index
int64
repo_id
string
file_path
string
content
string
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/ai/idylnlp/opennlp/custom
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/ai/idylnlp/opennlp/custom/model/DictionaryModel.java
/******************************************************************************* * Copyright 2018 Mountain Fog, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); you may not * use this file except in compliance with the License. You may obtain a copy * of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations under * the License. ******************************************************************************/ package ai.idylnlp.opennlp.custom.model; import java.io.BufferedReader; import java.io.File; import java.io.FileReader; import java.io.IOException; import org.apache.commons.lang3.StringUtils; import ai.idylnlp.opennlp.custom.encryption.OpenNLPEncryptionFactory; import ai.idylnlp.model.manifest.StandardModelManifest; import opennlp.tools.dictionary.Dictionary; import opennlp.tools.namefind.DictionaryNameFinder; import opennlp.tools.namefind.TokenNameFinder; import opennlp.tools.tokenize.Tokenizer; import opennlp.tools.util.StringList; import opennlp.tools.util.model.BaseModel; /** * A model that uses a dictionary to identify entities. * * @author Mountain Fog, Inc. * */ public class DictionaryModel extends BaseModel { private static final long serialVersionUID = 1L; private StandardModelManifest modelManifest; private String modelDirectory; /** * Creates a new dictionary model and initializes the {@link TokenNameFinder}. * @param modelManifest The {@link StandardModelManifest}. * @param modelDirectory The model directory. * @throws IOException */ public DictionaryModel(StandardModelManifest modelManifest, String modelDirectory) throws Exception { this.modelManifest = modelManifest; this.modelDirectory = modelDirectory; } @Override public String getModelId() { return modelManifest.getModelId(); } /** * Gets the configured {@link TokenNameFinder} for the dictionary model. * @param tokenizer A {@link Tokenizer} used to tokenize each line in the dictionary file. * @return A {@link TokenNameFinder}. * @throws Exception */ public TokenNameFinder getDictionaryNameFinder(Tokenizer tokenizer) throws Exception { final boolean caseSensitive = false; final Dictionary dictionary = new Dictionary(caseSensitive); File modelFile = new File(modelDirectory + File.separator + modelManifest.getModelFileName()); try (BufferedReader br = new BufferedReader(new FileReader(modelFile))) { String line; while ((line = br.readLine()) != null) { if(!StringUtils.isEmpty(modelManifest.getEncryptionKey())) { line = OpenNLPEncryptionFactory.getDefault().decrypt(line, modelManifest.getEncryptionKey()); } final String[] tokenized = tokenizer.tokenize(line); // StringList tokens = new StringList("George", "Washington"); StringList tokens = new StringList(tokenized); dictionary.put(tokens); } } return new DictionaryNameFinder(dictionary, modelManifest.getType()); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/ai/idylnlp/opennlp/custom
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/ai/idylnlp/opennlp/custom/modelloader/LocalModelLoader.java
/******************************************************************************* * Copyright 2018 Mountain Fog, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); you may not * use this file except in compliance with the License. You may obtain a copy * of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations under * the License. ******************************************************************************/ package ai.idylnlp.opennlp.custom.modelloader; import java.io.File; import org.apache.logging.log4j.LogManager; import org.apache.logging.log4j.Logger; import ai.idylnlp.model.ModelValidator; import ai.idylnlp.zoo.IdylNLPModelZoo; import opennlp.tools.util.model.BaseModel; /** * A model loader for using models from the local file system. * @author Mountain Fog, Inc. * */ public final class LocalModelLoader<T extends BaseModel> extends ModelLoader<T> { private static final Logger LOGGER = LogManager.getLogger(LocalModelLoader.class); /** * Creates a local model loader. * @param modelValidator A {@link ModelValidator} to validate the model prior to loading. * @param modelDirectory The directory on the local file system that contains the models. */ public LocalModelLoader(ModelValidator modelValidator, String modelDirectory) { super(modelValidator); if(!modelDirectory.endsWith(File.separator)) { modelDirectory = modelDirectory + File.separator; } LOGGER.info("Using local model loader directory {}", modelDirectory); super.setModelDirectory(modelDirectory); } /** * Creates a local model loader. * @param modelValidator A {@link ModelValidator} to validate the model prior to loading. * @param modelDirectory The directory on the local file system that contains the models. * @param idylNlpModelZoo A {@link IdylNLPModelZoo} client. */ public LocalModelLoader(ModelValidator modelValidator, String modelDirectory, IdylNLPModelZoo idylNlpModelZoo) { this(modelValidator, modelDirectory); super.setIdylNLPModelZoo(idylNlpModelZoo); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/ai/idylnlp/opennlp/custom
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/ai/idylnlp/opennlp/custom/modelloader/ModelLoader.java
/******************************************************************************* * Copyright 2018 Mountain Fog, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); you may not * use this file except in compliance with the License. You may obtain a copy * of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations under * the License. ******************************************************************************/ package ai.idylnlp.opennlp.custom.modelloader; import java.io.File; import java.util.HashMap; import java.util.Map; import org.apache.commons.lang3.StringUtils; import org.apache.logging.log4j.LogManager; import org.apache.logging.log4j.Logger; import ai.idylnlp.model.ModelValidator; import ai.idylnlp.model.exceptions.ModelLoaderException; import ai.idylnlp.model.exceptions.ValidationException; import ai.idylnlp.model.manifest.StandardModelManifest; import ai.idylnlp.opennlp.custom.encryption.OpenNLPEncryptionFactory; import ai.idylnlp.opennlp.custom.model.DictionaryModel; import ai.idylnlp.zoo.IdylNLPModelZoo; import opennlp.tools.cmdline.namefind.TokenNameFinderModelLoader; import opennlp.tools.lemmatizer.LemmatizerModel; import opennlp.tools.namefind.TokenNameFinderModel; import opennlp.tools.postag.POSModel; import opennlp.tools.sentdetect.SentenceModel; import opennlp.tools.tokenize.TokenizerModel; import opennlp.tools.util.model.BaseModel; /** * Abstract superclass for model loaders. Extend this class to implement * custom model loaders to support different environment needs. * @author Mountain Fog, Inc. * @param <T> Class extending {@link BaseModel}. * */ public abstract class ModelLoader<T extends BaseModel> { private static final Logger LOGGER = LogManager.getLogger(ModelLoader.class); // This map holds models for all types - tokenizer, sentences, and entity models. private Map<StandardModelManifest, T> models = new HashMap<StandardModelManifest, T>(); private String modelDirectory; private Class<T> typeParameterClass; private ModelValidator modelValidator; private IdylNLPModelZoo idylNlpModelZoo; public ModelLoader(ModelValidator modelValidator) { this.modelValidator = modelValidator; } /** * Gets the model. * @param modelManifest The model's {@link StandardModelManifest manifest}. * @param typeParameterClass The class of the model. * @return A class extending {@link BaseModel}. * @throws Exception An IOException is thrown if the model can not be loaded. This will happen * in cases where the model does not exist, the model is corrupted, or the model file can not * be read by the process. */ public T getModel(StandardModelManifest modelManifest, Class<T> typeParameterClass) throws ModelLoaderException { this.typeParameterClass = typeParameterClass; T tnfm = null; if(models.get(modelManifest) != null) { // We have previously loaded this model. // Just get it and return it. tnfm = models.get(modelManifest); } else { LOGGER.debug("Model has not been loaded - going to load."); try { // We need to load this model first. tnfm = loadModel(modelManifest); } catch (Exception ex) { LOGGER.error("Unable to load model: " + modelManifest.getModelFileName(), ex); throw new ModelLoaderException("Unable to load model: " + modelManifest.getModelFileName(), ex); } // Null? if(tnfm == null) { throw new ModelLoaderException("Unable to load model: " + modelManifest.getModelFileName()); } else { // Now put the model into the map. models.put(modelManifest, tnfm); } } return tnfm; } private T loadModel(StandardModelManifest modelManifest) throws Exception { final String fullModelFileName = modelDirectory + modelManifest.getModelFileName(); LOGGER.debug("Loading model from: " + fullModelFileName); // Does this file exist? final File modelFile = new File(fullModelFileName); if(!modelFile.exists()) { if(idylNlpModelZoo != null) { LOGGER.info("Attempting to download model {} from the Idyl NLP zoo.", modelManifest.getModelId()); // Try to download the model from the zoo. idylNlpModelZoo.downloadModel(modelManifest.getModelId(), modelFile); } } // Model loading will always take a decent amount of time // so milliseconds is a decent measure here. long startTime = System.currentTimeMillis(); T tnfm = loadModelFromDisk(modelManifest, modelFile); long endTime = System.currentTimeMillis(); long duration = endTime - startTime; LOGGER.debug("Model(s) loaded in " + duration + " milliseconds."); return tnfm; } /** * Load the model from the given path. * @param modelFilePath The file path to the model. * @return The TokenNameFinderModel of the model. */ @SuppressWarnings("unchecked") private T loadModelFromDisk(StandardModelManifest modelManifest, File modelFile) throws Exception { LOGGER.debug("Loading model from disk: " + modelFile.getAbsolutePath()); OpenNLPEncryptionFactory.getDefault().setKey(modelManifest.getEncryptionKey()); T model = null; // Load the model into memory based on the type. if(typeParameterClass.isAssignableFrom(TokenNameFinderModel.class)) { // Load a token name finder model. model = (T) new TokenNameFinderModelLoader().load(modelFile); } else if(typeParameterClass.isAssignableFrom(SentenceModel.class)) { // Load a sentence model. model = (T) new SentenceModel(modelFile); } else if(typeParameterClass.isAssignableFrom(TokenizerModel.class)) { // Load a tokenizer model. model = (T) new TokenizerModel(modelFile); } else if(typeParameterClass.isAssignableFrom(POSModel.class)) { // Load a part-of-speech model. model = (T) new POSModel(modelFile); } else if(typeParameterClass.isAssignableFrom(LemmatizerModel.class)) { // Load a lemmatizer model. model = (T) new LemmatizerModel(modelFile); } else if(typeParameterClass.isAssignableFrom(DictionaryModel.class)) { // Load a dictionary model. model = (T) new DictionaryModel(modelManifest, this.getModelDirectory()); } else { LOGGER.warn("Invalid class of model: {}", typeParameterClass.toString()); } try { // Make sure the model.id in the model matches the model.id in the manifest. if(StringUtils.equals(model.getModelId(), modelManifest.getModelId())) { if(modelValidator != null) { // Validate the model. if(!modelValidator.validate(modelManifest)) { LOGGER.warn("Version verification failed."); // Since version validation failed we will set the model to null. model = null; } } else { // Even though the validator is null validation is allowed to be successful. LOGGER.warn("The model validator was null."); } } else { LOGGER.warn("The model manifest for model {} is not valid.", modelManifest.getModelFileName()); } } catch (ValidationException ex) { LOGGER.error("Idyl NLP license key validation failed loading model.", ex); model = null; } OpenNLPEncryptionFactory.getDefault().clearKey(); return model; } /** * Gets the directory containing the models. * @return The directory containing the models. */ public String getModelDirectory() { return modelDirectory; } /** * Sets the model directory. * @param modelDirectory The directory containing the models. This should be a * directory on the local file system. */ public void setModelDirectory(String modelDirectory) { this.modelDirectory = modelDirectory; } /** * Sets the {@link IdylNLPModelZoo} client. * @param idylNLPModelZoo A {@link IdylNLPModelZoo client}. */ public void setIdylNLPModelZoo(IdylNLPModelZoo idylNLPModelZoo) { this.idylNlpModelZoo = idylNLPModelZoo; } /** * Gets the map of models to file names. * @return A map of models to file names. */ public Map<StandardModelManifest, T> getModels() { return models; } /** * Sets the model map. * @param modelMap The model map which is a map of * models to file names. */ public void setModels(Map<StandardModelManifest, T> modelMap) { this.models = modelMap; } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/ai/idylnlp/opennlp/custom/nlp
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/ai/idylnlp/opennlp/custom/nlp/lemmatization/DefaultLemmatizer.java
/******************************************************************************* * Copyright 2018 Mountain Fog, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); you may not * use this file except in compliance with the License. You may obtain a copy * of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations under * the License. ******************************************************************************/ package ai.idylnlp.opennlp.custom.nlp.lemmatization; import java.io.FileInputStream; import java.io.IOException; import java.io.InputStream; import org.apache.logging.log4j.LogManager; import org.apache.logging.log4j.Logger; import ai.idylnlp.model.ModelValidator; import ai.idylnlp.model.exceptions.ModelLoaderException; import ai.idylnlp.model.manifest.StandardModelManifest; import ai.idylnlp.model.nlp.lemma.Lemmatizer; import ai.idylnlp.opennlp.custom.modelloader.LocalModelLoader; import opennlp.tools.lemmatizer.DictionaryLemmatizer; import opennlp.tools.lemmatizer.LemmatizerME; import opennlp.tools.lemmatizer.LemmatizerModel; /** * Default implementation of {@link Lemmatizer} that uses OpenNLP's * lemmatizing capabilities to provide dictionary-based and * model-based lemmatization. * * @author Mountain Fog, Inc. * */ public class DefaultLemmatizer implements Lemmatizer { private static final Logger LOGGER = LogManager.getLogger(DefaultLemmatizer.class); private opennlp.tools.lemmatizer.Lemmatizer lemmatizer; private boolean isModelBased; /** * Creates a new lemmatizer that uses a dictionary. * @param dictionary The full path to the dictionary file. * @throws IOException Thrown if the dictionary cannot be opened. */ public DefaultLemmatizer(String dictionary) throws IOException { isModelBased = false; InputStream dictLemmatizer = new FileInputStream(dictionary); lemmatizer = new DictionaryLemmatizer(dictLemmatizer); dictLemmatizer.close(); } /** * Creates a new model-based lemmatizer. * @param modelPath The full path to the directory containing the model. * @param modelManifest The {@link StandardModelManifest manifest} of the lemmatizer model. * @param validator The {@link ModelValidator} used to validate the model. * @throws ModelLoaderException Thrown if the model cannot be loaded. */ public DefaultLemmatizer(String modelPath, StandardModelManifest modelManifest, ModelValidator validator) throws ModelLoaderException { isModelBased = true; LocalModelLoader<LemmatizerModel> lemmaModelLoader = new LocalModelLoader<LemmatizerModel>(validator, modelPath); LemmatizerModel model = lemmaModelLoader.getModel(modelManifest, LemmatizerModel.class); lemmatizer = new LemmatizerME(model); } /** * {@inheritDoc} * <p> * How the lemmatization is performed depends on which constructor * was used to create the class. The lemmatization could be * dictionary-based or model-based. */ @Override public String[] lemmatize(String[] tokens, String[] posTags) { String[] lemmas = lemmatizer.lemmatize(tokens, posTags); if(isModelBased) { // Must call decodeLemmas for model-based lemmatization. lemmas = ((LemmatizerME) lemmatizer).decodeLemmas(tokens, lemmas); } return lemmas; } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/ai/idylnlp/opennlp/custom/nlp
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/ai/idylnlp/opennlp/custom/nlp/pos/DefaultPartsOfSpeechTagger.java
/******************************************************************************* * Copyright 2018 Mountain Fog, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); you may not * use this file except in compliance with the License. You may obtain a copy * of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations under * the License. ******************************************************************************/ package ai.idylnlp.opennlp.custom.nlp.pos; import java.util.LinkedList; import java.util.List; import org.apache.logging.log4j.LogManager; import org.apache.logging.log4j.Logger; import ai.idylnlp.model.ModelValidator; import ai.idylnlp.model.exceptions.ModelLoaderException; import ai.idylnlp.model.manifest.StandardModelManifest; import ai.idylnlp.model.nlp.SentenceDetector; import ai.idylnlp.model.nlp.Tokenizer; import ai.idylnlp.model.nlp.pos.PartsOfSpeechTagger; import ai.idylnlp.model.nlp.pos.PartsOfSpeechToken; import ai.idylnlp.opennlp.custom.modelloader.LocalModelLoader; import opennlp.tools.postag.POSModel; import opennlp.tools.postag.POSTaggerME; /** * A part of speech (POS) tagger that uses OpenNLP's tagging capabilities. * * @author Mountain Fog, Inc. * */ public class DefaultPartsOfSpeechTagger implements PartsOfSpeechTagger { private static final Logger LOGGER = LogManager.getLogger(DefaultPartsOfSpeechTagger.class); private POSTaggerME tagger; /** * Creates a tagger. * @param modelFile The part of speech model file. * @param sentenceDetector A {@link SentenceDetector}. * @param tokenizer A {@link Tokenizer}. * @throws ModelLoaderException */ public DefaultPartsOfSpeechTagger(String modelPath, StandardModelManifest modelManifest, ModelValidator validator) throws ModelLoaderException { LocalModelLoader<POSModel> posModelLoader = new LocalModelLoader<POSModel>(validator, modelPath); POSModel model = posModelLoader.getModel(modelManifest, POSModel.class); tagger = new POSTaggerME(model); } /** * {@inheritDoc} */ @Override public List<PartsOfSpeechToken> tag(String input, SentenceDetector sentenceDetector, Tokenizer tokenizer) { String[] sentences = sentenceDetector.sentDetect(input); List<PartsOfSpeechToken> partsOfSpeechTokens = new LinkedList<PartsOfSpeechToken>(); for (String sentence : sentences) { String tokenizedSentence[] = tokenizer.tokenize(sentence); String[] tags = tagger.tag(tokenizedSentence); for (int i = 0; i < tokenizedSentence.length; i++) { final String token = tokenizedSentence[i].trim(); final String tag = tags[i].trim(); partsOfSpeechTokens.add(new PartsOfSpeechToken(token, tag)); } } return partsOfSpeechTokens; } /** * {@inheritDoc} */ @Override public List<PartsOfSpeechToken> tag(String[] sentences, Tokenizer tokenizer) { List<PartsOfSpeechToken> partsOfSpeechTokens = new LinkedList<PartsOfSpeechToken>(); for (String sentence : sentences) { String tokenizedSentence[] = tokenizer.tokenize(sentence); String[] tags = tagger.tag(tokenizedSentence); for (int i = 0; i < tokenizedSentence.length; i++) { final String token = tokenizedSentence[i].trim(); final String tag = tags[i].trim(); partsOfSpeechTokens.add(new PartsOfSpeechToken(token, tag)); } } return partsOfSpeechTokens; } /** * {@inheritDoc} */ @Override public List<PartsOfSpeechToken> tag(String[] tokenizedSentence) { List<PartsOfSpeechToken> partsOfSpeechTokens = new LinkedList<PartsOfSpeechToken>(); String[] tags = tagger.tag(tokenizedSentence); for (int i = 0; i < tokenizedSentence.length; i++) { final String token = tokenizedSentence[i].trim(); final String tag = tags[i].trim(); partsOfSpeechTokens.add(new PartsOfSpeechToken(token, tag)); } return partsOfSpeechTokens; } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/ai/idylnlp/opennlp/custom
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/ai/idylnlp/opennlp/custom/utils/SpansToSpans.java
/******************************************************************************* * Copyright 2018 Mountain Fog, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); you may not * use this file except in compliance with the License. You may obtain a copy * of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations under * the License. ******************************************************************************/ package ai.idylnlp.opennlp.custom.utils; import java.util.LinkedList; import java.util.List; import opennlp.tools.util.Span; /** * Utility class for converting between OpenNLP's Span and Idyl NLP's Span. * * @author Mountain Fog, Inc. * */ public class SpansToSpans { private SpansToSpans() { } /** * Converts an array of OpenNLP Spans to Idyl SDK Spans. * @param spans An array of OpenNLP Spans. * @return An array of Idyl SDK Spans. */ public static ai.idylnlp.model.nlp.Span[] toSpans(Span[] spans) { List<ai.idylnlp.model.nlp.Span> s = new LinkedList<ai.idylnlp.model.nlp.Span>(); for(opennlp.tools.util.Span span : spans) { s.add(new ai.idylnlp.model.nlp.Span(span.getStart(), span.getEnd(), span.getType(), span.getProb())); } return s.toArray(new ai.idylnlp.model.nlp.Span[s.size()]); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/ai/idylnlp/opennlp/custom
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/ai/idylnlp/opennlp/custom/validators/TrueModelValidator.java
/******************************************************************************* * Copyright 2018 Mountain Fog, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); you may not * use this file except in compliance with the License. You may obtain a copy * of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the * License for the specific language governing permissions and limitations under * the License. ******************************************************************************/ package ai.idylnlp.opennlp.custom.validators; import ai.idylnlp.model.ModelValidator; import ai.idylnlp.model.exceptions.ValidationException; import ai.idylnlp.model.manifest.ModelManifest; /** * A model validator that always returns true. Useful for testing or * when no validation is needed. * * @author Mountain Fog, Inc. * */ public class TrueModelValidator implements ModelValidator { @Override public boolean validate(ModelManifest manifest) throws ValidationException { return true; } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/package-info.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * Contains packages which solve common NLP tasks. */ package opennlp.tools;
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/chunker/ChunkSample.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.chunker; import java.io.Serializable; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.List; import java.util.Objects; import opennlp.tools.util.Span; /** * Class for holding chunks for a single unit of text. */ public class ChunkSample implements Serializable { private final List<String> sentence; private final List<String> tags; private final List<String> preds; /** * Initializes the current instance. * * @param sentence * training sentence * @param tags * POS Tags for the sentence * @param preds * Chunk tags in B-* I-* notation */ public ChunkSample(String[] sentence, String[] tags, String[] preds) { validateArguments(sentence.length, tags.length, preds.length); this.sentence = Collections.unmodifiableList(new ArrayList<>(Arrays.asList(sentence))); this.tags = Collections.unmodifiableList(new ArrayList<>(Arrays.asList(tags))); this.preds = Collections.unmodifiableList(new ArrayList<>(Arrays.asList(preds))); } /** * Initializes the current instance. * * @param sentence * training sentence * @param tags * POS Tags for the sentence * @param preds * Chunk tags in B-* I-* notation */ public ChunkSample(List<String> sentence, List<String> tags, List<String> preds) { validateArguments(sentence.size(), tags.size(), preds.size()); this.sentence = Collections.unmodifiableList(new ArrayList<>(sentence)); this.tags = Collections.unmodifiableList(new ArrayList<>(tags)); this.preds = Collections.unmodifiableList(new ArrayList<>(preds)); } /** Gets the training sentence */ public String[] getSentence() { return sentence.toArray(new String[sentence.size()]); } /** Gets the POS Tags for the sentence */ public String[] getTags() { return tags.toArray(new String[tags.size()]); } /** Gets the Chunk tags in B-* I-* notation */ public String[] getPreds() { return preds.toArray(new String[preds.size()]); } /** Gets the phrases as an array of spans */ public Span[] getPhrasesAsSpanList() { return phrasesAsSpanList(getSentence(), getTags(), getPreds()); } /** * Static method to create arrays of spans of phrases * * @param aSentence * training sentence * @param aTags * POS Tags for the sentence * @param aPreds * Chunk tags in B-* I-* notation * * @return the phrases as an array of spans */ public static Span[] phrasesAsSpanList(String[] aSentence, String[] aTags, String[] aPreds) { validateArguments(aSentence.length, aTags.length, aPreds.length); // initialize with the list maximum size List<Span> phrases = new ArrayList<>(aSentence.length); String startTag = ""; int startIndex = 0; boolean foundPhrase = false; for (int ci = 0, cn = aPreds.length; ci < cn; ci++) { String pred = aPreds[ci]; if (pred.startsWith("B-") || !pred.equals("I-" + startTag) && !pred.equals("O")) { // start if (foundPhrase) { // handle the last phrases.add(new Span(startIndex, ci, startTag)); } startIndex = ci; startTag = pred.substring(2); foundPhrase = true; } else if (pred.equals("I-" + startTag)) { // middle // do nothing } else if (foundPhrase) { // end phrases.add(new Span(startIndex, ci, startTag)); foundPhrase = false; startTag = ""; } } if (foundPhrase) { // leftover phrases.add(new Span(startIndex, aPreds.length, startTag)); } return phrases.toArray(new Span[phrases.size()]); } private static void validateArguments(int sentenceSize, int tagsSize, int predsSize) throws IllegalArgumentException { if (sentenceSize != tagsSize || tagsSize != predsSize) throw new IllegalArgumentException( "All arrays must have the same length: " + "sentenceSize: " + sentenceSize + ", tagsSize: " + tagsSize + ", predsSize: " + predsSize + "!"); } /** * Creates a nice to read string for the phrases formatted as following: <br> * <code> * [NP Rockwell_NNP ] [VP said_VBD ] [NP the_DT agreement_NN ] [VP calls_VBZ ] [SBAR for_IN ] * [NP it_PRP ] [VP to_TO supply_VB ] [NP 200_CD additional_JJ so-called_JJ shipsets_NNS ] * [PP for_IN ] [NP the_DT planes_NNS ] ._. * </code> * * @return a nice to read string representation of the chunk phases */ public String nicePrint() { Span[] spans = getPhrasesAsSpanList(); StringBuilder result = new StringBuilder(" "); for (int tokenIndex = 0; tokenIndex < sentence.size(); tokenIndex++) { for (Span span : spans) { if (span.getStart() == tokenIndex) { result.append("[").append(span.getType()).append(" "); } if (span.getEnd() == tokenIndex) { result.append("]").append(' '); } } result.append(sentence.get(tokenIndex)).append("_").append(tags.get(tokenIndex)).append(' '); } if (sentence.size() > 1) result.setLength(result.length() - 1); for (Span span : spans) { if (span.getEnd() == sentence.size()) { result.append(']'); } } return result.toString(); } @Override public String toString() { StringBuilder chunkString = new StringBuilder(); for (int ci = 0; ci < preds.size(); ci++) { chunkString.append(sentence.get(ci)).append(" ").append(tags.get(ci)) .append(" ").append(preds.get(ci)).append("\n"); } return chunkString.toString(); } @Override public int hashCode() { return Objects.hash(Arrays.hashCode(getSentence()), Arrays.hashCode(getTags()), Arrays.hashCode(getPreds())); } @Override public boolean equals(Object obj) { if (this == obj) { return true; } if (obj instanceof ChunkSample) { ChunkSample a = (ChunkSample) obj; return Arrays.equals(getSentence(), a.getSentence()) && Arrays.equals(getTags(), a.getTags()) && Arrays.equals(getPreds(), a.getPreds()); } return false; } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/chunker/ChunkSampleSequenceStream.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.chunker; import java.io.IOException; import opennlp.tools.ml.model.AbstractModel; import opennlp.tools.ml.model.Event; import opennlp.tools.ml.model.Sequence; import opennlp.tools.ml.model.SequenceStream; import opennlp.tools.util.ObjectStream; public class ChunkSampleSequenceStream implements SequenceStream { private final ObjectStream<ChunkSample> samples; private final ChunkerContextGenerator contextGenerator; public ChunkSampleSequenceStream(ObjectStream<ChunkSample> samples, ChunkerContextGenerator contextGenerator) { this.samples = samples; this.contextGenerator = contextGenerator; } @Override public Sequence read() throws IOException { ChunkSample sample = samples.read(); if (sample != null) { String[] sentence = sample.getSentence(); String[] tags = sample.getTags(); Event[] events = new Event[sentence.length]; for (int i = 0; i < sentence.length; i++) { // it is safe to pass the tags as previous tags because // the context generator does not look for non predicted tags String[] context = contextGenerator.getContext(i, sentence, tags, null); events[i] = new Event(tags[i], context); } return new Sequence<>(events,sample); } return null; } @Override public Event[] updateContext(Sequence sequence, AbstractModel model) { // TODO: Should be implemented for Perceptron sequence learning ... return null; } @Override public void reset() throws IOException, UnsupportedOperationException { samples.reset(); } @Override public void close() throws IOException { samples.close(); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/chunker/ChunkSampleStream.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.chunker; import java.io.IOException; import java.util.ArrayList; import java.util.List; import opennlp.tools.util.FilterObjectStream; import opennlp.tools.util.ObjectStream; /** * Parses the conll 2000 shared task shallow parser training data. * <p> * Data format is specified on the conll page:<br> * <a href="http://www.cnts.ua.ac.be/conll2000/chunking/"> * http://www.cnts.ua.ac.be/conll2000/chunking/</a> */ public class ChunkSampleStream extends FilterObjectStream<String, ChunkSample> { /** * Initializes the current instance. * * @param samples a plain text line stream */ public ChunkSampleStream(ObjectStream<String> samples) { super(samples); } public ChunkSample read() throws IOException { List<String> toks = new ArrayList<>(); List<String> tags = new ArrayList<>(); List<String> preds = new ArrayList<>(); for (String line = samples.read(); line != null && !line.equals(""); line = samples.read()) { String[] parts = line.split(" "); if (parts.length != 3) { System.err.println("Skipping corrupt line: " + line); } else { toks.add(parts[0]); tags.add(parts[1]); preds.add(parts[2]); } } if (toks.size() > 0) { return new ChunkSample(toks.toArray(new String[toks.size()]), tags.toArray(new String[tags.size()]), preds.toArray(new String[preds.size()])); } return null; } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/chunker/Chunker.