INSTRUCTION
stringlengths
1
8.43k
RESPONSE
stringlengths
75
104k
Get the matrix for a single qubit.
def single_gate_matrix(gate, params=None): """Get the matrix for a single qubit. Args: gate(str): the single qubit gate name params(list): the operation parameters op['params'] Returns: array: A numpy array representing the matrix """ # Converting sym to floats improves the performance of the simulator 10x. # This a is a probable a FIXME since it might show bugs in the simulator. (theta, phi, lam) = map(float, single_gate_params(gate, params)) return np.array([[np.cos(theta / 2), -np.exp(1j * lam) * np.sin(theta / 2)], [np.exp(1j * phi) * np.sin(theta / 2), np.exp(1j * phi + 1j * lam) * np.cos(theta / 2)]])
Return the index string for Numpy. eignsum matrix - matrix multiplication.
def einsum_matmul_index(gate_indices, number_of_qubits): """Return the index string for Numpy.eignsum matrix-matrix multiplication. The returned indices are to perform a matrix multiplication A.B where the matrix A is an M-qubit matrix, matrix B is an N-qubit matrix, and M <= N, and identity matrices are implied on the subsystems where A has no support on B. Args: gate_indices (list[int]): the indices of the right matrix subsystems to contract with the left matrix. number_of_qubits (int): the total number of qubits for the right matrix. Returns: str: An indices string for the Numpy.einsum function. """ mat_l, mat_r, tens_lin, tens_lout = _einsum_matmul_index_helper(gate_indices, number_of_qubits) # Right indices for the N-qubit input and output tensor tens_r = ascii_uppercase[:number_of_qubits] # Combine indices into matrix multiplication string format # for numpy.einsum function return "{mat_l}{mat_r}, ".format(mat_l=mat_l, mat_r=mat_r) + \ "{tens_lin}{tens_r}->{tens_lout}{tens_r}".format(tens_lin=tens_lin, tens_lout=tens_lout, tens_r=tens_r)
Return the index string for Numpy. eignsum matrix - vector multiplication.
def einsum_vecmul_index(gate_indices, number_of_qubits): """Return the index string for Numpy.eignsum matrix-vector multiplication. The returned indices are to perform a matrix multiplication A.v where the matrix A is an M-qubit matrix, vector v is an N-qubit vector, and M <= N, and identity matrices are implied on the subsystems where A has no support on v. Args: gate_indices (list[int]): the indices of the right matrix subsystems to contract with the left matrix. number_of_qubits (int): the total number of qubits for the right matrix. Returns: str: An indices string for the Numpy.einsum function. """ mat_l, mat_r, tens_lin, tens_lout = _einsum_matmul_index_helper(gate_indices, number_of_qubits) # Combine indices into matrix multiplication string format # for numpy.einsum function return "{mat_l}{mat_r}, ".format(mat_l=mat_l, mat_r=mat_r) + \ "{tens_lin}->{tens_lout}".format(tens_lin=tens_lin, tens_lout=tens_lout)
Return the index string for Numpy. eignsum matrix multiplication.
def _einsum_matmul_index_helper(gate_indices, number_of_qubits): """Return the index string for Numpy.eignsum matrix multiplication. The returned indices are to perform a matrix multiplication A.v where the matrix A is an M-qubit matrix, matrix v is an N-qubit vector, and M <= N, and identity matrices are implied on the subsystems where A has no support on v. Args: gate_indices (list[int]): the indices of the right matrix subsystems to contract with the left matrix. number_of_qubits (int): the total number of qubits for the right matrix. Returns: tuple: (mat_left, mat_right, tens_in, tens_out) of index strings for that may be combined into a Numpy.einsum function string. Raises: QiskitError: if the total number of qubits plus the number of contracted indices is greater than 26. """ # Since we use ASCII alphabet for einsum index labels we are limited # to 26 total free left (lowercase) and 26 right (uppercase) indexes. # The rank of the contracted tensor reduces this as we need to use that # many characters for the contracted indices if len(gate_indices) + number_of_qubits > 26: raise QiskitError("Total number of free indexes limited to 26") # Indicies for N-qubit input tensor tens_in = ascii_lowercase[:number_of_qubits] # Indices for the N-qubit output tensor tens_out = list(tens_in) # Left and right indices for the M-qubit multiplying tensor mat_left = "" mat_right = "" # Update left indices for mat and output for pos, idx in enumerate(reversed(gate_indices)): mat_left += ascii_lowercase[-1 - pos] mat_right += tens_in[-1 - idx] tens_out[-1 - idx] = ascii_lowercase[-1 - pos] tens_out = "".join(tens_out) # Combine indices into matrix multiplication string format # for numpy.einsum function return mat_left, mat_right, tens_in, tens_out
Build a DAGCircuit object from a QuantumCircuit.
def circuit_to_dag(circuit): """Build a ``DAGCircuit`` object from a ``QuantumCircuit``. Args: circuit (QuantumCircuit): the input circuit. Return: DAGCircuit: the DAG representing the input circuit. """ dagcircuit = DAGCircuit() dagcircuit.name = circuit.name for register in circuit.qregs: dagcircuit.add_qreg(register) for register in circuit.cregs: dagcircuit.add_creg(register) for instruction, qargs, cargs in circuit.data: # Get arguments for classical control (if any) if instruction.control is None: control = None else: control = (instruction.control[0], instruction.control[1]) dagcircuit.apply_operation_back(instruction.copy(), qargs, cargs, control) return dagcircuit
Function used to fit the exponential decay.
def exp_fit_fun(x, a, tau, c): """Function used to fit the exponential decay.""" # pylint: disable=invalid-name return a * np.exp(-x / tau) + c
Function used to fit the decay cosine.
def osc_fit_fun(x, a, tau, f, phi, c): """Function used to fit the decay cosine.""" # pylint: disable=invalid-name return a * np.exp(-x / tau) * np.cos(2 * np.pi * f * x + phi) + c
Plot coherence data.
def plot_coherence(xdata, ydata, std_error, fit, fit_function, xunit, exp_str, qubit_label): """Plot coherence data. Args: xdata ydata std_error fit fit_function xunit exp_str qubit_label Raises: ImportError: If matplotlib is not installed. """ if not HAS_MATPLOTLIB: raise ImportError('The function plot_coherence needs matplotlib. ' 'Run "pip install matplotlib" before.') plt.errorbar(xdata, ydata, std_error, marker='.', markersize=9, c='b', linestyle='') plt.plot(xdata, fit_function(xdata, *fit), c='r', linestyle='--', label=(exp_str + '= %s %s' % (str(round(fit[1])), xunit))) plt.xticks(fontsize=14, rotation=70) plt.yticks(fontsize=14) plt.xlabel('time [%s]' % (xunit), fontsize=16) plt.ylabel('P(1)', fontsize=16) plt.title(exp_str + ' measurement of Q$_{%s}$' % (str(qubit_label)), fontsize=18) plt.legend(fontsize=12) plt.grid(True) plt.show()
Take the raw rb data and convert it into averages and std dev
def shape_rb_data(raw_rb): """Take the raw rb data and convert it into averages and std dev Args: raw_rb (numpy.array): m x n x l list where m is the number of seeds, n is the number of Clifford sequences and l is the number of qubits Return: numpy_array: 2 x n x l list where index 0 is the mean over seeds, 1 is the std dev overseeds """ rb_data = [] rb_data.append(np.mean(raw_rb, 0)) rb_data.append(np.std(raw_rb, 0)) return rb_data
Take the rb fit data and convert it into EPC ( error per Clifford )
def rb_epc(fit, rb_pattern): """Take the rb fit data and convert it into EPC (error per Clifford) Args: fit (dict): dictionary of the fit quantities (A, alpha, B) with the keys 'qn' where n is the qubit and subkeys 'fit', e.g. {'q0':{'fit': [1, 0, 0.9], 'fiterr': [0, 0, 0]}}} rb_pattern (list): (see randomized benchmarking functions). Pattern which specifies which qubits performing RB with which qubits. E.g. [[1],[0,2]] is Q1 doing 1Q RB simultaneously with Q0/Q2 doing 2Q RB Return: dict: updates the passed in fit dictionary with the epc """ for patterns in rb_pattern: for qubit in patterns: fitalpha = fit['q%d' % qubit]['fit'][1] fitalphaerr = fit['q%d' % qubit]['fiterr'][1] nrb = 2 ** len(patterns) fit['q%d' % qubit]['fit_calcs'] = {} fit['q%d' % qubit]['fit_calcs']['epc'] = [(nrb - 1) / nrb * (1 - fitalpha), fitalphaerr / fitalpha] fit['q%d' % qubit]['fit_calcs']['epc'][1] *= fit['q%d' % qubit]['fit_calcs']['epc'][0] return fit
Plot randomized benchmarking data.
def plot_rb_data(xdata, ydatas, yavg, yerr, fit, survival_prob, ax=None, show_plt=True): """Plot randomized benchmarking data. Args: xdata (list): list of subsequence lengths ydatas (list): list of lists of survival probabilities for each sequence yavg (list): mean of the survival probabilities at each sequence length yerr (list): error of the survival fit (list): fit parameters survival_prob (callable): function that computes survival probability ax (Axes or None): plot axis (if passed in) show_plt (bool): display the plot. Raises: ImportError: If matplotlib is not installed. """ # pylint: disable=invalid-name if not HAS_MATPLOTLIB: raise ImportError('The function plot_rb_data needs matplotlib. ' 'Run "pip install matplotlib" before.') if ax is None: plt.figure() ax = plt.gca() # Plot the result for each sequence for ydata in ydatas: ax.plot(xdata, ydata, color='gray', linestyle='none', marker='x') # Plot the mean with error bars ax.errorbar(xdata, yavg, yerr=yerr, color='r', linestyle='--', linewidth=3) # Plot the fit ax.plot(xdata, survival_prob(xdata, *fit), color='blue', linestyle='-', linewidth=2) ax.tick_params(labelsize=14) # ax.tick_params(axis='x',labelrotation=70) ax.set_xlabel('Clifford Length', fontsize=16) ax.set_ylabel('Z', fontsize=16) ax.grid(True) if show_plt: plt.show()
Finds runs containing parameterized gates and splits them into sequential runs excluding the parameterized gates.
def _split_runs_on_parameters(runs): """Finds runs containing parameterized gates and splits them into sequential runs excluding the parameterized gates. """ def _is_dagnode_parameterized(node): return any(isinstance(param, Parameter) for param in node.op.params) out = [] for run in runs: groups = groupby(run, _is_dagnode_parameterized) for group_is_parameterized, gates in groups: if not group_is_parameterized: out.append(list(gates)) return out
Return a new circuit that has been optimized.
