, time_steps, n_input_features] n_hidden: number of units in hidden representation of similarity measure n_output_features: number of features in output dense layer activation: activation at the output Returns: output: self attended tensor with dimensionality [batch_size, time_steps, n_output_features] """ n_input_features = units.get_shape().as_list()[2] if n_hidden is None: n_hidden = n_input_features if n_output_features is None: n_output_features = n_input_features units_pairs = tf.concat([expand_tile(units, 1), expand_tile(units, 2)], 3) query = tf.layers.dense(units_pairs, n_hidden, activation=tf.tanh, kernel_initializer=INITIALIZER()) attention = tf.nn.softmax(tf.layers.dense(query, 1), dim=2) attended_units = tf.reduce_sum(attention * expand_tile(units, 1), axis=2) output = tf.layers.dense(attended_units, n_output_features, activation, kernel_initializer=INITIALIZER()) return output
Computes multiplicative self attention for time series of vectors ( with batch dimension ) the formula: score ( h_i h_j ) = <W_1 h_i W_2 h_j > W_1 and W_2 are learnable matrices with dimensionality [ n_hidden n_input_features ] where <a b > stands for a and b dot product
def multiplicative_self_attention(units, n_hidden=None, n_output_features=None, activation=None): """ Computes multiplicative self attention for time series of vectors (with batch dimension) the formula: score(h_i, h_j) = <W_1 h_i, W_2 h_j>, W_1 and W_2 are learnable matrices with dimensionality [n_hidden, n_input_features], where <a, b> stands for a and b dot product Args: units: tf tensor with dimensionality [batch_size, time_steps, n_input_features] n_hidden: number of units in hidden representation of similarity measure n_output_features: number of features in output dense layer activation: activation at the output Returns: output: self attended tensor with dimensionality [batch_size, time_steps, n_output_features] """ n_input_features = units.get_shape().as_list()[2] if n_hidden is None: n_hidden = n_input_features if n_output_features is None: n_output_features = n_input_features queries = tf.layers.dense(expand_tile(units, 1), n_hidden, kernel_initializer=INITIALIZER()) keys = tf.layers.dense(expand_tile(units, 2), n_hidden, kernel_initializer=INITIALIZER()) scores = tf.reduce_sum(queries * keys, axis=3, keep_dims=True) attention = tf.nn.softmax(scores, dim=2) attended_units = tf.reduce_sum(attention * expand_tile(units, 1), axis=2) output = tf.layers.dense(attended_units, n_output_features, activation, kernel_initializer=INITIALIZER()) return output
Fast CuDNN GRU implementation
def cudnn_gru(units, n_hidden, n_layers=1, trainable_initial_states=False, seq_lengths=None, input_initial_h=None, name='cudnn_gru', reuse=False): """ Fast CuDNN GRU implementation Args: units: tf.Tensor with dimensions [B x T x F], where B - batch size T - number of tokens F - features n_hidden: dimensionality of hidden state trainable_initial_states: whether to create a special trainable variable to initialize the hidden states of the network or use just zeros seq_lengths: tensor of sequence lengths with dimension [B] n_layers: number of layers input_initial_h: initial hidden state, tensor name: name of the variable scope to use reuse:whether to reuse already initialized variable Returns: h - all hidden states along T dimension, tf.Tensor with dimensionality [B x T x F] h_last - last hidden state, tf.Tensor with dimensionality [B x H] """ with tf.variable_scope(name, reuse=reuse): gru = tf.contrib.cudnn_rnn.CudnnGRU(num_layers=n_layers, num_units=n_hidden) if trainable_initial_states: init_h = tf.get_variable('init_h', [n_layers, 1, n_hidden]) init_h = tf.tile(init_h, (1, tf.shape(units)[0], 1)) else: init_h = tf.zeros([n_layers, tf.shape(units)[0], n_hidden]) initial_h = input_initial_h or init_h h, h_last = gru(tf.transpose(units, (1, 0, 2)), (initial_h, )) h = tf.transpose(h, (1, 0, 2)) h_last = tf.squeeze(h_last, axis=0)[-1] # extract last layer state # Extract last states if they are provided if seq_lengths is not None: indices = tf.stack([tf.range(tf.shape(h)[0]), seq_lengths-1], axis=1) h_last = tf.gather_nd(h, indices) return h, h_last
CuDNN Compatible GRU implementation. It should be used to load models saved with CudnnGRUCell to run on CPU.