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.chunker; import opennlp.tools.util.Sequence; import opennlp.tools.util.Span; /** * The interface for chunkers which provide chunk tags for a sequence of tokens. */ public interface Chunker { /** * Generates chunk tags for the given sequence returning the result in an array. * * @param toks an array of the tokens or words of the sequence. * @param tags an array of the pos tags of the sequence. * * @return an array of chunk tags for each token in the sequence. */ String[] chunk(String[] toks, String[] tags); /** * Generates tagged chunk spans for the given sequence returning the result in a span array. * * @param toks an array of the tokens or words of the sequence. * @param tags an array of the pos tags of the sequence. * * @return an array of spans with chunk tags for each chunk in the sequence. */ Span[] chunkAsSpans(String[] toks, String[] tags); /** * Returns the top k chunk sequences for the specified sentence with the specified pos-tags * @param sentence The tokens of the sentence. * @param tags The pos-tags for the specified sentence. * * @return the top k chunk sequences for the specified sentence. */ Sequence[] topKSequences(String[] sentence, String[] tags); /** * Returns the top k chunk sequences for the specified sentence with the specified pos-tags * @param sentence The tokens of the sentence. * @param tags The pos-tags for the specified sentence. * @param minSequenceScore A lower bound on the score of a returned sequence. * * @return the top k chunk sequences for the specified sentence. */ Sequence[] topKSequences(String[] sentence, String[] tags, double minSequenceScore); }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/chunker/ChunkerContextGenerator.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.chunker; import opennlp.tools.util.BeamSearchContextGenerator; import opennlp.tools.util.TokenTag; /** * Interface for the context generator used in syntactic chunking. */ public interface ChunkerContextGenerator extends BeamSearchContextGenerator<TokenTag> { /** * Returns the contexts for chunking of the specified index. * @param i The index of the token in the specified toks array for which the context should be constructed. * @param toks The tokens of the sentence. The <code>toString</code> methods of these objects * should return the token text. * @param tags The POS tags for the the specified tokens. * @param preds The previous decisions made in the taging of this sequence. * Only indices less than i will be examined. * @return An array of predictive contexts on which a model basis its decisions. */ String[] getContext(int i, String[] toks, String[] tags, String[] preds); }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/chunker/ChunkerCrossValidator.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.chunker; import java.io.IOException; import opennlp.tools.util.ObjectStream; import opennlp.tools.util.TrainingParameters; import opennlp.tools.util.eval.CrossValidationPartitioner; import opennlp.tools.util.eval.FMeasure; public class ChunkerCrossValidator { private final String languageCode; private final TrainingParameters params; private FMeasure fmeasure = new FMeasure(); private ChunkerEvaluationMonitor[] listeners; private ChunkerFactory chunkerFactory; public ChunkerCrossValidator(String languageCode, TrainingParameters params, ChunkerFactory factory, ChunkerEvaluationMonitor... listeners) { this.chunkerFactory = factory; this.languageCode = languageCode; this.params = params; this.listeners = listeners; } /** * Starts the evaluation. * * @param samples * the data to train and test * @param nFolds * number of folds * * @throws IOException */ public void evaluate(ObjectStream<ChunkSample> samples, int nFolds) throws IOException { CrossValidationPartitioner<ChunkSample> partitioner = new CrossValidationPartitioner<>( samples, nFolds); while (partitioner.hasNext()) { CrossValidationPartitioner.TrainingSampleStream<ChunkSample> trainingSampleStream = partitioner .next(); ChunkerModel model = ChunkerME.train(languageCode, trainingSampleStream, params, chunkerFactory); // do testing ChunkerEvaluator evaluator = new ChunkerEvaluator(new ChunkerME(model), listeners); evaluator.evaluate(trainingSampleStream.getTestSampleStream()); fmeasure.mergeInto(evaluator.getFMeasure()); } } public FMeasure getFMeasure() { return fmeasure; } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/chunker/ChunkerEvaluationMonitor.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.chunker; import opennlp.tools.util.eval.EvaluationMonitor; public interface ChunkerEvaluationMonitor extends EvaluationMonitor<ChunkSample> { }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/chunker/ChunkerEvaluator.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.chunker; import opennlp.tools.util.eval.Evaluator; import opennlp.tools.util.eval.FMeasure; /** * The {@link ChunkerEvaluator} measures the performance * of the given {@link Chunker} with the provided * reference {@link ChunkSample}s. * * @see Evaluator * @see Chunker * @see ChunkSample */ public class ChunkerEvaluator extends Evaluator<ChunkSample> { private FMeasure fmeasure = new FMeasure(); /** * The {@link Chunker} used to create the predicted * {@link ChunkSample} objects. */ private Chunker chunker; /** * Initializes the current instance with the given * {@link Chunker}. * * @param chunker the {@link Chunker} to evaluate. * @param listeners evaluation listeners */ public ChunkerEvaluator(Chunker chunker, ChunkerEvaluationMonitor... listeners) { super(listeners); this.chunker = chunker; } /** * Evaluates the given reference {@link ChunkSample} object. * * This is done by finding the phrases with the * {@link Chunker} in the sentence from the reference * {@link ChunkSample}. The found phrases are then used to * calculate and update the scores. * * @param reference the reference {@link ChunkSample}. * * @return the predicted sample */ @Override protected ChunkSample processSample(ChunkSample reference) { String[] preds = chunker.chunk(reference.getSentence(), reference.getTags()); ChunkSample result = new ChunkSample(reference.getSentence(), reference.getTags(), preds); fmeasure.updateScores(reference.getPhrasesAsSpanList(), result.getPhrasesAsSpanList()); return result; } public FMeasure getFMeasure() { return fmeasure; } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/chunker/ChunkerEventStream.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.chunker; import java.util.ArrayList; import java.util.Collections; import java.util.Iterator; import java.util.List; import opennlp.tools.ml.model.Event; import opennlp.tools.util.AbstractEventStream; import opennlp.tools.util.ObjectStream; /** * Class for creating an event stream out of data files for training a chunker. */ public class ChunkerEventStream extends AbstractEventStream<ChunkSample> { private ChunkerContextGenerator cg; /** * Creates a new event stream based on the specified data stream using the specified context generator. * @param d The data stream for this event stream. * @param cg The context generator which should be used in the creation of events for this event stream. */ public ChunkerEventStream(ObjectStream<ChunkSample> d, ChunkerContextGenerator cg) { super(d); this.cg = cg; } @Override protected Iterator<Event> createEvents(ChunkSample sample) { if (sample != null) { List<Event> events = new ArrayList<>(); String[] toksArray = sample.getSentence(); String[] tagsArray = sample.getTags(); String[] predsArray = sample.getPreds(); for (int ei = 0, el = sample.getSentence().length; ei < el; ei++) { events.add(new Event(predsArray[ei], cg.getContext(ei,toksArray,tagsArray,predsArray))); } return events.iterator(); } else { return Collections.emptyListIterator(); } } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/chunker/ChunkerFactory.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.chunker; import opennlp.tools.util.BaseToolFactory; import opennlp.tools.util.InvalidFormatException; import opennlp.tools.util.SequenceValidator; import opennlp.tools.util.TokenTag; import opennlp.tools.util.ext.ExtensionLoader; public class ChunkerFactory extends BaseToolFactory { /** * Creates a {@link ChunkerFactory} that provides the default implementation * of the resources. */ public ChunkerFactory() { } public static ChunkerFactory create(String subclassName) throws InvalidFormatException { if (subclassName == null) { // will create the default factory return new ChunkerFactory(); } try { return ExtensionLoader.instantiateExtension(ChunkerFactory.class, subclassName); } catch (Exception e) { String msg = "Could not instantiate the " + subclassName + ". The initialization throw an exception."; System.err.println(msg); e.printStackTrace(); throw new InvalidFormatException(msg, e); } } @Override public void validateArtifactMap() throws InvalidFormatException { // no additional artifacts } public SequenceValidator<TokenTag> getSequenceValidator() { return new DefaultChunkerSequenceValidator(); } public ChunkerContextGenerator getContextGenerator() { return new DefaultChunkerContextGenerator(); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/chunker/ChunkerME.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.chunker; import java.io.IOException; import java.util.HashMap; import java.util.List; import java.util.Map; import opennlp.tools.ml.BeamSearch; import opennlp.tools.ml.EventTrainer; import opennlp.tools.ml.SequenceTrainer; import opennlp.tools.ml.TrainerFactory; import opennlp.tools.ml.TrainerFactory.TrainerType; import opennlp.tools.ml.model.Event; import opennlp.tools.ml.model.MaxentModel; import opennlp.tools.ml.model.SequenceClassificationModel; import opennlp.tools.util.ObjectStream; import opennlp.tools.util.Sequence; import opennlp.tools.util.SequenceValidator; import opennlp.tools.util.Span; import opennlp.tools.util.TokenTag; import opennlp.tools.util.TrainingParameters; /** * The class represents a maximum-entropy-based chunker. Such a chunker can be used to * find flat structures based on sequence inputs such as noun phrases or named entities. */ public class ChunkerME implements Chunker { public static final int DEFAULT_BEAM_SIZE = 10; private Sequence bestSequence; /** * The model used to assign chunk tags to a sequence of tokens. */ protected SequenceClassificationModel<TokenTag> model; private ChunkerContextGenerator contextGenerator; private SequenceValidator<TokenTag> sequenceValidator; /** * Initializes the current instance with the specified model and * the specified beam size. * * @param model The model for this chunker. * @param beamSize The size of the beam that should be used when decoding sequences. * @param sequenceValidator The {@link SequenceValidator} to determines whether the outcome * is valid for the preceding sequence. This can be used to implement constraints * on what sequences are valid. * @deprecated Use {@link #ChunkerME(ChunkerModel, int)} instead and use the {@link ChunkerFactory} * to configure the {@link SequenceValidator} and {@link ChunkerContextGenerator}. */ @Deprecated private ChunkerME(ChunkerModel model, int beamSize, SequenceValidator<TokenTag> sequenceValidator, ChunkerContextGenerator contextGenerator) { this.sequenceValidator = sequenceValidator; this.contextGenerator = contextGenerator; if (model.getChunkerSequenceModel() != null) { this.model = model.getChunkerSequenceModel(); } else { this.model = new opennlp.tools.ml.BeamSearch<>(beamSize, model.getChunkerModel(), 0); } } /** * Initializes the current instance with the specified model and * the specified beam size. * * @param model The model for this chunker. * @param beamSize The size of the beam that should be used when decoding sequences. * * @deprecated beam size is now stored inside the model */ @Deprecated private ChunkerME(ChunkerModel model, int beamSize) { contextGenerator = model.getFactory().getContextGenerator(); sequenceValidator = model.getFactory().getSequenceValidator(); if (model.getChunkerSequenceModel() != null) { this.model = model.getChunkerSequenceModel(); } else { this.model = new opennlp.tools.ml.BeamSearch<>(beamSize, model.getChunkerModel(), 0); } } /** * Initializes the current instance with the specified model. * The default beam size is used. * * @param model */ public ChunkerME(ChunkerModel model) { this(model, DEFAULT_BEAM_SIZE); } public String[] chunk(String[] toks, String[] tags) { TokenTag[] tuples = TokenTag.create(toks, tags); bestSequence = model.bestSequence(tuples, new Object[] {}, contextGenerator, sequenceValidator); List<String> c = bestSequence.getOutcomes(); return c.toArray(new String[c.size()]); } public Span[] chunkAsSpans(String[] toks, String[] tags) { String[] preds = chunk(toks, tags); return ChunkSample.phrasesAsSpanList(toks, tags, preds); } public Sequence[] topKSequences(String[] sentence, String[] tags) { TokenTag[] tuples = TokenTag.create(sentence, tags); return model.bestSequences(DEFAULT_BEAM_SIZE, tuples, new Object[] { }, contextGenerator, sequenceValidator); } public Sequence[] topKSequences(String[] sentence, String[] tags, double minSequenceScore) { TokenTag[] tuples = TokenTag.create(sentence, tags); return model.bestSequences(DEFAULT_BEAM_SIZE, tuples, new Object[] { }, minSequenceScore, contextGenerator, sequenceValidator); } /** * Populates the specified array with the probabilities of the last decoded sequence. The * sequence was determined based on the previous call to <code>chunk</code>. The * specified array should be at least as large as the numbe of tokens in the previous * call to <code>chunk</code>. * * @param probs An array used to hold the probabilities of the last decoded sequence. */ public void probs(double[] probs) { bestSequence.getProbs(probs); } /** * Returns an array with the probabilities of the last decoded sequence. The * sequence was determined based on the previous call to <code>chunk</code>. * @return An array with the same number of probabilities as tokens were sent to <code>chunk</code> * when it was last called. */ public double[] probs() { return bestSequence.getProbs(); } public static ChunkerModel train(String lang, ObjectStream<ChunkSample> in, TrainingParameters mlParams, ChunkerFactory factory) throws IOException { int beamSize = mlParams.getIntParameter(BeamSearch.BEAM_SIZE_PARAMETER, ChunkerME.DEFAULT_BEAM_SIZE); Map<String, String> manifestInfoEntries = new HashMap<>(); TrainerType trainerType = TrainerFactory.getTrainerType(mlParams); MaxentModel chunkerModel = null; SequenceClassificationModel<String> seqChunkerModel = null; if (TrainerType.EVENT_MODEL_TRAINER.equals(trainerType)) { ObjectStream<Event> es = new ChunkerEventStream(in, factory.getContextGenerator()); EventTrainer trainer = TrainerFactory.getEventTrainer(mlParams, manifestInfoEntries); chunkerModel = trainer.train(es); } else if (TrainerType.SEQUENCE_TRAINER.equals(trainerType)) { SequenceTrainer trainer = TrainerFactory.getSequenceModelTrainer( mlParams, manifestInfoEntries); // TODO: This will probably cause issue, since the feature generator uses the outcomes array ChunkSampleSequenceStream ss = new ChunkSampleSequenceStream(in, factory.getContextGenerator()); seqChunkerModel = trainer.train(ss); } else { throw new IllegalArgumentException("Trainer type is not supported: " + trainerType); } if (chunkerModel != null) { return new ChunkerModel(lang, chunkerModel, beamSize, manifestInfoEntries, factory); } else { return new ChunkerModel(lang, seqChunkerModel, manifestInfoEntries, factory); } } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/chunker/ChunkerModel.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.chunker; import java.io.File; import java.io.IOException; import java.io.InputStream; import java.net.URL; import java.nio.file.Path; import java.util.Map; import java.util.Properties; import opennlp.tools.ml.BeamSearch; import opennlp.tools.ml.model.AbstractModel; import opennlp.tools.ml.model.MaxentModel; import opennlp.tools.ml.model.SequenceClassificationModel; import opennlp.tools.util.BaseToolFactory; import opennlp.tools.util.InvalidFormatException; import opennlp.tools.util.TokenTag; import opennlp.tools.util.model.BaseModel; /** * The {@link ChunkerModel} is the model used * by a learnable {@link Chunker}. * * @see ChunkerME */ public class ChunkerModel extends BaseModel { private static final String COMPONENT_NAME = "ChunkerME"; private static final String CHUNKER_MODEL_ENTRY_NAME = "chunker.model"; public ChunkerModel(String languageCode, SequenceClassificationModel<String> chunkerModel, Map<String, String> manifestInfoEntries, ChunkerFactory factory) { super(COMPONENT_NAME, languageCode, manifestInfoEntries, factory); artifactMap.put(CHUNKER_MODEL_ENTRY_NAME, chunkerModel); checkArtifactMap(); } public ChunkerModel(String languageCode, MaxentModel chunkerModel, Map<String, String> manifestInfoEntries, ChunkerFactory factory) { this(languageCode, chunkerModel, ChunkerME.DEFAULT_BEAM_SIZE, manifestInfoEntries, factory); } public ChunkerModel(String languageCode, MaxentModel chunkerModel, int beamSize, Map<String, String> manifestInfoEntries, ChunkerFactory factory) { super(COMPONENT_NAME, languageCode, manifestInfoEntries, factory); artifactMap.put(CHUNKER_MODEL_ENTRY_NAME, chunkerModel); Properties manifest = (Properties) artifactMap.get(MANIFEST_ENTRY); manifest.put(BeamSearch.BEAM_SIZE_PARAMETER, Integer.toString(beamSize)); checkArtifactMap(); } public ChunkerModel(String languageCode, MaxentModel chunkerModel, ChunkerFactory factory) { this(languageCode, chunkerModel, null, factory); } public ChunkerModel(InputStream in) throws IOException, InvalidFormatException { super(COMPONENT_NAME, in); } public ChunkerModel(File modelFile) throws IOException, InvalidFormatException { super(COMPONENT_NAME, modelFile); } public ChunkerModel(Path modelPath) throws IOException, InvalidFormatException { this(modelPath.toFile()); } public ChunkerModel(URL modelURL) throws IOException, InvalidFormatException { super(COMPONENT_NAME, modelURL); } @Override protected void validateArtifactMap() throws InvalidFormatException { super.validateArtifactMap(); if (!(artifactMap.get(CHUNKER_MODEL_ENTRY_NAME) instanceof AbstractModel)) { throw new InvalidFormatException("Chunker model is incomplete!"); } // Since 1.8.0 we changed the ChunkerFactory signature. This will check the if the model // declares a not default factory, and if yes, check if it was created before 1.8 if ( (getManifestProperty(FACTORY_NAME) != null && !getManifestProperty(FACTORY_NAME).equals("opennlp.tools.chunker.ChunkerFactory") ) && this.getVersion().getMajor() <= 1 && this.getVersion().getMinor() < 8) { throw new InvalidFormatException("The Chunker factory '" + getManifestProperty(FACTORY_NAME) + "' is no longer compatible. Please update it to match the latest ChunkerFactory."); } } /** * @deprecated use getChunkerSequenceModel instead. This method will be removed soon. */ @Deprecated public MaxentModel getChunkerModel() { if (artifactMap.get(CHUNKER_MODEL_ENTRY_NAME) instanceof MaxentModel) { return (MaxentModel) artifactMap.get(CHUNKER_MODEL_ENTRY_NAME); } else { return null; } } public SequenceClassificationModel<TokenTag> getChunkerSequenceModel() { Properties manifest = (Properties) artifactMap.get(MANIFEST_ENTRY); if (artifactMap.get(CHUNKER_MODEL_ENTRY_NAME) instanceof MaxentModel) { String beamSizeString = manifest.getProperty(BeamSearch.BEAM_SIZE_PARAMETER); int beamSize = ChunkerME.DEFAULT_BEAM_SIZE; if (beamSizeString != null) { beamSize = Integer.parseInt(beamSizeString); } return new BeamSearch<>(beamSize, (MaxentModel) artifactMap.get(CHUNKER_MODEL_ENTRY_NAME)); } else if (artifactMap.get(CHUNKER_MODEL_ENTRY_NAME) instanceof SequenceClassificationModel) { return (SequenceClassificationModel) artifactMap.get(CHUNKER_MODEL_ENTRY_NAME); } else { return null; } } @Override protected Class<? extends BaseToolFactory> getDefaultFactory() { return ChunkerFactory.class; } public ChunkerFactory getFactory() { return (ChunkerFactory) this.toolFactory; } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/chunker/DefaultChunkerContextGenerator.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.chunker; import opennlp.tools.util.TokenTag; /** Features based on chunking model described in Fei Sha and Fernando Pereira. Shallow * parsing with conditional random fields. In Proceedings of HLT-NAACL 2003. Association * for Computational Linguistics, 2003. */ public class DefaultChunkerContextGenerator implements ChunkerContextGenerator { /** * Creates the default context generator a chunker. */ public DefaultChunkerContextGenerator() { } public String[] getContext(int index, String[] tokens, String[] postags, String[] priorDecisions, Object[] additionalContext) { return getContext(index, tokens, postags, priorDecisions); } public String[] getContext(int i, String[] toks, String[] tags, String[] preds) { // Words in a 5-word window String w_2, w_1, w0, w1, w2; // Tags in a 5-word window String t_2, t_1, t0, t1, t2; // Previous predictions String p_2, p_1; if (i < 2) { w_2 = "w_2=bos"; t_2 = "t_2=bos"; p_2 = "p_2=bos"; } else { w_2 = "w_2=" + toks[i - 2]; t_2 = "t_2=" + tags[i - 2]; p_2 = "p_2" + preds[i - 2]; } if (i < 1) { w_1 = "w_1=bos"; t_1 = "t_1=bos"; p_1 = "p_1=bos"; } else { w_1 = "w_1=" + toks[i - 1]; t_1 = "t_1=" + tags[i - 1]; p_1 = "p_1=" + preds[i - 1]; } w0 = "w0=" + toks[i]; t0 = "t0=" + tags[i]; if (i + 1 >= toks.length) { w1 = "w1=eos"; t1 = "t1=eos"; } else { w1 = "w1=" + toks[i + 1]; t1 = "t1=" + tags[i + 1]; } if (i + 2 >= toks.length) { w2 = "w2=eos"; t2 = "t2=eos"; } else { w2 = "w2=" + toks[i + 2]; t2 = "t2=" + tags[i + 2]; } String[] features = new String[] { //add word features w_2, w_1, w0, w1, w2, w_1 + w0, w0 + w1, //add tag features t_2, t_1, t0, t1, t2, t_2 + t_1, t_1 + t0, t0 + t1, t1 + t2, t_2 + t_1 + t0, t_1 + t0 + t1, t0 + t1 + t2, //add pred tags p_2, p_1, p_2 + p_1, //add pred and tag p_1 + t_2, p_1 + t_1, p_1 + t0, p_1 + t1, p_1 + t2, p_1 + t_2 + t_1, p_1 + t_1 + t0, p_1 + t0 + t1, p_1 + t1 + t2, p_1 + t_2 + t_1 + t0, p_1 + t_1 + t0 + t1, p_1 + t0 + t1 + t2, //add pred and word p_1 + w_2, p_1 + w_1, p_1 + w0, p_1 + w1, p_1 + w2, p_1 + w_1 + w0, p_1 + w0 + w1 }; return features; } @Override public String[] getContext(int index, TokenTag[] sequence, String[] priorDecisions, Object[] additionalContext) { String[] token = TokenTag.extractTokens(sequence); String[] tags = TokenTag.extractTags(sequence); return getContext(index, token, tags, priorDecisions, additionalContext); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/chunker/DefaultChunkerSequenceValidator.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.chunker; import opennlp.tools.util.SequenceValidator; import opennlp.tools.util.TokenTag; public class DefaultChunkerSequenceValidator implements SequenceValidator<TokenTag> { private boolean validOutcome(String outcome, String prevOutcome) { if (outcome.startsWith("I-")) { if (prevOutcome == null) { return false; } else { if (prevOutcome.equals("O")) { return false; } if (!prevOutcome.substring(2).equals(outcome.substring(2))) { return false; } } } return true; } protected boolean validOutcome(String outcome, String[] sequence) { String prevOutcome = null; if (sequence.length > 0) { prevOutcome = sequence[sequence.length - 1]; } return validOutcome(outcome,prevOutcome); } public boolean validSequence(int i, TokenTag[] sequence, String[] s, String outcome) { return validOutcome(outcome, s); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/chunker/package-info.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * Package related to finding non-recursive syntactic annotation such as noun phrase chunks. */ package opennlp.tools.chunker;
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/AbstractConverterTool.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline; import java.io.IOException; import java.util.Map; import opennlp.tools.util.ObjectStream; /** * Base class for format conversion tools. * * @param <T> class of data sample the tool converts, for example {@link opennlp.tools.postag * .POSSample} */ public abstract class AbstractConverterTool<T> extends TypedCmdLineTool<T> { /** * Constructor with type parameter. * * @param sampleType class of the template parameter */ protected AbstractConverterTool(Class<T> sampleType) { super(sampleType); } public String getShortDescription() { Map<String, ObjectStreamFactory<T>> factories = StreamFactoryRegistry.getFactories(type); StringBuilder help = new StringBuilder(); if (2 == factories.keySet().size()) { //opennlp + foreign for (String format : factories.keySet()) { if (!StreamFactoryRegistry.DEFAULT_FORMAT.equals(format)) { help.append(format); } } return "converts " + help.toString() + " data format to native OpenNLP format"; } else if (2 < factories.keySet().size()) { for (String format : factories.keySet()) { if (!StreamFactoryRegistry.DEFAULT_FORMAT.equals(format)) { help.append(format).append(","); } } return "converts foreign data formats (" + help.substring(0, help.length() - 1 ) + ") to native OpenNLP format"; } else { throw new AssertionError("There should be more than 1 factory registered for converter " + "tool"); } } private String createHelpString(String format, String usage) { return "Usage: " + CLI.CMD + " " + getName() + " " + format + " " + usage; } public String getHelp() { Map<String, ObjectStreamFactory<T>> factories = StreamFactoryRegistry.getFactories(type); StringBuilder help = new StringBuilder("help|"); for (String formatName : factories.keySet()) { if (!StreamFactoryRegistry.DEFAULT_FORMAT.equals(formatName)) { help.append(formatName).append("|"); } } return createHelpString(help.substring(0, help.length() - 1), "[help|options...]"); } public String getHelp(String format) { return getHelp(); } public void run(String format, String[] args) { if (0 == args.length) { System.out.println(getHelp()); } else { format = args[0]; ObjectStreamFactory<T> streamFactory = getStreamFactory(format); String[] formatArgs = new String[args.length - 1]; System.arraycopy(args, 1, formatArgs, 0, formatArgs.length); String helpString = createHelpString(format, ArgumentParser.createUsage(streamFactory.getParameters())); if (0 == formatArgs.length || (1 == formatArgs.length && "help".equals(formatArgs[0]))) { System.out.println(helpString); System.exit(0); } String errorMessage = ArgumentParser.validateArgumentsLoudly(formatArgs, streamFactory.getParameters()); if (null != errorMessage) { throw new TerminateToolException(1, errorMessage + "\n" + helpString); } try (ObjectStream<T> sampleStream = streamFactory.create(formatArgs)) { Object sample; while ((sample = sampleStream.read()) != null) { System.out.println(sample.toString()); } } catch (IOException e) { throw new TerminateToolException(-1, "IO error while converting data : " + e.getMessage(), e); } } } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/AbstractCrossValidatorTool.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline; /** * Base class for cross validator tools. */ public abstract class AbstractCrossValidatorTool<T, P> extends AbstractTrainerTool<T, P> { /** * Constructor with type parameters. * * @param sampleType class of the template parameter * @param params interface with parameters */ protected AbstractCrossValidatorTool(Class<T> sampleType, Class<P> params) { super(sampleType, params); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/AbstractEvaluatorTool.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline; import opennlp.tools.util.ObjectStream; /** * Base class for evaluator tools. */ public class AbstractEvaluatorTool<T, P> extends AbstractTypedParamTool<T, P> { protected P params; protected ObjectStreamFactory<T> factory; protected ObjectStream<T> sampleStream; /** * Constructor with type parameters. * * @param sampleType class of the template parameter * @param params interface with parameters */ protected AbstractEvaluatorTool(Class<T> sampleType, Class<P> params) { super(sampleType, params); } public void run(String format, String[] args) { validateAllArgs(args, this.paramsClass, format); params = ArgumentParser.parse( ArgumentParser.filter(args, this.paramsClass), this.paramsClass); factory = getStreamFactory(format); String[] fargs = ArgumentParser.filter(args, factory.getParameters()); validateFactoryArgs(factory, fargs); sampleStream = factory.create(fargs); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/AbstractTrainerTool.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline; import java.io.IOException; import opennlp.tools.util.InsufficientTrainingDataException; import opennlp.tools.util.TrainingParameters; /** * Base class for trainer tools. */ public class AbstractTrainerTool<T, P> extends AbstractEvaluatorTool<T, P> { protected TrainingParameters mlParams; /** * Constructor with type parameters. * * @param sampleType class of the template parameter * @param params interface with parameters */ protected AbstractTrainerTool(Class<T> sampleType, Class<P> params) { super(sampleType, params); } protected TerminateToolException createTerminationIOException(IOException e) { if (e instanceof InsufficientTrainingDataException) { return new TerminateToolException(-1, "\n\nERROR: Not enough training data\n" + "The provided training data is not sufficient to create enough events to train a model.\n" + "To resolve this error use more training data, if this doesn't help there might\n" + "be some fundamental problem with the training data itself."); } return new TerminateToolException(-1, "IO error while reading training data or indexing data: " + e.getMessage(), e); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/AbstractTypedParamTool.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline; /** * Base class for tools which take additional parameters. For example, trainers or evaluators. */ public abstract class AbstractTypedParamTool<T, P> extends TypedCmdLineTool<T> { /** * variable to access the parameters */ protected final Class<P> paramsClass; /** * Constructor with type parameters. * * @param sampleType class of the template parameter * @param paramsClass interface with parameters */ protected AbstractTypedParamTool(Class<T> sampleType, Class<P> paramsClass) { super(sampleType); this.paramsClass = paramsClass; } public String getHelp(String format) { if ("".equals(format) || StreamFactoryRegistry.DEFAULT_FORMAT.equals(format)) { return getBasicHelp(paramsClass, StreamFactoryRegistry.getFactory(type, StreamFactoryRegistry.DEFAULT_FORMAT).getParameters()); } else { ObjectStreamFactory<T> factory = StreamFactoryRegistry.getFactory(type, format); if (null == factory) { throw new TerminateToolException(1, "Format " + format + " is not found.\n" + getHelp()); } return "Usage: " + CLI.CMD + " " + getName() + "." + format + " " + ArgumentParser.createUsage(paramsClass, factory.getParameters()); } } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/ArgumentParser.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline; import java.io.File; import java.lang.annotation.Retention; import java.lang.annotation.RetentionPolicy; import java.lang.reflect.InvocationHandler; import java.lang.reflect.Method; import java.nio.charset.Charset; import java.nio.charset.IllegalCharsetNameException; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.HashMap; import java.util.HashSet; import java.util.LinkedList; import java.util.List; import java.util.Map; import java.util.Set; /** * Parser for command line arguments. The parser creates a dynamic proxy which * can be access via a command line argument interface. * * <p> * * The command line argument proxy interface must follow these conventions:<br> * - Methods do not define arguments<br> * - Method names must start with get<br> * - Allowed return types are Integer, Boolean, String, File and Charset.