def run(self, dag): """Return a new circuit that has been optimized.""" runs = dag.collect_runs(["u1", "u2", "u3", "id"]) runs = _split_runs_on_parameters(runs) for run in runs: right_name = "u1" right_parameters = (0, 0, 0) # (theta, phi, lambda) for current_node in run: left_name = current_node.name if (current_node.condition is not None or len(current_node.qargs) != 1 or left_name not in ["u1", "u2", "u3", "id"]): raise TranspilerError("internal error") if left_name == "u1": left_parameters = (0, 0, current_node.op.params[0]) elif left_name == "u2": left_parameters = (np.pi / 2, current_node.op.params[0], current_node.op.params[1]) elif left_name == "u3": left_parameters = tuple(current_node.op.params) else: left_name = "u1" # replace id with u1 left_parameters = (0, 0, 0) # If there are any sympy objects coming from the gate convert # to numpy. left_parameters = tuple([float(x) for x in left_parameters]) # Compose gates name_tuple = (left_name, right_name) if name_tuple == ("u1", "u1"): # u1(lambda1) * u1(lambda2) = u1(lambda1 + lambda2) right_parameters = (0, 0, right_parameters[2] + left_parameters[2]) elif name_tuple == ("u1", "u2"): # u1(lambda1) * u2(phi2, lambda2) = u2(phi2 + lambda1, lambda2) right_parameters = (np.pi / 2, right_parameters[1] + left_parameters[2], right_parameters[2]) elif name_tuple == ("u2", "u1"): # u2(phi1, lambda1) * u1(lambda2) = u2(phi1, lambda1 + lambda2) right_name = "u2" right_parameters = (np.pi / 2, left_parameters[1], right_parameters[2] + left_parameters[2]) elif name_tuple == ("u1", "u3"): # u1(lambda1) * u3(theta2, phi2, lambda2) = # u3(theta2, phi2 + lambda1, lambda2) right_parameters = (right_parameters[0], right_parameters[1] + left_parameters[2], right_parameters[2]) elif name_tuple == ("u3", "u1"): # u3(theta1, phi1, lambda1) * u1(lambda2) = # u3(theta1, phi1, lambda1 + lambda2) right_name = "u3" right_parameters = (left_parameters[0], left_parameters[1], right_parameters[2] + left_parameters[2]) elif name_tuple == ("u2", "u2"): # Using Ry(pi/2).Rz(2*lambda).Ry(pi/2) = # Rz(pi/2).Ry(pi-2*lambda).Rz(pi/2), # u2(phi1, lambda1) * u2(phi2, lambda2) = # u3(pi - lambda1 - phi2, phi1 + pi/2, lambda2 + pi/2) right_name = "u3" right_parameters = (np.pi - left_parameters[2] - right_parameters[1], left_parameters[1] + np.pi / 2, right_parameters[2] + np.pi / 2) elif name_tuple[1] == "nop": right_name = left_name right_parameters = left_parameters else: # For composing u3's or u2's with u3's, use # u2(phi, lambda) = u3(pi/2, phi, lambda) # together with the qiskit.mapper.compose_u3 method. right_name = "u3" # Evaluate the symbolic expressions for efficiency right_parameters = Optimize1qGates.compose_u3(left_parameters[0], left_parameters[1], left_parameters[2], right_parameters[0], right_parameters[1], right_parameters[2]) # Why evalf()? This program: # OPENQASM 2.0; # include "qelib1.inc"; # qreg q[2]; # creg c[2]; # u3(0.518016983430947*pi,1.37051598592907*pi,1.36816383603222*pi) q[0]; # u3(1.69867232277986*pi,0.371448347747471*pi,0.461117217930936*pi) q[0]; # u3(0.294319836336836*pi,0.450325871124225*pi,1.46804720442555*pi) q[0]; # measure q -> c; # took >630 seconds (did not complete) to optimize without # calling evalf() at all, 19 seconds to optimize calling # evalf() AFTER compose_u3, and 1 second to optimize # calling evalf() BEFORE compose_u3. # 1. Here down, when we simplify, we add f(theta) to lambda to # correct the global phase when f(theta) is 2*pi. This isn't # necessary but the other steps preserve the global phase, so # we continue in that manner. # 2. The final step will remove Z rotations by 2*pi. # 3. Note that is_zero is true only if the expression is exactly # zero. If the input expressions have already been evaluated # then these final simplifications will not occur. # TODO After we refactor, we should have separate passes for # exact and approximate rewriting. # Y rotation is 0 mod 2*pi, so the gate is a u1 if np.mod(right_parameters[0], (2 * np.pi)) == 0 \ and right_name != "u1": right_name = "u1" right_parameters = (0, 0, right_parameters[1] + right_parameters[2] + right_parameters[0]) # Y rotation is pi/2 or -pi/2 mod 2*pi, so the gate is a u2 if right_name == "u3": # theta = pi/2 + 2*k*pi if np.mod((right_parameters[0] - np.pi / 2), (2 * np.pi)) == 0: right_name = "u2" right_parameters = (np.pi / 2, right_parameters[1], right_parameters[2] + (right_parameters[0] - np.pi / 2)) # theta = -pi/2 + 2*k*pi if np.mod((right_parameters[0] + np.pi / 2), (2 * np.pi)) == 0: right_name = "u2" right_parameters = (np.pi / 2, right_parameters[1] + np.pi, right_parameters[2] - np.pi + (right_parameters[0] + np.pi / 2)) # u1 and lambda is 0 mod 2*pi so gate is nop (up to a global phase) if right_name == "u1" and np.mod(right_parameters[2], (2 * np.pi)) == 0: right_name = "nop" # Replace the the first node in the run with a dummy DAG which contains a dummy # qubit. The name is irrelevant, because substitute_node_with_dag will take care of # putting it in the right place. run_qarg = (QuantumRegister(1, 'q'), 0) new_op = Gate(name="", num_qubits=1, params=[]) if right_name == "u1": new_op = U1Gate(right_parameters[2]) if right_name == "u2": new_op = U2Gate(right_parameters[1], right_parameters[2]) if right_name == "u3": new_op = U3Gate(*right_parameters) if right_name != 'nop': new_dag = DAGCircuit() new_dag.add_qreg(run_qarg[0]) new_dag.apply_operation_back(new_op, [run_qarg], []) dag.substitute_node_with_dag(run[0], new_dag) # Delete the other nodes in the run for current_node in run[1:]: dag.remove_op_node(current_node) if right_name == "nop": dag.remove_op_node(run[0]) return dag
Return a triple theta phi lambda for the product.
def compose_u3(theta1, phi1, lambda1, theta2, phi2, lambda2): """Return a triple theta, phi, lambda for the product. u3(theta, phi, lambda) = u3(theta1, phi1, lambda1).u3(theta2, phi2, lambda2) = Rz(phi1).Ry(theta1).Rz(lambda1+phi2).Ry(theta2).Rz(lambda2) = Rz(phi1).Rz(phi').Ry(theta').Rz(lambda').Rz(lambda2) = u3(theta', phi1 + phi', lambda2 + lambda') Return theta, phi, lambda. """ # Careful with the factor of two in yzy_to_zyz thetap, phip, lambdap = Optimize1qGates.yzy_to_zyz((lambda1 + phi2), theta1, theta2) (theta, phi, lamb) = (thetap, phi1 + phip, lambda2 + lambdap) return (theta, phi, lamb)
Express a Y. Z. Y single qubit gate as a Z. Y. Z gate.
def yzy_to_zyz(xi, theta1, theta2, eps=1e-9): # pylint: disable=invalid-name """Express a Y.Z.Y single qubit gate as a Z.Y.Z gate. Solve the equation .. math:: Ry(theta1).Rz(xi).Ry(theta2) = Rz(phi).Ry(theta).Rz(lambda) for theta, phi, and lambda. Return a solution theta, phi, and lambda. """ quaternion_yzy = quaternion_from_euler([theta1, xi, theta2], 'yzy') euler = quaternion_yzy.to_zyz() quaternion_zyz = quaternion_from_euler(euler, 'zyz') # output order different than rotation order out_angles = (euler[1], euler[0], euler[2]) abs_inner = abs(quaternion_zyz.data.dot(quaternion_yzy.data)) if not np.allclose(abs_inner, 1, eps): raise TranspilerError('YZY and ZYZ angles do not give same rotation matrix.') out_angles = tuple(0 if np.abs(angle) < _CHOP_THRESHOLD else angle for angle in out_angles) return out_angles
Extend the layout with new ( physical qubit virtual qubit ) pairs.
def run(self, dag): """ Extend the layout with new (physical qubit, virtual qubit) pairs. The dag signals which virtual qubits are already in the circuit. This pass will allocate new virtual qubits such that no collision occurs (i.e. Layout bijectivity is preserved) The coupling_map and layout together determine which physical qubits are free. Args: dag (DAGCircuit): circuit to analyze Returns: DAGCircuit: returns the same dag circuit, unmodified Raises: TranspilerError: If there is not layout in the property set or not set at init time. """ self.layout = self.layout or self.property_set.get('layout') if self.layout is None: raise TranspilerError("FullAncilla pass requires property_set[\"layout\"] or" " \"layout\" parameter to run") layout_physical_qubits = self.layout.get_physical_bits().keys() coupling_physical_qubits = self.coupling_map.physical_qubits idle_physical_qubits = [q for q in coupling_physical_qubits if q not in layout_physical_qubits] if idle_physical_qubits: if self.ancilla_name in dag.qregs: save_prefix = QuantumRegister.prefix QuantumRegister.prefix = self.ancilla_name qreg = QuantumRegister(len(idle_physical_qubits)) QuantumRegister.prefix = save_prefix else: qreg = QuantumRegister(len(idle_physical_qubits), name=self.ancilla_name) for idx, idle_q in enumerate(idle_physical_qubits): self.property_set['layout'][idle_q] = qreg[idx] return dag
Validates the input to state visualization functions.
def _validate_input_state(quantum_state): """Validates the input to state visualization functions. Args: quantum_state (ndarray): Input state / density matrix. Returns: rho: A 2d numpy array for the density matrix. Raises: VisualizationError: Invalid input. """ rho = np.asarray(quantum_state) if rho.ndim == 1: rho = np.outer(rho, np.conj(rho)) # Check the shape of the input is a square matrix shape = np.shape(rho) if len(shape) != 2 or shape[0] != shape[1]: raise VisualizationError("Input is not a valid quantum state.") # Check state is an n-qubit state num = int(np.log2(rho.shape[0])) if 2 ** num != rho.shape[0]: raise VisualizationError("Input is not a multi-qubit quantum state.") return rho
Trim a PIL image and remove white space.