def cudnn_compatible_gru(units, n_hidden, n_layers=1, trainable_initial_states=False, seq_lengths=None, input_initial_h=None, name='cudnn_gru', reuse=False): """ CuDNN Compatible GRU implementation. It should be used to load models saved with CudnnGRUCell to run on CPU. Args: units: tf.Tensor with dimensions [B x T x F], where B - batch size T - number of tokens F - features n_hidden: dimensionality of hidden state trainable_initial_states: whether to create a special trainable variable to initialize the hidden states of the network or use just zeros seq_lengths: tensor of sequence lengths with dimension [B] n_layers: number of layers input_initial_h: initial hidden state, tensor name: name of the variable scope to use reuse:whether to reuse already initialized variable Returns: h - all hidden states along T dimension, tf.Tensor with dimensionality [B x T x F] h_last - last hidden state, tf.Tensor with dimensionality [B x H] """ with tf.variable_scope(name, reuse=reuse): if trainable_initial_states: init_h = tf.get_variable('init_h', [n_layers, 1, n_hidden]) init_h = tf.tile(init_h, (1, tf.shape(units)[0], 1)) else: init_h = tf.zeros([n_layers, tf.shape(units)[0], n_hidden]) initial_h = input_initial_h or init_h with tf.variable_scope('cudnn_gru', reuse=reuse): def single_cell(): return tf.contrib.cudnn_rnn.CudnnCompatibleGRUCell(n_hidden) cell = tf.nn.rnn_cell.MultiRNNCell([single_cell() for _ in range(n_layers)]) units = tf.transpose(units, (1, 0, 2)) h, h_last = tf.nn.dynamic_rnn(cell=cell, inputs=units, time_major=True, initial_state=tuple(tf.unstack(initial_h, axis=0))) h = tf.transpose(h, (1, 0, 2)) h_last = h_last[-1] # h_last is tuple: n_layers x batch_size x n_hidden # Extract last states if they are provided if seq_lengths is not None: indices = tf.stack([tf.range(tf.shape(h)[0]), seq_lengths-1], axis=1) h_last = tf.gather_nd(h, indices) return h, h_last
Fast CuDNN LSTM implementation
def cudnn_lstm(units, n_hidden, n_layers=1, trainable_initial_states=None, seq_lengths=None, initial_h=None, initial_c=None, name='cudnn_lstm', reuse=False): """ Fast CuDNN LSTM implementation Args: units: tf.Tensor with dimensions [B x T x F], where B - batch size T - number of tokens F - features n_hidden: dimensionality of hidden state n_layers: number of layers trainable_initial_states: whether to create a special trainable variable to initialize the hidden states of the network or use just zeros seq_lengths: tensor of sequence lengths with dimension [B] initial_h: optional initial hidden state, masks trainable_initial_states if provided initial_c: optional initial cell state, masks trainable_initial_states if provided name: name of the variable scope to use reuse:whether to reuse already initialized variable Returns: h - all hidden states along T dimension, tf.Tensor with dimensionality [B x T x F] h_last - last hidden state, tf.Tensor with dimensionality [B x H] where H - number of hidden units c_last - last cell state, tf.Tensor with dimensionality [B x H] where H - number of hidden units """ with tf.variable_scope(name, reuse=reuse): lstm = tf.contrib.cudnn_rnn.CudnnLSTM(num_layers=n_layers, num_units=n_hidden) if trainable_initial_states: init_h = tf.get_variable('init_h', [n_layers, 1, n_hidden]) init_h = tf.tile(init_h, (1, tf.shape(units)[0], 1)) init_c = tf.get_variable('init_c', [n_layers, 1, n_hidden]) init_c = tf.tile(init_c, (1, tf.shape(units)[0], 1)) else: init_h = init_c = tf.zeros([n_layers, tf.shape(units)[0], n_hidden]) initial_h = initial_h or init_h initial_c = initial_c or init_c h, (h_last, c_last) = lstm(tf.transpose(units, (1, 0, 2)), (initial_h, initial_c)) h = tf.transpose(h, (1, 0, 2)) h_last = h_last[-1] c_last = c_last[-1] # Extract last states if they are provided if seq_lengths is not None: indices = tf.stack([tf.range(tf.shape(h)[0]), seq_lengths-1], axis=1) h_last = tf.gather_nd(h, indices) return h, (h_last, c_last)
CuDNN Compatible LSTM implementation. It should be used to load models saved with CudnnLSTMCell to run on CPU.