<br> * <p> * <b>Note:</b> Do not use this class, internal use only! */ public class ArgumentParser { public @Retention(RetentionPolicy.RUNTIME) @interface OptionalParameter { // CHECKSTYLE:OFF String DEFAULT_CHARSET = "DEFAULT_CHARSET"; // CHECKSTYLE:ON String defaultValue() default ""; } public @Retention(RetentionPolicy.RUNTIME) @interface ParameterDescription { String valueName(); String description() default ""; } private interface ArgumentFactory { String INVALID_ARG = "Invalid argument: %s %s \n"; Object parseArgument(Method method, String argName, String argValue); } private static class IntegerArgumentFactory implements ArgumentFactory { public Object parseArgument(Method method, String argName, String argValue) { Object value; try { value = Integer.parseInt(argValue); } catch (NumberFormatException e) { throw new TerminateToolException(1, String.format(INVALID_ARG, argName, argValue) + "Value must be an integer!", e); } return value; } } private static class BooleanArgumentFactory implements ArgumentFactory { public Object parseArgument(Method method, String argName, String argValue) { return Boolean.parseBoolean(argValue); } } private static class StringArgumentFactory implements ArgumentFactory { public Object parseArgument(Method method, String argName, String argValue) { return argValue; } } private static class FileArgumentFactory implements ArgumentFactory { public Object parseArgument(Method method, String argName, String argValue) { return new File(argValue); } } private static class CharsetArgumentFactory implements ArgumentFactory { public Object parseArgument(Method method, String argName, String charsetName) { try { if (OptionalParameter.DEFAULT_CHARSET.equals(charsetName)) { return Charset.defaultCharset(); } else if (Charset.isSupported(charsetName)) { return Charset.forName(charsetName); } else { throw new TerminateToolException(1, String.format(INVALID_ARG, argName, charsetName) + "Encoding not supported on this platform."); } } catch (IllegalCharsetNameException e) { throw new TerminateToolException(1, String.format(INVALID_ARG, argName, charsetName) + "Illegal encoding name."); } } } private static class ArgumentProxy implements InvocationHandler { private final Map<String, Object> arguments; ArgumentProxy(Map<String, Object> arguments) { this.arguments = arguments; } public Object invoke(Object proxy, Method method, Object[] args) throws Throwable { if (args != null) throw new IllegalStateException(); return arguments.get(method.getName()); } } private static final Map<Class<?>, ArgumentFactory> argumentFactories; static { Map<Class<?>, ArgumentFactory> factories = new HashMap<>(); factories.put(Integer.class, new IntegerArgumentFactory()); factories.put(Boolean.class, new BooleanArgumentFactory()); factories.put(String.class, new StringArgumentFactory()); factories.put(File.class, new FileArgumentFactory()); factories.put(Charset.class, new CharsetArgumentFactory()); argumentFactories = Collections.unmodifiableMap(factories); } private ArgumentParser() { } private static void checkProxyInterfaces(Class<?>... proxyInterfaces) { for (Class<?> proxyInterface : proxyInterfaces) { if (null != proxyInterface) { if (!proxyInterface.isInterface()) throw new IllegalArgumentException("proxy interface is not an interface!"); // all checks should also be performed for super interfaces Method[] methods = proxyInterface.getMethods(); if (methods.length == 0) throw new IllegalArgumentException("proxy interface must at least declare one method!"); for (Method method : methods) { // check that method names start with get if (!method.getName().startsWith("get") && method.getName().length() > 3) throw new IllegalArgumentException(method.getName() + " method name does not start with 'get'!"); // check that method has zero arguments if (method.getParameterTypes().length != 0) { throw new IllegalArgumentException(method.getName() + " method must have zero parameters but has " + method.getParameterTypes().length + "!"); } // check return types of interface Class<?> returnType = method.getReturnType(); Set<Class<?>> compatibleReturnTypes = argumentFactories.keySet(); if (!compatibleReturnTypes.contains(returnType)) { throw new IllegalArgumentException(method.getName() + " method must have compatible return type! Got " + returnType + ", expected one of " + compatibleReturnTypes); } } } } } private static String methodNameToParameter(String methodName) { // remove get from method name char[] parameterNameChars = methodName.toCharArray(); // name length is checked to be at least 4 prior parameterNameChars[3] = Character.toLowerCase(parameterNameChars[3]); return "-" + new String(parameterNameChars).substring(3); } /** * Creates a usage string which can be printed in case the user did specify the arguments * incorrectly. Incorrectly is defined as {@link ArgumentParser#validateArguments(String[], Class)} * returns false. * * @param argProxyInterface interface with parameter descriptions * @return the help message usage string */ @SuppressWarnings({"unchecked"}) public static <T> String createUsage(Class<T> argProxyInterface) { return createUsage(new Class[]{argProxyInterface}); } /** * Auxiliary class that holds information about an argument. This is used by the * GenerateManualTool, which creates a Docbook for the CLI automatically. */ static class Argument { private final String argument; private final String value; private final String description; private final boolean optional; public Argument(String argument, String value, String description, boolean optional) { super(); this.argument = argument; this.value = value; this.description = description; this.optional = optional; } public String getArgument() { return argument; } public String getValue() { return value; } public String getDescription() { return description; } public boolean getOptional() { return optional; } } /** * Outputs the arguments as a data structure so it can be used to create documentation. * * @param argProxyInterfaces interfaces with parameter descriptions * @return the help message usage string */ public static List<Argument> createArguments(Class<?>... argProxyInterfaces) { checkProxyInterfaces(argProxyInterfaces); Set<String> duplicateFilter = new HashSet<>(); List<Argument> arguments = new LinkedList<>(); for (Class<?> argProxyInterface : argProxyInterfaces) { if (null != argProxyInterface) { for (Method method : argProxyInterface.getMethods()) { ParameterDescription desc = method.getAnnotation(ParameterDescription.class); OptionalParameter optional = method.getAnnotation(OptionalParameter.class); if (desc != null) { String paramName = methodNameToParameter(method.getName()); if (duplicateFilter.contains(paramName)) { continue; } else { duplicateFilter.add(paramName); } boolean isOptional = false; if (optional != null) isOptional = true; Argument arg = new Argument(paramName.substring(1), desc.valueName(), desc.description(), isOptional); arguments.add(arg); } } } } return arguments; } /** * Creates a usage string which can be printed in case the user did specify the arguments * incorrectly. Incorrectly is defined as {@link ArgumentParser#validateArguments(String[], * Class[])} * returns false. * * @param argProxyInterfaces interfaces with parameter descriptions * @return the help message usage string */ public static String createUsage(Class<?>... argProxyInterfaces) { checkProxyInterfaces(argProxyInterfaces); Set<String> duplicateFilter = new HashSet<>(); StringBuilder usage = new StringBuilder(); StringBuilder details = new StringBuilder(); for (Class<?> argProxyInterface : argProxyInterfaces) { if (null != argProxyInterface) { for (Method method : argProxyInterface.getMethods()) { ParameterDescription desc = method.getAnnotation(ParameterDescription.class); OptionalParameter optional = method.getAnnotation(OptionalParameter.class); if (desc != null) { String paramName = methodNameToParameter(method.getName()); if (duplicateFilter.contains(paramName)) { continue; } else { duplicateFilter.add(paramName); } if (optional != null) usage.append('['); usage.append(paramName).append(' ').append(desc.valueName()); details.append('\t').append(paramName).append(' ').append(desc.valueName()).append('\n'); if (desc.description().length() > 0) { details.append("\t\t").append(desc.description()).append('\n'); } if (optional != null) usage.append(']'); usage.append(' '); } } } } if (usage.length() > 0) usage.setLength(usage.length() - 1); if (details.length() > 0) { details.setLength(details.length() - 1); usage.append("\n\nArguments description:\n").append(details.toString()); } return usage.toString(); } /** * Tests if the argument are correct or incorrect. Incorrect means, that mandatory arguments are missing or * there are unknown arguments. The argument value itself can also be incorrect, but this * is checked by the {@link ArgumentParser#parse(String[], Class)} method and reported accordingly. * * @param args command line arguments * @param argProxyInterface interface with parameters description * @return true, if arguments are valid */ @SuppressWarnings({"unchecked"}) public static <T> boolean validateArguments(String[] args, Class<T> argProxyInterface) { return validateArguments(args, new Class[]{argProxyInterface}); } /** * Tests if the argument are correct or incorrect. Incorrect means, that mandatory arguments are missing or * there are unknown arguments. The argument value itself can also be incorrect, but this * is checked by the {@link ArgumentParser#parse(String[], Class)} method and reported accordingly. * * @param args command line arguments * @param argProxyInterfaces interfaces with parameters description * @return true, if arguments are valid */ public static boolean validateArguments(String[] args, Class<?>... argProxyInterfaces) { return null == validateArgumentsLoudly(args, argProxyInterfaces); } /** * Tests if the arguments are correct or incorrect. * * @param args command line arguments * @param argProxyInterface interface with parameters description * @return null, if arguments are valid or error message otherwise */ public static String validateArgumentsLoudly(String[] args, Class<?> argProxyInterface) { return validateArgumentsLoudly(args, new Class[]{argProxyInterface}); } /** * Tests if the arguments are correct or incorrect. * * @param args command line arguments * @param argProxyInterfaces interfaces with parameters description * @return null, if arguments are valid or error message otherwise */ public static String validateArgumentsLoudly(String[] args, Class<?>... argProxyInterfaces) { // number of parameters must be always be even if (args.length % 2 != 0) { return "Number of parameters must be always be even"; } int argumentCount = 0; List<String> parameters = new ArrayList<>(Arrays.asList(args)); for (Class<?> argProxyInterface : argProxyInterfaces) { for (Method method : argProxyInterface.getMethods()) { String paramName = methodNameToParameter(method.getName()); int paramIndex = CmdLineUtil.getParameterIndex(paramName, args); String valueString = CmdLineUtil.getParameter(paramName, args); if (valueString == null) { OptionalParameter optionalParam = method.getAnnotation(OptionalParameter.class); if (optionalParam == null) { if (-1 < paramIndex) { return "Missing mandatory parameter value: " + paramName; } else { return "Missing mandatory parameter: " + paramName; } } else { parameters.remove("-" + paramName); } } else { parameters.remove(paramName); parameters.remove(valueString); argumentCount++; } } } if (args.length / 2 > argumentCount) { return "Unrecognized parameters encountered: " + parameters.toString(); } return null; } /** * Parses the passed arguments and creates an instance of the proxy interface. * <p> * In case an argument value cannot be parsed a {@link TerminateToolException} is * thrown which contains an error message which explains the problems. * * @param args arguments * @param argProxyInterface interface with parameters description * * @return parsed parameters * * @throws TerminateToolException if an argument value cannot be parsed. * @throws IllegalArgumentException if validateArguments returns false, * if the proxy interface is not compatible. */ @SuppressWarnings("unchecked") public static <T> T parse(String[] args, Class<T> argProxyInterface) { checkProxyInterfaces(argProxyInterface); if (!validateArguments(args, argProxyInterface)) throw new IllegalArgumentException("Passed args must be valid!"); Map<String, Object> arguments = new HashMap<>(); for (Method method : argProxyInterface.getMethods()) { String parameterName = methodNameToParameter(method.getName()); String valueString = CmdLineUtil.getParameter(parameterName, args); if (valueString == null) { OptionalParameter optionalParam = method.getAnnotation(OptionalParameter.class); if (optionalParam.defaultValue().length() > 0) valueString = optionalParam.defaultValue(); else valueString = null; } Class<?> returnType = method.getReturnType(); Object value; if (valueString != null) { ArgumentFactory factory = argumentFactories.get(returnType); if (factory == null) throw new IllegalStateException("factory for '" + returnType + "' must not be null"); value = factory.parseArgument(method, parameterName, valueString); } else value = null; arguments.put(method.getName(), value); } return (T) java.lang.reflect.Proxy.newProxyInstance( argProxyInterface.getClassLoader(), new Class[]{argProxyInterface}, new ArgumentProxy(arguments)); } /** * Filters arguments leaving only those pertaining to argProxyInterface. * * @param args arguments * @param argProxyInterface interface with parameters description * @param <T> T * @return arguments pertaining to argProxyInterface */ public static <T> String[] filter(String[] args, Class<T> argProxyInterface) { ArrayList<String> parameters = new ArrayList<>(args.length); for (Method method : argProxyInterface.getMethods()) { String parameterName = methodNameToParameter(method.getName()); int idx = CmdLineUtil.getParameterIndex(parameterName, args); if (-1 < idx) { parameters.add(parameterName); String valueString = CmdLineUtil.getParameter(parameterName, args); if (null != valueString) { parameters.add(valueString); } } } return parameters.toArray(new String[parameters.size()]); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/BasicCmdLineTool.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline; /** * A simple tool which can be executed from the command line. * <p> * <b>Note:</b> Do not use this class, internal use only! */ public abstract class BasicCmdLineTool extends CmdLineTool { /** * Executes the tool with the given parameters. * * @param args arguments */ public abstract void run(String[] args); }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/CLI.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline; import java.util.Collections; import java.util.LinkedHashMap; import java.util.LinkedList; import java.util.List; import java.util.Map; import java.util.Set; import opennlp.tools.cmdline.chunker.ChunkerConverterTool; import opennlp.tools.cmdline.chunker.ChunkerCrossValidatorTool; import opennlp.tools.cmdline.chunker.ChunkerEvaluatorTool; import opennlp.tools.cmdline.chunker.ChunkerMETool; import opennlp.tools.cmdline.chunker.ChunkerTrainerTool; import opennlp.tools.cmdline.dictionary.DictionaryBuilderTool; import opennlp.tools.cmdline.doccat.DoccatConverterTool; import opennlp.tools.cmdline.doccat.DoccatCrossValidatorTool; import opennlp.tools.cmdline.doccat.DoccatEvaluatorTool; import opennlp.tools.cmdline.doccat.DoccatTool; import opennlp.tools.cmdline.doccat.DoccatTrainerTool; import opennlp.tools.cmdline.entitylinker.EntityLinkerTool; import opennlp.tools.cmdline.langdetect.LanguageDetectorConverterTool; import opennlp.tools.cmdline.langdetect.LanguageDetectorCrossValidatorTool; import opennlp.tools.cmdline.langdetect.LanguageDetectorEvaluatorTool; import opennlp.tools.cmdline.langdetect.LanguageDetectorTool; import opennlp.tools.cmdline.langdetect.LanguageDetectorTrainerTool; import opennlp.tools.cmdline.languagemodel.NGramLanguageModelTool; import opennlp.tools.cmdline.lemmatizer.LemmatizerEvaluatorTool; import opennlp.tools.cmdline.lemmatizer.LemmatizerMETool; import opennlp.tools.cmdline.lemmatizer.LemmatizerTrainerTool; import opennlp.tools.cmdline.namefind.CensusDictionaryCreatorTool; import opennlp.tools.cmdline.namefind.TokenNameFinderConverterTool; import opennlp.tools.cmdline.namefind.TokenNameFinderCrossValidatorTool; import opennlp.tools.cmdline.namefind.TokenNameFinderEvaluatorTool; import opennlp.tools.cmdline.namefind.TokenNameFinderTool; import opennlp.tools.cmdline.namefind.TokenNameFinderTrainerTool; import opennlp.tools.cmdline.parser.BuildModelUpdaterTool; import opennlp.tools.cmdline.parser.CheckModelUpdaterTool; import opennlp.tools.cmdline.parser.ParserConverterTool; import opennlp.tools.cmdline.parser.ParserEvaluatorTool; import opennlp.tools.cmdline.parser.ParserTool; import opennlp.tools.cmdline.parser.ParserTrainerTool; import opennlp.tools.cmdline.parser.TaggerModelReplacerTool; import opennlp.tools.cmdline.postag.POSTaggerConverterTool; import opennlp.tools.cmdline.postag.POSTaggerCrossValidatorTool; import opennlp.tools.cmdline.postag.POSTaggerEvaluatorTool; import opennlp.tools.cmdline.postag.POSTaggerTrainerTool; import opennlp.tools.cmdline.sentdetect.SentenceDetectorConverterTool; import opennlp.tools.cmdline.sentdetect.SentenceDetectorCrossValidatorTool; import opennlp.tools.cmdline.sentdetect.SentenceDetectorEvaluatorTool; import opennlp.tools.cmdline.sentdetect.SentenceDetectorTool; import opennlp.tools.cmdline.sentdetect.SentenceDetectorTrainerTool; import opennlp.tools.cmdline.tokenizer.DictionaryDetokenizerTool; import opennlp.tools.cmdline.tokenizer.SimpleTokenizerTool; import opennlp.tools.cmdline.tokenizer.TokenizerConverterTool; import opennlp.tools.cmdline.tokenizer.TokenizerCrossValidatorTool; import opennlp.tools.cmdline.tokenizer.TokenizerMEEvaluatorTool; import opennlp.tools.cmdline.tokenizer.TokenizerMETool; import opennlp.tools.cmdline.tokenizer.TokenizerTrainerTool; import opennlp.tools.util.Version; public final class CLI { public static final String CMD = "opennlp"; private static Map<String, CmdLineTool> toolLookupMap; static { toolLookupMap = new LinkedHashMap<>(); List<CmdLineTool> tools = new LinkedList<>(); // Document Categorizer tools.add(new DoccatTool()); tools.add(new DoccatTrainerTool()); tools.add(new DoccatEvaluatorTool()); tools.add(new DoccatCrossValidatorTool()); tools.add(new DoccatConverterTool()); // Language Detector tools.add(new LanguageDetectorTool()); tools.add(new LanguageDetectorTrainerTool()); tools.add(new LanguageDetectorConverterTool()); tools.add(new LanguageDetectorCrossValidatorTool()); tools.add(new LanguageDetectorEvaluatorTool()); // Dictionary Builder tools.add(new DictionaryBuilderTool()); // Tokenizer tools.add(new SimpleTokenizerTool()); tools.add(new TokenizerMETool()); tools.add(new TokenizerTrainerTool()); tools.add(new TokenizerMEEvaluatorTool()); tools.add(new TokenizerCrossValidatorTool()); tools.add(new TokenizerConverterTool()); tools.add(new DictionaryDetokenizerTool()); // Sentence detector tools.add(new SentenceDetectorTool()); tools.add(new SentenceDetectorTrainerTool()); tools.add(new SentenceDetectorEvaluatorTool()); tools.add(new SentenceDetectorCrossValidatorTool()); tools.add(new SentenceDetectorConverterTool()); // Name Finder tools.add(new TokenNameFinderTool()); tools.add(new TokenNameFinderTrainerTool()); tools.add(new TokenNameFinderEvaluatorTool()); tools.add(new TokenNameFinderCrossValidatorTool()); tools.add(new TokenNameFinderConverterTool()); tools.add(new CensusDictionaryCreatorTool()); // POS Tagger tools.add(new opennlp.tools.cmdline.postag.POSTaggerTool()); tools.add(new POSTaggerTrainerTool()); tools.add(new POSTaggerEvaluatorTool()); tools.add(new POSTaggerCrossValidatorTool()); tools.add(new POSTaggerConverterTool()); //Lemmatizer tools.add(new LemmatizerMETool()); tools.add(new LemmatizerTrainerTool()); tools.add(new LemmatizerEvaluatorTool()); // Chunker tools.add(new ChunkerMETool()); tools.add(new ChunkerTrainerTool()); tools.add(new ChunkerEvaluatorTool()); tools.add(new ChunkerCrossValidatorTool()); tools.add(new ChunkerConverterTool()); // Parser tools.add(new ParserTool()); tools.add(new ParserTrainerTool()); // trains everything tools.add(new ParserEvaluatorTool()); tools.add(new ParserConverterTool()); // trains everything tools.add(new BuildModelUpdaterTool()); // re-trains build model tools.add(new CheckModelUpdaterTool()); // re-trains build model tools.add(new TaggerModelReplacerTool()); // Entity Linker tools.add(new EntityLinkerTool()); // Language Model tools.add(new NGramLanguageModelTool()); for (CmdLineTool tool : tools) { toolLookupMap.put(tool.getName(), tool); } toolLookupMap = Collections.unmodifiableMap(toolLookupMap); } /** * @return a set which contains all tool names */ public static Set<String> getToolNames() { return toolLookupMap.keySet(); } /** * @return a read only map with tool names and instances */ public static Map<String, CmdLineTool> getToolLookupMap() { return toolLookupMap; } private static void usage() { System.out.print("OpenNLP " + Version.currentVersion().toString() + ". "); System.out.println("Usage: " + CMD + " TOOL"); System.out.println("where TOOL is one of:"); // distance of tool name from line start int numberOfSpaces = -1; for (String toolName : toolLookupMap.keySet()) { if (toolName.length() > numberOfSpaces) { numberOfSpaces = toolName.length(); } } numberOfSpaces = numberOfSpaces + 4; for (CmdLineTool tool : toolLookupMap.values()) { System.out.print(" " + tool.getName()); for (int i = 0; i < Math.abs(tool.getName().length() - numberOfSpaces); i++) { System.out.print(" "); } System.out.println(tool.getShortDescription()); } System.out.println("All tools print help when invoked with help parameter"); System.out.println("Example: opennlp SimpleTokenizer help"); } public static void main(String[] args) { if (args.length == 0) { usage(); System.exit(0); } final long startTime = System.currentTimeMillis(); String[] toolArguments = new String[args.length - 1]; System.arraycopy(args, 1, toolArguments, 0, toolArguments.length); String toolName = args[0]; //check for format String formatName = StreamFactoryRegistry.DEFAULT_FORMAT; int idx = toolName.indexOf("."); if (-1 < idx) { formatName = toolName.substring(idx + 1); toolName = toolName.substring(0, idx); } CmdLineTool tool = toolLookupMap.get(toolName); try { if (null == tool) { throw new TerminateToolException(1, "Tool " + toolName + " is not found."); } if ((0 == toolArguments.length && tool.hasParams()) || 0 < toolArguments.length && "help".equals(toolArguments[0])) { if (tool instanceof TypedCmdLineTool) { System.out.println(((TypedCmdLineTool<?>) tool).getHelp(formatName)); } else if (tool instanceof BasicCmdLineTool) { System.out.println(tool.getHelp()); } System.exit(0); } if (tool instanceof TypedCmdLineTool) { ((TypedCmdLineTool<?>) tool).run(formatName, toolArguments); } else if (tool instanceof BasicCmdLineTool) { if (-1 == idx) { ((BasicCmdLineTool) tool).run(toolArguments); } else { throw new TerminateToolException(1, "Tool " + toolName + " does not support formats."); } } else { throw new TerminateToolException(1, "Tool " + toolName + " is not supported."); } } catch (TerminateToolException e) { if (e.getMessage() != null) { System.err.println(e.getMessage()); } if (e.getCause() != null) { System.err.println(e.getCause().getMessage()); e.getCause().printStackTrace(System.err); } System.exit(e.getCode()); } final long endTime = System.currentTimeMillis(); System.err.format("Execution time: %.3f seconds\n", (endTime - startTime) / 1000.0); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/CmdLineTool.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline; /** * Base class for all command line tools. */ public abstract class CmdLineTool { protected CmdLineTool() { } /** * Retrieves the name of the training data tool. The name (used as command) * must not contain white spaces. * * @return the name of the command line tool */ public String getName() { if (getClass().getName().endsWith("Tool")) { return getClass().getSimpleName().substring(0, getClass().getSimpleName().length() - 4); } else { return getClass().getSimpleName(); } } /** * Returns whether the tool has any command line params. * @return whether the tool has any command line params */ public boolean hasParams() { return true; } protected String getBasicHelp(Class<?> argProxyInterface) { return getBasicHelp(new Class[]{argProxyInterface}); } protected String getBasicHelp(Class<?>... argProxyInterfaces) { return "Usage: " + CLI.CMD + " " + getName() + " " + ArgumentParser.createUsage(argProxyInterfaces); } /** * Retrieves a description on how to use the tool. * * @return a description on how to use the tool */ public abstract String getHelp(); protected <T> T validateAndParseParams(String[] args, Class<T> argProxyInterface) { String errorMessage = ArgumentParser.validateArgumentsLoudly(args, argProxyInterface); if (null != errorMessage) { throw new TerminateToolException(1, errorMessage + "\n" + getHelp()); } return ArgumentParser.parse(args, argProxyInterface); } /** * Retrieves a short description of what the tool does. * * @return a short description of what the tool does */ public String getShortDescription() { return ""; } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/CmdLineUtil.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline; import java.io.BufferedOutputStream; import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.FileOutputStream; import java.io.IOException; import java.io.InputStream; import java.io.OutputStream; import java.util.ArrayList; import java.util.Arrays; import java.util.List; import java.util.Locale; import opennlp.tools.ml.TrainerFactory; import opennlp.tools.util.InputStreamFactory; import opennlp.tools.util.MarkableFileInputStreamFactory; import opennlp.tools.util.TrainingParameters; import opennlp.tools.util.model.BaseModel; /** * Util class for the command line interface. * <p> * <b>Note:</b> Do not use this class, internal use only! */ public final class CmdLineUtil { static final int IO_BUFFER_SIZE = 1024 * 1024; private CmdLineUtil() { // not intended to be instantiated } /** * Check that the given input file is valid. * <p> * To pass the test it must:<br> * - exist<br> * - not be a directory<br> * - accessibly<br> * * @param name the name which is used to refer to the file in an error message, it * should start with a capital letter. * * @param inFile the particular file to check to qualify an input file * * @throws TerminateToolException if test does not pass this exception is * thrown and an error message is printed to the console. */ public static void checkInputFile(String name, File inFile) { String isFailure = null; if (inFile.isDirectory()) { isFailure = "The " + name + " file is a directory!"; } else if (!inFile.exists()) { isFailure = "The " + name + " file does not exist!"; } else if (!inFile.canRead()) { isFailure = "No permissions to read the " + name + " file!"; } if (null != isFailure) { throw new TerminateToolException(-1, isFailure + " Path: " + inFile.getAbsolutePath()); } } /** * Tries to ensure that it is possible to write to an output file. * <p> * The method does nothing if it is possible to write otherwise * it prints an appropriate error message and a {@link TerminateToolException} is thrown. * <p> * Computing the contents of an output file (e.g. ME model) can be very time consuming. * Prior to this computation it should be checked once that writing this output file is * possible to be able to fail fast if not. If this validation is only done after a time * consuming computation it could frustrate the user. * * @param name human-friendly file name. for example perceptron model * @param outFile file */ public static void checkOutputFile(String name, File outFile) { String isFailure = null; if (outFile.exists()) { // The file already exists, ensure that it is a normal file and that it is // possible to write into it if (outFile.isDirectory()) { isFailure = "The " + name + " file is a directory!"; } else if (outFile.isFile()) { if (!outFile.canWrite()) { isFailure = "No permissions to write the " + name + " file!"; } } else { isFailure = "The " + name + " file is not a normal file!"; } } else { // The file does not exist ensure its parent // directory exists and has write permissions to create // a new file in it File parentDir = outFile.getAbsoluteFile().getParentFile(); if (parentDir != null && parentDir.exists()) { if (!parentDir.canWrite()) { isFailure = "No permissions to create the " + name + " file!"; } } else { isFailure = "The parent directory of the " + name + " file does not exist, " + "please create it first!"; } } if (null != isFailure) { throw new TerminateToolException(-1, isFailure + " Path: " + outFile.getAbsolutePath()); } } public static FileInputStream openInFile(File file) { try { return new FileInputStream(file); } catch (FileNotFoundException e) { throw new TerminateToolException(-1, "File '" + file + "' cannot be found", e); } } public static InputStreamFactory createInputStreamFactory(File file) { try { return new MarkableFileInputStreamFactory(file); } catch (FileNotFoundException e) { throw new TerminateToolException(-1, "File '" + file + "' cannot be found", e); } } /** * Writes a {@link BaseModel} to disk. Occurring errors are printed to the console * to inform the user. * * @param modelName type of the model, name is used in error messages. * @param modelFile output file of the model * @param model the model itself which should be written to disk */ public static void writeModel(String modelName, File modelFile, BaseModel model) { CmdLineUtil.checkOutputFile(modelName + " model", modelFile); System.err.print("Writing " + modelName + " model ... "); long beginModelWritingTime = System.currentTimeMillis(); try (OutputStream modelOut = new BufferedOutputStream( new FileOutputStream(modelFile), IO_BUFFER_SIZE)) { model.serialize(modelOut); } catch (IOException e) { System.err.println("failed"); throw new TerminateToolException(-1, "Error during writing model file '" + modelFile + "'", e); } long modelWritingDuration = System.currentTimeMillis() - beginModelWritingTime; System.err.printf("done (%.3fs)\n", modelWritingDuration / 1000d); System.err.println(); System.err.println("Wrote " + modelName + " model to"); System.err.println("path: " + modelFile.getAbsolutePath()); System.err.println(); } /** * Returns the index of the parameter in the arguments, or -1 if the parameter is not found. * * @param param parameter name * @param args arguments * @return the index of the parameter in the arguments, or -1 if the parameter is not found */ public static int getParameterIndex(String param, String[] args) { for (int i = 0; i < args.length; i++) { if (args[i].startsWith("-") && args[i].equals(param)) { return i; } } return -1; } /** * Retrieves the specified parameter from the given arguments. * * @param param parameter name * @param args arguments * @return parameter value */ public static String getParameter(String param, String[] args) { int i = getParameterIndex(param, args); if (-1 < i) { i++; if (i < args.length) { return args[i]; } } return null; } /** * Retrieves the specified parameter from the specified arguments. * * @param param parameter name * @param args arguments * @return parameter value */ public static Integer getIntParameter(String param, String[] args) { String value = getParameter(param, args); try { if (value != null) return Integer.parseInt(value); } catch (NumberFormatException ignored) { // in this case return null } return null; } /** * Retrieves the specified parameter from the specified arguments. * * @param param parameter name * @param args arguments * @return parameter value */ public static Double getDoubleParameter(String param, String[] args) { String value = getParameter(param, args); try { if (value != null) return Double.parseDouble(value); } catch (NumberFormatException ignored) { // in this case return null } return null; } public static void checkLanguageCode(String code) { List<String> languageCodes = new ArrayList<>(); languageCodes.addAll(Arrays.asList(Locale.getISOLanguages())); languageCodes.add("x-unspecified"); if (!languageCodes.contains(code)) { throw new TerminateToolException(1, "Unknown language code " + code + ", " + "must be an ISO 639 code!"); } } public static boolean containsParam(String param, String[] args) { for (String arg : args) { if (arg.equals(param)) { return true; } } return false; } public static void handleStdinIoError(IOException e) { throw new TerminateToolException(-1, "IO Error while reading from stdin: " + e.getMessage(), e); } public static TerminateToolException createObjectStreamError(IOException e) { return new TerminateToolException(-1, "IO Error while creating an Input Stream: " + e.getMessage(), e); } public static void handleCreateObjectStreamError(IOException e) { throw createObjectStreamError(e); } // its optional, passing null is allowed public static TrainingParameters loadTrainingParameters(String paramFile, boolean supportSequenceTraining) { TrainingParameters params = null; if (paramFile != null) { checkInputFile("Training Parameter", new File(paramFile)); try (InputStream paramsIn = new FileInputStream(new File(paramFile))) { params = new opennlp.tools.util.TrainingParameters(paramsIn); } catch (IOException e) { throw new TerminateToolException(-1, "Error during parameters loading: " + e.getMessage(), e); } if (!TrainerFactory.isValid(params)) { throw new TerminateToolException(1, "Training parameters file '" + paramFile + "' is invalid!"); } TrainerFactory.TrainerType trainerType = TrainerFactory.getTrainerType(params); if (!supportSequenceTraining && trainerType.equals(TrainerFactory.TrainerType.EVENT_MODEL_SEQUENCE_TRAINER)) { throw new TerminateToolException(1, "Sequence training is not supported!"); } } return params; } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/DetailedFMeasureListener.