def _trim(image): """Trim a PIL image and remove white space.""" background = PIL.Image.new(image.mode, image.size, image.getpixel((0, 0))) diff = PIL.ImageChops.difference(image, background) diff = PIL.ImageChops.add(diff, diff, 2.0, -100) bbox = diff.getbbox() if bbox: image = image.crop(bbox) return image
Given a circuit return a tuple ( qregs cregs ops ) where qregs and cregs are the quantum and classical registers in order ( based on reverse_bits ) and ops is a list of DAG nodes which type is operation. Args: circuit ( QuantumCircuit ): From where the information is extracted. reverse_bits ( bool ): If true the order of the bits in the registers is reversed. justify ( str ): left right or none. Defaults to left. Says how the circuit should be justified. Returns: Tuple ( list list list ): To be consumed by the visualizer directly.
def _get_layered_instructions(circuit, reverse_bits=False, justify=None): """ Given a circuit, return a tuple (qregs, cregs, ops) where qregs and cregs are the quantum and classical registers in order (based on reverse_bits) and ops is a list of DAG nodes which type is "operation". Args: circuit (QuantumCircuit): From where the information is extracted. reverse_bits (bool): If true the order of the bits in the registers is reversed. justify (str) : `left`, `right` or `none`. Defaults to `left`. Says how the circuit should be justified. Returns: Tuple(list,list,list): To be consumed by the visualizer directly. """ if justify: justify = justify.lower() # default to left justify = justify if justify in ('right', 'none') else 'left' dag = circuit_to_dag(circuit) ops = [] qregs = [] cregs = [] for qreg in dag.qregs.values(): qregs += [(qreg, bitno) for bitno in range(qreg.size)] for creg in dag.cregs.values(): cregs += [(creg, bitno) for bitno in range(creg.size)] if justify == 'none': for node in dag.topological_op_nodes(): ops.append([node]) if justify == 'left': for dag_layer in dag.layers(): layers = [] current_layer = [] dag_nodes = dag_layer['graph'].op_nodes() dag_nodes.sort(key=lambda nd: nd._node_id) for node in dag_nodes: multibit_gate = len(node.qargs) + len(node.cargs) > 1 if multibit_gate: # need to see if it crosses over any other nodes gate_span = _get_gate_span(qregs, node) all_indices = [] for check_node in dag_nodes: if check_node != node: all_indices += _get_gate_span(qregs, check_node) if any(i in gate_span for i in all_indices): # needs to be a new layer layers.append([node]) else: # can be added current_layer.append(node) else: current_layer.append(node) if current_layer: layers.append(current_layer) ops += layers if justify == 'right': dag_layers = [] for dag_layer in dag.layers(): dag_layers.append(dag_layer) # Have to work from the end of the circuit dag_layers.reverse() # Dict per layer, keys are qubits and values are the gate layer_dicts = [{}] for dag_layer in dag_layers: dag_instructions = dag_layer['graph'].op_nodes() # sort into the order they were input dag_instructions.sort(key=lambda nd: nd._node_id) for instruction_node in dag_instructions: gate_span = _get_gate_span(qregs, instruction_node) added = False for i in range(len(layer_dicts)): # iterate from the end curr_dict = layer_dicts[-1 - i] if any(index in curr_dict for index in gate_span): added = True if i == 0: new_dict = {} for index in gate_span: new_dict[index] = instruction_node layer_dicts.append(new_dict) else: curr_dict = layer_dicts[-i] for index in gate_span: curr_dict[index] = instruction_node break if not added: for index in gate_span: layer_dicts[0][index] = instruction_node # need to convert from dict format to layers layer_dicts.reverse() ops = [list(layer.values()) for layer in layer_dicts] if reverse_bits: qregs.reverse() cregs.reverse() return qregs, cregs, ops
Get the list of qubits drawing this gate would cover
def _get_gate_span(qregs, instruction): """Get the list of qubits drawing this gate would cover""" min_index = len(qregs) max_index = 0 for qreg in instruction.qargs: index = qregs.index(qreg) if index < min_index: min_index = index if index > max_index: max_index = index if instruction.cargs: return qregs[min_index:] return qregs[min_index:max_index + 1]
Build an Instruction object from a QuantumCircuit.
def circuit_to_instruction(circuit): """Build an ``Instruction`` object from a ``QuantumCircuit``. The instruction is anonymous (not tied to a named quantum register), and so can be inserted into another circuit. The instruction will have the same string name as the circuit. Args: circuit (QuantumCircuit): the input circuit. Return: Instruction: an instruction equivalent to the action of the input circuit. Upon decomposition, this instruction will yield the components comprising the original circuit. """ instruction = Instruction(name=circuit.name, num_qubits=sum([qreg.size for qreg in circuit.qregs]), num_clbits=sum([creg.size for creg in circuit.cregs]), params=[]) instruction.control = None def find_bit_position(bit): """find the index of a given bit (Register, int) within a flat ordered list of bits of the circuit """ if isinstance(bit[0], QuantumRegister): ordered_regs = circuit.qregs else: ordered_regs = circuit.cregs reg_index = ordered_regs.index(bit[0]) return sum([reg.size for reg in ordered_regs[:reg_index]]) + bit[1] definition = circuit.data.copy() if instruction.num_qubits > 0: q = QuantumRegister(instruction.num_qubits, 'q') if instruction.num_clbits > 0: c = ClassicalRegister(instruction.num_clbits, 'c') definition = list(map(lambda x: (x[0], list(map(lambda y: (q, find_bit_position(y)), x[1])), list(map(lambda y: (c, find_bit_position(y)), x[2]))), definition)) instruction.definition = definition return instruction
Pick a convenient layout depending on the best matching qubit connectivity and set the property layout.
def run(self, dag): """ Pick a convenient layout depending on the best matching qubit connectivity, and set the property `layout`. Args: dag (DAGCircuit): DAG to find layout for. Raises: TranspilerError: if dag wider than self.coupling_map """ num_dag_qubits = sum([qreg.size for qreg in dag.qregs.values()]) if num_dag_qubits > self.coupling_map.size(): raise TranspilerError('Number of qubits greater than device.') best_sub = self._best_subset(num_dag_qubits) layout = Layout() map_iter = 0 for qreg in dag.qregs.values(): for i in range(qreg.size): layout[(qreg, i)] = int(best_sub[map_iter]) map_iter += 1 self.property_set['layout'] = layout
Computes the qubit mapping with the best connectivity.
def _best_subset(self, n_qubits): """Computes the qubit mapping with the best connectivity. Args: n_qubits (int): Number of subset qubits to consider. Returns: ndarray: Array of qubits to use for best connectivity mapping. """ if n_qubits == 1: return np.array([0]) device_qubits = self.coupling_map.size() cmap = np.asarray(self.coupling_map.get_edges()) data = np.ones_like(cmap[:, 0]) sp_cmap = sp.coo_matrix((data, (cmap[:, 0], cmap[:, 1])), shape=(device_qubits, device_qubits)).tocsr() best = 0 best_map = None # do bfs with each node as starting point for k in range(sp_cmap.shape[0]): bfs = cs.breadth_first_order(sp_cmap, i_start=k, directed=False, return_predecessors=False) connection_count = 0 sub_graph = [] for i in range(n_qubits): node_idx = bfs[i] for j in range(sp_cmap.indptr[node_idx], sp_cmap.indptr[node_idx + 1]): node = sp_cmap.indices[j] for counter in range(n_qubits): if node == bfs[counter]: connection_count += 1 sub_graph.append([node_idx, node]) break if connection_count > best: best = connection_count best_map = bfs[0:n_qubits] # Return a best mapping that has reduced bandwidth mapping = {} for edge in range(best_map.shape[0]): mapping[best_map[edge]] = edge new_cmap = [[mapping[c[0]], mapping[c[1]]] for c in sub_graph] rows = [edge[0] for edge in new_cmap] cols = [edge[1] for edge in new_cmap] data = [1]*len(rows) sp_sub_graph = sp.coo_matrix((data, (rows, cols)), shape=(n_qubits, n_qubits)).tocsr() perm = cs.reverse_cuthill_mckee(sp_sub_graph) best_map = best_map[perm] return best_map
Return True if completely - positive trace - preserving.
def is_cptp(self, atol=None, rtol=None): """Return True if completely-positive trace-preserving.""" if self._data[1] is not None: return False if atol is None: atol = self._atol if rtol is None: rtol = self._rtol accum = 0j for op in self._data[0]: accum += np.dot(np.transpose(np.conj(op)), op) return is_identity_matrix(accum, rtol=rtol, atol=atol)
Return the conjugate of the QuantumChannel.
def conjugate(self): """Return the conjugate of the QuantumChannel.""" kraus_l, kraus_r = self._data kraus_l = [k.conj() for k in kraus_l] if kraus_r is not None: kraus_r = [k.conj() for k in kraus_r] return Kraus((kraus_l, kraus_r), self.input_dims(), self.output_dims())
Return the transpose of the QuantumChannel.
def transpose(self): """Return the transpose of the QuantumChannel.""" kraus_l, kraus_r = self._data kraus_l = [k.T for k in kraus_l] if kraus_r is not None: kraus_r = [k.T for k in kraus_r] return Kraus((kraus_l, kraus_r), input_dims=self.output_dims(), output_dims=self.input_dims())
Return the composition channel self∘other.
def compose(self, other, qargs=None, front=False): """Return the composition channel self∘other. Args: other (QuantumChannel): a quantum channel subclass. qargs (list): a list of subsystem positions to compose other on. front (bool): If False compose in standard order other(self(input)) otherwise compose in reverse order self(other(input)) [default: False] Returns: Kraus: The composition channel as a Kraus object. Raises: QiskitError: if other cannot be converted to a channel, or has incompatible dimensions. """ if qargs is not None: return Kraus( SuperOp(self).compose(other, qargs=qargs, front=front)) if not isinstance(other, Kraus): other = Kraus(other) # Check dimensions match up if front and self._input_dim != other._output_dim: raise QiskitError( 'input_dim of self must match output_dim of other') if not front and self._output_dim != other._input_dim: raise QiskitError( 'input_dim of other must match output_dim of self') if front: ka_l, ka_r = self._data kb_l, kb_r = other._data input_dim = other._input_dim output_dim = self._output_dim else: ka_l, ka_r = other._data kb_l, kb_r = self._data input_dim = self._input_dim output_dim = other._output_dim kab_l = [np.dot(a, b) for a in ka_l for b in kb_l] if ka_r is None and kb_r is None: kab_r = None elif ka_r is None: kab_r = [np.dot(a, b) for a in ka_l for b in kb_r] elif kb_r is None: kab_r = [np.dot(a, b) for a in ka_r for b in kb_l] else: kab_r = [np.dot(a, b) for a in ka_r for b in kb_r] return Kraus((kab_l, kab_r), input_dim, output_dim)
The matrix power of the channel.
def power(self, n): """The matrix power of the channel. Args: n (int): compute the matrix power of the superoperator matrix. Returns: Kraus: the matrix power of the SuperOp converted to a Kraus channel. Raises: QiskitError: if the input and output dimensions of the QuantumChannel are not equal, or the power is not an integer. """ if n > 0: return super().power(n) return Kraus(SuperOp(self).power(n))
Return the QuantumChannel self + other.