def cudnn_compatible_lstm(units, n_hidden, n_layers=1, trainable_initial_states=None, seq_lengths=None, initial_h=None, initial_c=None, name='cudnn_lstm', reuse=False): """ CuDNN Compatible LSTM implementation. It should be used to load models saved with CudnnLSTMCell to run on CPU. Args: units: tf.Tensor with dimensions [B x T x F], where B - batch size T - number of tokens F - features n_hidden: dimensionality of hidden state n_layers: number of layers trainable_initial_states: whether to create a special trainable variable to initialize the hidden states of the network or use just zeros seq_lengths: tensor of sequence lengths with dimension [B] initial_h: optional initial hidden state, masks trainable_initial_states if provided initial_c: optional initial cell state, masks trainable_initial_states if provided name: name of the variable scope to use reuse:whether to reuse already initialized variable Returns: h - all hidden states along T dimension, tf.Tensor with dimensionality [B x T x F] h_last - last hidden state, tf.Tensor with dimensionality [B x H] where H - number of hidden units c_last - last cell state, tf.Tensor with dimensionality [B x H] where H - number of hidden units """ with tf.variable_scope(name, reuse=reuse): if trainable_initial_states: init_h = tf.get_variable('init_h', [n_layers, 1, n_hidden]) init_h = tf.tile(init_h, (1, tf.shape(units)[0], 1)) init_c = tf.get_variable('init_c', [n_layers, 1, n_hidden]) init_c = tf.tile(init_c, (1, tf.shape(units)[0], 1)) else: init_h = init_c = tf.zeros([n_layers, tf.shape(units)[0], n_hidden]) initial_h = initial_h or init_h initial_c = initial_c or init_c with tf.variable_scope('cudnn_lstm', reuse=reuse): def single_cell(): return tf.contrib.cudnn_rnn.CudnnCompatibleLSTMCell(n_hidden) cell = tf.nn.rnn_cell.MultiRNNCell([single_cell() for _ in range(n_layers)]) units = tf.transpose(units, (1, 0, 2)) init = tuple([tf.nn.rnn_cell.LSTMStateTuple(ic, ih) for ih, ic in zip(tf.unstack(initial_h, axis=0), tf.unstack(initial_c, axis=0))]) h, state = tf.nn.dynamic_rnn(cell=cell, inputs=units, time_major=True, initial_state=init) h = tf.transpose(h, (1, 0, 2)) h_last = state[-1].h c_last = state[-1].c # Extract last states if they are provided if seq_lengths is not None: indices = tf.stack([tf.range(tf.shape(h)[0]), seq_lengths-1], axis=1) h_last = tf.gather_nd(h, indices) return h, (h_last, c_last)
Fast CuDNN Bi - GRU implementation
def cudnn_bi_gru(units, n_hidden, seq_lengths=None, n_layers=1, trainable_initial_states=False, name='cudnn_bi_gru', reuse=False): """ Fast CuDNN Bi-GRU implementation Args: units: tf.Tensor with dimensions [B x T x F], where B - batch size T - number of tokens F - features n_hidden: dimensionality of hidden state seq_lengths: number of tokens in each sample in the batch n_layers: number of layers trainable_initial_states: whether to create a special trainable variable to initialize the hidden states of the network or use just zeros name: name of the variable scope to use reuse:whether to reuse already initialized variable Returns: h - all hidden states along T dimension, tf.Tensor with dimensionality [B x T x F] h_last - last hidden state, tf.Tensor with dimensionality [B x H * 2] where H - number of hidden units """ with tf.variable_scope(name, reuse=reuse): if seq_lengths is None: seq_lengths = tf.ones([tf.shape(units)[0]], dtype=tf.int32) * tf.shape(units)[1] with tf.variable_scope('Forward'): h_fw, h_last_fw = cudnn_gru_wrapper(units, n_hidden, n_layers=n_layers, trainable_initial_states=trainable_initial_states, seq_lengths=seq_lengths, reuse=reuse) with tf.variable_scope('Backward'): reversed_units = tf.reverse_sequence(units, seq_lengths=seq_lengths, seq_dim=1, batch_dim=0) h_bw, h_last_bw = cudnn_gru_wrapper(reversed_units, n_hidden, n_layers=n_layers, trainable_initial_states=trainable_initial_states, seq_lengths=seq_lengths, reuse=reuse) h_bw = tf.reverse_sequence(h_bw, seq_lengths=seq_lengths, seq_dim=1, batch_dim=0) return (h_fw, h_bw), (h_last_fw, h_last_bw)