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline; import java.util.Arrays; import java.util.Comparator; import java.util.HashMap; import java.util.HashSet; import java.util.Locale; import java.util.Map; import java.util.Set; import java.util.SortedSet; import java.util.TreeSet; import opennlp.tools.util.Span; import opennlp.tools.util.eval.EvaluationMonitor; /** * This listener will gather detailed information about the sample under evaluation and will * allow detailed FMeasure for each outcome. * <p> * <b>Note:</b> Do not use this class, internal use only! */ public abstract class DetailedFMeasureListener<T> implements EvaluationMonitor<T> { private int samples = 0; private Stats generalStats = new Stats(); private Map<String, Stats> statsForOutcome = new HashMap<>(); protected abstract Span[] asSpanArray(T sample); public void correctlyClassified(T reference, T prediction) { samples++; // add all true positives! Span[] spans = asSpanArray(reference); for (Span span : spans) { addTruePositive(span.getType()); } } public void missclassified(T reference, T prediction) { samples++; Span[] references = asSpanArray(reference); Span[] predictions = asSpanArray(prediction); Set<Span> refSet = new HashSet<>(Arrays.asList(references)); Set<Span> predSet = new HashSet<>(Arrays.asList(predictions)); for (Span ref : refSet) { if (predSet.contains(ref)) { addTruePositive(ref.getType()); } else { addFalseNegative(ref.getType()); } } for (Span pred : predSet) { if (!refSet.contains(pred)) { addFalsePositive(pred.getType()); } } } private void addTruePositive(String type) { Stats s = initStatsForOutcomeAndGet(type); s.incrementTruePositive(); s.incrementTarget(); generalStats.incrementTruePositive(); generalStats.incrementTarget(); } private void addFalsePositive(String type) { Stats s = initStatsForOutcomeAndGet(type); s.incrementFalsePositive(); generalStats.incrementFalsePositive(); } private void addFalseNegative(String type) { Stats s = initStatsForOutcomeAndGet(type); s.incrementTarget(); generalStats.incrementTarget(); } private Stats initStatsForOutcomeAndGet(String type) { if (!statsForOutcome.containsKey(type)) { statsForOutcome.put(type, new Stats()); } return statsForOutcome.get(type); } private static final String PERCENT = "%\u00207.2f%%"; private static final String FORMAT = "%12s: precision: " + PERCENT + "; recall: " + PERCENT + "; F1: " + PERCENT + "."; private static final String FORMAT_EXTRA = FORMAT + " [target: %3d; tp: %3d; fp: %3d]"; public String createReport() { return createReport(Locale.getDefault()); } public String createReport(Locale locale) { StringBuilder ret = new StringBuilder(); int tp = generalStats.getTruePositives(); int found = generalStats.getFalsePositives() + tp; ret.append("Evaluated ").append(samples).append(" samples with ") .append(generalStats.getTarget()).append(" entities; found: ") .append(found).append(" entities; correct: ").append(tp).append(".\n"); ret.append(String.format(locale, FORMAT, "TOTAL", zeroOrPositive(generalStats.getPrecisionScore() * 100), zeroOrPositive(generalStats.getRecallScore() * 100), zeroOrPositive(generalStats.getFMeasure() * 100))); ret.append("\n"); SortedSet<String> set = new TreeSet<>(new F1Comparator()); set.addAll(statsForOutcome.keySet()); for (String type : set) { ret.append(String.format(locale, FORMAT_EXTRA, type, zeroOrPositive(statsForOutcome.get(type).getPrecisionScore() * 100), zeroOrPositive(statsForOutcome.get(type).getRecallScore() * 100), zeroOrPositive(statsForOutcome.get(type).getFMeasure() * 100), statsForOutcome.get(type).getTarget(), statsForOutcome.get(type) .getTruePositives(), statsForOutcome.get(type) .getFalsePositives())); ret.append("\n"); } return ret.toString(); } @Override public String toString() { return createReport(); } private double zeroOrPositive(double v) { if (v < 0) { return 0; } return v; } private class F1Comparator implements Comparator<String> { public int compare(String o1, String o2) { if (o1.equals(o2)) return 0; double t1 = 0; double t2 = 0; if (statsForOutcome.containsKey(o1)) t1 += statsForOutcome.get(o1).getFMeasure(); if (statsForOutcome.containsKey(o2)) t2 += statsForOutcome.get(o2).getFMeasure(); t1 = zeroOrPositive(t1); t2 = zeroOrPositive(t2); if (t1 + t2 > 0d) { if (t1 > t2) return -1; return 1; } return o1.compareTo(o2); } } /** * Store the statistics. */ private class Stats { // maybe we could use FMeasure class, but it wouldn't allow us to get // details like total number of false positives and true positives. private int falsePositiveCounter = 0; private int truePositiveCounter = 0; private int targetCounter = 0; public void incrementFalsePositive() { falsePositiveCounter++; } public void incrementTruePositive() { truePositiveCounter++; } public void incrementTarget() { targetCounter++; } public int getFalsePositives() { return falsePositiveCounter; } public int getTruePositives() { return truePositiveCounter; } public int getTarget() { return targetCounter; } /** * Retrieves the arithmetic mean of the precision scores calculated for each * evaluated sample. * * @return the arithmetic mean of all precision scores */ public double getPrecisionScore() { int tp = getTruePositives(); int selected = tp + getFalsePositives(); return selected > 0 ? (double) tp / (double) selected : 0; } /** * Retrieves the arithmetic mean of the recall score calculated for each * evaluated sample. * * @return the arithmetic mean of all recall scores */ public double getRecallScore() { int target = getTarget(); int tp = getTruePositives(); return target > 0 ? (double) tp / (double) target : 0; } /** * Retrieves the f-measure score. * * f-measure = 2 * precision * recall / (precision + recall) * * @return the f-measure or -1 if precision + recall <= 0 */ public double getFMeasure() { if (getPrecisionScore() + getRecallScore() > 0) { return 2 * (getPrecisionScore() * getRecallScore()) / (getPrecisionScore() + getRecallScore()); } else { // cannot divide by zero, return error code return -1; } } } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/EvaluationErrorPrinter.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline; import java.io.OutputStream; import java.io.PrintStream; import java.util.ArrayList; import java.util.Arrays; import java.util.List; import opennlp.tools.util.Span; import opennlp.tools.util.eval.EvaluationMonitor; /** * <b>Note:</b> Do not use this class, internal use only! */ public abstract class EvaluationErrorPrinter<T> implements EvaluationMonitor<T> { protected PrintStream printStream; protected EvaluationErrorPrinter(OutputStream outputStream) { this.printStream = new PrintStream(outputStream); } // for the sentence detector protected void printError(Span[] references, Span[] predictions, T referenceSample, T predictedSample, String sentence) { List<Span> falseNegatives = new ArrayList<>(); List<Span> falsePositives = new ArrayList<>(); findErrors(references, predictions, falseNegatives, falsePositives); if (falsePositives.size() + falseNegatives.size() > 0) { printSamples(referenceSample, predictedSample); printErrors(falsePositives, falseNegatives, sentence); } } // for namefinder, chunker... protected void printError(String id, Span[] references, Span[] predictions, T referenceSample, T predictedSample, String[] sentenceTokens) { List<Span> falseNegatives = new ArrayList<>(); List<Span> falsePositives = new ArrayList<>(); findErrors(references, predictions, falseNegatives, falsePositives); if (falsePositives.size() + falseNegatives.size() > 0) { if (id != null) { printStream.println("Id: {" + id + "}"); } printSamples(referenceSample, predictedSample); printErrors(falsePositives, falseNegatives, sentenceTokens); } } protected void printError(Span[] references, Span[] predictions, T referenceSample, T predictedSample, String[] sentenceTokens) { printError(null, references, predictions, referenceSample, predictedSample, sentenceTokens); } // for pos tagger protected void printError(String[] references, String[] predictions, T referenceSample, T predictedSample, String[] sentenceTokens) { List<String> filteredDoc = new ArrayList<>(); List<String> filteredRefs = new ArrayList<>(); List<String> filteredPreds = new ArrayList<>(); for (int i = 0; i < references.length; i++) { if (!references[i].equals(predictions[i])) { filteredDoc.add(sentenceTokens[i]); filteredRefs.add(references[i]); filteredPreds.add(predictions[i]); } } if (filteredDoc.size() > 0) { printSamples(referenceSample, predictedSample); printErrors(filteredDoc, filteredRefs, filteredPreds); } } // for others protected void printError(T referenceSample, T predictedSample) { printSamples(referenceSample, predictedSample); printStream.println(); } /** * Auxiliary method to print tag errors * * @param filteredDoc * the document tokens which were tagged wrong * @param filteredRefs * the reference tags * @param filteredPreds * the predicted tags */ private void printErrors(List<String> filteredDoc, List<String> filteredRefs, List<String> filteredPreds) { printStream.println("Errors: {"); printStream.println("Tok: Ref | Pred"); printStream.println("---------------"); for (int i = 0; i < filteredDoc.size(); i++) { printStream.println(filteredDoc.get(i) + ": " + filteredRefs.get(i) + " | " + filteredPreds.get(i)); } printStream.println("}\n"); } /** * Auxiliary method to print span errors * * @param falsePositives * false positives span * @param falseNegatives * false negative span * @param doc * the document text */ private void printErrors(List<Span> falsePositives, List<Span> falseNegatives, String doc) { printStream.println("False positives: {"); for (Span span : falsePositives) { printStream.println(span.getCoveredText(doc)); } printStream.println("} False negatives: {"); for (Span span : falseNegatives) { printStream.println(span.getCoveredText(doc)); } printStream.println("}\n"); } /** * Auxiliary method to print span errors * * @param falsePositives * false positives span * @param falseNegatives * false negative span * @param toks * the document tokens */ private void printErrors(List<Span> falsePositives, List<Span> falseNegatives, String[] toks) { printStream.println("False positives: {"); printStream.println(print(falsePositives, toks)); printStream.println("} False negatives: {"); printStream.println(print(falseNegatives, toks)); printStream.println("}\n"); } /** * Auxiliary method to print spans * * @param spans * the span list * @param toks * the tokens array * @return the spans as string */ private String print(List<Span> spans, String[] toks) { return Arrays.toString(Span.spansToStrings( spans.toArray(new Span[spans.size()]), toks)); } /** * Auxiliary method to print expected and predicted samples. * * @param referenceSample * the reference sample * @param predictedSample * the predicted sample */ private <S> void printSamples(S referenceSample, S predictedSample) { String details = "Expected: {\n" + referenceSample + "}\nPredicted: {\n" + predictedSample + "}"; printStream.println(details); } /** * Outputs falseNegatives and falsePositives spans from the references and * predictions list. * * @param references * @param predictions * @param falseNegatives * [out] the false negatives list * @param falsePositives * [out] the false positives list */ private void findErrors(Span[] references, Span[] predictions, List<Span> falseNegatives, List<Span> falsePositives) { falseNegatives.addAll(Arrays.asList(references)); falsePositives.addAll(Arrays.asList(predictions)); for (int referenceIndex = 0; referenceIndex < references.length; referenceIndex++) { Span referenceName = references[referenceIndex]; for (int predictedIndex = 0; predictedIndex < predictions.length; predictedIndex++) { if (referenceName.equals(predictions[predictedIndex])) { // got it, remove from fn and fp falseNegatives.remove(referenceName); falsePositives.remove(predictions[predictedIndex]); } } } } public void correctlyClassified(T reference, T prediction) { // do nothing } public abstract void missclassified(T reference, T prediction) ; }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/FineGrainedReportListener.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline; import java.io.OutputStream; import java.io.PrintStream; import java.text.MessageFormat; import java.util.ArrayList; import java.util.Arrays; import java.util.Collections; import java.util.Comparator; import java.util.HashMap; import java.util.HashSet; import java.util.Iterator; import java.util.LinkedList; import java.util.List; import java.util.Map; import java.util.Map.Entry; import java.util.Set; import java.util.SortedSet; import java.util.TreeSet; import opennlp.tools.util.Span; import opennlp.tools.util.eval.FMeasure; import opennlp.tools.util.eval.Mean; public abstract class FineGrainedReportListener { private static final char[] alpha = { 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z' }; private final PrintStream printStream; private final Stats stats = new Stats(); public FineGrainedReportListener(PrintStream printStream) { this.printStream = printStream; } /** * Writes the report to the {@link OutputStream}. Should be called only after * the evaluation process */ public FineGrainedReportListener(OutputStream outputStream) { this.printStream = new PrintStream(outputStream); } private static String generateAlphaLabel(int index) { char[] labelChars = new char[3]; int i; for (i = 2; i >= 0; i--) { if (index >= 0) { labelChars[i] = alpha[index % alpha.length]; index = index / alpha.length - 1; } else { labelChars[i] = ' '; } } return new String(labelChars); } public abstract void writeReport(); // api methods // general stats protected Stats getStats() { return this.stats; } private long getNumberOfSentences() { return stats.getNumberOfSentences(); } private double getAverageSentenceSize() { return stats.getAverageSentenceSize(); } private int getMinSentenceSize() { return stats.getMinSentenceSize(); } private int getMaxSentenceSize() { return stats.getMaxSentenceSize(); } private int getNumberOfTags() { return stats.getNumberOfTags(); } // token stats private double getAccuracy() { return stats.getAccuracy(); } private double getTokenAccuracy(String token) { return stats.getTokenAccuracy(token); } private SortedSet<String> getTokensOrderedByFrequency() { return stats.getTokensOrderedByFrequency(); } private int getTokenFrequency(String token) { return stats.getTokenFrequency(token); } private int getTokenErrors(String token) { return stats.getTokenErrors(token); } private SortedSet<String> getTokensOrderedByNumberOfErrors() { return stats.getTokensOrderedByNumberOfErrors(); } private SortedSet<String> getTagsOrderedByErrors() { return stats.getTagsOrderedByErrors(); } private int getTagFrequency(String tag) { return stats.getTagFrequency(tag); } private int getTagErrors(String tag) { return stats.getTagErrors(tag); } private double getTagPrecision(String tag) { return stats.getTagPrecision(tag); } private double getTagRecall(String tag) { return stats.getTagRecall(tag); } private double getTagFMeasure(String tag) { return stats.getTagFMeasure(tag); } private SortedSet<String> getConfusionMatrixTagset() { return stats.getConfusionMatrixTagset(); } private SortedSet<String> getConfusionMatrixTagset(String token) { return stats.getConfusionMatrixTagset(token); } private double[][] getConfusionMatrix() { return stats.getConfusionMatrix(); } private double[][] getConfusionMatrix(String token) { return stats.getConfusionMatrix(token); } private String matrixToString(SortedSet<String> tagset, double[][] data, boolean filter) { // we dont want to print trivial cases (acc=1) int initialIndex = 0; String[] tags = tagset.toArray(new String[tagset.size()]); StringBuilder sb = new StringBuilder(); int minColumnSize = Integer.MIN_VALUE; String[][] matrix = new String[data.length][data[0].length]; for (int i = 0; i < data.length; i++) { int j = 0; for (; j < data[i].length - 1; j++) { matrix[i][j] = data[i][j] > 0 ? Integer.toString((int) data[i][j]) : "."; if (minColumnSize < matrix[i][j].length()) { minColumnSize = matrix[i][j].length(); } } matrix[i][j] = MessageFormat.format("{0,number,#.##%}", data[i][j]); if (data[i][j] == 1 && filter) { initialIndex = i + 1; } } final String headerFormat = "%" + (minColumnSize + 2) + "s "; // | 1234567 | final String cellFormat = "%" + (minColumnSize + 2) + "s "; // | 12345 | final String diagFormat = " %" + (minColumnSize + 2) + "s"; for (int i = initialIndex; i < tagset.size(); i++) { sb.append(String.format(headerFormat, generateAlphaLabel(i - initialIndex).trim())); } sb.append("| Accuracy | <-- classified as\n"); for (int i = initialIndex; i < data.length; i++) { int j = initialIndex; for (; j < data[i].length - 1; j++) { if (i == j) { String val = "<" + matrix[i][j] + ">"; sb.append(String.format(diagFormat, val)); } else { sb.append(String.format(cellFormat, matrix[i][j])); } } sb.append( String.format("| %-6s | %3s = ", matrix[i][j], generateAlphaLabel(i - initialIndex))).append(tags[i]); sb.append("\n"); } return sb.toString(); } protected void printGeneralStatistics() { printHeader("Evaluation summary"); printStream.append( String.format("%21s: %6s", "Number of sentences", Long.toString(getNumberOfSentences()))).append("\n"); printStream.append( String.format("%21s: %6s", "Min sentence size", getMinSentenceSize())) .append("\n"); printStream.append( String.format("%21s: %6s", "Max sentence size", getMaxSentenceSize())) .append("\n"); printStream.append( String.format("%21s: %6s", "Average sentence size", MessageFormat.format("{0,number,#.##}", getAverageSentenceSize()))) .append("\n"); printStream.append( String.format("%21s: %6s", "Tags count", getNumberOfTags())).append( "\n"); printStream.append( String.format("%21s: %6s", "Accuracy", MessageFormat.format("{0,number,#.##%}", getAccuracy()))).append( "\n"); printFooter("Evaluation Corpus Statistics"); } protected void printTokenOcurrenciesRank() { printHeader("Most frequent tokens"); SortedSet<String> toks = getTokensOrderedByFrequency(); final int maxLines = 20; int maxTokSize = 5; int count = 0; Iterator<String> tokIterator = toks.iterator(); while (tokIterator.hasNext() && count++ < maxLines) { String tok = tokIterator.next(); if (tok.length() > maxTokSize) { maxTokSize = tok.length(); } } int tableSize = maxTokSize + 19; String format = "| %3s | %6s | %" + maxTokSize + "s |"; printLine(tableSize); printStream.append(String.format(format, "Pos", "Count", "Token")).append( "\n"); printLine(tableSize); // get the first 20 errors count = 0; tokIterator = toks.iterator(); while (tokIterator.hasNext() && count++ < maxLines) { String tok = tokIterator.next(); int ocurrencies = getTokenFrequency(tok); printStream.append(String.format(format, count, ocurrencies, tok) ).append("\n"); } printLine(tableSize); printFooter("Most frequent tokens"); } protected void printTokenErrorRank() { printHeader("Tokens with the highest number of errors"); printStream.append("\n"); SortedSet<String> toks = getTokensOrderedByNumberOfErrors(); int maxTokenSize = 5; int count = 0; Iterator<String> tokIterator = toks.iterator(); while (tokIterator.hasNext() && count++ < 20) { String tok = tokIterator.next(); if (tok.length() > maxTokenSize) { maxTokenSize = tok.length(); } } int tableSize = 31 + maxTokenSize; String format = "| %" + maxTokenSize + "s | %6s | %5s | %7s |\n"; printLine(tableSize); printStream.append(String.format(format, "Token", "Errors", "Count", "% Err")); printLine(tableSize); // get the first 20 errors count = 0; tokIterator = toks.iterator(); while (tokIterator.hasNext() && count++ < 20) { String tok = tokIterator.next(); int ocurrencies = getTokenFrequency(tok); int errors = getTokenErrors(tok); String rate = MessageFormat.format("{0,number,#.##%}", (double) errors / ocurrencies); printStream.append(String.format(format, tok, errors, ocurrencies, rate) ); } printLine(tableSize); printFooter("Tokens with the highest number of errors"); } protected void printTagsErrorRank() { printHeader("Detailed Accuracy By Tag"); SortedSet<String> tags = getTagsOrderedByErrors(); printStream.append("\n"); int maxTagSize = 3; for (String t : tags) { if (t.length() > maxTagSize) { maxTagSize = t.length(); } } int tableSize = 65 + maxTagSize; String headerFormat = "| %" + maxTagSize + "s | %6s | %6s | %7s | %9s | %6s | %9s |\n"; String format = "| %" + maxTagSize + "s | %6s | %6s | %-7s | %-9s | %-6s | %-9s |\n"; printLine(tableSize); printStream.append(String.format(headerFormat, "Tag", "Errors", "Count", "% Err", "Precision", "Recall", "F-Measure")); printLine(tableSize); for (String tag : tags) { int ocurrencies = getTagFrequency(tag); int errors = getTagErrors(tag); String rate = MessageFormat.format("{0,number,#.###}", (double) errors / ocurrencies); double p = getTagPrecision(tag); double r = getTagRecall(tag); double f = getTagFMeasure(tag); printStream.append(String.format(format, tag, errors, ocurrencies, rate, MessageFormat.format("{0,number,#.###}", p > 0 ? p : 0), MessageFormat.format("{0,number,#.###}", r > 0 ? r : 0), MessageFormat.format("{0,number,#.###}", f > 0 ? f : 0)) ); } printLine(tableSize); printFooter("Tags with the highest number of errors"); } protected void printGeneralConfusionTable() { printHeader("Confusion matrix"); SortedSet<String> labels = getConfusionMatrixTagset(); double[][] confusionMatrix = getConfusionMatrix(); printStream.append("\nTags with 100% accuracy: "); int line = 0; for (String label : labels) { if (confusionMatrix[line][confusionMatrix[0].length - 1] == 1) { printStream.append(label).append(" (") .append(Integer.toString((int) confusionMatrix[line][line])) .append(") "); } line++; } printStream.append("\n\n"); printStream.append(matrixToString(labels, confusionMatrix, true)); printFooter("Confusion matrix"); } protected void printDetailedConfusionMatrix() { printHeader("Confusion matrix for tokens"); printStream.append(" sorted by number of errors\n"); SortedSet<String> toks = getTokensOrderedByNumberOfErrors(); for (String t : toks) { double acc = getTokenAccuracy(t); if (acc < 1) { printStream .append("\n[") .append(t) .append("]\n") .append( String.format("%12s: %-8s", "Accuracy", MessageFormat.format("{0,number,#.##%}", acc))) .append("\n"); printStream.append( String.format("%12s: %-8s", "Ocurrencies", Integer.toString(getTokenFrequency(t)))).append("\n"); printStream.append( String.format("%12s: %-8s", "Errors", Integer.toString(getTokenErrors(t)))).append("\n"); SortedSet<String> labels = getConfusionMatrixTagset(t); double[][] confusionMatrix = getConfusionMatrix(t); printStream.append(matrixToString(labels, confusionMatrix, false)); } } printFooter("Confusion matrix for tokens"); } /** Auxiliary method that prints a emphasised report header */ private void printHeader(String text) { printStream.append("=== ").append(text).append(" ===\n"); } /** Auxiliary method that prints a marker to the end of a report */ private void printFooter(String text) { printStream.append("\n<-end> ").append(text).append("\n\n"); } /** Auxiliary method that prints a horizontal line of a given size */ private void printLine(int size) { for (int i = 0; i < size; i++) { printStream.append("-"); } printStream.append("\n"); } /** * A comparator that sorts the confusion matrix labels according to the * accuracy of each line */ public static class MatrixLabelComparator implements Comparator<String> { private Map<String, ConfusionMatrixLine> confusionMatrix; public MatrixLabelComparator(Map<String, ConfusionMatrixLine> confusionMatrix) { this.confusionMatrix = confusionMatrix; } public int compare(String o1, String o2) { if (o1.equals(o2)) { return 0; } ConfusionMatrixLine t1 = confusionMatrix.get(o1); ConfusionMatrixLine t2 = confusionMatrix.get(o2); if (t1 == null || t2 == null) { if (t1 == null) { return 1; } else { return -1; } } double r1 = t1.getAccuracy(); double r2 = t2.getAccuracy(); if (r1 == r2) { return o1.compareTo(o2); } if (r2 > r1) { return 1; } return -1; } } public static class GroupedMatrixLabelComparator implements Comparator<String> { private final HashMap<String, Double> categoryAccuracy; private Map<String, ConfusionMatrixLine> confusionMatrix; public GroupedMatrixLabelComparator(Map<String, ConfusionMatrixLine> confusionMatrix) { this.confusionMatrix = confusionMatrix; this.categoryAccuracy = new HashMap<>(); // compute grouped categories for (Entry<String, ConfusionMatrixLine> entry : confusionMatrix.entrySet()) { final String key = entry.getKey(); final ConfusionMatrixLine confusionMatrixLine = entry.getValue(); final String category; if (key.contains("-")) { category = key.split("-")[0]; } else { category = key; } double currentAccuracy = categoryAccuracy.getOrDefault(category, 0.0d); categoryAccuracy.put(category, currentAccuracy + confusionMatrixLine.getAccuracy()); } } public int compare(String o1, String o2) { if (o1.equals(o2)) { return 0; } String c1 = o1; String c2 = o2; if (o1.contains("-")) { c1 = o1.split("-")[0]; } if (o2.contains("-")) { c2 = o2.split("-")[0]; } if (c1.equals(c2)) { // same category - sort by confusion matrix ConfusionMatrixLine t1 = confusionMatrix.get(o1); ConfusionMatrixLine t2 = confusionMatrix.get(o2); if (t1 == null || t2 == null) { if (t1 == null) { return 1; } else { return -1; } } double r1 = t1.getAccuracy(); double r2 = t2.getAccuracy(); if (r1 == r2) { return o1.compareTo(o2); } if (r2 > r1) { return 1; } return -1; } else { // different category - sort by category Double t1 = categoryAccuracy.get(c1); Double t2 = categoryAccuracy.get(c2); if (t1 == null || t2 == null) { if (t1 == null) { return 1; } else { return -1; } } if (t1.equals(t2)) { return o1.compareTo(o2); } if (t2 > t1) { return 1; } return -1; } } } public Comparator<String> getMatrixLabelComparator(Map<String, ConfusionMatrixLine> confusionMatrix) { return new MatrixLabelComparator(confusionMatrix); } public static class SimpleLabelComparator implements Comparator<String> { private Map<String, Counter> map; public SimpleLabelComparator(Map<String, Counter> map) { this.map = map; } @Override public int compare(String o1, String o2) { if (o1.equals(o2)) { return 0; } int e1 = 0, e2 = 0; if (map.containsKey(o1)) e1 = map.get(o1).value(); if (map.containsKey(o2)) e2 = map.get(o2).value(); if (e1 == e2) { return o1.compareTo(o2); } return e2 - e1; } } public Comparator<String> getLabelComparator(Map<String, Counter> map) { return new SimpleLabelComparator(map); } public static class GroupedLabelComparator implements Comparator<String> { private final HashMap<String, Integer> categoryCounter; private Map<String, Counter> labelCounter; public GroupedLabelComparator(Map<String, Counter> map) { this.labelCounter = map; this.categoryCounter = new HashMap<>(); // compute grouped categories for (Entry<String, Counter> entry : labelCounter.entrySet()) { final String key = entry.getKey(); final Counter value = entry.getValue(); final String category; if (key.contains("-")) { category = key.split("-")[0]; } else { category = key; } int currentCount = categoryCounter.getOrDefault(category, 0); categoryCounter.put(category, currentCount + value.value()); } } public int compare(String o1, String o2) { if (o1.equals(o2)) { return 0; } String c1 = o1; String c2 = o2; if (o1.contains("-")) { c1 = o1.split("-")[0]; } if (o2.contains("-")) { c2 = o2.split("-")[0]; } if (c1.equals(c2)) { // same category - sort by confusion matrix Counter t1 = labelCounter.get(o1); Counter t2 = labelCounter.get(o2); if (t1 == null || t2 == null) { if (t1 == null) { return 1; } else { return -1; } } int r1 = t1.value(); int r2 = t2.value(); if (r1 == r2) { return o1.compareTo(o2); } if (r2 > r1) { return 1; } return -1; } else { // different category - sort by category Integer t1 = categoryCounter.get(c1); Integer t2 = categoryCounter.get(c2); if (t1 == null || t2 == null) { if (t1 == null) { return 1; } else { return -1; } } if (t1.equals(t2)) { return o1.compareTo(o2); } if (t2 > t1) { return 1; } return -1; } } } /** * Represents a line in the confusion table. */ public static class ConfusionMatrixLine { private Map<String, Counter> line = new HashMap<>(); private String ref; private int total = 0; private int correct = 0; private double acc = -1; /** * Creates a new {@link ConfusionMatrixLine} * * @param ref * the reference column */ private ConfusionMatrixLine(String ref) { this.ref = ref; } /** * Increments the counter for the given column and updates the statistics. * * @param column * the column to be incremented */ private void increment(String column) { total++; if (column.equals(ref)) correct++; if (!line.containsKey(column)) { line.put(column, new Counter()); } line.get(column).increment(); } /** * Gets the calculated accuracy of this element * * @return the accuracy */ public double getAccuracy() { // we save the accuracy because it is frequently used by the comparator if (Math.abs(acc - 1.0d) < 0.0000000001) { if (total == 0) acc = 0.0d; acc = (double) correct / (double) total; } return acc; } /** * Gets the value given a column * * @param column * the column * @return the counter value */ public int getValue(String column) { Counter c = line.get(column); if (c == null) return 0; return c.value(); } } /** * Implements a simple counter */ public static class Counter { private int c = 0; private void increment() { c++; } public int value() { return c; } } public class Stats { // general statistics private final Mean accuracy = new Mean(); private final Mean averageSentenceLength = new Mean(); // token statistics private final Map<String, Mean> tokAccuracies = new HashMap<>(); private final Map<String, Counter> tokOcurrencies = new HashMap<>(); private final Map<String, Counter> tokErrors = new HashMap<>(); // tag statistics private final Map<String, Counter> tagOcurrencies = new HashMap<>(); private final Map<String, Counter> tagErrors = new HashMap<>(); private final Map<String, FMeasure> tagFMeasure = new HashMap<>(); // represents a Confusion Matrix that aggregates all tokens private final Map<String, ConfusionMatrixLine> generalConfusionMatrix = new HashMap<>(); // represents a set of Confusion Matrix for each token private final Map<String, Map<String, ConfusionMatrixLine>> tokenConfusionMatrix = new HashMap<>(); private int minimalSentenceLength = Integer.MAX_VALUE; private int maximumSentenceLength = Integer.MIN_VALUE; public void add(String[] toks, String[] refs, String[] preds) { int length = toks.length; averageSentenceLength.add(length); if (minimalSentenceLength > length) { minimalSentenceLength = length; } if (maximumSentenceLength < length) { maximumSentenceLength = length; } updateTagFMeasure(refs, preds); for (int i = 0; i < toks.length; i++) { commit(toks[i], refs[i], preds[i]); } } public void add(int length, String ref, String pred) { averageSentenceLength.add(length); if (minimalSentenceLength > length) { minimalSentenceLength = length; } if (maximumSentenceLength < length) { maximumSentenceLength = length; } // String[] toks = reference.getSentence(); String[] refs = { ref }; String[] preds = { pred }; updateTagFMeasure(refs, preds); commit("", ref, pred); } public void add(String[] text, String