def multiply(self, other): """Return the QuantumChannel self + other. Args: other (complex): a complex number. Returns: Kraus: the scalar multiplication other * self as a Kraus object. Raises: QiskitError: if other is not a valid scalar. """ if not isinstance(other, Number): raise QiskitError("other is not a number") # If the number is complex we need to convert to general # kraus channel so we multiply via Choi representation if isinstance(other, complex) or other < 0: # Convert to Choi-matrix return Kraus(Choi(self).multiply(other)) # If the number is real we can update the Kraus operators # directly val = np.sqrt(other) kraus_r = None kraus_l = [val * k for k in self._data[0]] if self._data[1] is not None: kraus_r = [val * k for k in self._data[1]] return Kraus((kraus_l, kraus_r), self._input_dim, self._output_dim)
Evolve a quantum state by the QuantumChannel.
def _evolve(self, state, qargs=None): """Evolve a quantum state by the QuantumChannel. Args: state (QuantumState): The input statevector or density matrix. qargs (list): a list of QuantumState subsystem positions to apply the operator on. Returns: QuantumState: the output quantum state. Raises: QiskitError: if the operator dimension does not match the specified QuantumState subsystem dimensions. """ # If subsystem evolution we use the SuperOp representation if qargs is not None: return SuperOp(self)._evolve(state, qargs) # Otherwise we compute full evolution directly state = self._format_state(state) if state.shape[0] != self._input_dim: raise QiskitError( "QuantumChannel input dimension is not equal to state dimension." ) if state.ndim == 1 and self._data[1] is None and len( self._data[0]) == 1: # If we only have a single Kraus operator we can implement unitary-type # evolution of a state vector psi -> K[0].psi return np.dot(self._data[0][0], state) # Otherwise we always return a density matrix state = self._format_state(state, density_matrix=True) kraus_l, kraus_r = self._data if kraus_r is None: kraus_r = kraus_l return np.einsum('AiB,BC,AjC->ij', kraus_l, state, np.conjugate(kraus_r))
Return the tensor product channel.
def _tensor_product(self, other, reverse=False): """Return the tensor product channel. Args: other (QuantumChannel): a quantum channel subclass. reverse (bool): If False return self ⊗ other, if True return if True return (other ⊗ self) [Default: False Returns: Kraus: the tensor product channel as a Kraus object. Raises: QiskitError: if other cannot be converted to a channel. """ # Convert other to Kraus if not isinstance(other, Kraus): other = Kraus(other) # Get tensor matrix ka_l, ka_r = self._data kb_l, kb_r = other._data if reverse: input_dims = self.input_dims() + other.input_dims() output_dims = self.output_dims() + other.output_dims() kab_l = [np.kron(b, a) for a in ka_l for b in kb_l] else: input_dims = other.input_dims() + self.input_dims() output_dims = other.output_dims() + self.output_dims() kab_l = [np.kron(a, b) for a in ka_l for b in kb_l] if ka_r is None and kb_r is None: kab_r = None else: if ka_r is None: ka_r = ka_l if kb_r is None: kb_r = kb_l if reverse: kab_r = [np.kron(b, a) for a in ka_r for b in kb_r] else: kab_r = [np.kron(a, b) for a in ka_r for b in kb_r] data = (kab_l, kab_r) return Kraus(data, input_dims, output_dims)
A decorator for generating SamplePulse from python callable. Args: func ( callable ): A function describing pulse envelope. Raises: PulseError: when invalid function is specified.
def functional_pulse(func): """A decorator for generating SamplePulse from python callable. Args: func (callable): A function describing pulse envelope. Raises: PulseError: when invalid function is specified. """ @functools.wraps(func) def to_pulse(duration, *args, name=None, **kwargs): """Return SamplePulse.""" if isinstance(duration, int) and duration > 0: samples = func(duration, *args, **kwargs) samples = np.asarray(samples, dtype=np.complex128) return SamplePulse(samples=samples, name=name) raise PulseError('The first argument must be an integer value representing duration.') return to_pulse
Return the correspond floating point number.
def real(self, nested_scope=None): """Return the correspond floating point number.""" operation = self.children[0].operation() lhs = self.children[1].real(nested_scope) rhs = self.children[2].real(nested_scope) return operation(lhs, rhs)
Return the correspond symbolic number.
def sym(self, nested_scope=None): """Return the correspond symbolic number.""" operation = self.children[0].operation() lhs = self.children[1].sym(nested_scope) rhs = self.children[2].sym(nested_scope) return operation(lhs, rhs)
Apply barrier to circuit. If qargs is None applies to all the qbits. Args is a list of QuantumRegister or single qubits. For QuantumRegister applies barrier to all the qubits in that register.
def barrier(self, *qargs): """Apply barrier to circuit. If qargs is None, applies to all the qbits. Args is a list of QuantumRegister or single qubits. For QuantumRegister, applies barrier to all the qubits in that register.""" qubits = [] qargs = _convert_to_bits(qargs, [qbit for qreg in self.qregs for qbit in qreg]) if not qargs: # None for qreg in self.qregs: for j in range(qreg.size): qubits.append((qreg, j)) for qarg in qargs: if isinstance(qarg, (QuantumRegister, list)): if isinstance(qarg, QuantumRegister): qubits.extend([(qarg, j) for j in range(qarg.size)]) else: qubits.extend(qarg) else: qubits.append(qarg) return self.append(Barrier(len(qubits)), qubits, [])
Compute the mean value of an diagonal observable.
def average_data(counts, observable): """Compute the mean value of an diagonal observable. Takes in a diagonal observable in dictionary, list or matrix format and then calculates the sum_i value(i) P(i) where value(i) is the value of the observable for state i. Args: counts (dict): a dict of outcomes from an experiment observable (dict or matrix or list): The observable to be averaged over. As an example, ZZ on qubits can be given as: * dict: {"00": 1, "11": 1, "01": -1, "10": -1} * matrix: [[1, 0, 0, 0], [0, -1, 0, 0, ], [0, 0, -1, 0], [0, 0, 0, 1]] * matrix diagonal (list): [1, -1, -1, 1] Returns: Double: Average of the observable """ if not isinstance(observable, dict): observable = make_dict_observable(observable) temp = 0 tot = sum(counts.values()) for key in counts: if key in observable: temp += counts[key] * observable[key] / tot return temp
Process an Id or IndexedId node as a bit or register type.
def _process_bit_id(self, node): """Process an Id or IndexedId node as a bit or register type. Return a list of tuples (Register,index). """ # pylint: disable=inconsistent-return-statements reg = None if node.name in self.dag.qregs: reg = self.dag.qregs[node.name] elif node.name in self.dag.cregs: reg = self.dag.cregs[node.name] else: raise QiskitError("expected qreg or creg name:", "line=%s" % node.line, "file=%s" % node.file) if node.type == "indexed_id": # An indexed bit or qubit return [(reg, node.index)] elif node.type == "id": # A qubit or qreg or creg if not self.bit_stack[-1]: # Global scope return [(reg, j) for j in range(reg.size)] else: # local scope if node.name in self.bit_stack[-1]: return [self.bit_stack[-1][node.name]] raise QiskitError("expected local bit name:", "line=%s" % node.line, "file=%s" % node.file) return None
Process a custom unitary node.
def _process_custom_unitary(self, node): """Process a custom unitary node.""" name = node.name if node.arguments is not None: args = self._process_node(node.arguments) else: args = [] bits = [self._process_bit_id(node_element) for node_element in node.bitlist.children] if name in self.gates: gargs = self.gates[name]["args"] gbits = self.gates[name]["bits"] # Loop over register arguments, if any. maxidx = max(map(len, bits)) for idx in range(maxidx): self.arg_stack.append({gargs[j]: args[j] for j in range(len(gargs))}) # Only index into register arguments. element = [idx*x for x in [len(bits[j]) > 1 for j in range(len(bits))]] self.bit_stack.append({gbits[j]: bits[j][element[j]] for j in range(len(gbits))}) self._create_dag_op(name, [self.arg_stack[-1][s].sym() for s in gargs], [self.bit_stack[-1][s] for s in gbits]) self.arg_stack.pop() self.bit_stack.pop() else: raise QiskitError("internal error undefined gate:", "line=%s" % node.line, "file=%s" % node.file)
Process a gate node.
def _process_gate(self, node, opaque=False): """Process a gate node. If opaque is True, process the node as an opaque gate node. """ self.gates[node.name] = {} de_gate = self.gates[node.name] de_gate["print"] = True # default de_gate["opaque"] = opaque de_gate["n_args"] = node.n_args() de_gate["n_bits"] = node.n_bits() if node.n_args() > 0: de_gate["args"] = [element.name for element in node.arguments.children] else: de_gate["args"] = [] de_gate["bits"] = [c.name for c in node.bitlist.children] if opaque: de_gate["body"] = None else: de_gate["body"] = node.body
Process a CNOT gate node.
def _process_cnot(self, node): """Process a CNOT gate node.""" id0 = self._process_bit_id(node.children[0]) id1 = self._process_bit_id(node.children[1]) if not(len(id0) == len(id1) or len(id0) == 1 or len(id1) == 1): raise QiskitError("internal error: qreg size mismatch", "line=%s" % node.line, "file=%s" % node.file) maxidx = max([len(id0), len(id1)]) for idx in range(maxidx): if len(id0) > 1 and len(id1) > 1: self.dag.apply_operation_back(CXBase(), [id0[idx], id1[idx]], [], self.condition) elif len(id0) > 1: self.dag.apply_operation_back(CXBase(), [id0[idx], id1[0]], [], self.condition) else: self.dag.apply_operation_back(CXBase(), [id0[0], id1[idx]], [], self.condition)
Process a measurement node.
def _process_measure(self, node): """Process a measurement node.""" id0 = self._process_bit_id(node.children[0]) id1 = self._process_bit_id(node.children[1]) if len(id0) != len(id1): raise QiskitError("internal error: reg size mismatch", "line=%s" % node.line, "file=%s" % node.file) for idx, idy in zip(id0, id1): self.dag.apply_operation_back(Measure(), [idx], [idy], self.condition)
Process an if node.
def _process_if(self, node): """Process an if node.""" creg_name = node.children[0].name creg = self.dag.cregs[creg_name] cval = node.children[1].value self.condition = (creg, cval) self._process_node(node.children[2]) self.condition = None
Carry out the action associated with a node.