Fast CuDNN Bi - LSTM implementation
def cudnn_bi_lstm(units, n_hidden, seq_lengths=None, n_layers=1, trainable_initial_states=False, name='cudnn_bi_gru', reuse=False): """ Fast CuDNN Bi-LSTM implementation Args: units: tf.Tensor with dimensions [B x T x F], where B - batch size T - number of tokens F - features n_hidden: dimensionality of hidden state seq_lengths: number of tokens in each sample in the batch n_layers: number of layers trainable_initial_states: whether to create a special trainable variable to initialize the hidden states of the network or use just zeros name: name of the variable scope to use reuse:whether to reuse already initialized variable Returns: h - all hidden states along T dimension, tf.Tensor with dimensionality [B x T x F] h_last - last hidden state, tf.Tensor with dimensionality [B x H * 2] where H - number of hidden units c_last - last cell state, tf.Tensor with dimensionality [B x H * 2] where H - number of hidden units """ with tf.variable_scope(name, reuse=reuse): if seq_lengths is None: seq_lengths = tf.ones([tf.shape(units)[0]], dtype=tf.int32) * tf.shape(units)[1] with tf.variable_scope('Forward'): h_fw, (h_fw_last, c_fw_last) = cudnn_lstm_wrapper(units, n_hidden, n_layers=n_layers, trainable_initial_states=trainable_initial_states, seq_lengths=seq_lengths) with tf.variable_scope('Backward'): reversed_units = tf.reverse_sequence(units, seq_lengths=seq_lengths, seq_dim=1, batch_dim=0) h_bw, (h_bw_last, c_bw_last) = cudnn_lstm_wrapper(reversed_units, n_hidden, n_layers=n_layers, trainable_initial_states=trainable_initial_states, seq_lengths=seq_lengths) h_bw = tf.reverse_sequence(h_bw, seq_lengths=seq_lengths, seq_dim=1, batch_dim=0) return (h_fw, h_bw), ((h_fw_last, c_fw_last), (h_bw_last, c_bw_last))
Fast CuDNN Stacked Bi - GRU implementation
def cudnn_stacked_bi_gru(units, n_hidden, seq_lengths=None, n_stacks=2, keep_prob=1.0, concat_stacked_outputs=False, trainable_initial_states=False, name='cudnn_stacked_bi_gru', reuse=False): """ Fast CuDNN Stacked Bi-GRU implementation Args: units: tf.Tensor with dimensions [B x T x F], where B - batch size T - number of tokens F - features n_hidden: dimensionality of hidden state seq_lengths: number of tokens in each sample in the batch n_stacks: number of stacked Bi-GRU keep_prob: dropout keep_prob between Bi-GRUs (intra-layer dropout) concat_stacked_outputs: return last Bi-GRU output or concat outputs from every Bi-GRU, trainable_initial_states: whether to create a special trainable variable to initialize the hidden states of the network or use just zeros name: name of the variable scope to use reuse: whether to reuse already initialized variable Returns: h - all hidden states along T dimension, tf.Tensor with dimensionality [B x T x ((n_hidden * 2) * n_stacks)] """ if seq_lengths is None: seq_lengths = tf.ones([tf.shape(units)[0]], dtype=tf.int32) * tf.shape(units)[1] outputs = [units] with tf.variable_scope(name, reuse=reuse): for n in range(n_stacks): if n == 0: inputs = outputs[-1] else: inputs = variational_dropout(outputs[-1], keep_prob=keep_prob) (h_fw, h_bw), _ = cudnn_bi_gru(inputs, n_hidden, seq_lengths, n_layers=1, trainable_initial_states=trainable_initial_states, name='{}_cudnn_bi_gru'.format(n), reuse=reuse) outputs.append(tf.concat([h_fw, h_bw], axis=2)) if concat_stacked_outputs: return tf.concat(outputs[1:], axis=2) return outputs[-1]