ref, String pred) { int length = text.length; this.add(length, ref, pred); } public void add(CharSequence text, String ref, String pred) { int length = text.length(); this.add(length, ref, pred); } /** * Includes a new evaluation data * * @param tok * the evaluated token * @param ref * the reference pos tag * @param pred * the predicted pos tag */ private void commit(String tok, String ref, String pred) { // token stats if (!tokAccuracies.containsKey(tok)) { tokAccuracies.put(tok, new Mean()); tokOcurrencies.put(tok, new Counter()); tokErrors.put(tok, new Counter()); } tokOcurrencies.get(tok).increment(); // tag stats if (!tagOcurrencies.containsKey(ref)) { tagOcurrencies.put(ref, new Counter()); tagErrors.put(ref, new Counter()); } tagOcurrencies.get(ref).increment(); // updates general, token and tag error stats if (ref.equals(pred)) { tokAccuracies.get(tok).add(1); accuracy.add(1); } else { tokAccuracies.get(tok).add(0); tokErrors.get(tok).increment(); tagErrors.get(ref).increment(); accuracy.add(0); } // populate confusion matrixes if (!generalConfusionMatrix.containsKey(ref)) { generalConfusionMatrix.put(ref, new ConfusionMatrixLine(ref)); } generalConfusionMatrix.get(ref).increment(pred); if (!tokenConfusionMatrix.containsKey(tok)) { tokenConfusionMatrix.put(tok, new HashMap<>()); } if (!tokenConfusionMatrix.get(tok).containsKey(ref)) { tokenConfusionMatrix.get(tok).put(ref, new ConfusionMatrixLine(ref)); } tokenConfusionMatrix.get(tok).get(ref).increment(pred); } private void updateTagFMeasure(String[] refs, String[] preds) { // create a set with all tags Set<String> tags = new HashSet<>(Arrays.asList(refs)); tags.addAll(Arrays.asList(preds)); // create samples for each tag for (String tag : tags) { List<Span> reference = new ArrayList<>(); List<Span> prediction = new ArrayList<>(); for (int i = 0; i < refs.length; i++) { if (refs[i].equals(tag)) { reference.add(new Span(i, i + 1)); } if (preds[i].equals(tag)) { prediction.add(new Span(i, i + 1)); } } if (!this.tagFMeasure.containsKey(tag)) { this.tagFMeasure.put(tag, new FMeasure()); } // populate the fmeasure this.tagFMeasure.get(tag).updateScores( reference.toArray(new Span[reference.size()]), prediction.toArray(new Span[prediction.size()])); } } private double getAccuracy() { return accuracy.mean(); } private int getNumberOfTags() { return this.tagOcurrencies.keySet().size(); } private long getNumberOfSentences() { return this.averageSentenceLength.count(); } private double getAverageSentenceSize() { return this.averageSentenceLength.mean(); } private int getMinSentenceSize() { return this.minimalSentenceLength; } private int getMaxSentenceSize() { return this.maximumSentenceLength; } private double getTokenAccuracy(String token) { return tokAccuracies.get(token).mean(); } private int getTokenErrors(String token) { return tokErrors.get(token).value(); } private int getTokenFrequency(String token) { return tokOcurrencies.get(token).value(); } private SortedSet<String> getTokensOrderedByFrequency() { SortedSet<String> toks = new TreeSet<>(new SimpleLabelComparator(tokOcurrencies)); toks.addAll(tokOcurrencies.keySet()); return Collections.unmodifiableSortedSet(toks); } private SortedSet<String> getTokensOrderedByNumberOfErrors() { SortedSet<String> toks = new TreeSet<>(new SimpleLabelComparator(tokErrors)); toks.addAll(tokErrors.keySet()); return toks; } private int getTagFrequency(String tag) { return tagOcurrencies.get(tag).value(); } private int getTagErrors(String tag) { return tagErrors.get(tag).value(); } private double getTagFMeasure(String tag) { return tagFMeasure.get(tag).getFMeasure(); } private double getTagRecall(String tag) { return tagFMeasure.get(tag).getRecallScore(); } private double getTagPrecision(String tag) { return tagFMeasure.get(tag).getPrecisionScore(); } private SortedSet<String> getTagsOrderedByErrors() { SortedSet<String> tags = new TreeSet<>(getLabelComparator(tagErrors)); tags.addAll(tagErrors.keySet()); return Collections.unmodifiableSortedSet(tags); } private SortedSet<String> getConfusionMatrixTagset() { return getConfusionMatrixTagset(generalConfusionMatrix); } private double[][] getConfusionMatrix() { return createConfusionMatrix(getConfusionMatrixTagset(), generalConfusionMatrix); } private SortedSet<String> getConfusionMatrixTagset(String token) { return getConfusionMatrixTagset(tokenConfusionMatrix.get(token)); } private double[][] getConfusionMatrix(String token) { return createConfusionMatrix(getConfusionMatrixTagset(token), tokenConfusionMatrix.get(token)); } /** * Creates a matrix with N lines and N + 1 columns with the data from * confusion matrix. The last column is the accuracy. */ private double[][] createConfusionMatrix(SortedSet<String> tagset, Map<String, ConfusionMatrixLine> data) { int size = tagset.size(); double[][] matrix = new double[size][size + 1]; int line = 0; for (String ref : tagset) { int column = 0; for (String pred : tagset) { matrix[line][column] = data.get(ref) != null ? data .get(ref).getValue(pred) : 0; column++; } // set accuracy matrix[line][column] = data.get(ref) != null ? data.get(ref).getAccuracy() : 0; line++; } return matrix; } private SortedSet<String> getConfusionMatrixTagset( Map<String, ConfusionMatrixLine> data) { SortedSet<String> tags = new TreeSet<>(getMatrixLabelComparator(data)); tags.addAll(data.keySet()); List<String> col = new LinkedList<>(); for (String t : tags) { col.addAll(data.get(t).line.keySet()); } tags.addAll(col); return Collections.unmodifiableSortedSet(tags); } } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/GenerateManualTool.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline; import java.io.BufferedReader; import java.io.FileNotFoundException; import java.io.PrintWriter; import java.io.StringReader; import java.util.LinkedHashMap; import java.util.List; import java.util.Map; import java.util.Map.Entry; import java.util.Set; import java.util.StringTokenizer; import opennlp.tools.cmdline.ArgumentParser.Argument; public class GenerateManualTool { private static final int MAX_LINE_LENGTH = 110; // optimized for printing public static void main(String[] args) throws FileNotFoundException { if (args.length != 1) { System.out.print(getUsage()); System.exit(0); } StringBuilder sb = new StringBuilder(); appendHeader(sb); // organize by package name LinkedHashMap<String, Map<String, CmdLineTool>> packageNameToolMap = new LinkedHashMap<>(); for (Entry<String, CmdLineTool> entry : CLI.getToolLookupMap().entrySet()) { final String toolName = entry.getKey(); final CmdLineTool tool = entry.getValue(); String packageName = tool.getClass().getPackage().getName(); packageName = packageName.substring(packageName.lastIndexOf(".") + 1); if (!packageNameToolMap.containsKey(packageName)) { packageNameToolMap.put(packageName, new LinkedHashMap<String, CmdLineTool>()); } packageNameToolMap.get(packageName).put(toolName, tool); } // add tools grouped by package for (Entry<String, Map<String, CmdLineTool>> entry : packageNameToolMap.entrySet()) { appendToolGroup(entry.getKey(), entry.getValue(), sb); } // footer appendFooter(sb); // output to file try (PrintWriter out = new PrintWriter(args[0])) { out.println(sb); } } /** * @return this tool usage */ private static String getUsage() { return "Requires one argument: \n" + " Path to the output XML file \n"; } /** * Appends a group of tools, based on the tool package name * * @param groupName * @param toolsMap * @param sb */ private static void appendToolGroup(String groupName, Map<String, CmdLineTool> toolsMap, StringBuilder sb) { sb.append("<section id='tools.cli.").append(groupName).append("'>\n\n"); sb.append("<title>").append(firstCaps(groupName)).append("</title>\n\n"); for (Entry<String, CmdLineTool> entry : toolsMap.entrySet()) { appendTool(groupName, entry.getKey(), entry.getValue(), sb); } sb.append("</section>\n\n"); } /** * Appends a tool * * @param groupName * @param toolName * @param tool * @param sb */ private static void appendTool(String groupName, String toolName, CmdLineTool tool, StringBuilder sb) { sb.append("<section id='tools.cli.").append(groupName).append(".") .append(toolName).append("'>\n\n"); sb.append("<title>").append(toolName).append("</title>\n\n"); sb.append("<para>").append(firstCaps(tool.getShortDescription())) .append("</para>\n\n"); appendCode(tool.getHelp(), sb); if (TypedCmdLineTool.class.isAssignableFrom(tool.getClass())) { appendHelpForTool((TypedCmdLineTool<?>) tool, sb); } sb.append("</section>\n\n"); } private static void appendHelpForTool(TypedCmdLineTool<?> tool, StringBuilder sb) { Class<?> type = tool.type; Set<String> formats = StreamFactoryRegistry.getFactories(type).keySet(); sb.append("<para>The supported formats and arguments are:</para>\n\n"); Map<String, List<Argument>> formatArguments = new LinkedHashMap<>(); for (String formatName : formats) { if (!StreamFactoryRegistry.DEFAULT_FORMAT.equals(formatName)) { ObjectStreamFactory<?> format = tool.getStreamFactory(formatName); formatArguments.put(formatName, ArgumentParser.createArguments(format.getParameters())); } } appendArgumentTable(formatArguments, sb); } private static void appendArgumentTable( Map<String, List<Argument>> formatArguments, StringBuilder sb) { sb.append( "<informaltable frame='all'><tgroup cols='4' align='left' colsep='1' rowsep='1'>\n"); sb.append( "<thead><row><entry>Format</entry><entry>Argument</entry><entry>Value</entry>" + "<entry>Optional</entry><entry>Description</entry></row></thead>\n"); sb.append("<tbody>\n"); for (Entry<String, List<Argument>> entry : formatArguments.entrySet()) { final String format = entry.getKey(); final List<Argument> arguments = entry.getValue(); int i = 0; for (Argument argument : arguments) { sb.append("<row>\n"); if (i == 0) { sb.append("<entry morerows='").append(arguments.size() - 1) .append("' valign='middle'>").append(format).append("</entry>\n"); } sb.append("<entry>").append(argument.getArgument()) .append("</entry>\n"); sb.append("<entry>").append(argument.getValue()).append("</entry>\n"); sb.append("<entry>").append(yes(argument.getOptional())) .append("</entry>\n"); sb.append("<entry>").append(firstCaps(argument.getDescription())) .append("</entry>\n"); sb.append("</row>\n"); i++; } } sb.append("</tbody>\n"); sb.append("</tgroup></informaltable>\n\n"); } private static void appendHeader(StringBuilder sb) { sb.append("<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n" + "<!DOCTYPE chapter PUBLIC \"-//OASIS//DTD DocBook XML V4.4//EN\"\n" + "\"http://www.oasis-open.org/docbook/xml/4.4/docbookx.dtd\"[\n" + "]>\n" + "<!--\n" + "Licensed to the Apache Software Foundation (ASF) under one\n" + "or more contributor license agreements. See the NOTICE file\n" + "distributed with this work for additional information\n" + "regarding copyright ownership. The ASF licenses this file\n" + "to you under the Apache License, Version 2.0 (the\n" + "\"License\"); you may not use this file except in compliance\n" + "with the License. You may obtain a copy of the License at\n" + "\n" + " http://www.apache.org/licenses/LICENSE-2.0\n" + "\n" + "Unless required by applicable law or agreed to in writing,\n" + "software distributed under the License is distributed on an\n" + "\"AS IS\" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY\n" + "KIND, either express or implied. See the License for the\n" + "specific language governing permissions and limitations\n" + "under the License.\n" + "-->\n" + "\n\n" + "<!-- ## Warning ## this content is autogenerated! Please fix issues in to " + "opennlp-tools/src/main/java/opennlp/tools/cmdline/GenerateManualTool.java \n" + " and execute the following command in opennlp-tool folder to update this file: \n\n" + " mvn -e -q exec:java \"-Dexec.mainClass=opennlp.tools.cmdline.GenerateManualTool\" " + "\"-Dexec.args=../opennlp-docs/src/docbkx/cli.xml\"\n" + "-->\n\n" + "<chapter id='tools.cli'>\n\n" + "<title>The Command Line Interface</title>\n\n" + "<para>" + "This section details the available tools and parameters of the Command Line Interface. " + "For a introduction in its usage please refer to <xref linkend='intro.cli'/>. " + "</para>\n\n"); } private static void appendFooter(StringBuilder sb) { sb.append("\n\n</chapter>"); } private static String firstCaps(String str) { if (str.length() > 1) { return str.substring(0, 1).toUpperCase() + str.substring(1); } else { return str; } } private static String yes(boolean optional) { if (optional) { return "Yes"; } return "No"; } private static void appendCode(String help, StringBuilder sb) { sb.append("<screen>\n" + "<![CDATA[\n").append(splitLongLines(help)) .append("\n").append("]]>\n").append("</screen> \n"); } /** * Prevents long lines. Lines are optimized for printing. * * @param stringBlock * @return */ private static String splitLongLines(String stringBlock) { StringBuilder sb = new StringBuilder(); String line; try { BufferedReader reader = new BufferedReader(new StringReader(stringBlock)); while ((line = reader.readLine()) != null) { if (line.length() <= MAX_LINE_LENGTH) { sb.append(line).append("\n"); } else { StringTokenizer tok = new StringTokenizer(line, " "); int lineLen = 0; while (tok.hasMoreTokens()) { String word = tok.nextToken() + " "; if (lineLen + word.length() > MAX_LINE_LENGTH) { sb.append("\n "); lineLen = 8; } sb.append(word); lineLen += word.length(); } } } } catch (Exception e) { // nothing to do } return sb.toString(); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/ModelLoader.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline; import java.io.BufferedInputStream; import java.io.File; import java.io.IOException; import java.io.InputStream; import java.util.Objects; import opennlp.tools.util.InvalidFormatException; /** * Loads a model and does all the error handling for the command line tools. * <p> * <b>Note:</b> Do not use this class, internal use only! * * @param <T> */ public abstract class ModelLoader<T> { private final String modelName; protected ModelLoader(String modelName) { this.modelName = Objects.requireNonNull(modelName, "modelName must not be null!"); } protected abstract T loadModel(InputStream modelIn) throws IOException; public T load(File modelFile) { long beginModelLoadingTime = System.currentTimeMillis(); CmdLineUtil.checkInputFile(modelName + " model", modelFile); System.err.print("Loading " + modelName + " model ... "); T model; try (InputStream modelIn = new BufferedInputStream( CmdLineUtil.openInFile(modelFile), CmdLineUtil.IO_BUFFER_SIZE)) { model = loadModel(modelIn); } catch (InvalidFormatException e) { System.err.println("failed"); throw new TerminateToolException(-1, "Model has invalid format", e); } catch (IOException e) { System.err.println("failed"); throw new TerminateToolException(-1, "IO error while loading model file '" + modelFile + "'", e); } long modelLoadingDuration = System.currentTimeMillis() - beginModelLoadingTime; System.err.printf("done (%.3fs)\n", modelLoadingDuration / 1000d); return model; } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/ObjectStreamFactory.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline; import opennlp.tools.util.ObjectStream; public interface ObjectStreamFactory<T> { /** * Returns interface with parameters description. * * @param <P> interfaces which describes the parameters. * * @return interface with parameters description */ <P> Class<P> getParameters(); /** * Creates the <code>ObjectStream</code>. * * @param args arguments * @return ObjectStream instance */ ObjectStream<T> create(String[] args); }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/PerformanceMonitor.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline; import java.io.PrintStream; import java.util.concurrent.Executors; import java.util.concurrent.ScheduledExecutorService; import java.util.concurrent.ScheduledFuture; import java.util.concurrent.TimeUnit; /** * The {@link PerformanceMonitor} measures increments to a counter. * During the computation it prints out current and average throughput * per second. After the computation is done it prints a final performance * report. * <p> * <b>Note:</b> * This class is not thread safe. <br> * Do not use this class, internal use only! */ public class PerformanceMonitor { private ScheduledExecutorService scheduler = Executors.newScheduledThreadPool(1); private final String unit; private ScheduledFuture<?> beeperHandle; private volatile long startTime = -1; private volatile int counter; private final PrintStream out; public PerformanceMonitor(PrintStream out, String unit) { this.out = out; this.unit = unit; } public PerformanceMonitor(String unit) { this(System.out, unit); } public boolean isStarted() { return startTime != -1; } public void incrementCounter(int increment) { if (!isStarted()) throw new IllegalStateException("Must be started first!"); if (increment < 0) throw new IllegalArgumentException("increment must be zero or positive but was " + increment + "!"); counter += increment; } public void incrementCounter() { incrementCounter(1); } public void start() { if (isStarted()) throw new IllegalStateException("Already started!"); startTime = System.currentTimeMillis(); } public void startAndPrintThroughput() { start(); final Runnable beeper = new Runnable() { private long lastTimeStamp = startTime; private int lastCount = counter; public void run() { int deltaCount = counter - lastCount; long timePassedSinceLastCount = System.currentTimeMillis() - lastTimeStamp; double currentThroughput; if (timePassedSinceLastCount > 0) { currentThroughput = deltaCount / ((double) timePassedSinceLastCount / 1000); } else { currentThroughput = 0; } long totalTimePassed = System.currentTimeMillis() - startTime; double averageThroughput; if (totalTimePassed > 0) { averageThroughput = counter / (((double) totalTimePassed) / 1000); } else { averageThroughput = 0; } out.printf("current: %.1f " + unit + "/s avg: %.1f " + unit + "/s total: %d " + unit + "%n", currentThroughput, averageThroughput, counter); lastTimeStamp = System.currentTimeMillis(); lastCount = counter; } }; beeperHandle = scheduler.scheduleAtFixedRate(beeper, 1, 1, TimeUnit.SECONDS); } public void stopAndPrintFinalResult() { if (!isStarted()) throw new IllegalStateException("Must be started first!"); if (beeperHandle != null) { // yeah we have time to finish current // printing if there is one beeperHandle.cancel(false); } scheduler.shutdown(); long timePassed = System.currentTimeMillis() - startTime; double average; if (timePassed > 0) { average = counter / (timePassed / 1000d); } else { average = 0; } out.println(); out.println(); out.printf("Average: %.1f " + unit + "/s %n", average); out.println("Total: " + counter + " " + unit); out.println("Runtime: " + timePassed / 1000d + "s"); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/StreamFactoryRegistry.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline; import java.util.HashMap; import java.util.Map; import opennlp.tools.formats.BioNLP2004NameSampleStreamFactory; import opennlp.tools.formats.ChunkerSampleStreamFactory; import opennlp.tools.formats.Conll02NameSampleStreamFactory; import opennlp.tools.formats.Conll03NameSampleStreamFactory; import opennlp.tools.formats.ConllXPOSSampleStreamFactory; import opennlp.tools.formats.ConllXSentenceSampleStreamFactory; import opennlp.tools.formats.ConllXTokenSampleStreamFactory; import opennlp.tools.formats.DocumentSampleStreamFactory; import opennlp.tools.formats.EvalitaNameSampleStreamFactory; import opennlp.tools.formats.LanguageDetectorSampleStreamFactory; import opennlp.tools.formats.LeipzigDocumentSampleStreamFactory; import opennlp.tools.formats.LemmatizerSampleStreamFactory; import opennlp.tools.formats.NameSampleDataStreamFactory; import opennlp.tools.formats.ParseSampleStreamFactory; import opennlp.tools.formats.SentenceSampleStreamFactory; import opennlp.tools.formats.TokenSampleStreamFactory; import opennlp.tools.formats.WordTagSampleStreamFactory; import opennlp.tools.formats.ad.ADChunkSampleStreamFactory; import opennlp.tools.formats.ad.ADNameSampleStreamFactory; import opennlp.tools.formats.ad.ADPOSSampleStreamFactory; import opennlp.tools.formats.ad.ADSentenceSampleStreamFactory; import opennlp.tools.formats.ad.ADTokenSampleStreamFactory; import opennlp.tools.formats.brat.BratNameSampleStreamFactory; import opennlp.tools.formats.conllu.ConlluLemmaSampleStreamFactory; import opennlp.tools.formats.conllu.ConlluPOSSampleStreamFactory; import opennlp.tools.formats.conllu.ConlluSentenceSampleStreamFactory; import opennlp.tools.formats.conllu.ConlluTokenSampleStreamFactory; import opennlp.tools.formats.convert.NameToSentenceSampleStreamFactory; import opennlp.tools.formats.convert.NameToTokenSampleStreamFactory; import opennlp.tools.formats.convert.POSToSentenceSampleStreamFactory; import opennlp.tools.formats.convert.POSToTokenSampleStreamFactory; import opennlp.tools.formats.convert.ParseToPOSSampleStreamFactory; import opennlp.tools.formats.convert.ParseToSentenceSampleStreamFactory; import opennlp.tools.formats.convert.ParseToTokenSampleStreamFactory; import opennlp.tools.formats.frenchtreebank.ConstitParseSampleStreamFactory; import opennlp.tools.formats.irishsentencebank.IrishSentenceBankSentenceStreamFactory; import opennlp.tools.formats.irishsentencebank.IrishSentenceBankTokenSampleStreamFactory; import opennlp.tools.formats.leipzig.LeipzigLanguageSampleStreamFactory; import opennlp.tools.formats.letsmt.LetsmtSentenceStreamFactory; import opennlp.tools.formats.moses.MosesSentenceSampleStreamFactory; import opennlp.tools.formats.muc.Muc6NameSampleStreamFactory; import opennlp.tools.formats.ontonotes.OntoNotesNameSampleStreamFactory; import opennlp.tools.formats.ontonotes.OntoNotesPOSSampleStreamFactory; import opennlp.tools.formats.ontonotes.OntoNotesParseSampleStreamFactory; /** * Registry for object stream factories. */ public final class StreamFactoryRegistry { private static final Map<Class, Map<String, ObjectStreamFactory>> registry = new HashMap<>(); static { ChunkerSampleStreamFactory.registerFactory(); DocumentSampleStreamFactory.registerFactory(); NameSampleDataStreamFactory.registerFactory(); ParseSampleStreamFactory.registerFactory(); SentenceSampleStreamFactory.registerFactory(); TokenSampleStreamFactory.registerFactory(); WordTagSampleStreamFactory.registerFactory(); LemmatizerSampleStreamFactory.registerFactory(); LanguageDetectorSampleStreamFactory.registerFactory(); NameToSentenceSampleStreamFactory.registerFactory(); NameToTokenSampleStreamFactory.registerFactory(); POSToSentenceSampleStreamFactory.registerFactory(); POSToTokenSampleStreamFactory.registerFactory(); ParseToPOSSampleStreamFactory.registerFactory(); ParseToSentenceSampleStreamFactory.registerFactory(); ParseToTokenSampleStreamFactory.registerFactory(); OntoNotesNameSampleStreamFactory.registerFactory(); OntoNotesParseSampleStreamFactory.registerFactory(); OntoNotesPOSSampleStreamFactory.registerFactory(); BioNLP2004NameSampleStreamFactory.registerFactory(); Conll02NameSampleStreamFactory.registerFactory(); Conll03NameSampleStreamFactory.registerFactory(); EvalitaNameSampleStreamFactory.registerFactory(); ConllXPOSSampleStreamFactory.registerFactory(); ConllXSentenceSampleStreamFactory.registerFactory(); ConllXTokenSampleStreamFactory.registerFactory(); LeipzigDocumentSampleStreamFactory.registerFactory(); ADChunkSampleStreamFactory.registerFactory(); ADNameSampleStreamFactory.registerFactory(); ADSentenceSampleStreamFactory.registerFactory(); ADPOSSampleStreamFactory.registerFactory(); ADTokenSampleStreamFactory.registerFactory(); Muc6NameSampleStreamFactory.registerFactory(); ConstitParseSampleStreamFactory.registerFactory(); BratNameSampleStreamFactory.registerFactory(); LetsmtSentenceStreamFactory.registerFactory(); MosesSentenceSampleStreamFactory.registerFactory(); ConlluTokenSampleStreamFactory.registerFactory(); ConlluSentenceSampleStreamFactory.registerFactory(); ConlluPOSSampleStreamFactory.registerFactory(); ConlluLemmaSampleStreamFactory.registerFactory(); IrishSentenceBankSentenceStreamFactory.registerFactory(); IrishSentenceBankTokenSampleStreamFactory.registerFactory(); LeipzigLanguageSampleStreamFactory.registerFactory(); } public static final String DEFAULT_FORMAT = "opennlp"; private StreamFactoryRegistry() { // not intended to be instantiated } /** * Registers <code>factory</code> which reads format named <code>formatName</code> and * instantiates streams producing objects of <code>sampleClass</code> class. * * @param sampleClass class of the objects, produced by the streams instantiated by the factory * @param formatName name of the format * @param factory instance of the factory * @return true if the factory was successfully registered */ public static boolean registerFactory(Class sampleClass, String formatName, ObjectStreamFactory factory) { boolean result; Map<String, ObjectStreamFactory> formats = registry.get(sampleClass); if (null == formats) { formats = new HashMap<>(); } if (!formats.containsKey(formatName)) { formats.put(formatName, factory); registry.put(sampleClass, formats); result = true; } else { result = false; } return result; } /** * Unregisters a factory which reads format named <code>formatName</code> and * instantiates streams producing objects of <code>sampleClass</code> class. * * @param sampleClass class of the objects, produced by the streams instantiated by the factory * @param formatName name of the format */ public static void unregisterFactory(Class sampleClass, String formatName) { Map<String, ObjectStreamFactory> formats = registry.get(sampleClass); if (null != formats) { if (formats.containsKey(formatName)) { formats.remove(formatName); } } } /** * Returns all factories which produce objects of <code>sampleClass</code> class. * * @param sampleClass class of the objects, produced by the streams instantiated by the factory * @return formats mapped to factories */ @SuppressWarnings("unchecked") public static <T> Map<String, ObjectStreamFactory<T>> getFactories(Class<T> sampleClass) { return (Map<String, ObjectStreamFactory<T>>) (Object) registry.get(sampleClass); } /** * Returns a factory which reads format named <code>formatName</code> and * instantiates streams producing objects of <code>sampleClass</code> class. * * @param sampleClass class of the objects, produced by the streams instantiated by the factory * @param formatName name of the format, if null, assumes OpenNLP format * @return factory instance */ @SuppressWarnings("unchecked") public static <T> ObjectStreamFactory<T> getFactory(Class<T> sampleClass, String formatName) { if (null == formatName) { formatName = DEFAULT_FORMAT; } ObjectStreamFactory<T> factory = registry.containsKey(sampleClass) ? registry.get(sampleClass).get(formatName) : null; if (factory != null) { return factory; } else { try { Class<?> factoryClazz = Class.forName(formatName); // TODO: Need to check if it can produce the desired output // Otherwise there will be class cast exceptions later in the flow try { return (ObjectStreamFactory<T>) factoryClazz.newInstance(); } catch (InstantiationException | IllegalAccessException e) { return null; } } catch (ClassNotFoundException e) { return null; } } } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/SystemInputStreamFactory.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline; import java.io.IOException; import java.io.InputStream; import java.nio.charset.Charset; import opennlp.tools.util.InputStreamFactory; public class SystemInputStreamFactory implements InputStreamFactory { private boolean isTainted = false; public static Charset encoding() { return Charset.defaultCharset(); } @Override public InputStream createInputStream() throws IOException { if (!isTainted) { isTainted = true; return System.in; } else { throw new UnsupportedOperationException( "The System.in stream can't be re-created to read from the beginning!"); } } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/TerminateToolException.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline; /** * Exception to terminate the execution of a command line tool. * <p> * The exception should be thrown to indicate that the VM should be terminated with * the specified error code, instead of just calling {@link System#exit(int)}. * <p> * The return code convention is to return:<br> * 0 in case of graceful termination<br> * -1 in case of runtime errors, such as IOException<br> * 1 in case of invalid parameters. * <p> * <b>Note:</b> Do not use this class, internal use only! */ @SuppressWarnings("serial") public class TerminateToolException extends RuntimeException { private final int code; private final String message; public TerminateToolException(int code, String message, Throwable t) { super(t); this.code = code; this.message = message; } public TerminateToolException(int code, String message) { this.code = code; this.message = message; } public TerminateToolException(int code) { this(code, null); } public int getCode() { return code; } @Override public String getMessage() { return message; } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/TypedCmdLineTool.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline; import java.util.Map; /** * Base class for tools which support processing of samples of some type T * coming from a stream of a certain format. */ public abstract class TypedCmdLineTool<T> extends CmdLineTool { /** * variable to access the type of the generic parameter. */ protected final Class<T> type; /** * Constructor with type parameters. * * @param sampleType class of the template parameter */ protected TypedCmdLineTool(Class<T> sampleType) { this.type = sampleType; } /** * Returns stream factory for the type of this tool for the <code>format</code>. * * @param format data format name * @return stream factory for the type of this tool for the format */ protected ObjectStreamFactory<T> getStreamFactory(String format) { ObjectStreamFactory<T> factory = StreamFactoryRegistry.getFactory(type, format); if (null != factory) { return factory; } else { throw new TerminateToolException(1, "Format " + format + " is not found.\n" + getHelp()); } } /** * Validates arguments using parameters from <code>argProxyInterface</code> and the parameters of the * <code>format</code>. * * @param args arguments * @param argProxyInterface interface with parameter descriptions * @param format data format name * @param <A> A */ @SuppressWarnings({"unchecked"}) protected <A> void validateAllArgs(String[] args, Class<A> argProxyInterface, String format) { ObjectStreamFactory<T> factory = getStreamFactory(format); String errMessage = ArgumentParser.validateArgumentsLoudly(args, argProxyInterface, factory.<A>getParameters()); if (null != errMessage) { throw new TerminateToolException(1, errMessage + "\n" + getHelp(format)); } } /** * Validates arguments for a format processed by the <code>factory</code>. * @param factory a stream factory * @param args arguments */ protected void validateFactoryArgs(ObjectStreamFactory<T> factory, String[] args) { String errMessage = ArgumentParser.validateArgumentsLoudly(args, factory.getParameters()); if (null != errMessage) { throw new TerminateToolException(1, "Format parameters are invalid: " + errMessage + "\n" + "Usage: " + ArgumentParser.createUsage(factory.getParameters())); } } @Override protected String getBasicHelp(Class<?>... argProxyInterfaces) { Map<String, ObjectStreamFactory<T>> factories = StreamFactoryRegistry.getFactories(type); String formatsHelp = " "; if (1 < factories.size()) { StringBuilder formats = new StringBuilder(); for (String format : factories.keySet()) { if (!StreamFactoryRegistry.DEFAULT_FORMAT.equals(format)) { formats.append(".").append(format).append("|"); } } formatsHelp = "[" + formats.substring(0, formats.length() - 1) + "] "; } return "Usage: " + CLI.CMD + " " + getName() + formatsHelp + ArgumentParser.createUsage(argProxyInterfaces); } public String getHelp() { return getHelp(""); } /** * Executes the tool with the given parameters. * * @param format format to work with * @param args command line arguments */ public abstract void run(String format, String[] args); /** * Retrieves a description on how to use the tool. * * @param format data format * @return a description on how to use the tool */ public abstract String getHelp(String format); }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/chunker/ChunkEvaluationErrorListener.