def _process_node(self, node): """Carry out the action associated with a node.""" if node.type == "program": self._process_children(node) elif node.type == "qreg": qreg = QuantumRegister(node.index, node.name) self.dag.add_qreg(qreg) elif node.type == "creg": creg = ClassicalRegister(node.index, node.name) self.dag.add_creg(creg) elif node.type == "id": raise QiskitError("internal error: _process_node on id") elif node.type == "int": raise QiskitError("internal error: _process_node on int") elif node.type == "real": raise QiskitError("internal error: _process_node on real") elif node.type == "indexed_id": raise QiskitError("internal error: _process_node on indexed_id") elif node.type == "id_list": # We process id_list nodes when they are leaves of barriers. return [self._process_bit_id(node_children) for node_children in node.children] elif node.type == "primary_list": # We should only be called for a barrier. return [self._process_bit_id(m) for m in node.children] elif node.type == "gate": self._process_gate(node) elif node.type == "custom_unitary": self._process_custom_unitary(node) elif node.type == "universal_unitary": args = self._process_node(node.children[0]) qid = self._process_bit_id(node.children[1]) for element in qid: self.dag.apply_operation_back(UBase(*args, element), self.condition) elif node.type == "cnot": self._process_cnot(node) elif node.type == "expression_list": return node.children elif node.type == "binop": raise QiskitError("internal error: _process_node on binop") elif node.type == "prefix": raise QiskitError("internal error: _process_node on prefix") elif node.type == "measure": self._process_measure(node) elif node.type == "format": self.version = node.version() elif node.type == "barrier": ids = self._process_node(node.children[0]) qubits = [] for qubit in ids: for j, _ in enumerate(qubit): qubits.append(qubit[j]) self.dag.apply_operation_back(Barrier(len(qubits)), qubits, []) elif node.type == "reset": id0 = self._process_bit_id(node.children[0]) for i, _ in enumerate(id0): self.dag.apply_operation_back(Reset(), [id0[i]], [], self.condition) elif node.type == "if": self._process_if(node) elif node.type == "opaque": self._process_gate(node, opaque=True) elif node.type == "external": raise QiskitError("internal error: _process_node on external") else: raise QiskitError("internal error: undefined node type", node.type, "line=%s" % node.line, "file=%s" % node.file) return None
Create a DAG node out of a parsed AST op node.
def _create_dag_op(self, name, params, qargs): """ Create a DAG node out of a parsed AST op node. Args: name (str): operation name to apply to the dag. params (list): op parameters qargs (list(QuantumRegister, int)): qubits to attach to Raises: QiskitError: if encountering a non-basis opaque gate """ if name == "u0": op_class = U0Gate elif name == "u1": op_class = U1Gate elif name == "u2": op_class = U2Gate elif name == "u3": op_class = U3Gate elif name == "x": op_class = XGate elif name == "y": op_class = YGate elif name == "z": op_class = ZGate elif name == "t": op_class = TGate elif name == "tdg": op_class = TdgGate elif name == "s": op_class = SGate elif name == "sdg": op_class = SdgGate elif name == "swap": op_class = SwapGate elif name == "rx": op_class = RXGate elif name == "ry": op_class = RYGate elif name == "rz": op_class = RZGate elif name == "rzz": op_class = RZZGate elif name == "id": op_class = IdGate elif name == "h": op_class = HGate elif name == "cx": op_class = CnotGate elif name == "cy": op_class = CyGate elif name == "cz": op_class = CzGate elif name == "ch": op_class = CHGate elif name == "crz": op_class = CrzGate elif name == "cu1": op_class = Cu1Gate elif name == "cu3": op_class = Cu3Gate elif name == "ccx": op_class = ToffoliGate elif name == "cswap": op_class = FredkinGate else: raise QiskitError("unknown operation for ast node name %s" % name) op = op_class(*params) self.dag.apply_operation_back(op, qargs, [], condition=self.condition)
Return the corresponding OPENQASM string.
def qasm(self, prec=15): """Return the corresponding OPENQASM string.""" return "measure " + self.children[0].qasm(prec) + " -> " + \ self.children[1].qasm(prec) + ";"
Return duration of supplied channels.
def ch_duration(self, *channels: List[Channel]) -> int: """Return duration of supplied channels. Args: *channels: Supplied channels """ return self.timeslots.ch_duration(*channels)
Return minimum start time for supplied channels.
def ch_start_time(self, *channels: List[Channel]) -> int: """Return minimum start time for supplied channels. Args: *channels: Supplied channels """ return self.timeslots.ch_start_time(*channels)
Return maximum start time for supplied channels.
def ch_stop_time(self, *channels: List[Channel]) -> int: """Return maximum start time for supplied channels. Args: *channels: Supplied channels """ return self.timeslots.ch_stop_time(*channels)
Iterable for flattening Schedule tree.
def _instructions(self, time: int = 0) -> Iterable[Tuple[int, 'Instruction']]: """Iterable for flattening Schedule tree. Args: time: Shifted time due to parent Yields: Tuple[int, ScheduleComponent]: Tuple containing time `ScheduleComponent` starts at and the flattened `ScheduleComponent`. """ for insert_time, child_sched in self.children: yield from child_sched._instructions(time + insert_time)
Print with indent.
def to_string(self, indent): """Print with indent.""" ind = indent * ' ' print(ind, 'indexed_id', self.name, self.index)
Validates a value against the correct type of the field.
def check_type(self, value, attr, data): """Validates a value against the correct type of the field. It calls ``_expected_types`` to get a list of valid types. Subclasses can do one of the following: 1. They can override the ``valid_types`` property with a tuple with the expected types for this field. 2. They can override the ``_expected_types`` method to return a tuple of expected types for the field. 3. They can change ``check_type`` completely to customize validation. This method or the overrides must return the ``value`` parameter untouched. """ expected_types = self._expected_types() if not isinstance(value, expected_types): raise self._not_expected_type( value, expected_types, fields=[self], field_names=attr, data=data) return value
Include unknown fields after dumping.
def dump_additional_data(self, valid_data, many, original_data): """Include unknown fields after dumping. Unknown fields are added with no processing at all. Args: valid_data (dict or list): data collected and returned by ``dump()``. many (bool): if True, data and original_data are a list. original_data (object or list): object passed to ``dump()`` in the first place. Returns: dict: the same ``valid_data`` extended with the unknown attributes. Inspired by https://github.com/marshmallow-code/marshmallow/pull/595. """ if many: for i, _ in enumerate(valid_data): additional_keys = set(original_data[i].__dict__) - set(valid_data[i]) for key in additional_keys: valid_data[i][key] = getattr(original_data[i], key) else: additional_keys = set(original_data.__dict__) - set(valid_data) for key in additional_keys: valid_data[key] = getattr(original_data, key) return valid_data
Include unknown fields after load.
def load_additional_data(self, valid_data, many, original_data): """Include unknown fields after load. Unknown fields are added with no processing at all. Args: valid_data (dict or list): validated data returned by ``load()``. many (bool): if True, data and original_data are a list. original_data (dict or list): data passed to ``load()`` in the first place. Returns: dict: the same ``valid_data`` extended with the unknown attributes. Inspired by https://github.com/marshmallow-code/marshmallow/pull/595. """ if many: for i, _ in enumerate(valid_data): additional_keys = set(original_data[i]) - set(valid_data[i]) for key in additional_keys: valid_data[i][key] = original_data[i][key] else: additional_keys = set(original_data) - set(valid_data) for key in additional_keys: valid_data[key] = original_data[key] return valid_data
Create a patched Schema for validating models.
def _create_validation_schema(schema_cls): """Create a patched Schema for validating models. Model validation is not part of Marshmallow. Schemas have a ``validate`` method but this delegates execution on ``load`` and discards the result. Similarly, ``load`` will call ``_deserialize`` on every field in the schema. This function patches the ``_deserialize`` instance method of each field to make it call a custom defined method ``check_type`` provided by Qiskit in the different fields at ``qiskit.validation.fields``. Returns: BaseSchema: a copy of the original Schema, overriding the ``_deserialize()`` call of its fields. """ validation_schema = schema_cls() for _, field in validation_schema.fields.items(): if isinstance(field, ModelTypeValidator): validate_function = field.__class__.check_type field._deserialize = MethodType(validate_function, field) return validation_schema
Validate the internal representation of the instance.
def _validate(instance): """Validate the internal representation of the instance.""" try: _ = instance.schema.validate(instance.to_dict()) except ValidationError as ex: raise ModelValidationError( ex.messages, ex.field_names, ex.fields, ex.data, **ex.kwargs)
Add validation after instantiation.
def _validate_after_init(init_method): """Add validation after instantiation.""" @wraps(init_method) def _decorated(self, **kwargs): try: _ = self.shallow_schema.validate(kwargs) except ValidationError as ex: raise ModelValidationError( ex.messages, ex.field_names, ex.fields, ex.data, **ex.kwargs) from None init_method(self, **kwargs) return _decorated
Serialize the model into a Python dict of simple types.
def to_dict(self): """Serialize the model into a Python dict of simple types. Note that this method requires that the model is bound with ``@bind_schema``. """ try: data, _ = self.schema.dump(self) except ValidationError as ex: raise ModelValidationError( ex.messages, ex.field_names, ex.fields, ex.data, **ex.kwargs) from None return data
Deserialize a dict of simple types into an instance of this class.
def from_dict(cls, dict_): """Deserialize a dict of simple types into an instance of this class. Note that this method requires that the model is bound with ``@bind_schema``. """ try: data, _ = cls.schema.load(dict_) except ValidationError as ex: raise ModelValidationError( ex.messages, ex.field_names, ex.fields, ex.data, **ex.kwargs) from None return data
n - qubit QFT on q in circ.
def qft(circ, q, n): """n-qubit QFT on q in circ.""" for j in range(n): for k in range(j): circ.cu1(math.pi / float(2**(j - k)), q[j], q[k]) circ.h(q[j])
Partial trace over subsystems of multi - partite matrix.
def partial_trace(state, trace_systems, dimensions=None, reverse=True): """ Partial trace over subsystems of multi-partite matrix. Note that subsystems are ordered as rho012 = rho0(x)rho1(x)rho2. Args: state (matrix_like): a matrix NxN trace_systems (list(int)): a list of subsystems (starting from 0) to trace over. dimensions (list(int)): a list of the dimensions of the subsystems. If this is not set it will assume all subsystems are qubits. reverse (bool): ordering of systems in operator. If True system-0 is the right most system in tensor product. If False system-0 is the left most system in tensor product. Returns: matrix_like: A density matrix with the appropriate subsystems traced over. Raises: Exception: if input is not a multi-qubit state. """ state = np.array(state) # convert op to density matrix if dimensions is None: # compute dims if not specified num_qubits = int(np.log2(len(state))) dimensions = [2 for _ in range(num_qubits)] if len(state) != 2 ** num_qubits: raise Exception("Input is not a multi-qubit state, " "specify input state dims") else: dimensions = list(dimensions) if isinstance(trace_systems, int): trace_systems = [trace_systems] else: # reverse sort trace sys trace_systems = sorted(trace_systems, reverse=True) # trace out subsystems if state.ndim == 1: # optimized partial trace for input state vector return __partial_trace_vec(state, trace_systems, dimensions, reverse) # standard partial trace for input density matrix return __partial_trace_mat(state, trace_systems, dimensions, reverse)
Partial trace over subsystems of multi - partite vector.
def __partial_trace_vec(vec, trace_systems, dimensions, reverse=True): """ Partial trace over subsystems of multi-partite vector. Args: vec (vector_like): complex vector N trace_systems (list(int)): a list of subsystems (starting from 0) to trace over. dimensions (list(int)): a list of the dimensions of the subsystems. If this is not set it will assume all subsystems are qubits. reverse (bool): ordering of systems in operator. If True system-0 is the right most system in tensor product. If False system-0 is the left most system in tensor product. Returns: ndarray: A density matrix with the appropriate subsystems traced over. """ # trace sys positions if reverse: dimensions = dimensions[::-1] trace_systems = len(dimensions) - 1 - np.array(trace_systems) rho = vec.reshape(dimensions) rho = np.tensordot(rho, rho.conj(), axes=(trace_systems, trace_systems)) d = int(np.sqrt(np.product(rho.shape))) return rho.reshape(d, d)
Partial trace over subsystems of multi - partite matrix.
def __partial_trace_mat(mat, trace_systems, dimensions, reverse=True): """ Partial trace over subsystems of multi-partite matrix. Note that subsystems are ordered as rho012 = rho0(x)rho1(x)rho2. Args: mat (matrix_like): a matrix NxN. trace_systems (list(int)): a list of subsystems (starting from 0) to trace over. dimensions (list(int)): a list of the dimensions of the subsystems. If this is not set it will assume all subsystems are qubits. reverse (bool): ordering of systems in operator. If True system-0 is the right most system in tensor product. If False system-0 is the left most system in tensor product. Returns: ndarray: A density matrix with the appropriate subsystems traced over. """ trace_systems = sorted(trace_systems, reverse=True) for j in trace_systems: # Partition subsystem dimensions dimension_trace = int(dimensions[j]) # traced out system if reverse: left_dimensions = dimensions[j + 1:] right_dimensions = dimensions[:j] dimensions = right_dimensions + left_dimensions else: left_dimensions = dimensions[:j] right_dimensions = dimensions[j + 1:] dimensions = left_dimensions + right_dimensions # Contract remaining dimensions dimension_left = int(np.prod(left_dimensions)) dimension_right = int(np.prod(right_dimensions)) # Reshape input array into tri-partite system with system to be # traced as the middle index mat = mat.reshape([dimension_left, dimension_trace, dimension_right, dimension_left, dimension_trace, dimension_right]) # trace out the middle system and reshape back to a matrix mat = mat.trace(axis1=1, axis2=4).reshape( dimension_left * dimension_right, dimension_left * dimension_right) return mat
Flatten an operator to a vector in a specified basis.
def vectorize(density_matrix, method='col'): """Flatten an operator to a vector in a specified basis. Args: density_matrix (ndarray): a density matrix. method (str): the method of vectorization. Allowed values are - 'col' (default) flattens to column-major vector. - 'row' flattens to row-major vector. - 'pauli'flattens in the n-qubit Pauli basis. - 'pauli-weights': flattens in the n-qubit Pauli basis ordered by weight. Returns: ndarray: the resulting vector. Raises: Exception: if input state is not a n-qubit state """ density_matrix = np.array(density_matrix) if method == 'col': return density_matrix.flatten(order='F') elif method == 'row': return density_matrix.flatten(order='C') elif method in ['pauli', 'pauli_weights']: num = int(np.log2(len(density_matrix))) # number of qubits if len(density_matrix) != 2**num: raise Exception('Input state must be n-qubit state') if method == 'pauli_weights': pgroup = pauli_group(num, case='weight') else: pgroup = pauli_group(num, case='tensor') vals = [np.trace(np.dot(p.to_matrix(), density_matrix)) for p in pgroup] return np.array(vals) return None
Devectorize a vectorized square matrix.
def devectorize(vectorized_mat, method='col'): """Devectorize a vectorized square matrix. Args: vectorized_mat (ndarray): a vectorized density matrix. method (str): the method of devectorization. Allowed values are - 'col' (default): flattens to column-major vector. - 'row': flattens to row-major vector. - 'pauli': flattens in the n-qubit Pauli basis. - 'pauli-weights': flattens in the n-qubit Pauli basis ordered by weight. Returns: ndarray: the resulting matrix. Raises: Exception: if input state is not a n-qubit state """ vectorized_mat = np.array(vectorized_mat) dimension = int(np.sqrt(vectorized_mat.size)) if len(vectorized_mat) != dimension * dimension: raise Exception('Input is not a vectorized square matrix') if method == 'col': return vectorized_mat.reshape(dimension, dimension, order='F') elif method == 'row': return vectorized_mat.reshape(dimension, dimension, order='C') elif method in ['pauli', 'pauli_weights']: num_qubits = int(np.log2(dimension)) # number of qubits if dimension != 2 ** num_qubits: raise Exception('Input state must be n-qubit state') if method == 'pauli_weights': pgroup = pauli_group(num_qubits, case='weight') else: pgroup = pauli_group(num_qubits, case='tensor') pbasis = np.array([p.to_matrix() for p in pgroup]) / 2 ** num_qubits return np.tensordot(vectorized_mat, pbasis, axes=1) return None
Convert a Choi - matrix to a Pauli - basis superoperator.
def choi_to_rauli(choi, order=1): """ Convert a Choi-matrix to a Pauli-basis superoperator. Note that this function assumes that the Choi-matrix is defined in the standard column-stacking convention and is normalized to have trace 1. For a channel E this is defined as: choi = (I \\otimes E)(bell_state). The resulting 'rauli' R acts on input states as |rho_out>_p = R.|rho_in>_p where |rho> = vectorize(rho, method='pauli') for order=1 and |rho> = vectorize(rho, method='pauli_weights') for order=0. Args: choi (matrix): the input Choi-matrix. order (int): ordering of the Pauli group vector. order=1 (default) is standard lexicographic ordering. Eg: [II, IX, IY, IZ, XI, XX, XY,...] order=0 is ordered by weights. Eg. [II, IX, IY, IZ, XI, XY, XZ, XX, XY,...] Returns: np.array: A superoperator in the Pauli basis. """ if order == 0: order = 'weight' elif order == 1: order = 'tensor' # get number of qubits' num_qubits = int(np.log2(np.sqrt(len(choi)))) pgp = pauli_group(num_qubits, case=order) rauli = [] for i in pgp: for j in pgp: pauliop = np.kron(j.to_matrix().T, i.to_matrix()) rauli += [np.trace(np.dot(choi, pauliop))] return np.array(rauli).reshape(4 ** num_qubits, 4 ** num_qubits)
Truncate small values of a complex array.
def chop(array, epsilon=1e-10): """ Truncate small values of a complex array. Args: array (array_like): array to truncte small values. epsilon (float): threshold. Returns: np.array: A new operator with small values set to zero. """ ret = np.array(array) if np.isrealobj(ret): ret[abs(ret) < epsilon] = 0.0 else: ret.real[abs(ret.real) < epsilon] = 0.0 ret.imag[abs(ret.imag) < epsilon] = 0.0 return ret
Construct the outer product of two vectors.
def outer(vector1, vector2=None): """ Construct the outer product of two vectors. The second vector argument is optional, if absent the projector of the first vector will be returned. Args: vector1 (ndarray): the first vector. vector2 (ndarray): the (optional) second vector. Returns: np.array: The matrix |v1><v2|. """ if vector2 is None: vector2 = np.array(vector1).conj() else: vector2 = np.array(vector2).conj() return np.outer(vector1, vector2)
Deprecated in 0. 8 +
def random_unitary_matrix(dim, seed=None): """Deprecated in 0.8+ """ warnings.warn('The random_unitary_matrix() function in qiskit.tools.qi has been ' 'deprecated and will be removed in the future. Instead use ' 'the function in qiskit.quantum_info.random', DeprecationWarning) return random.random_unitary(dim, seed).data
Deprecated in 0. 8 +
def random_density_matrix(length, rank=None, method='Hilbert-Schmidt', seed=None): """Deprecated in 0.8+ """ warnings.warn('The random_density_matrix() function in qiskit.tools.qi has been ' 'deprecated and will be removed in the future. Instead use ' 'the function in qiskit.quantum_info.random', DeprecationWarning) return random.random_density_matrix(length, rank, method, seed)
Calculate the concurrence.
def concurrence(state): """Calculate the concurrence. Args: state (np.array): a quantum state (1x4 array) or a density matrix (4x4 array) Returns: float: concurrence. Raises: Exception: if attempted on more than two qubits. """ rho = np.array(state) if rho.ndim == 1: rho = outer(state) if len(state) != 4: raise Exception("Concurrence is only defined for more than two qubits") YY = np.fliplr(np.diag([-1, 1, 1, -1])) A = rho.dot(YY).dot(rho.conj()).dot(YY) w = la.eigh(A, eigvals_only=True) w = np.sqrt(np.maximum(w, 0)) return max(0.0, w[-1] - np.sum(w[0:-1]))
Compute the Shannon entropy of a probability vector.
def shannon_entropy(pvec, base=2): """ Compute the Shannon entropy of a probability vector. The shannon entropy of a probability vector pv is defined as $H(pv) = - \\sum_j pv[j] log_b (pv[j])$ where $0 log_b 0 = 0$. Args: pvec (array_like): a probability vector. base (int): the base of the logarith Returns: float: The Shannon entropy H(pvec). """ # pylint: disable=missing-docstring if base == 2: def logfn(x): return - x * np.log2(x) elif base == np.e: def logfn(x): return - x * np.log(x) else: def logfn(x): return -x * np.log(x) / np.log(base) h = 0. for x in pvec: if 0 < x < 1: h += logfn(x) return h
Compute the von - Neumann entropy of a quantum state.
def entropy(state): """ Compute the von-Neumann entropy of a quantum state. Args: state (array_like): a density matrix or state vector. Returns: float: The von-Neumann entropy S(rho). """ rho = np.array(state) if rho.ndim == 1: return 0 evals = np.maximum(np.linalg.eigvalsh(state), 0.) return shannon_entropy(evals, base=np.e)
Compute the mutual information of a bipartite state.
def mutual_information(state, d0, d1=None): """ Compute the mutual information of a bipartite state. Args: state (array_like): a bipartite state-vector or density-matrix. d0 (int): dimension of the first subsystem. d1 (int or None): dimension of the second subsystem. Returns: float: The mutual information S(rho_A) + S(rho_B) - S(rho_AB). """ if d1 is None: d1 = int(len(state) / d0) mi = entropy(partial_trace(state, [0], dimensions=[d0, d1])) mi += entropy(partial_trace(state, [1], dimensions=[d0, d1])) mi -= entropy(state) return mi
Compute the entanglement of formation of quantum state.