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.chunker; import java.io.OutputStream; import opennlp.tools.chunker.ChunkSample; import opennlp.tools.chunker.ChunkerEvaluationMonitor; import opennlp.tools.cmdline.EvaluationErrorPrinter; import opennlp.tools.util.eval.EvaluationMonitor; /** * A default implementation of {@link EvaluationMonitor} that prints * to an output stream. * */ public class ChunkEvaluationErrorListener extends EvaluationErrorPrinter<ChunkSample> implements ChunkerEvaluationMonitor { /** * Creates a listener that will print to System.err */ public ChunkEvaluationErrorListener() { super(System.err); } /** * Creates a listener that will print to a given {@link OutputStream} */ public ChunkEvaluationErrorListener(OutputStream outputStream) { super(outputStream); } @Override public void missclassified(ChunkSample reference, ChunkSample prediction) { printError(reference.getPhrasesAsSpanList(), prediction.getPhrasesAsSpanList(), reference, prediction, reference.getSentence()); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/chunker/ChunkerConverterTool.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.chunker; import opennlp.tools.chunker.ChunkSample; import opennlp.tools.cmdline.AbstractConverterTool; /** * Tool to convert multiple data formats into native OpenNLP chunker training * format. */ public class ChunkerConverterTool extends AbstractConverterTool<ChunkSample> { public ChunkerConverterTool() { super(ChunkSample.class); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/chunker/ChunkerCrossValidatorTool.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.chunker; import java.io.IOException; import java.util.LinkedList; import java.util.List; import opennlp.tools.chunker.ChunkSample; import opennlp.tools.chunker.ChunkerCrossValidator; import opennlp.tools.chunker.ChunkerEvaluationMonitor; import opennlp.tools.chunker.ChunkerFactory; import opennlp.tools.cmdline.AbstractCrossValidatorTool; import opennlp.tools.cmdline.CmdLineUtil; import opennlp.tools.cmdline.chunker.ChunkerCrossValidatorTool.CVToolParams; import opennlp.tools.cmdline.params.CVParams; import opennlp.tools.cmdline.params.DetailedFMeasureEvaluatorParams; import opennlp.tools.util.eval.EvaluationMonitor; import opennlp.tools.util.eval.FMeasure; import opennlp.tools.util.model.ModelUtil; public final class ChunkerCrossValidatorTool extends AbstractCrossValidatorTool<ChunkSample, CVToolParams> { interface CVToolParams extends TrainingParams, CVParams, DetailedFMeasureEvaluatorParams { } public ChunkerCrossValidatorTool() { super(ChunkSample.class, CVToolParams.class); } public String getShortDescription() { return "K-fold cross validator for the chunker"; } public void run(String format, String[] args) { super.run(format, args); mlParams = CmdLineUtil.loadTrainingParameters(params.getParams(), false); if (mlParams == null) { mlParams = ModelUtil.createDefaultTrainingParameters(); } List<EvaluationMonitor<ChunkSample>> listeners = new LinkedList<>(); ChunkerDetailedFMeasureListener detailedFMeasureListener = null; if (params.getMisclassified()) { listeners.add(new ChunkEvaluationErrorListener()); } if (params.getDetailedF()) { detailedFMeasureListener = new ChunkerDetailedFMeasureListener(); listeners.add(detailedFMeasureListener); } ChunkerCrossValidator validator; try { ChunkerFactory chunkerFactory = ChunkerFactory .create(params.getFactory()); validator = new ChunkerCrossValidator(params.getLang(), mlParams, chunkerFactory, listeners.toArray(new ChunkerEvaluationMonitor[listeners.size()])); validator.evaluate(sampleStream, params.getFolds()); } catch (IOException e) { throw createTerminationIOException(e); } finally { try { sampleStream.close(); } catch (IOException e) { // sorry that this can fail } } if (detailedFMeasureListener == null) { FMeasure result = validator.getFMeasure(); System.out.println(result.toString()); } else { System.out.println(detailedFMeasureListener.toString()); } } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/chunker/ChunkerDetailedFMeasureListener.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.chunker; import opennlp.tools.chunker.ChunkSample; import opennlp.tools.chunker.ChunkerEvaluationMonitor; import opennlp.tools.cmdline.DetailedFMeasureListener; import opennlp.tools.util.Span; public class ChunkerDetailedFMeasureListener extends DetailedFMeasureListener<ChunkSample> implements ChunkerEvaluationMonitor { @Override protected Span[] asSpanArray(ChunkSample sample) { return sample.getPhrasesAsSpanList(); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/chunker/ChunkerEvaluatorTool.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.chunker; import java.io.IOException; import java.util.LinkedList; import java.util.List; import opennlp.tools.chunker.ChunkSample; import opennlp.tools.chunker.ChunkerEvaluationMonitor; import opennlp.tools.chunker.ChunkerEvaluator; import opennlp.tools.chunker.ChunkerME; import opennlp.tools.chunker.ChunkerModel; import opennlp.tools.cmdline.AbstractEvaluatorTool; import opennlp.tools.cmdline.PerformanceMonitor; import opennlp.tools.cmdline.TerminateToolException; import opennlp.tools.cmdline.chunker.ChunkerEvaluatorTool.EvalToolParams; import opennlp.tools.cmdline.params.DetailedFMeasureEvaluatorParams; import opennlp.tools.cmdline.params.EvaluatorParams; import opennlp.tools.util.ObjectStream; import opennlp.tools.util.eval.EvaluationMonitor; public final class ChunkerEvaluatorTool extends AbstractEvaluatorTool<ChunkSample, EvalToolParams> { interface EvalToolParams extends EvaluatorParams, DetailedFMeasureEvaluatorParams { } public ChunkerEvaluatorTool() { super(ChunkSample.class, EvalToolParams.class); } public String getShortDescription() { return "Measures the performance of the Chunker model with the reference data"; } public void run(String format, String[] args) { super.run(format, args); ChunkerModel model = new ChunkerModelLoader().load(params.getModel()); List<EvaluationMonitor<ChunkSample>> listeners = new LinkedList<>(); ChunkerDetailedFMeasureListener detailedFMeasureListener = null; if (params.getMisclassified()) { listeners.add(new ChunkEvaluationErrorListener()); } if (params.getDetailedF()) { detailedFMeasureListener = new ChunkerDetailedFMeasureListener(); listeners.add(detailedFMeasureListener); } ChunkerEvaluator evaluator = new ChunkerEvaluator(new ChunkerME(model), listeners.toArray(new ChunkerEvaluationMonitor[listeners.size()])); final PerformanceMonitor monitor = new PerformanceMonitor("sent"); ObjectStream<ChunkSample> measuredSampleStream = new ObjectStream<ChunkSample>() { public ChunkSample read() throws IOException { monitor.incrementCounter(); return sampleStream.read(); } public void reset() throws IOException { sampleStream.reset(); } public void close() throws IOException { sampleStream.close(); } }; monitor.startAndPrintThroughput(); try { evaluator.evaluate(measuredSampleStream); } catch (IOException e) { System.err.println("failed"); throw new TerminateToolException(-1, "IO error while reading test data: " + e.getMessage(), e); } finally { try { measuredSampleStream.close(); } catch (IOException e) { // sorry that this can fail } } monitor.stopAndPrintFinalResult(); System.out.println(); if (detailedFMeasureListener == null) { System.out.println(evaluator.getFMeasure()); } else { System.out.println(detailedFMeasureListener.toString()); } } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/chunker/ChunkerMETool.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.chunker; import java.io.File; import java.io.IOException; import opennlp.tools.chunker.ChunkSample; import opennlp.tools.chunker.ChunkerME; import opennlp.tools.chunker.ChunkerModel; import opennlp.tools.cmdline.BasicCmdLineTool; import opennlp.tools.cmdline.CLI; import opennlp.tools.cmdline.CmdLineUtil; import opennlp.tools.cmdline.PerformanceMonitor; import opennlp.tools.cmdline.SystemInputStreamFactory; import opennlp.tools.postag.POSSample; import opennlp.tools.util.InvalidFormatException; import opennlp.tools.util.ObjectStream; import opennlp.tools.util.PlainTextByLineStream; public class ChunkerMETool extends BasicCmdLineTool { public String getShortDescription() { return "learnable chunker"; } public String getHelp() { return "Usage: " + CLI.CMD + " " + getName() + " model < sentences"; } public void run(String[] args) { if (args.length != 1) { System.out.println(getHelp()); } else { ChunkerModel model = new ChunkerModelLoader().load(new File(args[0])); ChunkerME chunker = new ChunkerME(model); ObjectStream<String> lineStream; PerformanceMonitor perfMon = null; try { lineStream = new PlainTextByLineStream(new SystemInputStreamFactory(), SystemInputStreamFactory.encoding()); perfMon = new PerformanceMonitor(System.err, "sent"); perfMon.start(); String line; while ((line = lineStream.read()) != null) { POSSample posSample; try { posSample = POSSample.parse(line); } catch (InvalidFormatException e) { System.err.println("Invalid format:"); System.err.println(line); continue; } String[] chunks = chunker.chunk(posSample.getSentence(), posSample.getTags()); System.out.println(new ChunkSample(posSample.getSentence(), posSample.getTags(), chunks).nicePrint()); perfMon.incrementCounter(); } } catch (IOException e) { CmdLineUtil.handleStdinIoError(e); } perfMon.stopAndPrintFinalResult(); } } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/chunker/ChunkerModelLoader.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.chunker; import java.io.IOException; import java.io.InputStream; import opennlp.tools.chunker.ChunkerModel; import opennlp.tools.cmdline.ModelLoader; /** * Loads a Chunker Model for the command line tools. * <p> * <b>Note:</b> Do not use this class, internal use only! */ public class ChunkerModelLoader extends ModelLoader<ChunkerModel> { public ChunkerModelLoader() { super("Chunker"); } @Override protected ChunkerModel loadModel(InputStream modelIn) throws IOException { return new ChunkerModel(modelIn); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/chunker/ChunkerTrainerTool.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.chunker; import java.io.File; import java.io.IOException; import opennlp.tools.chunker.ChunkSample; import opennlp.tools.chunker.ChunkerFactory; import opennlp.tools.chunker.ChunkerME; import opennlp.tools.chunker.ChunkerModel; import opennlp.tools.cmdline.AbstractTrainerTool; import opennlp.tools.cmdline.CmdLineUtil; import opennlp.tools.cmdline.chunker.ChunkerTrainerTool.TrainerToolParams; import opennlp.tools.cmdline.params.TrainingToolParams; import opennlp.tools.util.model.ModelUtil; public class ChunkerTrainerTool extends AbstractTrainerTool<ChunkSample, TrainerToolParams> { interface TrainerToolParams extends TrainingParams, TrainingToolParams { } public ChunkerTrainerTool() { super(ChunkSample.class, TrainerToolParams.class); } public String getName() { return "ChunkerTrainerME"; } public String getShortDescription() { return "trainer for the learnable chunker"; } public void run(String format, String[] args) { super.run(format, args); mlParams = CmdLineUtil.loadTrainingParameters(params.getParams(), false); if (mlParams == null) { mlParams = ModelUtil.createDefaultTrainingParameters(); } File modelOutFile = params.getModel(); CmdLineUtil.checkOutputFile("sentence detector model", modelOutFile); ChunkerModel model; try { ChunkerFactory chunkerFactory = ChunkerFactory .create(params.getFactory()); model = ChunkerME.train(params.getLang(), sampleStream, mlParams, chunkerFactory); } catch (IOException e) { throw createTerminationIOException(e); } finally { try { sampleStream.close(); } catch (IOException e) { // sorry that this can fail } } CmdLineUtil.writeModel("chunker", modelOutFile, model); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/chunker/TrainingParams.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.chunker; import opennlp.tools.cmdline.ArgumentParser.OptionalParameter; import opennlp.tools.cmdline.ArgumentParser.ParameterDescription; import opennlp.tools.cmdline.params.BasicTrainingParams; /** * TrainingParams for Chunker. * * Note: Do not use this class, internal use only! */ interface TrainingParams extends BasicTrainingParams { @ParameterDescription(valueName = "factoryName", description = "A sub-class of ChunkerFactory where to get implementation and resources.") @OptionalParameter String getFactory(); }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/dictionary/DictionaryBuilderParams.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.dictionary; import java.io.File; import opennlp.tools.cmdline.ArgumentParser.ParameterDescription; import opennlp.tools.cmdline.params.EncodingParameter; /** * Params for Dictionary tools. * * Note: Do not use this class, internal use only! */ interface DictionaryBuilderParams extends EncodingParameter { @ParameterDescription(valueName = "in", description = "Plain file with one entry per line") File getInputFile(); @ParameterDescription(valueName = "out", description = "The dictionary file.") File getOutputFile(); }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/dictionary/DictionaryBuilderTool.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.dictionary; import java.io.File; import java.io.FileInputStream; import java.io.FileOutputStream; import java.io.IOException; import java.io.InputStreamReader; import java.io.OutputStream; import java.nio.charset.Charset; import opennlp.tools.cmdline.BasicCmdLineTool; import opennlp.tools.cmdline.CmdLineUtil; import opennlp.tools.cmdline.TerminateToolException; import opennlp.tools.dictionary.Dictionary; public class DictionaryBuilderTool extends BasicCmdLineTool { interface Params extends DictionaryBuilderParams { } public String getShortDescription() { return "builds a new dictionary"; } public String getHelp() { return getBasicHelp(Params.class); } public void run(String[] args) { Params params = validateAndParseParams(args, Params.class); File dictInFile = params.getInputFile(); File dictOutFile = params.getOutputFile(); Charset encoding = params.getEncoding(); CmdLineUtil.checkInputFile("dictionary input file", dictInFile); CmdLineUtil.checkOutputFile("dictionary output file", dictOutFile); try (InputStreamReader in = new InputStreamReader(new FileInputStream(dictInFile), encoding); OutputStream out = new FileOutputStream(dictOutFile)) { Dictionary dict = Dictionary.parseOneEntryPerLine(in); dict.serialize(out); } catch (IOException e) { throw new TerminateToolException(-1, "IO error while reading training data or indexing data: " + e.getMessage(), e); } } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/doccat/DoccatConverterTool.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.doccat; import opennlp.tools.cmdline.AbstractConverterTool; import opennlp.tools.doccat.DocumentSample; public class DoccatConverterTool extends AbstractConverterTool<DocumentSample> { public DoccatConverterTool() { super(DocumentSample.class); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/doccat/DoccatCrossValidatorTool.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.doccat; import java.io.File; import java.io.FileNotFoundException; import java.io.FileOutputStream; import java.io.IOException; import java.io.OutputStream; import java.util.LinkedList; import java.util.List; import opennlp.tools.cmdline.AbstractCrossValidatorTool; import opennlp.tools.cmdline.CmdLineUtil; import opennlp.tools.cmdline.TerminateToolException; import opennlp.tools.cmdline.doccat.DoccatCrossValidatorTool.CVToolParams; import opennlp.tools.cmdline.params.CVParams; import opennlp.tools.cmdline.params.FineGrainedEvaluatorParams; import opennlp.tools.doccat.DoccatCrossValidator; import opennlp.tools.doccat.DoccatEvaluationMonitor; import opennlp.tools.doccat.DoccatFactory; import opennlp.tools.doccat.DocumentSample; import opennlp.tools.doccat.FeatureGenerator; import opennlp.tools.util.eval.EvaluationMonitor; import opennlp.tools.util.model.ModelUtil; public final class DoccatCrossValidatorTool extends AbstractCrossValidatorTool<DocumentSample, CVToolParams> { interface CVToolParams extends CVParams, TrainingParams, FineGrainedEvaluatorParams { } public DoccatCrossValidatorTool() { super(DocumentSample.class, CVToolParams.class); } public String getShortDescription() { return "K-fold cross validator for the learnable Document Categorizer"; } public void run(String format, String[] args) { super.run(format, args); mlParams = CmdLineUtil.loadTrainingParameters(params.getParams(), false); if (mlParams == null) { mlParams = ModelUtil.createDefaultTrainingParameters(); } List<EvaluationMonitor<DocumentSample>> listeners = new LinkedList<>(); if (params.getMisclassified()) { listeners.add(new DoccatEvaluationErrorListener()); } DoccatFineGrainedReportListener reportListener = null; File reportFile = params.getReportOutputFile(); OutputStream reportOutputStream = null; if (reportFile != null) { CmdLineUtil.checkOutputFile("Report Output File", reportFile); try { reportOutputStream = new FileOutputStream(reportFile); reportListener = new DoccatFineGrainedReportListener(reportOutputStream); listeners.add(reportListener); } catch (FileNotFoundException e) { throw createTerminationIOException(e); } } FeatureGenerator[] featureGenerators = DoccatTrainerTool .createFeatureGenerators(params.getFeatureGenerators()); DoccatEvaluationMonitor[] listenersArr = listeners .toArray(new DoccatEvaluationMonitor[listeners.size()]); DoccatCrossValidator validator; try { DoccatFactory factory = DoccatFactory.create(params.getFactory(), featureGenerators); validator = new DoccatCrossValidator(params.getLang(), mlParams, factory, listenersArr); validator.evaluate(sampleStream, params.getFolds()); } catch (IOException e) { throw new TerminateToolException(-1, "IO error while reading training data or indexing data: " + e.getMessage(), e); } finally { try { sampleStream.close(); } catch (IOException e) { // sorry that this can fail } } System.out.println("done"); if (reportListener != null) { System.out.println("Writing fine-grained report to " + params.getReportOutputFile().getAbsolutePath()); reportListener.writeReport(); try { // TODO: is it a problem to close the stream now? reportOutputStream.close(); } catch (IOException e) { // nothing to do } } System.out.println(); System.out.println("Accuracy: " + validator.getDocumentAccuracy() + "\n" + "Number of documents: " + validator.getDocumentCount()); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/doccat/DoccatEvaluationErrorListener.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.doccat; import java.io.OutputStream; import opennlp.tools.cmdline.EvaluationErrorPrinter; import opennlp.tools.doccat.DoccatEvaluationMonitor; import opennlp.tools.doccat.DocumentSample; import opennlp.tools.util.eval.EvaluationMonitor; /** * A default implementation of {@link EvaluationMonitor} that prints to an * output stream. * */ public class DoccatEvaluationErrorListener extends EvaluationErrorPrinter<DocumentSample> implements DoccatEvaluationMonitor { /** * Creates a listener that will print to System.err */ public DoccatEvaluationErrorListener() { super(System.err); } /** * Creates a listener that will print to a given {@link OutputStream} */ public DoccatEvaluationErrorListener(OutputStream outputStream) { super(outputStream); } @Override public void missclassified(DocumentSample reference, DocumentSample prediction) { printError(reference, prediction); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/doccat/DoccatEvaluatorTool.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.doccat; import java.io.File; import java.io.FileNotFoundException; import java.io.FileOutputStream; import java.io.IOException; import java.io.OutputStream; import java.util.LinkedList; import java.util.List; import opennlp.tools.cmdline.AbstractEvaluatorTool; import opennlp.tools.cmdline.CmdLineUtil; import opennlp.tools.cmdline.PerformanceMonitor; import opennlp.tools.cmdline.TerminateToolException; import opennlp.tools.cmdline.doccat.DoccatEvaluatorTool.EvalToolParams; import opennlp.tools.cmdline.params.EvaluatorParams; import opennlp.tools.cmdline.params.FineGrainedEvaluatorParams; import opennlp.tools.doccat.DoccatEvaluationMonitor; import opennlp.tools.doccat.DoccatModel; import opennlp.tools.doccat.DocumentCategorizerEvaluator; import opennlp.tools.doccat.DocumentCategorizerME; import opennlp.tools.doccat.DocumentSample; import opennlp.tools.util.ObjectStream; import opennlp.tools.util.eval.EvaluationMonitor; public final class DoccatEvaluatorTool extends AbstractEvaluatorTool<DocumentSample, EvalToolParams> { interface EvalToolParams extends EvaluatorParams, FineGrainedEvaluatorParams { } public DoccatEvaluatorTool() { super(DocumentSample.class, EvalToolParams.class); } public String getShortDescription() { return "Measures the performance of the Doccat model with the reference data"; } public void run(String format, String[] args) { super.run(format, args); DoccatModel model = new DoccatModelLoader().load(params.getModel()); List<EvaluationMonitor<DocumentSample>> listeners = new LinkedList<>(); if (params.getMisclassified()) { listeners.add(new DoccatEvaluationErrorListener()); } DoccatFineGrainedReportListener reportListener = null; File reportFile = params.getReportOutputFile(); OutputStream reportOutputStream = null; if (reportFile != null) { CmdLineUtil.checkOutputFile("Report Output File", reportFile); try { reportOutputStream = new FileOutputStream(reportFile); reportListener = new DoccatFineGrainedReportListener(reportOutputStream); listeners.add(reportListener); } catch (FileNotFoundException e) { throw new TerminateToolException(-1, "IO error while creating Doccat fine-grained report file: " + e.getMessage()); } } DocumentCategorizerEvaluator evaluator = new DocumentCategorizerEvaluator( new DocumentCategorizerME(model), listeners.toArray(new DoccatEvaluationMonitor[listeners.size()])); final PerformanceMonitor monitor = new PerformanceMonitor("doc"); ObjectStream<DocumentSample> measuredSampleStream = new ObjectStream<DocumentSample>() { public DocumentSample read() throws IOException { monitor.incrementCounter(); return sampleStream.read(); } public void reset() throws IOException { sampleStream.reset(); } public void close() throws IOException { sampleStream.close(); } }; monitor.startAndPrintThroughput(); try { evaluator.evaluate(measuredSampleStream); } catch (IOException e) { System.err.println("failed"); throw new TerminateToolException(-1, "IO error while reading test data: " + e.getMessage(), e); } finally { try { measuredSampleStream.close(); } catch (IOException e) { // sorry that this can fail } } monitor.stopAndPrintFinalResult(); System.out.println(); System.out.println(evaluator); if (reportListener != null) { System.out.println("Writing fine-grained report to " + params.getReportOutputFile().getAbsolutePath()); reportListener.writeReport(); try { // TODO: is it a problem to close the stream now? reportOutputStream.close(); } catch (IOException e) { // nothing to do } } } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/doccat/DoccatFineGrainedReportListener.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.doccat; import java.io.OutputStream; import opennlp.tools.cmdline.FineGrainedReportListener; import opennlp.tools.doccat.DoccatEvaluationMonitor; import opennlp.tools.doccat.DocumentSample; /** * Generates a detailed report for the POS Tagger. * <p> * It is possible to use it from an API and access the statistics using the * provided getters */ public class DoccatFineGrainedReportListener extends FineGrainedReportListener implements DoccatEvaluationMonitor { /** * Creates a listener that will print to {@link System#err} */ public DoccatFineGrainedReportListener() { this(System.err); } /** * Creates a listener that prints to a given {@link OutputStream} */ public DoccatFineGrainedReportListener(OutputStream outputStream) { super(outputStream); } // methods inherited from EvaluationMonitor public void missclassified(DocumentSample reference, DocumentSample prediction) { statsAdd(reference, prediction); } public void correctlyClassified(DocumentSample reference, DocumentSample prediction) { statsAdd(reference, prediction); } private void statsAdd(DocumentSample reference, DocumentSample prediction) { getStats().add(reference.getText(), reference.getCategory(), prediction.getCategory()); } public void writeReport() { printGeneralStatistics(); printTagsErrorRank(); printGeneralConfusionTable(); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/doccat/DoccatModelLoader.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.doccat; import java.io.IOException; import java.io.InputStream; import opennlp.tools.cmdline.ModelLoader; import opennlp.tools.doccat.DoccatModel; /** * Loads a Document Categorizer Model for the command line tools. * <p> * <b>Note:</b> Do not use this class, internal use only! */ public class DoccatModelLoader extends ModelLoader<DoccatModel> { public DoccatModelLoader() { super("Document Categorizer"); } @Override protected DoccatModel loadModel(InputStream modelIn) throws IOException { return new DoccatModel(modelIn); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/doccat/DoccatTool.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.doccat; import java.io.File; import java.io.IOException; import opennlp.tools.cmdline.BasicCmdLineTool; import opennlp.tools.cmdline.CLI; import opennlp.tools.cmdline.CmdLineUtil; import opennlp.tools.cmdline.PerformanceMonitor; import opennlp.tools.cmdline.SystemInputStreamFactory; import opennlp.tools.doccat.DoccatModel; import opennlp.tools.doccat.DocumentCategorizerME; import opennlp.tools.doccat.DocumentSample; import opennlp.tools.tokenize.WhitespaceTokenizer; import opennlp.tools.util.ObjectStream; import opennlp.tools.util.ParagraphStream; import opennlp.tools.util.PlainTextByLineStream; public class DoccatTool extends BasicCmdLineTool { @Override public String getShortDescription() { return "learned document categorizer"; } @Override public String getHelp() { return "Usage: " + CLI.CMD + " " + getName() + " model < documents"; } @Override public void run(String[] args) { if (0 == args.length) { System.out.println(getHelp()); } else { DoccatModel model = new DoccatModelLoader().load(new File(args[0])); DocumentCategorizerME documentCategorizerME = new DocumentCategorizerME(model); /* * moved initialization to the try block to catch new IOException */ ObjectStream<String> documentStream; PerformanceMonitor perfMon = new PerformanceMonitor(System.err, "doc"); perfMon.start(); try { documentStream = new ParagraphStream(new PlainTextByLineStream( new SystemInputStreamFactory(), SystemInputStreamFactory.encoding())); String document; while ((document = documentStream.read()) != null) { String[] tokens = WhitespaceTokenizer.INSTANCE.tokenize(document); double[] prob = documentCategorizerME.categorize(tokens); String category = documentCategorizerME.getBestCategory(prob); DocumentSample sample = new DocumentSample(category, tokens); System.out.println(sample.toString()); perfMon.incrementCounter(); } } catch (IOException e) { CmdLineUtil.handleStdinIoError(e); } perfMon.stopAndPrintFinalResult(); } } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/doccat/DoccatTrainerTool.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.doccat; import java.io.File; import java.io.IOException; import opennlp.tools.cmdline.AbstractTrainerTool; import opennlp.tools.cmdline.CmdLineUtil; import opennlp.tools.cmdline.doccat.DoccatTrainerTool.TrainerToolParams; import opennlp.tools.cmdline.params.TrainingToolParams; import opennlp.tools.doccat.BagOfWordsFeatureGenerator; import opennlp.tools.doccat.DoccatFactory; import opennlp.tools.doccat.DoccatModel; import opennlp.tools.doccat.DocumentCategorizerME; import opennlp.tools.doccat.DocumentSample; import opennlp.tools.doccat.FeatureGenerator; import opennlp.tools.tokenize.Tokenizer; import opennlp.tools.tokenize.WhitespaceTokenizer; import opennlp.tools.util.ext.ExtensionLoader; import opennlp.tools.util.model.ModelUtil; public class DoccatTrainerTool extends AbstractTrainerTool<DocumentSample, TrainerToolParams> { interface TrainerToolParams extends TrainingParams, TrainingToolParams { } public DoccatTrainerTool() { super(DocumentSample.class, TrainerToolParams.class); } @Override public String getShortDescription() { return "trainer for the learnable document categorizer"; } @Override public void run(String format, String[] args) { super.run(format, args); mlParams = CmdLineUtil.loadTrainingParameters(params.getParams(), false); if (mlParams == null) { mlParams = ModelUtil.createDefaultTrainingParameters(); } File modelOutFile = params.getModel(); CmdLineUtil.checkOutputFile("document categorizer model", modelOutFile); FeatureGenerator[] featureGenerators = createFeatureGenerators(params .getFeatureGenerators()); DoccatModel model; try { DoccatFactory factory = DoccatFactory.create(params.getFactory(), featureGenerators); model = DocumentCategorizerME.train(params.getLang(), sampleStream, mlParams, factory); } catch (IOException e) { throw createTerminationIOException(e); } finally { try { sampleStream.close(); } catch (IOException e) { // sorry that this can fail } } CmdLineUtil.writeModel("document categorizer", modelOutFile, model); } static Tokenizer createTokenizer(String tokenizer) { if (tokenizer != null) { return ExtensionLoader.instantiateExtension(Tokenizer.class, tokenizer); } return WhitespaceTokenizer.INSTANCE; } static FeatureGenerator[] createFeatureGenerators(String featureGeneratorsNames) { if (featureGeneratorsNames == null) { return new FeatureGenerator[]{new BagOfWordsFeatureGenerator()}; } String[] classes = featureGeneratorsNames.split(","); FeatureGenerator[] featureGenerators = new FeatureGenerator[classes.length]; for (int i = 0; i < featureGenerators.length; i++) { featureGenerators[i] = ExtensionLoader.instantiateExtension( FeatureGenerator.class, classes[i]); } return featureGenerators; } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/doccat/TrainingParams.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.doccat; import opennlp.tools.cmdline.ArgumentParser.OptionalParameter; import opennlp.tools.cmdline.ArgumentParser.ParameterDescription; import opennlp.tools.cmdline.params.BasicTrainingParams; /** * TrainingParams for DocCat. * * Note: Do not use this class, internal use only! */ interface TrainingParams extends BasicTrainingParams { @ParameterDescription(valueName = "fg", description = "Comma separated feature generator classes. Bag of words is used if not specified.") @OptionalParameter String getFeatureGenerators(); @ParameterDescription(valueName = "tokenizer", description = "Tokenizer implementation. WhitespaceTokenizer is used if not specified.") @OptionalParameter String getTokenizer(); @ParameterDescription(valueName = "factoryName", description = "A sub-class of DoccatFactory where to get implementation and resources.") @OptionalParameter String getFactory(); }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/entitylinker/EntityLinkerTool.