def entanglement_of_formation(state, d0, d1=None): """ Compute the entanglement of formation of quantum state. The input quantum state must be either a bipartite state vector, or a 2-qubit density matrix. Args: state (array_like): (N) array_like or (4,4) array_like, a bipartite quantum state. d0 (int): the dimension of the first subsystem. d1 (int or None): the dimension of the second subsystem. Returns: float: The entanglement of formation. """ state = np.array(state) if d1 is None: d1 = int(len(state) / d0) if state.ndim == 2 and len(state) == 4 and d0 == 2 and d1 == 2: return __eof_qubit(state) elif state.ndim == 1: # trace out largest dimension if d0 < d1: tr = [1] else: tr = [0] state = partial_trace(state, tr, dimensions=[d0, d1]) return entropy(state) else: print('Input must be a state-vector or 2-qubit density matrix.') return None
Compute the Entanglement of Formation of a 2 - qubit density matrix.
def __eof_qubit(rho): """ Compute the Entanglement of Formation of a 2-qubit density matrix. Args: rho ((array_like): (4,4) array_like, input density matrix. Returns: float: The entanglement of formation. """ c = concurrence(rho) c = 0.5 + 0.5 * np.sqrt(1 - c * c) return shannon_entropy([c, 1 - c])
Create a union ( and also shift if desired ) of all input Schedule s.
def union(*schedules: List[Union[ScheduleComponent, Tuple[int, ScheduleComponent]]], name: str = None) -> Schedule: """Create a union (and also shift if desired) of all input `Schedule`s. Args: *schedules: Schedules to take the union of name: Name of the new schedule. Defaults to first element of `schedules` """ if name is None and schedules: sched = schedules[0] if isinstance(sched, (list, tuple)): name = sched[1].name else: name = sched.name return Schedule(*schedules, name=name)
Create a flattened schedule.
def flatten(schedule: ScheduleComponent, name: str = None) -> Schedule: """Create a flattened schedule. Args: schedule: Schedules to flatten name: Name of the new schedule. Defaults to first element of `schedules` """ if name is None: name = schedule.name return Schedule(*schedule.instructions, name=name)
Return schedule shifted by time.
def shift(schedule: ScheduleComponent, time: int, name: str = None) -> Schedule: """Return schedule shifted by `time`. Args: schedule: The schedule to shift time: The time to shift by name: Name of shifted schedule. Defaults to name of `schedule` """ if name is None: name = schedule.name return union((time, schedule), name=name)
Return a new schedule with the child schedule inserted into the parent at start_time.
def insert(parent: ScheduleComponent, time: int, child: ScheduleComponent, name: str = None) -> Schedule: """Return a new schedule with the `child` schedule inserted into the `parent` at `start_time`. Args: parent: Schedule to be inserted into time: Time to be inserted defined with respect to `parent` child: Schedule to insert name: Name of the new schedule. Defaults to name of parent """ return union(parent, (time, child), name=name)
r Return a new schedule with by appending child to parent at the last time of the parent schedule s channels over the intersection of the parent and child schedule s channels.
def append(parent: ScheduleComponent, child: ScheduleComponent, name: str = None) -> Schedule: r"""Return a new schedule with by appending `child` to `parent` at the last time of the `parent` schedule's channels over the intersection of the parent and child schedule's channels. $t = \textrm{max}({x.stop\_time |x \in parent.channels \cap child.channels})$ Args: parent: The schedule to be inserted into child: The schedule to insert name: Name of the new schedule. Defaults to name of parent """ common_channels = set(parent.channels) & set(child.channels) insertion_time = parent.ch_stop_time(*common_channels) return insert(parent, insertion_time, child, name=name)
Apply u3 to q.
def u3(self, theta, phi, lam, q): """Apply u3 to q.""" return self.append(U3Gate(theta, phi, lam), [q], [])
Return backend status.
def status(self): """Return backend status. Returns: BackendStatus: the status of the backend. """ return BackendStatus(backend_name=self.name(), backend_version=__version__, operational=True, pending_jobs=0, status_msg='')
Start the progress bar.
def start(self, iterations): """Start the progress bar. Parameters: iterations (int): Number of iterations. """ self.touched = True self.iter = int(iterations) self.t_start = time.time()
Estimate the remaining time left.
def time_remaining_est(self, completed_iter): """Estimate the remaining time left. Parameters: completed_iter (int): Number of iterations completed. Returns: est_time: Estimated time remaining. """ if completed_iter: t_r_est = (time.time() - self.t_start) / \ completed_iter*(self.iter-completed_iter) else: t_r_est = 0 date_time = datetime.datetime(1, 1, 1) + datetime.timedelta(seconds=t_r_est) time_string = "%02d:%02d:%02d:%02d" % \ (date_time.day - 1, date_time.hour, date_time.minute, date_time.second) return time_string
Run the CommutativeCancellation pass on a dag
def run(self, dag): """Run the CommutativeCancellation pass on a dag Args: dag (DAGCircuit): the DAG to be optimized. Returns: DAGCircuit: the optimized DAG. Raises: TranspilerError: when the 1 qubit rotation gates are not found """ q_gate_list = ['cx', 'cy', 'cz', 'h', 'x', 'y', 'z'] # Gate sets to be cancelled cancellation_sets = defaultdict(lambda: []) for wire in dag.wires: wire_name = "{0}[{1}]".format(str(wire[0].name), str(wire[1])) wire_commutation_set = self.property_set['commutation_set'][wire_name] for com_set_idx, com_set in enumerate(wire_commutation_set): if com_set[0].type in ['in', 'out']: continue for node in com_set: num_qargs = len(node.qargs) if num_qargs == 1 and node.name in q_gate_list: cancellation_sets[(node.name, wire_name, com_set_idx)].append(node) if num_qargs == 1 and node.name in ['u1', 'rz', 't', 's']: cancellation_sets[('z_rotation', wire_name, com_set_idx)].append(node) elif num_qargs == 2 and node.qargs[0] == wire: second_op_name = "{0}[{1}]".format(str(node.qargs[1][0].name), str(node.qargs[1][1])) q2_key = (node.name, wire_name, second_op_name, self.property_set['commutation_set'][(node, second_op_name)]) cancellation_sets[q2_key].append(node) for cancel_set_key in cancellation_sets: set_len = len(cancellation_sets[cancel_set_key]) if ((set_len) > 1 and cancel_set_key[0] in q_gate_list): gates_to_cancel = cancellation_sets[cancel_set_key] for c_node in gates_to_cancel[:(set_len // 2) * 2]: dag.remove_op_node(c_node) elif((set_len) > 1 and cancel_set_key[0] == 'z_rotation'): run = cancellation_sets[cancel_set_key] run_qarg = run[0].qargs[0] total_angle = 0.0 # lambda for current_node in run: if (current_node.condition is not None or len(current_node.qargs) != 1 or current_node.qargs[0] != run_qarg): raise TranspilerError("internal error") if current_node.name in ['u1', 'rz']: current_angle = float(current_node.op.params[0]) elif current_node.name == 't': current_angle = sympy.pi / 4 elif current_node.name == 's': current_angle = sympy.pi / 2 # Compose gates total_angle = current_angle + total_angle # Replace the data of the first node in the run new_op = U1Gate(total_angle) new_qarg = (QuantumRegister(1, 'q'), 0) new_dag = DAGCircuit() new_dag.add_qreg(new_qarg[0]) new_dag.apply_operation_back(new_op, [new_qarg]) dag.substitute_node_with_dag(run[0], new_dag) # Delete the other nodes in the run for current_node in run[1:]: dag.remove_op_node(current_node) return dag
Return a list of QuantumCircuit object ( s ) from a qobj
def _experiments_to_circuits(qobj): """Return a list of QuantumCircuit object(s) from a qobj Args: qobj (Qobj): The Qobj object to convert to QuantumCircuits Returns: list: A list of QuantumCircuit objects from the qobj """ if qobj.experiments: circuits = [] for x in qobj.experiments: quantum_registers = [QuantumRegister(i[1], name=i[0]) for i in x.header.qreg_sizes] classical_registers = [ClassicalRegister(i[1], name=i[0]) for i in x.header.creg_sizes] circuit = QuantumCircuit(*quantum_registers, *classical_registers, name=x.header.name) qreg_dict = {} creg_dict = {} for reg in quantum_registers: qreg_dict[reg.name] = reg for reg in classical_registers: creg_dict[reg.name] = reg for i in x.instructions: instr_method = getattr(circuit, i.name) qubits = [] try: for qubit in i.qubits: qubit_label = x.header.qubit_labels[qubit] qubits.append( qreg_dict[qubit_label[0]][qubit_label[1]]) except Exception: # pylint: disable=broad-except pass clbits = [] try: for clbit in i.memory: clbit_label = x.header.clbit_labels[clbit] clbits.append( creg_dict[clbit_label[0]][clbit_label[1]]) except Exception: # pylint: disable=broad-except pass params = [] try: params = i.params except Exception: # pylint: disable=broad-except pass if i.name in ['snapshot']: instr_method( i.label, snapshot_type=i.snapshot_type, qubits=qubits, params=params) elif i.name == 'initialize': instr_method(params, qubits) else: instr_method(*params, *qubits, *clbits) circuits.append(circuit) return circuits return None
Dissasemble a qobj and return the circuits run_config and user header
def disassemble(qobj): """Dissasemble a qobj and return the circuits, run_config, and user header Args: qobj (Qobj): The input qobj object to dissasemble Returns: circuits (list): A list of quantum circuits run_config (dict): The dist of the run config user_qobj_header (dict): The dict of any user headers in the qobj """ run_config = qobj.config.to_dict() user_qobj_header = qobj.header.to_dict() circuits = _experiments_to_circuits(qobj) return circuits, run_config, user_qobj_header
Calculate the Hamming distance between two bit strings
def hamming_distance(str1, str2): """Calculate the Hamming distance between two bit strings Args: str1 (str): First string. str2 (str): Second string. Returns: int: Distance between strings. Raises: VisualizationError: Strings not same length """ if len(str1) != len(str2): raise VisualizationError('Strings not same length.') return sum(s1 != s2 for s1, s2 in zip(str1, str2))
Plot a histogram of data.