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.entitylinker; import java.io.File; import java.io.IOException; import java.util.ArrayList; import java.util.List; import opennlp.tools.cmdline.BasicCmdLineTool; import opennlp.tools.cmdline.CLI; import opennlp.tools.cmdline.CmdLineUtil; import opennlp.tools.cmdline.PerformanceMonitor; import opennlp.tools.cmdline.SystemInputStreamFactory; import opennlp.tools.cmdline.TerminateToolException; import opennlp.tools.entitylinker.EntityLinker; import opennlp.tools.entitylinker.EntityLinkerFactory; import opennlp.tools.entitylinker.EntityLinkerProperties; import opennlp.tools.namefind.NameSample; import opennlp.tools.util.ObjectStream; import opennlp.tools.util.PlainTextByLineStream; import opennlp.tools.util.Span; public class EntityLinkerTool extends BasicCmdLineTool { @Override public String getShortDescription() { return "links an entity to an external data set"; } @Override public void run(String[] args) { if (0 == args.length) { System.out.println(getHelp()); } else { // TODO: Ask Mark if we can remove the type, the user knows upfront if he tries // to link place names or company mentions ... String entityType = "location"; // Load the properties, they should contain everything that is necessary to instantiate // the component // TODO: Entity Linker Properties constructor should not duplicate code EntityLinkerProperties properties; try { properties = new EntityLinkerProperties(new File(args[0])); } catch (IOException e) { throw new TerminateToolException(-1, "Failed to load the properties file!"); } // TODO: It should not just throw Exception. EntityLinker entityLinker; try { entityLinker = EntityLinkerFactory.getLinker(entityType, properties); } catch (Exception e) { throw new TerminateToolException(-1, "Failed to instantiate the Entity Linker: " + e.getMessage()); } PerformanceMonitor perfMon = new PerformanceMonitor(System.err, "sent"); perfMon.start(); try (ObjectStream<String> untokenizedLineStream = new PlainTextByLineStream( new SystemInputStreamFactory(), SystemInputStreamFactory.encoding())) { List<NameSample> document = new ArrayList<>(); String line; while ((line = untokenizedLineStream.read()) != null) { if (line.trim().isEmpty()) { // Run entity linker ... and output result ... StringBuilder text = new StringBuilder(); Span[] sentences = new Span[document.size()]; Span[][] tokensBySentence = new Span[document.size()][]; Span[][] namesBySentence = new Span[document.size()][]; for (int i = 0; i < document.size(); i++) { NameSample sample = document.get(i); namesBySentence[i] = sample.getNames(); int sentenceBegin = text.length(); Span[] tokens = new Span[sample.getSentence().length]; // for all tokens for (int ti = 0; ti < sample.getSentence().length; ti++) { int tokenBegin = text.length(); text.append(sample.getSentence()[ti]); text.append(" "); tokens[ti] = new Span(tokenBegin, text.length()); } tokensBySentence[i] = tokens; sentences[i] = new Span(sentenceBegin, text.length()); text.append("\n"); } List<Span> linkedSpans = entityLinker.find(text.toString(), sentences, tokensBySentence, namesBySentence); for (int i = 0; i < linkedSpans.size(); i++) { System.out.println(linkedSpans.get(i)); } perfMon.incrementCounter(document.size()); document.clear(); } else { document.add(NameSample.parse(line, false)); } } } catch (IOException e) { CmdLineUtil.handleStdinIoError(e); } perfMon.stopAndPrintFinalResult(); } } @Override public String getHelp() { return "Usage: " + CLI.CMD + " " + getName() + " model < sentences"; } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/langdetect/LanguageDetectorConverterTool.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.langdetect; import opennlp.tools.cmdline.AbstractConverterTool; import opennlp.tools.langdetect.LanguageSample; public class LanguageDetectorConverterTool extends AbstractConverterTool<LanguageSample> { public LanguageDetectorConverterTool() { super(LanguageSample.class); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/langdetect/LanguageDetectorCrossValidatorTool.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.langdetect; import java.io.File; import java.io.FileNotFoundException; import java.io.FileOutputStream; import java.io.IOException; import java.io.OutputStream; import java.util.LinkedList; import java.util.List; import opennlp.tools.cmdline.AbstractCrossValidatorTool; import opennlp.tools.cmdline.CmdLineUtil; import opennlp.tools.cmdline.TerminateToolException; import opennlp.tools.cmdline.params.CVParams; import opennlp.tools.cmdline.params.FineGrainedEvaluatorParams; import opennlp.tools.langdetect.LanguageDetectorCrossValidator; import opennlp.tools.langdetect.LanguageDetectorEvaluationMonitor; import opennlp.tools.langdetect.LanguageDetectorFactory; import opennlp.tools.langdetect.LanguageSample; import opennlp.tools.util.eval.EvaluationMonitor; import opennlp.tools.util.model.ModelUtil; public final class LanguageDetectorCrossValidatorTool extends AbstractCrossValidatorTool<LanguageSample, LanguageDetectorCrossValidatorTool.CVToolParams> { interface CVToolParams extends CVParams, TrainingParams, FineGrainedEvaluatorParams { } public LanguageDetectorCrossValidatorTool() { super(LanguageSample.class, CVToolParams.class); } public String getShortDescription() { return "K-fold cross validator for the learnable Language Detector"; } public void run(String format, String[] args) { super.run(format, args); mlParams = CmdLineUtil.loadTrainingParameters(params.getParams(), false); if (mlParams == null) { mlParams = ModelUtil.createDefaultTrainingParameters(); } List<EvaluationMonitor<LanguageSample>> listeners = new LinkedList<>(); if (params.getMisclassified()) { listeners.add(new LanguageDetectorEvaluationErrorListener()); } LanguageDetectorFineGrainedReportListener reportListener = null; File reportFile = params.getReportOutputFile(); OutputStream reportOutputStream = null; if (reportFile != null) { CmdLineUtil.checkOutputFile("Report Output File", reportFile); try { reportOutputStream = new FileOutputStream(reportFile); reportListener = new LanguageDetectorFineGrainedReportListener(reportOutputStream); listeners.add(reportListener); } catch (FileNotFoundException e) { throw createTerminationIOException(e); } } LanguageDetectorEvaluationMonitor[] listenersArr = listeners .toArray(new LanguageDetectorEvaluationMonitor[listeners.size()]); LanguageDetectorCrossValidator validator; try { LanguageDetectorFactory factory = LanguageDetectorFactory.create(params.getFactory()); validator = new LanguageDetectorCrossValidator(mlParams, factory, listenersArr); validator.evaluate(sampleStream, params.getFolds()); } catch (IOException e) { throw new TerminateToolException(-1, "IO error while reading training data or indexing data: " + e.getMessage(), e); } finally { try { sampleStream.close(); } catch (IOException e) { // sorry that this can fail } } System.out.println("done"); if (reportListener != null) { System.out.println("Writing fine-grained report to " + params.getReportOutputFile().getAbsolutePath()); reportListener.writeReport(); try { // TODO: is it a problem to close the stream now? reportOutputStream.close(); } catch (IOException e) { // nothing to do } } System.out.println(); System.out.println("Accuracy: " + validator.getDocumentAccuracy() + "\n" + "Number of documents: " + validator.getDocumentCount()); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/langdetect/LanguageDetectorEvaluationErrorListener.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.langdetect; import java.io.OutputStream; import opennlp.tools.cmdline.EvaluationErrorPrinter; import opennlp.tools.langdetect.LanguageDetectorEvaluationMonitor; import opennlp.tools.langdetect.LanguageSample; import opennlp.tools.util.eval.EvaluationMonitor; /** * A default implementation of {@link EvaluationMonitor} that prints to an * output stream. * */ public class LanguageDetectorEvaluationErrorListener extends EvaluationErrorPrinter<LanguageSample> implements LanguageDetectorEvaluationMonitor { /** * Creates a listener that will print to System.err */ public LanguageDetectorEvaluationErrorListener() { super(System.err); } /** * Creates a listener that will print to a given {@link OutputStream} */ public LanguageDetectorEvaluationErrorListener(OutputStream outputStream) { super(outputStream); printStream.println("Expected\tPredicted\tContext"); } @Override public void missclassified(LanguageSample reference, LanguageSample prediction) { printError(reference, prediction); } @Override protected void printError(LanguageSample referenceSample, LanguageSample predictedSample) { printStream.println(String.join("\t", referenceSample.getLanguage().getLang(), predictedSample.getLanguage().getLang(), referenceSample.getContext())); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/langdetect/LanguageDetectorEvaluatorTool.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.langdetect; import java.io.File; import java.io.FileNotFoundException; import java.io.FileOutputStream; import java.io.IOException; import java.io.OutputStream; import java.util.LinkedList; import java.util.List; import opennlp.tools.cmdline.AbstractEvaluatorTool; import opennlp.tools.cmdline.CmdLineUtil; import opennlp.tools.cmdline.PerformanceMonitor; import opennlp.tools.cmdline.TerminateToolException; import opennlp.tools.cmdline.params.EvaluatorParams; import opennlp.tools.cmdline.params.FineGrainedEvaluatorParams; import opennlp.tools.langdetect.LanguageDetectorEvaluationMonitor; import opennlp.tools.langdetect.LanguageDetectorEvaluator; import opennlp.tools.langdetect.LanguageDetectorME; import opennlp.tools.langdetect.LanguageDetectorModel; import opennlp.tools.langdetect.LanguageSample; import opennlp.tools.util.ObjectStream; import opennlp.tools.util.eval.EvaluationMonitor; public final class LanguageDetectorEvaluatorTool extends AbstractEvaluatorTool<LanguageSample, LanguageDetectorEvaluatorTool.EvalToolParams> { interface EvalToolParams extends EvaluatorParams, FineGrainedEvaluatorParams { } public LanguageDetectorEvaluatorTool() { super(LanguageSample.class, EvalToolParams.class); } public String getShortDescription() { return "Measures the performance of the Language Detector model with the reference data"; } public void run(String format, String[] args) { super.run(format, args); LanguageDetectorModel model = new LanguageDetectorModelLoader().load(params.getModel()); List<EvaluationMonitor<LanguageSample>> listeners = new LinkedList<>(); if (params.getMisclassified()) { listeners.add(new LanguageDetectorEvaluationErrorListener()); } LanguageDetectorFineGrainedReportListener reportListener = null; File reportFile = params.getReportOutputFile(); OutputStream reportOutputStream = null; if (reportFile != null) { CmdLineUtil.checkOutputFile("Report Output File", reportFile); try { reportOutputStream = new FileOutputStream(reportFile); reportListener = new LanguageDetectorFineGrainedReportListener(reportOutputStream); listeners.add(reportListener); } catch (FileNotFoundException e) { throw new TerminateToolException(-1, "IO error while creating LanguageDetector fine-grained report file: " + e.getMessage()); } } LanguageDetectorEvaluator evaluator = new LanguageDetectorEvaluator( new LanguageDetectorME(model), listeners.toArray(new LanguageDetectorEvaluationMonitor[listeners.size()])); final PerformanceMonitor monitor = new PerformanceMonitor("doc"); ObjectStream<LanguageSample> measuredSampleStream = new ObjectStream<LanguageSample>() { public LanguageSample read() throws IOException { monitor.incrementCounter(); return sampleStream.read(); } public void reset() throws IOException { sampleStream.reset(); } public void close() throws IOException { sampleStream.close(); } }; monitor.startAndPrintThroughput(); try { evaluator.evaluate(measuredSampleStream); } catch (IOException e) { System.err.println("failed"); throw new TerminateToolException(-1, "IO error while reading test data: " + e.getMessage(), e); } finally { try { measuredSampleStream.close(); } catch (IOException e) { // sorry that this can fail } } monitor.stopAndPrintFinalResult(); System.out.println(); System.out.println(evaluator); if (reportListener != null) { System.out.println("Writing fine-grained report to " + params.getReportOutputFile().getAbsolutePath()); reportListener.writeReport(); try { // TODO: is it a problem to close the stream now? reportOutputStream.close(); } catch (IOException e) { // nothing to do } } } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/langdetect/LanguageDetectorFineGrainedReportListener.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.langdetect; import java.io.OutputStream; import opennlp.tools.cmdline.FineGrainedReportListener; import opennlp.tools.langdetect.LanguageDetectorEvaluationMonitor; import opennlp.tools.langdetect.LanguageSample; /** * Generates a detailed report for the POS Tagger. * <p> * It is possible to use it from an API and access the statistics using the * provided getters */ public class LanguageDetectorFineGrainedReportListener extends FineGrainedReportListener implements LanguageDetectorEvaluationMonitor { /** * Creates a listener that will print to {@link System#err} */ public LanguageDetectorFineGrainedReportListener() { this(System.err); } /** * Creates a listener that prints to a given {@link OutputStream} */ public LanguageDetectorFineGrainedReportListener(OutputStream outputStream) { super(outputStream); } // methods inherited from EvaluationMonitor public void missclassified(LanguageSample reference, LanguageSample prediction) { statsAdd(reference, prediction); } public void correctlyClassified(LanguageSample reference, LanguageSample prediction) { statsAdd(reference, prediction); } private void statsAdd(LanguageSample reference, LanguageSample prediction) { getStats().add(reference.getContext(), reference.getLanguage().getLang(), prediction.getLanguage().getLang()); } public void writeReport() { printGeneralStatistics(); printTagsErrorRank(); printGeneralConfusionTable(); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/langdetect/LanguageDetectorModelLoader.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.langdetect; import java.io.IOException; import java.io.InputStream; import opennlp.tools.cmdline.ModelLoader; import opennlp.tools.langdetect.LanguageDetectorModel; /** * Loads a Language Detector Model for the command line tools. * <p> * <b>Note:</b> Do not use this class, internal use only! */ public class LanguageDetectorModelLoader extends ModelLoader<LanguageDetectorModel> { public LanguageDetectorModelLoader() { super("Language Detector"); } @Override protected LanguageDetectorModel loadModel(InputStream modelIn) throws IOException { return new LanguageDetectorModel(modelIn); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/langdetect/LanguageDetectorTool.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.langdetect; import java.io.File; import java.io.IOException; import opennlp.tools.cmdline.BasicCmdLineTool; import opennlp.tools.cmdline.CLI; import opennlp.tools.cmdline.CmdLineUtil; import opennlp.tools.cmdline.PerformanceMonitor; import opennlp.tools.cmdline.SystemInputStreamFactory; import opennlp.tools.langdetect.Language; import opennlp.tools.langdetect.LanguageDetector; import opennlp.tools.langdetect.LanguageDetectorME; import opennlp.tools.langdetect.LanguageDetectorModel; import opennlp.tools.langdetect.LanguageSample; import opennlp.tools.util.ObjectStream; import opennlp.tools.util.ParagraphStream; import opennlp.tools.util.PlainTextByLineStream; public class LanguageDetectorTool extends BasicCmdLineTool { @Override public String getShortDescription() { return "learned language detector"; } @Override public String getHelp() { return "Usage: " + CLI.CMD + " " + getName() + " model < documents"; } @Override public void run(String[] args) { if (0 == args.length) { System.out.println(getHelp()); } else { LanguageDetectorModel model = new LanguageDetectorModelLoader().load(new File(args[0])); LanguageDetector langDetectME = new LanguageDetectorME(model); /* * moved initialization to the try block to catch new IOException */ ObjectStream<String> documentStream; PerformanceMonitor perfMon = new PerformanceMonitor(System.err, "doc"); perfMon.start(); try { documentStream = new ParagraphStream(new PlainTextByLineStream( new SystemInputStreamFactory(), SystemInputStreamFactory.encoding())); String document; while ((document = documentStream.read()) != null) { Language lang = langDetectME.predictLanguage(document); LanguageSample sample = new LanguageSample(lang, document); System.out.println(sample.toString()); perfMon.incrementCounter(); } } catch (IOException e) { CmdLineUtil.handleStdinIoError(e); } perfMon.stopAndPrintFinalResult(); } } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/langdetect/LanguageDetectorTrainerTool.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.langdetect; import java.io.File; import java.io.IOException; import opennlp.tools.cmdline.AbstractTrainerTool; import opennlp.tools.cmdline.ArgumentParser; import opennlp.tools.cmdline.CmdLineUtil; import opennlp.tools.langdetect.LanguageDetectorFactory; import opennlp.tools.langdetect.LanguageDetectorME; import opennlp.tools.langdetect.LanguageDetectorModel; import opennlp.tools.langdetect.LanguageSample; import opennlp.tools.util.model.ModelUtil; public class LanguageDetectorTrainerTool extends AbstractTrainerTool<LanguageSample, LanguageDetectorTrainerTool.TrainerToolParams> { interface TrainerToolParams extends TrainingParams { @ArgumentParser.ParameterDescription(valueName = "modelFile", description = "output model file.") File getModel(); @ArgumentParser.ParameterDescription(valueName = "paramsFile", description = "training parameters file.") @ArgumentParser.OptionalParameter() String getParams(); } public LanguageDetectorTrainerTool() { super(LanguageSample.class, TrainerToolParams.class); } @Override public String getShortDescription() { return "trainer for the learnable language detector"; } @Override public void run(String format, String[] args) { super.run(format, args); mlParams = CmdLineUtil.loadTrainingParameters(params.getParams(), false); if (mlParams == null) { mlParams = ModelUtil.createDefaultTrainingParameters(); } File modelOutFile = params.getModel(); CmdLineUtil.checkOutputFile("language detector model", modelOutFile); LanguageDetectorModel model; try { LanguageDetectorFactory factory = LanguageDetectorFactory.create(params.getFactory()); model = LanguageDetectorME.train(sampleStream, mlParams, factory); } catch (IOException e) { throw createTerminationIOException(e); } finally { try { sampleStream.close(); } catch (IOException e) { // sorry that this can fail } } CmdLineUtil.writeModel("language detector", modelOutFile, model); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/langdetect/TrainingParams.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.langdetect; import opennlp.tools.cmdline.ArgumentParser.OptionalParameter; import opennlp.tools.cmdline.ArgumentParser.ParameterDescription; /** * TrainingParams for Language Detector. * * Note: Do not use this class, internal use only! */ interface TrainingParams { @ParameterDescription(valueName = "paramsFile", description = "training parameters file.") @OptionalParameter() String getParams(); @ParameterDescription(valueName = "factoryName", description = "A sub-class of LanguageDetectorFactory" + " where to get implementation and resources.") @OptionalParameter String getFactory(); }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/languagemodel/NGramLanguageModelTool.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.languagemodel; import java.io.File; import java.io.FileInputStream; import java.io.IOException; import opennlp.tools.cmdline.BasicCmdLineTool; import opennlp.tools.cmdline.CLI; import opennlp.tools.cmdline.CmdLineUtil; import opennlp.tools.cmdline.PerformanceMonitor; import opennlp.tools.cmdline.SystemInputStreamFactory; import opennlp.tools.languagemodel.NGramLanguageModel; import opennlp.tools.util.ObjectStream; import opennlp.tools.util.PlainTextByLineStream; import opennlp.tools.util.StringList; /** * Command line tool for {@link opennlp.tools.languagemodel.NGramLanguageModel}. */ public class NGramLanguageModelTool extends BasicCmdLineTool { @Override public String getShortDescription() { return "gives the probability and most probable next token(s) of a sequence of tokens in a " + "language model"; } @Override public void run(String[] args) { File lmFile = new File(args[0]); FileInputStream stream = null; try { stream = new FileInputStream(lmFile); NGramLanguageModel nGramLanguageModel = new NGramLanguageModel(stream); ObjectStream<String> lineStream; PerformanceMonitor perfMon = null; try { lineStream = new PlainTextByLineStream(new SystemInputStreamFactory(), SystemInputStreamFactory.encoding()); perfMon = new PerformanceMonitor(System.err, "nglm"); perfMon.start(); String line; while ((line = lineStream.read()) != null) { double probability; StringList predicted; String[] tokens = line.split(" "); StringList sample = new StringList(tokens); try { probability = nGramLanguageModel.calculateProbability(sample); predicted = nGramLanguageModel.predictNextTokens(sample); } catch (Exception e) { System.err.println("Error:" + e.getLocalizedMessage()); System.err.println(line); continue; } System.out.println(sample + " -> prob:" + probability + ", next:" + predicted); perfMon.incrementCounter(); } } catch (IOException e) { CmdLineUtil.handleStdinIoError(e); } perfMon.stopAndPrintFinalResult(); } catch (java.io.IOException e) { System.err.println(e.getLocalizedMessage()); } finally { if (stream != null) { try { stream.close(); } catch (IOException e) { // do nothing } } } } @Override public String getHelp() { return "Usage: " + CLI.CMD + " " + getName() + " model"; } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/lemmatizer/LemmaEvaluationErrorListener.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.lemmatizer; import java.io.OutputStream; import opennlp.tools.cmdline.EvaluationErrorPrinter; import opennlp.tools.lemmatizer.LemmaSample; import opennlp.tools.lemmatizer.LemmatizerEvaluationMonitor; import opennlp.tools.util.eval.EvaluationMonitor; /** * A default implementation of {@link EvaluationMonitor} that prints to an * output stream. * */ public class LemmaEvaluationErrorListener extends EvaluationErrorPrinter<LemmaSample> implements LemmatizerEvaluationMonitor { /** * Creates a listener that will print to System.err */ public LemmaEvaluationErrorListener() { super(System.err); } /** * Creates a listener that will print to a given {@link OutputStream} */ public LemmaEvaluationErrorListener(OutputStream outputStream) { super(outputStream); } @Override public void missclassified(LemmaSample reference, LemmaSample prediction) { printError(reference.getLemmas(), prediction.getLemmas(), reference, prediction, reference.getTokens()); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/lemmatizer/LemmatizerEvaluatorTool.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.lemmatizer; import java.io.File; import java.io.FileNotFoundException; import java.io.FileOutputStream; import java.io.IOException; import java.io.OutputStream; import opennlp.tools.cmdline.AbstractEvaluatorTool; import opennlp.tools.cmdline.CmdLineUtil; import opennlp.tools.cmdline.TerminateToolException; import opennlp.tools.cmdline.params.EvaluatorParams; import opennlp.tools.cmdline.params.FineGrainedEvaluatorParams; import opennlp.tools.lemmatizer.LemmaSample; import opennlp.tools.lemmatizer.LemmatizerEvaluationMonitor; import opennlp.tools.lemmatizer.LemmatizerEvaluator; import opennlp.tools.lemmatizer.LemmatizerModel; public final class LemmatizerEvaluatorTool extends AbstractEvaluatorTool<LemmaSample, LemmatizerEvaluatorTool.EvalToolParams> { public LemmatizerEvaluatorTool() { super(LemmaSample.class, EvalToolParams.class); } public String getShortDescription() { return "Measures the performance of the Lemmatizer model with the reference data"; } public void run(String format, String[] args) { super.run(format, args); LemmatizerModel model = new LemmatizerModelLoader().load(params.getModel()); LemmatizerEvaluationMonitor missclassifiedListener = null; if (params.getMisclassified()) { missclassifiedListener = new LemmaEvaluationErrorListener(); } LemmatizerFineGrainedReportListener reportListener = null; File reportFile = params.getReportOutputFile(); OutputStream reportOutputStream = null; if (reportFile != null) { CmdLineUtil.checkOutputFile("Report Output File", reportFile); try { reportOutputStream = new FileOutputStream(reportFile); reportListener = new LemmatizerFineGrainedReportListener( reportOutputStream); } catch (FileNotFoundException e) { throw new TerminateToolException(-1, "IO error while creating Lemmatizer fine-grained report file: " + e.getMessage()); } } LemmatizerEvaluator evaluator = new LemmatizerEvaluator( new opennlp.tools.lemmatizer.LemmatizerME(model), missclassifiedListener, reportListener); System.out.print("Evaluating ... "); try { evaluator.evaluate(sampleStream); } catch (IOException e) { System.err.println("failed"); throw new TerminateToolException(-1, "IO error while reading test data: " + e.getMessage(), e); } finally { try { sampleStream.close(); } catch (IOException e) { // sorry that this can fail } } System.out.println("done"); if (reportListener != null) { System.out.println("Writing fine-grained report to " + params.getReportOutputFile().getAbsolutePath()); reportListener.writeReport(); try { // TODO: is it a problem to close the stream now? reportOutputStream.close(); } catch (IOException e) { // nothing to do } } System.out.println(); System.out.println("Accuracy: " + evaluator.getWordAccuracy()); } interface EvalToolParams extends EvaluatorParams, FineGrainedEvaluatorParams { } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/lemmatizer/LemmatizerFineGrainedReportListener.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.lemmatizer; import java.io.OutputStream; import opennlp.tools.cmdline.FineGrainedReportListener; import opennlp.tools.lemmatizer.LemmaSample; import opennlp.tools.lemmatizer.LemmatizerEvaluationMonitor; /** * Generates a detailed report for the Lemmatizer. * <p> * It is possible to use it from an API and access the statistics using the * provided getters. * */ public class LemmatizerFineGrainedReportListener extends FineGrainedReportListener implements LemmatizerEvaluationMonitor { /** * Creates a listener that will print to {@link System#err} */ public LemmatizerFineGrainedReportListener() { super(System.err); } /** * Creates a listener that prints to a given {@link OutputStream} */ public LemmatizerFineGrainedReportListener(OutputStream outputStream) { super(outputStream); } // methods inherited from EvaluationMonitor public void missclassified(LemmaSample reference, LemmaSample prediction) { statsAdd(reference, prediction); } public void correctlyClassified(LemmaSample reference, LemmaSample prediction) { statsAdd(reference, prediction); } private void statsAdd(LemmaSample reference, LemmaSample prediction) { getStats().add(reference.getTokens(), reference.getTags(), prediction.getTags()); } public void writeReport() { printGeneralStatistics(); // token stats printTokenErrorRank(); printTokenOcurrenciesRank(); // tag stats printTagsErrorRank(); // confusion tables printGeneralConfusionTable(); printDetailedConfusionMatrix(); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/lemmatizer/LemmatizerMETool.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.lemmatizer; import java.io.File; import java.io.IOException; import opennlp.tools.cmdline.BasicCmdLineTool; import opennlp.tools.cmdline.CLI; import opennlp.tools.cmdline.CmdLineUtil; import opennlp.tools.cmdline.PerformanceMonitor; import opennlp.tools.cmdline.SystemInputStreamFactory; import opennlp.tools.lemmatizer.LemmaSample; import opennlp.tools.lemmatizer.LemmatizerME; import opennlp.tools.lemmatizer.LemmatizerModel; import opennlp.tools.postag.POSSample; import opennlp.tools.util.InvalidFormatException; import opennlp.tools.util.ObjectStream; import opennlp.tools.util.PlainTextByLineStream; public class LemmatizerMETool extends BasicCmdLineTool { public String getShortDescription() { return "learnable lemmatizer"; } public String getHelp() { return "Usage: " + CLI.CMD + " " + getName() + " model < sentences"; } public void run(String[] args) { if (args.length != 1) { System.out.println(getHelp()); } else { LemmatizerModel model = new LemmatizerModelLoader() .load(new File(args[0])); LemmatizerME lemmatizer = new LemmatizerME(model); ObjectStream<String> lineStream; PerformanceMonitor perfMon = null; try { lineStream = new PlainTextByLineStream(new SystemInputStreamFactory(), SystemInputStreamFactory.encoding()); perfMon = new PerformanceMonitor(System.err, "sent"); perfMon.start(); String line; while ((line = lineStream.read()) != null) { POSSample posSample; try { posSample = POSSample.parse(line); } catch (InvalidFormatException e) { System.err.println("Invalid format:"); System.err.println(line); continue; } String[] lemmas = lemmatizer.lemmatize(posSample.getSentence(), posSample.getTags()); System.out.println(new LemmaSample(posSample.getSentence(), posSample.getTags(), lemmas).toString()); perfMon.incrementCounter(); } } catch (IOException e) { CmdLineUtil.handleStdinIoError(e); } perfMon.stopAndPrintFinalResult(); } } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/lemmatizer/LemmatizerModelLoader.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.lemmatizer; import java.io.IOException; import java.io.InputStream; import opennlp.tools.cmdline.ModelLoader; import opennlp.tools.lemmatizer.LemmatizerModel; /** * Loads a Lemmatizer Model for the command line tools. * <p> * <b>Note:</b> Do not use this class, internal use only! */ public class LemmatizerModelLoader extends ModelLoader<LemmatizerModel> { public LemmatizerModelLoader() { super("Lemmatizer"); } @Override protected LemmatizerModel loadModel(InputStream modelIn) throws IOException { return new LemmatizerModel(modelIn); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/lemmatizer/LemmatizerTrainerTool.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.lemmatizer; import java.io.File; import java.io.IOException; import opennlp.tools.cmdline.AbstractTrainerTool; import opennlp.tools.cmdline.CmdLineUtil; import opennlp.tools.cmdline.lemmatizer.LemmatizerTrainerTool.TrainerToolParams; import opennlp.tools.cmdline.params.TrainingToolParams; import opennlp.tools.lemmatizer.LemmaSample; import opennlp.tools.lemmatizer.LemmatizerFactory; import opennlp.tools.lemmatizer.LemmatizerME; import opennlp.tools.lemmatizer.LemmatizerModel; import opennlp.tools.util.model.ModelUtil; public class LemmatizerTrainerTool extends AbstractTrainerTool<LemmaSample, TrainerToolParams> { interface TrainerToolParams extends TrainingParams, TrainingToolParams { } public LemmatizerTrainerTool() { super(LemmaSample.class, TrainerToolParams.class); } public String getName() { return "LemmatizerTrainerME"; } public String getShortDescription() { return "trainer for the learnable lemmatizer"; } public void run(String format, String[] args) { super.run(format, args); mlParams = CmdLineUtil.loadTrainingParameters(params.getParams(), false); if (mlParams == null) { mlParams = ModelUtil.createDefaultTrainingParameters(); } File modelOutFile = params.getModel(); CmdLineUtil.checkOutputFile("lemmatizer model", modelOutFile); LemmatizerModel model; try { LemmatizerFactory lemmatizerFactory = LemmatizerFactory .create(params.getFactory()); model = LemmatizerME.train(params.getLang(), sampleStream, mlParams, lemmatizerFactory); } catch (IOException e) { throw createTerminationIOException(e); } finally { try { sampleStream.close(); } catch (IOException e) { // sorry that this can fail } } CmdLineUtil.writeModel("lemmatizer", modelOutFile, model); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/lemmatizer/TrainingParams.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.lemmatizer; import opennlp.tools.cmdline.ArgumentParser.OptionalParameter; import opennlp.tools.cmdline.ArgumentParser.ParameterDescription; import opennlp.tools.cmdline.params.BasicTrainingParams; /** * TrainingParams for the Lemmatizer. * * Note: Do not use this class, internal use only! */ interface TrainingParams extends BasicTrainingParams { @ParameterDescription(valueName = "factoryName", description = "A sub-class of LemmatizerFactory where to get implementation and resources.") @OptionalParameter String getFactory(); }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/lemmatizer/package-info.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /** * Classes giving access to the opennlp.tools.lemmatizer functionalities. */ package opennlp.tools.cmdline.lemmatizer;