def plot_histogram(data, figsize=(7, 5), color=None, number_to_keep=None, sort='asc', target_string=None, legend=None, bar_labels=True, title=None): """Plot a histogram of data. Args: data (list or dict): This is either a list of dictionaries or a single dict containing the values to represent (ex {'001': 130}) figsize (tuple): Figure size in inches. color (list or str): String or list of strings for histogram bar colors. number_to_keep (int): The number of terms to plot and rest is made into a single bar called 'rest'. sort (string): Could be 'asc', 'desc', or 'hamming'. target_string (str): Target string if 'sort' is a distance measure. legend(list): A list of strings to use for labels of the data. The number of entries must match the length of data (if data is a list or 1 if it's a dict) bar_labels (bool): Label each bar in histogram with probability value. title (str): A string to use for the plot title Returns: matplotlib.Figure: A figure for the rendered histogram. Raises: ImportError: Matplotlib not available. VisualizationError: When legend is provided and the length doesn't match the input data. """ if not HAS_MATPLOTLIB: raise ImportError('Must have Matplotlib installed.') if sort not in VALID_SORTS: raise VisualizationError("Value of sort option, %s, isn't a " "valid choice. Must be 'asc', " "'desc', or 'hamming'") elif sort in DIST_MEAS.keys() and target_string is None: err_msg = 'Must define target_string when using distance measure.' raise VisualizationError(err_msg) if isinstance(data, dict): data = [data] if legend and len(legend) != len(data): raise VisualizationError("Length of legendL (%s) doesn't match " "number of input executions: %s" % (len(legend), len(data))) fig, ax = plt.subplots(figsize=figsize) labels = list(sorted( functools.reduce(lambda x, y: x.union(y.keys()), data, set()))) if number_to_keep is not None: labels.append('rest') if sort in DIST_MEAS.keys(): dist = [] for item in labels: dist.append(DIST_MEAS[sort](item, target_string)) labels = [list(x) for x in zip(*sorted(zip(dist, labels), key=lambda pair: pair[0]))][1] labels_dict = OrderedDict() # Set bar colors if color is None: color = ['#648fff', '#dc267f', '#785ef0', '#ffb000', '#fe6100'] elif isinstance(color, str): color = [color] all_pvalues = [] length = len(data) for item, execution in enumerate(data): if number_to_keep is not None: data_temp = dict(Counter(execution).most_common(number_to_keep)) data_temp["rest"] = sum(execution.values()) - sum(data_temp.values()) execution = data_temp values = [] for key in labels: if key not in execution: if number_to_keep is None: labels_dict[key] = 1 values.append(0) else: values.append(-1) else: labels_dict[key] = 1 values.append(execution[key]) values = np.array(values, dtype=float) where_idx = np.where(values >= 0)[0] pvalues = values[where_idx] / sum(values[where_idx]) for value in pvalues: all_pvalues.append(value) numelem = len(values[where_idx]) ind = np.arange(numelem) # the x locations for the groups width = 1/(len(data)+1) # the width of the bars rects = [] for idx, val in enumerate(pvalues): label = None if not idx and legend: label = legend[item] if val >= 0: rects.append(ax.bar(idx+item*width, val, width, label=label, color=color[item % len(color)], zorder=2)) bar_center = (width / 2) * (length - 1) ax.set_xticks(ind + bar_center) ax.set_xticklabels(labels_dict.keys(), fontsize=14, rotation=70) # attach some text labels if bar_labels: for rect in rects: for rec in rect: height = rec.get_height() if height >= 1e-3: ax.text(rec.get_x() + rec.get_width() / 2., 1.05 * height, '%.3f' % float(height), ha='center', va='bottom', zorder=3) else: ax.text(rec.get_x() + rec.get_width() / 2., 1.05 * height, '0', ha='center', va='bottom', zorder=3) # add some text for labels, title, and axes ticks ax.set_ylabel('Probabilities', fontsize=14) ax.set_ylim([0., min([1.2, max([1.2 * val for val in all_pvalues])])]) if sort == 'desc': ax.invert_xaxis() ax.yaxis.set_major_locator(MaxNLocator(5)) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(14) ax.set_facecolor('#eeeeee') plt.grid(which='major', axis='y', zorder=0, linestyle='--') if title: plt.title(title) if legend: ax.legend(loc='upper left', bbox_to_anchor=(1.01, 1.0), ncol=1, borderaxespad=0, frameon=True, fontsize=12) if fig: plt.close(fig) return fig
Return quaternion for rotation about given axis.
def quaternion_from_axis_rotation(angle, axis): """Return quaternion for rotation about given axis. Args: angle (float): Angle in radians. axis (str): Axis for rotation Returns: Quaternion: Quaternion for axis rotation. Raises: ValueError: Invalid input axis. """ out = np.zeros(4, dtype=float) if axis == 'x': out[1] = 1 elif axis == 'y': out[2] = 1 elif axis == 'z': out[3] = 1 else: raise ValueError('Invalid axis input.') out *= math.sin(angle/2.0) out[0] = math.cos(angle/2.0) return Quaternion(out)
Generate a quaternion from a set of Euler angles.
def quaternion_from_euler(angles, order='yzy'): """Generate a quaternion from a set of Euler angles. Args: angles (array_like): Array of Euler angles. order (str): Order of Euler rotations. 'yzy' is default. Returns: Quaternion: Quaternion representation of Euler rotation. """ angles = np.asarray(angles, dtype=float) quat = quaternion_from_axis_rotation(angles[0], order[0])\ * (quaternion_from_axis_rotation(angles[1], order[1]) * quaternion_from_axis_rotation(angles[2], order[2])) quat.normalize(inplace=True) return quat
Normalizes a Quaternion to unit length so that it represents a valid rotation.
def normalize(self, inplace=False): """Normalizes a Quaternion to unit length so that it represents a valid rotation. Args: inplace (bool): Do an inplace normalization. Returns: Quaternion: Normalized quaternion. """ if inplace: nrm = self.norm() self.data /= nrm return None nrm = self.norm() data_copy = np.array(self.data, copy=True) data_copy /= nrm return Quaternion(data_copy)
Converts a unit - length quaternion to a rotation matrix.
def to_matrix(self): """Converts a unit-length quaternion to a rotation matrix. Returns: ndarray: Rotation matrix. """ w, x, y, z = self.normalize().data # pylint: disable=C0103 mat = np.array([ [1-2*y**2-2*z**2, 2*x*y-2*z*w, 2*x*z+2*y*w], [2*x*y+2*z*w, 1-2*x**2-2*z**2, 2*y*z-2*x*w], [2*x*z-2*y*w, 2*y*z+2*x*w, 1-2*x**2-2*y**2] ], dtype=float) return mat
Converts a unit - length quaternion to a sequence of ZYZ Euler angles.
def to_zyz(self): """Converts a unit-length quaternion to a sequence of ZYZ Euler angles. Returns: ndarray: Array of Euler angles. """ mat = self.to_matrix() euler = np.zeros(3, dtype=float) if mat[2, 2] < 1: if mat[2, 2] > -1: euler[0] = math.atan2(mat[1, 2], mat[0, 2]) euler[1] = math.acos(mat[2, 2]) euler[2] = math.atan2(mat[2, 1], -mat[2, 0]) else: euler[0] = -math.atan2(mat[1, 0], mat[1, 1]) euler[1] = np.pi else: euler[0] = math.atan2(mat[1, 0], mat[1, 1]) return euler
Prepare received data for representation.
def process_data(data, number_to_keep): """ Prepare received data for representation. Args: data (dict): values to represent (ex. {'001' : 130}) number_to_keep (int): number of elements to show individually. Returns: dict: processed data to show. """ result = dict() if number_to_keep != 0: data_temp = dict(Counter(data).most_common(number_to_keep)) data_temp['rest'] = sum(data.values()) - sum(data_temp.values()) data = data_temp labels = data values = np.array([data[key] for key in labels], dtype=float) pvalues = values / sum(values) for position, label in enumerate(labels): result[label] = round(pvalues[position], 5) return result
Create a histogram representation.
def iplot_histogram(data, figsize=None, number_to_keep=None, sort='asc', legend=None): """ Create a histogram representation. Graphical representation of the input array using a vertical bars style graph. Args: data (list or dict): This is either a list of dicts or a single dict containing the values to represent (ex. {'001' : 130}) figsize (tuple): Figure size in pixels. number_to_keep (int): The number of terms to plot and rest is made into a single bar called other values sort (string): Could be 'asc' or 'desc' legend (list): A list of strings to use for labels of the data. The number of entries must match the length of data. Raises: VisualizationError: When legend is provided and the length doesn't match the input data. """ # HTML html_template = Template(""" <p> <div id="histogram_$divNumber"></div> </p> """) # JavaScript javascript_template = Template(""" <script> requirejs.config({ paths: { qVisualization: "https://qvisualization.mybluemix.net/q-visualizations" } }); require(["qVisualization"], function(qVisualizations) { qVisualizations.plotState("histogram_$divNumber", "histogram", $executions, $options); }); </script> """) # Process data and execute div_number = str(time.time()) div_number = re.sub('[.]', '', div_number) # set default figure size if none provided if figsize is None: figsize = (7, 5) options = {'number_to_keep': 0 if number_to_keep is None else number_to_keep, 'sort': sort, 'show_legend': 0, 'width': int(figsize[0]), 'height': int(figsize[1])} if legend: options['show_legend'] = 1 data_to_plot = [] if isinstance(data, dict): data = [data] if legend and len(legend) != len(data): raise VisualizationError("Length of legendL (%s) doesn't match number " "of input executions: %s" % (len(legend), len(data))) for item, execution in enumerate(data): exec_data = process_data(execution, options['number_to_keep']) out_dict = {'data': exec_data} if legend: out_dict['name'] = legend[item] data_to_plot.append(out_dict) html = html_template.substitute({ 'divNumber': div_number }) javascript = javascript_template.substitute({ 'divNumber': div_number, 'executions': data_to_plot, 'options': options }) display(HTML(html + javascript))
Customize check_type for handling containers.
def check_type(self, value, attr, data): """Customize check_type for handling containers.""" # Check the type in the standard way first, in order to fail quickly # in case of invalid values. root_value = super(InstructionParameter, self).check_type( value, attr, data) if is_collection(value): _ = [super(InstructionParameter, self).check_type(item, attr, data) for item in value] return root_value
Check that j is a valid index into self.
def check_range(self, j): """Check that j is a valid index into self.""" if isinstance(j, int): if j < 0 or j >= self.size: raise QiskitIndexError("register index out of range") elif isinstance(j, slice): if j.start < 0 or j.stop >= self.size or (j.step is not None and j.step <= 0): raise QiskitIndexError("register index slice out of range")
Print with indent.
def to_string(self, indent): """Print with indent.""" ind = indent * ' ' if self.root: print(ind, self.type, '---', self.root) else: print(ind, self.type) indent = indent + 3 ind = indent * ' ' for children in self.children: if children is None: print("OOPS! type of parent is", type(self)) print(self.children) if isinstance(children, str): print(ind, children) elif isinstance(children, int): print(ind, str(children)) elif isinstance(children, float): print(ind, str(children)) else: children.to_string(indent)
Assemble a QasmQobjInstruction
def assemble(self): """Assemble a QasmQobjInstruction""" instruction = super().assemble() if self.label: instruction.label = self.label return instruction