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/namefind/CensusDictionaryCreatorTool.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.namefind; import java.io.File; import java.io.FileOutputStream; import java.io.IOException; import java.io.OutputStream; import java.nio.charset.Charset; import opennlp.tools.cmdline.ArgumentParser.OptionalParameter; import opennlp.tools.cmdline.ArgumentParser.ParameterDescription; import opennlp.tools.cmdline.BasicCmdLineTool; import opennlp.tools.cmdline.CmdLineUtil; import opennlp.tools.cmdline.TerminateToolException; import opennlp.tools.dictionary.Dictionary; import opennlp.tools.formats.NameFinderCensus90NameStream; import opennlp.tools.util.InputStreamFactory; import opennlp.tools.util.ObjectStream; import opennlp.tools.util.StringList; /** * This tool helps create a loadable dictionary for the {@code NameFinder}, * from data collected from US Census data. * <p> * Data for the US Census and names can be found here for the 1990 Census: * <br> * <a href="http://www.census.gov/genealogy/names/names_files.html">www.census.gov</a> */ public class CensusDictionaryCreatorTool extends BasicCmdLineTool { /** * Create a list of expected parameters. */ interface Parameters { @ParameterDescription(valueName = "code") @OptionalParameter(defaultValue = "eng") String getLang(); @ParameterDescription(valueName = "charsetName") @OptionalParameter(defaultValue = "UTF-8") String getEncoding(); @ParameterDescription(valueName = "censusDict") String getCensusData(); @ParameterDescription(valueName = "dict") String getDict(); } public String getShortDescription() { return "Converts 1990 US Census names into a dictionary"; } public String getHelp() { return getBasicHelp(Parameters.class); } /** * Creates a dictionary. * * @param sampleStream stream of samples. * @return a {@code Dictionary} class containing the name dictionary * built from the input file. * @throws IOException IOException */ public static Dictionary createDictionary(ObjectStream<StringList> sampleStream) throws IOException { Dictionary mNameDictionary = new Dictionary(true); StringList entry; entry = sampleStream.read(); while (entry != null) { if (!mNameDictionary.contains(entry)) { mNameDictionary.put(entry); } entry = sampleStream.read(); } return mNameDictionary; } public void run(String[] args) { Parameters params = validateAndParseParams(args, Parameters.class); File testData = new File(params.getCensusData()); File dictOutFile = new File(params.getDict()); CmdLineUtil.checkInputFile("Name data", testData); CmdLineUtil.checkOutputFile("Dictionary file", dictOutFile); InputStreamFactory sampleDataIn = CmdLineUtil.createInputStreamFactory(testData); Dictionary mDictionary; try ( ObjectStream<StringList> sampleStream = new NameFinderCensus90NameStream( sampleDataIn, Charset.forName(params.getEncoding()))) { System.out.println("Creating Dictionary..."); mDictionary = createDictionary(sampleStream); } catch (IOException e) { throw new TerminateToolException(-1, "IO error while reading training data or indexing data: " + e.getMessage(), e); } System.out.println("Saving Dictionary..."); try (OutputStream out = new FileOutputStream(dictOutFile)) { mDictionary.serialize(out); } catch (IOException e) { throw new TerminateToolException(-1, "IO error while writing dictionary file: " + e.getMessage(), e); } } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/namefind/NameEvaluationErrorListener.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.namefind; import java.io.OutputStream; import opennlp.tools.cmdline.EvaluationErrorPrinter; import opennlp.tools.namefind.NameSample; import opennlp.tools.namefind.TokenNameFinderEvaluationMonitor; import opennlp.tools.util.eval.EvaluationMonitor; /** * A default implementation of {@link EvaluationMonitor} that prints * to an output stream. * */ public class NameEvaluationErrorListener extends EvaluationErrorPrinter<NameSample> implements TokenNameFinderEvaluationMonitor { /** * Creates a listener that will print to System.err */ public NameEvaluationErrorListener() { super(System.err); } /** * Creates a listener that will print to a given {@link OutputStream} */ public NameEvaluationErrorListener(OutputStream outputStream) { super(outputStream); } @Override public void missclassified(NameSample reference, NameSample prediction) { printError(reference.getId(), reference.getNames(), prediction.getNames(), reference, prediction, reference.getSentence()); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/namefind/NameSampleCountersStream.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.namefind; import java.io.IOException; import java.util.Collections; import java.util.HashMap; import java.util.Map; import opennlp.tools.namefind.NameSample; import opennlp.tools.util.FilterObjectStream; import opennlp.tools.util.ObjectStream; import opennlp.tools.util.Span; /** * Counts tokens, sentences and names by type */ public class NameSampleCountersStream extends FilterObjectStream<NameSample, NameSample> { private int sentenceCount; private int tokenCount; private Map<String, Integer> nameCounters = new HashMap<>(); protected NameSampleCountersStream(ObjectStream<NameSample> samples) { super(samples); } @Override public NameSample read() throws IOException { NameSample sample = samples.read(); if (sample != null) { sentenceCount++; tokenCount += sample.getSentence().length; for (Span nameSpan : sample.getNames()) { Integer nameCounter = nameCounters.get(nameSpan.getType()); if (nameCounter == null) { nameCounter = 0; } nameCounters.put(nameSpan.getType(), nameCounter + 1); } } return sample; } @Override public void reset() throws IOException, UnsupportedOperationException { super.reset(); sentenceCount = 0; tokenCount = 0; nameCounters = new HashMap<>(); } public int getSentenceCount() { return sentenceCount; } public int getTokenCount() { return tokenCount; } public Map<String, Integer> getNameCounters() { return Collections.unmodifiableMap(nameCounters); } public void printSummary() { System.out.println("Training data summary:"); System.out.println("#Sentences: " + getSentenceCount()); System.out.println("#Tokens: " + getTokenCount()); int totalNames = 0; for (Map.Entry<String, Integer> counter : getNameCounters().entrySet()) { System.out.println("#" + counter.getKey() + " entities: " + counter.getValue()); totalNames += counter.getValue(); } } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/namefind/TokenNameFinderConverterTool.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.namefind; import opennlp.tools.cmdline.AbstractConverterTool; import opennlp.tools.namefind.NameSample; /** * Tool to convert multiple data formats into native OpenNLP name finder training * format. */ public class TokenNameFinderConverterTool extends AbstractConverterTool<NameSample> { public TokenNameFinderConverterTool() { super(NameSample.class); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/namefind/TokenNameFinderCrossValidatorTool.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.namefind; import java.io.File; import java.io.FileNotFoundException; import java.io.FileOutputStream; import java.io.IOException; import java.io.OutputStream; import java.util.LinkedList; import java.util.List; import java.util.Map; import opennlp.tools.cmdline.AbstractCrossValidatorTool; import opennlp.tools.cmdline.CmdLineUtil; import opennlp.tools.cmdline.TerminateToolException; import opennlp.tools.cmdline.namefind.TokenNameFinderCrossValidatorTool.CVToolParams; import opennlp.tools.cmdline.params.CVParams; import opennlp.tools.cmdline.params.DetailedFMeasureEvaluatorParams; import opennlp.tools.cmdline.params.FineGrainedEvaluatorParams; import opennlp.tools.namefind.BilouCodec; import opennlp.tools.namefind.BioCodec; import opennlp.tools.namefind.NameSample; import opennlp.tools.namefind.NameSampleTypeFilter; import opennlp.tools.namefind.TokenNameFinderCrossValidator; import opennlp.tools.namefind.TokenNameFinderEvaluationMonitor; import opennlp.tools.namefind.TokenNameFinderFactory; import opennlp.tools.util.InvalidFormatException; import opennlp.tools.util.SequenceCodec; import opennlp.tools.util.TrainingParameters; import opennlp.tools.util.eval.EvaluationMonitor; public final class TokenNameFinderCrossValidatorTool extends AbstractCrossValidatorTool<NameSample, CVToolParams> { interface CVToolParams extends TrainingParams, CVParams, DetailedFMeasureEvaluatorParams, FineGrainedEvaluatorParams { } public TokenNameFinderCrossValidatorTool() { super(NameSample.class, CVToolParams.class); } public String getShortDescription() { return "K-fold cross validator for the learnable Name Finder"; } public void run(String format, String[] args) { super.run(format, args); mlParams = CmdLineUtil.loadTrainingParameters(params.getParams(), true); if (mlParams == null) { mlParams = new TrainingParameters(); } byte[] featureGeneratorBytes = TokenNameFinderTrainerTool.openFeatureGeneratorBytes(params.getFeaturegen()); Map<String, Object> resources; try { resources = TokenNameFinderTrainerTool.loadResources(params.getResources(), params.getFeaturegen()); } catch (IOException e) { throw new TerminateToolException(-1,"IO error while loading resources", e); } if (params.getNameTypes() != null) { String[] nameTypes = params.getNameTypes().split(","); sampleStream = new NameSampleTypeFilter(nameTypes, sampleStream); } List<EvaluationMonitor<NameSample>> listeners = new LinkedList<>(); if (params.getMisclassified()) { listeners.add(new NameEvaluationErrorListener()); } TokenNameFinderDetailedFMeasureListener detailedFListener = null; if (params.getDetailedF()) { detailedFListener = new TokenNameFinderDetailedFMeasureListener(); listeners.add(detailedFListener); } String sequenceCodecImplName = params.getSequenceCodec(); if ("BIO".equals(sequenceCodecImplName)) { sequenceCodecImplName = BioCodec.class.getName(); } else if ("BILOU".equals(sequenceCodecImplName)) { sequenceCodecImplName = BilouCodec.class.getName(); } SequenceCodec<String> sequenceCodec = TokenNameFinderFactory.instantiateSequenceCodec(sequenceCodecImplName); TokenNameFinderFineGrainedReportListener reportListener = null; File reportFile = params.getReportOutputFile(); OutputStream reportOutputStream = null; if (reportFile != null) { CmdLineUtil.checkOutputFile("Report Output File", reportFile); try { reportOutputStream = new FileOutputStream(reportFile); reportListener = new TokenNameFinderFineGrainedReportListener(sequenceCodec, reportOutputStream); listeners.add(reportListener); } catch (FileNotFoundException e) { throw new TerminateToolException(-1, "IO error while creating Name Finder fine-grained report file: " + e.getMessage()); } } TokenNameFinderFactory nameFinderFactory; try { nameFinderFactory = TokenNameFinderFactory.create(params.getFactory(), featureGeneratorBytes, resources, sequenceCodec); } catch (InvalidFormatException e) { throw new TerminateToolException(-1, e.getMessage(), e); } TokenNameFinderCrossValidator validator; try { validator = new TokenNameFinderCrossValidator(params.getLang(), params.getType(), mlParams, nameFinderFactory, listeners.toArray(new TokenNameFinderEvaluationMonitor[listeners.size()])); validator.evaluate(sampleStream, params.getFolds()); } catch (IOException e) { throw createTerminationIOException(e); } finally { try { sampleStream.close(); } catch (IOException e) { // sorry that this can fail } } System.out.println("done"); System.out.println(); if (reportFile != null) { reportListener.writeReport(); } if (detailedFListener == null) { System.out.println(validator.getFMeasure()); } else { System.out.println(detailedFListener.toString()); } } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/namefind/TokenNameFinderDetailedFMeasureListener.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.namefind; import opennlp.tools.cmdline.DetailedFMeasureListener; import opennlp.tools.namefind.NameSample; import opennlp.tools.namefind.TokenNameFinderEvaluationMonitor; import opennlp.tools.util.Span; public class TokenNameFinderDetailedFMeasureListener extends DetailedFMeasureListener<NameSample> implements TokenNameFinderEvaluationMonitor { @Override protected Span[] asSpanArray(NameSample sample) { return sample.getNames(); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/namefind/TokenNameFinderEvaluatorTool.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.namefind; import java.io.File; import java.io.FileNotFoundException; import java.io.FileOutputStream; import java.io.IOException; import java.io.OutputStream; import java.util.LinkedList; import java.util.List; import opennlp.tools.cmdline.AbstractEvaluatorTool; import opennlp.tools.cmdline.ArgumentParser.OptionalParameter; import opennlp.tools.cmdline.ArgumentParser.ParameterDescription; import opennlp.tools.cmdline.CmdLineUtil; import opennlp.tools.cmdline.PerformanceMonitor; import opennlp.tools.cmdline.TerminateToolException; import opennlp.tools.cmdline.namefind.TokenNameFinderEvaluatorTool.EvalToolParams; import opennlp.tools.cmdline.params.DetailedFMeasureEvaluatorParams; import opennlp.tools.cmdline.params.EvaluatorParams; import opennlp.tools.cmdline.params.FineGrainedEvaluatorParams; import opennlp.tools.namefind.NameFinderME; import opennlp.tools.namefind.NameSample; import opennlp.tools.namefind.NameSampleTypeFilter; import opennlp.tools.namefind.TokenNameFinderEvaluationMonitor; import opennlp.tools.namefind.TokenNameFinderEvaluator; import opennlp.tools.namefind.TokenNameFinderModel; import opennlp.tools.util.ObjectStream; import opennlp.tools.util.eval.EvaluationMonitor; public final class TokenNameFinderEvaluatorTool extends AbstractEvaluatorTool<NameSample, EvalToolParams> { interface EvalToolParams extends EvaluatorParams, DetailedFMeasureEvaluatorParams, FineGrainedEvaluatorParams { @OptionalParameter @ParameterDescription(valueName = "types", description = "name types to use for evaluation") String getNameTypes(); } public TokenNameFinderEvaluatorTool() { super(NameSample.class, EvalToolParams.class); } public String getShortDescription() { return "Measures the performance of the NameFinder model with the reference data"; } public void run(String format, String[] args) { super.run(format, args); TokenNameFinderModel model = new TokenNameFinderModelLoader().load(params.getModel()); List<EvaluationMonitor<NameSample>> listeners = new LinkedList<EvaluationMonitor<NameSample>>(); if (params.getMisclassified()) { listeners.add(new NameEvaluationErrorListener()); } TokenNameFinderDetailedFMeasureListener detailedFListener = null; if (params.getDetailedF()) { detailedFListener = new TokenNameFinderDetailedFMeasureListener(); listeners.add(detailedFListener); } TokenNameFinderFineGrainedReportListener reportListener = null; File reportFile = params.getReportOutputFile(); OutputStream reportOutputStream = null; if (reportFile != null) { CmdLineUtil.checkOutputFile("Report Output File", reportFile); try { reportOutputStream = new FileOutputStream(reportFile); reportListener = new TokenNameFinderFineGrainedReportListener(model.getSequenceCodec(), reportOutputStream); listeners.add(reportListener); } catch (FileNotFoundException e) { throw new TerminateToolException(-1, "IO error while creating Name Finder fine-grained report file: " + e.getMessage()); } } if (params.getNameTypes() != null) { String[] nameTypes = params.getNameTypes().split(","); sampleStream = new NameSampleTypeFilter(nameTypes, sampleStream); } TokenNameFinderEvaluator evaluator = new TokenNameFinderEvaluator( new NameFinderME(model), listeners.toArray(new TokenNameFinderEvaluationMonitor[listeners.size()])); final PerformanceMonitor monitor = new PerformanceMonitor("sent"); ObjectStream<NameSample> measuredSampleStream = new ObjectStream<NameSample>() { public NameSample read() throws IOException { monitor.incrementCounter(); return sampleStream.read(); } public void reset() throws IOException { sampleStream.reset(); } public void close() throws IOException { sampleStream.close(); } }; monitor.startAndPrintThroughput(); try { evaluator.evaluate(measuredSampleStream); } catch (IOException e) { System.err.println("failed"); throw new TerminateToolException(-1, "IO error while reading test data: " + e.getMessage(), e); } finally { try { measuredSampleStream.close(); } catch (IOException e) { // sorry that this can fail } } monitor.stopAndPrintFinalResult(); System.out.println(); if (reportFile != null) { reportListener.writeReport(); } if (detailedFListener == null) { System.out.println(evaluator.getFMeasure()); } else { System.out.println(detailedFListener.toString()); } } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/namefind/TokenNameFinderFineGrainedReportListener.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.namefind; import java.io.OutputStream; import java.util.Comparator; import java.util.Map; import opennlp.tools.cmdline.FineGrainedReportListener; import opennlp.tools.namefind.NameSample; import opennlp.tools.namefind.TokenNameFinderEvaluationMonitor; import opennlp.tools.util.SequenceCodec; /** * Generates a detailed report for the NameFinder. * <p> * It is possible to use it from an API and access the statistics using the * provided getters */ public class TokenNameFinderFineGrainedReportListener extends FineGrainedReportListener implements TokenNameFinderEvaluationMonitor { private SequenceCodec<String> sequenceCodec; /** * Creates a listener that will print to {@link System#err} */ public TokenNameFinderFineGrainedReportListener(SequenceCodec<String> seqCodec) { this(seqCodec, System.err); } /** * Creates a listener that prints to a given {@link OutputStream} */ public TokenNameFinderFineGrainedReportListener(SequenceCodec<String> seqCodec, OutputStream outputStream) { super(outputStream); this.sequenceCodec = seqCodec; } // methods inherited from EvaluationMonitor public void missclassified(NameSample reference, NameSample prediction) { statsAdd(reference, prediction); } public void correctlyClassified(NameSample reference, NameSample prediction) { statsAdd(reference, prediction); } private void statsAdd(NameSample reference, NameSample prediction) { String[] refTags = sequenceCodec.encode(reference.getNames(), reference.getSentence().length); String[] predTags = sequenceCodec.encode(prediction.getNames(), prediction.getSentence().length); // we don' want it to compute token frequency, so we pass an array of empty strings instead // of tokens getStats().add(new String[reference.getSentence().length], refTags, predTags); } @Override public Comparator<String> getMatrixLabelComparator(Map<String, ConfusionMatrixLine> confusionMatrix) { return new GroupedMatrixLabelComparator(confusionMatrix); } @Override public Comparator<String> getLabelComparator(Map<String, Counter> map) { return new GroupedLabelComparator(map); } public void writeReport() { printGeneralStatistics(); printTagsErrorRank(); printGeneralConfusionTable(); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/namefind/TokenNameFinderModelLoader.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.namefind; import java.io.IOException; import java.io.InputStream; import opennlp.tools.cmdline.ModelLoader; import opennlp.tools.namefind.TokenNameFinderModel; /** * Loads a Token Name Finder Model for the command line tools. * <p> * <b>Note:</b> Do not use this class, internal use only! */ public final class TokenNameFinderModelLoader extends ModelLoader<TokenNameFinderModel> { public TokenNameFinderModelLoader() { super("Token Name Finder"); } @Override protected TokenNameFinderModel loadModel(InputStream modelIn) throws IOException { return new TokenNameFinderModel(modelIn); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/namefind/TokenNameFinderTool.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.namefind; import java.io.File; import java.io.IOException; import java.util.ArrayList; import java.util.Collections; import java.util.List; import opennlp.tools.cmdline.BasicCmdLineTool; import opennlp.tools.cmdline.CLI; import opennlp.tools.cmdline.CmdLineUtil; import opennlp.tools.cmdline.PerformanceMonitor; import opennlp.tools.cmdline.SystemInputStreamFactory; import opennlp.tools.namefind.NameFinderME; import opennlp.tools.namefind.NameSample; import opennlp.tools.namefind.TokenNameFinder; import opennlp.tools.namefind.TokenNameFinderModel; import opennlp.tools.tokenize.WhitespaceTokenizer; import opennlp.tools.util.ObjectStream; import opennlp.tools.util.PlainTextByLineStream; import opennlp.tools.util.Span; public final class TokenNameFinderTool extends BasicCmdLineTool { public String getShortDescription() { return "learnable name finder"; } public String getHelp() { return "Usage: " + CLI.CMD + " " + getName() + " model1 model2 ... modelN < sentences"; } @Override public void run(String[] args) { if (args.length == 0) { System.out.println(getHelp()); } else { NameFinderME[] nameFinders = new NameFinderME[args.length]; for (int i = 0; i < nameFinders.length; i++) { TokenNameFinderModel model = new TokenNameFinderModelLoader().load(new File(args[i])); nameFinders[i] = new NameFinderME(model); } // ObjectStream<String> untokenizedLineStream = // new PlainTextByLineStream(new InputStreamReader(System.in)); ObjectStream<String> untokenizedLineStream; PerformanceMonitor perfMon = new PerformanceMonitor(System.err, "sent"); perfMon.start(); try { untokenizedLineStream = new PlainTextByLineStream( new SystemInputStreamFactory(), SystemInputStreamFactory.encoding()); String line; while ((line = untokenizedLineStream.read()) != null) { String[] whitespaceTokenizerLine = WhitespaceTokenizer.INSTANCE.tokenize(line); // A new line indicates a new document, // adaptive data must be cleared for a new document if (whitespaceTokenizerLine.length == 0) { for (NameFinderME nameFinder : nameFinders) { nameFinder.clearAdaptiveData(); } } List<Span> names = new ArrayList<>(); for (TokenNameFinder nameFinder : nameFinders) { Collections.addAll(names, nameFinder.find(whitespaceTokenizerLine)); } // Simple way to drop intersecting spans, otherwise the // NameSample is invalid Span[] reducedNames = NameFinderME.dropOverlappingSpans( names.toArray(new Span[names.size()])); NameSample nameSample = new NameSample(whitespaceTokenizerLine, reducedNames, false); System.out.println(nameSample.toString()); perfMon.incrementCounter(); } } catch (IOException e) { CmdLineUtil.handleStdinIoError(e); } perfMon.stopAndPrintFinalResult(); } } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/namefind/TokenNameFinderTrainerTool.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.namefind; import java.io.File; import java.io.IOException; import java.io.InputStream; import java.util.HashMap; import java.util.Map; import opennlp.tools.cmdline.AbstractTrainerTool; import opennlp.tools.cmdline.CmdLineUtil; import opennlp.tools.cmdline.TerminateToolException; import opennlp.tools.cmdline.namefind.TokenNameFinderTrainerTool.TrainerToolParams; import opennlp.tools.cmdline.params.TrainingToolParams; import opennlp.tools.namefind.BilouCodec; import opennlp.tools.namefind.BioCodec; import opennlp.tools.namefind.NameSample; import opennlp.tools.namefind.NameSampleTypeFilter; import opennlp.tools.namefind.TokenNameFinderFactory; import opennlp.tools.namefind.TokenNameFinderModel; import opennlp.tools.util.InvalidFormatException; import opennlp.tools.util.SequenceCodec; import opennlp.tools.util.TrainingParameters; import opennlp.tools.util.featuregen.GeneratorFactory; import opennlp.tools.util.model.ArtifactSerializer; import opennlp.tools.util.model.ModelUtil; public final class TokenNameFinderTrainerTool extends AbstractTrainerTool<NameSample, TrainerToolParams> { interface TrainerToolParams extends TrainingParams, TrainingToolParams { } public TokenNameFinderTrainerTool() { super(NameSample.class, TrainerToolParams.class); } public String getShortDescription() { return "trainer for the learnable name finder"; } static byte[] openFeatureGeneratorBytes(String featureGenDescriptorFile) { if (featureGenDescriptorFile != null) { return openFeatureGeneratorBytes(new File(featureGenDescriptorFile)); } return null; } public static byte[] openFeatureGeneratorBytes(File featureGenDescriptorFile) { byte[] featureGeneratorBytes = null; // load descriptor file into memory if (featureGenDescriptorFile != null) { try (InputStream bytesIn = CmdLineUtil.openInFile(featureGenDescriptorFile)) { featureGeneratorBytes = ModelUtil.read(bytesIn); } catch (IOException e) { throw new TerminateToolException(-1, "IO error while reading training data or indexing data: " + e.getMessage(), e); } } return featureGeneratorBytes; } /** * Load the resources, such as dictionaries, by reading the feature xml descriptor * and looking into the directory passed as argument. * @param resourcePath the directory in which the resources are to be found * @param featureGenDescriptor the feature xml descriptor * @return a map consisting of the file name of the resource and its corresponding Object */ public static Map<String, Object> loadResources(File resourcePath, File featureGenDescriptor) throws IOException { Map<String, Object> resources = new HashMap<>(); if (resourcePath != null) { Map<String, ArtifactSerializer> artifactSerializers = new HashMap<>(); if (featureGenDescriptor != null) { try (InputStream xmlDescriptorIn = CmdLineUtil.openInFile(featureGenDescriptor)) { artifactSerializers.putAll( GeneratorFactory.extractArtifactSerializerMappings(xmlDescriptorIn)); } } for (Map.Entry<String, ArtifactSerializer> serializerMapping : artifactSerializers.entrySet()) { String resourceName = serializerMapping.getKey(); try (InputStream resourceIn = CmdLineUtil.openInFile(new File(resourcePath, resourceName))) { resources.put(resourceName, serializerMapping.getValue().create(resourceIn)); } } } return resources; } public void run(String format, String[] args) { super.run(format, args); mlParams = CmdLineUtil.loadTrainingParameters(params.getParams(), true); if (mlParams == null) { mlParams = new TrainingParameters(); } File modelOutFile = params.getModel(); byte[] featureGeneratorBytes = openFeatureGeneratorBytes(params.getFeaturegen()); // TODO: Support Custom resources: // Must be loaded into memory, or written to tmp file until descriptor // is loaded which defines parses when model is loaded Map<String, Object> resources; try { resources = loadResources(params.getResources(), params.getFeaturegen()); } catch (IOException e) { throw new TerminateToolException(-1, e.getMessage(), e); } CmdLineUtil.checkOutputFile("name finder model", modelOutFile); if (params.getNameTypes() != null) { String[] nameTypes = params.getNameTypes().split(","); sampleStream = new NameSampleTypeFilter(nameTypes, sampleStream); } String sequenceCodecImplName = params.getSequenceCodec(); if ("BIO".equals(sequenceCodecImplName)) { sequenceCodecImplName = BioCodec.class.getName(); } else if ("BILOU".equals(sequenceCodecImplName)) { sequenceCodecImplName = BilouCodec.class.getName(); } SequenceCodec<String> sequenceCodec = TokenNameFinderFactory.instantiateSequenceCodec(sequenceCodecImplName); TokenNameFinderFactory nameFinderFactory; try { nameFinderFactory = TokenNameFinderFactory.create(params.getFactory(), featureGeneratorBytes, resources, sequenceCodec); } catch (InvalidFormatException e) { throw new TerminateToolException(-1, e.getMessage(), e); } NameSampleCountersStream counters = new NameSampleCountersStream(sampleStream); sampleStream = counters; TokenNameFinderModel model; try { model = opennlp.tools.namefind.NameFinderME.train( params.getLang(), params.getType(), sampleStream, mlParams, nameFinderFactory); } catch (IOException e) { throw createTerminationIOException(e); } finally { try { sampleStream.close(); } catch (IOException e) { // sorry that this can fail } } System.out.println(); counters.printSummary(); System.out.println(); CmdLineUtil.writeModel("name finder", modelOutFile, model); } }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/namefind/TrainingParams.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.namefind; import java.io.File; import opennlp.tools.cmdline.ArgumentParser.OptionalParameter; import opennlp.tools.cmdline.ArgumentParser.ParameterDescription; import opennlp.tools.cmdline.params.BasicTrainingParams; /** * TrainingParameters for Name Finder. * * Note: Do not use this class, internal use only! */ interface TrainingParams extends BasicTrainingParams { @ParameterDescription(valueName = "modelType", description = "The type of the token name finder model") @OptionalParameter String getType(); @ParameterDescription(valueName = "resourcesDir", description = "The resources directory") @OptionalParameter File getResources(); @ParameterDescription(valueName = "featuregenFile", description = "The feature generator descriptor file") @OptionalParameter File getFeaturegen(); @OptionalParameter @ParameterDescription(valueName = "types", description = "name types to use for training") String getNameTypes(); @OptionalParameter(defaultValue = "opennlp.tools.namefind.BioCodec") @ParameterDescription(valueName = "codec", description = "sequence codec used to code name spans") String getSequenceCodec(); @ParameterDescription(valueName = "factoryName", description = "A sub-class of TokenNameFinderFactory") @OptionalParameter String getFactory(); }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/params/BasicFormatParams.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.params; import java.io.File; import opennlp.tools.cmdline.ArgumentParser.ParameterDescription; /** * Common format parameters. */ public interface BasicFormatParams extends EncodingParameter { @ParameterDescription(valueName = "sampleData", description = "data to be used, usually a file name.") File getData(); }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/params/BasicTrainingParams.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.params; import opennlp.tools.cmdline.ArgumentParser.OptionalParameter; import opennlp.tools.cmdline.ArgumentParser.ParameterDescription; /** * Common training parameters. * * Note: Do not use this class, internal use only! */ public interface BasicTrainingParams extends LanguageParams { @ParameterDescription(valueName = "paramsFile", description = "training parameters file.") @OptionalParameter() String getParams(); }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/params/CVParams.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.params; import opennlp.tools.cmdline.ArgumentParser.OptionalParameter; import opennlp.tools.cmdline.ArgumentParser.ParameterDescription; /** * Common cross validator parameters. * * Note: Do not use this class, internal use only! */ public interface CVParams { @ParameterDescription(valueName = "true|false", description = "if true will print false negatives and false positives.") @OptionalParameter(defaultValue = "false") Boolean getMisclassified(); @ParameterDescription(valueName = "num", description = "number of folds, default is 10.") @OptionalParameter(defaultValue = "10") Integer getFolds(); }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/params/DetailedFMeasureEvaluatorParams.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.params; import opennlp.tools.cmdline.ArgumentParser.OptionalParameter; import opennlp.tools.cmdline.ArgumentParser.ParameterDescription; /** * EvaluatorParams for Chunker. * * Note: Do not use this class, internal use only! */ public interface DetailedFMeasureEvaluatorParams { @ParameterDescription(valueName = "true|false", description = "if true (default) will print detailed FMeasure results.") @OptionalParameter(defaultValue = "true") @Deprecated // this will be removed in 1.8.0 Boolean getDetailedF(); }
0
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline
java-sources/ai/idylnlp/idylnlp-opennlp-tools-1.8.3/1.1.0/opennlp/tools/cmdline/params/DetokenizerParameter.java
/* * Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package opennlp.tools.cmdline.params; import opennlp.tools.cmdline.ArgumentParser.ParameterDescription; public interface DetokenizerParameter { @ParameterDescription(valueName = "dictionary", description = "specifies the file with detokenizer dictionary.") String getDetokenizer(); }